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CHAPTER 1

Introduction

1.1 PIK3CA mutations in breast cancer

Breast cancer is a serious public health problem and continues to be by far the most com-

mon type of cancer diagnosed in American women. In 2023 alone, it was estimated that

there would be over 300,000 new breast cancer diagnoses in the United States. This num-

ber was more than double the prediction for lung cancer, which was the next most common

cancer type in women (Siegel et al., 2023). Recent trends however, show that mortality

rates across all cancers in both men and women have been decreasing over the past 20

years (Siegel et al., 2023). A major contributor to this trend has been the implementation

and advancement of targeted therapies. Targeted therapies is a term that describes a class

of therapeutic molecules that inhibit the function of specific proteins within cancer cells

(Waarts et al., 2022). These therapies are the foundation of precision medicine and allow

for personalized treatment plans that are specific to the mutations present in each patient’s

tumor. Cancer is a disease of accumulated mutations and an individual patient may have

a totally different set of mutations from another with the same disease (Fearon and Vo-

gelstein, 1990). The promise of precision medicine is for clinicians to specifically target

the altered proteins present within a given patient’s disease and to create a personalized

treatment plan for each patient.

While targeted therapies have greatly improved patient outcomes in breast cancer, there

is still room for improvement. One major area of improvement is better targeting of

PIK3CA mutations in breast cancer. PIK3CA is the most commonly mutated gene in breast

cancer and mutations in this gene are found in over one third of all breast cancers (Cerami

et al., 2012; Gao et al., 2013; Bachman et al., 2004). This high rate of mutation would

make PIK3CA-mutant breast cancer, specifically, the third most common type of cancer
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diagnosed in women, behind only breast cancer as a whole and lung cancers (Siegel et al.,

2023).

The location and frequency of PIK3CA mutations in breast cancer is worth highlight-

ing. Mutational analyses of breast tumors and breast tumor cell lines has shown that most

mutations cluster in ”hotspot” regions in exons 9 and 20, corresponding to the helical and

catalytic domains of PIK3CA, respectively (Bachman et al., 2004; Saal et al., 2005). In

fact, Bachman’s 2004 paper in Cancer Biology & Therapy expanded upon PIK3CA muta-

tional status in breast cancers from a previous study examining the frequency of PIK3CA

mutations in colorectal and other human cancers, where the sample size of breast cancers

was much smaller (Samuels et al., 2004). From this study, it was thought that PIK3CA

mutations in breast cancer were an uncommon event. They also observed more mutations

in the helical (47%) versus kinetic (33%) domain of PIK3CA across various cancers. With

a larger sample size, specifically that of breast cancer tissue alone, Saal et al. demonstrated

that PIK3CA mutations are present in a quarter of human breast cancers. In fact, using se-

quencing data from forty-one primary breast cancers, Saal et al. identfied nine that contain

somatic missense mutations. Of the nine, two mutations were found in exon 1, one in exon

9, and the remaining within exon 20. Confirming their somatic origin, DNA from adja-

cent normal mammary or lymphoid tissue for each sample where a mutation was detected

revealed the wild-type sequence. The somatic nature of these mutations shows that these

mutations are acquired after birth and that PIK3CA mutations do not represent a germline

risk variant that presents heritable risk. In addition to primary breast tissue samples, se-

quencing data from that of 12 well-established, commonly used human breast cancer cell

lines showed that 33%, or four of the twelve, harbor PIK3CA mutations, half of which

were in exon 9, the other in exon 20 (Bachman et al., 2004). These findings contrast that

of Samuels et al. where their sample tissue of origin, which was mostly colorectal, did

not implicate an oncogenic role for PIK3CA in breast cancers. As such, the mutational

profiling of PIK3CA in primary breast tissue and breast cancer cell lines in Bachman et al.
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illuminated PIK3CA as the most mutated oncogene in breast cancer. Furthermore, the po-

sitions of the mutations within PIK3CA were predominantly within exon 20, or the kinase

domain, as opposed to exon 9 for colorectal cancer in Samuels et al. These findings are fur-

ther supported by the sequencing of breast cancer cases collected within cBioPortal, which

contains a collection of many clinical studies and sequencing data (Cerami et al., 2012; Gao

et al., 2013). The cBioPortal maintains that PIK3CA mutations are more common (36% in

all breast cancer samples) than TP53 mutations (34% in all breast cancer samples) which

is another gene that is commonly mutated in breast cancer but occasionally reported as the

most frequently mutated gene in breast cancer.

Saal’s 2005 paper in Cancer Research corroborated the findings of Bachman et. al with

a mutational analysis of PIK3CA in two large cohorts of breast tumors, totaling 295 breast

tumor samples, and a diverse range of breast tumor cell lines; Saal et al observed a PIK3CA

mutation rate of 26% in primary breast tissues, or 77 of 292, and 28% of breast cancer cell

lines, or 14 of 50. These PIK3CA mutations rates are very similar to the those observed

for breast tumors and cell lines in Bachman et al. When they looked more closely at the

positions of PIK3CA mutations, they also found that those of exon 20 predominate over

exon 9. Beyond the exon 20 and exon9 ”hotspots”, Saal et al. observed a third ”hotspot”

in exon 7. Together, the findings of both Bachman et al. and Saal et al. provided strong

evidence of a functionally important for PIK3CA in breast cancer tumor growth. Thus,

their research laid the incentive to further dive into PIK3CA function and how that changes

depending on the mutations present within the gene in breast cancers, specifically.

1.1.1 The role of PI3K in biochemical signaling and cancer

PIK3CA is a member of the family of lipid kinases, called Phosphatidylinosoitol 3-Kinases

(PI3Ks), that catalyze the transfer of the gamma phosphate group on ATP to the 3’-hydroxyl

group of phosphoinositides. This reaction triggers a cascade of intracellular signaling

events that range from regulation of cell survival, proliferation, and motility to vesicle
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trafficking and structural and mechanical modeling of the cell cytoskeleton (Ghigo et al.,

2015; Engelman et al., 2006). Given the role of the PI3K pathway in a diverse range of

cellular processes, it has become evident that understanding PI3Ks and their role in eu-

kayortic development is essential to understand cellular disease states, especially in cancer.

To start, PI3Ks are grouped into three classes (I-III) based on their structure and substrate

specificity. In mammals, class I PI3Ks are further subdivided into subclasses IA and IB

due to differing modes of regulation; class IA kinases bind to or are activated by growth

factor receptor tyrosine kinases (RTKs), whereas G-protein-coupled receptors for class IB

kinases (Table 1.1). Class IA PI3Ks are composed of a p110 catalyic subunit and a p85

regulatory subunit. Three genes - PIK3CA, PIK3CB, and PIK3CD - encode p110α, p110β

and p110δ, respectively, three highly homologous p110 subunit isoforms. These class IA

catalytic isoforms couple with any of five isoforms of the p85 regulatory subunit: p85α,

p85β, p55α, p50α and p55γ. p55α and p50α are splicing variants of p85α that arise through

alternative transcription-initiation sites and are encoded by PIK3R1; PIK3R2 for p85β; and

finally PIK3R3 for p55γ (Thorpe et al., 2015; Fox et al., 2020). Of the five, p85α, which

acts as a tumor suppressor by regulating and stabilizing p110α, is the most abundantly ex-

pressed isoform in most normal tissues and its expression is often reduced in cancer (Ueki

et al., 2002; Shekar et al., 2005; Taniguchi et al., 2010). PIK3R1, while implicated in breast

cancer and other cancers like endometrial and pancreatic, occurs at a lower frequency than

mutations in PIK3CA (Koboldt et al., 2012; Jaiswal et al., 2009; Urick et al., 2011). Finally,

class IB PI3Ks are heterodimers consisting of regulatory subunits, p101 and p87, encoded

by PIK3R5 and PIK3R6, respectively, and a p110γ catalytic subunit, encoded by PIK3CG

(Thorpe et al., 2015; Fox et al., 2020).
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Class I PI3

kinases

Gene Name Protein Name Subclass Stimulating Receptor Class

PIK3CA p110α IA RTK (Receptor Tyrosine Kinase)

PIK3CB p110β IA RTK

PIK3CD p110δ IA RTK

PIK3CG p110γ IB GPCR (G-protein Coupled Receptor)

Table 1.1: PI3K Summary Table. This table summarizes the different class I PI3K cat-
alytic subunits.

It’s important to note that p110α, which is encoded by the PIK3CA gene, is one of the

most frequently mutated oncogenes in cancer (Gymnopoulos et al., 2007; Samuels et al.,

2004). first revealed the high frequency of somatic mutations in the PIK3CA gene in various

human cancers, including those of the brain, breast, colon, gastric, and lung (Samuels et al.,

2004). The high frequency of mutation in this particular gene across cancers shows that

this gene has distinct capacity to influence the hallmarks and onset of cancer compared to

the other classes of this kinase and other subunits of the PI3K complexes.

To further expand upon p110α of class I PI3Ks, this catalyic subunit specificlaly phos-

phorylates the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate(PIP2). While

this singular chemical reaction may seem rather insignificant in isolation, it actually sits at

the hub of a crucial signal transduction cascade. Activation of the PI3K complex is stim-

ulated by multiple growth factor receptor tyrosine kinases, and the phosphorylated form

of PIP2 (PIP3) is cleaved to produce the secondary signaling molecules: inositol 1,4,5-

trisphosphate(IP3) and diacyl glycerol. Both secondary signalers are key stimulants to a

diverse array of cellular functions including cell proliferation and survival (Nussinov et al.,

2021; Yang et al., 2019). The frequency of which PIK3CA and/or its direct antagonist,

PTEN, a phosphatase that removes phosphorylation from PIP3, are mutated across all can-

5



cer types (over 1 in 6 across all cancer types), speaks to how critical this reaction is to the

promotion of cell growth, which is the core hallmark of cancer (Cerami et al., 2012; Gao

et al., 2013).

1.1.1.1 AKT and its associated substrates

To specifically illustrate the mechanisms of the role PI3K signaling plays in cell growth

and proliferation, a description of the downstream actors in the pathway is provided. The

next major actor in the PI3K biochemical signaling cascade is protein kinase B, also better

known as AKT. AKT is a family of three serine/threonine protein kinase isoforms (AKT1,

AKT2, and AKT3). AKT is activated by interaction with the cleaved PIP3 molecule in

addition to phosphorylation at the threonine-308 residue by phosphoinositide-dependent

kinase 1 (Nitulescu et al., 2018). The activation of AKT by the product of the PI3K reaction

is what makes AKT a downstream actor in the PI3K signaling pathway. Activated AKT

has a number of key substrates that promote downstream promotion of cell growth and

oncogenesis.

The first AKT substrate to play a key role in the development of cancer is BAD. BAD is

a member of the bcl-2 family of proteins that forms heterodimers with the proteins Bcl-XL

and Bcl-2. This activity of BAD allows for cells to undergo apoptosis in the presence of

DNA damage. AKT however, interferes with this function of BAD by phosphorylating the

protein at the serine-136 residue. This phosphorylation of BAD prevents the protein from

complexing with the Bcl-XL and Bcl-2 proteins. Thus the activity of AKT is able to support

a cellular phenotype that is resistant to apoptosis associated with DNA damage (Hayakawa

et al., 2000; Nitulescu et al., 2018). This particular action of AKT can make cells resistant

to the DNA damage induced by platinum chemotherapy drugs as well (Dasari and Tchoun-

wou, 2014). Thus, the interaction of AKT and BAD plays influences both the ”Genome

instability and mutation” and ”Resisting cell death” hallmarks of cancer (Hanahan, 2022).

Another critical AKT substrate with implications in oncogenesis are the FOXO family
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of transcription factors (TFs). The FOXO, forkhead box class O, TF family is comprised

of four member proteins (FOXO1, FOXO3, FOXO4, and FOXO6) each of which are ex-

pressed at different levels across tissue types in the body. FOXO TFs are responsible for

binding DNA and promoting the expression of key genes that modulate a cells progress

through the cell cycle. Key factors that are increased in expression by the DNA-binding

activity of FOXO family TFs are p27 and p21. Both of these proteins inhibit members of

the cyclin-dependent kinase (CDK) family of proteins and slow a cell’s progress through

the cell cycle (Nitulescu et al., 2018; Wang et al., 2014). Other key factors influenced by

the activity of the FOXO family of TFs is are the TRAIL and FAS ligand proteins which

can promote the initiation of the extrinsic apoptosis pathway (Wang et al., 2014; Davidson

et al., 2024; Pommier et al., 2004). Phosphorylation of FOXO proteins by AKT prevents

the nuclear translocation of the TFs and thus their ability to bind DNA and influence the

gene expression program of the cell (Wang et al., 2014). The role that AKT plays in the

inhibition of FOXO TF activity collectively promotes progression of a cell through the cell

cycle and limits the cell’s potential to activate extrinsic apoptosis.

The next key AKT substrate is TSC2 (tuberosclerosis complex 2). TSC2 is a member of

the tuberosclerosis complex which is a heterodimer of the TSC1 and TSC2 proteins. Muta-

tions in either of these genes contributes to the onset of tuberosclerosis, the namesake of the

complex (Crino et al., 2006). AKT phosphorylates TSC2 at a number of different residues

but the serine-939 and threonine-1462 sites have been most implicated with influence on

the downstream signaling of the pathway. Phosphorylation of TSC2 by AKT prevents

the function of the TSC complex to inhibit the Rheb-GTPase. This allows Rheb-GTP to

activate the MTORC1 complex (Huang and Manning, 2009). Activity of the MTORC1

complex has a variety of key substrates of its own that promote growth and proliferation of

cells.
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1.1.1.2 mTORC1 and its associated substrates

The mTORC1 complex is one of two major complexes to feature the mammalian target of

rapamycin (mTOR) serine/threonine kinase as its key catalytic constituent. What differen-

tiates the mTORC1 complex from its sister complex mTORC2 is the scaffolding protein

known as the regulatory associated protein of mTOR, or RAPTOR. the mTORC2 complex

replaces RAPTOR with a different scaffolding protein called the rapamycin-insensitive

companion of mTOR, or RICTOR. These different scaffolding proteins change the binding

partners of the different mTOR complexes. It is the difference in these associated protein

partners that dictate different downstream substrates of the mTOR kinase (Tian et al., 2019).

While mTORC2 activation has some cross talk with the activity of mTORC1, they gener-

ally have a negative feedback relationship in which mTORC1 activity indirectly inhibits

mTORC2 activity. mTORC2 however, can be activated from biochemical pathways inde-

pendent of PI3K activity. This is critical in that a key substrate of mTORC2 is AKT. This

means that mTORC2 activity can positively upregulate the activity of mTORC1 (Szwed

et al., 2021).

The primary substrate of the mTORC1 complex to play a major role in cancer is 4EBP1.

4EBP1, or 4E binding protein 1, binds to the translation initiation complex, eukaryotic ini-

tiation factor 4F (eIF4F), particularly at the subunit eIF4E. eIF4E binds to the 5’ cap on

mature mRNA molecules and recruits the other members of the eIF4F complex to pro-

mote ribsomal binding and translation of the bound mRNA molecule. However, the in-

teraction between 4EBP1 and eIF4E prevents the recruitment of the other members of the

eIF4F complex, particularly eIF4G. In summary, 4EBP1 is an impediment to the trans-

lation of many mRNA molecules (Ma and Blenis, 2009). Phosphorylation of 4EBP1 by

the mTORC1 complex leads to dissociation of the 4EBP1/eIF4E binding and allows for

increased translation of mRNA. 4EBP1 preferentially binds to specific mRNA molecules

and this function of mTORC1 allows for increased translation of those mRNA molecules.

mRNA that undergo increased translation in the presence of phosphorylated 4EBP1 include
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VEGF-A (a regulator of angiogenesis), Bcl-2 (an inhibitor of apoptosis), and HIF1α (a hy-

poxia associated TF) (Qin et al., 2016). All told, the phosphorylation of 4EBP1 promotes

oncogenesis through the indirect promotion of angiogenesis and inhibition of apoptosis.

It is important to keep in mind that activity of the mTORC1 complex is necessary for the

normal growth and proliferation of cells, but that over activation of this complex can lead

to the aberrant increased translation of specific proteins.

Another regulatory substrate of the mTORC1 complex is S6K. S6K, or ribosomal S6

Kinase, is a phosphorylated substrate of the mTORC1 complex that has been implicated

in cancer progression and particularly that of ER-positive breast cancer progression (Tian

et al., 2019). Phosphorylation of S6K by mTORC1 promotes activity of the kinase and

a key substrate of S6K is ERα. Phosphorylation of ERα by S6K creates a unique feed-

forward feedback loop in which ERα increases transcription of the S6K gene RPS6KB1.

This feedback loop further supports the gene expression profiles promoted by the ERα TF

which regulates the expression of many oncogenic genes (Sridharan and Basu, 2020).

1.2 State of PI3K inhibition for breast cancer in the clinic and beyond

1.2.1 Currently approved therapies

1.2.1.1 Alpelisib

Despite the crucial role PIK3CA plays in breast cancer, and the high prevalence of muta-

tions, there are currently only two approved targeted therapies for PIK3CA mutant breast

cancer. The first of these is Alpelisib. Alpelisib is an isoform specific inhibitor that specifi-

cally targets the p110α subunit encoded by PIK3CA. This drug unfortunately has many key

shortcomings that limit its efficacy in treating PIK3CA mutant breast cancer. In the phase

III clinical trial, SOLAR-1, in which alpelisib was approved for use in PIK3CA-mutant

breast cancers, the overall response rate to alpelisib was 26.6% across all patients in the

treatment arm. While any improvement to a patient’s condition should be considered a

positive, this overall response rate pales in comparison to the number of patients that ex-
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perienced adverse events while taking alpelisib. Of the patients in the treatment arm of the

study, 76% experienced a grade 3 or greater adverse event. These grade 3 events included

hyperglycemia (64.8%), diarrhea (59.5%), and rash (36.3%). This is more than double the

rate of patients in placebo group (35.5%). Of significant note, 25% of the patients in the

treatment arm withdrew from treatment due to the adverse events associated with taking

alpelisib (André et al., 2021). The most common adverse event impacting patients that

withdrew from the trial was hyperglycemia. While alpelisib is an isoform specific inhibitor

of the p110α subunit, it is not a mutation-specific inhibitor and it inhibits the function of

wild type and mutant PI3K alike. PI3K plays a key role in regulating glucose metabolism,

in addition to the role it plays in cell proliferation, and inhibiting its normal functions leads

to the metabolic disruption experienced by many of the patients in this trial (Hoxhaj and

Manning, 2019). This indiscriminate inhibition of PI3K function disrupts the function of

normal cells as much as cancerous ones which leads to high levels of toxicity in patients.

1.2.1.2 Capivasertib

The other clinically approved therapy for PIK3CA-mutant breast cancer is capivasertib.

Capivasertib also known as TRUQAP, is an AKT inhibitor produced by AstraZeneca. AKT

is a downstream kinase actor in the PI3K signaling pathway with many substrates that

affect cellular proliferative capacity. AKT has a strong affinity for the secondary signaling

molecule IP3 produced by the function of the PI3K complex(Miao et al., 2010; Manning

and Cantley, 2007). AKT inhibition using capivasertib has been shown to reduce signaling

in all three isoforms of AKT in preclinical models (Davies et al., 2012). Despite targeting

a different protein complex, capivasertib suffers from many of the same shortcomings that

affect alpelisib. In the phase II clinical trial, FAKTION, patients taking capivasertib saw

an increase in progression-free survival and overall survival by about 6 months over the

placebo (10 months to 4 month progression-free and 29 months to 23 months overall).

The difference in progression-free survival was the same in patients that had demonstrated
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perturbation in the PI3K pathway, but the overall survival was improved for this subset of

patients (39 months to 20 moths overall survival). In the FAKTION trial, 81% of patients

in the treatment arm experienced hyperglycemia with a third of those cases being recorded

as grade 3 (Howell et al., 2022). Objective response rate to capivasertib treatment was

22.9% in the total population of patients within the treatment arm of the CAPItello-291

phase III clinical trial. This response rate translated to an median increase in progression

free survival of 3.5 months. The objective response rate was slightly higher at 28.8% in the

subset of patients that specifically had a gene mutation in a gene associated with the AKT

pathway, which led to an increased median progression-free survival of about 4 months.

39.2% of patients in the treatment arm of the CAPItello-291 trial experienced a grade 3

adverse event and 34.9% of patients required a dose interruption due to adverse events.

Common adverse events experienced by patients taking capivasertib include rash, diarrhea,

and hyperglycemia which are all adverse events that were also experienced by patients in

the clinical trial for alpelisib (Turner et al., 2023).

Taken together, the data surrounding these two targeted therapies paint an harsh picture

for the current state of treatment for PIK3CA-mutant breast cancer. Both of these therapies

target major actors in this key oncogenic pathway, but the rate at which patients see posi-

tive response to the drug and experience adverse reactions to the treatment are very similar.

These treatments present clinicians with a difficult decision in which they must weigh a

patients ability to cope with potential adverse effects to their potential to see clinical im-

provement with one of these drugs. All of these decisions get further complicated by the

interaction between these drugs and other diseases like diabetes (Ekanayake et al., 2022).

Patients with preexisting type I diabetes and uncontrolled type II diabetes were excluded

from both the SOLAR-1 trial for alpelisib and the CAPItello-291 trial for capivaseritib due

to anticipated complications involving these therapies and hyperglycemia (Ge et al., 2023;

Turner et al., 2023).
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1.2.2 Mutation-specific therapies

Interestingly, PIK3CA mutations in breast cancer are highly dichotomous with over 40%

of these mutations being either E545K or H1047R specifically (Cerami et al., 2012; Gao

et al., 2013). These two mutations occur in different domains of the encoded protein and

may have a differential impact on the function of PI3K. The E545K mutation occurs within

the helical activation domain of the subunit, while the H1047R mutation is within the C-

terminus domain of the protein. Mutations at both of these residues show an increase in

enzymatic activity, however there are also studies that demonstrate that the downstream

effects of these mutations are quite different (Gabelli et al., 2010; Hart et al., 2015). In

one of these studies, the researchers demonstrated that the PIK3CA mutant genotype of

breast cells impacted how breast cells responded to the targeted treatment lapatinib, which

is an inhibitor of growth factor receptors. It was found that the E545K mutant cells were

sensitive to the treatment, but that H1047R mutant cells continued to activate downstream

AKT signaling (Garay et al., 2021). Findings like this suggest that additional study into

the function and role of these mutations is necessary to understand mechanisms of resis-

tance to existing therapies and uncover new less toxic means of treating cancers with these

mutations.

1.2.2.1 LOXO-783

There is currently one mutation-specific targeted therapy of note that is in phase I clinical

trials. This inhibitor is currently known as LOXO-783 and is produced by Loxo Oncology

at Eli Lilly (Klippel et al., 2021). This inhibitor is a targeted inhibitor of H1047R PIK3CA-

mutant PI3K complex specifically (Klippel et al., 2021; Puca et al., 2022). Preclinical

models testing this inhibitor show very specific inhibition of the H1047R mutant PI3K

with low selectivity in cell models without PIK3CA mutations. This molecule also shows

high penetrance to the central nervous system in in vivo models (Klippel et al., 2021).

These factors make this inhibitor an especially strong candidate to improve the standard
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of care for patients with H1047R PIK3CA-mutant disease. The promise of this inhibitor

is that it could be a less toxic alternative to the currently approved therapies that which

are not mutation-specific. The CNS penetrance of this inhibitor also provides hope that

this molecule could be effective in the treatment of metastatic disease as well. The phase I

clinical trial for LOXO-783 called PIKASSO-01 has an estimated completion date of May

2025 and there are no associated publications for this trial yet (Chau and Loxo Oncology,

2024).

1.2.2.2 STX-478

STX-478 is another small molecule inhibitor of PI3Kα produced by Scorpion Therapeutics

that is hailed as another mutation-specific therapeutic of H1047R PIK3CA-mutant breast

cancer. This molecule, like LOXO-783, is currently in a phase I clinical trial. STX-478

binds a non-mutated allosteric site within the p110α protein. This unique binding site is

distinct from the binding targets of other similar inhibitors and is supposedly inaccessi-

ble in the WT version of the protein. Despite demonstrating specific efficacy in H1047

residue mutant cell line models and in vitro enzyme inhibition assays, STX-478 showed in

preclinical in vivo models to have efficacy in slowing tumor growth of tumors containing

other PIK3CA mutations. STX-478 was effective in slowing the growth of PDX models

containing hotspot E545K mutations and the less common H1047L and E542K mutations

(Buckbinder et al., 2023). While these results are promising for the wider applicability of

this therapeutic, they do call into question the actual mutation-specificity of the molecule.

The binding pocket is seemingly only accessible in the H1047 residue mutants per some

assays, but other assays show efficacy in E545 and E542 residue mutants as well. Results

from the ongoing clinical trials will hopefully clarify which mutant versions of the p110α

protein are most susceptible to this means of inhibition.
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1.2.2.3 RLY-2608

RLY-2608 is a particularly encouraging mutation-specific inhibitor. RLY-2608 has unique

binding affinity for an allosteric site that is only present in the H1047R mutant version of

the p110α protein. This binding pocket was discovered using CRYO-EM imaging of the

mutant protein and this inhibitor was designed to fit that pocket. The most encouraging

aspect of this inhibitor is that its inhibitory activity was effective in preclinical in vivo

models and did not induce hyperglycemia in these models. Hyperglycemia is a common

treatment limiting adverse effect that is reported in many of the clinical trials described

with regards to PI3K inhibition. Reducing this specific side effect could be a major step in

improving the quality of care for patients (Varkaris et al., 2024). The phase I clinical trial

(NCT05216432) has not yet concluded or published results, but a phase II trial has already

begun enrollment (NCT05216432) (Belli et al., 2023).

1.2.2.4 Invasolisib

Invasolisib is a PI3Kα specific inhibitor with mutation-specific effect in preclinical models.

In cell line models and mouse in vivo models, invasolisib showed specific inhibition of

multiple mutant variants of PI3Kαwith minimal disruption to the WT version of the protein

complex. Invasolisib works by marking PI3Kα proteins for degradation. Results of the

phase I clinical trial for use in breast cancer (NCT03006172) have yet to be published, but

a phase III trial is currently underway (INAVO-121) (Song et al., 2022; Juric et al., 2023).

1.2.3 Other PI3K inhibitors of note in breast cancer treatment

1.2.3.1 Buparlisib

Aside from these currently approved or in trial therapies, there are a number of other notable

PI3K inhibitors. Among these is buparlisib. Buparlisib is a pan-PI3K inhibitor that inhibits

not only the α isoform like alpelisib, but also inhibits β, γ, and δ isoforms as well (Fuso

et al., 2022). The results of the buparlisib clinical trials showed that treatment with this

molecule had only modest effects on the improvement of patients’ condition while also
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being associated with similar adverse events to other PI3K inhibitors. In the BELLE-2

phase III clinical trial, hyperglycemia was reported as an adverse effect in 43.1% of patients

in the treatment arm of the study and 13.2% of patients withdrew from the study due to

adverse effects(Fuso et al., 2022; Baselga et al., 2017). Buparlisib has high penetrance of

the blood-brain barrier and an increase in depression and anxiety were reported in 27% and

23% of patients respectively in the BELLE-2 trial. Suicidal ideation was also reported in

other trials for this drug (Fuso et al., 2022). The frequency of these toxic adverse events in

combination with low overall response rates (11.8% in the BELLE-2 trial, which was only

4% higher than the overall response of patients receiving standard of care in the placebo

arm of the study) has ultimately prevented buparlisib from receiving full FDA approval in

the clinic (Baselga et al., 2017).

1.2.3.2 Pictilisib

Pictilisib is another PI3K inhibitor that was evaluated in clinical trials for use in breast

cancer treatment. Pictilisib inhibits both the α and δ isoforms of the PI3K complex, but

shows little capacity to inhibit the β and γ isoforms. This limited isoform inhibition is a

major distinguishing characteristic of pictilisib from buparlisib which inhibits all four of

the major isoforms of the PI3K complex (Fuso et al., 2022). Currently pictilisib has been

discontinued due to poor results from the PEGGY phase II clinical trial. In the PEGGY

clinical trial, 70.3% of patients in the treatment arm discontinued treatment. Of the patients

that discontinued treatment, 56.3% of the patients had progression of disease and needed to

change treatment and 23.4% of the discontinuing patients withdrew due to adverse effects

associated with treatment (Vuylsteke et al., 2016). These results depict pictilisib as a toxic

therapeutic with low efficacy.

1.2.3.3 Eganelisib

Eganelisib is a unique PI3K inhibitor in that it is an isoform specific inhibitor that exclu-

sively targets the gamma isoform of PI3K. The gamma isoform is distinct from the other
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class I PI3K complexes in that it is activated by G-protein coupled receptors instead of

receptor tyrosine kinases. The gamma catalytic subunit is also rarely mutated in breast

cancers and mutations in the PIK3CG gene occur in roughly 1.5% of breast cancer patients

(Cerami et al., 2012; Gao et al., 2013). The goal of targeting PI3Kγ was not to affect

the cancer cells themselves, but to rather reactivate myeloid cells in the tumor microen-

vironment to act against the tumor. Eganelisib was evaluated for use in solid cancers in

combination with nivolumab in the dose escalation phase I MARIO-1 clinical trial (This

trial enrolled 29 triple negative breast cancer patients). In the monotherapy portion of

the trial there were no dose-limiting toxicities associated with eganelisib treatment alone.

Only three patients in this arm of the trial withdrew from treatment due to treatment related

adverse events with the most commonly reported event being increased hepatic aminotrans-

ferases. It is also important to note that one patient achieved partial response with eganelisib

monotherapy (this patient had peritoneal mesothelioma). In the combination therapy dose

escalation arm with nivolumab there were a few dose-limiting toxicity events reported at

some of the higher doses which included maculopapular rash and increased hepatic amino-

transferases. Of the patients in this arm of the trial 2 reported a partial response of their

disease (these patients had adrenal cell carcinoma and gallbladder carcinoma). Overall the

results of the MARIO-1 trial depict eganelisib as a therapy with low toxicity (Hong et al.,

2023). The ongoing MARIO-3 phase II trial will further evaluate the effects of this inhibitor

on triple negative breast cancer more specifically.

1.2.3.4 Copanlisib

Copanlisib is a PI3K inhibitor with specific affinity for the alpha and delta isoforms of the

complex. Copanlisib was evaluated in a unique tumor agnostic phase II trial for patients

with known PIK3CA mutations (NCI-MATCH). The overall response rate to copanlisib

treatment was 16%. Of the 22 patients evaluated for efficacy of treatment, 4 reported a

partial response. The two patients in this arm of the study with breast cancer reported pro-
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gressive disease and discontinued treatment. Thirty patients were included in the arm of the

study that evaluated the toxicity of copanlisib treatment. 63% of the patients in this arm of

the study reported with grade 3 or higher hyperglycemia with rash and hypertension being

the other most commonly reported grade 3 or higher adverse events. Progression of dis-

ease was however the most common reason for discontinuing treatment (68%) (Damodaran

et al., 2022; Markham, 2017).

1.2.3.5 MEN1611

MEN1611 is a delta-sparing inhibitor of PI3K activity. PI3Kδ is primarily expressed in

immune cells and particularly B cells. The principle behind the delta-sparing nature of

MEN1611 is that it will inhibit the growth of cancer cells with its inhibition of the alpha and

beta isoforms, but will not disrupt B cell function which could improve immune response

compared to pan-PI3K inhibitors. MEN1611 showed some mutation-specificity in its se-

lectivity in cell line models and was effective in slowing tumor growth in xenograft models.

It is important to note however, that the xenograft models used to evaluate MEN1611 did

not harbor the common hotspot PIK3CA mutations, but instead featured a variety of less

common mutations (K111E, E545A, and C420R) (Fiascarelli et al., 2023). This is a bit

of an odd choice given the cell line models all featured the prominent H1047R or E545K

mutations. The B-PRECISE-01 phase I clinical trial is currently underway. Early results

show 36.5% of patients exhibited partial or complete response which is very encouraging.

51.6% of patients however experienced treatment interruptions due to adverse events with

hyperglycemia being the most common and 14.5% of patients were forced to discontinue

treatment due to adverse effects (Piccart et al., 2023).

1.2.3.6 CYH-33

CYH-33 is a PI3Kα specific inhibitor. CYH-33 is being developed by Haihe Biopharma

and is currently in phase I clinical trial (NCT04856371)for use in hormone receptor positive

breast cancer. CYH-33 profiles similarly in terms of its inhibition to alpelisib, however in
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preclinical models it did demonstrate some unique properties with regards to immune cell

recruitment to the tumor site of xenograft models in mice (Sun et al., 2021).

Summary of

Inhibitors

Inhibitor Name Inhibitor Target Clinical Approval

Alpelisib PI3K (alpha) Approved

Capivasertib AKT Approved

LOXO-783 H1047R mutant PI3K alpha In Trial (Phase I)

STX-478 H1047R mutant PI3K alpha (possibly

other residues)

In Trial (Phase I)

RLY-2608 H1047R mutant PI3K alpha In Trial (Phase II)

Invasolisib mutant PI3K alpha In Trial (Phase III)

Buparlisib PI3K (alpha, beta, gamma, and delta) Not approved (Phase III)

Pictilisib PI3K (alpha and delta) Not approved (Phase II)

Eganelisib PI3K (gamma) In trial (Phase II)

Copanlisib PI3K (alpha and delta) In trial (Phase I) for breast

cancer approved for use in

follicular lymphoma

MEN1611 PI3K (alpha, beta, and gamma) In trial (Phase I)

CYH-33 PI3K (alpha) In trial (Phase I)

Table 1.2: PI3K Inhibitors in breast cancer summary table. This table summarizes the
discussed targeted therapies used for treatment of PIK3CA-mutant breast cancer.

There are a number of other PI3K inhibitors that are being evaluated for use in other

cancer types and are not currently being tested for efficacy in breast cancer specifically.

Mutations in PIK3CA are common across a variety of cancer types, especially epithelial

cancers like lung and colorectal cancer types (Belli et al., 2023; Sirico et al., 2023). A
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summary of these other inhibitors that are in ongoing clinical trials can be found in Table

1.3.
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Summary of

Inhibitors

Inhibitor

Name

Inhibitor Target Cancer Type Clinical Approval

Taselisib PI3K (alpha and

gamma)

Refractory cancers, lymphoma,

and multiple Myeloma

In trial (Phase II)

GSK2636771 PI3K (beta) Solid Tumors broadly In trial (Phase II)

Duvelisib PI3K (gamma and

delta)

Melanoma and Head&Neck In trial (Phase II)

IOA-244 PI3K (delta) Solid Tumors broadly In trial (Phase I)

Linperlisib PI3K (delta) Thymic Cancer In trial (Phase II)

TQ-B3525 PI3K (alpha and

delta)

Follicular Lymphoma In trial (Phase II)

Pilaralisib PI3K (all isoforms) Not in Trial Not in Trial

Sonolisib PI3K (all isoforms) Not in Trial Not in Trial

Sonolisib PI3K (alpha) Not in Trial Not in Trial

SAR260301 PI3K (beta) Not in Trial Not in Trial

AZD8154 PI3K (gamma and

delta)

Not in Trial Not in Trial

AMG319 PI3K (delta) Not in Trial Not in Trial

Idelasib PI3K (delta) Lymphoma Not in Trial

Umbralisib PI3K (delta) Lymphoma Not in Trial

Nemiralisib PI3K (delta) Not in Trial Not in Trial

Leniolisib PI3K (delta) Not in Trial Not in Trial

Parsaclisib PI3K (delta) Not in Trial Not in Trial

Seletalisib PI3K (delta) Not in Trial Not in Trial

Table 1.3: PI3K Inhibitors in other cancers summary table. This table summarizes PI3K
targeted therapies used for treatment of cancer types other than breast cancer. Adapted from
Belli et al. (2023)
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Summary of

Inhibitors

Inhibitor

Name

Inhibitor Target Cancer Type Clinical Approval

Zandelisib PI3K (delta) Not in Trial Not in Trial

SHC014748 PI3K (delta) Not in Trial Not in Trial

KA2237 Unknown specificity Not in Trial Not in Trial

HMPL-689 Unknown specificity Not in Trial Not in Trial

Table 1.3: Continued

1.3 Isogenic Cell Line Models

One of the biggest challenges in cancer biology is determining which mutations in a given

tumor are contributing to the tumor’s growth and which mutations offer a therapeutic vul-

nerability. To understand the role of individual mutations, isogenic cell line models are an

important tool for studying single mutations in near isolation. Isogenic cell line models are

model systems created using genome editing to specifically introduce a mutation of interest

into an immortalized cell line.

The origin of using isogenic cell line models begins with what are considered clas-

sic genetic knockout experiments. Knockout experiments first became prominent in the

early 1990s and were used to characterize the function of genes on specific processes and

phenotypes (Nelson, 2015). In these experiments, specific genes would be mutated, typ-

ically within the embryos of model organisms and the impact of these modifications on

various processes would be evaluated. In one of the first knockout experiments, The gene

αCAMKII was disrupted in a mouse model. Mice deficient in CAMKII exhibited reduced

memory and the functional link between this enzyme and neurological development was

established Silva et al. (1992).

The advent of more advanced genetic modification tools has allowed for the more spe-
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cific modification of genes. Older genetic modifications could disrupt the gene sequence

or induce random mutations into the gene sequences, but lacked the specificity to induce

single base pair alterations. Many cancer mutations involve single base pair substitutions in

key genes (Bacolla et al., 2014). To properly study these mutations, newer techniques like

recombinant AAV and CRISPR-Cas9 editing must be used to introduce the specific muta-

tion with minimal off target effects. AAV editing, which stands for adeno-associated virus

editing, uses adeno viruses to deliver recombinant single stranded DNA molecules with

the desired sequence. These molecules are incorporated into the genome using the cell’s

native homology directed repair mechanisms (Bijlani et al., 2021). CRISPR-Cas9 editing,

which stands for clustered randomly interspersed palindromic repeats, is the technology

that received the Nobel prize for chemistry in 2020. CRISPR-Cas9 gene editing is actually

more focused on the Cas9 part of the name. Cas9 is a bacterial nuclease enzyme that cuts

DNA specifically at the sequence specified within its partner guide RNA (gRNA). By cre-

ating custom guide RNA molecules, genomic edits can be introduced at specific sites in the

genome (Jinek et al., 2012; Cong et al., 2013). Specific knock-in edits can be introduced

using homology directed repair with an accompanying template molecule.

An example of an isogenic cell line model is our MCF-10A model for PIK3CA mu-

tations. This model was created using AAV to independently introduce the E545K and

H1047R mutations into the genome of the MCF-10A cell line (Gustin et al., 2009) (Figure

1.1). MCF-10A is a nontumorigenic, spontaneously immortalized cell line derived from

noncancerous breast epithelium (Puleo and Polyak, 2011; Soule et al., 1990). The key ad-

vantage of this model is that the MCF-10A parental cell line is largely unmutated. This

allows users of this model to study the effects of the PIK3CA mutations in a breast cell in

near isolation without other cancerous mutations confounding the observations. In making

comparisons between the parental MCF-10A cell line and the versions with each of the

PIK3CA mutations, we can better understand the distinct effects that either of the muta-

tions can induce in breast cells. This particular isogenic model has been used by many
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researchers to study these mutations for more discovery based purposes (Hart et al., 2015;

Wu et al., 2014) to even testing the efficacy of new targeted therapies like STX-478 (Buck-

binder et al., 2023).

Figure 1.1: MCF-10A PIK3CA Isogenic Cell Line Schematic. This diagram shows the
cell line model described in Gustin et al.(Gustin et al., 2009) as well as the relative locations
and associated protein domains of the breast cancer hotspot PIK3CA mutations

.

1.4 Sequencing for molecular Profiling and Epigenetics in Cancer

1.4.1 DNA Sequencing

The advent of genomic sequencing was perhaps the most pivotal advancement for the field

of precision medicine for cancer biology. The completion of the human genome project

in 2004 established a draft of the healthy human genome (Lander et al., 2001; Hood and

Rowen, 2013). This and later versions of the human genome provided researchers with a

reference genome to use in comparison with cancer mutated genomes. Comparisons be-
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tween cancer mutated genomes and reference human genomes have allowed for the iden-

tification of driver cancer mutations as well as biomarkers that increase risk for disease.

Identification of these biomarkers has provided the basis for the field of precision oncol-

ogy, which seeks to identify patient-specific treatment plans based on biomarkers present

within a patient’s disease.

There are a number of array-based assays that are used in the clinic to determine the

presence of specific genetic biomarkers within a patient’s tumor. These assays can detect

the presence of specific known and actionable mutations within a tumor (Tortajada-Genaro

et al., 2023). The shortcoming of these assays is that they can only inform the state of

biomarkers on the array, but they do not provide any information beyond that.

Whole exome sequencing (WES), which was first used in breast and colorectal cancers

in 2007, is now a standard clinical practice for many cancer patients (Hodges et al., 2007;

Wheeler and Wang, 2013; Wood et al., 2007). WES allows clinicians to identify all gene

coding mutations present within a tumor. Identifying key mutations within a tumor is

crucial for many treatment decisions, as the presence of certain mutations may prompt

a clinician to opt for a specific targeted therapy (Menzel et al., 2023). Whole genome

sequencing (WGS) is also becoming more common as the cost for sequencing the whole

genome has decreased. The advantage provided by WGS over WES is that WGS can

identify mutations outside of genes and chromosomal rearrangements that WES cannot

detect. This also means that there is more utility in WGS as a discovery tool to uncover

new mutations for further study.

WES remains the preferred assay in the clinic as there are not enough actionable extra-

genic mutations to currently justify the added cost of WGS.

1.4.2 Gene Expression

Beyond the analysis of tumor genotypes, alternative sequencing techniques can uncover

more insights about the molecular state of cancer cells. RNA sequencing (RNA-seq) is an-
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other sequencing technique that is commonly used to make treatment decisions for cancer

patients (Buzdin et al., 2019; Hedenfalk et al., 2020). RNA-seq is used to assess the relative

levels of distinct mRNA molecules present within a tissue. With this information scientists

and clinicians can determine which genes are being actively transcribed in a tumor. The

profile of expressed genes in a given cell can inform a lot about the identity and state of

cells. Changes in gene expression throughout development can determine cell fate deci-

sions and can inform things like responses to stress (Kuo et al., 1992). Gene expression

can be very informative for the development of normal cells, but can also provide a lot of

insight into how cancer cells have begun to differ from the normal cells and how they might

respond to various treatments. In comparing the gene expression profile of cells in a dis-

eased or cancerous state to the normal/healthy gene expression profile, we can identify gene

expression biomarkers that can indicate the presence of disease, and/or the mechanisms by

which diseased cells have changed.

There are a number of expression-based biomarkers that can inform treatment decisions

for patients. Identifying key overexpressed genes like HER2 in breast cancer can be crucial

to treatment decisions as there are many targeted therapies, like trastuzumab, that can be

highly effective for HER2 overexpressed cancers even when genetic modification is not

present (Baselga, 2001; Buzdin et al., 2019; Perou et al., 2000). This is a key distinction

between mutational profiling and gene expression assays. The biomarkers and targets of

therapy uncovered by these different approaches can be totally different.

Despite the benefits of gene expression analysis in cancer, RNA sequencing is still

not a commonly used tool in the clinic. The number of actionable expression biomarkers

is still too low to justify what may be an increased cost to a patient depending on their

insurance coverage for these types of analyses. Even limited microarray and panel based

assays can be costly to a patient(Gordon et al., 2020; Ergin et al., 2022). An example of a

gene expression test that has gained traction for clinical use in breast cancer is Oncotype

DX. Oncotype DX is a limited gene expression assay which evaluates the RNA expression
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level of 22 different genes. Assaying the expression of just this selection of genes creates a

well validated prediction of a given patient’s breast cancer subtype (Luminal A, Luminal B,

Her2+, or Triple Negative) (McVeigh and Kerin, 2017). This quick classification can help

clinicians make key treatment decisions in cases where a patient’s subtype can be a crucial

factor. For example, the use of aromatase inhibitors for the ER+ subtypes or trastuzumab

for HER2 positive disease (Baselga, 2001; Xie et al., 2022). Both of these therapies have

high efficacy in breast cancers of these specific subtypes and tests like Oncotype DX can

help patients be connected to these treatments early. In the future, the hope is that access to

these tests would be more accessible and affordable to all patients. Increased accessibility

and use in the clinic would also improve the incentives for the development of more and

similar gene expression based tests to be used in other cancer types as well.

Currently there are many consortium based initiatives that are assaying the gene ex-

pression of many tumor samples to create a resource for future study that will aid in the

discovery of more actionable expression biomarkers. The largest of these resources is the

Cancer Genome Atlas (TCGA), which is a joint project between the National Cancer In-

stitute (NCI) and the National Human Genome Research Institute (NHGRI) (Grossman

et al., 2016). This project, to date, has profiled the expression of over 25,000 patient sam-

ples across over 60 different primary sites. This publicly available resource allows for the

robust study of gene expression across a number of tumor types with diverse mutational

backgrounds. Large scale initiatives like TCGA will continue to push the field forward

and incentivize increased expression profiling for all cancer patients. Recent efforts in

breast cancer research specifically have used the larger number of patient RNA-seq sam-

ples (1,095) available in the TCGA-BRCA resource to further refine and improve upon the

PAM50 classification of breast cancer subtypes, which were originally defined using data

from 189 patients (Parker et al., 2009; Thennavan et al., 2021).
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1.4.3 Chromatin Accessibility

Chromatin accessibility (ChrAcc) is an important epigenetic marker for transcriptional ac-

tivity and gene regulation. This means that it not only denotes active genes in a cell or tis-

sue, but noncoding enhancer elements that can influence the expression of genes. ChrAcc

can also identify genes that may not be actively expressed, but may exist in poised state,

prepared to be expressed should a key stimuli impact the cells. ChrAcc is not currently used

in the clinic to make treatment decisions as there are very few, if any, targeted treatments

that are poised to take advantage of the information provided by ChrAcc. Evaluation of

chromatin accessibility can still be a valuable resource in better understanding the mecha-

nisms underlying shifts in gene expression undergone by cancer cells as cells mutate and

evolve (Corces et al., 2018).

For comparison, only 410 tumor samples have been assayed for chromatin accessibility

in TCGA compared to the over 25,000 that have been assayed for gene expression (Gross-

man et al., 2016; Corces et al., 2018). This shows just how far this research has to go

before clinical implementation becomes the norm. Despite the limitations in available data

for chromatin accessibility in cancer patient samples, many studies show the promise of

chromatin accessibility as a prognostic marker. One such study, Liu (2020), demonstrates a

link between breast cancer patient survival and the accessibility of a particular locus within

the promoter of ESR1 (Liu, 2020).

There has also been some interesting work in which ChrAcc and gene expression have

been combined to define and project the trajectory of Alzheimer’s disease (Morabito et al.,

2021). This study identified a number of relevant candidate cis-regulatory elements with

high correlation to the onset of Alzheimer’s disease. The identification of these elements

implicates the transcription factors FOSL2 and NRF1 as key regulatory proteins that pro-

mote Alzheimer’s onset when active in astrocytes and oligodendrocytes respectively (Mora-

bito et al., 2021). In making the connection between these accessible gene regulatory re-

gions and regulatory transcription factors new therapeutic targets have been identified. In
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the future, similar studies could be used to predict clonal expansion, drug resistance and

response to specific therapeutic strategies in the context of cancer.

1.5 Goal of This Dissertation

In this dissertation, I will demonstrate the utility of combining the discovery tools of iso-

genic cell lines and molecular profiling by sequencing. This dissertation outlines findings

made through the application of multiple sequencing techniques used on isogenic cell line

models of hotspot PIK3CA breast cancer mutations. The current state of targeted treatment

for PIK3CA mutant breast cancer is lacking and new discoveries are needed to improve

upon this. Our findings elucidate many distinct differences in cell signaling caused by

these mutations, and also highlight potential mutation-preferential targets of treatment that

can be used to improve upon current treatment paradigms for PIK3CA-mutant breast can-

cer. The results of this work build upon our understanding of these independent mutations

and provide a framework for future study of oncogenic mutations using functional genomic

analyses.

Data presented within the supporting appendix of this dissertation reflects work per-

formed on an other project during my time in graduate school. While distinct from the

primary story presented within, this project supports the overall goal and theme of the dis-

sertation and my graduate studies. In this appendix we evaluate chromatin interactions with

respect to the E545K PIK3CA mutation in a different isogenic breast cell line model.
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CHAPTER 2

Hotspot PIK3CA mutations exhibit distinct impacts on breast cells

2.1 Hotspot mutations drive distinct response to PI3K inhibition

The dichotomous hotspot mutations of PIK3CA impact different domains of the encoded

protein, but have seldom been evaluated in the context of having unique impacts on down-

stream signaling. A few studies highlight some key differences and observations, but the

fact remains that clinically, all PIK3CA mutations in breast cancer are evaluated and treated

as if they are the same (André et al., 2021; Hart et al., 2015; Janku et al., 2013). In the

SOLAR-1 clinical trial, in which alpelisib was approved for use in PIK3CA-mutant breast

cancer, there were no analyses performed to determine whether either hotspot mutation

presented as a better responder to treatment (André et al., 2021).

In an MCF-10A isogenic model for these mutations, previously developed in the Park

lab (Gustin et al., 2009), we evaluated the response of breast cells bearing either the E545K

mutation or the H1047R mutation to alpelisib (Figure 2.1). The results of this assay show

that E545K mutant cells demonstrate increased sensitivity to treatment with alpelisib com-

pared to the response by H1047R mutant cells. These results are somewhat consistent with

the findings of Janku et al.(Janku et al., 2013). Janku et al found that breast cancer patients

with H1047R mutant disease were more sensitive to treatment with targeted therapies of

PI3K pathway family members. While this study found that H1047R mutant disease were

more susceptible to targeted therapies, this study was based on the use of other inhibitors

of other pathway members and not direct targeting of the PIK3CA product using alpelisib.

Ultimately, these results demonstrate that the PIK3CA mutant genotype of breast cancer

can be a key predictive factor in drug response. The results of this experiment and cor-

roborating clinical data prompted us to further investigate the effects of these mutations

and how differences between them could be used to better understand their role on drug
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Figure 2.1: Alpelisib drug screen in MCF-10A isogenic PIK3CA mutant cells. This bar
plot shows relative survival of the mutant cell lines in response to differing concentrations
of alpelisib.Significance calculated using an ANOVA with a post-hoc Sidak’s test

2.2 PIK3CA Mutation-induced Changes to Gene Expression

To expand upon the differential findings of drug resistance, we performed RNA-seq across

isogenic cell line models to identify differences in gene expression induced by each of

these mutations. Gene expression analysis via RNA-seq, can be used to uncover nuanced

differences between cell types within a tissue as the expressed genes within a cell are critical

to how a cell functions and the role it plays (Cheng et al., 2023; Momeni et al., 2023). In

using these tools, we seek to understand how the independent hotspot PIK3CA mutations

are influencing the function and role of breast cells.
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2.2.1 RNA-sequencing of MCF-10A Isogenic Model

For these analyses, we once again made use of the MCF-10A isogenic model described

before (Gustin et al., 2009). The primary advantage of this model for this purpose is the

dearth of other mutations that could confound our observed effect of the PIK3CA muta-

tions. RNA-sequencing was performed across each of the three cell lines in the model

representing each of the genotypes of PIK3CA (WT, E545K, and H1047R). To demon-

strate the differences in gene expression induced by the mutants, we focused our primary

analysis on the direct comparison of the E545K and H1047R cell lines (Figure 2.2). This

work can be found in the preprint Miranda et al.(Miranda et al., 2024).

From our analysis we identified 1271 genes exhibiting differential expression between

the mutant cell lines. These differentially expressed genes (DEGs) highlight distinct pat-

terns of expression between these mutant cell lines and highlight changes in key oncogenic

pathways, which reveal differing modes of carcinogenesis. Differential expression was

determined using DESeq2(Love et al., 2014). Firstly in Figure 2.2A, we highlight the

expression patterns of the DEGs across the three cell lines in the model. A graphical rep-

resentation of the DEGs and their relative expression in the mutant cell lines is represented

in Figure 2.2B. What becomes apparent from this analysis, is how many of the genes with

increased expression in the E545K cell line share increased expression with the WT cell

line, while genes with increased expression in the H1047R mutant cells do not. This shows

a clear deviation in the biochemical signaling of cells with the H1047R genotype.

To better ascertain the function and role the DEGs may be playing in terms of their im-

pact on cell function, we performed Gene Set Enrichment Analysis (GSEA) of the DEGs

using the MSigDB Hallmark pathway collection (Figure 2.2C). The results of this analy-

sis show enrichment of genes within different pathways that can promote carcinogenesis.

Within the E545K mutant cells we see enrichment of genes within the apoptotic pathway

and the Epithelial-mesenchymal transition pathway. Both of these pathways promote sur-

vival and adaptation of cells as they progress toward aggressive and malignant expansion.
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In the H1047R mutant cells, enrichment of genes associated with estrogen signaling is

shown. Disruption of estrogen signaling is common in many breast cancers and is a key

factor in treatment response and resistance (Clusan et al., 2023). These findings support

the idea of distinct modes of tumorigenesis defined by these mutations and provide further

evidence for the clinical need to evaluate these mutations independently.
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Figure 2.2: Comparison of RNA sequencing in PIK3CA mutant cell lines in the
MCF-10A model. RNA-seq captures distinct gene expression differences induced by
PIK3CA hotspot mutations in isogenic cell line models which are reflected in TCGA
patient samples. (A) Heatmap of normalized counts for 1271 differentially expressed
genes. Hierarchical clustering of these genes reveals that E545K cells bear more similarity
to WT than H1047R. (B) Volcano plot of differential expression between mutant isogenic
cell lines. Differentially expressed genes (DEGs) were defined by the criteria: fold change
> |1.5|, Padj < 0.05. (C, D) Dot plot showing results from GSEA pathway enrichment
analyses using the hallmark gene sets for (C) MCF-10A DEGs and (D) expression data
from TCGA-BRCA samples. Pathways shown in panel D are those that are significantly
enriched, shared and concordant with those identified as significant in the MCF-10A cell
line.
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2.2.2 Independent Validation in TCGA Patient Samples

To validate the gene expression profiles from our cell line model and to support the clinical

relevance of these findings, we performed an independent validation of our GSEA findings

using the RNA-seq samples of actual breast cancer patients with the E545K and H1047R

mutations of PIK3CA. The TCGA-BRCA database has 72 RNA-seq patient samples with

the E545K genotype and 135 samples with the H1047R genotype. In performing GSEA on

these samples, we find that all 14 of the pathways found to be significantly enriched in our

cell line model are enriched within comparison of the TCGA samples. Shown in Figure

2.2D it can be observed that 11 of those 14 pathways show concordant behavior with the

cell line model. These results bolster our findings and demonstrate the parallels in gene

expression between the isogenic cell line model and actual patient samples in the TCGA

database.

2.3 Mutation-induced Changes to Chromatin Accessibility (ChrAcc)

2.3.1 Assessing ChrAcc in the MCF-10A Isogenic cell line model

To improve our understanding of the underlying mechanisms driving the differences in

gene expression observed between the PIK3CA-mutant cell lines in our model, we also

performed ATAC-seq across all of the cell lines to assess ChrAcc differences induced by

PIK3CA genotype. From our analysis, we made several key findings. Firstly, we identified

8672 differentially accessible regions between the E545K mutant cells and the H1047R

mutant cells (Figure 2.3A). From these regions, we identified two clusters that most closely

associate with each PIK3CA genotype. The first cluster highlighted in purple in Figure

2.3A is designated as the E545K-preferred cluster and contains 1125 regions. The second

cluster highlighted in green is designated as the H1047R-preferred cluster and contains

2668 regions. It is important to note that both of these clusters show high enrichment of

non-gene-coding and non-promoter annotations (over 70% for both clusters). This suggests

that these regions of altered accessibility are likely enhancers and that these sites will likely
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have influence on the expression of multiple genes beyond whichever happens to in the

closest proximity.
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Figure 2.3: Comparison of ChrAcc measured by ATAC sequencing in PIK3CA mutant
cell lines in the MCF-10A model. (A) Heatmap of accessibility at 16660 peaks exhibiting
differential accessibility between the mutant isogenic cell lines.
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Figure 2.3: Continued Peaks are divided based on k-means clustering. The second cluster
highlighted in pink has been designated as E545K-preferred. The third cluster highlighted
in green has been designated as H1047R-preferred. (B) Distribution of genomic feature
annotations of regions within the E545K-preferred and H1047R-preferred clusters. (C)
Scatter plots of TOBIAS transcription factor footprinting of accessibility in the E545K-
preferred regions. (D) Scatter plots of TOBIAS transcription factor footprinting of ac-
cessibility in the H1047R-preferred regions. (E) Bar plot of pathway enrichment from
the PANTHER pathway database analysis performed on genes uniquely annotated to the
E545K-preferred cluster. (F) Bar plot of pathway enrichment from the PANTHER pathway
database analysis performed on genes uniquely annotated to the H1047R-preferred cluster
regions.

Further analysis of these regions reveals a strong change in the transcription factor (TF)

footprinting in these regions. TF footprinting is a unique analysis to the assessment of

ChrAcc as it allows for the measurement of TF binding activity through changes in ac-

cessibility specifically at the TF binding motif sequences. What is observed within our

comparison of footprinting in the mutant-preferred regions, is that there is unique enrich-

ment for binding of members of the TEAD TF family in the E545K-preferred regions

(Figure 2.3C). Activity of the TEAD TF family has a strong association with canonical

PI3K/AKT signaling and has also been shown to be a promoter of the epithelial to mes-

enchymal transition (EMT) (Borreguero-Muñoz et al., 2019; Chi et al., 2022). While this

unique enrichment of the TEAD family is observed in the E545K-preferred regions, the

H1047R regions have a high association with multiple AP-1 TF family member proteins

(Figure 2.3D). The AP-1 family TFs are considered pioneer TFs as they are able to interact

with chromatin remodeling proteins to promote a proliferative gene expression program

(Vierbuchen et al., 2017; Shaulian and Karin, 2001). Increased activity of the AP-1 family

members is also typically associated with increased activation of the MAPK cascade and

not PI3K/AKT signaling, which makes its high enrichment within regions associated with

this specific PIK3CA genotype very curious. The results of our TF footprinting are also

consistent with the enrichment of total TF motifs found within these regions as well (Fig-

ure 2.4). This suggests that we are not just identifying changes in the accessibility at these
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binding sites, but that the regions we are defining are quite distinct in sequence and overall

potential for gene regulatory activity.

To further characterize the regions within the mutation-preferred clusters, gene annota-

tion was performed so that gene pathway enrichment analyses could be performed. Genes

were annotated using a nearest neighbor approach. While this approach is a bit limited

in terms of the number of genes included in the analysis, there is still strong correlation

between the proximity of an enhancer element and the TSS of a gene as far as regulatory

activity. The results of this analysis once again revealed a strong distinction in the gene

regulatory environment of breast cells by PIK3CA genotype. For regions in the E545K-

preferred cluster there is high enrichment of annotated genes with functions related to FGF

signaling and EGF receptor signaling (Figure 2.3E). Both of these pathways are associated

with the activity of growth factor receptor tyrosine kinases that are directly associated with

the activity of the PI3K complex (Nussinov et al., 2021; Yang et al., 2019). Interestingly,

the annotated genes in the H1047R-preferred cluster do not show the same enrichment for

these pathways. The annotated genes associated with this cluster instead show enrichment

for both the Notch and Wnt signaling pathways (Figure 2.3F). While both of these are as-

sociated with tumor growth in a variety of cancer types, neither pathway is associated with

canonical PI3K activity (Zhan et al., 2016; Zhou et al., 2022).
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A B

Figure 2.4: Transcription factor motif enrichment in mutation-preferred clusters. Bar
plots showing the results of HOMER TF motif enrichment analysis within the (A) E545K-
preferred and (B) H1047R-preferred cluster regions.

In conclusion, our analysis of ChrAcc in our isogenic model of PIK3CA mutations in

breast cancer further characterizes the differences in cell signaling and gene regulation that

was first described by the RNA-seq experiments in the previous section. Mutation depen-

dent changes in ChrAcc characterize differential activity of the PI3K complex that drive

distinct tumorigenic gene expression profiles that are mediated by different TF families.

2.4 Chapter 2 Materials and Methods

These methods are published in Miranda et al. 2024 on Biorxiv (Miranda et al., 2024). A

version of these methods can also be found where the data is stored at the Gene Expression

Omnibus (GEO) with the accession number: GSE247822
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2.4.1 Cell Culture

MCF-10A parental cell lines were purchased from American Type Culture Collection

(ATCC). MCF-10A cell line knock-ins were generated as previously described [14]. All

cell lines were grown in 5% CO2 at 37oC with 1% Penicillin/Streptomycin in respective

media conditions. Parental MCF-10A cell lines were cultured in DMEM/F12 (1:1) supple-

mented with 5% horse serum, 20 ng/ml epidermal growth factor (EGF), 10 µg/ml insulin

(Roche), 0.5 µg/mL hydrocortisone (Sigma), and 100 ng/ml cholera toxin (Sigma). Knock-

in cell lines were maintained in MCF-10A media in the absence of EGF. For all sequencing

assays, cells were transferred to assay media 24 hours prior to sample collection. Assay

media contains phenol red-free DMEM/F12 (1:1) supplemented with 1% charcoal-dextran

stripped FBS (Fisher), 0.2 ng/ml EGF, 10 µg/ml insulin, 0.5 µg/mL hydrocortisone, and

100 ng/ml cholera toxin.

2.4.2 Alpelisib Drug Screen

Cells were plated in their respective maintenance media conditions at a density of 50,000

cells/well in 12-well plates. 24 hours following seeding, cells were treated with 250nM,

500nM, 1000nM of alpelisib (SelleckChem, S2814), or an equivalent volume of DMSO

as a negative control. This experiment was performed with three replicates for each cell

line and each treatment condition. Cells were counted and viability was measured 72 hours

following treatment using a Vi-CELL BLU cell viability analyzer (Beckman Coulter).

2.4.3 RNA-Seq

RNA was isolated and prepared using the Qiagen RNeasy kit. Libraries were prepared by

the Vanderbilt Technologies for Advanced Genomics (VANTAGE) Core using the Illumina

Ribo-Zero Plus rRNA Depletion Kit. Each library was sequenced on an Illumina NovaSeq,

PE150, at a requested depth of 50 million reads. All code and the specific parameters used

in all data analyses can be found at:

(https://github.com/adamxmiranda/PIK3CA). All sequencing library reads were trimmed
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of adapters and assessed for quality using the Trim Galore! (version 0.4.0) Wrapper of

Cutadapt and FastQC (Andrews, 2010; Martin, 2011). Trimmed reads were mapped to

the human genome assembly hg38 using the Spliced Transcripts Alignment to a Reference

(STAR) aligner (version 2.5.4b) (Dobin et al., 2013). Mapped reads were sorted and filtered

for a mapping quality score over 30 using the SAMtools package (version 1.5) (Danecek

et al., 2021). Reads were counted to gene transcripts using featureCounts (version 2.0.0)

to version 32 of the GENCODE transcripts (Frankish et al., 2019; Liao et al., 2014). A

summary of these processing steps can be found in Table 2.1. Differential gene expression

was identified between conditions using the DESeq2 package (Love et al., 2014). Pathway

analysis was performed using the fgsea package on the Hallmark gene set from MsigDB

(Liberzon et al., 2015; Korotkevich et al., 2021).

RNA-seq

Sample ID Sequenced Reads Reads Counted to

Transcripts

Percent Counted

MCF10AWT rep1 74,202,057 68,066,157 91.7308

MCF10AWT rep2 52,390,047 48,022,937 91.6642

MCF10AWT rep3 51,651,104 47,545,947 92.0521

MCF10AE545K rep1 73,874,007 67,122,851 90.8613

MCF10AE545K rep2 57,313,955 51,485,649 89.8309

MCF10AE545K rep3 52,917,763 47,766,995 90.2665

MCF10AH1047R rep1 206,598,621 188,546,753 91.2623

MCF10AH1047R rep2 332,803,463 302,986,459 91.0407

MCF10AH1047R rep3 299,799,005 259,056,300 86.4100

Table 2.1: RNA-seq Summary Table. This table summarizes the preprocessing of RNA-
seq reads prior to differential expression analyses.
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2.4.4 ATAC-Seq

Nuclei were isolated and ATAC-seq libraries were prepared using previously published

methods (Buenrostro et al., 2013; Barnett et al., 2020). Libraries were sequenced by the

VANTAGE Core on an Illumina NovaSeq PE150, at a requested depth of 50 million reads.

Reads from the ATAC-seq libraries were trimmed using the same process described in the

RNA-seq section. All code and specific parameters used in all data analyses can be found

at:

(https://github.com/adamxmiranda/PIK3CA). Trimmed reads were mapped to the human

genome assembly hg38 using the BBTools (version 38.69) package and Burrows-Wheeler

Aligner (version 0.7.17) (Bushnell et al., 2017; Doench et al., 2016). Quality filtering

was performed on the mapped reads using SAMtools (Danecek et al., 2021). A summary

of the sequencing preprocessing can be found in Table 2.2. Peaks of accessibility were

called using Genrich (version 0.6.1) and differential accessibility was determined using

DESeq2 (version 1.34.0) (Love et al., 2014). Accessible regions were clustered using k-

means clustering. Gene annotation and pathway enrichment was performed using GREAT

(version 4.0.4) (Tanigawa et al., 2022; McLean et al., 2010). The gene annotation parame-

ters used for GREAT were the default parameters of 5kb upstream of the transcription start

site (TSS), 1kb downstream of the TSS, or up to 1000kb in either direction for distal re-

gions. Pathway enrichment was performed on uniquely annotated genes using the Enrichr

web browser tool and the PANTHER database (Chen et al., 2013; Kuleshov et al., 2016; Mi

et al., 2013). Motif enrichment and transcription factor (TF) footprinting were performed

using HOMER (version 4.10) and TOBIAS (version 0.13.3), respectively, to identify TF

potentially binding to identified accessible peak clusters (Bentsen et al., 2020; Heinz et al.,

2010).
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ATAC-seq

Sample ID Sequenced Reads Mapped Reads MapQ Filter Filtered Reads

MCF10AWT rep1 183,619,704 180,934,051 157,598,707 111,161,682

MCF10AWT rep2 150,161,177 141,922,792 123,114,133 94,889,407

MCF10AE545K rep1 117,963,979 112,973,301 99,514,493 77,325,492

MCF10AE545K rep2 170,250,130 159,992,507 139,707,287 77,564,129

MCF10AH1047R rep1 230,336,311 212,474,650 183,344,674 122,127,880

MCF10AH1047R rep2 127,442,609 120,517,187 101,337,602 54,625,387

Table 2.2: ATAC-seq Summary Table. This table summarizes the preprocessing of ATAC-
seq reads prior to peak calling and differential accessibility analyses.
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CHAPTER 3

Therapeutic Target Identification

3.1 CRISPR KO Screens as a Discovery Tool

Genetic knockout (KO) or loss of function experiments are one of the most fundamental

experiments in modern genetics. In disrupting the function of a single gene and observing

the effects on phenotype, scientists for generations have been able to functionally charac-

terize the role of individual genes in myriad contexts. These methods are so key to genetic

research that two different approaches to performing these experiments have won Nobel

prizes in 2007 and 2020 (Valancius and Smithies, 1991; Jinek et al., 2012). The next phase

of these studies is to increase the scale at which they can be performed. Classically, a sin-

gle gene knockout could be performed at a time. This would only allow for the functional

evaluation of a single gene or genetic locus. Newer techniques, however, have allowed for

entire genomes to be evaluated in a single experiment. These experiments have revolu-

tionized not only the efficiency of gene KO experiments, but have also allowed for more

interesting and complex experiments to be developed.

Currently, one of the most powerful tools to perform whole genome KO experiments

is the whole genome CRISPR KO screen. These experiments make use of a library of

plasmids that each encode CRISPR-Cas9 gene editing proteins as well as a targeted guide

RNA that can make specific edits to the genome. This library of plasmids can be transduced

into a population of cells using lentiviral vectors at a set concentration such that individual

cells receive a single plasmid and have only one gene knockout. This strategy creates

a population of cells with individual gene KOs that can be studied in a variety of ways

(Shalem et al., 2014).

In cancer research specifically, CRISPR KO screens can be used to uncover mecha-

nisms of drug resistance, targets of therapy, and even mechanisms governing metastasis in
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specific cell models. The utility of this type of screening is that it can greatly expand the

number of genes tested and identified with relevance to a variety of cancer related mecha-

nisms (He et al., 2021).

3.2 Pruning gene targets for Use in a Select CRISPR KO Screen

A weakness and limitation of whole genome CRISPR KO screens is the amount of re-

sources and cells necessary to screen every gene in the genome. To perform a whole

genome screen properly using the Brunello library, which is considered the standard for

human genome knockout screens, cells on the scale of hundreds of millions are needed to

achieve the proper level of viral transduction (Sanson et al., 2018; Joung et al., 2017; Zhang

et al., 2014). Therefore, a great strategy to circumvent this weakness is to limit the number

of genes being targeted and thus the number of guides in the library pool being screened.

Reducing gene targets not only reduces the number of cells needed for screening, but can

also reduce the noise in screening results by focusing the assay only on genes of specific

interest to the study at hand.

To prune gene targets for a select CRISPR KO screen in our MCF-10A model of

PIK3CA mutations, we identified genes based on two different categories. Genes selected

for targeting in our KO screen needed to exhibit relevance based on both our RNA-seq

assay as well as our ATAC-seq assay. These genes would represent those that not only

exhibited differentially expressed genes within our system, but specifically those that were

near regions of dynamic regulation. Our final selection criteria were as follows:

1. Genes must exhibit significantly increased RNA expression (log2 fold change greater

than 1.5 and p-adjusted value less than 0.05) specifically in one of the PIK3CA-mutant cell

lines compared to wild type parental line.

2. Selected genes must also be annotated to a region that demonstrated significantly

increased accessibility in either mutant cell line compared to the parental cell line.

These selection criteria provided a list of 312 genes, which was further reduced to 280
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by availability of targeting guides within the Brunello library (Figure 3.1).

Genes annotated to
differentially accessible

regions

9365

Differentially 
expressed genes

304312

*280 available
in Brunello library

*

Figure 3.1: CRISPR KO screen target pruning Venn Diagram showing the breakdown
of genes selected to be included in the select CRISPR KO screen

3.3 Select CRISPR KO Screen in MCF-10A Model

In performing our select CRISPR KO screen, we were able to find many key gene tar-

gets with PIK3CA mutation-specific effects on the survival/proliferation of cells within our

MCF-10A model. For this screen, we focused our initial analysis on the differential drop

out of gene targeting guides between each of the PIK3CA-mutant cell lines compared to the

parental cell line independently. This initial analysis effectively identified genes that when

knocked out would induce a specific decrease in the proliferation/survival of PIK3CA-

mutant cells. These genes present with a negative Z-score per our analysis. However, to

identify mutation-specific activity, we compared the Z-scores from the E545K-WT compar-
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ison and the H1047R-WT comparison to identify genes that exhibited discordant activity.

From this comparison, we identified 36 genes with a z-score difference greater than +/- 1.5.

These genes are highlighted in red in Figure 3.2. The five genes with the greatest z-score

difference are labeled. These genes represent those with a genotype-specific negative effect

on proliferation/survival.
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Figure 3.2: CRISPR KO screen results Wolverine plot shows the breakdown of gene Z-
scores from each mutant cell line relative to the parental cell line. Significant hits, shown
in red, were defined by those with an absolute value Z-score difference >1.5.

To further characterize these top five hits for prioritization in further analyses, we ana-

lyzed the expression of these genes in both our cell line model as well as the TCGA-BRCA

patient samples we analyzed previously. In our cell line model, four of the genes exhibited

differential expression between the two mutant cell lines (Figure3.3A). Each of the genes
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already demonstrated differential expression in one of the mutants relative to the parental

PIK3CA WT line. Of the genes that showed differential expression, three of them showed

concordance with the genotype of PIK3CA for which they exhibited specific selectivity in

the CRISPR screen. These genes were AREG, CXCL1, and ACSS1. AREG and CXCL1

both encode protein products that are secreted factors that bind cell membrane bound recep-

tors and can promote signaling through a variety of pathways (Lindzen et al., 2021; Wang

et al., 2017). ACSS1 meanwhile encodes a subunit of the acetyl-CoA synthetase complex

(Zhang et al., 2016). Each of these genes have been independently linked to tumorigenic

mechanisms in multiple cancer types which would make any of them a great target for

further study.
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Figure 3.3: Expression of CRISPR KO Screen Hits (A) Expression of the top five
CRISPR Screen hits in our MCF-10A mutant cell lines. Significance calculated using an
ANOVA with a post-hoc Fisher’s LSD test. * = p-value 0.05-0.0332, ** = p-value .0332-
0.0021, *** = p-value 0.0021-0.0002, ****= p-value <0.0002. (B) Box and whisker plot
showing the expression of the top five CRISPR screen hit genes in patient samples from
TCGA-BRCA. Significance calculated using an ANOVA with a post-hoc Fisher’s LSD test.
Significance threshold is 0.05.

However, analysis of the expression of these genes in the TCGA-BRCA patient sam-

ples yields only one gene with differential expression between samples based on PIK3CA

genotype (Figure 3.3B). AREG exhibits significantly increased expression in the E545K
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mutant samples compared to the H1047R mutant samples. This result is consistent with

what is observed in our MCF-10A cell model. Based on these findings we chose to focus

our further validation experiments on AREG specifically.

3.4 Chapter 3 Materials and Methods

These methods are published in Miranda et al. 2024 on Biorxiv (Miranda et al., 2024). A

version of these methods can also be found where the data is stored at the Gene Expression

Omnibus (GEO) with the accession number: GSE247822.

3.4.1 Gene Target Pruning

Differential expression was determined using DESeq2 at a threshold of (log2 fold change

greater than 1.5 and p-adjusted value less than 0.05) (Love et al., 2014). Differential ac-

cessibility was assessed using DESeq2 and nearest neighbor annotation for differentially

accessible regions was performed using ChIPseeker (version 1.30.3) with the default an-

notation conditions of +/- 3kb from the TSS (Love et al., 2014; Wang et al., 2022). The

Brunello whole genome sgRNA library was modified for the selected 280 genes and pre-

pared by the Vanderbilt Functional Genomics core in the lentiCRISPRv2 plasmid back-

ground (Doench et al., 2016; Sanjana et al., 2014).

3.4.2 CRISPR KO Screen

MCF-10A cells were cultured in the maintenance media conditions at a density of 500,000

cells/well in a 6-well plate. 24 hours after seeding, cells were infected with viral super-

natant in maintenance media containing 5 µg/mL polybrene. 24 hours post-infection cells

were placed in selection media containing 1 µg/mL of puromycin and maintained for two

weeks. Following two weeks of selection, libraries were prepared and sequenced following

the protocol described in (Sanjana et al., 2014). A graphical representation of this strategy

can be found in Figure 3.4. Libraries were sequenced by the VANTAGE core and analy-

sis was performed using the maximum likelihood estimation (MLE) algorithm within the
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MAGeCK software package(version 0.5.9.5) (Li et al., 2014, 2015).

Figure 3.4: Schematic of CRISPR Screen Strategy This flowchart shows the experimen-
tal set up for the CRISPR KO screen experiment.
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CHAPTER 4

Amphiregulin as a mutation-preferential target of therapy in E545K-mutant

PIK3CA Breast Cancer

4.1 Introduction to amphiregulin

4.1.1 The function of amphiregulin

AREG, or amphiregulin, is a growth factor ligand with binding affinity for both EGFR and

HER2. Signaling through either of these receptors can promote activation of the PI3Kα

complex (Lindzen et al., 2021; Macdonald-Obermann and Pike, 2014). The near direct

interaction of amphiregulin with the mutated product of PIK3CA made it a particularly

interesting target of continued study.

AREG is one of the seven ligand agonists of the EGF receptor (Macdonald-Obermann

and Pike, 2014). AREG was first characterized as a growth modulating protein in the

MCF-7 breast cancer cell line. The name amphiregulin stems from the characterization

that it can promote growth in some cancer cell lines and inhibit growth in others (Shoyab

et al., 1988). Expression of AREG is a key to proper development of the mammary duct

and the expression of this gene is closely associated with signaling through the estrogen

receptor (McBryan et al., 2008). Newly translated AREG exists as an inactive membrane-

associated precursor that is cleaved by an ADAM metalloproteinase into the canonical

extracellular ligand molecule and an intracellular molecule. The intracellular signaling

molecule is much less characrerized but has been correlated with PI3K signaling, MAPK

signaling, and chromatin remodeling (McBryan et al., 2008; Seefried et al., 2022).

4.1.2 Amphiregulin in breast cancer

Amphiregulin has long been established as an important growth factor in early mammary

duct development (Luetteke et al., 1999; McBryan et al., 2008). However, in mature breast

tissue amphiregulin expression decreases and modulation of cell proliferation is largely
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regulated by signaling by the EGF ligand (McBryan et al., 2008; Lee et al., 2007). While

these ligands bind to the same receptor proteins, the downstream signaling pathways can

diverge quite distinctly based on the activating ligand (Wilson et al., 2009). This shift

in growth factor signaling marks the shift from developing prepubescent breast tissue to

mature breast tissue, which undergoes highly controlled periods of cell proliferation.

The shift to EGF mediated proliferative signaling however, becomes reversed in early

neoplasias of breast tissues. A histopathological study of noncancerous breast neoplasias

showed that neoplastic epithelial cells show a distinct increase in the gene expression of

AREG that is accompanied by a decrease in the expression of EGF (Lee et al., 2007).

These data show a reversion of these neoplastic cells to an earlier developmental stage that

promotes more sustained cell division. An increase in AREG expression has been shown

to be a key biomarker of oncogenesis in multiple epithelial tissue types including not only

breast but also lung, colon, liver, ovary and prostate (Busser et al., 2011).

In cancers with demonstrated AREG overexpression, cells proliferate through a self-

sufficient autocrine, juxtacrine, and paracrine loop. In this loop, cells sustain proliferative

and oncogenic gene expression profiles and phenotypes through increased signaling events

involving both the intracellular and extracellular cleaved domains of AREG (Bolitho et al.,

2021; Busser et al., 2011). These signaling events not only promote the growth of cells with

increased AREG expresssion, but also create a proliferative microenvironment where other

nearby cells can also receive proliferative signals from extracellular AREG. This growth

factor promoted loop differs from the growth factor independence that many cancers use as

a proliferative signaling mechanism as disruption of AREG can reduce the proliferation of

all cells (Bolitho et al., 2021).

The oncogenic signals in AREG overexpressing cells are characterized by three primary

elements: increased activation of PI3K pathway member proteins, increased telomerase

activity, and epithelial-mesenchymal transition phenotypes (Matsui et al., 2000; McBryan

et al., 2008; Bolitho et al., 2021). Activation of PI3K signaling by AREG particularly
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enhances the phosphorylation of AKT which leads to increased phosphorylation of the

apoptotic proteins Bad and caspase-9. These changes in cell signaling not only promote

proliferation of the cell, but make the cell resistant to apoptosis as well (Holbro et al., 2003).

AREG overexpression is also correlated to increased telomerase activity (Matsui et al.,

2000; McBryan et al., 2008). Telomerase is an enzyme that extends the telomere ends of

chromosomes. As cells divide, these telomere ends can degrade. Degradation of these

telomere ends limits the capacity of a cell to divide as these structures are necessary for the

proper segregation of chromosomes during cell division. Increased activation of telomerase

is common in many cancers as it increases the replicative cycles a cell can undertake (Kim

et al., 1994). This increase in telomerase activity in AREG overexpressing cells sustains

the proliferative microenvironment and allows for increased proliferative potential for all

cells in the microenvironment (Busser et al., 2011).

The third oncogenic element of AREG overexpression is the promotion of epithelial-

mesenchymal transition phenotypes. Epithelial-mesenchymal transition, or EMT, describes

a change in the characteristics of an epithelial cell to acquire traits more like that of a

mesenchymal cell. Those traits are primarily a lack of dependence on cell-cell adhesion and

motility (Nisticò et al., 2012). The acquisition of these traits is correlated to a cancer cell’s

ability to metastasize and form new tumors in tissues beyond the tumor origin site. One of

the key mechanisms through which AREG promotes these changes in cells is through the

redistribution of E-cadherin proteins (Chung et al., 2005; Wilson et al., 2009). E-cadherins

are important proteins for the establishment of cell-cell junctions in epithelial tissues. These

proteins bind to E-cadherins on the surfaces of other epithelial cells to orient and organize

the cells. Treatment of cells with extracellular AREG leads to intracellular localization of

E-cadherin proteins and loss of E-cadherin mediated junctions (Chung et al., 2005). The

loss of these junctions allows for disorder of the epithelial tissue and a loss of contact-

dependent signaling that would slow the proliferation of these AREG overexpressing cells.

Treatment of extracellular AREG has also been shown to increase the motility invasiveness
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of breast epithelial and breast cancer cells in both 2D and 3D culture conditions (Silvy

et al., 2001; Willmarth and Ethier, 2006).

In summary, amphiregulin is a critical growth factor ligand and intracellular signaling

molecule with the capacity to promote a proliferative gene expression profile within the

AREG activated cell and in other nearby cells in the microenvironment. Amphiregulin

is found to be overexpressed in a wide variety of tumor types, primarily epithelial ones,

and promotes a number of key oncogenic hallmarks beyond increased proliferation. The

hallmarks of cancer associated with amphiregulin overexpression are: sustaining prolifer-

ative signaling, enabling replicative immortality, nonmutational epigentic reprogramming,

unlocking phenotypic plasticity, and resisting cell death (Hanahan, 2022).

4.1.3 Amphiregulin in our model

In our MCF-10A isogenic cell line model we observe a number of key phenotypes with

regards to AREG. Firstly, both PIK3CA mutant cell lines exhibit increased expression of

AREG over WT cell lines (Figure 4.1). We also observe a region of differential accessibility

annotated to the AREG gene. This region is discussed at length in section 4.3. Lastly, our

observations culminate with selective essentiality of AREG in our mutant cell lines that is

not present within the WT cells.

Increased amphiregulin expression in our mutant cell line models describes a similar

autocrine positive feedback loop described in previous studies (McBryan et al., 2008). In-

creased PI3K signaling in mutant cells is further amplified by increased production of am-

phiregulin that also activates PI3K through growth factor receptors. Amphiregulin exhibits

increased expression particularly in E545K mutant cells (Figure 2.2B and 4.1) and E545K

mutant patient breast cancer samples (Figure 3.3B). This pattern of expression corresponds

to a mutation-preferential selective effect observed in our select CRISPR KO screen (Fig-

ure 3.2). Genetic knockout of the AREG gene in the CRISPR KO screen led to a decrease in

the proliferation and survivability of both mutant cell lines, but had a much more selective
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Figure 4.1: Expression of key genes across the isogenic cell lines. Bar plot showing
the normalized expression of genes across all three cell lines in our isogenic model. The
significance tests shown are based on a two-way ANOVA and a post-hoc Tukey test. These
are not representative of differential expression analyses shown in other figures. * = p-
value 0.05-0.0332, ** = p-value .0332-0.0021, *** = p-value 0.0021-0.0002, ****= p-
value <0.0002.

effect on the E545K mutant cells. This implies a selective dependence on amphiregulin

unique to cells bearing the E545K genotype.

4.2 Inhibition of amphiregulin in MCF-10A Model

To further to interrogate the selective dependence on amphiregulin in our cell model, we

performed a knockdown of the gene in our cell line model using three different siRNA

molecules. The goal of this experiment was to observe the impact on survival/proliferation

of cells in our model with only a reduction of the viable amphiregulin molecules in our

system. The results of this assay recapitulates and supports the findings of our CRISPR KO
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screen. Inhibition of AREG by siRNA did induce a universal decrease in the expression of

AREG, but there was only a significant decline in proliferation/survival of E545K mutant

cells (Figure 4.2). Not only did these results support the results of our previous experiment,

but it further reinforces the findings because the essentiality phenotype observed in E545K

cells is sustained even when the reduction of AREG in the system is incomplete. This

highlights the importance AREG to the E545K mutant cells and their promotion of their

proliferative signaling.
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Figure 4.2: SiRNA knockdown of AREG (A) Bar plot showing the change in expression
of AREG following the introduction of AREG inhibiting siRNA molecules. Outliers were
removed using the ROUT method with a Q threshold of 1%. Significance calculated using
an ANOVA with a post-hoc Fisher’s LSD test. * = p-value 0.05-0.0332, ** = p-value
.0332-0.0021, *** = p-value 0.0021-0.0002, ****= p-value <0.0002.(B) Bar plot showing
relative cell count as a proxy for proliferation/survivability following the introduction of
AREG inhibiting siRNA molecules. Significance calculated using an ANOVA with a post-
hoc Tukey’s test.
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Additional support for the relationship between AREG and E545K mutant breast cells

was provided in a subsequent experiment. AREG was also inhibited using a neutralizing

antibody introduced to the media. As an extracellular signaling molecule, AREG can be

inhibited by the addition of antibody to the media without the need for a delivery mecha-

nism to get the antibody inside the cells. This further improves the therapeutic potential of

AREG as a targeted therapy could be much simpler in design for this protein (Alves et al.,

2016; Zhou et al., 2022). A lot of drug design can be focused on how to get the treatment

molecule into the target cell. AREG being an extracellular protein would really streamline

much of that design process.

The results of our assay can be seen in Figure 4.3. Once again we demonstrate a sen-

sitivity to the perturbation of AREG within our E545K mutant cell line. This observation,

however, is accompanied by an observed reduction in the proliferation/ survival of H1047R

mutant cells. This is to be expected to a degree as the CRISPR KO screen results demon-

strated that genetic knockout of AREG has a slight selective effect on H1047R cell lines

too. Most importantly however, is that there is no significant reduction in the viability and

growth of the WT parental cell line. This reinforces AREG as a potential target with strong

selectivity of PIK3CA mutant cells with minimal predicted toxicity to healthy cells, which

is a major weakness in the current treatment of PIK3CA mutant breast cancers.

4.3 Identification of a putative enhancer region of AREG

4.3.1 ATAC-seq identifies putative enhancer region upstream of AREG transcription

start site

ATAC-seq, as described earlier, identifies regions of chromatin accessible to protein bind-

ing. These regions of accessible chromatin are typically associated with sites of active

transcription and gene start sites, but also associate with TF binding sites in intergenic loci

as well. Accessible TF binding sites within intergenic regions of chromatin are considered

enhancer regions as they may influence the transcription level of target genes.
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Figure 4.3: Inhibition of AREG using a neutralizing antibody Bar plot showing rela-
tive cell count as a proxy for proliferation/survivability following the introduction of 3µg
of AREG neutralizing antibody; (RandD Systems, MAB262-SP). Significance calculated
using an ANOVA with a post-hoc Sidak’s test. * = p-value 0.05-0.0332, ** = p-value
.0332-0.0021, *** = p-value 0.0021-0.0002, ****= p-value <0.0002.

One aspect of the criteria for the selection of gene targets within our CRISPR KO screen

was that selected genes must also be annotated to a region that demonstrated significantly

increased accessibility in either mutant cell line compared to the parental cell line. This

means that there was at least one putative enhancer region annotated to AREG. Our gene

of interest AREG was annotated to a single putative enhancer region at the chr4:74435384-

74435596 locus. This region is almost 10 kilobases from the transcription start site of the

AREG gene and is called as uniquely accessible in genes with the E545K genotype. A

graphical representation of this locus can be found in Figure 4.4. This unique accessibility

profile corresponds to the unique regulation of AREG and its relationship to breast cells

with the E545K genotype. These results suggest that the increased expression of the AREG
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gene observed in E545K cells is promoted by TF binding activity at this uniquely accessible

peak.
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Figure 4.4: Putative enhancer of AREG locus Genomic tracks showing the ATAC-seq
data across the isogenic cell lines alongside key SNPs at the AREG gene locus. The red
box highlights the differentially accessible region annotated to the AREG gene. The green
bars designate GTEx AREG eQTLs. The gold bar designates a GWAS SNP associated
with breast cancer.

At this locus, we also observe 5 different eQTLs (expression quantitative trait loci) pre-

dicted to affect AREG expression within 1 kilobase of the called peak region (Lonsdale

et al., 2013). eQTLs are sites of genetic variability that have been shown to impact the

expression of genes depending on the genotype at these sites (Carithers et al., 2015; Aguet

et al., 2020). A full list of the eQTLs can be found in Table 4.1. The clustering of AREG

eQTLs at this locus reinforces our association between activity at this locus and the reg-
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ulation of AREG expression specifically. We also identified a SNP (rs28570600) around

this locus that has been associated with breast cancer risk by GWAS (Zhang et al., 2020).

This is another layer of evidence linking the significance of this region to a potential role

in breast cancer.

SNP ID Coordinates P-Value gDNA Beta Score Tissue Identified In

rs55738416 chr4:74435873 1.20E-08 0.19 Cells-Cultured

Fibroblasts

rs1845569 chr4:74434878 4.80E-08 0.26 Testis

rs746861450 chr4:74434727 5.20E-07 0.44 Heart-Left Ventricle

rs746861450 chr4:74434727 6.40E-07 0.48 Nerve-Tibial

rs746861450 chr4:74434727 1.10E-06 0.41 Adipose-

Subcutaneous

rs746861450 chr4:74434727 2.80E-06 0.22 Whole Blood

rs972076808 chr4:74436186 3.30E-06 0.45 Cells-Cultured

Fibroblasts

rs1005463662 chr4:74436131 2.30E-05 0.15 Cells-Cultured

Fibroblasts

Table 4.1: eQTL Summary Table This table summarizes eQTLs of AREG near the puta-
tive enhancer region.

4.3.2 CRISPR-mediated deletion of putative enhancer of AREG

Much like the concept behind the gene knockout experiments discussed before, we per-

formed a genetic knockout of the putative enhancer region to determine its effect on AREG

expression and cell growth and proliferation. To execute this experiment we designed guide

RNAs that would target part of the called accessible peak and some of the eQTLs. The goal

of this strategy is to excise the region we suspect to have regulatory influence over AREG.

A combination of these guides complexed to Cas9 protein was introduced to the cells in
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our isogenic model.

Results of this assay are shown in Figure 4.5. From these results, it can be seen that

deletion of this enhancer region induces a significant decrease in AREG expression across

each of the cell lines in our model (Figure 4.5A). This demonstrates a regulatory relation-

ship between the putative enhancer region and the expression of AREG in breast cells.

More interestingly, the deletion of this region had a less universal effect on proliferation/-

survival. Deletion of the putative AREG enhancer induced a specific reduction in prolifer-

ation and survival unique to the E545K cells in our model (Figure 4.5B). This result was

once again consistent with the relationship we have characterized between cells with the

E545K genotype and dependence on AREG expression and activity. Whether perturbed at

the genetic, RNA, protein, or even regulatory level; perturbation of AREG has a specific

effect on PIK3CA mutant cells particularly of the E545K genotype. This mutation-specific

effect drives home the conclusion that our analysis of functional genomic data can iden-

tify potential therapeutic targets with mutation-specific selection and limited toxicity to

non-mutant cells.

4.3.3 Synthetic lethality of AREG loss in E545K

This relationship between the perturbation of AREG (and/or its putative enhancer) and the

mutation-specific decline in survival of the E545K mutant cells describes a synthetic lethal

relationship in which loss of this genetic region or molecule is incompatible with growth

and survival of these specific mutant cells. This synthetical lethal relationship highlights

a potential therapeutic vulnerability and there have been a number of recent advances in

the research of cancer therapeutics designed to take advantage of these synthetic lethal

relationships.

The biggest success story for synthetic lethal cancer therapeutics is the inhibition of

PARP in BRCA1/2 mutant breast cancer. BRCA1 and BRCA2 are both commonly mu-

tated genes in breast cancer that encode proteins that play critical roles in DNA damage
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Figure 4.5: CRISPR-mediated deletion of putative AREG Enhancer (A) Bar plot show-
ing the change in expression of AREG by qPCR following the introduction of AREG en-
hancer flanking RNPs. (B) Bar plot showing relative cell count as a proxy for proliferation/-
survivability following the introduction of AREG enhancer flanking RNPs. Significance of
A and B calculated using an ANOVA with a post-hoc Sidak’s test. * = p-value 0.05-0.0332,
** = p-value .0332-0.0021, *** = p-value 0.0021-0.0002, ****= p-value <0.0002.

repair (Prakash et al., 2015; Kuchenbaecker et al., 2017). PARP also encodes a DNA dam-

age repair protein, but it is not as frequently mutated as the BRCA proteins. The synthetic

lethal relationship of these molecules is such that when PARP is inhibited, in addition to

the loss of function in the BRCA genes from mutation, the cell is unable to resolve mul-

tiple forms of DNA damage and ultimately succumbs from the accumulation of too many

breaks in the DNA. Inhibition of PARP has been highly successful in the clinic with a sig-

nificant increase in progression-free survival reported in the SOLO2 phase III clinical trial

of olaparib (Poveda et al., 2021). Loss of PARP makes BRCA mutant cells incompatible
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with survival. This is similar to our demonstrated relationship between AREG and PIK3CA

mutant cells.

The success of PARP inhibition has been an inspiration for additional research into

targeting synthetic lethal relationships in cancer. One of the major initiatives to accomplish

this is the Cancer Dependency Map (DepMap). This initiative synthesizes the findings from

many CRISPR KO screens across cancer cell lines to identify gene dependencies across a

number of cancer types and mutational backgrounds (Setton et al., 2021; Pacini et al.,

2021). In fact, when analyzing data from DepMap with relation to PIK3CA mutations and

AREG, we see specific essentiality of AREG specifically in breast cancer cell lines with

E545K mutant PIK3CA (Figure 4.6).

4.4 Chapter 4 Materials and Methods

These methods are published in Miranda et al. 2024 on Biorxiv (Miranda et al., 2024). A

version of these methods can also be found where the data is stored at the Gene Expression

Omnibus (GEO) with the accession number: GSE247822.

4.4.1 siRNA Inhibition of AREG

Cells were plated in their respective maintenance media at a density of 50,000 cells/well in

a 12-well plate. 24 hours following seeding, cells were treated with three different commer-

cially validated AREG targeting siRNA (Ambion), a negative control siRNA (Invitrogen,

4390843), or a null transfection condition using the Lipofectamine RNAiMAX Transfec-

tion Reagent (Invitrogen, 13778100) at a concentration of 10 pmol siRNA per well. 24

hours post-transfection, RNA was prepared from cells using the Qiagen RNeasy kit. Four

replicates were prepared from each cell line and each treatment condition. RNA was con-

verted to cDNA using the iScript cDNA Synthesis Kit (Bio-Rad, 1708890). qPCR was

performed using the AREG and ACTB qPCR primer sets for each sample with the SYBR

Green PCR Master Mix (Applied Biosystems, 4309155). Expression of AREG was calcu-

lated relative to the expression of housekeeping gene ACTB.
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To assess the impact on survival and proliferation, cells were plated in their respective

maintenance media at a density of 30,000 cells/well in a 24-well plate. Cells were treated

with one of three different commercially validated AREG targeting siRNA (Ambion) or a

negative control siRNA (Invitrogen, 4390843) using the Lipofectamine RNAiMAX Trans-

fection Reagent (Invitrogen, 13778100) at a concentration of 5 pmol siRNA per well. Cell

counts and viability were measured 24 hours following treatment using a Vi-CELL BLU

cell viability analyzer (Beckman Coulter). This experiment was performed with four repli-

cates in each cell line and each treatment condition.

4.4.2 Anti-AREG Antibody Assay

Cells were plated in their respective maintenance media conditions at a density of 50,000

cells/well in 12-well plates. 24 hours following seeding, cells were treated with 1, 3, or 5µg

of AREG neutralizing antibody (RandD Systems, MAB262-SP) or an equivalent volume

of PBS. This experiment was performed with three replicates for each cell line and each

treatment condition. Cells were counted and viability was measured 72 hours following

treatment using a Vi-CELL BLU cell viability analyzer (Beckman Coulter).

4.4.3 Deletion of putative AREG Enhancer

Two sgRNAs were designed targeting the locus, chr4:74435384-74435596, which is anno-

tated to the AREG gene as well as nearby AREG eQTLs identified from the GTEx Portal.

The guide RNAs were purchased as sgRNAs from IDT with custom targeting sequences.

Cells were plated in their respective maintenance media conditions at a density of 50,000

cells/well in a 12-well plate. Transfection mixtures were prepared and added to each of

the cell lines according to the guidelines described in the Lipofectamine CRISPRMAX

Transfection Reagent Kit (Invitrogen, CMAX00001) using the provided reagents and the

Alt-R S.p. HiFi Cas9 Nuclease V3 (IDT, 1081060) in Opti-MEM Reduced Serum Me-

dia (ThermoFisher, 31985062). Separate mixtures were prepared containing either a 1:1

mixture of the designed AREG enhancer flanking guides or a control mixture of Alt-R®
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CRISPR-Cas9 Negative Control crRNA 1 (IDT, 1072544) duplexed to Alt-R® CRISPR-

Cas9 tracrRNA DNA and RNA were collected from separate experimental replicates 24

hours after transfection (at least 4 technical replicates were prepared for each cell line in

each treatment condition). Cell counts and viability were measured 72 hours following

transfection using a Vi-CELL BLU cell viability analyzer (Beckman Coulter).

DNA was collected using the Wizard SV 96 Genomic DNA Purification System (Promega,

A2370). PCR was performed using Phusion High-Fidelity PCR Master Mix (NEB, M0531)

and the enhancer deletion validation primer set. PCR mix and thermocycler conditions

were set according to the Phusion Master Mix protocol provided by NEB. PCR products

were measured and visualized using a D5000 ScreenTape System (Agilent, 5067).

RNA was isolated from cells using the RNeasy Plus Mini Kit (Qiagen, 74134). RNA

was converted to cDNA using the iScript cDNA Synthesis Kit (Bio-Rad, 1708890). qPCR

was performed using the AREG and ACTB qPCR primer sets for each sample with the

SYBR Green PCR Master Mix (Applied Biosystems, 4309155). Expression of AREG was

calculated relative to the expression of housekeeping gene ACTB.

A full summary of the oligos used in these assays can be found in Table 4.2.
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Oligo Name Oligo Type Sequence

AREG Enhancer

Upstream

sgRNA 5’mC*mC*mC*rA rA rU rG rA rA rG rA rG rC

rA rC rG rG rU rC rA rG rU rU rU rU rA rG rA

rG rC rU rA rG rA rA rA rR rA rG rC rA rA rG

rU rU rA rA rA rA rA rA rG rG rC rU rA rG rU

rC rC rG rU rU rA rU rC rA rA rC rU rU rG rA

rA rA rA rA rG rU rG rG rC rA rC rC rG rA rG

rU rC rG rG rU rG rC mU*mU*mU*rU-3’

AREG Enhancer

Downstream

sgRNA 5’mG*mU*mU*rU rA rC rA rA rC rG rA rC rC

rU rG rC rU rC rA rU rG rU rU rU rU rA rG rA

rG rC rU rA rG rA rA rA rU rA rG rC rA rA rG

rU rU rA rA rA rA rA rG rG rC rU rA rG rU rC

rC rG rU rU rA rU rC rA rA rC rU rU rG rA rA

rA rA rA rG rU rG rG rC rA rC rC rG rA rG rU

rC rG rG rU rGr-CmU*mU*mU*rU-3’

Table 4.2: Oligo Table This table contains the sequences of all oligos used in the work
described in Chapter 4.
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AREG Enhancer Deletion

Validation F

PCR Primer 5’-GGAGGCATTTTGTTTCCTGG-3’

AREG Enhancer Deletion

Validation R

PCR Primer 5’-GGGGGAAAGGTTAACCAACT-3’

AREG qPCR F qPCR Primer 5’-TTCCAACACCCGCTCGTTTTGG-3’

AREG qPCR R qPCR Primer 5’-AGTAGTCATAGTCGGCTCCC-3’

ACTB qPCR F qPCR Primer 5’-GTTGTCGACGACGAGCG-3’

ACTB qPCR R qPCR Primer 5’-GCACAGAGCCTCGCCTT-3’

Silencer Select Negative Con-

trol #1 siRNA

siRNA Unlisted (Catalog #: Invitrogen, 493084)

AREG siRNA #1 (Ambion,

s1549)

siRNA GACAAUACGUCAGGAAAUAtt

AREG siRNA #2 (Ambion,

10332)

siRNA GGGAGGGCAAAAAUGGAAAAtt

AREG siRNA #3 (Ambion,

147186)

siRNA GCCGACUAUGACUACUCAGtt

Table 4.2: Continued
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Figure 4.6: DepMap essentiality data of AREG Box and whisker plots showing the Z-
score of AREG KO in all cell lines from the DepMap study stratified by cancer type and
PIK3CA mutation. p-values calculated using nonparametric t-test.
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CHAPTER 5

Conclusions for the PIK3CA story

5.1 Conclusions on the differential gene regulation of PIK3CA mutant cells

Our assessment of gene expression and gene regulation within our isogenic cell line model

of PIK3CA hotspot mutations uncovered divergent tumorigenic mechanisms that under-

score strong differences in biochemical signaling. From our RNA sequencing we identify a

gene expression profile in the E545K cells that appears to align with what we would expect

for cells with overly active PI3K signaling. The H1047R cells however show enrichment

of genes associated with other tumorigenic pathways, like estrogen signaling and K-Ras,

that do not canonically overlap with the activity of PI3K.

These distinct profiles of gene regulation are further supported by our findings in the

ATAC-seq data. Our ATAC-seq data shows unique profiles of accessible chromatin de-

pendent on the genotype of PIK3CA. These accessible regions are also bound by distinct

groups of transcription factors. E545K cells show increased accessibility at and binding of

TEAD transcription factors. Members of the TEAD transcription factor family are canon-

ically activated by PI3K signaling. This contrasts with the accessible regions found in

H1047R cells. H1047R-preferred regions are primarily associated with AP-1 transcription

factors, which are not canonically activated by PI3K signaling.

Together these results demonstrate a model in which the genotype of PIK3CA mutation

has a distinct impact on the tumorigenic signaling of breast cells. Despite these mutations

occurring within the same gene, the impact on cell signaling is quite different. The E545K

mutation promotes what seems to be canonical signaling of PI3K, while the H1047R mu-

tation promotes the sister MAPK pathway of proliferative signaling. These distinct expres-

sion profiles are also replicated within the gene expression of actual breast cancer samples.

A visual representation of this proposed model can be found in Figure 5.1.
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5.2 Conclusions on AREG

In short, our findings on AREG identify it as a gene target of particular interest for breast

cancers with E545K PIK3CA mutations. AREG not only presents with increased expres-

sion unique to E545K mutant cells, but it also presents with a unique putative enhancer

that is upstream of the TSS. These observations, with regards to the expression, are also

supported by data from actual breast cancer samples from the TCGA-BRCA database,

in which samples with the E545K mutation exhibited increased expression of AREG com-

pared to samples with the H1047R mutation. We also demonstrate that that perturbations of

AREG at multiple molecular levels have mutation-specific impacts on the proliferation/sur-

vival of PIK3CA mutant cells. The results of these assays suggest a near mutation-specific

oncogene dependence on the presence and function of AREG to E545K mutant cells and

breast cancers. Per the biochemical role of AREG as a growth factor receptor, and by con-

sequence PI3K, agonist; a model of a unique positive feedback loop can be proposed. In

this model, E545K mutant PI3K complex promotes increased expression of AREG. This

increased production of AREG proteins further promotes cell growth signaling through the

PI3K pathway as well as even more AREG. Perturbation of AREG however, disrupts this

cycle and can slow this proliferative signaling.

All of these factors point to AREG as a strong candidate for future study as a therapeutic

target with a synthetic lethal relationship with mutant PIK3CA. From our experimental

validation, multiple points of vulnerability were identified. Perturbation of AREG at the

DNA, RNA, and protein levels all had deleterious effects on the PIK3CA mutant cells with

minimal effect on the WT parental line. Firstly, this suggests minimal toxicity in targeting

AREG, which is the primary weakness of current treatments for PIK3CA mutant cancers.

Secondly, this means that a variety of treatment modalities could be explored in the drug

development phase. An inhibitor of AREG function directly could be just as viable or

worth pursuit as an inhibitor that blocks a certain TF from the AREG enhancer site.

Data presented in Appendix A further supports AREG as a target and also implicates
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other nearby growth factor ligand genes as potential agonists of the feedback loop model.

5.3 Impact on the field

The current paradigm in the field of cancer precision medicine is to identify an oncogenic

protein and to develop a specific inhibitor that neutralizes the function of that protein. The

research presented within this dissertation challenges this paradigm as a best practice for

all oncogenic proteins. In the case of the PIK3CA gene and the encoded p110α subunit of

PI3K in breast cancer, inhibition of this specific protein and complex leads to serious tox-

icity in patients. Through our functional genomic analyses of isogenic cell lines, we iden-

tified alternative targets of treatment with specific effects on mutant cells. Our approach

also provides a broadly applicable framework for identifying mutation-specific targets of

treatment using other isogenic cell line models as well.

This research also challenges another paradigm that all oncogenic mutations within a

gene have the same effect on the phenotype of a cell. In previous studies, the two hotspot

mutations of PIK3CA were treated as if they would have identical impacts on cell phe-

notypes. This was perhaps most importantly the case in the SOLAR-1 clinical trial of

alpelisib in which the differential response of patients with either hotspot mutation was

not even considered as part of the study (André et al., 2021). Not only does our research

demonstrate that the different mutations in PIK3CA influence response to alpelisib, but

that these mutations drive oncogenic phenotypes through distinct pathways and gene reg-

ulatory mechanisms (Figure 5.1). Not only do these findings demand further evaluation

of clinical response to PI3K inhibitors based on PIK3CA genotype, but they also suggest

that other common oncogenes with multiple hotspot mutations need to be reevaluated in a

mutation-specific manner.

5.4 Limitations of this study

While this study does make a number of impactful observations, there are some considera-

tions that must be taken into account when evaluating the discussed results.
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The first of these limitations is that each of the described assays is performed in a single

isogenic cell line model. When using a single model, it can be difficult to make a distinction

in experimental results being due to the intended biological variable or an idiosyncracy of

the particular model. Beyond this being a single cell lineage model, the mutant cell lines

are both single clones which may be prone to peculiarities after being bottlenecked in a

single cell dilution during development. To offset this limitation of the study, we supported

our findings with patient data when possible. This support using patient data is largely used

with regards to the gene expression and RNA-seq assays. The cancer genome atlas (TCGA,

specifically the TCGA-BRCA) contains data from RNA-seq performed on actual patient

breast cancer samples. Using this data, we were able to show that expression patterns

from our cell line model are consistent with what is seen in patient samples (Figure 2.2C,

2.2D, 3.3B). The ultimate goal of our study is to find vulnerabilities that will be effective

in patients, so being able to verify our results with actual patient data is encouraging for

future applications of the presented findings.

A limitation in our approach to identifying candidate genes for our CRISPR KO screen

was that we only relied upon gene expression data from RNA-seq and ChrAcc data from

ATAC-seq. While identifying genes from these assays yielded a fine number of candidates

to evaluate with CRISPR KO screen, there were a number of other assays or epigenetic

marks that could have been considered in this selection process. Among these potential as-

says was ChIP-seq for histone marks. The various posttranslational modifications to histone

proteins have strong correlations to the mechanisms of gene expression (Dong and Weng,

2013). ChIP-seq, and the more modern CUT&RUN assay, are assays that can be used to

assess the presence of specific histone modifications throughout the genome (O’Geen et al.,

2011; Meers et al., 2019). Using the presence of specific histone markers could have been

another layer of data that could have further refined our gene selection and helped to better

characterize the molecular mechanisms defining the distinctions between our mutant cell

lines. Our choice to focus on ChrAcc however, stems from the nature of the peaks this data
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provides. Our ultimate goal from these assays was to identify a select list of genes to use

for our CRISPR KO library and ATAC-seq peaks are concise and punctuated peaks of less

than 1000 base pairs. The concise nature of these peaks makes it easy to connect these

peaks with specific genes they may have association with. Histone modifications however,

produce peaks that occupy larger swaths of the genome (˜100kb) (Ma and Zhang, 2020).

These large peaks can make it hard to make connections between these putative regulatory

regions and genes of influence. These larger regions may also contain many transcription

factor binding sites, which would also cloud which transcription factors are playing a role

in regulating the expression of the cells. ATAC-seq peaks, by nature of their relative size

contain fewer TF binding sites which makes it far easier to infer which TFs are actively

playing a role in gene expression. While ATAC-seq has certain advantages over ChIP-seq,

there is still a degree of assumption that is made when connecting enhancer loci to their tar-

get gene promoters when using either of these techniques. In our study, we use a ”nearest

neighbor” approach to determine enhancer-gene relationships. This approach makes the

assumption that the gene promoter closest to the accessible site is the target of that putative

enhancer. While there is a strong correlation between the base pair distance of an enhancer

and its target gene/genes, this is not always the case (Qin et al., 2022). Only assays of chro-

matin conformation can truly provide evidence linking the interaction between an enhancer

element and a gene promoter (Pope et al., 2014). In the following Appendix A, we show

data from our own chromatin conformation assays in a similar isogenic cell line model.

The results from our select CRISPR KO screen also reflects only a single trial for this

experiment. Additional trials may yield some variation in the results for genes to meet the

defined significance threshold, and additional repetition could yield more true hits of inter-

est that were labeled as false negatives in this single trial. While we would have liked to

have done additional trials of this assay, a change in leadership at the Functional Genomics

Core at that time led to our select library of 280 genes being lost. Despite the single-

ton nature of this screen experiment, our accompanying experimental validation of AREG
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inhibition as well as our findings from the clinical samples in TCGA and METABRIC

databases (Miranda et al., 2024) provides confidence that AREG, our primary hit, indeed

has an important biological function in this system.

A shortcoming of our validation experiments for AREG inhibition is that they were all

performed in the same noncancer derived model. Our MCF-10A model is almost entirely

wild type, which is a great advantage when we want to study the function of the PIK3CA

mutations in near isolation. However, a key difference between our model and cancer de-

rived models is the presence of other mutations. While we may have identified selective

hits from our CRISPR KO screen with specific function with regards to these mutations in

isolation, it is unlikely that an actual breast cancer would have only a single mutation (this

may be the case more commonly in a few other cancer types, but would be exceedingly

rare in breast cancer (Chalmers et al., 2017)). So what we are missing in our model, is

the potential for the epistasis of other mutant genes to compensate for a factor like AREG

inhibition. In also doing these experiments in a cancer-derived model it may become evi-

dent that AREG inhibition alone is insufficient to produce the same effect in the presence

of other oncogenic mutations. This type of information would be greatly informative and

may preempt us to try AREG inhibition in combination with another therapeutic strategy

when working in more complex model systems.

We also never validated the protein levels of AREG in our system. All of our validation

experiments were predicated on using the RNA expression level of AREG as our measure

for AREG levels in the cell. While RNA expression does have a high correlation to the

protein level of a given molecule in the cell, this relationship is not always a consistent

ratio. See our discussion of 4EBP1 in section 1.1.1.2 for an example of a protein interac-

tion creating a rate limiting step prior to translation. However, while the protein levels of

AREG were never evaluated specifically using a western blot or ELISA assay, our results

demonstrate that perturbation of AREG at the RNA level via siRNA and perturbation of a

gene regulatory region were sufficient in producing significant results similar to that of the
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neutralizing antibody with regards to cell survival. These results provide evidence that the

rate limiting step in AREG protein production is likely at the RNA expression level and

not at the protein translation step. This case however, should not be taken as the rule and

future validation of other screen hits should keep this in mind when evaluating the results

of validation experiments.

Another limitation of this study is that all of the described assays are performed in a

2D in vitro culture system. Cancer is a complicated disease and factors like the three-

dimensional nature of a tumor or the presence of other cell types can greatly influence not

only the gene expression profiles of our cell lines, but they can also influence how cells

respond to perturbations like AREG inhibition. Future experiments need to address this

limitation and study the impact of these observations in more complex models like a 3D

culture, or an in vivo mouse model. These models can better mimic these other variables

present in real disease that could influence the interpretation of our results. In doing these

experiments, it may come to light that the presence of other cell types can sustain E545K

mutant cells even when AREG is inhibited. This is an observation that would be impossible

to make in our current model, but could be highly relevant in the future development of

tareted therapies or advancement of AREG inhibition. Were this the case, we may need to

consider a combinatorial therapeutic strategy in addition to AREG inhibition to see more

promising results in a more nuanced model system.

5.5 Future directions

There are a number of promising future directions to further the findings of this dissertation.

The foremost of these directions should be the further validation of AREG as a therapeu-

tic target of treatment in E545K PIK3CA mutant breast cancer. For the reasons outlined

above, AREG profiles as a particularly interesting therapeutic target that could have real

clinical applications. A potential specific inhibitor for E545K mutant PIK3CA would be of

particular clinical value as the mutation-specific inhibitors that are currently in trial both
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target the H1047R variant. As an accompaniment to the in vitro testing of AREG inhibi-

tion in our cell line models, validation of the impacts of AREG inhibition in pre-clinical in

vivo models would go a long way to supporting this target as being worthy of investment

in drug design and discovery. A specific experiment to address this would be testing the

impact of AREG inhibition on the growth of PIK3CA mutant patient-derived xenograft tu-

mors in mice. Patient-derived systems would be a good addition to 3D cultures and/or in

vivo models. Patient-derived models are created from patient tumor tissue collected in the

clinic. In the limitations section, we discussed how the presence of other mutations would

be a necessary factor to evaluate the efficacy of AREG inhibition. Patient-derived models

have an advantage over immortalized cell line models in that the mutations present within

the patient-derived tissue are more representative of mutations within actual breast cancers.

Many breast cancer immortalized cell line models like MCF-7 are genetically unstable and

may have mutations that would not be representative of clinical samples.

The select CRISPR KO screen highlighted in this dissertation uncovered a number of

potential gene targets with mutation-specific effects on the survival/proliferation of cells.

While AREG profiled as the most promising among these genes and was further validated

in this study, there are a number of other hits from this screen that could also prove to be

promising. The screen hit that I would choose to follow up on next would be CXCL1. This

gene also encodes an extracellular signaling molecule that can promote similar signaling

pathways that AREG does (Wang et al., 2017). Knock out of the CXCL1 gene showed

a specific detrimental effect on H1047R cells in our select CRISPR KO screen which is

opposite the effect demonstrated by knock out of the AREG gene.

One thing to consider when targeting CXCL1 in more complicated in vivo models is

that CXCL1 primarily binds the CXCR2 receptor. CXCR2 is highly promiscuous with high

affinity for seven different ligands. One of these other ligands is CXCL2 (Korbecki et al.,

2022). According to the GTEx portal, the CXCL2 gene is expressed at a comparable level

to CXCL1 in breast tissue (Lonsdale et al., 2013). This could create a scenario in which
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the presence of CXCL2 in an in vivo model could compensate for CXCL1 inhibition. This

is a consideration for the testing of CXCL1 inhibition, but the experiments will need to be

performed to see if any of this bears out.

Ultimately, identifying a viable target of treatment for both breast cancer hotspot mu-

tations of PIK3CA would really demonstrate the strength of this experimental framework

and provide improved treatment to a larger population of patients.

77



Miranda et al., Figure 6
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Figure 5.1: Pathway Diagram of Proposed Feedback Loop This pathway Diagram illus-
trates the proposed pathway of action for AREG in our PIK3CA mutant cells in relation to
other differentially regulated genes.
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Appendix A

Chromatin Conformation Analysis of PIK3CA Mutant Breast Cells

A.1 The Role of Chromatin Conformation in Gene Expression

The organization of chromatin within the nucleus is an important mechanism for the regula-

tion of gene expression in a given cell (Pope et al., 2014). Many models of gene expression

visualize DNA in one or two dimensions in which accessible promoters are bound by TFs

and RNA polymerase and gene expression is increased. These models often ignore or

oversimplify the fact that the nucleic acids and proteins of chromatin are three-dimensional

molecules that need to coordinate and interact within three-dimensional space.

The best known demonstration of chromatin conformation in gene regulation is the

enhancer-gene promoter looping with regards to transcription initiation. The canonical

model of transcription initiation demonstrates that a TF-bound distal enhancer region must

be brought into contact with a TF-bound promoter to either recruit RNA polymerase and/or

to initiate the transcription process. This looping event is mediated by a number of special-

ized transcription factors and shows how chromatin conformation is key to the regulation

of gene expression. Enhancer elements need to be able to co-localize and interact with gene

targets to promote proper expression (Kagey et al., 2010; Valton and Dekker, 2016).

Outside of enhancer-gene promoter looping there are additional classifications of reg-

ulation relevant to the regulation of gene expression. The first of these are ”associated

domains”. There are number of different kinds of associated domains, but the two main

types are topologically associated domains (TADs) and lamina associated domains (LADs).

TADs are a bit of a catch-all term as far as associated domains go and generally refer to

regions of chromatin with high levels of interaction as measured by Hi-C. These regions are

typically separated, or punctuated by binding sites for the transcription factor CTCF, which

serves as an anchor for the looping of larger chromatin domains. TADs typically define
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the range at which enhancers can interact with target genes as gene-enhancer interactions

are greatly increased between elements within a TAD (Valton and Dekker, 2016). LADs

are a slightly more unique associated domain as they refer to regions of the genome that

congregate at, and associate with, the nuclear membrane. These regions exist at the periph-

ery of the nucleus and are identified through the association of Lamin A with chromatin.

These regions have some unique gene expression interactions due to their association with

the proteins of the nuclear membrane (Lochs et al., 2019).

Another major classification of chromatin conformation are A/B compartments. This

classification defines different TADs or groups of TADs. A compartments are classified as

regions of active transcription. A compartments are correlated with increased expression

of included genes and higher levels of intra-TAD interaction. B compartments are just the

opposite and are typically considered regions of heterochromatin. These are classified by

low gene expression and low intra-TAD interactions. These compartments are represen-

tative of a phenomenon known as transcriptional hubs. Transcriptional hubs describe foci

within the nucleus with high levels of gene transcription.

A.2 Chromatin Conformation in Cancer

In cancer, many aspects of the regulation of gene expression become disrupted and dysreg-

ulated. Conformation of chromatin is no exception to these changes; however, it remains

an understudied aspect of gene regulation in cancer. Part of this lack of study can be at-

tributed to how dynamic and difficult to assay these interactions can be. Currently, the best

assays to observe and measure the three-dimensional state of chromatin are resource and

tissue intensive and direct clinical relevance is hard to parse. There are a few studies that

do demonstrate the potential of this research and provide hope for furthering our under-

standing of how this key element of gene regulation responds to tumorigenic perturbations

(Valton and Dekker, 2016).

An example of chromatin conformation playing a role in cancer comes from Flavahan
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et al (Flavahan et al., 2016). In this study, they identify a mutation in an insulator region

near the PDGFRA gene that occurs in glioma. This insulator region contains a binding site

for CTCF which separates two different TAD regions. The mutation in this site disrupts

the recognition sequence required for TAD binding and ultimately reduces binding of the

protein. Disruption of this binding site removes the boundary between the once separated

TADs and allows for PDGFRA to be upregulated by other more distal enhancers these

glioma cells. The critical finding of this study is the presence of a noncoding mutation with

influence on the expression of a major oncogene for this tumor type. It is often difficult to

identify noncoding mutations with specific relevance to cancer, and not only did the study

of chromatin conformation identify this mutation, but it also provided a mechanism for

how this mutation influences the cancer cells.

A.3 PIK3CA Mutation Effect on Chromatin Conformation

To study the effects of a single mutation on chromatin conformation in a breast cancer

context, we made use of another isogenic cell line model of PIK3CA mutations. This model

was developed in the MCF7 breast cancer lineage. The MCF7 cell line already carries

an E545K mutation in the PIK3CA gene (Horwitz et al., 1975; Lee et al., 2015). This

mutation was corrected to the WT genotype using AAV-mediated recombination. Initial

characterization of these cell lines demonstrated that the cells with the WT version of the

PIK3CA gene grew at a slower pace and had different response to drugs (Beaver et al.,

2013). Specifically, the corrected cell lines had a reduced response to the PI3K inhibitor

GDC-0941.

Using this isogenic cell line model, we performed bead capture HiC, also known as

tethered chromosome capture, in triplicate across the two cell lines. This method allowed

for us to assess chromatin interactions anchored by proteins across the genome. Chro-

matin interactions anchored by proteins are more likely to be stable biologically relevant

interactions.
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Figure A.1: Schematic of MCF7 Isogenic Model This schematic illustrates the isogenic
model developed in the MCF7 lineage. This model was used for the chromatin conforma-
tion experiments.

From our analysis of this data, we can conclude that there is significant chromatin re-

arrangement induced by genotype of the PIK3CA gene. In Figure A.2 we show the AREG

gene locus, which was shown to be of interest from our previous experiments involving the

MCF10A isogenic cell line model. In this figure, it can be appreciated that there are many

more distal interactions present within the PIK3CA mutant cell line that are not present

within the parental cell line. These interactions also overlap the nearby genes EREG and

EPGN. These genes encode epiregulin and epithelial mitogen, respectively. Both of these

gene products, like AREG, are Growth factor ligands and serve similar functions (Abud

et al., 2021). Increased interactions correlates with compartment A classification of associ-

ated loci, which correlates to increased expression of genes within this associating domain

(Pope et al., 2014).
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These results, in conjunction with our findings from our experiments in the MCF-10A

isogenic model, point to this region being particularly sensitive to the downstream bio-

chemical signaling induced by the E545K mutant PI3K complex. These findings also

reemphasize the importance of this locus in a cancer background which was a key limi-

tation mentioned in the limitations section 5.4. Additionally, the genes clustered at this

locus share common functions, which further supports the positive feedback loop model

posited earlier. Altered regulation at this locus could influence much more than the expres-

sion of AREG, but any of these other growth factor ligand genes. Any of these genes could

promote the feedback loop we observed in the MCF-10A isogenic model.

A.4 Future Directions of Appendix A

The initial goal of the chromatin conformation project was to generate a ”four-dimensional”

map of chromatin to understand the evolving chromatin dynamics of cancer cells as they

acquired mutations. This goal shifted as the main goal of my research limited its scope to

focus exclusively on the PIK3CA mutations. With this new focus it was my intention to

integrate the chromatin conformation data into the main project to support the findings of

that study. However, a number of key issues arose which ultimately led to this data being

left on the cutting room floor.

Firstly, there is only quality chromatin conformation data from the MCF7 cell line

model. Attempts to generate libraries from the MCF-10A lineage cell lines were unsuc-

cessful. Further troubleshooting and optimization of the Bead Capture HiC protocol to

successfully generate libraries from the MCF-10A cell lines is needed and should greatly

enrich these data.

Secondly, there is not an H1047R mutant analog of the MCF7 cell line lineage. This

means that there are no means to look for mutation-specific chromatin interactions from

this model. We attempted to generate an isogenic H1047R mutant in the MCF7 cell line,

but were ultimately unsuccessful. To generate this cell line, we attempted CRISPR-Cas9
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mediated genetic modification on the ”corrected” MCF7 cell line. We were unable to gen-

erate any positively modified cells and the cells were not very tolerant of the modification

and single cell dilution process. I attribute this to the general frailty of the corrected MCF7

cells which do not grow as well in culture. I think a better strategy may be to try and create

the H1047R cell line from the parental MCF7 cells. There are a number of obstacles to

consider here as there are two E545K mutant alleles that would need to be corrected in

addition to adding the H1047R mutation to a PIK3CA allele. This is why we did not ini-

tially choose this method, but given the difficulty we experienced with the corrected cells

it could be a good alternative. Even doing a multi-step staged strategy could yield better

results than working from fully correcting the E545K mutations as a first step.

We also attempted to use the T47D cell line as a proxy for the H1047R comparison as

this cell line is derived from the same subtype of breast cancer as the MCF7 cell line and

natively includes an H1047R mutation of PIK3CA. This however introduces a number of

confounding variables as the T47D cell line also has a TP53 loss of function mutation that

may also affect chromatin conformation.

Ultimately, there is still a lot of interesting data and findings that can be gleaned from

the chromatin conformation data that has already been generated, and diving deeper into

this data is the most attainable future direction for this project.

A.5 Appendix A Materials and Methods

A.5.1 Cell Culture

Parental MCF7 cells were purchased from ATCC. The PIK3CA corrected cell line was

generated as described in Beaver et al. (2013). Both cell lines were grown in 5%CO2

cultured at 37oC. Culture media for these cells was DMEM supplemented with 10% Fetal

bovine serum and 1% Penicillin/Streptomycin.
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A.5.2 Bead Capture HiC

A.5.2.1 Chromatin Isolation

Cells were grown to 80% confluence in a T75 flask prior to collection. Cells were

trypsinized using TypLE Express Enzyme (ThermoFisher, 12604013). The reaction was

stopped using culture media and cells were spun down. Supernatant was removed and

cells were resuspended in PBS (25mL) and rocked at 4oC to reduce clumping. formalde-

hyde was added to the suspended cells to crosslink the chromatin at a concentration of 1%

(1.625mL of 16% formaldehyde solution; ThermoFisher, 28906). The crosslinking reac-

tion was carried out with rocking for 10 minutes and stopped with the addition of .23g of

glycine (Research Products International, G36050). Samples were spun down and washed

with PBS. Samples were spun down and cell membranes were lysed with NP-40 lysis

buffer (Invitrogen, FNN0021) and incubated on ice for 15 minutes. Samples were spun

again and the cellular debris was removed. Nuclear membranes were then lysed using SDS

lysis buffer (Millipore, 20-163).

A.5.2.2 Proximity Ligation

Chromatin was diluted with water to a volume of 400µL and incubated at 65oC for five

minutes. 105µL of Iodoacetyl PEG-2 Biotin(ThermoFisher, 21334) was added to the sam-

ples and rocked for 1 hour to biotinylate DNA bound proteins. Following this incubation

TritonX-100 was added to each sample. samples were then incubated for 10 minutes on

ice and then 10 minutes at 37oC. Chromatin was then digested using 400 units of HindIII-

HF (NEB, R3104) in CutSmart (NEB, B7204) buffer overnight at 37oC. Digested chro-

matin was bound to MyOne Streptavidin T1 Dynabeads (Invitrogen, 65601). Beads were

washed with PBS-Tween20 prior to addition to the samples. Samples and beads were in-

cubated together for an hour at RT. Excess streptavidin was bound using a 1:1 mixture of

the Iodoacetyl biotin and beta-mercapto ethanol. DNA cut site ends were repaired using

the NEBNext End Repair module (NEB, E6050). DNA ends were proximity ligated us-
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ing Blunt/TA Ligase (NEB, M0367) and incubated overnight. DNA was eluted from the

beads through incubations with RNase A and Proteinase K. DNA was purified using the

QIAamp DNA Blood Mini Kit (Qiagen, 51104). Libraries were prepared and sequenced

by the VANTAGE core.
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chromatin loops identified by bead capture HiC.
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