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Abstract: Raman spectroscopy has been widely demonstrated for tissue 
characterization and disease discrimination, however current 
implementations with either 785 or 830 nm near-infrared (NIR) excitation 
have been ineffectual in tissues with intense autofluorescence such as the 
liver. Here we report the use of a dispersive 1064 nm Raman system using a 
low-noise Indium-Gallium-Arsenide (InGaAs) array to discriminate highly 
autofluorescent bulk tissue ex vivo specimens from healthy liver, 
adenocarcinoma, and hepatocellular carcinoma (N = 5 per group). The 
resulting spectra have been combined with a multivariate discrimination 
algorithm, sparse multinomial logistic regression (SMLR), to predict class 
membership of healthy and diseased tissues, and spectral bands selected for 
robust classification have been extracted. A quantitative metric called 
feature importance is defined based on classification outputs and is used to 
guide the association of spectral features with biological indicators of 
healthy and diseased liver tissue. Spectral bands with high feature 
importance for healthy and liver tumor specimens include retinol, heme, 
biliverdin, or quinones (1595 cm−1); lactic acid (838 cm−1); collagen (873 
cm−1); and nucleic acids (1485 cm−1). Classification performance in both 
binary (normal versus tumor, 100% sensitivity and 89% specificity) and 
three-group cases (classification accuracy: normal 89%, adenocarcinoma 
74%, hepatocellular carcinoma 64%) indicates the potential for accurately 
separating healthy and cancerous tissues and suggests implications for 
utilizing Raman techniques during surgical guidance in liver resection. 
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Pattern recognition. 
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1. Introduction 

Raman spectroscopy is a real-time, non-invasive technique well suited for characterizing 
tissue composition without the need for exogenous dyes or contrast agents. Fundamentally, 
the myriad of vibrational modes that Raman scattering probes yields a spectrum of features 
that correspond to the molecular makeup of the sample. Biomedical applications of Raman 
spectroscopy include analyte [1] and biomarker investigation [2], cancer diagnosis [3–6], and 
surgical guidance [7]. Unlike other optical or spectroscopic techniques that are sensitive to 
tissue structure or presence of specific exogenous contrast agents, many biological molecules 
are inherently Raman active [8]. The excellent intrinsic biochemical specificity of Raman 
spectroscopy is beneficial for investigation of complex disease states like cancer in situ and 
can enable classification with superior sensitivity and specificity relative to competing 
spectroscopic approaches [9]. 

Liver cancer has been among the most common and deadly cancers, accounting for an 
estimated 33,000 new cases and 23,000 deaths in the US in 2014 [10]. The incidence has been 
increasing since 2006 and liver cancer mortality was the second highest amongst all cancers 
worldwide in 2012 [11]. Surgical intervention is often indicated as a potential treatment for 
liver cancers identified at early stages. Such interventions can include resection or ablative 
procedures depending upon patient and tumor indications [12–14]. Many techniques for 
guiding these surgical interventions have been explored, including mapping pre-procedure 
imaging to the surgical field or the integration of novel intraoperative image guidance 
systems [15–17]. Prior work has demonstrated the potential of Raman spectroscopy as an 
intraoperative tool for guiding resection of breast tumors [7] but applying a similar technique 
in the liver would be challenging due to the strong background autofluorescence that 
overwhelms the Raman scattered signal [18, 19]. 

Despite the strong NIR autofluorescence of bulk liver tissue, a number of groups have 
successfully conducted preliminary investigations of cells and tissues from the liver using 
specific 785 or 830 nm excitation Raman spectroscopic techniques. Much of this work for 
liver malignancy and disease has been shown in cell lines and thin slices of tissue, where 
sample preparation and the use of confocal collection geometry reduces autofluorescence 
[20–23] at the expense of in vivo translational potential. Temporal gating has also been an 
effective method for recovering Raman signal from liver specimens [19], but implementation 
requires complex and costly ultrafast laser sources that complicate in vivo application. Other 
groups that have reported Raman spectra directly from bulk liver specimens have either been 
able to recover only the most prominent peaks in the fingerprint region or have directly 
acknowledged the challenge autofluorescence presents [18, 24, 25]. For example, Huang et al 
reported the feasibility of recovering the spectral signature from high-wavenumber regions; 

#238354 Received 22 Apr 2015; revised 11 Jun 2015; accepted 12 Jun 2015; published 2 Jul 2015 
(C) 2015 OSA 1 Aug 2015 | Vol. 6, No. 8 | DOI:10.1364/BOE.6.002724 | BIOMEDICAL OPTICS EXPRESS 2726 



however, overwhelming autofluorescence intensity precluded the direct collection of Raman 
fingerprint signals with sufficient signal to noise ratios for interpretation [18]. Unfortunately, 
the resulting high-wavenumber spectra have not provided as rich a Raman signature for 
classification of tissue types in comparison to those from the fingerprint region. Alternatively, 
the lower photon energy of 1064 nm excitation has long been known to further reduce bulk 
tissue autofluorescence. FT-Raman using 1064 nm excitation has been a successful approach 
for producing high-quality fingerprint spectra from bulk liver specimens; however, collection 
times on the order of minutes per spectrum have been required [26, 27] which restricts 
potential in vivo applications. 

Demonstrating Raman spectroscopy systems capable of both performing efficient 
collection of fingerprint spectra and reliable discrimination of diseased and healthy liver 
would represent valuable progress towards translation of the technique to medical 
applications. Recent advancements in the manufacturing and production of Indium-Gallium-
Arsenide (InGaAs) arrays have resulted in detectors with high quantum efficiency (>80%), 
minimal or no bad pixels, and reduced dark and readout noise. The use of these detector 
arrays in high-throughput dispersive spectrometers has enabled a report of Raman instruments 
that use an excitation wavelength of 1064 nm to acquire spectra from bulk tissues with strong 
infrared autofluorescence [28] without the need to rely on slow FT-Raman systems. However, 
the previous work has neither addressed the potential for classification of the Raman spectra 
of the liver acquired with 1064 nm excitation and dispersive detection, nor the comparison of 
spectral features which may be used to discriminate liver cancer status. Here, we report the 
potential of 1064 nm dispersive Raman spectroscopy to differentiate malignant liver 
specimens from healthy liver specimens, to perform direct multivariate classification of 
normal liver, primary hepatocellular carcinoma, and secondary adenocarcinoma tumor 
specimens, and to quantify the importance of biologically relevant spectral features for future 
investigation. 

2. Methods 

Tissue measurements were acquired using two separate Raman spectroscopy systems with 
excitation wavelengths at 785 and 1064 nm, which are described in detail elsewhere [28]. 
Briefly, the illumination and collection axes of the two systems (Fig. 1) were co-aligned in 
order to ensure measurements were made from the same location on the sample. A flip mirror 
was placed in the optical path in order to toggle between 785 and 1064 nm Raman 
configurations. The 1064 nm system employed an InGaAs array with a multistage 
thermoelectric cooler locked at a temperature of −60°C (Bayspec, Inc.). The entire 1064 nm 
system was packaged into a single device with a common aperture for excitation and 
emission. Measurements were made with 30 second integration times delivering 204mW 
from the 1064nm diode laser at the sample for a calculated spot size of approximately 25 
microns. The optical configuration of the 785 nm Raman system was designed to match the 
1064 nm system as closely as possible. The detector for the 785 nm system was a back-
illuminated deep-depletion CCD thermoelectrically cooled to −70°C (Princeton Instruments, 
Inc.). Identical absolute and relative wavenumber calibrations were performed on each system 
with a neon-argon lamp and common spectroscopic standards. Wavelength-dependent 
variations in system response were accounted for in both systems with a NIST-calibrated 
tungsten lamp. A three-axis micrometer-driven stage was used to position the sample. Optical 
alignment and recoupling efficiency was optimized by placing a silicon wafer at the sample 
focus and maximizing the intensity of the 520 cm−1 silicon peak. 
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Fig. 1. Schematic of co-aligned Raman spectroscopic systems. The 785 nm system utilized 
beam shaping optics to best match the excitation parameters of the 1064 nm system. 

Ex vivo specimens of primary hepatocellular carcinoma (N = 5), secondary liver tumor 
(metastatic colorectal adenocarcinoma, N = 5), and healthy human liver (N = 5) from unique 
donors were obtained from the Cooperative Human Tissue Network at Vanderbilt after 
approval of exemption from the Vanderbilt Institutional Review Board. Tissues were 
maintained at −80°C until the time of use, at which point they were brought to room 
temperature in phosphate buffered saline solution. Specimens were then positioned for 
measurement on the sample stage, and multiple spectra were acquired from at least five 
physical locations across each specimen. All spectra shown have been corrected for 
wavelength-dependent differences in system response. Fixed pattern noise from the InGaAs 
array was subtracted from the 1064 nm spectra. Additional processing steps included baseline 
subtraction with a modified polynomial fitting algorithm [29] and noise smoothing with a 
second-order Savitzky–Golay filter. 

The resulting spectra were then classified with a Bayesian machine learning algorithm, 
sparse multinomial logistic regression (SMLR), to quantitatively determine the potential for 
1064 nm dispersive Raman spectra to separate healthy and malignant liver tissues. SMLR is a 
versatile multiclass iterative algorithm that reduces the high dimensionality of Raman data to 
only those spectral basis features needed for discrimination [30]. SMLR data reduction 
involved creating a transformation of the original data set in which distinguishing spectral 
basis features were weighted based on their ability to successfully separate classes of training 
data. The training and classification procedure implemented here used a Laplacian prior, a 
direct kernel, no bias, z-scored spectral normalization, component–wise updates, and leave-
one-sample-out cross validation. In this case, the leave-one-sample-out procedure trained an 
independent classifier for each sample (i.e. each tissue specimen). A posterior probability of 
class membership for each class was then calculated for each individual spectrum using a 
classifier trained only with spectra from other specimens. The final classification accuracy 
reported for each tissue type represents the percentage of all spectra correctly predicted. Two 
separate classification tests were performed on the data set: a binary prediction of tumor 
versus normal samples and a three class prediction of healthy liver, secondary colorectal 
metastatic adenocarcinoma, and primary hepatocellular carcinoma. 

To evaluate the relative merit of spectral features identified for classification, two 
different outputs produced by SMLR were used. The first output was the set of averaged 
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weights SMLR applied to spectral basis features. In this instance, the classifier iteratively 
applied weights to basis features that directly corresponded to spectral bands in the original 
data. As a result, the average magnitude of weight assigned to a spectral feature was 
proportional to the band’s value for classification. Another output used was the frequency 
with which certain spectral basis features were selected across all cross-validations. Since the 
human tumor specimens can exhibit substantial heterogeneity in their Raman signature within 
a given pathological group, cross-validation frequency can also be a valuable measure of 
importance. We have defined a quantitative metric called feature importance that incorporates 
both the SMLR feature weight and the cross-validation frequency in order to quantitatively 
consider both biochemical differences between distinct tissues types and spectral 
heterogeneity within a single tissue type. Since cross-validation frequency was inherently 
scaled from [0, 1] but average weights were unbounded, the magnitude of average weights for 
each basis feature across all classes was scaled to a range of [0, 1] in a given comparison 
(either binary or three class). Here we have defined feature importance as the product of 
feature cross-validation frequency and scaled feature weight. As frequency and scaled 
weights both have range [0, 1], the resulting feature importance value emphasizes features 
that are both heavily weighted for decisions and chosen consistently. Values for feature 
importance have been calculated independently for binary and three class discrimination 
processes. 

3. Results 

A comparison between calibrated spectra obtained from the liver samples with 785 nm and 
1064 nm dispersive Raman spectroscopy systems prior to subtraction of background 
autofluorescence is displayed in Fig. 2. The spectra collected at 785 nm suffer from intense, 
highly variable autofluorescence that dominates the Raman scattering intensity and makes 
separation of Raman data and interpretation of the Raman spectrum difficult to impossible. 
Conversely, all spectra measured with the 1064 nm excitation system demonstrate evident 
Raman features prior to removal of the autofluorescent background. Visual inspection of the 
average spectra for normal, adenocarcinoma, and hepatocellular carcinoma samples (Fig. 3) 
reveals differences in the lineshapes at several regions, most notably the 1595 cm−1 band of 
the normal samples. This spectral band, and others that contain the greatest differences 
between classes, coincide with the features selected by SMLR as part of the multivariate 
signature used for discrimination. The SMLR weight, cross-validation frequency, and feature 
importance of the key spectral bands used for discrimination are listed in Table 1. In general, 
spectral bands with high average SMLR weighting correspond to those that are frequently 
used in cross-validation in both the binary (Fig. 4) and three class instances (data not shown), 
although the trend is clearly non-linear in both cases. Feature importance is encoded in Fig. 3 
by the shaded vertical gray bands. 
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Fig. 2. Raman spectra (mean +/− standard deviation) of adenocarcinoma samples for both 785 
nm and 1064 nm excitation systems. The strong and variable autofluorescent background 
present at 785 nm excitation overwhelms modest Raman signal from each spectrum. Spectral 
trends are representative of all classes measured. 

 

Fig. 3. Mean +/− standard deviation Raman spectra collected with 1064 nm dispersive system 
for healthy liver, secondary colorectal metastatic adenocarcinoma, and primary hepatocellular 
carcinoma samples. All spectra are corrected for wavelength-dependent spectral response and 
background subtracted using a modified polynomial fitting algorithm previously described. 
Spectral features utilized during SMLR classification are encoded with graded bands 
indicating the importance greater than the 0.25 threshold value. 
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Table 1. Key SMLR classifier spectral bands, feature importance, and assignments. 

Raman 
shift 

(cm−1) 

SMLR 
Weight 

Cross-
validation 

Frequency (%) 

Feature 
Importance 

Tissue Type Assignment 

747 0.46 93 0.27 Adenocarcinoma Lactic acid [31] 
789 0.53 87 0.29 Adenocarcinoma DNA [32] 

838 1.58 100 1.00 Adenocarcinoma 
Lactic acid [31], Tyrosine 

[32] 
855 0.67 100 0.42 Hepatocellular Carcinoma Albumin [33] 

873 
1.06 

−0.75 
100 
100 

0.67 
0.48 

Hepatocellular Carcinoma 
Adenocarcinoma 

Collagen, hydroxyproline 
[34] 

981 −0.54 87 0.30 Hepatocellular Carcinoma – 

1184 −0.49 87 0.27 Hepatocellular Carcinoma 
Tyrosine, Phenylalanine 

[32] 
1279 0.63 87 0.35 Hepatocellular Carcinoma Amide III [35] 
1356 0.70 100 0.44 Adenocarcinoma Glucoe [35, 36] 
1384 0.91 100 0.57 Adenocarcinoma Lactic acid [31] 
1485 1.00 100 0.64 Hepatocellular Carcinoma Nucleic acid [37] 

1524 
0.76 

−0.80 
93 
93 

0.45 
0.47 

Normal 
Hepatocellular Carcinoma 

Carotenoid [8, 38] 

1595 0.94 100 0.60 Normal 
Retinol [21], Heme [21], 
Biliverdin [26], Quinones 

[24] 
1685 0.83 93 0.49 Hepatocellular Carcinoma Amide I [8, 34] 
1706 −0.70 93 0.35 Normal – 
1734 0.46 93 0.27 Adenocarcinoma Lipid [38] 

 

Fig. 4. The magnitude of SMLR feature weights and corresponding cross-validation 
frequencies for tumor samples from binary classifier. The non-linear association between these 
metrics holds for all tissue classes for both binary and three class discrimination tests. 
Frequently chosen features have a large range of weights suggesting a combination of these 
values will emphasize informative features with a higher feature importance value. 

The prediction results of the binary classification model, which utilized an average of 33 
basis features (324 features excluded), are presented in Fig. 5 and reveal that every spectrum 
collected from each tumor sample is correctly classified. Most of the spectra from the healthy 
liver samples are correctly identified with four spectra from two normal samples errantly 
predicted as tumor. A binary classifier requires a minimum decision threshold of 50%. Using 
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this threshold, the algorithm achieved 100% sensitivity and 89.2% specificity for 
discriminating healthy and tumor samples. More rigorous separations of the predicted data 
using only spectra classified with probabilities of either >75% or >80% for class membership 
produces identical results for both sensitivity and specificity, which reinforces the high 
confidence of differentiating healthy and tumor tissues using 1064 nm dispersive Raman 
spectroscopy. 

 

Fig. 5. Binary posterior probability of class membership as predicted by SMLR algorithm. 
Resulting classification yields 90.3% classification accuracy (104/108 spectra), with 100% 
sensitivity and 89.2% specificity for discriminating healthy (circles) and tumor samples 
(squares). Thresholds for >50% (dashed) and >80% (dotted) probability for class membership 
yield identical results. 

Following the binary prediction, the same data is again used for a more challenging three 
class discrimination of healthy liver, primary hepatocellular carcinoma, and secondary 
adenocarcinoma of the liver based on a model that utilized an average of 50 basis features 
(314 features excluded) (Fig. 6). In a three group classifier, membership is assigned to the 
class with the highest probability, which can be as low as 34%. Here, four measurements 
from two of the healthy samples are again misclassified (three as hepatocellular carcinoma, 
one as adenocarcinoma) resulting in 89.2% classification accuracy. Across the tumor classes 
26/35 (74.3%) adenocarcinoma and 23/36 (63.9%) hepatocellular carcinoma spectra are 
correctly identified. When we restrict correct classification to those spectra with greater than 
50% probability to mirror the binary classifier, 33/37 (89.2%) normal, 25/35 (71.4%) 
adenocarcinoma, and 22/36 (61.1%) hepatocellular carcinoma spectra are correctly identified. 
It is important to note that while spectra from several tumor samples are misclassified by the 
predictor, no spectrum obtained from a tumor sample is identified as normal. When the rigor 
of the classification threshold is increased further, an expected falloff in the separation of the 
primary and secondary tumor classes is observed. A probability threshold of >75% results in 
correct identification of 31/37 (83.8%) normal, 17/35 (48.6%) adenocarcinoma, and 20/36 
(55.6%) hepatocellular carcinoma spectra. 
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Fig. 6. Three class prediction of posterior probability of class membership from SMLR 
algorithm. Resulting classification yields 78.3% classification accuracy with healthy control 
(circles, 33/37 spectra), adenocarcinoma (squares, 26/35 spectra), and hepatocellular 
carcinoma (triangles, 23/36 spectra) samples correctly distinguished. Again, thresholds are 
indicated for >50% (dashed) and >80% (dotted) probability for class membership and 
demonstrate spectral heterogeneity manifested in the falloff in classification accuracy. 

4. Discussion 

A growing body of work supports the potential for disease discrimination with Raman 
spectroscopy. Such systems have typically used dispersive detection and excitation sources at 
either 785 or 830 nm; however, the naturally strong autofluorescence of tissues such as the 
liver has limited the feasibility of diagnostic applications. Previous work identified the 
strengths and limitations of using 1064 nm excitation and dispersive spectrographs with 
InGaAs detector arrays for collection of Raman spectra from bulk tissue [28]. In this work, 
high-throughput, dispersive detection facilitated acquisition times of 30 seconds or less, 
which represents a substantial improvement in speed in comparison with established 1064nm 
FT-Raman spectroscopy systems. One tradeoff is that the reduced scattering cross-sections at 
1064 nm in comparison to 785 nm produce weaker Raman signals in tissues with low to 
moderate autofluorescence. However, in tissues with strong autofluorescence such as the liver 
(Fig. 2), the decreased autofluorescence seen using 1064 nm excitation is critical for 
obtaining spectra with sufficient quality for real-time, non-destructive biochemical analysis. 
Qualitative inspection of the spectrum shown in Fig. 3 reveals the presence of clear Raman 
signatures in the region from 750 – 1750 cm−1, a region rich with features attributed to nucleic 
acids, proteins, metabolic factors, and lipids. In order to develop the application of Raman 
spectroscopy for analysis of bulk liver tissue, we chose to investigate whether robust 
statistical differences between healthy and cancerous tissues could be found and attempt to 
provide insight into the biochemical basis of the spectral features that have been used for 
classification. 
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Based on visual inspection alone, there appear to be qualitative differences in the spectral 
lineshapes of healthy liver, primary hepatocellular carcinoma, and secondary adenocarcinoma 
specimens. For example, normal tissue appears to be characterized by the presence of a peak 
at 1595 cm−1 that is absent in specimens from both tumor classes (Fig. 3). Statistical analysis 
of the data using SMLR strongly supports the ability to utilize both clearly visible spectral 
differences along with those that are visually more subtle to achieve excellent classification 
performance (Fig. 5). As a Bayesian classifier, one of SMLR’s valuable characteristics is that 
it produces probabilities of class membership for all spectra. Thus, the user can define the 
probability threshold for classification and is free to choose more (>80% posterior 
probability) or less (>50% posterior probability) stringent criteria. We have shown that the 
spectral differences between normal and cancerous liver tissue are distinct enough that a 
decision threshold can be set at an 80% probability of class membership without any 
deterioration in performance from the minimum threshold of 50%. Even at this high level of 
rigor, the performance of the classifier (100% sensitivity, 89.2% specificity, 90.3% 
classification accuracy) compares very well with the sensitivities (86-100%) and specificities 
(68-100%) that have been reported for established applications of Raman techniques for 
diagnostics [5, 7, 39, 40] and suggests successful translation from basic science to medical 
applications is possible. 

Partitioning the data set further for the three class SMLR discrimination of liver samples 
also presents promising results (Fig. 6). The same four measurements from two of the healthy 
samples are again misclassified, maintaining 89.2% classification accuracy. When attempting 
to separate the two tumor classes, the performance degraded, yielding 74.3% and 63.9% 
classification accuracies for adenocarcinoma and hepatocellular carcinoma, respectively. Of 
the 3 group misclassifications, it is notable that 25 of the 40 spectra did not receive greater 
than 75% posterior probability of membership for any class and are, therefore, unclassified 
based on this decision threshold. The reported classification performance is likely due to a 
combination of effects. The limited sample size of this preliminary study may not have 
provided the needed power to discriminate between tumor classes. By using leave-one-
sample-out cross-validation, the trained models will have low bias, but may have higher 
variability as individual samples are omitted. However, the resulting model should generalize 
appropriately as sample sizes are expanded because this cross-validation technique balances 
complexity, bias, and variance components. Another factor that has impacted the 
classification performance is the similarity of the spectral lineshapes for the tumor classes. 
While these signals enabled confident separation of normal from tumor, the spectral 
similarities required the classifier to isolate more subtle differences between tumor classes 
which may have been subject to noise and inter-sample variations. These similarities in 
Raman signature for tumor classes partially account for posterior probabilities below 75% for 
many of the misclassified samples. 

While the accuracy of statistical classification algorithms provides guidance on the 
potential for discriminating different tissue types, the strength of Raman spectroscopy is its 
inherent biochemical specificity. The ability to determine which spectral bands contribute to 
discrimination and the extent of their contribution would provide valuable insight into the 
biological and chemical basis of the differences observed between tissue types. Prior work 
has utilized the SMLR weights in order to evaluate the relative importance that individual 
features contribute to discrimination [41]. However, since SMLR promotes sparsity and 
weights are calculated during individual cross-validation operations, it is possible for a 
spectral feature to be substantially weighted but not used consistently across the entire data 
set. This situation could arise when conducting feasibility studies on novel applications, 
where it is unknown to what extent the sample spectra are representative of the overall 
population, as is often the case in initial investigations of Raman spectroscopy for 
identification of complex diseases like cancer. It is possible that there may be some bands 
within a subset of spectra that greatly influence the separation of pathologically identified 
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disease classes (high weighting), but that are not universally critical for separation of 
pathological classes (low frequency). This phenomena is observed in the data shown in Fig. 4, 
where 9 features have weights above 0.3, however the frequency with which these features 
are used in cross-validation varies from 80 to 100%. The extracted feature weights and cross-
validation frequencies are clearly related measures, but each captures unique information 
about the spectral bands that inform the classification algorithm (Fig. 4). Here, we have 
combined spectral feature weight, which captures information that better explains differences 
between tissue types (between group variability), with cross-validation frequency, which 
indicates the heterogeneity of the spectral feature within a tissue type (within-group 
variability), in order to account for the complementary information provided by each. To our 
knowledge, this work provides the first demonstration of extracting the importance of features 
used for SMLR classification for Raman spectral data. While this analysis has utilized SMLR 
as the multivariate tool for feature reduction and cross-validated classification, all statistical 
pattern recognition algorithms have parameters that can be tuned to meet analytical needs and 
allow extraction of complementary outputs that enable direct quantitative evaluation of the 
influence and robustness of selected features. This technique is broadly applicable to other 
analytic approaches and provides a valuable basis for utilizing classification outputs to assist 
evaluation of spectra collected during application development. By extracting and combining 
both feature weight and frequency of use, it is possible to associate the strongest sources of 
discrimination with vibrational bonds related to cancer status (Table 1). Furthermore, by 
identifying a robust set of spectral features, we can begin to explore the differences in the 
heterogeneous subclasses of liver tumors using dispersive 1064nm Raman techniques. 

The spectral features ascribed the highest feature importance within the normal samples 
are the presence of the peak shoulders near the 1524 cm−1 and 1706 cm−1 bands and the peak 
at 1595 cm−1. The 1524 cm−1 band (FI = 0.45) selected is most likely a shoulder of the 1517 
cm−1 carotenoid peak. The 1706 cm−1 band (FI = 0.35) appears to be a shoulder of an 
unattributed 1690 cm−1 peak. The most important feature, the 1595cm−1 peak (FI = 0.6) has 
previously been observed in Raman spectra of healthy liver and potentially attributed to 
vitamin A (retinol), heme, biliverdin, or quinones. Retinol is primarily stored in the healthy 
liver and is a byproduct of carotenoid breakdown, whose spectral features could correspond to 
the other bands identified as characteristic of normal spectra. A potential explanation for 
heme as the signal source in non-diseased samples is that healthy liver tissue plays a central 
role in heme synthesis. Similarly, the liver is responsible for hemoglobin breakdown, 
resulting in biliverdin, which could account for the presence of this molecule. Some of the 
differences identified for primary hepatocellular carcinoma samples include significant bands 
that may be associated with collagen content (FI = 0.67), nucleic acids (FI = 0.64), 
carotenoids (FI = 0.47), and albumin content (FI = 0.42, Table 1). Cirrhosis, or the 
replacement of healthy liver tissue with scar tissue, is the primary risk factor for 
hepatocellular carcinoma [10]. This increased scar tissue content in primary tumor samples 
may account for the importance of collagen features for discrimination. Increased nucleic acid 
content is widely associated with cancer status. The presence of liver export proteins, 
including albumin, is a key histopathological feature for distinguishing primary and 
secondary liver tumors [42]. The secondary metastatic colorectal tumor samples have 
significant features associated with lactic acid (FI = 1.0 & 0.57), collagen (FI = 0.48), and 
glucose (FI = 0.44, Table 1). Lactic acid is an important metabolic component in tumors 
which rely more heavily on anaerobic glycolysis than healthy tissue. Anaerobic metabolic 
processes are supported by both glucose and lactic acid signals, and are consistent with the 
binary classifier. Furthermore, the Cori cycle occurs in healthy liver tissue, converting lactate 
into glucose, and may be disrupted in tumor tissues. 

The spectra measured from the tumor classes are similar and, therefore, require the 
classifier to select features with less prominence to distinguish between primary and 
secondary tumor samples. Subtle features that may have informed discrimination are given 
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importance levels near 0.25, including DNA (FI = 0.29), lactic acid (FI = 0.27), and lipids (FI 
= 0.27) for adenocarcinoma samples, and collagen (0.35) and proteins (0.27) for 
hepatocellular carcinoma samples. Metabolic and proliferative markers are common non-
specific cancer indicators and support the multivariate signature for discriminating samples 
with high sensitivity and specificity. These relatively weak features contribute to the complex 
spectral signal that has enabled discrimination of tumor samples. Although the three group 
classification performance decreased relative to the binary discrimination, no spectrum 
obtained from a tumor sample was identified as normal. Further evaluation of a larger sample 
set of primary and secondary tumor specimens may clarify the sources and prominence of 
these important spectral features. 

The demonstrated sensitivity of Raman spectral signatures to disease status yields 
promising preliminary evidence for further investigation for the liver. In addition to simply 
classifying normal and tumor, rapidly and accurately identifying primary and secondary liver 
tumors may have significant impact to guide medical intervention. The potential for 
discriminating these tumors in vivo may facilitate improved patient outcomes for resection 
and ablative procedures in the future, and inform other treatment options in situ. The 
identification of a robust set of spectral features that contribute to the separation of disease 
classes and are associated with biologically relevant processes in the liver can also help direct 
future investigations. These advancements, along with the demonstrated discrimination of 
healthy, primary, and secondary tumor tissue samples, may have implications for improved 
surgical guidance to conserve liver tissue during resection or to direct ablative procedures in 
vivo. While the work performed in this manuscript relied on bulk, free-beam optics, the 
approach can be readily translated into a clinical setting by integration with fiber-optic 
probes. In addition, Raman spectroscopy performed with 1064 nm excitation and dispersive 
detection opens the door to potential investigations of biomarkers and analytes in the liver, as 
well as other tissues with strong autofluorescence that have not yet been widely investigated 
in situ, including the kidney and deeply pigmented skin. As these new lines of investigation 
develop, it will be important to have analytical methods in place that establish the feasibility 
of classification while also providing insight into the biological and chemical basis of 
discrimination. Feature importance is a valuable metric in this regard, and is well suited to 
quantifying biochemical features critical for discrimination. 

4. Conclusion 

The use of Raman spectroscopy for bulk tissue characterization has seen widespread 
investigation for identification, diagnostics, and guidance applications for several conditions 
including cancer. However, the high levels of background signal from tissues with strong NIR 
autofluorescence present a challenge for practical implementation. Previously, only limited 
investigation of liver tissues has been feasible using Raman instruments based on 785 or 830 
nm excitation or by FT-Raman instruments that could not be easily adopted in a medical 
setting. Now, by using InGaAs detector arrays and high-throughput dispersive instruments 
with NIR excitation above 1000 nm, Raman measurements have been rapidly acquired from 
regions of the spectrum that are less susceptible to the strong liver autofluorescence that 
usually overwhelms subtle Raman signals. High quality Raman spectra obtained from liver 
specimens have been measured and classified using a powerful multivariate technique that 
has successfully separated samples based on tissue group in both normal versus tumor and 
normal versus primary versus secondary metastatic liver tumor regimes with high accuracy. 
This classification scheme has also enabled extraction of important spectral features for 
discrimination with Raman spectroscopic data for the first time. The spectral bands with 
highest feature importance for healthy and liver tumor specimens, including lactic acid (838 
cm−1); collagen (873 cm−1); nucleic acids (1485 cm−1); and retinol, heme, biliverdin, or 
quinones (1595 cm−1), are combined with less prominent features to enable discrimination 
based on biologically relevant features with high accuracy. Evaluating the importance of the 
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spectral bands selected by the classification algorithm has demonstrated a strong association 
with biological features of healthy and cancerous liver and provides a foundation for further 
study. The combination of these advances has enabled a direct investigation of liver tissues 
without the impact of NIR autofluorescence and demonstrates promise for characterizing and 
discriminating normal and liver tumor specimens. The suppression of autofluorescence from 
bulk tissue may also enable Raman spectroscopic investigations of diseases and biomarkers 
that were not permitted by previous technology and may have potential for future applications 
including surgical guidance. 

Acknowledgments 

The authors would like to acknowledge BaySpec, Inc, particularly Dr. William Yang, for the 
loan of the 1064 nm Raman instrument. Note: at the time of these studies, author CA Patil 
was at Vanderbilt University and author CA Lieber was an employee of BaySpec. Tissue 
samples were provided by the Cooperative Human Tissue Network which is funded by the 
National Cancer Institute. Other investigators may have received specimens from the same 
subjects. 

 

#238354 Received 22 Apr 2015; revised 11 Jun 2015; accepted 12 Jun 2015; published 2 Jul 2015 
(C) 2015 OSA 1 Aug 2015 | Vol. 6, No. 8 | DOI:10.1364/BOE.6.002724 | BIOMEDICAL OPTICS EXPRESS 2737 


