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CHAPTER 1

Introduction

1.1 Overview

Optical image analysis is a fundamental task in the field of computer vision for extracting infor-

mation from images. It involves various types of optical images, including microscopic images,

pathology images, and meta-optic images, that are commonly utilized in computer vision tasks.

Microscopic images, captured using a microscope, provide magnified views of the micro-world

and have proven useful in understanding biological scenes at a cellular or subcellular level (Wang

et al., 2022b). These images are crucial in studying micro-environments of the human body, such as

leukocytes (Saraswat and Arya, 2014) or hippocampus brain cell (Hore et al., 2015). Histopathol-

ogy images represent another critical type of optical image, which serves as primary data for cancer

diagnosis in clinical practice. These images can provide information about the molecular details of

the tissue being examined (Lee et al., 2021). To maintain the microenvironment details, histopathol-

ogy images are generated by digital slide scanners, which create high-resolution images that require

significant computing resources. Finally, meta-optic images are generated by metasurface systems

that manipulate light and polarization to create images. These images resemble natural images and

can perform mathematical operations with appropriate metasurface design. Since metasurfaces can

be manually designed for image processing, meta-optic images offer opportunities for conducting

specific types of mathematical operations, making them particularly valuable in computer vision

research.

The utilization of optical images in representation learning poses significant challenges when

compared to well-established natural image datasets such as ImageNet and CIFAR10. Natural im-

age datasets are known to have well-organized annotations and sufficient data per category, which

facilitates efficient representation learning and optimal model performance. In contrast, optical im-

ages, such as those obtained from microscopic images, pathology images, and meta-optic images

from meta-material, are characterized by unique complexities that make them unsuitable for tra-

ditional representation learning approaches. The high requirements for representation learning on

optical images make the tasks prohibitively time-consuming and expensive, hindering efficient and
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effective learning. As a result, specialized techniques such as data augmentation, transfer learning,

and domain adaptation are necessary to address these challenges and achieve satisfactory model

performance when dealing with optical images.

In medical image research, microscopic images generated from microscopes are revolutionizing

the field of biological diagnostics and pathology research (Wang et al., 2022b). While these images

provide valuable insights into the micro-world, they also present unique challenges for representa-

tion learning in computer vision (Weinstein, 2018). Unlike natural image datasets such as ImageNet

(Krizhevsky et al., 2017), which have well-organized annotations and sufficient data per category

(Sun et al., 2017), microscopic images have limited numbers of similar organisms and cells, making

it challenging to obtain sufficient annotated data for representation learning. Furthermore, the large

image size and dataset size of giga-pixel level images in pathology research pose further challenges

for annotation and model training (Lu et al., 2021b), contributing to long training times and low

task performance (Marini et al., 2021). As such, specialized representation learning strategies are

necessary to achieve satisfactory model performance in optical image analysis.

In recent years, the availability of large amounts of patient data has led to significant benefits

in representation learning for computer-aided diagnosis in the field of pathology. With the growing

public access to pathology image datasets, such as TCGA and PAIP, there has been an increased po-

tential for training machine learning models. The TCGA dataset, for example, contains over 20,000

normal and cancer samples, providing sufficient data for model representation training. However,

histopathology data analysis presents a unique challenge due to the large volume of samples, with

each histopathology image at a gigapixel level. To overcome this issue, it is not feasible to feed

entire histopathology images to the model (Madabhushi, 2009). Instead, cropping histopathology

images into patches of normal size (e.g., 256×256) generates tens of thousands of patches for each

image. However, using currently available deep learning models and computing resources, training

a representation model using these patches would take weeks and is unscalable and inefficient in

both academia and industry.

To effectively analyze large-scale image data, it is necessary to extract hidden representations

from meta-optics images, which are generated by optical processors and captured by cameras.

While traditional image representation models are well-suited for medical images such as micro-

scopic or histopathology images, they encounter efficiency issues when applied to rapidly devel-
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oping nature image datasets such as ImageNet. This is due to the significant amount of time and

energy required for training traditional image representation models, which can be limiting when

computing resources are insufficient. Meta-optics images provide a solution to this problem by re-

ducing the energy cost and complexity of mathematical operations in digital neural networks. These

mathematical operations, also known as floating-point operations (FLOPs), are a significant bottle-

neck in popular DNNs (Chen et al., 2017), (Neshatpour et al., 2019). The optical system can be

implemented using either free-space (del Hougne et al., 2020; Mennel et al., 2020; Hamerly et al.,

2019) or chip-based (Zhang et al., 2021), (Wu et al., 2021) approaches, both of which have achieved

low power consumption and ultra-fast speed with meta-optics.

In computer vision tasks such as classification (Krishna et al., 2018), image segmentation (Mi-

naee et al., 2022), and object detection (Gaszczak et al., 2011), the performance of the model heav-

ily depends on the quality of the abstracted representation (Bengio et al., 2013). The abstracted

image representation entangles the hidden differences and similarities between images. Achieving

promising performance on computer vision tasks using representation learning typically requires

large-scale task-specific data, sophisticated model structures, or large computing resources. For in-

stance, ImageNet (Deng et al., 2010), the most widely used large-scale image database, contains

3.2 million images, providing sufficient data to support complex model structures and robust per-

formance on vision tasks. In addition to data, the performance of optical image analysis is strongly

related to the model structure and volume (He et al., 2016). Another critical aspect of representation

learning for optical image analysis is the computing resources used for model training. Training

complex models on large-scale datasets requires massive computing resources, such as GPUs, to

enable quick model updates and convergence.

This thesis focuses on addressing the challenges of efficient representation learning in three

categories of optical images: microscopic images, pathology images, and meta-optic images, using

new methods.

1.2 Challenges on Optical Image Analysis

1.2.1 Challenge on Label Efficient Semantic Segmentation on Microscopic Image Analysis

Semantic segmentation is an important task for microscopic image analysis. Semantic segmentation

aims to segment the target object apart from the background context. Multiple traditional methods
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have been established to handle the semantic segmentation task. Most of them are based on image

intensity like graph-cut (Pauchard et al., 2016), Gaussian Mixture model (GMM) (Ban et al., 2018),

and watershed (Nguyen et al., 2003). Due to the intensity-based methods needing pixel-wised an-

notation, the traditional methods are not scalable for large-scale microscopic image datasets. As

the microscopic image increases, the deep learning model plays an important role in dealing with

large amounts of data and improving thmod’l’sel performance. Due to the semantic segmentation on

microscopic images that needs annotation, the limitation makes model training resource intensive.

As an unsupervised deep learning method, CycleGAN is a breakthrough framework for the gen-

erative adversarial network (GAN). (Dunn et al., 2019; Gadermayr et al., 2019; Ihle et al., 2019b)

proposed to use CycleGAN on cellular segmentation. For the subcellular organism segmentation,

the CycleGAN model is limited by the objects overlapping and the sub-cellular dynamic nature.

Besides the microscopic image segmentation, the quantitative analysis on microscopic videos

requires instance segmentation and tracking tasks on cellular and sub-cellular objects. Compared

with segmentation on microscopic images, instance tracking on microscopic videos needs more de-

cent annotation. Traditional object tracking tasks normally consisted of two parts: (1) target object

segmentation from the background on each frame, and (2) associating objects in different frames.

To simplify the two-stage method to a single step, the pixel-embedding method (Zhao et al., 2021)

provides the solution by minimizing the representation distance from the same objects in different

frames and maximizing the representation distance from different objects. The method is resource-

sensitive, which not only needs object annotation on each frame but also requires consistent anno-

tation across all frames. Considering the high-density dynamic objects in microscopic images, the

annotation is more resource-intensive. The representation learning on microscopic images is limited

by resource-intensive object annotations.

1.2.2 Challenge on Efficient Feature Representation Learning for Medical Optical Imaging

Over the past years, the dramatic data increases of medical optical images and developments of

computation algorithms offer the deep learning model abilities to accelerate diagnosis and guide

treatment. Medical images, like histopathology images or CT images, need informatics feature

representations for clinically relevant tasks. Feature extraction from medical images is an essential

step for computer-assisted methods. Based on the feature extraction algorithms and models in nature
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image datasets, the performance is consistently promising for pathology images (Hoffer and Ailon,

2015). However, the supervised training strategy on medical image feature extraction needs massive

annotation and computing resources. The size of pathology images is at the gigapixel level, which

makes the feature extraction even more resource-intensive.

The representation learning model is resource-extensive when training with large-scale datasets.

For medical images like Whole Slide Images (WSIs), it is not adaptable to feed large-scale data into

the model directly. To minimize the need to process WSI directly, a well-accepted learning strategy

is to first learn local image features through unsupervised feature learning, and then aggregate the

features with multi-instance learning or supervised learning (Hoffer and Ailon, 2015). On the other

hand, models that achieve state-of-the-art performance require sufficient computing resources. For

example, within contrastive learning, the primary limitation is that contrastive learning methods

need a large batch size to learn the similarity and dissimilarity between samples within the same

batch. Limited computing resources are a barrier.

The large-scale pre-trained models from terabyte-level (TB) data are now broadly used in fea-

ture extraction, model initialization, and transfer learning in pathological image analyses. Most

existing studies have focused on developing more powerful pre-trained models, which are increas-

ingly unscalable for academic institutes. Very few, if any, studies have investigated how to take

advantage of existing, yet heterogeneous, pre-trained models for downstream tasks. As an example,

our experiments elucidated those self-supervised models (e.g., contrastive learning on the entire The

Cancer Genome Atlas (TCGA) dataset) achieved superior performance compared with supervised

models (e.g., ImageNet pre-trained) on a classification cohort. Surprisingly, it yielded an inferior

performance when it was translated to a cancer prognosis task. Such a phenomenon inspired us to

explore how to leverage the already trained supervised and self-supervised models for pathological

survival analysis.

Unlike training models on single data modality, multiple modalities are common in medical do-

mains. Medical image data includes radiology images, pathology images, and clinical information

like genomic data, etc. Multi-modal learning plays an important role in diagnosis and prognosis as

shown in (Chen et al., 2021b). Utilizing both radiology, pathology, and genomic data could pro-

vide potential improvement when all modalities are available for all patients. However, there exist

missing modality problems when some modality data are missing for certain patients.
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1.2.3 Challenge on Energy Efficient Representation Learning for Meta-optics

The rapid developments in deep learning led to the analysis revolution in a number of fields, from

autonomous driving to medical image analysis. The advances, however, resulted in requirements of

large computational resources, high energy consumption, and longer decision-making time for the

deep learning model. The infinite computational requirements of deep learning models would lead

to the growth of energy consumption. For the circumstances when large computing resources are

not available, the model advances would be limited by the computation requirements.

1.3 Label Efficient Representation Learning on Biological Image

1.3.1 Unsupervised Semantic Segmentation in Microscopy Imaging

Within the CycleGAN framework (Zhu et al., 2017b), many previous studies have tackled unsu-

pervised semantic segmentation in microscopy imaging. Ihle et al. (Ihle et al., 2019b) proposed to

use of the CycleGAN framework to segment bright-field images of cell cultures, a live-dead assay

of C.Elegans, and X-ray-computed tomography of metallic nanowire meshes. A similar approach

was proposed by[28] for facilitating stain-independent supervised and unsupervised segmentation

on kidney histology. DeepSynth (Dunn et al., 2019) was proposed to further extend the Cycle-

GAN framework from 2D to 3D nuclear segmentation. Even though the CycleGAN-based un-

supervised segmentation approaches have shown decent performance on microscope images, very

few studies have investigated the challenging sub-cellular microvilli segmentation with fluorescence

microscopy imaging. The sub-cellular microvilli segmentation is challenging due to the highly over-

lapping and dynamic nature of such small sub-cellular objects (Meenderink et al., 2019; Julio et al.,

2008). Different from Pix2Pix GAN (Isola et al., 2017), which requires pixel-level matching be-

tween images across two domains, CycleGAN can perform image synthesis without paired images.

However, the previous studies emphasized that the macro-level (global distribution level) matching

on the number of objects between intensity images and simulated masks improved the segmentation

performance (Ihle et al., 2019b). That fact inspired us the question that if the segmentation perfor-

mance could be further improved by doing more careful matching than the macro-level. To answer

the question, we propose a new micro-level matching (mini-batch level) strategy to match the rough

number of objects across two domains when training the CycleGAN framework.
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1.3.2 Image Synthesis without Annotations

The simple approach to synthesizing new images is to perform image transformations, which in-

clude flipping, rotation, resizing, and cropping. Such synthetic images improved the accuracy of

image classification upon benchmark datasets (Wang et al., 2022b) by enlarging datasets with syn-

thetic images. Another study (Hore et al., 2015) improved the accuracy of image segmentation

(Dice similarity coefficient) with synthetic images by applying data augmentation approaches like

random sheering and rotation. A method that is more complex than image transformations is gener-

ative adversarial networks (GAN) (Zhu et al., 2017b), which open a new window for synthesizing

highly realistic images and have been widely used in different computer vision and biomedical

imaging applications. For instance, GAN has synthesized retinal images to map retinal images to

binary retinal vessel trees (Costa et al., 2018). The synthetic images can be generated from random

noise (Zhang et al., 2018) with geometry constraints (Zhuang and Wang, 2022), and even in high

dimensional space (Nimura et al., 2015). To tackle the limitations of needing paired training data

requirements, CycleGAN (Isola et al., 2017) was proposed to further advance the GAN technique to

broader applications. CycleGAN has shown promise in cross-modality synthesis (Huo et al., 2018a)

and microscope image synthesis (Ihle et al., 2019b). DeepSynth (Dunn et al., 2019) demonstrated

that CycleGAN can be applied to 3D medical image synthesis.

1.3.3 Microscope Image Segmentation and Tracking

Historically, early approaches utilized intensity-based thresholding to segment a region of interest

(ROI) from the background. Ridler et al. (Ridler and Calvard, 1978) use a dynamically updated

threshold to segment an object based on the mean intensity of the foreground and the background.

Otsu et al. (Otsu, 1979) set a threshold by minimizing the variance of the intraclass. To avoid

the sensitivity to all image pixels, Pratt et al. (Pratt, 2007) proposed growing a segmented area

from a point, determined by texture similarity. Based on rough annotations, energy functions can

be abstracted to segment images by minimizing the aforementioned energy function (Kass et al.,

1988). Among such methods, the watershed segmentation approaches are arguably the most widely

used methods for intensity-based cell image segmentation (Kornilov and Safonov, 2018).

Object tracking on microscope videos is challenging due to the complex dynamics and vague

instance boundaries when at cellular or subcellular resolutions. Gerlich et al. (Gerlich et al., 2003)
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used optical flow from microscope videos to track cell motion. Ray et al. (Ray and Acton, 2004)

tracked leukocytes by computing gradient vectors of cell motions based on active contours. Sato et

al. (Sato et al., 1997) designed orientation-selective filters to generate spatial-temporal information

by enhancing the motion of cells (de Hauwer et al., 1999). (de Hauwer et al., 1998) also tracked cell

motion by applying spatiotemporal analysis on microscope videos. Recent studies have employed

machine learning, especially deep learning approaches, for instance, cell segmentation and tracking.

Jain et al. (Jain et al., 2007) showed superior performance of a well-trained convolutional network.

Baghli et al. (Baghli et al., 2020) achieved 97% prediction accuracy by employing supervised

machine learning approaches. To avoid relying on image annotation, Fu et al. (Fu et al., 2022)

trained a Convolutional Neural Network without annotation to track large scale fibers in images of

material acquired via microscope techniques. However, to the best of our knowledge, no existing

studies have investigated the challenging problem of quantifying cellular and subcellular dynamics

with pixel-wise instance segmentation and tracking with embedding based deep learning.

1.4 Efficient Feature Representation Learning Methods in Medical Optical Imaging

1.4.1 Unsupervised Representation Learning Model by Contrastive Learning

To extract clinically relevant information from GigaPixel histopathology images is essential in

computer-assisted digital pathology (Zhu et al., 2017a; Xu et al., 2015b; Liskowski and Kraw-

iec, 2016). However, pixel-wise annotations are resource extensive given the high resolution of

the pathological images. Thus, the fully supervised learning schemes might not be scalable for

large-scale studies. Recently, a new family of unsupervised representation learning, called con-

trastive learning, has shown its superior performance in various vision tasks (Zhuang et al., 2019;

Wu et al., 2018; Noroozi and Favaro, 2016; Hjelm et al., 2019). Learning from large-scale unla-

beled data, contrastive learning can learn discriminative features for downstream tasks. SimCLR

[62] maximizes the similarity between images in the same category and repels the representation

of different-category images. Wu et al. (Wu et al., 2018) uses an offline dictionary to store all

data representation and randomly select training data to maximize negative pairs. MoCo (He et al.,

2020a) introduces a momentum design to maintain a negative sample pool instead of an offline dic-

tionary. Such works demand large batch size to include sufficient negative samples. To eliminate

the need for negative samples, BYOL (Grill et al., 2020) was proposed to train a model with an
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asynchronous momentum encoder. Recently, SimSiam (Chen and He, 2021) proposed to further

eliminate the momentum encoder in BYOL, allowing less GPU memory consumption.

1.4.2 Efficient Model Training Adaption on Limited GPU Resources

Limited computing resources are a barrier; thus, multiple research works have been proposed to

adapt model training on limited GPU resources. As developed in (Le et al., 2011), (Pal et al., 2019b)

model training and data processing can be deployed on multiple GPU devices which enables large

batch size and speed up the training process. GPU parallel computing requires supported GPU

devices and parallel computing mechanisms. To mitigate the available GPU device limitation, an

increased effort has been made to develop memory-efficient training strategies on GPU. Song Han

et al.(Han et al., 2016) reduce model size by pruning and Huffman coding. (Luo et al., 2021)

proposed to compress the gradient in the training process to reduce the communication load in

parallel training. NVIDIA also proposed mixed precision training (Narang et al., 2018) to a half

model weight and gradient precision in model training. Besides model size and gradient, ActNN

(Chen et al., 2021a) is designed for activation value compression in training.

1.4.3 Efficient Fine-tuning Methods for Pretrained Model on Downstream Task

Supervised pre-trained models (e.g., on ImageNet (Krizhevsky et al., 2017) and BiT (Lu et al.,

2022)) have been regarded as a powerful feature extractors and weight initializers in pathological

image analysis (Kieffer et al., 2018), (Chen et al., 2022a). However, it is resource-intensive to col-

lect the large-scale annotated images, especially for gigapixel Whole Slide Images (WSIs) (Huo

et al., 2021), (David et al., 2019). Without requiring annotations, self-supervised learning (SSL)

approaches are leading to a paradigm shift in large-scale pretraining for histopathological image

analysis from visual inspection to more accurate quantitative assessment (Yang et al., 2021; Wang

et al., 2021c; Ciga et al., 2022; Liu et al., 2021a), with the rapid growth of publicly available large-

scale datasets (e.g., The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015b), and Pathology AI

Platform (PAIP) (Kim et al., 2021)). In a recent study, Wang et al. (Wang et al., 2021c) utilized

the entire TCGA and PAIP dataset to perform a self-supervised pretraining via a vision transformer,

called TransPath. TransPath learned the pathological domain-specific information and achieved su-

perior tissue classification performance. Most existing studies focused on developing more powerful
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pretrained models (Tellez et al., 2018; Mormont et al., 2021), whose resource consumption is in-

creasingly unscalable for academic institutes. Very few, if any, studies have investigated how to take

advantage of existing, yet heterogeneous pre-trained models for better performance on downstream

tasks. As an example, the pathological data-optimized contrastive learning model TransPath (Wang

et al., 2021c) achieved superior performance compared with supervised models (e.g., ImageNet

pre-trained) on a classification cohort. Surprisingly, it yielded an inferior performance when it was

translated to a cancer prognosis task. Such a phenomenon inspired us to explore how to leverage the

already trained supervised and self-supervised models for pathological survival analysis (Zhu et al.,

2017d; Tang et al., 2019; Li et al., 2018).

1.4.4 Efficient Multi-Modality Representation Learning on Medical Image

Deep learning-based methods have been successfully applied for automated MSI prediction di-

rectly from hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) (Yamashita et al.,

2021), (Kather et al., 2019a). Kather et al. (Kather et al., 2019a) developed a ResNet-based model

to predict patients with MSI and MSS tumors. Another work (Yamashita et al., 2021) further

proposed MSINet and proved the deep learning model exceeded the performance of experienced

gastrointestinal pathologists at predicting MSI on WSIs. Despite the vital role of such diagnostic

biomarkers (Sidaway, 2020), patients with similar histology profiles can exhibit diverse outcomes

and treatment responses. Novel and more specific biomarkers are needed from a whole spectrum of

modalities, ranging from radiology (Echle et al., 2021; Wu et al., 2019; Pei et al., 2022a), histology

(Wang et al., 2022a; Kather and Calderaro, 2020; Ushizima et al., 2022), and genomics (Braman

et al., 2021), (Boehm et al., 2022).

1.5 Energy Efficiency Representation Learning for Meta-optic

The Optical neural network has a high bandwidth (Zhou and Anderson, 1994) and uses light in-

stead of electrical signals to perform matrix multiplications (Duport et al., 2012a), (Larger et al.,

2012) which can be much faster and more energy-efficient than traditional digital neural networks.

Most optical neural networks (ONN) use a hybrid model structure: implement linear computation

with the optic device and non-linear operation digitally (Hughes et al., 2018; De Marinis et al.,

2019; Jutamulia and Yu, 1996). Besides the use of optical devices, ONN has been implemented on
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nanophotonic circuits (Shen et al., 2017), (Fang and Sun, 2015) and light-wave linear diffraction

(Lin et al., 2018), (Ovchinnikov et al., 1999) to improve model efficiency. For the non-linear com-

putation, (Miscuglio et al., 2018) have proposed implementing the non-linear operation with the

optic device on ONN.
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CHAPTER 2

Label Efficient Representation Learning for Biological Optical Imaging

2.1 GAN based Unsupervised Segmentation on Microscopic Image

2.1.1 Introduction

Semantic segmentation is one of the central tasks in microscope image analysis, which segments

targeting objects from background context (Wu et al., 1995). Traditionally, the semantic segmenta-

tion was performed by unsupervised intensity-based methods, such as watershed (Pinidiyaarachchi

and Wählby, 2005), Gaussian mixture model (GMM) (Ragothaman et al., 2016), graph-cut (Leskó

et al., 2010) etc. In the past few years, deep learning based methods have been increasingly

popular in microscopy imaging, due to their superior accuracy and better generalizability (Moen

et al., 2019). However, one of the major limitations in deep learning based semantic segmentation

is the need of large-scale annotated images, which is not only tedious, but also resource inten-

sive (Zhang et al., 2017). CycleGAN (Zhu et al., 2017b), a breakthrough generative adversarial

network (GAN) (Goodfellow et al., 2014) was proposed recently, which shed light on semantic seg-

mentation with minimal or even no manual annotation (Huo et al., 2018a,b; Zhang et al., 2018c;

Chen et al., 2019).

Within the CycleGAN framework (Zhu et al., 2017b), many previous studies have tackled unsu-

pervised semantic segmentation in microscopy imaging. Ihle et al. (Ihle et al., 2019a) proposed to

use the CycleGAN framework to segment bright-field images of cell cultures, a live-dead assay of

C.Elegans, and X-ray-computed tomography of metallic nanowire meshes. A similar approach was

proposed by (Gadermayr et al., 2019) for facilitating stain-independent supervised and unsupervised

segmentation on kidney histology. DeepSynth (Dunn et al., 2019) was proposed to further extend

the CycleGAN framework from 2D to 3D nuclear segmentation. Even though the CycleGAN-based

unsupervised segmentation approaches have shown decent performance on microscope images, very

few studies have investigated the challenging sub-cellular microvilli segmentation with fluorescence

microscopy imaging. The sub-cellular microvilli segmentation is challenging due to the highly over-

lapping and dynamic nature of such small sub-cellular objects (Julio et al., 2008; Meenderink et al.,

2019).
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Different from Pix2Pix GAN (Isola et al., 2017), which requires pixel-level matching between

images across two domains, CycleGAN is able to perform image synthesis without paired images.

However, the previous studies emphasized that the macro-level (global distribution level) matching

on the number of objects between intensity images and simulated masks improved the segmentation

performance (Ihle et al., 2019a). That fact inspired us with the question that if the segmentation

performance could be further improved by doing more careful matching than the macro-level. To

answer the question, we propose a new micro-level matching (mini-batch level) strategy to match

the rough number of objects across two domains when training the CycleGAN framework.

In this paper, we develop a deep learning based unsupervised semantic segmentation method

for sub-cellular microvilli segmentation using fluorescence microscopy. Meanwhile, we evaluate

the performance of micro-level matching strategy, which is enabled by the multi-channel nature

of fluorescence images. The contributions of this study are three-fold: (1) We propose the first

deep learning based unsupervised sub-cellular microvilli segmentation method; (2) We propose the

micro-level matching to ensure the roughly same number of objects across two modalities within

each mini-batch, without introducing extra human annotation efforts; (3) Comprehensive analyses

are provided to evaluate the outcomes of different augmentation strategies when generating the

simulated masks for unsupervised microvilli segmentation.

2.1.2 Methods

Our proposed unsupervised segmentation method consists of two parts: (1) image synthesis, and (2)

segmentation. In image synthesis, our goal is to synthesize realistic looking images from the sim-

ulated masks. Then, the paired synthetic images and masks are used to train another segmentation

network. Note that, no manual annotations are used in our training either for CycleGAN or

U-Net, as an unsupervised framework.

2.1.2.1 Cycle-consistent image synthesis

The CycleGAN (Zhu et al., 2017b) is used to generate our synthetic training data. As the standard

CycleGAN implementation, generators and discriminators are used to transfer the styles between

two image modalities. The role of the generators is to convert the real images to another domain,

which are typically called ”fake” images. The discriminators then judge if a given image is real or
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Figure 2.1: This figure shows the general framework of the image synthesis. CycleGAN is used to
perform synthesis between real images and simulated masks. In micro-level matching, the green
protein channel in fluorescence images is used to achieve the cell counting automatically, which
provides the rough numbers of microvilli in the real images. Then, the corresponding simulated
masks with the same number of sticks are generated from the simulator when forming a mini-batch
for training. In macro-level matching, the numbers of sticks in the simulated masks are randomly
generated from the prior global distribution, without mini-batch level correspondence.

fake. The CycleGAN model design creatively forms the entire learning process as a cycle-consistent

loop, where the reconstructed fake images after two generators should be close to the original real

images. In each branch, the generator tries to generate realistic images, while the discriminator tries

to distinguish the fake images from the real ones.

In our unsupervised image segmentation framework (Fig. 2.1), the CycleGAN is employed to

synthesize segmentation masks (or called ”annotations”) from the real images I, and synthesize

realistic-looking images from simulated segmentation masks M. In the ideal case, the trained gen-

erator GI−>M can be directly used as a segmentation network to segment new images. However, the

quality of synthesis between real images and clean binary masks is typically not optimal since the

underlying Poisson distribution of the binary masks is not a realistic distribution in real images (Ihle

et al., 2019a). Moreover, the optimization of the KL divergence for training discriminators is more

difficult to converge (Gadermayr et al., 2019) using clean binary masks. Therefore, the Gaussian

smoothing, random noise, and brightness variations are used to generate augmented masks MA in

addition to the simulated mask images M for better synthetic performance (Fig. 2.2). Then, the

trained generator GMA−>I will provide us unlimited fake but realistic-looking images IF from the
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Figure 2.2: This figure demonstrates four experimental designs of providing different augmentations
of masks for training the CycleGAN. The first design employs the binary mask directly, while the
remaining three designs utilize different augmentation strategies.

simulated and augmented masks MA. Eventually, the fake images IF and the clean binary masks

MA (before augmentation) are used to train another independent segmentation network (see Image

Segmentation section).

2.1.2.2 Micro- and macro-level matching

Compared with traditional pixel-to-pixel conditional GAN design which needs pixel-level corre-

spondence between two modalities, the CycleGAN does not need paired images for training. How-

ever, the superior synthetic segmentation performance is typically achieved if the distributions of

the number of objects in real image modality and annotation modality are roughly matched (Ihle

et al., 2019a; Gadermayr et al., 2019), named as ”macro-level” matching. However, no studies

have explored the level of matching in the middle of pixel-level and macro-level. In this study,

we proposed the idea called ”micro-level” matching, which matches the number of objects in each

mini-batch (Fig. 2.1). For example, if a real image has roughly 21 microvilli, we will provide a

simulated mask with the same 21 sticks, when forming the mini-batch. Then, the next question is

how can we get the rough number of objects from the real images. In this study, we utilize the multi-

channel nature of fluorescence microscopy to split the microvilli marker mCherry-Espin (magenta

color objects) and microvilli tip marker EGFP-EPS8 (green color objects). Using the simple inten-

sity thresholding-based cell counting algorithm (Refai et al., 2003), the rough number of protein

objects is easily achieved. The numbers are then used as the rough number of microvilli to simulate
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Figure 2.3: This figure shows the segmentation pipeline. The input images of the U-Net model
are the synthetic fake images from trained CycleGAN’s generator, while the annotations are the
simulated masks. Note that, no manual annotations are used in our training either for CycleGAN or
U-Net, as an unsupervised framework.

the corresponding mask files with the same number of objects, as the micro-level matching. Note

that we only match the number of objects in the micro-level matching, where the spatial distribution

of the objects is still random.

2.1.2.3 Image segmentation

U-Net (Ronneberger et al., 2015) is employed as the segmentation backbone network, which is a

fully convolutional neural network and is widely used in image segmentation tasks. The segmen-

tation part of our framework is shown in Fig. 2.3. In our proposed unsupervised segmentation

framework, the input images of U-Net are the fake microvilli images, which are generated from

the simulated masks using GM−>I or GMA−>I from trained CycleGAN. Then the Dice loss func-

tion is calculated by comparing the predicted segmentation with the simulated binary masks. The

traditional deep neural network typically needs a large number of annotated images to train a seg-

mentation network. Using our design, however, we can generate an unlimited number of training

data to train the segmentation network without any manual annotation efforts.

2.1.3 Data and experimental design

2.1.3.1 Microvilli images

Twelve microvilli images acquired using fluorescence microscopy were used as training data, where

each image had ≈ 900× 900 pixels with pixel resolution 1.1 µm. Then, 500 image patches with

128× 128 pixels were randomly sampled from the twelve images to train the CycleGAN as the

real images. Then, another independent microvilli video with 20 frames was used as testing data
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to evaluate the performance of the proposed unsupervised segmentation methods. Each frame has

256×256 pixels with pixel resolution 1.1 µm. All microvilli in each frame were densely annotated

manually by an experienced biologist as the gold standard segmentation.

2.1.3.2 Experimental design

In order to test if micro-level matching can improve the unsupervised segmentation performance, we

performed experiments using both macro-level and micro-level matching. For micro-level match-

ing, the number of sticks of each image was obtained by automatically counting the number of

green proteins. For macro-level matching, the number of sticks for each image was randomly sam-

pled from a uniform distribution (range from 11 to 63), according to the distribution of proteins.

As shown in Fig 2.2, we have four different augmentation settings to generate the simulated

masks in annotation domain:

Binary masks: The binary masks were directly simulated as the images in the annotation domain,

without any augmentation. Based on (Meenderink et al., 2019) and the prior biological knowledge

of microvilli, the width of each microvilli was simulated between 2 to 5 µm, while the length was

simulated between 10 to 50 µm. As the pixel resolution of all our images was 1.1 µm, we randomly

generated sticks with 2 to 4 pixels width and 9 to 45 pixels length from a uniform distribution.

Gaussian smoothing: The first augmentation was Gaussian smoothing, where a Gaussian filter

with a kernel size of 5×5 was applied to the binary masks.

Random noise: Upon the Gaussian smoothing, the random Gaussian noise was further applied

to the entire mask image. The values of random noise ranged from 0 to 255 following Gaussian

distribution.

Different brightness: To further introduce the global intensity variations, random intensity values

(200 to 255) were assigned to each stick in binary masks, where the maximum foreground intensity

value was 255.

To improve the segmentation performance, CycleGAN was employed to synthesize cell images

for U-Net model training. In our experiment, CycleGAN is used to learn the mapping from simu-

lated masks to real microvilli cell images. We built up a dataset in these two domains as CycleGAN

model’s input. Our CycleGAN model was trained for 60 epochs. According to the training loss, the

generator trained for 50 epochs shows the best performance. The generator trained in CycleGAN
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Figure 2.4: The synthesis results of different experimental designs are provided in this figure. The
first column is the initial simulated masks with different numbers of objects (sticks). The middle
columns exhibit the synthetic images from the masks using different augmentation strategies. The
last column is five randomly selected real images, which are unpaired to the masks in CycleGAN
framework.

will be used to synthesize microvilli cell images based on simulated mask images.

CycleGAN model cannot cover all details using original frames as input which has too many

cells. For both CycleGAN and U-Net, the input images were all with 128×128 resolution cropped

from original frames and then resized to 256×256 during training. When applying trained U-Net on

testing microvilli images, each testing image was first split into four 128×128 images, and the final

segmentation was achieved by concatenating the corresponding four predictions back to the original

resolution. The Dice results were calculated in the original 256×256 resolution for testing images.

The CycleGAN and U-Net were deployed on a computer with a GeForce GTX 1060 Graphic Card

with 6 GB memory. To get better synthesised data and avoid over-fitting, the CycleGAN was trained

with 50 epochs and the U-Net was trained with 10 epochs for all experiments. According to the

prediction performance, U-Net has the best performance after 10 epochs. The results from the last

epochs were reported in this paper.
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Figure 2.5: The final segmentation results from U-Net are presented in this figure. Each row shows
the segmentation results at different frames in a microvilli video.

Table 2.1: The average Dice values of different experiments.

Exp. Smooth Noise Bright. D(w=1) D(w=2) D(w=3) D(w=4) D(w=5)

Micro-level
matching

0.3818 0.4860 0.5459 0.5605 0.5628
✓ 0.3650 0.4691 0.5301 0.5535 0.5667
✓ ✓ 0.3738 0.4783 0.5367 0.5511 0.5547
✓ ✓ ✓ 0.3810 0.4865 0.5479 0.5650 0.5730

Macro-level
matching

0.3639 0.4717 0.5364 0.5583 0.5675
✓ 0.3811 0.4918 0.5557 0.5776 0.5888
✓ ✓ 0.3902 0.4981 0.5607 0.5965 0.6169
✓ ✓ ✓ 0.3894 0.4903 0.5467 0.5615 0.5631

“D” indicate the Dice score, w means the width of the ground truth.
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2.1.4 Results

Considering both micro- and macro-level matching with different augmentation strategies, we per-

formed eight experiments by training eight different CycleGAN networks. The qualitative results

of image synthesis from eight different CycleGAN networks are provided in Fig. 2.4.

Then, the synthetic images were used to train eight different U-Net models using synthetic train-

ing image patches and applied to the real testing images. For testing images, the manual annotation

was performed by tracking center line fragments of each microvillus (annotated by the experienced

biologist) since the traditional contour-based annotations were extremely difficult on the tiny sub-

cellular structures. To evaluate the segmentation results, we assigned different widths to the manual

segmentation and reported the results in Table. 2.1. The corresponding qualitative results of seg-

mentation are provided in Fig. 2.5. According to the microvilli cell’s biological characteristics,

manual annotation images are presented with width=3. From the results, the macro-level match-

ing with Gaussian smoothing and random noise achieved the best performance across different

widths of manual annotation. The micro-level matching did not improve the segmentation perfor-

mance. Micro-level pairing can achieve higher accuracy on training datasets because its pairing is

detailed to fit training dataset properties. Macro-level pairing is more robust. U-Net model trained

by macro-level pairing performs better than micro-level pairing on the new dataset. The standard

Dice similarity coefficient metrics were used to evaluate different methods. The video of microvilli

frames and our unsupervised segmentation results are presented in the supplementary materials:

https://github.com/iamliuquan/GAN based segmentation.

2.1.5 Conclusion

In this study, we proposed the first deep learning solution to enable unsupervised sub-cellular mi-

crovilli segmentation. Beyond the current standard macro-level matching strategy, we utilized the

multi-channel nature of fluorescence microscopy to enable the micro-level matching of the number

of objects in each mini-batch without introducing new human annotation efforts. From the experi-

mental results, we conclude that the micro-level matching of object numbers at the mini-batch level

did not lead to better segmentation performance. From the comprehensive analyses of introduc-

ing noise, smoothness and brightness, the Gaussian smoothing and random noise on the simulated

annotations with macro-level matching resulted in the best microvilli segmentation performance.
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2.2 Annotation-free Synthetic Instance Segmentation and Tracking for Microscope Video

2.2.1 Introduction

Capturing cellular and subcellular dynamics through microscopy approaches helps domain experts

in characterizing biological processes (Meenderink et al., 2019) in a quantitative manner, leading to

advanced biomedical applications (e.g., drug discovery) (Arbelle et al., 2018).

Numerous image processing approaches have been proposed for precise instance object segmen-

tation and tracking. Most of the previous solutions (Al-Kofahi et al., 2018; Korfhage et al., 2020;

Van Valen et al., 2016) follow a similar “two-stage” strategy: I. segmentation on each frame, and II.

frame-by-frame association across the video. In recent years, a new family of “single-stage” algo-

rithms was enabled by cutting-edge pixel-embedding based deep learning (Zhao et al., 2020a; Payer

et al., 2018). Such methods enforce the spatiotemporally consistent pixel-wise feature embedding

for the same cellular or subcellular objects across video frames. However, pixel-wise annotations re-

quire spatial (segmentation) and temporal (tracking) consistency. Such labeling efforts are typically

expensive, and potentially unscalable, for microscope videos due to I. dense objects (e.g., over-

lapping or touching), and II. high dynamics (e.g., irregular motion and mitosis). Therefore, better

learning strategies are desired beyond the current human annotation based supervised learning.

Adversarial simulation has provided a scalable option to create realistic synthetic environments

without extensive human annotations. Particularly striking examples include a) using computer

games such as Grand Theft Auto to train self-driving deep learning models (Johnson-Roberson

et al., 2016), b) using a simulation environment Gazebo to train robotics (Zamora et al., 2016), and

c) using a SUMO simulator to train traffic management artificial intelligence (AI) (Kheterpal et al.,

2018).

In this paper, we propose an annotation-free synthetic instance segmentation and tracking (ASIST)

method with adversarial simulation and single-stage pixel-embedding based learning. Briefly, the

ASIST framework consists of three major steps: I. unsupervised image-annotation synthesis, II.

video and temporal annotation synthesis, and III. pixel-embedding based instance segmentation and

tracking. As opposed to traditional manual annotation-based pixel embedding deep learning, the

proposed ASIST method is annotation-free (Figure.4.1).

To achieve the annotation-free solution, we simulated cellular or subcellular structures with

three important aspects: shape, appearance and dynamics (Fig.2.7). To evaluate our proposed
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Figure 2.6: The upper panel shows the existing pixel-embedding deep learning based single-stage
instance segmentation and tracking method, which is trained by real microscope video and manual
annotations. The lower panel presents our pro-posed annotation-free ASIST method, with synthe-
sized data and annotations from adversarial simulations.

ASIST method, microscope videos of both cellular (i.e., HeLa cell videos from ISBI Cell Tracking

Challenge (Maška et al., 2014; Ulman et al., 2017)) and subcellular (i.e., microvilli videos from in

house data) objects were included in this study. The HeLa cell videos have larger shape variations

compared with microvilli videos. From the results, our ASIST method achieved promising accuracy

compared with fully supervised approaches.

In summary, this paper has three major contributions:

• We propose the ASIST annotation-free framework, aggregating adversarial simulations and

single-stage pixel embedding based deep learning.

• We propose a novel annotation refinement approach to simulate shape variations of cellular

objects, with circles as a middle representation.

• To our best knowledge, our proposed approach is the first annotation-free solution for single-

stage pixel embedding deep learning based cell instance segmentation and tracking.

This research was supported by Vanderbilt Cellular, Biochemical and Molecular Sciences Train-

ing Grant 5T32GM008554-25, the NIH NIDDK National Research Service Award F31DK122692,

NIH Grant R01-DK111949 and R01-DK095811.
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Figure 2.7: Real and synthetic video of Hela cell and microvilli consisting of three aspects: shape,
appearance and dynamics. The ”shape” is defined as the underlying shape of the manual annota-
tions. The ”appearance” is defined by the various appearances of objects. The ”dynamics” indicates
the mitigation of cellular and subcellular objects.
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2.2.2 Related Work

2.2.2.1 Image synthesis

The simplest approach to synthesize new images is to perform image transformations, which in-

cludes flipping, rotation, resizing, and cropping. Such synthetic images improved the accuracy of

image quantification upon benchmark datasets (Simard et al., 2003) by enlarging them with syn-

thetic images. Another study (Drozdzal et al., 2018) synthesized new images by applying data

augmentation approaches like random sheering and rotations to training data.

A method that is more complex than image transformations are generative adversarial networks

(GAN) (Goodfellow et al., 2014), which open a new window of synthesizing highly realistic im-

ages, and have been widely used in different computer vision and biomedical imaging applications.

For instance, GAN has synthesized retinal images to map retinal images to binary retinal vessel

trees (Costa et al., 2017). The synthetic images can be generated from random noise (Zhang et al.,

2018) with geometry constraints (Zhuang and Wang, 2020), and even in high dimensional space (Liu

et al., 2018). To tackle the limitations of needing paired training data requirements, CycleGAN (Zhu

et al., 2017b) was proposed to further advance the GAN technique to broader applications. Cycle-

GAN has shown promise in cross-modality synthesis (Huo et al., 2018a) and microscope image

synthesis (Ihle et al., 2019b). DeepSynth (Dunn et al., 2019) demonstrated that CycleGAN can be

applied to 3D medical image synthesis.

2.2.2.2 Microscope image segmentation and tracking

Historically, early approaches utilized intensity-based thresholding to segment a region of interest

(ROI) from the background. Ridler et al. (Ridler and Calvard, 1978) use a dynamic updated thresh-

old to segment an object based on the mean intensity of the foreground and the background. Otsu

et al. (Otsu, 1979) set a threshold by minimizing variance of the intraclass. To avoid the sensitiv-

ity to all image pixels, Pratt et al. (Pratt, 2007) proposed growing a segmented area from a point,

determined by texture similarity. Based on rough annotations, energy functions can be abstracted

to segment images by minimizing the aforementioned energy function (Kass et al., 1988). Among

such methods, the watershed segmentation approaches are arguably the most widely used methods

for intensity based cell image segmentation (Kornilov and Safonov, 2018)..

Object tracking on microscope videos is challenging due to the complex dynamics and vague
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instance boundaries when at cellular or subcellular resolutions. Gerlich et al. (Gerlich et al., 2003)

used optical flow from microscope videos to track cell motion. Ray et al. (Ray and Acton, 2004)

tracked leukocytes by computing gradient vectors of cell motions based on active contours. Sato

et al. (Sato et al., 1997) designed orientation-selective filters to generate spatio-temporal informa-

tion by enhancing the motion of cells. (de Hauwer et al., 1998, 1999) also tracked cell motion by

applying spatiotemporal analysis on microscope videos.

Recent studies have employed machine learning, especially deep learning approaches, for in-

stance cell segmentation and tracking. Jain et al. (Jain et al., 2007) showed superior performance

of a well-trained convolutional network. Baghli et al. (Baghli et al., 2020) achieved 97% predic-

tion accuracy by employing supervised machine learning approaches. To avoid relying on image

annotation, Yu et al. (Yu et al., 2018) trained a Convolutional Neural Network without annotation

to track large scale fibers in images of material acquired via microscope techniques. However, to

the best of our knowledge, no existing studies have investigated the challenging problem of quan-

tifying cellular and subcellular dynamics with pixel-wise instance segmentation and tracking with

embedding based deep learning.

2.2.3 Methods

Our study has three steps: unsupervised image-annotation synthesis, video synthesis and instance

segmentation and tracking (Fig.4.3).

2.2.3.1 Unsupervised image-annotation synthesis

The first step is to train a CycleGAN based approach (Zhu et al., 2017c) to directly synthesize

annotations from microscope images, and vice versa. Compared with the tasks in computer vision,

the objects in microscope images are often repetitive with more homogeneous shapes. Therefore,

with knowledge of shapes associated with microvilli (stick-shaped) and HeLa cell nuclei (ball-

shaped), we randomly generate fake annotations with repetitive sticks and circles to model the shape

of microvilli and HeLa cells, respectively. When we train the CycleGAN on microvilli images, we

clean the green marks on raw microvilli images which is EPS8 protein by splitting channel of RGB

images. The network structure, training process and parameters follows (Liu et al., 2020). The

generator in CycleGAN consists of an encoder, transformer and decoder. We used ResNet (He
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Figure 2.8: This figure shows the proposed ASIST method. First, CycleGAN based image-
annotation synthesis is trained using real microscope images and simulated annotations. Second,
synthesized microscope videos are generated from simulated annotation videos. Last, an embed-
ding based instance segmentation and tracking algorithm is trained using synthetic training data.
For HeLa cell videos, a new annotation refinement step is introduced to capture the larger shape
variations.

et al., 2016) with 9 residual blocks as the encoder in both Generator A and Generator B in the deep

learning architecture. We have tried to employ U-Net (Ronneberger et al., 2015) as the encoder as

well, suggested by (Liu et al., 2020). Based on the our experience, ResNet generally has superior

performance compared with U-Net. As a result, the ResNet is employed as the generator through

all experiments in this paper.

2.2.3.2 Video synthesis

Using an annotation-to-image generator (marked as Generator B) from the above CycleGAN model,

synthetic intensity images can be generated from simulated annotations. Since a video dataset

represents a compilation of image frames, we extend the utilization of the trained Generator B from

“annotation-to-image” to ”annotation frames-to-video”. Briefly, simulated annotation videos are

generated by our annotation simulator with variations in shape and dynamics. Then, each annotation

video frame is used to generate a synthetic microscope image frame. After repeating such a process

for the entire simulated annotation videos, synthetic microscope video is achieved for microvilli and
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Figure 2.9: The left panel shows real microscope videos as well as manual annotations. The right
panel presents our synthetic videos and simulated annotations.

HeLa cells, respectively.

2.2.3.2.1 Microvilli simulation

As shown in Fig.2.9, we model the shape of microvilli as sticks (narrow rectangles) to simulate

microvilli videos. The simulated microvilli annotation videos are determined by the following op-

erations:

Object number: Different numbers of objects are evaluated when simulating microvilli videos.

The details are presented in §Experimental design.

Translation: Instance annotations are translated by 1 pixel at 50% probability.

Rotation: Each instance label is randomly rotated by 1 degree at 50% probability.

Shortening/Lengthening: Each object has 50% probability to become longer or shorter by 1 pixel.

Each object can only become longer or shorter across the video.

Moving in/out: To simulate the instance moving in and out from the video scope, we generate

frames in larger size (550 × 550 pixels) and center-cropped into the target size (512 × 512 pixels).
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Figure 2.10: The upper panel shows the CycleGAN that is trained by real images and simulated an-
notations with Gaussian blurring. The lower panel shows the CycleGAN that is trained by the same
data without Gaussian blurring. The Generator B is used to generate synthetic videos with larger
shape variations from circle representations, while the Generator A* generate sharp segmentation
for the annotation registrations.

Generator B

Generator 
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Registration
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Figure 2.11: This figures shows the workflow of the annotation refinement approach. The simu-
lated circle annotations are fed into Generator B to synthesize cell images. We used Generator A*
in Fig.2.10 to generate sharp binary masks from synthetic images. Then, we registered simulated
circle annotations to binary masks to match the shape of cells in synthetic images. Last, an annota-
tion cleaning step was introduced to delete the inconsistent annotations between deformed instance
object masks and binary masks.
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2.2.3.2.2 HeLa cell simulation

The HeLa cells have higher degrees of freedom in terms of shape variations, compared with mi-

crovilli. In this study, we proposed an annotation refinement strategy, to generate shape consistent

synthetic HeLa cell videos and annotations, using circles as middle representations (Fig. 2.10),

without introducing manual annotations. The simulated videos and annotations of HeLa cells are

determined by the following operations:

Object number:The numbers of objects are evaluated when simulating HeLa cell videos. The

details are presented in §Experimental design.

Translation: The instance annotation center can be moved by N pixels. N will be described in

§Experimental design.

Radius changing: Radius of annotations has 10% probability to get bigger or smaller by 1 pixel.

Disappearing: Existing instance cells are randomly deleted from certain frames in videos.

Appearing: New instance cells shows up from certain frame in videos randomly. New cells will be

added to the video from the appearing frame.

Mitosis: Mitosis is the process of cell replication and splitting. To simulate HeLa cell mitosis, we

randomly define ”mother cells” at the nth frame. At the n+1th frame, we delete the ”mother cells”

and randomly create two new cells nearby. Based on biological knowledge, these two new instances

are typically smaller than normal instances, and will grow up bigger and move randomly like other

instance annotations.

Overlapping: We allow partial overlap between cells. The minimum distance between two cells

are set to be 70% of the total diameter between two cells.

Size change: The radius of instance annotation has a 10% probability to become larger by 1 pixel

or become smaller by 1 pixel.

2.2.3.3 Annotation refinement for HeLa cell video simulation

After training the initial CycleGAN synthesis, we are able to build simulated videos (with circle

representation) as well as their corresponding synthetic microscope videos. However, circles are

not the exact shape of annotations for synthetic videos. To further achieve consistent synthetic

videos and annotations, we proposed an annotation refinement framework, which has a workflow

shown in Fig. 2.11.
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2.2.3.3.1 Binary mask generation

We trained CycleGAN to generate a binary mask of synthetic cell images. Unique from CycleGAN

in §Unsupervised image-annotation synthesis, we used training data without applying Gaussian

blurring and used the model from an early epoch. From our experiments, we observed that the

early epochs of the CycleGAN training focused more on intensity adaptations rather than shape

adaptations. The trained Generator A is used to generate sharp binary masks as templates in the

following annotation registration step.

2.2.3.3.2 Annotation deformation (AD)

To bridge the gap between circle representations and HeLa cell shape annotations, a non-rigid reg-

istration approach from ANTs (Avants et al., 2011) is used to deform the circle shapes to the HeLa

cell shapes. Briefly, we used generator B to synthesize cell images based on our simulated anno-

tations. In the mask generation, we used generator A* to generate binary masks and registered the

circle shape annotations to the binary masks. In that case, we keep the label numbers of circle

representations, and deform their shapes to fit the synthetic cells.

2.2.3.3.3 Annotation cleaning (AC)

When performing image-annotation synthesis using CycleGAN, it is very likely to have a slightly

different number of objects between HeLa cell images and annotations without using paired training

data. To make the synthetic videos and simulated annotations to have more consistent numbers of

objects, we introduce an annotation cleaning step (Fig. 2.11). First, we generate binary masks of

simulated images using the Generator A*. Second, we clean up the inconsistent objects and an-

notations by comparing deformed simulated annotations and binary masks. Briefly, pseudovideos

are simulated annotations. instance annotations are achieved from binary masks, by treating any

connected components as instances. Third, if an instance object in the deformed simulated anno-

tations is not 90% covered by binary masks, we re-assign the label as background. On the other

hand, if a pseudo instance object from the binary masks is not 90% covered by deformed simulated

annotations, we re-assign the corresponding region in the intensity image with the average back-

ground intensity values. In sum, the consistent synthetic videos and deformed simulated instance

annotations are achieved with annotation cleaning (Fig. 2.11).
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2.2.3.4 Instance segmentation and tracking

From the above stages, the synthetic videos and corresponding annotations are achieved frame-

by-frame. The next step is to train our instance segmentation and tracking model. We used the

recurrent stacked hourglass network (RSHN) (Payer et al., 2018) as the instance segmentation and

tracking backbone to encode the embedding vectors of each pixel. The RSHN is a stacked hour-

glass network with a convolutional gated recurrent unit to process temporal information. The ideal

pixel-embedding has two properties: (1) embedding of pixels belonging to the same objects should

be similar across the entire video, and (2) the embedding of pixels belonging to different objects

should be different. For a testing video, we employed the Faster Mean-shift algorithm (Zhao et al.,

2020a) to cluster pixels to objects as the instance segmentation and tracking results. The embedding-

based deep learning methods approach the instance segmentation and tracking as a ”single-stage”

approach, which is a simple and generalizable solution across different applications (Payer et al.,

2018; Zhao et al., 2020a).

2.2.4 Experimental design

2.2.4.1 Instance segmentation and tracking on microvilli video

2.2.4.1.1 Data

Two microvilli videos captured by fluorescence microscopy are in 1.1µm pixel resolution. Training

data is one microvilli video in 512×512 in pixel resolution. Testing data is another microvilli video

in the size of 328×238 pixels. Due to the heavy load of manual annotations on video frames, we

only annotated the first ten frames of both videos as the golden standard. The annotation work

includes two parts: 1) first we annotated each microvilli structure including overlapping or densely

distributed areas; 2) secondly, each instance has been assigned consistent labels across all frames in

same video. The manual annotation labor on both training and testing data takes roughly a week of

work from a graduate student. This long manual annotation process shows the value of annotation-

free solutions in quantifying cellular and subcellular dynamics.

2.2.4.1.2 Experimental design

In order to assess the performance of our annotation-free instance segmentation and tracking model,

the proposed method is compared with the model trained with manual annotations on the same
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testing microvilli video. The different experimental settings are shown as the following:

Self: The testing video with manual annotations was used as both training and testing data.

Real: Another real microvilli video with manual annotations were used as training data.

Microvilli-1: One simulated video which consisted of 100 instances in size of 512×512 pixels was

used as training data. The ”Microvilli-1 10 frames” indicated only 10 frames were used, while other

simulated data used 50 frames.

Microvilli-5: Five simulated videos with 512×512 pixel resolutions were used as training data. The

number of objects were empirically chosen to be between 80 to 220.

Microvilli-20: We further spatially split each 512×512 video in Microvilli-5 to four 256×256

videos to form a total of 20 simulated videos with half resolution.

2.2.4.2 Instance segmentation and tracking on HeLa cell video

2.2.4.2.1 Data

HeLa cell videos (N2DL-HeLa) were obtained from the ISBI Cell Tracking Challenge (Maška et al.,

2014; Ulman et al., 2017). The cohort has two 92-frame HeLa cell videos in size of 1100×700 pixels

with annotations. The second video with complete manual annotations is used as the testing data

for all experiments.

2.2.4.2.2 Experimental design

For experiments using an annotation-free framework, synthetic videos and simulated annotations

are used for training. As a comparison experiment, experiments trained with annotated data used

two N2DL-HeLa videos with annotations as training data. Our experiment settings are described as

follows:

Self: The testing video with manual annotations was used as both training and testing data. The

patch size of 256×256 was used, following (Payer et al., 2018; Zhao et al., 2020a).

Self-HW: The testing video with manual annotations was used as both training and testing data.

The patch size of 128×128 was used, as a half window (HW) size.

HeLa: Our training data was 10 simulated videos with 512×512 resolution containing approxi-

mately 150 objects, including 20 cell appearing events, 20 cell disappearing events, and 5 or 10
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mitosis events. The numbers were empirically chosen. This experiment employed the circle anno-

tations directly as the baseline performance. The patch size of 256×256 was used.

HeLa-AD: The above simulated data was used for training, with an extra annotation deformation

(AD) step.

HeLa-AD+AC: The above simulated data was used for training, with extra AD and annotation

cleaning (AC) steps.

HeLa-AD+AC+HW: The above simulated data was used for training, with extra AD and AC steps.

The patch size of 128×128 was used, as a half window (HW) size.

2.2.4.3 Evaluation matrix

TRA, DET, and SEG are the standard metrics in the ISBI cell tracking challenge (Matula et al.,

2015), evaluating the performance of tracking, detection and segmentation, respectively. The ISBI

Cell Tracking Challenge used these three metrics as de facto standard measurements based on

Acyclic Oriented Graph Matching (AOGM) algorithms. The instance objects are presented as the

nodes of the acyclic oriented graphs, while the tracking results are modeled as the vertices of the

graphs. Then, graphs are obtained from both ground truth annotations and the predicted results to

evaluate the accuracy of detection (DET) and tracking (TRA). SEG evaluates the overlap of pre-

dicted objects with true objects. The TRA, DET and SEG range from 0 to 1, where 0 and 1 indicate

the worst and best performance, respectively. The details of such metrics can be found in (Matula

et al., 2015).

2.2.5 Results

2.2.5.1 Instance segmentation and tracking on microvilli videos

The qualitative and quantitative results are presented in Fig. 2.12 and Table. 2.2. From the quan-

titative results shown in Table. 2.2, the best performance according to the evaluation metric scores

was achieved by Microvilli-20 without using manual annotations. By contrast,it took one week of

manual annotation labor from a graduate student to annotate only 10 frames of RSHN (Self) and

RSHN (Real). One salient feature of achieving better performance of the proposed framework is

the larger number of total simulated training video.
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Table 2.2: DET, SET and TRA values of different experiments on microvilli video.

Exp. T.V. T.F. DET SEG TRA
RSHN (Self) 1 10 0.662 0.298 0.629
RSHN (Real) 1 10 0.357 0.169 0.334

ASIST (Microvilli-1) 1 10 0.580 0.306 0.551
ASIST (Microvilli-1) 1 50 0.586 0.311 0.556
ASIST (Microvilli-5) 5 50 0.660 0.338 0.627

ASIST (Microvilli-20) 20 50 0.715 0.332 0.674
T.V. is the number of training videos. T.F. is the number of training frames of each video. RSHN

(Self) uses testing video for training. RSHN (Real) is the standard testing accuracy of using
another independent video as training data.

Frame 1 Frame 5Frame 3 Frame 7 Frame 9

Real video

Microvilli-5

Manual 
annotation

Microvilli-20

Microvilli-1
10 frames

Microvilli-1

RSHN
(Self)

RSHN
(Real)

Figure 2.12: This figure shows the instance segmentation and tracking results of the real testing
microvilli video.
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Figure 2.13: This figure shows the instance segmentation and tracking results on the real HeLa cell
testing video.

2.2.5.2 Instance segmentation and tracking on HeLa cell videos

Instance segmentation and tracking results of HeLa cell videos were presented in Fig. 2.13. Based

on the performance in Table. 2.3. HeLa-AD+AC+HW achieved superior performance than other

settings using the ASIST method. The best performance of our annotation-free ASIST method is

5% to 9% lower than the manual annotation baseline. The most salient feature of improving the

performance is to introduce the annotation cleaning (AC) step.

2.2.6 Discussion

In this paper, we assess the feasibility of performing pixel-embedding based instance object segmen-

tation and tracking in an annotation-free manner, with adversarial simulations. Compared with con-

ventional segmentation and tracking methods on microscope videos, our experiment used a pixel-

embedding strategy instead of the “segmentation and association” two-step method. Our method

also used synthetic training data instead of manual annotation. According to our experimental re-

sults, our annotation-free instance segmentation and tracking model achieved superior performance
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Table 2.3: DET, SET and TRA values of different experiments on HeLa cell video.

Exp. T.V. T.F. DET SEG TRA
RSHN (Self) 2 92 0.979 0.884 0.975

RSHN (Self-HW) 2 92 0.956 0.809 0.951
ASIST (HeLa) 10 50 0.858 0.656 0.849

ASIST (HeLa-AD) 10 50 0.853 0.718 0.844
ASIST (HeLa-AD+AC) 10 50 0.919 0.755 0.911

ASIST (HeLa-AD+AC+HW) 10 50 0.939 0.796 0.928
T.V. is the number of training videos. T.F. is the number of training frames per video. RSHN (Self)

is the upper bound of RSHN using testing video for training.

on the microvilli dataset as well as comparable results on the HeLa dataset. Such encouraging re-

sults elucidated a promising new path to leverage the currently unsalable human annotation based

pixel-embedding deep learning approach in an annotation free manner. In terms of robustness, the

proposed pixel-embedding based method does not require heavy parameter tuning, which is typi-

cally inevitable in traditional model based methods. As a learning based method, the robustness of

the proposed method can be further improved with more heterogeneous training images.

Strengths. The strength of our proposed ASIST method is three-fold: I. the proposed method is

annotation-free to alleviate the extensive manual efforts of preparing large-scale manual annotations

for training deep learning approaches; II. The proposed method does not require heavy parameter

tuning; III. The proposed ASIST method combines the strength of both adversarial learning and

pixel embedding based cell instance segmentation and tracking.

Limitations. One major limitation of our ASIST method is that both microvilli and HeLa cells

have relatively homogeneous shape and appearance variations. In the future, it will be valuable

to explore more complicated cell lines and more heterogeneous microscope videos. Meanwhile,

the registration based method is introduced to capture the shape variations for ball-shaped HeLa

cells. For more complicated cellular and subcellular objects, deep learning based solutions might

be needed, such as the shape auto-encoder.

Following the proposed ASIST framework, our long term goal is to propose more general and

comprehensive algorithms that can be applied to a variety of microscope videos with pixel-level

instance segmentation and tracking. This would provide new analytical tools for domain experts to

characterize high spatio-temporal dynamics of cells and subcellular structures.
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2.2.7 Conclusion

In this paper, we propose the ASIST method – an annotation-free instance segmentation and track-

ing solution to characterize cellular and subcellular dynamics in microscope videos. Our method

consists of unsupervised image-annotation synthesis, video synthesis, and instance segmentation

and tracking. According to the experiments on subcellular (microvilli) videos and cellular (HeLa

cell) videos, ASIST achieved comparable performance to manual annotation-based strategies. The

proposed approach is a novel step towards annotation-free quantification of cellular and subcellular

dynamics for microscope biology.
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CHAPTER 3

Efficient Feature Representation Learning for Medical Optical Imaging

3.1 Simple Triplet Representation Learning on Histopathology Image with a Single GPU

3.1.1 Introduction

To extract clinically relevant information from GigaPixel histopathology images is essential in

computer-assisted digital pathology (Liskowski and Krawiec, 2016; Zhu et al., 2017a; Xu et al.,

2015b). For instance, the Convolutional Neural Network (CNN) based method has been applied to

depreciate sub-tissue types on whole slide images (WSI) so as to alleviate tedious manual efforts

for pathologists (Xu et al., 2017). However, pixel-wise annotations are resource extensive given

the high resolution of the pathological images. Thus, the fully supervised learning schemes might

not be scalable for large-scale studies. To minimize the need of annotation, a well-accepted learn-

ing strategy is to first learn local image features through unsupervised feature learning, and then

aggregate the features with multi-instance learning or supervised learning (Hou et al., 2016a).

Recently, a new family of unsupervised representation learning, called contrastive learning

(Fig. 3.1), shows its superior performance in various vision tasks (Wu et al., 2018; Noroozi and

Favaro, 2016; Zhuang et al., 2019; Hjelm et al., 2018). Learning from large-scale unlabeled data,

contrastive learning can learn discriminative features for downstream tasks. SimCLR (Chen et al.,

2020b) maximizes the similarity between images in the same category and repels representation of

different category images. Wu et al. (Wu et al., 2018) uses an offline dictionary to store all data rep-

resentation and randomly select training data to maximize negative pairs. MoCo (He et al., 2020a)

introduces a momentum design to maintain a negative sample pool instead of an offline dictionary.

Such works demand large batch size to include sufficient negative samples (Fig. 3.1). To eliminate

the needs of negative samples, BYOL (Grill et al., 2020) was proposed to train a model with a asyn-

chronous momentum encoder. Recently, SimSiam (Chen and He, 2020) was proposed to further

eliminate the momentum encoder in BYOL, allowing less GPU memory consumption.

To define different image patches as negative samples on pathological images is tricky since such

a definition can depends on the patch size, rather than semantic differences. Therefore, it would be

more proper to use nearby image patches as multi-view samples (or called positive samples) of the
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Figure 3.1: Comparison of contrastive learning strategies. The upper panel compares the proposed
SimTriplet with current representative contrastive learning strategies. The lower panel compares
different approaches via a table.

same tissue type (Tian et al., 2019) rather than negative pairs. MICLe (Azizi et al., 2021) applied

multi-view contrastive learning to medical image analysis. Note that in (Tian et al., 2019; Azizi

et al., 2021), the negative pairs are still needed within the SimCLR framework.

In this paper, we propose a simple triplet based representation learning approach (SimTriplet),

taking advantage of the multi-view nature of pathological images, with effective learning by using

only a single GPU with 16GB memory. We present a triplet similarity loss to maximize the sim-

ilarity between two augmentation views of same image and between adjacent image patches. The

contribution of this paper is three-fold:

• The proposed SimTriplet method takes advantage of the multi-view nature of medical images

beyond self-augmentation.

• This method minimizes both intra-sample and inter-sample similarities from positive image
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Figure 3.2: Network structure of the proposed SimTriplet. Adjacent image pairs are sampled from
unlabeled pathological images (left panel) for triplet representation learning (right panel). The
GigaPixel pathological images provide large-scale ”positive pairs” from nearby image patches for
SimTriplet. Each triplet consists of two augmentation views from m1 and one augmentation view
from m2. The final loss maximizes both inter-sample and intra-sample similarity as a representation
learning.

pairs, without the needs of negative samples.

• The proposed method can be trained using a single GPU setting with 16GB memory, with

batch size = 128 for 224×224 images, via mixed precision training.

3.1.2 Methods

The principle network of SimTriplet is presented in Fig 3.2. The original SimSiam network can be

interpreted as an iterative process of two steps: (1) unsupervised clustering and (2) feature updates

based on clustering (similar to K-means or EM algorithms) (Chen and He, 2020). By knowing

the pairwise information of nearby samples, the SimTriplet aims to further minimize the distance

between the ”positive pairs” (images from the same classes) in the embedding space (Fig. 3.3).

In the single GPU setting with batch size 128, SimTriplet provides more rich information for the

clustering stage.
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Figure 3.3: Compare SimTriplet with SimSiam. SimSiam network maximizes intra-sample sim-
ilarity by minimizing the distance between two augmentation views from the same image. The
proposed SimTriplet model further enforces the inter-sample similarity from positive sample pairs.

3.1.2.1 Multi-view nature of medical images

In many medical image analysis tasks, multi-view (or called multi-instance) imaging samples from

the same patient or the same tissue can provide complementary representation information. For

pathological images, the nearby image patches are more likely belong to the same tissue type.

Thus, the spatial neighbourhood on a WSI provide rich ”positive pairs” (patches with same tissue

types) for triplet representation learning. Different from (Hoffer and Ailon, 2015), all samples

in our triplets are positive samples, inspired by (Chen and He, 2020). To train SimTriplet, we

randomly sample image patches as well as their adjacent patches (from one of eight nearby locations

randomly) as positive sample pairs from the same tissue type.

3.1.2.2 Triplet representation learning

Our SimTriplet network forms a triplet from three randomly augmented views by sampling positive

image pairs (Fig. 3.2). The three augmented views are fed into the encoder network. The encoder

network consists of a backbone network (ResNet-50 (He et al., 2016)) and a three-layer multi-

layer perceptron (MLP) projection header. The three forward encoding streams share the same

parameters. Next, an MLP predictor is used in the middle path. The predictor processes the encoder

output from one image view to match with the encoder output of two other image views. We applies

stop-gradient operations to two side paths. When computing loss between predictor output and

image representation from encoder output, encoded representation is regarded as constant (Chen
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and He, 2020). Two encoders on side paths will not be updated by back propagation. We used

negative cosine similarity Eq.(3.1) between different augmentation views of (1) the same image

patches, and (2) adjacent image patches as our loss function. For example, image m1 and image m2

are two adjacent patches cropped from the original whole slide image (WSI). x1 and x2 are randomly

augmented views of image m1, while x3 is the augmented view of image m2. Representation y1, y2

and y3 are encoded from augmented views by encoder. z1, z2 and z3 are the representation processed

by the predictor.

C (p,q) =− p
∥p∥2

· q
∥q∥2

(3.1)

LIntrasample is the loss function to measure the similarities between two augmentation views x1

and x2 of image m1 as seen in Eq.(3.2).

LIntrasample =
1
2
C (y1,z2)+

1
2
C (y2,z1) (3.2)

LIntersample is the loss function to measure the similarities between two augmentation views x2

and x3 of adjacent image pair m1 and m2 as in Eq.(3.3).

LIntersample =
1
2
C (y2,z3)+

1
2
C (y3,z2) (3.3)

The triplet loss function as used in our SimTriplet network is defined as:

Ltotal = LIntrasample +LIntersample (3.4)

LIntrasample minimizes the distance between different augmentations from the same image.

LIntersample minimizes the difference between nearby image patches.

3.1.2.3 Expand batch size via mix precision training

Mix precision training (Micikevicius et al., 2018) was invented to offer significant computational

speedup and less GPU memory consumption by performing operations in a half-precision format.

The minimal information is stored in single-precision to retain the critical parts of the training.

By implementing the mix precision to SimTriplet, we can extend the batch size from 64 to 128 to
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train images with 224×224 pixels, using a single GPU with 16GB memory. The batch size 128 is

regarded as a decent batch size in SimSiam (Chen and He, 2020).

3.1.3 Data and Experiments

3.1.3.1 Data

Annotated data. We extracted image patches from seven melanoma skin cancer Whole Slide Im-

ages (WSIs) from the Cancer Genome Atlas (TCGA) Datasets. From the seven annotated WSIs,

4698 images from 5 WSIs were obtained for training and validation, while 1,921 images from 2

WSIs were used for testing. Eight tissue types were annotated as: blood vessel (353 train 154 test),

epidermis (764 train 429 test), fat (403 train 137 test), immune cell (168 train 112 test), nerve (171

train 0 test), stroma (865 train 265 test), tumor (1,083 train 440 test) and ulceration (341 train 184

test).

Following (Raju et al., 2020; Zhao et al., 2020b)), each image was a 512×512 patch extracted

from 40× magnification of a WSI with original pixel resolution 0.25-micron meter. The cropped

image samples were annotated by a board-certified dermatologist and confirmed by another pathol-

ogist. Then, the image patches were resized to 128×128 pixels. Note that the 224×224 image

resolution provided 1.8% higher balance accuracy (based on our experiments) using supervised

learning. We chose 128×128 resolution for all experiments for a faster training speed.

Unlabeled data. Beyond the 7 annotated WSIs, additional 79 WSIs without annotations were

used for training contrastive learning models. The 79 WSIs were all available and usable melanoma

cases from TCGA. The number and size of image patches used for different contrastive learning

strategies are described in §Experiment.

3.1.3.2 Supervised learning

We used ResNet-50 as the backbone in supervised training, where the optimizer is Stochastic Gradi-

ent Descent (SGD) (Bottou, 2010) with the base learning rate lr = 0.05. The optimizer learning rate

followed (linear scaling (Goyal et al., 2017)) lr×BatchSize/256. We used 5-fold cross-validation

by using images from four WSIs for training and images from the remaining WSI for validation.

We trained 100 epochs and selected the best model based on validation. When applying the trained

model to testing images, the predicted probabilities from five models were averaged. Then, the class
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with the largest ensemble probability was used as the predicted label.

3.1.3.3 Training contrastive learning benchmarks

We used the SimSiam network (Chen et al., 2020b) as the baseline method of contrastive learn-

ing. Two random augmentations from the same image were used as training data. In all of our

self-supervised pre-training, images for model training were resized to 128× 128 pixels. We used

momentum SGD as the optimizer. Weight decay was set to 0.0001. Base learning rate was lr = 0.05

and batch size equals 128. Learning rate was lr×BatchSize/256, which followed a cosine decay

schedule (Loshchilov and Hutter, 2017). Experiments were achieved only on a single GPU with

16GB memory. Models were pre-trained for 39,500/128×400 ≈ 127,438 iterations. 79 unlabeled

WSIs were used for self-supervised pre-training. We randomly cropped 500 images from each WSI

and resized them to 128×128 pixels. 39,500 images in total serve as the original training data.

Following MICLe (Azizi et al., 2021), we employed multi-view images as two inputs of the net-

work. Since we did not use negative samples, multi-view images was trained by SimSiam network

instead of SimCLR. For each image in the original training dataset, we cropped one patch which is

randomly selected from its eight adjacent patches consisting of an adjacent images pairs. We had

79,000 images (39,500 adjacent pairs) as training data. Different from original SimSiam, network

inputs were augmentation views of an adjacent pair. Referring to (Chen and He, 2020), we applied

our data on SimSiam network. First, we used 39,500 images in original training dataset to pre-train

on SimSiam. To see the impact of training dataset size, we randomly cropped another 39,500 im-

ages from 79 WSIs for training on a larger dataset of 79,000 images. We then used training data

from the MICLe experiment to train the SimSiam network.

3.1.3.4 Training the proposed SimTriplet

The same 79,000 images (39,500 adjacent pairs) were used to train the SimTriplet. Three augmen-

tation views from each adjacent pair were used as network inputs. Two augmentation views were

from one image, while the other augmentation view was augmented from adjacent images. Three

augmentation views were generated randomly, where the augmentation settings were similar with

the experiment on SimSiam (Chen et al., 2020b). Batch size was 128 and experiment run on a single

16GB memory GPU.
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Figure 3.4: Visualization of classification results. One tissue sample is manually segmented by our
dermatologist (via QuPath software) to visually compare the classification results. The contrasting
learning achieved superior performance compared with supervised learning, even using only 1% of
all available labeled data.

3.1.3.5 Linear evaluation (fine tuning)

To apply the self-supervised pre-training networks, as a common practice, we froze the pretrained

ResNet-50 model by adding one extra linear layer which followed the global average pooling layer.

When finetuning with the annotated data, only the extra linear layer was trained. We used the

SGD optimizer to train linear classifier with a based (initial) learning rate lr=30, weight decay=0,

momentum=0.9, and batch size=64 (follows (Chen and He, 2020)). The same annotated dataset

were used to finetune the contrastive learning models as well as to train supervised learning. Briefly,

4,968 images from 5 annotated WSIs were divided into 5 folders. We used 5-fold cross validation:

using four of five folders as training data and the other folder as validation. We trained linear

classifiers for 30 epochs and selected the best model based on the validation set. The pretrained

models were applied to the testing dataset (1,921 images from two WSIs). As a multi-class setting,

macro-level average F1 score was used (Attia et al., 2018). Balanced accuracy was also broadly

used to show the model performance on unbalanced data (Brodersen et al., 2010).
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Figure 3.5: t-SNE plot of abstracted feature by SimTriplet model. The abstracted feature is shown
in t-SNE plot. Different color dots represent different tissue types.

3.1.4 Results

3.1.4.1 Model classification performance.

F1 score and balanced accuracy were used to evaluate different methods as described above. We

trained a supervised learning models as the baseline. From Table 3.3, our proposed SimTriplet

network achieved the best performance compared with the supervised model and SimSiam net-

work (Chen and He, 2020) with same number of iterations. Compared with another benchmark

SwAV(Caron et al., 2020), the F1 score and balanced accuracy of SwAV are 0.53 and 0.60, which

are inferior compared with our SimTriplet (0.65 and 0.72) using the same batch size = 128 within

16GB GPU memory. To show a qualitative result, a segmentation of a WSI from test dataset is

shown in Fig. 3.4.

3.1.4.2 Model performance on partial training data.

To evaluate the impact of training data number, we trained a supervised model and fine-tuned a

classifier of the contrastive learning model on different percentages of annotated training data (Ta-

ble 3.2). Note that for 1% to 25%, we ensure different classes contribute a similar numbers images

to address the issue that the annotation is highly imbalanced.
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Table 3.1: Classification performance.

Methods Unlabeled
Images

Paired
Inputs

F1
Score

Balanced
Acc

Supervised 0 0.5146 0.6113

MICLe (Azizi et al., 2021)* 79k ✓ 0.5856 0.6666
SimSiam (Chen and He, 2020) 39.5k 0.5421 0.5735
SimSiam (Chen and He, 2020) 79k ✓ 0.6267 0.6988
SimSiam (Chen and He, 2020) 79k 0.6275 0.6958

SimTriplet (ours) 79k ✓ 0.6477 0.7171
* We replace SimCLR with SimSiam.

Table 3.2: Balanced Acc of using different percentage of annotated data.

Methods Percentage of Used Annotated Training Data

1% 10% 25% 100%

Supervised 0.0614 0.3561 0.4895 0.6113
SimSiam (Chen and He, 2020) 0.7085 0.6864 0.6986 0.6958

SimTriplet 0.7090 0.7110 0.7280 0.7171

3.1.5 Conclusion

In this paper, we proposed a simple contrastive representation learning approach, named SimTriplet,

advanced by the multi-view nature of medical images. Our proposed contrastive learning methods

maximize the similarity between both self augmentation views and pairwise image views from

triplets. Moreover, our model can be efficiently trained on a single GPU with 16 GB memory.

The performance of different learning schemes are evaluated on WSIs, with large-scale unlabeled

samples. The proposed SimTriplet achieved superior performance compared with benchmarks,

including supervised learning baseline and SimSiam method. The contrastive learning strategies

showed strong generalizability by achieving decent performance by only using 1% labeled data.
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3.2 Integrate Memory Efficiency Methods for Self-supervised Learning on Pathological Im-

age Analysis

3.2.1 Introduction

As the practice of using a larger batch size for model training increases, the limited computing

resources become the primary barrier to deep learning development. According to the developed

neural network model, larger models with more parameters normally contribute to a better per-

formance. The proposed wide ResNet (Zagoruyko and Komodakis, 2016) has better performance

over ResNet (He et al., 2016) on ImageNet with larger model size and more parameters. In Nat-

ural Language Process field, BERT-Large (Devlin et al., 2018) model has a higher GLUE score

than BERT-Base from 79.6 to 82.1 with approximately three times the parameters (from 110M to

340M). However, the grow speed of GPU memory size is not comparable with deep learning model

size increment.

In terms of large-scale image analysis, models which take large-scale images as input need large

GPU memory for model training due to two aspects. On the one hand, images for training are large-

scale in multiple fields (e.g., pathology image and satellite images). Pathology images in the TCGA

dataset (Tomczak et al., 2015b) have gigapixels per image. It is not adaptable to feed large scale data

into the model directly. On the other hand, models that achieve state-of-the-art performance require

sufficient computing resources. For example, within contrastive learning, the primary limitation is

that contrastive learning methods need a large batch size to learn the similarity and dissimilarity

between samples within the same batch. SimCLR (Chen et al., 2020b) employed 128 TPU v3 cores

to train a model with a batch size of 4096. MoCo (He et al., 2020a) also needs 8 32GB GPUs

to enable a 1024 batch size. Different from these two methods, BYOL (Grill et al., 2020) is less

sensitive to batch size but still trained with 64 TPU v3 cores with a batch size of up to 4096.

As mentioned before, limited computing resources are a barrier; thus, multiple research works

have been proposed to adapt model training on limited GPU resources. As developed in (Pal et al.,

2019a; Le et al., 2011), model training and data processing can be deployed on multiple GPU de-

vices which enable large batch size and speed up the training process. GPU parallel computing

requires supported GPU devices and parallel computing mechanism. To mitigate the available GPU

device limitation, an increased effort has been made to develop memory efficient training strategies

on GPU. Song Han et al. (Han et al., 2016) reduce model size by pruning and Huffman coding.
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Figure 3.6: GPU maximizing efficiency comparison. Blue circles use no GPU memory-efficient
methods. ”bs” means the batch size used in model training. MP is mixed precision training. Method
on the lower right is preferred which achieves a larger batch size utilizing less GPU memory.

Yujun Lin et al. (Lin et al., 2017) proposed to compress the gradient in the training process in or-

der to reduce the communication load in parallel training. NVIDIA also proposed mixed precision

training (Micikevicius et al., 2017) to a half model weight and gradient precision in model train-

ing. Besides model size and gradient, ActNN (Chen et al., 2021a) is designed for activation value

compression in training. A GPU maximizing efficiency comparison is shown in Fig.3.6.

For large-scale image analysis, both model performance, training speed, and GPU memory re-

quirement are important. Current methods for maximizing memory efficiency normally choose to

use low-precision data formats such as Mixed Precision Training (Micikevicius et al., 2017) which

may harm the training accuracy. Extra operations on the gradient or the activation value will affect

the training speed, such as in ActNN (Chen et al., 2021a). In this paper, we implement multiple

memory-efficient training methods for pathology image analysis. We train the contrastive learn-

ing model BYOL (Grill et al., 2020) on a single GPU with memory-efficient methods and multi-

ple GPUs with data parallel processing strategy. Meanwhile, we evaluate the model performance

through the downstream classification tasks. The contribution of our study is three-fold: (1) We

implement advanced memory efficient methods on self-supervised learning model. (2) We enabled

contrastive learning on pathology images with limited computing resources (a single GPU). (3) We

evaluate the performance on accuracy, GPU efficiency, and training speed across GPU efficiency

maximizing methods.
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Figure 3.7: GPU maximizing efficiency methods pipelines. (a) Mixed precision training: In the for-
ward and backward pass, FP16 is used for computing which halves bandwidth and GPU occupancy
rate. (b) ActNN: Compress activations before storage and decompress activation for backpropaga-
tion. (c) Data parallel computing: Multiple GPU devices process data concurrently and update the
shared model weights.

3.2.2 Method

To maximize GPU efficiency on contrastive learning, three model training settings are implemented:

(1) mixed precision training, (2) ActNN, and (3) Data parallel computing. In large-scale image

analysis, our goal is to classify multiple tissue patches without image annotation on a single GPU.

Model pipelines of these methods are shown in Fig.4.11 .

3.2.2.1 BYOL

BYOL (Grill et al., 2020) is used as our contrastive learning model. As the contrastive learning

designed purpose, BYOL is a self-supervised learn used to learn image representation from images

without annotations. BYOL uses two neural networks (default network is ResNet-50), an online

network and a target network to learn image representations. The online network is trained to

predict the target network output based on different augmentation views from the same image. With

a momentum mechanism, the target network parameter is updated based on the online network

parameter by slow-moving average. To better learn representation from similar images, a larger
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batch size contributes to better model performance.

3.2.2.2 Data parallel computing

Data parallel is widely used as a parallel processing strategy on multiple devices. In popular deep

learning frameworks such as Pytorch and Tensorflow, data parallel computing helps to the model

and data in multiple GPU devices. Data in different GPU can be processed parallel. The model pa-

rameter will be shared across all available GPU devices through communication between networks.

Data parallel computing enable large scale data processing or model training with a large batch size.

3.2.2.3 Mixed precision training

Mixed precision training introduces the usage of a half-precision floating point tensor in the model

training process. Normally, deep learning model training uses a single-precision(FP32) format to

store data. To save GPU memory, NVIDIA (Micikevicius et al., 2017) proposes using a half-

precision(FP16) format in storing model weights and gradients. To prevent model performance

loss with low precision data format, they also introduce techniques such as loss-scaling, in order to

compensate for lower precision data effects.

3.2.2.4 ActNN

ActNN (Chen et al., 2021a) proposed to save randomly quantized activation for both gradient com-

putation and model back propagation. In the model training process, the activation value of each

layer is stored for further back propagation which takes up significant GPU memory. As designed

by ActNN, the activation function is compressed before it is stored as a tensor and the decompress

activation value is decompressed before it is used for back propagation. In the activation com-

pressing process, ActNN quantizes FP32 to a 2-bit number which will not harm the model training

convergence.

3.2.2.5 In-place Operation

In model training process, instead of saving a copy of tensors, metrics and activation, value will

be directly changed by in-place operation. In-place operation helps to reduce GPU memory usage

when operating on large amount of data.
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3.2.3 Data and experimental design

3.2.3.1 Data

3.2.3.1.1 Annotated data

Image patches were extracted from seven skin cancer Whole Slide Images (WSIs) in the Cancer

Genome Atlas (TCGA) Datasets. From all of the patches cropped from the WSIs, 4698 images

belonging to 5 WSIs were used as training and validation sets. 1,921 images from the other 2 WSIs

were used as a testing set. Eight tissue types in all image patches were annotated: immune cell (168

train, 112 test), stroma (865 train, 265 test), blood vessel (353 train, 154 test), nerve (171 train, 0

test), epidermis (764 train, 429 test), ulceration (341 train, 184 test), tumor (1,083 train 440 test)

and fat (403 train, 137 test). According to (Raju et al., 2020), each image was extracted from 40×

magnification of a WSI in size of 512×512 when the original pixel resolution is 0.25 micron meter.

The image samples annotations were made by a board-certified dermatologist and confirmed by a

pathologist. Note that all image patches were resized to 128× 128 pixels in all experiments for a

faster training speed.

3.2.3.1.2 Unlabeled data

Beyond the seven WSIs used in data annotation, another 79 WSIs were used for BYOL model

training. We randomly cropped 1,000 image patches into the size of 128× 128 from each WSI.

79,000 images were used as contrastive learning training data.

3.2.3.2 Experimental design

In the contrastive learning model training, we use BYOL model in a default setting (Grill et al.,

2020). We use ResNet-50 as a neural network backbone and stochastic gradient descent (SGD) as

an optimizer. To ensure the comparison fairness, we apply in-place operation on activation value

when updating the backbone neural network. Base learning rate is set to 0.05 and momentum value

is set to 0.9. We use NVIDIA TITAN RTX 24G in these experiments.

3.2.3.2.1 Oracle

With the baseline experiment used for the purpose of comparison, we implement BYOL on a single

GPU and train the model with a relatively small batch size of 128. The experiment setting takes a
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10G GPU memory. We applied no GPU-efficient method on oracle experiment.

3.2.3.2.2 In-place

Based on basic BYOL model, we used in-place setting in model activation value to save GPU

memory usage. Due to GPU memory size limitation, we use 3 GPUs train model with large batch

size. In-place activation setting is also applied to following GPU-efficiency methods.

3.2.3.2.3 Mixed precision training + In-place

To show the advantages of the GPU maximizing efficiency method, we implement mixed precision

training on single GPU and achieved batch size of up to 700, which takes 23G GPU memory. For

comparison, we trained BYOL on 3 of the same GPUs by data parallel training, with the same batch

size of 700.

3.2.3.2.4 ActNN + In-place

Similarly, we evaluate ActNN’s performance over data parallel computing. The ActNN method

achieves a batch size of 850 with a 15G GPU memory. By comparison, the data parallel processing

achieves a batch size of 850 with three GPUs, which takes 65G memory.

3.2.3.2.5 Linear evaluation (fine-tuning)

To apply the pre-trained ResNet to the downstream task (classification), as the common practice,

we froze the ResNet-50 model and added one linear layer following the ResNet-50 output. In the

finetuning process, only the linear layer was trained. We use SGD as the optimizer to train the linear

classifier with a learning rate of 30, and a batch size of 64. When finetuning the linear classifier, we

used a 5-fold cross validation method: 4 fold as training, and the other fold as validation. The linear

layer is trained for 30 epochs and the best best linear classifier is selected according to validation

performance. For the task of multiclass classification, we used the F1 score and balanced accuracy

to evaluate the model performance.

3.2.4 Results

Considering different GPU-efficient strategies using single or three GPU devices, we performed six

experiments by training six BYOL models (ResNet-50 backbone).
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Table 3.3: Classification performance.

Methods #GPU Memory(G) Batch Size F1 Score Balanced Acc
Oracle 1 10 128 0.54 0.55

In-place 1 24 320 0.57 0.58
In-place 3 52 700 0.68 0.67
In-place 3 65 850 0.59 0.66

In-place+Mixed Precision 1 24 700 0.57 0.63
In-place+ActNN 1 15 850 0.66 0.72

* Oracle means we use no GPU-efficiency method for large batch size training.

3.2.4.1 Model classification performance

To evaluate the model performance trained with different GPU setting, we test model on image

classification after fine-tuning. F1 score and balanced accuracy of different training methods is

shown in Table.3.3. We also show the GPU number used for model training and GPU memory

usage.

From results are shown in Table.3.3, it is obvious the model with a larger batch size has better

performance. ActNN with batch size 850 achieves the best balance accuracy performance of 0.72.

In-place with batch size 700 achieves the best F1 score. Compared with methods without GPU-

efficiency methods, mixed precision training, and ActNN enable model training with larger batch

sizes on limited computing resources. For the model requiring large batch size (e.g., BYOL), GPU-

efficiency methods achieve better model performance on a single GPU.

3.2.4.2 Model training speed

Another important factor in evaluating the method efficiency is the model training speed. The model

training times for 400 epochs are shown in Fig.3.8. It is obvious that we find data parallel computing

with a larger batch size has faster training speed. Mix precision training achieves a similar speed on

a single GPU as compared with data parallel computing on three GPUs. In terms of training speed,

ActNN is relatively slow when compared with other methods because of the activation compression

and decompression operation.
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ActNN+In-place 71.7
Mixed precision+In-place 25.2
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Figure 3.8: GPU maximizing efficiency methods training speed chart. ”bs” means training batch
size used in model training. Oracle is implemented without GPU memory-efficient strategy and run
parallel on multiple GPU devices.

3.2.5 Discussion

In this study, we combine GPU memory efficiency management strategy with self-supervised learn-

ing on large-scale image analysis. By deploying advanced GPU usage reduction methods, we

achieve tripling training batch size which normally needs three GPU s parallel compering. From

the experiments, implementing the GPU management strategy will not harm model performance.

However, extra operations perform on the data will slow the training process down (e,g., ActNN).

Training methods should take both training speed and model performance into consideration. The

trade off is an essential point to discuss for GPU-efficiency methods in the future. GPU-efficient

strategies can be integrated on other model training as well (e.g., transformer and graph neural

network).
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3.3 Leverage Supervised and Self-supervised Pretrain Models for Pathological Survival Anal-

ysis via a Simple and Low-cost Joint Representation Tuning

3.3.1 Introduction

Supervised pre-trained models (e.g., on ImageNet (Krizhevsky et al., 2012) and BiT (Lu et al.,

2021c)) have been regarded as a powerful feature extractor and weight initializer in pathological

image analysis (Chen et al., 2020a; Kieffer et al., 2017). However, it is resource-intensive to collect

the large-scale annotated images, especially for gigapixel Whole Slide Images (WSIs) (Huo et al.,

2021; David et al., 2019). Without requiring annotations, self-supervised learning (SSL) approaches

are leading to a paradigm shift in large-scale pretraining for histopathological image analysis from

visual inspection to more accurate quantitative assessment (Wang et al., 2021c; Yang et al., 2021;

Liu et al., 2021a; Ciga et al., 2021), with the rapid growth of publicly available large-scale datasets

(e.g., The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015b), and Pathology AI Platform

(PAIP) (Kim et al., 2021)). In a recent study, Wang et al. (Wang et al., 2021c) utilized the entire

TCGA and PAIP dataset to perform a self-supervised pretraining via a vision transformer, called

TransPath. TransPath learned the pathological domain-specific information and achieved superior

tissue classification performance.

However, most existing studies focused on developing more powerful pretrained models (Bao

et al., 2021; Bardes et al., 2021; Tellez et al., 2018; Mormont et al., 2020), whose resource consump-

tion is increasingly unscalable for academic institutes. Very few, if any, studies have investigated

how to take advantage of existing, yet heterogeneous pretrained models for better performance

on downstream tasks. As an example, the pathological data-optimized contrastive learning model

TransPath (Wang et al., 2021c) achieved a superior performance compared with supervised mod-

els (e.g., ImageNet pretrained) on a classification cohort (Table 3.5). Surprisingly, it yielded a

inferior performance when it was translated to a cancer prognosis task. Such phenomenon

inspired us to explore how to leverage the already trained supervised and self-supervised models for

pathological survival analysis (Zhu et al., 2016; Li et al., 2018; Tang et al., 2019).

In this paper, we propose a simple joint representation tuning (JRT) approach to aggregate task-

agnostic vision representation (supervised ImageNet pretrained models) and pathological specific

representation (self-supervised TCGA pretrained models) for downstream tasks (Fig. 3.9). This

study also evaluated the different strategies as well as their performance of using heterogeneous
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Figure 3.9: Model pipeline. In the top section, self-supervised model is pretrained with pathology
WSIs and finetuned on pathology images for survival prediction. Middle section is supervised
pretrained model with natural images of ImageNet and finetuned on pathology images. Our JRT
method aggregates both pretrained models to achieve better downstream task performance.

pretrained models. The feature-direct JRT (f-JRT) that directly finetune the joint feature repre-

sentations without 1) encoder network, 2) data augmentation, and 3) large memory consumption,

achieved 60× speedup with decent performance on the survival analysis.

The contribution of this paper is in three-fold:

• The JRT method adapts and aggregates the task-agnostic vision representation (supervised

ImageNet pretrained models) and pathological specific features presentation (self-supervised pre-

trained models) for better performance on downstream tasks.

• Comprehensive analyses on prevalent strategies of using heterogeneous pretrained models are

conducted as a reference for the community.

• The joint representation tuning provides a simple, yet computationally efficient perspective

to leverage large-scale pretained models for both cancer diagnosis and prognosis without extra

resource-intensive pretraining.
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3.3.2 Methods

The overall framework of the proposed JRT approach is presented in Fig. 3.9. We have also con-

ducted a comprehensive analyses to evaluate a variety of (1) pretraining approaches, (2) feature

extraction and finetuning strategies, (3) joint representation tuning methods, and (4) downstream

tasks.

3.3.2.1 Supervised and self-supervised pretraining

Supervised and self-supervised pretraining are two prevalent vision representation learning strate-

gies for downstream pathological image analysis (Thongprayoon et al., 2020; Peikari et al., 2018;

Azizi et al., 2021). With a supervised learning procedures, ResNet (He et al., 2016) and VGG (Si-

monyan and Zisserman, 2015) can be pretrained by ImageNet, which have been widely used in

medical image analysis (Rai et al., 2019; Bar et al., 2015). On the other hand, self-supervised learn-

ing (e.g., TransPath (Wang et al., 2021c)) has been increasingly popular for large-scale pathological

pretraining. In our JRT method, we employed the ImageNet pretrained ResNet50 and TCGA+PAIP

pretrained TransPath as encoders. We directly used the pretrained model weights for the down-

stream task.

3.3.2.2 Joint representation tuning

The framework of the proposed JRT is presented in Fig. 3.9 and 3.10. The low dimensional features

from both supervised and self-supervised models are concatenated to a simple Multi-Layer Percep-

tion (MLP) for the downstream survival and diagnosis analyses (Jarrett et al., 2019). To evaluate

the representation quality abstracted by a pretrained encoder, we conducted the survival prediction

analysis as downstream task. The deep survival loss (Yao et al., 2020) was used as the loss function.

We used Concordance Index (C-Index) (Uno et al., 2011) as an evaluation metric for our survival

prediction. C-Index is defined as the ratio of the predicted survival time in correct order among all

uncensored testing samples.

3.3.2.3 Evaluate different strategies of using pretrained model

We evaluated different ways of utilizing the pretrained models as baselines as shown in Fig. 3.10.

To utilize the pretrained model, there are three basic strategies:
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No-freeze. All weights in the pretrained network are freely finetuned using downstream task

data. In this case, the pretrained weights are only used as weight initialization.

Encoder-freeze. The Encoder-freeze strategy freezes the encoder (e.g., convolutional encoder

or vision transformer-based encoder) without further changing its weights. Then, the finetuning is

only performed on features.

Feature-direct. Feature-direct strategy is designed as a ”two-stage” framework, where the

feature encoders are discarded after extracting features. Then the extracted features are directly

used for the downstream classification. The advantage of the Feature-direct strategy is that the

memory consumption is minimized without using the encoders. However, this strategy is limited by

not performing an on-line data augmentation.

3.3.3 Experiments

3.3.3.1 Data description

3.3.3.1.1 Survival prediction task

Two available public datasets were used in this study. The WSI images used for the survival pre-

diction task were from TCGA-GBMLGG (Mobadersany et al., 2018). Each image was 1024×1024

resolution. 1505 ROI images from 769 patients were used for prognosis prediction model tun-

ing. ROI patches were curated in (Mobadersany et al., 2018) from diagnostic slides. We randomly

cropped 512×512 image patches from the ROI images.

3.3.3.1.2 Classification task

NCT-CRC-HE (Kather et al., 2019b) from National Center for Tumor Diseases (NCT) was used as

the classification dataset (8 colorectal cancer types and normal) with 100,000 images. Images were

in size of 224×224 from 86 WSIs.

3.3.3.2 Experimental setting

Our proposed joint finetuning strategy were designed to finetune the model with both CNN features

and Transformer features. We used TransPath model (Wang et al., 2021c) and ResNet-50 (Chen

et al., 2020a) as the backbones. To fairly evaluate the our joint representation finetuning method,

We utilized the same MLP structure as the downstream network for all experiments. The MLP was
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Figure 3.10: Finetuning strategies on pre-trained backbone. This figure shows the three prevalent
finetuning strategies: (1) No-freeze, (2) Encoder-freeze, and (3) Feature-direct using ResNet and
TranPath. The highlighted method is the proposed JRT strategy.

composed of three fully connected layers. As presented in Fig. 3.10, the image augmentation could

be applied to No-freeze and Encoder-freeze training strategies for both TransPath and ResNet-50.

We used Cox Loss (Yao et al., 2020) for model survival time prediction and Adam optimizer to

update MLP. All model training were implemented on NVIDIA P5000 GPU.

3.3.4 Results

3.3.4.1 Performance on classification and survival prediction

The Table 3.4 and 3.5 indicated the performance of the proposed the JRT method as well as the

benchmarks in survival prediction and tissue classification tasks. The results indicated that our JRT
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Figure 3.11: Visual comparison of different strategies. This figure shows the C-Index versus the
model training time required for an epoch. The size of the blobs is proportional to the number of
GPU memory consumption.

method achieved superior performance compared with the baseline methods aross two tasks.

The results indicated that the TransPath achieved the superior performance in the classifica-

tion task compared with ResNet-50. However, it yielded the inferior performance in the survival

prediction task compared with ResNet-50. The potential explanation would be the self-supervised

pretraining was typically defined as a general classification task (classify if two augmented images

were originally same). Therefore, the features might be over optimized for classification, while

losing essential visual information for prognosis. By combining general vision features and patho-

logical specific features for a better survival prediction and classification performance.

3.3.4.2 Computational resource

Fig. 3.11 presented training speed, C-index performance, and GPU memory consumption for dif-

ferent methods. Note that by using the proposed JRT method, the Feature-direct version (f-JRT)

achieved more than 60× training speedup while maintaining 0.707 c-index score compared with
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Table 3.4: Survival prediction performance on TCGA-GBMLGG ROI dataset.

Model model freeze part C-Index
VGG-16 (Simonyan and Zisserman, 2015) Encoder-freeze 0.7010

ResNet-50 (He et al., 2016) Encoder-freeze 0.6972
TransPath (Wang et al., 2021c) Encoder-freeze 0.6217

JRT (Ours) Encoder-freeze 0.7313

Table 3.5: Classification performance on NCT-CRC-HE dataset.

Method F1-score Accuracy
CNN (Wang et al., 2021c)* 0.9099 0.9081
ResNet-50 (He et al., 2016) 0.9541 0.9558

TransPath (Wang et al., 2021c)* 0.9582 0.9585
JRT (Ours) 0.9576 0.9673

* The experiment results are directly from (Wang et al., 2021c).

non-JRT methods.

3.3.5 Ablation Studies

The three strategies of using pretrained models were evaluated in the Table 3.6, including (1) No-

freeze, (2) Encoder-free, and (3) Feature-freeze. Since the data augmentation could be applied or

not for the No-freeze and Encoder-freeze approaches, we also evaluated the performance of adding

data augmentation of downstream finetuning as ablation studies.

3.3.5.1 Different strategies of using pretrained models

From the performance on survival prediction analysis (Table 3.6), the Encoder-free strategy (with

finetuning without updating backbone parameter) achieved similar performance with No-freeze

strategy. Thus, the two-stage model yielded the similar performance as the more computational

expensive end-to-end training. With two-stage design (Feature-direct), the three single backbone

and our JRT method required less GPU memory and training time.

3.3.5.2 Effect of transformer

We compared the transformer based TransPath method with the CNN based ResNet-50 method.

The results indicated that the TransPath achieved the superior performance in the classification task

compared with ResNet-50. However, it yielded the inferior performance in the survival prediction
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task compared with ResNet-50.

3.3.5.3 Effect of data augmentation

To evaluate the effect of w/wo data augmentation, we applied random translation and rotation on

ROI images. We compared such results with the ones without random translation applied. Experi-

ments were implemented with TransPath, Resnet-50 and VGG-16 models, which were finetuned by

brain cancer WSI ROI patches. The experiment with random translation applied achieved similar

prognosis prediction. The result indicated that the data augmentation did not vary the performance

in a noticeable margin. The explanation might be that the pretraining stage had already incorporated

the corresponding data augmentation.

Table 3.6: Comparison of volumetric analysis metrics between the proposed method and the state-
of-the-art clinical study on kidney components.

Backbone Model freeze part Augmentation Memory(G) Time(s) C-Index
TransPath No-freeze w 7.05 172 N/A
TransPath No-freeze w/o 7.05 172 N/A
TransPath Encoder-freeze w 2.94 143 0.6318
TransPath Encoder-freeze w/o 2.94 143 0.6217
TransPath CNN part w/o 6.00 166 0.7050
TransPath Feature-direct w/o 1.03 1.74 0.6230
ResNet-50 No-freeze w 3.28 147 0.6885
ResNet-50 No-freeze w/o 3.28 147 0.6928
ResNet-50 Encoder-freeze w 1.32 127 0.6972
ResNet-50 Encoder-freeze w/o 1.32 129 0.6978
ResNet-50 Feature-direct w/o 1.05 1.75 0.6977
VGG-16 No-freeze w 6.32 158 0.6310
VGG-16 No-freeze w/o 6.32 158 0.6530
VGG-16 Encoder-freeze w 3.13 140 0.7010
VGG-16 Encoder-freeze w/o 3.13 144 0.6983
VGG-16 Feature-direct w/o 1.05 1.75 0.6776

f-JRT (Ours) Feature-direct w/o 1.07 2.44 0.7070
JRT (Ours) TransPath CNN w 8.331 166 0.7249
JRT (Ours) Encoder-freeze w 3.28 148 0.7313

”w” in augmentation column means training data are augmented image views. ”w/o” means all image views are fed into model without
image view augmentation.

3.3.6 Conclusion

In this work, we analyze how to leverage the already trained supervised and self-supervised models

for pathological survival analysis. We proposed a simple and low-cost JRT representation tun-
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ing strategy and shows effective improvement to adapt classification based supervised and self-

supervised representation for survival prediction. With the proposed JRT, the Feature-direct fine-

tuning strategy yields 60× training speedup while maintaining superior c-index score compared

with non-JRT methods.
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3.4 Bayesian-based Multimodal Multi-level Fusion on Colorectal Cancer Microsatellite In-

stability Prediction

3.4.1 Introduction

Microsatellite instability (MSI) in colorectal cancer (CRC) determines whether patients with cancer

respond exceptionally well to immunotherapy (Sahin et al., 2019). Because universal MSI testing

requires additional complex genetic or immunohistochemical tests, it is not possible for every pa-

tient to be tested for MSI in clinical practice. Therefore, a critical need exists for broadly accessible,

cost-efficient tools to aid patient selection for testing.

Deep learning-based methods have been successfully applied for automated MSI prediction di-

rectly from hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) (Kather et al., 2019a;

Yamashita et al., 2021). Kather et al. (Kather et al., 2019a) developed ResNet-based model to pre-

dict patients with MSI and MSS tumors. Another work (Yamashita et al., 2021) further proposed

MSINet and proved the deep learning model exceeded the performance of experienced gastroin-

testinal pathologists at predicting MSI on WSIs. Despite the vital role of such diagnostic biomark-

ers (Sidaway, 2020), patients with similar histology profiles can exhibit diverse outcomes and treat-

ment responses. Novel and more specific biomarkers are needed from a whole spectrum of modali-

ties, ranging from radiology (Pei et al., 2022b; Wu et al., 2019; Echle et al., 2021), histology (Ushiz-

ima et al., 2022; Kather and Calderaro, 2020; Wang et al., 2022a), and genomics (Lipkova et al.,

2022; Braman et al., 2021).

Given the large complexity of medical data, there are new trends to integrate complementary

information from diverse data sources for multimodal data fusion (Chen et al., 2022b; Feng et al.,

2022; Cui et al., 2022). Many models have shown the use of radiology data to consider macroscopic

factors could achieve more accurate and objective diagnostic and prognostic biomarkers for various

cancer types (Wang et al., 2019; He et al., 2020b; Yao et al., 2023; Dong et al., 2020). However,

when integrating radiology images and WSIs for predicting MSI, the large data heterogeneity gap

between the two modalities exists and makes the integration very difficult. Specifically, a WSI

consists of tens of thousands of patches (Chen et al., 2021c; Lu et al., 2021b; Wei et al., 2019)

while radiology data usually form with 3D shape (Golia Pernicka et al., 2019). How to design an

effective fusion strategy and learn important interactions between radiology and pathology images

is important but still remains unknown for MSI prediction in CRC.
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Figure 3.12: Our proposed M2Fusion model. Multimodal data, WSI, and CT images are prepro-
cessed to pathology image patches and CT tumor ROI, respectively. Embeddings are extracted by
encoder Ep and Er. ∗ means the model is well-trained and frozen in pipeline training. PP is the
pathology uni-model performance P(Path). PR is the radiology uni-model performance P(Rad).
PF is the feature level fusion model probability distribution under pathology and radiology guid-
ance P(Fea|PathRad). The final fusion model by PP, PR and PF is P(FeaPathRad) in Eq.3.8

In this paper, we introduce a new and effective multi-modal fusion pipeline for MSI prediction

by combining decision-level fusion and feature-level fusion following Bayesian rules. We also

investigated different fusion strategies and found the proposed fusion scheme achieved better results

than those methods. The contributions of this paper are: 1) This study generalizes an MSI prediction

pipeline in CRC utilizing radiology-guided knowledge. 2) To the best of our knowledge, we are

the first to exploit a multi-level fusion strategy for using multi-modal data for MSI prediction. 3)

Extensive experimental results suggest the effectiveness of our Bayesian-based multimodal multi-

level fusion. It can reduce the gap between pathology and radiology predictions and achieve more

robust and accurate fusions than other feature-level or decision-level methods.

3.4.2 Method

Problem Statement. In our study, each CRC patient has a 3D CT image, a pathology whole slide

image (WSI), and its corresponding label (MSI status). We aim at CRC MSI prediction using both

pathology and radiology data. Fig.3.12 shows the proposed Bayesian-based fusion model. Our fu-

sion model combines three predictions together and can be seen as feature-level and decision-level
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fusion in a unified framework. It consists of two branches that process each modality (pathology or

radiology data) and it introduces a radiology feature-guided pathology fusion model. In the follow-

ing parts, we will discuss why radiology-guided fusion methods could benefit our final prediction.

3.4.2.1 Bayesian-based multi-modality fusion model

Assuming the learnable context from each modality is different, we hypothesize that the fusion

between modalities knowledge can enhance the confidence level of the CRC MSI prediction, com-

pared with single modality training. Due to the inherent scale difference between the two modalities

(2D gigapixel WSI and 3D CT images), we propose a multi-modal fusion strategy, which combines

both the decision-level prior and feature-level prior to enhance the interaction between the learnable

knowledge from different fields of view.

We first define the predictions from pathology data and from radiology data as events Path

and Rad , respectively. Here, we hypothesize the probabilistic relationship between prediction with

Bayes’ theorem as follows:

P(PathRad) = P(Rad)P(Path|Rad) (3.5)

Here P(Rad) is the uni-model performance on radiology data. P(Path|Rad) denotes the proba-

bilistic prediction on the model well-trained on pathology data with radiology prior. According to

Eq.3.5, if under the guidance of pre-trained radiology model P(Rad), pathology model P(Path|Rad)

performs better than uni-model on pathology (P(Path)), then modality fusion model should perform

better than uni-model (P(Path) and P(Rad)).

P(PathRad) ∝ P(Path|Rad) (3.6)

The Bayes’ theorem can be extended to three events: feature level multi-modal fusion model

predicts MSI status correct as event Fea. The extended Bayes’ theorem is Eq.3.7.

P(FeaPathRad) = P(Fea|PathRad)P(PathRad) (3.7)

Similar to the relation between P(Path|Rad) and P(PathRad), Eq.3.8. If radiology data can help to
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get a better feature-level fusion model P(Fea|PathRad), the final fusion on both the decision-level

and feature-level should outperform the decision-level fusion model.

P(Fea|PathRad) ∝ P(Fea|PathRad) (3.8)

Bayes’ theorem guarantees that if we want to seek a better final fusion model than decision-level

fusion, we have to implement a good feature-level fusion model. Our final model could benefit from

both feature-level and decision-level fusion.

3.4.2.2 MSI prediction on single modality

Pathology model. Our pathology model is composed of two parts: First, we used the CLAM

model(Lu et al., 2021b) to crop the pathology patches from gigapixel WSI. Second, following the

previous work (Yamashita et al., 2021), the ResNet-18 is used as an encoder to abstract features

from pathology patches. We crop the non-overlapping image tiles in size of 224× 224 from the

WSI foreground. The image patches from all WSI are constructed as a whole pathology patch

dataset. The pathology patches label is inherited from the WSI label which it cropped from. The

model will predict a patch-level probability of whether the patches belong to MSI or MSS. In the

testing phase, the image patches will get the predicted label from the well-trained encoder. The

majority vote result of patches from WSI is the patient MSI prediction.

Radiology model. Based on the 3D radiology CT scans, the tumor region mask of CT volume has

been annotated. Two essential slices are cropped from three directions of CT image. One slice is

CT tumor region by overlaying the mask on the CT slice. The other slice is the whole CT slice in

the direction. The six essential slices (two slices from each direction) are stacked as a six-channel

input to build a 2.5D model (Roth et al., 2014). The encoder used for MSI prediction is ImageNet

pre-trained ResNet-18 (modified input channel to six channels). The original 3-channel pre-trained

weights are copied to 4th to 6th channel as initialization.
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Figure 3.13: Baseline experiments on multimodal fusion. A. Decision level multimodal fusion,
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3.4.2.3 Model prediction fusion on multiple levels

3.4.2.3.1 Decision level multimodal fusion

Fig. 3.13-A shows the decision level fusion. Both models are trained and make the prediction

separately. The mean of predicted probability from pathology and radiology is taken as the MSI

prediction score for the patient. Based on the well-trained uni-model on pathology images and

radiology data, the decision-level multimodal fusion employs the patient-level MSI prediction for

the final decision. From the well-trained pathology uni-model, the pathology image W i from patient

i has predicted MSI probability Pi
p. Similar to pathology prediction, radiology CT scans Ci from

patient i can get MSi probability prediction Pi
r . The decision level fused prediction follows Pi =

(Pi
r +Pi

p)/2.
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3.4.2.3.2 Feature level multi-modal fusion

Fig. 3.13-B shows the model fusion on the feature level. The feature embedding abstracted from

pathology patches is aggregated as a single feature representing the bag of cropped pathology

patches. Each pathology patch is generated as an embedding ei from patch xi. The generated

embedding ei ∈ R1×512 is not representative of the WSI. We first aggregate ei when i ∈ [1,N] to

a single feature for further feature-level fusion. Referring to the Multi-instance Learning (MIL)

methods(Raju et al., 2020), we use maxing pooling on each channel of embeddings to aggregate

the single patches embedding to patient pathology embedding e. The aggregation process follows

Eq.3.9 where d ∈ [0,511] and e ∈ R1×512.

ed = maxi=0,...,Nei
d (3.9)

Radiology feature embedding is abstracted from segmented tumor ROI. The feature embeddings

from both modalities are fused by feeding into the fusion model. Two major feature-level fusion

strategies are investigated in our study, the Transformer-based or MLP-based fusion model. Trans-

former model (Dosovitskiy et al., 2020) takes the aggregated WSI feature embedding and radiology

ROI embedding as input. Following the standard approach in the transformer model, a learnable

class token is added to the input embedding sequence. Multi-layer Perceptron (MLP) fusion model

concatenates embeddings from two modalities and is then finetuned with the patient MSI label. The

dim of two modality embeddings are both 1×512.

M
SI

M
SS

Pathology Radiology

WSI Pathology image patches CT Axial Sagittal Coronal 

Figure 3.14: Data visualization of the dataset. First row shows two modalities image from MSS
subjects. The second row shows data from MSI subject.
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3.4.3 Experiments

3.4.3.1 Dataset

We collect an in-house dataset that has the paired pathology WSIs and CT images from 352 patients

shown in Fig.3.14. The dataset includes 46 MSI patients and 306 MSS patients. The venous phase is

used for tumor annotations by a board-certified radiologist with 14 years of specialized experiences.

The median imaging spacing is 0.76× 0.76× 5 mm3. The pathology WSI is at a gigapixel level

maintained in a pyramid structure. Each level each layer contains a reduced-resolution version of

the image from 5×, 10×, and 40× magnification. The highest level of the pyramid is the full-

resolution image which is 40× in 0.25 µm per pixel. The image patches are 448× 448 cropped

from 40× level and resize to 224×224.

To thoroughly evaluate the dataset performance, we use 5-fold cross-validation in all model

evaluations. Since the MSI/MSS ratio is unbalanced, the MSI patients and MSS patients are evenly

split into five folds to guarantee a fair MSI/MSS ratio in each fold. For each experiment, three folds

of data are used for training, one fold for validation, and the rest one fold for testing. By picking up

different folds as testing data, five-set experiments are conducted. The average AUC score is used

as the evaluation criterion.

3.4.3.2 Experimental Design

In the experiments, we aim at evaluating the proposed Bayesian-based multimodal multi-level fusion

model. The experiment parts verify two research questions: (1) whether multimodal fusion provides

better performance over the uni-model (rely on single data modality), (2) if our proposed Bayesian-

based model P(FeaPathRad) achieves the optimal fusion strategy over other fusion models. The

ablation study is explored feature aggregation and feature-level fusion strategy.

Pathology uni-modal prediction The uni-model on pathology data is separated into two steps.

First, the WSIs are cropped by the CLAM model into 224×224 patches. The patches use the WSI

labels in model training. ImageNet-pretrained ResNet-18 is trained for 100 epochs and the batch

size is set to 128. In the testing stage, the average probability of patches from the same WSI is used

as patient WSI probability prediction. The final model performance is the average score of 5 testing

fold.

Radiology uni-modal prediction For the Radiology uni-model, we construct the training data by
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selecting six essential slides based on CT image and annotated tumor region. Only one ROI block

is cropped from each CT and constructs the six-channel training data (batch size = 2). ImageNet

pre-trained ResNet-18 is employed as the encoder.

Decision level fusion prediction Different from uni-model training from scratch, decision-level

fusion is based on a well-trained uni-model. Based on the 5-fold well-trained model, we feed the

test fold data to the corresponding trained model and get the MSI prediction by pathology data. The

same process goes for radiology data. The decision-level fused prediction is computed by average

MSI probability from two modalities.

Feature-level fusion prediction

Instead of fusing the probability prediction from two modalities, the regular feature level fusion

model fuses the embeddings generated from the two modalities’ encoders. Both modality encoders

are trained from scratch. For the radiology-guided feature level fusion, two modalities of data and a

well-trained radiology uni-model are needed. The pathology data is fed into an end-to-end training

path. The output of the pathology path is an aggregated feature for pathology WSI. The radiology

path is an abstracted feature by pre-trained radiology uni-model from its corresponding training

model. For a patient sample, two 1× 512 features from pathology and radiology data are fed into

fusion model. For the Transformer-based model, we choose ViT-S as our backbone. Our ViT-S

model depth is 8, the head number is 12. Multi-layer perception (MLP) hidden feature dimension

is 1024. The input matrix is in 3× 512. CNN-based feature level fusion concatenates the feature

from two modalities into one feature with a length of 1024. An MLP is constructed to map the

concatenated feature to the final fusion prediction, which has two fully connected layers when the

hidden dimension is 256.

Bayesian-guided multi-level fusion prediction

For the Bayesian-guided fusion model, we used the same input data as previous fusion experiments:

a bag of pathology image patches and radiology CT tumor Region of Interest (ROI). The patient MSI

prediction from radiology can be generated by the pre-trained model. The feature abstracted from

radiology ROI can be generated from the second last layer’s output. The feature and patient-level

prediction from pathology follow the same procedure as radiology except the pathology encoder

is trainable. The fusion model we used is ViT-S for the Transformer-based model and a two-layer

MLP for MLP based fusion model. The average score of the pathology, radiology, and feature
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fusion MSI probability prediction is used as the final prediction.

3.4.4 Results

We conduct experiments on 5-fold cross-validation and model performances are shown in Ta-

ble. 3.7. Our proposed multi-level multi-modality fusion pipeline is compared with the single-

modality model and fusion methods. From the average AUC score across 5-fold experiments, the

performance of unimodal relies on pathology image and radiology image are 0.6847 and 0.7348,

respectively. The decision-level fusion has an average AUC score of 0.7908 which outperforms uni-

modal prediction score. The feature-level fusion model shows better performance by using Vision

Transformer than MLP. Without radiology guidance, feature-level fusion model (avg AUC: 0.7289)

performs better than pathology unimodal but worse than radiology unimodal. The radiology data

can guide feature-level fusion model training by getting AUC score of 0.7696 better than 0.7289.

Radiology-guided feature-level fusion model shows better performance than feature-level fusion

without a guide. By combining the decision-level and feature-level information from two image

modalities, our proposed multi-level multi-modality pipeline get the best AUC 0.8177 over the rest

of MSI CRC strategies.

Table 3.7: AUC on MSI prediction

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Patho unimodal(Yamashita et al., 2021) 0.6502 0.7282 0.8530 0.8819 0.6500 0.6847
2.5D Radio unimodal 0.5615 0.8333 0.7520 0.7163 0.8158 0.7348
Decision-level fusion 0.6956 0.8313 0.8536 0.8948 0.6785 0.7908
Feature-level fusion 0.619 0.6528 0.7698 0.7083 0.6730 0.7289
Radio-guided feature fusion 0.7218 0.7558 0.7698 0.7678 0.8127 0.7696
M2Fusion 0.8278 0.8055 0.7341 0.8989 0.8222 0.8177

An ablation study on exploring the pathology feature aggregation strategy and multimodal fea-

ture level fusion backbone is shown in Table.3.8. The combination of average pooling on pathology

feature aggregation and using a Transformer as feature-level fusion backbone has the best AUC

performance.

3.4.5 Conclusion

We proposed a multi-level multi-modality fusion pipeline for colorectal cancer MSI status prediction

based on pathology WSIs and CT images. We introduce Bayes’ theorem to fuse the information
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Table 3.8: Ablation study for pathology feature aggregation and feature-level fusion strategy

Feature aggregation Feature fusion Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Conv Transformer 0.5423 0.6012 0.7976 0.7540 0.7746 0.6939
Avg CNN 0.5786 0.7004 0.7202 0.7044 0.7333 0.6874
Conv CNN 0.6593 0.7321 0.7599 0.6706 0.7047 0.7053
Avg Transformer 0.7218 0.7758 0.7698 0.7678 0.8127 0.7696

from two image modalities on both the feature level and decision level. The experiment result shows

(1) radiology and pathology image fusion (decision level fusion) helps CRC MSI prediction by

combining the two modalities’ information from the same patient, and (2) radiology-guided feature-

level training outperforms the model that directly fuses two modalities’ features. Our Bayesian-

based fusion on both decision-level and feature-level achieves the best performance.
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3.5 Multi-Level Text-Guided Representation End-to-End Learning for Whole Slide Image

Analysis

3.5.1 Introduction

Analyzing Whole Slide Images (WSIs) is a critical aspect of medical imaging research. WSIs

are digitized scans of histological samples captured at multiple magnifications, preserving both

the overarching view and intricate microscopic details. From a broader perspective, WSIs offer

a macroscopic overview of tumor distribution throughout the entire digital slide. This allows for

the study of spatial relationships and general tumor traits. At the same time, WSIs enable detailed

inspections of cell and tissue structures at the microscopic scale, significantly enhancing diagnostic

accuracy and advancing the field of histopathology research (Pantanowitz et al., 2011).

Over recent years, computer vision has become increasingly crucial and successful in analyzing

Whole Slide Images (WSIs), tackling the challenges of handling their super high-resolution (> 109

gigapixels) for tasks like image classification, object detection, and segmentation. Unlike these

tasks, our study confronts the unique challenge of performing multi-modal representation learning

(involving both image and textual data) for WSIs, focusing on modeling information across multiple

scales in both images and text. Textual data in this context can describe both broad and detailed

aspects of multi-scale WSIs. A key unresolved question is how to effectively learn representations

that encompass both global and local features.

Current methods often rely on manually labeling areas of interest for local representation or

using multi-stage learning to merge these local features into a global representation. Yet, these

approaches typically fall short of seamlessly integrating multi-scale image representations with text

data in an end-to-end process.

In this paper, we propose Multi-Level Text-Guided Representation End-to-End Learning (mTREE),

an innovative text-guided method that effectively captures multi-scale image representations through

the use of accompanying textual pathology data. mTREE uniquely blends two formerly separate

processes – the identification of crucial areas (“global-to-local”) and the creation of a WSI-level

image-text representation (“local-to-global”) – into a unified, end-to-end learning framework.

While text-based clinical records are consistently available, they haven’t been fully utilized in

multi-modal representation learning for high-resolution images. Our goal is to develop an algorithm

that leverages these textual records to guide the selection of diagnostic patches and aggregate WSI
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(a) Multi-instance Learning (b) Pathologist diagnosis (c) mTREE: Text-guided sample

Need annotations

…

Massive patches Annotation-free, efficient sample

Text-based Clinic record

Attention

Figure 3.15: Comparison between multi-instance learning, pathologist diagnosis, and our proposed
mTREE. (a) Traditional multi-instance learning needs to process all patches without patch selection.
(b) Pathologists in the diagnosis process focus on the most essential patches selected by manual
efforts. (c) Our proposed mTREE generates text-guided attention to sample efficiently without
manual annotation.

representations without the need for manual annotations. We hypothesize that there is an inherent

correlation between the text and image domains; for a given WSI, the clinical text can provide

criteria for selecting WSI patches and extracting features.

Mathematically, Given a WSI X , considered as a set of image patches {xi}N
i=1 where xi ∈ X ,

and a corresponding label Y for WSI X , our approach involves training two mappings. The first

is for patch selection A : {xi}N
i=1 → {xi}K

i=1 ,(K ≪ N), and the second is for feature abstraction

E : {xi}K
i=1 → Y . Textual data provides guidance for both mappings: optimizing the selection from

the original WSI set and consolidating patch-level features into a comprehensive WSI feature. This

dual mapping requires a multi-level approach for text-guided analysis, executed in an end-to-end

fashion. In the first mapping, patch selection from {xi}N
i=1 depends on each patch’s relevance to

the final prediction, determined by an attention map that scores each patch’s importance. Due to

the extensive size of WSIs, the attention map is initially learned on lower-resolution images and

then mapped to high-resolution images based on coordinate relationships. This approach allows the

model to process only a fraction of patches (K out of N) when K ≪ N. In the second mapping, the

model uses the features extracted from the selected patches, with the text feature identifying and

amalgamating the most pertinent features (those with smaller feature distances) into a unified WSI

representation.
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In summary, our study introduces a text-guided representation learning method aimed at im-

proving efficiency and extracting features from vital image regions, thereby eliminating the confu-

sion caused by unnecessary image patches. Our approach does not require image annotations from

pathologists. Instead, it leverages text descriptions from clinical records to guide the learning pro-

cess of WSI representations at multiple levels in an integrated, end-to-end manner. We have applied

our method to various applications, including image classification and survival prediction across

multiple WSI datasets, and have compared it with previous approaches based on Multiple Instance

Learning (MIL) models.

The key contributions of our work are fourfold:

• We present the first efficient visual-language model for gigapixel WSIs, operating in a seam-

less end-to-end fashion.

• We utilize text information to optimize learning strategies across multiple levels.

• Our pipeline is weakly supervised at the WSI level, eliminating the need for patch-level an-

notations from pathologists.

• Our model offers explainability by providing visualizations at different levels, such as atten-

tion maps and significant patches.

3.5.2 Related Work

3.5.2.1 Multi-instance learning

For pathology image analysis, Multi-Instance Learning (MIL) has emerged as a prominent paradigm,

offering a robust framework to address challenges associated with the lack of patch-wise annotation

of pathological images (Yao et al., 2020; Hou et al., 2016b; Lu et al., 2021a). Different from the

supervised learning method on patches, (Edwards and Storkey, 2016; Zaheer et al., 2017) regard the

pathology image as a collection of multiple instances or regions, each potentially harboring criti-

cal information for diagnostic or prognostic purposes. This approach allows the model to operate

on bags of instances for weakly-supervised learning (Carbonneau et al., 2018). MIL has demon-

strated its efficacy in capturing nuanced spatial relationships (Zhao et al., 2020b) and patterns (Wu

et al., 2022) within pathology images, accommodating the inherently diverse nature of tissue struc-

tures (Shao et al., 2023; Campanella et al., 2019) and cellular compositions (Kraus et al., 2016).
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Upon the set-based concept, Ilse et al. (Ilse et al., 2018) apply the attention mechanism to Whole

Slide Images (WSIs). In a similar vein, Yao et al. (Yao et al., 2020) integrated attention-based MIL

into clustered phenotypes, yielding promising outcomes. Furthermore, (Campanella et al., 2018)

validated the MIL performs well on large-scale WSI datasets.

3.5.2.2 Attention sampling

Performing analysis on large images, attention sampling (Xu et al., 2015a) has emerged as a power-

ful technique to efficiently process extensive visual datasets by selectively focusing computational

resources on regions of interest. Attention sampling aims to address the challenges posed by the

sheer scale of high-resolution images, where the majority of the content may be irrelevant to the

specific task at hand (Zheng et al., 2019). Attention sampling leverages mechanisms inspired by

human visual attention (Hassanin et al., 2022), directing computational resources toward salient

regions while bypassing less informative areas. Notable approaches include the integration of atten-

tion mechanisms within convolutional neural networks (CNNs) (Wang et al., 2023; Xue et al., 2022;

Wang et al., 2021a) to dynamically weigh the importance of different image regions. Additionally,

attention sampling strategies, such as region-based methods and attention-guided sampling, have

been proposed to enhance computational efficiency in tasks such as object detection (Cheng et al.,

2021; Li et al., 2019), image classification (Dong et al., 2022; Wang et al., 2017), and segmenta-

tion (Kulharia et al., 2020; Shi et al., 2022).

3.5.2.3 Visual language model in WSI analysis

The integration of visual language models (VLM) has emerged as a cutting-edge approach, revo-

lutionizing the interpretation of large-scale pathological images. Visual language models combine

the strengths of natural language processing (NLP) and computer vision, enabling a comprehen-

sive understanding of complex visual information assisted by knowledge from multiple domains.

Unlike fine-tuning, VLM is based on prompt prediction in the template, as seen in CLIP (Radford

et al., 2021) and CoOp (Zhou et al., 2022). The trained language model has a strong capability in

knowledge and zero-shot learning (Brown et al., 2020). By leveraging pre-trained language models

such as BERT (Devlin et al., 2018) and adapting them to the unique challenges of WSI, researchers

have achieved remarkable strides in capturing contextual relationships and hierarchical structures
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within pathology images (Huang et al., 2023). These models empower the extraction of meaningful

features and semantic understanding, enhancing the interpretability of WSIs for tasks such as image

classification, tumor detection, and prognosis prediction (Lu et al., 2023).

3.5.3 Methods
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Figure 3.16: This figure demonstrates the proposed mTREE pipeline. The upper panel shows the
text process flow. The text encoder is frozen with pre-trained weights. Text feature T0 is used for
global alignment and alignment of image patch features. The lower panel shows the WSI analytic
flow. The attention model learns an attention map from the WSI in low resolution. The attention
map aligns with the text feature T0. The image patches tiled up from high-resolution WSI are ranked
by attention score. The image features I0, I1...Ik abstracted from image patches with higher attention
scores are aggregated with text feature T0.

As illustrated in 4.11, our goal is to learn the multi-level mapping from gigapixel WSI X to

the representation R guided by text prompt T . To better describe the model learning on gigapixel

images, we regard high-resolution images (base layer in image pyramid in 4.11) as a collection

of image patches {xi}N
i=1 (xi ∈ X). To efficiently learn the WSI representation, the global-level

alignment learns an attention map M from WSI in low resolution Wlow. The global alignment on M

is between image attention map Mw and text attention map Mt . The image patch collection {xi}N
i=1

is ranked by the attention score in attention map M. Top K image patches {xi}K
i=1 with highest

attention score are selected by the sampler. Image patch features {Ii}K
i=1 is abstracted by image

encoder E from top K image patches E(xi). The image feature Ii is selected by the cosine similarity

with T0. The WSI representation R is aggregated by the Ii weighted by distance I0 ×T0. At the core

of our approach is the idea of multi-level alignment from supervision contained in natural language
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Figure 3.17: This figure presents the principle of multi-level text guidance. Global-level text guid-
ance (upper panel) aligns the attention map from images and text. Image attention map is learned
from low-resolution WSI, while text attention is projected from the text feature T0. Local-level text
guidance (lower panel) performs patch selection by computing the cosine similarity distance to the
text feature T0 and aggregates features from both image and text.

and the end-to-end training manner to coordinate the region localization and feature extraction.

3.5.3.1 Global alignment

The attention map can, in theory, learn the significance of the region playing a role in the final pre-

diction. However, for the high-resolution WSI normally in size of 100,000×100,000, a gigapixel

attention map is too large for attention model capacity to learning. Considering the histopathology

image composed of regions of different tissue types, the region distribution of WSI makes attention

map learning even harder to match the target prediction. Since learning the attention map for the

high-resolution image is not valid, we can learn the attention map in low-resolution WSI to reduce

the training burden and localize the rough essential region. To further optimize the attention map,

the global-level alignment is between text feature T0 and low-resolution WSI Xlow. The attention

mappings on the text side At : T0 → Mt and WSI side Aw : Xlow → Mw provides the WSI attention

map Mw and the text attention map Mt . The mapping At is achieved by a projection head, composed

of multiple fully connected layers. We use MSELoss as attention loss LAttn to match the Mw with

Mt as expressed in 3.10.

LAttn =
1
N

N

∑
i=1

(Mi
w −Mi

t )
2 (3.10)
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To prevent the attention from collapsing and to encourage non-zero values in the attention map, the

sparsity-inducing regulation term LSparse is applied to both Mt and Mw, penalizing overly sparse

attention maps following 3.11.

LSparse =
1
N

N

∑
i=1

|Mt |+
1
N

N

∑
i=1

|Mw| (3.11)

To keep the low-resolution WSI in the same size from the same magnification, the original image

is center-cropped before being fed into the attention model. To prevent the attention from focusing

only on the cropped image boundary, the LBoundary is defined by gradients of the attention map with

respect to the x-axis (Gx) and y-axis (Gy). The LBoundary is expressed in 3.12 where Gx(Mw)i is

the i-th element in the gradient of Mw with respect to x-axis and Gy(Mw)i is the i-th element in the

gradient of Mw with respect to y-axis.

LBoundary = λ

(
N

∑
i=1

|Gx(Mw)i|+
N

∑
i=1

|Gy(Mw)i|

)
(3.12)

The full loss function for attention map global alignment is:

LGlobal = LAttn +LSparse +LBoundary (3.13)

3.5.3.2 Local alignment

The attention map M provides the criterion score for image patch significance. The top K patch

selected from {xi}N
i=1 provides the most essential patches for the prediction. As shown in 3.17

lower panel, essential patch collection {xi}K
i=1 selected by the sampler is fed into the image encoder

to generate the image feature {Ii}K
i=1. Because the image patches and text are both encoded into

feature space, the similarity of text feature T0 with each image feature candidate Ii can be computed

and ranked based on 3.14

Cosine Similarity({Ii}K
i=1 ,T0) =

{
Ii ·T0

∥Ii∥∥T0∥

}K

i=1
(3.14)

Image feature {Ii}J
i=1 are selected based on the cosine similarity with the text feature T0. The final

representation for WSI is aggregated with the selected image features, as shown in 3.15.
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R =
J

∑
i=1

(
Ii ·T0

∥Ii∥∥T0∥
· Ii) (3.15)

3.5.3.3 End-to-end training with image sampler

The multi-level alignment under text guidance is built in an end-to-end manner to provide the advan-

tages from two aspects: (1) Coordinate the optimization on the attention map and feature selection

and aggregation. (2) Provide the backpropagation path from the final prediction to the attention map

for the sampler. Representation learning with attention maps often involves a two-stage training pro-

cess, where the first stage focuses on learning a representation, and the second stage incorporates

attention mechanisms as in (Xu et al., 2014; Vaswani et al., 2017; Mnih et al., 2014; Ng et al.,

2015). Insufficient end-to-end optimization potentially leads to suboptimal integration of attention

and representation learning. To better describe the end-to-end manner, the pseudocode of mTREE

is provided.

Algorithm 1 Pseudocode for mTREE implementation
1: Input: Gigapixel WSI X , Text Prompt T
2: Output: WSI Representation R
3: Learn attention map Mw from low-resolution Xlow
4: Align image attention map Mw and text attention map Mt with attention loss
5: Rank image patches {xi}N

i=1 using attention score in Mw

6: Select top K image patches {xi}K
i=1 with highest attention score

7: Extract image features {Ii}K
i=1 with image encoder E

8: Select image feature Ii based on cosine similarity with T0
9: Aggregate WSI representation R using Ii weighted by distance I0 ×T0

3.5.4 Experiments

3.5.4.1 Data description

To substantiate our proposed text-guided representation learning approach, integrating histological

and text features, we sourced glioma and clear cell renal cell carcinoma data from the TCGA, a

comprehensive cancer data consortium housing paired high-throughput text in clinic records and

diagnostic whole slide images. This dataset is enriched with ground-truth survival outcomes and

histologic grade labels. For both the TCGA-KIRC (519 WSIs) and TCGA-GBMLGG (1589 WSIs)

projects, region-of-interests (ROIs) from diagnostic slides are provided by (Chen et al., 2020a). For

clear cell renal cell carcinoma in the TCGA-KIRC project, 512×512 ROIs from diagnostic whole
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Method Inputs Patch # Image encoder Acc C-Index

PathomicFusion diagnostic regions (manual) 20 ResNet-50 N/A 63.1
AttenDeepMIL diagnostic regions (manual) 20 ResNet-50 60.9 61.5

AttenSample raw WSI (automatic) 1 ConvNet 49.1 55.4
AttenDeepMIL raw WSI (automatic) 100 ResNet-50 51.0 58.8
CLAM raw WSI (automatic) >5000 ResNet-50 57.5 60.1
mTREE (Ours) raw WSI (automatic) 10 ResNet-50 63.1 63.2
mTREE (Ours) raw WSI (automatic) 20 ResNet-50 64.7 65.1

Table 3.9: Cancer grade classification and survival prediction results on KIRC dataset. Acc rep-
resents the accuracy of grade classification, while the C-Index evaluates the survival prediction
performance.

slide images are provided as the diagnostic region. This yielded 3 ROIs per patient (512×512 at

40× magnification) for 417 patients, resulting in a total of 1251 images. For the TCGA-GBMLGG

project, 1024×1024 region-of-interests (ROIs) from diagnostic slides are leveraged. The WSI data

is publicly available on the TCGA database (Tomczak et al., 2015a).

3.5.4.2 Data preprocessing

Both WSI image and text data require preprocessing before feature extraction. The preprocessing

for both datasets follows the same strategy.

WSI image data. The input image data for our pipeline is provided from two levels: low-

resolution images and high-resolution images. The low-resolution images are from 5x magnifica-

tions in the WSI pyramid structure. To ensure low-resolution images in the same size and scale, we

center-crop the 5,000×5,000 patches from the low-resolution images. All 5,000×5,000 patches

are then resized to 500×500.

Text data. Follow the design in (Huang et al., 2023; Lu et al., 2023), text information is com-

posed of templates and prompts curated from the clinical records. In our experiments, the paragraph

related to ”survival time” and the ”cancer grade” are used as text information.

3.5.4.3 Network architectures

We adopt the representation learning flow from the ”low-resolution” to ”high-resolution”, as pro-

posed in Attention-sampling (Katharopoulos and Fleuret, 2019), which has shown impressive re-

sults on megapixel image analysis. Based on the ”low-resolution” to ”high-resolution” strategy, our
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mTREE pipeline is composed of three parts: image feature analysis models, text feature analysis

models, and alignment blocks between image and text.

Image feature analysis model. Attention model for low-resolution WSI is a Convolution Net-

work (ConvNet) with four convolution layers. We use 3× 3 convolution kernel and the channel

number of four convolution layers is [8, 16, 32, 1]. The Sampler ranks image patches and selects

the top K patches. No learnable parameters in the sampler. ResNet-50 with ImageNet pre-trained

weight is used as the image encoder.

Text feature analysis model. The text encoder is the pre-trained ViT-B/32 used in CLIP (Rad-

ford et al., 2021). The text encoder is frozen in the training process.

Alignment block. The global alignment block includes a projection head composed of two

sequential convolution layers to project text feature to text attention map. The local alignment

between text features and image features is based on the cosine similarity matrix in the shape of

1×K.

Method Inputs Patch # Image encoder Acc C-Index

PathomicFusion diagnostic regions (manual) 20 ResNet-50 N/A 72.4
AttenDeepMIL diagnostic regions (manual) 20 ResNet-50 78.8 71.4

AttenSample raw WSI (automatic) 1 ConvNet 70.4 65.4
AttenDeepMIL raw WSI (automatic) 100 ResNet-50 70.6 63.6
CLAM raw WSI (automatic) >5000 ResNet-50 75.3 65.7
mTREE (Ours) raw WSI (automatic) 10 ResNet-50 76.5 69.0
mTREE (Ours) raw WSI (automatic) 20 ResNet-50 79.6 70.1

Table 3.10: Cancer grade classification and survival prediction results on GBMLGG dataset. ’Acc’
represents the accuracy of grade classification, while the C-Index evaluates the survival prediction
performance.

3.5.4.4 Training details

We apply our mTREE to two TCGA datasets (KIRC and GBMLGG) on two downstream tasks:

grade classification and survival prediction.

Tasks. The KIRC dataset has three grades (Stage I, Stage II, and Stage III) for grade classifica-

tion. The patient’s overall survival time in month is used as the label for the survival prediction task.

The GBMLGG dataset also has three grades (2, 3, 4) for grade classification. The ”Time to last

follow-up or death (month)” is used as the label for survival prediction in the GBMLGG dataset.
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Hyper-parameters. The three most important parameters are evaluated for our proposed mTREE.

The first one is the size of the attention map learned in global alignment. Tuned by the projection

head channel number and attention model structure, we evaluated attention map size in 123× 123

and 246× 246. The second parameter is the sample number from the attention map (K in 3.14).

Based on the number of patches from the diagnostic region provided by (Chen et al., 2020a),

approximately 20 patches for each WSI, we evaluated sample number in set 5, 10 20, 50. The

third parameter is the sample number from the image patch features (J in 3.15). According to

K ∈ {5,10,20,50}, we sampled J ∈ {2,5,10,20}.

Metrics. The metric used for grade classification tasks is accuracy (ACC). The ACC evaluates

the WSI representation performance on class prediction tasks with discrete labels.

The metric for the survival prediction task is the C-Index. It quantifies the concordance be-

tween predicted and observed survival times, with a higher C-index indicating improved predictive

accuracy.

3.5.4.5 Baseline experiments for comparison

To validate the advantages of the proposed mTREE pipeline, the baseline experiments comparisons

are compared from three aspects: (1) MIL-based model: we use AttenDeepMIL (Ilse et al., 2018) as

a general MIL-based model and CLAM (Lu et al., 2021b), designed specifically for WSI analysis.

(2) Attention Sampling (Katharopoulos and Fleuret, 2019), and (3) PathomicFusion (Chen et al.,

2020a).

AttenDeepMIL. The implementation of AttenDeepMIL follows the settings in (Ilse et al.,

2018). ResNet-50 with ImageNet-pretrained weights is used as the image encoder. For both the

KIRC dataset and the GBMLGG dataset, two patch selection strategies are evaluated: (1) diagnos-

tic region (DR), and (2) tiled-up image patches from 40x WSI (Origin).

CLAM. In (Lu et al., 2021b), CLAM provides the implementation of MIL for classification.

For a fair comparison, the image encoder is ResNet-50, similar to other baseline methods. CLAM

processes all image patches from WSI, except the background patches, normally more than 5,000

patches for a WSI.

AttenSample. Attention sampling input set has an image in high resolution (1,500× 1,500)

and a low-resolution image rescaled by a ratio of 0.1 (150×150). For the TCGA dataset, the high-
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resolution image is from a 5x magnification WSI and center-cropped in size of 5,000×5,000. The

low-resolution image is rescaled by a ratio of 0.1 to 500×500.

PathomicFusion. In (Chen et al., 2020a), PathomicFusion is a multi-modal fusion method

incorporated with image, genomics, and cell graph data. In our experiments, only image data is

used for performance comparison.

3.5.5 Results

Following the experiment settings, two datasets TCGA-KIRC and TCGA-GBMLGG on grade clas-

sification and survival prediction are discussed. To optimize the hyperparameter settings, an ablation

study of different parameters is evaluated on the survival prediction task on the GBMLGG dataset.

To provide the model with explainability, the visualization of the attention map and selected diag-

nostic region by mTREE is presented.

3.5.5.1 KIRC

In 3.9, we compare the performance of the proposed mTREE with baselines on the TCGA-KIRC

dataset for the grade classification task. It is observed that the performance of MIL-based methods

improves with an increasing sample number from the WSI patch collection. When processing all

patches from the WSI, CLAM achieves an accuracy of 57.5%. Remarkably, our proposed mTREE

outperforms, achieving a superior accuracy of 64.7% with just 20 sampled patches from the WSI,

surpassing even AttenDeepMIL with a diagnostic region.

Moving on to the survival prediction task in 3.9, we observe a performance trend similar to the

grade classification task. MIL-based methods exhibit better performance with a diagnostic region

compared to original image patches. The best performance from the MIL baseline achieves a C-

Index of 0.631 when trained on the diagnostic region. Notably, our proposed mTREE demonstrates

superior performance (C-Index 0.651) over the baselines, utilizing both original image patches and

diagnostic regions.

3.5.5.2 GBMLGG

In Table.3.10, we present the prediction performance of the proposed mTREE and baselines on

the grade classification task. Similar to the performance comparison in the grade classification task,
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Figure 3.18: This figure presents the visualization of WSI-level attention and the automatically
derived diagnosis patches. For WSIs in the TCGA-KIRC dataset and TCGA-GBMLGG dataset,
the attention map (middle panels) is learned from WSI (left panels), highlighting essential tissue
regions. Essential image patches (right panels) are selected according to the attention score. The
image boundary color indicates the according attention score.

MIL-based methods exhibit better performance with a diagnostic region compared to original image

patches. The best performance from the MIL baseline achieves an accuracy of 78.8% when trained

on the diagnostic region. Notably, our proposed mTREE outperforms the baselines, achieving a

superior accuracy of 79.6% with both original image patches and the diagnostic region.

In Table.3.10, we present the prediction performance of the proposed mTREE and baselines for

the survival prediction task. The MIL-based method exhibits better performance with a diagnostic

region than with original image patches. The best performance from the MIL baseline achieves a C-

Index of 0.724 when trained with the diagnostic region. Notably, our proposed mTREE outperforms

the baselines, achieving a better performance (C-Index 0.701) with original image patches.

3.5.5.3 Evaluation for multi-level text alignments

In this section, we compare the performance of the proposed mTREE with and without global and

local alignment. The results are presented in Table.3.11. From the performance shown in Table.3.11,

both global and local alignment contribute to performance improvement in all four tasks. However,
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Method Global align Local align KIRC ACC KIRC C-Index GBMLGG ACC GBMLGG C-Index

mTREE
49.1 55.4 70.4 65.4

✓ 51.0 56.3 70.7 65.2
✓ ✓ 64.7 65.1 79.6 70.1

Table 3.11: Ablation study for multi-level text alignments is shown in this table. The accuracy of
grade classification (ACC) and the survival prediction performance (C-Index) are presented.

global alignment provides a limited contribution (as shown in the second row of Table.3.11). From

another perspective, the coordination between local and global alignment underscores the advan-

tages of an end-to-end training approach.

3.5.5.4 Visualization

The attention map (Figure.3.18 middle) obtained through global alignment serves as a crucial tool

for improving the interpretability of mTREE in the context of whole-slide image (WSI) analysis.

The heightened intensity in the attention map accentuates key regions within the WSI that sig-

nificantly contribute to the final prediction. In the domain of weakly-supervised learning, these

bright regions indicate areas of essential diagnostic relevance. To enhance human understanding,

image patches identified as having high diagnostic importance are presented in a zoomed-in view

(Figure.3.18 right). The color of the image boundary indicates the corresponding attention score.

Patches with higher attention scores are deemed more important for the final prediction.

3.5.6 Conclusion

This paper introduces a novel text-guided representation learning pipeline designed for the efficient

processing of Whole-Slide Images (WSIs). Our proposed model, mTREE, seamlessly integrates

textual pathology information with WSI features on multiple levels, enabling a comprehensive un-

derstanding of the underlying data. Trained in an end-to-end manner, mTREE demonstrates superior

performance in both classification and survival prediction across two distinct WSI datasets. Notably,

the model exhibits explainability, as evidenced by its capability to visualize attention maps at both

the WSI level and specific patches with high diagnostic importance. This fusion of accuracy and

interpretability underscores the effectiveness of mTREE in the domain of WSI analysis.

88



CHAPTER 4

Energy Efficient Representation Learning for Meta-optics

4.1 Digital Modeling on Large Kernel Metamaterial Neural Network

4.1.1 Introduction

Digital neural networks (DNN) are essential in modern computer vision tasks. The convolutional

neural network (CNN) is arguably the most widely used AI approach for image classification (Le-

Cun et al., 1989; Krizhevsky et al., 2017; Li et al., 2014), segmentation (Jha et al., 2020; Ron-

neberger et al., 2015), and detection (Chauhan et al., 2018; Redmon et al., 2016). Even for more

recent Vision Transformer-based models, convolution is still an essential component for extracting

local image features (Liu et al., 2021b; Wang et al., 2021b; Liu et al., 2022b; Ding et al., 2022;

Liu et al., 2022a). Current CNNs are typically deployed with computational units (e.g., CPUs and

GPUs). Such a design might lead to a heavy computational burden, significant latency, and inten-

sive power consumption, which are critical limitations in applications such as the Internet of Things

(IoT), edge computing, and the usage of drones. Therefore, the AI community has started to seek

DNN models with less energy consumption and lower latency. However, we might never approach

energy-free and light-speed DNN following the current trends in research.

Fortunately, the recent advances in optical computational units (e.g., metamaterial) have shed

light on energy-free and light-speed neural networks (Fig. 4.1). At its current stage, the SOTA

metamaterial neural network (MNN) is implemented as a hybrid system, where the optical pro-

cessors are used as a light-speed and energy-free front-end convolutional operator with a digital

feature aggregator. Such design reduces the computational latency since the convolution operations

are implemented by optical units, which off-loads more than 90 percent of the floating-point oper-

ations (FLOPs) in conventional CNN backbones like VGG (Simonyan and Zisserman, 2014) and

ResNet (He et al., 2016). However, the digital design of the MNN is fundamentally limited by

its physical structures, namely (1) the optic system can only take positive value; (2) non-linear

computations are challenging for free-space optic devices at low light intensity; (3) the im-

plementation of the optical convolution is restricted by limited kernel size, channel number,

precision, noise, and bandwidth. Furthermore, limitations also exist in the current optic fabrica-
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tion process: 1) only the first layer of a neural network can be fabricated, and 2) limited layer

capacity and weight precision. Therefore, the unique advantages of the MNNs (e.g., light-speed

computation) are not fully explored via standard 3×3 convolution kernels. The large convolution

kernel (greater than 3×3) provides the larger reception fields which plays essential roles in segmen-

tation and classification tasks (Long et al., 2015; Peng et al., 2017; Wang et al., 2020). Compared

with traditional small kernel convolution (Geirhos et al., 2018), A larger receptive field (achieved

using larger kernels or more convolutional layers) allows the network to see and model larger spatial

contexts, which can be crucial in tasks where spatial details like boundaries matter (Cheng et al.,

2020).

In this paper, we propose a novel large kernel metamaterial neural network (LMNN) that max-

imizes the digital capacity of the state-of-the-art (SOTA) MNN with model re-parametrization and

network compression, while also considering the optical limitation explicitly. Our model maximizes

the advantage of the light-speed natural of optical computing by implementing larger convolution

kernels (e.g., 7×7, 11×11). The proposed LMNN yields larger reception fields, without sacrificing

low computational latency and low energy consumption. Furthermore, the aforementioned physical

limitations of LMNNs are explicitly addressed via optimized digital modeling. We evaluate our

model on image classification tasks using two public datasets: FashionMNIST (Xiao et al., 2017)

and STL-10 (Coates et al., 2011). The proposed LMNN achieved superior classification accuracy

as compared with the SOTA MNN and model re-parametrization methods. Overall, the system’s

contributions can be summarized in four-fold:

• We propose the large convolution kernel design for an LMNN to achieve a larger reception

field, lower computational latency, and less energy consumption.

• We introduce the model re-parameterization and multi-layer compression mechanism to com-

press the multi-layer multi-branch design to a single layer for the LMNN implementation.

This maximizes the model capacity without introducing any extra burden during the optical

inference stage.

• The physical limitations of LMNNs (e.g., limited kernel size, channel number, precision,

noise, non-negative restriction, and bandwidth) are explicitly addressed via optimized digital

modeling.
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Figure 4.1: This study provides a digital modeling platform for designing and optimizing a metama-
terial neural network (MNN). The proposed large kernel metamaterial neural network (LMNN) is
able to maximize the performance of an MNN without introducing extra computational complexity
during the inference stage.

• We implemented a one-layer LMNN with real physical metamaterial fabrication to demon-

strate the feasibility of our hybrid design.

The rest of the paper is organized as follows. In Section II, we introduce background and

related research relevant to large kernel convolution, re-parameterization, and optical neural net-

works. In Section III, our proposed LMNN model is presented. It includes the large kernel re-

parameterization, meta-optic adaptation, and model compression strategy. Section IV focuses on

presenting the dataset and experiment implementation details. Section V provides the experimental

results and ablation study. Then, in Section VI and VII, we provide the discussion and conclude our

work.

4.1.2 Related work

4.1.2.1 Models with large kernel convolution

For a decade, a common practice in choosing optimal kernel size in convolution is to leverage 3×3

kernel. In recent years, more attention has been put into a larger kernel design. The Inception

network proposes an early design of adapting large kernels for vision recognition tasks (Chollet,

2017). After developing several variations (Szegedy et al., 2015, 2016), large kernel models became
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Figure 4.2: The upper panel (a) shows the conventional CNN model on the image classification task
with Batch Normalization (BN) and Multilayer Perceptron (MLP). The lower panels (b) present
our proposed LMNN method with digital design and optic implementation with depthwise con-
volution (DWC) layer. The large kernel re-parameterization efficiently achieves a large receptive
field with a multi-branch multi-layer structure. Physical constraints are modeled via the meta-optic
adaptation. The multi-branch multi-layer model is further compressed to a single-layer LMNN. (c)
The digital design is fabricated as a real meta-optic device for inference. The red arrow shows the
main pipeline to build the LMNN. The green arrow shows the image processing path in meta-optic
imaging system.
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less popular. Global Convolution Networks (GCNs) (Peng et al., 2017) employ the large kernel idea

by utilizing 1×K followed by K×1 to achieve improvement in model performance for semantic

segmentation.

Current limitations of leveraging large kernel convolution kernel can be divided into two as-

pects: (1) scaling up the kernel sizes leads to the degradation of model performance, and (2) its

high computational complexity. According to the Local Relation Networks (LRNet) (Hu et al.,

2019), the spatial aggregation mechanism with dynamic convolution is used to substitute traditional

convolution operation. As compared with the traditional 3×3 kernels, the LRNet (Hu et al., 2019)

leverages 7×7 convolution to improve model performance. However, the performance becomes

saturated by scaling up the kernel size to 9×9. Similar to RepLKNet (Ding et al., 2022), scaling up

the convolution kernel size to 31×31 without prior structural knowledge demonstrates the decrease

of model performances. To leverage the heavyweight computation of large kernel convolution, (Sun

et al., 2022) introduces the Shufflemixer for lightweight design.

4.1.2.2 Model compression and re-parameterization

Though many complicated ConvNets (Iandola et al., 2014; Huang et al., 2018) deliver higher accu-

racy than more simple ones, the drawbacks are significant. 1) The complicated multi-branch designs

(e.g., residual addition in ResNet (He et al., 2016) and branch-concatenation in Inception (Szegedy

et al., 2015)) make the model difficult to implement and customize, and slow down the inference and

reduce memory utilization. 2) Some components (e.g., depthwise convolution in Xception (Chol-

let, 2017) and MobileNets (Howard et al., 2017), and channel shuffle in ShuffleNets (Zhang et al.,

2018b)) increase memory access costs and lack support for various devices.

Model compression (Cheng et al., 2018) aims to reduce the model size and computational com-

plexity (Vanhoucke et al., 2011; Chen et al., 2015) while maintaining their performance including

pruning and quantization. Pruning has been widely used to compress deep learning models by

removing the unnecessary or redundant parameters from a neural network without affecting its ac-

curacy (Srinivas and Babu, 2015; Han et al., 2015; He et al., 2017). Quantization has two categories:

Quantization-Aware Training (QAT) (Gong et al., 2014; Wu et al., 2016) and Post-Training Quanti-

zation (PTQ). QAT applies quantization operation in the training stage. In contrast, PTQ takes a full

precision network for training and quantized it in the post stage (Liu et al., 2021c; Li et al., 2021).
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Attempting to decrease the redundancy of CNN, SCConv (Li et al., 2023) compress the model by

exploiting the spatial and channel redundancy among features.

4.1.2.3 Optical neural network

The Optical neural network uses light instead of electrical signals to perform matrix multiplica-

tions (Zhou and Anderson, 1994; Larger et al., 2012; Duport et al., 2012b) which can be much faster

and more energy-efficient than traditional digital neural networks. Most optical neural networks

(ONN) use a hybrid model structure: implement linear computation with optic device and non-

linear operation digitally (Jutamulia and Yu, 1996; Paquot et al., 2012; Woods and Naughton, 2012;

Hughes et al., 2018). Besides the use of optical devices, ONN has been implemented on nanopho-

tonic circuits (Fang and Sun, 2015; Shen et al., 2017) and light-wave linear diffraction (Ovchinnikov

et al., 1999; Lin et al., 2018) to improve model efficiency. For the non-linear computation, (George

et al., 2018; Miscuglio et al., 2018) have proposed implementing the non-linear operation with the

optic device on ONN.

4.1.3 Method

Problem statement. The goal of this study is to develop a new digital learning scheme to maxi-

mize the learning capacity of MNN while modeling the physical restrictions of meta-optic. With

the proposed LMNN, the computation cost of the convolutional front-end can be offloaded into fab-

ricated optical hardware, so as to get optimal energy and speed efficiency under current fabrication

limitations. We adapt our innovations with four aspects: (1) large kernel re-parameterization, (2)

meta-optic adaptation, and (3) model compression.

4.1.3.1 Large kernel re-parameterization

To tackle the limitation of only fabricating the first layer only in CNNs, we need to maximize the

performance of the first layer, while it is feasible to adapt the fabrication processing. With the

significant progress in Vision Transformers (ViTs), the key contribution for the performance gained

is largely credited to the large effective receptive field, which can be generated similarly by the

depthwise convolution with large kernel sizes in CNNs. Therefore, we explore the feasibility of

adapting large kernel convolution in 1) single-branch and 2) multi-branch setting. The overarching
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methodology for large kernel design can be delineated into two primary steps: (1) The deployment

of stacked depthwise convolution layers to accommodate expansive convolution kernel receptive

fields, as detailed in the ”Single Branch Design” section; (2) The amalgamation of results from

various large convolution layers, each offering distinct scales of view, elaborated upon in the ”Multi-

branch Design” section.

Single Branch Design. Inspired by (Ding et al., 2022), a large depthwise convolution kernel is

equivalently to have the same receptive fields to a stack of small kernels. With the intrinsic structure

of depthwise convolution, such a stack of kernel weights can be compressed into a single operator.

It is thus essential for the LMNN to maximize the model performance via a relatively simple meta-

optic design, with a single compressed convolution layer. The compressed design further introduces

fewer model FLOPs in the model inference stage. For conventional convolution operation, the

convolution weight matrix W ∈ RCi×Co×Kh×Kw . The Ci and Co are input channel and output channel

of the convolution layer. Kh and Kw are height and width of convolution kernel. Denote we have an

input patch x in size of H ×W and the output is y, we have conventional convolution as equation

4.1.

y =W ∗ x (4.1)
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where y=∑
ni
p=0Wp∗xp, ∗ represents convolution between matrices. For the input x, the computation

time complexity will be O(H ×W ×Ci ×Co ×Kh ×Kw). For the depthwise convolution model,

channels Ci in the convolution layer are separated along with the input data channels of x. The

depthwise convolution follows the equation. 4.2

y′i =Wi ∗ xi (4.2)

where yi is the ith channel of output y, Wi and xi are the ith channel from Convolution weight W

and input data x, respectively. The time complexity is O(H ×W ×Ci ×Kh ×Kw). Normally, the

input channel number equals to the output channel number. We can infer the theoretical speed-up

ratio r on model FLOPs between convention convolution and depthwise convolution following the

equation.4.3

r =
O(H ×W ×Ci ×Co ×Kh ×Kw)

O(H ×W ×Ci ×Kh ×Kw)
= O(Ci) (4.3)

where Ci is the channel number of the convolution layer. Depthwise convolution has Ci =Co =C.

The depthwise convolution operation saves more FLOPs when the channel number is large com-

pared with convention convolution.

Multi-branch design. Inspired by RepVGG (Ding et al., 2021) and RepLKNet (Ding et al.,

2022), the multi-branch design demonstrates the feasibility of adapting large kernel convolutions

(e.g., 31×31) with optimal convergence using a small kernel convolution in parallel. The addition

of the encoder output enhances the large kernel convolution in the locality. According to the prop-

erties of convolution operation, the abstracted feature map from the parallel convolution path can be

overlapped by learning different features. By using different convolution kernel sizes, the features

from different scales of view are abstracted simultaneously.

We denote that output y′ and input patch x use a two-branch convolution block W .

y′i =W1 ∗ x+W2 ∗ x (4.4)

where W1 and W2 is two different convolution layer with different kernel size. For multiple parallel
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paths, the N-branch convolution can be generated as equation 4.5.

y =
N

∑
q=0

Wq ∗ x (4.5)

According to the equation 4.5, output y has the feature map from multiple scales of views. The

overlap of convolution output from different scale redistributes the feature map which is proved

by (Ding et al., 2022) to have better performance.

4.1.3.2 Meta-optic adaptation

As to integrate the large kernel convolution design into meta-optic devices, we need to consider

and model the physical restrictions explicitly in our model design, beyond the conventional digital

training (Fig. 4.2). First, the weight in convolution kernel should be positive for fabrication. Second,

the convolution layer that substitutes by metalens should be the first layer of the model. Third, in this

manuscript, metalens is designed at single wavelength (color). Thus, all RGB images are transferred

to grayscale images. Fourth, due to the optic implementation purpose, the size of the convolution

kernel is limited. Last, the channel number of the convolution layer is limited by the size of the

optic device capacity.

Split kernel. To keep the model convolution kernel weight positive for the optic device imple-

mentation, we split the convolution kernel into two part: positive weight and negative weight. As

shown in Fig.4.4, the final convolution kernel results are the subtraction of the two feature maps

from the positive and negative convolution kernel respectively. Positively and negatively valued

kernels are achieved for incoherent illumination by using polarization multiplexing, combined with

a polarization-sensitive camera and optoelectronic subtraction.

Remove non-linear layer. In traditional convolution operation, non-linear layer is typically

added between the convolution layers. The non-linear layer, including batch normalization and

activation layers (eg. ReLU) introduce the non-linear transformation to the model. However, the

nonlinear operation is not included in out meta-optic device due to the implementation cost. As

shown in Fig.4.4, the non-linear layers are removed from the parallel convolution branch and con-

nected behind the large kernel convolution layer.

Non-negative weight in optic kernel In traditional deep learning model, both positive weights
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and negative weights are stored. The meta-optic model implementation can only take positive kernel

weights. Adaptation methods are applied to convolution model training to constrain model weight to

a positive value. Four methods are introduced in model training: square of trigonometric functions,

mask out the negative value, add non-negative loss, and our proposed kernel split. The former three

methods constrain convolution kernel weight positive in digital model training. The last kernel split

is achieved by meta-optic implementation.

Square of trigonometric function: instead of directly updating the weight, we define weight as

equation 4.6. The weight Wi keeps positive and in range [0,1] whatever the value of θ . To clarify, we

utilize the square of the trigonometric function to constrain weights within the [0, 1] range during

the model training process. This approach offers distinct advantages over normalizing the weights

at the inference stage. Specifically, the parameter θ can be adjusted freely across any range without

introducing negative weights, which is especially beneficial for our meta-optic implementation.

Wi = Sin2(θi) (4.6)

Mask out the negative value: in the training process, the weight smaller than 0 is assigned as 0

manually after each iteration update.

Add non-negative loss: to maintain the model weight positive, a non-negative weight loss is

added to the loss function, which is defined as equation 4.7.

loss = ∑(model.weight < 0) (4.7)

Bandwidth and precision. Due to the accuracy of the current fabrication of meta-optic, the

optical inference might lose precision. As a result, the model bandwidth and weight precision

should also be modeled during the training process. For example, PyTorch has a default 32-bit

precision, which is not feasible for the LMNN. Thus, the quantize is employed to simulate the

model performance when all digital neural networks are implemented with optic devices. Taking

the noise in optic implementation into consideration, which will affect the model weights precision,

we add the Gaussian noise to the digital convolution weight.
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Figure 4.4: Adaptation for meta-optic implementation. (a) To implement the kernel with negative
weight, we split the kernel into the positive kernel and negative kernel and subtract from their feature
map. (b) The non-linear layer needs to be removed from the parallel convolution path.

4.1.3.3 Model compression

The stacked depthwise convolution and re-parameterization can potentially improve the model per-

formance by learning with variance. The multilayer structure can be regarded as multiple stacked

depthwise convolution layers which make the model deeper. The multi-branch structure will make

the model wider. It is obvious the designed model is in a complex structure. To save image pro-

cessing time in the inference stage, the multiplayer structure can be squeezed into a single layer. In

this paper, we only explore the squeezed convolution layer. To get the equivalent squeezed layer, a

non-linear component should be eliminated. The non-linear layers such as activation function and

batch normalization are moved out of our squeezed block. The stacked convolution kernel follows

the equation 4.8.

y =(WN ∗ (WN−1 ∗ . . . . . . . . .(W2 ∗W1)))∗ x

=W ∗ ∗ x
(4.8)

W ∗ = (WN ∗ (WN−1 ∗ . . . . . . . . .(W2 ∗W1))) (4.9)

W ∗ is the equivalent weight to the stacked setting in equation 4.9. As the number of stacked

convolution layers increases, the equivalent convolution kernel is larger. The equivalent kernel size

k and the number of stacked 3×3 convolution layer n follow equation 4.10.

k = 2×n+1 (4.10)
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Figure 4.5: The meta-optic devices simulation and implementation platform. (a) Optic system
for meta-optic lens test. The components in the figure are: Light source: Tungsten Lamp; filter:
Wavelength filter; Pol: Polarizer; SLM: Spatial light modulator; Condenser: Lens to focus light on
the SLM; MSs: Metasurfaces; Ob: Objective lens. (b) Measured meta-optic kernel weight point
spread function, used for optical convolution with the imaged object. (c) Theoretical meta-optic
kernel weight point spread function by simulation.

For example, two 3×3 convolution kernels are equivalent to a 5×5 convolution kernel. The

multi-branch convolution layer can be compressed as shown in Fig 4.3.

Since the convolution kernel value from the different parallel branches is equivalent to a single

kernel by overlapping kernel, a multi-parallel convolution branch can be compressed into a single

path.

4.1.4 Data and experimental design

4.1.4.1 Data description

Two public datasets, FashionMNIST (Xiao et al., 2017) and STL10 (Coates et al., 2011), were

employed to evaluate the performance of the proposed method on image classification tasks. For the

FashionMNIST dataset, we employed 60,000 images for training and 10,000 images for testing. The

images were grayscale images in the size of 28 × 28. FashionMNIST was inspired by the MNIST

dataset, which classified clothing images rather than digits. We employed STL-10 as another cohort
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with a larger input image size (96×96). In our experiments, the RGB images in STL-10 were

transferred to grayscale images due to the physical limitation in the LMNN.

4.1.4.2 Large kernel re-parameterization

We proposed the large re-parameterized convolution kernel design in our LMNN network to max-

imize the computational performance of the precious single metamaterial layer by (1) taking ad-

vantage of high-speed light computation, and (2) overcoming the physical limitations in an MNN

implementation.

To evaluate the large re-parameterized convolution kernel on FashionMNIST, we constructed

a naive model that consisted of a large re-parameterized convolution kernel block, a single fully

connected layer, as well as non-linear components (ReLU activation, batch normalization, and the

softmax function). Different re-parameterization model structures were evaluated. To demonstrate

the impacts of the size, the kernel was tested from 3×3 to 31×31. Besides the kernel size, we

evaluated multiple numbers of parallel branches: from a single path to four paths.

4.1.4.3 Meta-optic model adaptation

The performance of the LMNN is fundamentally limited by physical restrictions. We provide the

model simulation by modeling optic system limitations. In regards to the model limitations, the

convolution kernel is implemented with optical devices that can only have limited channels. To

include the meta-optic devices in our network, the layer that is to be substituted should be the first

layer of our model. The following model structure can be designed digitally. To validate model

design on different sizes, deep neural networks with multiple convolution layers are implemented.

To simulate the noise in real meta-optic fabrication, we add random noise following the Gaus-

sian distribution. To test the impact of noise level, we simulate the noise amplitude range from 0.05

to 0.2. Considering the meta-optic implementation on the whole model for further research, we

quantize the model weight in 8-bit instead of the default 32-bit.

In order to evaluate the non-negative weight effect, three methods are evaluated to constrain the

model weight positive. ’Sin’ in Fig. 4.8(a) means weights are defined by square of sin function.

’Mask out’ is to eliminate the negative weight by screening out. Loss function is also used to define

model with positive weights, which results is shown in Fig. 4.8(a) as ’Non-neg’ loss.
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The large kernel convolution design is validated on fabricated meta-optic devices. Based on the

well-trained digital convolution kernel weight, meta-optic lenses are implemented and tested in real

optic systems shown in Fig. 4.5. The imaging system using a liquid-crystal-based spatial light mod-

ulator (SLM) was built. An incoherent tungsten lamp with a bandpass filter was used for SLM il-

lumination. The feature maps extracted by the meta-optic were recorded by a polarization-sensitive

camera (DZK 33UX250, Imaging Source) where orthogonally polarized channels are simultane-

ously recorded using polarization filters on each camera pixel. The algorithm was programmed

based on Pytorch 1.10.1 and CUDA 11.0 with a Quadro RTX 5000/PCIe/SSE2 as the graphics

cards.

4.1.4.4 Model compression efficiency

Through model compression, the model in the inference stage alleviates the computation load with

lighter weights. The fabricated convolution kernel by a meta-optic lens with the digital backend is

assembled as the hybrid model. We test the model’s inference time by feeding the same image and

recording the model’s processing time.

To test the optimal LMNN structure under the meta-optic fabrication limitation, the combination

of layer numbers from one to five and channel numbers from nine to twenty. The model digital

computation load (FLOPs) and the ratio of meta-optic is computed to find the model structure

achieves optimal efficiency.

4.1.5 Result

In this section, we first evaluate our proposed large kernel network with a simple model structure,

using the FashionMNIST dataset and STL-10 dataset. We then evaluate the large kernel capability

on complex convolution neural networks with the same dataset.

4.1.5.1 Large re-parameterized convolution performance

We evaluate the large re-parameterized convolution model on two datasets: FashionMNIST and

STL-10. As shown in Table. 4.1, the naive model with 7×7 convolution kernels has demonstrated

better performance than that with 3× 3. With structural reparameterization, the model prediction

accuracy further improves. Meanwhile, the model implemented with a depthwise convolution layer
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Table 4.1: Large re-parameterized convolution experiment results

FashionMNIST STL-10
Model Conv Test Model Conv Test

Naive model 3×3 0.8495 3×3 0.4500
RepLKNet (Ding et al., 2022) 7×7 0.9015 7×7 0.4993

11×11 0.5241
RepVGG (Ding et al., 2021) 7+5+3 0.9081 7+5+3 0.5341

11+9+7 0.5650
Depthwise conv (Chollet, 2017) 3 dwc 0.9084 3 dwc 0.5509

5 dwc 0.5935
Shufflemixer (Sun et al., 2022) 7×7 0.9047 7×7 0.5754

11×11 0.9021 11×11 0.5878
SCConv (Li et al., 2023) 7×7 0.8975 7×7 0.5230

11×11 0.8969 11×11 0.5117
LMNN (Ours) 3 dwc + 2 dwc + 1 dwc 0.9115 5 dwc + 3 dwc + 1 dwc 0.6120

’dwc’ refer to the depthwise convolution layer, convolution kernel size is 3×3

outperformed the baselines with both small and large convolution kernels. Other SOTA model

performances are included: Shufflemixer reaches 0.5878 with 7×7 kernel while SCConv performs

better on 11×11 kernel (0.5230).

Our large kernel model is evaluated on the STL10 dataset with a larger image size (96×96).

As compared with performance on FashionMNIST (image size 30×30), the large kernel convolu-

tion model reveals greater improvements, as shown in Table. 4.1. The model with 11×11 kernel

size has better accuracy (0.5341) compared with that of using 3×3 and 7×7. By integrating the

depthwise convolution design, the model performance boosts from 0.5241 to 0.5935. Shufflemixer

and SCConv is evaluated on STL10 with kernel size 7×7 and 11×11 and shows comparable model

accuracy. Shufflemixer gets 0.9047 on 7×7 and SCConv gets 0.8975 on 11×11 kernel size. Our

proposed large kernel block outperforms all SOTA approaches and achieves the best accuracy of

0.6015 with teacher model supervised training.

To further validate our large kernel with depthwise convolution design, we conduct experiments

on more sophisticated models by replacing all convolution layers with the large re-parameterized

convolution layers. Briefly, WideResNet-101 is used as complex model backbone (Kabir et al.,

2022). Model performance is shown in Fig. 4.6. By substituting the first convolution layer with a

larger kernel size, the model performance improves from 0.94 to 0.96 with utilizing larger images

(256×256 RGB).
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Figure 4.7: (a) The large re-parameterized convolution model performance with different layer
numbers and channel numbers. (b) Large convolution kernel efficiency evaluation. The circle in
different colors shows different convolution layer structures. The shadow area is the model structure
that can be fabricated. The circle area shows the FLOPs ratio of the layer implemented by meta-
optic material. x-axis is the model FLOPs except the layer to be fabricated. (c)Model inference time
between the baseline digital model and hybrid model. The orange bar in the figure shows the time
used our model.

4.1.5.2 Performance of model adaptation

To validate our large kernel design on the real metasurface fabrication model shown in Figure. 4.5,

we implement a model trained on FashionMNIST with a large kernel design, utilizing a digital de-

sign for comparison. The digital convolution layer has 12 channels 7×7 convolution kernel which

is the optimal kernel design under the current meta-optic implement limitation. As shown in Ta-

ble.4.2, the Metamaterial Neural Network demonstrates excellent consistency with the theoretical

performance of a digital neural network.

Due to the meta-optic implementation limitation, four adaptation methods are applied to con-

strain kernel weights to positive. According to the model performance, our proposed kernel split
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Table 4.2: Metasurface fabrication

Method Test
Digital Neural Network (DNN) 0.9015
Large Kernel MNN (LMNN) 0.8760

method shows superior performance over the common training strategies.

4.1.5.3 Ablation studies

To validate our model bandwidth and weight precision limit simulation, the results of the experiment

are shown in Table 4.8.

To evaluate the upper bound performance on FashionMNIST, a deep model structure is imple-

mented and tested on FashionMNIST. The number of convolution layers in our model ranges from 1

to 5, and the channel number ranges from 9 to 30. The model performance is shown in Fig. 4.7 (a).

The model with more parameters shows a higher accuracy. Regardless of the meta-optic fabrication

limitation, the meta-optic hybrid model achieves better performance.
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Figure 4.8: Plot of ablation study on LMNN. (a) Evaluating non-negative weight effect on model
performance. (b) Measuring the effect of model bandwidth and weight precision effect on model
prediction accuracy. ’Pr’ in Figure (b) means precision.

4.1.5.4 LMNN efficiency and speed evaluation

To evaluate the model on both speed and computation load, we compute the model FLOPs except the

large convolution layer and the FLOPs ratio of the layer implemented by meta-optic material. The

model performance with different structure is shown in Figure. 4.7 (b). The optimal model structure

should at top left corner in shadow area. As shown, the model with 1 large re-parameterized convo-
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lution layer and 12 channels is the optimal structure. To show the speed advantage of our LMNN,

the model inference time is recorded. From Figure. 4.7 (c), the hybrid model shows a speed twice

fast as compared to the digital convolution model.

4.1.6 Discussion

In this work, we present a convolution block with a large kernel design that generates larger receptive

fields to maximize the digital capacity of LMNN. To validate the large kernel convolution design,

we further applied the block to a complex model such as WideResNet-101. From the experiments,

two important components contribute to the improvement of large kernel design from traditional

3×3 kernel size. First, the larger convolution kernel can get larger receptive fields. According to the

target image size, the convolution kernel size is not the larger the better. For the FashionMNIST in

size of 30×30, 7×7 is the best kernel size. For the images from STL-10 dataset in size of 96×96,

11×11 kernel performed the best. Another interesting point is the stacked depthwise convolution

layers have equivalent computing operations to the single convolution layer with a larger kernel

size. The multi-layer depthwise convolution and multi-branch structure expand the model capacity

without parameter increase.

The proposed LMNN model bridges the disparity between natural objects and digital neural

network analysis. Challenges in hybrid neural network design arise from the optical front-end,

stemming from noise sources in the analog signals. These include stray light, detector interference,

image misalignment due to optical inconsistencies, off-axis imaging aberrations, and fabrication

flaws in the metalens and kernel layers. The system’s bandwidth is constrained by the multi-channel

lens, given the kernel layer’s broadband nature. Optimizing the balance between bandwidth and

aperture size is crucial for meta-optic systems. While the current optical approach mainly supports

linear operations, future layers based on nonlinear media might facilitate activation functions. Even

without these functions, refining the neural architecture can shift more linear tasks to the front-end.

End-to-end model optimization ensures the meta-optic system effectively balances bandwidth and

aperture considerations.

Since the large convolution kernel achieved superior performance on image classification task,

more computer vision tasks have the improvement potential. For the image segmentation task, it can

be regarded as a pixel-level classification problem. The large convolution design can be applied on
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segmentation tasks. Object detection can be another choice for large convolution kernel application.

Different size of convolution kernel provides multiple field of views. The views from multiple scale

can abstract representation with more spatial information.

4.1.7 Conclusion

In this study, we introduced a large-kernel convolution block tailored for implementation on a meta-

optic lens. Through model re-parameterization and multi-layer compression, we were able to ef-

ficiently condense intricate digital layers, making them compatible with the constraints posed by

optical fabrication techniques. By explicitly incorporating the physical restrictions, we re-evaluated

and refined the design of a metamaterial neural network. The proposed LMNN demonstrated supe-

rior performance on the FashionMNIST and STL-10 datasets, attributable to its expanded receptive

fields. Notably, the incorporation of light-speed optical convolution led to reductions in computa-

tional latency and energy consumption. Our research underscores the efficacy of optimized digital

modeling, presenting a strategic pathway for adapting to physical limits in future optic-digital hybrid

designs.
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4.2 High-speed lightweight image segmentation by remodeling multi-channel meta-imagers

4.2.1 Introduction

In the realm of modern computer vision, digital neural networks (DNNs) play a pivotal role. The

convolutional neural network (CNN) stands out as arguably the most extensively employed AI ap-

proach, particularly in tasks like image classification, segmentation, and detection. Despite the

advent of Vision Transformer-based models, convolution remains integral for extracting local im-

age features. Presently, CNNs are typically implemented on computational units like CPUs and

GPUs. However, this conventional design approach brings forth substantial challenges, including a

formidable computational load, notable latency issues, and heightened power consumption. These

limitations become particularly pronounced in applications such as the Internet of Things (IoT),

edge computing, and drone operations. Recognizing the critical need for DNN models with re-

duced energy consumption and lower latency, the AI community has embarked on a quest for more

efficient solutions. Despite these efforts, achieving energy-free and light-speed DNNs within the

current research trends seems to be an elusive goal.

Recent breakthroughs in optical computational units, including metamaterials (refer to Fig. 4.9),

have brought to light the potential for neural networks that operate without energy consumption and

at unprecedented speeds. The current cutting-edge metamaterial neural network (MNN) takes on a

hybrid form, leveraging optical processors as a light-speed and energy-free front-end convolutional

operator alongside a digital feature aggregator. This inventive approach serves to significantly re-

duce computational latency. By assigning the convolution operations to optical units, more than

90 percent of the floating-point operations (FLOPs) inherent in conventional CNN backbones like

VGG and ResNet are effectively off-loaded. This marks a noteworthy departure from traditional

architectures, opening up new avenues for efficient and high-performance neural network designs.

However, the hybrid design is fundamentally influenced by the physical structure including the lim-

ited kernel size, and channel number. Besides that, the hybrid system limited the optic fabrication

on the first layer of the neural network.

Based on our proposed LMNN model, the hybrid design achieves promising performance on

the classification task. However, there are limitations of LMNN, namely: (1) the LMNN model can

only perform image classification tasks instead of model complex tasks like image segmentation

and object detection; (2) input images are in low resolution (28×28), and (3) besides leverage the
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Figure 4.9: This study provides a hybrid pipeline for designing and optimizing a large kernel meta-
material neural network (MNN). The proposed Meta-imager is efficient for segmentation tasks with
fewer FLOPs in computation.

computation burden to the optic, the digital part requires efficiency improvement operation like

model compression in the inference stage.

In this paper, we propose a novel large kernel lightweight segmentation model Meta-imager that

maximizes the efficiency advantages of optic signal computation, while also compressing the digital

processing model to further improve the model segmentation efficiency. To adapt the segmentation

task on large images, the proposed lightweight large kernel model achieves larger receptive fields,

the ability to larger image analysis, and covers general vision tasks, image classification segmenta-

tion, and detection. Furthermore, the complexity of the model digital processing part is explicitly

addressed via a set of model compression methods. We evaluate our design on image segmentation

tasks using three public datasets: the portrait dataset, the Stanford dataset, and KITTI dataset. The

proposed lightweight large kernel model achieved superior segmentation accuracy as compared with

the SOTA segmentation model. Overall, the system’s contributions can be summarized in four-fold:

• We propose a new large convolution kernel CNN network to achieve a large reception field,

less energy consumption, and less latency.

• We introduce the model re-parameterization to improve large convolution kernel performance

and sparse convolution kernel compression mechanism to compress the multi-branch sparse-

convolution design to a single layer for the hybrid system implementation. The model com-
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pression mechanism improves the model efficiency for digital processing.

• The task limitations of large convolution hybrid models are explicitly addressed via perform-

ing segmentation tasks on multiple datasets from different categories.

The rest of the paper is organized as follows. In Section II, we introduce background and related

research relevant to large kernel convolution, model compression, and optical neural networks on

image processing tasks. In Section III, our proposed lightweight lightspeed model is presented.

It includes the large kernel re-parameterization, sparse convolution compression, and multi-path

model compression. Section IV focuses on presenting the dataset and experiment implementation

details. Section V provides the experimental results and ablation study. Then, in Sections VI and

VII, we provide the discussion and conclude our work.

4.2.2 Related work

4.2.2.1 Large kernel convolution design

In the realm of convolutional neural networks (CNNs), the design and utilization of large kernel

convolutions have garnered significant attention in recent years. Numerous studies have explored

the benefits of using larger convolutional kernels, such as 7x7 or 11x11, to capture broader spatial

contexts and more intricate patterns within images (Simonyan and Zisserman, 2014; Szegedy et al.,

2015). Early research efforts focused on understanding the impact of kernel size on model per-

formance, with findings suggesting that larger kernels can lead to improved feature extraction and

recognition accuracy, especially for complex visual tasks (Zeiler and Fergus, 2014).

Building upon these findings, subsequent works have proposed various strategies to incorporate

large kernel convolutions into CNN architectures effectively. These strategies often involve mod-

ifying network architectures, adjusting kernel sizes, or integrating multi-scale features to enhance

the robustness and versatility of CNN models (Szegedy et al., 2016; He et al., 2016). Additionally,

advancements in hardware acceleration and parallel processing have facilitated the efficient imple-

mentation of large kernel convolutions, enabling their widespread adoption across diverse computer

vision applications (Zhang et al., 2018a; Sun et al., 2018).

Overall, the related work on large kernel convolution design underscores its pivotal role in ad-

vancing the capabilities of CNNs for tackling increasingly complex and demanding visual recogni-
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tion tasks (Lin et al., 2013; Huang et al., 2017).

4.2.2.2 Optic neural network

Optic neural networks (ONNs) have emerged as a promising paradigm for accelerating neural net-

work computations by leveraging the unique properties of optical computing. Inspired by the princi-

ples of light-based signal processing, ONNs exploit the parallelism, high bandwidth, and low energy

consumption inherent in optical systems to achieve significant computational efficiency gains com-

pared to traditional electronic implementations. A considerable body of research has focused on

exploring various aspects of ONNs, including optical device design, system architectures, and al-

gorithmic frameworks tailored to optical computing platforms (Shen et al., 2017; Lin et al., 2018;

Hughes et al., 2018).

Early studies laid the groundwork for ONNs by demonstrating their potential for accelerating

matrix-vector multiplications, a fundamental operation in neural network inference (Tait et al., 2017,

2016). Subsequent works have extended ONN capabilities to encompass more complex neural

network layers and architectures, paving the way for practical applications in tasks such as image

classification, object detection, and natural language processing (Miscuglio et al., 2018; Larger

et al., 2012).

Key challenges in ONN research include addressing optical noise, device nonlinearity, and scal-

ability issues, which require interdisciplinary efforts spanning optics, photonics, and machine learn-

ing (Jutamulia and Yu, 1996; Boehm et al., 2022). Despite these challenges, ONNs hold great

promise for enabling ultra-fast and energy-efficient neural network computations, with the poten-

tial to revolutionize various domains of artificial intelligence and computing (Zhuge et al., 2021;

Ovchinnikov et al., 1999).

4.2.2.3 Convolution neural network model compression

In the field of convolutional neural networks (CNNs), model compression techniques have garnered

significant attention as a means to reduce the computational complexity and memory footprint of

deep learning models without sacrificing performance. A diverse range of methods has been pro-

posed to compress CNNs, including pruning, quantization, low-rank approximation, knowledge

distillation, and weight sharing. Pruning techniques aim to remove redundant or less important
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parameters from the network, thereby reducing its size and computational cost (Han et al., 2015;

Molchanov et al., 2016). Quantization methods reduce the precision of network parameters, of-

ten by representing weights and activations with fewer bits, to decrease memory requirements and

improve inference speed (Hubara et al., 2017). Low-rank approximation techniques exploit the un-

derlying structure of weight matrices to factorize them into smaller, more computationally efficient

components (Denton et al., 2014). Knowledge distillation involves training a compact ”student”

network to mimic the predictions of a larger ”teacher” network, transferring knowledge from the

latter to the former (Hinton et al., 2015). Additionally, weight sharing approaches aim to reduce

redundancy by sharing parameters across different parts of the network (Chen et al., 2015).

Collectively, these model compression techniques offer effective strategies for deploying CNNs

on resource-constrained devices or accelerating inference in large-scale deployment scenarios. On-

going research in this area continues to explore novel compression algorithms, optimization strate-

gies, and application-specific considerations to further improve the efficiency and effectiveness of

compressed CNN models.

4.2.3 Method

Problem statement We extensively study the trainability of large kernels on metamaterial neural

networks (MNN) and unveil three main observations: (i) traditional convolution kernel shows lim-

ited improvement on large images; (ii) the MNN is only available on classification task; (iii) meta-

material implementation limited the computation ratio on segmentation model which is normally in

complex structure.

4.2.3.1 Large convolution design with multiple path design

Limited by the image size and the task for the model, our previous proposed model LMNN achieved

the prediction performance with kernel size 9× 9. Two major limitations exist when applying the

large kernel design to the MNN: (1) the metamaterial implementation limits the image size to a

small range; (2) only the classification task is available to be validated on the MNN model when the

segmentation task and detection task is too difficult to be implemented under the optic implementa-

tion limitation. To address the challenges, we proposed our model from two perspectives: (1) from

kernel design, we employ the large convolution kernel with parameterization design to construct the
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Figure 4.10: Lightweight segmentation model with hybrid meta optics design.

convolution layer (larger than 9×9); (2) from model design, our proposed lightweight segmentation

model based on the multipath model structure composed by a course segmentation path and a light

refinement path proposed by (Park et al., 2019).

4.2.3.2 Model compression with sparse convolution

Model compression is a crucial technique aimed at enhancing the efficiency of deep learning models

by reducing their size and computational demands while maintaining their performance standards.

Among the various strategies employed in model compression, pruning, and quantization stand out

as widely adopted methodologies. Pruning, a prominent technique in model compression, involves

the systematic removal of redundant or unnecessary parameters from neural networks. By identi-

fying and eliminating connections that contribute minimally to the model’s performance, pruning

effectively reduces the model’s size and computational requirements. This process allows for a

more streamlined network architecture without sacrificing accuracy, making it particularly valuable

for resource-constrained environments or deployment on edge devices.
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We applied model compression and parameterization together for the sparse convolution kernel

which is shown in Fig. Sparse convolution refers to a convolution operation where the kernel (filter)

contains mostly zero values, resulting in a sparse structure. When using a kernel size of 1x3 (1 row

and 3 columns), the convolution operation typically involves sliding this kernel over the input data

and performing element-wise multiplication followed by summation along the spatial dimensions.

Oh,w,c′ =
2

∑
i=0

C−1

∑
j=0

Ih,w+i, j ×K0,i, j,c′ (4.11)

I as the input tensor, K as the kernel tensor, O as the output tensor, and × as the convolution

operation.

For the ExtremeC3 block, we have three convolution paths with kernel size k× k, 1× k, and

k×1. The compressed convolution kernel follows Eq. Let’s denote the individual kernels as k1×k,

kk×k, kk×1.
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Kcombined(i, j) = w1xk ×K1xk(i, j)+wkxk ×Kkxk(i, j)+wkx1 ×Kkx1(i, j) (4.12)

The compressed multipath convolution block saves computation complexity in the inference

stage.

4.2.4 Data and experimental design

4.2.4.1 Data description

Three public datasets, EG1800 (Shen et al., 2016), Stanford Car dataset (Krause et al., 2013), and

KITTI dataset (Geiger et al., 2012), were used to evaluate the lightweight large kernel model on

segmentation tasks. For the EG1800 dataset, we employ 1887 images in 600×800 resolution with

semantic segmentation masks. The EG1800 dataset is collected from Flicker with the manually

annotated mask of the portrait. The Stanford Car dataset is composed of 16,185 RGB images of

cars with the point coordinate where the car is located in images. The KITTI dataset is popular

in mobile robotics and autonomous driving and features diverse traffic scenarios captured using

high-resolution RGB, grayscale stereo cameras, and a 3D laser scanner. However, it lacks inherent

ground truth annotations for semantic segmentation. To adapt to the segmentation task, both the

Stanford Car dataset and the KITTI dataset need to address the annotation limitation.

4.2.4.2 Data generation with foundation model

Regarding the Stanford Car dataset and KITTI dataset lacking of segmentation annotation, we em-

ploy the Segment Anything Model (SAM) (Kirillov et al., 2023) to generate the object mask based

on the prompts of object location. The SAM model is a foundation model that has a zero-shot abil-

ity to segment objects on new image distributions. The RGB image of Standford Car and KITTI

datasets and bounding box coordinate is provided for the SAM model and SAM model will generate

the object masks. With the help of the SAM model, the RGB images with object mask annotations

are available for model training.

4.2.4.3 Large kernel digital design on segmentation model

The large kernel design is applied to the segmentation network’s first convolution layer design.

Since the first layer is designed to be substituted by the metaoptic lens in the inference stage, our
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large kernel design is under physical limitation. On the other hand, the optic lens provides light-

speed computation which we can take advantage of. Based on the multipath segmentation network,

the first convolution layers of both the Coarse-net part and Fine-net part are redesigned with the large

convolution kernel with parameterization following the strategy in our previous work LMNN (Liu

et al., 2023). Since the image is large compared with FashionMNIST previously used, our kernel

size is larger from 9× 9 to 15× 15. The channel number is expanded from 12 to 48. The Larger

convolution kernel and channel number provide the large capability of the first layers and handle

the complex situation.

4.2.4.4 Model design with optic constrain

Under the meta-optic fabrication limitation, the meta-optic layer has limitations on both channel

number and input size. The trade-off in model performance between input size and channel number

is discussed. The size-first design uses the largest input image size under fabrication constrain.

Channel-first design prefers more channel numbers under the fabrication limitation.

4.2.4.5 Model compression efficiency

Besides enlarging the capability of the first layer, our proposed lightweight segmentation network

is compressed in the digital part. Since the model compression affects the model’s complexity and

efficiency, we evaluate if the compressed model loses accuracy. To test the efficiency of the model

compression strategy, the model FLOPs, parameters, and FLOPs ratio of the first convolution layer.

4.2.5 Result

In this section, we evaluate our proposed lightweight segmentation network with a simple model

structure, using the EG1800 dataset, Stanford Car dataset, and KITTI dataset. Since the Stanford

Car dataset and KITTI dataset are car images, we train the model and test the two datasets together.

4.2.5.1 Segmentation performance on portrait dataset

We evaluate the lightweight segmentation model on EG1800 dataset together with model parameters

and first convolution FLOPs ratio. As shown in Table. 4.3, the original ExtremeC3 model cannot

take advantage of the large convolution kernel on the first layer, 15× 15 kernel shows even lower

performance than 11×11. The model performance without the first convolution layer shows a 2%
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Table 4.3: Segmentation performance on EG1800

Model Kernel size 1st conv FLOPs (%) Model FLOPs Digital FLOPs Test (mIoU)

ExtremeC3
3×3 10.87 199.4 199.4 0.9249

11×11 62.11 469.14 469.14 0.9323
15×15 75.30 719.62 719.62 0.9301

Digital N/A N/A 174.10 174.10 0.9086

Ours

1×1 2.80 182.06 174.10 0.9137
3×3 10.87 199.40 174.10 0.9234

11×11 59.68 431.81 174.10 0.9415
15×15 63.36 475.16 174.10 0.9418

Model FLOPs and digital FLOPs unit is MMAC.

Table 4.4: Segmentation performance on EG1800 after model compression

Model Kernel size 1st conv FLOPs (%) Model FLOPs Digital FLOPs Test (mIoU)

ExtremeC3
3×3 11.33 191.32 191.32 0.9233

11×11 63.21 461.07 461.07 0.9315
15×15 76.16 711.55 711.55 0.9289

Digital N/A N/A 166.03 166.03 0.9031

Ours

1×1 3.17 174.25 166.03 0.9121
3×3 11.33 191.32 166.03 0.9217

11×11 60.81 423.74 166.03 0.9404
15×15 64.45 467.09 166.03 0.9420

Model FLOPs and digital FLOPs unit is MMAC.

drop compared with the ExtremeC3 model with 3×3 kernel size. Our proposed hybrid lightweight

segmentation model achieves the best performance with 15× 15 convolution kernel which has the

same digital computation FLOPs.

Besides improving the model performance with advanced design on the first convolution layer,

we evaluate the model efficiency improvement by model compression. Following the experiment

setting in Table. 4.3, we applied model compression, including sparse convolution kernel compres-

sion and multipath parameterization, to each model design and shows the efficiency evaluation ma-

trix in Table. 4.4. The compression method shows efficient computation on digital FLOPs without

affecting model performance (mIoU).

4.2.5.2 Segmentation performance on car dataset

To validate our lightweight segmentation model with more datasets, we conduct experiments on the

car dataset, including the Stanford Car dataset and KITTI dataset both with semantic segmentation

mask as ground truth. Since the Stanford Car dataset and KITTI dataset are in different resolutions.
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Table 4.5: Segmentation performance on car dataset

Model Kernel size Train (KITTI+Stanford) Test (mIoU) KITTI Stanford

ExtremeC3
3*3 95.02 92.51 84.45 95.23

11*11 95.12 92.09 84.37 95.39
15*15 76.09 70.25 22.69 95.22

Digital N/A 93.31 89.11 78.47 94.27

Ours

1*1 94.13 90.94 82.68 93.15
3*3 94.97 92.01 85.05 94.77

11*11 95.79 92.91 85.33 95.97
15*15 96.05 93.17 87.41 95.19
Model FLOPs and digital FLOPs unit is MMAC.

Table 4.6: Segmentation performance on car dataset after model compression

Model Kernel size 1st conv FLOPs (%) Model FLOPs Digital FLOPs Test (mIoU)

ExtremeC3
3*3 11.33 191.32 191.32 91.36

11*11 63.21 461.07 461.07 92.45
15*15 76.16 711.55 711.55 70.01

Digital N/A N/A 166.03 166.03 88.97

Ours
1*1 3.17 174.25 166.03 90.94
3*3 11.33 191.32 166.03 94.25

11*11 60.81 423.74 166.03 95.32
15*15 64.45 467.09 166.03 93.05

Model FLOPs and digital FLOPs unit is MMAC.

Both the Standford Car dataset and the KITTI dataset are used for model training.

4.2.5.3 Ablation studies

Due to the fabrication limitation of the meta-lens array, the priority of channel number and input

image size need to be decided. The results of the experiment are shown in Figure 4.12. The left

panel illustrates how increasing the input image size enhances performance compared to expanding

the number of channels in a convolution layer. The gray area highlights the performance disparity

in terms of mean Intersection over Union (mIoU). On the right panel, the effectiveness of utilizing

large convolution kernels is assessed. Circles of various colors represent different convolution layer

architectures, with the area of each circle indicating the ratio of FLOPs (Floating Point Operations

per Second) for the layer when implemented using meta-optic materials. The x-axis represents the

model’s FLOPs, excluding the layer intended for fabrication.
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Efficiency: FLOPs vs. mIoU
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Figure 4.12: Model ablation study. Left panel: trade-off between input image size and channel
number of convolution layer. Right panel: model efficiency visualization comparing model FLOPs
and mIoU.

4.2.5.4 Model compression

Figure 4.13 demonstrates that the compressed model achieves a reduction of 8 MMacs in FLOPs,

decreasing from 174.10 MMacs to 166.03 MMacs. The right panel indicates that the compressed

model maintains equivalent performance to the original model. This consistency in performance

illustrates that our meta-imager not only enhances the efficiency of the digital components but also

contributes to the overall optimization of the hybrid system.
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4.2.6 Discussion

Given the demonstrated superior performance of large convolution kernels in tasks such as image

classification and segmentation, there exists substantial potential for their application in a wider

array of complex computer vision tasks. Large convolution kernels have shown remarkable effec-

tiveness in tasks like image classification and segmentation, primarily due to their ability to capture

more extensive spatial information and intricate patterns within images. This success suggests that

employing large convolution kernels in other computer vision tasks could yield significant improve-

ments.

One such task is object detection, where accurately identifying and localizing objects within

images is crucial. By utilizing large convolution kernels, the model can better discern the detailed

features of objects, leading to more precise detection results. This can be particularly beneficial in

scenarios with small or occluded objects, where finer details are essential for accurate recognition

as the results shown in the experiments on car dataset.

Furthermore, in tasks involving image generation or synthesis, such as style transfer or super-

resolution, large convolution kernels can enhance the model’s ability to capture intricate textures

and details, resulting in more realistic and high-fidelity output images. These kernels can effec-

tively extract and preserve fine-grained features, which are instrumental in faithfully replicating the

characteristics of the input images.

The application can be extended to video processing tasks like action recognition or video seg-

mentation, large convolution kernels can enhance the model’s capability to analyze temporal and

spatial dependencies across frames. By incorporating information from a broader context, these

kernels enable more robust understanding of dynamic scenes, leading to improved performance in

tasks requiring temporal coherence and contextual understanding.

The adoption of large convolution kernels holds promise for advancing various complex com-

puter vision tasks beyond traditional image classification and segmentation. Their ability to capture

intricate details and spatial relationships makes them a valuable tool for enhancing the performance

and capabilities of computer vision models across diverse applications.
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4.2.7 Conclusion

In conclusion, we have introduced a novel large kernel lightweight segmentation model that har-

nesses the efficiency advantages of optical signal computation while integrating digital processing

model compression techniques to further enhance segmentation efficiency. Our model offers larger

receptive fields tailored for segmentation tasks on large images, extending its applicability to var-

ious vision tasks including image classification, segmentation, and detection. Through extensive

evaluations on diverse datasets, including the portrait, Stanford, and KITTI datasets, our proposed

approach has demonstrated superior segmentation accuracy compared to state-of-the-art models.

Our contributions encompass the introduction of a novel large convolution kernel CNN network for

larger reception fields, reduced energy consumption, and lower latency, alongside the introduction

of model re-parameterization and sparse convolution kernel compression mechanisms to enhance

model performance and efficiency in digital processing. By explicitly addressing task limitations

and conducting segmentation tasks on multiple datasets from different categories, our work repre-

sents a significant step forward in the development of efficient and effective segmentation models

for a wide range of computer vision applications.
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CHAPTER 5

Contribution and Future Work

5.1 Contributions

5.1.1 Contribution on annotation-free semantic segmentation with microscopic image

In this paper, we develop a deep learning based unsupervised semantic segmentation method for

sub-cellular microvilli segmentation using fluorescence microscopy. Meanwhile, we evaluate the

performance of micro-level matching strategy, which is enabled by the multi-channel nature of fluo-

rescence images. The contributions of this study are three-fold: (1) We propose the first deep learn-

ing based unsupervised sub-cellular microvilli segmentation method; (2) We propose the micro-

level matching to ensure the roughly same number of objects across two modalities within each

mini-batch, without introducing extra human annotation efforts; (3) Comprehensive analyses are

provided to evaluate the outcomes of different augmentation strategies when generating the simu-

lated masks for unsupervised microvilli segmentation.

5.1.2 Contribution on annotation-free synthetic instance segmentation and tracking for mi-

croscope video

Inspired by the recent generative adversarial network (GAN) based annotation-free image segmen-

tation, we propose a novel annotation-free synthetic instance segmentation and tracking (ASIST)

algorithm for analyzing microscope videos of sub-cellular microvilli. The contributions of this pa-

per are three-fold: (1) a new annotation-free video analysis paradigm is proposed. (2) aggregating

the embedding-based instance segmentation and tracking with annotation-free synthetic learning as

a holistic framework; and (3) to the best of our knowledge, this is first study to investigate microvilli

instance segmentation and tracking using embedding based deep learning. From the experimental

results, the proposed annotation-free method achieved superior performance compared with super-

vised learning.
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5.1.3 Contribution on simple triplet representation learning (SimTriplet) approach on patho-

logical images

In this paper, we propose a simple triplet-based representation learning approach (SimTriplet), tak-

ing advantage of the multi-view nature of pathological images, with effective learning by using only

a single GPU with 16GB memory. We present a triplet similarity loss to maximize the similarity

between two augmentation views of the same image and between adjacent image patches. The

contribution of this paper is three-fold:

(1) The proposed SimTriplet method takes advantage of the multi-view nature of medical im-

ages beyond self-augmentation.

(2) This method minimizes both intra-sample and inter-sample similarities from positive image

pairs, without the needs of negative samples.

(3) The proposed method can be trained using a single GPU setting with 16GB memory, with batch

size = 128 for 224×224 images, via mixed precision training.

5.1.4 Contribution on memory efficiency methods for self-supervised learning on pathologi-

cal image analysis

In this work, we applied these memory-efficient approaches into a self-supervised framework. The

contribution of this paper is three-fold: (1) We combined previously independent GPU memory-

efficient methods with self-supervised learning framework; (2) Our experiments are to maximize

the memory efficiency via limited computational resources (a single GPU); (3) The self-supervised

learning framework with GPU memory-efficient method allows a single GPU to triple the batch

size that typically requires three GPUs. From the experimental results, contrastive learning model

with larger batch size leads to higher accuracy enabled by GPU memory-efficient method on single

GPU.

5.1.5 Contribution on leverage the trained supervised and self-supervised models for patho-

logical image survival analysis

In this paper, we present a simple and low-cost joint representation tuning (JRT) to aggregate

task-agnostic vision representation (supervised ImageNet pretrained models) and pathological spe-
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cific feature representation (self-supervised TCGA pretrained models) for downstream tasks. Our

contribution is in three-fold: (1) we adapt and aggregate classification-based supervised and self-

supervised representation to survival prediction via joint representation tuning, (2) comprehensive

analyses on prevalent strategies of pretrained models are conducted, (3) the joint representation tun-

ing provides a simple, yet computationally efficient, perspective to leverage large-scale pretrained

models for both cancer diagnosis and prognosis. The proposed JRT method improved the c-index

from 0.705 to 0.731 on the TCGA brain cancer survival dataset. The feature-direct JRT (f-JRT)

method achieved 60x training speedup while maintaining 0.707 c-index score.

5.1.6 Contribution on multimodal multi-level fusion on Colorectal cancer microsatellite in-

stability prediction

In this paper, we introduce a new and effective multi-modal fusion pipeline for MSI prediction

by combining decision-level fusion and feature-level fusion following Bayesian rules. We also

investigated different fusion strategies and found the proposed fusion scheme achieved better results

than those methods. The contributions of this paper are: 1) This study generalizes an MSI prediction

pipeline in CRC utilizing radiology-guided knowledge. 2) To the best of our knowledge, we are

the first to exploit a multi-level fusion strategy for using multi-modal data for MSI prediction. 3)

Extensive experimental results suggest the effectiveness of our Bayesian-based multimodal multi-

level fusion. It can reduce the gap between pathology and radiology predictions and achieve more

robust and accurate fusions than other feature-level or decision-level methods.

5.1.7 Contribution on multi-level text-guided representation end-to-end learning for whole

slide image analysis

Our study introduces a text-guided representation learning method aimed at improving efficiency

and extracting features from vital image regions, thereby eliminating the confusion caused by un-

necessary image patches. The key contributions of our work are fourfold: (1) We present the first

efficient visual-language model for gigapixel WSIs, operating in a seamless end-to-end fashion. (2)

We utilize text information to optimize learning strategies across multiple levels. (3) Our pipeline

is weakly supervised at the WSI level, eliminating the need for patch-level annotations from pathol-

ogists. (4) Our model offers explainability by providing visualizations at different levels, such as
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attention maps and significant patches.

5.1.8 Contribution on large convolution kernel design on meta-optics image classification

The system contributions can be summarized in four-fold:

(1) We propose the large convolution kernel design for an LMNN to achieve a larger reception field,

lower computational latency, and less energy consumption.

(2) We introduce the model re-parameterization and multi-layer compression mechanism to com-

press the multi-layer multi-branch design to a single layer for the LMNN implementation. This

maximizes the model capacity without introducing any extra burden during the optical inference

stage.

(3) The physical limitations of LMNNs (e.g., limited kernel size, channel number, precision, noise,

non-negative restriction, and bandwidth) are explicitly addressed via optimized digital modeling.

(4) We implemented a one-layer LMNN with real physical meta-material fabrication to demonstrate

the feasibility of our hybrid design.

5.1.9 Contribution on large convolution kernel design on meta-optics image segmentation

The system’s contributions can be summarized in four-fold:

(1) We propose a new large convolution kernel CNN network to achieve a large reception field, less

energy consumption, and less latency.

(2) We introduce the model re-parameterization to improve large convolution kernel performance

and sparse convolution kernel compression mechanism to compress the multi-branch sparse-convolution

design to a single layer for the hybrid system implementation. The model compression mechanism

improves the model efficiency for digital processing.

(3) The task limitations of large convolution hybrid models are explicitly addressed via performing

segmentation tasks on multiple datasets from different categories.

5.2 Future work

5.2.1 Exploring multi-modalities assisted representation learning on pathology image

For the representation learning on pathology images, the information could be limited by a sin-

gle modality. In the medical domain, information modalities are rich, including pathology images,
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radiology images, and clinical information. Cooperating with multi-modalities, the model perfor-

mance can be improved by generating the information from multiple resources compared with solely

pathology images. A number of research works have proved that multi-modality learning can ben-

efit model training. However, the multiple-modality data of the same patient might be incomplete.

The complete modality data collection is challenging for hospitals. Therefore, it is promising to find

an optimal and efficient approach to abstract information from patients cooperating with incomplete

modality data.

5.2.2 Exploring the foundation model ability on medical image analysis

The integration of Visual Language Models (VLM) has emerged as a cutting-edge approach, trans-

forming the interpretation of large-scale pathological images. VLMs harness the combined strengths

of Natural Language Processing (NLP) and Computer Vision, facilitating a holistic understanding

of complex visual information by leveraging insights from diverse domains. Unlike fine-tuning,

VLM relies on prompt prediction within a template, as demonstrated in CLIP and CoOp. These

language models excel in knowledge acquisition and zero-shot learning.

Utilizing pre-trained language models and tailoring them to the specific challenges of Whole

Slide Image (WSI), researchers have made significant advancements in capturing contextual rela-

tionships and hierarchical structures within pathology images. These models facilitate the extraction

of meaningful features and semantic understanding, thereby enhancing the interpretability of WSIs

for tasks such as image classification, tumor detection, and prognosis prediction.

5.2.3 Exploring the representation learning on super-resolution image

To perform the representation on super large images, obstacles exist on both computing resource

consumptions and large enough reception fields for large images. The researchers have put up multi-

instance learning (MIL) as a solution to adapt the gigapixel-level image to CNNs for natural images

like ResNet50, which only focuses on a limited area. Inspired by the attention map, the model

can learn the attention map from the global view of a high-resolution image. Attention sampling

strategies, such as region-based methods and attention-guided sampling, have been proposed to

enhance computational efficiency in tasks such as object detection. The attention-based methods

on large images cost a massive of time in data preprocessing to make the data ready for retrieval.
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Therefore, an efficient method for learning global representation from super-resolution images is

promising.

5.2.4 Exploring the Large Vision Model (LVM) on medical image analysis

As proposed by (Bai et al., 2023), a novel sequential modeling approach employs vision-sentence

fusion for Large Language Model (LLM) training, overcoming the limitation of paired linguis-

tic data. This approach utilizes a large vision model capable of performing various tasks such as

segmentation, classification, and denoising through pretraining with diverse prompts. In medical

imaging, tasks like color deconvolution and super-resolution are specific to natural image data. Pre-

training the large vision model on medical image tasks opens up the potential to address multiple

tasks within a single model.
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