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CHAPTER 1

Introduction

1.1 Motivation

Understanding how advanced composites behave under critical conditions is necessary for effective imple-

mentation of these materials in aerospace structures. Common design involves advanced laminated carbon-

fiber reinforced polymer (CFRP) configurations that offer outstanding in-plane performance by tailoring

layups of unidirectional plies for expected load conditions such as flight maneuvers or landing. Among the

characteristics of CFRP laminates, compression strength is a critical weakness. Experimental results show

compression strength in the longitudinal direction up to 40% less than tensile strength in unidirectional config-

urations [46, 168] and 15-35% less in multidirectional laminate configurations [175]. Experimental analyses

indicate that the compression behavior of laminates is complicated due to the presence of multiple failure

mechanisms which include kink banding, splitting, delamination, fiber cracking, fiber-matrix debonding, and

matrix cracking [75, 130, 148, 149, 155, 156, 171], some of which interact during the loading process. The

ultimate failure in multidirectional laminates is typically induced by the propagation of the dominant kink

band across a 0 degree lamina [19, 22, 45, 163], but prominent splitting is also consistently observed prior to

failure in notched specimens at the notches and within multiple laminae of different directions [19, 22, 45].

Matrix cracking and delaminations may additionally be present and have been observed connecting to kink

bands [19, 22, 45].

Other complications may also be present in composites which are evaluated in order to meet airframe

structural certification requirements. One such complication is the presence of existing regions of material

failure, or damage, which can be hard to detect and weakens the structural response. Test conditions includ-

ing compression-after-impact (CAI) are used to measure the residual strength of a damaged composite which

aids the assessment of the damage tolerance of a laminate. Under CAI conditions, the interlaminar properties

are a crucial weakness and associated with delamination-driven failure [57, 84, 161, 184] that primarily em-

anates from the pre-existing damage. Technologies proposed to arrest delamination growth and increase the

CAI residual strength include through-thickness reinforcements. A form of through-thickness reinforcement

called z-pinning is found to reduce the extent of delamination during compression loading and increase the

residual CAI strength of an impacted composite sample by more than 50% in [135, 184]. While the influence

of z-pins on residual strength is promising, delamination and other CAI failure mechanisms in the presence

of z-pins are not yet fully understood.
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It is crucial to understand the primary compression failure mechanisms in composites and have predic-

tion tools to aid in the design of structures to meet damage tolerance objectives. Multiscale computational

modeling is a class of advanced numerical approach which enables us to understand the failure process and

interaction of mechanisms across size scales while taking advantage of computing resources. This disserta-

tion presents multiscale investigations of the compression response of laminated CFRP composites with and

without z-pins undertaken using state-of-the-art computational damage analysis models and experimental

methods. Physics-based prediction of the composite response is accomplished by integrating state-of-the-art

multiscale and cohesive zone models in finite element analyses. Experimental campaigns are used to support

the development, calibration, and validation of the computational models. Damage progression predictions

supplement experimental results and demonstrate advancements in modeling capabilities to predict compres-

sion failure in laminates with and without z-pins.

1.2 Literature Review

1.2.1 Compression Failure in Unidirectional Composites

Foundational experiments on compression behavior of CFRPs reveal some key features of kink band failure.

Soutis et al. [148] report that in both notched and unnotched laminated plates with varying layups the com-

pressive failure is linked to inelastic microbuckling in the longitudinal plies. In Kyriakides et al [97] and

Vogler and Kyriakides [170] the importance of initial fiber misalignment (or “imperfection”) amplitude on

compressive strength is demonstrated. Moreover, it is observed that post-failure, deformation of the compos-

ite was localized into kink bands which formed at inclinations with respect to the longitudinal and transverse

directions of the loading. The measurements for kink band width in carbon fiber reinforced plastics (CFRPs)

are reported in the range of 5−40 times the fiber diameter [97, 110, 143, 156, 173]. Moran et al. [110, 111]

investigated the formation and propagation of kink bands in more detail, and reported the process of band

broadening as the kink band propagates in graphite-thermoplastic composites (e.g. PEEK matrix material).

The experimental imaging illustrates the kink band failure process to include excessive shear straining of the

matrix material near the imperfection zone, fiber buckling, and tensile failure of buckled fibers forming the

boundary of the kink band.

Further understanding of kink band formation and propagation has been derived from theoretical models.

The general history for compressive strength prediction traces from Rosen’s model [138] that considers the

elastic buckling of adjacent fibers in phase with one another, “microbuckling”, instigating deformation of the

matrix material in shear. Argon’s model [5] incorporated the local maximum initial fiber misalignment angle

along with the in-plane shear strength of the matrix to predict compressive strength. More closely considering

fiber rotation, Budiansky [32] incorporated the effect of fiber tensile failure and Budiansky and Fleck [33]
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and Fleck et al. [66] improved upon these theories and presented an elastic-perfectly plastic model where

the development of a physical kink band is linked to the nonlinear relationship between fiber longitudinal

modulus, matrix shear strength, and fiber diameter.

The nonlinear analytical descriptions and sensitivities of the failure mechanism have been studied using

mesomechanical approaches that resolve fiber and matrix materials and incorporate fiber waviness where the

fiber orientation varies in a sinusoidal fashion along the composite longitudinal direction. Studies utilizing

direct numerical simulations include Yerramalli and Waas [180] where the positive effect of fiber diameter -

and thus bending stiffness, on the compressive strength is confirmed using a 3D finite element simulation of

a small cylindrical section of composite material comprised of purely elastic fibers and J2 theory of plasticity

matrix behavior. Bishara et al. [27] performed analyses with a single 3D row of composite material modeled

as linear elastic fibers that fail under normal tensile strain and an elastic-plastic matrix with isotropic harden-

ing. Naya et al [115] also directly simulate fibers surrounded by a plastically behaving matrix but arranged

according to a statistical distribution in a column-like domain and modeled with a commercial continuum

damage code, additionally including cohesive-frictional interfaces between the fibers and matrix. The con-

tributions of the microstructure and initial fiber misalignment angle to the kink band process are simulated

in detail, however parametric studies are carried out using a simplified single fiber model to obtain compres-

sion strength and elastic modulus. Other simulation results link the experimentally observed stages of the

kink band process to matrix yielding in areas of imperfection and indicate the effect of initial fiber waviness

locality on compressive strength. Bergan et al. [20] present a model connecting fiber rotation with meso-

scopic compression failure by incorporating kink band width predicted from a micromechanical simulation

as an input parameter. This model requires numerical schemes such as element deletion to obtain a load drop

indicative of material failure and accurately captures kink band kinematics.

Criterion-based compression failure models that are influenced by or account for kink banding have also

been proposed. In Pinho et al. [129], where kink band failure in the ply occurs according to a bound of the

longitudinal composite strength and geometry-dependent calculations of in-situ shear strengths. Camanho

et al. [36] presented an invariant-based criterion in the frame of localized fiber waviness which claims local

transverse failure of the matrix as compression kink band failure. Alternatively, Wilhelmsson et al. [174]

predicted failure of the composite material in shear due to maximum “defect severity” utilizing observations

in an experimental database. While criterion-based models idealize the consequences of kink bands in pre-

dicting failure at the macroscale, these models do not resolve the mesoscale mechanisms associated with kink

banding.
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1.2.2 Compression Failure in Multidirectional Laminates

Recent experimental studies shed some light into the compression failure interactions in laminated CFRP

composites. Physical testing of compression specimens provided some understanding of the order of occur-

rence of failure mechanisms in composite laminates of varying layups and configurations. The ultimate failure

is typically induced by the propagation of the dominant kink band across a 0 degree lamina [19, 22, 45, 162].

Prominent splitting is also consistently observed prior to failure in notched specimens at the notches and

within multiple laminae of different directions [19, 22, 45]. Matrix cracking and delaminations are present

and observed connecting to kink bands [19, 22, 45].

Several computational damage and failure analysis techniques have been employed to model failure mech-

anisms associated with the compression response of multidirectional CFRP composite laminates. Among the

compression failure mechanisms, kink bands have been shown to strongly influence the compression strength

of composites [97, 110, 143, 148, 156, 173]. Kink banding is an instability phenomenon [5, 33, 66, 97,

110, 111] and numerical studies suggest a strong link between fiber misalignment, mechanical properties of

the constituent materials, and the resulting compression strength [60, 170, 180]. Modeling approaches for

kink band failure span direct numerical simulations [27, 115, 180] that resolve the composite constituents

at the mesoscale, continuum damage models that track fiber rotation and incorporate shear nonlinearity at

the mesoscale [20, 21], multiscale modeling that concurrently evaluates failure processes in resolved mate-

rials microstructures across the macroscale domain [60], and models based on macroscale failure criteria by

including effects of shear nonlinearity and pressure [129] or critical fiber misalignments [36, 174]. Other

mechanisms (i.e., splitting, delamination, matrix cracking, and fiber-matrix debonding) are not unique to

compression loading and are typically observed under other loading conditions as well [116, 133]). Fracture

mechanics-based approaches such as cohesive zone modeling (CZM) [15, 20, 115, 163] and extended finite

element method [53, 79], continuum damage mechanics [15, 37, 163], multiscale methods such as the eigen-

strain based homogenization method [30, 31, 50, 51], multiscale discrete damage theory [123, 152, 153],

and criterion-based failure models [36, 186], among others have been employed to study the aforementioned

failure mechanisms. Fiber fracture is a consequence of the bending experienced in microbuckling and/or kink

band formation [97] and has been included using strength [16, 36] or curvature criteria [60].

Recent computational investigations provide information on the interactions between the failure mecha-

nisms throughout the loading process [22, 28, 132]. Prabahakar et al [132] investigated several unnotched

laminate layup configurations. The onset of kink bands was predicted just prior to the ultimate load, whereas

delaminations were predicted to fully form after kink band onset. This study also showed that increasing in-

terlaminar shear strength results in delayed kink band initiation and increased laminate compression strength,
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pointing to interaction between interlaminar damage state and kink band initiation. Bishara et al [28] investi-

gated the progression of failure in unnotched [+45/90/−45/0]2S specimens. Delaminations were predicted

to fully form early in the process at 90-45 degree ply interfaces near the edges of the specimen (at approx-

imately 77% of the ultimate load). Kink bands initiated immediately prior to the ultimate load away from

these delaminations. Matrix cracking in the 45 and 90 degree plies were also predicted post-ultimate load.

Additional delaminations were predicted at the 0-90 and 0-45 degree ply interfaces connecting to the ends of

the formed kink band. Bergan et al [22] studied the progression of damage in 3 different open-hole layups

which exhibited 3 different effective stiffnesses. Initial splitting and matrix cracking are predicted around

75% of the respective ultimate load in all specimens, followed by kink band initiation around 97-99%. The

early onset damage features exhibit differences in initial size and growth. Long initial splits were predicted

in the stiffest laminate and are accompanied by a small amount of delamination prior to failure. In contrast,

delaminations were predicted with size matching short splits prior to ultimate load in the least stiff lami-

nate. The results of this investigation show variation of failure mechanism initiation time, initial size, and

growth among specimens consisting of the same material. The aforementioned studies point to uncertain-

ties in compression failure mechanism interactions and how these interactions influence overall compressive

performance.

1.2.3 Delamination in the Presence of Z-pins

Experimental investigations in the literature show that z-pins enhance the delamination resistance of compos-

ite laminates [29, 43, 54, 72, 109, 125, 125–128, 134]. Interlaminar fracture properties reach much higher

values in z-pinned laminates compared to unpinned laminates. Two topics that have been highly examined in

published literature are: the ability of z-pins to bridge the interlaminar crack forming between ply surfaces,

and the associated pull-out mechanism which results in energy dissipation. Additional damage mechanisms

unique to interlaminar reinforcements like z-pins also include shearing and bending of the reinforcements as

well as ploughing through material as sliding of adjacent plies takes place under Mode II conditions [42].

Examination of single-pins or pin-arrays in half-laminates show the influence of loading conditions (i.e.

mode-mix), as well as the geometry and arrangement of the z-pinned laminate (i.e. layup, thickness, z-pin

volume fraction and embedded length) on the mechanisms governing z-pin failure [29, 134, 179]. Other

standardized interlaminar fracture (ILF) experimental configurations have been used to investigate the z-

pinned interface failure mechanisms including Double Cantilever Beam (DCB) [29, 43, 54, 72, 109, 125,

125, 126, 134], End-notched Flexure (ENF) [43, 125, 127], End-Loaded Split [109], and Mixed-mode Bend

(MMB) experiments [109, 128, 139]. These experiments show that the laminate interface failure in the

presence of z-pins is nonlocal resistance from multiple pins contribute to the overall behavior as they are
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engaged when the matrix delamination crack advances. The Mode I fracture toughening effects of z-pins are

evident in DCB tests. As specimens are being opened and when the specimens have completely fractured,

images show z-pins mostly intact after pulling out from one half of the test specimen [125, 126]. Images

displaying z-pin conditions after ENF tests have been reported in Ref. [43, 126, 127] and show that Mode II

loading results in z-pin failure involving interfacial debonding, splitting, and shear fracture.

The z-pin length that is embedded in the composite also has an effect on failure mechanisms. Under Mode

II interlaminar loading, failure changes from only pull-out to partial-pull and shear fracture, and finally strict

shear fracture with no pull-out as the embedded length of the z-pin is increased. While resisting in shear, the

z-pins “plough” some of the substrate laminate material prior to failure. Under mixed-mode conditions (e.g.,

in MMB [128] or approximate shear [43] tests), the z-pin fibers are susceptible to fracture and splitting.

Much of the computational modeling research related to z-pinned composites focuses on interlaminar

behavior with use of existing or novel interface element formulations that are employed to account for the

effective behavior in the presence of z-pins. The formulations include cohesive zone models (CZM) [25, 26,

52, 107, 109, 134, 141], embedded finite elements [29], and continuum constitutive models [47]. The CZM

framework was established for predicting the initiation and progression of delamination in composites under

mixed-mode loading [39]. This capability incorporates material strength-based criteria for predicting the

onset of delamination failure and fracture mechanics to predict delamination propagation. It is a commonly

employed analysis tool for simulating delamination in composite structures with and without pre-existing

delamination, and admits general interface constitutive laws expressed by traction-separation relationships.

CZM is commonly implemented in a finite element model with continuum elements [25, 26, 52, 107, 109,

134] and rod-type elements [141] or discrete nonlinear springs [54]. The constitutive behavior is described by

traction-separation laws (TSL) consisting of an initial linear elastic response followed by one or two stages of

softening until interface failure, which includes bilinear [25, 26, 109, 134] or trilinear [52, 107, 141] forms.

Some models use an average response [107, 141] for a given distribution of z-pins and the z-pin locations

are not discretely accounted for while in other cases the model is assigned to elements matching the physical

spatial distribution of z-pins in the laminate configuration [25, 26, 52, 54, 109, 134]. There may be one

TSL [25, 26, 54, 134] or two TSLs [52, 109] at the same location to model the behavior of both matrix

delamination and the effects of z-pins.

Existing methods to calibrate the CZMs assign constitutive law properties based on results from direct

finite element simulations of z-pinned structures [25, 52, 181], analytical systems of equations describing

the kinematics and kinetics of a single z-pin bridging two plies [26, 107, 109], flatwise-tension (FWT) or

other single z-pin experimental configurations [1, 29, 134], and DCB tests [54, 134]. Direct numerical sim-

ulation can provide high fidelity predictions of the z-pin failure process and results can be used to derive
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apparent interface properties. With this method, important effects such as thermal residual stresses at the

z-pin - lamina interface behavior are included which play a dominant role in the onset of z-pin pullout as

studied in Refs. [160, 181]. The drawbacks to direct numerical simulation include overcoming convergence

issues with finite element simulations as reported in Ref. [52] and the computational cost associated with

performing analyses over all possible loading scenarios. The analytical methods proposed in [1, 26] can also

account for important behavior such as z-pin pullout, z-pin fracture, snubbing, and ploughing by calibrating

parameters related to lamina response and z-pin - lamina interface frictional properties. The problems are

solved numerically by incrementing applied displacements to find the overall mechanical response under ev-

ery mode-mix of interest. One drawback is that matrix debonding has not been incorporated. The FWT and

other single z-pin experimental results used in Refs. [1, 29, 134, 181] provide direct information on apparent

z-pin crack bridging properties but do not include effects of the matrix interface. Though not standardized,

the test equipment employed in Refs. [179, 181] allows studying z-pins under many mixed-mode conditions.

The inherent structural response (as opposed to a material response) of z-pinned laminates under mixed-mode

conditions has been studied with ILF experiments. Refs. [54, 134] propose using the area under the DCB

load-displacement results curve to define the apparent interlaminar fracture toughness associated with one

or more rows of z-pins. Analytical approaches to predict delamination resistance in DCB, ENF, and MMB

z-pinned composite configurations are also proposed in Refs. [35, 105]. The proposed approaches add de-

scriptions of z-pin bridging to the typical fracture mechanics derivation used to calculate fracture toughness

in ILF experiments but are not verified by comparison to experimental results.

1.2.4 CAI in Z-Pinned Laminates

Multiple authors have performed experimental investigations to examine delamination in z-pinned laminates.

Results from CAI analyses indicate that z-pins toughen the delamination response of laminates under CAI

conditions [57, 135, 141, 184]. The studies focus on the CAI response of laminate plates with impact lo-

cated on a rectangular array of z-pins, following standardized test methods [6, 7]. In these studies, z-pinned

laminates of 4 and 6 mm thickness (32 and 48-ply layups) take longer to fail and reach higher strengths

under identical impact and compressive load conditions compared to an unpinned sample [135, 184]. The

failure process analyses in these studies are limited to qualitative observations - e.g., the z-pinned speci-

mens are reported to exhibit reduced interface opening on the edges in Ref. [184]. One quantitative factor

which is reported and related to the apparent strengthening of the z-pinned specimens is the size of im-

pact damage area. The projected impact damage area measured using ultrasonic C-scans is considerably

smaller in z-pinned specimens compared to unpinned specimens subjected to the same impact conditions in

Refs. [67, 68, 135, 184]. CAI was also studied with impact located on unpinned material within a z-pinned
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”frame” configuration in Ref. [135]. The CAI strength in this case was very similar to the unpinned configu-

ration. Ref. [67, 68] conducted post-CAI damage analysis using X-ray images of 2.5 mm thick (8 ply layups).

The images show a more localized transverse damage pattern in z-pinned specimens, although the strength is

the same as the unpinned specimens subjected to identical impact and CAI loading conditions. The consistent

strength between z-pinned and unpinned specimens is attributed to a tradeoff of weakened lamina properties

and the Mode I fracture toughening effect of z-pins which restrict the separation of sublaminates which are

susceptible to buckling [56, 137]. Lamina property weakening is due in large part to pins acting as a defect

in the composite material - increasing fiber waviness and introducing resin pockets which alter the distribu-

tion of fibers in the ply [112]. Elastic and strength properties have been shown to depend on z-pin diameter,

spacing, and placement. The longitudinal compression strength and modulus are up to 10% lower compared

to unpinned [44, 112, 151, 176]. Flexural strength is approximately 20% lower than unpinned laminates in

Ref. [44] while the flexural modulus was reported as unchanged.

Progressive damage analyses have been performed to better understand CAI failure and are reported in

Refs. [15, 41, 71, 74, 101, 147, 154, 157, 158, 177]. The studies include many efforts to predict structural

behavior of impacted but unreinforced laminates. There are multiple research areas related to the computa-

tional models used in the studies. These areas include the modeling of plies and interfaces, as well as the

initial damage state. Due to the presence of delaminations at many plies and interfaces the problem is com-

putationally challenging. Proposed techniques for representing plies includes using combinations of shell

elements [71, 147, 157], continuum shell elements [15, 41, 101], and solid elements [74, 154, 157, 158, 177].

The interfaces in these investigations are modeled with CZM (continuum or contact surfaces). Many of

the modeling approaches neglect or indirectly account for kink-band formation which is a dominant dam-

age mechanism during compression failure of fibrous composites (see e.g., Refs. [86, 97, 156]) and also

present in z-pinned composites [112, 151]. Impact damage has been incorporated by directly simulating

the impact event using dynamic finite element analysis in Refs, [41, 101, 158]. Simulation of dynamic im-

pact events in composites are known to exhibit complex phenomena such as wave dissipation and wave

dispersion [80–82] as well as thermal effects [183] which could affect the overall damage state following

the impact event. Another approach is to prescribe simplified damage patterns based on experimental ob-

servations and idealizing impact damage with elliptical or ”peanut-shaped” debonded regions through the

thickness [3, 15, 74, 119, 154]. A method to more precisely model the delaminations using ultrasonic C-scan

or X-ray CT images without performing the impact simulation is also proposed in Ref. [59]. Due to the size

of the CAI problem - which includes large deformation and material nonlinearities, explicit finite element

simulations are performed using mass scaling to speed up the analysis compared to implicit simulations.

Methods such as selective damage mapping [15] and adaptive introduction of CZM elements [87] have also
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been proposed which can reduce the number of degrees of freedom in the analysis. The open literature does

not include the computational analysis of CAI of z-pinned composite laminates, however there are investi-

gations on structural configurations with z-pins including composite stringer-stiffener configurations without

pre-existing delaminations in Refs. [2, 24, 64, 164].

1.3 Research Objectives

The overarching goal of this dissertation is to understand and predict the compression failure mechanisms

in CFRP composites at different scales and in the presence of z-pin reinforcements using state-of-the-art

multiscale computational models and experimental methods. The research objectives and underlying tasks to

fulfill this goal are as follows:

1. Understand and predict compression kink band failure in composites of different scales

(a) establish a reduced-order multiscale compression kink band model (KBM)

(b) validate the KBM and study the interplay of kink bands with sub-critical failure mechanisms in

an experimental specimen

2. Understand the compression-after-impact failure mechanisms in z-pinned composites

(a) develop and calibrate an interface model for predicting delamination in the presence of z-pins

(b) conduct experimental and computational studies on the damage arrestment capability of z-pinning

under CAI conditions

1.4 Dissertation Organization

The details, results, and discussions of the tasks are organized into four additional chapters. Chapter 2 entails

the development and verification of a reduced-order multiscale compression kink band model. The novel

contribution of this model is the concurrent linking of microstructural behavior to the macroscopic strength

prediction. Parametric studies show how physical properties such as fiber waviness and matrix constituent

properties influence failure predictions.

The kink band model is validated and used to study the interplay of kink bands with sub-critical failure

mechanisms in a computational-experimental analysis of a double-edge notched laminate configuration in

Chapter 3. The experimental aspects of the analysis contribute new information on the compression failure

process in a multidirectional laminate. The computational model is calibrated using additional experiments,

and damage progression is predicted to match the experimental results while highlighting the importance of

splitting and matrix cracking on the nucleation, progression, and interaction with kink bands on the overall

load-strain response.
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An interface model for predicting delamination in z-pinned composite laminates is presented in Chapter 4.

The design and results of an experimental campaign are also presented which supports calibration of the

trilinear constitutive law under mixed-mode conditions. The calibration procedure offers an advantage over

existing approaches in the literature by using standardized or simple macroscopic experimental configurations

which are commonly employed to characterize mixed-mode interlaminar fracture toughness of unpinned

composites. Experimental results provide additional understanding of delamination in the presence of z-pins

and z-pin failure mechanisms.

Computational modeling of CAI in z-pinned composites has not been addressed in the open literature.

Chapter 5 presents a computational analysis using existing models to predict the effect of z-pins on CAI

failure in a standard residual strength test configuration. New experimental results are also presented where

the design of the specimens are unique compared to the literature and contribute new information to help

evaluate the damage arrestment capability of z-pins under CAI conditions.

Some of the work has been reported in journal or conference articles. The content in Chapter 2 has been

reported in Ref. [60]. The content in Chapter 3 has been reported in a conference article [62], and also

reported in Ref. [63]. Part of Chapter 5 has been reported in a conference article [61].
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CHAPTER 2

Multiscale Compression Kink Band Model

The multiscale nature of failure in long fiber composite materials by compression kink banding is depicted

in Fig. 2.1. Material properties and morphological features at several length scales affect the nucleation

and propagation characteristics of compression kink bands. Among them, fiber waviness has a pronounced

effect on the overall compression strength of the lamina as analyzed by Fleck et al.[66], Vogler et al.[169]

and others. The wavelengths associated with fiber waviness observed in CFRPs are in the range of 70-800

times the fiber diameter in the composite [97, 102]. The kink band itself, where fiber and matrix cracking,

debonding, and severe matrix deformation coexist, is generally restricted to a width of no greater than a

few hundred µm (mesoscale) [33, 170]. The kink band width is sensitive to the fiber diameter, which is

approximately 5-10 µm - an order of magnitude smaller than the kink band width (microscale). On the other

hand, the size of the structural component or specimen is several orders of magnitude larger than the kink

band width (macroscale).

The significant disparity between the scales involved in the kink band induced failure allows the ap-

plicability of scale-separable multiscaling principles to this problem (e.g., computational homogenization

[49, 65]). The proposed modeling approach is a nonlocal generalization of the Eigenstrain-based reduced

order computational homogenization modeling (EHM) [49, 121, 150]. The remainder of this chapter pro-

vides an overview of “local” EHM, and generalize it to a nonlocal formulation. The specific features of the

nonlocal compression kink-band model are then discussed.

2.1 Eigenstrain-based Homogenization Model (EHM)

EHM is a multiscale progressive damage analysis approach for predicting the failure response of composites

and other heterogeneous materials [31, 120, 178, 185]. The basis of the formulation is the computational

homogenization theory [17, 73] coupled with transformation field analysis [58]. In EHM, certain information

on the material microstructure such as localization operators, polarization tensors, influence functions and co-

efficient tensors [121] are computed by solving linear elastic microscale problems defined over the material

unit cell or representative volume prior to the multiscale progressive damage and failure analysis of a com-

posite structure. The microstructural information is bridged to the macroscopic scale through a reduced order

microscale model. The nonlinear analysis and history dependent reduced order microstructure problem is

tightly coupled with the structural scale analysis, which are concurrently evaluated (a separate reduced order

model is evaluated and tracked at each quadrature point of the macroscale discretization). The precomputed
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Figure 2.1: Observations of macroscopic compression failure in UD specimens include kink band formation
that is linked to significant deformation and fiber curvature. (see e.g., [75, 156, 173])

coefficient tensors along with internal state variables are employed to homogenize or localize the stress and

strain fields. The reader is referred to Refs. [31, 121] for details of the EHM formulation. The static force
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Figure 2.2: The multiscale modeling approach using EHM for fiber kinking employs a reduced-order mi-
crostructural response.
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equilibrium at the macroscopic scale is expressed as:

∇ · σ̄σσ(x, t) = 0; x ∈ O; t ∈ [0, t0] (2.1)

where, σ̄σσ denotes the macroscopic (i.e., homogenized) Cauchy stress; x(X, t)∈O(t) is the position vector that

parameterizes the current configuration of the macroscopic domain, O , with the macroscopic reference (i.e.,

material) coordinates, X, as illustrated in Fig. 2.2. We consider the evolution of the current configuration since

kink band formation is driven by macroscopic instability, and a large-deformation formulation at macroscale

is necessary to capture the instability. The macroscopic boundary conditions are expressed as

ū = û(X, t); X ∈ Γ
0
u (2.2)

P̄ ·N = t̂(X, t); X ∈ Γ
0
t (2.3)

in which, ū(X, t) denotes the macroscopic displacement field; t̂(X, t) and û(X, t) are respectively the pre-

scribed tractions and displacements applied on boundaries Γ0
t and Γ0

u of the undeformed configuration,

O0 :=O(0); N is the unit outward normal to Γt ; and P̄ is the macroscopic first Piola-Kirchoff stress. Consid-

ering the macroscopic deformation gradient, F̄ = ∂ ū/∂X− δδδ (with δδδ the second order identity tensor), we

employ the logarithmic measure to track macroscopic strain, ε̄εε:

ε̄εε = lnV̄VV (2.4)

where, V̄VV =
√

F̄F̄T is the left stretch tensor. Considering the brittle characteristics of the constituents of the

composite, the large deformations observed in the composite specimen are due to large rotations coupled

with small microscopic distortions up to the onset of failure. A local coordinate system is attached to the mi-

crostructure that rotates with the macroscopic rotation such that the microstructural stresses are not affected

by the rigid body motion of the microstructure (i.e., the co-rotational frame is used). Progressive damage

accumulation that leads to macroscopic instability and failure is modeled using continuum damage mechan-

ics approach. The constitutive response of the composite constituents (i.e., fiber and matrix) is described

by damage variables. By this representation and microstructural model order reduction through EHM, the

Cauchy stress, ˆ̄σσσ , in the co-rotational frame is expressed as:

ˆ̄σσσ =
n

∑
∆=1

{[
1−ω

(∆)
][

L̄(∆) : ˆ̄εεε +
n

∑
α=1

P̄(α∆) : µµµ
(α)

]}
(2.5)
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in which ˆ̄εεε is macroscopic strain rotated to the co-rotational frame, ω(∆) denotes a part-average damage

variable associated with a subdomain (or part) of microstructure Θ(∆) ⊂ Θ (Θ denotes the domain of the

microstructure) and taken to be constant within Θ(∆); µµµ(∆) is the part-average inelastic strain field induced by

the damage in the microstructure subdomain, ∆; L̄(∆) and P̄(α∆) are coefficient tensors computed using the

influence functions and elastic properties of the constituents. The partitioning of the material morphology into

subdomains and the spatially piece-wise constant approximation for damage and damage-induced inelastic

strain fields constitute the order reduction strategy. While Fig. 2.2 illustrates partitioning of the microstructure

into the matrix and fiber phases, other partitioning strategies are also possible as explored in Refs. [102, 150].

The kinematic equation that relates the inelastic strain coefficients to the macroscopic strain is expressed as:

n

∑
∆=1

{[
1−ω

(∆)
][

Â(α∆) : ε̄εε +
n

∑
γ=1

B̂(α∆γ) : µµµ
(γ)

]}
= 0, ∀α = 1, ...,n (2.6)

in which Â(α∆) and B̂(α∆γ) are additional coefficient tensors. This system of equations for the reduced order

model is closed by defining evolution equations of the part-average damage variable, ω(∆), which is driven

by the local damage history variable, κ(∆). At a fixed, but arbitrary macroscopic material point:

ω
(∆) = Φ(κ(∆)); 0 ≤ Φ ≤ 1 (2.7)

The scalar damage variable 0 ≤ ω(∆) < 1 indicates the current damage state of the composite constituent

occupying Θ(∆); the limits ω(∆) = 0 and ω(∆) → 1 respectively indicate no damage and complete loss of load

carrying capacity within the subdomain of the microstructure. The part damage variable evolves according

to the monotonic damage evolution function:

Φ(κ(∆)) =
arctan(a(∆)⟨κ(∆)−κ

(∆)
0 ⟩−b(∆))+b(∆)

π

2 + arctan(b(∆))
(2.8)

in which a(∆), b(∆), κ0
(∆) are the material parameters that define the failure behavior of the composite con-

stituent occupying Θ(∆) (i.e., matrix or fiber), and the Macaulay brackets, ⟨·⟩, enforce the threshold for the

onset of inelastic evolution of damage. The part damage history variable is computed as:

κ
(∆) = max

0≤τ≤t
{υ

(∆)(X,τ)} (2.9)
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taking the value of the maximum damage equivalent strain, υ(∆), in the loading history. The damage equiva-

lent strain is defined as:

υ
(∆) =

√
1
2

ε̂εε
(∆) : L̂(∆) : ε̂εε

(∆) (2.10)

which is a function of the local principal strains, ε̂(∆), and the elastic modulus tensor, L̂( ), rotated to the

principal directions. The evolution equations that drive the progressive failure of the composite constituents

defined in Eqns. (7)-(10) are macroscopically local in character. This means that the damage evolution within

subdomain Θ(∆) at a macroscopic material point is driven by the state of strain and the damage history variable

of that macroscopic material point alone. As further explained below, we propose a nonlocal generalization

of this approach to better control the thickness of the compression kink band.

2.1.1 EHM for Fiber Kinking

The EHM model as employed to idealize compression kink banding is illustrated in Fig. 2.2. Experimental

investigations demonstrate a number of failure processes that either contribute to or result from compression

kink bands, including nonlinear shear deformation and damage in the matrix concentrated in the kink band

region, fiber fracture (particularly along the edges of the kink band) and fiber-matrix debonding [173]. The

microstructure is idealized as a periodic and square unit cell. In view of the fact that the kink band zone

exhibiting significant matrix deformation and failure is much larger than the size of the unit cell, we employ

an EHM model that consists of 2 parts (i.e., n = 2) and considers uniform damage accumulation in the

matrix and fiber subdomains of the unit cell. It is also possible to incorporate the progressive debonding

mechanism [49, 123], along the fiber-matrix interface, but we exclude this effect to retain simplicity of the

model. It is noteworthy that a majority of prior investigations considered elastic-plastic (see e.g. Ref. [66])

or elastic-viscoplastic ([169]) matrix behavior in direct numerical simulation of compression failure. The

current study employs a continuum damage model that exhibits a nonlinear hardening behavior followed by

material softening. While plasticity was shown to be sufficient to model kink bands, we contend that the

relatively brittle matrix response (even considering nonlinear shear effects) could be better captured by a

model that incorporates matrix failure.

2.2 Gradient-based Regularization

Initiating from a region of high fiber waviness, localized buckling of the fibers promoted by nonlinear defor-

mation of the matrix yields a kink band region that is many fiber diameters wide [33]. This region is marked

by significant fiber rotations, reduced stress carrying capacity, and shear deformation in the matrix. Early

analytical studies in Refs. [66, 169] have shown that the width of the kink band is strongly affected by fiber

diameter, which controls fiber bending rigidity. This effect has been also studied using direct numerical sim-

15



ulations [180]. EHM and other first order homogenization methods cannot directly account for fiber bending

at the microscale. While higher order homogenization [14, 85] formulations could capture this effect, several

computational complications have so far limited their use. Instead, we propose a nonlocal extension of the

EHM model to control kink band width in multiscale simulations. Let ω(m)(x, t) denote the damage state of

the matrix subdomain of the unit cell associated with a fixed but arbitrary position on the current configura-

tion, x at time t. The damage variable is re-written as a function of a nonlocal equivalent damage variable,

κ̄(m)(x, t) as:

ω
(m) = Φ(κ̄(m)); 0 ≤ Φ ≤ 1 (2.11)

In contrast with κ(m) in Eqn. 3.3, which is a local history variable, κ̄(m) is a field variable, the spatial variation

of which is governed by the following expression:

κ̄
(m)(x, t)−L0

2
∇

2
[
κ̄
(m)(x, t)

]
= κ̂

(m)(x, t); (2.12)

in which L0 is a length scale parameter, and ∇2 denotes the Laplacian operator. κ̂(m) is defined as:

κ̂
(m)(x, t) = min{κ

(m),κc} (2.13)

where κc denotes the value of the local history variable when full damage is reached (i.e., Φ(κ = κc) = 1).

Since Φ defined in Eqn. 3.4 only asymptotes to unity, a value slightly less than unity is used to define κc (i.e.,

Φ(κc) = 1−ε) in the numerical implementation. Neumann boundary conditions are enforced to evaluate the

nonlocal equation:

∇κ̄
(m) ·n = 0 (2.14)

where n is the unit outward normal to the domain boundaries.

The numerical evaluation of the proposed nonlocal EHM model solves for two cardinal unknown variables

at the macroscopic scale, which are the macroscopic displacements, ū, and the nonlocal damage history field,

κ̄ . The primary idea behind the use of the nonlocal equation is to spatially distribute the effect of κ(m)

localized at a position coordinate, xxx, to a neighborhood around xxx. The size of this neighborhood is dictated

by the length scale parameter, L0, which is therefore directly correlated with, but not necessarily equal to,

the kink band width. The dissipative effect of the nonlocal equation is illustrated in Fig. 2.3. The figure

illustrates the analytical solution of the one-dimensional version of Eqn. 3.5
(
u(x)−L2

0d2u(x)/dx2 = δ (x)
)
,

for which the right hand side (i.e., local variable) is set to the Dirac delta distribution centered at x = 0. The

figure illustrates how the source (i.e., right hand side) is spatially smoothened out with increasing value of
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Figure 2.3: The effect of the length scale parameter on the unknown field, u(x), for 3 values of L0.

the length scale parameter.

In order to give a physical meaning to the length scale parameter, L0, we turn to the work of Fleck et

al.[66]. For a kink band with a kink band angle, β = 0, Fleck et al.[66] analytically computed the band width

as:
w
d
=

π

4

(
E

2τY

) 1
3

(2.15)

where d denotes the fiber diameter, E is the modulus of the composite along the fiber direction, and τy is the

composite shear strength. Our numerical simulations described below suggest a linear relationship between

the length scale parameter in the nonlocal equation and the kink band width as follows:

L0 = aw+b =
adπ

4

(
E

2τY

) 1
3
+b (2.16)

where, a and b are model parameters, the calibration of which is presented below. Extension of the analytical

expression of kink band width with non-zero band angles is provided in Refs. [33, 143]. A relationship could

be obtained for the aforementioned and other analytical relationships in a similar way.

After the onset of full damage in the matrix (i.e., ω(m) ≈ 1) and consequently the kink band formation,

the value of the local history variable, which is a measure of local deformation, could increase substantially

in the band. This results in a very large local source term in the nonlocal equation and leads to convergence

issues in its numerical evaluation. In order to alleviate these issues, the source term is not allowed to increase

beyond the critical value, κc as indicated by Eqn. 3.6.

The classical nonlocal damage formulations with gradient type regularization are known to exhibit an ex-

pansion of the damage region even after complete failure is observed [131]. Under tensile loading, growth of

the damage region is spurious. In the current compression case, this effect results in a steady state broadening

of the kink band after the onset of instability. Interestingly, experimental observations do point to a physical
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band broadening phenomena as observed in Refs. [110, 111, 170]. However the experimental observations

refer to an increase of kink band width of a propagating band, and at a fixed spatial position does not grow.

We adopt a technique presented by Poh et al.[131] to control the growth of the kink band after it is formed.

It is expected that fully damaged matrix material no longer carries load, and the nonlocal influence of a crit-

ically damaged material point on its neighborhood should diminish. Spread of the kink band is controlled

by dynamically setting the length scale parameter to reduce as matrix damage evolves (referred herein as the

Variable Length Scale formulation or VLS).

L(x, t) = g
(

ω
(m)(x, t)

)
L0 (2.17)

g =

√
(1−R)exp

(
−ηω(m)

)
+R− exp(−η)

1− exp(−η)
(2.18)

where, R and η are numerical constants that control the evolution of the length scale parameter as a function

of matrix damage. The constant L0 in Eqn. 3.5 is replaced by L. Figure 4 illustrates the variation of the length

scale parameter as a function of the history and damage variables. The length scale parameter decreases

sharply only when the damage parameter becomes close to unity, whereas it is approximately constant for

low states of damage.

(a) (b)

0
0 0

0.5

1

0 0.5 1
0

max

0 0

Figure 2.4: (a) Degradation of the length scale parameter and accumulation of damage; (b) relationship
between the length scale parameter and damage.

2.3 Fiber Breakage

Fibers in the kink band region undergo bending and ultimately break in tension during unstable localized

buckling. In this study, we propose a simple curvature-based criterion to describe fiber break at the macro-
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scopic scale. Let θ
′
(x, t) denote the orientation of the fiber at the reference macroscopic coordinate, x.

Fiber curvature is then described as ρ = dθ
′
/dz, where z is the direction along the fiber. The fiber damage

model is described as follows:

ω
( f ) =


0 if ρ < ρcrit

1 if ρ ≥ ρcrit

(2.19)

where, ρcrit is a critical curvature value.

It is important to note that the curvature is also a nonlocal value as it requires the spatial gradient of fiber

orientation. Details of the computational implementation is discussed below.

2.4 Numerical Implementation

The nonlocal damage formulation presented above was implemented along with the EHM model to predict

the compression failure behavior of a unidirectional composite. The model solves the additional partial

differential equation (Eqn. 3.5) for the nonlocal equivalent damage scalar variable, κ , fully coupled with

the macroscopic stress equilibrium problem (Eqn. 2.1). Conveniently, this coupled system of equations is

analogous to that of a coupled thermo-mechanical problem since Eqn. 3.5 can be recast in the form of the

steady-state heat equation with a temperature-dependent and nonlinear source term: r.

∇
2 [L2

κ̄(x, t)
]
= r(x, t) (2.20)

where, r denotes the source term, which is a function of the damage history variable.

r(x, t) = κ̂(x, t)− κ̄(x, t) (2.21)

By leveraging this form for the nonlocal equation, the multiscale reduced order system was implemented

in the commercial finite-element software Abaqus. The proposed implementation algorithm is adapted from

the work of Seupel et al.[144] and summarized in Fig. 2.5. Given the unit cell geometry and 2-part reduced

order model partitioning shown in Fig. 2.2, the coefficient tensors are computed at the preprocessing stage

(see Crouch and Oskay[49] for details of coefficient tensor computations). The coefficient tensors along with

the model parameters that describe damage evolution within the composite constituents are inputs to the mul-

tiscale nonlocal reduced order system. The multiscale system is evaluated by the thermomechanical analysis

capability in Abaqus, which solves the macroscale equilibrium and the nonlocal equations in a tightly coupled

manner. The evolution of the reduced order microscale problem is treated as stress update and implemented

using the user supplied material behavior capability (UMAT). This incremental-iterative update procedure
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returns the macroscopic Cauchy stress, the tangent stiffness, and the local history variable. The local history

variable κ̂ , which forms part of the source term of the nonlocal equation, is passed to the HETVAL subrou-

tine, where the total source term, r, is calculated and returned along with the gradient terms for Jacobian

computation. Incremental evaluation by the nonlinear solver updates the displacement and nonlocal history

In-House Code
Computes the 
coefficient tensors:

HETVAL
Generates the 'heat
source' term:

UMAT
Solves reduced order
microscale system:

Abaqus
non-linear

solver

Evaluates
coupled system
of macroscale

equations

Figure 2.5: Computational procedure for nonlocal damage model.

variable (i.e., temperature) fields. To complete the thermal analogy, the nonlocal variable changes in the case

that the heat source solution is nonzero. The ”conductivity” of the material (according to the thermal analogy)

corresponds to the length scale parameter. The VLS model, where a solution dependent length scale param-

eter is considered, is implemented by tabulating the temperature-dependent isotropic thermal conductivity

property of the material definition (tabulating L dependency on κ̄ according to Eqn. 3.10). An alternate form

to tabular data entry is the use of user supplied material behavior for the thermal problem (using UMATHT).

2.4.1 Fiber Break Routine

Fiber break is incorporated as an online procedure in the user supplied subroutine by updating global vari-

able arrays of the material point orientations during the simulation. For each element of the macroscopic

discretization, the neighboring elements along the fiber direction, and distances to neighboring element cen-

troids are calculated at the beginning of the analysis. The orientation of an element centroid during an

increment is calculated as the average of the orientations at the material points belonging to that element.

The orientation values are extracted by performing polar decomposition on the current deformation gradient

in the local frame (a tutorial for obtaining the relevant information from Abaqus is provided by [118]). The

curvature is approximated using a first order finite difference scheme based on the element-wise information
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at the end of every increment. The primary equations implemented in this routine are as follows:

ρ(x̃, t) =

∣∣∣∣∣θ
′
(x̃, t)−θ

′
(x̃neighbor, t)

z(x̃,0)− z(x̃neighbor,0)

∣∣∣∣∣ (2.22)

θ
′
(x̃, t) = cos−1

(
tr(R(x̃, t))−1

2

)
(2.23)

F̄ = V̄ ·R (2.24)

θ
′
is a calculation for absolute orientation relative to the initial configuration (see e.g., [77]), and the definition

for z is the same as in Section 2.3. The neighboring centroid position with respect to an element centroid x̃

is denoted x̃neighbor. R is the rotation matrix which relates the orientation of the current configuration to the

initial local frame. F̄ and V̄ are the deformation gradient and the left stretch tensor in the current configuration

as defined in Section 2.1. Once critical curvature is reached for an element, the fiber stiffness is set to zero,

i.e. ω(f) = 1.

2.5 Mesoscale Investigations

2.5.1 Problem Setup

Verification of the proposed multiscale model for modeling kink band formation is performed using a mesoscale

configuration of a uni-directional composite shown in Fig. 2.6. The mesostructure is subjected to displacement-

controlled loading at one end along the z-direction. The lateral faces of the structure are assigned periodic

boundary conditions. The geometry and boundary conditions allow the investigations to focus particularly

on the onset of kink banding (i.e., initiation). The dimensions of the mesostructure domain are indicated in

Fig. 2.6. Analyses are undertaken with the discretized column geometry made of C3D8T linear hexahedral

solid elements. The solution proceeds with automatic time stepping and constant stabilization throughout the

loading. Both force and heat flux equilibrium states are solved at the macroscopic domain according to the

coupled thermo-mechanical analysis scheme described in Section 2.3.

The unit cell idealizing the microstructure of a generic graphite fiber/toughened epoxy material system

shown in Fig. 2.2 with a 65 percent fiber volume fraction is employed to construct the EHM model. The elastic

properties of the transversely isotropic fiber and the elastic and damage properties of the isotropic matrix are

adopted from Ref. [31] and summarized in Table 2.1. The fibers are taken to behave elastically unless broken.

The damage evolution parameters were set in such a way that the resulting composite properties under shear

and tensile loading are in reasonable agreement with the corresponding strengths reported from v-notch shear

and three-point bend tests outlined in Ref. [46]. κ
(m)
0 is selected to be zero so that damage evolution occurs

for κ̄(m) > 0. The remaining parameters, η and R, are numerical constants and the values were set to control
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the nonlocal damage effect and result in the relationships shown in Fig. 2.4.

Table 2.1: Elastic and damage parameters of the material constituents

Elastic Parameters Damage Parameters
Parameter Unit Value Parameter Unit Value

E( f )
1 GPa 12.45 a(m) MPa−1/2 1.5

E( f )
3 GPa 257.4 b(m) N/A 2.5

G( f )
13 GPa 146.0 κ

(m)
0

√
MPa 0.0

ν
( f )
12 N/A 0.291 η N/A -2

ν
( f )
31 N/A 0.206 R N/A -0.006

E(m) GPa 3.70
ν(m) N/A 0.377

In order to introduce fiber waviness, a general fiber misalignment angle expression based on the mate-

rial coordinate in the fiber layup direction is used. The element orientation function, ψ , is expressed in a

trigonometric form similar to that found in other kink band analyses [27, 169]:

ψ (x,y,z) = tan−1
(

tan(ψ0)sin
(

πz
l

))
(2.25)

where z is the material coordinate in the fiber direction and l is the half-wavelength of the function (l =

0.5 mm in this example). The misalignment angle stated in this work refers specifically to the maximum initial

misalignment angle ψ0, which is prescribed at mid-height of the specimen. The local material orientation at

each quadrature point in the initial frame is perturbed by the angle determined in Eq. 5.9 and introduced

using the user subroutine, ORIENT, in Abaqus, where we supply the array of direction cosines for the desired

material directions with respect to the global coordinate system.

ψ
0

z

x

y

500 μm

100 μm

100 μm

Figure 2.6: Mesoscale problem domain configuration (the gold line is a schematic of the fiber orientation).
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2.5.2 Mesh Sensitivity Analysis

In this section, we investigate the mesh size sensitivity of the regularized and unregularized EHM formula-

tions for capturing kink band initiation. The unregularized formulation refers to the evaluation where damage

evolution is driven by the local history variable and the nonlocal equation is not included in the imple-

mentation. The mesoscale sample is discretized using three different mesh densities. For efficiency, mesh

refinements are considered particularly at mid-height, where the highest misalignment and hence the kink

band is expected to originate. The coarse mesh has uniform element lengths of 10 µm from end-to-end and

the fine mesh has element lengths tapering from 10 µm at the ends to 3 µm across the entire middle 150 µm

long section of the domain. The maximum misalignment angle, ψ0, is set to 2◦.

Figure 2.7a shows the damage contours at the onset of kink band formation as predicted by the unreg-

ularized formulation using the fine and coarse meshes. The contours indicate that the predicted kink band

width is dependent on the mesh size (a single layer of elements fails). Fiber break occurs at the failed element

which forms the kink band with both meshes. The stress-strain behavior is shown in Fig. 2.8a and is identical

between meshes. Introducing gradient-based regularization to capture nonlocal damage in the material results

in a thicker kink band as shown in Fig. 2.7b-c. Fiber breaks occur simultaneously in two equal thickness

regions to form the kink band. The coarse mesh and fine mesh simulations predict the kink band width w ≈

80 µm (or 10 times the fiber diameter), with a 1 µm difference due to the resolution limitation of the coarse

mesh (width predictions can be made in multiples of element size). The stress-strain behavior predicted using

the regularized model is nearly identical for both meshes as shown in Fig. 2.8b.

f
1.0

0.0

Figure 2.7: Sensitivity of damage development to mesh size with the (a) local and (b) nonlocal damage model
formulation (L0 = 31.7 µm); (c) sensitivity of fiber-break prediction to mesh size (nonlocal damage model).

23



(a) (b)

0 0.005 0.01 0.015
0

500

1000

1500

2000

2500

0 0.005 0.01 0.015
0

500

1000

1500

2000

2500

Figure 2.8: Sensitivity of the structural response to mesh size with the (a) local, and (b) nonlocal damage
model formulations.

2.5.3 Kink Band Morphology

2.5.3.1 Kink Band Width Control

A parametric study is undertaken to investigate the effect of the length scale parameter on controlling the

width of the kink band. As explained in the section, Fiber Breakage, the kink band width is dictated by the

distance between locations that experience the critical tensile strain for fiber breakage, which are determined

based on fiber curvature. The evolution of curvature during the load history along the length of the mesoscale

domain is demonstrated in Fig. 2.9. The material segment exhibits a slight gradient in curvature at lower

loads, but localized peaks develop at two locations as the load increases. The critical curvature is reached

in the vicinity of the maximum load, the fibers break at peak curvature locations, and the kink band width

stays constant thereafter. In the current study, the kink band width is defined as the distance between the ele-

ment centroids that experience fiber breaks. Simultaneously, we observe the stress fields and matrix material

behavior. The contour plots in Fig. 2.10a-b display the shear stress of the homogenized material and matrix

damage state during the softening stage (macroscopic stress = 1959 MPa). In the region of matrix softening,

the in-plane shear stress, τ̄ττxz, has reached the strength of the homogenized material when loaded in simple

shear (approximately 90 MPa). The deformed and initial states of the highlighted elements near and inside

the kink band are displayed in Fig. 2.10c, where the deformed elements are translated and clearly have lateral

surface normals oriented at an angle compared to horizontal. In fact, periodicity causes the elements to have

a form which resembles that of simple or pure shear state in the xz-plane. The greatest shear deformation is

experienced in the element near mid-height with a ratio of shear to longitudinal strain: γ̄γγxz/ε̄εεzz ≈ 1.92. The
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Figure 2.9: (a) Mesoscale curvature at select load levels. (b) Stress-strain response and select load levels.
(L0 = 20 µm)

outermost highlighted elements are also experiencing a shear-dominated deformation but the ratio of straining

is smaller, γ̄γγxz/ε̄εεzz ≈ 1.48. The other normal and shear strain components are much smaller in all elements.

Shear-dominated deformation in the kink band is consistent in all subsequent simulations and agrees with

experimental observations like those of Vogler et al [169] where a softened external shear response signals

the existence of a kink band. The value of the critical curvature is important since compressive strength

is determined by the interplay between fiber breakage, matrix deformation and the buckling instability. As

shown in Fig. 2.9, curvature peaks form prior to reaching the macroscopic strength, and quickly grow with

localized deformation following the onset of buckling. If critical curvature occurs after the onset of buckling,

matrix strength dictates the compressive strength of the composite. If critical curvature is reached prior to

reaching the matrix deformation controlled buckling strength, sudden fiber breakage determines the compos-

ite strength. As a first order approximation, we use a simple bending formula to compute ρcrit = 2σ
f

max/E f d

(σ f
max = 4.25 GPa is the fiber tensile strength, E f = 280 GPa is the fiber longitudinal modulus, d = 8 µm is the

fiber diameter) that results in a fiber reaching its tensile strength at 3.8 ◦/mm. Using this criterion value, the

relationship between the length scale parameter, L0 and the resulting kink band width is shown in Fig. 2.11.
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Figure 2.10: (a) Shear stress and (b) matrix damage during softening. (c) Parallel view of highlighted ele-
ments in deformed and initial state, including surface normal directions. (L0 = 20 µm, deformation 4x).

The linear correlation already indicated in Eqn. 2.16 is confirmed by the figure.

This linear relationship between the nonlocal length scale parameter and material properties allows us

to control of the kink band width by adjusting the length scale parameter and using the linear relationship

(a = 1.21, b = 41.74). The y-intercept in the figure indicates the predicted kink band width at the local limit,

where the nonlocal model degenerates to the local model. The relative insensitivity of the linear relationship

to the constituent and composite parameters is shown in Fig. 2.12. The kink band width predictions for four

composite materials using the length scale parameter selection via Eqn. 2.16 are shown to agree with the

results of the theoretical relationship Eqn. 2.15 in Fig. 2.12.

2.5.3.2 Misalignment Effects

The mesoscale investigations discussed thus far have included a misalignment form as expressed in Eqn. 5.9.

With this waviness definition we are able to observe formation of a kink band. To account for uncertainty of

the misalignment fields found in composites, the behavior of the model is investigated for variations of this

damage localization feature. The effect of misalignment angle on strength is plotted in Fig. 2.13 for a range of

misalignment angles corresponding to the magnitude of imperfections introduced during the composite spec-

imen manufacturing process [159]. In the case of very small misalignment angle in the fibers, the response

of the model is expected to be nearly elastic and consequently results in the highest strength prediction. The

reduction in strength is attributed to the effect of the misalignment angle magnitude on instability initiation –
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Figure 2.11: Relationship between nonlocal length scale parameter and kink band width.
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Figure 2.12: Kink band width predictions from simulations compared to analytical results, using calculated
length scale value (material system properties referenced from Refs. [27, 31, 99, 170]).

a result that is consistent with the micromechanical analysis in Naya et al [115]. We additionally compare our

predictions to the relationship provided by Budiansky and Fleck [33], where the kinking stress is a function

of the composite shear properties and misalignment angle alone. The multiscale model predicts a similar but

shallower slope for low misalignment angles. The relationship between kink band failure strength and mis-

alignment angle reinforces the notion of instability due to matrix material failure. Larger initial misalignment

implies that the composite material is rotated compared to the external compression and more susceptible to

undergoing shear-dominated deformation.

In addition to studying the effects of magnitude of misalignment angle with the sinusoidal fiber mis-
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Figure 2.13: The effect of fiber misalignment angle on strength predictions, compared to Ref. [33].

alignment angle form we also explore how changing the shape of misalignment affects the compression

strength. Initial fiber misalignment in the form of a Gaussian distribution is also considered: N (µ,σ) =

1
σ
√

2π
exp
(
− 1

2

( z−µ

σ

))
. The general forms of fiber misalignment investigated are illustrated in Fig. 2.14a.

Decreasing the standard deviation value shrinks the region of initial maximum misalignment, and the effect

of this misalignment localization on compression strength is shown in Figure 2.14b. There is a significant

decrease in compression strength as the region of misalignment is localized (Fig. 2.14b reports strengths

relative to the sinusoidal misalignment case). This conclusion is consistent with trends observed in direct nu-

merical simulations [27]. Interestingly, the analysis of Ref. [169] considers a similar sinusoidal misalignment

field and concludes that additional spatially localized imperfections have negligible effect on kink band width

and failure strength. The somewhat gradually distributed fiber misalignment form described by a maximum

misalignment angle used in this study has proved sufficient to initiate kink band formation within the bulk

material and therefore model predictions can be taken as conservative.

2.5.3.3 Shear Nonlinearity Effects

As presented in the model formulation section, the matrix material constituent of this EHM implementation

has been modelled with degradeable properties according to an arctangent function for the damage poten-

tial. This material behavior neglects nonlinear shear effects that are found in plastic behavior of polymers,

including cured epoxy resins. Examples of modified matrix behavior under shear are used in order to vary

the nonlinearity of the microstructural model and are plotted in Fig. 2.15. As Fig. 2.15 shows, the initial

shear modulus and ultimate strength values are constant in these cases, but the response shape through the
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Figure 2.14: (a) Varied forms of initial fiber misalignment distribution. (b) Change in compression predictions
with respect to sinusoidal fiber misalignment field.

ultimate strength varies from sharp (weak nonlinearity: a(m) = 190, b(m) = 210) to gradual (strong nonlin-

earity: a(m) = 0.58, b(m) = 0.55) softening and hardening behavior. The moderate case matches what has

been used in the simulations presented thus far.

Simulations using the mesoscale problem setup are performed with all properties and parameters held

constant while varying the shear nonlinearity behavior. The kink band results for the three cases are shown

in Fig. 2.16. Since matrix damage of nearly 50% causes the instability leading to kink band formation, the

material state corresponding to that value was examined. The weak nonlinear matrix behavior leads to a fairly
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Figure 2.15: Example matrix shear behaviors (L0 = 31.7 µm)
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concentrated damage field prior to failure, wide bands of broken fibers, and w ≈ 51 µm. Conversely, applying

strong shear nonlinearity results a broader damage field prior to kink band failure, concentrated locations

of fiber break, and w ≈ 126 µm; recall that the moderate nonlinearity results in w ≈ 80 µm. In the strong

nonlinearity case there are larger strains at locations further from the maximum initial misalignment, and

the material in this relatively wide region rotates to be subject to shear-dominant strain under the compres-

sive load. The trend of these results align with observations of composites with more ductile thermoplastic

materials, which exhibit larger kink band widths (approximately 20 times the fiber diamater) [110, 170] com-

pared to more brittle toughened epoxy matrix materials (approximately 10 times the fiber diameter) [27, 99].

Several experiments have been conducted on UD carbon fiber/epoxy composite configurations which pro-

duce high quality in situ and post mortem images of kink band morphology at the microscopic scale. The

kink band forms displayed in Fig. 2.16 agree with experimental results in in Wang et al. [173] and Sun et

al. [156] from composites containing standard modulus carbon fibers, and Gutkin et al. [75] from a compos-

ite containing intermediate modulus carbon fibers. The composite properties considered in this investigation

most closely match those of Gutkin et al. [75], and the kink band width is shown to be less than 100 µm.

The test procedures, equipment, and materials in these experiments are all different but fall under the cat-

egory of UD carbon fiber/epoxy specimens under longitudinal compression. Briefly described, these are

conducted with (a) a (standard) Combined Loading Compression (CLC) test fixture and single edge notched

(SEN) plates [156]; (b) a Scanning Electron Microscopy (SEM) screw-driven test jig and SEN plates [75];

(c) uniaxial compression on waisted rods [173].

2.6 Conclusions

This chapter presented a multiscale model to predict the progression of damage in a fibrous composite un-

der compression. Kink band formation is predicted with a nonlocal damage gradient regularization scheme

coupled to a computational homogenization method in solving the macrostructural response. We are able

to employ quasi-static analyses to investigate the instability-driven kink band failure mechanism. The kink

band initiates due to matrix softening that results in the onset of buckling and is completely formed when

fibers break as a result of localized curvature. Overall, the predicted effects of material properties and fiber

misalignment angle on kink band width and failure strength corroborate analytical and experimental results

in the literature. The effects of nonlinear shear behavior of the matrix material were also shown to contribute

significantly to the kink band width and should be taken into account when calibrating the model to a specific

matrix constituent material. Additional features of the presented multiscale approach are: (1) the homoge-

nized model is able to capture various kink band widths without geometric representation of the fibers; and

(2) only a small amount of mesh sensitivity is observed and the model also exhibits convergent predictions
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Figure 2.16: Matrix damage at kink band initiation, and fiber break fields corresponding to (a) weak, (b)
moderate, and (c) strong nonlinear shear matrix response.

with an implicit FE analysis procedure, thereby allowing application of the model for simulation of experi-

mental configurations. The proposed model holds the potential to be used in analysis of larger scale laminated

structures as well. The multiscale approach allows discernment and efficiency in exploring the aspects that

make up the kink band problem.
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CHAPTER 3

Computational Analysis of the Failure Mechanisms of a Laminated Composite in Double-Edge Notch

Compression Configuration

A recent experimental investigation performed on double-edge notched CFRP specimens provide additional

insight into the progressive damage growth under quasi-static compressive loading [45]. The geometry and

layup of the specimen resulted in stable damage progression which enabled detailed experimental character-

ization of failure onset and growth as a function of load amplitude. This chapter presents application of a

multiscale computational model to study the onset, growth, and interplay of the failure mechanisms observed

in the double-edge notched compression (DENC) experiments. A nonlocal multiscale model originally pro-

posed in Ref. [60] is generalized to study laminated kink band formation and propagation. A CZM-based

model is incorporated to study the effect of splitting on the compression performance of the DENC samples.

The kink band and splitting models were calibrated based on a suite of experimental data and image analysis.

DENC specimens were simulated with the calibrated model and a detailed analysis of how progressive split-

ting and kink band failure interacts to culminate in specimen failure is performed based on computational

and experimental evidence. A unique contribution of this work is that it compares the predicted onset and

progression of compression failure mechanisms to experimental data and images generated from specimens

subjected to sub-critical loads.

3.1 Methods

3.1.1 Experimental

Experiments were performed at the Air Force Research Laboratory (AFRL) on CFRP laminates in a double-

edge notch compression (DENC) configuration [45]. The DENC specimens were hand-laid with IM7/977-3

carbon/epoxy unidirectional pre-impregnated tape in a stacking sequence of [03/+ 45/− 45/90/0]S and

autoclave cured. Two notches were introduced by milling and were examined to ensure that no damage was

introduced in the gage section. Tabs were bonded to both ends of the specimens using a two-part structural

paste adhesive. The final specimen geometry and dimensions are shown in Fig. 3.1a-b. The reasons for

choosing the layer arrangement and the notch geometry used in the experiments are discussed in Ref. [45].

The test procedure followed ASTM D6641 [10], where a constant displacement rate of 1.3 mm/min was

applied to the gripped specimen using a combined loading compression test fixture. Load-displacement from

the test machine was acquired in addition to local strains and displacements across the gage section between

the notches measured using a virtual extensometer (VE) system as indicated in Fig. 3.1b. Both the test
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Figure 3.1: (a) Geometry and dimensions of the DENC test article, (b) detailed view of the gage section.

frame and VE data were captured at 10 Hz. Multiple other imaging techniques were employed to examine

failure during testing. Optical images of the exterior surface in the gage section were captured throughout

the test at 100 Hz using a digital camera. Microcomputed Tomography (µCT) scans were performed on

damaged composite specimens with and without zinc-iodide dye penetrant using a Zeiss Xradia Versa 620 X-

ray Microscope system equipped with a 160 kV transmission target X-ray source and a flat-panel detector. A

series of optical objectives allowed multiple magnification levels. Micrographs were produced using a Nikon

MM-60 table-top microscope, NIS-Elements D software, and a DS-Fi2 camera. Energy-event readings from

acoustic emission sensors were used to define two load intervals for interrupting tests prior to ultimate load

as well as an observable damage threshold. A grind/polish process was performed with these specimens and

micrographs were obtained across the width of the specimens from one notch as indicated in Fig. 3.1b and

described in [45]. No damage was detected in the test specimens when an acoustic energy jump (or event)

was recorded with a value less than 10−13J. The X-ray CT images provide additional detail on the internal

extent of damage.

Additional property characterization experiments were performed on unidirectional 0 degree (UD) spec-

imens. The experiments include compression loading of UD DENC specimens. Configuration, dimensions

and test procedure for the UD DENC specimens are identical to the DENC specimens as shown in Fig.3.1,

including specimen thickness. Other characterization experiments include shear loading parallel to the fiber

direction of V-notch specimens, double cantilever beam (DCB), and end-notch flexure (ENF) configurations.

The UD compression, DCB, and ENF tests were carried out at the AFRL. The V-notch tests were carried out

at the Mechanics of Composite Materials Laboratory at Tel-Aviv University. The breakdown of experiments

by calibration and analysis phase, the testing procedure followed, and the quantity of tests performed are

shown in Table 3.1. The DENC experiments and results have been previously reported in [45]. Additional

images generated during the experimental program but not included in [45] are used in the model calibration

(Section 3.2.1) and analysis (Section 3.2.2).
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Table 3.1: Breakdown of experiments.

Calibration Analysis
Experiment Procedure Qty. Experiment (stop criteria) Procedure Qty.
UD DENC [10] 4 DENC (Failure) [10] 9

V-notch shear [9] 5 DENC (Load Interval 1) [10] 9
DCB [11] 5 DENC (Load Interval 2) [10] 16
ENF [8] 5

3.1.2 Numerical Modeling

3.1.2.1 Multiscale Compression Kink Band Model

A reduced order multiscale model proposed in [60] has been used to represent the compression kink-band

failure behavior in the composite specimens. The model is based on the eigenstrain-based reduced order

computational homogenization (EHM) approach which has been previously used to study progressive fail-

ure behavior of composites under a range of loading and environmental conditions [30, 31, 83, 122, 178].

The model keeps track of the failure processes associated with kink band formation at the scale of the mi-

crostructure coupled to a computational homogenization method in solving the macrostructural compression

response. The evolution of nonlinear shear deformation and damage in the matrix concentrated in the kink

band region are explicitly tracked. The length scale of the kink band (i.e., the kink band width) is captured

by using a gradient-based nonlocal formulation. Full description and verification of the multiscale kink band

model are provided in [60]. The constitutive relations for the multiscale kink band model are summarized

below.

Under compression loading, the composite laminate undergoes localized instability induced by material

imperfections (i.e., fiber misalignment or waviness). Kink bands form as a result of excessive deformation of

the matrix and localized bending-induced fiber fracture near these regions of instabilities. The failure in the

matrix is modeled using continuum damage mechanics. Upon onset of instability at the mesoscale, the fibers

buckle and no longer contribute to load carrying capacity. For simplicity, explicit fiber fracture induced by

local buckling is not considered in the model. The formulation described in Ref. [60] includes fiber breakage

as well. Mesoscale analyses conducted with and without fiber breakage predict the same compression strength

in UD specimens.

The localized large deformation behavior is captured using a co-rotational formulation, where a local

coordinate system is attached to the microstructure that follows macroscopic rotation. In what follows, a

superposed hat, ˆ(·) indicates the corresponding field expressed in local coordinates, and a superposed bar, ¯(·)

indicates a macroscopic quantity. At a given material point in the specimen, the macroscale Cauchy stress,

ˆ̄σ , in the co-rotational frame is expressed as:
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ˆ̄σ =
[
1−ω

(m)
][

L(m) : ˆ̄ε +P(mm) : µ
(m)

]
+

[
L(f) : ˆ̄ε +P(mf) : µ

(m)

] (3.1)

in which ˆ̄ε is the macroscopic strain; ω(m) denotes the damage state within the matrix. The scalar damage

variable evolves within 0 ≤ ω(m) < 1 with limits ω(m) = 0 and ω(m) → 1 respectively indicating no damage

and complete loss of load carrying capacity within the matrix. µ(m) is inelastic strain induced by the damage

process within the matrix. L(·) and P(·) are coefficient tensors that reflect the effect of microstructural mor-

phology on determining the macroscopic stress state ([31, 121, 150]). The kinematic equation that relates the

inelastic strain coefficients to the macroscopic strain is expressed as:

[
1−ω

(m)
][

Â(αm) : ε̄ + B̂(αmm) : µ
(m)

]
+

[
Â(αf) : ε̄ + B̂(αfm) : µ

(m)

]
= 0; α = m, f

(3.2)

in which Â(·) and B̂(·) are additional coefficient tensors.

This system of equations for the model is closed by defining evolution equations for the matrix damage

variable. The matrix is taken to exhibit a nonlinear hardening behavior followed by material softening. The

damage behavior is described as a function of the nonlocal damage history variable, κ̃(m):

ω
(m) = Φ(κ̃(m)); 0 ≤ Φ ≤ 1 (3.3)

which evolves according to the monotonic damage evolution function:

Φ(κ̃(m)) =
arctan(a(m)⟨κ̃(m)−κ

(m)
0 ⟩−b(m))+b(m)

π

2 + arctan(b(m))
(3.4)

where a(m), b(m), κ0
(m) are material parameters, and the Macaulay brackets, ⟨·⟩, are used to enforce the

threshold for the onset of inelastic evolution of damage.

When not regularized, continuum damage mechanics models localize damage to a region dictated by the

size of the finite elements [4, 146]. The width of the compression kink bands on the other hand are dictated by

fiber properties (e.g. fiber size [180] and longitudinal modulus [66]) and matrix properties (e.g. shear nonlin-

earity or “ductility” [16, 111]). The model employed in this study uses a gradient based regularization scheme

to consistently capture the kink band width [60]. The nonlocal equivalent damage variable is expressed using
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the following partial differential equation defined over the domain of the specimen parameterized by x:

κ̃
(m)(x, t)−L2

∇
2
[
κ̃
(m)(x, t)

]
= κ

(m)(x, t); (3.5)

in which L is a length scale parameter related to the size of the kink band width, and ∇2 denotes the Laplacian

operator. κ(m) is defined as:

κ
(m)(x, t) = min{κ̂

(m),κc} (3.6)

where κc denotes the value of the local damage history variable when full damage is reached (i.e., Φ(κ̂ =

κc)≈ 1). The local damage history variable is κ̂(m) is defined as:

κ̂
(m) = max

0≤τ≤t
{υ

(m)(τ)} (3.7)

taking the value of the maximum damage equivalent strain, υ(m), in the loading history. The damage equiva-

lent strain is defined as:

υ
(m) =

√
1
2

ε̂(m) : L̂(m) : ε̂(m) (3.8)

which is a function of the local principal strains, ε̂(m), and the elastic modulus tensor, L̂(m), rotated to the

principal directions. Neumann boundary conditions are enforced to evaluate the nonlocal equation:

∇κ̃
(m) ·n = 0 (3.9)

where n is the unit outward normal to the domain boundaries.

A drawback of the regularization scheme employed in this study is the observed expansion of the damage

region under sustained loading even after the failure is reached within the specimen (see also, e.g., [69] for a

discussion on this type of spurious growth). We note that this is unrelated to the observation reported on the

growth of the kink band width as it propagates [111, 170], as the numerical simulations exhibit widening in

parts of the kink bands that have already formed as well. The spurious spread of the kink band is controlled

by degrading the length scale parameter as matrix damage evolves [131]:

L(x, t) = (c1w+ c2) ·g
(

ω
(m)(x, t)

)
(3.10)

g =

√
(1−R)exp

(
−ηω(m)

)
+R− exp(−η)

1− exp(−η)
(3.11)

where, c1 and c2 are model parameters, and w is the observed kink band width; R and η are numerical
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constants controlling the length scale degradation.

3.1.2.2 Cohesive Zone Model for Splitting

We consider a standard CZM described in Ref. [38]. Similar CZM models have also been used in modeling

splitting in CFRP composites [76, 116, 167]. The traction-separation law follows a bi-linear form using a

quadratic stress damage initiation criterion and linear softening slope enforced for critical fracture energy.

Mixed mode state is expressed according to the Benzeggah-Kenane relationship [18]. Evolution of the dam-

age variable for the ply interface is as described in [38].

3.1.2.3 Implementation Details

In EHM, a nonlinear analysis and history dependent reduced order microstructure problem is concurrently

evaluated with the structural scale analysis. A separate reduced order microstructure model is evaluated and

tracked at each quadrature point of the macroscale discretization. Simulations are performed using commer-

cially available implicit finite elements analysis code, Abaqus/Standard. The microstructure in the analysis is

idealized as a periodic and square unit cell with two parts representing the damageable matrix and the elastic

fiber. The coupled macroscopic system of equations for equilibrium and nonlocal equations is implemented

through the use of coupled thermo-mechanical solver. The nonlocal equation is enforced on the 0 degree

plies only, as the critical kink bands are expected to occur on 0 degree plies. Matrix damage evolution is also

considered in the non-zero degree plies to predict failure by transverse cracking [30, 31]. In this case, the

length scale parameter is set to a small (near zero) value since the length scale parameter is associated with

the kink band width. The full implementation workflow of the kink band model is detailed in Ref. [60] and

is implemented in the same manner here for the nonlocal matrix damage using a user-defined material and

auxiliary data passing subroutines. In-built Abaqus capabilities are used for CZM models of splitting.

3.1.2.4 Simulation Setup

The geometry, discretization and the boundary conditions used in the specimen simulations are shown in Fig. 3.2.

The domain for the analysis is constructed to match the gage section of the DENC specimen. Boundary con-

ditions corresponding to displacement control are applied on the numerical gage section top and bottom faces

which are aligned to the ends of the gripped tabs on the experiment test articles. The plies composing the lam-

inate are modeled by dividing the geometry into equal thickness layers matching the number of plies in the

layup and assigning an initial material orientation that match the ply fiber directions. Computational expense

is balanced with higher resolution of the failure mechanism predictions by partitioning the ply layers into

elastic and damageable regions as shown in Fig. 3.2 and meshed with full-integration continuum elements.
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Figure 3.2: Analysis geometry, boundary conditions, mesh, and model assignment.

The mesh size is uniform in the thickness direction, where there are two elements for every ply (i.e. 28 ele-

ments through the thickness). The mesh is structured and elements lengths vary from approximately 70 µm in

between the notches to 300 µm outside of the damageable region. While damage models without regulariza-

tion are typically mesh-sensitive, the compression kink band model used in this study is regularized through

the gradient-based regularization scheme with the kink band width serving as the nonlocal length scale. The

mesh independence of the kink band model has been demonstrated in Ref. [60].

It is well known that the initial fiber misalignment strongly affects kink band onset, and unidirectional

compressive strength is very sensitive to the maximum misalignment angle [97, 170]. Selection of misalign-

ment parameters (and the other model parameters) are described in the model calibration section below. The

0 degree plies are prescribed an initial fiber misalignment by defining the integration point orientation with

the expression:

ψ(z) = ψ0 sin
(

π

(
z− z0

l
+

1
2

))
(3.12)

where, z is the material coordinate in the fiber direction, z0 is the coordinate of the notch tip in the fiber

direction, ψ0 is the maximum initial misalignment angle, and l is the half-wavelength of the function. The

expression represents a periodic form similar to the waviness in experimental observations [97, 124]. The

variation in orientation corresponds to waviness in the transverse direction (1 axis in Fig. 3.2) and the maxi-

mum misalignment angle occurs at the notch tip. Provided that the misalignment half-wavelength is smaller

than the fracture process zone, a phase shift in the assumed initial fiber misalignment (where maximum mis-

alignment angle does not align with the notch tip) is not expected to significantly affect the onset of failure.
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Splitting regions where cohesive traction can degrade are defined as longitudinal strips tangent to the

notch tips in all 0 degree plies. Previous studies in the literature have also employed selectively placed

splitting regions based on experimental observations when modeling edge- and center-notched specimens [76,

98, 133]. The splitting regions are meshed with full-integration continuum cohesive elements with uniform

thickness of 0.1 µm and side lengths matching the ply mesh in the 2 and 3 dimensions. A linear elastic

analysis indicates shear stress concentration in the plies occurring at locations near the notch end but not

exactly on the notch tip. As is commonly observed with cohesive models, element lengths along the failure

direction should be sufficiently small to capture the fracture process zone [55]. Furthermore, resolving the

stress concentration is crucial for predicting split initiation. To address these concerns, a mesh convergence

study including nominal element side lengths, h, in the 3 dimension ranging from 40 to 1 µm was performed.

Convergence of the stress field is predicted with h = 10 µm starting at approximately 70 µm from the center of

the notch (mid-height of the specimen). The final simulation element size near the notches linearly increases

to h = 160 µm at a distance of 2 mm from the center of the notches.

3.2 Results and Discussion

3.2.1 Model Calibration

The calibrated values of the kink band and local damage model parameters as well as the sources of calibration

data are listed in Table 3.2. The starting point for the calibration of the physical parameters were the values

reported in [31] and the values in [60] were used for the numerical parameters, since these studies employed

similar materials. UD DENC experiments were also used in model calibration. Specifically, the unidirectional

compression modulus and strength of the specimens (shown in Table 3.3) obtained from the UD DENC tests

were used in the calibrations. In these experiments, specimens exhibited brittle failure. Splitting ahead of

the notch tips early on is observed which reduced the stress concentrations near the notch tips. The ligament

between the notch tips following split formation exhibits a relatively uniform stress that is equal to the load

divided by the cross-sectional area between the notch tips. The longitudinal fiber elastic modulus, E( f )
1 , was

calibrated using the rule of mixtures (i.e. Elong =V ( f )E( f )
1 +(1−V ( f ))E(m), with 65% fiber volume fraction,

V (f), and Elong is calculated from the mean linear regression of the load-virtual extensometer data between

0.5 microstrain and 2 microstrain divided by the cross-sectional area between the notch tips.

The UD specimen strength value (calculated as the mean ultimate load of the UD DENC experiments

divided by the cross-sectional area between the notch tips) was then used to calibrate the maximum fiber

misalignment angle. The model is calibrated by adjusting the maximum initial misalignment angle so that

the predicted strength matches the specimen strength The procedure for misaligment angle calibration is as

follows: Multiple mesoscale simulations of the UD material were performed by varying the misalignment
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Table 3.2: Calibrated parameters of the kink band and local damage model (components designated in the
local coordinate axes where the 1 direction designates the fiber direction).

Parameter Unit Value Source Parameter Unit Value Source
E(f)

1 GPa 305.0 UD DENC ν
(f)
12 N/A 0.206 [31]

E(f)
2 GPa 12.45 [31] E(m) GPa 3.70 [31]

G(f)
21 GPa 146.0 [31] ν(m) N/A 0.377 [31]

ν
(f)
23 N/A 0.291 [31] ψ0

◦ 1.35 UD DENC
a(m) MPa−1/2 22.5 V-notch Shear η N/A -2.0 [60]
b(m) N/A 17.5 V-notch Shear c1 N/A 0.833 UD/V-notch
κ
(m)
0

√
MPa 0.0 [60] c2 N/A -35.0 UD/V-notch

R N/A -0.006 [60] w µm 42.8 DENC

Table 3.3: Experimental and model composite properties.

Property Experiment Experimental Mean (standard deviation) Calibration Simulation Result
Longitudinal Compression Strength (GPa) UD DENC 1.43 (0.18) 1.43
Longitudinal Compression Modulus (GPa) UD DENC 206.9 (5.39) 203.0

Ultimate Shear Strength (MPa) V-notch shear 58.8 (19.1) 55.7
Shear Modulus (GPa) V-notch shear 6.44 (0.39) 6.40

angle. A least-squares function was fitted to the resulting strength vs. misalignment angle data. The calibrated

misalignment angle is read from the fitted curve as the value that corresponds to the mean UD compression

strength measured in the experiments. The calibrated misalignment angle is 1.35◦. The half-wavelength

of the misalignment function is set to l = 0.5 mm (approximately 71 times the fiber diameter), which is

shown to be a sufficient localization of fiber misalignment for kink band initiation based on the analyses of

[60, 102, 169] and the experimental observations in [97, 156].

The stress-strain behavior obtained from 90 degree V-notch experiments were used to calibrate the failure

properties of the matrix. The shear chord modulus (computed at 1 microstrain and 2 microstrain) and the

ultimate specimen shear strength predicted by numerical simulations and mean experimental results were

matched by calibrating a(m) and b(m). The calibration simulations consisted of a mesoscale finite element

(a section of composite material) subjected to simple shear. The calibration is performed manually. The

outcomes of the calibration simulations are listed in Table 3.3 alongside the experimental values. Given

the variability observed in the experiments, reaching a minimum of 95% accuracy in capturing the mean is

deemed sufficient to conclude the calibration process. With the calibrated matrix parameters, the resulting

transverse composite compression strength is 91 MPa (found by subjecting a mesoscale finite element to

uniaxial transverse displacement conditions at the nodes). The value for w used in Eq.3.10 is chosen such that

the simulated kink band width is equal to the average kink band width measurements taken from micrograph

images of a DENC specimen. The experimental target values and calibration simulation results are presented

in Table 3.3. The influence of model parameters on the kink band width and strength predictions is studied in

detail in Ref. [60].
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Figure 3.3: Experimental image analysis results overlaid with the calibration simulation result.

The parameters of the cohesive zone model for splitting are also calibrated based on experimental ob-

servations and prior data. Table 3.4 shows the mode I and mode II maximum traction and fracture energies

used in the simulations. The maximum traction values are estimated in the normal and shear directions based

on values used in the literature for carbon-epoxy laminates [134, 165]. The initial stiffness, kcoh, is set to

105 Nmm−3 (about 27 times the matrix elastic modulus) on the diagonal components and zero on the off-

diagonal components. The stiffness value is on the order of magnitude found to not significantly affect the

compliance of the composite while also avoiding convergence issues in [166]. The critical fracture energies

for splitting differ from those for delamination that are typically calibrated using double cantilever beam

(DCB) and end notch flexure (ENF) tests. In particular, prior investigations determined that the critical mode

II fracture energy for splits is approximately 25-40% [91, 116, 133] of measured GPC
IIC from ENF tests (PC

indicates the pre-cracked fracture toughness value). In accordance with these findings, we set Gs
IIC to be 1/4

the value of measured GPC
IIC (=0.502 kJ/m2). Gs

IC is set equal to GIC from the DCB test results since other

investigations indicate the split initiation and growth to be mode II driven fracture (see again [91, 116, 133]).

The BK exponent, β , is set to 1.0 in the absence of critical fracture energy data for the IM7/977-3 material

system under mixed-mode interlaminar or intralaminar conditions.

The model includes a pre-existing split ahead of the notch in the 0 degree plies as described above. A

sensitivity study was performed to understand the effect of the length of the split introduced on the overall

damage evolution behavior. In this study, the plies were assumed to remain elastic. This is consistent with

experimental observations below, that indicate that splits are the first major damage event observed under

compression. Fig. 3.3 shows the growth of the splits as a function of load amplitude based on the simulations

and the experimental observations. The experimental observations are obtained from the analysis of opti-

cal images of the experimental DENC specimens. The initial split length and corresponding load level are

tracked, providing a coarse representation of the split growth. Simulations were performed with pre-splits of
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Table 3.4: Parameters of the cohesive zone model.

Parameter Unit Value Source Parameter Unit Value Source
kcoh N/mm3 105 [103, 166] Gs

IC kJ/m2 0.230 DCB
t0
I MPa 60 [134] Gs

IIC kJ/m2 0.130 ENF
t0
II MPa 90 [165] β N/A 1.0 Estimate

lengths 0.125, 0.25, 0.50, 1.0, and 2.0 mm from the notch tip. The simulations recover the same curve re-

gardless of the size of the initial split (the discontinuity at split length of 1.71 mm is due to combining results

from simulations with short and long initial split lengths recorded from different mesh sizes) indicating that

the growth behavior is not affected by the choice of the initial length.

An additional sensitivity analysis was performed to investigate the effect of fracture parameters for split-

ting on the rate of split growth. In this analysis, simulations were performed by setting Gs
IIC to values in

the range of 0.10 to 0.20 kJ/m2 and ultimate traction to values in the range of 90 to 180 MPa. The rate of

split growth is found not to be affected significantly by Gs
IIC or the ultimate traction values. These parameters

were found to have a stronger influence on the load at which splits initiate. This observation is consistent with

those reported in [133]. Since the experimental data exhibits large variation, the splitting model is calibrated

such that the crack growth curve fits through the mean experimental initial split length and load values. The

slope of the load vs. split length predicted by the model falls within the observed experimental data as shown

in Fig. 3.3.

3.2.2 Analysis of DENC Behavior

Simulation of the DENC specimen was performed using the calibrated model parameters, and the simulation

results were analyzed along with the experimental observations. Figure 3.4a shows the envelope of load vs.

strain curves from specimens ran to failure in addition to the interrupted tests and the calibrated simulation

prediction. Simulated strains are computed by mimicking the virtual extensometer measurements. The base

length of the virtual extensometer is 3.0 mm and the macroscopic strain is calculated as the difference between

the average displacements of nodes within a 40 µm radius of the two extensometer ends. In Fig. 3.4b, the

histograms for the observation of initial splits, kink bands, and failure in terms of load amplitude in the DENC

experiments and simulation are shown. The predicted macroscopic force response is essentially linear until

an unstable load drop suggesting an abrupt failure process. The maximum load prediction (13.8 kN) is within

the range observed in the experiments (11.7-15.1 kN) and somewhat overpredicts the mean (13.1 kN). The

experiment results exhibit a somewhat nonlinear macroscopic load-strain response and the strain at maximum

load ranges from 0.37% to 0.54% (mean 0.46%) while the predicted strain at maximum load is 0.42%. The

standard deviation of the failure loads and strains is also plotted on Fig. 3.4a.
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Figure 3.4: (a) Load-strain predictions compared to experimental results; (b) mechanism and failure obser-
vation loads (bars) and predictions (annotated solid lines).

Nonlinearity in the DENC experiments initiates early on and continues throughout the loading process

until failure, as demonstrated by the representative experiment curve in Fig. 3.4. This nonlinearity is likely

due to nonlinear shear effects, although additional mechanisms could be contributing to this behavior as

discussed below. Other experimental studies in the literature report similar nonlinearity in the compressive

stress-strain response of laminates [23, 99, 148] (e.g., in laminates with high volume fraction of 45 degree

plies and when 0 degree plies are not at the mid-plane [99, 148]). The amount of nonlinearity varies with

specimen size, presence of off axis plies, ply thickness, and layup.

In the DENC model, the matrix constitutive behavior was calibrated (as described in Section 3.2.1) based

on 90 degree V-notch shear tests which exhibit a relatively brittle behavior (specimen failure around 1-2%

shear strain). Other experiments including ± 45 degree tension and V-notch shear [31, 89] show higher duc-

tility, which could better characterize the nonlinear shear behavior of the composite. For instance, Ref. [31]

demonstrated an alternative matrix damage model which directly incorporates shear nonlinearity and uses

both sets of shear tests to calibrate the matrix model.

Nonlinearity in the fiber behavior was also previously proposed to contribute to the observed nonlinearity

of the overall compressive stress-strain curve [104, 145]. The model in Ref. [23] includes nonlinearity in the

longitudinal lamina modulus using the empirical relationship from Ref. [93], however the importance of it in

determining the nonlinear macroscopic response is not studied. Other studies on multidirectional laminates

under compression incorporate fiber damage [22, 31] but predict fiber failure only above 90% of the ultimate

load.

Acoustic emission sensors were used to provide additional information on the evolution of damage in the

specimens. Acoustic energy-event histories from all of the experiments are shown in Fig. 3.5 where the events
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Figure 3.5: Acoustic energy-events during loading in all experiments. The large markers indicate acoustic
events meeting or exceeding the observable damage threshold and the small markers indicate acoustic events
below the threshold (each color represents a different test).

which meet or exceed the observable damage threshold are plotted with large opaque markers while smaller

acoustic energy events are plotted with small faint markers. Smaller acoustic energy events are numerous

and present throughout the entire loading process. The earliest damage event observed in the experiments is

split formation at the range of 6-8.5 kN. There are relatively few and spread out observable damage events

after the onset of nonlinearity. Images from specimens with these readings included evidence of one or more

compression failure mechanisms.

Evidence of the failure mechanisms in the 45 degree plies of the test specimens is compared to model

predictions in Fig. 3.6. Figure 3.6a shows damage regions in a failed specimen loaded to 13.2 kN. There is a

longitudinally-extending damage feature at the left notch while a 45 degree feature present at the right notch.

Higher magnification images of the left notch in Fig. 3.6b show details of the damage features observed from

the same specimen scanned with dye penetrant introduced. The images include thin matrix cracking patterns

in addition to a stepped failure propagation. The stepped feature shown in Fig. 3.6a is also present in Fig. 3.6b

Detail 1 (labeled “I”) and likely consists of matrix cracks which migrate around fibers but might also include

broken fibers. The saturated area in Detail 1 (labeled “II” in Fig. 3.6b) could be delamination or a dense field

of matrix cracks parallel to the 45 degree fibers. In addition to the distinct crack originating at the bottom of

the notch in Detail 2 (labeled “III”), there are multiple cracks parallel to the fiber direction above the notch

location (labeled “IV”). The highlights oriented perpendicular to the fiber direction in this region are the

results of cracks in the adjacent 45 degree ply. The X-ray CT images also include beam-hardening artifacts

as indicated in the Fig. 3.6a-b. The artifacts in Fig. 3.6a are caused by the notch edge, which is parallel to the

X-ray beam path and spans from the left to the right side of the image. The artifacts in Fig. 3.6b appearing
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Figure 3.6: (a) Damage in 45 degree plies in an X-ray CT image. (b) Detailed images from scanning with
dye penetrant. (c) Predicted damage patterns in the simulation.

as thick and dark vertical strips are caused by the presence of dye penetrant and large variations of the X-ray

attenuation within the material of the scanned volume around the notch tip. In comparison, the model predicts

matrix damage in the 45 degree plies as shown in Fig. 3.6c. Full matrix damage is present prior to 10.2 kN,

and grows from the split. Distinct damage paths are predicted at the ultimate load of 13.8 kN, propagating

in the space between the notches. The model also predicts damage along and behind the splits. Overall,

the damage contours are similar to the experiment images with dye-penetrant which show a combination of

distinctly isolated cracks in addition to different forms of less isolated damage features and paths.

Splitting is observed in the experiments as shown on a representative specimen in Fig. 3.7a and Fig. 3.7c.

In the experiments, initial splits (as observed after the first significant AE reading) are 1-2 mm long. Addi-

tional splits also develop at higher loads. In the specimen shown in Fig. 3.7a, splitting occurs first on the right

notch, followed by the formation of a second and longer split on the left notch. The two splits grow toward the

gripped boundaries with increasing loading in a stepwise and non-uniform manner as shown in the datasets

in Fig. 3.3. It is not clear if the splits extend under the grips which were not imaged. The simulation predicts

a nearly symmetric (due to the symmetry of the numerical specimen) growth of splits at the notches starting

at 7.4 kN. The arrows in Fig. 3.7b indicate the split ends and the length evolution is similar to Fig. 3.3. At

the load amplitude of 13.3 kN the dominant splits in both the experiment and the simulation are near or at the
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Figure 3.7: Split evolution in the exterior plies in the (a) experiments and (b) simulation (arrows indicate ends
of the splits). (c) Through-thickness splitting in an X-ray CT image from the experiment.

gripped boundaries. The lack of symmetry of the split formation and growth in the experiments is attributed

to nonuniformity in the material. The shear concentration site on the notch with the weakest material will be

where the first split forms. Additional split nucleation and split growth is dictated by the stress redistribution

thereafter. The highlighting from the dye penetrant in X-ray CT images in Fig. 3.8a-b demonstrates the most

frequently observed splitting pattern in the 0 degree plies at loads over 13 kN. Splits are consistently present

in the exterior plies and observed with much less frequency in the interior 0 degree plies. The simulation also

predicts prominent splitting in the exterior plies, and the predicted split growth is smaller in the interior 0

degree layer as shown in Fig. 3.8c.

Figure 3.9 shows the longitudinal strain fields in the exterior and interior 0 degree plies during the simula-

tion near the predicted failure load. The simulation predicts the onset of the kink band at the interior 0 degree

ply around 12.8 kN (92.7% of the ultimate load). There is a progressive and steady propagation of the kink

band from the onset until the ultimate load is reached. Concentration of higher magnitude longitudinal strains

ahead of the notch tip is evident in the interior ply plots. The strains immediately above and below the formed

kink band are relaxed behind the kink band front. The propagation then accelerates and instantaneously leads

to specimen failure. In the experiments, the nucleation time of the kink bands cannot be determined with

accuracy since kink band observations were made in interrupted tests, which were not taken to failure, since
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these specimens were sacrificed to sectioning for kink band characterization. Kink bands are observed in the

experiments starting in specimens reaching loads of 10.6 kN and higher. The predicted macroscopic strain

at kink band initiation of 0.38% lies towards the upper bound of strains experienced in the experiments at

loads around 10.6 kN (0.29-0.40%). The large range of strains associated with observed kink band formation

implies that there is variability in the failure onset time. The majority of specimens did not show formation

or propagation of kink bands in the exterior 0 degree plies and an example of the through-thickness kink

band presence is shown in Fig. 3.8a-b. The longitudinal strain in the middle 0 degree plies of the specimen is

shown in Fig. 3.10a with close up profiles of matrix damage in the cross-section ahead of the notch (Section

A-A) and at the kink band tip (Section B-B). The damage patterns reflect what is observed in the experiments,

where micrograph sections show clear matrix cracking in the plus/minus 45 degree and 90 degree plies near

the root of the kink band ahead of the notch as shown in the micrograph section Fig. 3.10b and only the kink

band further away from the notch like shown in Fig. 3.10c. The experiment images in Fig. 3.10b-c clearly

show that the primary kink band propagation occurs in the interior 0 degree ply only and additional numerical

simulations we performed suggests that splitting affects the observed behavior. For instance, in the absence of

splits the kink bands initiate in the exterior plies first, around 7.9 kN, and propagate ahead of later-initiating

kink bands in the interior plies until failure. Suppressing splitting results in a significant under-prediction

of the failure load (8.3 kN) and the strain at failure (0.33%) pointing to the relaxation induced by the splits.

Splits forming 20-50 µm behind the notch tip increases the load and strain at failure but still under-predicts

the experimental range.

X-ray CT images additionally suggest delamination between the 0 and 90 degree plies connected to the

ends of the kink band as shown in Fig. 3.11a. The delaminations present at the 0-90 degree ply interface

extend parallel to the kink band propagation and likely formed to accommodate the discontinuity induced by

the kink band ends. These delaminations were not modeled explicitly in the simulations. Incorporating this

mechanism with cohesive elements results in convergence issues and excessive computation times making

the analysis infeasible. Zooming into the model prediction at the kink band tip, Fig. 3.11b-c show the shear

strains in the through-thickness cross section. There is significant shearing (ε12 and ε23) present at the 0-90

degree ply interfaces at the ends of the kink band. This information suggests that the onset of delaminations

is likely shear driven. The 45 degree plies experience shearing (ε23) as well, coinciding with the predicted

matrix damage pattern in Fig. 3.10a, Section A-A, suggesting that the damage at the ±45 degree interface

visible in Fig. 3.11a and Fig. 3.7c is shear driven.

48



kink band tip

midplane
ε33
0.000

-0.010

-0.0025

-0.0050

-0.0075

03

90
02
90

03

45

∓

45

∓

13

2

Matrix
Damage

0
0.99

(a)

(b) (c)

03

90
02
90

03

45

∓

45

∓

Section B-BSection A-A

B

B

A

A

0.25 mm 0.25 mm

03 90 02 90 03±45 ±45 ±45 ±4503 90 02 90 03

kink band

3

2

3

2

kink band

matrix cracking

Figure 3.10: (a) Damage prediction in a cross-section parallel to the 2-3 plane. Micrographs of the same
perspective in a specimen loaded to 12.9 kN located (b) just ahead of the notch and (c) at the kink band tip
(approx. 2.1 mm ahead of the notch tip).

0.10

-0.10

0.05

0.00

-0.05

ε12

0.050

-0.050

0.025

0.000

-0.025

ε23

(a) (b) (c)

matrix cracking

kink band

delaminations

03 90 0290 03±45 ±45 03 90 0290 03±45 ±45 03 90 0290 03±45 ±45

3

2

3

2

3

2

Figure 3.11: (a) X-ray CT image of the same perspective in Fig. 3.10 and within the kink band. Predicted
shear strain (b) 1-2 and (c) 2-3. Strains are reported in the global coordinate system.

49



3.3 Conclusions

Analysis of images from DENC experiments provide some indication of the load levels where splitting and

kink bands are present. Simulation results point to the capabilities of the multiscale modeling approach and

enhance the understanding of these failure mechanisms in the DENC ultimate failure while greatly reducing

computational cost compared to a direct numerical simulation of fibers and matrix. The lamina behavior in

the model was calibrated using UD-DENC compression and V-notch shear properties. Measurements from

micrograph and optical images were used to select parameter values related to kink band width and splitting

behavior. The model predicts the DENC failure load within the range of experimental values and shows how

the critical failure mechanism of kink bands occurring primarily on the interior of the specimen, and interior

and exterior occurring subcritical damage features interact during the failure process. Among the consistently

observed failure mechanisms, splitting is particularly important as the formation of splits directly alters the

stress distribution around the notches. Matrix cracking in the 45 degree plies is predicted to accompany

splitting just ahead of the notches in agreement with experimental cross-sectional images obtained from

specimens loaded to ultimate failure. The onset of matrix damage is not clear from the experimental images

but the model predicts early onset around the onset time of splits. Together, these precursors to ultimate

failure contribute to the load range where instability of the inner 0 degree layer results in kink band initiation

around 93% of the ultimate predicted macroscopic load and propagation between both notches. Splits not

present or forming behind the notch tip result in an under-prediction of the experimentally observed kink

band and ultimate loads.

The numerical predictions suggest that the simultaneous presence of matrix cracking, exterior ply splits

and kink bands should be considered in modeling laminates with exterior 0 degree plies in order to accurately

capture the apparent strength and failure propagation. Additionally, while delamination is not included in the

final simulations due to excessive computational demand, significant shear straining is predicted at the 90-0

degree ply interfaces and 45 degree plies prior to ultimate load. Without predicting the progression of de-

lamination, the model predicts kink band propagation as the cause of ultimate failure, matching experimental

observations which also indicate the subcritical nature of delaminations (occurring at the interfaces bounding

the primary kink band [45, 148]).
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CHAPTER 4

Z-pinned Interface Model Development and Calibration

As presented in the literature review, z-pins have been demonstrated to increase delamination resistance in

composites through mechanisms including z-pin pull-out, bending, and fracture. The failure mechanisms

depend on the magnitude of axial and shearing stresses on the z-pin resulting from crack opening and sliding

between the lamina on either side of the delamination, i.e. local interlaminar mode-mix. Even under rela-

tively simple loading conditions, these complex failure mechanisms result in what could be described as a

mixed-mode delamination at the laminate scale. Under pure Mode I conditions, the stress at failure onset is

determined only by shear strength along the z-pin - lamina interface which is related to the length of the z-pin

resisting pull-out. Failure occurs when the interface opens enough so that the z-pin is pulled out from the

sub-laminate. Under mixed-mode conditions, the failure onset is the result of shear and bending resistance

of the z-pins in addition to the z-pin - lamina interface strength. The separation at failure is a consequence

of z-pin pull-out or z-pin fracture due to bending. Some degree of pull-out may occur prior to z-pin fracture.

Failure onset under pure Mode II conditions is associated with shear resistance of the z-pins as well as the re-

sistance of the laminate to ploughing. Shear strain at failure of the z-pin and the the distance into the laminate

the z-pin has ploughed determine the separation at failure.

ILF experimental configurations provide the macroscopic response resulting from delamination in the

presence of z-pins under averaged mode-mix conditions. These experimental configurations offer an advan-

tage in that the influence of the matrix interface is included in the overall response, which is not the case in

single z-pin characterization and FWT configurations (there is Teflon film in the interface except on the z-

pin). Additionally, the influence of neighboring z-pins is also included, which can affect the local mode-mix.

Results from ILF experiments have been used to verify and validate micromechanical models of z-pins but

have not been used for calibration of a CZM for z-pinned interfaces. The current work presents the calibration

and validation of a CZM for the prediction of delamination in z-pinned composite interfaces under pure and

mixed-mode conditions. A trilinear constitutive law is employed to describe the delamination of z-pinned

composites under any interlaminar mode-mix. Finite element models are constructed to match experiments

performed on z-pinned CFRP composite specimens with delaminations at the mid-length of the z-pins and

mid-height of the laminate thickness. DCB and ENF test configurations provide pure Mode I and Mode II

delamination conditions while MMB and single leg bend (SLB) tests provide intermediate mode-mix delam-

ination conditions. The constitutive law properties are calibrated using the macroscopic force-displacement

experimental results and crack propagation observations. Analysis of the numerical and experimental tests
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provide insights into mixed-mode delamination propagation in z-pinned composites.

4.1 Trilinear Constitutive Law

The constitutive law describes the z-pinned interface behavior in the form of a traction-separation relation-

ship. This traction-separation law (TSL) is a function of interlaminar mode-mix, which is expressed in terms

of the Mode I separation (normal to the interface plane), δI, and the Mode II separation (tangential to the

interface plane), δII, by the following relationship:

B =
δ 2

II

δ 2
I +δ 2

II
(4.1)

Softening evolves as a function of the effective separation defined as δ̂ =
√

δ 2
I +δ 2

II. The two soften-

ing stages are stored in an effective traction variable, t̂, and computed for a given mode-mix, B, using the

following equations:

φ
(1) =

δ̂ − δ̂ 0
B

δ̂ I
B − δ̂ 0

B

(4.2)

φ
(2) =

δ̂ − δ̂ I
B

δ̂
f

B − δ̂ I
B

(4.3)

t̂B =


k
(

δ̂ −φ (1)δ̂ I
B

)
+φ (1)t̂I , δ̂B ≤ δ̂ I

B

t̂I
B

(
1−φ (2)

)
, δ̂B > δ̂ I

B

(4.4)

where δ̂ 0
B , δ̂ I

B, and δ̂
f

B denote the effective separation at damage onset, softening slope change, and interface

failure (i.e. complete debond; there are two interlaminar surfaces free to move with respect to each other),

respectively. The Mode I and Mode II traction components are then defined as follows:

tI = t̂B
√

1−B (4.5)

tII = t̂B
√

B (4.6)

The softening history is stored in the cumulative damage variable, Φmax = max[0,τ] {ΦB(τ),Φ
max}, where

the current time of loading is denoted by τ , and Φmax = 0 prior to softening. The current damage is calculated
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using the effective traction-separation response and degrades the traction components:

ΦB = 1− t̂B/(kδ̂B) (4.7)

tI = (1−ΦB)kδI (4.8)

tII = (1−ΦB)kδII (4.9)

The traction-separation response also follows a linear unloading and reloading path from the tractions associ-

ated with maximum damage to the zero traction-zero separation state. Damage evolves when ΦB(τ)> Φmax.

Mode I and Mode II energy components are calculated based on the current separation and maximum damage

state by integrating under the reloading curve:

GI =
∫

δI

0
tI(Φmax) dδI (4.10)

GII =
∫

δII

0
tII(Φmax) dδII (4.11)

Using these definitions, the interlaminar mode-mix definition can also be expressed in the energy sense

[39, 165]:

B =
GII

GI +GII
=

δ 2
II

δ 2
I +δ 2

II
(4.12)

Figure 4.1 illustrates the constitutive law for mixed-mode separations. The initial loading regime is

controlled by an elastic constant, k (numerical parameter chosen to be large enough to provide a reasonable

stiffness but small enough to avoid numerical problems, such as spurious traction oscillations [166]) and

softening begins upon satisfaction of the damage initiation criterion

(
δI

δ 0
I

)2

+

(
δII

δ 0
II

)2

= 1 (4.13)

where δ 0
I , δ 0

II are associated with damage onset of the unpinned interface under pure mode conditions (i.e.

δ 0
I = t0

I /k and δ 0
II = t0

II/k). The effective separation at damage onset is calculated according to the ratio of the

interlaminar mode-mix displacements (see Ref. [107] for the derivation).

δ̂
0
B =

(
1−B
(δ 0

I )
2
+

B
(δ 0

II)
2

)−1/2

(4.14)

Following Ref. [107], the intermediate critical separation, δ̂ I
B, is related to the physical interlaminar frac-
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Figure 4.1: Trilinear TSL under any mode-mix condition.

ture toughness of unpinned specimens, G(unp)
C (B), and effective separation at damage onset as follows:

δ̂
I
B =

2G(unp)
C (B)

kδ̂ 0
B

(4.15)

The effective traction, tI
B, and separation at failure, δ

f
B , are associated with bridging mechanics/failure of

the z-pins. These critical traction and separation parameters need to be calibrated for mixed-mode conditions.

4.2 Calibration of the Trilinear TSL

4.2.1 Experimental Method

4.2.1.1 Materials and Specimens

Calibration experiments were performed at the AFRL. To manufacture ILF test specimens, panels were hand-

laid with 24 plies of UD IM7/977-3 prepreg tape using standard procedures and tools in an OEM-spec clean

room. The outer dimensions are shown in Fig. 5.8a. Plies were tacked together using a non-stick roller and

debulked under vacuum at approximately 120 degree Fahrenheit every 3 plies. After 12 plies, a 0.005 inch

thick Teflon film is placed in the stack at a specified distance as shown in Fig. 5.8a. The final specimen

configuration is depicted in Fig. 5.8b and designed with a region of orthogonally inserted z-pins. One set of

panels was sent to a third party where T650-42/epoxy z-pins with D =0.51 mm diameter were inserted with

a mechanical gurney at 64 pins/in2 in the region indicated. Following z-pinning the panels were autoclave

cured like the unpinned panels. The typical autoclave curve cycle used is shown in Fig. 4.3 including the low

thermocouple temperature, vessel pressure, and bag vacuum pressure all on the same graph. After curing,

it was observed that the z-pins were not orthogonal to the lamina surface and a manufacturing error that is

present in all specimens.
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Figure 4.2: (a) Laminate panel cut plane and (b) specimen schematic.

Figure 4.3: Laminate cure cycle.
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Figure 4.4: Ultrasonic c-scans of the excised specimens (panel 21).

A total of 26 specimens were excised from the unpinned panels and 26 from the z-pinned panels using

water jet cutting with the dimensions shown in Fig. 5.8a-b. The specimens share the same nominal dimensions

and fit the requirements of Double Cantilever Beam [11] (DCB), End-Notched Flexure [8] (ENF), and Mixed-

Mode Bend [12] (MMB) configurations: 177.8 mm length by 25.4 mm width by ≈ 3.2 mm thickness (L x

W x h). Ultrasonic C-scans were performed on the specimens to inspect for damage induced during the

manufacturing process. Figure 4.4 shows some of the z-pinned specimens. The fully dark region shows

the extent of the teflon film. The images showed no obvious inconsistency and the specimens were deemed

acceptable (without defect). Each specimen was also measured. The maximum deviation from the specified

dimensions is 0.381 mm for the specimens excised from one panel (L x W x h) and 0.254 mm for the

specimens excised from the other panel (W x h); the length deviated by up to 2.4 mm in the second panel due

to a biased water jet cut. Each specimen was painted on its edge and then laser etched with a 1 mm resolution

scale, with marks approximately 1/8 inch wide.

Specimens were also prepared for unidirectional compression testing according to the Combined Loading

Compression (CLC) test method [10]. The nominal dimensions of the specimens are 139.7 by 25.4 by 2.92

mm. The thickness is smaller than the ILF specimens due to a manufacturing error. The gage section is a z-

pinned region 13 mm long and 25.4 mm wide. Tabs were applied to the remaining sections of the specimens.
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Table 4.1: Characterization experiment test matrix.

Test Qty. (Successful) Stop Criterion
Unpinned Tests

DCB 3 (3) Fracture
ENF 5 (5) Delamination at load roller

MMB 20 (14) Delamination at load roller
Z-pinned Tests

DCB 3 (1) Fracture
ENF 3 (2) Delamination at load roller

MMB 9 (4) Delamination at load roller
SLB 4 (2) Delamination through the z-pin field

4.2.1.2 Tests

To characterize Mode I properties, the DCB experiment was employed and the test procedure in [11] was

followed using load blocks adhered to the specimen arms. The End Notched Flexure (ENF) experiment

was employed to characterize Mode II properties following the test procedure in [8]. The configuration is

essentially a 3-point bend setup. Mixed-mode properties were characterized using the MMB and Single Leg

Bend (SLB) configurations. The MMB tests were conducted according to the procedure in [12] using piano

hinges bonded to the specimen arms. The SLB tests were conducted like the ENF tests, but the specimen

geometry is modified so that one end of the specimen is supported on the bottom of the upper arm while the

other end is supported on the bottom arm. Table 4.1 summarizes the tests performed for the unpinned and

z-pinned specimens, including quantity and stop criterion. Some tests were not successful due to bond failure

between load introduction tabs and specimens, the crack did not advance. Table 4.2 shows the mode-mix,

corresponding lever arm length, and quantity of accepted tests. Due to the manufacture of the specimens

(space between teflon end and beginning of z-pin field), the parameters are adjusted from the standard for the

z-pinned specimens. In particular, the initial delamination was fixed to a = 25 mm when hinges were bonded

to 10 specimens. This leaves the z-pin field past the top load roller as shown in Fig. 4.5a. A larger span

between the hinges and the top load roller which I designate L1 is used so that some of the z-pin field lies

ahead of the top roller as shown in 4.5b. The second span is kept equal to the standard value, L2 = 50 mm.

The fixture design according to the Appendix X.2 [12] limits the first span to L1 = 77.4 mm. The equations

used to relate length of the lever arm (see equation 5 in Section 11 of [12]) to the global mode-mix is no

longer applicable and mode-mix is evaluated for different lever arm lengths using FE simulations. The model

used for the simulation and results are discussed in the subsequent modeling methods section. The curves in

Fig.4.6 show the mode-mix as the delamination propagates through the z-pin field. The non-steady mode-mix

is also present using the standard configuration (see e.g. [95, 136]) and the constant decrease in mode-mix

behind the load roller does not reflect consistent mode-mix conditions.
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Table 4.2: Summary of the mixed-mode experiments.

Unpinned Z-pinned
B Qty. c (mm) B Qty. c (mm)

0.20 5 95.73 0.148 2 35.0
0.40 5 49.83 0.279 2 25.0
0.60 5 35.63 0.453 2 N/A
0.80 5 27.13

Figure 4.5: Schematics of the fixture connections relative to the z-pin field in the (a) standard MMB con-
figuration acc. to ASTM D6671 and (b) altered test configuration. (c) Photo and dimensions of the test
configuration.
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Figure 4.6: Mode-mix vs. delamination propagation for z-pinned MMB tests.
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The interlaminar characterization tests were conducted on 1.0-22 kip hydraulic and electro-mechanical

test frames with actuator displacement and load cell data recorded at 10 Hz in addition to video recording

captured at 0.25 Hz to monitor crack growth visually on the edges of the specimens. Additional images of

the ILF specimens were acquired post-mortem using a Dual Beam Focused Ion Beam - Scanning Electron

Microscope (ThermoScientific Helios FIB-SEM).

The UD compression tests were conducted on a 2.2 kip hydraulic test frame according to the standard

CLC test method [10]. Load and displacement from the test frame as well as strain readings from front and

rear strain gages were recorded at 10 Hz. Post-mortem photographs were also taken.

4.2.2 Computational Method

4.2.3 Modeling Approach

Numerous benchmark examples for delamination propagation prediction under pure and mixed-mode condi-

tions were studied in [95] and the results showed that the overall behavior of ILF configurations in 2D and

3D simulations matched. For this reason 2D finite element models were deemed sufficient for the calibration

procedure. The composite arms of the specimens are meshed with Plane Strain Elements with Incompatible

Mode (CPE4I in Abaqus) [96, 134], which are chosen to capture the in-plane bending behavior experienced

in the tests. There are 4 elements through each arm thickness. The arms are assigned orthotropic elastic mate-

rial behavior. The interface behavior is modeled using cohesive surface interaction with the finite-sliding and

node-to-surface formulation. This approach naturally accommodates the large separations (on the order of

h) and rotations of the specimen arms expected prior to complete z-pinned interface failure. Slave nodes are

tracked along a master surface. While there is no computational expense associated with Gaussian integration

(with continuum elements), ”internal” contact elements are generated, adding to the total model DOF. There

is flexibility in meshing between interfaces, unlike with conventional cohesive elements. Aspects like track-

ing thickness and sliding extension zone can also be controlled to account for large opening or sliding relative

displacements (this is advantageous to enforce limited tracking if there is only small separation expected). A

disadvantage to the computational expense is the interpolation of the slave node position on the master sur-

face to track the relative displacement/separation between surfaces. The initial interface thickness is exactly

the geometric zero, an appropriate scenario for TSL constitutive description. The unpinned interface region

is modeled using a bilinear TSL. The linear softening begins upon satisfaction of the quadratic separation

criterion. The z-pinned interface region is modeled using the trilinear TSL.

For implementation of the trilinear constitutive law using the built-in CZM in Abaqus, the cumulative

damage variable evolution as a function of the difference in effective separation from the effective separation

at damage onset must be provided (i.e., damage is a function of δ̂ − δ̂ 0). An important consideration in
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Figure 4.7: DCB model geometry and boundary conditions.

implementing the model this way is that the damage evolution is provided in a tabular format sampled from

Eqn. 4.7. Abaqus linearly interpolates between damage values in the provided table(s) which due to the

representation of damage as stiffness degradation results in a very quick initial damage evolution compared

to the change in effective separation. The damage evolution is much slower for high values of damage (about

99% and larger). The consequence is that the damage table must be provided in a manner such that large errors

do not result from the linear interpolation. A nonuniform sampling algorithm is employed which evaluates

the errors between the linear interpolation and exact traction values. A traction error threshold of 0.1% error

reduces the data from thousands of uniformly sampled points to hundreds. Using a user-subroutine to directly

implement the model analytically in Abaqus was also explored. Numerical difficulties were encountered

during preliminary work which were related to the onset of damage. The existing “black-box” capabilities of

Abaqus were chosen to handle the convergence issues resulting from the highly nonlinear and quick change

in cohesive stiffness.

4.2.3.1 Mode I Properties

The geometry and boundary conditions for the DCB simulations is shown in Fig. 4.7. Mimicking the steel

block bonded to the top specimen arm, the load is introduced from a reference point connected by rigid links

to surface nodes. The same method is applied to the fixed support of the bottom arm. Implicit analyses are

performed and three uniform meshes with three different element lengths are tested for mesh convergence.

Example results are shown in Fig.4.8. The element length for calibration should be no greater than 0.635

mm. The model did not experience numerical issues though the initial peak and softening slope were found

to be sensitive to the load increment. This sensitivity was not observed to the same degree in the other models

to be discussed.

4.2.3.2 Mode II Properties

The geometry of the specimen is the same as before but the boundary conditions are changed as shown in

Fig. 4.9. Sections of the bottom specimen surfaces are assigned to contact pairs with the analytical rigid

supports where hard contact is enforced. The load roller is mimicked by displacing the nodes centered
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Figure 4.8: Mesh convergence of the DCB model.

Figure 4.9: ENF model and mesh refinement details.

between the supports [117]. The interface behavior is modeled as in the DCB simulations. Mesh convergence

was studied as before but the mesh was additionally refined ahead of the precrack tip to try to better resolve

the initial peak. The mesh is biased a ratio of 0.9 resulting in element lengths range from 0.22 to 0.52 mm

between the precrack and the end of the z-pinned region. A portion of this mesh is shown as shown in Fig. 4.9.

The mesh sensitivity results are shown in Fig. 4.10. The load drop can be reduced with a very fine mesh,

however convergence of the initial peak load is observed here with the minimum element size of 0.22 mm at

the precrack end.

4.2.3.3 Mixed-Mode Properties

The uniform coarse mesh for the specimen is like presented in the previous sections. The lever fixture is

modeled using rigid elements. The top piano hinge connection is modeled using multi-point constraint on

the displacement degrees of freedom at the node at the end of the lever. The bottom piano hinge connection

is modeled by constraining the displacements of the specimen corner. Two approaches were investigated for
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Figure 4.10: Mesh convergence of the ENF model.

modeling the top and bottom roller interactions as shown in Fig. 4.11. Model A is based on a geometric rep-

resentation of the test fixture. The rollers are modeled using analytical rigid surfaces and contact conditions

with the specimen. In Model B, the top roller (which introduces mode II loading) is modeled by equating the

vertical displacement of a point on the specimen to the end of the fixture element along the centerline of the

top roller. The sliding displacement of the specimen is unconstrained. The bottom roller support is modeled

by pinning the specimen at a point corresponding to the centerline of the roller (x = 2L in Fig. 4.11).

The interlaminar mode-mix ratio is evaluated numerically using the Virtual Crack Closure Technique

(VCCT). VCCT is a linear elastic fracture mechanics-based approach to obtain the Mode I and Mode II strain

energy release rate components required to advance a delamination crack [140]. This method has been used

for determining the fracture toughness of composite laminates under various loading conditions [90, 94–96].

Figure 4.12 shows the load-displacement and interlaminar mode-mix results from the two models. Model B

produces a nearly constant mode-mix as the delamination propagated between the pre-crack/Teflon end and

a small distance ahead of the top roller/load nose while Model A resulted in a changing mode-mix and also

a shallower post-peak slope. No difference was found when using a small (=0.01 [78]) and zero Coulomb

friction coefficient between the rigid and specimen surfaces. Model B produces the expected behavior of the

ASTM standard configuration and matched the results in [95]. Additonally, it was found that the slave-master

surface assignment in the interface is also important; the bottom surface of the top arm should be the slave

surface in order to agree with the benchmark results in [95]. Interestingly, this sensitivity was not observed

in the ENF simulations.

The MMB simulations performed with both models experienced greater force equilibrium convergence

difficulties than the DCB and ENF simulations. In addition to the Newton method with automatic time

stepping, a line search algorithm was employed in solving the highly nonlinear problem. Following the
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Figure 4.11: MMB model designs.

(a) (b)

Figure 4.12: (a) Load vs. displacement and (b) interlaminar mode-mix vs. delamination length results for the
unpinned MMB GII/G = 40% configuration models.
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Figure 4.13: MMB load-displacement sensitivity to stabilization parameters.

solution guess using the updated tangent stiffness, the algorithm scales the correction to the displacement

by a factor which minimizes the component of the residual vector in the direction of the correction vector.

With this approach small increments O(10−9) mm were required to advance the simulation at times, and a

solution was obtained using global stabilization. Global stabilization means that the global force equilibrium

equations are supplemented with viscous forces, i.e., the external forces, P, and internal forces, I, are therefore

considered in equilibrium during an unstable event using the following equation:

P− I − cM(∆u/∆t) = 0 (4.16)

where, M is an artificial mass matrix calculated with unity density, c is the stabilization factor, ∆u is the

vector of nodal displacements, and ∆t is the increment of time. The minimum stabilization factor was found

by increasing from 2x10−8 in 101 increments until the simulation advanced through peak load prediction

and significant delamination propagation (the interfacial damage initiation criterion is satisfied at nodes close

to the top roller). The stabilization factor value 2x10−4 was applied throughout the entire analysis step.

Larger values result in over-prediction of the loads during delamination propagation as shin in Fig. 4.13. A

simulations was also attempted with local adaptive stabilization and acceptable convergence controls which

did not improve on the results as shown in Fig. 4.13.

The SLB model was developed in a similar manner to the MMB, with the geometry and boundary condi-

tions shown in Fig. 4.14. The line search algorithm and stabilization parameters from the MMB simulations

were employed. The same mesh as for the MMB model was used and the mode-mix was determined using

VCCT. The mode-mix is predicted to be almost constant in the z-pin field prior to the delamination propagat-

ing under the load roller then it increases as shown in Fig.4.15.
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Figure 4.14: SLB model geometry and boundary conditions.
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Figure 4.15: VCCT results for the SLB model.
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4.2.4 Experimental Results

4.2.4.1 Unpinned Interlaminar Fracture Specimens

The overall behavior of the unpinned experiments is summarized as follows. The DCB tests exhibited some-

what stable crack growth after reaching a peak load which continued and was accompanied by a negative

slope in the load-displacement response. The unpinned ENF tests (pre-crack, a=20 mm) and MMB tests

exhibited unstable crack growth after reaching a peak load and a short amount of stable crack growth before

test termination accompanied by a negative slope in the load-displacement response. The fracture toughness

values for the unpinned delamination are calculated according to the procedures in the respective ASTM stan-

dards which relate overall compliance and crack growth to the fracture toughness. The fracture toughness

calculations are shown in Fig. 4.16 for multiple conditions. The Mode I results include the non-precracked

(NPC) toughness values calculated at the initial crack advancement from the pre-inserted Teflon as well as

the mean propagation value. The mixed-mode results include the toughness values calculated at the critical

load and delamination initiation observed in the MMB experiments as well as the mean propagation value.

The Mode II results include toughness values for both of the non-precracked and precracked (PC) conditions.

The precracked condition is measured after unload and reload following initial crack advancement. A good

fit to the the delamination initiation and NPC condition data as well as the delamination propagation and PC

condition data is obtained using with the Benzeggagh-Kenane relationship [18, 39] with exponent value equal

to 2.50. The equation relates mode-mix to fracture toughness as follows:

Gunp
C = Gunp

IC +(Gunp
IIC −Gunp

IC )Bη
unp
BK (4.17)

Other studies report exponent values between 1.4 and 2.0 for similar CFRPs [39, 109]. The reason for

deviation in value calculated from the 20% mode-mix experiments is unclear. The fractured specimens did

not show signs of uneven crack growth across the specimen width. The missing delamination propagation

data for 60% mode-mix is due to unstable crack growth.

4.2.4.2 Z-pinned Interlaminar Fracture Specimens

The first part of the z-pinned tests proceed like the unpinned experiments where an initial peak load is reached

followed by an unstable load drop as the crack advances through the unpinned region. The second part differs

in that reloading follows the load drop as the delamination propagates through the z-pinned region. Ultimate

failure time varies among the experiments.

The DCB test configuration results in Mode I opening as shown in Fig. 4.17. An in-situ photo of the

DCB specimen in Fig. 4.18 shows what appears to be intact z-pin that have pulled out of half of the specimen
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Figure 4.16: Unpinned interlaminar fracture toughness results.

Figure 4.17: Specimen undergoing DCB test.

thickness (one arm). Post-mortem images of the specimens, focused on the region with z-pins are shown in

Fig. 4.19 and also indicate that pull-out has occurred. Micrographs in Fig. 4.20 also indicate that the z-pins

did not fracture and leave holes once pulled-out. The z-pinned experiment load-displacement curve is shown

in Fig. 4.21, including markers at the approximate time when the (matrix) delamination crack is visually

observed at each z-pin row. The slope after initial load drop has a positive sign and arrests the delamination

growth until there is a large actuator displacement, while the unpinned experiment curves require much

less displacement. This is in line with other experimental findings in the literature [125, 134]. The peak

load is reached when there are still 3 z-pin rows not visible past the delamination crack (around 34 mm

actuator displacement). Final failure of the specimen occurs when the delamination unstably propagates to

the end, as indicated by the sudden loss of load in Fig. 4.21 around 55 mm actuator displacement. The force-

displacement curve also include an unload-reload prior to delamination propagation according the standard

test procedure.

An example of a loaded specimen during an ENF test is shown in Fig. 4.22. The ENF interface under-

goes dominant sliding as shown in Fig. 4.23, where the separated sides of the laser engraved scale marks
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Figure 4.18: DCB image at failure (beginning of last load drop).
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Figure 4.19: Post-mortem state of DCB specimen.
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Figure 4.20: SEM images of z-pins and pull-out holes in the DCB specimen.
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Figure 4.21: Load-displacement and delamination propagation (markers indicate delamination crack ob-
served passing by a z-pin row) of the z-pinned DCB test.

have displaced relative to each other. There is not significant detectable normal opening separation between

the upper and lower specimen arms. Since the ENF test did not result in completely fractured specimens,

obtaining more detailed images to evaluate the state of the z-pins were not possible. Shearing of z-pins could

have occurred because of sliding of up to 0.3 mm or greater as marked in Fig. 4.23, which is a large fraction

of the z-pin diameter and would match failure mode observations in [127, 128]. The z-pinned experiment

load-displacement curves are shown in Fig. 4.24, including markers at the approximate time when the de-

lamination crack is visually observed at each z-pin row. The slope after initial load drop has a positive sign

and arrests the delamination growth until the actuator displacement about doubles the displacement at delam-

ination initiation in the unpinned region. The unpinned experiment curves require much less displacement

for the delamination to reach the center roller. This is in line with other experimental results in the literature

[125].

MMB experiments were successful with high fraction of Mode I/Mode II loading (B = 0.148 with

c = 35.0mm and B = 0.279 with c = 25.0mm), with an example of a loaded specimen in Fig. 4.25. Fig-

ure 4.26 includes images obtained from the video footage which provide visual evidence of the mode-mix

calculated. Yellow lines were added to help show the sliding displacement of originally aligned marks across

the specimen delamination path. Figure 4.26a was expected to show less sliding than Figure 4.26b, and this

appears to be the case. The z-pinned experiment load-displacement curves are shown in Fig. 4.27, including

markers at the approximate time when the delamination crack is visually observed at each z-pin row (half

of the curves are marked at the minimum load following the delamination onset at initial peak load. The

positive (reload) slope in the load-displacement curve of Fig. 4.27 after the initial load drop is also observed

in [109], where a large increase in displacement required for the delamination to pass through a z-pin field of
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Figure 4.22: Specimen undergoing ENF test.
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Figure 4.23: ENF image when delamination has reached the top roller.
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Figure 4.24: Load-displacement and delamination propagation of the z-pinned ENF tests.

23 mm length under B = 0.25 and B = 0.47 conditions. The tests conducted with higher fraction mode-mix

(around B = 0.50 with c = 20.0mm and B = 0.67 with c = 17.5mm) initially exhibited failure of the bond

between the hinge tabs and specimen prior to crack propagation. Since the hinges disbonded completely

leaving no adhesive on composite specimen, a more aggressive surface preparation was performed and the

tests repeated. With this preparation procedure the tests ran successfully. Crack propagation was stable in the

c = 35.0 mm and c = 25.0 mm tests following an initial unstable crack growth into the z-pin field in half of

the experiments. Crack propagation was completely unstable in the c = 20.0 mm and c = 17.5 mm tests. In

the c = 17.5 mm test, the crack immediately propagates to the top roller after an approximate 61% load drop

and very short reload. Since the MMB tests did not result in completely fractured specimens I was unable

to obtain more detailed images to evaluate the state of the z-pins. It is hypothesized that the z-pins are in a

loading condition similar to the DCB tests, however some bending could be present because of the relative

sliding and opening present in Fig. 4.26. An additional observation is that the mixed-mode tests all showed

some difference in the overall response and crack propagation behavior. This is thought to be caused by crack

migration off of the midplane in the case of experiment 2 for both B = 0.148 and B = 0.279, and experiment

1 for B = 0.453.

The Single Leg Bend (SLB) tests exhibited stable crack propagation through the z-pin field prior to spec-

imen arm fracture. Figure 4.28 shows a specimen prior to failure and during delamination propagation. The

end of the tests were the result of the upper specimen arm fractures due to bending leaving a ledge like shown

in Fig. 4.29a-b. Figure 4.29c shows a micrograph of the fracture region in one specimen which coincides with

the first row of z-pins. The z-pins are mostly intact, however along the fracture “ledge”, the higher magnifica-

tion images show fiber cracking indicative of localized bending. The z-pinned experiment load-displacement
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specimen

Figure 4.25: Specimen undergoing MMB test.

(a)

(b)

Figure 4.26: Images of z-pinned MMB tests when delamination has reached the top roller. Top: B = 0.148
and bottom: B = 0.279
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Figure 4.27: Load-displacement and delamination propagation of the z-pinned MMB tests.

Figure 4.28: Images of SLB (B = 0.453) specimens during delamination propagation.

curves are shown in Fig. 4.30, including markers at the approximate time when the delamination crack is vi-

sually observed at each z-pin row. There is considerable difference in delamination progression with respect

to applied load-displacement in the SLB experiments. The delamination propagates through 7 rows prior to

specimen failure in one case and only 5 rows in the other. Z-pinned tests on SLB specimens have not been

reported in the literature and there are no other results for comparison.

4.2.4.3 Z-pinned Unidirectional Compression Specimens

The stress-strain curves for UD z-pinned specimens are shown in Fig. 4.31. The mean chord modulus calcu-

lated at 1000-3000 µstrain is 131.5 GPa (Standard Deviation (SD): 1.6 GPa). The mean compressive strength

calculated as the maximum load divided by the mean gage cross-sectional area is 922.2 MPa (SD: 75 MPa). 5

of the specimen strengths are within 5.3% while the sixth is 20% higher. The failure pattern of all of the spec-

imens are acceptable per the definitions for unpinned laminates in [10]: Sec. 12. The modulus and strength
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(a)

(b)

z-pin

broken z-pin fibers

(c)

ledge resulting from specimen arm failure

SEM image

lower interlaminar surfacelower interlaminar surface

Figure 4.29: Post-mortem images an SLB specimen.

Figure 4.30: Load-displacement and delamination propagation of the z-pinned SLB tests.
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Figure 4.31: Stress-strain results from CLC tests on z-pinned UD specimens.

Figure 4.32: Example of post-mortem images from z-pinned UD CLC test specimens.

are both lower than previously reported values for IM7/977-3 in [46]. Other researchers have conducted ex-

periments to investigate the difference in properties for laminates with and without z-pins and concluded that

the z-pins have an effect of up to about a 10% reduction on the longitudinal properties, mainly due to the

increased fiber waviness due to the presence of the z-pins [112, 151]. Implications of the z-pinning process

on the lamina structure is also evident in micrographs of the ILF specimens. Figure 4.33 shows the influence

of z-pins on the in-plane fiber waviness. Z-pin insertion pushes out fibers and results in tapered resin pockets

as also observed in [112]. With the current z-pin configuration, the resin pockets form a channel except for

at the ends of the z-pin field.

4.2.5 Calibration Simulation Results and Discussion

Calibration of t̂I and δ̂ f require δ̂ 0
I and δ̂ 0

II to already be determined. Therefore, calibration is undertaken by

first performing parametric studies to obtain values for δ̂ 0 under pure Mode I and Mode II conditions. The rest

of the calibration procedure requires performing parametric studies on pairs of t̂I and δ̂ f in order to match the

experimental results. The metrics for accepting calibration include quantitative evaluation of the best match

between the simulation and experimental overall load-displacement curves for each test configuration as well
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≈2.3 degrees

≈4.2 degrees

resin channel

Figure 4.33: Example SEM image of fiber waviness channel.

Table 4.3: Experimental and simulation results used for calibrating δ̂ 0.

P0
DCB (N) P0

ENF (N)
Mean (SD) Target Mean (SD) Target

Experiment 75.3 (7.9) 86.3 629.5 (58.1) 595.3
Simulation 92.6 597.6

as the delamination growth rate sampled at key points in the test results. Calibrated property values are also

compared to physical meaning and other values used in the modeling literature. The target values from the

experiments are chosen from the valid z-pinned experiment results. The experimental (including results from

unpinned specimens) and predicted values resulting from calibration for pure Mode I and Mode II conditions

are listed in Table 4.4.

4.2.5.1 Mode I Properties

The z-pinned DCB test result was used to calibrate the Mode I separation at onset of delamination by matching

the predicted initial peak load in the simulation to the experimental value. The value for δ̂ 0
0.0 = δ 0

I = 9.0e−

7 mm resulted in an initial peak load predicted within 1% of the target value. The resulting matrix/unpinned

interface strength is 9.0 MPa. Other researchers have chosen the mode I interlaminar strength value based

on the transverse tensile strength and shear strengths (around 44-72 MPa [15, 114]) but a smaller value is

commonly found necessary to match DCB experiments (e.g. 15.0 MPa [134] or 2.0 MPa [70]). In my

simulations, using δ̂ 0
0.0 = 36 MPa/k = 3.6e− 6 mm (4x the best fit value) over predicts the experimental

initial peak load by about 4%. Using the transverse tensile strength for this material system as reported in

[46] (δ̂ 0
0.0 = 78.9 MPa/k = 7.89e− 6 mm) over predicts the experimental target load by 36%. The final

value accepted in calibration is δ̂ 0
0.0 = 4.32e−6 mm, which is based on the average flatwise tension strength
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Figure 4.34: DCB simulation prediction at failure.

measured in an interlaboratory study reported in [13] for IM7/977-3 laminates. The simulation using this

value over predicts the experiment initial peak load by 7.4% (92.6 N).

The overall load-displacement curve using the calibrated Mode I interface properties is shown in Fig. 4.35

alongside the experimental curve (B = 0). Under pure Mode I conditions, the traction at z-pin failure onset

is expected to be determined only by shear strength along the z-pin - lamina interface which is related to the

length of the z-pin resisting pull-out. The calibration resulted in t̂I = 43.2 MPa, which is equal to the matrix

debonding strength calculated as kδ̂ 0
0.0. This value is larger than the debond strength calculated from the FWT

experimental results in [134] of 30 MPa for T650/BMI z-pins co-cured in 24-ply IM7/977-3 laminates (the

same material and thickness as in the current study). The difference could be attributed to the epoxy matrix

material in the current z-pins which coheres better to the 977-3 lamina matrix material. Setting δ̂
f

0.0 = h, which

matched the physical opening distance observed in experiments resulted in the best fit to the experimental

curve. Intuitively, fixing δ̂ f while increasing t̂I results in a larger area under the TSL (the total apparent

fracture energy) and this increases the load-displacement slope and displacement at failure in the virtual tests.

The maximum load/inflection point is also increased. In the experiment, the maximum load is reached prior

to the delamination propagating through the entire z-pinned region suggesting a “critical” number of z-pins

engaged. The simulation predicts the tip of the matrix delamination length of around 79 mm at the peak load

at a displacement of 37 mm and the crack in the experiment is at a location close to 75 mm. The typical

opening behavior is shown in Fig.4.34.
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Table 4.4: Experimental and simulation results used for calibrating δ̂ 0.

P0
DCB (N) P0

ENF (N)
Mean (SD) Target Mean (SD) Target

Experiment 75.3 (7.9) 86.3 629.5 (58.1) 595.3
Simulation 92.6 597.6

4.2.5.2 Mode II Properties

Two z-pinned test results were available for calibrating the mode II separation at onset of delamination. In

the experiments, delamination onset is accompanied by a change in sign of the load-displacement slope. In

the case of experiment 2, there is a clear initial peak load followed by a load drop over a very brief change

in displacement because of unstable crack growth, however experiment 1 exhibits a less severe change in

the load-displacement curve. The knee point of experiment 1 was determined by the so-called ”Kneedle”

algorithm (smoothing the raw experiment data around the overall change in slope and finding the largest

distance to a chord taken between two points [142]). As shown in the mesh convergence results, the FE

model predicts a sharp change in the sign of the load-displacement slope. Initially, the model matrix strength

parameter, δ 0
II, is adjusted in order that the initial predicted peak load matches the mean of the knee point

in the experiment 1 curve (595.3 N) and the initial peak load in the experiment 2 curve (757.1 N). The

conjugate interface strength value calculated as t0
II = kδ 0

II = 280.0MPa is much higher than the values reported

in literature for similar material systems [15, 26, 106]. For this reason the calibration is finally performed by

matching the predicted initial peak load to the load at the knee point in experiment 1. The calibrated value

which results in a prediction within 1% of the target value is δ̂ 0
1.0 = δ 0

II = 9.02e−6 mm.

The simulation load-displacement curve is terminated when the delamination has propagated to the load

roller as shown in Fig.4.36. The ENF result is shown in Fig. 4.35 for the simulation with the minimum

element length determined from the mesh convergence study for strength (0.22 mm). Failure onset under pure

Mode II conditions was expected to be associated with shear resistance of the z-pins as well as the resistance

of the laminate to ploughing. Setting t̂I
1.0 = 90.2 MPa resulted in a good match to both the delamination

position as a function of load and the load-displacement curve during reload. Separation at failure under pure

Mode II conditions was expected to be determined by the shear strain at failure of the z-pin and the extent

of laminate ploughed. In this case, the value for δ̂
f

1.0 would be smaller than δ̂
f

0.0. The physical separation

observed in the experiments consisted of dominant sliding of approximately 0.4 mm and little or no normal

separation. The calibration procedure resulted in δ̂
f

1.0 = 0.41mm. The final load predicted with the accepted

calibration is within 3% of the mean of the maximum loads recorded in the experiments (also terminated

when the delamination has propagated to the load roller). During calibration, both of the parameters δ̂
f

0.0 and
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Figure 4.35: Load-displacement curves from valid experiments and calibrated simulations.

t̂I
1.0 influenced the reloading slope, suggesting that other combinations could give a very similar behavior.

This a potential topic for additional consideration.

4.2.5.3 Mixed-Mode Properties

Simulations with mixed-mode conditions were performed to verify the pure Mode I and Mode II calibration

using the unpinned MMB test results. The predicted load-displacement curves using the calibrated values for

δ̂ 0
I and δ̂ 0

II are shown in Fig. 4.37 alongside the experimental results. Table 4.5 shows the mean and standard

deviation of the initial peak loads in the unpinned MMB experiments compared to the predicted values to help

verify the model calibration. The predicted initial peak load for the B = 0.40 and B = 0.60 are within 10% of

the mean experimental values. The initial peak load for the B = 0.20 is overpredicted by about 29%, and the

initial peak load for B = 0.80 is underpredicted by about 18%. These outcomes suggest that better agreement

could be achieved by decreasing the value for B = 0.0, however another possible cause for the discrepancy

for the B = 0.20 results could be related to the low fracture toughness value calculated in the experiments.

The calibrated value for B = 1.0 could too small in accordance to the discussion in Section ??. The full

results from simulations for B = 0.20, 0.40, 0.60 were not available due to slow convergence, however, the

predictions agree with the experiments. The magnitude of the load drop and slopes of the curve afterward
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Figure 4.36: ENF simulation prediction at failure.
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Figure 4.37: Experimental and simulation load-displacement curves for the unpinned MMB specimens.

agree with the experiments and verify the fracture toughness fit reported in Section 4.2.4.1.

For calibration of the softening and failure parameters, two simulations were considered: MMB and

SLB configurations for B = 0.148,0.279,0.453. The calibrated results for these configurations are shown

in Fig. 4.35. The calibration was accepted when predicted the load-displacement curves after the initial

load drop (reload) and the delamination propagation agreed with experimental observations. Quantitative

agreement in the load-displacement data was determined by comparing the equivalent load in the simulation

curve to the experiment curve at every recorded displacement. The equivalent load was taken at the closest

displacement point in the simulation curve. Comparing the data this way is chosen since the simulations

were performed with automatic time stepping and the displacements in the simulation are not guaranteed to

be the same as in the experiments. The total error measured by sum of squares of the difference between the

equivalent and experimental loads is used to select the best match. Statistics of the relative error (calculated
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Table 4.5: Experimental and simulation results for the initial peak of the unpinned MMB specimens.

Experiment
B Mean (SD) Prediction

0.20 60.4 (1.5) 77.8
0.40 172.5 (9.6) 169.9
0.60 299.1 (17.0) 271.0
0.80 450.5 (34.0) 368.4

Table 4.6: Relative error statistics from the load-displacement curve calibration.

B Absolute maximum Mean SD
0.148 0.0622 -0.0056 0.0213
0.279 0.0879 -0.0650 0.0149
0.453 0.3037 0.1497 0.0791

as |(Pexp −Psim)/Pexp) from the calibration results are reported in Table 4.6 (the mean of the relative error

from both experiment curves is shown). The location of the matrix delamination front is defined as the where

δ̂ > δ̂ I . Discussion on the calibration results and corresponding errors for each mode-mix configuration are

provided next.

Under mixed-mode conditions, the traction value at z-pin failure onset is expected to result from shear

and bending stresses of the z-pins in addition to the z-pin - lamina interface strength. The separation at failure

is a consequence of z-pin pull-out or z-pin fracture due to bending. At lower mode-mixes especially, failure

by pull-out may occur prior to z-pin fracture based on other DCB and single-pin experimental observations

where the local mode-mix is close to pure Mode I [54, 179]. The predicted overall behavior from calibration is

slightly more nonlinear than the experiment curve which continues to a displacement about about 14 mm. The

predicted peak load of the calibrated overall response for the B = 0.148 configuration matches well with the

experiments. Maximum relative error of the predicted load-displacement curve is around 6%. The relatively

large standard deviation of the error can come from the less smooth experimental curve which exhibits dips

that are not present in the simulation curve. These dips are associated with the halt-propagate behavior of the

crack advancement in the experiments. The location of the matrix delamination front is compared to visual

observation of the crack front in the experimental results at 7.0 mm actuator displacement. This evaluation

results in the calibrated parameters δ̂ f = 0.82mm, and t̂I = 45.9MPa. While I was not able to examine the test

specimen fracture plane it is expected that the z-pin behavior is pull-out dominated. Other model parameter

sets with smaller t̂I resulted in a peak load and softening behavior that appeared more like the experiments

but were rejected because the peak load occurred much too early. The accepted parameters resulted in a crack

front near the end of the specimen at 2% of the experimental displacement at failure.

For B = 0.279, the predicted initial peak load (which is controlled by the matrix damage onset parameter)
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Table 4.7: Lamina properties.

E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) ν12
144.0 8.7 5.0 3.9 0.32

is under predicted. The calibrated parameters δ̂ f = 1.63mm and t̂I = 48.8MPa result in a reloading curve

which matches the nonlinearity of the experiments and visually observed crack advancement well. The

overall load is underpredicted on average by about 6.5% and deviating up to 8.8%. In the single-pin pullout

tests performed in Ref. [179], they find that for low mode-mixes (B ≤ 0.250) that the z-pins fail strictly

by pull-out, at a total displacement approximately equal to the z-pin half-length. The z-pins in the current

study have a larger cross-section and therefore a larger bending resistance so the z-pin could resist the mode-

mix conditions by pulling out and the calibrated value for δ̂ f makes physical sense. Smaller values of t̂I

result in less stiff reloads while smaller values of δ̂ f result in greater nonlinearity which deviates from the

experimental slope.

For B = 0.453, the calibrated parameters are δ̂ f = 0.82mm, and t̂I = 53.5MPa. With these parameters,

there is a good match to the initial reload slope, however the load-displacement response does not show the

same degree of nonlinearity as the latter part of the experimental curves. Decreasing δ̂ f and t̂I both have

a significant effect on the reloading stiffness (decreasing it) and very low values of t̂I (e.g., 7 MPa) result

in more significant nonlinearity similar to the experiments. These parameters are rejected for calibration

because the crack advance is much quicker. The delamination propagates to the same point as observed in the

experiments at approximately half the experimental displacement. The critical separation is indicative of the

failure mechanism observed in the SEM images (Fig. 4.29). There appears to be bending, however the in situ

test images show significant interface normal separation as the delamination advances. A larger length of the

z-pins in this test/mode-mixity must resist shearing due to significant crack opening so there is a combination

of pull-out and shearing forces on the z-pin.

The composite lamina properties are listed in Table 4.7, where 1 is the composite longitudinal direction.

The values for E22, G12, and ν12 were chosen based on Ref. [46] while E11 was calibrated so that the initial

slope in the DCB and ENF simulations fits the experiment. The slope in the experiments measured at 10-

30% of the initial peak displacement was equal to 10% of the DCB experimental slope and 6% of the mean

of the ENF experimental slopes. The elastic properties are considered the same in the 1-2 and 1-3 directions.

These values were subsequently used for the mixed-mode configuration simulations as well. The parameter

values for the trilinear TSL are in Table 4.8. The mixed-mode values for δ̂ 0 are calculated using Eqn. 4.13.

The separation at the change in softening slope, δ̂ I , is calculated with Eqn. 4.15 using G(unp)
IC = G(unp)

C (0.0),

G(unp)
IIC = G(unp)

C (1.0), and η
unp
BK = 2.50 based on the unpinned delamination propagation/NPC data discussed
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Table 4.8: Analytical and calibrated TSL parameters (k = 107 N/mm3)

B 0.0 0.148 0.279 0.453 1.0
δ̂ 0 (mm) 4.32e-6 4.59e-6 4.88e-6 5.36e-6 9.02e-6
δ̂ I (mm) 0.0104 0.00986 0.00966 0.00980 0.0111
t̂I (MPa) 43.2 45.9 48.7 53.5 90.2
δ̂ f (mm) 1.63 0.82 1.63 0.82 0.41
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Figure 4.38: Calibrated TSLs.

in Section 4.2.4.1. The calibrated TSLs are shown in Fig. 4.38.

4.3 Conclusions

This chapter presented a trilinear cohesive zone model for predicting delamination in the presence of z-pins.

The constitutive law represents the averaged response associated with matrix debonding and z-pin failure

mechanisms. This averaged approach is advantageous over discrete z-pinned interface models because in

the case of finite element models, the z-pinned interface does not require special meshing related to the z-

pinning configuration, rather only the area of the z-pinned region must be considered. Experimental results

from specimens in DCB, ENF, MMB, and SLB configurations were analyzed and provide information on

the macroscopic response of z-pinned composites under pure Mode I, Mode II, and mixed-mode conditions.

The experimental load-displacement responses and crack propagation observations were used to calibrate

the trilinear cohesive zone model for 5 mode-mixities. The calibration procedure presented in this chapter

contributes a novel approach to directly connects macroscopic interface behavior in the presence of z-pins to

the CZM constitutive law properties under pure Mode I, pure Mode II, and mixed-mode conditions.

It was expected that the TSL would change shape across mode-mixes, potentially similar to those de-

picted in Fig. 4.1 due to the z-pin failure mechanisms experienced under different mode-mix conditions. The

calibration resulted in a consistent TSL shape across mode-mixes, where the intermediate traction is equal to
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≈30°

pre-cracked end

Figure 4.39: Post-mortem photograph of z-pins in DCB specimen.

the traction at onset of softening (i.e., there is not a softening of the traction between δ̂ 0 and δ̂ I). Neglecting

B = 0.148, the calibrated TSLs exhibit a trend of decreasing δ̂ f similar to other studies and correspond to a

transition from pull-out dominated failure to bending and shear failure between B = 0.279 and B = 0.453.

One potential explanation for the consistent shape resulting from the current calibration procedure could

be the inclination of the z-pins in the experimental specimens. As mentioned in Section 4.2.4.2, the z-

pins were consisted in a uniform manner at an inclination around 30 degrees from the through-thickness

direction. This inclination is evident in post-mortem examination of a DCB specimen in Fig. 4.39, where the

horizontal distance between the z-pin ends is approximately equal to the distance measured on the exterior

surfaces of the specimens prior to testing. The z-pins were inclined away from the pre-cracked end (as is

also shown in the in-situ image in Fig. 4.18), meaning that while the test fixture ensured Mode I loading, the

ply separation process was resisted more than expected with orthogonal pullout. Post-mortem examination

of specimens with SEM show that there is additional damage present in the z-pins following the DCB tests.

Figure 4.40 shows broken fibers near and away from the interlaminar surface. The broken fibers away from

the interlaminar surface are evidence of local tensile failure and indicate that the z-pins were subject to

bending. The broken fibers near interlaminar surface includes additional failure mechanisms such as kink

bands which are present due to local compression in bending. The addition of these failure mechanisms

means the pullout failure could initiate with a higher apparent stress in the interface than the stress associated

with only frictional pull-out, i.e., t̂I > t̂0. This effect would also be present in mixed-mode specimens which

are also subject to some normal ply separation. Cox[48] investigates this so-called “snubbing” effect of

angled z-pins and performs an analysis, concluding that “At larger displacements, representative of ultimate

failure and rod pullout, snubbing becomes very important. Snubbing stabilizes the pullout process and, in

representative cases, strongly affects the displacement and load at ultimate [failure]”.

Figure 4.41 shows the calibrated model parameters against the approximated parameter curves derived

from single z-pin analysis in Ref. [179] and used for model verification in Ref. [107]. In the present study, t̂I

monotonically increases (=kδ̂ 0, following the quadratic damage initiation relationship and BK mixed-mode
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Figure 4.40: Damage features observed in SEM images of z-pins in DCB specimen.
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Figure 4.41: Calibrated TSL parameters compared to Ref. [179].

critical energy relationships). The values in the reference indicate a less clear trend and shows a distinct jump

around B = 0.25 where some z-pins were failing by pull-out while others where ultimately fracturing. The

referenced data comes from specimens that are different in thickness (8 mm), epoxy matrix material (8552),

layup (quasi-isotropic), and z-pin diameter (0.28 mm) but are the only complete data set in the literature. An

additional difference is that the influence of other z-pins is not included in the singe z-pin analysis, though it

is clear that the crack opening and sliding is resisted by multiple z-pins in composite structures and a nonlocal

effects could be present.

Additional simulations were performed on the test configurations in Mohamed et al [109] using the cal-

ibrated values (t̂I = kδ̂ 0) and δ̂ f based on the spline fit in Fig. 4.41. The overall load-displacement curve
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Figure 4.42: Current model prediction using calibrated property curve compared to experimental results for
B = 0.47 and B = 0.69.

shows clearly overpredicts the range of experimental results for both B = 0.47 and B = 0.69. A second simu-

lation is ran for both cases using the value for t̂I = f (B) from the curve fit in Fig. 4.42. In this case the slope

of the curve closely follows the experiments with some overprediction of the maximum load for B = 0.47.

For B = 0.69, the curve is much more nonlinear than the experiments. The severe overpredictions indicate

that the current calibration does not apply to the specimens in Ref. [109]. Although the material system and

z-pins were different, one possible explanation could be the added influence of the z-pin inclination in our

specimens. The inclination values resulting from the z-pinning methods reported in the literature are not

consistent and generally less than the angle in the current specimens (e.g., in Ref. [113] report a majority of

z-pins between 10 and 18 degrees from orthogonal). If this is the case then the specimens in Ref. [109] would

have pins closer to orthogonal than the current specimens and there would be a less significant snubbing

effect like previously described.

A complication during the calibration procedure is that running the calibration simulations is not trivial as

the simulations consist of about 27000 degrees of freedom and take 2-3 hours on 4 CPUs of a shared memory

compute cluster. A general observation from many calibration runs is that adjusting either t̂I or δ̂ f alone does

not necessarily correlate to an expected change in the simulation load-displacement and delamination propa-

gation speeds. A sensitivity study was not conducted on these parameters but could further aid understanding

of the calibration results.
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CHAPTER 5

Compression-after-impact (CAI) Investigations of Z-pinned Composite Laminates

The influence of z-pins on CAI response has been investigated in Refs. [67, 68, 135, 184] using standardized

specimen designs according to the residual strength test method in [7]. The focus of these studies involves

impact located on a rectangular z-pinned region ([135] also includes a slightly different configuration). The

specimens include 16, 24, 32 and 48-ply laminates with cross-ply (0 and 90 degree plies) or multidirectional

layups (0, ±45, 90 degree plies). The results from these tests suggest that z-pinning have a direct influence

on the projected impact damage overall area and consequently the CAI strength. Part of the work presented

here incorporates existing computational methods to investigate CAI in z-pinned composites, which has not

been reported before in the open literature.

One drawback of the existing standardized experimental methods is the limited volume of the test spec-

imen. In order to improve understanding of the damage arrestment capabilities of z-pinning for structural

configurations, specimens with different configurations are required. Practical considerations not thoroughly

investigated in the literature include impact events not centered on z-pinned regions. To address this knowl-

edge gap, an experimental campaign is designed using non-standard specimens which accommodate impact

both within and without z-pinned regions. CAI tests are conducted using these non-standard specimens in

order to further evaluate the effect of z-pinning on CAI strength and damage progression. The influence of

impact location on the overall behavior is investigated using load-displacement results and observations from

experimental image analysis of pre- and post-CAI specimen. Evaluation of the damage arrestment capability

of z-pins is undertaken by performing interrupted tests followed by ultrasonic C-scan imaging.

5.1 Analysis of CAI Failure in Standard Specimens

5.1.1 Experiments

A team at the Air Force Research Laboratory performed experiments to characterize the effect of z-pinning on

the damage resistance and compression strength of carbon-epoxy laminates subjected to low-velocity impact

[135]. The work included non-destructive evaluation of damage due to impact and compression loading,

as well as measuring the residual static strength of pinned and unpinned samples. Samples were cut from

laminate panels consisting of 48 plies of the IM7/977-3 material system were fabricated by co-curing in an

autoclave. The balanced quasi-isotropic layup is [−45/0/+45/90]6S. One sample was configured with z-pins

arranged in a square patch with sides oriented in the laminate principal directions. The reinforcement grid

includes pins spaced to achieve 2 % areal density. The unpinned and pinned samples were subjected to impact
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events according to ASTM D7136 [6]. A range of impact energies are chosen so as to induce delaminations

in the center of the samples while avoiding large surface indentation or penetration. Some samples were

drilled into and received a dye penetrant to aid in non-destructive evaluation of impact damage with X-ray

imaging. Computed tomography scans of these samples were taken and compiled into a volume of planar

”slices” through-the-thickness for visualization. Impacted samples were further cut for compression tests, and

loaded into a support fixture in accordance with ASTM D7137 [7]. The samples were checked to ensure that

no premature bending or buckling would occur, and were properly aligned. Displacement controlled loading

was applied to one end of the samples while recording load and cross-head displacement. The maximum load

and overall spread of delamination damage projected from ultrasonic C-scans were captured from samples

impacted with 60-80 J.

5.1.2 Numerical Modeling

The CAI problem of z-pinned composite laminates is three-dimensional in nature, dependent on specifica-

tions of the laminate and results of the impact event under investigation. To examine the mechanical re-

sponse under CAI conditions, a finite element model where the domain, material properties, constitutive laws

governing behavior, and impact damage characteristics are defined to simulate experimental configurations.

Abaqus/Standard is the FEA tool used for this model, utilizing automatic time incrementation and automatic

stabilization computed at the beginning of the analysis step in order to advance through the solution of the

nonlinear analysis.

Figure 5.1: Geometry and boundary conditions, impact damage representation.
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5.1.2.1 Numerical Domain

The samples tested at AFRL provide a case study for damage progression in a z-pinned composite laminate.

The domain is constructed as shown in Fig. 5.1, where the plies, interfaces, and pinned regions are discretely

defined within the geometry similar to the experimental samples. The thickness of the test specimen is

maintained so that global buckling is not a concern, however the plies are aggregated by fiber orientation

so as to reduce computational cost. This means that the actual number of plies and interfaces are reduced

from the tested samples but exhibit a response close to that of a many-layered laminate - as also reported

in Sun et al [158]. The geometry is discretized by solid, full-integration 8-node brick elements ranging in

size from 2 mm around the perimeter to 1 mm along the extents of the initial damage regions. The cohesive

zone is chosen to cover a large extent of the available interfaces so as to capture the complete progression of

the delamination. Boundary conditions are applied to the outermost surfaces of the geometry with reference

to the fixture used in the experimental setup and are represented schematically in Fig. 5.1. Out-of-plane

translation is limited along the top edges and along approximate locations of the knife edge positions from the

front and back faces as included in the ASTM experimental setup. CAI failure of the laminate is expected to

include intra- and interlaminar failure; in particular, Refs. [56, 137] report that the progression of delamination

enables sublaminate buckling. Consequently, models for predicting both in- and out-of plane behavior are

selected from state-of-the-art methods employed in literature. Additionally, experimentally observed impact

damage is idealized to set the initial state of this compression problem.

5.1.2.2 Interface Model

Interlaminar behavior is modeled at the interfaces between oriented plies, where quasi-brittle debonding

resulting from multi-axis stresses as observed in CAI experiments of carbon-epoxy laminates is expected [40].

A cohesive zone model is employed to capture the interlaminar damage accumulated during the compression

loading [39, 55]. Abaqus offers a contact interaction feature to model cohesive behavior of infinitesimal

thickness bonds like those between the plies in a cured laminate. This capability was chosen and requires

assignment of cohesive properties to the interaction between nodes on adjacent surfaces. The master-slave

roles in the surface interactions are defined based on ply stiffness (0◦ plies exhibiting the greatest stiffness

in the loading direction, followed by the off-axis then 90◦ plies). The cohesive behavior is expressed with

a traction-separation relationship where the initiation and evolution of damage follow a bilinear law, simply

depicted in one-dimension in Fig. 5.2. The separation state consists of a normal opening component, δI ,

and sliding displacements in two orthogonal directions, δs and δt . The normal and tangential directions have

initial stiffnesses EI and EII, respectively.

89



This traction-separation law is described by the following equations:

tI = (1−D)EIδI (5.1a)

ts = (1−D)EIIδs (5.1b)

tt = (1−D)EIIδt (5.1c)

The degradation of the cohesive stiffness is described as a function of the the current effective separation,

δm =
√

⟨δI⟩2 +δ 2
s +δ 2

t , separation history, and critical separations:

D =
δ

f
m(δ

max
m −δ 0

m)

δ max
m (δ f

m −δ 0
m)

(5.2)

where δ
f

m is the effective separation at failure, δ max
m is the maximum value of the effective displacement

attained during the loading history, and δ 0
m is the effective separation at onset of softening. Damage increases

monotonically.

The onset of softening is determined by a damage initiation criterion based on the traction components,

i.e., φ(tI , ts, tt) = 1. A so-called maximum traction function is chosen where the values of the traction com-

ponents are compared to the maximum traction that can be carried in each direction:

φ = max
{
⟨tI⟩
t0
I
,

ts
t0
II
,

tt
t0
III

}
(5.3)

The ”0” superscript is the maximum traction value that can be sustained prior to bond softening in each direc-

tion. Since experiments show that z-pinning enhances interlaminar properties we consider that debonding of

the reinforced laminate occurs due to modified property values of the traction-separation law. Furthermore,

the maximum stress criterion remains convenient to model the effect of pin debonding and a linear degra-

dation is suitable to model frictional pulling out as it bridges the interlaminar crack. The interface failure

E

GC

δ

t
t

t

0

Infinitesimal thickness cohesive zone

Figure 5.2: Interlaminar damage model (under a single mixed-mode condition).
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criterion must account for mixed-mode loadings and z-pin failure mechanisms expected under CAI condi-

tions. The energy power law form is taken in the CAI studies in Refs. [29, 154] and employed in the current

model.

{
GI

GIC
+

Gs

GIIC
+

Gt

GIIC

}
= 1 (5.4)

where G denotes the dissipated energy due to crack opening. The IC and IIC subscripts denote the critical

fracture energy required for delamination under pure Mode I and Mode II conditions, respectively. The

effective separation at failure is related to an equivalent critical energy under mixed-mode conditions by the

expression δ
f

m = 2Gc/tm, where tm =
√
⟨tI⟩2 + t2

s + t2
t is evaluated when φ = 1. The equivalent critical energy,

Gc, is calculated for the current deformation state as:

Gc =

[
1

GI +Gs +Gt

(
GI

GIC
+

Gs

GIIC
+

Gt

GIIIC

)]−1

(5.5)

The traction-separation response also follows a linear unloading and reloading path from the softening

envelope defined by D to the zero traction-zero separation state. Mode I and Mode II energy components are

calculated based on the current separation and current state of the damage variable as:

GI =
∫

δI

0
tI(D) dδI (5.6)

Gs =
∫

δs

0
ts(D) dδs (5.7)

Gt =
∫

δt

0
tt(D) dδt (5.8)

The values of Table 5.1 are apparent fracture toughness associated with the effects of z-pins and chosen from

the analyses presented in Refs. [25, 92, 134].

Table 5.1: Interlaminar material parameters

Parameter Unpinned Region Pinned Region Unit
t0
I 15 30 MPa

t0
II 60 250 MPa

GIC 0.218 3.800 J/m2

GIIC 0.650 1.648 J/m2

EI 8644 12000 MPa
EII 4660 4194 MPa
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5.1.2.3 Ply Model

In order to account for the influence of kink bands on the compressive behavior the model presented in Ch.2

is also employed in the current study. The formulation is exactly the same as previously presented (see also

[60]. The user material capability of Abaqus allows application of the fiber kinking model and tracking of

matrix damage with a state variable. Additionally, fiber waviness is introduced by varying the fiber direction

(and thus, element) along the fiber orientation direction of plies, as expressed in Eqn. 5.9.

ψ (x,y,z) = tan−1
(

tanψ0 · sin
(

πz
l

))
(5.9)

where the misalignment of the fibers is described by a maximum misalignment angle, ψ0, and periodic

wavelength, l at a given longitudinal position, z. The composite material property values are selected are

based on previous work with the material system and experimental results in Bogdanor and Oskay [31], and

listed in Table 5.2. The 3 component indicates the fiber axial direction; the superscripts f and m indicate

properties for the fiber and matrix constituents, respectively.

Table 5.2: Elastic and damage parameters of the material constituents.

Elastic Parameters Damage Parameters
Parameter Unit Value Parameter Unit Value

E( f )
1 GPa 12.45 a(m) MPa−1/2 8.0

E( f )
3 GPa 305.0 b(m)

n N/A 16.0
G( f )

13 GPa 146.0 b(m)
s N/A 16.0

ν
( f )
12 N/A 0.291 υ

(m)
0

√
MPa 0.0

ν
( f )
31 N/A 0.206 c(m) N/A 0.0

E(m) GPa 3.70 ψ0
◦ 2.0

ν(m) N/A 0.377 l mm 0.5

5.1.2.4 Impact Damage Representation

The third component of the CAI problem is incorporation of an initial damage state due to an impact event.

Ultrasonic C-scan images from Ranatunga et al [135] are analyzed to determine the damage pattern result-

ing from low-velocity impact. Examination of time-of-flight scans from 7 impacted samples (of the same

energy-level event) indicate a spiral pattern of oriented delamination regions through the thickness of the

laminate. The delaminations increase in size moving from the interface most near the impacted face towards

to rear-most interface. Additional examination of x-ray images indicate that the delaminations are bounded

by severe matrix cracks (also described in [34]). Findings by Wallentine and Uchich [172] and Hull and

Shi [84] elucidate the interactions of delamination and matrix cracking, therefore the delaminated regions are

assumed to correspond to heavily damaged ply material also. This information is combined and applied to

the laminate by removing material in simplified ”petal”-shaped regions with dimensions corresponding to the
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delaminations exhibited in the c-scan images, as shown in Fig. 5.1.

5.2 Results

Structural analysis is undertaken with a simulation of an unreinforced laminate with an initial damage state

based on the image analysis of a particular impacted state represented as described in the previous section.

The simulation load-displacement curve is displayed in Fig. 5.3a, wherein the laminate initially exhibits a lin-

ear response until a ”knee-point”. At this knee-point the load-end displacement response becomes non-linear

as delamination spreads. Delamination progresses between plies from the outer extents of the impact damage

region, and in the direction corresponding to the fiber orientation in adjacent plies. Peak load is indicated by a

significant drop in load and nearly matches that of the experiments. At peak load, the projected delamination

pattern covers the width of the laminate, where as demonstrated in Fig. 5.3b, significant sublaminate buckling

follows delamination of the outer plies. Delamination progresses majorly at the interfaces which were ini-

tially damaged, and in the direction of fiber orientations in adjacent plies as displayed in Fig. 5.4. The largest

continuous delamination zones occur between the +45◦/0◦ interfaces, while no delamination progression is

observed at the middle interfaces of the laminate where little impact damage was represented. The damage

state at peak load is also characterized by kink band formation as displayed in Fig. 5.5. We observe that

kink bands have formed across the width of the ligaments created by the impact damage, and correspond to

delaminated regions of the outer plies. At the middle interface, however, we also observe matrix damage in

the longitudinal direction extending from the epicenter of the impact damage.

A second simulation is undertaken for a z-pinned laminate using enhanced interlaminar properties. The

enhanced properties entail considerably larger critical fracture energies for both normal and sliding separation
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Figure 5.3: (a) Predicted CAI response; (b) Cross-section view at mid-width of the specimen at peak load.
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corresponding to the crack-bridging and pin pull-out effects in a z-pinned laminate. The damage initiation

stress is slightly increased along with the normal stiffness, which accounts for the effect of co-curing the

pins in the laminate, where thermal stresses act to toughen the initial interlaminar response. The tangential

stiffness is slightly reduced, corresponding to Mode II experimental observations. The response curve for

the z-pinned configuration is shown in Fig. 5.6, where the load continues to increase after reaching a mild

plateau prior to the end displacement at which the unreinforced laminate reaches a peak load; sudden failure

is not evident. However, the laminate load-displacement curve matches that of the unreinforced configuration

until the knee-point, and continues to exhibit a linear response with further end displacement. Like in the

unreinforced laminate case, the behavior becomes nonlinear as delaminations extend from the initial dam-

age regions. The delaminations grow from the impact damage regions however to a much reduced extent
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+45°/0° 0°/-45°

+45°/90°

90°/90°

Cohesive zone
Damage
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Figure 5.4: Progression of delaminations in the interfaces of the unreinforced laminate at peak load.
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Figure 5.5: Progression of kink bands in each ply of the unreinforced configuration at peak load.
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compared to the unreinforced laminate. In addition we observe that kink bands form at a lower load and

throughout the laminate. In both cases, the kink bands are prominent in the 0◦ plies across the width towards

the laminate edges and the outer −45◦ plies in the same general path, corresponding to the progression of

delamination (Fig. 5.7).

5.2.1 Discussion

In comparing the progression of delamination in the two laminate configurations we see that the same peak

load is achieved with a smaller extent of delamination in the laminate with enhanced interlaminar properties.

The cumulative delamination region enlarges only slightly with increasing end-displacement past an apparent

peak load. Figure 5.7 shows only a small and less uniform change in the delamination regions over a 0.2 mm

end displacement in all but the rear +45◦/0◦ and 0◦/−45◦ interfaces. These interfaces are nearest the non-

impacted side and included the largest initial damage regions. It seems that the front half of the laminate

remains stiffer than the rear half, and so the load is able to transfer and proceed to damage the weaker

remaining material. Overall, the enhanced interlaminar properties appear to arrest delamination where the

initial damage state is not severe, and consequently produce a more stable CAI collapse. The predicted

CAI strength is underpredicts the experiment result. Although the traction-separation relationship employed

in this investigation reveals the general effects of enhanced interlaminar properties, the reduced strength

suggests that the damage model does not fully capture the physical energy dissipation in the case of a z-pinned

lamiante. As explored by other researchers, a more complex constitutive relationship (e.g. a tri-linear traction-

separation law) simulates z-pin crack-bridging in the case of mixed-mode loadings [108]. Moreover, analysis

of cohesive zone nodal displacements reveals that tangential sliding matches the delamination pattern better

than normal separations and so capturing mixed-mode behavior is necessary. Not only do the interlaminar

properties affect the CAI outcome but we see that the initial damage state greatly influences the progression

of damage in the laminate.
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Figure 5.6: Simulation response curves compared to experiment peak load values.
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Though the predominant damage mechanism in the simulations appears to be delamination, there is inter-

action of this damage mode with ply failure due to kink bands. In the unreinforced laminate, the kink bands

form due to sublaminate buckling which is a result of delaminated regions. The laminate with enhanced inter-

laminar properties exhibits initial kink band formation at a load point earlier than in the unreinforced laminate

response, however there is not as significant of a knee point, thus demonstrating less severe delamination and

subsequent sublaminar failure. Kink bands propagate to the edges of the z-pinned laminate in a path perpen-

dicular to the loading direction, driven by collapse of the 0◦ plies. No sudden drop in load bearing capability

is observed, and in fact delamination does not progress in interfaces of both the front and rear halves of the

laminate like in the unpinned configuration. Compared to the progression of damage in the unreinforced

laminate, which includes a visibly broad crack front, the laminate with enhanced interlaminar properties ex-

hibits a smaller region of severe out-of-plane deformation of the outermost plies while the apparent strength

and toughness is increased. Analysis of the deformation of the unreinforced and z-pinned laminates shows a

more concentrated deformation region in the outer plies of the enhanced laminate. Figure 5.7b displays this

concentrated shape of sublaminate buckling in the laminate with enhanced interfaces. While the deformation
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of unreinforced laminate
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Figure 5.7: (a) The spread of delamination stagnates at all but two interfaces in the z-pinned configuration;
(b) out-of-plane deformation fields of the laminates after 0.8mm end displacement.

pattern is similar to the experiments in Ref. [158], both unpinned and z-pinned samples exhibit concentrated

sublaminate buckling and fiber fracture at mid-height of the laminate in Refs. [56] and [184], respectively.

The impact damage images used in this analysis do not clearly show major ply damage and delamination

concentrated at the epicenter of the impact, however modifying the initial damage state to include a cylinder
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or cone of damage through the thickness like used in Refs. [119, 177] could lead to a similar result.

5.2.2 Conclusions

In this study, models for tracking multiple failure mechanisms was used to simulate CAI failure of a z-pinned

laminate. Cohesive zone modeling with existing tools takes into account the apparent effects of z-pinning

on interlaminar properties. State-of-the-art techniques were employed in finite element analyses including

a surface-to-surface cohesive zone model to describe progressive delamination in z-pinned and unreinforced

laminate regions, with the exact formulation chosen based on other published findings. A recently developed

multiscale compression damage model for the plies and an idealized impact damage pattern from experimen-

tal observations were applied to predict the failure process in a particular z-pinned laminate configuration.

The simulation results provide evidence of damage arrestment due to z-pinning. The simulations indicate

significant ply damage along with delaminations in the CAI response. Analyses that neglect modeling of

ply failure in the CAI response may not completely describe the failure process. Consequently, an accurate

approach to modeling the CAI problem requires integrating mechanistic damage models which can predict

the complex interactions driving damage.

5.3 Experimental Analysis of CAI Failure in Non-standard Specimens

5.3.1 Materials, Specimens, and Test Methods

Rectangular panels of dimension 355.6 mm x 330.2 mm were hand-laid with 32 plies of UD IM7/977-3

prepreg tape using standard procedures and tools in an OEM-spec clean room. Plies were tacked together

using a non-stick roller and debulked under vacuum at approximately 120 degree Fahrenheit every ply to

build the layup [−45/0/+ 45/90]4S. The panels were sent to a third party where T650-42/epoxy z-pins

with 0.51 mm diameter were inserted with a mechanical gurney at 64 pins/in2 in the region indicated in

Fig. 5.8. Following z-pinning the panels were autoclave cured using the same parameters as for the UD

panels. Ultrasonic scanning was performed on the panels in an immersion tank. The panels were non-

destructively inspected for defects using back-wall and through-thickness C-scan images.

Impact experiments were conducted using a drop-weight approach. The drop tower and associated equip-

ment are shown in Fig. 5.9a. The laminate panel was clamped using the frame shown in Fig. 5.9b. Impacts

were located in three different locations with respect to the z-pin field as marked in Fig. 5.8 using the rounded-

head impactor shown in Fig. 5.9c. The impact energy was set using the drop-height and mass of the impactor.

Ultrasonic scans were taken post-impact to help characterize the initial state for CAI tests. Both handheld

and computer-controlled scanning devices were used to capture images. The maximum extent of damage

is measured using through-transmission and back-wall scans while time-of-flight/gated scans show damage
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Figure 5.8: Laminate panel dimensions, impact locations and CAI specimen excision plans.

profiles at 8 intervals through the thickness (approximately 0.5 mm depth ranges). Following impact and

ultrasound scanning, the specimens were prepared for CAI testing by excising panels with waterjet cutting,

and edges were then ground.

Screening CAI tests were performed on unpinned 12 inch by 12 inch specimens of the same layup using

an anti-buckling fixture and corresponding boundary conditions like described in [7] (knife-edges near lateral

edges). The specimen failure was the result of global buckling away from the impact damage. Recent

experiments have also shown that specimen dimensions influence the overall CAI behavior of laminates

without z-pins [100] and for large unsupported areas, the primary failure mechanism is global buckling.This

type of failure is not delamination-driven and therefore not useful for investigating the effects of z-pinning

on CAI failure. To address this undesirable behavior a different anti-buckling fixture was selected based on

previous AFRL projects with an aerospace industry OEM. Platens apply vertical loading to the test fixture

as shown in Fig.5.10a. The test fixture design is such that the specimen is contacted on its bottom and top

surfaces during loading and faceplates constrain out-of-plane displacements. The faceplates include small

cutouts for strain gages to check alignment and a central window to not interfere with the existing damage as

shown in Fig. 5.10b.

The CAI investigations entail two sets of tests. The first set of tests was conducted to study the effect

of impact location on the overall CAI behavior - in particular strength. For this purpose, 60 J impacts were

located in one of two positions: centered between the z-pinned regions and centered in one of the z-pinned

regions. The plan labeled CAI excision 1 was used to create specimens with impact located on the z-pinned
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Figure 5.9: (a) Drop tower, workstation, and test stand, (b) clamping frame, and (c) impactor.
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Figure 5.10: (a) CAI fixture loaded on test frame; (b) schematic of fixture and faceplate.

region and the plan labeled CAI excision 2 was used to create specimens with impact centered between the

z-pinned regions. These plans are designed to center the impact locations for the CAI tests.

The second set of CAI tests were performed on specimens with impact “eccentrically-located”. Impacts

of 70 J were centered 1 inch from the z-pinned region and remained off-center during CAI testing using

the cut plan labeled CAI excision 2. Six specimens were loaded until failure. Tests interrupted prior to

ultimate failure were performed on additional specimens to provide new damage progression information.

The actuator displacement was used to determined the points at which to interrupt additional tests. Interrupted

tests were performed to 87%, 98%, 99%, and 99.5% of mean displacement at ultimate load from specimens

loaded until failure. After a test was interrupted, loading was removed from the test fixture and the specimen

was then removed from the test fixture for ultrasonic scanning. Sequential tests were performed on the same

specimens by ascending % of mean displacement at ultimate load. The quantities of specimens and test

sequences are reported in Fig.5.11.

5.3.2 Results and Discussion

The overall load displacement curves for the specimens subjected 60 J impact are shown in Fig.5.12. The re-

sponses are fairly linear and there is not a drastic difference in the behaviors exhibited by the specimens with

impact centered between the z-pin fields (denoted ”C”) and on a z-pin field (denoted ”Z”). The mean maxi-
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Figure 5.11: Damage progression CAI test matrix.

mum load for the C specimens is 168.2 kN, standard deviation (SD): 255 N. The mean for the Z specimens is

177.7 kN (SD: 2.85 kN). This is different than other experimental results for 32-ply specimens subjected to

same energy impact but with and without z-pins arranged in a grid [135, 184]. In those cases, the maximum

load was about 40% larger. The projected damage area was not consistently different between the C and Z

impacts, so this could be a factor explaining the current results. NDI was undertaken using ultrasonic C-scans

and visual observation of the CAI specimens after testing. Images for the C specimens are shown in Fig.5.13.

The ultrasonic scan in Fig.5.13b shows some delamination growth from the centered impact location above

mid-height, however the primary failure path aligns with the center of the impact (the smaller almost cir-

cular region in Fig.5.13a). The photos in Fig.5.13c show exterior cracking on the faces of the specimen as

well as the edges aligning with the main delamination path shown in Fig.5.13b. The photo shows how the

delamination reaches the edges of the specimen.

Images for specimen Z are shown in Fig.5.14. The post-CAI ultrasonic scan in Fig.5.14b shows evidence

of a broader delamination region with width approximately equal the width of the impact damage footprint.

The photos in Fig.5.14c show evidence of local buckling on the face of the specimen. Images also show the

presence of broad delaminations on the edges, most distinctly near the mid-thickness of the specimen.

The shapes of the delamination regions in the C specimen indicates that delamination spread in the lateral

direction from the entire footprint of the impact damage until the z-pinned region. Delamination as well

as through-thickness lamina cracking still propagate to the edges of the laminate but in a confined region

aligning with the center of impact (which is also mid-height of the specimen. This is in contrast to the Z

specimen where the delamination path has nearly consistent breadth across the entire transverse direction.

The end displacement at failure is larger in the Z specimens, which is likely due to the buckling of the

outer sublaminates as opposed to the more brittle cracking present in the C specimens. Gated ultrasound

scans confirm the most broad delaminations present in Fig. 5.14 exist around 2 mm depth though broad

delaminations are also present in the back half of the laminate.

The overall load-displacement response of eccentric impact CAI tests ran to failure are shown in Fig. 5.15.

The responses are fairly linear until 1.2 mm displacement where some nonlinearity is apparent in some of
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Figure 5.12: CAI load displacement curves for specimens with impact in between (C) and on (Z) the z-pin
fields.

the curves and are similar to the responses of specimens C and Z. Audible cracking is also observed starting

around this displacement. The mean maximum load is 169 kN and standard deviation is 10.9 kN. The

mean ultimate load is 156.9 kN and standard deviation is 13.4 kN. The mean displacement to failure was

wmax = 1.625 mm. The progression of damage is studied using images from sequential tests as shown in

Fig. 5.16. The extent of damage in the previous state is shown by a white outline on each of the post-loading

images. There is obvious growth of the delamination footprint at 87%wmax in the region between the z-pinned

fields, in the longitudinal as well as transverse directions. There does not seem to be substantial delamination

growth in the z-pin field with existing impact damage at this loading. There is more delamination growth in

the central unpinned region and some growth into the opposite z-pin field at 99%wmax. The overall damage

footprint is tapered in the transverse direction in the scan taken after ultimate load – similar to the damage

footprint in Figure 81b.

Damage regions were also extracted from gated ultrasound images pre- and post-CAI for a different

specimen with a similar impact damage projection. These are shown in Fig.5.17 and show a nearly circular

footprint of impact damage up to a depth of around 1.8 mm. The thickness resolution of the images do not

allow an interface by interface examination, however there appears to be all interfaces represented in the scans

(i.e., -45/0, 0/+45, +45/90 interfaces). There was no detectable delamination in the same approximate depths

post-CAI. The images from approximately 1.8-4.8 mm indicate that the interfaces which showed an initially

large damage footprint were the primary locations of delamination growth. The images around 2.1-3.1 mm

depth show the largest breadth of damage at the edges of the laminate post-CAI. The breadth of damage in
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(c)

Figure 5.13: (a) Pre- and (b) post-CAI ultrasonic C-scans. (c) Post-CAI photos of specimens with impact
centered between the z-pinned regions.
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(a) (b)

(c)

Figure 5.14: (a) Pre- and (b) post-CAI ultrasonic C-scans. (c) Post-CAI photos of specimens with impact
centered on the z-pinned region.

104



0 0.5 1 1.5 2 2.5

Displacement (mm)

0  

40 

80 

120

160

200

Lo
ad

 (
kN

)

Figure 5.15: Load-displacement results for the z-pinned CAI experiments.

post-impact 87%

99% ultimate

Figure 5.16: Back wall ultrasonic C-scans from sequential tests loaded to 87%wmax, 99%wmax, and to ultimate
failure.
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Figure 5.17: Gated ultrasonic C-scans from a specimen loaded to ultimate failure. The impact damage is
overlaid in black and white on the colored post-CAI damage.

general measures larger at the edge opposite the impact site. Delamination apparently did not grow quickly

in the z-pinned region which had existing delamination due to impact since the overall failure pattern is not

biased.

5.3.3 Conclusions

The experimental results and analysis from the CAI study on the non-standard test configuration provide

two sets of information. The first aspect comparing the results from laminates with impact on and between

z-pinned regions agrees with results of other studies where overall impact damage size has a strong influence

on the residual strength. In the current study, the peak load from CAI specimens impacted on or between z-

pinned regions were indistinguishable. The overall damage footprint post-CAI is different in the specimens,

however, and results from ultrasonic C-scan images show how a broad delamination region does not propagate

through the z-pinned regions causing ultimate failure. The ultimate failure in the specimen impacted on the

z-pinned region is characterized by a broad delamination of near uniform height (longitudinal direction) near

the mid-plane of the specimen and extending to the edges of the laminate. The effect of this delamination

106



is the formation of two effective sublaminates which buckle and the ultimate load is delayed with respect to

actuator displacement – which was also observed in previous studies with the standard test configuration and

impact on a z-pinned region.
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CHAPTER 6

Recommendations for Future Work

The kink band problem is not unique to the unidirectional, or prepreg tape, composite with CFRP material

properties investigated here. Future work to facilitate design of materials could include validating the model

against different material systems. Experimental results of a unidirectionally reinforced metal matrix com-

posites (MMC) also present kink band failure (see e.g., [182]) and the authors are not aware of mesoscale

investigations with MMC material properties. Additionally, the proposed methodology is applicable to other

long fiber reinforced composites including 2D/3D fiber preform reinforced composites where kink band fail-

ure occurs (see e.g., [88]) by appropriately defining the local fiber orientation in the part. Woven preforms

can also be investigated by the proposed approach, but that requires a change in the microstructure and the

associated reduced order model.

Because of the multitude of failure modes and size of the DENC model, parametric analyses were not

performed (e.g. with fiber waviness characteristics or matrix shear nonlinearity) or predicting of the progres-

sion of delamination. The experimental data show a strong variation of matrix cracking pattern ahead of the

notch tip in addition to splitting and kink band onset time. A probabilistic sampling of material properties

that reflect material heterogeneity and uncertainty in model parameters could provide insight to the sources of

variation of experiment load-strain results. Future work could include parametric studies to investigate differ-

ent sources for the macroscopic nonlinearity in the overall load-strain results, and incorporate delamination

progression well.

The trilinear cohesive zone model could benefit from additional calibration using results from experiments

with the same material system conducted with a larger mode-mix. The design of the z-pinned specimens

could be improved to better take advantage of the SLB and MMB experimental configurations. Experiments

could also be conducted with z-pins inserted closer to orthogonal and higher resolution (or closer) in-situ

imaging to try to capture some the z-pin behavior. Additional understanding of z-pin failure mechanisms

under mixed-mode and pure Mode II loading could come from X-ray CT imaging of the current specimens.

The model can be improved by sensitivity studies, which would help understand how the critical points in the

TSL affect the overall load response and delamination crack propagation.

A second CAI model is proposed to further analyze the non-standard experimental configuration. Similar

to the DENC analysis, the size of the CAI model poses computational challenges. Suggestions for continuing

this work to speed up the simulations while using a more refined mesh include performing explicit analyses.

This change in approach requires model changes compared to the current analyses. These changes include
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how the CZM can be implemented using Abaqus (e.g., the contact pair algorithm is not compatible with

cohesive properties so the general contact algorithm must be used). The usual work to minimize energy in

the dynamic analysis are also needed (e.g., choosing the appropriate mass scaling to achieve a reasonable

computation time). Additional model improvements should also include representation of impact damage

based on experimental images through a mesh mapping procedure and deploying the calibrated trilinear z-

pinned interface model.
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[125]I. K. Partridge and D. D. Cartié. Delamination resistant laminates by z-fiber® pinning: Part i manufacture
and fracture performance. Composites Part A: Applied Science and Manufacturing, 36(1):55–64, 2005.

[126]F. Pegorin, K. Pingkarawat, S. Daynes, and A. Mouritz. Influence of z-pin length on the delamination fracture
toughness and fatigue resistance of pinned composites. Composites Part B: Engineering, 78:298–307,
2015.

[127]F. Pegorin, K. Pingkarawat, S. Daynes, and A. P. Mouritz. Mode ii interlaminar fatigue properties of z-pinned
carbon fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 67:8–
15, 12 2014.

116



[128]F. Pegorin, K. Pingkarawat, and A. P. Mouritz. Mixed-mode i/ii delamination fatigue strengthening of poly-
mer composites using z-pins. Composites Part B: Engineering, 123:219–226, 8 2017.

[129]S. Pinho, R. Darvizeh, P. Robinson, C. Schuecker, and P. Camanho. Material and structural response
of polymer-matrix fibre-reinforced composites. Journal of Composite Materials, 46(19-20):2313–2341,
2012.

[130]S. T. Pinho, P. Robinson, and L. Iannucci. Fracture toughness of the tensile and compressive fibre failure
modes in laminated composites. Composites Science and Technology, 66:2069–2079, 10 2006.

[131]L. H. Poh and G. Sun. Localizing gradient damage model with decreasing interactions. International Journal
for Numerical Methods in Engineering, 110(6):503–522, 2017.

[132]P. Prabhakar and A. M. Waas. Micromechanical modeling to determine the compressive strength and failure
mode interaction of multidirectional laminates. Composites. Part A, Applied science and manufacturing,
50:11–21, 2013.

[133]M. R. Wisnom and F.-K. Chang. Modelling of splitting and delamination in notched cross-ply laminates.
Composites Science and Technology, 60(15):2849–2856, 2000.

[134]V. Ranatunga and S. B. Clay. Cohesive modeling of damage growth in z-pinned laminates under mode-i
loading. Journal of Composite Materials, 47(26):3269–3283, 2013.

[135]V. Ranatunga, S. M. Crampton, and S. B. Clay. Assessment of damage tolerance and static residual
strength of z-pin reinforced composites. In AIAA Scitech 2019 Forum, volume AIAA 2019-1044, STR-
08:Composite Interlaminar Enhancement Methods and Modeling I, 2019.

[136]J. R. Reeder and J. R. Crews. Mixed-mode bending method for delamination testing, 1990.

[137]L. Reis and M. Freitas. Damage growth analysis of low velocity impacted composite panels. Composite
Structures, 38:509–515, 1997.

[138]B. Rosen. Mechanics of composite strengthening. Technical report, NASA, 1965.
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