
DATA QUALITY-AWARE GRAPH MACHINE LEARNING

By

Yu Wang

Dissertation

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

August 9, 2024
Nashville, Tennessee

Approved:

Tyler Derr, Ph.D.

Mark Ellingham, Ph.D.

Nitesh Chawla, Ph.D.

Ryan Rossi, Ph.D.

Soheil Kolouri, Ph.D.

Xenofon Koutsoukos, Ph.D.



Copyright © 2024 Full Legal Name
All Rights Reserved

ii



To my parents and family for their forever support and love.

iii



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Tyler Derr, for his
unwavering guidance, encouragement, and support throughout my Ph.D. His mentorship has been invaluable,
teaching me how to identify significant research problems, write compelling papers, and design effective
presentations. Dr. Derr has also imparted essential skills in efficiently managing a research lab and mentoring
students. His tireless efforts to provide me with numerous opportunities and learning experiences have been
instrumental in my development as an independent researcher. I am honored to have been his student and will
always cherish his advice and friendship, which profoundly influenced my professional and personal life.

I extend my deepest gratitude to my committee members—Dr. Mark Ellingham, Dr. Nitesh Chawla, Dr.
Ryan Rossi, Dr. Soheil Kolouri, and Dr. Xenofon Koutsoukos—for their invaluable insights and suggestions.
Dr. Ellingham introduced me to graph theory and nonlinear optimization in 2019/2020, sparking a profound
interest that has significantly shaped my research in graph machine learning. At the WSDM’22 Doctoral
Forum, Dr. Chawla offered essential advice on tackling technical challenges and emphasized the importance
of deep engagement with coding frameworks when reviewing papers. His expertise in imbalanced learning
has inspired my focus on imbalanced graph machine learning. Dr. Kolouri has been a pivotal mentor in
geometric deep learning, enhancing my approach to complex problems with his rigorous logic and elegant
mathematical derivations. The weekly machine-learning seminars he hosted with Dr. Derr have broadened
my perspectives and inspired much of my research. While I have not had the chance to collaborate directly
with Dr. Koutsoukos, I deeply appreciate his senior advice on intersecting graph machine learning and
cybersecurity as well as his support as a department chair for my academic hunting. My internship with Dr.
Rossi at Adobe was incredibly enriching; his keen insights into research trends have greatly influenced my
research flavor, motivating me to drive my findings toward real-world applications. I am particularly grateful
for the time he sacrificed during the Independence holiday, working late to help refine my project objectives,
which was crucial to its ultimate success.

I joined the Network and Data Science (NDS) Lab at the beginning of the Spring 2021 semester as
Dr. Derr’s first Ph.D. student when he was establishing the lab. During my Ph.D. study, I have had the
pleasure and fortune of having supportive and encouraging friends and colleagues. I am thankful to all my
collaborators inside/outside the NDS Lab, especially: Dr. Charu Aggarwal, Dr. Neil Shah, Dr. Danai Koutra,
Dr. Jundong Li, Dr. Jens Meiler, Dr. Rocco Moretti, Dr. Nesreen K. Ahmed, Dr. Franck Dernoncourt, Dr.
Pamela Wisniewski, Dr. Namyong Park, Dr. Tong Zhao, Dr. Benedek Rozemberczki, Dr. Hiba Baroud,
Dr. Wei Jin, Dr. Huiyuan Chen, Yushun Dong, Song Wang, Dr. Jinzhu Yu, Dr. Yue Hu, Dr. Yanbing
Wang, Ao Qu, Yuying Zhao, Lance Liu, Xueqi Cheng, Bo Ni, Xin(Allen) Wang. I look forward to continued
collaboration with you.

I was fortunate to work as an intern at Adobe Research and The Home Depot with amazing colleagues
and mentors: Dr. Tong Sun, Dr. Ryan Rossi, Dr. Nedim Lipka, Dr. Ruiyi Zhang, Dr. Alexa Siu, Dr.
Zichao Wang, Dr. Huiming Qu, Dr. Xiquan Cui, Dr. Amin Javari, Dr. Walid Shalaby, Dr. Gromit Chan,
Dr. Chang Xiao, Yanzhe Zhang, Jianyi Zhang, Zhendong Chu, Yu Fu, Shengcao Cao, Jiaqi Wang, Wanrong
Zhu, Raymond Fok, Yuchen Zhuang, Xu Ma, Yizhou Wang, Hang Hua, Ramraj Chandradevan. I enjoyed the
wonderful and productive years with you.

I would also like to extend my heartfelt appreciation to my dear friends at Vanderbilt who provided
unwavering support and encouragement during the moments when I felt frustrated during my Ph.D. study.
Dr. Jinzhu Yu, Dr. Ruoyu Wang, Dr. Chunlei Su, Dr. Kan Li, Dr. Zezhou Yang, Yuzhi Lin, Dr. Chuchuan
Hong, Dr. Damin Xia, Minya Na, Dr. Qi Yang, Dr. Lee Ho Hin, Dr. Riqiang Gao, Dr. Yuchen Tang, Xin Yu,
Dr. Quan Liu, Dr. Zimu Su, Ruining Deng, Tianyuan Yao, Xiaohan Wang, Yuxiang Gao, Fangfei Liu, Dr.
Siyuan Yu, Yayan Zhao.

Finally, I would like to thank my parents, Qin Yu and Dahong Wang, as well as my entire family for their
forever love and support. This dissertation is dedicated to them!

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Topology Issue: Overcoming the Heterophily Topology in Node Classification . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Tree Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Multi-hop Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Tree Decomposed Graph Neural Network . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Semi-supervised Node Classification . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Full-supervised Node Classification . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Topology Issue: Analyzing the Varying Local Topology Issue in Link Prediction . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Topological Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Topological Concentration: Intuition and Formalization . . . . . . . . . . . . . . . 22
3.3.2 Topological Concentration: Observation and Analysis . . . . . . . . . . . . . . . . 23
3.3.3 Topological Concentration: Computational Complexity and Optimization . . . . . 27

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Link-centric and Node-centric Evaluation Metrics . . . . . . . . . . . . . . . . . . 29
3.5.2 Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Topology Issue: Overcoming the Varying Local Topology Issue in Link Prediction . . . . . 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Analysis of Collaborative Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 How does message-passing capture collaborative effect? . . . . . . . . . . . . . . 36
4.3.2 When is the captured collaborative effect beneficial to users’ ranking? . . . . . . . 36

4.4 Collaboration-aware Graph Convolutional Networks . . . . . . . . . . . . . . . . . . . . . 38
4.4.1 Collaboration-Aware Graph Convolution . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Model Architecture and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.3 Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.4 Further Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7.1 Graph Topological Metrics for CIR . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7.3 Graph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Topology Issue: Overcoming the Noisy Topology Issue in Session-Recommendation . . . . 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 The Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Item Knowledge Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Session-adaptive Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Model Configuration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.3 Influence of Different Types of Edges . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.4 Performance Comparison with baselines . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.5 Industrial-level Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Imbalance Issue: Overcoming Imbalance Issue in Node Classification . . . . . . . . . . . . 63

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Class Imbalance Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 The proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.1 Class Prototype-driven Balanced Training . . . . . . . . . . . . . . . . . . . . . . 67
6.4.2 Distance Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.3 Imbalanced Label Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.4 Self-Supervised Learning (SSL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Imbalance Issue: Overcoming Imbalance Issue in Graph Classification . . . . . . . . . . . 77

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Global Imbalance Mitigation: Graph-of-Graph Construction/Propagation . . . . . . 80
7.3.2 Local Imbalance Mitigation: Self-consistency Regularization . . . . . . . . . . . . 83
7.3.3 Objective Function and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4.3 Influence of Imbalance Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4.5 Further Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Bias Issue: Overcoming the Social Interactional Bias Issue in Node Classification . . . . . . 94

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.3.1 Fairness in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.4 Sensitive Attribute Leakage and Correlation Variation . . . . . . . . . . . . . . . . . . . . 96
8.5 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.5.1 Bi-level optimization-based debising . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.5.2 Adaptive Weight Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.5.3 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.6.2 Node Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.6.3 Further Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.8.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Bias Issue: Discovering the Degree-related Evaluation Bias in Link Prediction . . . . . . . 112

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.2 Analyzing Bias in Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.2.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.2.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10 Bias Issue: Overcoming the Hallucination Bias Issue in Documental Question-answering . 118

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.3 Knowledge Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.4 LM-guided Graph Traverser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.5.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.5.2 Performance Comparison on MD-QA . . . . . . . . . . . . . . . . . . . . . . . . 127
10.5.3 Impact of the Constructed Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.5.4 Impact of the LM-guided Graph Traverser . . . . . . . . . . . . . . . . . . . . . . 128
10.5.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.7.1 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.7.2 Algorithm for KGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11 Limited Data Issue: Overcoming Limited Data Issue in Graph Generation . . . . . . . . . 132

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

vii



11.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.2.1 Large Generative Models (LGMs) . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.2.2 Graph Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11.3 Large Graph Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.3.2 Large Graph Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.3.3 Pre-Training and Graph Generation of LGGM . . . . . . . . . . . . . . . . . . . . 137

11.4 Fine-tuning LGGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.5 Text-to-Graph LGGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

11.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
11.6.2 Pre-training Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
11.6.3 Fine-tuning Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.6.4 Text-to-Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.6.5 Practical Usage of Fine-tuned LGGM . . . . . . . . . . . . . . . . . . . . . . . . 143

11.7 Research Problems Enabled by LGGMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.8 Limitations, Future Directions, and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 144
11.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.9.1 Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.9.2 Pre-processed Graphs for Training LGGMs . . . . . . . . . . . . . . . . . . . . . 146
11.9.3 Preparation of Graphs and Textual Description About Their Domains/Names . . . . 146
11.9.4 Preparing Graphs and Their Textual Description about Graph Property . . . . . . . 147
11.9.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.9.6 Hyperparameter Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.9.7 Paradigm Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

12 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

12.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
12.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

viii



LIST OF TABLES

Table Page

2.1 Statistics of network datasets for node classification. . . . . . . . . . . . . . . . . . . . . 13
2.2 Semi-supervised classification accuracy (%) ± stdev over Cora, Citeseer, and Pubmed

datasets. Best and runner-up performances are reported in bold and underlined. . . . . . 15
2.3 Summary of full-supervised classification accuracy (%) ± standard deviation over 8 datasets.

Best and runner-up performances are reported in bold and underlined. . . . . . . . . . . 15

4.1 Basic dataset statistics for recommender system. . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Comparing CAGCN(*) with baselines. The best and runner-up results are in bold and

underlined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Comparison of CAGCN* with GTN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Average Rank-Biased Overlap (RBO) of the ranked neighbor lists between training (i.e.,

N 1
u ) and testing/full (i.e., N̂ 1

u and N 1
u∪ N̂ 1

u , respectively) dataset over all nodes u ∈ U . . 45
4.5 Efficiency comparison of CAGCN* with LightGCN. For a fair comparison, we track the

first time CAGCN* achieves the best performance of LightGCN. CAGCN* achieves a
significant efficiency boost over LightGCN, especially considering the training time. . . . 45

5.1 Statistics of datasets used for experiments and their corresponding knowledge graphs. . . 56
5.2 An architecture comparison of different backbones. . . . . . . . . . . . . . . . . . . . . 58
5.3 Performance comparison (%) of utilizing meta-attribute embedding layer and session-

adaptive heterogeneous propagation layer. The best and runner-up are in bold and underlined.
Note that N(M)@10 represents NDCG(MRR)@10. . . . . . . . . . . . . . . . . . . . . 59

5.4 Ablation study on different types of edges. . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Performance comparison among different baselines. . . . . . . . . . . . . . . . . . . . . 60

6.1 Basic dataset statistics for imbalanced node classification. . . . . . . . . . . . . . . . . . 73
6.2 Node classification performance on eight datasets with the best performance emboldened

and second underlined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Statistics of datasets for imbalanced graph classification . . . . . . . . . . . . . . . . . . 87
7.2 Graph classification performance on seven datasets. The standard deviation is relatively

higher since we focus on the imbalance problem and use 50 different data splits (i.e., hav-
ing different training data distributions). G2GNNe and G2GNNn represent our proposed
model using the removing edges and masking node features augmentation strategy. Bold
(underline) denotes the best/runner-up model. . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Running time (in seconds) of different models. . . . . . . . . . . . . . . . . . . . . . . . 93

8.1 Evaluating model utility/fairness when using strategies of feature masking (or no masking). 98
8.2 Basic dataset statistics for bias evaluation in node classification. . . . . . . . . . . . . . . 106
8.3 Model utility and bias of node classification. We compare the proposed FairVGNN (i.e.,

FairV) against state-of-the-art baselines NIFTY, EDITS, and FairGNN (i.e., Fair) when
equipped with various GNN backbones (i.e., GCN, GIN, and SAGE). The best and runner-
up results are bolded and underlined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.4 Model utility and bias of node classification of different variants of FairVGNN. The best
and runner-up results are bolded and underlined. . . . . . . . . . . . . . . . . . . . . . . 108

8.5 Comparison with different weight regularization with best results in bold. . . . . . . . . 109

10.1 Statistics of documents and their KGs constructed by TAGME average across all questions. 126
10.2 MD-QA Performance (%) of different baselines. The best and runner-up are in bold and

underlined. None: no passages, but only the question is provided. Golden: supporting
facts are provided along with the question. Therefore, None and Golden routine the low-
er/upper bound of MD-QA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

ix



10.3 Comparing ChatGPT equipped with few-shot demonstration with Fine-tuned LLaMA/T5 128

11.1 Our LGGM is trained across 13 domains on thousands of graphs with the support for
Text-to-Graph (T2G) generation, controlling the domain/property of the generated graphs. 135

11.2 Comparing Zero-shot Generative Performance on unseen Graphs in held-out domain X
between DiGress trained on QM9 and LGGM-X trained on all except the held-out domain
X. Result ”ALL” is computed by averaging across 12 domains and the best result for each
domain is in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11.3 Comparing the Graph Generative Performance of LGGM with/without Text Conditions.
Best and runner-up results are bolded and underlined. . . . . . . . . . . . . . . . . . . . 142

11.4 Summary of Graph Statistics. Facebook (FB), Animal Social (ASN), Email, Web, Road,
Power, Chemical (CHEM), Biological (BIO), Economic (ECON), Retweet (RT), Collab-
oration (COL), Ecological (ECO), Citation. . . . . . . . . . . . . . . . . . . . . . . . . . 147

x



LIST OF FIGURES

Figure Page

1.1 A comprehensive overview of my research contributions in Data Quality-aware Graph
Machine Learning, including discovering and handling Topology, Imbalance, Bias, and
Limited Data Issues. The developed framework has been used for real-world social-good
applications, including infrastructure, chemistry, E-commerce, and Documental reading. . 2

2.1 Visualizing the variance of homophily across neighborhoods at different levels according
to the distribution of the ratio of different layer neighborhoods in the same class as their
corresponding center nodes (i.e., (a) and (c)) and the cosine similarity of their embeddings
(obtained from feeding node features through only the transformation layers of a pre-
trained 2-layer GCN) to their center nodes (i.e., (b) and (d)) for the Texas and Cora datasets. 7

2.2 Tree decomposition of the center node v1 in the given graph to two layers compared to the
computational graph in the original GNNs (e.g., GCN). . . . . . . . . . . . . . . . . . . 9

2.3 An illustration of the proposed Tree Decomposed Graph Neural Network (TDGNN). For
brevity, we only present the pipeline of predicting the label of one node. . . . . . . . . . 11

2.4 Results of models with different layers on Cora (Top) and Citeseer (Bottom) . . . . . . 16
2.5 Visualizing the effect of varying the maximum layer neighborhoods and the length of

multi-hop dependency on the performance of TDGNN. . . . . . . . . . . . . . . . . . . 17

3.1 Average LP performance of nodes across different degree groups based on DegreeTrain(i.e.,
node degree by training edges) on Collab/Citation2. In (a)-(b), Performance@10 does not
increase as the node degree increases. In (c)-(d), few/lower-degree nodes do not perform
worse than higher-degree counterparts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 (a)-(b): vi’s Topological Concentration: we calculate the average intersection between
vi’s computation tree and each of vi’s neighbor’s computation tree. The intersection be-
tween two computation trees is the ratio of the observed intersections to all possible in-
tersections. (c)-(d): two specifications of TC, corresponding to social and e-commerce
networks. A higher triangle/square-based concentration indicates more triangles/squares
are formed among v0’s local subgraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 (a)/(d): The average LP Performance of nodes on Collab/Citation2 monotonically in-
creases as the TCTrain increases. (b)/(c): TCTrain mostly achieves the highest Pearson
Correlation with LP performance on Citeseer/Vole than DegreeTrain and Subgraph Density
metrics. (e): LP performance is positively correlated to TCTrain across different network
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 (a)/(d): The average LP performance of nodes with extremely low TCTrain on Collab/C-
itation2 almost monotonically increases as TCTrain increases. (b)/(e): Nodes with lower
DegreeTrain surprisingly perform better than their higher degree counterparts (Blue curves).
In contrast, Non-concentrated nodes identified by owning lower TCTrain in most cases per-
form worse than their concentrated counterparts (Red curves). (c)/(f): As node DegreeTrain

increases, the ratio of nodes owning higher TCTrain increases first and then decreases,
corresponding to the observed first-increase-and-then-decrease performance trend in Fig-
ure 3.1(c)/(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 (a) HitsN@10 of predicting training/validation/testing edges on Cora/Citeseer/Collab. The
gap between validation and testing performance is much bigger on Collab than on Cora/Cite-
seer. (b) Compared with Cora/Citeseer where edges are randomly split, the distribution
of the difference between TCVal and TCTest shifts slightly right on Collab where edges are
split according to time, indicating the interaction between training and testing neighbors
become less than the one between training and validation neighbors. (c) As the gap be-
tween TCVal and TCTest increases for different nodes, their corresponding performance gap
also increases, demonstrating TDS varies among different nodes even within the same graph. 26

xi



3.6 ATCTrain maintains a similar level of correlation to TCTrain while significantly reducing the
computational time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 The distribution of the inner product between common neighbor pairs is statistically higher
than that between non-common neighbor pairs. . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 In (a)-(b), j1 has more interactions (paths) with (to) u’s neighborhood than j4 and hence is
more representative of u’s purchasing behaviors than j4. In (c), we quantify CIR between
j1 and u via the paths (and associated nodes) between j1 and N 1

u . . . . . . . . . . . . . . 36
4.2 (a)-(b): The training loss (a) is lower, and the performance (b) is higher when adding

edges according to the variant CIR-lhn (Leicht Holme Nerman) than adding randomly
under the same addition budget. (c)-(d): The performance of adding edges according to
CIR variants generally increases faster than adding randomly after pre-training on Loseit
(c) and Amazon (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 The architecture of CAGCN(*). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Training time (s) of different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 In (a)-(b), the performance first increases since we capture higher-layer neighborhood in-

formation and higher-hop topological interaction in calculating CIR as L, L̂ increase from
1 to 3. However, the performance decreases in (a) as L increases due to over-smoothing.
In (c)-(d), we add the global top edges directly (rather than cycle each node) according to
their CIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Performance with respect to node degree on Gowalla and Yelp . . . . . . . . . . . . . . . 47
4.7 An example showing two neighborhood subgraph Su,Su′ that are subgraph-isomorphic

but not bipartite-subgraph-isomorphic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Since the user in Session A (b) intends to decorate the garden, while the user in Session
B (c) intends to decorate the kitchen, the corresponding neighbors from the knowledge
graph (a) are different for the same flower. By our proposed session-adaptive propagation,
the flower aggregates more information from the lopper/watering can in (b) while more
information from the sink/table in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 In (a)-(c), we first extract three types of edges from historical sessions to construct item
knowledge graph. Then in (d), we forward the given session through the 1st transformer
layer to obtain items’ contextual embeddings, which are used for query-relevant neighbors
for GNNs to perform graph propagation. The propagated item embeddings are fed into
the 2nd transformer with a pooling layer afterward to obtain session embedding for the
recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Case study of our proposed M-KGHT. (a) Comparing the Top5 recommendation by
M2TRec and M-KGHT. By leveraging neighborhood information of Spray Mop1, the
correct item Mop Refill appears in the recommendation list. (b)-(c) visualizes the learned
attention of one attention head over co-view neighbors. Since users in both of these two
sessions intend to clean the gardens, the session-adaptive graph propagation successfully
learns the higher intention for garden-related items. . . . . . . . . . . . . . . . . . . . . 61

6.1 Overview of the Distance-wise Prototypical Graph Neural Network, with four main com-
ponents: (a) class prototype-driven balanced training, (b) distance metric learning, (c)
imbalanced label propagation, and (d) self-supervised learning. . . . . . . . . . . . . . . 67

7.1 An overview of the Graph-of-Graph Neural Network (G2GNN). To reduce imbalance ef-
fect on graph classification, we up-sample minority graphs, augment each graph T times
followed by a GNN encoder to get their representations and regroup them according to
their augmentation order, perform GoG propagation on constructed GoG T times with
each time using all graph representations from that specific augmentation t, and finally
forward the propagated representations through a classifier to compute classification loss
and self-consistency regularization loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Edge homophily of constructed kNN GoGs. . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



7.3 Graph classification results under different class imbalance ratios where 5:5 corresponds
to a balanced scenario while 1:9 and 9:1 correspond to a highly imbalance scenario. Com-
pared with GIN(blue), InfoGraph(pink), GraphCL(olive) designed not specifically for im-
balanced scenario, our G2GNN(black) model outperforms all of them in nearly all im-
balance ratio settings and the margin further increases as the level of imbalance increases
(i.e., deviates from the balanced scenario). We use the same training and validation graphs
(25%/25%) as used in Table 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Ablation study of G2GNN where we report the improvement over GINus due to its sim-
plicity and effectiveness (seen in Table 7.2) for understanding relative improvements of
each G2GNN component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 (a)-(b): Relationship between neighborhood number, edge homophily, and performance
on MUTAG and DHFR. The performance first increases and then decreases as the num-
ber of neighborhoods increases on GkNN. The reported result here is averaged over 20
runs. (c)-(d): Relationship between augmentation ratio δ and performance on MUTAG
and PROTEINS. The performance first increases and then decreases as augmentation ratio
increases. The reported result here is averaged over 20 runs. . . . . . . . . . . . . . . . . 92

8.1 Initial empirical investigation on sensitive leakage and correlation variation on German
dataset. (a)-(b) visualize the relationships between model utility/fairness and the sensitive
correlation ρi of each masked feature channel1. Masking channel with less sensitive corre-
lation leads to more biased predictions and sometimes higher model utility. (c)-(d) shows
the correlation variation caused by feature propagation on German and Credit datasets. In
(c), we can see sensitive correlations of the 2nd and 7th feature channel significantly change
after propagation while in (d), the correlations do not change so much. . . . . . . . . . . 97

8.2 An overview of the Fair View Graph Neural Network (FairVGNN), with two main mod-
ules: (a) bi-level optimization-based debising to learn the fair view of features and (b)
adaptive weight clamping to clamp weights of sensitive-related channels of the encoder. . 100

8.3 (a): Model bias without discriminator/generator. (b): Results of prefix cutting threshold. . 107

9.1 Performance under each metric w.r.t. node degrees on Gowalla. . . . . . . . . . . . . . . 114

10.1 MD-QA performance when prompting ChatGPT with the context retrieved using different
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.2 Three popular questions that require reasoning and retrieving over passages/pages/tables
from multiple documents. (a) Bridging questions rely on sequential reasoning while (b)
Comparing questions rely on parallel reasoning over different passages. (c) Structural
questions rely on fetching contents in the corresponding document structures. . . . . . . 119

10.3 Knowledge Graph Construction. We split each document in the document collection into
passages. For each passage, we either directly obtain their embeddings via pre-trained
encoders or extract their keywords to build bag-of-word (BOW) features. Then, we con-
nect two passages based on their embedding similarity or whether they share common
keywords. Additionally, we extract tables/pages via Extract-PDF API and add them as
structural nodes to the KG. If pages include passages and tables, we add a directed edge to
denote the belonging relations. The table nodes include the markdown formatted content
of that table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.4 Quality of KGs on HotpotQA. For each KG Construction method, as the average number
of neighbors increases (KG becomes denser) in the right y-axis, the SF-EM increases
while the precision decreases. KNN-MDR achieves a better trade-off than TF-IDF and
KNN-ST. KGs constructed by TAGME are denser than others. . . . . . . . . . . . . . . . 123

xiii



10.5 LM-guided graph traverser for context retrieval. For questions on document structures
(left), we employ LM to extract structures and retrieve their corresponding contents (the
content of pages are passages belonging to that page, and the content of tables is the
markdown-formatted text). For questions on document content, we concatenate it with the
currently retrieved context and prompt the LM to generate the next evidence to answer the
question. By comparing the similarity between the candidate neighboring sentences and
the generated passage, we determine the next passage node to traverse. Correspondingly,
the candidate neighbors are updated for the next round of traversal. . . . . . . . . . . . . 124

10.6 The performance/latency increases as the KG density increases. The results are averaged
across 100 randomly sampled questions on HotpotQA. . . . . . . . . . . . . . . . . . . . 128

10.7 (a)-(b): The performance first increases and then decreases as the branching factor in-
creases. The results are averaged across 100 sampled questions on 2WikiMQA and MuSiQue.
(c)-(d): KGP achieves higher performance/efficiency than DPR when QA over different
numbers of documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

11.1 (a): Average degree and clustering coefficient of graphs from 13 domains. The graph uni-
verse consists of graphs from distinct domains (e.g., the tiny region of Chemical Graphs),
yet there are some common transferrable patterns. (b): Our pre-trained LGGM after fine-
tuning on each domain achieves better generative performance than DiGress trained on
that same domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11.2 The overview of LGGM framework and experimental settings. (a): Graph universe in-
cluding our collected 13 distinct yet representative domains. (b)-(c): Compared with all
previous graph generative models that have been trained only on one domain each time,
our LGGM is trained on thousands of graphs from 13 domains. (d): We pre-train/fine-tune
LGGM in Section 11.3.3/11.4. (e): Given the text prompt S and the current generated
graph at t, we concatenate its textual embedding obtained from a pre-trained language
model with the node/edge/graph embeddings after spectral feature extraction and forward
them through the Graph Transformer to predict the clean graph. . . . . . . . . . . . . . . 138

11.3 Performance comparison between Fine-tuned LGGM and Fine-tuned DiGress. . . . . . . 141
11.4 Text-to-Graph Generation with Prescribed Graph Properties. (a) Controlling Average

Clustering Coefficient; (b) Controlling Average Degree. GT-Ground Truth Graphs and
Gen-Generated Graphs. Below each graph, the number of nodes and key statistical mea-
sures are displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.5 With fewer training graphs, Fine-tuned LGGM becomes more advantageous than DiGress. 143
11.6 t-SNE visualization of textual description about network (a) domain/name (b) average

clustering coefficient (c) average degree. . . . . . . . . . . . . . . . . . . . . . . . . . . 147
11.7 Comprehensive Overview of the Experimental Setup for our LGGMs. . . . . . . . . . . . 149

xiv



CHAPTER 1

Introduction

1.1 Motivation and Contribution

Recent years have witnessed a significant shift from just model-centric Artificial Intelligence (AI), which

focuses on developing top-performing models, to data-centric AI, which emphasizes the quality and quantity

of the data in AI models. Concurrently, graph machine learning (GML), such as Graph Neural Networks

(GNNs) has emerged as a de-facto approach for graph-structured data by fusing the topological information

via message-passing and the feature information via neural transformation. Despite its unprecedented suc-

cess, its strong dependence on node features and graph topology also makes it vulnerable to data quality

issues, which would catastrophically impair GML performance. On the one hand, graphs, like many other

data modalities, suffer from conventional data-quality issues, e.g., imbalance. On the other hand, the intrinsic

complexity of graphs can exacerbate the aforementioned issues and bring up new ones. For example, the

imbalance issue that happens at the quantitative level could also occur at the topological level. The inherent

bias encoded in the sensitive feature might be amplified by social interactions. These issues severely impair

downstream task performance and are challenging to diagnose due to the inherent complexity of graphs.

Given the criticality of the graph-data quality issues in compromising GML performance and also the

ubiquity of GML in real-world applications, my research strives to establish the Data Quality-Aware Graph

Machine Learning framework, which identifies data-quality issues on graph-structured data, diagnoses

the problems of existing GML methods when facing data-quality issues, proposes practical solutions

from the model/data-centric perspective to mitigate their negative impacts and customizes the devel-

oped Data Quality-Aware GML framework into real-world social-good applications. In Figure 1.1, I

systematically study the graph data-quality issues and propose solutions in the following four perspectives:

• (1) Topology [1, 2, 3, 4, 5]: issues caused by incorporating the graph topology/structure in machine

learning, e.g., heterophily topology, varying local topology, and missing topology issues.

• (2) Imbalance [6, 7, 8]: issues caused by quantitative imbalance of the training data on graphs, e.g.,

node-level and graph-level imbalance issues.

• (3) Bias [4, 6, 9]: issues caused by bias/unfairness of the training data on graphs, e.g., social interaction

bias and degree-related bias.

• (4) Limited Data [10, 11, 12]: issues caused by limited data, e.g., limited training and prompting data.

1



Figure 1.1: A comprehensive overview of my research contributions in Data Quality-aware Graph Machine
Learning, including discovering and handling Topology, Imbalance, Bias, and Limited Data Issues. The
developed framework has been used for real-world social-good applications, including infrastructure, chem-
istry, E-commerce, and Documental reading.

Moreover, I have tailored the well-developed Data Quality-Aware Graph Machine Learning for real-

world social-good applications, including molecular classification in drug discovery, information retrieval

for e-commerce platforms, interdependency analysis of infrastructure networks, and question-answering for

document reading.

1.2 Dissertation Organization

The structure of the dissertation is as follows:

• Chapters 2-5: Graph topology acts as a double-edged sword in influencing GML performance. While the

topology can provide additional gleaning patterns to benefit graph-based tasks, it may also compromise

the quality of the learned node representations when misapplied in unsuitable scenarios. Specifically,

these four chapters investigate 1) the heterophily topology issue in node classification - how graph ma-

chine learning models behave worse in networks where neighboring nodes are different and we propose

a tree-decomposition to selectively aggregate neighboring information from different layers; 2) the vary-

ing local topology issue in link prediction - how different local subgraphs cause different nodes to have

2



different link prediction/recommendation performance, and we propose a neighborhood-aware denoising

mechanism to filter out the outlier neighbors in the aggregation; 3) the noisy topology issue in session

recommendation - how the noisy graph connections misalign with the real-world context and we propose

a context-aware neighborhood aggregation to filter out the outlier neighbors.

• Chapters 6-7: Imbalance in real-world data is widespread across various domains (e.g., chemistry/so-

cial), manifesting in diverse formats (e.g., quantity/topology), and exhibits different graph granularity

(e.g., nodes/graphs/edges). Consequently, my research focuses on handling these three granularities of

imbalance respectively, including 1) imbalance node classification - how the imbalance training labels

would influence the node classification and we propose a prototypical training mechanism along with im-

balanced label propagation to handle this issue) and 2) imbalance graph classification - how the imbalance

labeled graphs would influence the graph classification and we propose a graph-of-graph propagation and

structural augmentation to handle this issue).

• Chapters 8-10: Bias in real-world data presents significant social risks, such as discrimination in crit-

ical decision-making systems and misinformation from large language models. My research addresses

three main categories of biases: 1) Social Interaction Bias - We explore how graph machine learning

is affected by interaction biases and propose an adaptive masking strategy to mitigate these effects. 2)

Degree-Related Bias - We analyze the inherent biases in current evaluation algorithms for link prediction

and recommender systems, particularly how they favor users with varying degrees of connectivity. 3)

Hallucination Bias - We address the challenge of ensuring the reliability of content generated by large

language models and propose the integration of knowledge graphs to improve content quality.

• Chapters 11: Recent success has demonstrated the significance of data in powering the machine learning

model. However, in real-world cases, collecting numerous well-curated data is extremely time-consuming

and resource-extensive. This chapter focuses on handling these limited data issues in graph generation.

More specifically, we collect numerous well-curated graphs from diverse domains and train a large graph

generative model for graph generation. We demonstrate this large-scale training paradigm with suffi-

cient high-quality data would enable our model to learn fundamental transferable patterns across different

domains.

• Chapter 12: This chapter summarizes the dissertation by overviewing the four different categories of data

quality issues as well as their corresponding solutions we have investigated. Following that, we preview

the future directions to explore.

3



CHAPTER 2

Topology Issue: Overcoming the Heterophily Topology in Node Classification

Graph Neural Networks (GNNs) have achieved significant success in learning better representations by per-

forming feature propagation and transformation iteratively to leverage neighborhood information. Neverthe-

less, iterative propagation restricts the information of higher-layer neighborhoods to be transported through

and fused with the lower-layer neighborhoods’, which unavoidably results in feature smoothing between

neighborhoods in different layers and can thus compromise the performance on heterophily networks. In

this work, we first theoretically analyze the feature smoothing between neighborhoods in different layers and

empirically demonstrate the variance of the homophily level across neighborhoods at different layers. Mo-

tivated by these analyses, we further propose a tree decomposition method to disentangle neighborhoods in

different layers to alleviate feature smoothing among these layers. Moreover, we characterize the multi-hop

dependency via graph diffusion within our tree decomposition formulation to construct Tree Decomposed

Graph Neural Network (TDGNN), which can flexibly incorporate information from large receptive fields

and aggregate this information utilizing the multi-hop dependency. Comprehensive experiments demonstrate

the superior performance of TDGNN on both homophily and heterophily networks under a variety of node

classification settings.1.

2.1 Introduction

Graph representation learning has recently emerged as a powerful strategy for node classification [13, 14,

15, 16], graph classification [14, 17, 18, 19] and link prediction [20, 21] on graph-structured data. As the

generalization of deep learning to the graph domain, Graph Neural Networks (GNNs) have become one of

the most promising paradigms [22], which adopts a message-passing scheme to learn node representations

by utilizing both the node features and the graph topology [15, 16, 23]. A typical GNN architecture for node

classification consists of two stages: message-passing and neural transformation. Firstly, messages are prop-

agated from neighboring nodes to their corresponding center nodes and then aggregated together via pooling

operations such as average pooling, min/max pooling, and learnable pooling. Afterward, the neural trans-

formation layer transforms the aggregated messages to extract useful node representations. These two stages

are packed together and termed as one layer of graph convolution. Deep GNNs iteratively perform multiple

graph convolutions to obtain a larger receptive field and thus incorporate information of neighborhoods in

higher layers [24, 25, 26, 27].

1https://dl.acm.org/doi/abs/10.1145/3459637.3482487

4

https://dl.acm.org/doi/abs/10.1145/3459637.3482487


Although GNNs have gained significant achievements, most of existing works have been focused on ho-

mophily networks where neighboring nodes possess similar feature distributions or belong to the same class.

In this way, propagating neighboring embeddings would benefit the prediction of the center nodes. Despite

the success of homophily networks, a common challenge faced by GNNs is node classification on heterophily

networks where neighboring nodes do not necessarily share similar features or possess the same class label. In

this case, blindly aggregating neighborhood information to the center nodes as what most popular models do,

such as GCN and GAT, would, unfortunately, mix information from different classes together and essentially

hurt the performance of downstream node classification. Stepping further, several methods propose deep

GNNs to incorporate higher-layer neighborhood information through iterative propagation [23, 27, 28, 29].

However, most of them are focused on handling over-smoothing issues and the incorporated higher-layer

neighborhood information may still come from different feature/class distributions, leaving the heterophily

issue unaddressed.

Given the challenge that features of higher-layer neighborhoods are over-smoothed with the lower-layer

neighborhoods and noticing the potential negative impact of this over-smoothing on heterophile networks,

we propose an effective framework, termed Tree Decomposed Graph Neural Network (TDGNN), to learn

node representations from larger receptive fields without causing feature over-smoothing between different

layers of neighborhoods and allow flexible layer configurations to avoid under-performance on heterophily

networks. Our major contributions are listed as follows:

• Motivated by our theoretical analysis on feature smoothing and empirical demonstration of the variance of

the homophily level across neighborhoods in different layers, we propose a tree decomposition method to

disentangle features of neighborhoods in different layers, which can help alleviate the problem of feature

smoothing and provides more flexible layer configurations for complex networks.

• We capture and maintain the importance of multi-hop dependency in learning better representations within

our tree decomposition method by characterizing this multi-hop dependency by graph diffusion, which

ultimately leads to the construction of the proposed Tree Decomposed Graph Neural Network (TDGNN).

• We conduct experiments in both semi-supervised and full-supervised settings and on both homophily and

heterophily network datasets to comprehensively demonstrate the superiority of our proposed TDGNN

framework over existing methods. Additionally, we perform a parameter analysis to better understand and

contrast TDGNN to prior GNNs.

5



2.2 Related Work

Deep Graph Neural Networks. Deep GNNs are related to over-smoothing and primarily aim to incorporate

higher-layer neighborhood information through iterative propagation. For example, SGC [23] and S2GC [27]

attempt to capture higher-layer neighborhood information by applying K th power of the graph convolution

in a single neural network layer. APPNP [29] replaces the power of the graph convolution with the Person-

alized PageRank [30] and GDC [28] further extends APPNP by generalizing Personalized PageRank to an

arbitrary graph diffusion process. More recently, methods such as GCNII [24] and DAGNN [26], aggregate

embeddings at different layers and outperform all previously mentioned deep GNNs.

GNNs on Heterophily Networks. Heterophily has recently been raised as an important issue since it breaks

the traditional network homophily assumption that is widely adopted in many GNNs. More specifically, in a

heterophily network, the concept that linked nodes are likely from different classes or have dissimilar features

is initially recognized within the context of GNNs in [31]. Zhu et al. [32] proposes a set of effective designs

that allow GNNs to generalize to challenging heterophily settings, and Chen et al. [24] leverages initial

residual connection and identity mapping to enable GCN to express a K th order polynomial filter with arbi-

trary coefficients. In comparison, our work demonstrates that the poor performance of GNNs on heterophily

networks is caused by feature smoothing between neighborhoods in different layers. By decomposing the

computational tree of center nodes and increasing the depth of the GNNs, we can selectively devise suitable

layer configurations to boost the model performance on a heterophily network.

2.3 Methodology

In this section, we design a Tree Decomposed Graph Neural Network (TDGNN) by mainly solving the two

challenges mentioned in Section 2.1, which are feature smoothing between neighborhoods in different layers

and lack of consideration of the multi-hop dependency in GNNs. For the first challenge, we theoretically

show the feature smoothing between different layers when applying iterative propagation and further propose

a tree decomposition method to disentangle neighborhood information in different layers. For the second

challenge, we formalize the definition of the multi-hop dependency and characterize it through a graph dif-

fusion process. Combining the tree decomposition method to disentangle the neighborhood information on

different layers and the graph diffusion to model the multi-hop dependency, we propose TDGNN. We also in-

troduce two mechanisms to aggregate node representations of each layer: TDGNN-s, which directly sums the

representations of all layers together, and TDGNN-w, which assigns learnable weights and adaptively com-

bines the node representations of each layer. The framework is shown in Figure 2.3, which has three main

components: tree decomposition to handle feature smoothing between different neighborhood layers, graph

diffusion to model multi-hop dependency, and aggregation to combine representations of different layers.

6



Figure 2.1: Visualizing the variance of homophily across neighborhoods at different levels according to the
distribution of the ratio of different layer neighborhoods in the same class as their corresponding center nodes
(i.e., (a) and (c)) and the cosine similarity of their embeddings (obtained from feeding node features through
only the transformation layers of a pre-trained 2-layer GCN) to their center nodes (i.e., (b) and (d)) for the
Texas and Cora datasets.

2.3.1 Tree Decomposition

The basic assumption in GNNs is that the neighborhood information of the center node leveraged by applying

feature propagation and aggregation can enhance the prediction performance of the center node itself [33].

Such an assumption is justified by the core network property, homophily, where linked nodes tend to share

similar features and typically belong to the same class [31, 34]. However, the level of homophily might be

completely different among different networks or even among different subgraphs within the same network.

One extreme situation would be the heterophily network where linked nodes are likely from different classes

or have dissimilar features [32, 35].

In Figure 2.1, we show the level of homophily across different neighborhood layers in the Cora and Texas

datasets. More specifically, the level of homophily is measured by distributions of the ratio of neighborhoods

N k
i in different neighborhood layers k that share the same class as (in Figure 2.1(a) and Figure 2.1(c)) and

have similar embeddings to (in Figure 2.1(b) and Figure 2.1(d)) their corresponding center node vi, which are

obtained from feeding node features only through the transformation layers in a pre-trained 2-layer GCN [15]

without introducing any bias from feature propagation. In the Cora dataset, it can be observed that the major-

ity of neighbors among their 1st-layer neighborhoods have the same class as their corresponding center nodes,

but the number of center nodes that have most of their neighborhoods sharing the same class as themselves

decreases as the layer increases. Furthermore, the embeddings of these neighborhoods on the 1st-layer, on av-

erage, have high similarity to their corresponding center nodes. This demonstrates the high homophily of the

Cora dataset on low layers and propagating features of nodes in these low layers fuse embeddings of nodes in

the same class and thus make embeddings of different classes more separable. However, even for this extreme

homophily layer in this strong homophily Cora dataset [36], not all of the nodes in the 1st-layer have their

7



neighborhoods sharing the same label with themselves, and this strong homophily becomes progressively

weaker as we reach further out to higher layers. For example, only around 10% of the nodes in the 3rd-layer

have all their neighborhoods sharing the same class and over half of the nodes in the 10th-layer have nearly

all neighborhoods different from themselves. Even worse, in the Texas dataset, even for low layers, most of

the neighborhoods have different classes from their center nodes, especially for nodes on the 1st-layer, almost

all nodes belong to different classes from their center nodes, which demonstrates the strong heterophily of

the Texas dataset. Propagating features of nodes in such low layers to their center nodes fuses embeddings

of nodes in different classes and makes those nodes indistinguishable, which results in learning worse node

representations. Such feature smoothing among different layers is unavoidable as long as the procedure of

iterative propagation is taken, that is: during iterative feature propagation, the information of neighborhoods

in higher layers has to be transported through and fused with the information of neighborhoods in lower

layers and then propagated to their corresponding center nodes.

If we take the most popular GNN-variant, a 2-layer GCN, as an example (for simplicity), then after 2-layer

graph convolutions, the representation of the node vi is:

h2
i = σ(h0

iW
0)W1(

1

(di + 1)2
+

∑
j∈N 1

i

1

(di + 1)(dj + 1)
)

︸ ︷︷ ︸
0th-layer features (self)

+
∑
j∈N 1

i

σ(h0
jW

0)W1(
di + dj + 2

(di + 1)1.5(dj + 1)1.5
)

︸ ︷︷ ︸
1st-layer neighborhood features

+
∑
j∈N 1

i

∑
k∈{N 1

j ∩N 1
i }

σ(h0
kW

0)W1 1√
di + 1

√
dk + 1(dj + 1)︸ ︷︷ ︸

1st-layer neighborhood features

+
∑
j∈N 1

i

∑
k∈{N 1

j ∩N 2
i }

σ(h0
kW

0)W1 1√
di + 1

√
dk + 1(dj + 1)︸ ︷︷ ︸

2nd-layer neighborhood features

, (2.1)

which consists of three components corresponding to the feature information of neighborhoods in the 0th, 1st,

and 2nd layers. Eq. (2.1) intuitively shows that the embedding of node vi after two iterative graph convolutions

contains the information of both 1st and 2nd- layer neighborhood information, which will compromise the

performance on Texas dataset since the feature and class information of the 1st-layer is of great difference

from their corresponding center nodes according to Figure 2.1(a) and Figure 2.1(b). Even for the Cora dataset,

where the feature and class information of the 1st-layer neighborhoods is similar to their corresponding center

nodes, still some center nodes have neighborhoods in the 1st-layer different from themselves and for these

nodes, incorporating their neighborhood information might compromise their predictions.

8



Figure 2.2: Tree decomposition of the center node v1
in the given graph to two layers compared to the com-
putational graph in the original GNNs (e.g., GCN).

Thus, based on our analysis, to advance the

frontier of GNNs to be able to selectively leverage

neighborhood information in different layers, we

propose a tree decomposition method. More specif-

ically, our proposed method disentangles neighbor-

hoods in different layers and connects them directly

with their corresponding center nodes. These direct

connections allow the propagation of higher-layer

neighborhoods’ information to their corresponding center nodes without any interference from lower-layer

neighborhoods along the way. Furthermore, this tree decomposition procedure enables more flexible layer

configurations of neighborhoods. For example in Figure 2.2, we decompose the computational tree in GNNs

of the center node v1. Then, in the training process, we selectively propagate information of nodes in different

layers: propagating along the 1st-layer subgraph, the 2nd-layer subgraph, and both of these two subgraphs.

The choice depends on the network homophily of different layers and is determined by hyperparameter-

tuning. The adjacency matrix of the kth-layer subgraph Tk obtained from tree decomposition can be com-

puted by the difference between corresponding powers of the normalized adjacency matrices with added

self-loops and formalized as follows:

Tk = sign(Âk)− sign(Âk−1) + I, (2.2)

sign(Âk)ij =


1, if Âk

ij > 0

0, if Âk
ij = 0,

(2.3)

where Â0 = I is the identity matrix and Â = D̃−
1
2 ÃD̃−

1
2 is the renormalized adjacency matrix as previously

defined. The equivalence between Tk and the kth-layer subgraph, including the self-loop, can be easily

proven, so we omit the details for brevity.

2.3.2 Multi-hop Dependency

Although the tree decomposition could avoid the issue of feature smoothing between different layers, we

also lose the multi-hop dependency captured by the original iterative propagation which might cause over-

smoothing [25]. Two nodes have multi-hop dependency if they are connected by a path in the network, and

specifically, k-hop dependency is defined as two nodes connected by at least one simple path with length k.

For example in Figure 2.2, features of node v2 can not only be propagated along the edge v2 → v1 to v1 but

also along the longer path v2 → v5 → v6 → v3 → v1 to v1. However, after tree decomposition, the edge

9



v2 → v1 is the only way for propagating features of v2 to v1. Instead of inserting multiple edges between the

higher-layer neighborhood nodes and their corresponding center nodes, we model this multi-hop dependency

via graph diffusion [28]. Specifically, Âi represents the ith-hop dependency and its entry Âi
pq measures the

strength of paths of length i in propagating features from node vp to vq . Assuming the maximum hop of the

dependency we consider is K, since kth-layer (k ≤ K) neighborhood nodes can only propagate their features

along paths of length from k to K, thus the total multi-hop dependencies from node vp to vq along these paths

is calculated as
∑K

i=k Â
i
pq . Such multi-hop dependency across the spectrum from k to K between a single

pair of nodes can be further generalized to all pairs of nodes in the graph via diffusion and defined as:

Ek,K =

K∑
i=k

Âi, (2.4)

where Ek,K considers dependencies from paths of length k to K, which could be used as the edge weights

for propagating node features in the kth-layer subgraph obtained from tree decomposition.

2.3.3 Tree Decomposed Graph Neural Network

Now, having motivated and introduced the two major components of our proposed framework, namely the

tree decomposition and multi-hop dependency formulations, we collect them together and present our Tree

Decomposed Graph Neural Network (TDGNN). As previously noted, an illustration of our proposed TDGNN

is shown in Figure 2.3, and its corresponding mathematical formulation is defined as:

H0 = MLP(X), (2.5)

Hk = (Tk ⊙Ek,K)H0, k = 1, 2, ..., L, (2.6)

Z =


∑L

k=0 H
k, TDGNN-s∑L

k=0 θkH
k, TDGNN-w.

(2.7)

We first apply a Multilayer Perceptron (MLP) network to the original feature matrix X to get the initial

representations of nodes H0 [26, 29]. Then, we decompose the whole network by calculating the adjacency

matrix Tk of kth-layer tree based on Eq. (2.2) and Eq. (2.3). This kth-layer subgraph contains only edges

between center nodes and their corresponding kth-layer neighborhood nodes, including a self-loop. Since we

consider the neighborhood nodes up to Lth-layer, the k is from 1 to L. Next, we utilize graph diffusion to

calculate the multi-hop dependency Ek,K based on Eq. (2.4) and K is the predefined maximum hop of depen-

dency we consider. Afterward, we propagate the initial node representations H0 along edges in each subgraph

10



Figure 2.3: An illustration of the proposed Tree Decomposed Graph Neural Network (TDGNN). For brevity,
we only present the pipeline of predicting the label of one node.

following each corresponding adjacency matrix Tk with the corresponding edge weight from multi-hop de-

pendency Ek,K to get representations Hk for each layer k based on Eq. (2.6). We collect representations

from each layer and aggregate them together using two aggregation mechanisms to get the final representa-

tions Z based on Eq. (2.7). The first aggregation mechanism is to directly sum up the representations of all

layers together. The second aggregation mechanism is to assign learnable weights and adaptively combine

the representations of each layer. The corresponding two versions of our model are termed as TDGNN-s and

TDGNN-w, respectively. Ultimately, Z is employed to compute the cross-entropy loss for labeled nodes as:

L = −
∑
vi∈Vl

C∑
j=1

Yij log Ẑij , (2.8)

where Ẑ is the probability distribution of each node belonging to each class and is obtained by applying

softmax on the final representation Z. Note that Vl ⊂ V is the set of training nodes with known label

information as previously defined and C is the total number of classes to be predicted.

In summary, our model decouples transformation from propagation [26], which enlarges the receptive

fields without introducing more trainable parameters. Obtaining low dimensional representations before

propagation [29] makes the training process of TDGNN computationally efficient. Additionally, tree de-

composition preprocessing allows a more flexible choice of utilizing/combining different layers to propagate

features. The multi-hop dependency enables feature propagation along paths of various lengths, which con-

forms to other recent work [37]. Furthermore, applying learnable weight coefficients equips TDGNN with

the ability to flexibly select an effective receptive field based on a specific network.

11



2.3.4 Complexity Analysis

Compared to vanilla GCN, the additional computational load mostly comes from the tree decomposition and

the graph diffusion. Since tracking down the corresponding L-layer subgraphs is equivalent to calculating

the difference between corresponding powers of the normalized adjacency matrices with added self-loops by

Eq. (2.2), which is exactly given by graph diffusion, the time for the tree decomposition could be saved.

The time complexity for performing graph diffusion process is O(Kn3) = O(n3) due to K times matrix

multiplication and can be reduced approximately to O(n2.81) if using the Strassen algorithm [38] or even fur-

ther to O(n2.38) [39]. Moreover, in practice, real-world graphs are extremely sparse, and thus, sparse matrix

multiplication methods [40] could also be used to further improve computational efficiency. Notably, both

the tree decomposition and the graph diffusion are preprocessing outside of the training, which significantly

reduces the computational load of the whole framework.

For the space complexity, the bottleneck would be saving diffusion matrices Âk, k = 1, 2, ...,K, and

the adjacency matrices of each subgraph Tk, k = 1, 2, ...,K, which leads to O(Kn2) and constitutes a

severe threat for networks of large scale. However, as we highlighted before and demonstrate in Figure 2.4,

since higher-layer neighborhoods may have completely different features from their corresponding center

nodes and incorporating their information gains little benefits in learning better embeddings, we could only

consider lower-layer neighborhoods [41] and thus keep only the first few adjacency matrices. On the other

hand, most of the real-world networks have the small-world property that most nodes can be reached from

every other node by a small number of hops [42], which confirms and helps justify why we can remove the

higher-layer adjacency matrices. Moreover, we could apply the same strategy as GraphSAGE [43] where

we sample nodes from the center node’s local neighborhood via random walk and propagate features among

these sampled nodes [41]. Since this work focuses on disentangling neighborhoods and characterizing the

multi-hop dependency, the aforementioned is left as one future direction.

2.4 Experiment

In this section, we conduct extensive node classification experiments to evaluate the superiority of our pro-

posed TDGNN model. We begin by introducing the datasets and experimental setup we employed. Then, we

compare TDGNN with prior baselines and some state-of-the-art (SOTA) deep GNNs.

12



Table 2.1: Statistics of network datasets for node classification.
Networks Nodes Edges Features Classes Train/Val/Test Type

Homophily
Cora 2708 5429 1433 7 140/500/1000 Citation network
Citeseer 3327 4732 3703 6 120/500/1000 Citation network
Pubmed 19717 44338 500 3 60/500/1000 Citation network

Non-
homophily

Cornell 183 295 1703 5 48%/32%/20% Webpage network
Texas 183 309 1703 5 48%/32%/20% Webpage network
Wisconsin 251 499 1703 5 48%/32%/20% Webpage network
Actor 7600 33544 931 5 48%/32%/20% Actor co-occurrence network

2.4.1 Experimental Settings

Datasets. We evaluate the performance of our TDGNN model and baseline models with node classifica-

tion on multiple real-world datasets. More specifically, we use the three standard citation network datasets

Cora, Citeseer, and Pubmed [44] for semi-supervised node classification [45], where nodes correspond to

documents associated with the bag-of-words as the features and edges correspond to citations. For full-

supervised node classification, in addition to the three citation networks we include three extra web network

datasets, Cornell, Texas, and Wisconsion [31], where nodes and edges represent web pages and hyperlinks,

and one actor co-occurrence network dataset, Actor [31], where nodes and edges represent actors and their

co-occurrence in the same movie. Table 2.1 contains the basic network statistics for each of these datasets.

Baselines. To evaluate the effectiveness of TDGNN, we choose the following representative supervised node

classification baselines including SOTA GNN models. MLP [46]: 2-layer multilayer perceptron with dropout

and ReLU non-linearity, which is empirically shown in other works to perform well on non-homophily net-

work datasets [32]. GCN [15]: GCN is one of the most popular graph convolutional models. GAT [16]:

Graph attention network employs an attention mechanism to pay different levels of attention to nodes within

the neighborhood set and is widely used as a GNN baseline. SGC [23]: Simple graph convolution network

removes nonlinearities and collapsing weight matrices between consecutive layers, which obtains comparable

accuracy and yields orders of magnitude speedup over GCN. We note that SGC collapses the traditional GNN

aggregation tree such that the center node receives the features directly from the flattened neighborhood while

being weighted according to the higher-order neighborhood information. APPNP [29]: APPNP links GCN

and PageRank to derive an improved propagation scheme based on personalized PageRank, which incorpo-

rates higher-order neighborhood information and meanwhile keeps the local information. Geom-GCN [31]:

Geom-GCN explores to capture long-range dependencies in non-homophily networks. It uses the geometric

relationships defined in the latent space to build structural neighborhoods for aggregation. Since Geom-GCN

is mainly designed for non-homophily networks, we only report its performance in full-supervised node

classification where three non-homophily networks are included. DAGNN [26]: Deep adaptive graph neu-

13



ral network first decouples the representation transformation from propagation so that large receptive fields

can be applied without suffering from performance degradation. Then, it utilizes an adaptive adjustment

mechanism, which adaptively balances the information from local and global neighborhoods for each node.

GCNII [24]: GCNII employs residual connection to retain part of the information from the previous layer

and adds an identity mapping to ensure the non-decreasing performance as the GNN model goes deeper (i.e.,

successfully adds more layers). For baselines with multiple variants (Geom-GCN, GCNII), we only choose

the best for each dataset and denote it as model*.

Parameter Settings. We implement our proposed TDGNN and some necessary baselines using Pytorch [47]

and Pytorch Geometric [48], a library for deep learning on graph-structured data built upon Pytorch. For

DAGNN2, and GCNII3, we use the original code from the authors’ GitHub repository. We aim to provide

a rigorous and fair comparison between different models on each dataset by tuning hyperparameters for all

models individually. The number of hidden units is searched from {16, 32, 64, 128}, the dropout rate is

searched from {0, 0.5, 0.8}, the weight decay is searched from [1e−4, 2e−2], the training epochs is searched

from {300, 500, 1000, 1500, 3000, 4000} and the learning rate is set to be 0.01. We find that some baselines

even achieve better results than their original reports. Note that in this work, we do not treat the random seed

as a hyperparameter and therefore, the random seed fixed in previous models for reproducing results, if any,

is reset to be totally random to remove any potential bias and thus allow for more generalized comparison.

For reproducibility, codes of all of our models and corresponding hyperparameter configurations for results

in Table 2.2-2.3 are publicly available 4.

2.4.2 Semi-supervised Node Classification

For the semi-supervised node classification, we apply the fixed split following [45] and random training/-

validation/testing split on Cora, Citeseer, and Pubmed, with 20 nodes per class for training, 500 nodes for

validation, and 1000 nodes for testing. For each model, we conduct 100 runs and report the mean classifica-

tion accuracy with the standard deviation in both the fixed and random splitting cases. Table 2.2 reports the

best mean accuracy with the standard deviation over different data splits where the best model per benchmark

is highlighted in bold and the number in parentheses corresponds to the neighborhood layers used at which

the best performance is achieved. For example, (0-4) means the corresponding performance is achieved when

we use the neighborhood of layers up to 4, and 0-layer neighborhoods correspond to using the features of the

nodes themselves for prediction. The random split is to remove the positional bias from the training nodes as

nodes in the class centers tend to impose more influence and inductivity [49].

2https://github.com/vthost/DAGNN
3https://github.com/chennnM/GCNII
4https://github.com/YuWVandy/TDGNN

14

https://github.com/vthost/DAGNN
https://github.com/chennnM/GCNII
https://github.com/YuWVandy/TDGNN


Table 2.2: Semi-supervised classification accuracy (%) ± stdev over Cora, Citeseer, and Pubmed datasets.
Best and runner-up performances are reported in bold and underlined.

Method Cora Citeseer Pubmed Avg. Rank
Fixed Random Fixed Random Fixed Random

GCN 81.50±0.79 (0-2) 79.91±1.64 (0-2) 71.42±0.48 (0-2) 68.78±2.01 (0-2) 79.12±0.46 (0-2) 77.84±2.36 (0-2) 7.17
GAT 83.10±0.40 (0-2) 80.80±1.60 (0-2) 70.80±0.50 (0-2) 68.90±1.70 (0-2) 79.10±0.40 (0-2) 77.80±2.10 (0-2) 7.00
SGC 82.63±0.01 (0-2) 80.18±1.57 (0-2) 72.10±0.14 (0-2) 69.33±1.90 (0-2) 79.12±0.10 (0-2) 76.74±2.84 (0-2) 6.83
APPNP 83.34±0.56 (0-10) 82.26±1.39 (0-10) 72.22±0.50 (0-10) 70.53±1.57 (0-10) 80.14±0.24 (0-10) 79.54±2.23 (0-10) 3.83
DAGNN 84.88±0.49 (0-10) 83.47±1.18 (0-10) 73.39±0.57 (0-9) 70.87±1.44 (0-10) 80.51±0.42 (0-20) 79.52±2.19 (0-20) 2.33
GCNII* 85.57±0.45 (0-64) 82.58±1.68 (0-64) 73.24±0.61 (0-32) 70.04±1.72 (0-10) 80.00±0.48 (0-16) 79.03±1.68 (0-16) 3.83
TDGNN-s 85.35±0.49 (0-4) 83.84±1.45 (0-6) 73.78±0.60 (0-8) 71.27±1.71 (0-8) 80.20±0.33 (0-5) 80.01±1.96 (0-5) 1.33
TDGNN-w 84.42±0.59 (0-4) 83.43±1.35 (0-6) 72.14±0.49 (0-6) 70.32±1.57 (0-6) 80.12±0.44 (0-5) 79.77±2.04 (0-5) 3.67

Table 2.3: Summary of full-supervised classification accuracy (%) ± standard deviation over 8 datasets. Best
and runner-up performances are reported in bold and underlined.

Method Cora Cite. Pub. Corn. Tex. Wisc. Act. Avg. Rank
MLP 75.78±1.84 (0) 73.81± 1.74 (0) 86.90±0.37 (0) 80.97±6.33 (0) 81.32± 4.19 (0) 85.38±3.95 (0) 36.60±1.25 (0) 5.57
GCN 86.97±1.32 (0-2) 76.37±1.47 (0-2) 88.19±0.48 (0-2) 58.57±3.57 (0-2) 58.68±4.64 (0-2) 53.14±6.25 (0-2) 28.65±1.38 (0-2) 8.14
GAT 87.30±1.01 (0-2) 75.55±1.32 (0-2) 85.33±0.48 (0-2) 61.89±5.05 (0-2) 58.38±6.63 (0-2) 55.29±4.09 (0-2) 28.45±0.89 (0-2) 8.00
SGC 87.07±1.20 (0-2) 76.01±1.78 (0-2) 85.11±0.52 (0-2) 58.68±3.75 (0-2) 60.43±5.11 (0-2) 53.49±5.13 (0-2) 27.46±1.46 (0-2) 8.57
Geom-GCN* 85.35±1.57 (0-2) 78.02±1.15 (0-2) 89.95±0.47 (N/A) 60.54±3.67 (0-2) 66.76±2.72 (N/A) 64.51±3.66 (N/A) 31.63±1.15 (N/A) 5.86
APPNP 86.76±1.74 (0-10) 77.08±1.56 (0-10) 88.45±0.42 (0-10) 74.59±5.11 (0-10) 74.30±4.74 (0-10) 81.10±2.93 (0-10) 34.36±1.09 (0-10) 5.43
DAGNN 87.26±1.42 (0-10) 76.47±1.54 (0-10) 87.49±0.63 (0-20) 80.97±6.33 (0) 81.32±4.19 (0) 85.38±3.95 (0) 36.60±1.25 (0) 4.71
GCNII* 88.27±1.31 (0-64) 77.06±1.67 (0-64) 90.26±0.41 (0-64) 76.70±5.40 (0-16) 77.08±5.84 (0-32) 80.94±4.94 (0-16) 35.18±1.30 (0-64) 3.71
TDGNN-s 88.26±1.32 (0-4) 76.64±1.54 (0-8) 89.13±0.39 (0-1) 80.97±6.33 (0) 82.95±4.59 (0, 4-5) 85.47±3.88 (0, 4-5) 36.70±1.28 (0, 3-4) 2.86
TDGNN-w 88.01±1.32 (0-5) 76.58±1.40 (0-2) 89.22±0.41 (0-1) 82.92±6.61 (0, 2-6) 83.00±4.50 (0, 2) 85.57±3.78 (0, 3-5) 37.11±0.96 (0, 3-4) 2.14

* We reuse the results in [36] for Geom-GCN. ’N/A’ indicates the corresponding layers are not reported.

We observe that TDGNN-s performs the best in terms of the average rank through all datasets and across

both random and fixed splits, which suggests the comprehensive superiority of TDGNN-s to other baselines.

Specifically, our TDGNN-s model outperforms the representative baselines, including GCN, GAT, SGC, and

APPNP, across all datasets by significant margins. Compared with two recent deep GNN models, DAGNN

and GCNII*, TDGNN-s can still achieve comparable or even better performance. Especially when the data

split is random, TDGNN-s outperforms all other models, demonstrating the strong robustness of TDGNN-s

(in terms of dataset splits). It is also worth noting that our TDGNN model achieves the SOTA performance

with relatively shallow layers compared with DAGNN and GCNII*. On the Cora dataset, the best perfor-

mance is achieved when layers are used up to 4 and 6 for our TDGNN-s model, respectively, in fixed and

random data splitting. At the same time, DAGNN and GCNII require up to 10 and 64 layers to achieve the

best, which demands heavy computation and thus is time inefficient. On the Citeseer dataset, our model also

utilizes up to the most shallow layers compared with DAGNN and GCNII* to achieve the SOTA performance.

Surprisingly, the weighted version of our model, TDGNN-w, performs poorly than TDGNN-s while still out-

performing most of the baselines. This is because the weight coefficients {θi}Li=0 are only decided by training

nodes and the suitable weights for combining aggregated features {Hi}Li=0 and getting good predictions on

training and validation nodes might not be suitable for testing nodes, which inspires future work for a layer

aggregation mechanism that enables node-adaptive layer combination.

15



2.4.3 Full-supervised Node Classification

For the full-supervised node classification task, we evaluate our TDGNN model and existing GNNs using 7

datasets: Cora, Citeseer, Pubmed, Cornell, Texas, Wisconsin, and Actor. For each dataset, we use 10 random

splits (48%/32%/20% of nodes per class for training/validation/testing) from [31]. Note that although [31]

reports that the ratios are 60%/20%/20%, this differs from the actual data splits shared on their GitHub [36].

We conduct 100 runs with each split evaluated 10 times and report the mean accuracy with the standard

deviation in Table 2.3. Here, the numbers in the parentheses again correspond to layers of neighborhoods

utilized (e.g., (0, 3-5) means the corresponding performance is achieved when we use neighborhoods of

layers 3 to 5 and 0-layer neighborhoods corresponding to the center nodes themselves.)

First, we observe from Table 2.3 that TDGNN-w has the best average rank across the two types of net-

works (i.e., homophily and heterophily) with TDGNN-s ranking second. Next, we observe that TDGNN-w

significantly outperforms the baselines across the heterophily networks. However, both variants of TDGNN

are slightly outperformed on the homophily networks in this full-supervised setting (whereas in most ho-

mophily networks under the semi-supervised setting, TDGNN-s performs the best). Thus, to better under-

stand the inner workings of TDGNN, we next perform a detailed parameter analysis.

2.4.4 Sensitivity Analysis

Figure 2.4: Results of models
with different layers on Cora
(Top) and Citeseer (Bottom)

Here, we compare the performance of TDGNN with other baselines when

utilizing neighborhoods in different layers. Furthermore, we perform a

parameter analysis of TDGNN by varying the neighborhood layers (L)

and the multi-hop dependencies (K).

First, to demonstrate the strength of the TDGNN-s model in shallow

layers, we visualize the performance of each model using layers from up

to 1 to up to 10 in Figure 2.4. For the Cora and Citeseer datasets, our

model achieves around 84% and 73% using only the first 2-layer neigh-

borhoods and the first three-layer neighborhoods, respectively. Compared

to two SOTA deep GNNs where DAGNN achieves the same level of per-

formance using 5 layers and 7 layers, and GCNII* achieves using 8 layers

and at least 32 layers, our model can leverage less neighborhood infor-

mation to achieve comparable performance, which clearly validates the

importance of considering multi-hop dependency. To some extent, this raises the concern over whether we

need deep GNNs to incorporate higher-layer neighborhood information in homophily networks or if shallow

feature information aggregated according to higher-order multi-hop dependencies provides sufficient infor-

16



Figure 2.5: Visualizing the effect of varying the maximum layer neighborhoods and the length of multi-hop
dependency on the performance of TDGNN.

mation. Besides, the continued high-level performance as model depth increases demonstrates the higher

resilience of TDGNN-s against over-smoothing.

Second, we vary the maximum layer of neighborhoods and the multi-hop dependency to study their effect

on the performance of the proposed two models: TDGNN-s on two representative homophily networks and

TDGNN-w on two representative heterophily networks. Both of the maximum layer of the neighborhoods

and the length of the multi-hop dependency are selected from {1, 2, 3, 5, 10} due to the small-world theory

that two nodes will be connected through few series of intermediaries [42]. Figure 2.5 visualizes the averaged

accuracy across 10 runs for various layers and dependency configurations. For two homophily networks, in-

cluding extra neighborhood layers significantly increase the model performance for lower-layers and such

boosting effect becomes progressively weaker as more and more higher-layer neighborhood layers are in-

cluded, e.g., the performance increases from 79.85 to 84.00 and from 71.50 to 72.85 for Cora and Citeseer

when including the 2nd-layer neighborhood while only from 84.00 to 85.06 and from 72.85 to 73.28 when

including the 3rd-layer. This weaker boost as the layer number increases is also in line with the decreasing ho-

mophily level as observed in Figure 2.1. In comparison, for heterophily networks, in Figures 2.5(c) and 2.5(d)

we can observe a more significant need for the decoupling of neighborhood layers since increasing the re-

ceptive field (i.e., increasing the maximum layer of neighborhoods) is not always advantageous. Similarly

including deeper multi-hop dependencies is not always a clear advantage as seen in the homophily networks

because lower-layer neighborhoods that have different labels or representations from their corresponding

center nodes may contribute more to their center nodes’ prediction through longer dependency. We note that

these findings also align with our empirical analysis in Figure 2.1. Therefore, we believe that the increased

performance obtained by TDGNN over prior work is partially credited to its ability to separate the concept of

graph convolutions in deeper GNNs with higher-layer neighborhoods into both multi-hop dependencies and

decoupled neighborhood layers, which can allow any deep GNN model to be more flexibly customized via

hyperparameter tuning on a wider variety of complex networks.

17



2.5 Conclusion

In this chapter, we theoretically analyze the feature smoothing of neighborhoods in different layers and pro-

pose a tree decomposition method that disentangles neighborhoods of different layers, thus allowing a more

flexible layer configuration. Moreover, our work provides the first theoretical and empirical analysis that

unveils the importance of multi-hop dependency in learning better node representations and discloses its

connection with graph diffusion. Based on these insights, we design our Tree Decomposed Graph Neural

Network (TDGNN) model with two variants, TDGNN-s and TDGNN-w, which simultaneously address the

problem of feature smoothing between different layers and incorporate the multi-hop dependency. Extensive

experiments demonstrate that TDGNN outperforms representative baselines on a wide range of real-world

datasets across network types (including homophily and heterophily) and various node classification task

settings.

18



CHAPTER 3

Topology Issue: Analyzing the Varying Local Topology Issue in Link Prediction

While Graph Neural Networks (GNNs) have shown great power in learning node embeddings for link predic-

tion (LP), no previous works have explored its varying performance across different nodes and its underlying

reasons. To this end, we aim to demystify which nodes perform better by analyzing their local topology.

Despite the widespread belief that low-degree nodes exhibit poorer LP performance, our empirical findings

provide nuances to this viewpoint and prompt us to propose a better metric, Topological Concentration (TC),

based on the intersection of the local subgraph of each node with the ones of its neighbors. We empirically

demonstrate that TC has a higher correlation with LP performance than other node-level topological metrics,

offering a better way to identify low-performing nodes than using degree. With TC, we discover a novel

topological distribution shift issue in which newly joined neighbors of a node tend to become less interactive

with that node’s existing neighbors, compromising the generalizability of node embeddings for LP at testing

time. To make the computation of TC scalable, we further propose Approximated Topological Concentration

(ATC) and justify its efficacy in approximating TC and reducing the computation complexity.1.

3.1 Introduction

Recent years have witnessed unprecedented success in applying link prediction (LP) in real-world applica-

tions [50, 51, 52]. Compared with heuristic-based [53, 54] and shallow embedding-based LP approaches [55,

56], GNN-based ones [21, 57] have achieved state-of-the-art performance; these methods first learn node/-

subgraph embeddings by linear transformations with message-passing and a decoder/pooling layer to predict

link scores/subgraph class. While existing works boost overall LP performance [58, 59] by more expressive

message-passing or data augmentation, it is heavily under-explored whether different nodes within a graph

would obtain embeddings of different quality and have varying LP performance.

Previous works have explored GNNs’ varying performance on nodes within a graph, considering factors

like local topology [60, 61], feature quality [62], and class quantity [63]. While these studies have provided

significant insights, their focus has primarily remained on node/graph-level tasks, leaving the realm of LP

unexplored. A more profound examination of the node-varying LP performance can enhance our compre-

hension of network dynamics [54], facilitate the timely detection of nodes with ill-topology [64], and pave

the way for customized data-driven strategies to elevate specific nodes’ LP performance [65]. Given the

criticality of studying the varying LP performance and the apparent gap in the existing literature, we ask:

1https://openreview.net/forum?id=apA6SSXx2e

19

https://openreview.net/forum?id=apA6SSXx2e


Figure 3.1: Average LP performance of nodes across different degree groups based on DegreeTrain(i.e., node
degree by training edges) on Collab/Citation2. In (a)-(b), Performance@10 does not increase as the node
degree increases. In (c)-(d), few/lower-degree nodes do not perform worse than higher-degree counterparts.

Can we propose a metric that measures GNNs’ varying LP performance across different nodes?

To answer a related question in the node classification task, prior works observed that GNNs perform

better on high-degree nodes than low-degree nodes [60, 66]. Similarly, the persistent sparse topology issue

in the general LP domain and recommender systems [67, 68] indicates that nodes with zero-to-low degrees

lag behind their high-degree counterparts. However, as surprisingly shown in Figure 3.1(a)-(b), GNN-based

LP on these two large-scale social networks does not exhibit a consistent performance trend as the node

degree increases. For example, the performance@10 on Collab under all evaluation metrics decreases as the

node degree increases, while on Citation2, performance@10 first increases and then decreases. This counter-

intuitive observation indicates the weak correlation between the node degree and LP performance, which

motivates us to design a more correlated metric to answer the above question.

Following [21] that the link formation between each pair of nodes depends on the interaction between

their local subgraphs, we probe the relation between the local subgraphs around each node (i.e., its compu-

tation tree) and its GNN-based LP performance. Specifically, we propose Topological Concentration (TC)

to measure the topological interaction between the local subgraph of each node and the local subgraphs of

the neighbors of that node. Our empirical observations show that TC offers a superior characterization of

node LP performance in GNNs, leading to 82.10% more correlation with LP performance and roughly 200%

increase in the performance gap between the identified under-performed nodes and their counterparts than de-

gree. Moreover, we discover a novel topological distribution shift (TDS) in which newly joined neighbors of

a node tend to become less interactive with that node’s existing neighbors. Our contributions are as follows:

20



• We propose Topological Concentration (TC) and demonstrate it leads to 82.10% more correlation with LP

performance and roughly 200% increase in the performance gap between the identified under-performed

nodes and their counterparts than node degree, shedding new insights on degree-related issues in LP. We

further propose Approximated Topological Concentration (ATC) and demonstrate it maintains high corre-

lations to the LP performance similar to TC while significantly reducing the computation complexity.

• We uncover a novel Topological Distribution Shift (TDS) issue according to TC and demonstrate its neg-

ative impact at the node/graph level for link prediction at the testing time. Moreover, we discover that

different nodes within the same graph can have varying amounts of TDS.

3.2 Related Work

Varying Performance of GNNs on Node/Graph Classification. GNNs’ efficacy in classification differs

across nodes/graphs with varying label quantity [7, 63] and varying topology quality [32, 60, 61, 66]. To

enhance GNNs’ performance for the disadvantaged nodes/graphs in these two varying conditions, previous

works either apply data augmentations to derive additional supervision [69, 70] or design expressive graph

convolutions to mitigate structural bias [71]. However, none tackle the varying performance of nodes in LP.

We fill this gap by studying the relationship between node LP performance and its local topology.

GNN-based LP. GNN-based LP works by first learning node embeddings/subgraph embeddings through

linear transformation and message-passing, and then applying the scoring function to predict link probabil-

ity/subgraph class [21, 72]. It has achieved new SOTA performance owing to using the neural network to

extract task-related information and the message-passing to encode the topological properties (e.g., common

neighbors) [57, 73].

Varying Performance of GNNs on LP. As LP nowadays has been heavily used to enhance user experience

in social/e-commerce recommendations [74, 75], studying its varying performance across different users has

real-world applications such as identify users with ill-topology and take augmentation strategies. Although

no efforts have been investigated into the node-varying performance in GNN-based LP, prior work [68, 76]

have investigated the relation of node-varying LP performance with its degree, and both claimed that users/n-

odes with higher activity levels/degrees tend to possess better recommendation performance than their less

active counterparts, which also aligns with observations in GNN-based node classification [60, 66]. However,

Figure 3.1(c)-(d) has already raised concern over the validity of this claim in LP. we follow [4] and theoreti-

cally discover that some node-centric evaluation metrics have degree-related bias in Appendix 9.4, implying

that the GNNs’ varying LP performance could be partially attributed to the choice of evaluation metrics. To

mitigate this bias, we employ a full spectrum of metrics and find that degree is not so correlated with the node

LP performance. This motivates us to devise a better topological metric than the degree.

21



3.3 Topological Concentration

Figure 3.2: (a)-(b): vi’s Topological Concentration: we calculate the average intersection between vi’s com-
putation tree and each of vi’s neighbor’s computation tree. The intersection between two computation trees
is the ratio of the observed intersections to all possible intersections. (c)-(d): two specifications of TC, cor-
responding to social and e-commerce networks. A higher triangle/square-based concentration indicates more
triangles/squares are formed among v0’s local subgraph.

3.3.1 Topological Concentration: Intuition and Formalization

As the link formation between a node pair heavily depends on the intersection between their local sub-

graphs [21, 57], we similarly hypothesize the predictability of a node’s neighbors relates to the intersection

between this node’s subgraph and the subgraphs of that node’s neighbors, e.g., the prediction of the links

{(i, jk)}2k=0 in Figure 3.2(a) depends on the intersection between K-hop computational tree centered on

vi,SK
i and K-hop computational trees centered on the neighbors of vi, {SK

jk
}2k=0. A higher intersection

leads to higher LP performance. For example, in Figure 3.2(c)-(d), v0 neighbors closely interact with them-

selves while v′0 neighbors do not, posing different topological conditions for the LP on v0 and v′0. From graph

heuristics perspective, v0 shares common neighbors v1, v2, v3 with its incoming validation neighbors v4, v5

while v′0 shares no neighbors with v′4, v
′
5. From the message-passing perspective, the propagated embed-

dings of v0 and v4, v5 share common components since they all aggregate {vk}3k=1 embeddings while v′0 and

v′4, v
′
5 do not share any common embeddings among {v′k}3k=1. When the subgraph (i.e., computation tree)

surrounding a node increasingly overlaps with the subgraphs of its neighbors, more paths originating from

that node are likely to loop nearby and eventually return to it, resulting in a more dense/concentrated local

topology for that node. Inspired by this observation, we introduce Topological Concentration to measure the

average level of intersection among these local subgraphs as follows:

22



Definition 1. Topological Concentration (TC): The Topological Concentration CK,t
i for node vi ∈ V is

defined as the average intersection between vi’s K-hop computation tree (SK
i ) and the computation trees of

each of vi’s type t neighbors:

CK,t
i = Evj∼N t

i
I(SK

i ,SK
j ) = Evj∼N t

i

∑K
k1=1

∑K
k2=1β

k1+k2−2|Hk1
i ∩Hk2

j |∑K
k1=1

∑K
k2=1 β

k1+k2−2g(|Hk1
i |, |Hk2

j |)
(3.1)

∀vi ∈ V,∀t ∈ T , where I(SK
i ,SK

j ) quantifies the intersection between the K-hop computation trees

around vi and vj , and is decomposed into the ratio of the observed intersections |Hk1
i ∩Hk2

j | to the total pos-

sible intersections g(Hk1
i ,Hk2

j ) between neighbors that are k1 and k2 hops away as shown in Figure 3.2(b).

βk1+k2−2 accounts for the exponential discounting effect as the hop increases. The normalization term g is a

function of the size of the computation trees of node vi, vj [77]. Although computation trees only consist of

edges from the training set, vi’s neighbors N t
i in Eq. (3.1) could come from training/validation/testing sets,

and we term the corresponding TC as TCTrain, TCVal, TCTest and their values as CK,Train
i , CK,Val

i , CK,Test
i . We

verify the correlation between TC and the node LP performance in Section 3.3.2.

3.3.2 Topological Concentration: Observation and Analysis

In this section, we draw three empirical observations to delve into the role of TC in GNN-based LP. For all

experiments, we evaluate datasets with only the topology information using LightGCN and those also having

node features using GCN/SAGE [15, 78, 79]2.

Obs. 1. TC correlates to LP performance more than other node topological properties. In Figure 3.3

(a)/(d), we group nodes in Collab/Citation2 based on their TCTrain and visualize the average performance

of each group. Unlike Figure 3.1(a)/(b), where there is no apparent relationship between the performance

and the node degree, the performance almost monotonically increases as the node TCTrain increases regard-

less of the evaluation metrics. This demonstrates the capability of TCTrain in characterizing the quality of

nodes’ local topology for their LP performance. Moreover, we quantitatively compare the Pearson Correla-

tion of the node LP performance with TCTrain and other commonly used node local topological properties,

DegreeTrain (i.e., the number of training edges incident to a node) and SubGraph Density (i.e., the density of

the 1-hop training subgraph centering around a node). As shown in Figure 3.3(b)/(c), TCTrain almost achieves

the highest Pearson Correlation with the node LP performance across every evaluation metric than the other

two topological properties except for the precision metric. This is due to the degree-related evaluation bias

implicitly encoded in the precision metric, i.e., even for the untrained link predictor, the precision of a node

still increases linearly as its degree increases, as proved in Theorem 8. Note that the node’s 1-hop Subgraph

Density equals its local clustering coefficient (LCC), and one previous work [80] has observed its correlation

2Due to GPU memory limitation, we choose SAGE for Citation2.

23



Figure 3.3: (a)/(d): The average LP Performance of nodes on Collab/Citation2 monotonically increases as
the TCTrain increases. (b)/(c): TCTrain mostly achieves the highest Pearson Correlation with LP performance
on Citeseer/Vole than DegreeTrain and Subgraph Density metrics. (e): LP performance is positively correlated
to TCTrain across different network datasets.

with node LP performance. Additionally, Figure 3.3(e) shows that TCTrain also positively correlated with LP

performance across various networks, depicting a preliminary benchmark for GNNs’ LP performance at the

graph level [81]. The LightGCN architecture exhibits a steeper slope than GCN, as it relies exclusively on

network topology without leveraging node features and thus is more sensitive to changes in the purely topo-

logical metric, TC. The deviation of Collab under both GCN and LightGCN baselines from the primary linear

trend might be attributed to the duplicated edges in the network creating the illusion of a higher TCTrain [82].

Obs. 2. TC better identifies low-performing nodes than degree, and lower-degree nodes may not

necessarily have lower LP performance. As previously shown in Figure 3.1(c)/(d), when the node degree

is at the very low regime, we do not observe a strict positive relationship between node DegreeTrain and its LP

performance. For example, the node Recall/MRR/NDCG@10 in Collab decreases as DegreeTrain increases

and HitsN /F1/Precision@10 first increases and then decreases. These contradicting observations facilitate our

hypothesis that the degree might not fully capture the local topology in characterizing the underperforming

nodes. Conversely, in Figure 3.4(a)/(d) on Collab/Citation2, nodes with lower TCTrain almost always have

worse LP performance under all evaluation metrics except when TCTrain is between [0, 0.02). For this extreme

case, we ascribe it to the distribution shift as nodes with extremely low TCTrain generally have a decent TCTest

and sustain a reasonable LP performance. We thoroughly investigate this distribution shift issue in Obs. 3.

Furthermore, we adjust the DegreeTrain from 1 to 10 to group nodes into ‘Lower-degree/Higher-degree’ and

adjust TCTrain from 0.01 to 0.1 to group nodes into ‘Concentrated/Non-Concentrated’. We compare their

24



Figure 3.4: (a)/(d): The average LP performance of nodes with extremely low TCTrain on Collab/Citation2 al-
most monotonically increases as TCTrain increases. (b)/(e): Nodes with lower DegreeTrain surprisingly perform
better than their higher degree counterparts (Blue curves). In contrast, Non-concentrated nodes identified by
owning lower TCTrain in most cases perform worse than their concentrated counterparts (Red curves). (c)/(f):
As node DegreeTrain increases, the ratio of nodes owning higher TCTrain increases first and then decreases,
corresponding to the observed first-increase-and-then-decrease performance trend in Figure 3.1(c)/(d).

average LP performance on Collab/Citation2 in Figure 3.4(b)/(e). Intriguingly, Lower-degree nodes always

perform better than their Higher-degree counterparts across all DegreeTrain thresholds. This brings nuances

into the conventional understanding that nodes with a weaker topology (lower degree) would yield inferior

performance [60, 66, 68]. In contrast, with TCTrain metric, Non-concentrated nodes generally underperform

by a noticeable margin than their concentrated counterparts.

We further visualize the relation between DegreeTrain and TCTrain in Figure 3.4(c)/(f). When node DegreeTrain

increases from 1 to 4, the ratio of nodes owning higher TCTrain also increases because these newly landed

nodes start interactions and create their initial topological context. Since we have already observed the pos-

itive correlation of TCTrain to nodes’ LP performance previously, the LP performance for some evaluation

metrics also increases as the DegreeTrain initially increases from 0 to 4 observed in Figure 3.1(c)/(d). When

DegreeTrain increases further beyond 5, the ratio of nodes owning higher TCTrain gradually decreases, leading

to the decreasing performance observed in the later stage of Figure 3.1(c)/(d). This decreasing TCTrain is

because, for high DegreeTrain nodes, their neighbors are likely to lie in different communities and share fewer

connections among themselves. For example, in social networks, high-activity users usually possess diverse

relations in different online communities, and their interacted people are likely from significantly different

domains and hence share less common social relations themselves [83].

25



Figure 3.5: (a) HitsN@10 of predicting training/validation/testing edges on Cora/Citeseer/Collab. The gap
between validation and testing performance is much bigger on Collab than on Cora/Citeseer. (b) Compared
with Cora/Citeseer where edges are randomly split, the distribution of the difference between TCVal and TCTest

shifts slightly right on Collab where edges are split according to time, indicating the interaction between
training and testing neighbors become less than the one between training and validation neighbors. (c) As
the gap between TCVal and TCTest increases for different nodes, their corresponding performance gap also
increases, demonstrating TDS varies among different nodes even within the same graph.

Obs. 3. Topological Distribution Shift compromises the LP performance at testing time, and TC can

measure its negative impact at both graph and node level. In real-world LP scenarios, new nodes con-

tinuously join the network and form new links with existing nodes, making the whole network evolve dy-

namically [84, 85]. Here, we discover a new Topological Distribution Shift (TDS) issue, i.e., as time goes

on, the newly joined neighbors of a node become less interactive with that node’s old neighbors. Since the

edges serving message-passing and providing supervision only come from the training set, TDS would com-

promise the capability of the learned node embeddings for predicting links in the testing set. As verified in

Figure 3.5(a), the performance gap between validation and testing sets on Collab where edges are split ac-

cording to time is much more significant than the one on Cora/Citeseer where edges are split randomly. Note

that the significantly higher performance on predicting training edges among all these three datasets is be-

cause they have already been used in the training phase [86], and this distribution shift is different from TDS.

As TC essentially measures the interaction level among neighbors of a particular node, we further visualize

the distribution of the difference between TCVal and TCTest in Figure 3.5(b). We observe a slight shift towards

the right on Collab rather than on Cora/Citeseer, demonstrating nodes’ testing neighbors become less inter-

active with their training neighbors than their validation neighbors. Figure 3.4(c) further demonstrates the

influence of this shift at the node level by visualizing the relationship between TDS and the performance gap.

We can see that as the strength of such shift increases (evidenced by the larger difference between TCVal and

TCTest), the performance gap also increases. This suggests that nodes within the same graph display varying

levels of TDS. As one potential application, we can devise adaptive data valuation techniques to selectively

use neighborhood information (i.e., emphasize less on stale edges in LP as [57] did).

26



3.3.3 Topological Concentration: Computational Complexity and Optimization

Calculating TC following Eq. (3.1) involves counting the intersection between two neighboring sets that are

different hops away from the centering nodes in two computation trees. Assuming the average degree of the

network is d̂, the time complexity of computing CK,t
i for all nodes in the network is O(|E|

∑K
k=1

∑K
k=1 min(

d̂k1 , d̂k2)) = O(K2|E||V|) ≈ O(K2|V|2) for sparse networks, which increases quadratically as the size of

the network increases and is hence challenging for large-scale networks. To handle this issue, we propagate

the randomly initialized Gaussian embeddings in the latent space to approximate TC in the topological space

and propose Approximated Topological Concentration as follows:

Definition 2. Approximated Topological Concentration (ATC): Approximated topological concentration

C̃K,t
i for vi ∈ V is the average similarity between vi and its neighbors’ embeddings initialized from Gaussian

Random Projection [87] followed by row-normalized graph diffusion Ãk [88], with ϕ as the similarity metric

function:

C̃K,t
i = Evj∼N t

i
ϕ(Ni,Nj), N =

K∑
k=1

αkÃ
kR, R ∼ N (0d,Σd) (3.2)

Theorem 1. Assuming g(|Hk1
i |, |Hk2

j |) = |Hk1
i ||Hk2

j | in Eq. (3.1) and let ϕ be the dot-product based simi-

larity metric [79], then node vi’s 1-layer Topological Concentration C1,t
i is linear correlated with the mean

value of the 1-layer Approximated Topological Concentration µC̃K,t
i

as:

C1,t
i ≈ d−1µEvj∼Nt

i
(E1

j )
⊤E1

i
= d−1µC̃1,t

i
, (3.3)

Figure 3.6: ATCTrain maintains a similar level of
correlation to TCTrain while significantly reduc-
ing the computational time.

where E1 ∈ Rn×d denotes the node embeddings after

1-layer SAGE-style message-passing and d is the embed-

ding dimension. The full proof is in Appendix 3.5.2. This

theorem bridges the gap between TC defined in the topo-

logical space and ATC defined in the latent space, which

theoretically justifies the effectiveness of this approxima-

tion. Computationally, obtaining node embeddings N in

Eq. (3.2) is free from optimization, and the graph diffu-

sion can be efficiently executed via power iteration, which reduces the complexity to O(Kd(|E| + |V|)).

Note that although we only demonstrate the approximation power for the case of 1-layer message-passing,

we empirically verify the efficacy for higher-layer message-passing in the following.

Here, we compare TCTrain and ATCTrain under various number of hops in terms of their computational

time and their correlation with LP performance in Figure 3.6. As the number of hops increases, the running

27



time for computing TC increases exponentially (especially for large-scale datasets like Collab, we are only

affordable to compute its TCTrain up to 3 hops) while ATC stays roughly the same. This aligns with the

quadratic/linear time complexity O(K2|V|2)/O(Kd(|E| + |V|)) we derived earlier for TC/ATC. Moreover,

ATC achieves a similar level of correlation to TC at all different hops. For both TC and ATC, their correlations

to LP performance increase as the number of hops K used in Eq. (3.1)-Eq. (3.2) increases.

3.4 Conclusion

Although many recent works have achieved unprecedented success in enhancing link prediction (LP) per-

formance with GNNs, demystifying the varying levels of embedding quality and LP performance across

different nodes within the graph is heavily under-explored yet fundamental. In this work, we take the lead

in understanding the nodes’ varying performance from the perspective of their local topology. In view of

the connection between link formation and the subgraph interaction, we propose Topological Concentration

(TC) to characterize the node LP performance and demonstrate its superiority in leading higher correlation

and identifying more low-performing nodes than other common node topological properties. Moreover, we

discover a novel topological distribution shift (TDS) issue by observing the changing LP performance over

time and demonstrate the capability of using TC to measure this distribution shift. Our work offers the com-

munity strong insights into which local topology enables nodes to have better LP performance with GNNs.

28



3.5 Appendix

3.5.1 Link-centric and Node-centric Evaluation Metrics

In addition to the conventional link-centric evaluation metrics used in this work, node-centric evaluation

metrics are also used to mitigate the positional bias caused by the tiny portion of the sampled negative links.

We introduce their mathematical definition respectively as follows:

Link-Centric Evaluation. Following [82], we rank the prediction score of each link among a set of randomly

sampled negative node pairs and calculate the link-centric evaluation metric Hits@K as the ratio of positive

edges that are ranked at K th-place or above. Note that this evaluation may cause bias as the sampled negative

links only count a tiny portion of the quadratic node pairs [89]. Hereafter, we introduce the node-centric

evaluation metrics and specifically denote the node-level Hit ratio as HitsN@K to differentiate it from the

link-centric evaluation metric Hits@K.

Node-Centric Evaluation. For each node vi ∈ V , the model predicts the link formation score between vi

and every other node, and selects the top-K nodes to form the potential candidates Ẽi. Since the ground-truth

candidates for node vi is N Test
i (hereafter, we notate as Êi), we can compute the Recall(R), Precision(P), F1,

NDCG(N), MRR and HitsN of vi as follows:

R@Ki =
|Ẽi ∩ Êi|
|Êi|

, P@Ki =
|Ẽi ∩ Êi|

K
(3.4)

F1@Ki =
2|Ẽi ∩ Êi|
K + |Êi|

, N@Ki =

∑K
k=1

1[v
ϕk
i
∈(Ẽi∩Êi)]

log2(k+1)∑K
k=1

1
log2(k+1)

(3.5)

MRR@Ki =
1

minv∈(Ẽi∩Êi) Rankv
, HitsN@Ki = 1[|Êi ∩ Ẽi| > 0], (3.6)

where ϕk
i denotes vi’s kth preferred node according to the ranking of the link prediction score, Rankv is the

ranking of the node v and 1 is the indicator function equating 0 if the intersection between Ê i ∩ Ẽi is empty

otherwise 1. The final performance of each dataset is averaged across each node:

X@K = Evi∈VX@Ki,X ∈ {R,P,F1,N,MRR,HitsN} (3.7)

Because for each node, the predicted neighbors will be compared against all the other nodes, there is no

evaluation bias compared with the link-centric evaluation, where only a set of randomly selected negative

node pairs are used.

29



3.5.2 Proof of Theorems

Approximation power of ATC for TC

Theorem 1. Assuming g(|Hk1
i |, |Hk2

j |) = |Hk1
i ||Hk2

j | in Eq. (3.1) and let ϕ be the dot-product based simi-

larity metric [79], then node vi’s 1-layer Topological Concentration C1,t
i is linear correlated with the mean

value of the 1-layer Approximated Topological Concentration µC̃K,t
i

as:

C1,t
i ≈ d−1µEvj∼Nt

i
(E1

j )
⊤E1

i
= d−1µC̃1,t

i
, (3.8)

where E1 ∈ Rn×d denotes the node embeddings after 1-layer SAGE-style message-passing over the node

embeddings R ∼ N (0d,Σd) and χ is the approximation error.

Proof. Assuming without loss of generalizability that the row-normalized adjacency matrix Ã = D−1A is

used in aggregating neighborhood embeddings. We focus on a randomly selected node Ei ∈ Rd,∀vi ∈ V

and its 1-layer ATC given by Eq. (3.2) is:

C̃1,t
i = Evj∼N t

i
(E1

j )
⊤E1

i = Evj∼N t
i
(ÃR)⊤j (ÃR)i

= Evj∼N t
i

1

|N Train
j ||N Train

i |
(

∑
vm∈N Train

j

Rm)⊤(
∑

vn∈N Train
i

Rn)

= Evj∼N t
i

1

|N Train
j ||N Train

i |
∑

(vm,vn)∈N Train
j ×N Train

i

(Rm)⊤Rn

= Evj∼N t
i

1

|H1
i ||H1

j |
(

∑
(vm,vn)∈N Train

j ×N Train
i ,

vm ̸=vn

(Rm)⊤Rn

︸ ︷︷ ︸
Non-common neighbor embedding pairs

+
∑

vk∈N Train
j ∩N Train

i

(Rk)
⊤Rk

︸ ︷︷ ︸
Common neighbor embedding pairs

),

(3.9)

Note that the first term is the dot product between any pair of two non-common neighbor embeddings, which

is essentially the dot product between two independent samples from the same multivariate Gaussian distri-

bution (note that here we do not perform any training optimization, so the embeddings of different nodes are

completely independent) and by central limit theorem [90] approaches the standard Gaussian distribution with

0 as the mean, i.e., µ(Rm)⊤Rn
= 0. In contrast, the second term is the dot product between any Gaussian-

distributed sample and itself, which can be essentially characterized as the sum of squares of d independent

standard normal random variables and hence follows the chi-squared distribution with d degrees of freedom,

i.e., (Rk)
⊤Rk ∼ χ2

d [91]. By Central Limit Theorem, limd→∞ P (
χ2
d−d√
2d

≤ z) = PN (0,1)(z) and hence

30



limd→∞ χ2
d = N (d, 2d), i.e., µ(Rk)⊤Rk

= d. Then we obtain the mean value of Evj∼N t
i
(E1

j )
⊤E1

i :

µC̃1,t
i

= µEvj∼Nt
i
(E1

j )
⊤E1

i
≈ Evj∼N t

i

1

|H1
i ||H1

j |
(µ∑

(vm,vn)∈N Train
j ×N Train

i ,

vm ̸=vn

(Rm)⊤Rn
+ µ∑

vk∈NTrain
j

∩NTrain
i

(Rk)⊤Rk
)

≈ Evj∈N t
i

d|N Train
i ∩N Train

j |
|H1

i ||H1
j |

= Evj∈N t
i

d|H1
i ∩H1

j |
|H1

i ||H1
j |

= dC1,t
i .

(3.10)

The second approximation holds since we set d to be at least 64 for all experiments in this chapter. We next

perform Monte-Carlo Simulation to verify that by setting d = 64, the obtained distribution is very similar to

the Gaussian distribution. Assuming without loss of generality that the embedding dimension is 64 with the

mean vector µ = 064 ∈ R64 and the identity covariance matrix Σ64 = I ∈ R64×64, we randomly sample

1000 embeddings from N (µ,Σ).

We visualize the distributions of the inner product between the pair of non-common neighbor embeddings,

i.e., the first term in Eq. (3.9) (Rm)⊤Rn, vm ̸= vn, and the pair of common neighbor embeddings, i.e., the

second term in Eq. (3.9) (Rk)
⊤Rk, vk ∈ N Train

j ∩ N Train
i in Figure 3.7. We can see that the distribution of

the dot product between the pair of non-common neighbor embeddings behaves like a Gaussian distribution

centering around 0. In contrast, the distribution of the dot product between the pair of common neighbor

embeddings behaves like a chi-square distribution of degree 64, which also centers around 64, and this in

turn verifies the Gaussian approximation. Note that the correctness of the first approximation in Eq. (3.10)

relies on the assumption that the average of the inverse of the node’s neighbors should be the same across

all nodes. Although it cannot be theoretically satisfied, we still empirically verify the positive correlation

between TC and the link prediction performance shown in Figure 3.3.

The above derivation bridges the gap between the Topological Concentration (TC) defined in the topo-

logical space and the Approximated Topological Concentration (ATC) defined in the latent space, which

theoretically justifies the approximation efficacy of ATC.

Figure 3.7: The distribution of the inner product between common neighbor pairs is statistically higher than
that between non-common neighbor pairs.

31



CHAPTER 4

Topology Issue: Overcoming the Varying Local Topology Issue in Link Prediction

The previous chapter has demonstrated the impact of varying local topology among different nodes on their

link prediction, this chapter focuses on overcoming this issue in the context of recommender systems. Most

existing message-passing mechanisms for recommendation are directly inherited from GNNs without scruti-

nizing whether the varying local topology among different users would compromise the learning of user pref-

erences. In this chapter, we first analyze how message-passing captures the collaborative effect and propose a

recommendation-oriented topological metric, Common Interacted Ratio (CIR), which measures the level of

interaction between a specific neighbor of a node and the rest of its neighbors. After demonstrating the ben-

efits of leveraging collaborations from neighbors with higher CIR, we propose a recommendation-tailored

GNN, Collaboration-Aware Graph Convolutional Network (CAGCN), that goes beyond the 1-Weisfeiler-

Lehman(1-WL) test in distinguishing non-bipartite-subgraph-isomorphic graphs. Experiments on six bench-

mark datasets show that the best CAGCN variant outperforms the most representative GNN-based recom-

mendation model, LightGCN, by nearly 10% in Recall@20 and also achieves around 80% speedup1.

4.1 Introduction

Recommender systems aim to alleviate information overload by helping users discover items of interest [92,

50] and have been widely deployed in real-world applications [93]. Given historical user-item interactions

(e.g., click, purchase, review, and rate), the key is to leverage the collaborative effect [94, 95, 96] to predict

how likely users will interact with items. A standard paradigm for modeling collaborative effect is first to

learn embeddings of users/items capable of recovering historical user-item interactions and then perform

top-K recommendation based on the pairwise similarity between the learned user/item embeddings.

Since historical user-item interactions can be naturally represented as a bipartite graph with users/items

being nodes and interactions being edges [96, 97, 79] and given the unprecedented success of GNNs in learn-

ing node representations [15, 98, 99, 100], recent research has started to leverage GNNs to learn user/item

embeddings for the recommendation. Two pioneering works, NGCF [96] and LightGCN [79], leverage graph

convolutions to aggregate messages from local neighborhoods, directly injecting the collaborative signal into

user/item embeddings. More recently, [59, 101] explored the robustness and self-supervised learning [102]

of graph convolution for recommendation. However, the message-passing mechanisms in all previous recom-

mendation models are directly inherited from GNNs without carefully justifying how collaborative signals

1https://dl.acm.org/doi/abs/10.1145/3543507.3583229

32

https://dl.acm.org/doi/abs/10.1145/3543507.3583229


are captured and whether the captured collaborative signals would benefit the prediction of user preference.

Such an ambiguous understanding of how the message-passing captures collaborative signals would pose the

risk of learning uninformative or even harmful user/item representations when adopting GNNs in the rec-

ommendation. For example, [103] shows that a large portion of user interactions cannot reflect their actual

purchasing behaviors. In this case, blindly passing messages following existing styles of GNNs could capture

harmful collaborative signals from these unreliable interactions

To avoid collecting noisy or even harmful collaborative signals in message-passing of traditional GNNs,

existing work GTN [103] proposes to adaptively propagate user/item embeddings by adjusting the weight of

edges based on items’ similarity to users’ main preferences (i.e., the trend). However, such similarity is com-

puted based on the learned embeddings that still implicitly encode noisy collaborative signals from unreliable

user-item interactions. Worse still, calculating edge weights based on user/item embeddings along the train-

ing on the fly is computationally prohibitive and prevents the model from being deployed in industrial-level

recommendations. SGCN [59] attaches the message-passing with a trainable stochastic binary mask to prune

noisy edges. However, the unbiased gradient estimator increases the computational load.

Despite the fundamental importance of capturing beneficial collaborative signals, the related studies are

still in their infancy. To fill this crucial gap, we aim to demystify the collaborative effect captured by message-

passing and develop new insights towards customizing message-passing for recommendations. Furthermore,

these insights motivate us to design a recommendation-tailored GNN, Collaboration-Aware Graph Convo-

lutional Network(CAGCN), that passes neighborhood information based on their Common Interacted Ratio

(CIR) via the Collaboration-Aware Graph Convolution (CAGC). Our major contributions are as follows:

• Novel Perspective on Collaborative Effect: We demystify the collaborative effect by analyzing how

message-passing helps capture collaborative signals and when the captured collaborative signals are bene-

ficial in computing users’ ranking over items.

• Novel Recommendation-tailored Topological Metric: We then propose a recommendation-tailored topo-

logical metric, Common Interacted Ratio (CIR), and demonstrate the capability of CIR to quantify the

benefits of the messages from neighborhoods.

• Novel Convolution beyond 1-WL for Recommendation: We integrate CIR into message-passing and

propose a novel Collaboration-Aware Graph Convolutional Network (CAGCN). Then we prove that it can

go beyond 1-WL test in distinguishing non-bipartite-subgraph-isomorphic graphs, show its superiority on

real-world datasets, and provide an in-depth interpretation of its advantages.

Next, we comprehensively analyze the collaborative effect captured by message-passing and propose CIR to

measure whether the captured collaborative effect benefits the prediction of user preferences.

33



4.2 Related Work

Collaborative Filtering & Recommendation. Collaborative filtering (CF) predicts users’ interests by utiliz-

ing the preferences of other users with similar interests [104]. Early CF methods used Matrix Factorization

techniques [105, 106, 107, 108] to capture CF effect via optimizing users/items’ embeddings over histori-

cal interactions. Stepping further, Graph-based methods either leverage topological constraints or message-

passing to inject the CF effect into user/item embeddings [96, 79]. ItemRank and BiRank [109, 110] perform

label propagation and compute users’ ranking based on structural proximity between the observed and the

target items. To make user preferences learnable, HOP-Rec [111] combines the graph-based method and

the embedding-based method. Yet, interactions captured by random walks there do not fully explore the

high-layer neighbors and multi-hop dependencies [112]. By contrast, GNN-based methods are superior at

encoding higher-order structural proximity in user/item embeddings [96, 79]. Recent work [59, 103, 113] has

demonstrated that not all captured collaborations improve users’ ranking. [59] proposes to learn binary mask

and impose low-rank regularization while ours proposes novel topological metric CIR to weigh neighbors’

importance. [103] smooths nodes’ embeddings based on degree-normalized embedding similarity, while ours

adaptively smooth based on topological proximity(CIR). [113] denoises interactions based on 1-layer propa-

gated embeddings and hence cannot go beyond 1-WL test, while ours keeps neighbors and does not focus on

diversity issues.

Link Prediction. As a generalized version of recommendation, link prediction finds applications in predict-

ing drug interactions and completing knowledge graphs [51, 114]. Early studies adopt topological heuristics

to score node pairs [115, 116, 117]. Furthermore, latent-based/deep-learning methods [55, 118] are proposed

to characterize underline topological patterns in node embeddings via random walks [56] or regularizing [55].

To fully leverage node features, GNN-based methods are proposed and achieve unprecedented success owing

to the use of the neural network to extract task-related information and the message-passing capture the topo-

logical pattern [21, 80, 58]. Recently, efforts have been invested in developing expressive GNNs that can go

beyond the 1-WL test [119, 120, 121] for node/graph classification. Following this line, our work develops a

recommendation-tailored graph convolution with provably expressive power in predicting user-item links.

4.3 Analysis of Collaborative Effect

Let G = (V, E) be the user-item bipartite graph, where the node set V = U ∪ I includes the user set U and

the item set I. Following previous work [96, 79, 122], we only consider the implicit user-item interactions

and denote them as edges E where epq represents the edge between node p and q. The network topology is

described by its adjacency matrix A ∈ {0, 1}|V|×|V|, where Apq = 1 when epq ∈ E , and Apq = 0 otherwise.

Let N l
p denote the set of observed neighbors that are exactly l-hops away from p and Sp = (VSp , ESp) be

34



the neighborhood subgraph [120] induced in G by Ñ 1
p = N 1

p ∪ {p}. We use P l
pq to denote the set of

shortest paths of length l between node p and q and denote one of such paths as P l
pq . Note that P l

pq = ∅ if

it is impossible to have a path between p and q of length l, e.g., P1
11 = ∅ in an acyclic graph. We denote

users/items’ initial embeddings as E0 ∈ R(n+m)×d0

where e0p = E0
p and dp are the node p’s embedding and

node p’s degree.

Following [79, 96], each node has no semantic features but purely learnable embeddings. Therefore,

we remove the nonlinear transformation by leveraging LightGCN [79] as the canonical architecture and

exclusively explore the collaborative effect captured by message-passing. LightGCN passes messages from

user u/item i’s neighbors within L-hops to u/i:

el+1
u = d−0.5

u

∑
j∈N1

u

d−0.5
j el

j , e
l+1
i = d−0.5

i

∑
v∈N1

i

d−0.5
v el

v, (4.1)

∀l ∈ {0, ..., L}. The propagated embeddings at all layers, including the original embedding, are aggregated

together via mean-pooling:

eu =
1

(L+ 1)

L∑
l=0

el
u, ei =

1

(L+ 1)

L∑
l=0

el
i, ∀u ∈ U , ∀i ∈ I (4.2)

In the training stage, for each observed user-item interaction (u, i), LightGCN randomly samples a negative

item i− that u has never interacted with before and forms the triple (u, i, i−), which collectively forms the set

of observed training triples O. After that, the ranking scores of the user over these two items are computed

as yui = e⊤u ei and yui− = e⊤u ei− , which are finally used in optimizing the pairwise Bayesian Personalized

Ranking (BPR) loss [107]:

LBPR =
∑

(u,i,i−)∈O

− lnσ(yui − yui−), (4.3)

where σ(·) is the Sigmoid function, and we omit the L2 regularization here since it is mainly for alleviating

overfitting and has no influence on the collaborative effect captured by message passing. Under the above

LightGCN framework, we expect to answer the following two questions:

• Q1: How does message-passing capture and use the collaborative effect in computing users’ ranking?

• Q2: When do collaborations captured by message-passing benefit users’ ranking over items?

Next, We address Q1 by theoretically deriving users’ ranking over items under the message-passing frame-

work of LightGCN and address Q2 by proposing the Common Interacted Ratio (CIR) to measure the benefits

of leveraging collaborations from each neighbor in computing users’ ranking. The answers to the above two

questions further motivate our design of Collaboration-Aware Graph Convolutional Network in Section 4.4.

35



Figure 4.1: In (a)-(b), j1 has more interactions (paths) with (to) u’s neighborhood than j4 and hence is more
representative of u’s purchasing behaviors than j4. In (c), we quantify CIR between j1 and u via the paths
(and associated nodes) between j1 and N 1

u .

4.3.1 How does message-passing capture collaborative effect?

The collaborative effect occurs when the prediction of a user’s preference relies on other users’ preferences

or items’ properties [123]. Therefore, to answer Q1, we need to seek whether we leverage other nodes’

embeddings in computing a specific user’s ranking over items. In the inference stage of LightGCN, we take

the inner product between user u’s embedding and item i’s embedding after L-layers’ message-passing to

compute the ranking as

yLui = (

L∑
l1=0

∑
j∈N l1

u

L∑
l2=l1

βl2α
l2
jue

0
j )
⊤(

L∑
l1=0

∑
v∈N l1

i

L∑
l2=l1

βl2α
l2
vie

0
v), (4.4)

where αl2
ju =

∑
P

l2
ju∈P

l2
ju

∏
epq∈P

l2
ju

d−0.5p d−0.5q (αl2
ju = 0 if P l2

ju = ∅) denotes the total weight of all paths

of length l2 from j to u, N 0
u = {u} and specifically, α0

uu = 1. βl2 is the weight measuring contributions of

propagated embeddings at layer l2. Thus, based on Eq. (4.4), we present the answer to Q1 as A1: L-layer

LightGCN-based message-passing captures collaborations between pairs of nodes {(j, v)|j ∈
⋃L

l=0 N l
u, v ∈⋃L

l=0 N l
i }, and the collaborative strength of each pair is determined by 1) e0j

⊤
e0v: embedding similarity

between j and v, 2) {αl
ju}Ll=0({αl

vi}Ll=0): weight of all paths of length l to L from j to u (v to i), and 3)

{βl}Ll=0: the weight of each layer.

4.3.2 When is the captured collaborative effect beneficial to users’ ranking?

Although users could leverage collaborations from other users/items as demonstrated above, we cannot guar-

antee all of these collaborations benefit the prediction of their preferences. For example, in Figure 4.1(a)-(b),

u’s interacted item j1 has more interactions (paths) to u’s neighborhoods than j4 and hence is more represen-

tative of u’s purchasing behaviors [59, 103]. For each user u, we propose the Common Interacted Ratio to

quantify the level of interaction between each specific neighbor of u and u’s whole item neighborhood:

36



Figure 4.2: (a)-(b): The training loss (a) is lower, and the performance (b) is higher when adding edges
according to the variant CIR-lhn (Leicht Holme Nerman) than adding randomly under the same addition
budget. (c)-(d): The performance of adding edges according to CIR variants generally increases faster than
adding randomly after pre-training on Loseit (c) and Amazon (d).

Definition 3. Common Interacted Ratio (CIR): For any item j ∈ N 1
u of user u, the CIR of j around u

considering nodes up to (L̂ + 1)-hops away from u, i.e., ϕL̂
u (j), is defined as the average interacted ratio of

j with all neighboring items of u in N 1
u through paths of length ≤ 2L̂:

ϕL̂
u (j) =

1

|N 1
u |

∑
i∈N1

u

L̂∑
l=1

α2l
∑

P2l
ji∈P2l

ji

1

f({N 1
k |k ∈ P 2l

ji })
, (4.5)

∀j ∈ N 1
u ,∀u ∈ U , where {N 1

k |k ∈ P 2l
ji } represents the set of the 1-hop neighborhood of node k along

the path P 2l
ji from node j to i of length 2l including i, j. f is a normalization function to differentiate the

importance of different paths in P2l
ji and its value depends on the neighborhood of each node along the path

P 2l
ji . α2l is the importance of paths of length 2l.

As shown in Figure 4.1(c), ϕL̂
u (j1) is decided by paths of length 2 to 2L̂. By configuring different L̂ and

f ,
∑

P 2l
ji∈P2l

ji

1
f({N 1

k |k∈P
2l
ji })

could express many graph similarity metrics [115, 116, 117, 124, 125] and we

discuss them in Appendix 4.7.1. For simplicity, henceforth we denote ϕL̂
u (j) as ϕu(j). We next empirically

verify the importance of leveraging collaborations from neighbors with higher CIR by incrementally adding

edges into an initially edge-less graph according to their CIR and visualizing the performance change. Specif-

ically, we consider the performance change in two settings, retraining and pretraining, which are visualized

in Figure 4.2. In both settings, we iteratively cycle each node and add its corresponding neighbor according

to the CIR until we hit the budget. Here, we consider variants of CIR that we later define in Section 4.5.1

with further details in Appendix 4.7.1.

For the re-training setting, we first remove all observed edges in the training set to create the edgeless

bipartite graph and then incrementally add edges according to their CIR and retrain user/item embeddings.

In Figure 4.2(a)-(b), we evaluate the performance on the newly constructed bipartite graph under differ-

ent edge budgets. Clearly, the training loss/performance becomes lower/higher when adding more edges

37



because message-passing captures more collaborative effects. Furthermore, since edges with higher CIR

connect neighbors with more connections to the whole neighborhood, optimizing embeddings of nodes in-

cident to these edges pull the whole neighborhood closer and hence leads to the lower training loss over

neighborhoods’ connections, which causes the overall lower training loss in Figure 4.2(a). In Figure 4.2(b),

we observe that under the same adding budget, adding according to CIRs achieves higher performance than

adding randomly. It is because neighbors with higher interactions with the whole neighborhood are more

likely to have higher interactions with neighbors to be predicted (We empirically verify this in Table 4.4.).

Then, for each user, maximizing its embedding similarity to its training neighbors with higher CIR will indi-

rectly improve its similarity to its to-be-predicted neighbors, which leads to lower population risk and higher

generalization/performance.

For the pre-training setting, we first pre-train user/item embeddings on the original bipartite graph and

then propagate the pre-trained embeddings on the newly constructed bipartite graph under different edge

budgets. This setting is more realistic since in the real world, with the exponential interactions streamingly

coming in [126] while the storage space is limited, we are forced to keep only partial interactions and the pre-

trained user/item embeddings. Figure 4.2(c) demonstrates that under the same adding budget, keeping edges

according to CIR leads to higher performance than keeping randomly, which further verifies the effectiveness

of CIR in quantifying the edge importance. An interesting observation is that adding more edges cannot

always bring performance gain, as shown in Figure 4.2(d) when the ratio of added edges is between 0%-

20%. We hypothesize there are two reasons. From network topology, only when edges are beyond a certain

level can the network form a giant component so that users can receive enough neighborhood information.

Secondly, from representation learning, more nodes would have inconsistent neighborhood contexts between

the training and the inference when only a few edges are added. Such inconsistent neighborhood context

would compromise the performance and will be alleviated when more edges are added, as shown later in

Figure 4.2(c). Furthermore, different CIR variants cause different increasing speeds of performance. For

example, sc is faster on Loseit in Figure 4.2(c) while lhn is faster on Amazon in Figure 4.2(d). Except for

the cn, jc/sc/lhn leads to faster improvement than the random one, which highlights the potential of CIR in

devising cost-effective strategies for pruning edges in the continual learning [127].

From the above analysis, we summarize the answer A2 to Q2 as: Leveraging collaborations from u’s

neighboring node j with higher CIR ϕu(j) would cause more benefits to u’s ranking.

4.4 Collaboration-aware Graph Convolutional Networks

The former section demonstrates that passing messages according to neighbors’ CIR is crucial in improving

users’ ranking. This motivates us to propose a new graph convolution operation, Collaboration-Aware Graph

38



Convolution(CAGC), which passes node messages based on the benefits of their provided collaborations.

Furthermore, we wrap the proposed CAGC within LightGCN and develop two CAGC-based models.

4.4.1 Collaboration-Aware Graph Convolution

The core idea of CAGC is to strengthen/weaken the messages passed from neighbors with higher/lower CIR

to center nodes. To achieve this, we compute the edge weight as:

Φij =


ϕi(j), if Aij > 0

0, if Aij = 0

,∀i, j ∈ V (4.6)

where ϕi(j) is the CIR of neighboring node j centering around i. Note that unlike the symmetric graph

convolution D−0.5AD−0.5 used in LightGCN, here Φ is unsymmetric. This is rather interpretable: the

interacting level of node j with i’s neighborhood is likely to be different from the interacting level of node i

with j’s neighborhood. We further normalize Φ and combine it with the LightGCN convolution:

el+1
i =

∑
j∈N 1

i

g(γi
Φij∑

k∈N 1
i
Φik

, d−0.5i d−0.5j )elj ,∀i ∈ V (4.7)

where γi is a coefficient that varies the total amount of messages flowing to node i and controls its embedding

magnitude [128]. g is a function combining the edge weights computed based on CIR and LightGCN. We

could either simply set g as the weighted summation of these two propagated embeddings or learn g by

parametrization. Next, we prove that for certain choices of g, CAGC can go beyond 1-WL in distinguishing

non-bipartite-subgraph-isomorphic graphs. First, we prove the equivalence between the subtree-isomorphism

and the subgraph-isomorphism in bipartite graphs:

Theorem 2. In bipartite graphs, two subgraphs are subtree-isomorphic iff they are subgraph-isomorphic2.

Proof. We prove this theorem in two directions. Firstly (=⇒), we prove that in a bipartite graph, two sub-

graphs that are subtree-isomorphic are also subgraph-isomorphic by contradiction. Assuming that there

exists two subgraphs Su and Si that are subtree-isomorphic yet not subgraph-isomorphic in a bipartite

graph, i.e., Su
∼=subtree Si and Su ̸∼=subgraph Si. By definition of subtree-isomorphism, we trivially have

elv = elh(v),∀v ∈ VSu . Then to guarantee Su ̸∼=subgraph Si and also since edges are only allowed to con-

nect u and its neighbors N 1
u in the bipartite graph, there must exist at least an edge euv between u and

one of its neighbors v ∈ N 1
u such that euv ∈ ESu , eh(u)h(v) /∈ ESi , which contradicts the assumption that

Su
∼=subtree Si. Secondly (⇐=), we can prove that in a bipartite graph, two subgraphs that are subgraph-

2Definitions of subtree-/subgraph-isomorphism are in Appendix 4.7.3 [120].

39



isomorphic are also subtree-isomorphic, which trivially holds since in any graph, subgraph-isomorphism

leads to subtree-isomorphism [120].

Since the 1-WL test can distinguish subtree-isomorphic graphs [120], the equivalence between these

two isomorphisms indicates that in bipartite graphs, both of the subtree-isomorphic graphs and subgraph-

isomorphic graphs can be distinguished by 1-WL test. Therefore, to go beyond 1-WL in bipartite graphs, we

need to propose a novel graph isomorphism, bipartite-subgraph-isomorphism in Definition 4, which is even

harder to distinguish than the subgraph-isomorphism by 1-WL test.

Definition 4. Bipartite-subgraph-isomorphism: Su and Si are bipartite-subgraph-isomorphic, denoted as

Su
∼=bi−subgraph Si, if there exists a bijective mapping h : Ñ 1

u ∪ N 2
u → Ñ 1

i ∪ N 2
i such that h(u) = i and

∀v, v′ ∈ Ñ 1
u ∪N 2

u , evv′ ∈ E ⇐⇒ eh(v)h(v′) ∈ E and elv = elh(v), e
l
v′ = elh(v′).

Lemma 1. If g is a multilayer perceptron (MLP), then we have that g({(γiΦ̃ij , e
l
j)|j ∈ N 1

i }, {(d
−0.5
i d−0.5j , elj)

|j ∈ N 1
i }) is injective.

Proof. If we assume that all node embeddings share the same discretization precision, then embeddings of all

nodes in a graph can form a countable set H. Similarly, for each edge in a graph, its CIR-based weight Φ̃ij and

degree-based weight d−0.5i d−0.5j can also form two different countable sets W1,W2 with |W1| = |W2|. Then

P1 = {Φ̃ijei|Φ̃ij ∈ W1, ei ∈ H},P2 = {d−0.5i d−0.5j ei|d−0.5i d−0.5j ∈ W2, ei ∈ H} are also two countable

sets. Let P1, P2 be two multisets containing elements from P1 and P2, respectively, and |P1| = |P2|. Then

by Lemma 1 in [120], there exists a function s such that π(P1, P2) =
∑

p1∈P1,p2∈P2
s(p1, p2) is unique for

any distinct pair of multisets (P1, P2). Since the MLP-based g is a universal approximator [18] and hence

can learn s, we know that g is injective.

Theorem 3. Let M be a GNN with a sufficient number of CAGC-based convolution layers defined by Eq. (4.7).

If g is MLP, then M is strictly more expressive than 1-WL in distinguishing subtree-isomorphic yet non-

bipartite-subgraph-isomorphic graphs.

Proof. We prove this theorem in two directions. Firstly (=⇒), following [120], we prove that the designed

CAGC here can distinguish any two graphs that are distinguishable by 1-WL by contradiction. Assume that

there exist two graphs G1 and G2 which can be distinguished by 1-WL but cannot be distinguished by CAGC.

Further, suppose that 1-WL cannot distinguish these two graphs in the iterations from 0 to L − 1, but can

distinguish them in the Lth iteration. Then, there must exist two neighborhood subgraphs Su and Si whose

neighboring nodes correspond to two different sets of node labels at the Lth iteration, i.e., {elv|v ∈ N 1
u} ̸=

{elj |j ∈ N 1
i }. Since g is injective by Lemma 1, for Su and Si, g would yield two different feature vectors at

the Lth iteration. This means that CAGC can also distinguish G1 and G2, which contradicts the assumption.

40



Secondly (⇐=), we prove that there exist at least two graphs that can be distinguished by CAGC but can-

not be distinguished by 1-WL. Figure 4.7 in Appendix 4.7.3 presents two of such graphs Su,S ′u, which are

subgraph isomorphic but non-bipartite-subgraph-isomorphic. Assuming u and u′ have the same neighbor-

hood feature vectors e, then directly propagating according to 1-WL or even considering node degree as the

edge weight as GCN [15] can still end up with the same propagated feature for u and u′. However, suppose

we leverage JC to calculate CIR as introduced in Appendix 4.7.1. In that case, we end up with:

{(dudj1
)
−0.5

e, (dudj2
)
−0.5

e, (dudj3
)
−0.5

e} ̸= {(d−0.5

u′ d
−0.5

j′1
+Φ̃u′j′1

)e, (d
−0.5

u′ d
−0.5

j′2
+Φ̃u′j′2

)e, (d
−0.5

u′ d
−0.5

j′3
+Φ̃u′j′3

)e} (4.8)

Since g is injective by Lemma 1, CAGC would yield two different embeddings for u and u′.

Theorem 3 indicates that GNNs whose aggregation scheme is CAGC can distinguish non-bipartite-

subgraph-isomorphic graphs that are indistinguishable by 1-WL.

4.4.2 Model Architecture and Complexity

Figure 4.3: The architecture of CAGCN(*).

Following the principle of LightGCN that the de-

signed graph convolution should be light and easy

to train, except for the message-passing component,

all other components of our proposed CAGC-based

models are exactly the same as LightGCN including

the average pooling and the model training, which

have already been covered in Section 4.3. We vi-

sualize the architecture of CAGC-based models in

Figure 4.3. Based on the choice of g, we have two specific model variants. For the first variant CAGCN, we

calculate the edge weight solely based on CIR in message-passing by setting g(A,B) = A in Eq.(4.7) and

set γi =
∑

r∈N 1
i
d−0.5i d−0.5r to ensure that the total edge weights for messages received by each node are

the same as the one in LightGCN. For CAGCN*, we set g as the weighted summation and set γi = γ as a

constant controlling the trade-off between contributions from message-passing by LightGCN and by CAGC.

We term the model variant as CAGCN(*)-jc if we use Jaccard Similarity (JC) [125] to compute Φ. The

same rule applies to other topological metrics listed in Appendix 4.7.1. Concrete equations of CAGCN and

CAGCN* are provided in Appendix 4.7.2.

41



4.5 Experiment

4.5.1 Experimental Settings

Datasets. Following [96, 79], we validate the proposed approach on Gowalla, Yelp, Amazon, and Ml-1M,

the details of which are provided in [96, 79]. Moreover, we collect two extra datasets to further demonstrate

the superiority of our proposed model in even broader user-item interaction domains: (1) Loseit: This dataset

is collected from subreddit loseit - Lose the Fat3 from March 2020 to March 2022 where users discuss healthy

and sustainable methods of losing weight via posts. To ensure the quality of this dataset, we use the 10-core

setting [129], i.e., retaining users and posts with at least ten interactions. (2) News: This dataset includes the

interactions from subreddit World News4 where users share major news around the world via posts. Similarly,

we use 10-core setting. We summarize statistics of all six datasets in Table 4.1.

Table 4.1: Basic dataset statistics for recommender system.

Dataset # Users # Items # Interactions Density
Gowalla 29, 858 40, 981 1, 027, 370 0.084%
Yelp 31, 668 38, 048 1, 561, 406 0.130%
Amazon 52, 643 91, 599 2, 984, 108 0.062%
Ml-1M 6, 022 3, 043 895, 699 4.888%
Loseit 5, 334 54, 595 230, 866 0.08%
News 29, 785 21, 549 766, 874 0.119%

*Yelp: Yelp2018; *Amazon: Amazon-Books;*Ml-1M: Movielens-1M.

Baseline methods. We compare our model with MF, NGCF, LightGCN, UltraGCN, GTN [107, 96, 79, 122,

103]. Details of them are clarified in Appendix 4.7.2. Since here the purpose is to evaluate the effectiveness of

CAGC-based message-passing, we only compare with baselines that focus on graph convolution (besides the

classic MF) including the state-of-the-art GNN-based recommendation models (i.e., UltraGCN and GTN).

Note that our work could be further enhanced if incorporating other techniques such as contrastive learning to

derive self-supervision but stacking these would sidetrack the main topic of this chapter, graph convolution,

so we leave them as one future direction.
CAGCN-variants. For CAGCN, we calculate the edge weight solely based on our proposed CIR in message-

passing by setting g(A,B) = A in Eq. (4.7) and set γi =
∑

r∈N 1
i
d−0.5i d−0.5r to ensure that the total edge

weights for messages received by each node are the same as the one in LightGCN. For CAGCN*, we set

g as the weighted summation and set γi = γ as a constant controlling the trade-off between contributions

from message-passing by LightGCN and by CAGC. We term the model variant as CAGCN(*)-jc if we use

Jaccard Similarity (JC) [125] to compute Φ. The same rule applies to other topological metrics listed in

Appendix 4.7.1. Concrete equations of CAGCN and CAGCN* are provided in Appendix 4.7.2.

3https://www.reddit.com/r/loseit/
4https://www.reddit.com/r/worldnews/

42



Evaluation Metrics. Two popular metrics: Recall and Normalized Discounted Cumulative Gain(NDCG) [96]

are adopted for evaluation. We set the default value of K as 20 and report the average of Recall@20 and

NDCG@20 over all users in the test set. During inference, we treat items that the user has never interacted

with in the training set as candidate items. All models predict users’ preference scores over these candidate

items and rank them based on the computed scores to further calculate Recall@20 and NDCG@20.

Table 4.2: Comparing CAGCN(*) with baselines. The best and runner-up results are in bold and underlined.

Model Metric MF NGCF LightGCN UltraGCN CAGCN CAGCN*
-jc -sc -cn -lhn -jc -sc -lhn

Gowalla Recall@20 0.1554 0.1563 0.1817 0.1867 0.1825 0.1826 0.1632 0.1821 0.1878 0.1878 0.1857
NDCG@20 0.1301 0.1300 0.1570 0.1580 0.1575 0.1577 0.1381 0.1577 0.1591 0.1588 0.1563

Yelp2018 Recall@20 0.0539 0.0596 0.0659 0.0675 0.0674 0.0671 0.0661 0.0661 0.0708 0.0711 0.0676
NDCG@20 0.0460 0.0489 0.0554 0.0553 0.0564 0.0560 0.0546 0.0555 0.0586 0.0590 0.0554

Amazon Recall@20 0.0337 0.0336 0.0420 0.0682 0.0435 0.0435 0.0403 0.0422 0.0510 0.0506 0.0457
NDCG@20 0.0265 0.0262 0.0331 0.0553 0.0343 0.0342 0.0321 0.0333 0.0403 0.0400 0.0361

Ml-1M Recall@20 0.2604 0.2619 0.2752 0.2783 0.2780 0.2786 0.2730 0.2760 0.2822 0.2827 0.2799
NDCG@20 0.2697 0.2729 0.2820 0.2638 0.2871 0.2881 0.2818 0.2871 0.2775 0.2776 0.2745

Loseit Recall@20 0.0539 0.0574 0.0588 0.0621 0.0622 0.0625 0.0502 0.0592 0.0654 0.0658 0.0658
NDCG@20 0.0420 0.0442 0.0465 0.0446 0.0474 0.0470 0.0379 0.0461 0.0486 0.0484 0.0489

News Recall@20 0.1942 0.1994 0.2035 0.2034 0.2135 0.2132 0.1726 0.2084 0.2182 0.2172 0.2053
NDCG@20 0.1235 0.1291 0.1311 0.1301 0.1385 0.1384 0.1064 0.1327 0.1405 0.1414 0.1311

Avg. Rank Recall@20 9.83 9.17 7.33 4.17 4.67 4.33 8.83 6.17 1.67 1.50 3.33
NDCG@20 9.50 9.17 5.83 6.00 3.67 4.00 8.33 5.00 2.50 2.50 5.17

jc-Jacard Similarity, sc-Salton Cosine Similarity, cn-Common Neighbors, lhn-Leicht-Holme-Nerman

4.5.2 Performance Comparison

Table 4.3: Comparison of CAGCN* with GTN.

Model Metric GTN
CAGCN*

-jc -sc -lhn

Gowalla
Recall@20 0.1870 0.1901 0.1899 0.1885

NDCG@20 0.1588 0.1604 0.1603 0.1576

Yelp2018
Recall@20 0.0679 0.0731 0.0729 0.0689

NDCG@20 0.0554 0.0605 0.0601 0.0565

Amazon
Recall@20 0.0450 0.0573 0.0575 0.0520

NDCG@20 0.0346 0.0456 0.0458 0.0409

We first compare our proposed CAGCN-variants with

LightGCN. In Table 4.2, CAGCN-jc/sc/lhn achieves

higher performance than LightGCN because we aggre-

gate more information from nodes with higher CIR(jc,

sc, lhn) that bring more beneficial collaborations as jus-

tified in Section 4.3.2. CAGCN-cn generally performs

worse than LightGCN because nodes having more com-

mon neighbors with other nodes tend to have higher de-

grees, and blindly aggregating more information from these nodes would cause false-positive link prediction.

Since different datasets exhibit different patterns of 2nd-order connectivity, no fixed topological metric per-

forms the best among all datasets. For example, CAGCN-jc performs better than CAGCN-sc on Yelp and

News but worse on Gowalla and Ml-1M. Then, we compare CAGCN*-variants with other baselines. We omit

CAGCN*-cn here due to the worse performance of CAGCN-cn than LightGCN. We can see that CAGCN*-

jc/sc almost consistently achieves higher performance than other baselines except for UltraGCN on Amazon.

This is because UltraGCN allows multiple negative samples for each positive interaction, e.g., 500 negative

samples here on Amazon5, which lowers the efficiency as we need to spend more time preparing a large

5UltraGCN negative samples: 1500/800/500/200 on Gowalla/Yelp2018/Amazon/Ml-1M.

43

https://github.com/xue-pai/UltraGCN


number of negative samples per epoch. Among the baselines, UltraGCN exhibits the strongest performance

because it approximates the infinite layers of message passing and constructs the user-user graphs to capture

2nd-order connectivity. LightGCN and NGCF perform better than MF since they inject the collaborative ef-

fect directly through message-passing. To align the setting with GTN, we increase the embedding size d0

to 256 following [103]6 and observe the consistent superiority of our model over GTN in Table 4.3. This is

because in GTN [103], the edge weights for message-passing are still computed based on node embeddings

that implicitly encode noisy collaborative signals from unreliable interactions. Conversely, our CAGCN*

directly alleviates the propagation on unreliable interactions based on its CIR value, which removes noisy

interactions from the source.

4.5.3 Efficiency Comparison

Figure 4.4: Training time (s) of different
models.

As recommendation models will eventually be deployed in

user-item data of real-world scale, it is crucial to compare the

efficiency of the proposed CAGCN(*) with other baselines. To

guarantee a fair comparison, we use a uniform code framework

implemented ourselves for all models and run them on the same

machine with Ubuntu 20.04 system, AMD Ryzen 9 5900 12-

Core Processor (3.0 GHz), 128 GB RAM and GPU NVIDIA

GeForce RTX 3090. We report the Recall@20 on Yelp and

NDCG@20 on Loseit achieved by the best CAGCN(*) variant

based on Table 4.2. We track the performance and the training

time per 5 epochs.

In Figure 4.4(a)-(b), CAGCN achieves higher performance

than LightGCN in less time. We hypothesize that for each user,

its neighbors with higher interactions with its whole neighbor-

hood would also have higher interactions with its interacted but

unobserved neighbors. Then as CAGCN aggregates more in-

formation from these observed neighbors that have higher in-

teractions with the whole neighborhood, it indirectly enables

the user to aggregate more information from its to-be-predicted

neighbors.

6As the user/item embedding is a significant hyperparameter, it is crucial to ensure the same embedding size when comparing models;
thus, we separately compare against GTN using their larger embedding size.

44

https://github.com/wenqifan03/GTN-SIGIR2022


Table 4.4: Average Rank-Biased Overlap (RBO) of the ranked neighbor lists between training (i.e., N 1
u ) and

testing/full (i.e., N̂ 1
u and N 1

u∪ N̂ 1
u , respectively) dataset over all nodes u ∈ U .

Metric Gowalla Yelp Ml-1M
Train-Test Train-Full Train-Test Train-Full Train-Test Train-Full

JC 0.604±0.129 0.902±0.084 0.636±0.124 0.897±0.081 0.848±0.092 0.978±0.019
SC 0.611±0.127 0.896±0.084 0.657±0.124 0.900±0.077 0.876±0.077 0.983±0.015
LHN 0.598±0.121 0.974±0.036 0.578±0.100 0.976±0.029 0.845±0.082 0.987±0.009
CN 0.784±0.120 0.979±0.029 0.836±0.100 0.983±0.023 0.957±0.039 0.995±0.006

To verify the above hypothesis, we define the to-be-predicted neighborhood set of user u in the testing

set as N̂ 1
u and for each neighbor j ∈ N 1

u , calculate its CIR ϕ̂L̂
u (j) with nodes in N̂ 1

u . Then we compare the

ranking consistency among CIRs calculated from training neighborhoods (i.e., ϕu(j)), from testing neigh-

borhoods (i.e., ϕ̂u(j)) and from full neighborhoods (we replace N̂ 1
u with N 1

u∪ N̂ 1
u in Eq. (4.5)). Here we

respectively use four topological metrics (JC, SC, LHN, and CN) to define f and rank the obtained three

lists. Then, we measure the similarity of the ranked lists between Train-Test and between Train-Full by

Rank-Biased Overlap (RBO) [130]. The averaged RBO values over all nodes v ∈ V on three datasets are

shown in Table 4.4. It is clear that the RBO values on all these datasets are beyond 0.5, which verifies our

hypothesis. The RBO value between Train-Full is always higher than the one between Train-Test because

most interactions are in the training set.

Moreover, by combining two views of propagations, one from CAGC and one from LightGCN, CAGCN*

achieves even higher performance with even less time. This is because keeping aggregating more information

from neighbors with higher CIR (as CAGCN does) would prevent each user from aggregating information

from his/her other neighbors. In addition, we report for the first time that our best CAGCN* variant achieves

the best performance of LightGCN on each dataset in Table 4.5. We also report the preprocessing time for

pre-calculating the CIR matrix Φ for our model to avoid any bias. We could see that even considering the

preprocessing time, it still takes significantly less time for CAGCN* to achieve the same best performance as

LightGCN, which highlights the broad prospects to deploy CAGCN* in real-world recommendations.

Table 4.5: Efficiency comparison of CAGCN* with LightGCN. For a fair comparison, we track the first time
CAGCN* achieves the best performance of LightGCN. CAGCN* achieves a significant efficiency boost over
LightGCN, especially considering the training time.

Model Stage Gowalla Yelp Amazon Ml-1M Loseit News
LightGCN Training 16432.0 28788.0 81976.5 18872.3 39031.0 13860.8

CAGCN*
Preprocess 167.4 281.6 1035.8 33.8 31.4 169.0
Training 2963.2 1904.4 1983.9 11304.7 10417.7 1088.4
Total 3130.6 2186.0 3019.7 11338.5 10449.1 1157.4

Improve Training 82.0% 93.4% 97.6% 40.1% 73.3% 92.1%
Total 80.9% 92.4% 96.3% 39.9% 73.2% 91.6%

45



Figure 4.5: In (a)-(b), the performance first increases since we capture higher-layer neighborhood informa-
tion and higher-hop topological interaction in calculating CIR as L, L̂ increase from 1 to 3. However, the
performance decreases in (a) as L increases due to over-smoothing. In (c)-(d), we add the global top edges
directly (rather than cycle each node) according to their CIR.

4.5.4 Further Probe

Impacts of propagation layers L and neighborhood hops L̂. Figure 4.5(a)-(b) visualize the performance of

CAGCN* and LightGCN when the propagation layer L in Eq. (4.2) and the neighborhood hop L̂ in Eq. (4.5)

increase. In (a), the performance first increases as L increases from 1 to 3 due to the incorporation of high-

layer neighborhood information and then decreases due to over-smoothing. More importantly, our CAGCN*

is always better than LightGCN at all propagation layers. In (b), the performance consistently increases as

the number of neighborhood hops increases because we are allowed to consider even more higher topological

interactions among each node’s neighborhood in computing CIR.

Adding edges globally according to CIR. Figure 4.5(c)-(d) visualize the performance change when we add

edges randomly and according to CIR. Unlike Figure 4.2 where we add edges by cycling each node, here we

directly select the global top edges regardless of each center node according to their CIR and then evaluate

the LightGCN with the pre-trained user-item embeddings. In the first stage, we observe a similar trend that

adding edges according to JC, SC, and LHN leads to faster performance gain. However, since we don’t

cycle over each node, we would keep adding so many edges with larger CIR to the same node, which fails to

bring performance gain anymore and hence cannot maximize our performance benefit under the node-centric

evaluation metric.

Performance grouped by node degrees. Here, we group nodes in Gowalla by degree and visualize the

average performance of each group in Figure 4.6(a). Comparing non-graph-based models (e.g., MF), graph-

based models (e.g., LightGCN, CAGCN(*)) achieve higher performance for lower degree nodes [0, 300)

while lower performance for higher degree nodes [300, Inf). Since node degree follows the power-law dis-

tribution [131], the average performance of graph-based models is still higher than MF. On the one hand,

graph-based models leverage neighborhood to augment the weak supervision for low-degree nodes. On the

other hand, they introduce noisy interactions for higher-degree nodes. It is also interesting to see the opposite

performance trends under different evaluation metrics: NDCG prefers high-degree nodes, while recall prefers

46



low-degree nodes. This indicates that different evaluation metrics have different sensitivity to node degrees,

and an unbiased node-centric evaluator is desired. To demonstrate the generality of our observation in Fig-

ure 4.6(a), we further perform exactly the same analysis on Yelp shown in Figure 4.6(b) and derive almost the

same insights: 1) Graph-based recommendation models achieve higher performance than non-graph-based

ones for lower degree nodes; 2) the opposite performance trends between NDCG and Recall indicates that

different evaluation metrics have different levels of sensitivity to node degrees.

Figure 4.6: Performance with respect to node degree on Gowalla and Yelp

4.6 Conclusion

In this chapter, we find that message-passing captures a collaborative effect by leveraging interactions be-

tween neighborhoods. The strength of the captured collaborative effect depends on the embedding similarity,

the weight of paths, and the contribution of each propagation layer. To determine whether the captured col-

laborative effect would benefit the prediction of user preferences, we propose the Common Interacted Ratio

(CIR) and empirically verify that leveraging collaborations from neighbors with higher CIR contributes more

to users’ ranking. Furthermore, we propose CAGCN(*) to selectively aggregate neighboring nodes’ informa-

tion based on their CIRs. We further define a new type of isomorphism, bipartite-subgraph-isomorphism, and

prove that our CAGCN* can be more expressive than 1-WL in distinguishing subtree(subgraph)-isomorphic

yet non-bipartite-subgraph-isomorphic graphs. Experimental results demonstrate the advantages of the pro-

posed CAGCN(*) over other baselines. Specifically, CAGCN* outperforms the most representative graph-

based recommendation model, LightGCN [79], by around 10% in Recall@20 but also achieves roughly more

than 80% speedup. In the future, we will explore the imbalanced performance improvement among nodes in

different degree groups as seen in Figure 4.6, especially from the perspective of GNN fairness [6, 9].

47



4.7 Appendix

4.7.1 Graph Topological Metrics for CIR

We demonstrate that by configuring different f and L̂, ϕL̂
u (j) can express many graph similarity metrics.

ϕL̂
u (j) =

1

|N 1
u |

∑
i∈N 1

u

L̂∑
l=1

β2l
∑

P 2l
ji∈P2l

ji

1

f({N 1
k |k ∈ P 2l

ji })
(4.9)

• Jaccard Similarity (JC) [125]: The JC score measures the similarity between neighborhood sets as the

ratio of the intersection of two neighborhood sets to the union of these two sets:

JC(i, j) =
|N 1

i ∩N 1
j |

|N 1
i ∪N 1

j |
(4.10)

Let L̂ = 1 and set f({N 1
k |k ∈ P 2

ji}) = |N 1
i ∪N 1

j |, then we have:

ϕ1
u(j) =

1

|N 1
u |

∑
i∈N 1

u

β2
∑

P 2
ji∈P2

ji

1

|N 1
i ∪N 1

j |
=

β2

|N 1
u |

∑
i∈N 1

u

|N 1
i ∩N 1

j |
|N 1

i ∪N 1
j |

=
β2

|N 1
u |

∑
i∈N 1

u

JC(i, j) (4.11)

• Salton Cosine Similarity (SC) [124]: The SC score measures the cosine similarity between the neighbor-

hood sets of two nodes:

SC(i, j) =
|N 1

i ∩N 1
j |√

|N 1
i ∪N 1

j |
(4.12)

let L̂ = 1 and set f({N 1
k |k ∈ P 2

ji}) =
√
|N 1

i ∪N 1
j |, then we have:

ϕ1
u(j) =

1

|N 1
u |

∑
i∈N 1

u

β2
∑

P 2
ji∈P2

ji

1√
|N 1

i ∪N 1
j |

=
β2

|N 1
u |

∑
i∈N 1

u

|N 1
i ∩N 1

j |√
|N 1

i ∪N 1
j |

=
β2

|N 1
u |

∑
i∈N 1

u

SC(i, j)

(4.13)

• Common Neighbors (CN) [117]: The CN score measures the number of common neighbors of two nodes

and is frequently used for measuring the proximity between two nodes:

CN(i, j) = |N 1
i ∩N 1

j | (4.14)

Let L̂ = 1 and set f({N 1
k |k ∈ P 2

ji}) = 1, then we have:

ϕ1
u(j) =

1

|N 1
u |

∑
i∈N 1

u

β2
∑

P 2
ji∈P2

ji

1 =
β2

|N 1
u |

∑
i∈N 1

u

|N 1
i ∩N 1

j | =
β2

|N 1
u |

∑
i∈N 1

u

CN(i, j) (4.15)

48



Since CN does not contain any normalization to remove the bias of degree in quantifying proximity and

hence performs worse than other metrics as demonstrated by our recommendation experiments in Table 4.2.

• Leicht-Holme-Nerman (LHN) [115]: LHN is very similar to SC. However, it removes the square root in

the denominator and is more sensitive to the degree of node:

LHN(i, j) =
|N 1

i ∩N 1
j |

|N 1
i | · |N 1

j |
(4.16)

Let L̂ = 1 and set f({N 1
k |k ∈ P 2

ji}) = |N 1
i | · |N 1

j |, then we have:

ϕ1
u(j) =

1

|N 1
u |

∑
i∈N 1

u

β2
∑

P 2
ji∈P2

ji

1

|N 1
i | · |N 1

j |
=

β2

|N 1
u |

∑
i∈N 1

u

|N 1
i ∩N 1

j |
|N 1

i | · |N 1
j |

=
β2

|N 1
u |

∑
i∈N 1

u

LHN(i, j) (4.17)

We further emphasize that our proposed CIR is a generalized version of these four existing metrics and can

be delicately designed to satisfy downstream tasks and datasets. We leave such exploration on the choice

of f as one potential future work.

4.7.2 Experimental Setting

Baselines. We compare our proposed CAGCN(*) with the following baselines: MF [107]: Most classic

collaborative filtering method equipped with the BPR loss; NGCF [96]: The first GNN-based collaborative

filtering model; LightGCN [79]: The most popular GNN-based collaborative filtering model, which removes

feature transformation and nonlinear activation; UltraGCN [122]: The first model approximating regular-

ization weights by infinite layers of message passing, and leveraging higher-order user-user relationships;

GTN [103]: This model leverages a robust and adaptive propagation based on the trend of the aggregated

messages to avoid unreliable user-item interactions.

CAGCN(*)-variants. For CAGCN, γi =
∑

r∈N 1
i
d−0.5i d−0.5r to ensure that the total edge weights for mes-

sages received by each node are the same as LightGCN. Therefore, Eq. (4.7) becomes:

el+1
i =

∑
j∈N 1

i

((
∑
r∈N 1

i

d−0.5i d−0.5r )
Φij∑

k∈N 1
i
Φik

)elj ,∀i ∈ V. (4.18)

For CAGCN*, γi = γ as a constant controlling the trade-off between contributions from message-passing

according to LightGCN and according to CAGC. Eq. (4.7) becomes:

el+1
i =

∑
j∈N 1

i

(γ
Φij∑

k∈N 1
i
Φik

+ d−0.5i d−0.5j )elj ,∀i ∈ V, γ ∈ {1, 1.2, 1.5, 1.7, 2.0} (4.19)

49



4.7.3 Graph Isomorphism

We review the concepts of subtree/subgraph-isomorphism [120].

Definition 5. Subtree-isomorphism: Su and Si are subtree-isomorphic, denoted as Su
∼=subtree Si, if there

exists a bijective mapping h : Ñ 1
u → Ñ 1

i such that h(u) = i and ∀v ∈ Ñ 1
u , h(v) = j, elv = elj .

Definition 6. Subgraph-isomorphism: Su and Si are subgraph-isomorphic, denoted as Su
∼=subgraph Si,

if there exists a bijective mapping h : Ñ 1
u → Ñ 1

i such that h(u) = i and ∀v1, v2 ∈ Ñ 1
u , ev1v2 ∈

ESu iff eh(v1)h(v2) ∈ ESi and elv1 = elh(v1), e
l
v2 = elh(v2).

Corresponding to the backward(⇐=) proof of Theorem 3, here we show two of such graphs Su,S ′u,

which are subgraph isomorphic but non-bipartite-subgraph-isomorphic. Assuming u and u′ have exactly

the same neighborhood feature vectors e, then directly propagating according to 1-WL or even consid-

ering node degree as the edge weight as GCN [15] can still end up with the same propagated feature

for u and u′. However, if we leverage JC to calculate CIR as introduced in Appendix 4.7.1, then we

would end up with {(dudj1)−0.5e, (dudj2)−0.5e, (dudj3)−0.5e} ≠ {(d−0.5u′ d−0.5j′1
+ Φ̃u′j′1

)e, (d−0.5u′ d−0.5j′2
+

Φ̃u′j′2
)e, (d−0.5u′ d−0.5j′3

+ Φ̃u′j′3
)e}. Since g is injective by Lemma 1, CAGCN would yield two different

embeddings for u and u′.

Figure 4.7: An example showing two neighborhood subgraph Su,Su′ that are subgraph-isomorphic but not
bipartite-subgraph-isomorphic.

50



CHAPTER 5

Topology Issue: Overcoming the Noisy Topology Issue in Session-Recommendation

Session-based recommender systems (SRSs) predict the next items users will likely interact with by capturing

their interests from historical activities. While most SRSs capture users’ purchasing intentions locally within

each session, capturing items’ global information across different sessions is crucial in characterizing their

general properties. Previous works capture this cross-session information by constructing a global graph and

incorporating items’ neighbor information. However, the incorporation of neighboring information cannot

vary adaptively according to the unique intention of each session, and the constructed graphs consist of only

one type of user-item interaction. To address this noisy topology issue when coupling the constructed graph

with local sessions, we propose knowledge graph-based session recommendation with session-adaptive prop-

agation. Specifically, we build a knowledge graph by connecting items with multi-typed edges to characterize

various user-item interactions. Then, we adaptively aggregate items’ neighbor information considering the

user intention within the learned session context so that noisy neighboring information irrelevant to the cur-

rent session would be removed. Experimental results demonstrate that equipping our constructed knowledge

graph and session-adaptive propagation enhances existing session recommendation backbones by 10%-20%,

and our best-performing model configuration exceeds existing baselines on average by 4%. Moreover, we

provide an industrial case study showing our proposed framework achieves 2% performance boost over an

existing well-deployed model at The Home Depot e-platform and visualize the attentions learned for the same

item across different sessions, verifying the denoising effect of our proposed session-adaptive propagation.

5.1 Introduction

Transformer-based models have shown state-of-the-art performance for session-based recommender systems

(SRS) by leveraging attention mechanisms and deep learning capabilities [132, 133]. While transformers are

adept at capturing local session data and individual item preferences [134, 135, 136, 137], they are limited in

capturing global transitional patterns among items [138, 139, 140]. This limitation has sparked research into

hybrid graph-based SRSs that combine the strengths of transformers with Graph Neural Networks (GNNs) to

capture both local and global dependencies [139, 138, 140, 137]. For example, in Figure 5.1(b), borrowing

the transitional information between flower and lopper in Figure 5.1(a) characterizes the intent of session A

as decorating garden and hence increases the probability of predicting next item to be watering can.

However, the existing hybrid models face two significant challenges. Firstly, the lack of full connectivity

between GNN and transformer models limits their ability to capture the session dynamics [141, 142, 143,

51



Figure 5.1: Since the user in Session A (b) intends to decorate the garden, while the user in Session B (c)
intends to decorate the kitchen, the corresponding neighbors from the knowledge graph (a) are different for
the same flower. By our proposed session-adaptive propagation, the flower aggregates more information from
the lopper/watering can in (b) while more information from the sink/table in (c).

144]. While GNNs excel at capturing item-item relationships, they often struggle to incorporate the broader

session context, and the learned item representations lack full awareness of the session context. For example,

in Figure 5.1, although both sessions A and B have involved the flower, their intentions are quite different:

one for decorating the garden while the other for decorating the kitchen. In contrast to blindly aggregating all

neighbors’ information to the flower without considering the session context [140, 139, 138], our approach

learns session-aware item embeddings by selectively propagating information from relevant neighbors based

on the current session. For instance, when determining which neighbors’ information is aggregated to the

flower, we recommend incorporating the lopper and watering can when decorating the garden in (b), while

the sink and the table when decorating the kitchen in (c).

Secondly, the global transitional patterns among items in these hybrid models are typically constructed

based on one type of interaction, such as co-purchase patterns [139, 140, 143, 144]. However, on e-commerce

platforms [142], items could form multiple relationships: substitution items are typically co-viewed and

complementary items are typically co-add-to-carted(co-ATC) [145, 146] by the same user. Uniformly using

neighbor information may result in the dilution of diverse relationships among items and consequentially lead

to unsatisfactory recommendations for users. To overcome the above two challenges, we propose a knowledge

graph-based SRS with session-adaptive propagation. Our contributions are summarized as follows:

• For the first challenge, we propose a session-adaptive graph propagation to adaptively aggregate items’

neighbor information based on the session contexts obtained by the transformer model.

• For the second challenge, a knowledge graph is constructed based on item co-relations with users, and the

heterogeneous graph transformer [147] is used to aggregate neighborhoods based on relations.

• We experimentally verify the proposed framework in enhancing existing SBRs, compare the performance

improvement caused by different types of edges, and verify the session-adaptive propagation by visualizing

the changing attentions of the same item in aggregating neighbors in different sessions.

52



Figure 5.2: In (a)-(c), we first extract three types of edges from historical sessions to construct item knowledge
graph. Then in (d), we forward the given session through the 1st transformer layer to obtain items’ contextual
embeddings, which are used for query-relevant neighbors for GNNs to perform graph propagation. The
propagated item embeddings are fed into the 2nd transformer with a pooling layer afterward to obtain session
embedding for the recommendation.

5.2 Related Work

Graph-based Session Recommendation. Graph, as a general data structure representing relations of enti-

ties, has been widely adopted to assist session recommendation. Previous works explore global transitional

patterns across different sessions by querying the global item graph [138, 139, 140]. [139] designs a global

context-enhanced inter-session relation encoder to capture the inter-session item-wise dependencies. [138]

constructs the dual session graph to model the pair-wise transition relationship between items based on the

global connections. [140] constructs the global graph by merging all individual session graphs. The very re-

cent work KSTT [148] resorts to an item-category knowledge graph for session recommendation. However,

the proposed models in all the above works learn item embeddings from the global graph without any session-

tailored modification. Only GCE-GNN [144] and GCARM [143] consider session adaptation in aggregating

neighbors’ information. However, GCE-GNN quantifies neighbor importance based on their similarity to the

whole session without differentiating central items. GCARM treats all transitions similarly without distin-

guishing different types of interactions. To handle these two issues, we design a session-adaptive propagation

to query neighbors based on session contexts and interaction types, the effectiveness of which is verified in

Section 5.4.5. Note that in this work, although three types of item-item co-interaction edges are considered,

the constructed knowledge graph has only one type of node, the item. We leave the inclusion of different node

types as one future work, such as adding user nodes, which could provide a way to personalize the session

recommendations.

53



5.3 The Proposed Framework

Our framework, as illustrated in Figure 11.2, comprises of a GNN that obtains item embeddings by adap-

tively aggregating information from neighboring items based on the target session, and a transformer model

that acquires session embeddings for predicting the next item. In the subsequent sections, we first explain

the construction of the item knowledge graph, and then the GNN-based message passing model and the

transformer-based prediction model.

5.3.1 Item Knowledge Graph Construction

As items typically exhibit two types of correlations, substitution and complementary [138], we extract three

distinct types of edges, as depicted in Figure 11.2(a)-(c), by examining whether two items co-occur within

the same session: co-view, co-ATC, and co-view-ATC edges. For instance, in the first session shown in

Figure 11.2(a), the user first views the cornerstone, then adds the flower to the cart, and subsequently views

the lawn mower. This sequence forms three edges: the co-view edge between the cornerstone and the lawn

mower, the co-view-ATC edge between the cornerstone and the flower, and the co-view-ATC edge between

the flower and the lawn mower. More formally, we define the edge weight from item vj to vi of type co-t1-t2

as follows:
w

(t1,t2)
i←j =

∑M
m=1 1(vi, vj ∈ Sm, τ(vi,Sm) = t1, τ(vj ,Sm) = t2)∑M

m=1 1(vi ∈ Sm, τ(vi,Sm) = t1)
, (5.1)

where Sm is the mth-session, M is the total number of sessions in the historical data, and t1, t2 ∈ T =

{view,ATC} and 1 is an indicator function. Specifically, 1(vi ∈ Sm, vj ∈ Sm, τ(vi,Sm) = t1, τ(vj ,Sm) =

t2) = 1 if (a) both vi, vj belong to the mth session Sm, (b) user interacts with vi following type t1 and (c)

interacts with vj following type t2 in Sm and otherwise 0. Note that, we normalize edge weights based on

the degree of the head node to avoid popular items from dominating the message-passing of GNNs [60, 149].

Based on our empirical experiments, it was observed that the obtained graph may contain items with over

a hundred neighbors. Therefore, in order to mitigate the heavy computational issue [50] and prevent over-

smoothing [2, 150] during the message passing, we sparsify the graph by retaining only the top-K neighbors

for each neighborhood type, based on the acquired edge weights. The statistics of the constructed networks

are provided in Table 5.1.

5.3.2 Session-adaptive Propagation

As mentioned earlier, a straightforward approach to utilize item graphs in SBRs is to employ a GNN model

to obtain item embeddings from the graph. These acquired embeddings can then be utilized in a transformer-

based model to predict the next item based on the target session [138, 139, 140].

However, seen in Figure 5.1, a key limitation of this architecture is that the contribution of each neighbor-

ing item remains unchanged in obtaining the center item’s embedding, regardless of the session from which

54



the item originates. As such, the item embeddings obtained from the GNN is unaware of the contextual

information specific to the target session. This approach is sub-optimal since the purchasing intention as-

sociated with the same item naturally differs across different sessions, thereby necessitating changes in the

selection of compatible neighbors based on the session-specific intention. Motivated by this observation, we

propose a session-adaptive propagation that dynamically propagates neighbor information according to the

item’s unique context within each session.

To implement the above idea, given the target session, we input the initial item embedding within the

session into a transformer, resulting in the generation of its session-aware representation. Subsequently, this

obtained embedding is utilized to determine the edge weights for the GNN model. Finally, following the

message-passing process, the updated item embeddings are once again fed into another transformer model

to make the final prediction. More formally, we first obtain item initial embeddings E1 by integrating item

meta-attributes such as item title and category. Then, given an item vi in the session Sm, we use the item

initial embeddings E1 to obtain its contextual embedding cmi :

cmi = transformer1(vi,E
1,Sm), ∀vi ∈ Sm (5.2)

where transformer1 is the 1st transformer. With the contextual embedding cmi as the query, inspired

by [147], we perform heterogeneous graph transformer-based propagation to adaptively aggregate vi’s neigh-

bors’ information relevant to the current session intention:

hm,l
i =

1

|T |2
∑

t∈T ×T
||Hh=1

∑
vj∈N t

i

αh,l,t,m
i←j Vh,l,thm,l−1

j (5.3)

αh,l,t,m
i←j =

(Qh,l,thm,l−1
i )⊤(Kh,l,tcmj )√

d/H
, ∀vi ∈ Sm,Sm ∈ S , (5.4)

where αh,l,t,m
i←j denotes the graph attention from item vj to vi under the head h, edge type t at layer l.

Qh,l,t,Kh,l,t,Vh,l,t represent the query, key, and value matrix at the head h, edge type t, layer l of graph

attention. H is the total number of heads. After L layers graph transformer-based propagation, we obtain

the final item embeddings hm,L
i . Since different session contexts provide different contextual embeddings

cmi ̸= cm
′

i , the calculated attention coefficients would also be different, i.e., αh,l,t,m
i←j ̸= αh,l,t,m′

i←j . Then hm,L
i

and hm′,L
i ) would be different, and they would only include the neighborhood information that is relevant to

the item’s unique intention provided by the corresponding session context Sm(Sm′).

The effectiveness of the above proposed session-adaptive propagation in learning neighborhood attention

based on the session context has been verified in Section 5.4.5.

55



Table 5.1: Statistics of datasets used for experiments and their corresponding knowledge graphs.

Dataset Train/Val/Test Seqs # Edges # Nodes Sparse Seqs Meta data
Diginetica 675,673/43,541/68,571 1,576,571 123,273 13,867 Title/Category/Price
Yoochoose 1/64 369,142/45,864/55,898 1,025,176 52,739 15,385 –

The Home Depot (THD) 3,169,140/672,873/672,873 4,162,712 1,317,149 227,941
Title/Category/Brand/Color

/Manufacturer/Class/Department

5.4 Experiments

5.4.1 Experimental Setup

Datasets. We conduct experiments on the following datasets:

• Diginetica1 comes from CIKM Cup 2016. We follow the same pre-processing as [137]: sessions in the

last and second-to-last week are used as testing and validation data. We filter out sessions of length less

than 1 and items appearing less than 5 times. We extract item co-purchase edges from all sessions in train-

purchase.csv and item co-view edges from only training/validation sessions in train-item-view.csv to avoid

data leakage. The meta-attribute includes item title, category, and price.

• Yoochoose 1/642 comes from the RecSys Challenge 2015. Sessions on the last and second last day are

used as testing and validation data. We filter out sessions of length less than 1 and items appearing less

than 5 times. We extract item co-purchase edges from all sessions in yoochoose-buys.dat and item co-view

edges from only training/validation sessions in yoochoose-clicks.dat to avoid data leakage. Since items in

this dataset have only one category attribute and it represents different meanings, e.g., 1-12 for item real

categories, ‘S’ for special offer, and 8-10 digit numbers for item brand, we only use item ID to demonstrate

the effectiveness of session-adaptive heterogeneous propagation.

• THD is a real industrial-level dataset from The Home Depot, the largest home improvement retailer in the

USA. We sample 3,169,140/672,873/672,873 Add-to-Cart (ATC) sessions chronologically for constructing

the train/valid/testing data. The multiplex graph is constructed by extracting co-view, co-ATC, and co-view-

ATC edges. Items in this dataset have 7 meta-attributes: product title, hierarchical categories (i.e., L1, L2,

L3, Leaf), brand, manufacturer, color, department, and class name.

Statistics of the three datasets are summarized in Table 5.1. Note that sparse sessions refer to the ones

containing items appearing less than 5 times in the whole dataset. These sessions are used to evaluate our

framework on sessions including cold-start items.

1https://competitions.codalab.org/competitions/11161
2https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015

56

https://competitions.codalab.org/competitions/11161
https://competitions.codalab.org/competitions/11161
https://competitions.codalab.org/competitions/11161
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015


Item embedding initialization. We initialize item embeddings based on their meta-attributes [93]. For

each numerical attribute, we directly embed it as a real-valued number. For each categorical attribute, we

initialize a unique learnable embedding matrix. For textual attributes such as title and description, we first

construct the token embedding matrix and then the title/description embedding is computed by mean pooling

over the embeddings of corresponding tokens in that sentence. Note that pre-trained NLP models are not

preferred here to avoid capturing noisy semantic signals. For example, even though silver sinks and creamy

white stones share semantic-similar colors, they are essentially purposed for decorating different rooms. We

empirically observe that utilizing this token-based embedding avoids capturing noisy semantic signals since

they correspond to different tokens. We concatenate different types of embeddings to form the final item

meta-embeddings and feed them into the transformer model.

Backbones. Note that our constructed knowledge graph and the proposed session-adaptive propagation can

be applied to enhance any embedding-based SRS. To demonstrate this, we select three fundamentally differ-

ent but representative backbones and equip them with our framework: GRU4Rec [132]: The very first model

leveraging RNNs to characterize item sessions for session recommendation. SASRec [135]: The very first

model leveraging the self-attention from the transformer to draw context from all user-item interactions in

the same session. KGHT [142]: A graph-based model constructing the item relational graph and leverag-

ing graph attention to capture item relations for recommendations. Since this work is not initially designed

for session recommendation, we modify it to align with our problem setting. Equipping each of the above

three backbones with the item meta-attribute embedding layer and the session-adaptive propagation layer, we

end up with 11 model configurations. We name each new configuration by combining its backbone and the

equipped techniques, e.g., GRU4Recm denotes the backbone of GRU4Rec with item meta-attribute embed-

ding layer, SASRecm∗ denotes the backbone of SASRec with both item meta-attribute and ID, and KGHTq

denotes the backbone of KGHT equipped with session-adaptive propagation layer.

Evaluation Metric and Implementation Details. Two popular metrics: NDCG@K and MRR@K are

adopted for evaluation. We set the default value of K as 10 and report the average of NDCG@10(N@10)

and MRR@10(M@10) over all sequences in the test set. We assign a dedicated embedding layer for each

attribute, and the embedding dimension is determined based on the total number of distinct tokens of the

corresponding attribute vocabulary. To ensure a fair comparison, we tune the following hyperparameters

for each model individually: the dimension of ID embedding layer {64, 128, 256}, the number of layers

for self-attention and graph propagation {1, 2, 3}, the number of attention heads {1, 4, 8}, the dimension of

hidden embeddings {100, 512}, learning rate {1e−4, 1e−3, 1e−2}, the L2 penalty {0, 5e−4}, training epochs

{100, 200}, the batch size {100, 512}, dropout ratio {0.1, 0.25} across all models. We save the model per-

forming best on validation sessions and evaluate it on testing sessions.

57



Table 5.2: An architecture comparison of different backbones.

Backbone ID Meta-
attribute Graph Session-adaptive

propagation
Multi-task
learning

GRU4Rec ✔ ✘ ✘ ✘ ✘
GRU4Recm ✘ ✔ ✘ ✘ ✘
GRU4Recm∗ ✔ ✔ ✘ ✘ ✘
M-GRU4Recm∗ ✔ ✔ ✘ ✘ ✔

SASRec ✔ ✘ ✘ ✘ ✘
SASRecm ✘ ✔ ✘ ✘ ✘
SASRecm∗ ✔ ✔ ✘ ✘ ✘
M-SASRecm∗ ✔ ✔ ✘ ✘ ✔

KGHT ✔ ✘ ✔ ✘ ✘
KGHTm ✘ ✔ ✔ ✘ ✘
KGHTm∗ ✔ ✔ ✔ ✘ ✘
KGHTq ✔ ✘ ✔ ✔ ✘
KGHTqm∗ ✔ ✔ ✔ ✔ ✘
M-KGHTqm∗ ✔ ✔ ✔ ✔ ✔

5.4.2 Model Configuration Analysis

To demonstrate the effectiveness of the proposed knowledge graph and session-adaptive propagation, we

compare three backbones GRU4Rec, SASRec, and KGHT with their corresponding enhanced versions in

Table 5.3. For brevity, we represent any of the three backbones as X in the following text:

• Compared with X , Xm∗ incorporates item meta-attributes and improves the performance by around 12%−

19% on average. This is because ID-based embedding only captures the topological proximity of each item

with respect to all other items and cannot provide generalizability, especially when items’ topological

information is noisy/sparse. Leveraging meta-attributes alleviates this issue by transferring the learned

information among items sharing the same meta-attribute. Since THD has more abundant types of well-

curated meta-attributes than the ones of Diginetica, as evidenced in Table 5.1, Xm∗ achieves an even larger

performance gain over X on THD than on Diginetica.

• Compared with X , Xm achieves comparable and sometimes slightly worse performance on Diginetica,

e.g., 9.55% for GRU4Rec while 9.27% for GRU4Recm in MRR@10. This is because solely relying on

meta-attribute to represent items may lose topological information hidden in the sessions. Two items shar-

ing the same meta-attributes will be encoded exactly the same, even though they may be involved in sig-

nificantly different sessions. This is also evidenced by the better performance of Xm∗ than Xm after

combining both item ID and item meta-attribute. Different from Diginetica, Xm always achieves higher

performance than X on THD because more abundant meta-attributes there enable the concatenated embed-

dings to be more unique and hence can somewhat mimic the function of Item ID in capturing topological

information embedded in the sessions.

58



Table 5.3: Performance comparison (%) of utilizing meta-attribute embedding layer and session-adaptive
heterogeneous propagation layer. The best and runner-up are in bold and underlined. Note that N(M)@10
represents NDCG(MRR)@10.

Backbone
Diginetica Yoochoose 1/64 THD

Increase (↑)N@10 M@10 N@10 M@10 N@10 M@10
Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse

RNN
GRU4Rec 12.66 11.04 9.55 8.19 32.77 28.32 26.52 22.81 14.40 7.66 12.34 6.53 –
GRU4Recm 12.38 10.62 9.27 7.77 – – – – 17.09 10.42 14.19 8.41 10.55%
GRU4Recm∗ 13.01 11.47 9.73 8.37 – – – – 18.13 11.33 15.23 9.34 18.88%

Trans-
former

SASRec 14.70 13.00 11.11 9.57 33.68 28.59 27.16 22.87 15.27 8.11 12.97 6.83 –
SASRecm 14.68 12.79 11.08 9.28 – – – – 17.87 11.11 14.87 9.01 11.94%
SASRecm∗ 15.31 13.68 11.60 10.12 – – 18.53 11.72 15.53 9.64 18.28%

Graph

KGHT 17.73 15.99 13.33 11.74 34.81 30.14 28.04 24.10 16.59 9.29 14.02 7.74 –
KGHTm 17.70 15.78 13.27 11.52 – – – – 18.47 11.68 15.49 9.59 8.45%
KGHTm∗ 17.81 16.88 13.38 12.49 – – – – 18.78 11.89 15.74 9.79 11.59%
KGHTq 18.64 16.74 13.97 12.28 35.80 31.71 28.80 25.21 17.30 10.20 14.45 8.35 4.25%
KGHTqm∗ 18.93 17.16 14.22 12.65 – – – – 18.83 12.17 15.67 9.91 14.10%

X: Backbone X using item ID but no meta-attributes but no ID; Xm: Backbone X using item meta-attributes but no ID; Xm∗: Backbone X using both item
meta-attributes and ID; Xq : Backbone X using Graph and Session-adaptive propagation; Xqm∗: Backbone X using Graph, Session-adaptive propagation,
and meta-attribute.

• Comparing among different backbones, graph-based models achieve higher performance than non-graph-

based ones, which aligns with the notion that incorporating global information across different sessions is

conducive to the recommendation [138, 139, 140]. More specifically, KGHTq gains 4.25% improvement

over KGHT because the designed session-adaptive propagation only aggregates the most relevant neighbor

information to the session context and avoids introducing unrelated neighbors.

5.4.3 Influence of Different Types of Edges

We further analyze the influence of co-view, co-ATC and co-view-ATC edges in the constructed knowledge

graph. Specifically, we use KGHTqm∗ as the baseline and respectively remove three types of edges, e.g.,

KGHTqm∗ w/o v removes the co-view edges and KGHTqm∗ w/o diff treat different types of edges uniformly

by employing the same graph attention layer3. The performance of removing each specific type of edges is

reported in Table 5.4 and we draw three observations:

• On Diginetica and Yoochoose 1/64, removing co-view edges decreases the performance most because of the

following two reasons. First, sessions in these two datasets track user click activities rather than purchase

activities and consist of more substitution items rather than complementary ones [145, 146]. Therefore,

removing co-view edges that essentially capture the substitution relationship between any two items hurts

the performance more than removing other types of edges. Secondly, co-view edges are constructed from

both training and validation sessions, message-passing along which captures more recent transitional pat-

terns encoded in the validation sequences. The performance decrease here indicates the distribution shift

in transitional patterns from training sessions to validation sessions. One promising direction is to treat

sessions at different time stamps differently, as recent transition patterns may be more indicative of the

future sessions than the past ones [82].
3Instead of averaging aggregated embeddings across all T 2 types of edges in Eq (5.3), we use a uniformed query, value and key

matrices.

59



Table 5.4: Ablation study on different types of edges.

Backbone Diginetica Yoochoose 1/64 THD Decrease (↓)N@10 M@10 N@10 M@10 N@10 M@10
KGHTqm∗ 18.94 14.22 35.80 28.80 18.83 15.67 —

– w/o diff 18.34 13.80 35.15 28.22 18.68 15.50 2.02%
– w/o v 15.21 11.46 34.36 27.68 18.66 15.53 9.78%
– w/o a 18.70 13.97 35.04 28.09 18.76 15.64 1.39%
– w/o va / / / / 18.79 15.63 0.23%

* w/o diff: uniformly aggregate different types of neighbors with no differentiation.
* w/o v/a/va: with no co-view/co-ATC/co-view-ATC edges.

• Conversely, on THD dataset, since the session is composed of the user’s sequentially add-to-cart activity,

removing co-view edges causes minor performance degradation compared with the one on the other two

datasets. Moreover, removing co-view-ATC edges causes little-to-no performance change, which indicates

that capturing the view-to-ATC transition patterns may not help predict users’ next clicked items.

5.4.4 Performance Comparison with baselines

From the analysis in previous sections, we select the best model configuration: M-KGHTqm∗ and compare

it with state-of-the-art baselines NARM [151], SR-GNN [137] and M2TRec [93]. For the implementation

of M2TRec and M-KGHTqm∗ on Yoochoose 1/64 with no item meta-attributes, we directly use item ID as

the input. We modify the implementation of NARM and SR-GNN to include the validation performance and

hence align with our experimental setting. In Table 5.5, M2TRec performs worse than SR-GNN and NARM

on Diginetica and Yoochoose 1/64 while better on THD. This is because M2TRec designs an item meta-

embedding layer to integer item meta-features and the more informative meta-features on THD than the ones

on Diginetica/Yoochoose maximize the benefit of using M2TRec. However, our proposed M-KGHTqm∗

achieves the best performance across all three datasets for both NDCG@10 and MRR@10. This exhibits

the general ability of the proposed framework to realize superior performance over existing methods across

datasets with varying real-world dynamics, i.e., having varying amounts of meta-attributes, user-item inter-

action types, and session lengths. Note that because THD is an industrial-scale dataset (THD has around

3 million training sessions that are 5/10 times larger than Diginetica/Yoochoose), the performance gain on

THD is slightly weaker than the gains on the other two datasets.

Table 5.5: Performance comparison among different baselines.

Baseline Diginetica Yoochoose 1/64 THD
N@10 M@10 N@10 M@10 N@10 M@10

NARM 16.06 12.12 34.45 28.10 17.44 14.62
SR-GNN 17.10 12.82 35.44 28.66 17.08 14.45
M2TRec 15.66 11.83 33.68 27.16 18.80 15.78
M-KGHTqm∗ 18.95 14.23 35.80 28.80 18.98 15.81

60

https://github.com/Wang-Shuo/Neural-Attentive-Session-Based-Recommendation-PyTorch
https://github.com/CRIPAC-DIG/SR-GNN


Figure 5.3: Case study of our proposed M-KGHT. (a) Comparing the Top5 recommendation by M2TRec and
M-KGHT. By leveraging neighborhood information of Spray Mop1, the correct item Mop Refill appears in
the recommendation list. (b)-(c) visualizes the learned attention of one attention head over co-view neighbors.
Since users in both of these two sessions intend to clean the gardens, the session-adaptive graph propagation
successfully learns the higher intention for garden-related items.

5.4.5 Industrial-level Case Study

We further deploy our designed system in the industrial-level setting by training it with 6 million sessions

spanning the last two years and evaluating over 0.1 million sessions in the following month. We achieved 2%

performance improvement over the previously deployed model at The Home Depot. Next, we conduct some

case studies to visualize the effect of our proposed system.

Visualizing the recommendation of M2TRec and M-KGHTqm∗. To interpret the advantage of the pro-

posed M-KGHTqm∗ over the second best model M2TRec on THD dataset, we select the sessions where the

top-5 recommendation list given by M-KGHTqm∗ hit the next truth item while the one given by M2TRec

does not. We visualize one example in Figure 5.3(a) where the customer sequentially add-to-cart the spray

mop and landscape rock. Items on the top-5 recommendation list given by M2TRec are uniformly aligned

with the landscape rock while recommended items by M-KGHTqm∗ align with both the spray mop and land-

scape. Furthermore, because M-KGHTqm∗ aggregates neighbor information of mop refill to spray mop, the

recommendation hits the true item, which demonstrates the benefits of leveraging neighborhood information.

Visualizing the attention of session-adaptive propagation. We further visualize the graph attention learned

by our session-adaptive propagation in Figure 5.3(b)-(c). Clearly, users generating these two sequences (b)-

(c) intend to clean their own gardens and successfully, the model learns to aggregate less information from

irrelevant neighbors, e.g., 1.78e−27 from floor rug to bow rake 1 in (b) and 9.99e−27 from hammer drill to

61



leaf bags in (c). Interestingly, we find model sometimes pays attention to only one relevant neighbor. For

example, even though both bow rake 1 and steel rake are aligned with the intention of our second customer

in (c), the model pays its whole attention to bow rake 1. This aligns with diversity observation in [152] and

motivates the design of multi-head attention to focus on different important neighbors. More importantly,

we can find the neighborhood attention of the same item bow rake 1 varies from 0.38 in (b) to 0.998 in (c),

demonstrating that even though the neighborhoods are the same, the attention assigned to them changes if the

sequence content changes. This verifies the effectiveness of our proposed session-adaptive propagation.

5.5 Conclusion

Characterizing user intention by modeling global transitional patterns of user-item interactions is essential in

the session-based recommendation. Traditional transformer-based models fail to capture global transitional

patterns among items. More recent GNN-augmented transformers ignore the session context and only con-

sider one type of customer-item interaction. Given these problems, we propose a knowledge graph-based

session recommendation framework with session-adaptive propagation. We construct the graph by extract-

ing three different types of user-item interactions and design a session-adaptive propagation for aggregating

neighbors’ information based on their consistency with the session intention. A comprehensive ablation

analysis shows the proposed strategies provide a 10%-20% improvement. Moreover, our case study on rec-

ommendation interpretation demonstrates that learned neighborhood attention is highly determined by the

consistency of the neighbor with the session intention.

62



CHAPTER 6

Imbalance Issue: Overcoming Imbalance Issue in Node Classification

Recent years have witnessed the significant success of applying graph neural networks (GNNs) in learning

effective node representations for classification. However, current GNNs are mostly built under the balanced

data-splitting, which is inconsistent with many real-world networks where the number of training nodes can

be extremely imbalanced among the classes. Thus, directly utilizing current GNNs on imbalanced data would

generate coarse representations of nodes in minority classes and ultimately compromise the classification

performance. This therefore portends the importance of developing effective GNNs for handling imbalanced

graph data. In this work, we propose a novel Distance-wise Prototypical Graph Neural Network (DPGNN),

which proposes a class prototype-driven training to balance the training loss between majority and minority

classes and then leverages distance metric learning to differentiate the contributions of different dimensions

of representations and fully encode the relative position of each node to each class prototype. Moreover,

we design a new imbalanced label propagation mechanism to derive extra supervision from unlabeled nodes

and employ self-supervised learning to smooth representations of adjacent nodes while separating inter-class

prototypes. Comprehensive node classification experiments and parameter analysis on multiple networks

are conducted and the proposed DPGNN almost always significantly outperforms all other baselines, which

demonstrates its effectiveness in imbalanced node classification1.

6.1 Introduction

Graph neural networks (GNNs) have become one of the most promising paradigms in graph representation

learning for node classification [15, 153], where a classifier is trained by labeled nodes and then used for

categorizing labels of all remaining nodes. Although many GNN variants have been proposed to complete

this task [14, 16, 26, 112], prevailing prior works follow a (semi-)supervised setting where labeled nodes

are assumed to be balanced among different classes [154]. However, this setting requires sufficient balanced

labeled nodes for each class, which is over-idealized and inconsistent with reality.

In many real-world networks, the class distribution of labeled nodes is inherently skewed [155, 63, 156]

where a large portion of classes (minority classes) only contain a limited number of labeled nodes (minority

nodes) while few classes (majority classes) contain enough labeled nodes (majority nodes). Since most GNNs

are designed without considering the potential of class imbalance, directly using them on an imbalanced

dataset would undermine the learned representations of minority nodes. The imbalanced node classification

1https://arxiv.org/abs/2110.12035

63

https://arxiv.org/abs/2110.12035


with GNNs naturally inherits existing challenges of deep learning in imbalanced classification: the inclination

to learning towards majority classes [157] and the catastrophic forgetting of previously learned instances in

minority classes [158]. First, deep learning models improve representations for completing target tasks via

backpropagation from the training loss. However, in the class imbalanced scenario, the main component of

the training loss comes from the majority of classes. Thus, the gradient is dominated by majority classes

such that the model is updated towards behaving significantly better on majority classes than minority ones.

Second, deep learning models are notorious for demanding big data for updating parameters [158], which

limits their ability to learn from minority classes that may only have a few training instances in the imbalanced

setting. In addition, over-smoothing [159, 160] that occurs as a general issue in GNNs would become even

worse in the imbalanced setting: representations of minority nodes would become similar to the majority

ones and deviate from their spectrum due to the imbalance bias introduced in the message passing.

Traditional methods for handling imbalance are either augmenting data via under(over)-sampling [161],

or assigning weights to adjust the portion of training loss from different classes [162]. Most of these methods

are proposed for non-graph structured data. DR-GCN [156] is the pioneer in exploring node imbalance

classification by adversarial training each class distribution and enforcing the consistency between the labeled

and unlabeled data distributions. However, the adversarial training may yield unrepresentative minority class

distribution given few minority nodes [163]. Further, RECT [164] is proposed by leveraging topological

regularization to derive extra supervision for minority nodes. At the same time, it is designed for entirely

imbalanced data, and its performance on partially imbalanced data is unclear. GraphSMOTE [63] generalizes

SMOTE [165] to the graph domain by pre-training an edge generator and hence adding relational information

for the new synthetic nodes from SMOTE. However, the computation of calculating the similarity between

all pairs of nodes and pre-training the edge generator is extremely heavy.

To tackle the aforementioned challenges of imbalanced node classification, we present a Distance-wise

Prototypical Graph Neural Network (DPGNN), which first applies class prototype-driven training to balance

the training loss of different classes and then leverages distance metric learning to differentiate the contribu-

tion of each dimension of distance from each query node to all class prototypes. Ultimately, the classification

is performed by comparing the similarity of the learned distance metric representations of the nodes with

the ones of class prototypes. Additionally, DPGNN introduces a novel imbalance label propagation scheme

to augment training data and employs self-supervised learning to smooth representations of adjacent nodes

while separating inter-class prototypes. The main contributions are summarized as follows:

• We construct a balanced training scheme inspired by episodic training and further introduce distance metric

learning to capture node distances to class prototypes better.

64



• We design a new imbalanced label propagation scheme to augment the training data and employ self-

supervised learning to further improve the distance metric representations.

• We perform extensive imbalanced node classification experiments on real-world datasets across various

levels of class imbalance with detailed parameter analysis to corroborate the effectiveness of our model.

6.2 Related Work

6.2.1 Class Imbalance Problem

Class imbalance exists in many real-world applications [166], where classes with more (or less) training

instances are termed as majority (or minority) classes. The imbalance in the number of training instances

among different classes significantly affects the performance of supervised learning and hence has become

a classical research direction [157]. Generally, the approaches against this problem are summarized into

three levels, i.e., data-level, algorithm-level, and hybird [167]. Data-level methods aim to improve the data

by balancing the training instances (e.g., up(down)-sampling [161]), whereas algorithm-level methods [162]

attempt to improve the training process by modifying the learning algorithm such as re-weighting. In this

work, we research the class imbalance in the graph domain. At the algorithm-level, our work balances the

training loss by comparing labeled nodes with each class of prototypes. At the data-level, we propose an

imbalanced label propagation to obtain additional minority samples. Thus, our DPGNN is a hybrid approach.

6.2.2 Graph Neural Networks

GNNs have achieved unprecedented success on graph-structured data due to the combination of feature prop-

agation and prediction. However, most prior work on GNNs fails to consider the class imbalance problem,

which unfortunately widely exists in real-world applications [63, 164]. RECT [164] was developed by merg-

ing a GNN and proximity-based embedding component for the completely imbalanced setting (i.e., where

some classes can even have no labeled nodes). DR-GCN [156] explored node imbalance classification by

adversarial training each class distribution and enforcing the consistency between the labeled and unlabeled

data distributions. Unfortunately, the adversarial trained generator and discriminator may be overfitted to a

few minority nodes and hence lose generalizability [163]. More recently, GraphSMOTE [63] was designed

using a GNN encoder to learn node embeddings and an extra edge generator to generate edges connecting

synthetic minority nodes. However, the model is time-consuming and somewhat learned in an ad-hoc fashion.

Motivated by this and to provide a grounded approach for imbalanced node classification, we design a novel

GNN-based framework that utilizes class prototypes to balance the training loss and distance metric learning

to fully encode the relative position of each node to each class prototype.

65



6.3 Problem Statement

We denote an attributed graph by G = (V, E ,X) where V = {v1, ..., vn} is the set of n nodes, E is the

set of m edges with eij being the edge between nodes vi and vj , and X = [x⊤1 , ...,x
⊤
n ] ∈ Rn×d is the

node feature matrix with xi indicating the features of node vi. The network topology is described by its

adjacency matrix A ∈ {0, 1}n×n, where Aij = 1 denotes an edge between nodes vi and vj , and Aij = 0

otherwise. The diagonal matrix of node degrees is denoted as D ∈ Rn×n, where Dii =
∑

j Aij calculates

the degree of the node vi. We let Ã = A + I represent the adjacency matrix with added self-loops and

similarly let D̃ = D + I. Then the normalized adjacency matrix can be defined as Â = D̃−0.5ÃD̃−0.5.

The neighborhood node set of the center node vi is given by Ni = {vj |eij ∈ E}. Finally, C = {1, 2, ..., C}

is the set of C classes and Y ∈ Rn×C is the one-hot node label matrix. Furthermore, we denote Sc,Qc as

the support/query set of class c. Let HSc/HQc be the representation matrix of nodes in support/query set

Sc, P be the prototypical representation matrix, and G be the distance representation matrix. Now, given the

previously defined notations, the imbalanced node classification can be formalized as follows:

Given an attributed network G = (V, E ,X) with labels for a subset of nodes Vl ⊂ V that are imbalanced

among the C classes, we aim to learn a node classifier f : f(V, E ,X) → Y that can work well for both

majority and minority classes.

6.4 The proposed framework

In this section, we present our proposed Distance-wise Prototypical Graph Neural Network (DPGNN) that

can solve the challenges imposed on deep graph learning when given imbalanced training data. The frame-

work is shown in Figure 6.1, including four main components: (a) class prototype-driven balanced training,

(b) distance metric learning, (c) imbalanced label propagation, and (d) self-supervised learning. Specifically,

we borrow the idea of episodic training from prototypical networks [168] to first balance the training loss

across different classes via prototype-driven balanced training (Figure 6.1(a)). However, unlike traditional

prototypical networks where labels of query nodes are assigned based on their nearest class prototypes, we

further employ distance metric learning to construct another distance metric space that can differentiate differ-

ent distance dimensions and fully characterize the position of each query node relative to all class prototypes

(Figure 6.1(b)). To fully incorporate the graph topology information in alleviating the imbalance problem, we

also design a novel imbalanced label propagation scheme and two self-supervised components to aid in learn-

ing high-quality distance metric representations (Figure 6.1(c) and 6.1(d), respectively). Next, we describe

each component in detail.

66



Figure 6.1: Overview of the Distance-wise Prototypical Graph Neural Network, with four main components:
(a) class prototype-driven balanced training, (b) distance metric learning, (c) imbalanced label propagation,
and (d) self-supervised learning.

6.4.1 Class Prototype-driven Balanced Training

To balance the training loss from majority and minority classes, we leverage the idea of episodic training

by sampling support and query sets and then calculating representations of prototypes for each class. To

avoid using the original sparse and high-dimensional node features and to allow learned complex feature

transformation, we first apply a GNN-based encoder f1 : Rn×d × Rn×n → Rn×d′
to obtain d′-dimensional

node representations H ∈ Rn×d′
. Most GNN-based encoders f1 can be decomposed into two components:

neighborhood propagation and feature transformation, which can be generally formalized as:

hl
i = TRANl(AGGRl(hl−1

i ,PROPl({hl−1
j |vj ∈ Ni}))), (6.1)

where in each layer l, the representations {hl−1
j |vj ∈ Ni} of the neighbors are first propagated via PROPl

to node vi and aggregated with its own representation hl−1
i by AGGRl, then the combined representation is

further transformed by TRANl to output the representation hl
i of node vi after layer l of the GNN.

With the learned node embeddings H coming from the GNN-based encoder’s last layer, we aim to com-

pute representations of class prototypes P ∈ RC×d′
. During each training epoch, the model is fed with an

episode sampled from the labeled training nodes Vl, which is further divided into support sets S = {Sc|c ∈ C}

and query sets Q = {Qc|c ∈ C} of each class. The query sets only contain one training sample from each

class and provide a balanced way to train the encoder. The support sets are formed by grouping the remaining

training samples from each class except the query samples from the query sets, which serve as anchors to

characterize the class prototypes of each class. Following the idea of Prototypical Networks [168], we define

67



class prototypes to be closely surrounded by nodes of the same class, such that they can precisely represent

their class. More specifically, the prototype pc of class c is computed by:

pc = PROTO(HSc) = PROTO({hi|vi ∈ Sc}), c ∈ C, (6.2)

where PROTO is the prototype computation which calculates the representation of a class prototype pc based

on node representations HSc that come from the support set Sc. For instance, in the vanilla Prototypical

Network [168], the mean-pooling is employed here:

pc =
1

|Sc|
∑
vi∈Sc

hi, c ∈ C. (6.3)

Applying mean-pooling to calculate class prototypes assumes that each class can be represented using only

one class prototype, which might be underrepresentative when an unimodal distribution assumption is vio-

lated. Thus, multi-prototypes to represent each class could be used, such as replacing mean-pooling with

another permutation-invariant function (e.g., K-means clustering [169]), or even iteratively learn multi-

prototypes according to the complexity of the class distribution [170]. We leave this as one future direction.

Prototypes serve as representatives of each class and can be used to classify query nodes by selecting their

nearest prototypes. However, directly employing a softmax over distances to prototypes in the embedding

space to obtain the class probability distribution [158, 168, 155] will make different dimensions of distance

contribute equally to the classification and in high dimensional data pairwise Euclidean distances tend to

converge [171]. Furthermore, using only the embedding distance of a node to the nearest prototype, omit its

embedding distance to all other non-nearest prototypes that may encode extra information about the node’s

class. Thus, instead of classifying query nodes directly based on their nearest prototype [155, 168], we devise

a distance metric layer to project nodes from the original embedding space to another distance metric space,

where query nodes are classified by comparing their learned distance metric representations with the ones of

class prototypes.

6.4.2 Distance Metric Learning

To project each node from the original embedding space to the distance metric space, we first concatenate

the difference of its embedding from each class prototype. Next, we apply a linear transformation on top

of that to pay different attention to each original distance dimension and adaptively extract useful distance

information. Figure 6.1(b) demonstrates the detailed procedure of computing distance metric representation

g of node v.

68



Given a node v with embedding h ∈ Rd′
, we calculate its distance metric representation gc ∈ Rd′

to each

class prototype c as:

gc = h− pc, c ∈ C, (6.4)

where h − pc calculates the difference of the embedding between each node and each class prototype. For

each node, only considering its embedding difference to one class prototype cannot fully locate its position.

Therefore, we concatenate the difference of the node’s embedding to all class prototypes ||c∈{1,...,C}gc and

further apply a linear transformation f2 : Rd′C → Rd′′
to pay different levels of attention to different

dimensions of the embedding difference and adaptively extract useful embedding difference information.

g = f2(||c∈Cgc). (6.5)

The distance metric representation g encodes the distance information of the node v to all class prototypes,

which, as a result, precisely captures its relative position to all class prototypes. To use these distance metric

representations to prototypes for reference to classify query nodes, we feed the representations of proto-

types and query nodes pc,h
Q
c , for c ∈ C into the shared distance metric layer to learn their distance metric

representations gSc ,g
Q
c , for c ∈ C. Then, we stack them across all classes to compute the distance metric

representations of prototypes and query nodes:

GM = stack(gMc |c ∈ C),M ∈ {Q,S} (6.6)

Next, the predicted class distribution for each query node is:

F = softmax(GQ(GS)⊤), (6.7)

where Fc gives the predicted probability distribution of class c’s query node over all classes, which is then

used to calculate the supervised classification loss:

Lclass =
1

C

C∑
c=1

ℓ(Fc, c), (6.8)

where ℓ(·, ·) is a loss function to measure the difference between predictions and ground-truth labels, such as

cross-entropy.

69



6.4.3 Imbalanced Label Propagation

Network homophily [172] assumes that connected nodes tend to share similar attributes or belong to the

same class, which is commonly the case in various real-world networks [36, 32]. Thus, it can naturally be

harnessed to augment the training data, especially for increasing the minority training nodes. Motivated by

this, we perform imbalanced label propagation to annotate node labels based on their neighboring nodes’

labels and filter out unconfident ones by computing their topology information gain [173].

Since we only have access to the class information of labeled nodes Vl and to balance the voting effect

between the majority and the minority classes, for unlabeled nodes we mask their one-hot labels by filling

zero vector 0 ∈ RC , and for labeled nodes we multiply their one-hot labels by the weighting factor γi:

Ỹi =


γiYi, vi ∈ Vl

0, vi ∈ V\Vl,

where γi =
|Vl|∑

vj∈Vl Yjϕ(vi)
(6.9)

computes the inverse ratio of the number of labeled nodes in the node vi’s class ϕ(vi),
∑

vj∈Vl Yjϕ(vi), to the

total number of labeled nodes |Vl|. Then we propagate this unbiased label distribution Ỹ to their neighbors

that are at mostk-hops away by considering kth-order adjacency matrix as follows:

Ŷ = ÂkỸ. (6.10)

Note that ÂkỸ can be computed efficiently by applying power iteration sequentially from right to left [29].

However, this leads to another issue that Ŷ cannot be used directly in class prototype-driven balance

training to sample support and query sets since Ŷ is a soft-label (instead of having hard label assignments).

Moreover, nodes that fall in the topological boundary between different classes may possess noisy label

distribution and mislead the training process. Therefore, we utilize the idea of topological information gain

(TIG) [173] to filter out nodes with weak and obscure label distributions. TIG describes the task information

effectiveness that the node obtains from the labeled source along the network topology [173]. We regard the

maximum entry of the soft-label Ŷi to be the possible class type that the node vi can be and the other entries

as confusing information. Then the topological information gain ti for node vi is calculated as:

ti =
max(Ŷi)−

(
∑

c∈C Ŷic−max(Ŷi))

C−1
1
C

∑
c∈C Ŷic

. (6.11)

A high ti means the label distribution of node vi is sharp/strong, and thus it lies in the cluster of nodes in class

argmax(Ŷi). By network homophily, its label is also conjectured to be argmax(Ŷi). As such, we generate

70



the hard pseudo label of non-training node vi by binary thresholding its topological information gain ti as:

Y̌ic =


1 , if ti > η and c = argmax(Ŷi)

0 , if ti ≤ η or c ̸= argmax(Ŷi)

, vi ∈ V\Vl, (6.12)

where η is a hyperparameter that controls the trade-off between the quality and the number of the augmented

labels. Higher η leads to precise labels with sharp distribution and thus guarantees the labeling quality, but

less nodes could be augmented. Lower η leads to more imprecise and noisy labels with even distribution.

Note that for the initial labeled nodes vi ∈ Vl, we still utilize their original labels and thus the final labels we

use for sampling support and query sets in class prototype-driven balanced training:

Ȳi =


Yi vi ∈ Vl

Y̌i vi ∈ V\Vl

(6.13)

6.4.4 Self-Supervised Learning (SSL)

Although node embeddings computed from the GNN-based encoder f1 embed network topology informa-

tion, the prototype computation PROTO in Eq. (6.2) and the distance metric learning in Eq. (6.4) do not

consider network topology. Inspired by the intuition that different class prototypes should have different

representations and adjacent nodes should have similar distance metric representations, we design two GNN

self-supervised learning (SSL) [174, 175] pretext tasks to emphasize the topological information learned by

DPGNN. To ensure that different prototypes have different representations, we minimize the representation

similarity of prototypes from different classes as follows:

Lsslp =

C∑
i=1

C∑
j=1

(
SIMij

)
− tr(SIM), where SIMij =

pi
⊤pj

||pi|| ||pj ||
(6.14)

To smooth the distance metric representations between adjacent nodes and reinforce the graph structure

in the learned representations, we adopt the following objective function:

Lssls = G⊤LG, (6.15)

where G is the distance metric representations by transforming the concatenated embedding distance between

each node to each class prototype (i.e., Eq. (6.4) and Eq. (6.5)), and L is the Laplacian matrix of the underlying

network. If we adopt the normalized Laplacian matrix, i.e., L = I− Â, Eq. (6.15) can be rewritten as:

Lssls =
∑
vi∈V

∑
vj∈Ni

( gi√
di

− gj√
dj

)2

. (6.16)

71



It is clear that Lssls is small when adjacent nodes share similar distance metric representations to class proto-

types. Collecting one supervised classification loss and two SSL loss, the overall objective function is:

L = Lclass + λ1Lsslp + λ2Lssls , (6.17)

where λ1 and λ2 are two hyperparameters that control the contribution of the two SSL losses (i.e., Lsslp and

Lssls ) in addition to the supervised classification loss Lclass.

6.4.5 Complexity Analysis

Having introduced all components of DPGNN, next, we compare DPGNN with vanilla GNN-based encoders

by analyzing the additional complexity in terms of time and model parameters.

Compared to vanilla GNN-based encoders, additional computational requirements come from three com-

ponents: distance metric learning, imbalanced label propagation, and self-supervised learning. For distance

metric learning, the calculation of the pairwise embedding difference between each node and each class pro-

totype requires O(|V|C) time complexity if implemented naı̈vely. Typically the class number C is multiple

orders of magnitude less than the node number |V| in a network and, therefore, can be treated as a con-

stant, which leads to linear time complexity O(|V|). For uncommon networks that have a vast number of

classes with the same magnitude as the size of the network, we could select sub-classes Csub as anchors and

approximate the distance metric representations by considering the distance to these anchors rather than all

classes [176, 177, 178]. In imbalanced label propagation, the most computational part comes from propagat-

ing labels in Eq. (6.10), which can be completed efficiently by applying power iteration from the edge view

in O(k|E|) compared to O(|V|3) for matrix calculation of Âk. Among the two SSL components, the heaviest

computation comes from smoothing distance metric embeddings of adjacent nodes in Eq. (6.15), which can

be calculated from the edge view as Eq. (6.16); thus, is linear with the number of edges O(|E|).

For the model complexity, apart from the parameters of the GNN-based encoder, additional parameters

of DPGNN come from the linear transformation f2, which are Wf2 and bf2 . Hence, compared with vanilla

GNN-based encoders, the overall additional parameters are O(d′C × d′′) where d′C is the dimension of

concatenated distance metric representations to all class prototypes ||c∈{1,...,C}gc and d′′ is the dimension of

distance metric representation g (as in Eq. (6.5)). Typically, if the number of classes C is small or if we only

select some sub-classes as anchors, d′C will be far less than the original high-dimensional node attributes d.

Therefore, the extra model complexity O(d′C×d′′) could practically be ignored compared to the complexity

of the GNN-based encoder, which has O(d× d′).

72



Table 6.1: Basic dataset statistics for imbalanced node classification.

Networks Nodes Edges Features Classes Homophily∗ Type
Cora 2,708 5,429 1,433 7 0.81 Citation
Citeseer 3,327 4,732 3,703 6 0.74 Citation
Pubmed 19,717 44,338 500 3 0.80 Citation
Cora-ML 2,995 8,416 2,879 7 0.79 Citation
DBLP 17,716 105,734 1,639 4 0.83 Citation
Amazon Computers 13,381 245,778 767 10 0.78 Online Product
Amazon Photo 7,487 119,043 745 8 0.83 Online Product
Twitch PT 1,912 64,510 128 2 0.58 Social

6.5 Experiment

In this section, we conduct extensive experiments on imbalanced node classification to evaluate the effective-

ness of DPGNN. In particular, we target to answer the following three questions:

• Q1: How effective is DPGNN compared to other baselines on Imbalanced node classification under

different imbalance ratios?

• Q2: How do different components of DPGNN contribute to performance improvement in imbalanced

node classification?

• Q3: How does the threshold η in imbalanced label propagation affect the performance of DPGNN?

6.5.1 Experiment Settings

Datasets. We experiment on widely-adopted citation networks [45], Amazon product networks [179], and an

online social network [180]. Table 6.1 presents the basic network statistics for these datasets. In the five cita-

tion networks and the online social network, class distributions are relatively balanced, so we use an imitative

imbalanced setting: we choose the first 5, 4, 2, 5, 3, 1 class(es) as a minority and down-sample their training

nodes to 2 compared to 20 for other majority class(es), which creates an imbalanced class distribution with

imbalance ratio 10. For the Amazon product networks whose class distributions are genuinely imbalanced,

we use their original class ratios and set the total training nodes as 50 and 30, respectively. For validation and

testing sets, 500 and 1000 nodes are selected respectively for all eight datasets, which is commonly employed

in the literature [15, 16]. This setting is used throughout the paper unless otherwise stated.

Baselines. To evaluate the effectiveness of the proposed DPGNN framework, we select six representative

approaches for handling imbalance classification, including the current state-of-the-art methods, where the

first three target point-based imbalance classification. At the same time, the last three are explicitly designed

for imbalance node classification in networks. Up-sampling: A classical approach that repeats samples

73



from minority classes. Following [63], we implement this in the embedding space by duplicating minority

nodes’ representations; Re-weight [181]: A cost-sensitive approach that assigns class-specific loss weights,

we set the weights of each class as the inverse ratio of the total training nodes to the number in that class;

SMOTE [165]: Synthetic minority samples are created by interpolating minority samples with their nearest

neighbors within the same class based on the output of the last GNN layer; GraphSMOTE [63]: Advancing

SMOTE [165], GraphSMOTE has two types of edge generators that can be pre-trained to connect synthetic

nodes to the original graph. We report the result of the best generator variant for each dataset; RECT [164]:

A supervised model leveraging both a GNN and an unsupervised node proximity-based embedding, which is

designed for a completely imbalanced label setting; DR-GCN [156]: Two types of regularization to tackle

class imbalance are proposed: class-conditional adversarial training to separate labeled nodes and unlabeled

nodes latent distribution constraint to maintain training equilibrium.

Equipping the first three baselines with a 2-layer GCN [15] encoder, we then have 7 baselines: GCN,

GCNus, GCNrw, GCNst, GraphSMOTE, RECT, and DR-GCN that are used for a comprehensive empirical

analysis on imbalanced node classification.

Evaluation Metrics. Following existing work in imbalanced classification [182], we measure performance

with F1-macro, F1-micro, and F1-weighted scores. F1-macro and F1-weighted scores evaluate model perfor-

mance across different classes, with the former taking the unweighted mean over the accuracy of each class

and the latter weighted mean to account for label imbalance. F1-micro is taken over all testing examples,

which gives an overall evaluation of the performance while undervalues nodes in minority classes.

Parameter Settings. We implement our proposed DPGNN and some necessary baselines Pytorch Geometric.

For GraphSmote2, RECT3, and DR-GCN4, we use the authors’ original code with any needed modifications

from their GitHub repositories. Aiming to provide a rigorous/fair comparison, we tune hyperparameters for

all models individually on each dataset around the default/best settings reported in their paper.

For DPGCN, we tune the following hyperparameters: dropout rate ∈ {0, 0.5}, the coefficient balancing

the loss contribution λ1, λ2 ∈ {1, 10}, the threshold η ∈ [0, 6], and the training epoch ∈ {1000, 3000, 6000}.

We select the 2-layer GCN with 256 hidden units as the encoder f1 due to its simplicity and efficiency, and

termed our framework as DPGCN in the following. Note that any other GNN-based encoder can be used

instead.

74



Table 6.2: Node classification performance on eight datasets with the best performance emboldened and
second underlined.

Dataset (Homophily Value)

Model
Cora (0.81) Citeseer (0.74) Pubmed (0.80) Cora-ML (0.79)

F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro
GCN 0.5205 0.5195 0.5212 0.3870 0.4169 0.4692 0.5501 0.5569 0.5928 0.5205 0.5195 0.5212
GCNus 0.5631 0.5659 0.5727 0.4503 0.4822 0.5220 0.6272 0.6323 0.6451 0.5656 0.5516 0.5611
GCNrw 0.5609 0.5660 0.5724 0.4457 0.4800 0.5156 0.6169 0.6178 0.6327 0.5609 0.5660 0.5724
GCNst 0.5488 0.5398 0.5519 0.4462 0.4794 0.5127 0.5861 0.5964 0.6186 0.5488 0.5398 0.5519
GSMOTE5 0.5845 0.6026 0.5820 0.4236 0.4774 0.5020 0.6122 0.5998 0.6110 0.6233 0.6450 0.6130
RECT 0.5234 0.5025 0.5448 0.4002 0.4243 0.4549 0.5713 0.5597 0.6002 0.5530 0.5560 0.6026
DR-GCN 0.5513 0.5362 0.5520 0.3924 0.4414 0.4880 0.5628 0.5730 0.5559 0.5412 0.4716 0.5060
DPGCN 0.7115 0.7029 0.7111 0.4838 0.5180 0.5397 0.7018 0.7176 0.7189 0.7273 0.7278 0.7305

Model DBLP (0.83) Amazon Computers (0.78) Amazon Photo (0.83) Twitch PT (0.58)
F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight F1-micro

GCN 0.3482 0.3829 0.3876 0.5343 0.6808 0.6975 0.6999 0.7617 0.7666 0.4557 0.4510 0.4656
GCNus 0.4214 0.4599 0.4795 0.5757 0.6876 0.6883 0.7135 0.7645 0.7632 0.4917 0.5088 0.5131
GCNrw 0.4379 0.4744 0.4892 0.5732 0.6845 0.6841 0.7204 0.7683 0.7670 0.4963 0.5168 0.5193
GCNst 0.3757 0.4302 0.4522 0.5863 0.6999 0.7107 0.7302 0.7782 0.7800 0.5002 0.5267 0.5301
GSMOTE6 0.4844 0.4938 0.4530 0.5509 0.6213 0.6370 0.7227 0.7716 0.7750 0.3922 0.3558 0.4130
RECT 0.3438 0.3602 0.3810 0.5222 0.7002 0.7351 0.6858 0.7763 0.8007 0.4898 0.4843 0.4904
DR-GCN 0.3797 0.4190 0.4510 0.5357 0.6745 0.7100 0.7434 0.7979 0.8130 0.4791 0.5524 0.5750
DPGCN 0.6167 0.6665 0.6597 0.6702 0.7280 0.7310 0.7600 0.7943 0.7917 0.5600 0.5944 0.5915

6.5.2 Performance Comparison

In this subsection, we answer the first question by comparing the performance of DPGCN with other base-

lines and report the average performance per metric across 20 different data splits along with the edge ho-

mophily [32] for each dataset. We observe that DPGCN performs the best in all 8 datasets by F1-macro with

a large margin and best on 7(6) of the 8 datasets according to F1-weight (F1-micro) over other baselines. The

F1-micro of GCN is higher than F1-macro on all datasets except Cora, which indicates accuracy is vastly

different across different classes and therefore signifies the detrimental effect imposed by class imbalance.

GCNus, rw, st improve the performance over GCN on all datasets, which demonstrates their generalizabil-

ity and effectiveness in handling the imbalance issue. Specifically, GCNus and GCNrw share similar perfor-

mance since essentially both of them balance the training loss while the performance of GCNst is unstable

since randomly selecting linear interpolation coefficient cannot guarantee the generated instances follow the

ground-truth class distributions. GraphSMOTE performs better than other baselines on datasets with higher

homophily, such as Cora, Cora-ML, and DBLP, while worse on datasets with lower homophily, such as Cite-

seer and Twitch PT. This is because edges in lower homophily networks tend to link nodes from different

classes. Therefore, the pre-trained edge generator is also guided to link nodes from different classes. In this

case, aggregating neighborhood features incorporates more noise information and, therefore, compromises

the downstream classification. Even though two advanced models, RECT and DR-GCN, achieve performance

gain over the GCN baseline, both of their improvements are surprisingly not obvious compared with other

baselines. For example, RECT achieves comparable performance to GCN on Cora and DBLP. For RECT, we

2GraphSMOTE Code: https://github.com/TianxiangZhao/GraphSmote
3RECT Code: https://github.com/zhengwang100/RECT
4DR-GCN Code: https://github.com/codeshareabc/DRGCN

75

https://github.com/TianxiangZhao/GraphSmote
https://github.com/zhengwang100/RECT
https://github.com/codeshareabc/DRGCN


hypothesize that the embeddings obtained by GNNs already encode the structural information and, therefore,

further optimizing based on node proximity derives limited useful supervision. Another potential reason is

that RECT is proposed for completely imbalanced labels while here we still have some training instances for

each minority class. For DR-GCN, the reason for no significant performance improvement is that the limited

training nodes may cause over-fitting of their generator and discriminator such that the class distribution is

ill-defined via adversarial training [163].

Moreover, we investigate the stability of the performance improvement achieved by our model by varying

the imbalance ratio from 1:1 to 1:10. Specifically, we fix the number of training nodes as 2 for minority

classes and gradually increase the number of training nodes from 2 to 40 for majority classes, which exhausts

the imbalance scenarios from being balanced to the heavily imbalanced. In Figure ??, we can see DPGCN

always performs the best when the imbalance ratio is beyond 1:4 on the shown datasets, and the gap grows

larger as the imbalance ratio further increases, which demonstrates the superiority of DPGCN over other

baselines in handling heavily imbalanced data. Besides, we observe that our model also achieves higher

performance when data is balanced (imbalance ratio 1:1) on most datasets. This is because the imbalanced

label propagation derives extra training supervision from pseudo-labeled data and indicates the potential of

our model in the balanced data setting. On Citeseer, our model achieves lower performance on the first few

imbalance ratios because of the inefficiency of imbalanced label propagation and smoothing of adjacent nodes

due to lower homophily (i.e., 0.74) of Citeseer compared with the other four datasets.

6.6 Conclusion

In this chapter, we focused on the imbalanced node classification problem in graphs, which widely exists in

real-world settings such as malicious user detection and drug function testing. Noticing that imbalanced node

classification naturally inherits issues of deep learning for imbalance classification: the inclination to learn

towards majority classes and the catastrophic forgetting of previously learned instances in minority classes,

we use a class prototype-driven balance training scheme to balance the training loss between different classes.

To further alleviate the issue of unrepresentative class prototypes, we construct another distance metric space

to fully leverage the distance information of query nodes to all class prototypes. Moreover, we derive extra

supervision from network topology by an imbalanced label propagation scheme and smooth the learned

distance metric representation between adjacent nodes. Experiments on 8 real-world datasets demonstrate

the effectiveness of the proposed DPGNN framework in relieving the class imbalance issue. For future work,

we plan to study imbalanced graph classification and expect to utilize the graph topology as extra supervision.

76



CHAPTER 7

Imbalance Issue: Overcoming Imbalance Issue in Graph Classification

Graph Neural Networks (GNNs) have achieved unprecedented success in identifying categorical labels of

graphs. However, most existing graph classification problems with GNNs follow the protocol of balanced

data splitting, which misaligns with many real-world scenarios in which some classes have fewer labels than

others. Training GNNs under this imbalanced scenario may lead to uninformative representations of graphs

in minority classes, and compromise the overall classification performance, which signifies the importance

of developing effective GNNs for imbalanced graph classification. Existing methods are either tailored for

non-graph structured data or designed specifically for imbalanced node classification while few focus on

imbalanced graph classification. To this end, we introduce a novel framework, Graph-of-Graph Neural Net-

works (G2GNN), which alleviates the graph imbalance issue by deriving extra supervision globally from

neighboring graphs and locally from stochastic augmentations of graphs. Globally, we construct a graph of

graphs (GoG) based on kernel similarity and perform GoG propagation to aggregate neighboring graph repre-

sentations. Locally, we employ topological augmentation via masking node features or dropping edges with

self-consistency regularization to generate stochastic augmentations of each graph that improve the model

generalibility. Graph classification experiments conducted on seven benchmark datasets demonstrate our

proposed G2GNN outperforms numerous baselines by roughly 5% in both F1-macro and F1-micro scores1.

7.1 Introduction

Employing graph representations for classification has recently attracted significant attention due to the emer-

gence of Graph Neural Networks (GNNs) associated with its unprecedented power in expressing graph rep-

resentations [18]. A typical GNN architecture for graph classification begins with an encoder that extracts

node representations by propagating neighborhood information, followed by pooling operations that inte-

grate node representations into graph representations, which are then fed into a classifier to predict graph

labels [183]. Although numerous GNN variants have been proposed by configuring different propagation

and pooling schemes, most works are framed under the setting of balanced data-split where an equal number

of labeled graphs are provided as the training data for each class [184]. However, collecting such balanced

data tends to be time-intensive and resource-expensive, and thus are often impossible in reality [185].

In many real-world graph datasets, the distribution of graphs across classes varies from a slight bias to

a severe imbalance where a large portion of classes contain a limited number of labeled graphs (minority

1https://dl.acm.org/doi/abs/10.1145/3511808.3557356

77

https://dl.acm.org/doi/abs/10.1145/3511808.3557356


classes) while few classes contain enough labeled graphs [155, 186] (majority classes). For example, de-

spite the huge chemical space, few compounds are labeled active with the potential to interact with a target

biomacromolecule; the remaining majority are labeled inactive [187, 51, 188]. Since most GNNs are designed

and evaluated on balanced datasets, directly employing them on imbalanced datasets would compromise the

overall classification performance. As one sub-branch of deep learning on graph-structured data, GNNs sim-

ilarly inherit two severe problems from traditional deep learning on imbalanced datasets: the inclination to

learning towards majority classes [157] and poor generalization from given scarce training data to abounding

unseen testing data [184, 189]. Aiming at these two challenges, traditional solutions include augmenting data

via under- or over-sampling [161, 190], assigning weights to adjust the portion of training loss of different

classes [162], and constructing synthetic training data via interpolation over minority instances to balance

the training data [165]. However, these methods have been primarily designed on point-based data, and their

performance on graph-structured data is unclear.

An imbalance in graph-structured data could lie either in the node or graph domain, where nodes (graphs)

in different classes have different amounts of training data. Nearly all related GNN works focus on im-

balanced node classification by either pre-training or adversarial training to reconstruct the graph topol-

ogy [156, 164, 63, 8], while to the best of our knowledge, imbalanced graph classification with GNNs remains

largely unexplored. On the one hand, unlike node classification, where we can derive extra supervision for

minority nodes from their neighborhoods, graphs are individual instances that are isolated from each other,

and we cannot aggregate information directly from other graphs by propagation. On the other hand, com-

pared with an imbalance on regular grid or sequence data (e.g., images or text) where the imbalance lies in

the feature or semantic domain, the imbalance of graph-structured data could also be attributed to the graph

topology since unrepresentative topology presented by limited training graphs may ill-define minority classes

that hardly generalize to the topology of diverse unseen testing graphs. To address the aforementioned chal-

lenges, we present Graph-of-Graph Neural Networks (G2GNN), which consist of two essential components

that seamlessly work together to derive supervision globally and locally. In summary, the main contributions

are as follows:

• Problem: We study imbalanced graph classification, which is heavily unexplored in the GNN literature.

• Algorithm: We propose a novel framework G2GNN for imbalanced graph classification, which derives

extra supervision by globally aggregating from neighboring graphs and locally augmenting graphs with

self-consistency regularization.

• Experiments: We perform extensive experiments on various real-world datasets to corroborate the effec-

tiveness of G2GNN on imbalanced graph classification.

78



We first define the imbalanced graph classification problem and review related work in section 7.2. The

proposed framework, G2GNN, is given in Section 7.3, consisting of the global graph of graph construc-

tion/propagation and local graph augmentation. In Section 7.4, we conduct extensive experiments to validate

the effectiveness of G2GNN. Finally, we conclude and discuss future work in Section 7.5.

Let G = (VG, EG,XG) denote an attributed graph with node feature XG ∈ R|VG|×d and adjacency

matrix AG ∈ R|VG|×|VG| where AG
ij = 1 if there is an edge between nodes vi, vj and vice versa. In graph

classification, given a set of N graphs G = {G1, G2, ..., GN} with each graph Gi = (VGi , EGi ,XGi) as

defined above and their labels Y ∈ RN×C where C is the total number of classes, we aim to learn graph

representations P ∈ RN×d′
with Pi for each Gi ∈ G that is well-predictive of its one-hot encoded label Yi.

The problem of imbalanced graph classification can be formalized as:

Problem 1. Given a set of attributed graphs G with a subset of labeled graphs Gℓ that are imbalanced among

different classes, we aim to learn a graph encoder and classifier F : F(XGi ,AGi) → Yi that works well

for graphs in both majority and minority classes.

7.2 Related Work

Graph Imbalance Problem. Graph imbalance exists in many real-world scenarios [63] where graph topol-

ogy can be harnessed to derive extra supervision for learning graph/node representations. DR-GCN [156]

handles multi-class imbalance by class-conditional adversarial training and latent distribution regularization.

RECT [164] merges a GNN and proximity-based embeddings for the completely-imbalanced setting (i.e.,

some classes have no labeled nodes during training). GraphSMOTE [63] attempts to generate edges by

pre-training an edge generator for isolated synthetic nodes generated from SMOTE [165]. Most recently,

imGAGN [191] simulates both distributions of node attributes in minority classes and graph structures via

generative adversarial model. However, all of these recent powerful deep learning works are proposed for

node imbalance classification. Graph imbalance classification [192], remains largely unexplored, especially

in GNN domain. Therefore, this work tackles this problem and we expect to leverage the graph topology via

graph kernels to construct graph of graphs (GoG) and perform propagation on the constructed GoG.

Graph Augmentations. Recent years have witnessed successful applications of data augmentation in com-

puter vision (CV) [193] and natural language processing (NLP) [194]. As its derivative in graph domain,

graph augmentation enriches the training data [65, 195, 196] and therefore can be naturally leveraged to al-

leviate class imbalance. In this work, we augment graphs by randomly removing edges and masking node

features [197, 102] to enhance the model generalizability and further employ self-consistency regularization

to enforce the model to output low-entropy predictions [198].

79



7.3 Methodology

In this section, we introduce our proposed G2GNN framework. Figure 7.1 presents an overview of G2GNN,

composed of two modules from a global and local perspective. Globally, a graph kernel-based GoG construc-

tion is proposed to establish a k-nearest neighbor (kNN) graph and hence enable two-level propagation, where

graph representations are first obtained via a GNN encoder, and then neighboring graph representations are

aggregated together through the GoG propagation on the established kNN GoG. Locally, we employ graph

augmentation via masking node features or removing edges with self-consistency regularization to create

novel supervision from stochastic augmentations of each individual graph. The GoG propagation serves as

global governance to retain the model discriminability by smoothing intra-class graphs while separating inter-

class graphs. Meanwhile, the topological augmentation behaves as a local explorer to enhance the model’s

generalizability in discerning unseen non-training graphs. Next, we introduce details of each module.

7.3.1 Global Imbalance Mitigation: Graph-of-Graph Construction/Propagation

Graph representations obtained by forwarding each graph through GNN encoders cannot be well-learned

given the scarce labeled training graphs in minority classes. Therefore, we construct a GoG to connect

independent graphs and perform GoG propagation to aggregate the information of neighboring graphs. The

intuition is that feature propagation and aggregation would mimic the way of SMOTE [165] and mixup [199],

which are two of the most fundamental approaches to handling the issue of class imbalance and poor gen-

eralizability. Aggregating representations of graphs of the same/different class/classes would simulate the

interpolation of SMOTE/mixup with coefficients being determined by the specific graph convolution we use

in propagation. In the following, we first introduce the basic GNN encoder to obtain graph representations,

which will be later used for GoG propagation. Then, we construct GoG and empirically demonstrate its high

homophily, which naturally motivates the GoG propagation.

Basic GNN Encoder. In this work, we employ a graph isomorphism network (GIN) as the encoder to learn

graph representation given its distinguished discriminative power of different topologies [18]. However, our

framework holds for any other GNN encoder. One GIN layer is defined as:

XGi,l+1 = MLPl((AGi + (1 + ϵ)I)XGi,l),∀l ∈ {1, 2, ..., L} (7.1)

where XGi,l is the intermediate node representation at layer l, XGi,0 = XGi is the initial node feature in the

graph Gi, and MLP is a multi-layer perceptron at layer l. After L GIN convolutions, each node aggregates

information from its neighborhoods up to L hops away and a readout function integrates node representations

80



Figure 7.1: An overview of the Graph-of-Graph Neural Network (G2GNN). To reduce imbalance effect on
graph classification, we up-sample minority graphs, augment each graph T times followed by a GNN encoder
to get their representations and regroup them according to their augmentation order, perform GoG propagation
on constructed GoG T times with each time using all graph representations from that specific augmentation
t, and finally forward the propagated representations through a classifier to compute classification loss and
self-consistency regularization loss.

into the graph representation Hi for each graph Gi as:

Hi = READOUT({XGi,L
j |vj ∈ VGi}) (7.2)

Then, we construct a kNN graph on top of each graph and perform GoG propagation to borrow neighboring

graphs’ information. Here, we employ global-sum pooling as our READOUT function, which adds all nodes’

representations to obtain the graph representation.

Graph of Graphs Construction. Given a set of graphs G, we expect to construct a high-level graph where

every graph Gi ∈ G is represented by a node, and an edge links two graphs if they are similar. In this work,

81



we determine the graph similarity based on their topological similarity since graphs with similar topology

typically possess similar functions or belong to the same class, such as scaffold hopping [200] and enzyme

identification [201]. Here, we leverage the graph kernel to quantify topological similarity between pairs of

graphs [202] and further use it to construct GoG. Denote the similarity matrix as S ∈ RN×N where each

entry Sij measures the topological similarity between each pair of graphs (Gi, Gj) and is computed by the

kernel function ϕ as:

Sij = ϕ(Gi, Gj), (7.3)

where multiple choices of the kernel function ϕ could be adopted here depending on specific types of topo-

logical similarity required by downstream tasks, and in this work, we choose the Shortest Path Kernel due

to its simplicity and effectiveness as demonstrated in Section 7.4. Then we construct a kNN graph GkNN by

connecting each graph Gi with its top-k similar graphs based on the similarity matrix S and then measure its

edge homophily as:

χG
kNN

=
|{(Gi, Gj) ∈ EGkNN

: Yi = Yj}|
|EGkNN |

, (7.4)

2 3 4 5 6 7 8 9 10
Number of neighborhoods

0.65

0.70

0.75

0.80

0.85

E
dg

e 
ho

m
op

hi
ly

Shortest Path Weisfeiler Lehman
MUTAG
DHFR
NCI1
REDDIT-BINARY
Citeseer

Figure 7.2: Edge homophily of constructed kNN
GoGs.

where high χG
kNN

means most edges connect graphs

of the same class and by varying k, we end up

with multiple GkNN with different homophily level.

Figure 7.2 visualizes the homophily of GkNN con-

structed using Shortest-Path and Weisfeiler-Lehman

kernels on three graph datasets populating in the

literature [197, 203]. We can clearly see that

edge homophily decreases as k increases because

graphs with lower topological similarity have higher

chance to be selected as neighborhoods while they

likely belong to different classes from corresponding center graphs. However, edge homophily even when k

is up to 5 is still in [0.7, 0.8] and comparable to Citeseer dataset (Citeseer is a well-known GNN node classi-

fication benchmark dataset [184].), which indicates that most edges in the constructed GkNN connects graphs

of the same class. Motivated by this observation, we perform GoG propagation on the generated kNN graph

GkNN to aggregate neighboring graph information.

Graph of Graphs Propagation. Denoting the adjacency matrix with added self-loops of the constructed

graph GkNN as ÂkNN = AkNN+I and the corresponding degree matrix as D̂kNN, the lth-layer GoG propagation

is formulated as:

Pl+1 = (D̂kNN)−1ÂkNNPl, l ∈ {1, 2, ..., L} (7.5)

82



where P0 = H includes representations of all individual graphs Hi that are previously obtained from GIN

followed by the graph pooling, as Eqs. (7.1)-(7.2). Note that here we do not differentiate between layers l, L

used in GoG propagation here and layers used in GIN convolution since their difference is straightforward

based on the context. After L layers propagation, the representation of a specific graph PL
i aggregates

information from neighboring graphs up to L hops away, which naturally smooths neighboring graphs and

their labels by the following theorem [204]:

Theorem 4. Suppose that the latent ground-truth mapping M : Pl
i → Yi from graph representations to

graph labels is differentiable and satisfies µ−Lipschitz constraints, i.e., |M(Pl
i)−M(Pl

j)| ≤ µ||Pl
i−Pl

j ||2

for any pair of graphs Gi, Gj (µ is a constant), then the label smoothing is upper bounded by the feature

smoothing among graph Gi and its neighboring graphs N̂i through (7.6) with an error ϵli = Pl+1
i −Pl

i:

(d̂i
−1 ∑

Gj∈N̂i

Yj −Yi

︸ ︷︷ ︸
Label smoothing

)− (d̂−1i

∑
Gj∈N̂i

o(||Pl
j −Pl

i||2)︸ ︷︷ ︸
Feature smoothing

) ≤ µϵli. (7.6)

Proof of Theorem 4 is provided in [204]. Specifically, ϵli quantifies the difference of the graph Gi’s represen-

tation between lth and (l + 1)
th propagation, which decreases as propagation proceeds [205] and eventually

converges after infinite propagation liml→∞ ϵli = 0 [26]. Treating each graph Gi as a node in GkNN and its

representation Pl
i gradually converges since liml→∞ ϵli = 0. Such feature smoothing further leads to the

label smoothing based on Theorem 4. Therefore, propagating features according to Eq. (7.5) is equivalent to

propagating labels among neighboring graphs, which derives extra information for imbalance classification.

Given the high homophily of the GkNN in Figure 7.2, i.e., neighboring graphs tend to share the same class,

the extra information derived from feature propagation (label propagation) is very likely beneficial to the

performance of downstream classification.

7.3.2 Local Imbalance Mitigation: Self-consistency Regularization

Even though feature propagation globally derives extra label information for graphs in minority classes from

their neighboring graphs, training with limited graph instances still restricts the model’s power in recog-

nizing numerous unseen non-training graphs. To retain the model generalizability, we further leverage two

augmenting schemes, removing edges and masking node features [197] in the next.

Removing Edges. For each graph Gi ∈ G, we randomly remove a subset of edges ÊGi from the original edge

set EGi with probability: P (euv ∈ ÊGi) = 1 − δGi
uv , where δGi

uv could be uniform or adaptive for different

edges. Since uniformly removing edges (i.e., δGi
uv = δ) already enjoys a boost over baselines as shown in

Section 7.4.2, we leave the adaptive one as future work.

83



Masking Node Features. Instead of directly removing nodes that may disconnect the original graph into

several components, we retain the graph structure by simply zeroing the features of some nodes following [25,

197]. Randomly masking entire features of some nodes enables each node to only aggregate information

from a random subset of its neighborhoods multi-hops away, which reduces its dependency on particular

neighborhoods. Compared with partially zeroing some feature channels, we empirically find that zeroing

entire features performs better. Formally, we randomly sample a binary mask ηGi
j ∼ Bernoulli(1− δGi

j ) for

each node vj in graph Gi and multiply it with the node feature, i.e., X̂Gi
j = ηGi

j XGi
j [189].

For model simplicity, we unify the probability of removing edges and masking node features as a single

augmentation ratio δ. Note that by using these augmentations after feature propagation, features of each

node are stochastically mixed with its neighborhoods and create multiple augmented representations, which

significantly increases the model generalizability if these augmented representations overlap with unseen non-

training data. However, arbitrary modification of graph topology without any regularization could uninten-

tionally introduce invalid or even abnormal topology. Therefore, we leverage self-consistency regularization

to enforce the model to output low-entropy predictions [25].

Self-Consistency Regularization. Formally, given a set of T augmented variants of a graph Gi, Ĝi =

{G1
i , G

2
i , ..., G

T
i |Gt

i ∼ qδ(·|Gi)} where qδ(·|Gi) is the augmentation distribution conditioned on the original

graph Gi parameterized by the augmentation ratio δ, we feed them through a graph encoder by Eq. (7.1)-(7.2)

and the GoG propagation by Eq. (7.5) to obtain their representations {P1
i ,P

2
i , ...,P

T
i }. More specifically, we

forward the set of representations of all tth-augmented graphs {Ht
i|i ∈ {1, 2, ..., |G |}} through GoG propaga-

tion parallelly T times to obtain their representations {Pt
i|i ∈ {1, 2, ..., |G |}, t ∈ {1, 2, ..., T}}. Then we fur-

ther apply the classifier to obtain their predicted label distributions {P̃t
i = σ(gθg

(Pt
i))|i ∈ {1, 2, ..., |G |}, t ∈

{1, 2, ..., T}} where σ is the softmax normalization and gθg is a trainable classifier parametrized by θg . Af-

ter that, we propose to optimize the consistency of predictions among T augmentations for each graph. We

first calculate the center of label distribution by taking the average of predicted distribution of all augmented

variants for each specific graph Gi, i.e., P̂i = 1
T

∑T
t=1 P̃

t
i. Then we sharpen [198] this label distribution

center:

P̄ij = (P̂ij)
τ/

C∑
c=1

(P̂ic)
τ ,∀j ∈ {1, 2, ..., C}, i ∈ {1, 2, ..., |G |} (7.7)

where τ ∈ [0, 1] acts as the temperature to control the sharpness of the predicted label distribution and as

τ → ∞, the sharpened label distribution of each graph approaches a one-hot distribution and hence becomes

more informative. Then the self-consistency regularization loss for the graph Gi is formulated as the average

L2 distance between the predicted distribution of each augmented graph P̃t
i and their sharpened average

84



predicted distribution:

Lself
i =

1

T

T∑
t=1

||P̄i − P̃t
i||2. (7.8)

Optimizing (7.8) requires the encoder and classifier to output similar predicted class distribution of dif-

ferent augmentations of each graph to the center one; this prevents the decision boundary of the whole model

from passing through high-density regions of the marginal data distribution [206]. Also, as we increase τ , we

can enforce the model to output low-entropy (high-confidence) predictions.

7.3.3 Objective Function and Prediction

The overall objective function of G2GNN is formally defined as:

L = −
1

|G |T
∑

Gi∈G

T∑
t=1

C∑
c=1

Yic log P̃
t
ic︸ ︷︷ ︸

Lsup

+
1

|G |T
∑

Gi∈G

T∑
t=1

||P̄i − P̃t
i||2︸ ︷︷ ︸

Lself

, (7.9)

where Lsup is the cross entropy loss over all training graphs in G with known label information as previously

defined with C graph classes to be predicted, and Lself is the self-consistency regularization loss defined by

Eq. (7.8) over all training graphs.

To predict classes of graphs in validation/testing set, instead of forwarding each individual unlabeled

graph through the already-trained encoder fθf
and the classifier gθg

to predict its label, we first generate T

augmented variants of each unlabeled graph Ĝi = {G1
i , G

2
i , ..., G

T
i |Gt

i ∼ qδ(·|Gi)},∀Gi ∈ G/G following

Section 7.3.2 and then collectively forward the group of augmented graphs through fθf
, GoG propagation

and the classifier gθg
to obtain their predicted label distribution {P̃1

i , P̃
2
i , ...., P̃

T
i }, then the final predicted

distribution of graph Gi is averaged over all augmented variants as 1
T

∑T
t=1 P̃i

t
,∀Gi ∈ G/G and the final

predicted class is the one that owns the highest class probability, i.e., yi = argmax
j∈{1,2,...,C}

1
T

∑T
t=1 P̃

t
ij .

7.3.4 Algorithm

In Algorithm 1, we present a holistic overview of the key stages in the proposed G2GNN framework. Note that

the GoG propagation and the graph augmentation with self-consistency regularization are both proposed to

create more supervision from scarce minority training graphs, which can only handle the poor generalization

problem. To avoid the problem of inclination to learning towards majority classes as mentioned in Section 7.1,

we up-sample minority labeled graphs till the graphs in training and validation set are both balanced among

different classes before starting the whole training processes as step 3 shows here. Balancing the labeled

graphs in training set cannot only balance the training loss computed by Eq. (7.9) but also provide sufficient

graphs from minority class to construct GoG. Otherwise given only few graphs in the minority class, the

top-k similar graphs to one graph in minority class would be more likely come from majority class, which

would further cause inter-class feature smoothing when performing GoG propagation and hence compromise

85



Algorithm 1: The algorithm of G2GNN
Input: The imbalanced set of labeled graphs G , the kernel function ϕ, the augmentation distribution qδ , the encoder fθf

and
the classifier gθg with their learning rate αf , αg .

1 Compute pairwise similarity matrix S by Eq. (7.3) and construct GkNN following Section 7.3.1
2 Up-sample minority graphs in G for both training and validation sets
3 while not converged do
4 for mini-batch of graphs GB = {Gi|Gi ∼ G , i = {1, 2, ..., |GB |}} do
5 Find top-k similar graphs for each Gi ∈ GB based on S and incorporate them into GB // Section 7.3.1

6 Obtain the subgraph GkNN,B from GkNN induced by graphs in GB

7 For each Gi ∈ GB , generate T augmented graphs Ĝi = {G1
i , G

2
i , ..., G

T
i |Gt

i ∼ qδ(·|Gi)}
// Section 7.3.2

8 Apply graph encoder fθf
by Eqs. (7.1)-(7.2), the GoG propagation by Eq. (7.5), and the classifier gθg to predict

graph class distribution {P̃t
i|Gi ∈ G , t ∈ T}

9 Compute loss by Eq. (7.9) and update parameters
10 θg ← θg − αg ∗ ∇θgL, θf ← θf − αf ∗ ∇θf

L // Section 7.3.3

the classification performance. Balancing the labeled graphs in validation set could avoid the imbalanced bias

introduced in determining which model should be preserved for later evaluation. Note that in Table 7.2, we

show that even equipping other baselines with up-sampling to remove the imbalanced training bias, G2GNN

still achieves better performance, which demonstrates that the performance improvement is not solely caused

by the technique of up-sampling but also by the proposed GoG propagation and augmentation with self-

consistency regularization.

7.3.5 Complexity Analysis

Next, we compare our proposed G2GNN with vanilla GNN-based encoders by analyzing the time and model

complexity. Since we employ the shortest path kernel for all experiments in this work, we only analyze our

models with this specific graph kernel.

Compared to vanilla GNN-based encoders, additional computational requirements come from kernel-

based GoG construction and topological augmentation. In kernel-based GoG construction, applying shortest

path kernel to calculate the similarity between every pair of graphs requires O(n3) [207] time and thus the

total time complexity of this part is O(
(|G|

2

)
ñ3) (ñ = maxGi∈G(|VGi |)) due to the total |G| graphs. Af-

ter computing the pairwise similarity, we can construct the GoG by naively thresholding out the top−k

similar graphs for each graph, and the time complexity here is O(|G|k). By default k ≤ |G|, we directly

have O(|G|k) < O(|G|2) = O(
(|G|

2

)
) < O(

(|G|
2

)
ñ3) and hence the time complexity of the first module

is O(
(|G|

2

)
ñ3). Despite the prohibitively heavy computation of O(

(|G|
2

)
ñ3), the whole module is a pre-

procession computation once and for all and we can further save the already computed similarity matrix

S for future use, which therefore imposes no computational challenge. We augment graphs T times during

each training epoch in topological augmentation. Each time we either go over all its edges or nodes, therefore

the total time complexity of this module during each training epoch is O(T
∑

Gi∈GB (|VGi |+ |EGi |)). Since

augmenting graphs multiple times gains no further improvement than 2 [197], we fix T to be the constant

86



Table 7.1: Statistics of datasets for imbalanced graph classification
Networks # Graphs # Avg-Node # Avg-Edge # Attr Time(s)*
PTC-MR [209] 344 14.29 14.69 18 0.257
NCI1 [210] 4110 29.87 32.30 37 11.21
MUTAG [211] 188 17.93 19.79 7 0.212
PROTEINS [202] 1113 39.06 72.82 3 11.36
D&D [212] 1178 284.32 715.66 89 574.71
DHFR [212] 756 42.43 44.54 3 3.70
REDDITB [202] 2000 429.63 497.75 \ 3376

* The column ’time’ represents the actual time used for applying Shortest Path kernel to compute S for each dataset.

2, and therefore, the total complexity of this part is linearly proportional to the size of each graph, which

imposes no additional time compared with GNN encoders. Among the GoG propagation component, the

most computational part comes from propagation in Eq. (7.5), which can be efficiently computed by apply-

ing power iteration from the edge view in O(K|EGkNN,B |) for each subgraph induced by graphs in batch GB .

Based on experimental results in Figure 7.5(a)-(b), we usually choose k to be small to ensure the sparsity and

the high homophily of GoG, then O(K|EGkNN,B |) can be neglected compared with applying GNN encoders

to get representations of each graph, O(K
∑

Gi∈GB |EGi |). For the model complexity, besides the parameters

of GNN encoders, G2GNN adds no additional parameters and therefore its model complexity is exactly the

same as traditional GNN encoders.

In summary, our model introduces no extra model complexity but O(
(|G|

2

)
ñ3) extra time complexity

in the pre-procession stage. We further presents the actual time used for applying Shortest Path kernel to

compute S in Table 7.1. It can be clearly see that similarity matrix S is calculated in a short time for each

dataset other than D&D and REDDIT-B since graphs in these two dataset are on average denser than other

datasets as shown in Table 7.1. However, we can simply pre-compute this S once for all and reuse it for

G2GNN. Moreover, we can make this computation feasible by either employing the fast shortest-path kernel

computations by sampling-based approximation where we sample pairs of nodes and compute shortest paths

between them [208].

7.4 Experiment

Here, we evaluate the effectiveness of G2GNN by conducting extensive imbalanced graph classification on

multiple graph datasets with different imbalance level. We introduce the experimental setup in the following.

7.4.1 Experimental Setup

Datasets. We conduct experiments on seven widely-adopted real-world datasets [202, 212], which include

Chemical compounds (PTC-MR, NCI1, MUTAG), Protein compounds (PROTEINS, D&D, DHFR), and So-

cial Network (REDDIT-B). Details of these datasets can be found in Table 7.1.

Baselines. To evaluate the effectiveness of the proposed G2GNN, we select three models designed for graph

87



classification, which include: GIN [18]: A basic supervised GNN model for graph classification due to its

distinguished expressiveness of graph topology; InfoGraph [203]: An unsupervised GNN model for learning

graph representations via maximizing mutual information between the original graph and its substructures of

different scales; GraphCL [197]: Stepping further from InfoGraph, GraphCL proposes four strategies to

augment graphs and learns graph representations by maximizing the mutual information between the original

graph and its augmented variants.

Strategies. Since imbalanced datasets naturally provide weak supervision on minority classes, unsupervised

GNNs outweigh supervised counterparts, and selecting them as baselines could more confidently justify the

superiority of our model. All the above three baselines are proposed without consideration of imbalanced

setting therefore we further equip these three backbones with strategies designed specifically for handling

imbalance issue, which includes: Upsampling (us): A classical approach that repeats samples from minority

classes [213]. We implement this directly in the input space by duplicating minority graphs; Reweighting

(rw): A general cost-sensitive approach introduced in [181] that assigns class-specific weights in computing

the classification loss term in Eq. (7.9); we set the weights of each class as the inverse ratio of the total training

graphs to the number of training graphs in that class; SMOTE (st): Based on the ideas of SMOTE [63],

synthetic minority samples are created by interpolating minority samples with their nearest neighbors within

the same class based on the output of the last GNN layer. Since directly interpolating in the topological

space may generate invalid graph topology, we first obtain GNN-based encoders and interpolate minority

graph representations in the embedding space to generate more minority training instances. Here, the nearest

neighbors are computed according to Euclidean distance.

Equipping each of the above three backbones with up-sampling, re-weighting, and SMOTE strategies explic-

itly tailored for imbalanced classification, we end up with 10 baselines. Specifically, we equip up-sampling

and re-weighting with all three backbones and name each new baseline by combining the name of its back-

bone and the equipped strategy, e.g., GINus represents the backbone GIN equipped with the up-sampling

strategy. Since applying SMOTE empirically leads to similar or even worse performance gains, we only

stack it on the GIN backbone.

Evaluation Metrics. Following existing work in imbalanced classification [63], we use two criteria: F1-

macro and F1-micro to measure the performance of G2GNN and other baselines. F1-macro computes the

accuracy independently for each class and then takes the average (i.e., treating different classes equally).

F1-micro computes accuracy overall testing examples at once, which may underweight the minority classes.

Following [25], The whole GoG propagation is conducted in the transductive setting where graphs in the

training set could aggregate representations of graphs in the validation and testing sets while the classification

loss is only evaluated on the given training labels.

88



Table 7.2: Graph classification performance on seven datasets. The standard deviation is relatively higher
since we focus on the imbalance problem and use 50 different data splits (i.e., having different training data
distributions). G2GNNe and G2GNNn represent our proposed model using the removing edges and masking
node features augmentation strategy. Bold (underline) denotes the best/runner-up model.

Model MUTAG (5:45) PROTEINS (30:270) D&D (30:270) NCI1 (100:900)
F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro

GIN 52.50 ± 18.70 56.77 ± 14.14 25.33 ± 7.53 28.50 ± 5.82 9.99 ± 7.44 11.88 ± 9.49 18.24 ± 7.58 18.94 ± 7.12
GINus 78.03 ± 7.62 78.77 ± 7.67 65.64 ± 2.67 71.55 ± 3.19 41.15 ± 3.74 70.56 ± 10.28 59.19 ± 4.39 71.80 ± 7.02
GINrw 77.00 ± 9.59 77.68 ± 9.30 54.54 ± 6.29 55.77 ± 7.11 28.49 ± 5.92 40.79 ± 11.84 36.84 ± 8.46 39.19 ± 10.05
GINst 74.61 ± 9.66 75.11 ± 9.87 56.07 ± 7.95 57.85 ± 8.70 27.08 ± 8.63 39.01 ± 15.87 40.40 ± 9.63 44.48 ± 12.05

InfoGraph 69.11 ± 9.03 69.68 ± 7.77 35.91 ± 7.58 36.81 ± 6.51 21.41 ± 4.51 27.68 ± 7.52 33.09 ± 3.30 34.03 ± 3.68
InfoGraphus 78.62 ± 6.84 79.09 ± 6.86 62.68 ± 2.70 66.02 ± 3.18 41.55 ± 2.32 71.34 ± 6.76 53.38 ± 1.88 62.20 ± 2.63
InfoGraphrw 80.85 ± 7.75 81.68 ± 7.83 65.73 ± 3.10 69.60 ± 3.68 41.92 ± 2.28 72.43 ± 6.63 53.05 ± 1.12 62.45 ± 1.89

GraphCL 66.82 ± 11.56 67.77 ± 9.78 40.86 ± 6.94 41.24 ± 6.38 21.02 ± 3.05 26.80 ± 4.95 31.02 ± 2.69 31.62 ± 3.05
GraphCLus 80.06 ± 7.79 80.45 ± 7.86 64.21 ± 2.53 65.76 ± 2.61 38.96 ± 3.01 64.23 ± 8.10 49.92 ± 2.15 58.29 ± 3.30
GraphCLrw 80.20 ± 7.27 80.84 ± 7.43 63.46 ± 2.42 64.97 ± 2.41 40.29 ± 3.31 67.96 ± 8.98 50.05 ± 2.09 58.18 ± 3.08

G2GNNe 80.37 ± 6.73 81.25 ± 6.87 67.70 ± 2.96 73.10 ± 4.05 43.25 ± 3.91 77.03 ± 9.98 63.60 ± 1.57 72.97 ± 1.81

G2GNNn 83.01 ± 7.01 83.59 ± 7.14 67.39 ± 2.99 73.30 ± 4.19 43.93 ± 3.46 79.03 ± 10.78 64.78 ± 2.86 74.91 ± 2.14

Model PTC-MR (9:81) DHFR (12:108) REDDIT-B (50:450) Ave. Rank
F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro

GIN 17.74 ± 6.49 20.30 ± 6.06 35.96 ± 8.87 49.46 ± 4.90 33.19 ± 14.26 36.02 ± 17.38 12.00 12.00
GINus 44.78 ± 8.01 55.43 ± 14.25 55.96 ± 10.06 59.39 ± 6.52 66.71 ± 3.92 83.00 ± 5.18 5.00 4.43
GINrw 36.96 ± 14.08 43.09 ± 20.01 55.16 ± 9.47 57.78 ± 6.69 45.17 ± 8.46 51.92 ± 12.29 8.86 8.86
GINst 36.30 ± 11.45 40.04 ± 15.32 56.06 ± 9.60 58.48 ± 6.42 60.05 ± 4.14 73.59 ± 6.05 8.29 8.43
InfoGraph 25.85 ± 6.14 26.71 ± 6.50 50.62 ± 8.33 56.28 ± 4.58 57.67 ± 3.80 67.10 ± 4.91 10.00 10.14
InfoGraphus 44.29 ± 4.69 48.91 ± 7.49 59.49 ± 5.20 61.62 ± 4.18 67.01 ± 3.34 78.68 ± 3.71 5.00 5.00
InfoGraphrw 44.09 ± 5.62 49.17 ± 8.78 58.67 ± 5.82 60.24 ± 4.80 65.79 ± 3.38 77.35 ± 3.96 4.43 4.29
GraphCL 24.22 ± 6.21 25.16 ± 5.25 50.55 ± 10.01 56.31 ± 6.12 53.40 ± 4.06 62.19 ± 5.68 10.71 10.57
GraphCLus 45.12 ± 7.33 53.50 ± 13.31 60.29 ± 9.04 61.71 ± 6.75 62.01 ± 3.97 75.84 ± 3.98 5.29 5.43
GraphCLrw 44.75 ± 7.62 52.22 ± 13.24 60.87 ± 6.33 61.93 ± 5.15 62.79 ± 6.93 76.15 ± 9.15 5.00 5.29

G2GNNe 46.40 ± 7.73 56.61 ± 13.72 61.63 ± 10.02 63.61 ± 6.05 68.39 ± 2.97 86.35 ± 2.27 1.71 1.86
G2GNNn 46.61 ± 8.27 56.70 ± 14.81 59.72 ± 6.83 61.27 ± 5.40 67.52 ± 2.60 85.43 ± 1.80 1.71 1.71

Parameter Settings. We implement our proposed G2GNN and some necessary baselines using Pytorch

Geometric [48]. For InfoGraph2 and GraphCL3 we use the original authors’ code with any necessary modifi-

cations. Aiming to provide a rigorous and fair comparison across models on each dataset, we tune hyperpa-

rameters for all models individually as: the weight decay ∈ [0, 0.1], the encoder hidden units ∈ {128, 256},

the learning rate ∈ {0.001, 0.01}, the inter-network level propagation L ∈ {1, 2, 3}, the augmentation ratio

δ ∈ {0.05, 0.1, 0.2}, the number of neighboring graphs in constructing GoG k ∈ {2, 3, 4}, the augmentation

number T = 2 and sharpening temperature τ = 0.5. We employ Shortest Path Kernel to compute similarity

matrix S and set the trainable classifier g as a 2-layer MLP. For REDDITB dataset, we use one-hot encoding

of the node degree as the feature of each node following [197, 203]. For reproducibility, the code of the

model with its corresponding hyperparameter configurations are publicly available4.

7.4.2 Performance Comparison

In this subsection, we compare the performance of G2GNNe and G2GNNn, which represent the G2GNN

framework with the edge removal or node feature masking as augmentation, respectively, against the afore-

mentioned baselines. Since class distributions of most datasets are not strictly imbalanced, we use an imitative

imbalanced setting: we randomly set 25%/25% graphs as training/validation sets and among each of them, we

choose one class as minority and reduce the graphs of this class in the training set (increase the other one) till

the imbalance ratio reaches 1:9, which creates a highly imbalanced scenario5. We average the performance

2https://github.com/fanyun-sun/InfoGraph
3https://github.com/Shen-Lab/GraphCL
4Code for G2GNN: https://github.com/submissionconff/G2GNN
5We select the amount of training and validation data as 25% to ensure the sufficiency of minority instances in both training and

validation set given the imitative data distribution is at such a skewed level

89

https://github.com/fanyun-sun/InfoGraph
https://github.com/Shen-Lab/GraphCL
https://github.com/submissionconff/G2GNN


1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1

Imbalance ratio

0.4

0.5

0.6

0.7

0.8
Pe

rf
or

m
an

ce

MUTAG (F1-macro)
GIN GINus InfoGraph InfoGraphrw GraphCL GraphCLrw G2GNN

1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1
Imbalance ratio

0.60

0.65

0.70

0.75

0.80

0.85
MUTAG (F1-micro)

1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1
Imbalance ratio

0.2

0.3

0.4

0.5

0.6

0.7
DHFR (F1-macro)

1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1
Imbalance ratio

0.2

0.3

0.4

0.5

0.6

0.7

DHFR (F1-micro)

Figure 7.3: Graph classification results under different class imbalance ratios where 5:5 corresponds to a bal-
anced scenario while 1:9 and 9:1 correspond to a highly imbalance scenario. Compared with GIN(blue), Info-
Graph(pink), GraphCL(olive) designed not specifically for imbalanced scenario, our G2GNN(black) model
outperforms all of them in nearly all imbalance ratio settings and the margin further increases as the level
of imbalance increases (i.e., deviates from the balanced scenario). We use the same training and validation
graphs (25%/25%) as used in Table 7.2.

per metric across 50 different data splits to avoid bias from data splitting. Table 7.2 reports the performance’s

mean and standard deviation.

Table 7.2 shows that G2GNN performs the best in all seven datasets under both F1-macro and F1-micro.

Moreover, edge removing (i.e., G2GNNe) benefits more on the social network (i.e., REDDIT-B) while node

feature masking (i.e., G2GNNn) enhances more on biochemical molecules (e.g., MUTAG, D&D, NCI1 and

PTC-MR), which conforms to [197] and is partially attributed to no node attributes presented in the social

network. Models specifically designed for tackling the class imbalance issue generally perform better than

the corresponding bare backbones without any strategy handling imbalance. The inferior performance of

GINrw(st) to GINus is because we either set weights for adjusting the training loss of different classes or

generate synthetic samples based on training data at the current batch. Since the number of training in-

stances in each batch may not strictly follow the prescribed imbalance ratio, the batch-dependent weight or

synthetic samples hardly guarantee the global balance. InfoGraph(GraphCL)-based variants do not suffer

from the issue introduced by batch training. Once we obtain graph representations from pre-trained models

by mutual information maximization, we feed them through downstream classifiers all at once without in-

volvement in the batch process. Therefore, the performance of InfoGraph(GraphCL)rw(st) is comparable to

InfoGraph(GraphCL)us. We emphasize that the larger standard deviation in our setting is due to the signif-

icantly different training data across different runs. We further argue that this standard deviation cannot be

reduced by only increasing the number of runs due to the imbalanced nature of the problem. However, the

higher average performance of our model still signifies its superiority in handling a wide range of imbalanced

data splitting.

90



7.4.3 Influence of Imbalance Ratio

We further compare the performance of our model with other baselines under different imbalance ratios.

We vary the imbalance ratio from 1:9 to 9:1 by fixing the total number of training and validation graphs as

25%/25% of the whole dataset as before and gradually varying the number of graphs in different classes.

Note that for clear comparison, we only visualize the performance of the best variant among each of the three

backbones in Figure 7.3. We can see that the performance of all models first increases and then decreases

as the imbalance ratio increases from 0.1 to 0.9, demonstrating the detrimental effect of data imbalance on

the model performance. This becomes even worse when the imbalance becomes more severe. Furthermore,

the F1-macro score of our G2GNN model outperforms all other baselines on both MUTAG and DHFR under

each imbalance ratio, which soundly justifies the superiority and robustness of our model in alleviating the

imbalance of different levels. Different from supervision presented from given labeled data, the extra super-

vision derived by leveraging neighboring graphs’ information via propagation and topological augmentation

is weakly influenced by the amount of training data. Therefore, the margin achieved by our model further

grows when the imbalance ratio is either too low or too high compared with GIN, InfoGraph, and GraphCL,

which are not explicitly designed for handling the imbalance scenario since the extra supervision derived in

our model stays the same. Besides, our model also performs comparable or even slightly better than all other

baselines under a balanced scenario, which additionally signifies the potentiality of our model in balanced

data-splitting. Among other baselines, GraphCLrw performs the best since it applies a re-weight strategy to

balance the training loss and further leverages the graph augmentation coupled with mutual information max-

imization to extract the most relevant information for downstream classification. An interesting observation

is that the optimal performance is not always when the labeled data is strictly balanced, which reflects the

uneven distribution of informatic supervision embedded across different classes.

7.4.4 Ablation Study

0.0%

5.0%

10.0%

F1
-m

ac
ro

 
 o

ve
r 

G
IN

us
 (%

) G2GNNn G2GNNe G2GNNn (w/o kNN) G2GNNe (w/o kNN) G2GNN∅

MUTAG PROTEINS D&D NCI1 PTC-MR DHFR REDDIT
0.0%

5.0%

10.0%

15.0%

F1
-m

ic
ro

 
 o

ve
r 

G
IN

us
 (%

)

Figure 7.4: Ablation study of G2GNN where we report the im-
provement over GINus due to its simplicity and effectiveness
(seen in Table 7.2) for understanding relative improvements of
each G2GNN component.

In this section, we conduct an ablation

study to fully understand the effect of

each component in G2GNN on alleviat-

ing the imbalance issue. In Figure 7.4,

we present performance improvement

over the baseline GINus achieved by

our proposed framework (G2GNNe(n))

along with variants that remove the GoG

propagation (G2GNNe(n) (w/o kNN))

91



Figure 7.5: (a)-(b): Relationship between neighborhood number, edge homophily, and performance on MU-
TAG and DHFR. The performance first increases and then decreases as the number of neighborhoods in-
creases on GkNN. The reported result here is averaged over 20 runs. (c)-(d): Relationship between augmenta-
tion ratio δ and performance on MUTAG and PROTEINS. The performance first increases and then decreases
as augmentation ratio increases. The reported result here is averaged over 20 runs.

and remove the topological augmentation

(G2GNN∅). (1) We notice that solely employing GoG propagation (G2GNN∅) increases the performance on

all datasets according to F1-macro, demonstrating the effectiveness of GoG propagation in alleviating the im-

balance issue. (2) Augmenting via removing edges hurts the performance of MUTAG. This is because the size

of each graph in MUTAG is relatively small and thus removing edges may undermine crucial topological in-

formation related to downstream classification. (3) We observe that the proposed GoG propagation and graph

augmentation generally achieve more performance boost on F1-macro than F1-micro. This is because the

derived supervision significantly enhances the generalizability of training data in minority classes. However,

for the majority of classes where the majority of training instances already guarantee high generalizability,

the enhancement would be minor. (4) Combining GoG propagation and graph augmentation is better than

only applying one of them in most cases, which indicates that the extra supervision derived by globally bor-

rowing neighboring information and locally augmenting graphs are both beneficial to downstream tasks and

not overlapped with each other as the accumulating benefit shown here. (5) On NCI1, despite the minor im-

provement of applying only one of the proposed two modules, combining them leads to significant progress.

This is because instead of propagating original graphs’ representations, we leverage augmented graphs in

GoG propagation, and the derived local supervision is further enhanced by the global propagation to create

more supervision and enhance the model generalizability on the minority.

7.4.5 Further Probe

Effect of Neighborhood Numbers. Here, we investigate the influence of the number of neighboring graphs

on the performance of G2GNNn on MUTAG and DHFR. The experimental setting is the same as Section 7.4.1

except that we alter the k among {1, 2, ..., 9}. In Figure 7.5(a)-(b), we see that both the F1-macro and F1-

micro increase first as k increases to 2 on MUTAG and 3 on DHFR since higher k means more number of

neighboring graphs sharing the same label, as the homophily level at this stage is generally higher given

92



the red line, therefore we derive more beneficial supervision. However, as we further increase k to 6, the

performance begins to decrease since most of the added neighborhoods share different labels due to low

homophily in this middle stage, providing adverse information that compromises classification. In the last

stage, the performance gradually becomes stable when k increases beyond 6. This is because directly linking

each graph with its 6-top similar graphs leads to a very dense GoG, and propagation on this dense GoG

directly incorporates information from most of the other graphs, and therefore, the neighboring information

that each graph receives is too noisy and useless.

Effect of augmentation ratio. Then we investigate the effect of augmentation ratio δ among {0.1, 0.2, ..., 0.9}

on the performance of G2GNNn on MUTAG and G2GNNe on PROTEINS. In Figure 7.5, we see that the F1-

macro on MUTAG and PROTEINS first increase and then decrease. This is because increasing the augmen-

tation ratio would initially generate abundant unseen graphs and enhance the model generalizability, which

conforms to the advantage of harder contrastive learning concluded in [197]. However, as we increase the

augmentation ratio, the performance decreases because graphs of one class may be over-augmented, which

destroys the latent relationship between graphs and their class or even mismatch graphs with other classes.

Efficient Analysis. Furthermore, we compare the efficiency of each model in Table 7.3 where the running

time is averaged across 10 times. Without equipping any imbalance-tailored operation, GIN achieves the

shortest running time. Equipping reweighting as GINrw is faster than equipping upsampling as GINus since

upsampling increases the size of the dataset. Our proposed G2GNN and its variants generally have longer

running time due to topological augmentation and graph-level propagation.

Table 7.3: Running time (in seconds) of different models.

Dataset GIN GINus GINrw G2GNN∅ G2GNNe G2GNNn

MUTAG 5.2 8.9 5.6 16.8 24.4 22.6
PROTEINS 24.3 40.7 25.3 111.1 155.7 153.0

7.5 Conclusion

In this chapter, we focused on imbalanced graph classification. Unlike the node imbalance problem where

we can propagate neighboring nodes’ information to obtain extra supervision, graphs are isolated and have

no connections. Therefore, we employ a kernel-based Graph of Graph (GoG) construction to establish a

kNN graph and devise a two-level propagation to derive extra supervision from neighboring graphs globally.

Moreover, we employ local augmentation and upsampling of minority graphs to enhance the model gener-

alizability in discerning unseen non-training (especially minority) graphs. Experiments on seven real-world

datasets demonstrate the effectiveness of G2GNN in relieving the graph imbalance issue.

93



CHAPTER 8

Bias Issue: Overcoming the Social Interactional Bias Issue in Node Classification

Graph Neural Networks (GNNs) have shown great power in learning node representations on graphs. How-

ever, they may inherit historical prejudices from training data, leading to discriminatory bias in predictions.

Although some work has developed fair GNNs, most of them directly borrow fair representation learning

techniques from non-graph domains without considering the potential problem of sensitive attribute leakage

caused by feature propagation in GNNs. However, we empirically observe that feature propagation could

vary the correlation of previously innocuous non-sensitive features to the sensitive ones. This can be viewed

as a leakage of sensitive information which could further exacerbate discrimination in predictions. Thus,

we design two feature masking strategies according to feature correlations to highlight the importance of

considering feature propagation and correlation variation in alleviating discrimination. Motivated by our

analysis, we propose a Fair View Graph Neural Network (FairVGNN) to generate fair views of features by

automatically identifying and masking sensitive-correlated features considering correlation variation after

feature propagation. Given the learned fair views, we adaptively clamp weights of the encoder to avoid using

sensitive-related features. Experiments demonstrate that FairVGNN enjoys a better trade-off between model

utility and fairness.1

8.1 Introduction

As the world becomes more connected, graph mining plays a crucial role in many domains, such as drug

discovery and recommendation systems [74, 59, 51]. As one of its major branches, learning informative node

representation is a fundamental solution to many real-world problems such as node classification and link

prediction [112, 21]. Numerous data-driven models have been developed for learning node representations,

among which Graph Neural Networks (GNNs) have achieved unprecedented success owing to the combina-

tion of neural networks and feature propagation [15, 29, 26]. Despite the significant progress of GNNs in

capturing higher-order neighborhood information [24], leveraging multi-hop dependencies [112], and recog-

nizing complex local topology contexts [214], predictions of GNNs have been demonstrated to be unfair and

perpetuate undesirable discrimination [215, 216, 217, 218, 219].

Recent studies have revealed that historical data may include previous discriminatory decisions domi-

nated by sensitive features [220, 221]. Thus, node representations learned from such data may explicitly

inherit the existing societal biases and exhibit unfairness when applied in practice. Besides the sensitive

1https://dl.acm.org/doi/10.1145/3534678.3539404

94

https://dl.acm.org/doi/10.1145/3534678.3539404


features, network topology also serves as an implicit source of societal bias [215, 222]. By the principle of

network homophily [172], nodes with similar sensitive features tend to form closer connections than dissim-

ilar ones. Since feature propagation smooths representations of neighboring nodes while separating distant

ones, representations of nodes in different sensitive groups are further segregated and their corresponding

predictions are unavoidably over-associated with sensitive features.

Besides the above topology-induced bias, feature propagation could introduce another potential issue,

termed as sensitive information leakage. Since feature propagation naturally allows feature interactions

among neighborhoods, the correlation between two feature channels is likely to vary after feature propa-

gation, which is termed as correlation variation. As such, some original innocuous feature channels that

have a lower correlation to sensitive channels and encode less sensitive information may become highly

correlated to sensitive ones after feature propagation and hence encode more sensitive information, termed

sensitive attribute leakage. Some research efforts have been invested in alleviating discrimination made by

GNNs. However, they either borrow approaches from traditional fair representation learning such as bi-level

optimization-based debiasing [215, 219] and contrastive learning [223] or directly debiasing node features

and graph topology [218, 222] while overlooking the sensitive attribute leakage caused by correlation varia-

tion.

In this work, we study a novel and detrimental phenomenon where feature propagation can vary feature

correlations and cause the leakage of sensitive information to innocuous features. To address this issue, we

propose a principled framework, Fair View Graph Neural Network (FairVGNN) to effectively learn fair node

representations and avoid sensitive attribute leakage. Our major contributions are as follows:

• Problem: We investigate the novel phenomenon that feature propagation could vary feature correlations

and cause sensitive attribute leakage to innocuous feature channels.

• Algorithm: To prevent sensitive attribute leakage, we propose a novel framework, FairVGNN, to automat-

ically learn fair views by identifying and masking sensitive-correlated channels and adaptively clamping

weights to avoid leveraging sensitive-related features in learning fair node representations.

• Evaluation: We perform experiments on real-world datasets to corroborate that FairVGNN can approxi-

mate the model utility while reducing discrimination.

8.2 Related Work

Most prior work on GNNs exclusively focus on optimizing the model utility while totally ignoring the bias en-

coded in the learned node representations, which would unavoidably cause social risks in high-stake discrim-

inatory decisions [222]. FairGNN [215] leverages a sensitive feature estimator to enhance the amount of sen-

95



sitive attributes, which greatly benefits their bi-level optimization-based debiasing procedure. NIFTY [218]

proposes a novel triplet-based objective function and a layer-wise weight normalization using the Lipschitz

constant to promote counterfactual fairness and stability of the resulting node representations. EDITS [222]

systematically summarizes the biased node representation learning into attribute and structure bias and em-

ploys the Wasserstein distance approximator to alternately debias node features and network topology. More

recently, REFEREE [224] was proposed to provide structural explanations of bias in GNNs. Unlike previ-

ous work, we study a novel problem that feature propagation could cause correlation variation and sensitive

leakage to innocuous features, and our proposed framework, FairVGNN, expects to learn which feature chan-

nels should be masked to alleviate discrimination considering the effect of correlation variation. Others have

recently explored this concept of varying correlation during feature propagation towards developing deeper

GNNs [225]. Besides the fairness issue by sensitive attributes, bias can also come from the node degree [60],

graph condensation[226], or even class distribution [8], which we leave for future investigations.

8.3 Preliminaries

8.3.1 Fairness in Machine Learning

Group fairness and individual fairness are two commonly encountered fairness notions in real life [221].

Group fairness emphasizes that algorithms should not yield discriminatory outcomes for any specific demo-

graphic group [222] while individual fairness requires that similar individuals be treated similarly [227]. Here

we focus on group fairness with a binary sensitive feature, i.e., S ∈ {0, 1}n. Following [215, 218, 222], we

employ the difference of statistical parity and equal opportunity between two different sensitive groups, to

evaluate the model fairness:

∆sp = |P (ŷ = 1|s = 0)− P (ŷ = 1|s = 1)|, (8.1)

∆eo = |P (ŷ = 1|y = 1, s = 0)− P (ŷ = 1|y = 1, s = 1)|, (8.2)

where ∆sp(∆eo) measures the difference of the independence level of the prediction ŷ (true positive rate) on

the sensitive feature s between two groups. Since group fairness expects algorithms to yield similar outcomes

for different demographic groups, fairer machine learning models seek lower ∆sp and ∆eo.

8.4 Sensitive Attribute Leakage and Correlation Variation

In this section, we study the phenomenon where sensitive information leaks to innocuous feature channels

after their correlations to the sensitive feature increase during feature propagation in GNNs, which we define

as sensitive attribute leakage. We first empirically verify feature channels with higher correlation to the

96



Figure 8.1: Initial empirical investigation on sensitive leakage and correlation variation on German dataset.
(a)-(b) visualize the relationships between model utility/fairness and the sensitive correlation ρi of each
masked feature channel2. Masking channel with less sensitive correlation leads to more biased predictions
and sometimes higher model utility. (c)-(d) shows the correlation variation caused by feature propagation
on German and Credit datasets. In (c), we can see sensitive correlations of the 2nd and 7th feature channel
significantly change after propagation while in (d), the correlations do not change so much.

sensitive channel would cause more discrimination in predictions [228]. We denote the Pearson correlation

coefficient of the ith-feature channel to the sensitive channel as sensitive correlation and compute it as:

ρi =
Evj∼V

(
(Xji − µi)(Sj − µs)

)
σiσs

,∀i ∈ {1, 2, ..., d}, (8.3)

where µi, σi denote the mean and standard deviation of the channel X:i. Intuitively, higher ρi indicates that

the ith-feature channel encodes more sensitive-related information, which would impose more discrimination

in the prediction. To further verify this assumption, we mask each channel and train a 1-layer MLP/GCN

followed by a linear layer to make predictions. As suggested by [218], we do not add any activation function

in the MLP/GCN to avoid capturing any nonlinearity.

Figure 8.1(a)-(b) visualize the relationships between the model utility/bias and the sensitive correlation

of each masked feature channel. We see that the discrimination still exists even though we mask the sensitive

channel (1st). Compared with no masking situation, ∆sp and ∆eo almost always become lower when we

mask other non-sensitive feature channels (2nd-4th), which indicates the leakage of sensitive information

to other non-sensitive feature channels. Moreover, we observe the decreasing trend of ∆sp and ∆eo when

masking channels with higher sensitive correlation since these channels encode more sensitive information

and masking them would alleviate more discrimination.

Following the above observation, one natural way to prevent sensitive attribute leakage and alleviate dis-

crimination is to mask the sensitive features as well as their highly-correlated non-sensitive features. How-

ever, feature propagation in GNNs could change feature distributions of different channels and consequen-

tially vary feature correlations as shown by Figure 8.1(c) where we visualize the sensitive correlations of the

first 8 feature channels on German after a certain number of propagations. Correlations between the sensitive

97



Table 8.1: Evaluating model utility/fairness when using strategies of feature masking (or no masking).

Encoder Strategy German Credit
AUC F1 ∆sp ∆eo AUC F1 ∆sp ∆eo

GCN
S0 74.11 82.46 35.17 25.17 73.86 81.92 12.86 10.63
S1 73.78 81.65 11.39 9.60 72.92 81.84 12.00 9.70
S2 72.75 81.70 8.29 6.91 72.92 81.84 12.00 9.70

GIN
S0 72.71 82.78 13.56 9.47 74.36 82.28 14.48 12.35
S1 71.66 82.50 3.01 1.72 73.44 83.23 14.29 11.79
S2 70.77 83.53 1.46 2.67 73.28 83.27 13.96 11.34

features and other channels change after propagation. For example, some feature channels that are originally

irrelevant to the sensitive one, such as the 7th feature channel, become highly-correlated and hence encode

more sensitive information.

After observing that feature propagation could vary feature correlation and cause sensitive attribute leak-

age, we devise two simple but effective masking strategies to highlight the importance of considering cor-

relation variation and sensitive attribute leakage in alleviating discrimination. Specifically, we first compute

sensitive correlations of each feature channel according to 1) the original features ρorigin and 2) the propagated

features ρprop. Then, we manually mask top-k feature channels according to the absolute values of correla-

tion given by ρorigin and ρprop, respectively, and train MLP/GCN/GIN on German/Credit dataset shown in

Table 8.1. Detailed experimental settings are presented in Section 8.3. From Table 8.1, we have the following

insightful observations: (1) Within the same encoder, masking sensitive and its related feature channels (S1,

S2) would alleviate the discrimination while downgrading the model utility compared with no-masking (S0).

(2) GCN achieves better model utility but causes more bias than MLP on German and Credit. This implies

graph structures also encode bias, and leveraging them could aggravate prediction discrimination, which is

consistent with recent work [215, 222]. (3) Most importantly, S2 achieves lower ∆sp,∆eo than S1 for both

MLP and GCN on German because the rank of sensitive correlation changes after feature propagation and

masking according to S2 leads to better fairness, which highlights the importance of considering feature

propagation in determining which feature channels are more sensitive-correlated and required to be masked.

To this end, we argue that it is necessary to consider feature propagation in masking feature channels to

alleviate discrimination. However, the correlation variation heavily depends on the propagation mechanism

of GNNs. To tackle this challenge, we formulate our problem as follows:

Given an attributed network G = (V, E ,X,A) with labels Y for a subset of nodes Vl ⊂ V , we aim to

learn a fair view generator gΘg
: gΘg

(X) → X̃ with the expectation of simultaneously preserving task-

related information and discarding sensitive information such that the downstream node classifier fΘf
:

fΘf
(A, X̃) → Y trained on X̃ could achieve better trade-off between model utility and fairness.

2We respectively mask each feature channel and train a 1-layer MLP/GCN followed by a linear prediction layer. Dataset and
experimental details are given in Section 8.6.1.

98



8.5 Framework

In this section, we give a detailed description of FairVGNN (shown in Figure 8.2), which includes the bi-level

optimization-based debising module and the adaptive weight clamping module. In the first module, we learn

a generator that generates different fair views of features to obfuscate the sensitive discriminator such that

the encoder could obtain fair node representations for downstream tasks. In the second module, we propose

to clamp weights of the encoder based on learned fair feature views and provide a theoretical justification

on its equivalence to minimizing the upper bound of the difference of representations between two different

sensitive groups. Next, we introduce the details of each component.

8.5.1 Bi-level optimization-based debising

This module includes a fair view generator gΘg , a GNN-based encoder fΘf
, a sensitive discriminator dΘd

,

and a classifier cΘc
parametrized by Θg,Θf ,Θd,Θc, respectively. We assume the view generator gΘg

to be

a learnable latent distribution from which we sample K-different masks and generate K-corresponding views

X̃k, k ∈ {1, 2, ...,K}. The latent distribution would be updated towards generating less-biased views X̃ and

the stochasticity of each view would enhance the model generalizability. Then each of these K-different

views X̃k are fed to the encoder fΘf
together with the network topology A to learn node representations

H̃k for downstream classifier cΘc . Meanwhile, the learned node representations H̃k are used by the sensitive

discriminator dΘd
to predict nodes’ sensitive features. This paves us a way to adopt bi-level optimization to

obtain the optimal fair view generator gΘ∗
g

where the generated views encode as much task-relevant informa-

tion while discarding as much bias-relevant information as possible. We introduce the fairness-aware view

generator gΘg
.

Fairness-aware View Generator As observed in Table 8.1, discrimination could be traced back to the sensi-

tive features and their highly correlated non-sensitive features. Therefore, we propose to learn a view genera-

tor that automatically identifies and masks these features. More specifically, assuming the view generator as a

conditional distribution PG̃ parametrized by Θg , since bias originates from the node features X and is further

varied by the graph topology A, the conditional distribution of the view generator can be further expressed as

a joint distribution of the attribute generator and the topological generator as PG̃ = PX̃,Ã. Since our sensitive

discriminator dΘd
is directly trained on the learned node representations from GNN-based encoder fΘf

as

described in Section 8.5.1, we already consider the proximity-induced bias in alleviating discrimination and

hence the network topology is assumed to be fixed here, i.e., PΘg

X̃,Ã
= PΘg

X̃
. We will leave the joint generation

of fair features and topological views as one future work.

Instead of generating X̃ from scratch that completely loses critical information for GNN predictions, we

generate X̃ conditioned on the original node features X, i.e., PΘg

X̃
= PΘg

X̃
(·|X). Following the preliminary

99



Figure 8.2: An overview of the Fair View Graph Neural Network (FairVGNN), with two main modules: (a)
bi-level optimization-based debising to learn the fair view of features and (b) adaptive weight clamping to
clamp weights of sensitive-related channels of the encoder.

experiments, we model the generation process of X̃ as identifying and masking sensitive features and their

highly correlated features in X. One natural way is to select features according to their correlations ρi to the

sensitive features S as defined in Eq. (8.3). However, as Figure 8.1(c) shows, feature propagation in GNNs

triggers the correlation variation. Thus, instead of masking according to initial correlations that might change

after feature propagation, we train a learnable mask for feature selections in a data-driven fashion. Denote

our mask as m = [m1,m2, ...,md] ∈ {0, 1}d so that:

X̃ = X⊙m = [X⊤1 ⊙m,X⊤2 ⊙m, ...,X⊤n ⊙m], (8.4)

then learning the conditional distribution of the feature generator PΘg

X̃
(·|X) is transformed to learning a

sampling distribution of the masker PΘg
m . We assume the probability of masking each feature channel in-

dependently follows a Bernoulli distribution, i.e., mi ∼ Bernoulli(1 − pi),∀i ∈ {1, 2, ..., d} with each

feature channel i being masked with the learnable probability pi ∈ R. In this way, we can learn which

feature channels should be masked to achieve less discrimination through gradient-based techniques. Since

the generator gΘg
aims to obfuscate the discriminator dΘd

that predicts the sensitive features based on the

already-propagated node representations H̃ from the encoder fΘf
, the generated fair feature view X̃ would

consider the effect of correlation variation by feature propagation rather than blindly follow the order of the

sensitive correlations computed by the original features X. Generating fair feature view X̃ and forwarding

it through the encoder fΘf
and the classifier cΘc

to make predictions involve sampling masks m from the

100



categorical Bernoulli distribution, the whole process of which is non-differentiable due to the discreteness of

masks. Therefore, we apply Gumbel-Softmax trick [229] to approximate the categorical Bernoulli distribu-

tion. Assuming for each channel i, we have a learnable sampling score πi = [πi1, πi2] with πi1 score keeping

while πi2 score masking the channel i. Then the categorical distribution Bernoulli(1− pi) is softened by3:

pij =
exp(

log(πij)+gij
τ )∑2

k=1 exp(
log(πik)+gik

τ )
,∀j = 1, 2, i ∈ {1, 2, ..., d}, (8.5)

where gij ∼ Gumbel(0, 1) and τ is the temperature factor controlling the sharpness of the Gumbel-Softmax

distribution. Then, to generate X̃ after we sample masks m based on probability pi1, we could either directly

multiply feature channel X:i by the probability pi1 or solely append the gradient of pi1 to the sampled hard

mask4, both of which are differentiable and can be trained end to end. After we approximate the generator

gΘg
via Gumbel-Softmax, we next model the GNN-based encoder fΘf

to capture the information of both

node features X and network topology A.

GNN-based Encoder To learn from both the graph topology and node features, we employ L−layer GNNs

as our encoder-backbone to obtain node representations HL. Different graph convolutions adopt different

propagation mechanisms, resulting in different variations in feature correlations. Here we select GCN [15],

GraphSAGE [43], and GIN [18] as our encoder-backbones. In order to consider the variation induced by the

propagation of GNN-based encoders, we apply the discriminator dΘd
and classifier cΘc

on top of the obtained

node representations HL from the GNN-based encoders. Since both the classifier and the discriminator are to

make predictions, one towards sensitive groups and the other towards class labels, their model architectures

are similar. Hence, we introduce them together next.

Classifier and Discriminator Given node representations HL obtained from any L−layer GNN-based en-

coder fΘf
, the classifier cΘc

and the discriminator dΘd
predict node labels Ŷ and sensitive attributes Ŝ

as:

Ŷ = cΘc(H
L) = σ

(
MLPc(H

L)
)
, Ŝ = dΘd(H

L) = σ
(
MLPd(H

L)
)
, (8.6)

where we use two different multilayer perceptrons (MLPs): RdL → R for the classifier and the discriminator,

and σ is the sigmoid operation. After introducing the fairness-aware view generator, the GNN-based encoder,

the MLP-based classifier and the discriminator, we collect them together and perform bi-level optimization

to them with the following objective function.

Bi-level Optimization We aim to learn fair views from the original graph that encodes as much task-relevant

information while discarding as much sensitive-relevant information as possible. Therefore, we aim to op-

3We use pi1 instead of pi thereafter to represent the probability of keeping channel i.
4m = m− pi1.detach() + pi1

101



timize the whole framework from both the fairness and model utility perspectives. According to statistical

parity, to optimize the fairness metric, a fair feature view should guarantee equivalent predictions between

sensitive groups:

Θ∗g = argmin
Θg

∆sp = argmin
Θg

|P (ŷ = 1|s = 0)− P (ŷ = 1|s = 1)|, (8.7)

where P (ŷ|s) is the predicted distribution given the sensitive feature. Assuming ŷ and s are conditionally

independent given H̃ [230], to solve the global minimum of Eq. (8.7), we leverage bi-level optimization and

compute the loss of the discriminator and generator Ld,Lg as:

max
Θd

Ld = E
X̃∼PΘg

(X̃|X)

Evi∼V

(
Si log

(
dΘd(H̃

L
i )) + (1− Si) log(1− dΘd(H̃

L
i )

))
, (8.8)

min
Θg

Lg = E
X̃∼PΘg

(X̃|X)

Evi∼V
(
dΘd(H̃

L
i )− 0.5

)2
+ α||m− 1d||22, (8.9)

where H̃L
i = fΘf

(X̃i,A) and ||m − 1d||22 regularizes the mask to be dense, which avoids masking out

sensitive-uncorrelated but task-critical information. α is the hyperparameter. Intuitively, Eq. (8.8) encourages

our discriminator to correctly predict the sensitive features of each node under each generated view, and

Eq. (8.9) requires our generator to generate fair feature views that enforce the well-trained discriminator to

guess the sensitive features randomly.

In Theorem 5, we show that the global minimum of Eq. (8.8)-(8.9) is equivalent to the global minimum

of Eq. (8.7):

Theorem 5. Given h̃L as the representation of a specific node learned by L layer GNN-based encoder fΘg

and α = 0 in Eq. (8.9), the global optimum of Eq. (8.8)-(8.9) is equivalent to the one of Eq. (8.7).

Proof. Based on Proposition 1. in [231] and Proposition 4.1. in [215], the optimal discriminator is dθ∗
d
(h̃L) =

P (h̃L|s=1)

P (h̃L|s=1)+P (h̃L|s=0)
, which is exactly the probability when discriminator randomly guesses the sensitive

features. Then we further substituted it into Eq. (8.9) and the optimal generator is achieved when dθ∗
d
(h̃L) =

0.5, i.e., P (h̃L|s = 1) = P (h̃L|s = 0). Then we have:

P (ŷ = 1|s = 1) =

∫
h̃L

P (ŷ = 1|h̃L)P (h̃L|s = 1)dh̃L

=

∫
h̃L

P (ŷ = 1|h̃L)P (h̃L|s = 0)dh̃L = P (ŷ = 1|s = 0),

which is the global minimum of Eq. (8.7).

Note that node representations H̃L have already been propagated in GNN-based encoder fθf
and there-

102



fore, the optimal discriminator dθ∗
d

could identify sensitive-related features after correlation variation. Be-

sides the bi-level optimization training loss to ensure the fairness of the generated view, the classification loss

for training the classifier cθc
is used to guarantee the model utility:

min
θc

Lc = −E
X̃∼Pθg

(X̃|X)

Evi∼V

(
Yi log

(
cθc(H̃

L
i )

)
+ (1−Yi) log

(
1− cθc(H̃

L
i )

))
(8.10)

8.5.2 Adaptive Weight Clamping

Although the generator is theoretically guaranteed to achieve its global minimum by applying bi-level op-

timization, in practice the generated views may still encode sensitive information, and the corresponding

classifier may still make discriminatory decisions. This is because of the instability of the training process of

bi-level optimization [231] and the entanglement with the training classifier.

To alleviate the above issue, we propose to adaptively clamp weights of the encoder fΘf
based on the

learned masking probability distribution from the generator gΘg
. After bi-level optimization, only the sensi-

tive and its highly-correlated features would have a higher probability to be masked and therefore, declining

their contributions in H̃L by clamping their corresponding weights in the encoder would discourage the en-

coder from capturing these features and hence alleviate the discrimination. Concretely, within each training

epoch after the bi-level optimization, we compute the probability of keeping features p ∈ Rd by sampling

K masks and calculate their mean p =
∑K

k=1 m
k ∈ R. Then, assuming the weights of the first layer in the

encoder fΘf
is Wf,1 ∈ Rd1×d, we clamp it by:

Wf,1
ij =


Wf,1

ij , |Wf,1
ij | ≤ ϵ ∗ pj

sign(Wf,1
ij ) ∗ ϵ ∗ pj , |Wf,1

ij | > ϵ ∗ pj

, (8.11)

where ϵ ∈ R is a prefix cutting threshold selected by hyperparameter tuning and sign : R → {−1, 0, 1} takes

the sign of Wf,1
ij . Intuitively, feature channels masked with higher probability (remained with lower probabil-

ity pj) would have a lower threshold in weight clamping and hence their contributions to the representations

H̃L are weakened.

Next, we theoretically rationalize this adaptive weight clamping by demonstrating its equivalence to min-

imizing the upper bound of the difference of representations between two sensitive groups:

Theorem 6. Given a 1-layer GNN encoder fθf
with row-normalized adjacency matrix D−1A as the PROP

and weight matrix Wf,1 as TRAN and further assume that features of nodes from two sensitive groups in the

network independently and identically follow two different Gaussian distributions, i.e., Xs1 ∼ N (µs1 ,Σs1),

Xs2 ∼ N (µs2 ,Σs2), then the difference of representations Hs1 −Hs2 also follows a Gaussian with the 2-

103



norm of its mean µ as:

||µ||2 = ||(2χ− 1)Wf,1∆µ||2 ≤ (2χ− 1)
( d1∑
i=1

(
∑
r∈S

ϵpr∆µr +
∑

k∈NS
ϵpk∆µk)

2
)0.5 (8.12)

where ∆µ = µs1 − µs2 ∈ Rd and S,NS denote the sensitive and non-sensitive features, and χ is the

network homophily.

Proof. Substituting the row-normalized adjacency matrix D−1(A+ I), we have fθf
(X) = Wf,1D−1(A+

I)X, for any pair of nodes coming from two different sensitive groups vi ∈ V0, vj ∈ V1, we have:

fθf
(Xi)− fθf

(Xj) = Wf,1
(
D−1(A+ I)X

)
i
−Wf,1

(
D−1(A+ I)X

)
j

=Wf,1(
1

di + 1

∑
vp∈Ni∪vi

Xp −
1

dj + 1

∑
vq∈Nj∪vj

Xq),
(8.13)

if the network homophily is χ and further assuming that neighboring nodes strictly obey the network ho-

mophily, i.e., among |Ni ∪ vi| = di + 1 neighboring nodes of the center node vi, χ(di + 1) of them come

from the same feature distribution as vi while (1−χ)(di+1) of them come from the other feature distribution

as vj , then symmetrically we have:

1

di + 1

∑
vp∈Ni∪vi

Xp ∼ N
(
χµs1 + (1− χ)µs2 , (di + 1)−1(χΣs1 + (1− χ)Σs2)

)
,

1

dj + 1

∑
vq∈Nj∪vj

Xq ∼ N
(
χµs2 + (1− χ)µs1 , (dj + 1)−1(χΣs2 + (1− χ)Σs1)

)
. (8.14)

Combining Eq. (8.14) and Eq. (8.13), the distribution of their difference would also be a Gaussian

fθf
(Xi)− fθf

(Xj) ∼ N (µ,Σ), where:

µ = Wf,1(χµs1 + (1− χ)µs2 − χµs2 − (1− χ)µs1
)
= (2χ− 1)Wf,1∆µ (8.15)

Σ = Wf,1((di + 1)−1(χΣs1 + (1− χ)Σs2) + (dj + 1)−1(χΣs2 + (1− χ)Σs1)
)
Wf,1⊤ (8.16)

Taking the 2−norm on the mean µ, splitting channels into sensitive ones S and non-sensitive ones NS ,

i.e., {1, 2, ..., d} = S ∪ NS and expanding µ based on the input channel, we have:

||(2χ− 1)Wf,1∆µ||2 = (2χ− 1)
( d1∑

i=1

(
∑
r∈S

Wf,1
ir ∆µr +

∑
k∈NS

Wf,1
ik ∆µk)

2)0.5, (8.17)

where Wf,1
ir ,Wf,1

ik represent the weights of the encoder from feature channel r(k) to the hidden neuron i.

Since we know that |Wf,1
ir | ≤ ϵpr, |Wf,1

ik | ≤ ϵpk,∀r ∈ S, k ∈ NS, we substitute the upper bound here into

Eq. (8.17) and finally end up with:

||µ||2 = ||(2χ− 1)Wf,1∆µ||2 ≤ (2χ− 1)
( d1∑
i=1

(
∑
r∈S

ϵpr∆µr +
∑

k∈NS
ϵpk∆µk)

2
)0.5

.

104



Algorithm 2: The algorithm of FairVGNN
Input: an attributed graph G = (V, E,X,A,Y), Classifier cΘc , Encoder fΘf

, Generator gΘg , Discriminator dΘd
, K

Output: Learned fairness attribute X̃ and Predictions Ŷ
1 while not converged do
2 π ←W

gΘg

3 for k ← 1 to K do
4 mk ∼ Gumbel-softmax(π) , X̃k ← X⊙mk , // Section 8.5.1

5 H̃L,k
i ← fΘf

(X̃k,A), ĤL,k
i ← stopgrad(H̃L,k

i ) // Section 8.5.15

6 for epoch← 1 to epochd do

7 Ld ←
K∑

k=1

∑
vi∈V

[Si log(dΘd
(ĤL,k

i )) + (1− Si) log(1− dΘd
(ĤL,k

i ))]

8 Θd ← Θd +∇Θd
Ld, Θf ← Θf +∇Θf

Lf // Section 8.5.1

9 for epoch← 1 to epochc do

10 Lc ←
K∑

k=1

∑
vi∈V

[Yi log(cΘc (H̃
L,k
i )) + (1−Yi) log(1− cΘc (H̃

L,k
i ))]

11 Θc ← Θc −∇ΘcLc, Θf ← Θf −∇Θf
Lf // Section 8.5.1

12 for epoch← 1 to epochg do

13 Lkg ←
K∑

k=1

∑
vi∈V

||dΘd
(H̃L,k

i )− 0.5||22,

14 Θg ← Θg −∇ΘgLg , Θf ← Θf −∇Θf
Lf // Section 8.5.1

15 Θf ← Clamp(Θf ,
K∑

k=1
mk) // Section 8.5.2

16 X̃ =
K∑

k=1
X̃k, Ŷ = cΘc (fΘf

(X̃,A))

17 return X̃, Ŷ

The left side of Eq. (8.12) is the difference of representations between two sensitive groups, and if it is

large, i.e., ||µ||2 is very large, then the predictions between these two groups would also be very different,

which reflects more discrimination in terms of the group fairness. Additionally, Theorem 6 indicates that the

upper bound of the group fairness between two sensitive groups depends on the network homophily χ, the

initial feature difference ∆µ and the masking probability p. As the network homophily χ decreases, more

neighboring nodes come from the other sensitive group, and aggregating information of these neighborhoods

would smooth node representations between different sensitive groups and reduce the bias. To the best of

our knowledge, this is the first work relating fairness with the network homophily. Furthermore, Eq. (8.12)

proves that clamping weights of the encoder Wf,1 upper bounds the group fairness.

8.5.3 Training Algorithm

Compared to vanilla bi-level optimization, additional computational of FairVGNN comes from generating K

different masks. However, since within each training epoch, we can pre-compute the masks as Step 4 before

bi-level optimization and the total number of views K becomes constant compared with the whole time used

for bi-level optimization as Step 6-14, the time complexity is still linear proportional to the size of the whole

graph, i.e., O(|V| + |E|). The total model complexity includes parameters of the feature masker O(2d), the

discriminator/classifier O(2dL) and the encoder O(d
∏L

l=1 d
l), which boils down to O(maxi∈{0,...,L}(d

i)L),

the same as any other L-layer GNN backbones.

105



8.6 Experiment

8.6.1 Experimental Settings

Datasets. We validate the approach on three benchmark datasets [218, 222] with their statistics shown below.

Table 8.2: Basic dataset statistics for bias evaluation in node classification.

Dataset German Credit Bail
# Nodes 1000 30,000 18,876
# Edges 22,242 1,436,858 321,308
# Features 27 13 18
Sens. Gender Age Race
Label Good/bad Credit Default/no default Payment Bail/no bail

Since different GNN-backbones may cause different levels of sensitive attribute leakage, we consider

equipping each of the above three bias-alleviating methods with three GNN-backbones: GCN [15], GIN [18],

GraphSAGE [43], e.g., GCN-NIFTY represents the GCN encoder with NIFTY.

Setup. Our proposed FairVGNN is implemented using PyTorch-Geometric [47]. For EDITS6, NIFTY7 and

FairGNN8, we use the original code from the authors’ GitHub repository. We aim to provide a rigorous

and fair comparison between different models on each dataset by individually tuning hyperparameters for all

models. The detailed hyperparameter configuration of each baseline is in Appendix 8.8.1. Following [218]

and [222], we use 1-layer GCN, GIN convolution and 2-layer GraphSAGE convolution respectively as our

encoder fΘf
, and use 1 linear layer as our classifier cΘc and discriminator dΘd

. The detailed GNN architec-

ture is described in Appendix 8.8.1. We fix the number of hidden units of the encoder fΘf
as 16, the dropout

rate as 0.5, and the number of generated fair feature views during each training epoch K = 10. The learning

rates and the training epochs of the generator gΘg , the discriminator dΘd
, the classifier cΘc and the encoder

fΘf
are searched from {0.001, 0.01} and {5, 10}, the prefix cutting threshold ϵ in Eq. (8.11) is searched

from {0.01, 0.1, 1}, the whole training epochs as 200, 300, 400, and α ∈ {0, 0.5, 1}. We use the default data

splitting following [218, 222], and experimental results are averaged over five repeated executions with five

different seeds to remove any potential initialization bias.

8.6.2 Node Classification

Performance comparison The model utility and fairness of each baseline is shown in Table 8.3. We observe

that our FairVGNN consistently performs the best compared with other bias-alleviating methods in terms

of the average rank for all datasets and across all evaluation metrics, which indicates the superiority of our

model in achieving a better trade-off between model utility and fairness. Since no fairness regularization is

6https://github.com/yushundong/edits
7https://github.com/chirag126/nifty
8https://github.com/EnyanDai/FairGNN

106

https://github.com/yushundong/edits
https://github.com/chirag126/nifty
https://github.com/EnyanDai/FairGNN


Figure 8.3: (a): Model bias without discriminator/generator. (b): Results of prefix cutting threshold.

imposed on GNN encoders equipped with vanilla methods, they generally achieve better model utility. How-

ever, for this reason, sensitive-related information is also completely free to be encoded in the learned node

representations and hence causes higher bias. To alleviate such discrimination, all other methods propose

different regularizations to constrain sensitive-related information in learned node representations, removing

some task-related information and hence sacrificing model utility as expected in Table 8.3. However, we do

observe that our model can yield lower biased predictions with less utility sacrifice, which is mainly ascribed

to two reasons. Firstly, we generate different fair feature views by randomly sampling masks from learned

Gumbel-Softmax distribution and make predictions. This can be regarded as a data augmentation technique

by adding noise to node features, which decreases the population risk and enhances the model generalibil-

ity [193] by creating novel mapping from augmented training points to the label space. Secondly, the weight

clamping module clamps weights of encoder based on feature correlations to the sensitive feature channel,

which adaptively remove/keep the sensitive/task-relevant information.

Ablation study Next, we conduct the ablation study to fully understand the effect of each component of

FairVGNN on alleviating discrimination. Concretely, we denote FairV w/o fm as removing the module

of generating fair feature views, FairV w/o wc as removing the module of adaptive weight clamping, and

FairV w/o fm&wc as removing both of these two modules. Since computing thresholds in adaptive weight

clamping needs the probability of feature masking from fair feature view generation in Eq. (8.11), we instead

directly take the prefix value ϵ without pi as our cutting threshold in FairV w/o fm. The utility and bias

of these variants are presented in Table 8.4. We observe that FairV w/o fm and FairV w/o wc perform

worse than FairV, which validates the effectiveness of different components in FairV for learning fair node

representations. Furthermore, the worse performance of FairV w/o fm&wc than FairV w/o fm and FairV w/o

wc indicates the proposed two modules alleviate discrimination from two different aspects and their effects

could be accumulated together. In most cases, FairV w/o fm achieves more bias than FairV w/o wc. This is

because the original clamping threshold of sensitive feature channels ϵ ∗ pi would be replaced by a higher

threshold ϵ, which allows more sensitive information leakage to predictions.

107



Ta
bl

e
8.

3:
M

od
el

ut
ili

ty
an

d
bi

as
of

no
de

cl
as

si
fic

at
io

n.
W

e
co

m
pa

re
th

e
pr

op
os

ed
Fa

ir
V

G
N

N
(i

.e
.,

Fa
ir

V
)

ag
ai

ns
ts

ta
te

-o
f-

th
e-

ar
tb

as
el

in
es

N
IF

T
Y,

E
D

IT
S,

an
d

Fa
ir

G
N

N
(i

.e
.,

Fa
ir

)w
he

n
eq

ui
pp

ed
w

ith
va

ri
ou

s
G

N
N

ba
ck

bo
ne

s
(i

.e
.,

G
C

N
,G

IN
,a

nd
SA

G
E

).
T

he
be

st
an

d
ru

nn
er

-u
p

re
su

lts
ar

e
bo

ld
ed

an
d

un
de

rl
in

ed
.

E
nc

od
er

M
et

ho
d

G
er

m
an

C
re

di
t

B
ai

l
Av

g.
(R

an
k)

A
U

C
(↑

)
F1

(↑
)

A
C

C
(↑

)
∆

sp
(↓

)
∆

eo
(↓

)
A

U
C

(↑
)

F1
(↑

)
A

C
C

(↑
)

∆
sp

(↓
)

∆
eo

(↓
)

A
U

C
(↑

)
F1

(↑
)

A
C

C
(↑

)
∆

sp
(↓

)
∆

eo
(↓

)

G
C

N

V
an

ill
a

74
.1

1±
0.

37
82

.4
6±

0.
89

73
.4

4±
1.

09
35

.1
7±

7.
27

25
.1

7±
5.

89
73

.8
7±

0.
02

81
.9

2±
0.

02
73

.6
7±

0.
03

12
.8

6±
0.

09
10

.6
3±

0.
13

87
.0

8±
0.

35
79

.0
2±

0.
74

84
.5

6±
0.

68
7.

35
±

0.
72

4.
96
±

0.
62

9.
17

N
IF

T
Y

68
.7

8±
2.

69
81

.4
0±

0.
54

69
.9

2±
1.

14
5.

73
±

5.
25

5.
08
±

4.
29

71
.9

6±
0.

19
81

.7
2±

0.
05

73
.4

5±
0.

06
11

.6
8±

0.
07

9.
39
±

0.
07

78
.2

0±
2.

78
64

.7
6±

3.
91

74
.1

9±
2.

57
2.

44
±

1.
29

1.
72
±

1.
08

9.
69

E
D

IT
S

69
.4

1±
2.

33
81

.5
5±

0.
59

71
.6

0±
0.

89
4.

05
±

4.
48

3.
89
±

4.
23

73
.0

1±
0.

11
81

.8
1±

0.
28

73
.5

1±
0.

30
10

.9
0±

1.
22

8.
75
±

1.
21

86
.4

4±
2.

17
75

.5
8±

3.
77

84
.4

9±
2.

27
6.

64
±

0.
39

7.
51
±

1.
20

9.
89

Fa
ir

G
N

N
67

.3
5±

2.
13

82
.0

1±
0.

26
69

.6
8±

0.
30

3.
49
±

2.
15

3.
40
±

2.
15

71
.9

5±
1.

43
81

.8
4±

1.
19

73
.4

1±
1.

24
12

.6
4±

2.
11

10
.4

1±
2.

03
87

.3
6±

0.
90

77
.5

0±
1.

69
82

.9
4±

1.
67

6.
90
±

0.
17

4.
65
±

0.
14

9.
17

Fa
ir

V
G

N
N

72
.4

1±
2.

10
82

.1
4±

0.
42

70
.1

6±
0.

86
1.

71
±

1.
68

0.
88
±

0.
58

71
.3

4±
0.

41
87

.0
8±

0.
74

78
.0

4±
0.

33
5.

02
±

5.
22

3.
60
±

4.
31

85
.6

8±
0.

37
79

.1
1±

0.
33

84
.7

3±
0.

46
6.

53
±

0.
67

4.
95
±

1.
22

5.
67

G
IN

V
an

ill
a

72
.7

1±
1.

44
82

.7
8±

0.
50

73
.8

4±
0.

54
13

.5
6±

5.
23

9.
47
±

4.
49

74
.3

6±
0.

21
82

.2
8±

0.
64

74
.0

2±
0.

73
14

.4
8±

2.
44

12
.3

5±
2.

86
86

.1
4±

0.
25

76
.4

9±
0.

57
81

.7
0±

0.
67

8.
55
±

1.
61

6.
99
±

1.
51

9.
56

N
IF

T
Y

67
.6

1±
4.

88
80

.4
6±

3.
06

69
.9

2±
3.

64
5.

26
±

3.
24

5.
34
±

5.
67

70
.9

0±
0.

24
84

.0
5±

0.
82

75
.5

9±
0.

66
7.

09
±

4.
62

6.
22
±

3.
26

82
.3

3±
4.

61
70

.6
4±

6.
73

74
.4

6±
9.

98
5.

57
±

1.
11

3.
41
±

1.
43

8.
56

E
D

IT
S

69
.3

5±
1.

64
82

.8
0±

0.
22

72
.0

8±
0.

66
0.

86
±

0.
76

1.
72
±

1.
14

72
.3

5±
1.

11
82

.4
7±

0.
85

74
.0

7±
0.

98
14

.1
1±

14
.4

5
15

.4
0±

15
.7

6
80

.1
9±

4.
62

68
.0

7±
5.

30
73

.7
4±

5.
12

6.
71
±

2.
35

5.
98
±

3.
66

11
.3

6
Fa

ir
G

N
N

72
.9

5±
0.

82
83

.1
6±

0.
56

72
.2

4±
1.

44
6.

88
±

4.
42

2.
06
±

1.
46

68
.6

6±
4.

48
79

.4
7±

5.
29

70
.3

3±
5.

50
4.

67
±

3.
06

3.
94
±

1.
49

86
.1

4±
0.

89
73

.6
7±

1.
17

77
.9

0±
2.

21
6.

33
±

1.
49

4.
74
±

1.
64

7.
64

Fa
ir

V
G

N
N

71
.6

5±
1.

90
82

.4
0±

0.
14

70
.1

6±
0.

32
0.

43
±

0.
54

0.
34
±

0.
41

71
.3

6±
0.

72
87

.4
4±

0.
23

78
.1

8±
0.

20
2.

85
±

2.
01

1.
72
±

1.
80

83
.2

2±
1.

60
76

.3
6±

2.
20

83
.8

6±
1.

57
5.

67
±

0.
76

5.
77
±

1.
26

5.
44

SA
G

E

V
an

ill
a

75
.7

4±
0.

69
81

.2
5±

1.
72

72
.2

4±
1.

61
24

.3
0±

6.
93

15
.5

5±
7.

59
74

.5
8±

1.
31

83
.3

8±
0.

77
75

.2
8±

0.
83

15
.6

5±
1.

30
13

.3
4±

1.
34

90
.7

1±
0.

69
80

.9
9±

0.
55

86
.7

2±
0.

48
2.

16
±

1.
53

0.
84
±

0.
55

7.
31

N
IF

T
Y

72
.0

5±
2.

15
79

.2
0±

1.
19

69
.6

0±
1.

50
7.

74
±

7.
80

5.
17
±

2.
38

72
.8

9±
0.

44
82

.6
0±

1.
25

74
.3

9±
1.

35
10

.6
5±

1.
65

8.
10
±

1.
91

92
.0

4±
0.

89
77

.8
1±

6.
03

84
.1

1±
5.

49
5.

74
±

0.
38

4.
07
±

1.
28

8.
06

E
D

IT
S

69
.7

6±
5.

46
81

.0
4±

1.
09

71
.6

8±
1.

25
8.

42
±

7.
35

5.
69
±

2.
16

75
.0

4±
0.

12
82

.4
1±

0.
52

74
.1

3±
0.

59
11

.3
4±

6.
36

9.
38
±

5.
39

89
.0

7±
2.

26
77

.8
3±

3.
79

84
.4

2±
2.

87
3.

74
±

3.
54

4.
46
±

3.
50

11
.3

6
Fa

ir
G

N
N

65
.8

5±
9.

49
82

.2
9±

0.
32

70
.6

4±
0.

74
7.

65
±

8.
07

4.
18
±

4.
86

70
.8

2±
0.

74
83

.9
7±

2.
00

75
.2

9±
1.

62
6.

17
±

5.
57

5.
06
±

4.
46

91
.5

3±
0.

38
82

.5
5±

0.
98

87
.6

8±
0.

73
1.

94
±

0.
82

1.
72
±

0.
70

5.
83

Fa
ir

V
G

N
N

73
.8

4±
0.

52
81

.9
1±

0.
63

70
.0

0±
0.

25
1.

36
±

1.
90

1.
22
±

1.
49

74
.0

5±
0.

20
87

.8
4±

0.
32

79
.9

4±
0.

30
4.

94
±

1.
10

2.
39
±

0.
71

91
.5

6±
1.

71
83

.5
8±

1.
88

88
.4

1±
1.

29
1.

14
±

0.
67

1.
69
±

1.
13

2.
92

Ta
bl

e
8.

4:
M

od
el

ut
ili

ty
an

d
bi

as
of

no
de

cl
as

si
fic

at
io

n
of

di
ff

er
en

tv
ar

ia
nt

s
of

Fa
ir

V
G

N
N

.T
he

be
st

an
d

ru
nn

er
-u

p
re

su
lts

ar
e

bo
ld

ed
an

d
un

de
rl

in
ed

.

E
nc

od
er

M
od

el
Va

ri
an

ts
G

er
m

an
C

re
di

t
B

ai
l

A
U

C
(↑

)
F1

(↑
)

A
C

C
(↑

)
∆

sp
(↓

)
∆

eo
(↓

)
A

U
C

(↑
)

F1
(↑

)
A

C
C

(↑
)

∆
sp

(↓
)

∆
eo

(↓
)

A
U

C
(↑

)
F1

(↑
)

A
C

C
(↑

)
∆

sp
(↓

)
∆

eo
(↓

)

G
C

N

Fa
ir

V
72

.6
9±

1.
67

81
.8

6±
0.

49
69

.8
4±

0.
41

0.
77
±

0.
39

0.
46
±

0.
34

71
.3

4±
0.

41
87

.0
8±

0.
74

78
.0

4±
0.

33
5.

02
±

5.
22

3.
60
±

4.
31

85
.6

8±
0.

37
79

.1
1±

0.
33

84
.7

3±
0.

46
6.

53
±

0.
67

4.
95
±

1.
22

Fa
ir

V
w

/o
fm

73
.6

3±
1.

14
82

.2
8±

0.
28

70
.8

8±
1.

09
5.

56
±

3.
89

4.
41
±

3.
59

72
.5

1±
0.

32
86

.1
5±

2.
18

77
.8

3±
2.

15
6.

94
±

2.
86

4.
64
±

2.
73

86
.9

8±
0.

32
78

.0
8±

0.
53

84
.5

9±
0.

29
7.

24
±

0.
26

5.
75
±

0.
68

Fa
ir

V
w

/o
w

c
72

.0
8±

1.
83

82
.7

2±
0.

50
71

.0
4±

1.
23

3.
19
±

3.
51

0.
59
±

1.
12

71
.8

0±
0.

47
87

.2
7±

0.
47

78
.4

7±
0.

34
9.

05
±

4.
55

5.
94
±

3.
61

85
.9

3±
0.

38
79

.2
2±

0.
29

85
.3

8±
0.

25
6.

61
±

0.
48

5.
82
±

0.
66

Fa
ir

V
w

/o
fm

&
w

c
74

.9
7±

0.
94

82
.3

0±
0.

67
70

.8
±

0.
88

7.
74
±

5.
05

4.
56
±

4.
15

73
.0

9±
0.

41
84

.4
8±

2.
14

76
.4

0±
2.

29
11

.9
1±

2.
34

9.
27
±

1.
98

86
.4

4±
0.

16
78

.7
5±

0.
27

84
.4

1±
0.

28
8.

32
±

0.
60

6.
34
±

0.
32

G
IN

Fa
ir

V
71

.6
5±

1.
90

82
.4

0±
0.

14
70

.1
6±

0.
32

0.
43
±

0.
54

0.
34
±

0.
41

71
.3

6±
0.

72
87

.4
4±

0.
23

78
.1

8±
0.

20
2.

85
±

2.
01

1.
72
±

1.
80

83
.2

2±
1.

60
76

.3
6±

2.
20

83
.8

6±
1.

57
5.

67
±

0.
76

5.
77
±

1.
26

Fa
ir

V
w

/o
fm

73
.7

6±
0.

77
83

.0
6±

0.
67

71
.6

8±
1.

63
2.

76
±

2.
64

0.
57
±

0.
47

71
.1

5±
0.

63
87

.0
9±

0.
7

78
.2

9±
0.

53
3.

36
±

2.
34

1.
86
±

1.
19

85
.1

2±
0.

54
77

.0
6±

0.
83

83
.1

3±
1.

19
6.

80
±

0.
28

5.
97
±

0.
64

Fa
ir

V
w

/o
w

c
72

.6
5±

1.
65

82
.7

0±
0.

30
71

.2
0±

1.
01

3.
44
±

3.
19

0.
97
±

0.
9

71
.1

3±
0.

59
87

.9
6±

0.
25

80
.0

4±
0.

22
3.

16
±

1.
28

1.
47
±

0.
72

85
.0

9±
2.

36
79

.0
7±

2.
70

85
.8

5±
2.

13
5.

24
±

1.
41

4.
33
±

2.
05

Fa
ir

V
w

/o
fm

&
w

c
73

.4
1±

1.
17

83
.2

0±
0.

44
72

.4
0±

1.
29

5.
70
±

4.
57

1.
01
±

1
72

.7
3±

0.
32

86
.1

0±
0.

59
77

.9
0±

0.
63

6.
66
±

1.
10

3.
97
±

0.
41

86
.3

2±
1.

60
79

.2
8±

1.
39

86
.0

2±
0.

40
7.

48
±

0.
71

7.
43
±

2.
38

SA
G

E

Fa
ir

V
73

.8
4±

0.
52

81
.9

1±
0.

63
70

.0
0±

0.
25

1.
36
±

1.
90

1.
22
±

1.
49

74
.0

5±
0.

20
87

.8
4±

0.
32

79
.9

4±
0.

30
4.

94
±

1.
10

2.
39
±

0.
71

91
.5

6±
1.

71
83

.5
8±

1.
88

88
.4

1±
1.

29
1.

14
±

0.
67

1.
69
±

1.
13

Fa
ir

V
w

/o
fm

73
.9

8±
1.

40
81

.3
6±

1.
45

70
.0

0±
1.

50
3.

67
±

2.
80

1.
55
±

2.
01

73
.5

8±
0.

68
83

.1
8±

2.
32

74
.9

7±
2.

49
7.

23
±

3.
91

5.
05
±

3.
17

91
.9

6±
0.

57
84

.0
4±

1.
01

88
.6

9±
0.

79
1.

51
±

1.
17

1.
59
±

0.
35

Fa
ir

V
w

/o
w

c
73

.9
3±

2.
16

82
.0

2±
0.

72
70

.1
6±

1.
25

2.
80
±

2.
79

0.
90
±

1.
06

74
.0

5±
0.

42
88

.1
0±

0.
30

80
.1

6±
0.

19
5.

09
±

1.
30

2.
67
±

0.
92

92
.0

1±
0.

74
84

.6
4±

0.
91

89
.2

4±
0.

58
2.

99
±

0.
94

1.
07
±

1.
19

Fa
ir

V
w

/o
fm

&
w

c
73

.8
7±

1.
62

80
.0

9±
1.

73
70

.0
8±

1.
17

6.
18
±

1.
31

4.
68
±

2.
38

74
.5

7±
0.

14
81

.9
1±

0.
92

73
.6

1±
1.

02
7.

27
±

3.
22

5.
03
±

3.
01

92
.0

5±
0.

89
83

.4
0±

1.
79

88
.4

4±
1.

02
3.

51
±

0.
87

2.
05
±

1.
19

108



Table 8.5: Comparison with different weight regularization with best results in bold.

Dataset (Model) Strategy AUC (↑) ACC (↑) F1 (↑) ∆sp (↓) ∆eo (↓)

German
(SAGE)

Ad wc 73.84+0.52 70.00+0.25 81.91+0.63 1.36+1.90 1.22+1.49
Wc 72.43+1.60 70.48+0.85 82.03+0.82 4.85+4.10 2.50+2.12
Sn 73.00+1.53 70.00+1.07 81.82+0.59 3.74+3.22 1.89+1.08

Credit
(GIN)

Ad wc 74.05±0.20 79.94±0.19 87.84±0.32 4.94±1.10 2.39±0.71
Wc 73.20±1.20 79.03±1.09 87.23±0.94 7.03±4.58 4.74±3.47
Sn 71.12±0.55 78.54±2.00 86.53±1.90 2.60±0.73 0.87±0.54

Bail
(GCN)

Ad wc 85.68+0.37 84.73+0.46 79.11+0.33 6.53+0.67 4.95+1.22
Wc 85.97+0.45 85.12+0.26 79.08+0.28 6.86+0.47 5.85+0.83
Sn 86.10+0.61 85.69+0.42 79.66+0.63 7.53+0.17 6.43+0.81

* Ad wc: adaptively clamp weights of the encoder; Wc: clamp weights of the encoder; Sn: spectral normalization of the encoder

8.6.3 Further Probe

Does bi-level optimization work? We first remove the weight clamping to solely study the effect of bi-level

optimization training, and then remove the discriminator/generator respectively by setting their corresponding

training epochs to be 0 and denote the corresponding models as FairVGNN w/o wc&d and FairVGNN w/o

wc&g. We re-conduct the node classification with five different initializations following the previous setting

and report the average bias in Figure 8.3(a)-(b). We can see that after removing the discriminator or generator,

the model bias becomes even higher in both situations, which indicates the importance of the competition

between the discriminator and the generator in improving the discriminative power of the discriminator to

recognize sensitive features and generating power of generator to generate fair feature views. Moreover,

since the discriminator in FairVGNN w/o wc&g can still recognize the sensitive features and then guide

the encoder to extract less sensitive-related information, the bias of FairVGNN w/o wc&g is lower than

FairVGNN w/o wc&d in most cases.

Does adaptive weight clamping work? To demonstrate the advantages of the proposed adaptive weight

clamping, we compare it with the non-adaptive weight clamping and spectral normalization, another tech-

nique of regularizing weight matrix to enhance the model robustness and counterfactual fairness [218]. The

prefix-cutting thresholds in both the adaptive and non-adaptive weight clamping are set to be the same as the

best ones tuned in Table 8.3 for SAGE/GCN/GIN to ensure a fair comparison. As shown in Table 8.5, we can

see that except for GIN, the adaptive weight clamping consistently achieves lower bias while not hurting so

much model utility. This is because for sensitive-related feature channels, multiplying the masking probabil-

ity by the prefix threshold would lower the threshold and prevent more sensitive information from leaking to

prediction through the encoder. We also investigate the influence of prefix cutting threshold ϵ in Eq. (8.11)

on the model bias/utility. Higher ϵ indicates less weight clamping on the encoder, and more sensitive-related

information is leveraged in predictions, which leads to higher bias.

109



8.7 Conclusion

In this chapter, we focus on alleviating discrimination in learned node representations and make predictions

on graphs from the perspective of sensitive leakage to innocuous features. Specifically, we empirically ob-

serve a novel problem: feature propagation could vary feature correlation and cause sensitive leakage to

innocuous feature channels, which may exacerbate discrimination in predictions. To tackle this problem,

we propose FairVGNN to automatically mask sensitive-correlated feature channels considering the effect of

correlation variation after feature propagation and adaptively clamp weights of the encoder to absorb less sen-

sitive information. Experimental results demonstrate the effectiveness of the proposed FairVGNN framework

in achieving a better trade-off between utility and fairness than other baselines. Some interesting phenomena

are also observed, such as the correlation variation depending on different datasets, and the group fairness is

related to the network homophily. Thus, one future direction would be to theoretically analyze the relation-

ships among feature propagation, network homophily, and correlation variation.

8.8 Appendix

8.8.1 Experimental Settings

Detailed Model Architecture A unified template of a graph convolutional layer is formalized as follows:

hl
i = TRANl(PROPl(hl−1

i , {hl−1
j |j ∈ Ni})), (8.18)

where Ni denotes the neighborhood set of node vi and PROPl,TRANl stand for neighborhood propagation

and feature transformation at layer l. In neighborhood propagation, neighborhood representations are prop-

agated and further fused with itself to get the intermediate representation ĥl
i. Then, the TRANl function is

applied on ĥl
i to get the final representation hl

i of node vi at layer l. Note that h0
i of node vi is typically

initialized as the original node feature Xi. After stacking L graph convolutional layers, every node aggre-

gates their neighborhood information up to L-hops away, and we denote it as HL ∈ Rn×dL

. Many graph

convolutions can be obtained under this template by configuring different PROPl and TRANl. In this work,

the encoder of FairVGNN is designed following this template.

We use GCN, GIN, and GraphSAGE as our GNN backbones for each bias-alleviating method. The basic

graph convolution layer of these three backbones, respectively, are:

Hl = D̃−0.5(A+ I)D̃−0.5Hl−1Wl, (8.19)

Hl = MLPl((A+ (1 + α)I)Hl−1), (8.20)

110



Hl = Wl,1Hl−1 +Wl,2D−1AHl−1, (8.21)

where D̃ is the degree matrix with added self-loop, Hl−1 is the node representation obtained from the previ-

ous layer and H0 = X. In this work, we only consider one graph convolution, therefore l = 1.

Hyperparameter for Each Baseline As different bias-alleviating methods have different model architec-

tures, their hyperparameters are also different and are presented respectively in the following:

• NIFTY: dropout {0.0, 0.5, 0.8}, the number of hidden unit 16, learning rate {1e−2, 1e−3, 1e−4}, project

hidden unit 16, weight decay {1e−4, 1e−5}, drop edge rate 0.001, drop feature rate 0.1, regularization

coefficient {0.4, 0.5, 0.6, 0.7, 0.8}.

• EDITS: initial learning rate 0.003, weight decay 1e−7, threshold proportions for Credit, German, and

Recidivism dataset are 0.02, 0.25, 0.012 respectively.

• FairGNN: dropout {0.0, 0.5, 0.8}, the number of hidden unit 32, learning rate {0.0001, 0.001, 0.01},

weight decay 1e−5, regularization coefficients α = 4, β = 0.01, sensitive and label number 200, 500.

111



CHAPTER 9

Bias Issue: Discovering the Degree-related Evaluation Bias in Link Prediction

Link prediction is a fundamental problem for network-structured data and has achieved unprecedented suc-

cess in many real-world applications. Despite the significant progress being made towards improving its per-

formance by characterizing underlined topological patterns or leveraging representation learning, few works

have focused on the imbalanced performance among nodes of different degrees. In this chapter, we propose a

novel problem, degree-related bias and evaluation bias, on link prediction with an emphasis on recommender

system applications. We first empirically demonstrate the performance difference among nodes with different

degrees and then theoretically prove that Recall is an unbiased evaluation metric compared with F1, NDCG

and Precision. Furthermore, we show that under the unbiased evaluation metric Recall, low-degree nodes

tend to have higher performance than high-degree nodes in link prediction. 1

9.1 Introduction

Graph-structured data is omnipresent in various fields, such as biology, chemistry, social media, and trans-

portation [188, 232]. Link prediction, as one of the most important graph-related tasks, has become a central

problem and finds its applications in predicting drug interactions, recovering knowledge graphs, and recom-

mendations [51, 233].

As well-known in many graphs (e.g. citation graphs and social networks, etc.), node degree usually

follows a power-law distribution. While the degree of major nodes is relatively small, few nodes on the long

tail have significantly high-degree. Existing works [60, 234, 63] have shown that such power-law distributed

node degree may hurt the performance of GNNs in node classification. Specifically, nodes with higher degrees

are much more likely to own labeled neighbors compared with lower-degree ones and by message-passing

mechanism, these nodes participate more frequently in the optimization and their learned representations are

more predictive of their ground-truth labels. However, we argue that this conclusion does not hold in the task

of link prediction.

On one hand, in link prediction, we are not given any golden label and hence message-passing may not

cause imbalanced training/optimization between nodes of high and low degree. On the other hand, even

given golden labels in link prediction, then each unique node would correspond to a unique label (we aim to

correctly classify all neighbors of this node to be this unique class). Therefore, the more frequent participation

of high-degree nodes in the optimization by message-passing, the more likely their representations would be

1https://ieeexplore.ieee.org/abstract/document/10031056

112

https://ieeexplore.ieee.org/abstract/document/10031056


optimized towards pairing with so many unrelated nodes, and hence their performance would decrease. As

shown in Figure 4.6, Recall@20 decreases when node degree increases, which aligns with our argument.

Note that because Normalized Discounted Cumulative Gain (NDCG), unlike Recall, is a biased evaluation

metric (as justified later in Section 9.2.1), we observe that NDCG@20 increases as the node degree increases.

9.2 Analyzing Bias in Link Prediction

Let G = (V, E) be an undirected graph, where V = {v1, v2, ..., vn} is the set of nodes with n = |V| and

E ⊆ V × V is the set of edges with m = |E|. Given the historical edges Ē that we have observed, most link

predictors expect to predict the incoming edges Ê with E = Ē ∪Ê by learning a mapping V×V → S ∈ Rn×n,

where Sij ∈ R represents how likely a link will form between vi and vj . The performance of each node vi

is evaluated by comparing the level of the alignment between its ground-truth 1-hop neighbors N̂ 1
i and its

predicted 1-hop neighbors Ñ 1
i . Specifically, for each node vi, we sort its preference scores over all nodes

Si ∈ Rn and select the top-K items to form its predicted 1-hop neighbors Ñ 1
i = {vϕk

i
}Kk=1 where ϕk

i denotes

vi’s kth preferred item selected according to the rank of Si. Assuming K < |N̂ 1
i |, then we formulate four

commonly-used evaluation metrics Recall(R), Precision(P), F1 and NDCG(N) as:

R@Ki =
|N̂ 1

i ∩ Ñ 1
i |

|N̂ 1
i |

, P@Ki =
|N̂ 1

i ∩ Ñ 1
i |

K
(9.1)

F1@Ki = 2
P@K · R@K

R@K + P@K
=

2|N̂ 1
i ∩ Ñ 1

i |
K + |N̂ 1

i |
(9.2)

N@Ki =

∑K
k=1

1[v
ϕk
i
∈(N̂ 1

i ∩Ñ
1
i )]

log2(k+1)∑
k=1

K 1
log2(k+1)

(9.3)

9.2.1 Theoretical Analysis

Before analyzing bias in link prediction with the evaluation metrics defined above, we first theoretically prove

that Recall is an unbiased evaluation metric while Precision, F1, and NDCG are biased ones. Assuming that

|N̂ 1
i ∩ Ñ 1

i | follows hyper-geometric distribution for any node vi and |N̂ 1
i | = d, the relationship between the

expectation of each evaluation and the node activity d is derived as:

Recall

E(R@K|d) = K

n
,

∂E(R@K|d)
∂d

= 0, (9.4)

Precision

E(P@K|d) = d

n
,

∂E(P@K|d)
∂d

=
1

n
, (9.5)

113



F1

E(F1@K|d) = 2K

n

d

K + d
,
∂E(F1@K|d)

∂d
=

2K2

n

1

(K + d)2
∈ (0, 1), (9.6)

NDCG

E(N@K|d) = d

n
,

∂E(N@K|d)
∂d

=
1

n
. (9.7)

For brevity, we put the detailed derivations for Eq. (9.4)-(9.7) in the Appendix. Precision, F1, and NDCG

increase as the node degree d increases and hence lead to bias in evaluating the degree-related bias in link

prediction. Note that although the node degree d is defined to be the size of the ground-truth neighborhood,

the conclusion still holds since typically, nodes with high degrees in training data would also have high

degrees in testing data assuming no degree distribution shift.

9.2.2 Empirical Analysis

We further empirically verify the above observation by leveraging an untrained link predictor to calculate

the corresponding evaluation metric. More specifically, for each node vi, we randomly select K nodes from

V and check whether the selected K nodes come from N̂i. To approximate the expectation with less error,

we average the results over 200 runs. Straightforwardly, any untrained model should output exactly the same

performance for each individual. However, it is clearly seen in Figure 9.1 that when evaluating with Precision,

F1, and NDCG, the performance still increases as the node degree increases, which is consistent with what we

derive in Section 9.2.1 and further demonstrates the evaluation bias embedded in Precision, F1, and NDCG.

9.3 Conclusion

0 10 20 30 40
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

R
ec
al
l@
20

0 10 20 30 40
0.000

0.001

0.002

0.003

0.004

Pr
ec
is
io
n@
20

0 10 20 30 40
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

F1
@
20

0 10 20 30 40
0.000

0.001

0.002

0.003

0.004

N
D
C
G
@
20

Figure 9.1: Performance under each metric w.r.t. node degrees on
Gowalla.

In this chapter, we propose a novel issue,

degree-related bias and evaluation bias,

in link prediction. We first empirically

demonstrate the imbalanced performance

of link prediction on nodes with differ-

ent degrees, which disclose the degree-

related bias in link prediction. Then, we

theoretically analyze the bias of different

evaluation metrics and prove that NDCG,

F1 and Precision are all biased towards

high-degree nodes while Recall is the only unbiased evaluation metric. When evaluating under the unbiased

114



metric Recall, we finally conclude that low-degree nodes tend to have higher performance in link prediction

than high-degree nodes.

9.4 Appendix

Degree-related Bias of Evaluation Metrics.

One previous work [4] has empirically shown the degree-related bias of evaluation metrics used in link

prediction models. Following that, we go one step further and theoretically derive the concrete format of the

evaluation bias in this section. We leverage an untrained link prediction model to study the bias. This avoids

any potential supervision signal from training over observed links and enables us to study the evaluation bias

exclusively. Since two nodes with the same degree may end up with different performances, i.e., X@Ki ̸=

X@Kj , di = dj , we model X@K|d as a random variable and expect to find the relationship between its

expectation and the node degree d, i.e., f : E(X@K|d) = f(d).

Following many existing ranking works [79, 59], we assume without loss of generalizability that the link

predictor P ranking the predicted neighbors based on their embedding similarity with embeddings noted as

E, then we have:

Lemma 2. For any untrained embedding-based link predictor P , given the existing k−1 predicted neighbors

for the node vi ∈ V , the kth predicted neighbor is generated by randomly selecting a node without replace-

ment from the remaining nodes with equal opportunities, i.e., P (vϕk
i
= v|{vϕ1

i
, vϕ2

i
, ..., vϕk−1

i
}) = 1

N−(k−1) .

Without any training, Lemma 2 trivially holds since embeddings of all nodes are the same, which trivially

leads to the following theorem:

Theorem 7. Given the untrained embedding-based link predictor P , the size of the intersection between

any node’s predicted list Ẽi and its ground-truth list Êi follows a hypergeometric distribution: |Ẽi ∩ Êi| ∼

HG(|V|,K, |Êi|) where |V| is the population size (the whole node space), K is the number of trials and |Êi|

is the number of successful states (the number of node’s ground-truth neighbors).

Proof. Given the ground-truth node neighbors Êi, the predicted neighbors Ẽi = {vϕk
i
}Kk=1 is formed by

selecting one node at a time without replacement K times from the whole node space V . Since any selected

node vϕk
i

can be classified into one of two mutually exclusive categories Êi or V\Êi and by Lemma 2, we know

that for any untrained link predictor, each unselected node has an equal opportunity to be selected in every

new trial, we conclude that |Ẽi ∩ Êi| ∼ HG(|V|,K, |Êi|) and by default E(|Ẽi ∩ Êi|) = |Ẽi| |Êi||V| = K |Êi||V| .

Furthermore, we present Theorem 8 to state the relationships between the LP performance under each

evaluation metric and the node degree:

115



Theorem 8. Given that |Ẽi ∩ Êi| follows hyper-geometric distribution, we have:

E(R@Ki|d) =
K

N
,

∂E(R@K|d)
∂d

= 0, (9.8)

E(P@K|di) =
αd

N
,

∂E(P@K|d)
∂d

=
α

N
, (9.9)

E(F1@K|d) = 2K

N

αd

K + αd
,

∂E(F1@K|d)
∂d

=
2αK2

N

1

(K + αd)2
, (9.10)

E(N@K|d) = αd

N
,

∂E(N@K|d)
∂d

=
α

N
. (9.11)

Proof.

E(R@Ki|d) = E(
|Ẽi ∩ Êi|
|Êi|

) =
E(|Ẽi ∩ Êi|)

|Êi|
=

|Êi|
|V|K

|Êi|
=

K

N
(9.12)

E(P@Ki|d) = E(
|Ẽi ∩ Êi|

K
) =

E(|Ẽi ∩ Êi|)
K

=

|Êi|
|V|K

K
=

αd

N
(9.13)

E(F1@Ki|d) = E(
2|Ẽi ∩ Êi|
K + |Êi|

) =
2E(|Ẽi ∩ Êi|)

K + αd
=

2K

N

αd

K + αd
(9.14)

E(N@Ki|d) = E(

∑K
k=1

1[v
ϕk∈(Ẽi∩Êi)]
log2(k+1)∑K

k=1 log2(k + 1)
) =

E(
∑K

k=1

1[v
ϕk∈(Ẽi∩Êi)]
log2(k+1) )∑K

k=1
1

log2(k+1)

(9.15)

To calculate the numerator DCG, i.e., E(
∑K

k=1

1[v
ϕk∈(Ẽi∩Êi)]
log2(k+1) ) in Eq. (9.15), we model the link prediction

procedure as 1) randomly select K nodes from the whole node space V; 2) calculate |Ẽi ∩ Êi|, i.e., how many

nodes among the selected nodes Ẽi are in the ground-truth neighborhood list Êi; 3) randomly select |Ẽi ∩ Êi|

slots to position nodes in Ẽi ∩ Êi and calculate DCG. The above steps can be mathematically formulated as:

K∑
i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

C(K,i)∑
j=1

p(O
(K,i)
j )

K∑
k=1

1[O
(K,i)
jk = 1]

log2(k + 1)
, (9.16)

where O(K,i) ∈ {0, 1}C(K,i)×K represents all C(K, i) possible positional indices of putting i nodes into

116



K candidate slots. Specifically O
(K,i)
j ∈ {0, 1}K indicates the jth positional configuration of i nodes where

O
(K,i)
jk = 1 if an node is positioned at kth slot and O

(K,i)
jk = 0 otherwise. Since our link predictor has no

bias in positioning nodes in the K slots by Lemma 2, we have p(O
(K,i)
j ) = 1

C(K,i) and Eq. (9.16) can be

transformed as:

K∑
i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

1

C(K, i)

C(K,i)∑
j=1

K∑
k=1

1[O
(K,i)
jk = 1]

log2(k + 1)
. (9.17)

We know that only when the kth slot is positioned a node can we have O
(K,i)
jk = 1 and among the total

C(K, i) selections, every candidate slot k ∈ {1, 2, ...,K} would be selected C(K−1, i−1) times to position

a node, which hence leads to:

C(K,i)∑
j=1

K∑
k=1

1[O
(K,i)
jk = 1]

log2(k + 1)
=

K∑
k=1

C(K − 1, i− 1)

log2(k + 1)
. (9.18)

We then substitute Eq. (9.18) into Eq. (9.17) as:

K∑
i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

1

C(K, i)

K∑
k=1

C(K − 1, i− 1)

log2(k + 1)

=

K∑
i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

C(K − 1, i− 1)

C(K, i)

K∑
k=1

1

log2(k + 1)
.

(9.19)

Further substituting Eq. (9.19) into Eq. (9.15), we finally get:

E(N@K|di) =
K∑
i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

C(K − 1, i− 1)

C(K, i)

=

K∑
i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

(K−1)!
(i−1)!(K−i)!

K!
i!(K−i)!

=
1

K

K∑
i=0

i
C(N − αd,K − i)C(αd, i)

C(N,K)︸ ︷︷ ︸
E(|Ẽi∩Êi|)

=
1

K

αd

N
∗K =

αd

N

(9.20)

Based on Theorem 8, Precision, F1, and NDCG increase as node degree increases even when no observed

links are used to train the link predictor, which informs the degree-related evaluation bias and causes the

illusion that high-degree nodes are more advantageous than low-degree ones observed in some previous

works [68, 76].

117



CHAPTER 10

Bias Issue: Overcoming the Hallucination Bias Issue in Documental Question-answering

The revolutionary success of large language models (LLMs) in numerous real-world applications is often

overshadowed by their propensity for generating inaccurate or nonsensical content. This issue, known as

hallucination bias, critically undermines its utility in scenarios requiring high-stakes decision-making. To

address this, we propose a knowledge graph prompting (KGP) method designed to ensure the generation of

accurate content by LLMs, particularly in multi-document question-answering (MD-QA) tasks. Our approach

comprises two main components: a graph construction module and a graph traversal module. For graph con-

struction, we create a knowledge graph (KG) over multiple documents with nodes symbolizing passages or

document structures (e.g., pages/tables) and edges denoting the semantic/lexical similarity between passages

or intra-document structural relations. For graph traversal, we design an LM-guided graph traverser that

navigates across nodes and gathers supporting passages assisting LLMs in MD-QA. The constructed graph

serves as the global ruler that regulates the transitional space among passages and reduces retrieval latency.

Concurrently, the LM-guided traverser acts as a local navigator that gathers pertinent context to progressively

approach the question and guarantee retrieval quality. Extensive experiments underscore the efficacy of KGP

for MD-QA, signifying the potential of leveraging graphs in enhancing the prompt design for LLMs1.

10.1 Introduction

Figure 10.1: MD-QA performance when prompting
ChatGPT with the context retrieved using different
strategies.

Due to the emergence of large language models

(LLMs), the “pre-train, prompt, predict” paradigm

has revolutionized natural language processing

(NLP) in real-world applications, such as open-

domain question answering (O-QA), fact-checking

(FC), and arithmetic reasoning (AR) [235, 236, 237,

238, 239, 240]. However, no significant efforts have

investigated this framework in the scenario of multi-

documental question answering (MD-QA), which enjoys practical usage in academic research, customer sup-

port, and financial/legal inquiries that require analysis/insights derived from multiple documents [241, 242].

To investigate the capability of LLMs for MD-QA, we randomly sample multi-document questions from

the development set of 2WikiMQA [243] and MuSiQue [244], and then prompt LLMs in four different

1https://ojs.aaai.org/index.php/AAAI/article/view/29889

118

https://ojs.aaai.org/index.php/AAAI/article/view/29889


Figure 10.2: Three popular questions that require reasoning and retrieving over passages/pages/tables from
multiple documents. (a) Bridging questions rely on sequential reasoning while (b) Comparing questions
rely on parallel reasoning over different passages. (c) Structural questions rely on fetching contents in the
corresponding document structures.

strategies for the answer2. Successfully answering these questions requires knowledge of multiple Wikipedia

documents. As shown in Figure 10.1, on 2WikiMQA and MuSiQue, directly prompting LLMs without

providing any context, i.e., None, achieves only 25.07%/10.58% F1 and 18.60%/4.60% EM on 2WikiMQA

and MuSiQue, which is far less than 59.69%/47.75% F1 and 40.20%/30.60% EM when prompting with

supporting facts3 provided as contexts, i.e., the Golden one. This demonstrates the limitation of fulfilling

MD-QA using solely the knowledge encoded in LLMs. One standard solution to overcome this limitation

in conventional O-QA and single document question-answering (D-QA) [245, 246] is to retrieve grounding

contexts and derive faithful answers from the contexts, i.e., retrieve-and-read [247, 248]. However, unlike

O-QA and D-QA, the primary challenge of MD-QA roots in its demands for alternatively retrieving and

reasoning knowledge across different documents [249, 250]. For example, successfully answering questions

in Figure 10.2(a)-(b) requires reasoning over distinct passages from two different documents (in these two

cases, Wikipedia pages). Moreover, each document is essentially a compilation of multi-modality structured

data (e.g., pages, sections, paragraphs, tables, and figures) and some questions may specifically ask for the

content in certain structures, which necessitates a comprehensive grasp of these complex document structures.

For example, the question in Figure 10.2(c) asks about the difference between Page 1 and Table 2, which is

unanswerable if leveraging heuristic methods like BM25 or deep-learning ones like DPR [237]. Building on

previous challenges, the advent of LLMs introduces new complexities.

For the challenge of alternatively retrieving and reasoning knowledge across different documents, al-

though previous works train a multi-hop retriever [251, 252] to imitate such process by sequentially fetching

the following passage based on the already-retrieved ones, none of them explore the potential of engaging

LLMs into this process. More recent works design different prompting strategies such as Chain/Tree/Graph-

of-thought [253, 254, 255, 256] to guide LLMs approaching answers progressively. However, prompting

2Detailed experimental setting is presented in Section 10.5.
3Supporting facts: passages that are assumed to contain the answer to the question.

119



non-open-sourced LLMs back and forth incurs forbiddable latency as well as unaffordable consumption. In

addition, how to integrate different document structures into the prompt design so that LLMs can understand

them is still an open-ended question.

In view of the above challenges, we propose a knowledge graph prompting (KGP) method for enhancing

LLMs in MD-QA. Specifically, we construct a knowledge graph (KG) over the given documents with nodes

symbolizing passages or document structures and edges denoting their lexical/semantic similarity between

passages or intra-document structural relations. Then, for the first challenge of alternative retrieving and

reasoning knowledge across different documents, we address it by alternatively prompting LMs to generate

the subsequent evidence to approach the question, i.e., reasoning and selecting the most promising neighbor

to visit next from the constructed KG based on the generated evidence, i.e., retrieval. Moreover, we apply

the instruction fine-tuning strategy to augment the reasoning capability of our LMs and hence refrain from

repeatedly prompting non-open-sourced LLMs for evidence generation. For the multi-modality challenge,

we add different types of nodes to the KG, characterizing different document structures and hence enabling

content retrieval within those specific structures. We highlight our contributions as follows:

• Generally-applicable KG Construction. We propose three KG construction methods over documents,

with passages or document structures as nodes and their lexical/semantical similarity or structural relations

as edges. Then, we empirically evaluate the quality of the constructed KGs in MD-QA by checking the

level of overlap between the neighborhood and the supporting facts for each question (Figure 10.4).

• Engaging KG for Prompt Formulation. We design a Knowledge Graph Prompting (KGP) method, which

retrieves the question-relevant contexts by traversing the constructed KG. Meanwhile, we fine-tune LMs

that guide the graph traverser to adaptively navigate the most promising neighbors for approaching the

question based on the already-visited nodes (retrieved passages).

• Case Studies Verifying MD-QA Framework. We provide insightful analysis, including comparing the

quality of the constructed KGs in MD-QA and the performance of using different LMs to guide the graph

traversal.

10.2 Related Work

Question answering Question Answering (QA) aims to provide answers to users’ questions in natural lan-

guage [248, 257], and most QA systems are composed of information retrieval (IR) and answer extraction

(AE) [258, 247]. In IR, the system searches for query-relevant factual passages using heuristic methods

(BM25) [259] or neural-ranking ones (DPR) [237]. The final answer is usually extracted as a textual span

from related passages in AE. Although this framework has been broadly applied in O-QA [258, 260] and

120



D-QA [246, 245], no previous work focus on MD-QA, which demands alternatively reasoning and retrieving

knowledge from multiple documents. To tackle this issue, we construct the KG to encode the logical asso-

ciations among different passages across multiple documents and design an LM-guided traverser to generate

the reason alternatively and visit the most matching passage node.

Multi-Document Question-Answering We are bombarded with large volumes of information, and studying

Multi-Document Question-Answering (MD-QA) enhances our efficiency in digesting this information and

taking efficacy action. For example, layers/doctors make decisions based on multiple reports, and companies

gain insights into customer satisfaction from various feedbacks. While numerous works focus on question-

answering, few [250, 261, 262, 263] explore its applications in multi-document scenarios. We briefly discuss

their difference from ours. [250] devises multi-document pre-training objectives by predicting the salient

sentence, while ours tackle MD-QA by constructing KGs and performing LM-guided graph traversal over

documents. [261] uses LLM to extract document structures and answer questions, while ours models docu-

ment structures by KG and extracts related contents via LM-guided traversal. Moreover, [250, 262, 263] do

not consider the structure-based questions and do not follow the pretrain-prompt-predict framework of LLMs,

while only [261] and ours consider structural-based questions and improve the prompt design for LLMs.

Pre-train, Prompt, and Predict with LLMs With the emergence of LLMs, the ‘pre-train, prompt, pre-

dict’ paradigm has gained significant popularity in handling a broad spectrum of tasks [264, 265, 266]. This

approach begins with pre-training LLMs by pretext tasks to encode world knowledge into model param-

eters [267] followed by a prompting function to extract pertinent knowledge for downstream tasks [268].

Recent advancements explore different prompting strategies to enhance LLMs’ reasoning capabilities [254,

255]. In contrast, our work offers a novel perspective by transforming the prompt formulation into the KG

traversal.

10.3 Knowledge Graph Construction

Following [147], let G = (V, E) be a knowledge graph constructed from a set of documents D, where the

node set V = {vi}ni=1 representing document structures (e.g., passages/pages/tables, etc.) and the edge

set E ⊂ V × V representing the connections among different nodes (e.g., semantic/lexical similarity and

belonging relations among document structures, etc.). Let X = {Xi}ni be node features and Xi corresponds

to the feature of node vi, the form of which could be the text for the passage, the markdown for the table and

the page number for the page.

Despite numerous well-established KGs [269, 270], they treat nodes/edges as entities/relations, which

necessitates sophisticated relational extraction techniques and thereby limits their applicability in general

domains [271]. Additionally, their primary focus on the Wikipedia domain also restricts their usage for

121



Figure 10.3: Knowledge Graph Construction. We split each document in the document collection into pas-
sages. For each passage, we either directly obtain their embeddings via pre-trained encoders or extract their
keywords to build bag-of-word (BOW) features. Then, we connect two passages based on their embedding
similarity or whether they share common keywords. Additionally, we extract tables/pages via Extract-PDF
API and add them as structural nodes to the KG. If pages include passages and tables, we add a directed edge
to denote the belonging relations. The table nodes include the markdown formatted content of that table.

answering non-Wikipedia questions such as ones over legal or financial documents. To remedy this issue, we

propose three generally applicable KG construction methods.

We first analyze two representative questions in Figure 10.2(a)-(b) to motivate our KG construction.

Answering these two questions necessitates the deduction of logical associations among different passages.

These associations are encoded either through 1) lexical similarity: common keywords shared among dif-

ferent passages, e.g., ‘Alf Clausen’ bridges passage S1 and passage S2 in Figure 10.2(a), or 2) semantic

similarity: syntactic elements that convey semantic relations, e.g., “nationality” and “American director” in

Figure 10.2(b). This motivates us to construct the graph by modeling passages as nodes and their lexical/se-

mantic similarity as edges. More specifically, in Figure 10.3, we split each document into individual passages,

and for each passage Si, we add a node vi to the KG with its feature being the text of that passage Xi. Then

we add edges by checking the lexical/semantic similarity between pairs of passage nodes.

TF-IDF KG Construction. For adding edges according to lexical similarity, we first apply TF-IDF

keyword extraction [272] over each document to filter out meaningless words such as supporting verbs and

articles, which reduces the dimension of BOW features, sparsifies the constructed graph and increases the

efficiency of the graph traversal. In addition, we add the document title into the extracted keyword set since

some questions focus on title entities. We collect the extracted keywords from all documents to form the

keyword space W and then connect two passages if they share any common keyword in W .

KNN-ST/MDR KG Construction. For adding edges according to semantic similarity, we can readily

employ pre-existing models such as sentence transformers to generate passage embedding Xi for each node

vi and subsequently compute pairwise similarity matrix to construct the K-nearest neighbor (KNN) graph.

However, these off-the-shelf models, typically trained on tasks not so-related to MD-QA, may not adequately

encapsulate necessary logical associations in their embedding similarity demanded by the question. To over-

122



come this problem, we follow the training strategy of MDR [251] and train a sentence encoder by predicting

the subsequent supporting facts based on previously supporting facts, thereby endowing the encoder with

reasoning capability. Consequently, the embedding similarity and the corresponding constructed KNN graph

fundamentally encapsulate the necessary logical associations between different passages.

TAGME. Moreover, we employ TAGME [273] to extract Wikipedia entities from each passage and con-

struct the graph based on whether two passage nodes share common Wikipedia entities.

In addition to passage nodes, we further add structural nodes into the graph by extracting document

structures via Extract-PDF 4. In this chapter, we only consider adding pages and tables but the constructed

KG can include more different types of document structures.

Figure 10.4: Quality of KGs on HotpotQA. For each KG Con-
struction method, as the average number of neighbors increases
(KG becomes denser) in the right y-axis, the SF-EM increases
while the precision decreases. KNN-MDR achieves a better
trade-off than TF-IDF and KNN-ST. KGs constructed by TAGME
are denser than others.

To verify the constructed KGs in-

deed encode the necessary information

for MD-QA, we randomly sample ques-

tions from HotpotQA and create KGs

over the set of documents for each of

these questions using our proposed meth-

ods. We vary the hyperparameters to

control the sparsity of the constructed

graph and measure how much of the per-

centage of the supporting facts are cov-

ered by neighbors of the seeding pas-

sages initialized by TF-IDF. As shown in

Figure 10.4, as the constructed graph be-

comes denser, the chance that the neigh-

boring node passages hit the supporting facts increases (i.e., SF-EM increases) although the redundant in-

formation also increases (i.e., the precision decreases). Given the common keywords shared between one

passage and all other passages are typically far less than the total number of passages across all documents,

the density of the constructed graph by TF-IDF would be upper-bounded, causing lower SF-EM (evidenced

by SF-EM below 0.7 in Figure 10.4 for TF-IDF curve). For TAGME, we empirically find it identifies a larger

quantity of entities mentioned in a single passage, which leads to a denser graph and causes the starting SF-

EM of TAGME to be already around 0.95. In addition, since KNN-MDR is pre-trained by predicting the

next supporting facts [251] on HotpotQA, it achieves better trade-off than KNN-ST where the embeddings

are directly obtained from the sentence transformer without dataset-specific pre-training.

4https://developer.adobe.com/document-services/docs/overview/pdf-extract-api/

123

https://developer.adobe.com/document-services/docs/overview/pdf-extract-api/


Figure 10.5: LM-guided graph traverser for context retrieval. For questions on document structures (left), we
employ LM to extract structures and retrieve their corresponding contents (the content of pages are passages
belonging to that page, and the content of tables is the markdown-formatted text). For questions on docu-
ment content, we concatenate it with the currently retrieved context and prompt the LM to generate the next
evidence to answer the question. By comparing the similarity between the candidate neighboring sentences
and the generated passage, we determine the next passage node to traverse. Correspondingly, the candidate
neighbors are updated for the next round of traversal.

To summarize, although high SF-EM indicates that the neighbors of seeding passages fully cover the sup-

porting facts for most questions, low precision signifies that most of these neighboring passages are irrelevant

to the question. Therefore, if we blindly perform graph traversal without any question-tailored adaptation,

our retrieved contexts would include redundant passages and compromise the capability of LLMs in MD-QA

(which is also verified by the low performance of KGP w/o LM in Table 10.3). To remedy this issue, in

the next section, we introduce an LM-guided graph traverser to adaptively visit neighboring passages most

conducive to answering the given question.

10.4 LM-guided Graph Traverser

A natural solution to enable adaptive graph traversal is to rank the candidate nodes, i.e., the neighbors of the

already-visited nodes in our case, thereby determining which ones to visit next. The most straightforward

way is to apply heuristic-based fuzzy matching or embedding-based similarity ranking, which cannot capture

the intrinsic logic relations between the already traversed paths and the nodes to visit. Instead, we fine-tune

a language model (LM) to guide the graph traversal toward the next most promising passages in approaching

the question based on the visited passages.

Given a question q asking about the document content, the LM-guided graph traverser reasons over pre-

viously visited nodes/retrieved passages {sk}jk=0 and then generates the next passage sj+1 as follows:

sj+1 = argmax
v∈Nj

ϕ(g(Xv), f(||jk=0Xk)), (10.1)

where ||jk=0Xk concatenates the textual information of previously retrieved passages/visited nodes. For the

choice of f , one way is to employ encoder-only models like Roberta-base [236, 251, 252] and correspond-

124



ingly g would be another encoder model with ϕ(·) being the inner product measuring the embedding similar-

ity. Another way is to employ encoder-decoder models such as T5 [274, 275] and correspondingly g would be

an identity function with ϕ(·) measuring the textual similarity. To mitigate the hallucination issue [276] and

enhance the reasoning capability [254] of LMs, we further apply instruction fine-tuning to f [277] by predict-

ing the next supporting facts based on previous supporting facts, thereby integrating commonsense knowledge

encoded originally in their pre-trained parameters with the enhanced reasoning capability inherited from the

instruction fine-tuning. After visiting the top-scoring nodes selected from the candidate neighbor queue by

Eq (10.1), the candidate neighbor queue is updated by adding neighbors of these newly visited nodes. We

iteratively apply this process until we hit the preset budget. Next, we illustrate the above process with an

example in Figure 10.5 but leave the comprehensive traversal algorithm in Algorithm 3 in Appendix.

In Figure 10.5, the content-based question asks, ‘In what year was the creator of the current arrange-

ment of Simpson’s Theme born?’. We use TF-IDF search to initialize our seeding passage Node 1, which

reads: “Alf Heiberg Clausen (born March 28, 1941) is an American film composer”. Subsequently, we prefix

the currently retrieved-context (Node 1) with the question and prompt the LM to generate the subsequent

evidence required to approach the question more closely. Because we augment the reasoning capability of

the LM by instruction fine-tuning, it is expected to recognize the logical associations between the question

and the currently retrieved context. Consequently, it can predict the subsequent passage that maintains logi-

cal coherence, albeit may contain factual mistakes, i.e., “Alf Clausen (born April 16, 1941) is an American

composer of film and television scores.” To rectify this potential factual mistake, we select nodes from the

candidate neighbors that match the most with the LM-generated passage; in this case, Node 4 “Alf Heiberg

Clausen (born March 28, 1941) is an American film composer”. Since this passage is sourced directly from

documents, it inherently ensures the validity of the information. Then, we prompt LLMs along with the

retrieved context Node 1 and 4 for the answer.

Additionally, we extracted the document structure names for questions about document structures and

located their corresponding structural nodes in the KG. For the table node, we retrieve its markdown formatted

content; for the page node, we traverse its one-hop neighbor and obtain passages belonging to that page.

10.5 Experiment

In this section, we conduct experiments to verify the proposed knowledge graph prompting method (KGP)

for MD-QA. In particular, we answer the following questions:

• Q1 - Section 10.5.2: How well does KGP perform MD-QA compared with existing baselines?

• Q2 - Section 10.5.3-10.5.4: How do the quality of the constructed KG and the LM-guided graph traverser

impact the MD-QA performance?

125



10.5.1 Experimental Setting

Datasets. To explore the uncharted domain of MD-QA, we have created our own datasets to simulate

real-world scenarios where users maintain folders containing various documents and pose questions, the

answers to which are only from certain parts of these documents. Specifically, we randomly sample ques-

tions from the development set of four existing datasets: HotpotQA [278], IIRC [279], 2WikiMQA [243],

and MuSiQue [244]. For each question, we source documents from Wikipedia that encompass supporting

facts pertaining to the question and combine them with randomly sampled negative documents to form the

document collection. In addition to the content-based questions from these four existing datasets, we addi-

tionally incorporate the ‘Comp’ dataset, an internal company collection of real-world document-based ques-

tions. During its creation, humans were asked to read documents and pose questions according to document

structures. We summarize the statistics of each dataset along with their KGs in Table 10.1.

Table 10.1: Statistics of documents and their KGs constructed by TAGME average across all questions.

Dataset # Documents # Questions # Passages # Edges Passage
Avg. Length

KG
Density

HotpotQA 12 500 715.22 70420.68 37.55 0.23
IIRC 12 477 1120.55 143136.17 37.24 0.20
WikiMHop 12 500 294.19 19235.15 37.24 0.27
MuSiQue 12 500 748.04 97931.28 38.56 0.29

Baselines. We compare KGP with retrieval baselines in three categories. The first category is the heuristic-

based retriever including KNN with fuzzy search, TF-IDF [272], and BM25 [259]. The second category is

the deep-learning-based retriever including DPR [237] and MDR [251]. The third category is the prompting-

based retriever including IRCoT [253]. For KGP, we explore three variants based on their LM-guided graph

traverser: KGP-T5, KGP-LLaMA, and KGP-MDR, using T5 (encoder-decoder), LLaMA (decoder only),

and MDR (encoder only) respectively as f in Eq (10.1).

Evaluation Criteria. Following [280], we compute F1 and EM to compare the LLM’s answer and the

ground-truth one. As the predicted answer may not overlap with the ground-truth one, we additionally check

the correctness of the answer following [281, 282, 283] by prompting the LLM. Moreover, for evaluating the

quality of KGs in Figure 10.4, we adopt SF-EM (Supporting Fact Exact Matching) and precision from [251].

Given the subjective nature of the questions in Comp, we devise the metric Structure Exact Matching (Struct-

EM) to assess if retrieved contexts include the document structures mentioned in the question.

126



Table 10.2: MD-QA Performance (%) of different baselines. The best and runner-up are in bold and
underlined. None: no passages, but only the question is provided. Golden: supporting facts are provided
along with the question. Therefore, None and Golden routine the lower/upper bound of MD-QA.

Method HotpotQA IIRC 2WikiMQA MuSiQue Comp
Acc EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Struct-EM

None 41.80 19.00 30.50 19.50 8.60 13.17 44.40 18.60 25.07 30.40 4.60 10.58 0.00
KNN 71.57 40.73 57.97 43.82 25.15 37.24 52.40 31.20 42.13 44.70 18.86 30.04 –
TF-IDF 76.64 45.97 64.64 47.47 27.22 40.80 58.40 34.60 44.50 44.40 21.59 32.50 –
BM25 71.95 41.46 59.73 41.93 23.48 35.55 55.80 30.80 40.55 44.47 21.11 31.15 –
DPR 73.43 43.61 62.11 48.11 26.89 41.85 62.40 35.60 51.10 44.27 20.32 31.64 –
MDR 75.30 45.55 65.16 50.84 27.52 43.47 63.00 36.00 52.44 48.39 23.49 37.03 –
IRCoT 74.36 45.29 64.12 49.78 27.73 41.65 61.81 37.75 50.17 45.14 22.46 34.21 –
KGP-T5 76.53 46.51 66.77 48.28 26.94 41.54 63.50 39.80 53.50 50.92 27.90 41.19

67.00KGP-LM 75.66 46.22 66.31 49.57 28.09 42.56 62.45 37.55 52.45 50.81 26.72 40.01
KGP-MDR 75.72 46.09 65.77 49.58 29.32 43.21 60.94 37.22 51.29 51.22 27.76 41.11
Golden 82.19 50.20 71.06 62.68 35.64 54.76 72.60 40.20 59.69 57.00 30.60 47.75 100.00

10.5.2 Performance Comparison on MD-QA

We compare the MD-QA performance of the proposed KGP-T5 and other baselines in Table 10.2. Firstly, the

baseline “None” and “Golden” achieve the worst and the best performance because one provides no context

and the other provides the golden context. All other baselines achieve the performance in-between because

the retrieved context only covers the partial of the supporting facts. Our proposed methods KGP-T5 rank

at the Top-1 except for the Golden baseline. The 2nd-performing baseline MDR fine-tunes a RoBERTa-base

encoder by predicting the next supporting fact based on the question and the already retrieved contexts [251].

This next-passage prediction pretext task equips the model with the reasoning capability of the knowledge

across different passages and hence increases the quality of the retrieved contexts. The other deep-learning-

based retriever DPR achieves much worse performance than MDR because it only fine-tunes the encoder

by maximizing the similarity between the query and its supporting facts regardless of their sequential or-

der, demonstrating the importance of understanding the logical order of different knowledge when solving

MD-QA [251]. By comparing the MD-QA performance across different datasets, we find that all baselines

perform better on HotpotQA than on IIRC. This is because questions in HotpotQA are generally simpler than

in IIRC. Existing works [284] have shown that some questions can be easily answered by following shortcuts,

while questions in IIRC sometimes necessitate arithmetic skills to derive the numerical answers, e.g., ‘How

many years did the event last when Wingfield lost much of his fortune?’.

Moreover, without any particular design for document structures, no existing baselines can handle struc-

tural questions in Comp, e.g., “What is the difference between Page 1 and Page 2?” or “In Table 3, which

station has the highest average flow rate?”. Fortunately, with the constructed KG incorporating the structural

nodes and our designed traversal algorithm retrieving structural contexts, our proposed method achieves 67%

Struct-EM.

127



10.5.3 Impact of the Constructed Graph

Figure 10.6: The performance/latency increases as the KG den-
sity increases. The results are averaged across 100 randomly sam-
pled questions on HotpotQA.

Here, we construct KGs with vary-

ing densities by changing the hyper-

parameters of TF-IDF/KNN-ST/KNN-

MDR/TAGME and studying its impact

on the performance and the neighbor

matching time of MD-QA using KGP-

T5. Since the LM-guided graph traverser

selects the next node to visit from neigh-

bors of already visited nodes, the chance

that it hits the supporting facts increases as the number of neighbors increases. In contrast, the neighborhood

matching efficiency decreases as the candidate pool, i.e., Nj in Eq (10.1), becomes larger. As evidenced in

Figure 10.6, we observe a similar trend, i.e., as the KG density increases, the F1/EM increases and then stays

stable while the latency for selecting the most promising neighbors to visit next also increases. KNN-MDR

performs better than KNN-ST when the density of the two constructed KGs is the same. This is because the

encoder in KNN-ST is pre-trained on wide-spectrum datasets. In contrast, the encoder in MDR is specifically

pre-trained on the HotpotQA dataset by the pretext task of predicting the following supporting facts. There-

fore, the embedding similarity and the corresponding neighbor relations better reflect the logical associations

among different passages, which aligns with the better constructed KG by KNN-MDR than the KG by KNN-

ST in Figure 10.4. Compared with KNN-MDR/ST, TAGME delivers superior performance at the cost of

increasing latency since the KG generated by TAGME is denser than the KGs generated by KNN-ST/MDR.

Table 10.3: Comparing ChatGPT equipped with few-shot demonstration with Fine-tuned LLaMA/T5

Dataset Hotpot-QA IIRC 2WikiMQA MuSiQue
Metric Acc EM F1 Acc EM F1 Acc EM F1 Acc EM F1

TAGME

w/o LM 73.52 43.79 63.14 46.30 27.70 41.43 58.12 35.07 45.95 44.67 21.93 32.90
ChatGPT 77.80 46.03 66.57 46.27 26.01 39.35 61.62 36.16 49.39 50.61 26.92 38.66
LLaMA 75.66 46.22 66.31 49.57 28.09 42.56 62.45 37.55 52.45 50.81 26.72 40.01

T5 76.53 46.51 66.77 48.28 26.94 41.54 63.50 39.80 53.50 50.92 27.90 41.19

10.5.4 Impact of the LM-guided Graph Traverser

Here, we study the influence of using different LMs in guiding graph traversers over TAGME-constructed

KG on MD-QA performance. Specifically, we compare the guidance by no LM (w/o LM), LLaMA, T5,

and MDR in Table 10.3. Because TAGME w/o LM only blindly traverses in the KG without any guidance

from LM, it unavoidably collects irrelevant passages and hence achieves the worst performance than others

with LM guidance. This aligns with our previous observation on the generally low precision in Figure 10.4

128



Figure 10.7: (a)-(b): The performance first increases and then decreases as the branching factor increases.
The results are averaged across 100 sampled questions on 2WikiMQA and MuSiQue. (c)-(d): KGP achieves
higher performance/efficiency than DPR when QA over different numbers of documents.

and further demonstrates the necessity of using LMs to guide the graph traversal. Interestingly, we find that

KGP-T5 performs better than LLaMA even though the parameters of LLaMA (7B) are more than the ones

with T5 (0.7B). We will investigate this in future work.

10.5.5 Sensitivity Analysis

Here, we perform the sensitivity analysis of the branching factor (the number of nodes selected from candidate

neighbors to visit next). In Figure 10.7(a)-(b), the performance first increases as the branching factor increases

because more passage nodes selected from the candidate neighbors lead to more reasoning paths to reach the

final answer. However, as we fix the context budget to ensure fair comparison (i.e., the total number of

passages we are allowed to retrieve for each question is the same across all baselines), the performance

declines as the branching factor increases because the number of initial seeding nodes diminishes, leading to

reduced coverage of the KG.

10.6 Conclusion

Answering multi-document questions demands knowledge reasoning and retrieving from different documents

across various modalities, presenting challenges for applying the ‘pre-train, prompt and predict’ paradigm

with LLMs. Recognizing that the logical associations among passages and structural relations within the

documents can be unified into a graphical representation, we propose a Knowledge Graph Prompting method

(KGP) for aiding LLMs in MD-QA. The KGP constructs KGs from documents with nodes depicting sen-

tences or document structures and edges denoting their lexical/semantic similarity or structural relations.

Since the constructed KGs may contain irrelevant neighbor information, we further design an LM-guided

graph traverser that selectively visits the most promising node in approaching the question. In the future,

we plan to investigate the capability of LLMs to understand graph topology and explore the potential of

fine-tuning/prompting LLMs to encode complex topological signals hidden in the graph.

129



10.7 Appendix

10.7.1 Dataset Collection

This section introduces the collection of datasets used for the experiments conducted in this chapter.

Document Set Collection and Procession. As no previous works focus on MD-QA, we create our own

datasets to simulate real-world scenarios where users maintain folders containing various documents and pose

questions, the answers to which are only from certain parts of these documents. To imitate this scenario, we

randomly sample questions from the development set of existing datasets: HotpotQA/IIRC/2WikiMQA/MuSiQue,

and then for each specific question, we fetch documents from Wikipedia that encompass supporting facts of

the question 5 and term these documents as golden documents. Then, we randomly sample negative doc-

uments from Wikipedia and pair them with golden documents to constitute the document collection. For

each document in the collected document set, we split it into multiple passages, with the default passage

length being 250, as it empirically yields superior performance. As questions from these existing datasets

are only focused on document contents, we additionally incorporate the ‘Comp’ dataset, an internal company

collection of real-world questions focusing on document structures.

Knowledge Graph Construction. We construct a knowledge graph for each question and its corresponding

collection of documents. For datasets where the questions are from Wikipedia: HotpotQA, IIRC, WikiMHop,

and Musique, we only have passage nodes since answering questions in these datasets does not require

information about document structures. In addition to passage nodes, we apply ExtractAPI for the Comp

dataset to obtain the page and table information so that the constructed KG also has pages/tables as nodes.

We add edges for all these datasets following Section 10.3. For Comp, due to privacy concerns, we omit the

data statistics but only provide some question examples, e.g., ’How many more classical students in Table

2 had the mixed teaching style versus the classical teaching style?’ or ’Can you give me a simple summary

about page 5?’.

Sequential Data Collection. Training MDR [251] requires rearranging supporting facts into the sequential

order that progressively approaches the answer. To fulfill this requirement, we directly follow MDR and use

the pre-processed HotpotQA data from the GitHub Repository6 to train the encoder and apply it to other

datasets that do not provide the sequential order of supporting facts. For instruction fine-tuning LLaMA,

we still use the above HotpotQA data and rearrange it into the instruction-input-output format and use the

instruction ‘What evidence do we need to answer the question given the current evidence’. For T5-large, we

use the same input-output but prefix the reasoning instruction to the input following the original T5 input

format [285].
5The HotpotQA/IIRC/2WikiMQA/Musique datasets already have the supporting facts for each question.
6https://github.com/facebookresearch/multihop dense retrieval/tree/main

130



Algorithm 3: Knowledge Graph Prompting Method for Questions on Document Contents

Input: A question q over a set of documents D, the constructed knowledge Graph G = {V, E ,X} over D, the
fine-tuned LLM-guided graph traversal fGT, the preset context budget K, the initial TF-IDF search
function g.

1 Initialize seed passages Vs = g(V,X , q)
2 Initialize the retrieved passage queue P = [{vi}|vi ∈ Vs]
3 Initialize the candidate neighbor queue C = [Ni|vi ∈ Vs]
4 Initialize the retrieved passage counter k =

∑
Pi∈P |Pi|

5 while queue P and queue C are not empty do
6 Pi ← P.dequeue(), Ci ← C.dequeue()
7 V ′i = Graph Traversal({q} ∪ Pi, Ci, k) by Eq (10.1)
8 for v ∈ V ′i do
9 P.enqueue(Pi ∪ {v})

10 C.enqueue(Nv)
11 k ← k + 1
12 if k > K then
13 Terminate
14 return Retrieved Passage Queue P

10.7.2 Algorithm for KGP

Here we present the algorithm for our proposed knowledge graph prompting (KGP) method for MD-QA.

Given a question, we first apply LLM to classify whether the question is asking about the document structure

or document content. If the question focuses on the document structure, we extract the structural keywords

such as Page or Table, and retrieve the content in the corresponding structural nodes in KG. If the question

focuses on the document content, we follow the step according to Algorithm 3. Specifically, we first initialize

seeding passages Vs and the reasoning path queue P by TF-IDF search. Then for each seeding passage

vi ∈ Vs, we add its neighboring passage nodes Ni into the candidate neighbor queue C. (lines 1-4) After

that, we iteratively pop out the leftmost reasoning path/candidate neighborhood Pi/Ci from P/C and employ

the fine-tuned LM-guided graph traverser to rank the popped out neighbors in Ci by Eq. (10.1) (lines 5-7).

Last, we select top-k passage nodes V ′i from Ci to visit next based on their rank and correspondingly update

the candidate neighbor queue/reasoning path queue (lines 8-13). The above process terminates when either

the candidate neighbor queue becomes empty, or the prefixed budget K for the retrieved passages is met.

131



CHAPTER 11

Limited Data Issue: Overcoming Limited Data Issue in Graph Generation

Large Generative Models (LGMs) such as GPT, Stable Diffusion, Sora, and Suno are trained on a huge

amount of language corpus, images, videos, and audio that are extremely diverse from numerous domains.

This training paradigm over diverse well-curated data lies at the heart of generating creative and sensible

content. However, all previous graph generative models (e.g., GraphRNN, MDVAE, MoFlow, GDSS, and

DiGress) have been trained only on one dataset each time, which cannot replicate the revolutionary success

achieved by LGMs in other fields. To remedy this crucial gap, we propose a new class of graph generative

model called LARGE GRAPH GENERATIVE MODEL (LGGM) that is trained on a large corpus of graphs (over

5000 graphs) from 13 different domains. We empirically demonstrate that the pre-trained LGGM has superior

zero-shot generative capability to existing graph generative models. Furthermore, our pre-trained LGGM can

be easily fine-tuned with graphs from target domains and demonstrate even better performance than those

directly trained from scratch, behaving as a solid starting point for real-world customization. Inspired by

Stable Diffusion, we further equip LGGM with the capability to generate graphs given text prompts (Text-to-

Graph), such as the description of the network name and domain (i.e., ”The power-1138-bus graph represents

a network of buses in a power distribution system.”), and network statistics (i.e., ”The graph has a low average

degree, suitable for modeling social media interactions.”). This Text-to-Graph capability integrates the world

knowledge in the underlying language model, offering users fine-grained control of the generated graphs.1.

11.1 Introduction

Recently, Large Generative Models (LGMs) such as GPT, Stable Diffusion, Sora, and Suno [286, 287,

288, 275] have achieved revolutionary success in generating creative and sensible content, which signifi-

cantly increases the productivity of real-world applications [289, 290, 291]. Unlike previous models such

as Bert/Bart [292, 293] in Natural Language Processing (NLP) and Unet [294] in Image Segmentation that

are trained only on small-scale datasets from specific domains over narrow tasks, the key to the success of

these LGMs lies in their large training paradigm over the well-curated training data from a wide variety of

domains [295, 292, 296, 275]. Graph, as a data modality distinct from image, text, and audio, is ubiquitous

across numerous fields and presents a new frontier for applications of generative models such as drug discov-

ery [297, 298], material design [299, 300] and cyber-security [301, 302]. Given the unprecedented success

achieved by LGMs in other domains, we naturally ask:

Can we propose large generative models for graph-structured data?
1https://lggm-lg.github.io/

132

https://lggm-lg.github.io/


Figure 11.1: (a): Average degree and clustering coefficient of graphs from 13 domains. The graph universe
consists of graphs from distinct domains (e.g., the tiny region of Chemical Graphs), yet there are some
common transferrable patterns. (b): Our pre-trained LGGM after fine-tuning on each domain achieves better
generative performance than DiGress trained on that same domain.

Although graph generative models have been the long-standing focus of generative-based research [303,

304, 305], previous ones have been trained on graphs from only one domain each time. For example, both

the representative auto-regressive-based GraphRNN [306], VAE-based GraphVAE [307] and diffusion-based

DiGress [308] have been trained only on synthetic (Ego, Community, Grid) or chemistry graphs (Enzymes,

QM9), the statistics of which only counts a tiny region of the whole graph universe and is different from

graphs in other domains, as shown in Figure 11.1(a). Road Networks possess lower average clustering co-

efficients than Facebook Networks (FB). This is because Road Networks, by design, have square intersec-

tions, whereas social relationships in Facebook Networks (FB) naturally form triangular connections [309].

Moreover, Tortoise Animal Social Networks (ASN)2 have a lower average degree than Power Networks

because tortoises, as solitary creatures, would not share the same burrow [311]. As a result, graph generative

models trained on one domain are hardly generalizable to unseen graphs, as shown by the worse zero-shot

generation performance of DiGress in Table 11.2. More critically, without training on numerous graphs cov-

ering the whole graph universe, these small models can never replicate the revolutionary success by LGMs in

other fields.

Recognizing the significant gap in developing LGMs for graph-structured data and their potential revo-

lutionary impact similar to LGMs in other fields, we develop the very first LARGE GRAPH GENERATIVE

MODEL (LGGM) that is pre-trained over 5000 graphs from 13 domains sourcing from the Network Reposi-

tory - the interactive data repository collecting graphs from 30 domains [312, 313]. After this pre-training, our

LGGM learns some fundamental structural patterns that are transferrable across different domains [314] and

henceforth demonstrates significantly better zero-shot generative capability on graphs from unseen domains

shown in Table 11.2. Moreover, the pre-trained LGGM are highly adaptable for fine-tuning on a specific do-

main, achieving an overall performance increase of 29.59% compared to the smaller DiGress model trained

2Nodes represent tortoises and an edge is set up between two tortoises if they share the same burrow [310].

133

https://networkrepository.com/
https://networkrepository.com/


on the same domain, as depicted in Figure 11.1(b). This improvement is even more significant when only

limited graphs are available shown by Figure 11.5, proving particular advantages in semi-supervised gen-

erative settings [299, 315, 316]. More importantly, our LGGMs support Text-to-Graph generation, which

allows finer-level control of the generated graphs (e.g., their domains/names in Table 11.3 and clustering

coefficient/average degree in Figure 11.4. Our contributions are as follows:

• Large Graph Generative Model: We propose a pioneering Large Graph Generative Model (LGGM),

trained on thousands of graphs arising from 13 distinct domains. To the best of our knowledge, this work

is the very first one exploring the potential of LGMs on graph-structured data. We hope others expand this

collection and leverage our work to develop future LGGMs that could eventually replicate the success of

Stable Diffusion [288] but in the graph modality.

• Superior Zero-shot and Fine-tuning Generative Capability: Our pre-trained LGGM delivers excep-

tional zero-shot generative performance on unseen graphs in Table 11.2 of Section 11.6.2 and shows great

adaptability for fine-tuning in Figure 11.3 of Section 11.6.3. Remarkably, the fine-tuned LGGM outper-

forms DiGress trained from scratch on the same graphs especially under limited data scenarios, behaving

as a better starting point for real-world development.

• Text-to-Graph Generation: We equip the LGGM with the capability to generate graphs given user-

specified text prompts, allowing finer-level control of the generated graphs in terms of their domains/names

and network statistics.

11.2 Related work
11.2.1 Large Generative Models (LGMs)

Recent years have witnessed unprecedented success achieved by LGMs in generating creative and sensible

content for a variety of downstream tasks across multiple modalities [286, 287, 317, 275, 318]. For instance,

in Natural Language Processing (NLP), large language models trained on next-token prediction can effec-

tively produce human-readable texts for completing question-answering, translation, and more tasks [240,

319, 11]. Furthermore, the advancement of multi-modal generative models now supports cross-modality

generation, such as converting text into images with Stable Diffusion or vice versa with GIT [288, 283, 320].

The key to their success lies in their ability to effectively utilize the world knowledge obtained during the pre-

training stage over a large amount of well-curated data. This world knowledge has been demonstrated to be

positively transferrable across numerous domains, delivering promising efficacy with few-shot task demon-

strations. Compared with the recent large generative models in NLP/CV such as LLaMA3, Falcon, Stable

Diffusion, LLaVA [321, 322, 288, 275], we alternatively focus on developing large generative models for

134



graphs with the expectation to realize a similar set of advantages achieved by LGMs in other fields, including

enhanced zero-shot generalizability, improved fine-tuning performance and cross-modality generation.

11.2.2 Graph Generative Models
Table 11.1: Our LGGM is trained across 13 do-
mains on thousands of graphs with the support for
Text-to-Graph (T2G) generation, controlling the do-
main/property of the generated graphs.

Type Model # Domains
Multi-Domain

Training

T2G

Domain

T2G

Property

Auto-

Regressive

GraphRNN [306] 2 ✘ ✘ ✘

EdgeRNN [323] 3 ✘ ✘ ✘

MolRNN [324] 2 ✘ ✘ ✘

VAE

MDVAE [325] 1 ✘ ✘ ✘

PCVAE [326, 327] 3 ✘ ✘ ✘

(DE)CO-VAE [328] 1 ✘ ✘ ✘

GraphVAE [307] 1 ✘ ✘ ✘

GAN
Mol-CycleGAN [329] 1 ✘ ✘ ✘

LGGAN [330] 2 ✘ ✘ ✘

Flow

GraphNVP [331] 1 ✘ ✘ ✘

MoFlow [332] 1 ✘ ✘ ✘

GraphDF [333] 2 ✘ ✘ ✘

Diffusion

GDSS [334] 3 ✘ ✘ ✘

DiGress [308] 2 ✘ ✘ ✘

GraphEBM [335] 1 ✘ ✘ ✘

LGGM - Ours 13 ✔ ✔ ✔

Given the ubiquity of graphs in modeling relational

information of real-world objects across many do-

mains [336, 312, 309, 11], graph generative mod-

els have been developed to generate realistic graphs

for advancing numerous applications [297, 337, 299,

316], such as generating molecular graphs with high

drug-likeness and designing imperceptible adversar-

ial attacks. Graph generative models can gener-

ally be divided into two categories: statistic-based

ones [338, 339] and deep learning-based ones [304,

305]. Statistic-based generative models such as

Stochastic Block Models [340] and Small World

Models [341] assume that the real-world graph for-

mation adheres to specific statistical rules, and define various sampling strategies to simulate networks with

prescribed properties. However, this approach oversimplifies the complex distribution of real-world graphs

and struggles to generalize to those deviating from established norms. This limitation has spurred recent

research into deep-learning-based generative models that automatically capture intricate statistics by learning

to recover graphs [307, 308, 306, 332]. Despite their effectiveness, they all focus on a narrow range of do-

mains and are trained solely on a single domain each time. Next, we briefly review representative deep graph

generative models in Table 11.1.

GraphRNN [306], a pioneering model in autoregressive generation, employs breadth-first search to es-

tablish node ordering and sequentially generates nodes and edges. In addition, variational autoencoders [342,

325, 326, 327, 307] were adopted to enable flexible graph generation tailored to specific properties by regular-

izing the latent variables. Following that, normalizing flows were used to learn invertible mappings between

molecular graphs and latent representations (e.g., GraphNVP [331] and MoFlow [332]). More recently fol-

lowing the success of diffusion-based models in images, graph diffusion-based models like GDSS [334] and

DiGress [308] have emerged, allowing gradually generating graphs from the noise either in the continuous or

the discrete space. However, these deep graph generative models have primarily focused on limited domains

such as chemistry, social networks, and synthetic graphs, neglecting a vast array of unexplored graphs in other

135



fields. More critically, these models have been historically trained on a single domain each time, mirroring

earlier approaches like Unet [294] and Bert/Bart [292, 293] in CV and NLP, thus limiting their ability to learn

fundamental knowledge transferrable across different domains. In contrast, our work focuses on learning a

large generative graph model that is pre-trained on thousands of graphs from 13 domains and we demonstrate

that, through extensive experiments, the proposed LGGM successfully replicates the revolutionary achieve-

ments gained by the recent LGMs in other fields [286, 287, 288, 275].

11.3 Large Graph Generative Models

11.3.1 Notation
Let G be a random variable of universal graphs, governed by its underlying distribution P (G). Given that

real-world graphs originate from various domains, we introduce Gc to represent a random variable for graphs

from domain c, with its distribution as P (Gc). Assuming the universal graph space encompasses C distinct

domains, i.e., G = ∪c∈CGc with each set of graphs from domain c as Gc, then P (Gc)/P (G) is domain-

specific/agnostic distribution. To ease the introduction of training and evaluation setting in Section 11.6, we

further divide each domain-specific set of graphs Gc into training, validation and testing subsets, notated as

Gc = GTrain,c ∪ GVal,c ∪ GTest,c. We represent each graph G = (XG,EG) with XG ∈ RnG×dX/EG ∈

RnG×nG×dE as the one-hot encoding matrix representing node/edge categories with nG being the number of

nodes in graph G and dX/dE being the number of node/edge categories, considering the edge existence as

a particular edge category. In Text-to-Graph generation, each graph G is paired with a textual description S

from the textual distribution P (S) and their joint distribution is P (G,S).

11.3.2 Large Graph Corpus
Training LGGM requires a substantial, well-curated collection of graphs from multiple domains. We select

graphs from the Network Repository across 13 distinct yet representative domains covering a wide variety

of real-world scenarios, including Facebook (FB), Animal Social (ASN), Email, Web, Road, Power, Chemi-

cal (CHEM), Biological (BIO), Economic (ECON), Retweet (RT), Collaboration (COL), Ecological (ECO),

Citation, as shown in Figure 11.1(a). Given that many real-world graphs (e.g., social networks and road net-

works) comprise thousands or even millions of nodes and edges, and that state-of-the-art diffusion models,

e.g., DiGress and GDSS, are limited to handling networks with only hundreds of nodes, we further sample

subgraphs for certain domains to address scalability challenges. Specifically, we generate 2/3-hop ego sub-

graphs centered on multiple randomly chosen nodes followed by taking their induced subgraphs. We apply

this strategy iteratively across all the initially collected graphs until hitting the preset budget. Appendix 11.9.2

presents the graph statistics.

136



11.3.3 Pre-Training and Graph Generation of LGGM
Our LGGM is designed based on discrete denoising diffusion [343, 344, 308], which is composed of a

diffusion forward process based on a transition matrix and a reverse prediction process based on minimizing

the cross-entropy loss between the ground-truth graphs and the predicted clean graphs.

During the forward process, for each graph G sampled from the joint distribution P (G), we obtain its

noisy version Gt = (Xt,Et) at step t by sampling from the conditional categorical distribution:

q(Gt|Gt−1) = (Xt−1Qt
X ,Et−1Qt

E) and q(Gt|G0) = (XQ̄t
X ,EQ̄t

E), (11.1)

where Qt
X ∈ RdX×dX and Qt

E ∈ RdE×dE are node/edge transition matrices and G0 = G is the original

data distribution of graphs. Depending on whether our generative downstream tasks require generalization

to unseen domains or not, we can either use different transition matrices for graphs from different domains,

i.e., domain-specific transition matrix Qt,c
X = αtI + (1 − αt)1mc

X ,mc
X = 1

|GTrain,c|
∑

G∈GTrain,c XG,∀c ∈ C

or unify transition matrices across different domains. For the unified transition matrices, we can trivially use

the uniform transition matrix, i.e. Qt,c
X = αtI + (1 − αt)(1dX

1⊤dX
)/dX, or compute the marginal transition

matrix across all graphs from all domains Qt
X = αtI + (1 − αt)1mX ,mX = 1

|GTrain|
∑

G∈GTrain XG. And

Qt
E can be computed similarly.

In the reverse process, a parametrized neural network is trained to predict the clean graph given the noisy

graph sampled following Eq. (11.1) by optimizing the following loss:

Θ⋆ = argmin
Θ

L = EG∼P (G)Et∼T EGt∼q(Gt|G)(− log pΘ(G|Gt)). (11.2)

Following [308], we combine the learned PΘ⋆(G|Gt) and the closed-form posterior P (Gt−1|Gt,G) to

perform backward generation by sampling from the following distribution:

P (Gt−1|Gt) ∝
∑
G

P (Gt−1|Gt,G)PΘ∗(G|Gt). (11.3)

11.4 Fine-tuning LGGM

In many real-world applications, the graphs of interest G̃ may highly likely come from completely unseen

domains, i.e., G̃ ∩ G = ∅, and their corresponding distribution may also be significantly different from the

pre-trained one, i.e., P (G̃) ̸= P (G) as shown by comparing CHEM and FB Networks in Figure 11.1(a).

In this case, we further fine-tune our pre-trained LGGM based on the observed graphs G̃ from the unseen

137



Figure 11.2: The overview of LGGM framework and experimental settings. (a): Graph universe including
our collected 13 distinct yet representative domains. (b)-(c): Compared with all previous graph generative
models that have been trained only on one domain each time, our LGGM is trained on thousands of graphs
from 13 domains. (d): We pre-train/fine-tune LGGM in Section 11.3.3/11.4. (e): Given the text prompt S and
the current generated graph at t, we concatenate its textual embedding obtained from a pre-trained language
model with the node/edge/graph embeddings after spectral feature extraction and forward them through the
Graph Transformer to predict the clean graph.

domains:

Θ⋆⋆ = argmin
Θ

L = EG̃∼P (G̃)Et∼T EG̃t∼q(G̃t|G̃)(− log pΘ(G̃|G̃t)), (11.4)

where Θ⋆⋆ is initialized as Θ⋆ from the pretaining phase in Eq (11.2). After fine-tuning, our LGGM can

effectively adapt to unseen distributions by using both the prior knowledge from the pre-training stage and

the specific knowledge of new graphs from the unseen domains, as verified in Figure 11.3.

Despite the superior capabilities of LGGM in generating graphs after both pre-training and fine-tuning

processes, they essentially mimic the random sampling from the learned distribution P (G) that is prescribed

by the training data without any fine-level customization. To control the characteristics of the generated

graphs, we further propose the very first Text-to-Graph LGGM to generate graphs based on textual de-

scription. In this way, users could specify their desired properties of the graphs through natural language

description, thereby guiding the graph generation in a more tailored manner.

11.5 Text-to-Graph LGGM

Given the textual description S about the network to be generated, our goal here is to learn P (Gt−1|Gt,S),

which is further decomposed as:

P (Gt−1|Gt,S) ∝
∑
G

P (Gt−1|Gt,G,S)P (G|Gt,S). (11.5)

Theorem 9 proves that if the transition matrices Qt
X ,Qt

E in Eq. (11.1) are independent of the textual de-

scription S, the first term P (Gt−1|Gt,G,S) can then be simplified as P (Gt−1|Gt,G) with the analytical

form computation [308]. For the second term, we approximate it by a neural network, i.e., P (G|Gt,S) =

138



PΘ▲(G|Gt,S) with Θ▲ being optimized by:

Θ▲ = argmin
Θ

L = E(G,S)∼P (G,S)Et∼T EGt∼q(Gt|G)(− log pΘ(G|Gt, ϕ(S))), (11.6)

where ϕ is a pre-trained textual encoder. Figure 11.2(e) shows the architecture of LGGM-Text2Graph, which

firstly integrates the textual embedding ϕ(S) into the node/edge/graph-level latent embeddings after spectral

feature extraction of the current generated graph and further predicts the clean graph. Theorem 10 proves

that modeling P (Gt−1|Gt,S) with PΘ▲(Gt−1|Gt,S) leads to higher evidence lower bound of the likelihood

logP (G0,S).

Training pΘ(G|Gt, ϕ(S)) in Eq (11.6) requires the joint distribution between graphs and their correspond-

ing textual descriptions, i.e., P (G,S). Given users’ specific interests in the graphs to generate, we explore two

main categories of textual prompts to guide graph generation: domain/name (e.g., Power Network, power-

1138-bus) and structural characteristics (e.g., average degree, clustering coefficient). For example, zoologists

interested in the dynamics of tortoise interactions might seek to generate Animal Social Networks [345], and

social scientists studying social anomalies might prioritize generating social interactions with dense and un-

expected connections [346]. Since this work is a pioneering effort in Text-to-Graph generation and no prior

collection of user prompts for this purpose exists, following previous works, e.g., LLaVA [321, 347], we ask

GPT3.5/4 to emulate the human drafting of prompts to obtain pairs of (user prompt, graph). For preparing the

graphs with user prompts about their domains/names, we obtain the domain/name information of each graph

directly from the Network Repository [312] and prompt GPT3.5 to generate the human-readable description

paired with the corresponding graph. See more details in Appendix 11.9.3. For preparing the graphs with

user prompts about their average clustering coefficient/degree, instead of using graphs from Network Repos-

itory that only count partially of the entire graph universe (i.e., no existing graphs there cover the area with

high average degree and low average clustering coefficient in Figure 11.1(a)), we use the Watts–Strogatz

small-world graph model [348] to synthesize graphs covering the full spectrum of the graph universe. After

that, we calculate the average degree and clustering coefficient for each graph and prompt GPT4 to generate

textual descriptions about these networks using their statistics. See more details in Appendix 11.9.4. We

also employ t-SNE visualization [349] to analyze the generated textual descriptions, as shown in Figure 11.6.

This visualization indicates that texts describing graphs from various domains or with distinct statistics tend

to form separate clusters, a necessary condition for the successful control of the generated graphs.

139



11.6 Experiments

11.6.1 Experimental Setup

In this section, we conduct four experiments over the graphs collected from 13 domains to demonstrate the

effectiveness of LGGMs in four different aspects, the details of which are summarized as follows:

• Pre-training Evaluation in Table 11.2 in Section 11.6.2: To demonstrate the superior zero-shot perfor-

mance of LGGM in generating unseen graphs compared to conventional graph generative models, we adopt

the out-of-distribution evaluation where we iteratively treat each domain X as the unseen one and train the

LGGM using training graphs from all other domains, and evaluate its performance on the testing graphs

from the unseen domain X. The variant of LGGM in this experiment is called LGGM-X where X represents

the unseen domain.

• Fine-tuning Evaluation in Figure 11.3 in Section 11.6.3: To demonstrate the high adaptability for fine-

tuning LGGM, we further fine-tune the above pre-trained LGGM. Specifically, we take LGGM-X pre-

trained on graphs from all other domains but domain X, and then fine-tune it on the training graphs from

domain X. After that we evaluate it on the testing graphs from domain X. The variant of LGGM in this

experiment is called Fine-tuned LGGM on X.

• Text-to-Graph Generation in Table 11.3 and Figure 11.4 in Section 11.6.4: To control the graph genera-

tion, we consider two types of user prompt information: the domain/name and the graph properties, i.e., we

train LGGM on training graphs from all domains with user prompts either describing the graph domain-

s/names or graph statistics. We call these two variants of LGGM as LGGM-T2GD and LGGM-T2GUP,

respectively.

• Fine-tuned LGGM compared with DiGress trained directly on X in Figure 11.1(b)/11.5 in Sec-

tion 11.6.5: When having access to graphs of domain X, users could directly train existing graph generative

models and generate graphs for the domain X. To demonstrate the practical usage of LGGMs, we further

compare the fine-tuned LGGM on X with DiGress directly trained on X. In addition, we also compare their

performance under limited data scenarios [299, 301].

Figure 11.7 in Appendix 11.9.7 comprehensively illustrates each of the above training paradigms. Due to

the page limitation, we present the evaluation metrics and model hyperparameters in Appendix 11.9.6.

11.6.2 Pre-training Evaluation

Table 11.2 compares the performance of our model, LGGM-X, pre-trained on all graph domains except the

held-out domain X, with DiGress trained on the QM9 dataset. Both of them are evaluated over graphs from

140



Table 11.2: Comparing Zero-shot Generative Performance on unseen Graphs in held-out domain X between
DiGress trained on QM9 and LGGM-X trained on all except the held-out domain X. Result ”ALL” is com-
puted by averaging across 12 domains and the best result for each domain is in bold.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB DiGress 0.3376 0.6298 0.0797 0.3593 BIO DiGress 0.2712 0.5202 0.1127 0.3188
LGGM-X 0.4723 0.6843 0.2924 0.7555 LGGM-X 0.1081 0.2696 0.0900 0.2053

ASN DiGress 0.1496 0.3258 0.1506 0.4420 ECON DiGress 0.2987 0.4841 0.2162 0.3834
LGGM-X 0.0281 0.2440 0.0830 0.0618 LGGM-X 0.1213 0.0920 0.1120 0.1086

EMAIL
DiGress 0.2192 0.6012 0.0702 0.3416 RT DiGress 0.4164 0.1327 0.4147 0.5957
LGGM-X 0.0751 0.2364 0.0768 0.3089 LGGM-X 0.0525 0.1429 0.1330 0.2219

WEB
DiGress 0.2556 0.6186 0.1877 0.6045 COL

DiGress 0.2473 0.5826 0.2314 0.7679
LGGM-X 0.0648 0.3961 0.0549 0.1127 LGGM-X 0.0736 0.5769 0.0895 0.0988

ROAD DiGress 0.3705 0.8226 0.2801 0.7198 ECO
DiGress 0.5431 0.7915 0.2338 0.6045

LGGM-X 0.0713 0.2193 0.0987 0.2986 LGGM-X 0.4753 0.3904 0.3194 0.3934

POWER
DiGress 0.3726 0.4582 0.3270 1.4732 CITATION

DiGress 0.2527 0.7790 0.1315 0.4966
LGGM-X 0.0119 0.1293 0.0373 0.0754 LGGM-X 0.1348 0.7257 0.1160 0.4981

ALL
DiGress 0.3112 0.5622 0.2030 0.5923
LGGM-X 0.1408 0.3422 0.1253 0.2616

Figure 11.3: Performance comparison between Fine-tuned LGGM and Fine-tuned DiGress.

the unseen domain X. Overall, LGGM-X outperforms DiGress across all evaluation metrics shown by the

”ALL” result. This superiority suggests that training on graphs from diverse domains captures transferable

structural patterns and enhances the generalization of the model to unseen domains. The only exception from

this trend occurs with Facebook Networks (FB) where our LGGM-X performs uniformly worse than DiGress

across all evaluation metrics. This is because Facebook Networks (FB) only count a tiny region among the

whole graph universe. As illustrated in Figure 11.1(a), the average clustering coefficient of FB graphs ranges

from 0.301 to 0.407, a narrow segment within the broader global graph spectrum spanning from 0 to 1.

This narrow range poses a challenge for the generalized LGGM-X to specialize in learning the graph data

distribution specific to the FB domain.

11.6.3 Fine-tuning Evaluation

In addition to the superior zero-shot generative performance of pre-trained LGGM-X, many real-world ap-

plications already possess exemplary graphs that can be leveraged, e.g., different types of anomaly behaviors

in social networks/e-commerce platforms, and molecules with predefined chemical structures in drug dis-

141



Table 11.3: Comparing the Graph Generative Performance of LGGM with/without Text Conditions. Best
and runner-up results are bolded and underlined.

Domain Method DEG CC Spec Orb Domain Method DEG CC Spec Orb

FB
LGGM 0.0321 0.4994 0.0763 0.3117

BIO
LGGM 0.2661 0.3120 0.1135 0.3835

LGGM-T2GD 0.1561 0.1639 0.0924 0.0417 LGGM-T2GD 0.0099 0.1286 0.0303 0.1366
LGGM-T2GUP 0.0050 0.0545 0.0070 0.0251 LGGM-T2GUP 0.0028 0.0287 0.0236 0.0174

ASN
LGGM 0.1511 0.4325 0.1875 0.3896

ECON
LGGM 0.3828 0.1533 0.2039 0.2583

LGGM-T2GD 0.0318 0.2821 0.0606 0.0631 LGGM-T2GD 0.0666 0.0594 0.0650 0.0586
LGGM-T2GUP 0.0211 0.1191 0.0462 0.0195 LGGM-T2GUP 0.0132 0.0257 0.0053 0.0191

EMAIL
LGGM 0.2156 0.2450 0.0666 0.2757

RT
LGGM 0.4395 0.2225 0.4337 0.6641

LGGM-T2GD 0.0469 0.0982 0.0484 0.0505 LGGM-T2GD 0.0468 0.0955 0.0729 0.0393
LGGM-T2GUP 0.0073 0.0379 0.0127 0.0437 LGGM-T2GUP 0.0286 0.0933 0.0400 0.0312

WEB
LGGM 0.2725 0.2672 0.1900 0.4368

COL
LGGM 0.3565 0.3554 0.2451 0.7874

LGGM-T2GD 0.0255 0.0737 0.0354 0.1856 LGGM-T2GD 0.0395 0.3110 0.1146 0.1823
LGGM-T2GUP 0.0105 0.0941 0.0206 0.0451 LGGM-T2GUP 0.0265 0.2813 0.0895 0.0899

ROAD
LGGM 0.4825 0.5373 0.3398 0.7542

ECO
LGGM 0.5466 0.6003 0.2257 0.7089

LGGM-T2GD 0.0088 0.1225 0.0399 0.0155 LGGM-T2GD 0.2160 0.2917 0.1203 0.2569
LGGM-T2GUP 0.0177 0.0437 0.0336 0.0086 LGGM-T2GUP 0.0293 0.2885 0.0416 0.2556

POWER
LGGM 0.4394 0.4646 0.3473 1.3186

CITATION
LGGM 0.2624 0.5374 0.1295 0.3419

LGGM-T2GD 0.0162 0.1131 0.0479 0.1786 LGGM-T2GD 0.0101 0.1025 0.0315 0.0651
LGGM-T2GUP 0.0062 0.0570 0.0111 0.0084 LGGM-T2GUP 0.0072 0.0849 0.0115 0.0287

ALL
LGGM 0.3206 0.3856 0.2132 0.5526
LGGM-T2GD 0.0562 0.1535 0.0633 0.1061
LGGM-T2GUP 0.0146 0.1007 0.0286 0.0494

Figure 11.4: Text-to-Graph Generation with Prescribed Graph Properties. (a) Controlling Average Clustering
Coefficient; (b) Controlling Average Degree. GT-Ground Truth Graphs and Gen-Generated Graphs. Below
each graph, the number of nodes and key statistical measures are displayed.

covery. In these scenarios, users can fine-tune LGGM-X with these domain-specific graphs, adapting the

broadly trained model to specialize in generating graphs tailored to target domains. Figure 11.3 compares

the generative performance of fine-tuned DiGress on X that is originally pre-trained on QM9 and fine-tuned

LGGM-X on X that is originally pre-trained on all but domain X. We can see that LGGM-X consistently

outperforms DiGress for graphs from most of the domains, which further validates the adaptability of LGGM

after fine-tuning on a specific domain.

11.6.4 Text-to-Graph Generation

Here we integrate Text-to-Graph (T2G) generation into LGGMs. We introduce two variants: LGGM-T2GD,

which utilizes domain labels such as ”Power Networks” as textual descriptions, and LGGM-T2GUP, which

utilizes user prompts from GPT3.5, like ”The power-1138-bus graph represents a network of buses in a

power distribution system”. Table 11.3 compares the basic LGGM trained without text conditions, against

142



Figure 11.5: With fewer training graphs, Fine-tuned LGGM becomes more advantageous than DiGress.

LGGM-T2GD and LGGM-T2GUP. Firstly, we observe a significant performance improvement from LGGM

to LGGM-T2GD/LGGM-T2GUP. The inclusion of text descriptions acts as a unique identifier that enables

LGGM-T2G to specialize in generating graphs aligning with corresponding domains. Moreover, the network-

level user prompts in LGGM-T2GUP provide a finer-level control compared to the domain-level descriptions

in LGGM-T2GD, further boosting the performance.

LGGM-T2G can also control the properties of the generated graphs. Here we first synthesize ground-truth

graphs with clustering coefficients between [0, 0.75] and average degrees between [0, 100]. We divide these

ground-truth graphs into three groups, low/medium/high, and prompt GPT4 to generate user instructions

describing these two graph properties (Appendix 11.9.4). Then we combine these three groups of graphs

with their instructions to train LGGM-T2G and evaluate whether the properties of the generated graphs align

with the instructions. In Figure 11.4(a)/(b), we can see a clear alignment between the statistical properties

of the ground-truth graphs and those of the generated graphs, both in terms of the average CC and DEG.

Furthermore, we visualize the generated graphs for these three groups in Figure 11.4(a)/(b). We can see

graphs in low-CC groups possess many squares while the ones in high-CC groups contain many triangles,

aligning with the intuition of CC.

11.6.5 Practical Usage of Fine-tuned LGGM

To demonstrate the practical usage of LGGM in generating graphs for real-world deployment, we further

compare the fine-tuned LGGM with DiGress trained directly on each domain in Figure 11.1(b). We can see

that even using the same graphs for training, due to the additional knowledge incorporated during the pre-

training phase of LGGM, it exhibits significantly better generative performance for most domains. Moreover,

this advantage becomes even more pronounced when fewer graphs are available. Figure 11.5 illustrates

the enhanced performance of fine-tuned LGGM versus DiGress trained on X, with a widening margin as the

number of training graphs in X decreases. This is particularly useful since many graph generative applications

involve semi-supervised settings, e.g., generating anomaly software and design of drugs, the amount of which

only count 0.05%-0.5% [350] and 0.01% [351] among the whole potential candidates, respectively.

143



11.7 Research Problems Enabled by LGGMs

As the proposed LGGMs are the first to explore the potential of large generative models in graphs, it will

spark numerous transformative research opportunities [352], which are summarized below:

• Simulations, Extrapolation, Anonymization: Since our LGGM-T2G can generate graphs with pre-

defined properties, we can simulate graphs with various properties and extrapolate new insights from these

simulated graphs, e.g., evaluate conventional and newly designed graph algorithms/ models [81]. More-

over, for sensitive real-world graphs, we can maintain confidentiality by sharing only the model, which can

then simulate similar graphs without disclosing private information.

• Data Augmentation: LGGMs can be used for data augmentation when only limited graphs are available

for applications like graph anomaly detection and molecular tasks [299, 353].

• Graph Compression: LGGM allows for the compression of graphs across multiple domains by merely

storing model parameters instead of the original graphs.

11.8 Limitations, Future Directions, and Conclusion

Limitations and Future Directions: Like LGMs in other fields [354, 355], our LGGMs are not specialized in

generating graphs for specific domains. One future direction could be exploring strategies such as Retrieval-

Augmented Generation to enhance domain proficiency [11]. Additionally, our evaluation of LGGMs has

focused solely on their generative capabilities, without examining their potential usage in downstream tasks.

A promising future direction is to assess their practical utility in application-oriented manners, e.g., higher

quality of generated graphs for better data augmentation.

Conclusion: Motivated by the recent successes of Large Generative Models (LGMs) across fields of Vision,

Language, Video, and Audio, and recognizing the promising practical usage of graph generative models, we

introduce, for the very first time, Large Graph Generative Models (LGGMs). These models are trained on

over 5,000 graphs sourced from 13 distinct domains from the well-known Network Repository. We empiri-

cally verify the superiority of our LGGMs in three aspects. Firstly, our pre-trained LGGM-X models demon-

strate exceptional zero-shot generative capabilities. Secondly, LGGMs show remarkable adaptability for

fine-tuning, and the fine-tuned LGGM is even more powerful than previous graph generative models trained

from scratch. Lastly, our models facilitate Text-to-Graph generation, enabling users to specify domain/net-

work names/statistics through prompts to control the generated graphs. Looking ahead, we identify several

potential transformative research problems in Section 11.7. To foster further innovation and community col-

laboration, we release the complete resources of LGGMs, including code, data, and model checkpoints. We

invite the community to use these tools to explore new possibilities in graph generation and beyond.

144



11.9 Appendix

11.9.1 Proof of Theorems

Theorem 9. If the transition matrices Qt
X ,Qt

E in Eq. (11.1) are independent of the textual description S,

then we have P (Gt−1|Gt,G,S) ∝ P (Gt|Gt−1)P (Gt−1|G) and correspondingly, we have the analytical

formed solution, i.e., P (Xt−1|Xt,X, S) ∝ Xt(Qt
X)⊤⊙XQ̄t−1

X , P (Et−1|Et,E, S) ∝ Et(Qt
E)
⊤⊙EQ̄t−1

E

following [308].

Proof. Applying the Bayes rule, we have:

P (Gt−1|Gt,G,S) ∝ P (Gt−1,Gt,G,S) ∝ P (Gt|Gt−1,G,S)P (Gt−1,G,S) (11.7)

∝ P (Gt|Gt−1,G,S)P (Gt−1|G,S)P (G,S). (11.8)

Given the independence of the transition matrix on the textual description S and also the noise is Marko-

vian [308], we have P (Gt|Gt−1,G,S) = P (Gt|Gt−1), P (Gt−1|G,S) = P (Gt−1|G), and also the irrele-

vance of P (G,S) to P (Gt−1|Gt,G,S), we then end up with:

P (Gt−1|Gt,G,S) ∝ P (Gt|Gt−1)P (Gt−1|G). (11.9)

Since the distribution of graphs can be decomposed into the distribution of node and edge categories,

following [308], we similarly have:

P (Xt−1|Xt,X, S) ∝ P (Xt|Xt−1)P (Xt−1|X) = Xt(Qt
X)⊤ ⊙XQ̄t−1

X , (11.10)

P (Et−1|Et,E, S) ∝ P (Et|Et−1)P (Et−1|E) = Et(Qt
E)
⊤ ⊙EQ̄t−1

E . (11.11)

Theorem 10. Given the decomposition in Eq. (11.5) that P (Gt−1|Gt,S) ∝
∑

G P (Gt−1|Gt,G,S)P (G|Gt,S),

optimizing Θ according to Eq. (11.6) essentially optimizes the variational lower bound of the log-likelihood

PΘ(G0,S).

145



Proof. We start directly from the log-likelihood of the joint distribution of PΘ(G0,S):

logPΘ(G0,S) = log

∫
PΘ(G0,S,G1, ...,GT )d(G1,G2, ...,GT ) (11.12)

= log

∫
PΘ(G0,S,G1, ...,GT )

q(G1,G2, ...,GT )
q(G1,G2, ...,GT )d(G1,G2, ...,GT ) (11.13)

= logEq(G1,G2,...,GT )
PΘ(G0,S,G1, ...,GT )

q(G1,G2, ...,GT )
(11.14)

≥ Eq(G1,G2,...,GT ) log
PΘ(G0,S,G1, ...,GT )

q(G1,G2, ...,GT )
by Jensen’s inequality (11.15)

= Eq(G1,G1,...,GT ) log
P (GT ,S)

∏T
t=1 PΘ(Gt−1|Gt,S)

q(G1)
∏T

t=2 q(Gt|Gt−1)
by Markovian (11.16)

= Eq(G0,G1,...,GT )[logP (GT ,S) +
T∑

t=1

log
PΘ(Gt−1|Gt,S)
q(Gt|Gt−1)

] + const. (11.17)

According to the decomposition in Eq (11.3), optimizing Θ according to Eq. (11.6) leads to optimiz-

ing PΘ(Gt−1|Gt,S), which corresponds to the second term in Eq. (11.17) and subsequently optimizes the

variational lower bound of the log-likelihood PΘ(G0,S) according to the derivation from Eq. (11.12) to

Eq. (11.17). Therefore, training Text-to-Graph LGGM according to Eq. (11.6) enables the model to generate

graphs such that the pairs of texts and graphs end up with higher likelihoods.

11.9.2 Pre-processed Graphs for Training LGGMs

We select graphs from the Network Repository across 13 distinct yet representative domains covering a wide

variety of real-world scenarios, including Facebook (FB), Animal Social (ASN), Email, Web, Road, Power,

Chemical (CHEM), Biological (BIO), Economic (ECON), Retweet (RT), Collaboration (COL), Ecological

(ECO), Citation. Due to the scalability issue with diffusion-based graph generative models, we further sample

subgraphs for certain domains, and Table 11.4 presents the comprehensive statistics of the sampled subgraphs,

which are used for training LGGMs. We can see that graphs from different domains are statistically different.

11.9.3 Preparation of Graphs and Textual Description About Their Domains/Names

Here we thoroughly discuss the process of obtaining graphs and their corresponding text prompts describing

their domains/names. As given by the Network Repository, we directly download graphs along with their

domains/names. We then prompt GPT3.5 to generate user prompts describing the graph given its domain/-

name. Moreover, we apply the sentence transformer to obtain text embeddings of the generated prompts for

each network and perform t-SNE visualization. As shown in Figure 11.6(a), we see prompts for graphs from

different domains from different clusters. More importantly, textual similarity can somewhat reflect their

146



Table 11.4: Summary of Graph Statistics. Facebook (FB), Animal Social (ASN), Email, Web, Road, Power,
Chemical (CHEM), Biological (BIO), Economic (ECON), Retweet (RT), Collaboration (COL), Ecological
(ECO), Citation.

Category Num
Nodes

Num
Edges

Avg
Degree

Avg
Clustering

Max
Nodes

Min
Nodes

Max
Edges

Min
Edges

Num
Graphs

ASN 52.47± 40.13 77.59± 80.95 2.62± 1.52 0.395± 0.178 283 3 515 2 267
BIO 191.14± 43.47 965.71± 878.35 9.16± 7.69 0.276± 0.199 258 109 4392 96 504
CHEM 36.46± 20.49 64.61± 26.23 3.75± 0.63 0.421± 0.223 125 2 149 1 646
Citation 235.91± 27.25 1287.16± 1087.00 10.17± 8.14 0.369± 0.224 270 175 4474 188 504
COL 174.26± 53.82 312.56± 176.33 3.41± 1.24 0.497± 0.203 247 52 996 68 504
ECO 100.67± 30.10 1490.00± 673.87 27.72± 7.00 0.406± 0.082 128 54 2106 353 6
ECON 144.18± 35.82 3258.76± 3540.28 39.76± 37.80 0.419± 0.296 219 90 11142 188 504
Email 146.67± 35.86 681.55± 500.28 9.79± 7.26 0.389± 0.211 213 82 2909 216 504
Power 132.22± 20.29 289.32± 183.02 4.35± 2.31 0.161± 0.164 187 81 1332 133 512
Road 265.25± 94.31 276.46± 79.61 2.70± 2.08 0.078± 0.134 411 32 456 137 504
RT 104.11± 35.23 110.99± 46.44 2.11± 0.37 0.028± 0.038 175 35 295 34 558
FB 219.45± 47.05 1863.44± 701.53 16.36± 6.17 0.315± 0.083 259 48 3898 46 504
Web 173.32± 24.86 462.21± 336.46 5.09± 3.06 0.404± 0.196 231 119 1607 149 504

Figure 11.6: t-SNE visualization of textual description about network (a) domain/name (b) average clustering
coefficient (c) average degree.

network similarity. For example, prompts for road and power networks are very close, and they both belong

to infrastructure. Moreover, Facebook Networks, Email Networks, Collaboration Networks, Web Graphs

are very close since all these four belong to some sub-variants of social networks. This inherent relation-

ship between the textual similarity and structural similarity between two graphs demonstrates that the world

knowledge encoded in the text could somehow provide useful preference for the graphs to be generated.

11.9.4 Preparing Graphs and Their Textual Description about Graph Property

Here we thoroughly discuss the process of obtaining graphs and their corresponding text prompts describing

their properties. Our goal is to demonstrate that Text2Graph LGGM can control the statistics of the generated

graphs in the full spectrum. However, the graphs obtained directly from the Network Repository do not cover

the whole topological space (e.g., Figure 11.1(a) shows that no networks have a higher average degree while

low clustering coefficient). Therefore, we plan to synthesize graphs covering the whole space by Watts-

Strogatz Small-world Graph Model. We vary the number of nodes between [10, 110], the number of initial

neighbors between [5, number of nodes], and also the probability of rewiring each edge between [0, 1] to

147



ensure the generated graphs span across the full spectrum. After that, we group the generated graphs into

low, medium, and high groups in terms of their clustering coefficient and average degree. We implement this

using NetworkX. After we synthesize graphs and divide them into three groups, we generate user prompts

paired with these graphs next. To ensure the compatibility between the synthesis graphs and the generated

user prompts. We further replace the number output by GPT4 describing the network property with the real

statistic calculated from each network.

11.9.5 Evaluation Metrics

Following [306, 356], we evaluate the graph generation performance by the standard Maximum Mean Dis-

crepancy (MMD) between generated and reference graphs Gg,Gr:

MMD(Gg,Gr) =
1

m2

m∑
i,j=1

k(xr
i ,x

r
j) +

1

n2

n∑
i,j=1

k(xg
i ,x

g
j )−

2

nm

n∑
i=1

m∑
j=1

k(xg
i ,x

r
j), (11.18)

where k(·, ·) is a general kernel function and specifically we use RBF kernel following [306]:

k(xi,xj) = exp(−d(xi,xj)/2σ
2), (11.19)

where d(·, ·) computes pairwise distance following [308] and MMD is evaluated over the distributions of

degree (DEG), clustering coefficients (CC), eigenvalues of normalized Laplacian matrix (Spec) and orbits

counts representing the distribution of all substructures of size 4 (Orb).

11.9.6 Hyperparameter Details

For all experiments, we select the best configuration according to the generation performance on validation

graphs and report the final performance on generating testing graphs. We adopt the default hyperparameter

settings from DiGress [308] with the following exceptions: we generate 100 graphs per domain for each

evaluation and set the training epochs at 300 to ensure convergence. Additionally, we implement gradient

accumulation, using a mini-batch size of 12 across 4 accumulations, resulting in an effective batch size of

48. For Text-to-Graph Generation, the textual encoder used to obtain textual description embeddings is ”all-

MiniLM-L6-v2”. All experiments are performed on machines with A100-80G GPU RAM and 128GB RAM.

11.9.7 Paradigm Setup

Figure 11.7 comprehensively visualizes the training/evaluation paradigms of the four experiments, the details

of which are discussed in Section 11.6.1.

148

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.watts_strogatz_graph.html


Figure 11.7: Comprehensive Overview of the Experimental Setup for our LGGMs.

149



CHAPTER 12

Conclusion and Future Work

In this chapter, I summarize the contributions of Data Quality-Aware Graph Machine Learning, which in-

cludes systematics study over four different data quality issues on graph-structed data. Later, I briefly intro-

duce some future directions of graph machine learning.

12.1 Conclusion

The focus of artificial intelligence (AI) has recently shifted from a model-centric approach, which primar-

ily emphasizes the performance of AI models, to a data-centric perspective that prioritizes the quality and

quantity of data. This shift is critical in the domain of Graph Machine Learning (GML), particularly with

techniques like Graph Neural Networks (GNNs) that integrate topological and feature information. How-

ever, the dependency on node features and graph topology in GML also makes it susceptible to various data

quality issues, which can significantly impair its performance. Recognizing the profound impact of these

data quality issues on GML, my research has been dedicated to developing a Data Quality-Aware Graph Ma-

chine Trained Learning framework. This framework aims to identify and diagnose data quality issues within

graph-structured data and address these through innovative solutions that span both model and data-centric

strategies. Concretely, the investigated data quality issues include topology issues, imbalance issues, bias

issues and limited data issues.

12.2 Future Work

Marrying Power of AI and Network Science. As the power of any graph machine learning task heavily

relies on its underlying network structure, delving deeper into the sophisticated realms of NS would catalyze

the evolution of avant-garde GML techniques. Previously, I had applied my NS knowledge in designing

model architectures/deriving novel insights in handling/understanding graph data-quality issues, e.g., design-

ing a Breadth-First-Search-based tree decomposition algorithm to enhance node classification on heterophily

networks or devising a topological concentration metric to better characterize the node LP performance. Fol-

lowing this research principle, I hope to continuously bridge the profound knowledge of NS into tailoring

state-of-the-art machine learning techniques. Concretely, I plan to (1) equip Artificial Intelligence Generated

Content (AIGC) with NS/GT by fusing topology-based regularization constraining the generation process

of existing graph diffusion methods (e.g., I deeply collaborate with my labmate in molecular ML and plan

to follow-up work on enhancing imbalance drug discovery by diffusion-based molecular generation); (2)

150



design novel topological encodings to make large-language models(LLMs) fully aware of the complex net-

work structure (e.g., I am currently collaborating with Adobe researchers in designing position/role-based

topological encoding techniques to augmenting the LLMs’ capability for the textual generation.); (3) investi-

gate the applications of network dynamics in designing lifelong GML (e.g., my work identifies a topological

distribution shift that newly-joined neighbors become less connective with existing neighbors of a node);

Harmonizing Knowledge Graph (KG) and Large Language Models (LLMs). Large language models

(LLMs), such as LLaMA2 and GPT4, are making new waves in natural language processing and artifi-

cial intelligence due to their human-like capability and domain-agnostic generalizability. However, LLMs

are black-box models, falling short of capturing and accessing factual knowledge. In contrast, Knowledge

Graphs (KGs), such as Wikipedia Knowledge Base, are structured databases explicitly storing interpretable

factual knowledge. KGs can enhance LLMs by providing external knowledge for grounding, rationalizing,

and interpreting. However, KGs are hard to construct, usually domain-specific, and consistently evolve by

nature, which limits their long-term benefits to broad real-world applications. Therefore, it is complementary

to bridge LLMs and KGs together and simultaneously harness the strength of both. My forward-looking

roadmap for this research field is bipartite: (1) LLMs-augmented KG: leverage LLMs to improve/create

novel KG signals for enhancing/completing KG-based tasks such as knowledge graph completion/question-

answering. (2) KG-augmented LLMs: incorporate KG during the training/inference phase of LLMs to

ground/constrain the generated information from LLMs. One golden example is my previous intern project,

which leverages the document KGs to mitigate the hallucination of LLMs (KG-augmented LLMs) and lever-

age LLMs to guide the graph traversal (LLM-augmented KGs).

Data-centric AI for Social-Good Applications The artificial intelligence (AI) community has traditionally

taken a model-centric perspective and primarily focuses on developing models for refreshing state-of-the-art

performance while keeping the datasets untouched. However, many of these improvements are narrowly

domain-specific and have shown the power exclusively on benchmark datasets, which overlooks potential

data quality issues such as missing values/anomalies/imbalance/bias/incorrect annotations and behave disas-

trously in real-world scenarios outside the training domains. Furthermore, much of model-centric AI has been

driven by a leaderboard mentality associated with these benchmark datasets, resulting in part of the research

community being biased towards more and more complex models that achieve more excellent performance

yet more unrealistic utility. This has led to the recent rise in data-centric AI, which emphasizes curating and

refining data used within AI models. In my future research endeavors, I am committed to advancing this

data-centric AI direction, as already evidenced by my previous research, to curate the data from the wild and

derive the most appropriate signals for downstream applications. Beyond research on data-centric AI, I am

keen on translating my findings into tangible real-world applications for social good.

151



References

[1] Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. Collaboration-aware graph convolutional network
for recommender systems. In Proceedings of the ACM Web Conference 2023, pages 91–101, 2023.

[2] Yu Wang and Tyler Derr. Tree decomposed graph neural network. In Proceedings of the 30th ACM
international conference on information & knowledge management, pages 2040–2049, 2021.

[3] Yu Wang, Tong Zhao, Yuying Zhao, Yunchao Liu, Xueqi Cheng, Neil Shah, and Tyler Derr. A topolog-
ical perspective on demystifying GNN-based link prediction performance. In The Twelfth International
Conference on Learning Representations, 2024.

[4] Yu Wang and Tyler Derr. Degree-related bias in link prediction. In 2022 IEEE International Confer-
ence on Data Mining Workshops (ICDMW), pages 757–758. IEEE, 2022.

[5] Yu Wang, Amin Javari, Janani Balaji, Walid Shalaby, Tyler Derr, and Xiquan Cui. Knowledge graph-
based session recommendation with session-adaptive propagation. In Companion Proceedings of the
ACM on Web Conference 2024, pages 264–273, 2024.

[6] Yu Wang. Fair graph representation learning with imbalanced and biased data. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining, 2022.

[7] Yu Wang, Yuying Zhao, Neil Shah, and Tyler Derr. Imbalanced graph classification via graph-of-
graph neural networks. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pages 2067–2076, 2022.

[8] Yu Wang, Charu Aggarwal, and Tyler Derr. Distance-wise prototypical graph neural network in node
imbalance classification. arXiv preprint arXiv:2110.12035, 2021.

[9] Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler Derr. Improving fairness
in graph neural networks via mitigating sensitive attribute leakage. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1938–1948, 2022.

[10] Yu Wang, Nedim Lipka, Ruiyi Zhang, Alexa Siu, Yuying Zhao, Bo Ni, Xin Wang, Ryan Rossi,
and Tyler Derr. Augmenting textual generation via topology aware retrieval. arXiv preprint
arXiv:2405.17602, 2024.

[11] Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, pages 19206–19214, 2024.

[12] Namyong Park Huiyuan Chen Nesreen K. Ahmed Puja Trivedi Franck Dernoncourt Danai Koutra
Tyler Derr Yu Wang, Ryan A. Rossi. Large graph generative models. In In submission.

[13] Tyler Derr, Yao Ma, Wenqi Fan, Xiaorui Liu, Charu Aggarwal, and Jiliang Tang. Epidemic graph
convolutional network. In Proceedings of the 13th International Conference on Web Search and Data
Mining, pages 160–168, 2020.

[14] William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR, 2017.

[16] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Ben-
gio. Graph attention networks. In International Conference on Learning Representations, 2018.

152



[17] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural net-
works? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[19] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, 2018.

[20] Lei Cai and Shuiwang Ji. A multi-scale approach for graph link prediction. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, 2020.

[21] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

[22] Yu Rong, Tingyang Xu, Junzhou Huang, Wenbing Huang, Hong Cheng, Yao Ma, Yiqi Wang, Tyler
Derr, Lingfei Wu, and Tengfei Ma. Deep graph learning: Foundations, advances and applications. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 3555–3556, 2020.

[23] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, 2019.

[24] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 2020.

[25] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs. In
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[26] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2020.

[27] Carey E. Priebe, Cencheng Shen, Ningyuan Huang, and Tianyi Chen. A simple spectral failure mode
for graph convolutional networks. CoRR, abs/2010.13152, 2020.

[28] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
ing. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
2019.

[29] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In 7th International Conference on Learning Represen-
tations, ICLR, 2019.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[31] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

153



[32] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in Neural
Information Processing Systems, 33, 2020.

[33] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, 2018.

[34] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra.
Graph neural networks with heterophily. arXiv preprint arXiv:2009.13566, 2020.

[35] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast and
scalable system for fraud detection in online auction networks. In Proceedings of the 16th international
conference on World Wide Web, pages 201–210, 2007.

[36] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv preprint
arXiv:2102.06462, 2021.

[37] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Direct multi-hop attention based graph
neural network. arXiv preprint arXiv:2009.14332, 2020.

[38] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356, 1969.

[39] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. In Pro-
ceedings of the nineteenth annual ACM symposium on Theory of computing, pages 1–6, 1987.

[40] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Transactions On Algorithms
(TALG), 1(1):2–13, 2005.

[41] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Deep graph neural networks with shallow subgraph
samplers. arXiv preprint arXiv:2012.01380, 2020.

[42] Stanley Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

[43] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 1024–1034,
2017.

[44] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[45] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016.

[46] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6):183–
197, 1991.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems (NeurIPS) 2019, pages 8024–8035, 2019.

[48] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

154



[49] Haoyu Han, Xiaorui Liu, Feng Shi, MohamadAli Torkamani, Charu C Aggarwal, and Jiliang Tang.
Towards label position bias in graph neural networks. arXiv preprint arXiv:2305.15822, 2023.

[50] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD, pages 974–983, 2018.

[51] Benedek Rozemberczki, Charles Tapley Hoyt, Anna Gogleva, Piotr Grabowski, Klas Karis, Andrej
Lamov, Andriy Nikolov, Sebastian Nilsson, Michael Ughetto, Yu Wang, et al. Chemicalx: A deep
learning library for drug pair scoring. In Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 3819–3828, 2022.

[52] Juanhui Li, Harry Shomer, Jiayuan Ding, Yiqi Wang, Yao Ma, Neil Shah, Jiliang Tang, and Dawei Yin.
Are message passing neural networks really helpful for knowledge graph completion? In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 10696–10711, 2023.

[53] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Com-
puter networks and ISDN systems, 30(1-7):107–117, 1998.

[54] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In Pro-
ceedings of the twelfth international conference on Information and knowledge management, pages
556–559, 2003.

[55] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 701–710, 2014.

[56] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages
855–864, 2016.

[57] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks for
link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

[58] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual links
for link prediction. In International Conference on Machine Learning, pages 26911–26926. PMLR,
2022.

[59] Huiyuan Chen, Lan Wang, Yusan Lin, Chin-Chia Michael Yeh, Fei Wang, and Hao Yang. Structured
graph convolutional networks with stochastic masks for recommender systems. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 614–623, 2021.

[60] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional networks.
In Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
pages 1435–1444, 2020.

[61] Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? arXiv preprint
arXiv:2306.01323, 2023.

[62] Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs containing
missing features. Future Generation Computer Systems, 117:155–168, 2021.

[63] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification on
graphs with graph neural networks. In Proceedings of the 14th ACM international conference on web
search and data mining, pages 833–841, 2021.

155



[64] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the cold start problem in
recommender systems. Expert systems with applications, 41(4):2065–2073, 2014.

[65] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data aug-
mentation for graph neural networks. In Proceedings of the aaai conference on artificial intelligence,
volume 35, pages 11015–11023, 2021.

[66] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. Tail-gnn: Tail-node graph neural networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages
1109–1119, 2021.

[67] Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, and Hong Chen. Pre-training graph neural networks
for cold-start users and items representation. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pages 265–273, 2021.

[68] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. User-oriented fairness in
recommendation. In Proceedings of the Web Conference 2021, pages 624–632, 2021.

[69] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pages 3663–3674, 2021.

[70] Joonhyung Park, Jaeyun Song, and Eunho Yang. Graphens: Neighbor-aware ego network synthesis
for class-imbalanced node classification. In International Conference on Learning Representations,
2021.

[71] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra.
Graph neural networks with heterophily. In Proceedings of the AAAI conference on artificial intelli-
gence, pages 11168–11176, 2021.

[72] Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. Algorithm and system co-
design for efficient subgraph-based graph representation learning. arXiv preprint arXiv:2202.13538,
2022.

[73] Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683–13694, 2021.

[74] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks
for social recommendation. In The world wide web conference, pages 417–426, 2019.

[75] Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu Han, Hanqing Lu,
Zhengyang Wang, Ruirui Li, et al. Amazon-m2: A multilingual multi-locale shopping session dataset
for recommendation and text generation. arXiv preprint arXiv:2307.09688, 2023.

[76] Hossein A Rahmani, Mohammadmehdi Naghiaei, Mahdi Dehghan, and Mohammad Aliannejadi. Ex-
periments on generalizability of user-oriented fairness in recommender systems. In Proceedings of the
45th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2755–2764, 2022.

[77] Hao-Ming Fu, Patrick Poirson, Kwot Sin Lee, and Chen Wang. Revisiting neighborhood-based link
prediction for collaborative filtering. arXiv preprint arXiv:2203.15789, 2022.

[78] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[79] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn: Sim-
plifying and powering graph convolution network for recommendation. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information Retrieval, pages
639–648, 2020.

156



[80] Liming Pan, Cheng Shi, and Ivan Dokmanić. Neural link prediction with walk pooling. In Interna-
tional Conference on Learning Representations, 2022.

[81] John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs bring
real insights for gnns. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 3691–3701, 2022.

[82] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

[83] Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang, Ming Chen, Xudong
Zheng, Xiaobing Liu, and Xiwang Yang. Autoemb: Automated embedding dimensionality search in
streaming recommendations. In 2021 IEEE International Conference on Data Mining (ICDM), pages
896–905. IEEE, 2021.

[84] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks.
In Proceedings of the 43rd international ACM SIGIR conference on research and development in
information retrieval, pages 719–728, 2020.

[85] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

[86] Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
prediction. arXiv preprint arXiv:2302.00890, 2023.

[87] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. Fast and accurate
network embeddings via very sparse random projection. In Proceedings of the 28th ACM international
conference on information and knowledge management, pages 399–408, 2019.

[88] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
ing. Advances in neural information processing systems, 32, 2019.

[89] Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking.
arXiv preprint arXiv:2306.10453, 2023.

[90] Sang Gyu Kwak and Jong Hae Kim. Central limit theorem: the cornerstone of modern statistics.
Korean journal of anesthesiology, 70(2):144–156, 2017.

[91] MN Sanders. Characteristic function of the central chi-squared distribution, 2009.

[92] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM conference on recommender systems, pages 191–198, 2016.

[93] Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Kumar, and Xiquan Cui. M2trec: Metadata-
aware multi-task transformer for large-scale and cold-start free session-based recommendations. In
Proceedings of the 16th ACM Conference on Recommender Systems, pages 573–578, 2022.

[94] Travis Ebesu, Bin Shen, and Yi Fang. Collaborative memory network for recommendation systems.
In The 41st international ACM SIGIR conference on research & development in information retrieval,
pages 515–524, 2018.

[95] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collabora-
tive filtering. In Proceedings of the 26th international conference on world wide web, pages 173–182,
2017.

157



[96] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative fil-
tering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development
in Information Retrieval, pages 165–174, 2019.

[97] Xin Li and Hsinchun Chen. Recommendation as link prediction in bipartite graphs: A graph kernel-
based machine learning approach. Decision Support Systems, 54(2):880–890, 2013.

[98] Yue Hu, Ao Qu, and Dan Work. Detecting extreme traffic events via a context augmented graph
autoencoder. ACM Transactions on Intelligent Systems and Technology (TIST), 13(6):1–23, 2022.

[99] Zixu Zhuang, Sheng Wang, Liping Si, Kai Xuan, Zhong Xue, Dinggang Shen, Lichi Zhang, Weiwu
Yao, and Qian Wang. Local graph fusion of multi-view mr images for knee osteoarthritis diagnosis.
In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages
554–563. Springer, 2022.

[100] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. Social-stgcnn: A social
spatio-temporal graph convolutional neural network for human trajectory prediction. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 14424–14432, 2020.

[101] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 726–735, 2021.

[102] Yu Wang, Wei Jin, and Tyler Derr. Graph neural networks: Self-supervised learning. In Graph Neural
Networks: Foundations, Frontiers, and Applications, pages 391–420. Springer, 2022.

[103] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. Graph trend networks for
recommendations. arXiv preprint arXiv:2108.05552, 2021.

[104] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12):61–70, 1992.

[105] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence, pages 452–461, 2009.

[106] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

[107] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

[108] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Latent relational metric learning via memory-based
attention for collaborative ranking. In WWW, pages 729–739, 2018.

[109] Marco Gori, Augusto Pucci, V Roma, and I Siena. Itemrank: A random-walk based scoring algorithm
for recommender engines. In IJCAI, volume 7, pages 2766–2771, 2007.

[110] Xiangnan He, Ming Gao, Min-Yen Kan, and Dingxian Wang. Birank: Towards ranking on bipartite
graphs. IEEE Transactions on Knowledge and Data Engineering, 29(1):57–71, 2016.

[111] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. Hop-rec: high-order
proximity for implicit recommendation. In Proceedings of the 12th ACM Conference on Recommender
Systems, pages 140–144, 2018.

[112] Yu Wang and Tyler Derr. Tree decomposed graph neural network. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pages 2040–2049, 2021.

[113] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. Learning to denoise
unreliable interactions for graph collaborative filtering. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 122–132, 2022.

158



[114] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015.

[115] Elizabeth A Leicht, Petter Holme, and Mark EJ Newman. Vertex similarity in networks. Physical
Review E, 73(2):026120, 2006.

[116] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The
European Physical Journal B, 71(4):623–630, 2009.

[117] Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review E,
64(2):025102, 2001.

[118] Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pages
575–583, 2017.

[119] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. In International Conference on Learning Representations, 2021.

[120] Asiri Wijesinghe and Qing Wang. A new perspective on” how graph neural networks go beyond
weisfeiler-lehman?”. In ICLR, 2021.

[121] Meng Liu, Haiyang Yu, and Shuiwang Ji. Your neighbors are communicating: Towards powerful and
scalable graph neural networks. arXiv preprint arXiv:2206.02059, 2022.

[122] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He. Ultragcn: Ultra
simplification of graph convolutional networks for recommendation. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pages 1253–1262, 2021.

[123] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems handbook.
In Recommender systems handbook. Springer, 2011.

[124] Gerard Salton. Automatic text processing: The transformation, analysis, and retrieval of. Reading:
Addison-Wesley, 169, 1989.

[125] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal of
the American society for information science and technology, 58(7):1019–1031, 2007.

[126] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via continual
learning. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 1515–1524, 2020.

[127] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. Lifelong graph learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13719–13728, 2022.

[128] Dongmin Park, Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Trap: Two-level regularized
autoencoder-based embedding for power-law distributed data. In Proceedings of The Web Conference
2020, pages 1615–1624, 2020.

[129] Ruining He and Julian McAuley. Vbpr: visual bayesian personalized ranking from implicit feedback.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2016.

[130] William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for indefinite rankings. ACM
Transactions on Information Systems (TOIS), 28(4):1–38, 2010.

[131] Andrew T Stephen and Olivier Toubia. Explaining the power-law degree distribution in a social com-
merce network. Social Networks, 31(4):262–270, 2009.

[132] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recom-
mendations with recurrent neural networks. ICLR, 2016.

159



[133] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S Sheng S. Sheng, Zhiming Cui, Xiao-
fang Zhou, and Hui Xiong. Recurrent convolutional neural network for sequential recommendation.
In The world wide web conference, pages 3398–3404, 2019.

[134] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive session-
based recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management, pages 1419–1428, 2017.

[135] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pages 197–206. IEEE, 2018.

[136] Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge. Trans-
formers4rec: Bridging the gap between nlp and sequential/session-based recommendation. In Fifteenth
ACM Conference on Recommender Systems, pages 143–153, 2021.

[137] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based recom-
mendation with graph neural networks. In Proceedings of the AAAI conference on artificial intelli-
gence, pages 346–353, 2019.

[138] Wei Zhang, Zeyuan Chen, Hongyuan Zha, and Jianyong Wang. Learning from substitutable and
complementary relations for graph-based sequential product recommendation. ACM Transactions on
Information Systems (TOIS), 40(2):1–28, 2021.

[139] Chao Huang, Jiahui Chen, Lianghao Xia, Yong Xu, Peng Dai, Yanqing Chen, Liefeng Bo, Jiashu Zhao,
and Jimmy Xiangji Huang. Graph-enhanced multi-task learning of multi-level transition dynamics for
session-based recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 4123–4130, 2021.

[140] Ruihong Qiu, Zi Huang, Jingjing Li, and Hongzhi Yin. Exploiting cross-session information for
session-based recommendation with graph neural networks. ACM Transactions on Information Sys-
tems (TOIS), 38(3):1–23, 2020.

[141] Qi Shen, Lingfei Wu, Yitong Pang, Yiming Zhang, Zhihua Wei, Fangli Xu, and Bo Long.
Multi-behavior graph contextual aware network for session-based recommendation. arXiv preprint
arXiv:2109.11903, 2021.

[142] Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Xiyue Zhang, Hongsheng Yang, Jian Pei, and Liefeng
Bo. Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation.
In Proceedings of the AAAI Conference on Artificial Intelligence, pages 4486–4493, 2021.

[143] Zhiqiang Pan, Fei Cai, Wanyu Chen, and Honghui Chen. Graph co-attentive session-based recommen-
dation. ACM Transactions on Information Systems (TOIS), 40(4):1–31, 2021.

[144] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui Qiu. Global context
enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd inter-
national ACM SIGIR conference on research and development in information retrieval, pages 169–178,
2020.

[145] Zihan Wang, Ziheng Jiang, Zhaochun Ren, Jiliang Tang, and Dawei Yin. A path-constrained frame-
work for discriminating substitutable and complementary products in e-commerce. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, pages 619–627, 2018.

[146] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable and comple-
mentary products. In Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 785–794, 2015.

[147] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pages 2704–2710, 2020.

160



[148] Rongzhi Zhang, Yulong Gu, Xiaoyu Shen, and Hui Su. Knowledge-enhanced session-based recom-
mendation with temporal transformer. arXiv preprint arXiv:2112.08745, 2021.

[149] Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff. Niser: Normalized
item and session representations to handle popularity bias. arXiv preprint arXiv:1909.04276, 2019.

[150] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725–1735. PMLR,
2020.

[151] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive session-
based recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management, pages 1419–1428, 2017.

[152] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[153] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A compre-
hensive survey on graph neural networks. IEEE transactions on neural networks and learning systems,
32(1):4–24, 2020.

[154] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-gnn: On
few-shot node classification in graph meta-learning. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 2357–2360, 2019.

[155] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu. Graph prototypical
networks for few-shot learning on attributed networks. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pages 295–304, 2020.

[156] Min Shi, Yufei Tang, Xingquan Zhu, David Wilson, and Jianxun Liu. Multi-class imbalanced graph
convolutional network learning. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (IJCAI-20), 2020.

[157] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance. Journal
of Big Data, 6(1):1–54, 2019.

[158] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Advances in Neural Information Processing Systems 29 (NeurIPS),
pages 3630–3638, 2016.

[159] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[160] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, 2020.

[161] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning from imbal-
anced data sets. ACM SIGKDD explorations newsletter, 6(1):1–6, 2004.

[162] Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme. Cost-sensitive learning methods for
imbalanced data. In The 2010 International joint conference on neural networks (IJCNN), pages 1–8.
IEEE, 2010.

[163] Jinhao Dong and Tong Lin. Margingan: Adversarial training in semi-supervised learning. 2019.

161



[164] Zheng Wang, Xiaojun Ye, Chaokun Wang, Jian Cui, and Philip Yu. Network embedding with
completely-imbalanced labels. IEEE Transactions on Knowledge and Data Engineering, 2020.

[165] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

[166] Haibo He and Yunqian Ma. Imbalanced learning: foundations, algorithms, and applications. 2013.

[167] Bartosz Krawczyk. Learning from imbalanced data: open challenges and future directions. Progress
in Artificial Intelligence, 5(4):221–232, 2016.

[168] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems 30 (NeurIPS), pages 4077–4087, 2017.

[169] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

[170] Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua Tenenbaum. Infinite mixture prototypes for
few-shot learning. In International Conference on Machine Learning, pages 232–241. PMLR, 2019.

[171] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior of distance
metrics in high dimensional space. In International conference on database theory, pages 420–434.
Springer, 2001.

[172] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

[173] Deli Chen, Yanyai Lin, Lei Li, Xuancheng Ren Li, Jie Zhou, Xu Sun, et al. Distance-wise graph
contrastive learning. arXiv preprint arXiv:2012.07437, 2020.

[174] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. arXiv preprint arXiv:2102.10757, 2021.

[175] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S Yu. Graph self-supervised
learning: A survey. arXiv preprint arXiv:2103.00111, 2021.

[176] Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for scalable semi-supervised
learning. In ICML, 2010.

[177] Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia, and Charu
Aggarwal. Scalable global alignment graph kernel using random features: From node embedding to
graph embedding. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1418–1428, 2019.

[178] Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in Neural Information Processing Systems, 33, 2020.

[179] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of
graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[180] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

[181] Bo Yuan and Xiaoli Ma. Sampling+ reweighting: Boosting the performance of adaboost on imbalanced
datasets. In The 2012 international joint conference on neural networks (IJCNN), pages 1–6. IEEE,
2012.

[182] Yang Gao, Yi-Fan Li, Yu Lin, Charu Aggarwal, and Latifur Khan. Setconv: A new approach for
learning from imbalanced data. arXiv preprint arXiv:2104.06313, 2021.

162



[183] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural
networks for graph classification. In ICLR, 2020.

[184] Zixing Song, Xiangli Yang, Zenglin Xu, and Irwin King. Graph-based semi-supervised learning: A
comprehensive review. arXiv:2102.13303, 2021.

[185] Joffrey L Leevy, Taghi M Khoshgoftaar, Richard A Bauder, and Naeem Seliya. A survey on addressing
high-class imbalance in big data. Journal of Big Data, 5(1):1–30, 2018.

[186] Jin-Zhu Yu, Mincheng Wu, Gisela Bichler, Felipe Aros-Vera, and Jianxi Gao. Reconstructing
sparse illicit supply networks: A case study of multiplex drug trafficking networks. arXiv preprint
arXiv:2208.01739, 2022.

[187] Gabriel Idakwo, Sundar Thangapandian, Joseph Luttrell, Yan Li, Nan Wang, Zhaoxian Zhou, Huixiao
Hong, Bei Yang, Chaoyang Zhang, and Ping Gong. Structure–activity relationship-based chemical
classification of highly imbalanced tox21 datasets. Journal of cheminformatics, 12(1):1–19, 2020.

[188] Yunchao Liu, Yu Wang, Oanh T Vu, Rocco Moretti, Bobby Bodenheimer, Jens Meiler, and Tyler
Derr. Interpretable chirality-aware graph neural network for quantitative structure activity relationship
modeling in drug discovery. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

[189] Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. A synergistic approach for graph anomaly
detection with pattern mining and feature learning. IEEE TNNLS, 2021.

[190] Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano. Experimental perspectives on learning
from imbalanced data. In ICML, pages 935–942, 2007.

[191] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. Imgagn: Imbalanced network
embedding via generative adversarial graph networks. arXiv:2106.02817, 2021.

[192] Shirui Pan and Xingquan Zhu. Graph classification with imbalanced class distributions and noise. In
IJCAI, pages 1586–1592, 2013.

[193] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48, 2019.

[194] Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
Eduard Hovy. A survey of data augmentation approaches for nlp. arXiv:2105.03075, 2021.

[195] Tong Zhao, Gang Liu, Stephan Günnemann, and Meng Jiang. Graph data augmentation for graph
machine learning: A survey. arXiv preprint arXiv:2202.08871, 2022.

[196] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning: A
survey. arXiv preprint arXiv:2202.08235, 2022.

[197] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

[198] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin Raffel.
Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249, 2019.

[199] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[200] Shuangjia Zheng, Zengrong Lei, Haitao Ai, Hongming Chen, Daiguo Deng, and Yuedong Yang. Deep
scaffold hopping with multimodal transformer neural networks. Journal of cheminformatics, 13(1):1–
15, 2021.

[201] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

163



[202] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In KDD, pages 1365–1374, 2015.

[203] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR 2020.

[204] Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propaga-
tion. arXiv preprint arXiv:2002.06755, 2020.

[205] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[206] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. Advances
in neural information processing systems, 17, 2004.

[207] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In ICDM, 2005.

[208] Jonatan Kilhamn. Fast shortest-path kernel computations using aproximate methods. Master’s thesis,
2015.

[209] Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma. Statisti-
cal evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):1183–1193,
2003.

[210] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification. KAIS, 14(3):347–375, 2008.

[211] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. J. Med. Chem., 34(2):786–797, 1991.

[212] Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic algorithm:
A method for developing classification structure- activity relationships. J Chem Inform Comput Sci,
43(6), 2003.

[213] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets: one-sided
selection. In Icml. Citeseer, 1997.

[214] Asiri Wijesinghe and Qing Wang. A new perspective on ”how graph neural networks go beyond
weisfeiler-lehman?”. In ICLR, 2022.

[215] Enyan Dai and Suhang Wang. Say no to the discrimination: Learning fair graph neural networks with
limited sensitive attribute information. In Proceedings of the 14th ACM International Conference on
Web Search and Data Mining, 2021.

[216] Valentina Shumovskaia, Kirill Fedyanin, Ivan Sukharev, and Dmitry Berestnev. Linking bank clients
using graph neural networks powered by rich transactional data. International Journal of Data Science
and Analytics, 2021.

[217] Bingbing Xu, Huawei Shen, Bingjie Sun, Rong An, Qi Cao, and Xueqi Cheng. Towards consumer loan
fraud detection: Graph neural networks with role-constrained conditional random field. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2021.

[218] Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a unified framework for fair
and stable graph representation learning. In Uncertainty in Artificial Intelligence, pages 2114–2124.
PMLR, 2021.

[219] Avishek Bose and William Hamilton. Compositional fairness constraints for graph embeddings. In
International Conference on Machine Learning, pages 715–724, 2019.

[220] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.

164



[221] Mengnan Du, Fan Yang, Na Zou, and Xia Hu. Fairness in deep learning: A computational perspective.
IEEE Intelligent Systems, 2020.

[222] Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. Edits: Modeling and mitigating data bias
for graph neural networks. In Proceedings of the ACM Web Conference 2022, pages 1259–1269, 2022.

[223] Öykü Deniz Köse and Yanning Shen. Fairness-aware node representation learning. arXiv preprint
arXiv:2106.05391, 2021.

[224] Yushun Dong, Song Wang, Yu Wang, Tyler Derr, and Jundong Li. On structural explanation of bias in
graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, 2022.

[225] Wei Jin, Xiaorui Liu, Yao Ma, Charu Aggarwal, and Jiliang Tang. Feature overcorrelation in deep
graph neural networks: A new perspective. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2022.

[226] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In 7th International Conference on Learning Representations, ICLR, 2021.

[227] Yushun Dong, Jian Kang, Hanghang Tong, and Jundong Li. Individual fairness for graph neural net-
works: A ranking based approach. In Proceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, 2021.

[228] Tianxiang Zhao, Enyan Dai, Kai Shu, and Suhang Wang. Towards fair classifiers without sensitive
attributes: Exploring biases in related features. In Proceedings of the ACM International Conference
on Web Search and Data Mining, 2022.

[229] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

[230] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regular-
ization approach. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages
643–650. IEEE, 2011.

[231] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

[232] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu. Traffic
flow prediction via spatial temporal graph neural network. In Proceedings of The Web Conference
2020, pages 1082–1092, 2020.

[233] Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. Collaboration-aware graph convolutional networks
for recommendation systems. arXiv preprint arXiv:2207.06221, 2022.

[234] Yushun Dong, Jing Ma, Chen Chen, and Jundong Li. Fairness in graph mining: A survey. arXiv
preprint arXiv:2204.09888, 2022.

[235] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051, 2017.

[236] Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caiming Xiong. Learn-
ing to retrieve reasoning paths over wikipedia graph for question answering. arXiv preprint
arXiv:1911.10470, 2019.

[237] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv preprint
arXiv:2004.04906, 2020.

165



[238] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
dataset for fact extraction and verification. arXiv preprint arXiv:1803.05355, 2018.

[239] Rami Aly, Zhijiang Guo, Michael Schlichtkrull, James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. Feverous: Fact extraction and verification
over unstructured and structured information. arXiv preprint arXiv:2106.05707, 2021.

[240] Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi Yang. Is
chatgpt a general-purpose natural language processing task solver? arXiv preprint arXiv:2302.06476,
2023.

[241] Girolamo Tessuto. Legal problem question answer genre across jurisdictions and cultures. English for
Specific Purposes, 30(4):298–309, 2011.

[242] Mark Bolino, David Long, and William Turnley. Impression management in organizations: Critical
questions, answers, and areas for future research. Annual Review of Organizational Psychology and
Organizational Behavior, 3:377–406, 2016.

[243] Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060, 2020.

[244] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

[245] Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages
2200–2209, 2021.

[246] Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio,
Cha Zhang, Wanxiang Che, et al. Layoutlmv2: Multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740, 2020.

[247] Mingxuan Ju, Wenhao Yu, Tong Zhao, Chuxu Zhang, and Yanfang Ye. Grape: Knowledge graph en-
hanced passage reader for open-domain question answering. arXiv preprint arXiv:2210.02933, 2022.

[248] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng Chua. Re-
trieving and reading: A comprehensive survey on open-domain question answering. arXiv preprint
arXiv:2101.00774, 2021.

[249] Jayr Pereira, Robson Fidalgo, Roberto Lotufo, and Rodrigo Nogueira. Visconde: Multi-document qa
with gpt-3 and neural reranking. In European Conference on Information Retrieval, pages 534–543.
Springer, 2023.

[250] Avi Caciularu, Matthew E Peters, Jacob Goldberger, Ido Dagan, and Arman Cohan. Peek
across: Improving multi-document modeling via cross-document question-answering. arXiv preprint
arXiv:2305.15387, 2023.

[251] Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang Wang, Yashar
Mehdad, Wen-tau Yih, Sebastian Riedel, Douwe Kiela, et al. Answering complex open-domain ques-
tions with multi-hop dense retrieval. arXiv preprint arXiv:2009.12756, 2020.

[252] Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, Nitish Shirish Keskar, and Caiming Xiong. Mod-
eling multi-hop question answering as single sequence prediction. arXiv preprint arXiv:2205.09226,
2022.

[253] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv preprint
arXiv:2212.10509, 2022.

166



[254] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

[255] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

[256] Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning in
large language models. arXiv preprint arXiv:2305.16582, 2023.

[257] Hariom A Pandya and Brijesh S Bhatt. Question answering survey: Directions, challenges, datasets,
evaluation matrices. arXiv preprint arXiv:2112.03572, 2021.

[258] Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, and Weizhu
Chen. Rider: Reader-guided passage reranking for open-domain question answering. arXiv preprint
arXiv:2101.00294, 2021.

[259] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

[260] Kyosuke Nishida, Itsumi Saito, Atsushi Otsuka, Hisako Asano, and Junji Tomita. Retrieve-and-read:
Multi-task learning of information retrieval and reading comprehension. In Proceedings of the 27th
ACM international conference on information and knowledge management, pages 647–656, 2018.

[261] Jon Saad-Falcon, Joe Barrow, Alexa Siu, Ani Nenkova, Ryan A Rossi, and Franck Dernoncourt. Pdf-
triage: Question answering over long, structured documents. arXiv preprint arXiv:2309.08872, 2023.

[262] Devendra Singh, Siva Reddy, Will Hamilton, Chris Dyer, and Dani Yogatama. End-to-end training
of multi-document reader and retriever for open-domain question answering. Advances in Neural
Information Processing Systems, 34:25968–25981, 2021.

[263] Valeriia Bolotova-Baranova, Vladislav Blinov, Sofya Filippova, Falk Scholer, and Mark Sanderson.
Wikihowqa: A comprehensive benchmark for multi-document non-factoid question answering. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 5291–5314, 2023.

[264] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35, 2023.

[265] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and
Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv preprint
arXiv:2004.10964, 2020.

[266] Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. Large language model as attributed training data generator: A tale of diversity and
bias. arXiv preprint arXiv:2306.15895, 2023.

[267] Xuansheng Wu, Kaixiong Zhou, Mingchen Sun, Xin Wang, and Ninghao Liu. A survey of graph
prompting methods: techniques, applications, and challenges. arXiv preprint arXiv:2303.07275, 2023.

[268] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin,
and Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt and beyond. arXiv preprint
arXiv:2304.13712, 2023.

[269] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes, Se-
bastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic web, 6(2):167–195, 2015.

167



[270] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. Yago2: A spatially
and temporally enhanced knowledge base from wikipedia. Artificial intelligence, 194:28–61, 2013.

[271] Xiaofeng Huang, Jixin Zhang, Zisang Xu, Lu Ou, and Jianbin Tong. A knowledge graph based ques-
tion answering method for medical domain. PeerJ Computer Science, 7:e667, 2021.

[272] Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In Proceedings of
the first instructional conference on machine learning, pages 29–48. Citeseer, 2003.

[273] Sewon Min, Danqi Chen, Luke Zettlemoyer, and Hannaneh Hajishirzi. Knowledge guided text retrieval
and reading for open domain question answering. arXiv preprint arXiv:1911.03868, 2019.

[274] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-
shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[275] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[276] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM Computing
Surveys, 55(12):1–38, 2023.

[277] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

[278] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering.
arXiv preprint arXiv:1809.09600, 2018.

[279] James Ferguson, Matt Gardner, Hannaneh Hajishirzi, Tushar Khot, and Pradeep Dasigi. Iirc: A dataset
of incomplete information reading comprehension questions. arXiv preprint arXiv:2011.07127, 2020.

[280] Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are strong
context generators. arXiv preprint arXiv:2209.10063, 2022.

[281] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. Gpteval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

[282] Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for methods that learn
from human feedback. arXiv preprint arXiv:2305.14387, 2023.

[283] Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou, Nedim Lipka, Diyi Yang, and Tong Sun.
Llavar: Enhanced visual instruction tuning for text-rich image understanding. arXiv preprint
arXiv:2306.17107, 2023.

[284] Yichen Jiang and Mohit Bansal. Avoiding reasoning shortcuts: Adversarial evaluation, training, and
model development for multi-hop qa. arXiv preprint arXiv:1906.07132, 2019.

[285] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[286] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

168



[287] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor,
Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models
as world simulators. 2024.

[288] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10684–10695, 2022.

[289] Daniel Beard. Firefly: web-based interactive tool for the visualization and validation of image pro-
cessing algorithms. PhD thesis, University of Missouri–Columbia, 2009.

[290] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion art
or digital forgery? investigating data replication in diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6048–6058, 2023.

[291] Zhanjie Zhang, Quanwei Zhang, Wei Xing, Guangyuan Li, Lei Zhao, Jiakai Sun, Zehua Lan, Junsheng
Luan, Yiling Huang, and Huaizhong Lin. Artbank: Artistic style transfer with pre-trained diffusion
model and implicit style prompt bank. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 7396–7404, 2024.

[292] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[293] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[294] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015:
18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages
234–241. Springer, 2015.

[295] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[296] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763.
PMLR, 2021.

[297] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pages 8867–8887.
PMLR, 2022.

[298] Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard,
Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model for
molecular linker design. Nature Machine Intelligence, pages 1–11, 2024.

[299] Gang Liu, Eric Inae, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Data-centric learning from
unlabeled graphs with diffusion model. Advances in neural information processing systems, 36, 2024.

[300] Dhruv Menon and Raghavan Ranganathan. A generative approach to materials discovery, design, and
optimization. ACS omega, 7(30):25958–25973, 2022.

[301] Dmitrii Gavrilev and Evgeny Burnaev. Anomaly detection in networks via score-based generative
models. arXiv preprint arXiv:2306.15324, 2023.

[302] Kay Liu, Huijun Lona Yu, Yao Yan, Ziqing Hu, Pankaj Rajak, Amila Weerasinghe, Olcay Boz, Deep-
ayan Chakrabarti, and Fei Wang. Graph diffusion models for anomaly detection. 2024.

169



[303] Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R Rabiee. Deep graph
generators: A survey. IEEE Access, 9:106675–106702, 2021.

[304] Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5370–5390, 2022.

[305] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. In Learning on Graphs Conference, pages 47–1.
PMLR, 2022.

[306] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pages 5708–5717. PMLR, 2018.

[307] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th
International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceed-
ings, Part I 27, pages 412–422. Springer, 2018.

[308] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In The Eleventh International Conference
on Learning Representations, 2023.

[309] Ryan A Rossi and Nesreen K Ahmed. Complex networks are structurally distinguishable by domain.
Social Network Analysis and Mining, 9:1–13, 2019.

[310] Pratha Sah, José David Méndez, and Shweta Bansal. A multi-species repository of social networks.
Scientific data, 6(1):44, 2019.

[311] Pratha Sah, Kenneth E Nussear, Todd C Esque, Christina M Aiello, Peter J Hudson, and Shweta
Bansal. Inferring social structure and its drivers from refuge use in the desert tortoise, a relatively
solitary species. Behavioral Ecology and Sociobiology, 70:1277–1289, 2016.

[312] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.

[313] Ryan A Rossi and Nesreen K Ahmed. An interactive data repository with visual analytics. ACM
SIGKDD Explorations Newsletter, 17(2):37–41, 2016.

[314] Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Michael
Galkin, and Jiliang Tang. Graph foundation models. arXiv preprint arXiv:2402.02216, 2024.

[315] Xuelong Dai, Kaisheng Liang, and Bin Xiao. Advdiff: Generating unrestricted adversarial examples
using diffusion models. arXiv preprint arXiv:2307.12499, 2023.

[316] Victor Livernoche, Vineet Jain, Yashar Hezaveh, and Siamak Ravanbakhsh. On diffusion modeling for
anomaly detection. arXiv preprint arXiv:2305.18593, 2023.

[317] Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and Stan Z
Li. A survey on generative diffusion models. IEEE Transactions on Knowledge and Data Engineering,
2024.

[318] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan,
Lifang He, et al. A comprehensive survey on pretrained foundation models: A history from bert to
chatgpt. arXiv preprint arXiv:2302.09419, 2023.

[319] Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang, Nitesh V Chawla,
and Panpan Xu. Graph neural prompting with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 19080–19088, 2024.

170



[320] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. arXiv preprint
arXiv:2205.14100, 2022.

[321] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024.

[322] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset
for falcon llm: outperforming curated corpora with web data, and web data only. arXiv preprint
arXiv:2306.01116, 2023.

[323] Davide Bacciu, Alessio Micheli, and Marco Podda. Edge-based sequential graph generation with
recurrent neural networks. Neurocomputing, 416:177–189, 2020.

[324] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating real-
istic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

[325] Yuanqi Du, Xiaojie Guo, Amarda Shehu, and Liang Zhao. Interpretable molecular graph generation
via monotonic constraints. In Proceedings of the 2022 SIAM International Conference on Data Mining
(SDM), pages 73–81. SIAM, 2022.

[326] Yuanqi Du, Yinkai Wang, Fardina Alam, Yuanjie Lu, Xiaojie Guo, Liang Zhao, and Amarda Shehu.
Deep latent-variable models for controllable molecule generation. In 2021 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), pages 372–375. IEEE, 2021.

[327] Xiaojie Guo, Yuanqi Du, and Liang Zhao. Property controllable variational autoencoder via invertible
mutual dependence. In International Conference on Learning Representations, 2020.

[328] Xiaojie Guo, Yuanqi Du, Sivani Tadepalli, Liang Zhao, and Amarda Shehu. Generating tertiary protein
structures via interpretable graph variational autoencoders. Bioinformatics Advances, 1(1):vbab036,
2021.

[329] Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Michał
Warchoł. Mol-cyclegan: a generative model for molecular optimization. Journal of Cheminformatics,
12(1):2, 2020.

[330] Shuangfei Fan and Bert Huang. Conditional labeled graph generation with gans. In Proc. ICLR
Workshop Represent. Learn. Graphs Manifolds, 2019.

[331] Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

[332] Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pages 617–626, 2020.

[333] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International conference on machine learning, pages 7192–7203. PMLR, 2021.

[334] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning, pages
10362–10383. PMLR, 2022.

[335] Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph generation with
energy-based models. arXiv preprint arXiv:2102.00546, 2021.

[336] Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph neural
networks in epidemic modeling. arXiv preprint arXiv:2403.19852, 2024.

171



[337] Mintong Kang, Dawn Song, and Bo Li. Diffattack: Evasion attacks against diffusion-based adversarial
purification. Advances in Neural Information Processing Systems, 36, 2024.

[338] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al. A survey of statistical
network models. Foundations and Trends® in Machine Learning, 2(2):129–233, 2010.

[339] Eric D Kolaczyk and Gábor Csárdi. Statistical analysis of network data with R, volume 65. Springer,
2014.

[340] Clement Lee and Darren J Wilkinson. A review of stochastic block models and extensions for graph
clustering. Applied Network Science, 4(1):1–50, 2019.

[341] Mark EJ Newman. Models of the small world. Journal of Statistical Physics, 101:819–841, 2000.

[342] Yuanqi Du, Xiaojie Guo, Amarda Shehu, and Liang Zhao. Interpretable molecule generation via dis-
entanglement learning. In Proceedings of the 11th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics, pages 1–8, 2020.

[343] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

[344] Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation via
discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

[345] Sebastian Sosa, David Jacoby, Mathieu Lihoreau, and Cédric Sueur. Animal social networks: Towards
an integrative framework embedding social interactions, space and time. Methods in Ecology and
Evolution, 12(1):4–9, 2021.

[346] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and Leman
Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions
on Knowledge and Data Engineering, 35(12):12012–12038, 2021.

[347] Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou, Nedim Lipka, Diyi Yang, and Tong Sun.
Enhanced visual instruction tuning for text-rich image understanding. 2023.

[348] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

[349] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[350] Jürgen Bajorath. Integration of virtual and high-throughput screening. Nature Reviews Drug Discov-
ery, 1(11):882–894, 2002.

[351] Rajvardhan Oak, Min Du, David Yan, Harshvardhan Takawale, and Idan Amit. Malware detection on
highly imbalanced data through sequence modeling. In Proceedings of the 12th ACM Workshop on
artificial intelligence and security, pages 37–48, 2019.

[352] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: an approach to modeling networks. Journal of Machine Learning Research, 11(2),
2010.

[353] Yiming Qin, Huangjie Zheng, Jiangchao Yao, Mingyuan Zhou, and Ya Zhang. Class-balancing diffu-
sion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 18434–18443, 2023.

[354] Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi
Yao, Wenyang Gao, Xuming Hu, Zehan Qi, et al. Survey on factuality in large language models:
Knowledge, retrieval and domain-specificity. arXiv preprint arXiv:2310.07521, 2023.

172



[355] Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Li Yun, Hejie Cui, Zhang Xuchao, Tianjiao Zhao, et al. Domain specialization as the key to make
large language models disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703, 2023.

[356] Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evaluation
metrics for graph generative models. arXiv preprint arXiv:2201.09871, 2022.

173


	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivation and Contribution
	1.2 Dissertation Organization

	2 Topology Issue: Overcoming the Heterophily Topology in Node Classification
	2.1 Introduction
	2.2 Related Work
	2.3 Methodology
	2.3.1 Tree Decomposition
	2.3.2 Multi-hop Dependency
	2.3.3 Tree Decomposed Graph Neural Network
	2.3.4 Complexity Analysis

	2.4 Experiment
	2.4.1 Experimental Settings
	2.4.2 Semi-supervised Node Classification
	2.4.3 Full-supervised Node Classification
	2.4.4 Sensitivity Analysis

	2.5 Conclusion

	3 Topology Issue: Analyzing the Varying Local Topology Issue in Link Prediction
	3.1 Introduction
	3.2 Related Work
	3.3 Topological Concentration
	3.3.1 Topological Concentration: Intuition and Formalization
	3.3.2 Topological Concentration: Observation and Analysis
	3.3.3 Topological Concentration: Computational Complexity and Optimization

	3.4 Conclusion
	3.5 Appendix
	3.5.1 Link-centric and Node-centric Evaluation Metrics
	3.5.2 Proof of Theorems


	4 Topology Issue: Overcoming the Varying Local Topology Issue in Link Prediction
	4.1 Introduction
	4.2 Related Work
	4.3 Analysis of Collaborative Effect
	4.3.1 How does message-passing capture collaborative effect?
	4.3.2 When is the captured collaborative effect beneficial to users' ranking?

	4.4 Collaboration-aware Graph Convolutional Networks
	4.4.1 Collaboration-Aware Graph Convolution
	4.4.2 Model Architecture and Complexity

	4.5 Experiment
	4.5.1 Experimental Settings
	4.5.2 Performance Comparison
	4.5.3 Efficiency Comparison
	4.5.4 Further Probe

	4.6 Conclusion
	4.7 Appendix
	4.7.1 Graph Topological Metrics for CIR
	4.7.2 Experimental Setting
	4.7.3 Graph Isomorphism


	5 Topology Issue: Overcoming the Noisy Topology Issue in Session-Recommendation
	5.1 Introduction
	5.2 Related Work
	5.3 The Proposed Framework
	5.3.1 Item Knowledge Graph Construction
	5.3.2 Session-adaptive Propagation

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Model Configuration Analysis
	5.4.3 Influence of Different Types of Edges
	5.4.4 Performance Comparison with baselines
	5.4.5 Industrial-level Case Study

	5.5 Conclusion

	6 Imbalance Issue: Overcoming Imbalance Issue in Node Classification
	6.1 Introduction
	6.2 Related Work
	6.2.1 Class Imbalance Problem
	6.2.2 Graph Neural Networks

	6.3 Problem Statement
	6.4 The proposed framework
	6.4.1 Class Prototype-driven Balanced Training
	6.4.2 Distance Metric Learning
	6.4.3 Imbalanced Label Propagation
	6.4.4 Self-Supervised Learning (SSL)
	6.4.5 Complexity Analysis

	6.5 Experiment
	6.5.1 Experiment Settings
	6.5.2 Performance Comparison

	6.6 Conclusion

	7 Imbalance Issue: Overcoming Imbalance Issue in Graph Classification
	7.1 Introduction
	7.2 Related Work
	7.3 Methodology
	7.3.1 Global Imbalance Mitigation: Graph-of-Graph Construction/Propagation
	7.3.2 Local Imbalance Mitigation: Self-consistency Regularization
	7.3.3 Objective Function and Prediction
	7.3.4 Algorithm
	7.3.5 Complexity Analysis

	7.4 Experiment
	7.4.1 Experimental Setup
	7.4.2 Performance Comparison
	7.4.3 Influence of Imbalance Ratio
	7.4.4 Ablation Study
	7.4.5 Further Probe

	7.5 Conclusion

	8 Bias Issue: Overcoming the Social Interactional Bias Issue in Node Classification
	8.1 Introduction
	8.2 Related Work
	8.3 Preliminaries
	8.3.1 Fairness in Machine Learning

	8.4 Sensitive Attribute Leakage and Correlation Variation
	8.5 Framework
	8.5.1 Bi-level optimization-based debising
	8.5.2 Adaptive Weight Clamping
	8.5.3 Training Algorithm

	8.6 Experiment
	8.6.1 Experimental Settings
	8.6.2 Node Classification
	8.6.3 Further Probe

	8.7 Conclusion
	8.8 Appendix
	8.8.1 Experimental Settings


	9 Bias Issue: Discovering the Degree-related Evaluation Bias in Link Prediction
	9.1 Introduction
	9.2 Analyzing Bias in Link Prediction
	9.2.1 Theoretical Analysis
	9.2.2 Empirical Analysis

	9.3 Conclusion
	9.4 Appendix

	10 Bias Issue: Overcoming the Hallucination Bias Issue in Documental Question-answering
	10.1 Introduction
	10.2 Related Work
	10.3 Knowledge Graph Construction
	10.4 LM-guided Graph Traverser
	10.5 Experiment
	10.5.1 Experimental Setting
	10.5.2 Performance Comparison on MD-QA
	10.5.3 Impact of the Constructed Graph
	10.5.4 Impact of the LM-guided Graph Traverser
	10.5.5 Sensitivity Analysis

	10.6 Conclusion
	10.7 Appendix
	10.7.1 Dataset Collection
	10.7.2 Algorithm for KGP


	11 Limited Data Issue: Overcoming Limited Data Issue in Graph Generation
	11.1 Introduction
	11.2 Related work
	11.2.1 Large Generative Models (LGMs)
	11.2.2 Graph Generative Models

	11.3 Large Graph Generative Models
	11.3.1 Notation
	11.3.2 Large Graph Corpus
	11.3.3 Pre-Training and Graph Generation of LGGM

	11.4 Fine-tuning LGGM
	11.5 Text-to-Graph LGGM
	11.6 Experiments
	11.6.1 Experimental Setup
	11.6.2 Pre-training Evaluation
	11.6.3 Fine-tuning Evaluation
	11.6.4 Text-to-Graph Generation
	11.6.5 Practical Usage of Fine-tuned LGGM

	11.7 Research Problems Enabled by LGGMs
	11.8 Limitations, Future Directions, and Conclusion
	11.9 Appendix
	11.9.1 Proof of Theorems
	11.9.2 Pre-processed Graphs for Training LGGMs
	11.9.3 Preparation of Graphs and Textual Description About Their Domains/Names
	11.9.4 Preparing Graphs and Their Textual Description about Graph Property
	11.9.5 Evaluation Metrics
	11.9.6 Hyperparameter Details
	11.9.7 Paradigm Setup


	12 Conclusion and Future Work
	12.1 Conclusion
	12.2 Future Work

	 References 

