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CHAPTER 1

Introduction

Clustered data are common in biomedical research. Conventional statistical approaches, including intraclass

correlation coefficients and Pearson correlations, are frequently used to handle clustered data. The intraclass

correlation coefficient (ICC), first introduced by R. A. Fisher (1925), is used to measure the degree of similar-

ity within clusters (Murray et al., 2004; Hedges and Hedberg, 2007). The total, between-, and within-cluster

Pearson correlations are used in the analyses of correlation between two variables with clustered data, to-

gether providing an enriched perspective of the correlation (Snijders and Bosker, 1999; Ferrari et al., 2005).

However, these conventional approaches are sensitive to extreme values and skewness, and depend on the

scale of the data. They also are not applicable to ordered categorical data.

In practice, variables of interest often include skewed continuous variables, ordinal variables, or mixtures

of the two (e.g. outcomes subject to a detection limit). For example, in an observational study, people

living with HIV on antiretroviral therapy had repeated measurements of CD4 and CD8 counts (Castilho

et al., 2016). The data of CD4 and CD8 counts are both right-skewed and sometimes transformed prior

to analyses; estimates of the ICC and Pearson correlations will vary with the transformation. As another

example, in a cluster randomized controlled trial on childhood epilepsy care (Aliyu et al., 2019), the number

of seizures from 18 to 24 months is an irregularly distributed count variable. Data of these types may be

more appropriately analyzed using rank-based approaches. However, rank-based methods for clustered data

are under-developed.

Several studies have proposed rank-based measures to evaluate intraclass similarity (Rothery, 1979; Shi-

rahata, 1981); however, they are probabilities of concordance and do not share the same spirit as Fisher’s

ICC, which is a correlation measure. In Chapter 2, we define the rank ICC as a natural extension of Fisher’s

ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply inter-

preted as the rank correlation between a random pair of observations from the same cluster. We also extend

the definition when the underlying distribution has more than two hierarchies. We describe estimation and

inference procedures, show the asymptotic properties of our estimator, and conduct simulations to evaluate

its performance. We also use three real data examples to illustrate our method, including skewed data, count

data, and three-level ordered categorical data. Furthermore, an R package, rankICC, has been developed

and is available on CRAN, implementing our new method.

In the analyses of correlation between two variables with cluster data, current rank-based measures are

only for the total correlation (Rosner and Glynn, 2017; Shih and Fay, 2017; Hunsberger et al., 2022). There

1



is a need to develop rank-based between- and within-cluster correlations. In Chapter 3, we define popula-

tion parameters for the between- and within-cluster Spearman rank correlations. The definitions are natural

extensions of the Pearson between- and within-cluster correlations to the rank scale. We show that the to-

tal Spearman rank correlation approximates a weighted sum of the between- and within-cluster Spearman

rank correlations, where the weights are functions of rank ICCs of the two random variables. We also dis-

cuss the equivalence between the within-cluster Spearman rank correlation and the covariate-adjusted partial

Spearman rank correlation. Furthermore, we describe estimation and inference for the three Spearman rank

correlations, and conduct simulations to evaluate the performance of our estimators. We also illustrate our

method with data from a longitudinal biomarker study and a clustered randomized trial. A developed R

package, rankCorr, is accessible on CRAN.

In sample size calculations for cluster randomized controlled trials (RCTs), a design effect based on the

ICC is commonly used to inflate the sample size of an adequately powered individual RCT (Campbell and

Walters, 2014; Rutterford et al., 2015). However, this design effect was derived for comparisons of means and

may not apply to skewed or ordinal data. In addition, as mentioned previously, there are limitations to using

the ICC for handling skewed or ordinal data. There are two rank-based sample size calculation approaches

proposed as alternatives for calculating sample sizes in cluster RCTs (Kim et al., 2005; Rosner and Glynn,

2011). However, the two approaches are complex, lack closed forms, involve numerous calculations, and

rely on additional assumptions. In Chapter 4, we introduce a design effect that incorporates the rank ICC,

and propose new sample size calculations for cluster RCTs with skewed or ordinal outcomes using this new

design effect. Our calculations involve inflating the sample size for an adequately powered individual RCT for

an ordinal outcome with the new design effect. For continuous outcomes, our calculations set the number of

distinct ordinal levels to the sample size. Our calculations are unified and simple. Furthermore, we show that

with continuous data, our calculations closely approximate more complicated calculations based on clustered

Wilcoxon rank-sum tests. We conduct simulations to evaluate our calculations’ performance and illustrate

their use in the design of two cluster RCTs, one with a skewed continuous outcome and a non-inferiority trial

with an irregularly distributed count outcome.
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CHAPTER 2

Rank Intraclass Correlation

This chapter is from Rank Intraclass Correlation for Clustered Data published in Statistics in Medicine and

has been reproduced with the permission of the publisher and my co-authors Chun Li, Donglin Zeng, and

Bryan E. Shepherd.

2.1 Introduction

With clustered data, observations in the same cluster are often more similar to each other than to those from

other clusters. The degree of similarity is frequently measured by the intraclass correlation coefficient (ICC).

R. A. Fisher first introduced the ICC to assess familial resemblance of a trait between siblings (Fisher, 1925).

The ICC has since been used in various disciplines including epidemiology, genetics, and psychology. It also

has been employed in clinical trial design (Murray et al., 2004; Hedges and Hedberg, 2007). Fisher’s ICC

measures the correlation between a random pair of observations from a random cluster. When the cluster size

is infinite, Fisher’s ICC is equal to the variance of cluster means divided by the total variance (Harris, 1913).

Because of this, the ICC has also been estimated with random effects models, in which it is estimated as the

proportion of total variance attributable to the clusters (Shrout and Fleiss, 1979; Donner, 1986).

The ICC is fundamental to the analysis of clustered data. However, similar to Pearson’s correlation, it is

sensitive to extreme values and skewed distributions, and it depends on the scale of the data. When a variable

is transformed to a different scale, the ICC may change. For some non-Gaussian distributions, the ICC might

be estimated using generalized linear random effects models. In this case, the ICC is defined on the link

function transformed scale and it may be sensitive to the non-normality of random effects or the method

used to derive the within-cluster variance (Nakagawa et al., 2017). The ICC is also not applicable to ordered

categorical data. For ordered categorical data, ordinal regression models with random effects may be used to

estimate variance components, but the total variance is undefined unless numbers are assigned to levels of the

ordinal response (Hallgren, 2012; Denham, 2016).

Several studies have proposed nonparametric measures to evaluate intraclass similarity based on the no-

tion of concordance. One measure is the probability that a random observation from a cluster does not fall

between a random pair of observations from a different cluster (Rothery, 1979). Another measure is the

probability that a random pair of observations from a cluster does not fall between two random observa-

tions each from a different cluster (Shirahata, 1981). Shirahata (1982) performed comparisons between the

two measures and a modification of Kendall’s measure of dependence (Shirahata, 1982). All three measures
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are rank-based; however, they are probabilities of concordance and do not share the same spirit as Fisher’s

ICC, which is a correlation measure. Methods to estimate the ICC for categorical data have been developed

(Chakraborty et al., 2021), but they ignore the order information when applied to ordered categorical data.

In this Chapter, we define the rank ICC as a natural extension of Fisher’s ICC to the rank scale. We provide

its population parameter and extend it when the underlying distribution has more than two hierarchies. Our

estimator of the rank ICC is insensitive to extreme values and skewed distributions, and does not depend on

the scale of the data. It can be used for ordered categorical variables. We also show that our estimator is

consistent and asymptotically normal. We have developed an R package, rankICC, available on CRAN,

which implements our new method. The R script for the three application examples and simulations is on our

Github page, https://github.com/shengxintu/rankICC.

2.2 Population Parameters

2.2.1 Two Hierarchies

Consider a two-level hierarchical distribution. A random variable from the distribution is denoted as Xi j,

where i represents the cluster it belongs to and j is the index within cluster i. Fisher defined the ICC as the

correlation between a random pair from the same cluster; that is, ρI = corr(Xi j,Xi j′), where j ̸= j′, indicating

that two different observations are drawn from cluster i. For a continuous hierarchical distribution, the ICC

has also been expressed as the ratio of the between-cluster variance to the total variance (Fieller and Smith,

1951); ρIr = σ2
b /(σ

2
b +σ2

w), where σ2
b is the between-cluster variance (i.e., the variance of cluster means),

and σ2
w is the within-cluster variance (i.e., the mean of within-cluster variances). These two definitions are

equivalent only when cluster sizes are infinite. In general, the relationship between these two definitions is

ρI = cov(Xi j,Xi j′)
/√

var(Xi j)var(Xi j′)

= {cov[E(Xi j|µi),E(Xi j′ |µi)]+E[cov(Xi j,Xi j′ |µi)]}
/
(σ2

b +σ
2
w)

= {cov(µi,µi)+E[cov(Xi j,Xi j′ |µi)]}
/
(σ2

b +σ
2
w)

= ρIr +E[cov(Xi j,Xi j′ |µi)]
/
(σ2

b +σ
2
w), (2.1)

where µi is a random variable representing the mean of cluster i. If cluster sizes are finite, ρIr > ρI

because E[cov(Xi j,Xi j′ |µi)] in (2.1) is negative. With equal cluster sizes of m, the value of ρI is constrained

between −1/(m−1) and 1 (Fisher, 1925). Note that ρI can be negative when cluster sizes are finite, whereas

ρIr is always non-negative. While ρI is a correlation measure, ρIr is a measure of the fraction of total variance

attributable to cluster means. Hence, ρI is a more general measure of the intraclass correlation.

The rank ICC, to be defined below, is the rank-based version of Fisher’s ICC, similar to Spearman’s
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rank correlation which is the rank-based version of Pearson’s correlation (Kruskal, 1958). The relationship

between the population parameters of Fisher’s ICC and the rank ICC is identical to the relationship between

those of Pearson’s correlation and Spearman’s rank correlation. The population parameters of Fisher’s ICC

and Pearson’s correlation are correlations on the original scale of the variables, while the population parameter

of Spearman’s rank correlation is the grade correlation (i.e., the correlation between CDFs) for continuous

variables (Kruskal, 1958), or more generally, the correlation of the population versions of midranks or ridits

(Bross, 1958; Kendall, 1970).

Let F be the CDF of the two-level hierarchical distribution. Let F(x−) = limt↑x F(t) and F∗(x) = {F(x)+

F(x−)}/2. The population version of the rank ICC is defined as

γI = corr[F∗(Xi j),F∗(Xi j′)], (2.2)

where (Xi j,Xi j′) is a random pair drawn from a random cluster and j ̸= j′. If X is continuous, γI = 12cov[F(Xi j),

F(Xi j′)], because F∗(X) = F(X)∼ Unif(0,1) and its variance is 1/12. If X has a discrete or mixture distribu-

tion, F∗(Xi j) corresponds to the population version of ridits (Bross, 1958). The rank ICC γI given in (2.2) is

therefore Fisher’s ICC on the cumulative probability scale. The rank ICC has the same boundaries as Fisher’s

ICC and can be negative with finite cluster sizes.

2.2.2 Multiple Hierarchies

We extend the definition of the rank ICC to multiple hierarchies. For ease of understanding, we begin with

three hierarchies. Starting from the innermost level, the three levels are named level 1, level 2, and level 3.

One example is a population of schools, in which there are different classrooms and different students within

each classroom. Here level 1 is the student, level 2 is the classroom, and level 3 is the school. Correlation

may exist within both level-2 and level-3 units. A random variable drawn from a three-level hierarchical

distribution is denoted as Xi jk, where i, j, and k are indices for levels 3, 2, and 1, respectively. Let F be the

CDF of the three-level hierarchical distribution and F∗(x) = {F(x)+F(x−)}/2. The rank ICC at level 2,

denoted as γI2, measures the correlation between a random pair of level-1 observations from the same level-2

unit. It is defined as

γI2 = corr[F∗(Xi jk),F∗(Xi jk′)], (2.3)

where k ̸= k′. The rank ICC at level 3, denoted as γI3, measures the correlation between a random pair of

level-1 observations from the same level-3 unit but different level-2 units. It is defined as

γI3 = corr[F∗(Xi jk),F∗(Xi j′l)], (2.4)
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where j ̸= j′ but k and l can be equal or different. At level 3, there are two potential sources of within-cluster

correlation: one due to different level-2 units within the same level-3 unit and the other due to different level-

1 units within the same level-2 unit. Our definition of γI3 captures the former; the latter has already been

captured by γI2. If we were to ignore the second level and consider the rank correlation between two random

level-1 units from the same level-3 unit irrespective of their level-2 information, the resulting definition would

reflect both sources of correlation, which is not ideal; it could be quite different from γI3 with a small number

of level-2 units within each level-3 unit. Our rank ICC definitions given by (2.3) and (2.4) have comparable

interpretations to previously proposed definitions of ICC for 3 hierarchies on the original scale (Siddiqui

et al., 1996).

The general definition of the rank ICC for a multiple-level hierarchical distribution can be similarly de-

fined. Let Q be the number of hierarchies and XIQIQ−1...I1 denote a random variable from a Q-level hierar-

chical distribution, where IQ, IQ−1, ..., I1 are indices for levels Q, Q− 1, ..., 1, respectively. The CDF of

the Q-level hierarchical distribution is denoted as F , and F∗(x) = {F(x)+F(x−)}/2. The rank ICC at level

j ( j ∈ {2,3, ...,Q}) measures the correlation between level-1 observations from the same level- j unit and

different level-( j−1) unit:

γI j = corr[F∗(XIQIQ−1...I jI j−1...I1),F
∗(XIQIQ−1...I jI′j−1...I

′
1
)], (2.5)

where I j−1 ̸= I′j−1, and for l < j−1, Il and I′l can be the same or different.

2.3 Estimation and Inference

2.3.1 Estimation

Since the rank ICC can be viewed as a function of the underlying distribution γI(F), then our estimator of

γI is γ̂I = γI(F̂). Given two-level data {xi j : i = 1,2, ...,n, j = 1,2, ...,ki} with a total number of observations

of N = ∑
n
i=1 ki, a nonparametric estimator of the CDF is F̂(x) = ∑

n
i=1 ∑

ki
j=1 wi jI(xi j ≤ x), where wi j is the

weight of observation xi j and ∑
n
i=1 ∑

ki
j=1 wi j = 1. The weight wi j depends on how we believe the data reflect

the composition of the underlying hierarchical distribution; for example, wi j = 1/(nki) corresponds to equal

weights for clusters and wi j = 1/N corresponds to equal weights for observations. Other weighting options

will be described later in this section. The weight of cluster i is denoted as wi. = ∑
ki
j=1 wi j. Similarly, we

estimate F̂(x−) = ∑
n
i=1 ∑

ki
j=1 wi jI(xi j < x), and define F̂∗(x) = {F̂(x)+ F̂(x−)}/2. Then our estimator of γI

is γ̂I = corr{F̂∗(Xi j), F̂∗(Xi j′)}, where (Xi j,Xi j′) is a random pair drawn from a random cluster and j ̸= j′.

Because the rank ICC measures the correlation of a random pair from the same cluster, we could consider

Monte Carlo estimation. That is, we first randomly select clusters with replacement and then randomly draw
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pairs of observations from the selected clusters. Then γI could be estimated as the sample correlation of F̂∗(x)

between the sampled pairs of observations. As the number of sampled pairs increases, the estimate of this

approach will converge to a limit, which is our estimator:

γ̂I =
∑

n
i=1 wi. ∑1≤ j< j′≤ki

2
ki(ki−1) [F̂

∗(xi j)− ¯̂F∗][F̂∗(xi j′)− ¯̂F∗]

∑
n
i=1 ∑

ki
j=1 wi j[F̂∗(xi j)− ¯̂F∗]2

, (2.6)

where ¯̂F∗ = ∑
n
i=1 ∑

ki
j=1 wi jF̂∗(xi j), and ki(ki −1)/2 is the number of possible unordered pairs in cluster i.

The estimator γ̂I given by (2.6) is consistent for γI and is asymptotically normal. The proof of consistency

and asymptotic normality and the variance estimation of γ̂I are in Section 2.7. The results allow us to compute

standard errors (SEs) of γ̂I and to construct confidence intervals (CIs) for γI .

The selection of weights, wi j, warrants additional discussion. For populations with finite and unequal

cluster sizes, if there is ambiguity in the relative contributions of clusters in a hierarchical distribution, then

the rank ICC can have some ambiguity. One could assume all clusters have an equal contribution regardless

of their cluster sizes, in which case it would be sensible to set wi j = 1/(nki). Or one could assume the relative

contributions are proportional to cluster sizes, in which case it would be sensible to set wi j = 1/N. The choice

of wi j should be driven by subject matter knowledge. For example, if one is measuring the repeatability of

an assay by collecting specimens (one per person) and measuring them multiple, unequal numbers of times,

then it seems sensible to assume the clusters (people) contribute equally in the population. In contrast, if

one is interested in the correlation of a trait between individuals within the same family, then it may (or may

not) be sensible to assume each family contributes proportionally to the family size. These two weighting

approaches have been applied to estimating the ICC on the original scale under variable cluster sizes (Karlin

et al., 1981). For perfectly balanced data, γ̂I is the same regardless of the weighting approach used.

However, in practice, there is often uncertainty in how we should assume clusters contribute to the

underlying distribution and we may want to consider different weighting schemes. In fact, there may be

bias-variance considerations that might suggest using weights that do not exactly match the true cluster con-

tributions. For example, consider a population with equal cluster contribution. When γI is close to zero,

observations in the same cluster are almost independent, so treating all observations equally regardless of

the cluster size can be more efficient than weighting observations inversely proportional to the size of their

cluster. In contrast, when γI is close to one, observations in the same clusters are almost redundant, favoring

equal weight per cluster. But whether γI is close to zero or one is often unknown before analysis. Therefore,

one might use an iterative procedure to identify a more efficient weighting scheme. One approach is to use

a linear combination of the two weights above, where the combination depends on the value of γI ; that is,
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wi j(γI) = (1− γI)/N + γI/(nki). We call this the combination approach. Another approach is to compute the

effective sample size (ESS) (Kish, 1965) for the clusters (i.e., n(e)i = ki/(1+ kiγI)) and weight clusters and

their observations in clusters accordingly; that is, wi.(γI) = n(e)i /∑
n
j=1 n(e)j and wi j(γI) = wi.(γI)/ki. We call

this second approach the ESS approach. These approaches require a working value of γI . We implement

iterative procedures in which we (a) start with an initial value of γI , (b) update the weights, and (c) compute

a new estimate of γI . We repeat steps (b) and (c) multiple times until the estimate of γI converges. Our

simulations suggest that the choice of the initial value has no effect on the final estimate.

With three or more hierarchies, the estimation of the rank ICC is similar to that described above for two

hierarchies. Given three-level nested data {xi jk; i = 1,2, ...,n, j = 1,2, ...,ni,k = 1,2, ...,mi j}, the nonparamet-

ric estimator for the CDF is F̂(x) =∑
n
i=1 ∑

ni
j=1 ∑

mi j
k=1 wi jkI(xi jk ≤ x), where ∑

n
i=1 ∑

ni
j=1 ∑

mi j
k=1 wi jk = 1. Similarly,

F̂(x−) = ∑
n
i=1 ∑

ni
j=1 ∑

mi j
k=1 wi jkI(xi jk < x). Let F̂∗(x) = {F̂(x)+ F̂(x−)}/2. The general form of the estimator

of γI2 is

γ̂I2 =
∑

n
i=1 ∑

ni
j=1 wi j. ∑1≤k<k′≤mi j

2
mi j(mi j−1) [F̂

∗(xi jk)− ¯̂F∗][F̂∗(xi jk′)− ¯̂F∗]

∑
n
i=1 ∑

ni
j=1 ∑

mi j
k=1 wi jk[F̂∗(xi jk)− ¯̂F∗]2

, (2.7)

where wi j. = ∑
mi j
k=1 wi jk and ¯̂F∗ = ∑

n
i=1 ∑

ni
j=1 ∑

mi j
k=1 wi jkF̂∗(xi jk). The general form of the estimator of γI3 is

γ̂I3 =
∑

n
i=1 wi.. ∑1≤ j< j′≤ni ∑

mi j
k=1 ∑

mi j′
l=1

1
ci
[F̂∗(xi jk)− ¯̂F∗][F̂∗(xi j′l)− ¯̂F∗]

∑
n
i=1 ∑

ni
j=1 ∑

mi j
k=1 wi jk[F̂∗(xi jk)− ¯̂F∗]2

, (2.8)

where wi.. = ∑
ni
j=1 ∑

mi j
k=1 wi jk, and ci is the total number of possible unordered pairs in a level-3 unit; ci =

{(∑ni
j=1 mi j)

2 − (∑
ni
j=1 m2

i j)}/2. We show the asymptotic normality and consistency of γ̂I2 and γ̂I3 in Section

2.7. There are several options for wi jk with three-level data, such as assigning equal weights to all level-1

units (i.e., wi jk = 1/(∑n
i=1 ∑

ni
j=1 mi j)), assigning equal weights to all level-2 units (i.e., wi jk = 1/(mi j ∑

n
i=1 ni)),

or assigning equal weights to all level-3 units (i.e., wi jk = 1/(nnimi j)).

2.3.2 Inference

The distribution of γ̂I can be approximated using asymptotics. The asymptotic standard error (SE) of γ̂I ,

presented in Section 2.7, can be used to construct confidence intervals for γI under normality. Because γI is

bounded, one might also consider estimating the large sample distribution of the Fisher transformed value

(i.e., log{(1+ γ̂I)/(1− γ̂I)}/2) by the delta method to obtain confidence intervals (Fisher, 1915).

An alternative approach for estimating the distribution of γ̂I is bootstrapping. There are two general ways

to implement bootstrapping in clustered data; the cluster bootstrap and the two-stage bootstrap (Davison

and Hinkley, 1997; Field and Welsh, 2007). In the cluster bootstrap, clusters are randomly selected with

replacement. The two-stage bootstrap has an extra step, where in the selected clusters the observations are
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randomly drawn with replacement. In our setting, this intracluster sampling in the two-stage bootstrap can

cause positive bias in estimating γI , because the same observation may be sampled twice in a two-stage

bootstrap sample, thus inflating the estimated ICC, particularly in settings with smaller cluster sizes. Hence,

we recommend using the cluster bootstrap for bootstrapping.

The standard errors of γ̂I2 and γ̂I3 with three hierarchies can be similarly computed. We have derived

analytic formulas for asymptotic SEs of γ̂I2 and γ̂I3 given by (2.7) and (2.8) in Section 2.7. In addition, one

could bootstrap. Considering computational efficiency and the bias caused by intracluster sampling with

replacement, we suggest a one-stage bootstrap for bootstrapping with three hierarchies; i.e., only sampling

level-3 units with replacement.

2.4 Simulations

A simple additive model was used to generate two-level data: Xi j =Ui +Ri j, where Ui
i.i.d∼ N(1,1) and Ri j

i.i.d∼

N(0,(1−ρ)/ρ) with ρ varying in [0,1]. Let Yi j be the observation of the jth individual in the ith cluster,

where i = 1,2, ....,n; j = 1,2, ...,ki; and ki is the cluster size of the ith cluster. We considered three scenarios:

(I) Yi j = Xi j; (II) Yi j = exp(Xi j); (III) Yi j =U
′
i +Ri j, where U

′
i ’s are i.i.d. following a log-normal distribution

such that var(U ′
i ) = 1 and log(U ′

i )
i.i.d∼ N(1, log(1/2+

√
exp(−2)+1/4)). In Scenarios I and II, since Xi j

is normally distributed, the rank ICC is γI = 6arcsin(ρ/2)/π (Pearson, 1907). The rank ICC is identical in

Scenarios I and II while Fisher’s ICC, ρI , is sensitive to skewness and depends on the scale of interest (Figure

2.1). When the variable of interest is normal (Scenario I), γI is close to ρI . In Scenario III, Yi j is not normally

distributed so we empirically computed γI by generating a million clusters each with 2 observations, and then

computing Spearman’s rank correlation.

We first evaluated the performance of our estimator of γI for two-level data. The simulations were con-

ducted at different sample sizes n = 25, 50, 100, 200, 500, and 1000 with an equal cluster size (ki=30).

Furthermore, we also performed simulations with various configurations of cluster size at n = 200: ki = 2;

ki = 30; ki uniformly ranging from 2 to 50; and ki = 2 for half of the clusters and ki = 30 for the other half.

Unless stated otherwise, for estimation, we assigned equal weights to clusters (i.e., wi j = 1/(nki)), which

corresponds with the underlying equal cluster contribution in the simulated hierarchical distribution. We

computed 95% confidence intervals for γI using the asymptotic SE and bootstrapping.

The bias of our estimator and the coverage of 95% CIs based on the asymptotic SE under the different

scenarios described above are shown in Figures 2.2 and 2.3. In summary, our estimator of γI had very low

bias and good coverage with modest numbers of clusters across all scenarios we considered. It was also

robust to the skewed data in Scenarios II and III. Although our estimator had slightly negative bias with a

small number of clusters, this bias decreased as the number of clusters increased. Confidence intervals for γI
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Figure 2.1: Parameters of rank ICC (γI) and Fisher’s ICC (ρI) as a function of the within-cluster correlation
(ρ) of Xi j under normality (Scenario I) and after exponentiating the data (Scenario II)

based on the asymptotic SE approximately covered at their nominal 0.95 level with ≥ 200 clusters for all true

values of γI . For smaller values of γI , coverage could be low for ≤ 100 clusters. Fisher transformation did

not appear to improve coverage (Figure 2.11). The performance of estimators was fairly similar regardless

of the size of clusters (Figure 2.3). Additional simulations reported in Tables 2.4 – 2.8 show that confidence

intervals based on both the cluster bootstrap SE and percentiles had good coverage.

We then evaluated the performance of our estimator of γI when the cluster size is 2 in the population and

the rank ICC varies between −1 and 1. Let Xi1 and Xi2 be the two observations in cluster i. We generated

the two observations in cluster i as follows: Xi1 = Ui +Ri and Xi2 = Ui −Ri, where Ui
i.i.d∼ N(1,1), Ri

i.i.d∼

N(0,(1−ρ)/(1+ρ)), and ρ varies over [−1,1] (we set var(Ui) = 0 and var(Ri) = 20 when ρ = −1). We

conducted 1000 simulations at n = 200. Our estimator of γI had low bias and good coverage (Figure 2.4).

We next compared the performance of the four weighting approaches with 1) equal within-cluster vari-

ances and equal or unequal cluster sizes, and 2) within-cluster variances varying by cluster size. For 1), we

used the same simulations described in the first paragraph of this section. For 2), we supposed the numbers

of small clusters of size 2 and large clusters of size 30 are equal in the population, and simulated the data as

Xi j =Ui +Ri j, with Ri j
i.i.d∼ N(0,c(1−ρ)/ρ), where c = 0.5 for small clusters and c = 1.5 for large clusters
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(a) Scenarios I and II (b) Scenario III

Figure 2.2: Bias and coverage of 95% CIs for γ̂I at different true γI and numbers of clusters under Scenarios I
(normality), II (exponentiated outcomes), and III (exponentiated cluster means). The number of observations
per cluster was set at 30.

and ρ varying over [0,1]. We conducted 1000 simulations at n = 200. Results of the two sets of simulations

are shown in Figures 2.5 and 2.12. When cluster sizes were equal and within-cluster variances were equal,

the estimates of the four weighting approaches were identical. When cluster sizes were unequal and within-

cluster variances were equal, the four methods all had low bias and their mean squared errors were dominated

by their variances. As hypothesized, assigning equal weights to clusters had the lowest efficiency when the
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(a) Scenarios I and II (b) Scenario II

Figure 2.3: Bias and coverage of 95% CIs for γ̂I at different true γI and cluster sizes under Scenarios I, II, and
III. The number of clusters was set at 200. “2-50” means the cluster size follows a uniform distribution from
2 to 50, “2/30” means half of the clusters have size 2 and half have 30.

rank ICC was close to zero, because treating large and small clusters equally resulted in lost information,

even though the data were simulated in a manner such that equal cluster weighting matched the cluster con-

tribution in the population. In contrast, when within-cluster variances varied by cluster sizes, assigning equal

weights to observations contrary to the underlying distribution led to bias. The two iterative approaches had

lower mean squared errors than assigning equal weights to clusters or to observations when the rank ICC was
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Figure 2.4: Bias and coverage of 95% CIs for γ̂I with cluster sizes of 2 and γI varying between −1 and 1. The
number of clusters was set at 200.

close to zero.

We also evaluated the performance of our estimator of γI for ordered categorical variables. We simulated

data of 3-level, 5-level, and 10-level ordered categorical variables by discretizing Xi j in Scenario I with cut-

offs at quantiles (i.e., using the 1/3 and 2/3 quantiles for 3 levels; the 0.2, 0.4, 0.6, 0.8 quantiles for 5 levels;

and the 0.1, 0.2, ..., 0.8, 0.9 quantiles for 10 levels). Similar to Scenario III, we empirically computed γI for

the ordered categorical variables (Figure 2.6). The rank ICCs of the 5-level and 10-level variables are close

to the rank ICC of the continuous variable, while the rank ICC of the 3-level variable is slightly smaller. We

conducted simulations for 3-level and 10-level ordered categorical variables at different sample sizes n = 25,

50, 100, 200, 500, and 1000 with an equal cluster size (ki=30). Our estimator of γI of the ordered categorical

variables generally had low bias and good coverage (Figure 2.13).

We also investigated the performance of our estimators of γI2 and γI3 for data with three hierarchies. Let

Xi jk be the observation of the kth level-1 unit in the jth level-2 unit and the ith level-3 unit, where i= 1,2, ...,n,

j = 1,2, ...,ni; k = 1,2, ...,mi j. We generated three-level data as follows: Xi jk =Ui +Vi j +Ri jk, where Ui
i.i.d∼

N(1,20ρI3), Vi j
i.i.d∼ N(0,20(ρI2−ρI3)), Ri jk

i.i.d∼ N(0,20(1−ρI2)), and (ρI2,ρI3)∈{(0,0),(0.25,0.20),(0.55,

0.20),(0.85,0.20),(0.55,0.5),(0.85,0.5),(0.85,0.8)}. Because of normality, the true rank ICCs are γI2 =

6arcsin(ρI2/2)/π and γI3 = 6arcsin(ρI3/2)/π . We conducted 1000 simulations for different sample sizes

n = 25, 50, 100, 200, 500, and 1000 under equal cluster sizes (i.e., ni = 15 and mi j = 2). Moreover,

we also performed simulations under various patterns of cluster sizes: (ni,mi j) ∈ {(15,2),(2,15),(4,2),(2-
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Figure 2.5: Root mean squared error (RMSE), bias, and empirical SE of estimates obtained by the four
weighting approaches for our estimator of γI . “Equal clusters” refers to assigning equal weights to clus-
ters, “Equal obs” refers to assigning equal weights to observations, “ESS” refers to the iterative weighting
approach based on the effective sample size, and “Combination” refers to the iterative weighting approach
based on the linear combination of equal weights for clusters and equal weights for observations. We set the
tolerance of the two iterative approaches to 0.00001.

15,2),(2/15,2),(2,2-15),(2,2-15),(2/15,2/15)}, where “2-15” means the cluster size follows a uniform dis-

tribution from 2 to 15, “2/15” means half of the clusters have size 2 and a half have 15. The results for ni = 15

and mi j = 2 are shown in Figure 2.7, and the other results are in Figures 2.13 and 2.14 and Tables 2.9 and

2.10. Our estimators of γI2 and γI3 had very low bias and good coverage in all cases we considered. The

asymptotic SE and the one-stage bootstrap had good performance in constructing confidence intervals, and

the former was computationally efficient.
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Figure 2.6: Parameters of rank ICC (γI) as a function of the within-cluster correlation (ρ) of Xi j when data
are continuous or discretized into ordered categorical variables with 3, 5, or 10 levels.

2.5 Applications

2.5.1 Albumin-Creatinine Ratio

In a cross-sectional study, 598 people living with HIV in Nigeria on stable dolutegravir-based antiretroviral

therapy provided first-morning void urine specimens at two visits 4 to 8 weeks apart (Wudil et al., 2021).

The collected urine specimens were used to calculate the urine albumin-creatinine ratio (uACR). There is

interest in estimating the intraclass correlation of uACR. Each patient is considered a cluster, and each cluster

has two observations. The uACR measurements are right-skewed, and the empirical distributions of the first

and second uACR measurements were comparable (Figure 2.8). The rank ICC estimate was 0.217 (95% CI:

0.140-0.295, Table 2.1). The traditional ICC estimate on the original scale obtained from a random effects

model was 0.493, which was driven by a single pair of measurements with extreme values. After removing

that pair, the rank ICC estimate was almost unchanged (0.213, 95% CI: 0.136-0.291) while the traditional

ICC on the original scale dropped dramatically to 0.160, illustrating the robustness of the rank ICC compared

to the traditional ICC. Instead of removing extreme observations, one could consider transforming the data.
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Figure 2.7: Bias and coverage of 95% CIs for γ̂I2 and γ̂I3 at different true values of γI2 and γI3 and different
numbers of level-3 units. The number of level-2 units in a level-3 unit was set at 15. The number of level-1
units in a level-2 unit was set at 2.

The traditional ICC estimate was 0.254 after log transformation and 0.345 after square root transformation,

illustrating the sensitivity of the traditional ICC to the choice of scale.

2.5.2 Status Epilepticus

The Bridging the Childhood Epilepsy Treatment Gap in Africa (BRIDGE) study is a non-inferiority random-

ized clinical trial of childhood epilepsy care at 60 randomly selected primary healthcare centers (PHCs) in
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Figure 2.8: Scatter plot of the first and second uACR measurements of each person in the example of albumin-
creatinine ratio.

Table 2.1: Estimates of rank ICC and traditional ICC of uACR in the example of albumin-creatinine ratio.

Original data Extreme val-
ues removed

Log transfor-
mation

Square root
transforma-
tion

Rank ICC [95% CI] 0.217
[0.140, 0.295]

0.213
[0.136, 0.291]

0.217
[0.140, 0.295]

0.217
[0.140, 0.295]

ICC 0.493 0.160 0.254 0.345

northern Nigeria (Aliyu et al., 2019). The trial is designed to understand if task-shifting childhood epilepsy

treatment by trained community health workers can be as effective at reducing seizures as treatment by

trained physicians. The study recruited 1507 children with untreated epilepsy from the participating PHCs.

Each child’s number of seizures in the six months prior to randomization was collected (Figure 2.9), with a

median of 10 (range 1-50). There is interest in estimating the ICC for the number of seizures across PHCs.

Cluster size ranged from 19 to 31 children per PHC. Since the PHCs were the units of randomization in this

study, it seems reasonable to treat them equally. The rank ICC based on assigning equal weights to clus-

ters was estimated as 0.0482 (95% CI: 0.023-0.073), which suggested low association between the number of

seizures in children within a PHC (Table 2.2). Other methods of weight assignment yielded similar estimates:

assigning equal weights to children resulted in an estimate of 0.0514 (95% CI: 0.025-0.078), the ESS weight-

ing approach yielded 0.0496 (95% CI: 0.024-0.075), and the combination weighting approach resulted in

0.0512 (95% CI: 0.025-0.078). For comparison, the ICC estimated using a linear random effects model was
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0.0426, and the ICCs estimated using generalized linear random effects models were 0.0268 (quasi-Poisson)

and 0.0168 (negative binomial) (Nakagawa et al., 2017).

Figure 2.9: Histogram of numbers of seizures of children with untreated epilepsy from the 60 primary health-
care centers in the example of status epilepticus.

Table 2.2: Estimates of rank ICC and traditional ICC for the number of seizures across the primary healthcare
centers in the sample of status epilepticus.

Equal weights for clusters 0.0482 [0.023, 0.073]
Rank ICC [95% CI] Equal weights for observations 0.0514 [0.025, 0.078]

Iterative weighting based on the effective sample size 0.0496 [0.024, 0.075]
Iterative weighting based on the combination 0.0512 [0.025, 0.078]

Linear 0.0426
ICC Quasi-Poisson link 0.0268

Negative binomial link 0.0168

2.5.3 Patient Health Questionnaire-9 Score

In a third example, we used baseline data from the Homens para Saúde Mais (HoPS+) study, a clustered

randomized controlled trial in Zambézia Province, Mozambique (Audet et al., 2018). The trial aimed to

measure the impact of incorporating male partners with HIV into prenatal care for pregnant women living

with HIV on retention in care, adherence to treatment, and mother-to-child HIV transmission. The trial

enrolled 813 couples living with HIV (with a pregnant female) at 24 clinical sites. Depressive symptoms at

the time of study enrollment were evaluated with the Patient Health Questionnaire-9 (PHQ-9), a nine-item
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scale that measures depressive symptoms over the previous two weeks. The ordinal PHQ-9 score had a

median of 2 (interquartile range 0-5), ranging from 0 to 27 (Figure 2.10). The data have three levels: the

innermost level is the person, the middle level is the couple, and the outer level is the clinical site. The

number of couples at a clinical site ranged from 2 to 68. Our estimates assigned equal weights to couples.

The estimated rank ICC at the couple level, γ̂I2, was 0.678 (95% CI: 0.518-0.838), suggesting substantial

clustering of PHQ-9 scores within couples (Table 2.3). The estimated rank ICC at the clinical site level, γ̂I3,

was 0.397 (95% CI: 0.242-0.552), which was higher than expected, suggesting a fairly high correlation within

clinics. This was confirmed by the estimated rank ICC among females at the clinical level (0.418, 95% CI:

0.260-0.576) and among males (0.395, 95% CI: 0.243-0.548). For comparison, the ICC estimates obtained

from a linear random effects model were 0.792 at the couple level and 0.474 at the clinical site level, both

larger than their rank ICC counterparts.

Figure 2.10: Scatter plot of PHQ-9 scores of male and female partners enrolled in the clustered randomized
clinical trial in the example of Patient Health Questionnaire-9 score.

Table 2.3: Estimates of rank ICC and traditional ICC of PHQ-9 score at the couple level and the clinical site
level in the example of Patient Health Questionnaire-9 score.

The couple
level

The clinical
site level

Females at
the clinical
level

Males at the
clinical level

Rank ICC [95% CI] 0.678
[0.518, 0.838]

0.397
[0.242, 0.552]

0.418
[0.260, 0.576]

0.395
[0.243, 0.548]

ICC 0.792 0.474 0.452 0.497
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2.6 Discussion

In this Chapter, we defined the rank ICC as a natural extension of Fisher’s ICC to the rank scale, and described

its population parameter. Our approach maintains the spirit of Fisher’s ICC while creating a nonparametric

rank ICC measure analogous to Spearman’s rank correlation. The rank ICC is simply interpreted as the

rank correlation between a pair of observations from the same cluster. We also extended the rank ICC for

distributions with more than two hierarchies (i.e., equation (2.5)). Our estimator of the rank ICC is insensitive

to extreme values and skewed distributions, and does not depend on the scale of the data. It is also consistent

and asymptotically normal, with low bias and good coverage in our simulations. Our framework is general,

and applicable to any orderable variables with estimable distributions.

We also discussed assigning weights to clusters and observations under different cases when estimating

the rank ICC for two-level data with heterogeneous cluster sizes. In general, the selection of weights should

be driven by subject matter knowledge. However, in practice, there may be uncertainty in how clusters

contribute to the underlying distribution, and efficiency considerations might guide the choice of weights.

There is a relationship between the rank ICC and Spearman’s rank correlation when the cluster size is two.

With two ordered observations per cluster following the same marginal distribution, the population parameter

of the rank ICC is mathematically equal to that of Spearman’s rank correlation between the first and second

observations. However, their estimation procedures differ; in estimating Spearman’s rank correlation, we

separately estimate the variances and means of the first and second observations, but in estimating γI , we

pool the data to estimate their overall variance and mean. For example, in the albumin-creatinine ratio study,

the estimate of Spearman’s rank correlation between the first and second uACR measurements was 0.236,

close but not equal to the rank ICC estimate, 0.217.

Our rank ICC fills an important gap in the analysis of clustered data. Given Fisher’s introduction of the

ICC nearly 100 years ago, we are surprised that a rank-based ICC has not been developed until now. We

suspect that some researchers may have simply ranked their data and then used the ratio of the between-

cluster and total variances on the rank scale as a rank-based ICC measure, as suggested by others for ordered

categorical data (Hallgren, 2012; Denham, 2016). Although not completely unreasonable, such an approach

is ad hoc and does not correspond with a sensible population parameter. Alternatively, some researchers may

prefer estimating the similarity within clusters via constructing models for continuous and ordered categorical

clustered data, in particular random effects models (Agresti and Natarajan, 2001; Skrondal and Rabe-Hesketh,

2004; Koo and Li, 2016). With linear mixed models, the ICC is calculated using estimates of the variance

of the random effects and the residuals. These model-derived ICC estimates may be sensitive to the choice

of the model: e.g., the form of the linear predictor, potential response variable transformation, non-normality
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of residuals, and/or non-normality of random effects. With generalized random effects models (e.g., for

count or ordinal response variables), the ICC is evaluated on the continuous latent variable scale after a link

transformation, which complicates interpretation and remains sensitive to model choice (Skrondal and Rabe-

Hesketh, 2004). These models may also be sensitive to the method used to derive the within-cluster variance

(Nakagawa et al., 2017). In contrast, our rank ICC does not require fitting a model and provides a simple and

interpretable one-number summary of within-cluster similarity across many types of variables.

Our rank ICC has some limitations. It does not adjust for the effect of other variables on within-cluster

similarity. For example, in the status epilepticus study (Section 2.5.2), there may be interest in measuring the

intraclass correlation after adjusting for child age. Our rank ICC cannot do this, whereas a model-derived

ICC estimate can. Future work could consider extensions to develop covariate-adjusted conditional and

partial rank ICCs. An additional limitation is that our rank ICC appears to have slightly negative bias with

small numbers of clusters when γI is large; this problem goes away as the number of clusters increases.

Furthermore, our rank ICC can be time-consuming to calculate with very large sample sizes. In such settings,

analysts may consider empirically estimating the rank ICC by randomly sampling clusters with replacement,

then sampling pairs of observations from the selected clusters, and finally estimating Spearman’s correlation

across many sampled pairs.

In Chapter 4, we apply the rank ICC to the designs of clustered randomized controlled trials with skewed

or ordered categorical outcomes.

2.7 Supplementary Material

2.7.1 Proof of asymptotic properties of γ̂I with two hierarchies

Let gn(x) and hn(x) be two functions such that γ̂I = [ 1
n ∑

n
i=1 gn(xi)]/[

1
n ∑

n
i=1 hn(xi)], where xi = (xi1, ...,xiki)

denotes a vector of observations in a cluster. Let Pn denotes an empirical measure and P denotes the un-

derlying probability measure such that Pn{g(x)} = 1
n ∑

n
i=1 g(xi) and E[Pn{g(x)}] = P{g(x)}, and same for

h(x). We then have γ̂I =
Pn{gn(x)}
Pn{hn(x)} and γI =

P{g(x)}
P{h(x)} . Here F̂∗ belongs to a Donsker class which contains all

distribution functions in X’s support, where a Donsker class is a sets of functions with the useful property

that empirical processes indexed by the class converge weakly to a certain Gaussian process.

ASSUMPTION 1 For any function f̃ in a Donsker class, there exits a corresponding function f in

another Donsker class such that ∑i ∑ j wi j f̃ (xi j)−E[ f̃ (xi j)] = (Pn −P){ f (x)}+Op(1/
√

n).

REMARK 1 Assumption 1 trivially holds if wi j =
1

nki
, where ki is a bounded variable and the two

Donsker classes are the same. The asymptotic properties of γ̂I shown under wi j =
1

nki
in the followings are

also valid for any wi j (e.g., 1
∑i ki ) that satisfies Assumption 1.

We consider wi j =
1

nki
in the followings. Because F̂∗ belongs to a Donsker class which contains all
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distribution functions in X’s support and F̂∗ uniformly converges to F∗ with probability one, gn and hn

also belong to some Donsker classes based on Assumption 1 and converge in L2(P) distance to their limits

g(x) and h(x), respectively, where g(x) = E
[

∑ j′> j
2wi.

ki(ki−1) [F
∗(xi j)−E(F∗)][F∗(xi j′)−E(F∗)]

]
and h(x) =

E
[

∑
ki
j=1 wi j[F∗(xi j)−E(F∗)]2

]
. Also, |gn −g| → 0, |hn −h| → 0.

Then
√

n(γ̂I − γI) can be expressed in terms of the empirical process
√

n(Pn −P),

√
n(γ̂I − γI) =

√
n
(Pn{gn(x)}

Pn{hn(x)}
− γI

)
=
√

n
(Pn{gn(x)}

Pn{hn(x)}
− P{gn(x)}

P{hn(x)}
+

P{gn(x)}
P{hn(x)}

− γI

)
=
√

n
(Pn{gn(x)}

Pn{hn(x)}
− P{gn(x)}

Pn{hn(x)}
+

P{gn(x)}
Pn{hn(x)}

− P{gn(x)}
P{hn(x)}

+
P{gn(x)}
P{hn(x)}

− γI

)
=
√

n(Pn −P)
{ gn(x)

Pn{hn(x)}
− hn(x)P{gn(x)}

Pn{hn(x)}P{hn(x)}
}+

√
n
[P{gn(x)}

P{hn(x)}
− γI

]
=
√

n(Pn −P)
{ g(x)

E[h(x)]
− h(x)E[g(x)]

(E[h(x)])2

}
+Op(1)+

√
n
[P{gn(x)}

P{hn(x)}
− γI

]

We perform the linearization for
√

n
[

P{gn(x)}
P{hn(x)} − γI

]
around (F∗, F̄∗), where F̄∗ denotes the functional com-

ponent of E(F∗).

√
n
[P{gn(x)}

P{hn(x)}
− γI

]
=
√

n
P
{

∇F∗gn(x)(F̂∗−F∗)
}

P{hn(x)}

−
√

n
P{gn(x)}

(P{hn(x)})2 P{∇F∗hn(x)(F̂∗−F∗)}

+
√

n
P
{

∇F̄∗gn(x)( ¯̂F∗−E[F∗])
}

P{hn(x)}

−
√

n
P{gn(x)}

(P{hn(x)})2 P{∇F̄∗hn(x)(
¯̂F∗−E[F∗])}+Op(1)

= (1)+(2)+(3)+(4)+Op(1)

We then transform (1)− (4) into expressions of
√

n(Pn −P).

(1) =
√

n
P
{

∇F∗gn(x)(F̂∗−F∗)
}

P{hn(x)}

Obtain derivative of each F∗(xi j)

(1) =
√

nP
{ 2wi.

ki(ki −1) ∑
j′> j

(F̂∗(xi j′)−
¯̂F∗)(F̂∗(xi j)−F∗(xi j))

}/
P{hn(x)}

+
√

nP
{ 2wi.

ki(ki −1) ∑
j′> j

(F̂∗(xi j)− ¯̂F∗)(F̂∗(xi j′)−F∗(xi j′))
}/

P{hn(x)}

=
√

nE
[ 2wi.

ki(ki −1) ∑
j′> j

(F̂∗(xi j′)−
¯̂F∗)(F̂∗(xi j)−F∗(xi j))

]/
E[hn(x)]
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+
√

nE
[ 2wi.

ki(ki −1) ∑
j′> j

(F̂∗(xi j)− ¯̂F∗)(F̂∗(xi j′)−F∗(xi j′))
]/

E[hn(x)]

Plug in the expression of F̂∗(xi j) and F̂∗(xi j′)

(1) =
√

n
E[hn(x)]

{
E
[ 2wi.

ki(ki −1) ∑
j′> j

(
F̂∗(xi j′)−

¯̂F∗
)(

∑
i′

∑
j′′

wi′ j′′ [I(xi′ j′′ < xi j)

+ I(xi′ j′′ ≤ xi j)]/2−F∗(xi j)+
2wi.

ki(ki −1) ∑
j′> j

(
F̂∗(xi j)− ¯̂F∗

)
×
(
∑
i′

∑
j′′

wi′ j′′ [I(xi′ j′′ < xi j′)+ I(xi′ j′′ ≤ xi j′)]/2−F∗(xi j′)
)]}

Take i′ and j
′′

outside the expectation

(1) =
√

n
E[hn(x)] ∑i′

∑
j′′

wi′ j′′ E
{ 2wi.

ki(ki −1) ∑
j′> j

(
F̂∗(xi j′)−

¯̂F∗
)(

I(xi′ j′′ < xi j)

+ I(xi′ j′′ ≤ xi j)
)
/2+

2wi.

ki(ki −1) ∑
j′> j

(
F̂∗(xi j)− ¯̂F∗

)(
I(xi′ j′′ < xi j′)

+ I(xi′ j′′ ≤ xi j′)
)
/2
}
−

√
n

E[hn(x)]
E
{ 2wi.

ki(ki −1) ∑
j′> j

[
(F̂∗(xi j′)−

¯̂F∗)F∗(xi j)

+(F̂∗(xi j)− ¯̂F∗)F∗(xi j′)
]}

The expectation in the first component is a function of xi′ j′′ ,

we denote it as ã1(xi′ j′′ )

(1) =
√

n
E[h(x)]

{∑
i′

∑
j′′

wi′ j′′ ã1(xi′ j′′ )−E[ã1(xi′ j′′ )]}+Op(1)

Because ã1(xi j) belongs to a Donsker class

(1) =
√

n
E[h(x)]

(Pn −P){a1(x)}+Op(1) (under Assumption 1)

The derivation of (2)− (4) is similar to that of (1) and under Assumption 1.

(2) =−
√

n
P{gn(x)}

(P{hn(x)})2 P{∇F∗hn(x)(F̂∗−F∗)}

−
√

n
P{gn(x)}

(P{hn(x)})2 P
{

2∑
j

wi j(F̂∗(xi j)− ¯̂F∗)(F̂∗(xi j)−F∗(xi j))
}

=−
√

n
E[gn(x)]

(E[hn(x)])2 E
{

2∑
j

wi j(F̂∗(xi j)− ¯̂F∗)(F̂∗(xi j)−F∗(xi j))
}

=−
√

n
E[gn(x)]

(E[hn(x)])2 E
{

2∑
j

wi j(F̂∗(xi j)− ¯̂F∗)
(
∑
i′

∑
j′

wi′ j′ [I(xi′ j′ < xi j)

+ I(xi′ j′ ≤ xi j)]/2−F∗(xi j)
)}
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=−
√

n
E[gn(x)]

(E[hn(x)])2 ∑
i′

∑
j′

wi′ j′ E
{

2∑
j

wi j(F̂∗(xi j)− ¯̂F∗)[I(xi′ j′ < xi j)

+ I(xi′ j′ ≤ xi j)]/2
}
+
√

n
E[gn(x)]

(E[hn(x)])2 E
{

2∑
j

wi j(F̂∗(xi j)− ¯̂F∗)F∗(xi j)
}

Let ã2(xi′ j′) denote the expectation in the first component

(2) =−
√

n
E[gn(x)]

(E[hn(x)])2 {∑
i′

∑
j′

wi′ j′ ã2(xi′ j′)−E[ã2(xi′ j′)]}+Op(1)

=−
√

nE[g(x)]
(E[h(x)])2 (Pn −P){a2(x)}+Op(1)

(3) =
√

n
P
{

∇F̄∗gn(x)( ¯̂F∗−E[F∗])
}

P{hn(x)}

=
−
√

n
P{hn(x)}

P
{ 2wi.

ki(ki −1)
[

∑
j′> j

(F̂∗(xi j)− ¯̂F∗+ F̂∗(xi j′)−
¯̂F∗)

]
(

¯̂F∗−E[F∗])
}

=
−
√

n
E[hn(x)]

E
{

∑
j′> j

2wi.

ki(ki −1)
[F̂∗(xi j′)−

¯̂F∗+ F̂∗(xi j)− ¯̂F∗](
¯̂F∗−E[F∗])}

=−
√

n
E[hn(x)]

E
{(

∑
j′> j

2wi.

ki(ki −1)
[F̂∗(xi j′)−

¯̂F∗+ F̂∗(xi j)− ¯̂F∗]
)(

∑
i′

∑
j′

wi′ j′

[
F̂∗(xi′ j′)+

1
n ∑

i
∑

j
wi j[I(xi′ j′ < xi j)+ I(xi′ j′ ≤ xi j)]/2

]
−E[F∗]

)}
=−

√
n

E[hn(x)] ∑i′
∑
j′

wi′ j′ E
{(

∑
j′> j

2wi.

ki(ki −1)
[F̂∗(xi j′)−

¯̂F∗+ F̂∗(xi j)− ¯̂F∗]
)

×
(

F̂∗(xi′ j′)+
1
n ∑

i
∑

j
wi j[I(xi′ j′ < xi j)+ I(xi′ j′ ≤ xi j)]/2

)}
+

√
n

E[hn(x)]
E
{

∑
j′> j

2wi.

ki(ki −1)
[F̂∗(xi j′)−

¯̂F∗+ F̂∗(xi j)− ¯̂F∗]E[F∗]
}

We denote the expectation in the first component as ã3(xi′ j′)

(3) =−
√

n
E[hn(x)]

{∑
i′

∑
j′

wi′ j′ ã3(xi′ j′)−E[ã3(xi′ j′)]}

=−
√

n
E[h(x)]

(Pn −P){a3(x)}+Op(1)

(4) =−
√

n
P{gn(x)}

(P{hn(x)})2 P{∇F̄∗hn(x)(
¯̂F∗−E[F∗])}

=
√

n
E[gn(x)]

(E[hn(x)])2 P
{

2∑
j

wi j(F̂∗(xi j)− ¯̂F∗)(
¯̂F∗−E[F∗])

}
=
√

n
E[gn(x)]

(E[hn(x)])2 ∑
i′

∑
j′

wi′ j′ E
{

∑
j

2wi j(F̂∗(xi j)− ¯̂F∗)
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×
(
F̂∗(xi′ j′)+

1
n ∑

i
∑

j
wi j[I(xi′ j′ < xi j)+ I(xi′ j′ ≤ xi j)]/2

)}
−
√

n
E[g(x)]

(E[h(x)])2 E
{

2∑
j

wi j(F̂∗(xi j)− ¯̂F∗)E[F∗]
}

The expectation in the first component is denoted as ã4(xi′ j′)

(4) =
√

n
E[gn(x)]

(E[hn(x)])2 {∑
i′

∑
j′

wi′ j′ ã4(xi′ j′)−E[ã4(xi′ j′)]}

=
√

n
E[g(x)]

(E[h(x)])2 (Pn −P){a4(x)}+Op(1)

With the derivation of (1)− (4) above, we can express
√

n
[

P{gn(x)}
P{hn(x)} − γI

]
by the empirical process. Let

a(x) = 1
E[h(x)] [a1(x)− a3(x)]− E[g(x)]

(E[h(x)])2 [a2(x)− a4(x)], note a(x) is a deterministic function of x. We then

have
√

n
[

P{gn(x)}
P{hn(x)} − γI

]
=
√

n(Pn −P){a(x)}+Op(1).

Accordingly, we have the expression for
√

n(γ̂I − γI) in terms of the empirical process,

√
n(γ̂I − γI) =

√
n(Pn −P){t(x)}+Op(1)

where t(x) = g(x)
E[h(x)] −

h(x)E[g(x)]
(E[h(x)])2 +a(x). By the central limit theorem,

√
n(Pn −P){t(x)} d−→ N(0,σ2

t )

σ2
t is the variance of t. Thus, we can say that as n → ∞,

√
n(γ̂I − γI)

d−→ N(0,σ2
t )

The large sampling distribution of γ̂I is N(γI ,σ
2
t /n). Since 1√

n → 0 as n → ∞, by the Slutsky’s theorem, we

have

γ̂I − γI =
1√
n
√

n(γ̂I − γI)
d−→ 0 ⇒ γ̂I − γI

p−→ 0

That is, γ̂I converges to γI in probability. Therefore, γ̂I is a consistent estimator of γI .

2.7.2 Variance estimation of γ̂I with two hierarchies

Given two-level data {xi j, i = 1, ...,n, j = 1, ...,ki}, we can estimate the variance of γ̂I using the sample vari-

ance of t(x). We first obtain the estimate of t(x) for each cluster. Let An =
1
n ∑

n
i gn(xi) and Bn =

1
n ∑

n
i hn(xi).

For each cluster, we compute

t̂(xi) =
gn(xi)

Bn
− hn(xi)An

B2
n

+ â(xi)
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where â(xi) = Ii+ IIi+ IIIi+ IVi, and the four items are counterparts of components in (1)−(4). We describe

Ii − IVi in the followings.

Ii =
1

Bn

ki

∑
j′′=1

wi j′′
n

∑
i′=1

2wi′.

ki′(ki′ −1) ∑
j′> j

(
{F̂∗(xi′ j′)−

¯̂F∗}{[I(xi j′′ ≤ xi′ j)+

I(xi j′′ < xi′ j)]/2}+ ∑
j′> j

{F̂∗(xi′ j)−
¯̂F∗}{[I(xi j′′ ≤ xi′ j′)+ I(xi j′′ < xi′ j′)]/2}

)

IIi =−An

B2
n

ki

∑
j=1

wi j

n

∑
i′=1

ki′

∑
j′=1

2wi′ j′ [F̂
∗(xi′ j′)−

¯̂F∗][I(xi j ≤ xi′ j′)+ I(xi j < xi′ j′)]/2

IIIi =−Cni

Bn

n

∑
i′=1

2wi′.

ki′(ki′ −1) ∑
j′> j

[F̂∗(xi′ j)−
¯̂F∗+ F̂∗(xi′ j′)−

¯̂F∗]

IVi =
AnCni

B2
n

n

∑
i′=1

ki′

∑
j′=1

2wi′ j′ [F̂
∗(xi′ j′)−

¯̂F∗]

where Cni = ∑
ki
j=1 wi jF̂∗(xi j)+

1
n

n
∑

i′=1

ki′

∑
j′=1

wi′ j′
{ ki

∑
j=1

wi j[I(xi j ≤ xi′ j′)+ I(xi j < xi′ j′)]/2
}

.

Then we can obtain the sample variance of t(x) with {t̂(xi), i = 1, ...,n}, denoted as σ̂2
t . The variance of γ̂I is

estimated by σ̂2
t /n.

2.7.3 Proof of asymptotic properties with three hierarchies

Let g(2)n (x), g(3)n (x) and hn(x) be three functions such that γ̂I2 = [ 1
n ∑

n
i=1 g(2)n (xi)]/[

1
n ∑

n
i=1 hn(xi)] and γ̂I3 =

[ 1
n ∑

n
i=1 g(3)n (xi)]/[

1
n ∑

n
i=1 hn(xi)], where xi = (xi11, ...,xi1mi1 , ...,xini1, ...,xinimi j) denotes a vector of observa-

tions in a level-3 unit. We then have γ̂I2 =
Pn{g(2)n (x)}
Pn{hn(x)} , γI2 =

P{g(2)(x)}
P{h(x)} , γ̂I3 =

Pn{g(3)n (x)}
Pn{hn(x)} , and γI3 =

P{g(3)(x)}
P{h(x)} .

ASSUMPTION 2 For any function f̃ in a Donsker class, there exits a corresponding function f in

another Donsker class such that ∑i ∑ j ∑k wi jk f̃ (xi jk)−E[ f̃ (xi jk)] = (Pn −P){ f (x)}+Op(1/
√

n).

REMARK 2 Assumption 2 trivially holds if wi jk =
1

nnimi j
, where ni and mi j are bounded variables and

the two Donsker classes are the same. The asymptotic properties of γ̂I2 and γ̂I3 shown under wi jk =
1

nnimi j
in

the followings are also valid for any wi jk (e.g., wi jk =
1

∑i ∑ j mi j
or 1

mi j ∑
n
i=1 ni

) that satisfies Assumption 2.

We consider wi jk =
1

nnimi j
in the following proofs. Because F̂∗ belongs to a Donsker class which contains

all distribution functions in X’s support and F̂∗ uniformly converges to F∗ with probability one, g(2)n , g(3)n , and

hn also belong to some Donsker classes based on Assumption 2 and converge in L2(P) distance to their limits

g(2)(x), g(3)(x) and h(x), respectively, where g(2)(x) = E
[

∑ j ∑k′>k
2wi j.

mi j(mi j−1) [F
∗(xi jk)−E(F∗)][F∗(xi jk′)−

E(F∗)]
]
, g(3)(x)=E

[
∑ j′> j ∑k ∑l

wi..
ci
[F∗(xi jk)−E(F∗)][F∗(xi j′l)−E(F∗)]

]
, and h(x)=E

[
∑

ni
j=1 ∑

mi j
k=1 wi jk[F∗(xi jk)−

E(F∗)]2
]
. Also, |g(2)n −g(2)| → 0, |g(3)n −g(3)| → 0, and |hn −h| → 0.
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Then we express
√

n(γ̂I2 − γI2) and
√

n(γ̂I3 − γI3) in terms of the empirical process.

√
n(γ̂I2 − γI2) =

√
n
(Pn{g(2)n (x)}

Pn{hn(x)}
− γI2

)
=
√

n
(Pn{g(2)n (x)}

Pn{hn(x)}
− P{g(2)n (x)}

P{hn(x)}
+

P{g(2)n (x)}
P{hn(x)}

− γI2

)
=
√

n
(Pn{g(2)n (x)}

Pn{hn(x)}
− P{g(2)n (x)}

Pn{hn(x)}
+

P{g(2)n (x)}
Pn{hn(x)}

− P{g(2)n (x)}
P{hn(x)}

+
P{g(2)n (x)}
P{hn(x)}

− γI2

)
=
√

n(Pn −P)
{ g(2)n (x)

Pn{hn(x)}
− hn(x)P{g(2)n (x)}

Pn{hn(x)}P{hn(x)}
}+

√
n
[P{g(2)n (x)}

P{hn(x)}
− γI2

]
=
√

n(Pn −P)
{ g(2)(x)

E[h(x)]
− h(x)E[g(2)(x)]

(E[h(x)])2

}
+Op(1)+

√
n
[P{g(2)n (x)}

P{hn(x)}
− γI2

]

Similarly,

√
n(γ̂I3 − γI3) =

√
n
(Pn{g(3)n (x)}

Pn{hn(x)}
− γI3

)
=
√

n(Pn −P)
{ g(3)n (x)

Pn{hn(x)}
− hn(x)P{g(3)n (x)}

Pn{hn(x)}P{hn(x)}
}+

√
n
[P{g(3)n (x)}

P{hn(x)}
− γI3

]
=
√

n(Pn −P)
{ g(3)(x)

E[h(x)]
− h(x)E[g(3)(x)]

(E[h(x)])2

}
+Op(1)+

√
n
[P{g(3)n (x)}

P{hn(x)}
− γI3

]

We perform the linearization for
√

n
[

P{g(2)n (x)}
P{hn(x)} − γI2

]
and

√
n
[

P{g(3)n (x)}
P{hn(x)} − γI3

]
separately around (F∗, F̄∗),

where F̄∗ denotes the functional component of E(F∗).

√
n
[P{g(2)n (x)}

P{hn(x)}
− γI2

]
=
√

n
P
{

∇F∗g(2)n (x)(F̂∗−F∗)
}

P{hn(x)}

−
√

n
P{g(2)n (x)}
(P{hn(x)})2 P{∇F∗hn(x)(F̂∗−F∗)}

+
√

n
P
{

∇F̄∗g(2)n (x)( ¯̂F∗−E[F∗])
}

P{hn(x)}

−
√

n
P{g(2)n (x)}
(P{hn(x)})2 P{∇F̄∗hn(x)(

¯̂F∗−E[F∗])}+Op(1)

= (∗1)+(∗2)+(∗3)+(∗4)+Op(1)

√
n
[P{g(3)n (x)}

P{hn(x)}
− γI3

]
=
√

n
P
{

∇F∗g(3)n (x)(F̂∗−F∗)
}

P{hn(x)}

−
√

n
P{g(3)n (x)}
(P{hn(x)})2 P{∇F∗hn(x)(F̂∗−F∗)}

27



+
√

n
P
{

∇F̄∗g(3)n (x)( ¯̂F∗−E[F∗])
}

P{hn(x)}

−
√

n
P{g(3)n (x)}
(P{hn(x)})2 P{∇F̄∗hn(x)(

¯̂F∗−E[F∗])}+Op(1)

= (∗5)+(∗6)+(∗7)+(∗8)+Op(1)

Then transform (∗1)− (∗8) into expressions of
√

n(Pn −P).

(∗1) =
√

n
P
{

∇F∗g(2)n (x)(F̂∗−F∗)
}

P{hn(x)}

=

√
n

P{hn(x)}
P
{

∑
j

2wi j.

mi j(mi j −1) ∑
k′>k

(F̂∗(xi jk′)−
¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))

}
+

√
n

P{hn(x)}
P
{

∑
j

2wi j.

mi j(mi j −1) ∑
k′>k

(F̂∗(xi jk)−
¯̂F∗)(F̂∗(xi jk′)−F∗(xi jk′))

}
=

√
n

E[hn(x)]
E
[
∑

j

2wi j.

mi j(mi j −1) ∑
k′>k

(F̂∗(xi jk′)−
¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))

]
+

√
n

E[hn(x)]
E
[
∑

j

2wi j.

mi j(mi j −1) ∑
k′>k

(F̂∗(xi jk)−
¯̂F∗)(F̂∗(xi jk′)−F∗(xi jk′))

]
=

√
n

E[hn(x)]

{
E
[
∑

j

2wi j.

mi j(mi j −1) ∑
k′>k

(
F̂∗(xi jk′)−

¯̂F∗
)

×
(
∑
i′

∑
j′′ , k′′

wi′ j′′ k′′ [I(xi′ j′′ k′′ < xi jk)+ I(xi′ j′′ k′′ ≤ xi jk)]/2−F∗(xi jk)
)]

+E
[
∑

j

2wi j.

mi j(mi j −1) ∑
k′>k

(
F̂∗(xi jk)−

¯̂F∗
)

×
(
∑
i′

∑
j′′ , k′′

wi′ j′′ k′′ × [I(xi′ j′′ k′′ < xi jk′)+ I(xi′ j′′ k′′ ≤ xi jk′)]/2−F∗(xi jk′)
)]}

=

√
n

E[hn(x)] ∑i′
∑

j′′ ,k′′
wi′ j′′ k′′ E

{
∑

j

2wi j.

mi j(mi j −1) ∑
k′>k

[(
F̂∗(xi jk′)−

¯̂F∗
)

×
(

I(xi′ j′′ k′′ < xi jk)+ I(xi′ j′′ k′′ ≤ xi jk)
)
/2+

(
F̂∗(xi jk)−

¯̂F∗
)

×
(

I(xi′ j′′ k′′ < xi jk′)+ I(xi′ j′′ k′′ ≤ xi jk′)
)
/2
]}

−
√

n
E[hn(x)]

E
{

∑
j

2wi j.

mi j(mi j −1) ∑
k′>k

[
(F̂∗(xi jk′)−

¯̂F∗)F∗(xi jk)+

(F̂∗(xi jk)−
¯̂F∗)F∗(xi jk′)

]}
The expectation in the first component is a function of xi′ j′′ k′′ ,

we denote it as ã∗1(xi′ j′′ k′′)

=

√
n

E[h(x)]
{∑

i′
∑
j′′

∑
k′′

wi′ j′′ k′′ ã
∗
1(xi′ j′′ k′′ )−E[ã∗1(xi′ j′′ k′′ )]}+Op(1)

28



Because ã∗1(xi jk) belongs to a Donsker class

(∗1) =
√

n
E[h(x)]

(Pn −P){a∗1(x)}+Op(1) (under Assumption 2)

The derivation of (∗2)− (∗8) is similar to that of (∗1) and under Assumption 2.

(∗2) =−
√

n
P{g(2)n (x)}
(P{hn(x)})2 P{∇F∗hn(x)(F̂∗−F∗)}

−
√

n
P{g(2)n (x)}
(P{hn(x)})2 P

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))

}
=−

√
n

E[g(2)n (x)]
(E[hn(x)])2 E

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))

}
=−

√
n

E[g(2)n (x)]
(E[hn(x)])2 E

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)

(
∑
i′

∑
j′ k′

wi′ j′ k′

× [I(xi′ j′ k′ < xi jk)+ I(xi′ j′ k′ ≤ xi jk)]/2−F∗(xi jk)
)}

=−
√

n
E[g(2)n (x)]
(E[hn(x)])2 ∑

i′
∑
j′ , k′

wi′ j′ k′ E
{

2∑
j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)

× [I(xi′ j′ k′ < xi jk)+ I(xi′ j′ k′ ≤ xi jk)]/2
}

+
√

n
E[g(2)n (x)]
(E[hn(x)])2 E

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)F∗(xi jk)

}
Let ã∗2(xi′ j′k′) denote the expectation in the first component

(∗2) =−
√

n
E[g(2)n (x)]
(E[hn(x)])2 {∑

i′
∑
j′

∑
k′

wi′ j′ k′ ã
∗
2(xi′ j′k′)−E[ã∗2(xi′ j′k′)]}+Op(1)

=−
√

nE[g(2)(x)]
(E[h(x)])2 (Pn −P){a∗2(x)}+Op(1)

(∗3) =
√

n
P
{

∇F̄∗g(2)n (x)( ¯̂F∗−E[F∗])
}

P{hn(x)}

=
√

nP
{
−∑

j

2wi j.

mi j(mi j −1)
[

∑
k′>k

(F̂∗(xi jk)−
¯̂F∗+ F̂∗(xi jk′)−

¯̂F∗)
]

× (
¯̂F∗−E[F∗])

}
/P{hn(x)}

=−
√

nE
{

∑
j

2wi j.

mi j(mi j −1) ∑
k′>k

[F̂∗(xi jk′)−
¯̂F∗+ F̂∗(xi jk)−

¯̂F∗]

× (
¯̂F∗−E[F∗])}/E[hn(x)]

=−
√

n
E[hn(x)]

E
{(

∑
j

2wi j.

mi j(mi j −1) ∑
k′>k

[F̂∗(xi jk′)−
¯̂F∗+ F̂∗(xi jk)−

¯̂F∗]
)
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×
(
∑
i′

∑
j′ , k′

wi′ j′k′
[
F̂∗(xi′ j′k′)+

1
n ∑

i, j, k
wi jk[I(xi′ j′k′ < xi jk)

+ I(xi′ j′k′ ≤ xi jk)]/2
]
−E[F∗]

)}
=−

√
n

E[hn(x)] ∑i′
∑
j′ , k′

wi′ j′ k′E
{(

∑
j

2wi j.

mi j(mi j −1) ∑
k′>k

[F̂∗(xi jk′)−
¯̂F∗+ F̂∗(xi jk)

− ¯̂F∗]
)(

F̂∗(xi′ j′k′)+
1
n ∑

i, j, k
wi j[I(xi′ j′k′ < xi jk)+ I(xi′ j′k′ ≤ xi jk)]/2

)}
+

√
n

E[hn(x)]
E
{

∑
j

2wi j.

mi j(mi j −1) ∑
k′>k

[F̂∗(xi jk′)−
¯̂F∗+ F̂∗(xi jk)−

¯̂F∗]E[F∗]
}

We denote the expectation in the first component as ã∗3(xi′ j′k′)

(∗3) =−
√

n
E[hn(x)]

{∑
i′

∑
j′

∑
k′

wi′ j′ k′ ã
∗
3(xi′ j′k′)−E[ã∗3(xi′ j′k′)]}

=−
√

n
E[h(x)]

(Pn −P){a∗3(x)}+Op(1)

(∗4) =−
√

n
P{g(2)n (x)}
(P{hn(x)})2 P{∇F̄∗hn(x)(

¯̂F∗−E[F∗])}

=
√

n
E[g(2)n (x)]
(E[hn(x)])2 P

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)(

¯̂F∗−E[F∗])
}

=
√

n
E[gn(x)]

(E[hn(x)])2 ∑
i′

∑
j′

∑
k′

wi′ j′ k′E
{(

∑
j
∑
k

2wi jk(F̂∗(xi jk)−
¯̂F∗)

)
×
(
F̂∗(xi′ j′k′)+

1
n ∑

i
∑

j
∑
k

wi jk[I(xi′ j′k′ < xi jk)+ I(xi′ j′k′ ≤ xi jk)]/2
)}

−
√

n
E[g(x)]

(E[h(x)])2 E
{

2∑
j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)E[F∗]

}
The expectation in the first component is denoted as ã∗4(xi′ j′k′)

(∗4) =
√

n
E[g(2)n (x)]
(E[hn(x)])2 {∑

i′
∑
j′

∑
k′

wi′ j′ k′ ã
∗
4(xi′ j′k′)−E[ã4(xi′ j′k′)]}

=
√

n
E[g(2)(x)]
(E[h(x)])2 (Pn −P){a∗4(x)}+Op(1)

(∗5) =
√

n
P
{

∇F∗g(3)n (x)(F̂∗−F∗)
}

P{hn(x)}

=
√

nP
{wi..

ci
∑
j′> j

∑
k, l
(F̂∗(xi jk)−

¯̂F∗)(F̂∗(xi j′l)−F∗(xi j′l))
}/

P{hn(x)}

+
√

nP
{wi..

ci
∑
j′> j

∑
k, l
(F̂∗(xi j′l)−

¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))
}/

P{hn(x)}
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=
√

nE
[wi..

ci
∑
j′> j

∑
k, l
(F̂∗(xi jk)−

¯̂F∗)(F̂∗(xi j′l)−F∗(xi j′l))
]/

E[hn(x)]

+
√

nE
[wi..

ci
∑
j′> j

∑
k, l
(F̂∗(xi j′l)−

¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))
]/

E[hn(x)]

=

√
n

E[hn(x)]

{
E
[wi..

ci
∑
j′> j

∑
k, l

(
F̂∗(xi jk)−

¯̂F∗
)

×
(
∑
i′

∑
j′′ , k′′

wi′ j′′ k′′ [I(xi′ j′′ k′′ < xi j′l)+ I(xi′ j′′ k′′ ≤ xi j′l)]/2−F∗(xi j′l)
)]

+E
[wi..

ci
∑
j′> j

∑
k, l

(
F̂∗(xi j′l)−

¯̂F∗
)

×
(
∑
i′

∑
j′′ , k′′

wi′ j′′ k′′ [I(xi′ j′′ k′′ < xi jk)+ I(xi′ j′′ k′′ ≤ xi jk)]/2−F∗(xi jk)
)]}

=

√
n

E[hn(x)] ∑i′
∑

j′′ ,k′′
wi′ j′′ k′′ E

{wi..

ci
∑
j′> j

∑
k, l

[(
F̂∗(xi jk)−

¯̂F∗
)

×
(

I(xi′ j′′ k′′ < xi j′l)+ I(xi′ j′′ k′′ ≤ xi j′l)
)
/2

+
(

F̂∗(xi j′l)−
¯̂F∗
)(

I(xi′ j′′ k′′ < xi jk)+ I(xi′ j′′ k′′ ≤ xi jk)
)
/2
]}

−
√

n
E[hn(x)]

E
{wi..

ci
∑
j′> j

∑
k, l

[
(F̂∗(xi jk)−

¯̂F∗)F∗(xi j′l)

+(F̂∗(xi j′l)−
¯̂F∗)F∗(xi jk)

]}
We denote the expectation in the first component as ã∗5(xi′ j′′ k′′)

=

√
n

E[h(x)]
{∑

i′
∑
j′′

∑
k′′

wi′ j′′ k′′ ã
∗
5(xi′ j′′ k′′ )−E[ã∗5(xi′ j′′ k′′ )]}+Op(1)

=

√
n

E[h(x)]
(Pn −P){a∗5(x)}+Op(1) (under Assumption 2)

(∗6) =−
√

n
P{g(3)n (x)}
(P{hn(x)})2 P{∇F∗hn(x)(F̂∗−F∗)}

−
√

n
P{g(3)n (x)}
(P{hn(x)})2 P

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))

}
=−

√
n

E[g(3)n (x)]
(E[hn(x)])2 E

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)(F̂∗(xi jk)−F∗(xi jk))

}
=−

√
n

E[g(3)n (x)]
(E[hn(x)])2 E

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)

×
(
∑
i′

∑
j′ k′

wi′ j′ k′ [I(xi′ j′ k′ < xi jk)+ I(xi′ j′ k′ ≤ xi jk)]/2−F∗(xi jk)
)}

=−
√

n
E[g(3)n (x)]
(E[hn(x)])2 ∑

i′
∑
j′ , k′

wi′ j′ k′ E
{

2∑
j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)
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× [I(xi′ j′ k′ < xi jk)+ I(xi′ j′ k′ ≤ xi jk)]/2
}

+
√

n
E[g(3)n (x)]
(E[hn(x)])2 E

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)F∗(xi jk)

}
Let ã∗6(xi′ j′k′) denote the expectation in the first component

(∗6) =−
√

n
E[g(3)n (x)]
(E[hn(x)])2 {∑

i′
∑
j′

∑
k′

wi′ j′ k′ ã
∗
6(xi′ j′k′)−E[ã∗6(xi′ j′k′)]}+Op(1)

=−
√

nE[g(3)(x)]
(E[h(x)])2 (Pn −P){a∗6(x)}+Op(1)

(∗7) =
√

n
P
{

∇F̄∗g(3)n (x)( ¯̂F∗−E[F∗])
}

P{hn(x)}

=
√

nP
{
− wi..

ci
∑
j′> j

[
∑
k, l
(F̂∗(xi jk)−

¯̂F∗+ F̂∗(xi j′l)−
¯̂F∗)

]
× (

¯̂F∗−E[F∗])
}
/P{hn(x)}

=−
√

n
E[hn(x)]

E
{wi..

ci
∑
j′> j

[
∑
k, l
[F̂∗(xi jk)−

¯̂F∗+ F̂∗(xi j′l)−
¯̂F∗](

¯̂F∗−E[F∗])}

=−
√

n
E[hn(x)]

E
{wi..

ci
∑
j′> j

[
∑
k, l
[F̂∗(xi jk)−

¯̂F∗+ F̂∗(xi j′l)−
¯̂F∗]

×
(
∑
i′

∑
j′′ , k′′

wi′ j′′ k′′
[
F̂∗(xi′ j′′ k′′ )+

1
n ∑

i, j, k
wi jk[I(xi′ j′′ k′′ < xi jk)

+ I(xi′ j′′ k′′ ≤ xi jk)]/2
]
−E[F∗]

)}
=−

√
n

E[hn(x)] ∑i′
∑

j′′ , k′′
wi′ j′′ k′′ E

{wi..

ci
∑
j′> j

∑
k, l
[F̂∗(xi jk)−

¯̂F∗+ F̂∗(xi j′l)−
¯̂F∗]

×
(

F̂∗(xi′ j′′ k′′ )+
1
n ∑

i, j, k
wi j[I(xi′ j′′ k′′ < xi jk)+ I(xi′ j′′ k′′ ≤ xi jk)]/2

)}
+

√
n

E[hn(x)]
E
{wi..

ci
∑
j′> j

[
∑
k, l
[F̂∗(xi jk)−

¯̂F∗+ F̂∗(xi j′l)−
¯̂F∗]E[F∗]

}
We denote the expectation in the first component as ã∗7(xi′ j′′ k′′ )

(∗7) =−
√

n
E[hn(x)]

{∑
i′

∑
j′′

∑
k′′

wi′ j′ k′′ ã
∗
7(xi′ j′′ k′′ )−E[ã∗7(xi′ j′′ k′′ )]}

=−
√

n
E[h(x)]

(Pn −P){a∗7(x)}+Op(1)

(∗8) =−
√

n
P{g(3)n (x)}
(P{hn(x)})2 P{∇F̄∗hn(x)(

¯̂F∗−E[F∗])}

=
√

n
E[g(3)n (x)]
(E[hn(x)])2 P

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)(

¯̂F∗−E[F∗])
}
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=
√

n
E[g(3)n (x)]
(E[hn(x)])2 ∑

i′
∑
j′

∑
k′

wi′ j′ k′E
{

∑
j
∑
k

2wi jk(F̂∗(xi jk)−
¯̂F∗)

×
(
F̂∗(xi′ j′k′)+

1
n ∑

i
∑

j
∑
k

wi jk[I(xi′ j′k′ < xi jk)+ I(xi′ j′k′ ≤ xi jk)]/2
)}

−
√

n
E[g(3)(x)]
(E[h(x)])2 E

{
2∑

j
∑
k

wi jk(F̂∗(xi jk)−
¯̂F∗)E[F∗]

}
The expectation in the first component is denoted as ã∗4(xi′ j′k′)

(∗8) =
√

n
E[g(3)n (x)]
(E[hn(x)])2 {∑

i′
∑
j′

∑
k′

wi′ j′ k′ ã
∗
8(xi′ j′k′)−E[ã8(xi′ j′k′)]}

=
√

n
E[g(3)(x)]
(E[h(x)])2 (Pn −P){a∗8(x)}+Op(1)

Let a(2)(x)= 1
E[h(x)] [a

∗
1(x)−a∗3(x)]−

E[g(2)(x)]
(E[h(x)])2 [a∗2(x)−a∗4(x)] and a(3)(x)= 1

E[h(x)] [a
∗
5(x)−a∗7(x)]−

E[g(3)(x)]
(E[h(x)])2 [a∗6(x)−

a∗8(x)]. With the derivation of (∗1)− (∗8) above, we have
√

n
[

P{g(2)n (x)}
P{hn(x)} − γI2

]
=

√
n(Pn −P){a(2)(x)}+

Op(1) and
√

n
[

P{g(3)n (x)}
P{hn(x)} − γI3

]
=
√

n(Pn −P){a(3)(x)}+Op(1).

Accordingly, we have the expressions for
√

n(γ̂I2 − γI2) and
√

n(γ̂I3 − γI3) in terms of the empirical pro-

cess,
√

n(γ̂I2 − γI2) =
√

n(Pn −P){t2(x)}+Op(1)

√
n(γ̂I3 − γI3) =

√
n(Pn −P){t3(x)}+Op(1)

where t2(x) = g(2)(x)
E[h(x)] −

h(x)E[g(2)(x)]
(E[h(x)])2 +a(2)(x) and t3(x) = g(3)(x)

E[h(x)] −
h(x)E[g(3)(x)]
(E[h(x)])2 +a(3)(x). By the central limit

theorem,
√

n(Pn −P){t2(x)}
d−→ N(0,σ2

t2)

√
n(Pn −P){t3(x)}

d−→ N(0,σ2
t3)

σ2
t2 is the variance of t2 and σ2

t3 is the variance of t3. Thus, we can say that as n → ∞,

√
n(γ̂I2 − γI2)

d−→ N(0,σ2
t2)

√
n(γ̂I3 − γI3)

d−→ N(0,σ2
t3)

The large sampling distribution of γ̂I2 is N(γI ,σ
2
t2/n) and of γ̂I3 is N(γI ,σ

2
t3/n). Since 1√

n → 0 as n → ∞, by

the Slutsky’s theorem, we have

γ̂I2 − γI2 =
1√
n
√

n(γ̂I2 − γI2)
d−→ 0 ⇒ γ̂I2 − γI2

p−→ 0
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Similarly, γ̂I3 − γI3
p−→ 0. Therefore, γ̂I2 is a consistent estimator of γI2, and γ̂I3 is a consistent estimator of γI3.

2.7.4 Variance estimation with three hierarchies

With a three-level dataset {xi jk, i = 1, ...,n, j = 1, ...,ni,k = 1, ...,mi j}, we can use the sample variances of

t2(x) and t3(x) to estimate the variances of γ̂I2 and γ̂I3. We first obtain the estimates of t2(x) and t3(x) for each

cluster. Let A(2)
n = 1

n ∑
n
i g(2)n (xi), A(3)

n = 1
n ∑

n
i g(3)n (xi) and Bn =

1
n ∑

n
i hn(xi). For each cluster, we compute

t̂2(xi) =
g(2)n (xi)

Bn
− hn(xi)A

(2)
n

B2
n

+ â(2)(xi)

t̂3(xi) =
g(3)n (xi)

Bn
− hn(xi)A

(3)
n

B2
n

+ â(3)(xi)

where â(2)(xi) = Ii + IIi + IIIi + IVi, â(3)(xi) =Vi +V Ii +V IIi +V IIIi, and the eight items are counterparts of

components in (∗1)− (∗8). We describe Ii −V IIIi in the followings.

Ii =
1

Bn

ni

∑
j=1

mi j

∑
k=1

wi jk

n

∑
i′=1

ni′

∑
j′=1

2wi′ j′.

mi′ j(ki′ −1) ∑
k′>k′′

(
{F̂∗(xi′ j′k′)−

¯̂F∗}

×{[I(xi jk ≤ xi′ j′k′′ )+ I(xi jk < xi′ j′k′′ )]/2}

+{F̂∗(xi′ j′k′′ )−
¯̂F∗}{[I(xi jk ≤ xi′ j′k′)+ I(xi jk < xi′ j′k′)]/2}

)
IIi =−A(2)

n

B2
n

ni

∑
j=1

mi j

∑
k=1

wi jk

n

∑
i′=1

ni′

∑
j′=1

mi′ j′

∑
k′=1

2wi′ j′k′ [F̂
∗(xi′ j′k′)−

¯̂F∗]

× [I(xi jk ≤ xi′ j′k′)+ I(xi jk < xi′ j′k′)]/2

IIIi =−Cni

Bn

n

∑
i′=1

ni′

∑
j′=1

2wi′ j′.

mi′ j′(mi′ j′ −1) ∑
k′>k

[F̂∗(xi′ j′k)−
¯̂F∗+ F̂∗(xi′ j′k′)−

¯̂F∗]

IVi =
A(2)

n Cni

B2
n

n

∑
i′=1

ni′

∑
j′=1

mi′ j′

∑
k′=1

2wi′ j′k′ [F̂
∗(xi′ j′k′)−

¯̂F∗]

Vi =
1

Bn

ni

∑
j=1

mi j

∑
k=1

wi jk

n

∑
i′=1

wi′..

wi′
∑

j′> j′′
∑
k′, l

(
{F̂∗(xi′ j′k′)−

¯̂F∗}

×{[I(xi jk ≤ xi′ j′′ l)+ I(xi jk < xi′ j′′ l)]/2}

+{F̂∗(xi′ j′′ l)−
¯̂F∗}{[I(xi jk ≤ xi′ j′k′)+ I(xi jk < xi′ j′k′)]/2}

)
V Ii =−A(3)

n

B2
n

ni

∑
j=1

mi j

∑
k=1

wi jk

n

∑
i′=1

ni′

∑
j′=1

mi′ j′

∑
k′=1

2wi′ j′k′ [F̂
∗(xi′ j′k′)−

¯̂F∗]

× [I(xi jk ≤ xi′ j′k′)+ I(xi jk < xi′ j′k′)]/2

V IIi =−Cni

Bn

n

∑
i′=1

wi′..

wi′
∑
j′> j

∑
k, l
[F̂∗(xi′ j′k)−

¯̂F∗+ F̂∗(xi′ j′′ l)−
¯̂F∗]
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V IIIi =
A(3)

n Cni

B2
n

n

∑
i′=1

ni′

∑
j′=1

mi′ j′

∑
k′=1

2wi′ j′k′ [F̂
∗(xi′ j′k′)−

¯̂F∗]

where Cni = ∑
ni
j=1 ∑

mi j
k=1 wi jkF̂∗(xi jk)+

1
n

n
∑

i′=1

ni′

∑
j′=1

mi′ j′

∑
k′=1

wi′ j′k′
{ ni

∑
j=1

mi j

∑
k=1

wi jk[I(xi jk ≤ xi′ j′k′)+ I(xi jk < xi′ j′k′)]/2
}

.

Then we can obtain the sample variances of t2(x) and t3(x) with {t̂2(xi), i = 1, ...,n} and {t̂3(xi), i = 1, ...,n},

denoted as σ̂2
t2 and σ̂2

t3 . The asymptotic variances of γ̂I2 and γ̂I3 are estimated by σ̂2
t2/n and σ̂2

t3/n, respectively.
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Table 2.4: Bias, standard error (SE) and coverage of 95% CIs based on the six possible inference approaches
for γ̂I at γI = 0.48 and different numbers of clusters under Scenario I (normality). We set the cluster size to
be 30. There were 200 replicates per bootstrap.

(a) Coverage probabilities of 95% CIs

Size Asymptotic
SE

Fisher trans-
formation

Cluster
bootstrap
percentile

Two-stage
bootstrap
percentile

Cluster boot-
strap SE

Two-stage
bootstrap SE

25 0.913 0.911 0.860 0.911 0.916 0.923
50 0.945 0.935 0.915 0.965 0.949 0.950
100 0.939 0.938 0.922 0.953 0.935 0.941
200 0.944 0.945 0.921 0.923 0.943 0.948
500 0.950 0.947 0.944 0.841 0.946 0.947
1000 0.949 0.950 0.934 0.679 0.949 0.954

(b) Bias and SE of γ̂I

Size Percent
bias (%)

Empirical SE Averaged asymp-
totic SE

Averaged cluster
bootstrap SE

Averaged two-
stage bootstrap
SE

25 -3.859 0.077 0.075 0.074 0.076
50 -1.684 0.053 0.054 0.054 0.054
100 -0.726 0.039 0.038 0.038 0.039
200 -0.274 0.027 0.027 0.027 0.027
500 -0.069 0.017 0.017 0.017 0.017
1000 -0.015 0.012 0.012 0.012 0.012

(c) Non-Coverage at the tails of 95% CIs of γI

Size Asymptotic
SE

Fisher trans-
formation

Cluster
bootstrap
percentile

Two-stage
bootstrap
percentile

Cluster boot-
strap SE

Two-stage
bootstrap SE

25 R=0.07,
L=0.017

R=0.08,
L=0.009

R=0.073,
L=0.011

R=0.067,
L=0.01

R=0.133,
L=0.007

R=0.081,
L=0.008

50 R=0.04,
L=0.015

R=0.055,
L=0.01

R=0.039,
L=0.012

R=0.038,
L=0.012

R=0.081,
L=0.004

R=0.027,
L=0.008

100 R=0.035,
L=0.026

R=0.042,
L=0.02

R=0.042,
L=0.023

R=0.037,
L=0.022

R=0.061,
L=0.017

R=0.012,
L=0.035

200 R=0.034,
L=0.022

R=0.037,
L=0.018

R=0.038,
L=0.019

R=0.033,
L=0.019

R=0.059,
L=0.02

R=0.008,
L=0.069

500 R=0.02,
L=0.03

R=0.023,
L=0.03

R=0.024,
L=0.03

R=0.022,
L=0.031

R=0.029,
L=0.027

R=0.005,
L=0.154

1000 R=0.029,
L=0.022

R=0.029,
L=0.021

R=0.029,
L=0.022

R=0.026,
L=0.02

R=0.039,
L=0.027

R=0.003,
L=0.318
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Table 2.5: Coverage and non-Coverage at the tails of 95% CIs based on the four bootstrapping inference
approaches for γ̂I under Scenario I at γI = 0.48. We set the cluster size to be 30. There were 1000 replicates
per bootstrap.

(a) Coverage of bootstrap methods with 1000 replications each bootstrap

Size Cluster bootstrap
percentile

Two-stage bootstrap
percentile

Cluster bootstrap SE Two-stage bootstrap
SE

25 0.889 0.932 0.913 0.918
50 0.930 0.960 0.939 0.950
100 0.934 0.952 0.937 0.942
200 0.940 0.935 0.944 0.946
500 0.952 0.855 0.950 0.954

(b) Non-Coverage at the tails of 95% CIs of γI

Size Cluster bootstrap
percentile

Two-stage bootstrap
percentile

Cluster bootstrap SE Two-stage bootstrap
SE

25 R=0.072, L=0.015 R=0.067, L=0.015 R=0.106, L=0.005 R=0.063, L=0.005
50 R=0.046, L=0.015 R=0.035, L=0.015 R=0.064, L=0.006 R=0.026, L=0.014
100 R=0.037, L=0.026 R=0.032, L=0.026 R=0.047, L=0.019 R=0.012, L=0.036
200 R=0.034, L=0.022 R=0.032, L=0.022 R=0.044, L=0.016 R=0.006, L=0.059
500 R=0.019, L=0.031 R=0.018, L=0.028 R=0.023, L=0.025 R=0.003, L=0.142
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Table 2.6: Bias, SE, and coverage of 95% CIs based on the six possible inference approaches for γ̂I at
γI = 0.09 and different numbers of clusters under Scenario I. We set the cluster size to be 30. There were 200
replicates per bootstrap.

(a) Coverage of 95% CIs

Size Asymptotic
SE

Fisher trans-
formation

Cluster
bootstrap
percentile

Two-stage
bootstrap
percentile

Cluster boot-
strap SE

Two-stage
bootstrap SE

25 0.872 0.873 0.852 0.973 0.868 0.937
50 0.912 0.912 0.900 0.898 0.907 0.965
100 0.910 0.911 0.910 0.724 0.906 0.970
200 0.942 0.941 0.930 0.372 0.942 0.974
500 0.938 0.938 0.927 0.018 0.934 0.977
1000 0.952 0.952 0.945 0.001 0.952 0.975

(b) Bias and SE of γ̂I

Size Percent
bias (%)

Empirical SE Averaged asymp-
totic SE

Averaged cluster
bootstrap SE

Averaged two-
stage bootstrap
SE

25 -6.199 0.032 0.030 0.029 0.036
50 -2.340 0.023 0.022 0.022 0.027
100 -1.160 0.017 0.016 0.016 0.019
200 -0.311 0.012 0.011 0.011 0.014
500 -0.151 0.007 0.007 0.007 0.009
1000 -0.002 0.005 0.005 0.005 0.006
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Table 2.7: Bias, SE and coverage of 95% CIs based on the six possible inference approaches for γ̂I at γI = 0.89
and different numbers of clusters under Scenario I. We set the cluster size to be 30. There were 200 replicates
per bootstrap.

(a) Coverage of 95% CIs

Size Asymptotic
SE

Fisher trans-
formation

Cluster
bootstrap
percentile

Two-stage
bootstrap
percentile

Cluster boot-
strap SE

Two-stage
bootstrap SE

25 0.960 0.924 0.816 0.852 0.975 0.974
50 0.969 0.949 0.893 0.921 0.978 0.977
100 0.956 0.939 0.902 0.941 0.963 0.958
200 0.953 0.952 0.932 0.949 0.954 0.953
500 0.951 0.948 0.931 0.932 0.944 0.944
1000 0.950 0.945 0.937 0.885 0.949 0.947

(b) Bias and SE of γ̂I

Size Percent
bias (%)

Empirical SE Averaged asymp-
totic SE

Averaged cluster
bootstrap SE

Averaged two-
stage bootstrap
SE

25 -2.507 0.039 0.039 0.044 0.043
50 -1.161 0.024 0.025 0.027 0.027
100 -0.566 0.017 0.017 0.018 0.017
200 -0.268 0.012 0.012 0.012 0.012
500 -0.099 0.007 0.007 0.007 0.007
1000 -0.048 0.005 0.005 0.005 0.005
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Table 2.8: Bias, SE, and coverage of 95% CIs based on the six possible inference approaches and for γ̂I at
γI = 0.48 and different numbers of clusters under Scenario I. The cluster size followed a uniform distribution
from 2 to 50. There were 200 replicates per bootstrap. “Equal clusters” refers to assigning equal weights to
clusters. “Equal obs” refers to assigning equal weights to observations. “PR.” refers to the approaches using
bootstrap percentiles. “Asym. SE” refers to the approach using asymptotic standard error. “Emp. SE” refers
to the empirical standard error. “Avg. SE” refers to the average of standard errors. “boot.” means bootstrap.

(a) Coverage of 95% CIs of γI

Size Equal clusters Equal obs

Asym.
SE

Cluster bootstrap Two-stage
bootstrap Asym.

SE
Cluster bootstrap Two-stage

bootstrap

PR. SE PR. SE PR. SE PR. SE
25 0.910 0.893 0.909 0.952 0.919 0.900 0.872 0.908 0.917 0.908
50 0.934 0.919 0.926 0.954 0.939 0.910 0.899 0.913 0.931 0.912
100 0.953 0.941 0.948 0.923 0.950 0.950 0.941 0.951 0.955 0.952
200 0.953 0.948 0.950 0.831 0.952 0.948 0.934 0.952 0.928 0.952
500 0.942 0.932 0.944 0.525 0.944 0.945 0.938 0.945 0.861 0.945
1000 0.947 0.935 0.945 0.218 0.946 0.938 0.932 0.938 0.717 0.942

(b) Bias and SE of γ̂I

Size Equal clusters Equal obs
Bias (%) Emp.

SE
Avg.
asym.
SE

Avg.
cluster
boot.
SE

Avg.
two-
stage
boot.
SE

Bias (%) Emp.
SE

Avg.
asym.
SE

Avg.
cluster
boot.
SE

Avg.
two-
stage
boot.
SE

25 -4.033 0.084 0.082 0.081 0.082 -4.605 0.086 0.083 0.082 0.083
50 -2.029 0.059 0.058 0.058 0.058 -2.375 0.063 0.060 0.059 0.060
100 -0.783 0.040 0.041 0.041 0.041 -1.059 0.041 0.043 0.043 0.043
200 -0.713 0.029 0.029 0.029 0.029 -0.708 0.031 0.031 0.030 0.031
500 -0.258 0.019 0.019 0.019 0.019 -0.258 0.019 0.019 0.019 0.019
1000 -0.174 0.013 0.013 0.013 0.013 -0.181 0.014 0.014 0.014 0.014
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Table 2.9: Bias, SE, and coverage of 95% CIs based on the eight possible inference approaches for γ̂I2 at
(γI2,γI3) = (0.53,0.19) and different number of level-3 units. We set the number of level-2 units in a level-3
unit to be 15, and the number of level-1 units in a level-2 unit to be 2. There were 200 replicates per bootstrap.
“Avg. SE” refers to the average of standard errors.

(a) Coverage of 95% CIs of γI2

Size Asymptotic
SE

Fisher trans-
formation

Bootstrap SE Bootstrap percentiles

One-
stage

Two-
stage

Three-
stage

One-
stage

Two-
stage

Three-
stage

25 0.935 0.931 0.925 0.982 0.875 0.908 0.975 0
50 0.950 0.946 0.946 0.991 0.887 0.934 0.985 0
100 0.940 0.937 0.939 0.992 0.869 0.938 0.983 0
200 0.942 0.938 0.940 0.980 0.867 0.929 0.977 0
500 0.958 0.961 0.958 0.995 0.899 0.955 0.989 0
1000 0.950 0.952 0.948 0.987 0.871 0.945 0.984 0

(b) Bias and SE of γ̂I2

Size Percent
bias (%)

Emp.SE Avg. asymp-
totic SE

Avg. cluster
bootstrap SE

Avg. two-
stage boot-
strap SE

Avg. three-
stage boot-
strap SE

25 -0.981 0.047 0.045 0.044 0.058 0.037
50 -0.480 0.031 0.032 0.032 0.041 0.026
100 -0.381 0.024 0.023 0.023 0.029 0.018
200 -0.120 0.017 0.016 0.016 0.021 0.013
500 -0.025 0.010 0.010 0.010 0.013 0.008
1000 -0.031 0.007 0.007 0.007 0.009 0.006
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Table 2.10: Bias, SE, and coverage of 95% CIs based on the eight possible inference approaches for γ̂I3 at
(γI2,γI3) = (0.53,0.19) and different number of level-3 units. We set the number of level-2 units in a level-3
unit to be 15, and the number of level-1 units in a level-2 unit to be 2. There were 200 replicates per bootstrap.
“Avg. SE” refers to the average of standard errors.

(a) Coverage of 95% CIs of γI3

Size Asymptotic
SE

Fisher trans-
formation

Bootstrap SE Bootstrap percentiles

One-
stage

Two-
stage

Three-
stage

One-
stage

Two-
stage

Three-
stage

25 0.896 0.895 0.885 0.934 0.941 0.861 0.968 0.970
50 0.928 0.928 0.924 0.958 0.963 0.915 0.939 0.951
100 0.933 0.934 0.933 0.955 0.962 0.922 0.809 0.831
200 0.940 0.939 0.932 0.967 0.970 0.924 0.584 0.628
500 0.961 0.960 0.953 0.975 0.978 0.946 0.136 0.162
1000 0.939 0.939 0.939 0.958 0.965 0.935 0.007 0.008

(b) Bias and SE of γ̂I3

Size Percent
bias (%)

Emp.SE Avg. asymp-
totic SE

Avg. cluster
bootstrap SE

Avg. two-
stage boot-
strap SE

Avg. three-
stage boot-
strap SE

25 -4.809 0.053 0.050 0.049 0.056 0.058
50 -2.064 0.037 0.037 0.036 0.041 0.042
100 -0.774 0.027 0.027 0.026 0.029 0.030
200 -0.617 0.019 0.019 0.019 0.021 0.022
500 -0.112 0.012 0.012 0.012 0.013 0.014
1000 -0.114 0.009 0.008 0.008 0.009 0.010
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Table 2.11: Bias, SE, and coverage of 95% CIs based on the eight possible inference approaches for γ̂I2 at
(γI2,γI3) = (0.53,0.19) and unequal numbers of level-2 units per level-3 unit. We set the number of level-2
units in a level-3 unit to follow a uniform distribution between 2 and 15, and the number of level-1 units in a
level-2 unit to be 2. There were 200 replicates per bootstrap. “Equal level-3 units” refers to assigning equal
weights to level-3 units. “Equal level-2/1 units” refers to assigning equal weights to level-2/1 units. “Asym.
SE” refers to the approach using asymptotic standard error.

(a) Coverage of 95% CIs of γI2

Size Equal level-3 units Equal level-2/1 units
Bias
(%)

Asym.
SE

Bootstrap
SE

Bootstrap
percentiles

Bias
(%)

Asym.
SE

Bootstrap
SE

Bootstrap
per-
centiles

25 -1.772 0.932 0.925 0.921 -1.576 0.915 0.915 0.899
50 -0.655 0.948 0.946 0.939 -0.689 0.952 0.946 0.934
100 -0.529 0.946 0.946 0.933 -0.345 0.944 0.945 0.938
200 -0.059 0.950 0.949 0.941 -0.066 0.953 0.947 0.944
500 -0.108 0.951 0.953 0.942 -0.077 0.950 0.949 0.941
1000 -0.047 0.946 0.949 0.940 -0.064 0.954 0.952 0.942

(b) Coverage of 95% CIs of γI3

Size Equal level-3 units Equal level-2/1 units
Bias
(%)

Asym.
SE

Bootstrap
SE

Bootstrap
percentiles

Bias
(%)

Asym.
SE

Bootstrap
SE

Bootstrap
per-
centiles

25 -7.010 0.898 0.891 0.864 -6.003 0.875 0.867 0.844
50 -3.672 0.928 0.923 0.912 -3.204 0.911 0.901 0.896
100 -2.087 0.932 0.932 0.919 -1.532 0.927 0.925 0.918
200 -0.273 0.944 0.939 0.938 0.113 0.935 0.929 0.922
500 -0.628 0.945 0.944 0.923 -0.536 0.938 0.939 0.929
1000 -0.439 0.954 0.953 0.942 -0.239 0.954 0.950 0.947
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(a) Scenario I and II (b) Scenario III

Figure 2.11: Bias and coverage of 95% CIs (i.e., based on the asymptotic SE only, based on the asymptotic
SE and Fisher’ z transformation) for γ̂I at different true values of γI and different numbers of clusters under
Scenarios I, II, and III. The number of observations per cluster was set at 30.
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(a) Scenarios I and II (b) Scenario III

Figure 2.12: Bias and coverage of 95% CIs for γ̂I at different true values of γI and different cluster sizes under
Scenarios I, II, and III. The number of clusters was set at 200. “2-50” means the cluster size follows a uniform
distribution from 2 to 50, “2/30” means half of the clusters have size 2 and half have 30. “Equal clusters”
refers to assigning equal weights to clusters, “Equal obs” refers to assigning equal weights to observations,
“ESS” refers to the iterative weighting approach based on the effective sample size, and “Combination” refers
to the iterative weighting approach based on the linear combination of equal weights for clusters and equal
weights for observations. We set the tolerance of the two iterative approaches to be 0.00001. The estimates
of the four approaches were identical when cluster sizes were equal.
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(a) 3-level (b) 10-level

Figure 2.13: Bias and coverage of 95% CIs (i.e., based on the asymptotic SE only, based on the asymptotic
SE and Fisher’ z transformation) for γ̂I at different true values of γI of 3-level and 10-level ordered categorical
variables. The number of observations per cluster was set at 30.
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Figure 2.14: Bias and coverage of 95% CIs (i.e., based on the asymptotic SE only, based on the asymptotic
SE and Fisher’ z transformation) for γ̂I2 and γ̂I3 at different true values of γI2 and γI3 and different numbers
of level-3 units. The number of level-2 units in a level-3 unit was set at 15. The number of level-1 units in a
level-2 unit was set at 2.
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Figure 2.15: Bias and coverage of 95% CIs (i.e., based on the asymptotic SE only, based on the asymptotic
SE and Fisher’ z transformation) for γ̂I2 and γ̂I3 at different true values of γI2 and γI3 and different sizes of
level-3 units and level-2 units. The number of level-3 units was set at 200.
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Figure 2.16: Bias and coverage of 95% CIs for γ̂I2 and γ̂I3 at different true values of γI2 and γI3 and different
unequal sizes of level-3 units and level-2 units. The number of level-3 units was set at 200. “2-15” means the
cluster size follows a uniform distribution from 2 to 15, “2/15” means half of the clusters have size 2 and a
half have 15.
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CHAPTER 3

Between- and Within-Cluster Spearman Rank Correlations

3.1 Introduction

Clustered data are common in practice. Clustering arises when subjects (e.g., people) are measured re-

peatedly, or subjects are nested in clusters (e.g., households, schools) and measured only once. The total,

between-, and within-cluster Pearson correlations are frequently used in the analysis of clustered data (Sni-

jders and Bosker, 1999; Ferrari et al., 2005). The total correlation measures the overall correlation but fails

to acknowledge the clustered nature of the data. The between-cluster correlation measures the association

between underlying variables at the cluster level, while the within-cluster correlation is the correlation after

controlling for clustering.

For example, in an observational study, people living with HIV on antiretroviral therapy (ART) had re-

peated measurements of CD4 and CD8 counts (Castilho et al., 2016). There is interest in measuring the

correlation between CD4 and CD8 counts subject to clustering. The between-cluster correlation measures

the association between the underlying CD4 and CD8 counts in individuals. The within-cluster correlation

describes the correlation between variations in CD4 and CD8 measures due to changes over time or measure-

ment errors. Together, the total, between-, and within-cluster correlations provide a more complete picture of

the relationship between CD4 and CD8 counts.

However, Pearson correlations are sensitive to extreme values and skewed distributions, and they depend

on the scale of the data. For example, CD4 and CD8 counts are both right-skewed and sometimes transformed

prior to analyses; estimates of the total, between-, and within-cluster Pearson correlations will vary with the

transformation. Some recent studies have proposed nonparametric measures of correlation for clustered data.

Rosner and Glynn (2017) proposed a regression-based approach to obtain the maximum likelihood estimate

of Pearson correlation for clustered data and then compute Spearman rank correlation by using its relationship

with Pearson correlation under bivariate normality. Shih and Fay (2017) defined Spearman rank correlation

for clustered data as the Pearson correlation between the population versions of ridits (Bross, 1958), and

applied within-cluster resampling and U-statistics for estimation and inference. Hunsberger, et al (2022)

extended the work of Shih and Fay by improving the nominal level of the tests for clustered data with small

sample sizes. However, these nonparametric measures are only for the total correlation. There is a need to

develop rank-based between- and within-cluster correlations.

In this Chapter, we define population parameters of between- and within-cluster Spearman rank correla-
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tions, which are natural extensions of the traditional between- and within-cluster Pearson correlations to the

rank scale. We show that the total Spearman rank correlation approximates a weighted sum of the between-

and within-cluster Spearman rank correlations, where the weights are functions of rank intraclass correlation

coefficients (Tu et al., 2023). We also show the equivalence between the within-cluster Spearman’s rank cor-

relation and the covariate-adjusted partial Spearman’s rank correlation with cluster indicators as covariates

(Liu et al., 2018).

3.2 Review of Pearson correlations for clustered data

Let Xi j and Yi j denote two random variables from a two-level hierarchical joint distribution, where i represents

cluster and j is the index within cluster i. For the review in this section, we assume an additive model and

equal within-cluster covariance matrices across clusters. Specifically, consider a bivariate population model

of (Xi j,Yi j)
T in an infinite population,

Xi j

Yi j

=

UXi

UYi

+

RXi j

RYi j

 , (3.1)

where (UXi,UYi)
T is the cluster mean of the ith cluster, (RXi j,RYi j)

T is the within-cluster deviation of the

jth observation in the ith cluster with zero means, and (UXi,UYi)
T ⊥ (RXi j,RYi j)

T . The covariance matrix

of (UXi,UYi)
T is denoted as

 σ2
u ρbσuηu

ρbσuηu η2
u

, and the covariance matrix of (RXi j,RYi j)
T is denoted as

 σ2
r ρwσrηr

ρwσrηr η2
r

. The intraclass correlation coefficient (ICC) of X is ρIX = σ2
u /(σ

2
u +σ2

r ) and of Y is

ρIY = η2
u/(η

2
u +η2

r ), evaluating the correlation between two random observations in a random cluster.

With the above bivariate population model, the between-cluster correlation is the correlation between

the cluster means, ρb = corr(UXi,UYi). The within-cluster correlation is the correlation between the within-

cluster deviations, ρw = corr(RXi j,RYi j). Since

ρt = ρ(Xi j,Yi j)

=
cov(Xi j,Yi j)√
var(Xi j)var(Yi j)

=
cov(UXi,UYi)+ cov(RXi j,RYi j)√

var(Xi j)var(Yi j)

=
ρbσuηu +ρwσrηr√
(σ2

u +σ2
r )(η

2
u +η2

r )

= ρb
√

ρIX ρIY +ρw

√
(1−ρIX )(1−ρIY ), (3.2)
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the total correlation is a weighted sum of the between- and within-cluster correlations, where the weights

depend on the ICCs of X and Y .

3.3 Population parameters of Spearman rank correlations for clustered data

Spearman rank correlation is essentially the correlation between cumulative distribution functions (CDFs) for

continuous variables, also known as the grade correlation (Kruskal, 1958), or more broadly, the correlation

between population versions of midranks or ridits (Kendall, 1970; Bross, 1958). Generically, let F be a CDF,

F(x−) = limt↑x F(t), and F∗(x) = {F(x)+F(x−)}/2. If the distribution is continuous, then F∗(x) = F(x).

If the distribution is discrete or mixed, F∗(x) corresponds to the population versions of ridits (Bross, 1958).

The population parameter of Spearman rank correlation between two random variables X and Y with CDFs

FX and FY is denoted as γ(X ,Y ) = corr{F∗
X (X),F∗

Y (Y )} (Kendall, 1970; Liu et al., 2018).

Let Xi j and Yi j denote two random variables from a two-level hierarchical joint distribution, where i

represents cluster and j is the index within cluster i. The total Spearman rank correlation is the overall rank

correlation between Xi j and Yi j. We define its population parameter as

γt = γ(Xi j,Yi j) = corr{F∗
X (Xi j),F∗

Y (Yi j)}. (3.3)

With continuous Xi j and Yi j, γt = 12cov{FX (Xi j),FY (Yi j)}, because F∗
X (Xi j)=FX (Xi j)∼Uni f (0,1), F∗

Y (Yi j)=

FY (Yi j)∼Uni f (0,1), and their variances equal 1/12.

Let FX |i and FY |i be the CDFs of X and Y conditional on being in cluster i, respectively. The population

parameter of the within-cluster Spearman rank correlation is defined as

γw = corr{F∗
X |i(Xi j),F∗

Y |i(Yi j)}. (3.4)

Note that γw is not a function of cluster index and that it does not assume an equal variance structure across

clusters. In fact, γw is identical to the covariate-adjusted partial Spearman rank correlation (Liu et al., 2018),

where the covariates are cluster indicators. Since the partial Spearman rank correlation can be expressed

using probability-scale residuals (PSRs) (Li and Shepherd, 2012; Shepherd et al., 2016), we can express γw

similarly. The PSRs of Xi j = x and Yi j = y are defined as r(x,FX |i) = 2F∗
X |i(x)−1 and r(y,FY |i) = 2F∗

Y |i(y)−1,

respectively. Then we have

γw = corr(r(Xi j,FX |i),r(Yi j,FY |i)).

This connection allows us to derive an estimator for γw, which will be described in Section 3.5.

The usage of cluster means is not desirable for the between-cluster Spearman rank correlation because
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means are scale-dependent and sensitive to outliers and skewness. We use the general concept of cluster

centroids to define the between-cluster Spearman rank correlation. A cluster centroid defines the central

tendency of random variables in the same cluster. It is usually the median. Let X̃i and Ỹi be the cluster

centroid parameters of the ith cluster, with marginal CDFs denoted as FX̃ and FỸ , respectively. Assuming that

clusters are independent, the between-cluster Spearman rank correlation treats clusters as units of interest and

measures the association between cluster centroids. We define its population parameter as

γb = γ(X̃i,Ỹi) = corr{F∗
X̃ (X̃i),F∗

Ỹ (Ỹi)}. (3.5)

Our definitions of γt , γb, and γw are easily interpreted as rank correlations. In the special case where

(Xi j,Yi j)
T has a similar hierarchical population model as (3.1) in Section 3.2 except that (UXi,UYi)

T is the

cluster median and (RXi j,RYi j)
T has a median of zero, then γt = γ(Xi j,Yi j), γb = γ(UXi,UYi), and γw =

γ(RXi j,RYi j).

Furthermore, our definitions of γt , γb, and γw are also applicable to ordered categorical data. While

the definitions of γt and γw in (3.3) and (3.4) can be directly applied, the definition of γb in (3.5) needs

an extension. For an ordered categorical variable X , the median is defined as any category c for which

P(X ≤ c) ≥ 0.5 and P(X ≥ c) ≥ 0.5. The median is often a unique value. In the rare situation where

P(X ≤ c) = 0.5, both the category c and the next higher category (denoted as c+) are the medians, and we

define the cluster centroid X̃ as c with a probability of 0.5 and c+ with a probability of 0.5. If there are

clusters like this with two cluster medians for a variable, we define γb = E[γ(X̃i,Ỹi)], the expectation of the

Spearman rank correlation over all possible combinations of cluster medians in the population. If no clusters

have two cluster medians, the definition in (3.5) can be directly applied.

3.4 Relationship between the total, between-, and within-cluster Spearman rank correlations

The total Spearman rank correlation can be decomposed into two weighted components. The weights are

functions of the rank ICC, which is a natural extension of Fisher’s ICC (Fisher, 1925) to the rank scale (Tu

et al., 2023). The rank ICC of X is

γIX = corr[F∗
X (Xi j),F∗

X (Xi j′)]

= cov[F∗
X (Xi j),F∗

X (Xi j′)]/var[F∗
X (Xi j)]

= cov{E[F∗
X (Xi j)|i],E[F∗

X (Xi j′)|i]}/var[F∗
X (Xi j)]

+E{cov[F∗
X (Xi j),F∗

X (Xi j′)|i]}/var[F∗
X (Xi j)]

= var{E[F∗
X (Xi j)|i]}/var[F∗

X (Xi j)]+DX ,
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where (Xi j,Xi j′) is a random pair drawn from a random cluster and j ̸= j′, and

DX = E{cov[F∗
X (Xi j),F∗

X (Xi j′)|i]}/var[F∗
X (Xi j)]. When cluster sizes in the population are finite, DX is nega-

tive. When cluster sizes in the population are infinite, DX is equal to 0. The rank ICC of Y , γIY , is similarly

defined.

The decomposition of the total Spearman rank correlation is

γt = corr{F∗
X (Xi j),F∗

Y (Yi j)}

=
cov{F∗

X (Xi j),F∗
Y (Yi j)}√

var[F∗
X (Xi j)]var[F∗

Y (Yi j)]

=
cov{E[F∗

X (Xi j)|i],E[F∗
Y (Yi j)|i]}+E{cov[F∗

X (Xi j),F∗
Y (Yi j)|i]}√

var[F∗
X (Xi j)]var[F∗

Y (Yi j)]

=
cov{E[F∗

X (Xi j)|i],E[F∗
Y (Yi j)|i]}

var{E[F∗
X (Xi j)|i]}var{E[F∗

Y (Yi j)|i]}

√
var{E[F∗

X (Xi j)|i]}
var[F∗

X (Xi j)]

√
var{E[F∗

Y (Yi j)|i]}
var[F∗

Y (Yi j)]

+
E{cov[F∗

X (Xi j),F∗
Y (Yi j)|i]}√

E{var[F∗
X (Xi j)|i]}E{var[F∗

Y (Yi j)|i]}

√
E{var[F∗

X (Xi j)|i]}
var[F∗

X (Xi j)]

√
E{var[F∗

Y (Yi j)|i]}
var[F∗

Y (Yi j)]

= corr{E[F∗
X (Xi j)|i],E[F∗

Y (Yi j)|i]}
√
(γIX −DX )(γIY −DY )

+
E{cov[F∗

X (Xi j),F∗
Y (Yi j)|i]}√

E{var[F∗
X (Xi j)|i]}E{var[F∗

Y (Yi j)|i]}

√
(1− γIX +DX )(1− γIY +DY )

= S1

√
(γIX −DX )(γIY −DY )+S2

√
(1− γIX +DX )(1− γIY +DY ),

where S1 = corr{E[F∗
X (Xi j)|i],E[F∗

Y (Yi j)|i]} and S2 =
E{cov[F∗

X (Xi j),F∗
Y (Yi j)|i]}√

E[var[F∗
X (Xi j)|i]E[var[F∗

Y (Yi j)|i]
. When the cluster size in

the population is infinite, then DX =DY = 0 and γt = S1
√

γIX γIY +S2
√

(1− γIX )(1− γIY ). Simulations suggest

that S1 and S2 can be approximated by γb and γw, respectively. That is,

γt ≈ γb

√
(γIX −DX )(γIY −DY )+ γw

√
(1− γIX +DX )(1− γIY +DY ). (3.6)

If the cluster size in the population is large, then DX ≈ DY ≈ 0 and we have

γt ≈ γb
√

γIX γIY + γw

√
(1− γIX )(1− γIY ). (3.7)

This relationship is similar to that for Pearson correlations in (3.2), which was derived for the additive model

(3.1) with infinite cluster sizes.

We provide some toy examples to illustrate the relationship between γt , γb, and γw under different rank

ICCs of X and Y (Figure 3.1). Figures 3.1a and 3.1b show examples where γb and γw are in the opposite or

same directions, respectively. If X and Y have moderate rank ICCs of 0.5, then γb and γw contribute equally
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to γt , and γt is the average of γb and γw (Figure 3.1a and 3.1e). If the rank ICCs are large, γt is dominated by

γb, while if the rank ICCs are low, γt is dominated by γw. More extremely, if one of the rank ICCs is close to

1, γt is close to γb
√

γIX γIY (Figure 3.1d). On the contrary, if one of the rank ICCs is near 0, which means that

the observations in a cluster are nearly independent, then γt is close to γw
√
(1− γIX )(1− γIY ) (Figure 3.1c).

When cluster sizes in the population are finite, the rank ICCs can be negative. If any of the rank ICCs is

negative, the relationship between γt , γb, and γw is (3.6) rather than the simpler (3.7). Figure 3.1f illustrates

an extreme example where the rank ICCs are both −1. (This happens when cluster sizes are two.) In this

example, γb and γw are strong and opposite whereas the total correlation is zero.

55



(a) (γt ,γb,γw,γIX ,γIY ) = (0,−1,1,0.5,0.5) (b) (γt ,γb,γw,γIX ,γIY ) = (0.84,1,1,0.6,0.1)

(c) (γt ,γb,γw,γIX ,γIY ) = (0.71,0,1,0.5,0) (d) (γt ,γb,γw,γIX ,γIY ) = (−0.71,−1,0,0.5,1)

(e) (γt ,γb,γw,γIX ,γIY ) = (0,−1,1,0.5,0.5) (f) (γt ,γb,γw,γIX ,γIY ) = (0,−1,1,−1,−1)

Figure 3.1: Toy examples for the relationship between total (γt ), between-cluster (γb), within-cluster (γw)
Spearman rank correlations and the rank intraclass correlations (γIX , γIY ). For illustration purposes, we show
five clusters and five (two for (f)) observations to represent the distribution of each cluster. Black dots repre-
sent cluster medians, and the other symbols represent the five clusters. The solid lines show the direction of
the within-cluster correlation and the dashed lines show the direction of the between-cluster correlation.

56



3.5 Estimation

Since the total Spearman rank correlation is the Pearson correlation between F∗
X and F∗

Y , our estimator of

γt is γ̂t = corr(F̂∗
X , F̂

∗
Y ), which is a plug-in estimator. Given two-level data {(xi j,yi j) : i = 1,2, ...,n, j =

1,2, ...,ki} with a total number of observations of N = ∑
n
i=1 ki, a nonparametric estimator of the CDF of X is

F̂X (x) =∑
n
i=1 ∑

ki
j=1 wi jI(xi j ≤ x), where wi j is the weight of observation xi j and ∑

n
i=1 ∑

ki
j=1 wi j = 1. The weight

wi j depends on how we believe the data reflect the composition of the underlying hierarchical distribution;

for example, wi j = 1/(nki) corresponds to equal weights for clusters and wi j = 1/N corresponds to equal

weights for observations (Tu et al., 2023). Similarly, we estimate F̂X (x−) = ∑
n
i=1 ∑

ki
j=1 wi jI(xi j < x), and

define F̂∗
X (x) = {F̂X (x)+ F̂X (x−)}/2. Estimation is the same for F∗

Y . The general form of our estimator of γt

is

γ̂t =

n
∑

i=1

ki
∑
j=1

wi j(F̂∗
X (xi j)− ¯̂F∗

X )(F̂
∗

Y (yi j)− ¯̂F∗
Y )√

n
∑

i=1

ki
∑
j=1

wi j(F̂∗
X (xi j)− ¯̂F∗

X )
2

√
n
∑

i=1

ki
∑
j=1

wi j(F̂∗
Y (yi j)− ¯̂F∗

Y )
2

,

where ¯̂F∗
X =

n
∑

i=1

ki
∑
j=1

wi jF̂∗
X (xi j) and ¯̂F∗

Y =
n
∑

i=1

ki
∑
j=1

wi jF̂∗
Y (yi j). If we assign equal weights to clusters (i.e., wi j =

1/(nki)), our estimator of the total Spearman rank correlation is equal to the estimator of Shih and Fay (2017).

Section 3.3 shows that γw is identical to the covariate-adjusted partial Spearman rank correlation and can

be expressed in terms of PSRs, suggesting that γw can be estimated by sample PSRs (Liu et al., 2017). Hence,

our estimator of γw is

γ̂w =

n
∑

i=1

ki
∑
j=1

wi j(xi j,res − x̄res)(yi j,res − ȳres)√
n
∑

i=1

ki
∑
j=1

wi j(xi j,res − x̄res)2

√
n
∑

i=1

ki
∑
j=1

wi j(yi j,res − ȳres)2

, (3.8)

where xi j,res = r(xi j, F̂X |i), yi j,res = r(yi j, F̂Y |i), x̄res =
n
∑

i=1

ki
∑
j=1

wi jxi j,res, ȳres =
n
∑

i=1

ki
∑
j=1

wi jyi j,res. We can obtain

PSRs using nonparametric, parametric, or semiparametric models. A nonparametric estimator of FX |i is

simply the empirical CDF of X in cluster i. Estimators from nonparametric models are the most robust but

can be inefficient and unstable if cluster sizes are small. Parametric models are the most efficient under correct

assumptions but less robust to extreme values, sensitive to model misspecification or outcome transformation,

and not congruent with the spirit of Spearman rank correlation. To achieve a compromise between robustness

and efficiency, we employ semiparametric models in which only the order information of outcomes is used

and the clusters share a common latent variable distribution except for cluster-specific shifts. This way we

can borrow information across clusters and still maintain the rank-based nature of Spearman rank correlation.

Specifically, we designate cluster 1 as the reference cluster, and define Zi (i= 2, . . . ,n) as an indicator vari-

57



able such that Zi = 1 when the observation is in cluster i and Zi = 0 otherwise. We then model X and Y on Z =

(Z2, . . . ,Zn)
T to obtain PSRs for X and Y , respectively. Here we incorporate the semiparametric linear trans-

formation model where the monotonic transformation, HX (·), is unspecified, FX |Z(x) = P{HX (β
T
X Z + ε) ≤

x|Z}= Fε{H−1
X (x)−β T

X Z}, where ε follows a known distribution and βX = (βX2, . . . ,βXn)
T . The semipara-

metric transformation model can be written in the form of the ordinal cumulative probability model (CPM),

gX{FX |Z(x)}= αX (x)−β T
X Z, where αX (x) = H−1

X (x) is estimated with a step function, and gX (·) = F−1
ε is a

link function (Liu et al., 2017). A similar model is fit for Y on Z. Model estimation can be implemented using

software for fitting ordinal cumulative probability (“link”) models with each unique outcome representing a

separate ordinal category. For example, the orm() function in the rms package of R can be used (Harrell,

2015). After obtaining PSRs from the CPMs of X on Z and of Y on Z, we then simply estimate γw as in (3.8).

As mentioned in Section 3.3, we often use the cluster median as the cluster centroid, so γb is Spearman

rank correlation between cluster medians. One simple estimation approach is to estimate γb as Spearman rank

correlation between the sample cluster medians (i.e., {( ˆ̃xi, ˆ̃yi) : i = 1,2, ...,n}, where ˆ̃xi and ˆ̃yi are the medians

of {xi1, ...,xiki} and {yi1, ...,yiki}, respectively). However, this approach only uses information within clusters,

which can have high variations with small cluster sizes. Thus, we consider estimating the cluster medians

using CPMs of X on Z and of Y on Z. The CPMs borrow information across clusters and their estimates

of cluster medians are less variable than the simple estimates. Moreover, for ordered categorical data, the

CPMs allow us to obtain cluster medians on the latent variable scale, thus simplifying the estimation of γb

by eliminating the need to consider all possible combinations of cluster medians on the original scale in the

presence of clusters with two medians.

Let us consider a CPM of X on Z, gX{FX |Z(x)} = αX (x)−β T
X Z, where gX is a symmetric link function

such as logit or probit. For any Z = z, let xz be the true median of X given Z = z. Since FX |Z=z(xz) = 0.5 and

gX (0.5) = 0, we have 0 = αX (xz)−β T
X z and αX (xz) = β T

X z. That is, the monotone function αX transforms

the median xz to β T
X z. In the setting of clustered data, Z = (Z2, . . . ,Zn)

T is a vector of indicator variables

for the clusters, and thus the cluster medians are 0 for cluster 1 and βXi for cluster i (i = 2, . . . ,n). Since

αX is a monotonic increasing transformation, a Spearman rank correlation that involves the cluster medi-

ans of X can be computed with (0,βX2, . . . ,βXn)
T . Similarly, a Spearman rank correlation that involves

the cluster medians of Y can be computed with (0,βY 2, . . . ,βY n)
T . All these values can be estimated from

the CPMs. Thus, our estimator of γb is the rank correlation over the n pairs of estimated cluster medi-

ans, {(0,0),(β̂X2, β̂Y 2), . . . ,(β̂Xn, β̂Y n)}. Furthermore, we also consider weighting clusters in the estimation

procedures for γb. Let wi· denote the weight of cluster i and wi· = ∑
ki
j=1 wi j. A nonparametric estimator

of the CDF of βX is F̂βX (t) = ∑
n
i=1 wi·I(β̂Xi ≤ t), similarly F̂βX (t−) = ∑

n
i=1 wi·I(β̂Xi < t), and we define
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F̂∗
βX
(t) = {F̂βX (t)+ F̂βX (t−)}/2. Estimation for F∗

βY
is similar. Therefore, one estimator of γb is

γ̂bM =

n
∑

i=1
wi·(F̂∗

βX
(β̂Xi)− ¯̂F∗

βX
)(F̂∗

βY
(β̂Yi)− ¯̂F∗

βY
)√

n
∑

i=1
wi·(F̂∗

βX
(β̂Xi)− ¯̂F∗

βX
)2
√

n
∑

i=1
wi·(F̂∗

βY
(β̂Yi)− ¯̂F∗

βY
)2
,

where β̂X1 = β̂Y 1 = 0, ¯̂F∗
βX

=
n
∑

i=1
wi·F̂∗

βX
(β̂Xi), and ¯̂F∗

βY
=

n
∑

i=1
wi·F̂∗

βY
(β̂Yi). When wi· = 1/n, ¯̂F∗

βX
= ¯̂F∗

βY
= 1/2.

If cluster sizes are very small, the estimates of βX and βY , and thus γ̂bM , may be poor. We consider another

estimation approach. As shown in Section 3.4 equation (3.6), γt is approximated by a weighted sum of γw and

γb, where the weights are functions of γIx and γIy. We can use this relationship to obtain an estimate of γb,

γ̂bA =
γ̂t −

√
(1− γ̂IX + D̂X )(1− γ̂IY + D̂Y )γ̂w√

(γ̂IX − D̂X )(γ̂IY − D̂Y )
,

where γ̂IX and γ̂IY are nonparametric estimators of γIX and γIX (Tu et al., 2023), D̂X =
∑

n
i=1 wi· ∑ j< j′

2
ki(ki−1) [F̂

∗(xi j)−F̄∗
i ][F̂

∗(xi j′ )−F̄∗
i ]

∑
n
i=1 ∑

ki
j=1 wi j [F̂∗(xi j)−F̄∗]2

, F̄∗
i = ∑ j F∗(xi j)/ki, and similar for D̂Y . If the cluster size in the

population is infinite, DX = DY = 0, then γ̂bA =
γ̂t−

√
(1−γ̂Ix)(1−γ̂Iy)γ̂w√

γ̂Ix γ̂Iy
. Note that γ̂bA can be greater than 1 or

less than −1; in those cases, we define γ̂bA to be 1 or −1, respectively. When cluster sizes are very small, γ̂bA

may be preferable over γ̂bM . If either of the rank ICCs is very small,
√

γ̂Ixγ̂Iy ≈ 0 and γ̂bA can be unstable.

3.6 Inference

The large sample distribution of γ̂w can be obtained by bootstrapping or large sample approximation. Here

we focus on the large sample approach using M-estimation (Stefanski and Boos, 2002). The CPM is fit

by minimizing the multinomial/nonparametric likelihood, and then the variance of parameter estimates can

be estimated using a sandwich variance estimator that accounts for clustering. This is equivalent to fitting

generalized estimating equation (GEE) methods for ordinal response variables with independence working

correlation (Tian et al., 2023). Let ψX (·) = UX (θ) denote the estimating function for the CPM of X on Z with

a vector of parameters θ X , and ψY (·) = UY (θ) denote the estimating function for the CPM of Y on Z with

a vector of parameters θY . See the Supplementary Materials for details about these estimating functions.

The components necessary for computing γw are denoted by θw1, θw2, θw3, θw4, and θw5 such that γw =

(θw3 − θw1θw2)/
√
(θw4 −θ 2

w1)(θw5 −θ 2
w2), where θw1 = E(Xi j,res), θw2 = E(Yi j,res), θw3 = E(Xi j,resYi j,res),

θw4 = E(X2
i j,res), θw5 = E(Y 2

i j,res). We can stack ψX (·) and ψY (·) together with these components and then
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have the following estimating function,

ψw(Xi,Yi,Zi,θ w)

= {ψX (Xi,Zi,θ X ),ψY (Yi,Zi,θY ), IT
i Xi,res/ki −θw1, IT

i Yi,res/ki −θw2,

XT
i,resYi,res/ki −θw3,XT

i,resXi,res/ki −θw4,YT
i,resYi,res/ki −θw5}T ,

where θ w = (θ X ,θY ,θw1,θw2,θw3,θw4,θw5), Ii is a vector of ones with a length of ki. The estimating equa-

tions are ∑
n
i=1 ψw(Xi,Yi,Zi; θ̂ w) = 0. Under standard regularity conditions (Stefanski and Boos, 2002),

then we have
√

n(θ̂ w − θ w)
d→ MV N(0,V(θ w)), where V(θ w) = A(θ w)

−1B(θ w){A(θ w)
−1}T , A(θ w) =

E[−∂ψw(Xi,Yi,Zi,θ w)/∂θ
T
w], and B(θ w) = E[ψw(Xi,Yi,Zi,θ w)ψw(Xi,Yi,Zi,θ w)

T ]. Since our estimator

of γw is a function of θ̂w1, θ̂w2, θ̂w3, θ̂w4, and θ̂w5, the delta method can be used to obtain its large sample dis-

tribution. Then we can compute the asymptotic standard error (SE) of γw and construct confidence intervals

(CIs) for γw.

We use a similar approach to obtain the large sample distribution of γ̂bM . Let β X = (0,βX2, ...,βXn)
T

and βY = (0,βY 2, ...,βY n)
T denote the coefficients of cluster index in the CPMs of X and Y , respectively.

Note that the coefficient of the reference cluster is zero. To obtain the asymptotic variance of γb, we treat

β X and βY as random effects, for simplicity assuming that βXi
i.i.d∼ N(µβX ,σ

2
βX
) and βYi

i.i.d∼ N(µβY ,σ
2
βY
). The

components necessary for computing γb are denoted by θb1, θb2, θb3, θb4, and θb5 such that γb = (θb3 −

θb1θb2)/
√
(θb4 −θ 2

b1)(θb5 −θ 2
b2), where θb1 = E[FβX (βXi)], θb2 = E[FβY (βYi)], θb3 = E[FβX (βXi)FβY (βYi)],

θb4 = E{[FβX (βXi)]
2}, θb5 = E{[F2

βY
(βYi)]

2}, and FβX and FβY are the CDFs of normal distributions. Note

that E[FβX (βXi)] = E[FβX (βYi)] = 1/2 in theory but they may not be 1/2 in estimation if wi· ̸= 1/n. Similar

to the inference procedure of γw above, we stack ψX (·) and ψY (·) with the components needed to compute γb

stacked together, yielding the following estimating function,

ψb(Xi,Yi,Zi,θ b)

= {ψX (Xi,Zi,θ X ),ψY (Yi,Zi,θY ),βXi −µβX ,βYi −µβY ,β
2
Xi −MβX ,β

2
Yi −MβY ,

FβX (βXi)−θb1,FβY (βYi)−θb2,FβX (βXi)FβY (βYi)−θb3, [FβX (βXi)]
2 −θb4, [FβX (βYi)]

2 −θb5}T ,

where θ b =(θ X ,θY ,µβX ,µβY ,MβX ,MβY ,θb1,θb2,θb3,θb4,θb5), MβX =E(β 2
X )= µ2

βX
+σ2

βX
, and MβY =E(β 2

Y )=

µ2
βY
+σ2

βY
. The estimating equations are ∑

n
i=1 ψb(Xi,Yi,Zi; θ̂ b)= 0. We have

√
n(θ̂ b−θ b)

d→MV N(0,V(θ b))

under standard regularity conditions (Stefanski and Boos, 2002), where V(θ b)=A(θ b)
−1B(θ b){A(θ b)

−1}T ,

A(θ b) = E[−∂ψb(Xi,Yi,Zi,θ)/∂θ
T
b ], and B(θ) = E[ψb(Xi,Yi,Zi,θ b)ψb(Xi,Yi,Zi,θ b)

T ]. The large sam-

ple distribution of γ̂bM can be derived from the large sample distribution of θ̂ b using the delta method. We
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also use this expression for inference for γ̂bA .

As mentioned in Section 3.5, if the same weight is assigned to all the observations, our estimator of

the total Spearman rank correlation γ̂t equals the estimator of Shih and Fay (2017). Hence, we adapt the

inference method of Shih and Fay (2017) via incorporating weighting into the estimation procedures to obtain

the asymptotic variance of γ̂t . Shih and Fay (2017) have provided an analytical form for the asymptotic

distribution of the estimator of γt , which is a function of Xi j, Yi j, FX , FY , and FXY . The asymptotic variance

can be estimated with F̂X , F̂Y , and F̂XY plugged in for FX , FY , and FXY . Here we allow F̂X , F̂Y , and F̂XY to be

obtained based on either assigning equal weights to observations or assigning equal weights to clusters, and

then plug them in to estimate the asymptotic variance of γ̂t .

3.7 Simulations

We used a bivariate additive model for data generation:

X0i j

Y0i j

 =

UXi

UYi

+

RXi j

RYi j

 , where

UXi

UYi

 i.i.d∼

N


 1

−1

 ,

 1 ρ0b

ρ0b 1


,

RXi j

RYi j

 i.i.d∼ N


0

0

 ,

 1 ρ0w

ρ0w 1


. Here, ρ0t =(ρ0b+ρ0w)/2. Let (Xi j,Yi j)

be the observation of the jth individual in the ith cluster, where i = 1,2, ....,n; j = 1,2, ...,ki; and ki is the

size of the ith cluster. We considered three scenarios: (I) Xi j = X0i j and Yi j = Y0i j; (II) Xi j = X0i j and

Yi j = exp(Y0i j); (III) Xi j = exp(UXi)+RXi j and Yi j = exp(exp(UYi)+RYi j). Under Scenarios I and II, since

(X0i j,Y0i j)
T is bivariate normal, the true total, between-, and within-cluster Spearman rank correlations are

γt = 6arcsin(ρ0t/2)/π , γb = 6arcsin(ρ0b/2)/π , and γw = 6arcsin(ρ0w/2)/π (Pearson, 1907). Under Scenario

III, γb and γw are the same as those in Scenarios I and II, but γt is different because (Xi j,Yi j)
T is not normally

distributed. We empirically computed γt under Scenario III by generating one million clusters each with 100

observations, and then computing γt . We also empirically computed the total, between- and within-cluster

Pearson correlations (i.e., ρt , ρb, and ρw) under Scenarios II and III. While γb and γw are identical under the

three scenarios, ρb and ρw are sensitive to skewness and depend on the scale of interest (Table 3.1).

61



Ta
bl

e
3.

1:
T

he
to

ta
l,

be
tw

ee
n-

cl
us

te
r,

an
d

w
ith

in
-c

lu
st

er
Sp

ea
rm

an
ra

nk
co

rr
el

at
io

ns
(γ

t,
γ

b,
γ

w
)a

nd
Pe

ar
so

n
co

rr
el

at
io

ns
(ρ

t,
ρ

b,
ρ

w
)u

nd
er

Sc
en

ar
io

s
I(

no
rm

al
ity

),
II

(e
xp

on
en

tia
te

d
Y

),
an

d
Sc

en
ar

io
II

I(
ex

po
ne

nt
ia

te
d

cl
us

te
rm

ea
ns

an
d

ex
po

ne
nt

ia
te

d
Y

)w
ith

5
si

m
ul

at
io

n
se

tti
ng

s

(ρ
0t
,ρ

0b
,ρ

0w
)

(γ
t,

γ
b,

γ
w

)
(ρ

t,
ρ

b,
ρ

w
)

I,
II

,I
II

I,
II

II
I

I
II

II
I

(0
.7

5,
0.

80
,0

.7
0)

(0
.7

3,
0.

79
,0

.6
8)

(0
.5

3,
0.

79
,0

.6
8)

(0
.7

5,
0.

80
,0

.7
0)

(0
.4

2,
0.

61
,0

.3
3)

(0
.0

2,
0.

03
,0

)
(0

.4
0,

0.
80

,0
)

(0
.3

8,
0.

79
,0

)
(0

.3
1,

0.
79

,0
)

(0
.4

0,
0.

80
,0

)
(0

.2
2,

0.
06

,0
)

(0
.0

1,
0.

02
,0

)
(0

.4
0,

0,
0.

80
)

(0
.3

8,
0,

0.
79

)
(0

.2
5,

0,
0.

79
)

(0
.4

0,
0,

0.
80

)
(0

.2
2,

0.
01

,0
.3

7)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

.0
5,

0.
80

,-
0.

7)
(0

.0
5,

0.
79

,-
0.

68
)

(0
.0

9,
0.

79
,-

0.
68

)
(0

.0
5,

0.
80

,-
0.

70
)

(0
.0

3,
0.

59
,-

0.
32

)
(0

.0
1,

0.
01

,0
)

62



We first evaluated the performance of our estimators of γb, γw, and γt for continuous data. The simulations

were conducted under Scenarios I, II, and III at n = 100, and (ρ0b,ρ0w) ∈ {(0.8,0.7),(0.8,0),(0,0.8),(0,0),

(0.8,−0.7)}. In Scenarios I and II, the rank ICCs of X and Y are both 0.48. In Scenario III, the rank ICC

of X is 0.97 while that of Y is 0.37. We considered various configurations of cluster size under Scenarios

I and II: ki = 10, ki = 20, ki = 30, and ki uniformly ranging from 1 to 50. We compared our estimators

with naive nonparametric estimators: γ̂bn estimated by Spearman rank correlation between sample cluster

medians and γ̂wn estimated by the rank correlation of within-cluster deviations (differences) from sample

cluster medians. Furthermore, we compared the Spearman rank correlations with the Pearson correlations

in Scenario I. The estimators of ρb and ρw are based on one-way random effects models: ρb is estimated by

Pearson correlation between the estimated cluster means from the random effects models and ρw is estimated

by Pearson correlation between the individual deviations from the estimated cluster means (Snijders and

Bosker, 1999).

In general, our estimators of γb, γw, and γt had low bias and good coverage with modest numbers of

clusters in Scenarios I and II (Figure 3.2). They were also robust to the skewed data in Scenario II and they

had lower bias than γ̂bn and γ̂wn (Table 3.3). In the extreme case where γb and γw are both strong but opposite

(i.e., last row of Figure 2), our estimators of γb were biased. In the other settings where γb and γw greatly

differed (i.e., rows 2-3 of Figure 2), the estimators of γb were also biased, although to a lesser extent. In

these settings, the bias of γ̂bA was relatively smaller than that of γ̂bM , particularly with small cluster sizes.

As the cluster size increased, the bias of γ̂bM decreased, whereas the bias of γ̂bA remained relatively stable

(also seen in Table 3.4). It is worth noting that in the extreme case (last row of Figure 2), the estimator of

the between-cluster Pearson correlation based on random effects models also had similar bias, even when the

data were normally distributed (Table 3.5).

In Scenario III, our estimator of γw still had low bias and good coverage (Table 3.6). In our setup,

E[UYi] =−1, our estimators of γb and γt had more bias under Scenario III than under Scenarios I and II. This

is because UYi was exponentiated in Scenario III, which led to cluster means that had a much smaller variance

than that of the within-cluster deviations. In this setting, the within-cluster deviation often dominated the

value of Yi j creating data where it is difficult to see the effect of clustering over the within-cluster variance.

Our estimator of γt struggled in this setting, producing biased estimates of γt and thus biased estimates of

γb based on the approximation (3.7). In addition, estimation of γb using γ̂bM also was biased, as estimated

cluster medians, even with fairly larger cluster sizes, often were far from their true rankings due to the large

residual noise. When E[UYi] was changed from -1 to 1, the cluster means had a larger variance than that of

the within-cluster deviations, leading to much smaller bias in the estimates of γt and γb.

We then evaluated the performance of our estimators when the rank ICC was negative, which occurs when
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Figure 3.2: Bias and coverage of 95% CIs for our estimators of γb, γw, and γt at different true values and
different cluster sizes under Scenarios I (normality) and II (exponentiated Y ). The circle sign stands for the
approximation-based estimator (γ̂bA ) of γb, and the plus sign stands for the cluster-median-based estimator
(γ̂bM ) of γb. The number of clusters was set at 100. “1-50” means the cluster size follows a uniform distribu-
tion from 1 to 50.

ki = 2. Our estimators of γt , γb, and γw had very low bias and good coverage. Details are in the Supplementary

Materials Table 3.2.

Furthermore, we investigated the performance of our estimators when the link function of the CPM was

misspecified as logit, loglog, and cloglog under Scenario II. We conducted 1000 simulations at n = 100 and

ki = 20. Our estimators of γb, γw, and γt performed similarly under the logit link as they did under the correct

probit link function (Table 3.7). When the link function was misspecified as loglog or cloglog, if γw was large

and had the opposite direction of γb, our estimator of γw had bias toward the direction of γb.
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We also evaluated the performance of our estimators for ordered categorical data. We simulated 5-level

and 10-level ordered categorical data by discretizing Xi j and Yi j in Scenario I with cutoffs at quantiles (i.e.,

using the 0.2, 0.4, 0.6, 0.8 quantiles for 5 levels; and the 0.1, 0.2, ..., 0.8, 0.9 quantiles for 10 levels). We

empirically computed γt , γb, and γw by generating one million clusters and 100 observations per cluster, with

cluster medians analytically derived. The values of γt , γb, and γw of the 10-level ordered categorical variables

are close to those of the continuous variables, while those of the 5-level ordered categorical variables are

slightly smaller (Table 3.8). We conducted 1000 simulations at n = 100 and ki = 20. Our estimators of γb,

γw, and γt had very low bias and good coverage (Table 3.8). When γb was large, γ̂bA had bias, which might be

due to equation (3.7) being a poor approximation of γt with ordered categorical data. This bias decreased as

the number of ordered categories increased.

3.8 Applications

3.8.1 Longitudinal biomarker data

Repeated measures of CD4 and CD8 lymphocyte counts (cells/mm3) were taken on 325 women living with

HIV who started antiretroviral therapy (ART) at the Vanderbilt Comprehensive Care Clinic between 1998

and 2012 (Castilho et al., 2016). There is interest in evaluating the correlation between same-day CD4 and

CD8 counts while considering the potential clustering in the data. All same-day CD4 and CD8 measurements

taken within ±4 months of ART initiation were included in analyses; the number of observations per woman

ranged from 1 to 54. In this case, the cluster is the person, so it makes sense to assign equal weights to people

rather than measurements. The data were very skewed, especially the CD8 count (Figure 3.3).

The rank ICC estimates of CD4 and CD8 counts were 0.77 and 0.76, respectively, suggesting strong sim-

ilarity between measurements from the same woman. The between-cluster Spearman rank correlation was

estimated to be γ̂bM = 0.24 (95% CI: [0.20,0.29]) via cluster medians obtained from CPMs and was estimated

to be γ̂bA = 0.21 (95% CI: [0.17,0.26]) via the approximation approach, indicating a weak but positive correla-

tion between median CD4 and CD8 counts (Figure 3.3). The Spearman rank correlation between the sample

cluster medians was 0.24, close to our between-cluster Spearman rank correlation estimates. The within-

cluster Spearman rank correlation estimate was 0.53 (95%: [0.51,0.55]), suggesting moderate correlation

between the fluctuations in the repeated CD4 and CD8 measurements. The total Spearman rank correla-

tion estimate, 0.29 (95% CI: [0.25,0.32]), suggests a weak to moderate overall correlation after combining

between-cluster and within-cluster correlations.

The between-cluster, within-cluster, and total Pearson correlation estimates on the original scale obtained

from a random effects model were estimated to be 0.18, 0.40, and 0.24, respectively, which were impacted

by some extreme measurements. The three Pearson correlations were estimated to be 0.22, 0.49, and 0.28,
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(a) Original scale (b) Square-root transformation

(c) Log transformatio

Figure 3.3: Scatter plot of CD4 and CD8 counts (cells/mm3) and estimates of total, between-, and within-
cluster Spearman rank (γt , γb, γw, [95% CIs]) and Pearson (ρt , ρb, ρw) correlations. The red cross sign
represents the sample cluster median and the circle sign represents the observation. γ̂bM is the estimator of γb
based on cluster medians obtained from CPM and γ̂bA is the estimator of γb based on the linear approximation.

respectively, after square root transformation, and 0.25, 0.54, and 0.32, respectively, after log transformation.

The notable differences in the three Pearson correlation estimates after data transformation demonstrate the

sensitivity of Pearson correlation to the choice of scale. In contrast, our estimates of between-cluster, within-

cluster, and total Spearman rank correlations are invariant to any monotonic transformation.

3.8.2 Cluster randomized controlled trial data

The Homens para Saúde Mais (HoPS+) study is a cluster randomized controlled trial in Zambézia Province,

Mozambique (Audet et al., 2018). The trial was designed to measure the impact of incorporating male
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partners with HIV into prenatal care for pregnant women living with HIV on adherence to treatment. The

trial enrolled 1073 participating couples living with HIV at 24 clinical sites. The number of couples at

clinical sites ranged from 15 to 71. At the time of randomization (baseline), age, depressive symptoms

measured by Patient Health Questionnaire-9 (PHQ-9) score, HIV knowledge, and HIV stigma were captured.

We are interested in the correlation of these baseline measures within couples. We are also interested in the

correlation of 12-month adherence to ART within couples. Figure 3.4 shows scatter plots of these measures.

In this example, the cluster is the clinical site and the observations are made on couples (e.g., X = age of

female partners, Y = age of male partners). Hence, it is reasonable to assign equal weights to couples. The

estimates of the total, between-cluster, and within-cluster Spearman rank correlations are shown in Figure 3.4.

The total Spearman rank correlation for age, 0.59, was moderate to strong. The between-cluster Spearman

rank correlation for age was γ̂bM = 0.38, suggesting weak to moderate correlation between median male

and female ages within clinical sites. The within-cluster Spearman rank correlation was 0.61, implying that

after controlling for clinical site, the correlation of age between couples remained high. For PHQ-9 scores,

HIV knowledge, and HIV stigma, the total Spearman rank correlation between couples was strong, ranging

from 0.70 to 0.77. The correlation became moderate after controlling for clinical sites, with γ̂w varying

from 0.43 to 0.52. The between-cluster Spearman rank correlations of the three measures were extremely

strong, which can be seen in Figure 3.4. The approximation-based estimates (γ̂bA ) of the between-cluster

correlation hit the boundary and were thus set to be 1, and the cluster-median-based estimates (γ̂bM ) were

close to 1. Taken as a whole, these estimates suggest that the scores between male and female partners for

these measures are highly correlated but that some of the correlation is due to similarities within sites. This

may reflect differences between participants across sites or perhaps differences in the ways the questionnaires

were administrated across study sites. Finally, the total correlation for 12-month adherence was moderate,

0.47. After controlling for clinical sites, the correlation remained moderate, γ̂w = 0.46. The between-cluster

correlation was moderate to high, γ̂bM = 0.40 and γ̂bA = 0.61; this difference might be due to the small

intraclass correlation for this variable (the rank ICC of 12-month adherence for males was 0.06 and for

females was 0.07).
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(a) Age at enrollment (b) PHQ-9 scores

(c) HIV knowledge (d) HIV stigma

(e) 12-month adherence

Figure 3.4: Scatter plots of PHQ-9 scores, age at enrollment (years), HIV knowledge, HIV stigma, and 12-
month adherence (%) of female and male partners enrolled in the clustered randomized clinical trial. The red
cross sign represents the sample cluster median and the dot sign represents the observation. The right side
of each subfigure shows the estimates of total, between-, and within-cluster Spearman rank correlations (γt ,
γb, γw, [95% CIs]). γ̂bM is the estimator of γb based on cluster medians obtained from CPM and γ̂bA is the
estimator of γb based on the linear approximation.
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3.9 Discussion

In this Chapter, we defined the population parameters of the between- and within-cluster Spearman rank

correlations for clustered data, which are natural extensions of the between- and within-cluster Pearson cor-

relations to the rank scale. We also approximated their relationship with the total Spearman rank correlation

and the rank intraclass correlation coefficient. Compared with the traditional Pearson correlation, our method

is insensitive to extreme values and skewed distributions, and does not depend on the scale of the data. Our

framework is general, and is applicable to any orderable variables. Our estimators are asymptotically normal,

with generally low bias and good coverage in our simulations. We have developed an R package, rankCorr,

available on CRAN, which implements our new method.

Our method has some limitations. Our method requires fitting models for the conditional distributions of

X and Y given cluster index, which need to be approximately correct to get unbiased estimates. We suggest

using semiparametric cumulative probability models which maintain the rank-based nature of Spearman’s

rank correlation. In addition, our estimator of the between-cluster Spearman rank correlation has bias when

the between- and within-cluster Spearman rank correlations are in opposite directions. This problem also

exists when estimating the between-cluster Pearson correlation. As the cluster size increases, the problem

goes away.

In practice, one may be interested in estimating covariate-adjusted rank correlations. For example, in the

application of CD4 and CD8 data, there may be interest in measuring the rank correlations after adjusting for

age. The methods in this manuscript could be extended to allow for covariate adjustment by fitting CPMs that

include the covariate, in addition to the cluster indicators. We suspect that the correlation between probability-

scale residuals from these fitted models could be used to estimate covariate-adjusted within-cluster rank

correlations and that the correlation between cluster indicator coefficients from these fitted models could be

used to estimate covariate-adjusted between-cluster rank correlations. This approach is somewhat similar

to random effects approaches used for estimating covariate-adjusted within- and between-cluster Pearson

correlations (Ferrari et al., 2005). Such an approach, as well as Spearman rank correlation as a function of

time with longitudinal data, warrants further investigation.

3.10 Supplementary Materials

3.10.1 Estimating functions of the CPMs

Let C denote the number of distinct values of X, Oi j,c = I(Xi j ≤ x(c)), and µi j,c = E[Oi j,c|Zi j] = P(Xi j ≤

x(c)|Zi j). Then Oi j = (Oi j,1, ...,Oi j,C−1)
T , and µ i j = (µi j,1, ...,µi j,C−1)

T . We define Oi = (OT
i j, ...,OT

iki
)T

and µ i = (µT
i1, ...,µ

T
iki
)T , which are both vectors with a length of (C − 1)ki. Let πi j,c = µi j,c − µi j,c−1 =

E(I(Xi j = x(c))|Zi j) and π i j = (πi j,1, ...,πi j,C−1)
T . The CPM of X on Z has parameters θ X = (αT

X ,β
T
X )

T ,
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where αX = (αX ,1, ...,αX ,C−1). The estimating function of the CPM of X on Z is

n

∑
i=1

Ui(θ X ) =
n

∑
i=1

(
∂ µ i
∂θ X

)T
V−1

i (Oi −µ i(θ X ))

=
n

∑
i=1

ki

∑
j=1

(∂ µ i j

∂θ X

)T
V−1

i j (Oi j −µ i j(θ X ))

= 0,

where Vi j = Cov(Oi j} with diagonal elements as vll = µi j,l(1− µi j,l) and off-diagonal elements as vlk =

µi j,min(l,k)(1−µi j,max(l,k)), l,k = 1, ...,C−1. This estimating function is equivalent to the estimating function

of GEE methods for ordinal response variables with independence working correlation. The information

matrix is

I(θ X ) =−E[∂Ui(θ X )/∂θ X ] = E[
(

∂ µ i
∂θ X

)T
V−1

i

(
∂ µ i
∂θ X

)
].

The estimating function of the CPM of Y on Z is similar.

3.10.2 Additional simulations under negative rank ICCs

We here consider the performance of our estimators when the cluster size is 2 in the population and the rank

ICC is negative. Let (Xi1,Yi1) and (Xi2,Yi2) be the observations of the two individual in the ith cluster. The

observations in cluster i were generated as follows,

Xi1

Yi1

 =

UXi

UYi

+

RXi

RYi

 and

Xi2

Yi2

 =

UXi

UYi

−

RXi

RYi

, where

UXi

UYi

 i.i.d∼ N
( 1

−1

 ,

 1 ρb

ρb 1

)
,

Rxi

Ryi

 i.i.d∼ N
(0

0

 ,

 3 9ρw

9ρw 1

)
, ρt = ρb/4+

3ρw/4, and ρIX = ρIY =−0.5. We conducted 1000 simulations at n= 100 and (ρ0b,ρ0w)∈{(0.8,0.7),(0,0.8),

(0,0),(0.8,−0.7)}. Since the sample cluster size was the same as the cluster size of the population, the data

provided all the information of each sample cluster and we can use CPM to accurately estimate the cluster

medians. Therefore, we used γ̂bM to estimate γb. Our estimators of γt , γb, γw had very low bias and good

coverage.
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Table 3.3: Bias and empirical SE (emp.SE) of γ̂bn and γ̂wn , the naive estimators of γb and γw, at different true
values under Scenarios I and II. The number of clusters was set at 100 and the cluster size was set to 20.

(γb,γw,γt) γ̂bn γ̂wn γ̂t
Bias emp.SE Bias emp.SE Bias emp.SE

(0.786,0.683, 0.734) -0.026 0.048 -0.027 0.014 -0.001 0.024
(0.786,0, 0.385) -0.063 0.052 -0.001 0.023 -0.003 0.043
(0,0.786, 0.385) 0.042 0.101 -0.028 0.011 0.002 0.055

(0,0, 0) 0 0.099 -0.001 0.023 0 0.052
(0.786,-0.683, 0.048) -0.099 0.057 0.027 0.014 -0.006 0.063

Table 3.4: Estimates (EST), bias, empirical SE (emp.SE) of our estimators of γb, γw and γt under Scenarios I
and II at the extreme case when (γb,γw,γt )=(0.786, -0.683, 0.048). The cluster size was 60 and the number of
clusters was 200.

γ̂b γ̂w γ̂t
γ̂bA γ̂bM

EST 0.831 0.758 -0.683 0.046
Bias 0.045 -0.028 0.000 -0.002
emp.SE 0.027 0.034 0.005 0.044

Table 3.5: Estimate (EST) and bias of the between-cluster Pearson correlation estimator based on random-
effect models under Scenario I at the extreme case when (ρb,ρw,ρt )=(0.8, -0.7, 0.05). The cluster size was
denoted as ki and the number of clusters was denoted as n.

(n, ki) EST Bias
(100, 30) 0.751 -0.049
(200, 30) 0.751 -0.049
(200, 60) 0.775 -0.025
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Table 3.9: Bias and coverage (Cvrg.) of 95% CIs of our estimators of γb, γw and γt at different true values
under Scenarios I and II with 200 clusters and 20 per cluster.

(γb,γw,γt) γ̂bA γ̂bM γ̂w γ̂t
Bias Cvrg. Bias Cvrg. Bias Cvrg. Bias Cvrg.

(0.786,0.683, 0.734) 0.002 0.943 -0.006 0.95 -0.001 0.945 -0.001 0.945
(0.786,0, 0.385) 0.01 0.938 -0.03 0.882 0 0.941 -0.002 0.944
(0,0.786, 0.385) -0.045 0.881 0.026 0.937 0 0.947 0.001 0.936
(0,0, 0) 0 0.936 0.001 0.941 0 0.942 0 0.944
(0.786,-0.683, 0.048) 0.045 0.742 -0.053 0.735 0 0.938 -0.002 0.942

Table 3.10: Bias and coverage (Cvrg.) of 95% CIs of our estimators of γb, γw and γt at different true values
under Scenarios I and II with 200 clusters and 30 per cluster.

(γb,γw,γt) γ̂bA γ̂bM γ̂w γ̂t
Bias Cvrg. Bias Cvrg. Bias Cvrg. Bias Cvrg.

(0.786,0.683, 0.734) 0.002 0.926 -0.012 0.941 -0.001 0.954 -0.001 0.945
(0.786,0, 0.385) 0.011 0.927 -0.046 0.905 -0.001 0.961 -0.003 0.945
(0,0.786, 0.385) -0.046 0.898 0.036 0.926 -0.001 0.953 0.002 0.935
(0,0,0) 0 0.926 0.001 0.947 -0.001 0.959 0 0.952
(0.786,-0.683, 0.048) 0.047 0.822 -0.08 0.745 0 0.958 -0.006 0.945

Table 3.11: Bias and empirical SE (emp.SE) of the naive estimators of γb and γw at different true values under
Scenario III with 100 clusters and 20 per cluster.

(γb,γw,γt) γ̂bn γ̂wn γ̂t
Bias emp.SE Bias emp.SE Bias emp.SE

(0.786,0.683, 0.533) -0.146 0.064 -0.027 0.014 -0.008 0.035
(0.786,0, 0.308) -0.188 0.069 0 0.023 -0.015 0.046
(0,0.786, 0.246) 0.042 0.1 -0.028 0.011 0.006 0.053

(0,0, 0) 0.001 0.099 0.001 0.022 0.001 0.046
(0.786,-0.683, 0.086) -0.221 0.072 0.027 0.014 -0.015 0.066
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CHAPTER 4

Unified and Simple Sample Size Calculations for Cluster Randomized Controlled Trials with Skewed

or Ordinal Outcomes

4.1 Introduction

Cluster randomized controlled trials (RCTs) are widely used in biomedical research (Donner and Klar, 2000;

Hayes and Moulton, 2009; Eldridge and Kerry, 2012). Observations from individuals within the same cluster

tend to be more similar than observations from different clusters, which introduces complexity to the design

of cluster RCTs. A conventional and simple approach to calculating sample sizes in cluster RCTs is to

inflate the sample size of an adequately powered individual RCT by the design effect (DE) based on the

intraclass correlation coefficient (ICC) (Kish, 1965; Donner et al., 1981). Although this DE is commonly

used in sample size calculations for cluster RCTs (Campbell and Walters, 2014; Rutterford et al., 2015), it

was originally derived for comparisons of means and may not be applicable to skewed or ordinal outcomes.

In practice, the outcome of interest is often a skewed continuous variable, an ordinal variable, or a mixture

of the two (e.g. outcomes subject to a detection limit). For example, a cluster RCT was conducted to mea-

sure the impact of a multi-component intervention on adherence to antiretroviral therapy (ART) of pregnant

women living with HIV (Audet et al., 2018, 2024). The primary outcome was adherence to treatment (i.e.,

the proportion of medications taken within 1 year), which is pseudo-continuous ranging from 0 to 1 with

a left-skewed distribution. As another example, in a cluster RCT on childhood epilepsy care (Aliyu et al.,

2019), the outcome of interest may be the number of seizures from 18 to 24 months, which is an irregularly

distributed count variable.

Preliminary data or prior knowledge are often used to inform the design of cluster RCTs. If these sources

indicate skewness in the forthcoming data, it is common to apply transformations such as logarithmic or

square root transformations before calculating sample sizes for cluster RCTs with the conventional approach

described above. If preliminary data are not available, it is common to compute sample sizes under im-

plicit assumptions that the data will be appropriately transformed prior to analyses. However, sample size

calculations and analysis results are often sensitive to the data transformation, which may be difficult to se-

lect in practice, and this approach is not applicable to ordinal data. Two rank-based sample size calculation

approaches have been proposed as alternatives. For skewed continuous outcomes, one approach has been

developed based on clustered Wilcoxon rank-sum tests (Rosner and Glynn, 2011). For ordinal outcomes,

another approach, based on generalized estimating equations (GEE), has been proposed (Kim et al., 2005).
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However, these rank-based approaches lack closed forms and must be implemented numerically, involving

numerous calculations. In addition, the approach based on clustered Wilcoxon rank-sum tests assumes the

outcome to be continuous with no ties and may not be applicable to ordinal data. The GEE-based approach

requires a detailed description of the distribution and correlation structure.

In this Chapter, we propose unified and simple sample size calculations for cluster RCTs with skewed or

ordinal outcomes. Our calculations involve inflating the sample size for an adequately powered individual

RCT for an ordinal outcome with a DE that incorporates the rank ICC. The rank ICC is a rank-based corre-

lation measuring the degree of similarity within clusters (Tu et al., 2023). We show that in most scenarios,

this DE is close to the ratio of the variance of the ordinary Wilcoxon rank-sum statistic to the variance of

the clustered Wilcoxon rank-sum statistic. With continuous data, we show that our calculations closely ap-

proximate those more complicated calculations based on clustered Wilcoxon rank-sum tests. Furthermore,

our calculations can be applied to compute either the number of clusters with predetermined cluster sizes or

compute the cluster sizes with a predetermined number of clusters.

4.2 Review of rank-based tests for individual and cluster RCTs

Rank-based tests are usually used to analyze skewed or ordinal data, given their nonparametric nature and

robustness to the shape of the distribution. The Wilcoxon rank-sum test, also known as the Mann–Whitney

U test, is a widely used rank-based approach for evaluating treatment effects with skewed or ordinal data

in the absence of clustering (Mann and Whitney, 1947; Lehmann, 1975). The parameter of the Wilcoxon

rank-sum test can be formulated in terms of the probabilistic index. Let θ denote the probabilistic index

and θ = P(Xi < Yj)+P(Xi = Yj)/2, where Xi is a random variable from the control population and Yj is a

random variable from the experiment population (Hollander and Wolfe, 1999). With continuous Xi and Yj,

θ = P(Xi < Yj). The hypothesis formulated in terms of θ is H0 : θ = 1/2 vs. H1 : θ ̸= 1/2. The estimator of

θ , denoted as θ̂ , is equal to the Mann-Whitney U statistic divided by the product of the sample sizes of the

two arms.

Proportional odds (PO) models are also commonly applied in the analysis of ordinal outcomes (McCul-

lagh, 1980). PO models can also be fit for a robust and rank-based analysis of continuous outcomes, where

each unique continuous outcome is assigned to be a separate ordinal category (Liu et al., 2017). Whitehead

(1993) has shown that the test statistic for treatment effect, derived from the likelihood of an unadjusted PO

model, is exactly equal to a version of the Mann-Whitney U test statistic presented by Siegel (1956). That

is, unadjusted PO models with a single binary covariate are essentially Wilcoxon rank-sum/Mann–Whitney

U tests. Additionally, there is a numerical relationship between θ and the log odds ratio (OR) regarding the

treatment effect in unadjusted PO models (De Neve et al., 2019): θ = exp(δ )[exp(δ )−δ −1]/(exp(δ )−1)2,

78



where δ denotes the log OR.

To account for clustering, Rosner et al. (2003) developed the clustered Wilcoxon rank-sum test, which

incorporates a correction to the variance of the Wilcoxon rank-sum test statistic. The clustered Wilcoxon

rank-sum test can also be expressed in terms of θ . The definition of θ for clustered data is θ = P(Xi j <Ykl)+

P(Xi j = Ykl)/2, where Xi j denotes a random variable of the jth individual in the ith cluster from the control

population and Ykl denotes a random variable of the lth individual in the kth cluster from the experiment

population. This θ has been used in power and sample size estimation for the clustered Wilcoxon rank-sum

test with continuous data (Rosner and Glynn, 2011).

PO models have also been extended to handle clustered ordinal or continuous outcomes (Heagerty and

Zeger, 1996; Parsons et al., 2006; Tian et al., 2023), employing GEE-based estimation. Commonly used

working correlation structures include independent, exchangeable, and first-order autoregressive (AR1) cor-

relations. Tian et al. (2023) demonstrated that clustered continuous outcomes could also be analyzed using

PO GEE-based methods. Fitting a PO model to the continuous outcome and then fixing standard error using a

Huber-White sandwich estimator for covariance to correct for within-cluster correlation is equivalent to GEE

with independent working correlation and is straightforward to implement. Exchangeable/AR1 working cor-

relation structures can be statistically more efficient than independent working correlation in some settings

with continuous outcomes but are more computationally burdensome. In this Chapter, we focus on PO mod-

els with independent working correlation, which we henceforth refer to as cluster PO models for simplicity.

Furthermore, we show via simulations (Section 2.4) that, under the null hypothesis, the p-values of clustered

Wilcoxon rank-sum tests and unadjusted cluster PO models approximate each other with a large number of

clusters.

4.3 Sample size calculations

4.3.1 The design effect of cluster RCTs

The DE was initially introduced by Kish (1965) as a measure of the expected impact of a sampling design on

the variance of an estimator. Subsequently, it was applied by Donner et al. (1981) to inflate sample sizes cal-

culated under individual randomization to achieve the required statistical power under cluster randomization.

The DE of cluster RCTs with respect to an estimator T is defined as

Deff(T ) =
var(T )

var(Tsrs)
,

where var(T ) is the variance of T under cluster randomization and var(Tsrs) is the variance of a comparable

estimator under simple random sampling with replacement (SRS, or individual randomization).
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Let ρI denote the ICC and ρI = corr(Xi j,Xi j′), where (Xi j,Xi j′) is a random pair from a random cluster

(Fisher, 1925). The DE of cluster RCTs concerning the mean estimator X̄ is

Deff(X̄) = 1+ρI(k−1), (4.1)

where k is the cluster size or the average of cluster sizes (Kish, 1965, 1987). The DE in (4.1) is often used

as the inflation factor for sample size calculations in cluster RCTs (Campbell and Walters, 2014; Rutterford

et al., 2015). Let nsrs denote the total sample size for an adequately powered individual RCT. Then the total

sample size for a cluster RCT is calculated as

n = nsrsDeff(X̄) = nsrs{1+ρI(k−1)}.

However, ρI is sensitive to extreme values and skewed distributions, and it depends on the scale of the data.

ρI also lacks a clear definition when applied to ordinal data. While ordinal regression models with random

effects may be used to estimate variance components, the total variance remains undefined unless numbers

are assigned to levels of the ordinal response (Denham, 2016). Hence, the DE in (4.1) may not be applicable

to skewed or ordinal data.

Let θ̂ denote the estimator of θ under clustered randomization and θ̂srs denote the comparable estimator

under individual randomization. Then the DE associated with the clustered Wilcoxon rank-sum statistic can

be expressed as Deff(θ̂) = var(θ̂)/var(θ̂srs). Under the null hypothesis (θ = 1/2), the analytical formulas

of var(θ̂) and var(θ̂srs) can be derived, enabling the analytical computation of Deff(θ̂). However, under the

alternative hypothesis (θ ̸= 1/2), the derivation of both var(θ̂) and var(θ̂srs) requires continuous distributions

(Lehmann, 1975; Rosner and Glynn, 2011), and so does the analytical computation of Deff(θ̂). The analytical

formula of Deff(θ̂) is also complex, involving the ICC on the probit scale of the cumulative distribution

function (CDF). Hence, because of its complexity, Deff(θ̂) cannot be used as a simple inflation factor in

sample size calculations with skewed or ordinal outcomes.

We consider an alternative inflation factor that closely approximates Deff(θ̂) in most scenarios and is also

applicable to ordinal outcomes. Let F be a CDF, F(x−) = limt↑x F(t), and F∗(x) = {F(x)+F(x−)}/2. If the

distribution is continuous, then F∗(x) = F(x). If the distribution is discrete or mixed, F∗(x) corresponds to

the population versions of ridits (Bross, 1958). Let γI denote the rank ICC, which is a rank-based correlation

measuring the degree of within-cluster similarity. It is defined as follows,

γI = corr{F∗(Xi j),F∗(Xi j′)},
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where (Xi j,Xi j′) is a random pair from a random cluster (Tu et al., 2023). γI is insensitive to extreme values

and skewed distributions, and it does not depend on the scale of data. It is also applicable to ordinal data

and easily computed empirically. We analytically show that when θ = 1/2 and sample sizes of the two arms

greatly exceed cluster sizes, then

Deff(θ̂)≈ 1+ γI(k−1). (4.2)

We also show via simulations that in other scenarios, (4.2) is still valid, except for very large γI (Figure 4.7).

See Supplementary Materials for details. Given the nonparametric nature of γI and the approximation be-

tween 1+γI(k−1) and Deff(θ̂), 1+γI(k−1) can serve as a simple inflation factor in sample size calculations

with skewed or ordinal outcomes. This inflation factor is as simple as the conventional 1+ρI(k−1) but it is

more robust in the context of skewed data and applicable to ordinal data.

4.3.2 Individual RCTs

For illustrative purposes, we refer to the two arms in cluster RCTs as the control and experiment arms,

respectively. Under individual randomization, Whitehead (1993) provided a sample size calculation formula

for ordinal outcomes, using the test statistic derived from the likelihood of an unadjusted PO model. Let nsrs

denote the total sample size for an individual RCT and A denote the allocation ratio of the control arm to the

experiment arm. For a two-sided significant level at α and power at 1−β , Whitehead’s formula is

nsrs =
3(A+1)2(Z1−α/2 +Z1−β )

2/δ 2

A(1−∑
l
i=1 π̄3

i )
, (4.3)

where π̄i is the mean proportion expected in ordinal category i and calculated as π̄i = (π1i +π2i)/2, π1i and

π2i are the proportions for the control and experiment groups, l is the number of ordered categories, and δ

denotes the log OR in the unadjusted PO model.

Continuous outcomes are also ordinal, and the formula (4.3) can also be applied to such outcomes. Since

continuous outcomes have no ties, the proportion for each ordinal category is π1i = π2i = 1/nsrs. We plug

this proportion into (4.3),

nsrs =
3(A+1)2(Z1−α/2 +Z1−β )

2/δ 2

A(1−∑
nsrs
i=1 1/n3

srs)
,

and solve for nsrs. Let S = 3(A+ 1)2(Z1−α/2 +Z1−β )
2/(2Aδ 2). The sample size for individual RCTs with

continuous outcomes is then

nsrs =
√

1+S2 +S. (4.4)

The odds ratio δ for continuous outcomes is the relative odds of having a larger outcome. The calculation

provided in (4.4) is robust to skewness, extreme values, and any data transformations. There is another
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rank-based sample size calculation approach, derived from Wilcoxon rank sum tests and used for continuous

outcomes (Rosner and Glynn, 2009). This sample size calculation approach is complex and lacks closed

forms. We show via simulation that the sample sizes obtained by (4.4) are very close to those obtained by the

calculation approach based on Wilcoxon rank sum tests (Figure 4.8).

4.3.3 Cluster RCTs

We extend Whitehead’s sample size calculation for individual RCTs to cluster RCTs by using 1+γI(k−1) to

inflate nsrs in (4.3). With ordinal outcomes, the total sample size of a cluster RCT for a two-sided significant

level at α and power at 1−β is calculated as

n = nsrs{1+ γI(k−1)}=
3(A+1)2(Z1−α/2 +Z1−β )

2/δ 2

A(1−∑
l
i=1 π̄i

3)
{1+ γI(k−1)}. (4.5)

With (4.5), the sample sizes for the experiment and control arms can be easily calculated as nE = n/(A+1)

and nC = An/(A+1), respectively.

Similar to the extension from (4.3) to (4.4), we can also apply the sample size formula (4.5) to continuous

outcomes in cluster RCTs. For continuous outcomes, the proportion at each ordinal category is π1i = π2i =

1/n. We plug this proportion in (4.5) and solve for n,

n =
3(A+1)2(Z1−α/2 +Z1−β )

2/δ 2

A(1−∑
n
i=1 1/n3)

{1+ γI(k−1)}. (4.6)

Then the total sample size for cluster RCTs with continuous outcomes is calculated as

n =
√

1+S2{1+ γI(k−1)}2 +S{1+ γI(k−1)}. (4.7)

where S = 3(A+1)2(Z1−α/2+Z1−β )
2/(2Aδ 2). When γI is 0 or the cluster size k is 1, (4.5) and (4.7) simplify

to (4.3) and (4.4), respectively, which are for individual RCTs. There is an alternative approach for calculating

sample sizes for continuous outcomes in cluster RCTs: directly inflating the sample size calculated by (4.4)

by 1+ γI(k−1). With S2 much greater than 1, sample sizes calculated by this alternative approach are very

close to those calculated by (4.7).

Typically, 1+ρI(k−1) is used to inflate the sample size for an adequately powered individual RCT based

on two-sample t-tests. It is expected that, under the assumption of normality, the sample sizes calculated

from this conventional approach would be smaller than those from our calculations. However, we show that

under normality, if the allocation ratio is 1 or the outcome variances of both arms are equal, the sample sizes

calculated from this conventional approach are very close to those from our calculations. Details on the
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derivations are available in the Supplementary Materials (4.7.3). This implies that there is little penalty in

terms of additional sample size for not assuming normality and instead using our more robust sample size

calculations.

In practical study designs, there are situations where the number of clusters is predetermined and the goal

is to calculate the cluster size. In such cases, our method can also calculate cluster sizes with a predetermined

number of clusters. Let m denote the total number of clusters, and mE = m/(A+ 1) and mC = Am/(A+ 1)

denote the numbers of clusters in the experiment and control arms, respectively. With ordinal outcomes, the

calculation for the cluster sizes is derived from equation (4.5),

k =
2S(1− γI)

m(1−∑
l
i=1 π̄i

3)−2SγI
. (4.8)

The calculation for continuous outcomes is derived from equation (4.7),

k =

√
1

m2 −2mγIS
+

S2(1− γI)2

(2γIS−m)2 − S(1− γI)

2γIS−m
. (4.9)

4.4 Simulations

We generated cluster RCT data using two additive models; X0i j = UXi +RXi j and Y0kl = UY k +RY kl , where

UXi
i.i.d∼ N(0,ρ0I), RXi j

i.i.d∼ N(0,1−ρ0I), UY k
i.i.d∼ N(µ,ρ0I), RY kl

i.i.d∼ N(0,1−ρ0I), and ρ0I varies over [0,0.9].

Let Xi j and Ykl denote observations in the control and experiment groups, respectively. We considered two

scenarios for continuous data: (I) Xi j = X0i j and Ykl =Y0kl ; (II) Xi j = exp(X0i j) and Ykl = exp(Y0kl), assuming

that the greater the value of the outcome, the more effective the treatment. ρ0I is the ICC on the latent

scale. The rank ICC, γI , is identical in Scenarios I and II, and γI = 6arcsin(ρ0I/2)/π (Pearson, 1907). We

considered different magnitudes of the treatment effect: δ = {0,0.1,0.5,1,1.5}, where δ is the log OR of the

treatment effect in the unadjusted PO model. The value of δ is also the same in both scenarios. As described

in Section 4.2, the value of θ can be calculated from δ (De Neve et al., 2019). We then can compute the value

of µ from θ by µ = Φ−1(θ)
√

2.

We first performed a comparison between unadjusted cluster PO models and clustered Wilcoxon rank-sum

tests regarding type I error rate. Different numbers of clusters were considered, including 20, 50, 100, and

300. For each number of clusters, simulations were conducted with 1,000 replicates under δ = 0 (θ = 1/2)

and cluster sizes of 5. The simulation results are summarized in Figure 4.1. Unadjusted PO models had a

slightly higher type I error rate than clustered Wilcoxon rank-sum tests, but this difference diminished as γI

increased or the number of clusters increased. The results under Scenarios I and II are the same.
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Figure 4.1: Type I error rates of clustered Wilcoxon rank-sum tests and unadjusted cluster PO models with
cluster sizes of 5 and the rank ICC γI varying between 0 and 0.9.
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We then compared our sample size calculations for continuous outcomes with Rosner and Glynn’s sam-

ple size calculations with respect to power. These two calculation approaches have been developed from

unadjusted PO models and clustered Wilcoxon rank-sum tests, respectively. The power of each calculation

approach was obtained based on the test from which it was developed; unadjusted cluster PO models for

our calculations, and clustered Wilcoxon rank-sum tests for Rosner and Glynn’s calculations. The two-sided

significant level was set to 0.05 and the required power was set to 0.9. In addition, we explored two design

scenarios with predetermined equal cluster sizes: one with a small cluster size of 5, and another with a large

cluster size of 50. The calculated number of clusters was rounded up to the nearest integer. The allocation

ratio of the control arm to the treatment arm was set to 1. The simulations for power were conducted 1,000

times for each cluster size.

In summary, our sample size calculations had good power in most scenarios we considered for continuous

outcomes. The sample sizes obtained by the two calculation approaches were close and both increased

approximately linearly with γI (Figure 4.2). This suggests that, for continuous outcomes, both calculation

approaches have an approximately linear relationship with γI , even though Rosner and Glynn’s calculations

are more complex and lack closed forms. When δ was small, the powers of both approaches were slightly

below 0.9. The reason for this in our calculations could be link function misspecification. Since the simulated

data were continuous with normally distributed latent variables, the correct link function was probit, but the

link function of cluster PO models is logit. We show via additional simulations that in this setting, the power

of the probit link was slightly greater than the power of the logit link (Figure 4.9). Furthermore, the power

of our calculations was slightly higher than that of Rosner and Glynn’s calculations in most scenarios. This

difference in the power might be mainly attributed to the difference between unadjusted cluster PO models

and clustered Wilcoxon rank-sum tests, as the former tends to have a slightly greater type I error rate when

the number of clusters is not large. When the cluster size was large and γI was small, the power of our

calculations was greater than 0.9 (Figure 4.2b). This is because this predetermined cluster size exceeded the

required number of individuals. Rosner and Glynn’s calculations had poor power in situations with small γI

and large cluster sizes. This may be due to the poor performance of the clustered Wilcoxon rank-sum test

when dealing with a small number of large clusters, as this test was proposed as a large-sample approach

(Rosner et al., 2003).
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(a) cluster sizes = 5

(b) cluster sizes = 50

Figure 4.2: Simulation results for numbers of clusters and powers of our calculations and Rosner and Glynn’s
calculations for continuous data with predetermined cluster sizes of 5 and 50. “DE(γI)” represents our calcu-
lation and “R&G” represents Rosner and Glynn’s calculations. The simulation results under Scenarios I and
II are the same.
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In practice, when designing a cluster RCT, it is common to predetermine equal cluster sizes to calculate

sample sizes, but the cluster sizes after accrual may be unequal. Therefore, we conducted simulations to

evaluate the performance of our calculations under such cases. The data generation process involved first

computing the numbers of clusters with predetermined equal cluster sizes, and then generating data with

the computed numbers of clusters but unequal cluster sizes. The predetermined cluster size for sample size

calculations was set to 20. We explored various configurations of cluster sizes of actual sample data: (a)

equal cluster sizes of 20; (b) uniformly ranging from 15 to 25; (b) half each of 15 and 25; (d) half each of 10

and 30. The power was obtained via simulations based on cluster PO models. Simulations were performed

1,000 times for each actual cluster size. The results are summarized in Figure 4.3. The powers of (a) and (b)

were very close, while the power of (c) was slightly smaller. The power of (d) was much smaller than others.

It suggests that if the unequal cluster sizes in actual sample data do not differ much from the predetermined

equal cluster sizes, our calculations remain robust, but if the difference is very large, our calculations might

have low power. When clustered Wilcoxon rank-sum tests were fit to data generated in a similar manner,

power was also low with extreme cluster size imbalance (Figure 4.10). Interestingly, the clustered Wilcoxon

rank-sum test had especially low power when cluster sizes were uniformly distributed between 15 to 25; this

test appears to have challenges when there are few clusters of the same cluster size because the algorithm

performs computations within equal-sized clusters.
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Figure 4.3: Simulation results for number of clusters per arm obtained by our calculations with predetermined
equal cluster sizes of 20 and power under equal or unequal cluster sizes in actual sample data. “Unif(15,25)”,
“15/25”, and “10/30” represent cluster sizes in actual sample data uniformly ranging from 15 to 25, half each
of 15 and 25, and half each of 10 and 30, respectively.
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Furthermore, we evaluated the performance of our sample size calculations for ordinal data. We generated

clustered data of 3-level, 5-level, and 10-level ordinal variables by discretizing X0i j and Y0kl with cut-offs at

quantiles of a standard normal distribution (i.e., using the 1/3 and 2/3 quantiles for 3 levels; the 0.2, 0.4,

0.6, 0.8 quantiles for 5 levels; and the 0.1, 0.2, ..., 0.8, 0.9 quantiles for 10 levels). The proportion of each

ordinal category was analytically derived. To calculate sample sizes for each ordinal variable, we empirically

computed γI and δ by generating a million clusters and 100 observations per cluster. The empirical values

of γI and δ of the 3-level ordinal outcome are slightly smaller than those of the other two ordinal outcomes.

In summary, our calculations had good power for ordinal data in most scenarios. The calculated number of

clusters for the three ordinal variables all increased as the γI increased (Figure 4.4). The numbers of clusters

calculated for the three ordinal variables, in descending order, are as follows: 3-level > 5-level > 10-level.

The powers are in the same order from largest to smallest. The power of the 3-level ordinal variable was

around 0.95, indicating slight overestimation in the number of clusters for this variable.
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(a) cluster sizes = 5

(b) cluster sizes = 50

Figure 4.4: Simulation results for the number of clusters and power for ordinal outcomes with predetermined
cluster sizes of 5 and 50. δ3, δ5, δ10 are the log ORs of the 3-level, 5-level, and 10-level ordinal outcomes,
respectively.
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4.5 Applications

4.5.1 A cluster randomized trial with a skewed continuous outcome

The Homens para Saúde Mais (HoPS+) study conducted a cluster randomized trial to measure the impact

of a multi-component intervention on adherence to ART of pregnant women living with HIV in Zambézia

Province, Mozambique (Audet et al., 2018, 2024). The primary outcome was adherence to ART, quantified as

the proportion of medications taken within 1 year. This measure of adherence is pseudo-continuous ranging

from 0 to 1 with a left-skewed distribution; many participants were highly adherent, while others had moder-

ate to poor adherence. Sample size calculations for this trial were based on a simplified binary outcome (i.e.,

retention at 6 months) and an assumed ICC of 0.07 for this binary outcome. The study design anticipated

having approximately 85% power to detect an improvement in 6-month retention from 31% to 48% (equiva-

lent to the log OR δ = 2.05) under a type I error rate of 0.05 and cluster sizes of 45. The number of clinics

under this design was 24 with 12 per arm. This simplified sample size calculation, while fairly standard, was

conservative, likely resulting in a larger sample size than needed.

We recalculated the sample size with our calculations but using the primary outcome without dichotomiza-

tion. Since the primary outcome ranged from 0 to 1 with a left-skewed distribution and 366 possible values,

the outcome can be treated either as a continuous or an ordinal variable with our sample size calculations.

If the primary outcome is treated as ordinal, the proportion in each ordered category must be estimated to

calculate the sample size. Now the trial is over, these proportions can be roughly estimated post-hoc using

published data (Tu et al., 2024). In contrast, if the primary outcome is treated as continuous, the proportion in

each ordered category is simply 1 over the total sample size, which gently simplifies calculations because it

does not require preliminary estimates for the numbers in each of the 366 categories. It turns out that whether

the primary outcome was considered either continuous or ordinal with proportions post-hoc estimated from

the published trial, the calculated number of clinics remained the same. This is expected because the outcome

is roughly continuous with 366 possible values between 0 and 1, and no single proportion was very large.

Therefore, we consider the outcomes to be continuous in all of the following calculations in this subsection.

Under the same setting as the original design (power of 85%, type I error rate of 0.05, cluster sizes of 45,

rank ICC of 0.07, and δ = 2.05), our calculations yielded a calculated number of clinics of 10 per arm, which

is smaller than that of the original design (12 per arm). Alternatively, with 12 clusters per arm to have the

same power with the continuous outcome, we only would have needed clusters of size 21.

The rank ICC of 12-month adherence for women in the HoPS+ study was 0.074 (Tu et al., 2024), close

to the assumed ICC of 0.07. Using the rank ICC of 0.074, we calculated the sample size across different

ORs (Figures 4.5a and 4.5b). As the OR increased, the calculated sample size had an initial rapid decrease
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followed by a gradual decrease. Increasing the numbers in each cluster helped to reduce the calculated

number of clusters, but at some point the benefits became incremental. For example, the calculated number

of clusters for k = 45 was slightly smaller than that for k = 65, whereas for k = 25, it was notably lower

compared to k = 45. In addition, a limited predetermined number of clusters may hinder the detection of

small treatment effects, even in cases when the rank ICC is small.
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(a) Number of clinics per arm calculated with predetermined cluster sizes

(b) Cluster sizes calculated with predetermined numbers of clinics per arm

Figure 4.5: Results for the HoPS+ study example, including the number of clinics per arm calculated with
predetermined cluster sizes, and cluster sizes calculated with predetermined numbers of clinics per arm across
different ORs. The cluster size is denoted by k and the number of clinics per arm is denoted by n. The two-
sided significant level and required power were set to 0.05 and 0.85, respectively
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4.5.2 A non-inferiority cluster randomized clinical trial with an ordinal outcome

In the Bridging the Childhood Epilepsy Treatment Gap in Africa (BRIDGE) study, a non-inferiority ran-

domized clinical trial was designed to understand if task-shifting childhood epilepsy treatment by trained

community health workers can be as effective at reducing seizures as treatment by trained physicians (Aliyu

et al., 2019). This trial recruited children with untreated epilepsy from primary healthcare centers (PHCs)

in northern Nigeria. The intervention was task-shifted epilepsy care by trained community health workers

(TSC). The control was enhanced usual care (EUC, referral to a physician plus primary care by an epilepsy-

trained community healthcare worker). The study had general inclusion criteria which included children with

many types of epilepsy. The primary outcome was whether the child had been seizure-free (yes/no) for 6

months or more at the 24-month follow-up visit. The definition of this binary outcome is standard in this set-

ting where children with a wide variety of seizures and seizure frequencies were included. The one-sided null

hypothesis was that the seizure-free rate of TSC patients (intervention) was inferior to that of EUC patients

(control) by ≥10% (equivalent to the log OR ≥ 1.5). The type I and type II errors were set to 0.05 and 0.2,

respectively, and the ICC was assumed to be 0.05. With a predetermined number of clusters at 30 per arm,

the cluster size was calculated to be 19.

There may be interest in performing a new study to examine interventions on children with generalized

tonic-clonic (GTC) seizures. In this more homogeneous population, the number of seizures in the past 6

months at the 24-month follow-up visit is a scientifically meaningful response variable, resulting in higher

power than a dichotomized (0 versus > 0) response variable. We consider the same one-sided hypothesis

in the design of a new cluster RCT among children with GTC seizures, with the primary outcome being the

number of seizures from months 18 to 24. The BRIDGE study data among the subset of children with GTC

seizures can be used as preliminary data. A histogram of GTC seizure counts between months 18 and 24 in

the BRIDGE trial is given in Figure 4.6a.

Since the new primary outcome is an irregularly distributed count variable, it is reasonable to treat it as

an ordinal variable. The proportion of responses for each ordered category can be easily estimated from the

BRIDGE study data. One could alternatively treat the number of GTC seizures as a continuous variable for

sample size calculations, where the proportion of each outcome is 1 over the total sample size (even though in

the preliminary data, it only took integer values from 0 to 50). We compared the sample sizes obtained from

our calculations when treating the new outcome as ordinal with the observed proportions in the BRIDGE

trial (i.e., equation (4.5)) versus continuous (i.e., equation (4.7)) across different values of ORs. The one-

sided significance level and required power were set to 0.05 and 0.8, respectively. The rank ICC was 0.14,

estimated from the BRIDGE study. The results are shown in Figures 4.6b and 4.6c. The calculation treating
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the new outcome as ordinal yielded larger sample sizes than the calculation treating the new outcome as

continuous. This difference is expected as the outcome is an integer ranging from 0 to 50 with a left-skewed

distribution, and the value of 0 had a very large proportion. This difference decreased as the OR increased or

the predetermined number of clusters increased.
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(a) Histogram of GTC seizure counts per month between 18- and 24-
month visits by the two arm

(b) Number of clusters per arm calculated with predetermined cluster sizes

(c) Cluster sizes calculated with predetermined numbers of clusters per arm

Figure 4.6: Results for the BRIDGE trial example, including histogram of GTC seizure counts per month
between 18- and 24-month visits, the number of clusters per arm calculated with predetermined cluster sizes,
and cluster sizes calculated with predetermined numbers of clusters for different ORs. The cluster size is
denoted by k and the number of clusters per arm is denoted by n. “Continuous” represents treating the
outcome as continuous and “Ordinal” represents treating the outcome as ordinal. The one-sided significant
level and required power were set to 0.05 and 0.8, respectively.
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4.6 Discussion

In this Chapter, we propose unified and simple sample size calculations for cluster RCTs with skewed or

ordinal outcomes. Our calculations involve inflating the sample size for an adequately powered individual

RCT for an ordinal outcome with a design effect that incorporates the rank ICC. We show that in most sce-

narios, our design effect is close to the ratio of the variance of the ordinary Wilcoxon rank-sum statistic to

the variance of the clustered Wilcoxon rank-sum statistic. Our calculations can be applied to compute either

the number of clusters with predetermined cluster sizes or compute the cluster sizes with a predetermined

number of clusters. With continuous data, we show that our calculations closely approximate those more

complicated calculations based on clustered Wilcoxon rank-sum tests. Our calculations are simple and appli-

cable to ordinal data, in contrast to those based on clustered Wilcoxon rank-sum tests are not. Furthermore,

our calculations had good performance in most simulation scenarios we considered for skewed or ordinal

data.

Our sample size calculations can also be applied to binary outcomes, which can be treated as ordinal

with two categories. We show via simulation that sample sizes obtained by our calculations are very similar

to those obtained by commonly used calculations (Hayes and Moulton, 2009) for binary outcomes. Those

commonly used calculations treat 1+ ρI(k− 1) as the DE to inflate the sample size of an individual RCT

(Hayes and Moulton, 2009). Notably, the ICC ρI for binary outcomes is equal to the rank ICC for binary

outcomes.

In our application examples, we saw that the sample sizes using our approach for continuous outcomes

tended to be lower than the sample sizes based on dichotomizing the continuous outcome. These results

illustrate the well-known fact that power decreases when outcomes are dichotomized. Sample sizes based

on dichotomization are more conservative (larger) than needed, which is arguably better than having under-

powered, too small studies. However, it may be unethical to expose more people than needed to experimental

treatments.

In the process of developing sample size formulas for clustered data, we extended the sample size calcu-

lations introduced by Whitehead (1993) for individual RCTs with ordinal outcomes to continuous outcomes.

We showed via simulation that with continuous outcomes, these ordinal PO-based calculations yield sample

sizes that are very close to the sample sizes obtained by more complex calculations based on Wilcoxon rank

sum tests. These formulas may be useful for individual RCTs with continuous outcomes because they make

minimal assumptions on the unknown distribution of the outcome.

We also conduct a comparative review of Wilcoxon rank-sum tests and PO models, along with their ex-

tension to clustered data. With independent data, unadjusted PO models with a single covariate are essentially
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Wilcoxon rank-sum tests. With clustered data, unadjusted cluster PO models and clustered Wilcoxon rank-

sum tests have slightly different test statistics due to different approaches used to correct for within-cluster

correlation, but their p-values are close with a large number of clusters. These findings motivated our devel-

opment of simple sample size calculations for cluster RCTs using PO models and a design effect, offering an

alternative to more complicated calculations based on clustered Wilcoxon rank-sum tests.

Our sample size calculations have some limitations. For ordinal data with a very small number of ordered

categories, our calculations may overestimate the required sample size. In such cases, the DE (i.e., 1+γI(k−

1)) may inflate the sample size of an adequately powered individual RCT beyond what is necessary. In

addition, our calculations consider equal cluster sizes or an average of cluster sizes. In unbalanced designs,

if the variation in unequal cluster sizes is not extreme, our calculations are applicable; otherwise, they might

underestimate sample sizes. Furthermore, our calculations in (4.5) and (4.7) use the rank ICC of the entire

population. The rank ICC may differ between the two arms. One may initially use preliminary data to

estimate the rank ICCs of the two arms, and then calculate the sample size of each arm with its respective

rank ICC. In practice, however, it is difficult to obtain precise rank ICC estimates for both arms because

preliminary data are often limited and small. Moreover, our calculations require selecting effect sizes using

odds ratios, which may be challenging for continuous outcomes. In such cases, using the probabilistic index to

select effect sizes may be more natural. As mentioned in Section 4.2, there is a numerical relationship between

the odds ratio and the probabilistic index. With this relationship, we can use the probabilistic index to select

effect sizes and then use our sample size calculations with the odds ratio computed from the probabilistic

index.

Future work could consider improving the sample size calculations to accommodate unbalanced designs

or developing calibration approaches for ordinal outcomes with very few ordered categories.

4.7 Supplementary Materials

4.7.1 Wilcoxon rank-sum tests, Mann-Whitney U tests, and unadjusted PO models

Let n1 and n2 be the numbers of individuals in the control and experiment arms, respectively. Let Ri denote

the rank of observation i, δi denote the indicator of the control arm for observation i (i.e., δi = 1 if in the

control arm and δi = 0 otherwise), and N = n1 + n2. The Mann-Whitney U statistic is the number of times

that an observation in the experiment arm precedes an observation in the control arm in the ranking,

WMWU = n1n2 +
n1(n1 +1)

2
−

N

∑
i=1

δiRi.
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Under H0,

E0(WMWU) = n1n2/2,

var0(WMWU) =
n1n2

(n1 +n2)(n1 +n2 −1)

{ (n1 +n2)
3 − (n1 +n2)

12
−

l

∑
i=1

k3
i − ki

12

}
,

where l denotes the total number of ordered categories of the outcome and ki is the number of observations

tied for a given rank i (Siegel, 1956). We have the test statistic

ZMWU =
WMWU −n1n2/2√

var0(WMWU)
,

which is asymptotically normal with N(0,1). With continuous date, var0(WMWU) = n1n2(n1 +n2)/12.

The Wilcoxon rank-sum statistic is

WWRS =
N

∑
i=1

δiRi.

Under H0,

E0(WWRS) = n1(N +1)/2,

var0(WWRS) = (n1n2/12)[N +1−
l

∑
i=1

(k3
i − kl)/[N(N −1)]].

We then have the test statistic

ZWRS =
WWRS −1/2√

var0(WWRS)
∼ N(0,1).

Because WMWU = n1n2 +n1(n1 +1)/2−WWRS, we can simply show that ZMWU = ZWRS. If the outcome is

continuous with no ties, then var0(WWRS) can be simplified to n1n2(N +1)/12.

Whitehead (1993) introduced a statistic WPO based on an unadjusted PO model for evaluating the treat-

ment effect with ordinal data. It can be shown that

WPO = 2WMWU/(n1 +n2 +1),

and

var0(WPO) = 4var0(WMWU)/(n1 +n2 +1)2.

Hence, the hypothesis test based on unadjusted PO models is essentially the Mann-Whitney U/Wilcoxon

rank-sum test.

The Wilcoxon rank-sum test can also be formulated in terms of the probabilistic index θ = P(Xi < Yj),

where Xi and Yi are random variables from the control and experiment populations, respectively (Hollander

and Wolfe, 1999). The hypothesis is H0 : θ = 1/2 vs. H1 : θ ̸= 1/2. On this basis, the test statistic is derived
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as

Z
θ̂
=

θ̂ −1/2√
var0(θ̂)

,

where θ̂ = WMWU/(n1n2) and var0(θ̂) = (N + 1)/(12n1n2) is the variance of θ̂ under the null. Note that

var0(θ̂) is derived with an assumption that the outcome is continuous with no tie. Hence, this test may not

apply to ordinal data. With continuous outcomes, we can simply show that ZMWU = ZWRS = Z
θ̂

.

4.7.2 The design effect of cluster RCTs associated with the clustered Wilcoxon rank-sum test statistic

With continuous outcomes, Rosner and Glynn (2011) derived the variances of θ̂ for cluster and independent

data. Then we can derive the DE of cluster RCTs associated with θ̂ for continuous outcomes. Let ρ denote

the intraclass correlation coefficient (ICC) after the probit transformation on the cumulative distribution func-

tion. Let Q(θ ,ρ) = Φ2(Φ
−1(θ),Φ−1(θ),ρ)− θ 2, where Φ2(Φ

−1(θ),Φ−1(θ),ρ) = P(Z1 ≤ Φ−1(θ),Z2 ≤

Φ−1(θ)|(Z1,Z2)∼ N(

0

0

 ,

1 ρ

ρ 1

). The DE of cluster RCTs associated with θ̂ for continuous outcomes

is

Deff(θ̂) =
var(θ̂)

varsrs(θ̂)

=

{
θ(1−θ)+2(k−1)Q(θ , 1+ρ

2 )+(k−1)2Q(θ ,ρ)
}

{
θ(1−θ)+(n1k+n2k−2)Q(θ , 1

2 )
}

+

{
k(n1 +n2 −2)[Q(θ , 1

2 )− (k−1)Q(θ , ρ

2 )]
}

{
θ(1−θ)+(n1k+n2k−2)Q(θ , 1

2 )
} .

(4.10)

When n1,n2 >> k, Deff(θ̂) ≈ 1+ (k − 1)Q(θ ,ρ/2)/Q(θ ,1/2). When θ = 1/2, Q(θ ,ρ/2)/Q(θ ,1/2) =

6sin−1(ρ/2)/π . After the probit transformation, since the distribution is normal, we have 6sin−1(ρ/2)/π =

γI (Pearson, 1907), where γI is the rank ICC (Tu et al., 2023). Hence, under the null, if n1,n2 >> k, Deff(θ̂)≈

1+(k−1)γI .

We conducted simulations to compare Deff(θ̂) and 1+ γI(k−1) under different values of θ , considering

scenarios where the number of clusters was smaller than the cluster size (Figure 4.7). When θ = 1/2, Deff(θ̂)

is close to 1+ γI(k−1) even when the cluster size is larger than the number of clusters. When θ > 1/2 and

the number of clusters is greater than the cluster size, they are also close, except for large γI .
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(a) 50 clusters and 5 per cluster

(b) 5 clusters and 50 per cluster

Figure 4.7: The values of Deff(θ̂) and 1+ γI(k− 1) over different values of γI and θ . “DE(γI)” represents
1+ γI(k−1).
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4.7.3 Comparison between the conventional calculations and our calculations under normality

In this section, we analytically compare the conventional approach using the DE based on the ICC with our

method under normality. Let Xi j denote a random variable of the jth individual in the ith cluster from the

control population and Ykl denote a random variable of the lth individual in the kth cluster from the experiment

population, and Xi j ∼ N(µC,σ
2
C) and Ykl ∼ N(µE ,σ

2
E). Let n denote the total number of individuals for a

cluster RCT, and nE = n/(A+ 1) and nC = An/(A+ 1) denote the number of individuals in the experiment

and control arms, respectively, where A is the allocation ratio. The conventional approach based on t-tests and

the ICC calculates the total sample size for cluster RCTs with a two-sided significant level at α and power at

1−β as

n∗ =
(Z1−α/2 +Z1−β )

2(Aσ2
E +σ2

C)(A+1)
A(µE −µC)2 (1+(k−1)ρI),

where ρI is the ICC and k is the cluster size. There is a relationship between θ and µE −µC under normality.

Because Xi j −Ykl ∼ N(µC −µE ,σ
2
C +σ2

E), then we have

θ = P(Xi j < Ykl)

= P(Xi j −Ykl < 0)

= P(
Xi j −Ykl − (µC −µE)√

σ2
C +σ2

E

<
−(µC −µE)√

σ2
C +σ2

E

)

= P(Z <
−(µC −µE)√

σ2
C +σ2

E

)

That is, µE −µC = Φ−1(θ)
√

σ2
C +σ2

E . As mentioned previously, θ = exp(δ )[exp(δ )−δ −1]/(exp(δ )−1)2

(De Neve et al., 2019). For simplicity, we denote θ = h(δ ). Then we have µE −µC = Φ−1[h(δ )]
√

σ2
C +σ2

E ,

and

n∗ =
(Z1−α/2 +Z1−β )

2(Aσ2
E +σ2

C)(A+1)

A{Φ−1[h(δ )]}2(σ2
E +σ2

C)
(1+(k−1)ρI).

As described previously, with continuous outcomes, our method is

n =
3(A+1)2(Z1−α/2 +Z1−β )

2/δ 2

A(1−1/n2)
{1+ γI(k−1)}.

Then we have n(1−1/n2) = 3(A+1)2(Z1−α/2+Z1−β )
2/(Aδ 2){1+γI(k−1)}. We compare the conventional

approach with our method,

n−1/n
n∗

=
3(A+1)2(Z1−α/2 +Z1−β )

2/(Aδ 2){1+ γI(k−1)}
(Z1−α/2+Z1−β )

2(Aσ2
E+σ2

C)(A+1)

A{Φ−1[h(δ )]}2(σ2
E+σ2

C)
{1+(k−1)ρI}
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=
3(A+1){1+ γI(k−1)}/δ 2

Aσ2
E+σ2

C
σ2

E+σ2
C
{1+(k−1)ρI}/{Φ−1[h(δ )]}2

.

If A=1 (or σE =σC), then n−1/n
n∗ = 6{1+γI(k−1)}/δ 2

{1+(k−1)ρI}/{Φ−1[h(δ )]}2 . We show via simulations that 6{1+γI(k−1)}/δ 2

{1+(k−1)ρI}/{Φ−1[h(δ )]}2 ≈

1, except for very large δ . Hence, when A = 1 and δ is not very large, we can have n ≈ n∗ since 1/n < 1,

except n = 1.
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Figure 4.8: Calculated sample sizes per arm for continuous data under individual randomization across dif-
ferent odds ratios. “Whitehead” represents the sample size calculation (the formula (4.4)) adapted from
Whitehead’s sample size calculation. “R&G” represents Rosner and Glynn’s sample size calculation based
on ordinary Wilcoxon rank-sum tests.

Figure 4.9: Comparison between the logit and probit links with respect to power. The cluster size was set to
5. The number of clusters was calculated based on the logit link (i.e., PO models), but data were generated
such that the probit link function is correct and logit is misspecified.

104



Figure 4.10: Number of clusters per arm calculated with predetermined equal cluster sizes of 20 and power
of clustered Wilcoxon rank-sum tests under equal or unequal cluster sizes of the actual sample data.
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CHAPTER 5

Conclusion

5.1 Summary

Cluster data are common in practice and often are skewed, ordinal, or mixtures of the two. Conventional

approaches (i.e., the ICC and Pearson correlations), while frequently used, are inadequate to analyze data

of these types. The overall goal of this dissertation has been to develop innovative rank-based methods that

provide more robust and accurate analyses and designs for clustered data.

In Chapter 2, we defined the rank ICC as a natural extension of Fisher’s ICC to the rank scale, and

described its population parameter. Our approach maintains the spirit of Fisher’s ICC while creating a non-

parametric rank ICC measure analogous to Spearman’s rank correlation. The rank ICC is simply interpreted

as the rank correlation between a pair of observations from the same cluster. We also extended the rank ICC

for distributions with more than two hierarchies. Our estimator of the rank ICC is insensitive to extreme

values and skewed distributions, and does not depend on the scale of the data. It is also consistent and asymp-

totically normal, with low bias and good coverage in our simulations. Furthermore, we discussed assigning

weights to clusters and observations under different cases when estimating the rank ICC for two-level data

with heterogeneous cluster sizes. This work is accompanied by a new R package, rankICC, available on

CRAN.

Chapter 3 introduces the population parameters of the between- and within-cluster Spearman rank cor-

relations, which are natural extensions of the between- and within-cluster Pearson correlations to the rank

scale. We also show their approximated relationship with the total Spearman rank correlation and rank ICCs

of the two variables. Compared with traditional Pearson correlations, our method is insensitive to extreme

values and skewed distributions, and does not depend on the scale of the data. Our framework is general, and

is applicable to any orderable variables. Our estimators are asymptotically normal, with generally low bias

and good coverage in our simulations. A developed R package, rankCorr, available on CRAN, facilitates

the implementation of the new method.

In Chapter 4, we extend the use of the rank ICC to designing cluster RCTs with skewed or ordinal

outcomes, proposing unified and simple sample size calculations. Our calculations involve inflating the

sample size for an adequately powered individual RCT for an ordinal outcome with a design effect that

incorporates the rank ICC. For continuous outcomes, our calculations set the number of distinct ordinal

levels to the sample size. We show that in most scenarios, our design effect is close to the ratio of the
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variance of the ordinary Wilcoxon rank-sum statistic to the variance of the clustered Wilcoxon rank-sum

statistic. We also show that with continuous data, our calculations closely approximate more complicated

calculations based on clustered Wilcoxon rank-sum tests. In addition, our calculations can be applied to

compute either the number of clusters with predetermined cluster sizes or compute the cluster sizes with a

predetermined number of clusters. Our calculations are simple and applicable to ordinal data, whereas those

based on clustered Wilcoxon rank-sum tests are not. Furthermore, our calculations had good performance in

most scenarios of the simulations for skewed or ordinal data.

We hope that our work provides new directions and tools for researchers in the analyses and designs for

clustered data.

5.2 Future Research

Future work could consider covariate-adjusted Spearman rank correlations. For example, in the application

of CD4 and CD8 data in Chapter 3, there may be interest in measuring the rank correlations after adjust-

ing for age. Our methods proposed in Chapter 3 could be extended to allow for covariate adjustment by

fitting CPMs that include the covariate, in addition to the cluster indicators. We suspect that the correlation

between probability-scale residuals from these fitted models could be used to estimate covariate-adjusted

within-cluster Spearman rank correlations and that the correlation between cluster indicator coefficients from

these fitted models could be used to estimate covariate-adjusted between-cluster Spearman rank correla-

tions. This approach is somewhat similar to random effects approaches used for estimating covariate-adjusted

within- and between-cluster Pearson correlations (Ferrari et al., 2005). Further investigation is warranted into

such an approach, as well as Spearman rank correlation as a function of time with longitudinal data.

Unbalanced data are common in cluster RCTs. If the variation in unequal cluster sizes is not extreme,

our sample size calculations proposed in Chapter 4 are applicable; otherwise, they might underestimate sam-

ple sizes. Future work could focus on improving our sample size calculations to accommodate unbalanced

designs.

Our sample size calculations may overestimate sample sizes for ordinal data with a very small number

of ordered categories. In such cases, our design effect may inflate the sample size of an adequately powered

individual RCT beyond what is necessary. We could develop calibration approaches for calculating sample

sizes for ordinal outcomes with a very small number of ordered categories.
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