Convection Heat Transfer in Water-based Alumina Nanofluids

N.A. Roberts
Department of Mechanical Engineering
Vanderbilt University

Vanderbilt University Graduate Student Research Symposium
March 30, 2009

Sponsor:
Oak Ridge National Laboratory
Introduction

Nanofluids are colloidal suspensions of nanoparticles in a base fluid

- Typical nanofluid properties
 - particles made of chemically stable metals, metal oxides or carbon in various forms
 - particles range in size between 1 and 100 nm
 - base fluid usually water and organic liquids

- Effects of nanofluids
 - greatly enhanced energy, momentum and mass transfer
 - reduced tendency for sedimentation and erosion of containing surfaces

- Applications of nanofluids
 - refrigeration
 - manufacturing
 - chemical and pharmaceutical processes
 - medical treatments
How do nanoparticles enhance thermal transport?

- suspended nanoparticles increase surface area and heat capacity of the fluid
- suspended nanoparticles increase the effective thermal conductivity of the fluid
- interaction and collision among particles, fluid and the flow passage surface are intensified
- mixing fluctuation and turbulence of the fluid are intensified
- dispersion of nanoparticles flattens the transverse temperature gradient of the fluid (changes the thermal boundary layer)
Experimental Setup: Convection Coefficient Measurement

Key measurements

- pressure drop along test section
- temperature profile along outside of test section (12 TC’s)
- inlet and outlet fluid temperatures
- heat dissipation from heater wire
- volumetric flow rate

<table>
<thead>
<tr>
<th>Test section properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube</td>
</tr>
<tr>
<td>17 Ga</td>
</tr>
</tbody>
</table>
Nanoparticles and Preparation

- Nanoparticles (Al\textsubscript{2}O\textsubscript{3})
 - \(\gamma\) 10 nm
 - \(\gamma\) 20-30 nm

- Preparation
 - Nanoparticles are weighed and added to de-ionized water for different particle loadings
 - Nanoparticles are ultrasonicated for 1 hour to break up agglomerates

- Stability (from DLS)
 - \(\gamma\) 10 nm unstable in de-ionized water
 - \(\gamma\) 20-30 nm stable in de-ionized water
Results: Pressure and Temperature Drop/Increase

- Nearly equal pressure drop across the tube for all fluids
- Slight deviation from theoretical pressure drop for DI-water due to experimental setup

- Nearly equal temperature gain across the heated tube for the DI-water and the 0.5% nanofluid
- Greater temperature gain in the 1.5% nanofluid due to enhanced convective heat transfer
Results: Average Convection Heat Transfer Coefficients

heat transfer coefficient (W/m² K)

distance along pipe (x/l)

di-water
0.1% nanofluid
0.5% nanofluid
1.5% nanofluid
Results: Calculated Thermal Conductivity

The graph shows the thermal conductivity (W/m² K) as a function of volume loading (%). The data includes measurements for different volume loadings, indicating variability with the measured values. The graph also differentiates between two types of di-water, with distinct markers for each.
Conclusions/Future Work

- Observed enhancement in convection heat transfer coefficient in laminar flow regime
- Enhanced thermal conductivity with increasing volume loading
- No noticeable settling of nanoparticles or development of aggregates within hours
- Further investigation effects of nanoparticle size on heat transfer enhancement in water and ethylene glycol (want to find the limits of particle size, loading, etc.)
- Investigate nanofluids beyond laminar flow regime
- Compare nanofluids to base fluid in commercial and industrial systems
- Investigate long term properties/performance of nanofluids
- Develop model for enhancement in convection heat transfer coefficients and thermal conductivity