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Abstract 

How a problem is presented can influence students' problem-solving performance. For example, 

including diagrams can alter students' understanding, choice of strategy and accuracy on word 

problems. In this study, we examined the effect of diagrams on students' performance in a 

symbolic problem domain. Sixty-one seventh-grade students solved algebraic equations 

presented in two formats: with or without an accompanying diagram. The presence of diagrams 

increased equation-solving accuracy and use of informal strategies. Overall, the benefits of 

diagrams found previously for word problems generalized to symbolic problems. 
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Introduction 

If you had to teach children basic addition, what would be more helpful- a set of blocks 

they could touch and count or a list of common arithmetic equations such as "2+ 3~5"? External 

representations such as blocks and equations are commonly used tools that can impact student 

outcomes, such as their learning of concepts and problem solving performance (Belenky & 

Schalk, 2014). One way that external representations may influence student outcomes is by 

impacting how people internally represent problems, which in turn influences how they solve the 

problems (Koedinger, Alibali, & Nathan, 2008). For instance, to solve the equation "2+3~? ", 

students need to correctly interpret the string of symbols, form accurate internal representations 

of the quantities involved, and select and execute a relevant strategy. 

Further, the type of external representations may affect problem solving. One way to 

classify external representations is to place them on a continuum from concrete to symbolic. 

Concrete representations such as pictures, diagrams, and physical models are grounded in 

familiar experiences, connect with learners' prior knowledge, and have an identifiable perceptual 

correspondence with their referents (Fyfe, McNeil, Son, & Goldstone, 2014). However, they may 

contain extraneous perceptual details that distract learners from relevant information or inhibit 

transfer of knowledge to novel situations (Harp & Mayer, 1997; Kaminsky, Sloutsky, & Heckler, 

2008). In contrast, symbolic representations such as formal equations and line graphs eliminate 

extraneous surface details, are more arbitrarily related to their referents, and represent the 

underlying structure of the referent more efficiently. Thus, they allow greater flexibility and 

generalizability to multiple contexts, but may appear as meaningless symbols to learners who 

lack understanding of the symbols (Nathan, 2012). 
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The purpose of the current study was to investigate the impact of using a concrete 

external representation- diagrams -to represent algebra equation problems. Algebra is an 

important topic for students in secondary education because it acts as a gatekeeper subject that 

influences later academic and career success (U.S. Department of Education, 1997). One 

longitudinal study found that students who enrolled in an algebra course in 8th grade were more 

likely to take advanced math courses in high school (Atanda, 1999). Other research suggests that 

students who complete Algebra II in high school are more likely to persist in and complete a four 

year degree than their peers (Horn, Kojaku, & Carroll, 2001 ). However, it can be difficult to 

reason about abstract and unknown quantities in algebra. According to Koedinger eta! (2008), 

algebra is the "first abstract symbolic language" (p 367) that most people encounter in school 

after learning natural language. Students often have difficulty comprehending and producing 

algebraic equations (Payne & Squibb, 1990). Thus, this study explored if using a concrete tool 

such as diagrams could help students to better understand and solve symbolic algebra equations. 

Potential Benefits of Diagrams 

Although diagrams are a type of concrete external representation, they have important 

features that distinguish them from other types of illustrations. Specifically, I define diagrams to 

be visual representations that express information via spatial relationships. For instance, a floor 

plan is a diagram that uses bare shapes to represent the floor space occupied by furniture. Spatial 

features such as the size and relative positions of the shapes correspond to real properties of 

furniture. In addition, irrelevant concrete details of the referent, such as furniture height or 

material, can be disregarded so that only the relevant problem features and quantitative relations 

are depicted. In contrast, a pictorial representation would express the specific objects of the 

problem situation with more surface-level details, such as color. Figure 1 shows the difference 
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between a pictorial and a diagrammatic representation of a word problem about using a 

measuring stick to estimate the depth of the sea. In this example, the drawing on the left is a 

diagram that spatially represents quantitative information about length and depth as physical 

distances, but the drawing on the right is a picture that includes irrelevant concrete objects such 

as boats and fish. Previous research on the distinction between pictorial and diagrammatic 

representations has found that diagrams, but not pictures, are beneficial to problem solving (e.g. 

Hegarty & Kozhevnikov, 1999). Thus, we focus on diagrams in this study. 

There are at least three reasons why diagrams might be helpful for solving symbolic 

problems such as algebraic equations. First, diagrams may help highlight relevant information 

that solvers should attend to. For instance, including diagrams with equations may help students 

extract relevant information needed to solve the problem more quickly and accurately (Larkin & 

Simon, 1987). This could improve problem-solving speed and also help students to check their 

work. For instance, students could verify that they are using the correct information to solve the 

problem, or check their solutions against the problem constraints more directly. 

Second, diagrams may decrease working memory load and support quantitative reasoning 

(Munez, Orrantia, & Rosales, 2013; Murata, 2008). In one study with adults, functional magnetic 

resonance imaging revealed that solving a word problem by constructing a mental diagram 

required fewer resources for controlling attention or retrieving procedural knowledge than 

solving the problem by constructing a mental equation (Lee et a!., 2007). Thus, at least for 

people familiar with diagrams, presenting diagrams may free up cognitive resources that are 

important for accurate problem solving. This could allow diagrams to be particularly facilitative 

for students with low cognitive or arithmetic abilities, or on more complex and cognitively 

demanding problems. 
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Third, diagrams may scaffold algebraic reasoning by facilitating connections between 

concrete and symbolic representations (Koedinger & Terao, 2002; Lee, Khng, Ng, & Ng, 2013). 

Specifically, diagrams may elicit students' intuitive, informal knowledge and strategies. 

Presenting diagrams with equations may allow students to connect this knowledge to formal, 

symbolic problem formats. Thus, a diagram benefit may be particularly apparent for students 

who are still developing familiarity with manipulating abstract symbols, such as beginning 

algebra students. 

Evidence for a Diagram Benefit 

In addition to theoretical reasons for a diagram benefit, there are several lines of work 

suggesting that diagrams can aid mathematical problem solving. Past research has focused on the 

benefits of diagrams for solving word problems. 

The first line of evidence comes from research on individual differences in the 

spontaneous use of diagrams during word problem solving. More accurate solvers tend to use 

diagrams, whether by mental visualization or by drawing diagrams on paper (Edens & Potter, 

2008; Hegarty & Kozhevnikov, 1999). For example, Edens and Potter (2008) found in a sample 

of 4th and 5th graders that producing more diagram drawings was correlated with greater 

accuracy. This result has been replicated in a sample of 6th grade students with and without 

learning disabilities (Van Garderen & Montague, 2003). Thus, diagrams can facilitate problem­

solving success by 4th grade. However, generating diagrams may be an indicator of better 

problem understanding, rather than a technique that improves problem solving. 

A second line of evidence for a diagram benefit comes from instructional practice. 

Countries such as Japan and Singapore have long incorporated diagrams into math instruction on 

a national level, and these countries typically perform at the top in international tests of 
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mathematics achievement (Murata, 2008; Ng & Lee, 2009). For instance, 1st and 2nd graders in 

Singapore are introduced to a heuristic using horizontal bar diagrams to solve word problems 

(Ng & Lee, 2009). Students who construct a diagram representation are able to use informal 

arithmetic strategies to solve algebraic problems, thus making algebraic problems accessible 

earlier- beginning in 3rd grade, as opposed to the 7th grade in most US classrooms (Lee et a!, 

2013). In fact, teaching 6th grade pre-algebra students in the US to use this diagram heuristic 

enabled them to solve algebra word problems as well (Koedinger & Terao, 2002). Additionally, 

intensive word-problem solving interventions that include practice generating diagrams have 

helped U.S. elementary school children improve their word problem solving success (Jitendra et 

a!., 2007). However, it is unclear if benefits of learning to use diagrams are due to the presence 

of diagrams or to more general problem-solving strategy instruction. 

A third, more direct line of research clarified this issue by experimentally manipulating 

whether students were given diagrams in conjunction with word problems. Munez, Orrantia, and 

Rosales (2013) examined how presenting novel diagrams could enhance 9th graders' accuracy 

on arithmetic word problems. The problems were comparison problems involving two sets of 

quantities and their relationship, with keywords such as "more than". The diagrams used were 

novel to students and consisted of vertical rectangular bars. Bar height represented magnitude 

and the diagram was clearly labeled with relevant variable names and numerical values from the 

problem statement. Using a within subjects design, the researchers found that students' accuracy 

and response times on isomorphic problems improved markedly when problems were presented 

together with a diagram than not. Further, the improvement was greatest on more difficult 

problems. These findings are consistent with similar research on undergraduates (Lewis, 1989). 
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Thus, diagrams on their own appear to aid in problem comprehension and solution, at least for 

older students. 

8 

However, the benefits of provided diagrams may be less robust in middle-school 

students. Booth and Koedinger (20 12) assessed 6th to 8th grade students on three algebraic 

problems differing in complexity. Each problem was presented in one of three formats: equation 

only, word, or word-with-diagram. The diagrams used were novel to students and tailored to 

each problem. While high-ability students of all grades performed equally with or without 

diagrams, low-ability students in the 7th and 8th grades were more accurate and made fewer 

conceptual errors on word problems with diagrams. However, these students benefited from 

diagrams only on the more complex double-reference problem where the unknown variable 

appeared twice (e.g., N- 1 /5 * N ~ 30). No diagram benefit was found on the simpler single­

reference problem where the variable appeared only once. This suggests that grade, ability level 

and problem complexity may be key moderators of a potential diagram benefit. 

Although informative, some limitations of this study motivate the current study design. 

First, this study did not include an equation-with-diagram condition, which would have revealed 

whether the diagram benefit was consistent across problem types or only for word problems. 

Second, despite a large sample size with over 100 students in each grade, only three problems 

were used in the assessment. It is unclear if the results would generalize to other problems. 

Third, the diagrams used were inconsistent in design. Two of the diagrams used rectangular bars 

to represent quantity, but one image used did not meet my definition of a diagram. Specifically, 

that image was a pictorial representation of information that did not spatially represent any 

quantitative relationships. As a result, a diagram benefit was found for the first two diagrams, but 

not for the third image. While this agrees with previous research demonstrating the benefits of 
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diagrams but not pictures (e.g. Edens & Potter, 2008), there is a potential confound between 

problem difficulty and diagram effect because the problem using a picture was the hardest 

problem in all formats. Hence, these results have limited generalizability because they may be a 

consequence of the specific problems posed. 

Further, Booth and Koedinger with previous research the question of to what extent 

unfamiliar diagrams can be helpful. In this study, low-ability 6th graders did not benefit from 

diagrams, but low-ability 7th and 8th graders did. Was the improved ability to benefit from 

diagrams due to increased exposure and practice with diagrams, which was part of the middle 

school curriculum? Or was it due to students' improvement over time in other areas, such as 

general problem-solving skills? Thus, it is still unclear how much familiarity with diagrams is 

required before they become helpful. 

In summary, diagrams generally aid in problem comprehension and solution of word 

problems, although results are less consistent with middle-school students than with high-school 

and college students. Little is known about the use of diagrams with more symbolic tasks such as 

equation solving. Extending the diagram research to a symbolic domain will test the 

generalizability of the diagram effect. It should also provide insight into how children interpret 

and solve symbolic problems. 

Current Study 

The present study investigated the effectiveness of presenting diagrams alongside 

algebraic equations. Previous research suggests that diagrams can help students make sense of 

word problems, including those with an algebraic structure. However, algebra equations are 

more abstract than word problems. Algebra equations not only require students to understand 

complex mathematical structure, but also require students to decode the symbolic language of 
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algebra (Payne & Squibb, 1990). By investigating how students relate provided diagrams and 

equations, this study can also provide insight into how children interpret and solve symbolic 

problems. 

10 

Our primary research question was whether the presence of diagrams would influence 

algebraic equation-solving performance, including accuracy, strategy use, and types of errors 

made. We predicted that problem-solving accuracy would be higher if a diagram was provided 

than if it was not- a "diagram benefit". We also hypothesized that diagrams could elicit 

students' intuitive knowledge of quantitative relations in the problem. Similar to findings in word 

problems (e.g. Koedinger & Nathan, 2004), this should increase both the usage of non-algebraic 

strategies and the accuracy of algebraic strategies, while reducing the frequency of conceptual 

errors. 

Our secondary research question was whether the effect of diagrams would depend on 

problem or student characteristics, as a test of the generalizability of the diagram benefit. We 

explored problem complexity, students' representation translation ability, and students' general 

math ability as three factors that could influence the benefits of diagrams. We varied problem 

complexity by including both single-reference and more difficult double-reference problems, 

which differed in whether the variable appeared once or twice in the equation (Table 1 ). We 

measured students' representation translation ability by asking them to convert diagrams into 

equations, and vice versa. We explored the importance of general math ability by working with 

students drawn from advanced and regular mathematics classes. 
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Method 

Middle-school students participated in an experimenter-led classroom session. Using a 

within-subjects design, we manipulated the presence of diagrams during the equation solving 

assessment. 

Participants 

11 

Participants were 62 seventh-grade students from four classes attending an independent 

private school in Nashville, TN. Students were tested in late October, about 2 months into their 

first pre-algebra course. Two classes (34 students) were in an advanced math class, which 

covered the same breadth of content but in greater depth. Students had experience with reading 

algebraic expressions and solving simple one step equations, but had not studied the equation 

forms used in the experiment. They did not have prior experience with the type of diagrams used 

in this study. Prior to the experiment, their mathematics teacher explained that they would be 

learning a novel way of solving algebraic equations, and that they could potentially apply the 

new knowledge to future classroom work. We dropped the data of one student who showed 

visible frustration during the experiment, had difficulty understanding the task, and did not 

attempt any of the assessment items. The final sample contained 61 students (33 male, mean age 

~ 12.7 years). 

Procedure 

Students completed the experiment in their classrooms during their regular 50-minute 

math period. All students completed the tasks in the same order: introduction, diagram practice, 

representation translation, and equation solving. The within-subjects manipulation occurred only 

during equation solving. There were no time limits for any of the tasks. Calculators were not 

permitted on any task. 
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Measures 

Appendix 1 provides a sample assessment booklet. On all problem-solving tasks, two 

types of problems were used: (a) single-reference problems, which involved only one instance of 

the variable, and (b) double-reference problems, in which the unknown variable appeared twice. 

Table 1 shows examples of equations and corresponding diagrams for each type of problem 

complexity. 

Equations were adapted from Booth & Koedinger (2012)'s choice of single- and double­

reference problems. The math teacher of the participating students checked the final set of 16 

problems and verified that they were of suitable difficulty to provide us with a range of 

responses. 

Based on the diagram approach used in Singapore, diagrams were constructed according 

to these guidelines: (1) Quantities are represented by rectangular bars using solid borders; (2) 

Dotted vertical lines divide bars into equal portions; (3) Rectangular bars were labeled internally 

with variables ( 4) Horizontal arrows over the length of a bar indicated the quantity's magnitude 

and were labeled with known values or'?'. Diagrams were drawn to approximate the relative 

quantities in each problem, but were not of the same scale across problems 

Diagram Introduction. The experimenter spent about 8 minutes with the entire class to 

describe diagrams as a special kind of picture that represents information about numbers and 

quantities. She used four examples to explain the guidelines used to construct diagrams, 

highlighting important features (e.g. arrows, labels, dotted lines). She described how diagrams 

could represent each of the basic operations: addition, subtraction, multiplication, and division. 

For each operation, she presented and described an example diagram and asked students to copy 

her drawings on a worksheet. These example diagrams were much simpler that the diagrams 
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students would encounter in the rest of the experiment. The intent was to develop basic 

knowledge of interpreting the diagrams as they were unfamiliar to the students. No references to 

equations were made. Appendix 2 provides the script used. 

Diagram practice. To provide brief exposure to problem-solving using diagrams in 

isolation, we asked students to work individually on four problems. Students had to solve for an 

unknown variable from a given diagram. The corresponding equation was not included. The first 

three problems were single-reference problems and the fourth was a double-reference problem. 

After 10 minutes of individual work, the experimenter announced the correct answer for each 

problem. Students checked their own work. The intent was to increase familiarity with the 

diagrams. 

Representation-translation task. We constructed four items to measure how well students 

could translate between diagrams and equations. The first two problems required students to 

choose between two diagrams that described a given equation. Students received one point for 

circling the correct diagram. The next two problems required students to write an equation 

describing a given diagram. Students received one point for writing a valid equation; expressions 

(e.g. 2x) were not valid. For both pairs of problems, a single-reference problem was presented 

first, followed by a double-reference problem. Students first read directions and a completed 

example before attempting each pair of problems. No feedback was provided. We included this 

task as a measure of how well students were able to make the connection between diagrams and 

equations. 

Equation-solving assessment. To evaluate our primary research question, we designed 

eight algebra problems contrasting two factors, presentation format and problem complexity. 

Students saw four problems as equations and an isomorphic set of four problems as equations 
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with accompanying diagrams, using different variable letters and constant values. For each 

presentation format, the first two problems were single-reference and the other two problems 

were double-reference. We designed four counterbalanced forms of the equation-solving 

assessment to control for order of presentation (equation-first or equation-with-diagrams first), 

and version (which problems had diagrams). Problems were blocked by presentation format: for 

example, the first four problems would be in equation format, and the next four problems would 

be in equation-with-diagram format. On the four equation-with-diagram problems, students also 

indicated if they had used the diagram to solve each problem by circling "yes" or "no" inside a 

small box below the diagram. This provided a measure of diagram use frequency. 

In addition, a digital clock was shown on a projector screen for this section of the 

experiment. Students were prompted to write down the time that they had completed each page 

of the assessment. This was used as a measure of problem solving speed. 

Coding 

Each problem was scored as correct or incorrect. Students received one point for each 

correct answer. We coded students' strategy use and types of errors committed based on their 

written work, using the scheme outlined in Tables 2 and 3. These schemes were adapted from 

previous research on students' solution of algebra equations and word problems (Koedinger, 

Alibali, and Nathan, 2008). 

Apart from cases where students did not attempt a problem or did not show written work, 

three main strategy codes were given: algebra, unwind, and guess and check. An "algebra" code 

was given to students who demonstrated use of symbolic manipulations by writing an algebraic 

expression or equation. An "unwind" code was given to students who used informal methods to 

logically derive a solution, such as performing arithmetic operations on known values without 
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working with the variable. A "guess and check" code was given to students who tried different 

values of the unknown variable in order to find a solution which fit the problem. An "other" code 

was given to responses with ambiguous work or other approaches, such as when the student 

wrote down some numbers or equations that did not follow from the problem. Strategy codes 

were given based on the general approach taken, and incomplete or inaccurate implementations 

were still coded if it was clear which strategy was employed. We were primarily interested in the 

unwind and algebra strategies, which are essentially formal and informal versions oflogical 

problem-solving. 

Similarly, two main error codes were given for inaccurate or incomplete attempts with 

written work. An "arithmetic" code was given to students whose answers were wrong only 

because of computational errors, but who otherwise understood the problem and made a valid 

attempt at solving the equation, regardless of the specific strategy used. A "conceptual" error was 

given to students who used invalid approaches. For instance, they might have ignored 

parentheses in an algebraic strategy or used the wrong operations in an unwind strategy. 

Incomplete approaches were also considered conceptual errors because these suggest that 

students had partial but incomplete understandings. In addition, students who received a "no 

attempt" strategy code received the same "no attempt" error code; this suggested that the student 

had such a low comprehension of the problem that they could not even begin. A "copy slip" code 

was given to solutions that would have been correct, if not for errors due to miscopying a value 

between steps. 

To establish inter-rater reliability, a second rater coded the written responses of 

25% of the children. Inter-rater agreement was high as indicated by Cohen's kappa (K = .85 

for strategies, K = .92 for errors). 
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Results 

To evaluate the effect of counterbalanced forms, a 2 (order) x 2 (version) ANOV A on 

equation-solving assessment scores was done. This analysis revealed no significant effects of 

either factor or their interaction, F's < 1. Thus the subsequent analyses treated the four forms as 

equivalent. 

Recall our primary research question of whether the presence of diagrams would 

influence student performance on algebraic equation problems, and secondary research question 

of how problem and student characteristics would affect these patterns. Thus our main 

independent variable was presentation format. Our dependent variables were students' accuracy, 

strategy use, errors made, and solution times. Where relevant, we also assessed the interaction of 

these variables with problem complexity, student's general math ability and students' 

representation translation ability. 

Accuracy 

We evaluated students' accuracy on the equation-solving assessment using a repeated­

measures AN OVA with presentation format (equation or equation-with diagram) and problem 

complexity (single- or double- reference) as within-subjects variables and math ability (regular 

or advanced class) as the between-subjects variable. As shown in Figure 1, students provided 

more correct answers when solving equations with provided diagrams ( 48%) than without 

(36%), F(l,59) ~ 11.6, p ~ .001, T]p
2 ~ .16. Students also solved fewer double-reference equations 

correctly (32%) than single-reference equations (50%), F(l,59) ~ 17.6, p < .001, 11/ ~ .23. 

Students in advanced classes solved more problems correctly (56%) than students in regular 

classes (22%), F(l,60) ~ 24.28, p < .001, llr 2 ~ .29. None of the two-way or three-way 

interactions between presentation format, problem complexity and math ability were significant 
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(F's < 1). Thus, the positive effect of diagrams was consistent across simple and complex 

problems and across students with low and high ability, with a moderate to large effect size. 

17 

Students were moderately successful on the representation translation task (M ~ 2.44 out 

of 4, SD ~1.35). Students were equally successful when the task involved single-reference 

problems (62% accurate) and double-reference problems (61% accurate), t(60) < 1. Students in 

the advanced math classes also scored higher on this task than students in the regular math 

classes (M ~ 1.70 vs. 3.03), t(59) ~ 4.35, p < .001, d ~.55. To assess the impact of representation 

translation ability to equation-solving performance, we conducted correlations between students' 

representation translation scores with students' accuracy on the equation-solving assessment. 

Student's representation translation scores were positively correlated with their total equation­

solving accuracy (r ~ .492,p < 0.001) and with the equation-solving accuracy on the four 

problems with diagrams (r ~ .504, p < 0.001). Further, to test if representation ability contributed 

to a diagram benefit over and beyond students' general equation-solving ability, we calculated a 

diagram effect score for each student (equation-with-diagram accuracy- equation-only 

accuracy) and found a small but insignificant correlation between representation translation 

scores and diagram effect scores (r ~ .21, p > .1 ). 

Diagram Use 

Eleven students failed to indicate whether they used a diagram for a specific problem at 

least once. The remaining 50 students reported using the diagram on a majority of the equation­

with-diagram problems (60%). Students reported using diagrams more often on double-reference 

problems (72%) than on single-reference problems ( 49%), t( 49) ~ 3.34, p < .01. However, 

reported diagram use was not correlated with accuracy on equation-with-diagram problems (r ~ -

.045,p>.75). 
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Strategy 

Next consider the strategies students used to solve equations. Table 4 shows the 

frequency of strategy use and the average success of using each strategy, divided by presentation 

format and problem complexity. Students did not attempt 12% of all questions and did not show 

written work on 21% of all questions. Overall, students used an unwind strategy twice as often as 

an algebra strategy (36% vs. 16% of problems), t(60) ~ 4.31, p < .001. 

We conducted two separate repeated-measures ANOV As to evaluate how presentation 

format affected students' frequency of using the unwind and algebra strategies. For both tests, we 

used presentation format (equation or equation-with diagram) and problem complexity (single­

or double- reference) as within-subjects variables. Though not reliable, the presence of diagrams 

marginally increased use of the unwind strategy from 32% to 38%, F(l, 59)~ 2.48, p ~ .12, 11/ ~ 

.04. Students also used fewer unwind strategies on double-reference problems (24%) than on 

single-reference problems ( 46%), F(l, 59)~ 20.47, p < .001, T]p
2 ~ .25. Results were different for 

the frequency of algebra strategy use. Neither presentation format nor problem complexity 

affected students' use of the algebra strategy, F's < 1. There were no significant interactions 

between presentation format and problem complexity for either strategy use, F's < 1. 

We also compared how math ability influenced students' strategy use, both with and 

without diagrams. Using independent sample t-tests, we found that students in advanced classes 

used the algebra strategy more frequently (25%) than students in regular classes (5%), t(59) ~ 

3.62, p < .001. Use of the unwind strategy was similar for students in the advanced (39%) and 

regular classes (30%), t(59) ~ 1.24, p < .1. Next, we used paired t-tests to separate assess the 

effect of diagrams for advanced and regular students. For advanced students, diagrams 

marginally increased use of the unwind strategy from 34% to 44%, t(33) ~ 1.91, p ~ .065, but did 
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not affect their use of the algebra strategy. Presenting diagrams did not affect strategy choice for 

students in regular classes (t's < 1). 

In addition, we evaluated the effectiveness of each strategy by considering the percentage 

of problems where the specific strategy resulted in a correct answer. Overall, students were most 

successful at implementing the algebra (56% accuracy), unwind (61 %), and guess-and-check 

strategies (55%). The presence of diagrams appeared to increase the success of these strategies, 

although the overall frequencies are too small to conduct meaningful statistical analyses on. 

Errors 

Recall that students' strategies were coded for the general approach taken, and allowed 

room for error. Thus, students' written work was given a separate code for the type of error 

committed. Figure 4 shows the percentage of all problems where students committed each error. 

Overall, conceptual errors were the most frequent (28% of all problems), followed by 

indeterminate errors ("No work", 14%), no attempt errors (12%), and arithmetic errors ( 4%). 

We conducted paired t-tests to evaluate the effects of presentation type on frequency of 

different errors. Specifically, students made fewer conceptual errors on equation-with diagram 

problems (21 %) compared to equation-only problems (34%), t(33) ~ 3.51, p < .001. 

We also evaluated the effect of problem complexity on student errors. Figure 5 presents 

the same data on students' errors, divided by problem complexity. Given this limited sample, we 

restrict our analyses to descriptive comparisons. With the exception of arithmetic errors, students 

make more errors on double-reference problems than single-reference problems. For instance, 

greater problem complexity increased the frequency of conceptual errors from 25% to 31% and 

tripled the frequency of no attempt errors from 6% to 18%, but reduced the frequency of 

arithmetic errors from 6% to 2%. 
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Solution times 

Finally, consider how long students took to solve equations. 16 students (26% of the 

sample) failed to write down at least one time-point information. The remaining 45 students took 

about 14 minutes (M ~ 834 seconds, SD ~ 303 seconds) to complete the 16-item assessment. 

Figure 3 shows the average time (in seconds) that students spent on each two-problem section of 

the assessment, divided by presentation format and problem complexity. Students were slightly 

slower to solve the four equation-only problems (M ~ 431 seconds) than the equation-with­

diagram problems (M ~ 407 seconds). This slight difference was due to the longer average time 

spent on double-reference equation-only problems; all other solution times were similar. No 

reliable differences were found. 

Discussion 

External representations such as diagrams generally support learning and problem 

solving. However, incorporating diagrams with symbolic problems has largely gone unstudied. 

Diagrams similar to the ones used in this study have enhanced students' understanding and 

performance on algebraic word problems (e.g. Booth & Koedinger, 2012; Koedinger & Terao, 

2002), so we conducted this experiment to test whether diagrams might benefit students on a 

more difficult problem type, namely, algebraic equation problems. 

We found a clear diagram benefit for students' equation-solving accuracy. Presenting 

diagrams alongside algebra equations enhanced students' accuracy, and this diagram benefit was 

independent of problem complexity and students' math proficiency. This contrasts with a 

previous finding in the word problem literature, where diagrams were most helpful for more 

difficult word problems and for students with lower ability (Booth & Koedinger, 2012; Lewis, 
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1989). Other research has found that concrete representations might even reduce performance on 

complex problems. For instance, word problems can be seen as a concrete representation of 

algebraic problems, because they help solvers link abstract information about quantities to real­

world situations. However, one study found that college students were more accurate solving 

double-reference problems in equation format than in word problem format, even though they 

benefit from the concreteness of word problems on simpler single-reference problems 

(Koedinger et al, 2008). Why did diagrams provide a clearer benefit in this study than in 

previous work with word problems? 

Students may have been able to better understand the diagrams used in the current study 

than in previous studies. Although students reported never seeing the diagrams before, we did 

provide an introductory lesson to familiarize students with diagrams before the assessment. 

Unlike in Booth and Koedinger's (2012) study, we also used a consistent diagram type for all 

problems. However, although representation translation ability correlated with accuracy on 

problems containing diagrams, it also correlated with accuracy on problems without diagrams. 

Further, although students in more advanced math classes were better at translating between 

diagrams and equations, they did not benefit more from diagrams than students in the regular 

math classes. Taken together, the evidence suggests that better understanding of diagrams only 

played a minor role for helping students to benefit from diagrams. 

The fact that algebra equations are generally more difficult than equivalent word 

problems might explain why a diagram benefit was independent of problem complexity and 

math ability in this study. When all problems are difficult for most students, diagrams can aid 

performance across problem complexity and students' math proficiency. Even high school 

students may make persistent errors in understanding and solving algebra equations, although 
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they are more accurate on word problems (Koedinger & Nathan, 2004). Thus, the simpler single­

reference equation problems used in this study were probably challenging enough that students 

benefited from an alternate concrete representation. Similarly, even students of higher math 

ability found the problems challenging enough to benefit from including a diagram. Students also 

indicated more frequent use of diagrams on more complex double-reference problems. This 

suggests that problem difficulty is a relevant factor when students consider what representations, 

tools, or strategies to use in problem-solving. 

Our results on students' strategy use and errors made suggest several additional 

explanations. One possible explanation is that diagrams may influence internal representation. 

Our finding of a diagram benefit is consistent with various cognitive models of problem solving. 

These models generally posit that constructing appropriate mental models of a problem is key to 

successful problem solving (Johnson-Laird, 1983; Koedinger & Nathan, 2004). For example, 

compared to problems posed in difficult formal terms (such as an algebra equation), students 

who have the support of concrete representations can conceive of the problem in more intuitive 

terms, and make fewer conceptual errors when solving the problem. Our results match their 

predictions of increased accuracy and fewer conceptual errors. By providing students with a pre­

constructed diagram, we may have removed some of the difficulty of constructing a usable 

internal representation of the problem. By providing an extra external representation on paper, 

we may also have reduced students' working memory and attention demands by offioading some 

cognitive processing onto perceptual processing (e.g. Larkin & Simon, 1987). 

Second, diagrams may facilitate informal reasoning. Consistent with previous research on 

word problems (Koedinger & Nathan, 2004), students in the current study tended to use more 

informal, non-algebraic strategies when concrete diagrams were present. Similar to how adding a 
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concrete story context can improve performance on arithmetic problems by activating real-world 

knowledge of common operations and quantitative relations (Carraher, Carraher, & Schliemann, 

1985), adding a concrete diagram might improve children's performance on algebra equations by 

activating informal strategies that do not rely on newer algebraic strategies that students are still 

acquiring. Furthermore, the presence of diagrams increased the general effectiveness of each 

strategy, perhaps by allowing students to check their conceptual understanding of the problem 

and the accuracy of their procedures. 

According to the National Council of Teachers of Mathematics' (NCTM), developing 

facility with multiple representations is an important outcome of elementary math education 

(NCTM, 2000). This study suggests that combining concrete and symbolic representations is 

feasible and beneficial for students. It would be worthwhile to see if teaching children how to 

generate their own diagrams is beneficial for equation solving. Would learning to construct 

algebraic equations in a diagrammatic way help students to grasp the underlying mathematical 

structures involved? An emerging line of research suggests that combining concrete and 

symbolic representations in an instructional sequence can integrate their advantages and mitigate 

their disadvantages (Fyfe eta!, 2014). This technique, known as "concreteness fading", uses 

concrete materials to introduce learners to new concepts, before gradually removing perceptual 

details so as to encourage learners to generalize their understandings. Diagrams are a useful 

concrete representation of quantitative relations in equations. Using diagrams in combination 

with equations, and gradually fading the inclusion of diagrams may facilitate learning and 

performance in algebra. Future research needs to evaluate whether such an instructional 

sequence indeed benefits learning and problem solving. 
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Despite the positive contributions of the current study, the scope of this study is still very 

limited. The present study is unable to provide detailed accounts of how students used the 

diagram. Simply coding errors from students' written work provides a limited perspective into 

students' problem-solving process. Students may not have written down all their work- in fact, 

more than 20% of all problems contained no written work. 

Also, using math class assignment as a proxy for students' general math ability may have 

introduced confounding factors that affect how students reason using external representations, 

such as the amount of experience with visual representations, type of problem-solving strategies 

used in the classroom, and interest in using diagrams. These are real concerns because students 

with higher math ability are more likely to spontaneously generate useful diagrams when solving 

problems (Edens & Potter, 2008). Thus, students of different math ability may have benefited 

from diagrams due to different reasons. For example, higher-ability students may have benefited 

because the diagrams more closely matched their own internal representation of the problem, 

whereas low -ability students may have benefited because the diagrams highlighted important 

information that they might otherwise have ignored or misinterpreted. 

Thus, a mechanistic account of diagrammatic reasoning is still lacking. Future research 

should investigate specific processes that problem-solvers engage in when using a diagram. Do 

students iterate between representations and try to process both to understand the problem? Or do 

students fixate on the more concrete or familiar representation, effectively treating that as a self­

contained problem? The kind of processes that students engage in can inform how teachers try to 

incorporate such diagrams into their instruction. Tracking participants' eye movements may also 

reveal diagram elements that are particularly helpful, distracting, or ignored, which can inform 

the design of effective diagrams and other visual aids. 
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Another interesting direction for further research is on the role of representation 

translation skill for benefiting from multiple representations. Research on perceptual learning has 

demonstrated how extensive practice with translating between representations, such as graphs, 

word problems, and equations, can improve students' conceptual knowledge and problem­

solving speed (Kellman et. a!, 2008). The idea is that students can use perceptual processes to 

recognize a common underlying mathematical structure across different modes of representation. 

In the present study, students with greater general math ability scored higher on the 

representation translation test, supporting the same relationship between general mathematical 

ability and translation skill. More generally, Ainsworth (2006) has proposed that learners' ability 

to integrate multiple representations is a crucial component oflearning and benefiting from 

multiple representations. For instance, domain experts are more adept at interpreting diagrams 

within their domains because they can easily make connections between the diagrams and the 

problem situation, which in turn supports their learning from those diagrams. It would be 

worthwhile to investigate how representation translation ability influences the acquisition of 

conceptual and procedural knowledge, and how this ability should best be supported. 

In summary, the current study extends previous research of a diagram benefit in problem 

solving to a symbolic domain. Providing novel diagrams enhanced students' accuracy on 

difficult algebra equation problems independent of the problem and student characteristics 

studied. Concrete external representations may be more powerful than previously leveraged, 

especially when combined with symbolic problems. 
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Table I 

Example equations and diagrams from the equation-solving assessment 

Problem 
complexity 

Single­
reference 

Double-
reference 

Equation 

(x- 45) + 3 
= 20.5 

1 
N--N=30 

5 

Presentation Format 

Diagram 

45 
< > 

x =? 

30 
< 
I 
< N=? 

20.5 
< > 
I I 

!.N 
><5 > 
I 

> 

30 

I 
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Table 2 

Children's strategies on equation solving assessment 

Strategy 

Algebra 

Unwind 

Guess and 
Check 

Other 

Definition 

Student uses algebraic manipulations 
to derive solution. A partially-solved 
equation is written. 

Example responses 
(x-45) I 3 ~ 20.5 

X- 45 ~ 3 * 20.5 
x~6LS+45 

Student works backward using 20.5 * 3 ~ 6L5 
aritlunetic strategies to derive 6L5 + 45 ~ 106.5 
solution. 

Student substitutes different values of (90-45) I 3 ~ 15 
the variable into the provided (105-45) I 3 ~ 20 
equation. (1 08-45) I 3 ~ 21 

Student uses other non-algebraic Student draws a diagram 
strategies, or strategy is ambiguous 

Answer is provided without any 
Answer Only 

working. 

X~ 106.5 

No Attempt Student leaves problem blank. 
Student writes "I don't know" 
or "Skip" 

Note: Codes are assigned based on students' overall approach, even if errors are made in the 
process. 

31 
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Table 3 

Children's errors on equation-solving assessment 

Error 

Arithmetic 

Conceptual 

Copy slip 

No Work 

No Attempt 

Definition 

Student makes a computational error, but 
solution is otherwise correct 

Student employs invalid or incomplete 
strategies 

Student miscopies a value from the problem 
or from own work, but solution is otherwise 
correct 

Student writes an incorrect answer without 
any work shown. 

Student leaves problem blank. 

Example 
(x-45) I 3 ~ 20.5 

3 * 20.5 ~ 60.15 
x~45 +60.15 

(x-45) I 3 ~ 205 
x-45~615 

32 
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Table 4 

Percentage of problems attempted and solved correctly with different strategies for equation-
only and equation-with-diagram equations 

Single-reference Double-reference Total 

%Used %Correct %Used %Correct %Used %Correct 

Equation-only 

Algebra 17 57 16 45 17 51 

Unwind 44 57 20 38 32 51 

Guess and Check 7 44 3 50 5 46 

Other 10 8 20 25 15 19 

Answer only 16 36 21 15 19 24 

No Attempt 6 20 13 

Equation-with-
Diagram 

Algebra 16 65 14 59 15 62 

Unwind 48 74 29 60 39 69 

Guess and Check 3 50 4 80 4 67 

Other 7 38 9 27 8 32 

Answer only 20 25 28 29 24 27 

No Attempt 7 16 12 

Note: %Used may not add up to 100 because of rounding error. 
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Figure 1 

Example of schematic and pictorial drawing . .Adapted from Edens & P otte 1; 2008, p.l86 

Schema he 

/ 

Pictoriol 

( 

'­
/ 

34 
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Figure 2 

Accuracy on equation-solving assessment by problem complexity and presentation fonnat 

Average accuracy on equation-solving assessment 

75 

p = 0.06 

0 
Single-reference Double-reference 

Problem Complexity 

Note. Enor bars represent standard enors. 

**Data used to create the graph is below: 

Average accuracy by problem complexity and presentation format 

Presentation Format 

Equation only 
Equation with diagram 

Problem Complexity Equation Only Equation with Diagram 

Single-reference 45 (5.5) 55 (5.5) 

Double-reference 25 (4.5) 40 (5 .5) 

Note. N = 61. Scores are mean(SE) 

35 
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Figure 3 
Response times on equation-solving assessment by problem complexity and presentation format 

Average time spent on each page 

Single-reference Double-reference 

Problem Complexity 

Equation only 

Equation with diagram 

Note. N = 45. Scores are time in seconds taken to solve two problems. Enor bars represent 

standard en ors. 

Data used to create the graph is below: 

Average resp onse tirne by p roblem complexity and presentation format 

Presentation Format 

Problem Complexity Equation Only Equation with Diagram 

Single-reference 197 (17) 195 (16) 

Double-reference 238 (33) 208 (15) 

Note: N = 45. Scores are mean times with standard en ors in parentheses 



ALGEBRA DIAGRAMS 37 

Figure 4. 
Percentage of problems with different errors by presentation format 

Frequency of errors 
50 ~-----------------------------------------= ..... 

·~ 
~ 40 +---~------------------------------------
8 
~ 

p =0.001 

:E e ~3o Q.e .... ;... 

~ ~20 

Equation only 
Equation with diagram 

t)l) 
~ ..... 
~ 10 
~ 
~ 

Q.. 

0 
Conceptual Arithmetic No Attempt No Work 

Note. Enor bars represent standard enors. 

Data used to create the graph is below: 

Average frequency of different errors 

Presentation Format 

Equation Only Equation with Diagram 

Conceptual 34 (4.0) 21 (3.0) * 

Arithmetic 4 (1.3) 5 (1.4) 

No Attempt 13 (3.0) 12 (3.0) 

No Work 12 (3.3) 15 (3 .7) 

Copy 2 (0.9) 0 (-) 

Note: Scores are percentages of all problems with that enor, presented as means with 

standard enors in parentheses. * denotes differences at p = 0.05 level of significance. 
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Figure 5. 
Percentage of problems with different errors by presentation format 

Frequency of errors by problem complexity 

Single-reference 
Double-reference 

Conceptual Arithmetic No Attempt No Work 

Note. Enor bars represent standard enors. 

Data used to create the graph is below: 

Percentage of problems with different errors 

Problem Complexity 

Single-reference Double-reference 

Conceptual 25 (3.9) 31 (5 .1) 

Arithmetic 6 (0.7) 2 (0.4) 

No Attempt 6 (1.2) 18 (4.9) * 

No Work 11 (2.8) 16 (4.8) * 

Copy slip 2 (.01) 0 (-) 

Note: Scores are percentages of all problems with that enor, presented as means with 

standard enors in parentheses. * denotes differences at p = 0.05 level of significance. 
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Appendix 1. 
Assessment, FormA 

39 
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Directions: For each diagram, find the unknown value. 
Show all your work. Write your answer in the answer blank. 

1. 13 3 
< ~ ~ 

I I I I 
< 

x=? 
~ 

I Answer:x= 

2. h=? 5 
< ~() 

I h I I h 

< 
32 

> 

I AllSwer: h = 

Turn the page 
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3. 

< 

< 

I Answer: B = 

4. 

< 
I 
< 

I Answer: Y= 

12 

B=? 

1 
-B 

><4 ) 
I I 

) 

Y=? 6 

y 

) ~ 

I y Y-6 I I 
36 

) 

Wait for instructions from the teacher. 
Do not turn the page until told to do so. 

41 
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Directions: For each equation, circle the diagram that represents the same 
problem. Make sure the diagram captures all the information in the equation. 

Practice. 

45 20 
<; ~<; 

I I 
<; 

x = ? 

1. 

x=? 
<; ;) 

I I 
< 13 

2. 

21 
<; ~<; 

I I 
<; 

x=? 

X+ 20 = 45 

~ 

I 
~ 

(x - 13) + 4 = 2.5 

2.5 
~ 

j 

2 

j 
;) 

2 
x --x = 21 

5 

-x 
5 

~ 

I 
~ 

<; 

I 
< 

<; 

I 
<; 

I 

x =? 20 
<; ~<; 

I 
<; 

45 

13 2.5 
;) ~ 

I j j 

x=? 

X 
~<; 

I 
21 

Write the time now before turning the 
page: 

~ 

I 
~ 

;) 

2 
-x 
5 

~ 

I 
~ 

42 
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Directions: For each diagram, write an equation that represents the same problem. 
Do not solve it. 

Example: 

x = ? 20 
< >< > 
I I I X+ 20 = 45 
< > 

45 

1. 

x=? 5 
< ><) 
I X I I X 

< 
24 

> 

2. 

1 
15 -x 

< ><4 > 
I 
< x =? 

I 
> 

Write the time now before turning the 
page: 

43 
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Directions for next section: 
Work on each problem, show all yotll' work, and Wiite yotll' 
answer in the answer blank. 

Write the time inside the box at the bottom of each page 
before moving on. 

A digital clock is shown on the screen. 

Write the time now before turning the 
page: 

44 
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Directions: Solve the following 4 equations. Show all your work. Write your 
answer in the answer blank. 

1. (x- 45) + 3 = 20.5 

I Answer:x= 

2. 3(t + 6) = 48 

I Answer: I = 

Write the time now before tmning the 
page: 

45 
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3. 
1 N--N=30 
5 

I Answer:N= 

4. 
2 

p + -p = 35 
3 

I Answer:p= 

Write the time now before turning the 
page: 

46 
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Directions: Solve the following 4 equations. Show all your work. Write 
your answer in the answer blank. You may use the diagrams to help you. 
Circle YES or NO so we know if you used it. 

5. (y- 25.5) + 5 = 9 

I Answer: y = 

6. 4(q + 0.5) = 32 

I Answer: q = 

25.5 
< > 
I I 
< y=? > 

q =? 0.5 
< ><) 
I q q 

32 

Write the time now before turning the 
page: 

Did you use the 
diagram on 
problem 5? 

q 

YES NO 

q 

Did you use the 
diagram on 
problem 6? 

YES NO 
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7. 
1 M--M=17 
3 

Answer:M= 

8. 
1 

v +-v = 32 
3 

I Answer: v= 

48 

17 '};.M 
3 

<E<'--------'>:.< > 
I i I 
< 

< 

< 

You have reached the end. 
Write the time now: 

M=? 

v =? 

35 

> 

Did you use the 
diagram on 
problem 7? 

YES NO 

>< 

1 - v 
3 

> 

> 

Did you use the 
diagram on 
problem 8? 

YES NO 
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Appendix 2. 

Diagram insttuction script. 

SLIDE 1 -blank Today, we will talk about some math ideas and solve some 
math problems using diagrams. First, you willleam about 
diagrams and how to read the infotmation found inside a 
diagram. These diagrams are used in math lessons in other 
countries. You might fmd it new or difficult, but that's 
okay. This is not a test. The most important thing is to 1ly to 
understand them and think about what the diagrams mean. 
These diagrams can help you to practice and improve your 
math skills. 

SLIDE 2 - examples Here are some examples of diagrams. Let's try to 
understand what the diagrams mean. You can think about 
diagrams as a special type of picture. Diagrams help you to 
show information about numbers and quantities. 

SLIDE 3 In these diagrams, we use bars to represent quantities. This 

I I 
is similar to how we use letters to represent unknown 

X quantities in equations. 
For example, tllis diagram (Point to bar) represents the 
unknown quantity "x". (Point to X). (Click to next slide; 

SLIDE4 show arrow) 
x= 30 

~ ;;.. This arrow tells us the value of the quantity X (Point to 

I X I arrow). Looking at this diagram now, we don't know the 
value of X. However if we find the value of x is 30, we 
write x = 30. (Write x = 30 above arrow). 

Now, we are going to look at some examples. I want you to 
label your bar as we do this together. 

SLIDE 5 -Addition Diagrams can represent addition and subtraction as part-
whole relations. Look at the diagram for addition on your 
page. Notice that I added a smaller rectangle (point to 

x=30 15 smaller rectangle) so we have two rectangles (point to ( ~ ( ~ 
both) that combine to make a larger rectangle (gesture over I I I entire rectangle). Now we have 3 quantities- two smaller 

( 
Y=45 

~ patis, and one larger whole. 

We can use arrows to indicate each of their values (draw 
arrow over smaller bar). Let's label the smaller part as 15 
(write 15) and the larger whole as Y (Write " Y ="). You 
do the same on your paper. 
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What is the value ofY? 
(Wait for answer. If correct, write 45). 

How did you get 45? 
(Repeat what student says). 

SLIDE 6 - Subtraction Here is a different problem on subtraction. Remember to 

x=30 y label your diagrams too! Let's label the smaller part as Y 
~ ~ ~ ~ (write "Y=") and the larger whole as 35. (write 35) 

I I I Now, what is the value ofY? 

~ ~ 
(Wait for answer. If correct, write "5"). 

35 
So tllis is how diagrams can show you addition and 
subtraction problems 

SLIDE 7 -multiplication Diagrams can also be used to show multiplication and 
division problems. 

12 
~ :> Let's look at this diagram for multiplication. 

I X I X I X I There are 3 equal parts, all with the value X. The value of X 

~ :> is shown in this diagram. What is the value of X? (Wait for 
y answer) 

(Repeat "Yes, X equals 12 because it is labeled there.) 

Okay. In this diagram, 3 equal parts combine to make a 
larger rectangle. We can draw an anow over the entire bar 
and label this total as Y. (Draw arrow, label "Y="). 

What is the value ofY? 
(Wait for answer. If correct, label "36"). 

How did you get that answer? 
(Wait for strategy) 

"Right, Y equals 3 times X" 
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