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Introduction 
 

Major Depressive Disorder (MDD) is a prevalent illness that impacts many worldwide throughout their lifetimes. It 

has been cited as the third leading cause of disability world-wide,1 and suicide is a top 10 leading cause of death 

among those aged 10-64.2 The diagnostic criteria for depression takes into account symptoms such as mood, 

diminished pleasure, weight loss, fatigue, cognitive impairment, and suicidal ideation.3 A depressive episode can be 

brought on by life stressors such as loss of a loved one, or divorce.4,5 The biologic mechanism causing MDD is not 

well understood, function among neurotransmitters has been the suspected cause due to therapeutic response to 

antidepressant medications that alter function of these neurotransmitters.1 An array of treatments have displayed 

efficacy in MDD, including psychotherapy, antidepressant medications, partial hospitalization, and brain stimulation 

therapies, although many patients have incomplete or no response. Antidepressants have shown efficacy in moderate 

to severe MDD, however many considerations go into making an effective choice in antidepressant therapy as 

several classes of drugs are available, with each class containing multiple medication options, and patients may 

experience side effects.6 Additionally, MDD is heterogenous and treatment decisions are complicated by comorbid 

conditions such as anxiety, psychotic symptoms, substance abuse, and borderline personality disorder.3  

 

The responsibility for a significant amount of depression care falls to non-mental health care providers.7 Effective 

prognostic risk models can aid providers in treatment decisions.8 The use of electronic health record (EHR) data for 

clinical risk modeling has become increasingly prevalent in recent years.9 EHR data are high dimensional and 

complex, posing significant challenges. Some of the complexity inherent in EHR data includes temporality, noise, 

and sparsity, which can negatively impact predictive performance.9–11 Embedding models may lead to performance 

gains in predictive models.12 In Chapter 1, we evaluate the clinical usefulness of autoencoders in clinical risk 

prediction. Autoencoders are an unsupervised learning method that can represent feature dependencies in latent 

embeddings. In addition, autoencoders can denoise, reduce dimensionality, and reduce sparsity. We find that 

pretraining autoencoders and fine-tuning improves predictive performance relative to embedding models, neural 

networks without pretraining and aggregation-based feature representation methods. Improvement in prediction 

resulting from pretraining has potential for increased clinical impact of MDD risk models.8 Additionally, our finding 
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that pretrained models outperform embedding models suggests that important information for prediction contained 

in the weights may not be passed to the embeddings. 

 

Switching of antidepressants is commonly done in practice and adverse event risk is an important consideration 

when a new antidepressant is prescribed.13,14 Electronic health record data capture routine care and are a potentially 

effective source for post-market safety surveillance. The observational nature of these data can result in biased 

analyses. In Chapter 2, we attempted to better understand and correct for bias using the empirical calibration with 

control outcomes method from Schuemie et al.15 Empirical calibration models the relationship between study 

covariates and control outcomes for which the true treatment effect is likely known and fits a systematic bias model 

that both measures bias and calibrates population level treatment effects. We compared two common methods for 

treatment effect estimation, propensity score weighting and matching and found a protective bias in treatment effect 

estimates from propensity score weighting, which may be due to selection, healthy user, or some other form of bias. 

Matching results showed little evidence of bias, potentially due to this population selection being guided by clinical 

expertise. 

 

Heterogeneity of antidepressant adverse events in MDD subpopulations is an important consideration in treatment 

decisions. Patients with higher comorbid burden have been shown to be less likely to be prescribed 

antidepressants.16,17 Also, concerns about antidepressant efficacy and safety in MDD subpopulations have led to 

multiple clinical trials in various subpopulations.14,18,19 Statistical analysis of heterogeneity can be tenuous and lead 

to spurious findings when many subpopulations are analyzed. Heterogeneous Treatment Effect (HTE) models 

reframe the problem to focus on the detection of heterogeneity, rather than conducting a stepwise subgroup analysis. 

In Chapter 3 we studied recent advances in machine learning allow for flexible modeling of HTE. We evaluated 

HTE modeling techniques under varying data generating processes with semi-synthetic outcomes—synthetically 

generated outcomes that use real data as a baseline. We also evaluated HTE models on adverse event outcomes. 

Analysis of semi-synthetic and real-world adverse event outcomes allowed us to first gain insight into performance 

of the HTE models under varying data generating processes and use this to inform interpretation of results in the 

adverse event outcomes. We observed variance in HTE model performance across data generating processes and 

outcomes and identified tuning strategies as a key area of research for advancement of HTE models. 
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We aim to advance capabilities to model prognostic and intervention risk in MDD by study of statistical and 

machine learning methods on observational EHR data. To accomplish this, we evaluated autoencoder ability to 

improve predictive performance through feature engineering and pretraining across multiple prediction tasks in 

MDD. We also employed methods for empirical calibration of treatment effects to estimate adverse event risk in 

antidepressant prescribing. HTE model performance was assessed under varying data generating processes with 

semi-synthetic outcomes, which then informed interpretation of real adverse event modeling results. Finally, we 

tested HTE model ability to detect adverse event heterogeneity. 
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Chapter 1 Sequential autoencoders for feature engineering and pretraining in 

Major Depressive Disorder risk prediction 
 

Background and Significance  

 
The use of electronic health record (EHR) data for clinical risk modeling has become increasingly prevalent in 

recent years.9 However, EHR data are high dimensional and complex, posing significant challenges for effective 

analysis. Some of the complexity inherent in EHR data includes temporality, noise, and sparsity, which can 

negatively impact predictive performance.9–11 To address these challenges, autoencoder models have emerged as a 

promising approach for generating simplified representations that reduce dimensionality, denoise, and account for 

temporality.20–22 Moreover, pretrained weights can reduce training time and increase predictive performance.23–25 

Previous studies have shown that autoencoders and other pretrained encoding models can achieve state-of-the-art 

prediction accuracy in diagnostic tasks and may learn complex disease relationships.9,26  

 

These approaches may be particularly important for common psychiatric disorders, including Major Depressive 

Disorder (MDD). Machine learning applications have been widely used for prognostic prediction to support 

clinicians in the identification of individuals with MDD at elevated risk for suicidal behavior.27–33 Creating models 

with clinical benefit in this syndromal phenotype is particularly difficult. In a recent meta-analysis29 a majority of 

risk models considered had a precision less than 1%, resulting in concerns about the clinical usefulness of suicidality 

risk models and a negative relationship between model performance and study quality may exist.31 It has been 

shown that for cost effectiveness suicide-attempt models should exceed a precision of 0.8%.8 Low predictive 

performance in these studies can in part be explained by class imbalance in training datasets, and lack of clear 

evidence for suicidality risk factors.34 These studies present opportunity for innovative machine learning techniques 

to improve predictive performance and clinical benefit of risk models in the MDD population.  

 

It is common practice for researchers working with EHR data to generate aggregate features for prediction of 

outcomes relevant to MDD. Due to the sparsity of outcomes and features in the patient population, autoencoders 

have potential to improve predictive performance. Tran et al.12 show Restricted Boltzman Machine (RBM) 

encodings improved prediction in patients under suicide risk assessment. A recent review of deep learning 

techniques for automated feature representation identified 49 recent publications in which automated feature 
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representation was applied to a range of prediction tasks.9 Autoencoder pretraining has been shown to improve 

predictive performance in biomedical prediction tasks.24,25 Autoencoder feature engineering has also been applied to 

patient subtyping,9 treatment trajectory characterization,22 and causal inference.35–37  

 

Autoencoders are composed of encoder and decoder sub-models that have the capability to represent complex 

feature dependencies.20 The encoder model, 𝑓𝜃, maps the inputs, 𝑥, to a lower-dimensional latent space 

representation, 𝑧 = 𝑓𝜃(𝑥). The decoder model, 𝑔𝜃′ , maps this latent vector back to the original input space to 

reconstruct the input 𝑥′ = 𝑔𝜃′(𝑧). The model is fit by minimizing the error between the original input and 

reconstructed inputs. Autoencoders can flexibly accommodate various encoder and decoder model architectures. To 

account for the temporal nature of EHR data, this work focuses on the use of sequential neural networks.  

Objective 

 
The objective of this study was to evaluate autoencoder ability to improve predictive performance through feature 

engineering and pretraining across multiple prediction tasks in MDD. We evaluated autoencoder model ability to 

capture temporal disease relationships that may not be identified by aggregate features and whether that information 

is retained in the model encodings, 𝑧, or the pretrained weight values 𝑓𝜃. The predictive performance of autoencoder 

models of multiple structures were investigated in an array of clinical outcomes, including unplanned admissions, 

emergency department (ED) visits, high utilization, and self-harm/suicide attempt. The included health utilization 

outcomes may ease the challenges of suicidality risk prediction and maintain clinical relevance—through association 

with MDD severity.38–40 To evaluate autoencoders as a feature engineering technique, encodings are input to a 

random forest model for prognostic prediction, as random forests have shown strong prediction performance in the 

MDD population in prior studies.28,33 To evaluate autoencoder pretraining, encoder weights are extracted from the 

autoencoder models and used to initialize neural network prediction models. Predictive performance for autoencoder 

feature engineering were compared to benchmarks of a random forest trained on aggregate features and an RBM as 

in Tran et al.12 Pretraining predictive performance is compared between LSTM and Attention neural network models 

of the same structure, but without pretraining, as well as the best performing feature engineering technique. 

Methods 

 

Data description 
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This study examined data from the Vanderbilt University Medical Center (VUMC) Research Derivative.41 VUMC is 

located in the United States mid-south, Nashville, Tennessee. The Research Derivative includes data from multiple 

clinical systems that is structured for research purposes. Patients were included in the study having an MDD 

indication between 1/1/2013-12/31/2018. We defined MDD indication as a depression-related International 

Classification of Diseases (ICD) diagnosis code, including MDD, dysthymic disorder, and depressive disorder not 

elsewhere classified,42,43 an antidepressant prescription, or problem list mention of depression. The ICD codes are in 

appendix table A.1 and list of antidepressants table A.2. We additionally required that patients had a depression-

related ICD code during the time period of analysis, are 18-90 years old at indication, had two visits six months 

apart at VUMC prior to indication, and were not diagnosed with bipolar disorder or schizophrenia. Study data were 

extracted from the research derivative using IBM Netezza SQL and preprocessing was done in Python (version 3.8). 

 

For patients meeting entry criteria we extracted 3 years of data after the initial MDD indication and formatted it into 

a quarterly time series with feature indicators. Feature categories included diagnoses, interventions, and outcomes. 

International Classification of Diseases (ICD) diagnosis codes42 were extracted and grouped using Agency for 

Healthcare Research and Quality Clinical Classification Software (CCS)—a grouping of ICD codes intended to be 

clinically meaningful.44  

 

Study interventions were identified and defined with clinical expert guidance (WDT) and were extracted from orders 

and notes data. Interventions included prescribing one or multiple antidepressants, antidepressant dose change, 

psychotherapy referral, partial hospitalization referral, and electroconvulsive therapy (ECT) referral. Interventions 

that were not related to medications were supplemented by notes data. Regular expressions were developed to 

identify mentions of a referral or consult for psychotherapy, ECT consultation, and partial hospitalizations in both 

the notes and orders data. Antidepressant data were extracted by Anatomical Therapeutic Chemical (ATC) code45 

according to a list of antidepressants identified by collaborating psychiatrists. The list of antidepressants has been 

included in Table A.2 in the appendix with ATC code. 

 

Outcomes included self-harm/suicide attempt, unplanned admission, ED visit and high utilization. Unplanned 

admissions were defined as patients admitted to the hospital excluding any admissions that may be considered part 



 

 8 

of planned treatment according to the Center for Medicare and Medicaid Services Unplanned Readmissions 

Algorithm.46 High utilization was defined as any patient with two or more inpatient or emergency room visits with 

an MDD related ICD code during a quarter. The self-harm/suicide attempt outcome is ICD code based, where ICD 

codes were mapped to the self-harm/suicide attempt CCS code.  

 

Autoencoder architectures 

 

Autoencoders are composed of two sub-models—an encoder and decoder. The encoder takes the input data and 

outputs a latent representation. The latent representation is input to the decoder model from which it reconstructs the 

input data. We test neural network architectures that account for the sequential nature of time series data. LSTMs are 

a form of Recurrent Neural Network (RNN) that stores information over extended sequences and employs a gating 

method to address the exploding gradient problem found in some RNN applications.47 Attention based architectures 

learn long term dependencies and have been shown to outperform LSTMs on natural language processing tasks.48 In 

contrast to RNNs that keep a state representation that is updated at each position of the sequence, the attention 

mechanism identifies valuable past information given the current state.  

 

The attention model architecture was adapted from Vaswani et al. to work with time series features.48 The Keras 

(version 2.12.0) python library was used to construct the autoencoder models.49 The Attention encoder block is 

composed of a multihead attention layer followed by two one dimensional CNN layers. The decoder block is 

composed of two multihead attention layers followed by a one dimensional CNN layer and a time distributed feed 

forward layer. The multihead attention layer computes multiple self-attention layers in parallel to attend to different 

parts of the input sequence simultaneously. The CNN layer learns a convolution kernel across the time series vector 

and is able to capture local patterns in the sequence.50 The time distributed feedforward layer applies a fully 

connected layer to each timestep in the sequence. This layer has a sigmoid activation to estimate the probability of 

the original inputs. The LSTM encoder includes two LSTM layers in both the encoder and decoder blocks and time 

distributed feed forward layer in the decoder block. Figure 1 displays the structures of the attention and LSTM 

encoder and decoder blocks. Further details on layer parameters are included in the appendix Table A.3. 
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Figure 1-1 Attention and LSTM model encoder and decoder blocks. 

Attention encoder block has a single multihead attention layer followed by two single dimension convolutional 

neural network (CNN) layers. The attention decoder has two multihead attention layers followed by a CNN and time 

distributed feedforward layer. The sigmoid activation on the final layer outputs probability estimates of the input 

indicators. The LSTM encoder block is composed of two LSTM layers and the decoder two LSTM layers followed by 

a time distributed feed forward layer that estimates the probabilities of the inputs. 

 

Benchmark models 

 

As a benchmark feature representation, the time series were aggregated by yearly rolling feature counts at each 

timepoint. A random forest model was fit with grid search cross validation of hyperparameters for each study 

outcome. RBM’s have been shown to achieve state-of-the-art predictive performance in the MDD phenotype.12 We 

evaluated an augmented version of the model of Tran et al. optimized to the prediction tasks of this study. Time 

series data were aggregated indicator features corresponding to (0–90), (90–180), (180-360) and (360–720) day 

intervals. An RBM with elasticnet regression pipeline was fit with concurrent hyperparameter tuning to optimize 

AUPRC. RBM tuned parameters included number of components and learning rate. LSTM and Attention neural 

networks were composed of the LSTM and Attention encoding blocks (see figure 1), without pretraining, followed 

by a time distributed dense layer. An LSTM and Attention model was fit for each outcome.  
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Model training and evaluation 

 

Patients meeting entry criteria were split, two-thirds into a training and one-third into a test set. The quality of each 

representation is evaluated in each study outcome. Autoencoder models were fit on the training data and at each time 

point we fit a random forest model with grid search hyper parameter tuning with autoencoder latent vectors as input. 

Weights were extracted from the encoders of both the LSTM and Attention autoencoders. A time distributed dense 

layer was appended to the encoding layers and a predictive model was trained on each of the study outcomes. Area 

under the precision recall curve (AUPRC) was recorded for each predictive model on the test set. We recorded 

AUPRC at each time point on the test set, and trends and variation were evaluated.  

 

Results 

 

Of the 27,319 patients meeting entry criteria 17,621 (64.5%) were female. Most patients are non-hispanic/latinx 

whites (n=22,478, 82.3%). Black patients account for 11.0% of the population, with 1,027 (3.8%) of patients being 

classified as other, this includes patients with unreported or multiple reported races. The most common intervention 

in the study is prescribing an antidepressant (n=19,414, 71.1%), of those 42% are prescribed multiple. Table 1 

contains details on the patient population, count data are aggregated across the entire study period. 

Table 1-1 Patient descriptive statistics aggregated across the study period 

 
N % 

Gender 
  

Female 17,621 64.5% 

Race/Ethnicity 
  

American Indian or Alaska Native 52 0.2% 

Asian 379 1.4% 

Black 2,996 11.0% 

White-Hispanic/Latinx 387 1.4% 

White-not Hispanic/Latinx 22,478 82.3% 

Other 1,027 3.8%    

Age Mean SD 

Age 48.1 18.1    

Outcomes N % 

Unplanned Admission 11,172 40.9% 

ED Visit 5,278 19.3% 

High Utilization 968 3.5% 

Self-harm/Suicide Attempt 2,032 7.4% 

Interventions 
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Antidepressant Prescription 19,414 71.1% 

Multiple Antidepressant Prescriptions 8,300 30.4% 

Dose Increase 1,838 6.7% 

Dose Decrease 922 3.4% 

Psychotherapy Referral 7,592 27.8% 

ECT Referral/Consult 101 0.4% 

Partial Hospitalization Referral/Consult 213 0.8%    

Diagnoses Mean SD 

CCS code count (unique) 14.3 10.3 

 

Through the entire study period 11,172 (40.9%) patients have an unplanned admission, by quarter this outcome 

ranges in proportion from 5.1% to 8.7%. ED visit proportions by quarter range from 1.5% to 3.6% Each of the study 

outcomes had a decreasing trend across the study period (ordinary least square p-value < 0.001).  High utilization 

and self-harm/suicide attempt are relatively infrequent, ranging from 0.20%-0.54% and 0.13%-0.31% respectively. 

Figure 2 shows outcome proportion trends by quarter. 
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Figure 1-2 Outcome frequency trend by quarter. 

The proportion of patients with the observed outcomes is plotted at each timepoint in the study. 

 

The training set included 18,213 patients. Autoencoders were trained with a 10% validation set and binary cross 

entropy loss. Final validation error was 0.012 for the Attention autoencoder with 997,314 trainable parameters. 

Validation loss for the LSTM autoencoder was 0.006 with 717,066 trainable parameters.  

 

The predictive performance of each autoencoder as a feature engineering method was evaluated temporally by 

fitting a random forest on model encodings with grid search cross validation parameter tuning. Test AUPRC scores 

were calculated at each time point and are reported in Figure 3. RBM had the highest average AUPRC across each 

prediction task, except for High Utilization, where the LSTM and Attention feature engineering had higher AUPRC 

(RBM 0.050, 95% CI 0.023-0.077, LSTM 0.059, 95% CI 0.031-0.087, Attention 0.062, 95% CI 0.038-0.085). RBM 
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had significantly better AUPRC for the ED visit outcome (0.16, 95% CI 0.14-0.17), where next best was aggregate 

feature engineering (0.11, 95% CI 0.10-0.12). Relatively high variance in AUPRC was observed in the self-

harm/suicide attempt outcome—RBM a ranges from 0.0018-0.020. LSTM compared to Attention based autoencoder 

feature engineering was similar across outcomes. Attention had higher average AUPRC in the unplanned admission, 

high utilization and self-harm/suicide attempt outcomes.   

 

 

Figure 1-3 Temporal validation of feature engineering methods. 

Each line displays the AUPRC trend for the corresponding feature engineering method. Plots are included for 

temporal validation of feature engineered training data at each quarter in the study. The black dot-dash line 

represents the performance of a random chance estimator. 95% confidence intervals are shown for the average 

AUPRC across the study time period. 
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The LSTM model with pretraining had the highest average AUPRC in three of four outcomes. The exception is the 

ED visit performance where RBM has the highest AUPRC (RBM=0.16, 95% CI 0.14-0.17, LSTM pretrained=0.14, 

95% CI 0.12-0.15). Pretraining resulted in a increase in performance over LSTM without pretraining in each 

outcome. LSTM with pretraining had highest average AUPRC in the self-harm/suicide attempt outcome, but due to 

variation over time, the result is not a significant improvement over benchmark. Pretrained attention models had 

comparable performance relative to attention without pretraining. Attention without pretraining had higher average 

AUPRC in ED visit, and self-harm/suicide attempt. The self-harm/suicide attempt LSTM pretrained model had a 

precision of 1.45%, recall 30.08%, and specificity 95.31% for the top 5% of risk predictions in patients with 

observed features during the prediction quarter.51   

 

 

Figure 1-4 Temporal validation of pretraining methods. 

 



 

 15 

LSTM and Attention pretrained models were compared to the same model structure without pretraining. The RBM 

model was best performing of feature engineering methods and is included in this graphic. The black dot-dash line 

represents the performance of a random chance estimator. 95% confidence intervals are shown for the average 

AUPRC across the study time period. 

 

Discussion 

 

This study evaluated autoencoder feature engineering and pretraining in MDD patients across an array of prediction 

tasks. Autoencoder models selected for this study account for temporality, denoise, reduce dimensionality and 

capture interactions between EHR features. When using pretrained weights we were able to improve predictive 

performance over benchmarks in three of four outcomes. The pretrained weights improved predictive performance 

in the LSTM, relative to a model with the same architecture and no pretraining. This suggests that pretrained 

information from the autoencoders may be best retained in the model weights. In contrast, encodings as input to a 

random forest model did not improve predictive performance. Improvement in prediction resulting from pretraining 

has potential for increased clinical usefulness of risk models in MDD and other clinical areas, with a test precision in 

the self-harm/suicide attempt outcome over 1%.8,29,51  

 

Feature encodings from LSTM and Attention autoencoders were not superior in predictive performance relative to 

aggregate feature engineering. Random forest models have a decision tree structure that accounts for feature 

interactions and ensembles decision trees to protect from overfitting to noise in the training data.52 It appears that the 

random forest model’s structure was sufficient to partially account for noise and complex interactions while the 

benefit of temporality captured in encodings in the LSTM and Attention varied across prediction tasks. We observed 

information loss in training each autoencoder format, as none were able to achieve zero validation loss. The 

information lost in encoding estimation may contribute to the lack of performance of autoencoder feature 

engineering, while this information may have been retained in autoencoder weights.  

 

Encodings from the RBM model resulted in best AUPRC for all but one outcome of the feature engineering 

techniques. The RBM modeling strategy used has been shown to outperform principal component analysis as a 

feature engineering technique in a suicide risk prediction task and has the capability to learn complex interactions 
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between high dimensional features. Additionally, the RBM has a low number of trainable parameters (29,747 to 

74,147) relative to the LSTM and Attention autoencoders, suggesting LSTM and Attention autoencoders could be 

overfit. 

 

We observed variation in performance between autoencoder configurations with the LSTM pretraining model 

having the most consistent performance across prediction tasks. Attention based models have outperformed LSTMs 

in many sequential data prediction tasks, specifically in natural language processing.26,48,53,54 Attention models are 

effective in part because of their ability to efficiently learn long range dependencies in a sequence. However, in our 

study the sequences are relatively short compared to NLP applications where attention-based models have been 

superior. Additionally, the structure of attention models allows for increased parallelization—speeding up training 

relative to LSTMs. In our study the model trainable parameters and number of training examples were such that 

training time was relatively short. The nature of this study may nullify the advantages attention models have over 

LSTMs in other studies. 

 

Average AUPRCs were low for the self-harm/suicide attempt outcome across prediction techniques. Self-

harm/suicide attempt events were relatively rare compared to the other outcomes, except for high utilization. The 

high utilization outcome has similar frequency, but pretrained LSTM has a mean AUPRC more than seven times 

that of self-harm/suicide attempt. Since EHR data reflect healthcare utilization, EHR based features may provide 

higher prediction performance in utilization-based outcomes. Overall, healthcare utilization is common in patients 

prior to suicide events, although not always mental health care-specific utilization.55 Further study of health 

utilization events that precede suicidality on the causal pathway could allow for training of prediction models with 

increased clinical precision. 

 

This study highlights several implications for the use of autoencoders for prediction tasks in the MDD population. 

Evidence of the benefits for autoencoder pretraining is shown with a limited dataset at a single site. Researchers 

considering development of predictive models in this patient population may improve predictive performance with 

this training strategy. It is possible the benefits of autoencoder pretraining will extend to additional clinical areas.24 

LSTM performance relative to Attention architectures suggests that LSTM architectures should also be considered 
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when working with similar datasets. Observed autoencoder information loss, specifically in Attention architectures, 

could have been due to the lack of training examples. Future studies of multi-site data may have better performance 

in Attention architectures and allow for additional training techniques such as self-supervised learning.26 We 

observed higher AUPRCs in health utilization outcomes relative to self-harm and suicide attempts. Researchers in 

this space should consider the actionability and clinical usefulness of these or related health utilization outcomes 

when developing risk models for MDD patients.  

 

This study is limited to a single site and single mental health phenotype. It is possible that the study results will not 

generalize to other phenotypes and health care systems. Use of billing codes for outcomes, specifically self-

harm/suicide attempt, may not capture all cases, potentially biasing results.56 We study multiple autoencoder 

structures of varying model sizes. However, there are many alternative structures not studied here that may result in 

improved performance.  

 

Conclusion 

 

We evaluate temporal autoencoder pretraining and feature engineering in the MDD population and compare 

predictive performance to a benchmark modeling strategies that have proven successful in the MDD phenotype.12,33 

LSTM models with pretrained weights from autoencoders were able to outperform the benchmark, as well as an 

equivalent LSTM model without pretraining. Autoencoder feature engineering was unable to outperform the 

benchmark. This suggests that information retained by model weights may not be passed to encodings. Future 

researchers developing risk models in MDD may benefit from the use of autoencoder pretrained weights. 
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Chapter 2 Empirical Calibration of Antidepressant Adverse Events in 

Observational Electronic Health Record Data 
 

Background and Significance  

Major Depressive Disorder (MDD) is a prevalent and heterogeneous phenotype with a variety of treatment options 

available. Many challenges hinder optimal treatment decisions for individuals with this disease as comparative 

efficacy and safety may be unclear.4,57 The challenge may be exacerbated by the fact that most individuals providing 

care are not mental health specialists.1 Switching antidepressant medications or using adjunctive antidepressant 

therapy is commonly done in the course of treatment and may be due to either adverse events or non-response to the 

original medication.57 The safety of such practice, compared to continuing the initial treatment or terminating 

treatment altogether, is an important consideration in treatment decisions.58,59 The STAR*D study, a large pragmatic 

clinical trial of MDD treatment, found an increased risk of adverse events in patients who switched to a different 

antidepressant from an initial prescription of Citalopram.13 In the OPTIMUM study the safety and efficacy of 

augmentation against switching strategies were evaluated in geriatric patients with treatment resistant depression. 

Variation in adverse events were observed between treatment strategies with an increased fall rate in patients treated 

with bupropion augmentation.14   

Electronic health record (EHR) data allow for the investigation of efficacy and safety of clinical practice; however, 

harms are more commonly recorded in medical records, rendering studies of adverse events more feasible.60 EHR 

data are a useful source for adverse event research, as they can capture a large and diverse population of patients 

who receive antidepressant therapy in routine care, reflect current prescribing patterns and practices, and allow for 

long-term follow-up and outcome assessment.61 Because of these attributes of EHR data, the United States Food and 

Drug Administration (FDA) has provided guidance on the use EHR and claims data in the generation of real world 

evidence (RWE) to improve regulatory decisions.62 In their guidance, the FDA encourages the use of RWE for 

clinical trial hypothesis generation as well as post market safety and efficacy surveillance.  

A challenge of this work is the observational nature and limited data available in EHRs. If certain untestable causal 

inference assumptions63 are not met, estimates of intervention effects will be biased. Many standard causal 

estimation procedures assume conditional exchangeability.64 Conditional exchangeability—the assumption that 

common causes of treatment and outcomes are measured—is of primary concern in an observational study, and can 
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lead to systematic bias in effect estimates. There is no empirical method to prove that the exchangeability 

assumption is met, leading many to a justifiable suspicion of the results of observational studies. Recent 

studies15,60,65–68 have applied control outcomes as a means of correcting for the systematic biases that often arise in 

observational studies. Empirical calibration with control outcomes has the capability to correct for confounding, 

selection bias and measurement error.66  In order to correct for these biases, control outcomes should come from a 

diverse sample that share the mechanisms of bias with the study outcomes. To accomplish this requires an 

understanding of confounding and other mechanisms of bias between the treatment of interest and the control and 

study outcomes.69 In a high-throughput replication study of the Observational Health Data Science and Informatics 

(OHDSI) research network, it was found that observational studies may overestimate significance due in part to 

systematic bias.60 Negative control outcomes were used to show that the impact of residual confounding is minimal 

in an observational study of Oseltamivir—an antiviral influenza treatment—and complications.70 Empirical 

calibration with control outcomes has been used to calibrate treatment effects in studies of vaccine efficacy71 as well 

as the efficacy and safety of hypertension treatments.67 

Objectives 

In this study, we evaluated adverse event risk of prescribing a new selective serotonin reuptake inhibitor (SSRI) or 

serotonin and norepinephrine reuptake inhibitor (SNRI) antidepressant in patients with a history of antidepressant 

therapy. The adverse events include insomnia and nausea, which are commonly reported side effects in 

antidepressants.1,4,57 For each outcome, we evaluate covariate matching and inverse probability of treatment 

weighting (IPTW), two commonly used causal inference methods, to estimate treatment effects in a patient 

population with history of antidepressant therapy at VUMC. Covariate matching alters the population about which 

inference is made to the treated population, often referred to as the average treatment effect in the treated (ATT). A 

potential benefit of matching analysis in this observational setting is that the population is in part informed by 

clinical practice, as the matched controls, by construction, have similar covariate distribution to their treated 

counterparts. IPTW is used to estimate the average treatment effect (ATE) for the entire population. 



 

 21 

 

Figure 2-1 Illustration of the difference between the populations about which inference is made when calculating 

ATE vs. ATT. 

The ATE is an estimate of the treatment effect in the entire study population. In many observational studies the 

treated and untreated populations may have differing covariate distributions, which can be reflected by their 

propensity scores as shown above. IPTW attempts to balance the distributions of observed covariates between the 

treatment and control groups by weighting.   In contrast, ATT estimates the treatment effect in the treated 

population by matching treated to untreated patients with similar covariates. This results in a balancing of 

covariates between the treated and matched population and equipoise in the propensity score distributions. 

We investigated bias and calibrated estimates with empirical calibration of control outcomes. We selected a set of 

negative control outcomes through a semi-automated process. Negative controls and synthetically generated positive 

controls were used to estimate an error model that quantifies bias and calibrates confidence intervals.     

Methods 

 

Data Description 

This study was conducted using data from the Vanderbilt University Medical Center (VUMC) Research 

Derivative,41 an identified secondary-use research data warehouse. VUMC is an academic medical center based in 

Nashville, Tennessee, in the United States Mid-South. We sought to identify patients with a history of MDD 
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treatment recorded at VUMC, specifically having likely undergone a prior antidepressant trial. Patients were 

included in the study if they had a visit to VUMC between 1/1/2005-12/31/2021, were prescribed an antidepressant 

and a depression-related International Classification of Diseases (ICD) diagnosis code, including MDD, dysthymic 

disorder, depressive disorder not elsewhere classified,42,43 or problem list mention of depression within 56 days 

following the prescription. The ICD codes are included in appendix table A.1 and the antidepressant list in table A.2. 

Patients were also required to undergo 56 days without being prescribed a different antidepressant than initially 

prescribed, as the recommended time for an antidepressant trial is 6-8 weeks.57 We excluded patients diagnosed with 

bipolar and schizophrenia disorder by ICD diagnosis codes included in appendix Table A.12.   

For patients meeting entry criteria, each patient’s record is divided into evaluation periods. The evaluation period is 

treated as the unit of analysis in this study, where an individual patient may have multiple evaluation periods 

included in the study. The first evaluation period for a given patient starts at their first visit after meeting entry 

criteria. The evaluation period is further divided into an intervention and outcome period. The intervention period 

starts at the beginning of the visit and continues until the visit end or an intervention that takes place within 14 days 

of the end of the visit, whichever is later. The outcome period is the 180 days following the end of the intervention 

period. The next evaluation period begins at the first visit after the 180-day outcome period.  

 

Figure 2-2 Visualization of the evaluation period definition. 

Evaluation periods are divided into intervention and outcome periods. The first episode begins at the start of the 

first patient visit once inclusion criteria is met. The intervention period goes from the start of the visit until the visit 
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end, unless the patient is prescribed an antidepressant. In that case the intervention period is ended on the day the 

intervention takes place. The outcome period is the 180 days following the intervention period. 

The interventions compared in this study are prescribing a new SSRI or SNRI antidepressant and no antidepressant 

prescribed during the intervention period. New prescriptions are those for which the patient has not been prescribed 

the drug in the prior 180 days, where drugs are identified at the Anatomical Therapeutic Chemical (ATC) level 5.  

To reduce risk of spurious results from multiple analyses, the adverse events considered in this study were limited to 

those deemed high priority in antidepressant prescribing by clinical experts (CGW) and were observed frequently 

enough to power our study (see appendix table A.8). There are many other adverse events that are considered in 

antidepressant prescribing,72 however we focus our analysis on insomnia and nausea, defined by SNOMED CT 

codes from a recent study.60 Outcome inclusion and exclusion codes are provided in appendix Table A.5. For the 

effect estimates of each outcome, patients with a prior instance of that outcome in their medical record were 

excluded.  

The confounding mechanisms between the treatment and study outcomes are widely studied, but not fully 

understood. We hypothesize that factors such as MDD severity, treatment resistance, socioeconomic status, social 

support, and comorbid conditions are likely influential.34,73–75 These variables may not be well represented in the 

EHR. However, we include covariates that may represent proxies of these variables and may substantially reduce 

(although not fully eliminate) the contaminating impact of confounding.64 Empirical calibration provides insight into 

the degree to which confounding bias is controlled. Study covariates include age, gender, and race/ethnicity, 

insurance status, health system utilization, MDD interventions, antidepressant prescribing history and comorbidities. 

Comorbidities were formatted using Agency for Healthcare Research and Quality Clinical Classification Software 

(CCS)—a grouping of ICD codes intended to be clinically meaningful.44  

Risk modeling 

Average treatment effects on the treated (ATTs) were estimated by k:1 covariate matching. Inclusion of additional 

controls through k:1 matching has potential to increase study power, but may sacrifice covariate balance. The 

selection of k was done in consideration of covariate balance and power. Details of this analysis are included in 

Table A.8 of the appendix. We compared patients prescribed an SSRI or SNRI to those with no prescription. 
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Logistic propensity score matching was used to create a subpopulation composed of treated cases and matched 

controls from the untreated. This dataset was used to make inference about the treated population. Inverse 

probability of treatment weighting (IPTW) was used to estimate average treatment effects (ATE). Propensity scores 

were estimated by logistic regression and IPTW weights were truncated at a maximum of 5.76,77 Standard errors 

were estimated using a sandwich cluster-robust covariance matrix, clustered by patient.78 Matching and weighting 

were done separately for each outcome excluding evaluation periods with a prior instance of the outcome.   

Selection and synthesis of control outcomes 

Candidate negative control outcomes were selected by accounting for drug product labels, FDA adverse event 

reporting, publications and observed frequency in study population as in Schuemie et al.66 For inclusion in the study, 

we required negative control outcomes to have case frequency in the treated population in a range similar to the 

study outcomes. To generate the recommended 30 or more66 negative control outcomes, we grouped concepts based 

on common ancestor, iteratively selecting the grouping with highest number of cases and least number of concepts. 

Once a concept was grouped, it was excluded from future groupings. We continued this process until all concepts 

were part of a grouping. Groupings were reviewed and those considered too broad were excluded. We then reviewed 

all negative control outcomes for those likely to share confounders with the study outcomes. For those negative 

control outcomes with likely shared confounding, we evaluate calibration effectiveness using the remainder of the 

negative control outcomes. This provides insight into calibration effectiveness on an outcome for which the true risk 

ratio is likely known and potentially shares confounders with the study outcomes. 

We used negative controls to synthesize positive controls for confidence interval (CI) calibration. The relationship 

between treatments and negative controls may exhibit confounding, if this confounding not accounted for in positive 

control generation results could be overly optimistic.66 We attempted to preserve measured confounding by fitting a 

logistic regression model with the negative control as dependent variable and covariates and independent variables. 

This regression model learned associations between the covariates and negative control. The estimated probability 

from the logistic regression was used to simulate new cases in the treated population from a Bernoulli distribution. If 

there were n cases in the treated population, we simulated an additional n cases resulting in a risk ratio of 2.0. For a 

risk ratio of 1.5, we simulated 0.5n cases and for a risk ratio of 3.0, we simulated 2n cases. Negative controls can 
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represent both unmeasured and measured confounding, however positive controls only accounted for measured 

confounding represented by the logistic regression model.66 

Empirical Calibration 

Empirical calibration was done using the EmpiricalCalibration R package.15,66 The control outcomes were used to fit 

an error model that accounted for systematic bias in our study. This approach assumes that the error follows a 

normal distribution about the true effect and that the mean and variance of the error distribution were assumed to be 

linear functions of true effect size, where the slope and intercept of these functions is estimated by likelihood 

maximization. The resulting systematic bias model provided a description of observed bias, in both mean and 

variance, the intercept of the linear model measuring bias for a null effect, and the slope estimated the relationship 

between bias and true effect magnitude. Additionally, this model assumes that treatment effects on the study safety 

outcomes follow the same bias distribution as the negative controls. The resulting error model to calibrates point 

estimates and standard errors to account for systematic bias when assumptions are met. 

Results 

The full study population includes 69,298 patients with 233,680 evaluation periods, 81% of patients had multiple 

evaluation periods and the median number of evaluation periods per patient was 3. Analysis of power and covariate 

balance of matching strategies resulted in 4:1 matching. See the appendix Table A.8 and A.9 for further details on 

the matching analysis. Table 1 displays the full and matched populations without prior outcome exclusion. The 

matched population has 17,120 patients and 19,525 evaluation periods, which accounts for 8.4% of evaluation 

periods in the full population. Table 1 includes demographic variables and covariates that deviate in distribution 

between the full and matched populations. The matched population is younger on average and has elevated rates of 

unplanned admissions and ED visits. The matched population has higher rates of prior comorbidities including 

suicidal ideation/behavior, mood disorders, and anxiety disorders. The full and matched populations have the same 

number of treated evaluation periods, 4,007.  
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Table 2-1 Study summary statistics for full and matched population. Included are demographics, comorbidity rates 

for a subset that deviate in frequency between full and matched populations, and outcome rates. 

  
Full population Matched population 

N Evaluation periods (Unique Patients) 233,680 (69,298) 19,525 (17,120) 

Median Age (IQR) 52.9 (25.7) 48.1 (17.1) 

 
N (%) 

Female 165,356 (70.1%) 13,584 (69.6%) 

Race/Ethnicity Asian 2,234 (1.0%) 151 (0.8%) 

Black 21,515 (9.4%) 1,683 (8.6%) 

White 197,115 (85.9%) 16,877 (86.5%) 

Hispanic-Latinx 2,837 (1.2%) 331 (1.7%) 

Other 5,877 (2.6%) 483 (2.5%) 

Prior healthcare  

utilization 

Unplanned admission 9,829 (4.3%) 5,865 (30.0%) 

ED visit 4,856 (2.1%) 2,596 (13.3%) 

Prior MDD 

Interventions 

Psychotherapy referral 4,375 (1.9%) 1,805 (9.2%) 

Select Prior CCS 

Comorbidities 

Suicidal Ideation/Behavior 4,175 (1.8%) 991 (5.1%) 

Mood disorders 120,969 (52.7%) 13,041 (66.8%) 

Anxiety disorders 65,304 (28.4%) 8,329 (42.7%) 

Disorders of lipid metabolism 70,916 (30.8%) 4,603 (23.6%) 

Eye disorders 36,266 (15.8%) 1,973 (10.1%) 

Payor Medicaid 6,665 (2.9%) 1,020 (5.2%) 

Selfpay 5,360 (2.3%) 774 (4.0%) 

Safety Outcomes Insomnia 3,342 (1.5%) 326 (1.7%) 

Nausea 7,169 (3.1%) 614 (3.0%) 
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A total of 42 negative controls met selection criteria. Of those 15 did not require grouping (see appendix Table A.6) 

and 27 were grouped (see appendix Table A.7). The psycho-active substance abuse negative control is likely to 

share some confounding structure with the study outcomes as MDD has been shown to be a risk factor for 

psychoactive substance abuse and is commonly associated with MDD.79–82 Because psychoactive substance abuse is 

likely to share confounding with the study outcomes and we do not identify evidence for a causal relationship 

between the study treatments and this control outcome, we evaluated calibration of psychoactive substance abuse 

using the remaining 41 control outcomes in the full population. This provides insight into the effectiveness of 

calibration in an outcome with known risk and potential shared confounding with the effects of interest in our study. 

 

Figure 2-3 Calibration of psychoactive substance abuse control outcome forest plots in the full population. 

The left panel shows uncalibrated estimates, the right estimates after calibration by remaining control outcomes. 

Confidence intervals that capture the true value are blue and those that do not are orange. 

Uncalibrated estimates for psychoactive substance abuse do not include the true risk ratio at four out of five levels 

including risk ratio equal to 1—where no alteration of the control outcome took place. Calibration results in all five 
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confidence intervals capturing the true risk ratio, while point estimates are increased by calibration, the bias may not 

be fully corrected, as the point estimate is less than the true risk ratio at each level.  

The negative control calibration model for ATEs had an intercept of -0.29 with slope of 1.0. Suggestive of a 

protective bias consistent at each risk ratio. The calibration of standard errors had an intercept of 0.26, suggesting an 

underestimation of variance.  

 

Figure 2-4 Plot of ATE error model. 

The x-axis represents the true risk ratio and y-axis the model estimation of systematic error. Estimates of mean error 

are shown by the dark blue line with plus or minus one standard deviation shading. Error bars indicated plus and 

minus one standard deviation at each risk ratio level. 

The calibration model for ATTs had an intercept 0.05 and slope 0.99. The intercept provides evidence that risk may 

be overestimated in ATT. The calibration of standard deviations had an intercept of 0.07, suggesting an 

underestimation of standard errors. 
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Figure 2-5 Forest plot of ATE and ATT estimates.  

The ATE (left) and ATT (right) estimates with (green) and without (orange) empirical calibration 

Due to potential protective bias and underestimation of standard errors in ATE, point estimates and standard errors 

were increased by calibration. The uncalibrated ATE risk ratio estimate for Nausea is 0.87 (95% CI 0.67-1.15), with 

calibration the estimate is 1.18 (95% CI = 0.66-2.08). ATT estimates are adjusted in the protective direction due to a 

potential increased risk bias. The ATT estimate for Nausea is 0.76 (95% CI = 0.57-1.02), and with calibration 0.72 

(95% CI = 0.46-0.99).  

Discussion 

In our observational investigation of adverse event risk of antidepressant switching, we observed a strong protective 

bias in ATE estimates and underestimation of standard errors. In ATT estimates we observed a reduced and 

inverse—increased risk of—bias. The ATE and ATT estimate risk in different patient populations, potentially 

leading to different biases. It is possible that a selection bias exists in the full population, that is reduced in the 

matched. The calibrated ATT estimates are also more precise than the ATE, even though reducing sample size to 

estimate ATT decreases power. This may be due to variation in biases between negative controls in the ATE 

estimation scenario, which necessitates an error model that requires large corrections to standard errors in order to 

account for these biases. 
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The ATT estimates are more robust in this study and may be higher yield for generation of clinical evidence in 

observational studies of this phenotype. ATT estimates may benefit from clinical expertise informing selection of 

the study population, as the controls are selected to resemble the covariate distribution of those selected by clinicians 

for treatment. We find that after calibration there is evidence for a protective effect in the Nausea outcome. This 

finding may be unexpected due to the common observation of antidepressant discontinuation due to Nausea.83,84 

However, we limit our study population to those with a history of antidepressant treatment, it may be that for those 

who have a record of prior tolerability to antidepressant therapy that the study intervention is protective. Prior 

studies have shown a decreased rate of adverse event discontinuation in patients switching antidepressants relative to 

antidepressant initiation.58 We also should take into consideration the potential for under reporting or documentation 

of Nausea cases, as we observe Nausea cases at a lower rate than studies of antidepressant side effects with active 

follow up.72 

When protective biases are observed in observational studies, as in the ATE estimates, it is often a case of healthy 

user bias.85 It is possible we observe a related form of bias due to selective prescribing. Gill et al.16 show that 

patients with multiple comorbidities are less likely to be prescribed an antidepressant. In our study the treated 

population has fewer CCS codes on average (9.0 treated vs 9.7 untreated). It is possible we are observing a selective 

prescribing to patients with lower comorbid burden, and the lower comorbid burden population may be less likely to 

develop the negative control outcomes in the future. It is also possible other forms of bias are impacting this result 

such as unobserved confounders.  

This study is limited by insufficient power to investigate SISB risk. To achieve sufficient power in the matching 

analysis we performed k:1 matching, which sacrificed covariate balance—introducing bias into the ATT. We also 

lack power to investigate switching from and to different medications. The grouping of negative control outcomes 

may have introduced additional noise into calibration. Despite these limitations, our study provides valuable insights 

into the safety of prescribing practices and highlights the potential for systematic monitoring of adverse events. 

Furthermore, the ATT population shows limited evidence of bias and has potential for further analysis including 

heterogeneity. The study methods have the potential to be applied in other settings to monitor prescribing practices 

and identify potential safety concerns.  
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Conclusion 

Our observational investigation of adverse event risk in patients prescribed a new antidepressant revealed evidence 

for a protective bias in ATE estimates. The protective bias observed may be due to selective prescribing, or another 

form of bias. We observed a reduction in bias in ATT estimates. It is possible that a selection bias exists in the ATE 

population, which is reduced or eliminated in ATT estimates. The methods studied can be used to monitor and 

improve safe prescribing practices. Furthermore, the ATT population shows limited evidence of bias and is suitable 

for further analyses, including heterogeneity, which we will address in Chapter 3. While our study is limited by its 

observational nature, it provides valuable insights into understanding and correcting biases when estimating 

antidepressant adverse event risk.   
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Chapter 3 Machine learning estimation of antidepressant adverse event 

heterogeneity 
 

Background and Significance  

 

Major Depressive Disorder (MDD) is a complex disease that is challenging to treat and manage.4,57 Treatment 

decisions are complicated by the fact that the majority of antidepressant prescriptions (approximately 79%) are 

written by providers who do not specialize in mental health care.1 It is common practice to switch antidepressants 

due to non-response or adverse events.57,86 The safety of such practice, compared to continuing the initial treatment 

or terminating treatment altogether, is an important consideration in treatment decisions.13,14,58,59  

 

Further, heterogeneity of antidepressant adverse events in MDD subpopulations has been evaluated in recent studies. 

The OPTIMUM study focused specifically on the geriatric-treatment resistant depression subpopulation.14 Gill et al. 

measured variation in antidepressant prescribing practices given comorbid burden and found that patients with 

multiple comorbidities are less likely to be prescribed antidepressants.16 Elderly patients are more likely to be 

multimorbid and have declined drug metabolism, leading to an increased risk of adverse effects.4  Köhler-Forsberg 

et al.17 identified adverse event and discontinuation heterogeneity by comorbidity, noting an increased risk in 

patients with comorbid fibromyalgia and neuropathic pain. Inconclusive results have been found in studies of MDD 

and comorbid cancer.18 Efficacy in studies of patients with comorbid MDD and alcohol dependence found mixed 

results dependent on selected outcomes.19 

 

Statistical analysis of heterogeneity is often under-powered and can lead to spurious findings when multiple 

subgroups are analyzed; because of this, clinical trials often require pre-specification of subgroups,87 limiting 

investigators’ ability to discover unforeseen sources of heterogeneity.88 Heterogeneous Treatment Effect (HTE) 

models reframe the problem to focus on the detection of heterogeneity, rather than conducting a stepwise subgroup 

analysis. This shift has been facilitated by machine learning methods, which allow for flexible modeling of high 

dimensional data. HTE models are machine learning models designed to estimate the conditional average treatment 

effect (CATE). The average treatment effect (ATE) refers to the difference in mean potential outcome that compares 

hypothetical settings in which each treatment is applied to the entire population.63 The CATE, on the other hand, 
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estimates the ATE conditional on covariates, and can therefore provide insights into treatment effect variation by 

patient characteristics.89 Common machine learning models such as random forests and gradient boosting have been 

adapted for CATE estimation.88,90  

 

Electronic Health Records (EHRs) are a valuable resource for research on real-world treatment practices, 

particularly in the field of adverse event research.60 These records provide a comprehensive view of a diverse patient 

population who are undergoing antidepressant therapy in routine care, thereby reflecting current prescribing patterns 

and practices.16 Moreover, EHRs enable long-term follow-up and outcome assessment. The Food and Drug 

Administration (FDA) has placed emphasis on the importance of real-world evidence in making regulatory 

decisions.62 However, the observational nature of EHRs and the limited data they contain pose difficulties. If certain 

untestable causal inference assumptions are not met, the resulting estimates of intervention effects may be biased.91 

Recent studies offer a technique to measure systematic biases often encountered in observational studies using 

negative controls and semi-synthetic positive control outcomes.65–67  

 

Semi-synthetic outcomes are generated using the features and outcomes as a baseline and then synthetically altering 

the outcome according to a specified data generating function. The utilization of semi-synthetic outcomes presents a 

valuable approach in analysis of heterogeneity for several reasons. First, true CATE at the individual level is 

unknown, even in labeled data,92 because calculation of a treatment effect at an individual level requires knowledge 

of the counterfactual scenario where the patient receives each treatment considered.93 Secondly, real-world data may 

contain unaccounted for and unmeasured sources of bias.15 Also, semi-synthetic outcomes allow for evaluation of 

model performance under varying conditions, such as changes in noise and feature density. This can offer 

researchers insights into the underlying characteristics in real data. While numerous studies have been conducted on 

synthetic or semi-synthetic data using benchmarking datasets,90,92,94 in this study, we evaluate HTE model 

performance on a real-world dataset with semi-synthetic outcomes followed by analysis of non-synthetic adverse 

event outcomes. The semi-synthetic outcomes, selected using the control outcome strategy of Schuemie et al.,66 

allow us to analyze data with a known CATE generated from a real feature set across outcomes with varying 

relationships to features. The comparison of semi-synthetic to real outcome performance prevents drawing 

conclusions based solely on synthetically generated data, which may favor one algorithm over another due to data 
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generating process alone.92 Instead, the results of the semi-synthetic analysis inform our evaluation of model 

performance on non-synthetic outcomes, potentially enhancing the interpretability of our findings. 

 

Objectives 

 

This study aimed to evaluate HTE models and their performance under varying data generating processes with semi-

synthetic outcomes in an MDD patient population. We also examined evidence for heterogeneous treatment effects 

of SSRI/SNRI prescribing on the occurrence of adverse events—insomnia and nausea. Another key objective is to 

identify which model is best calibrated to estimate this heterogeneity and what this implies about the underlying 

data. Through this research, we sought to enhance understanding of HTE models and their potential to personalize 

the antidepressant prescribing processes. 

 

Methods 

 

Data Description 

 

The study data were extracted from the Vanderbilt University Medical Center (VUMC) Research Derivative, an 

identified research data warehouse.41 We studied patients likely to have undergone an antidepressant trial and had a 

visit between 1/1/2005 and 12/31/2021. Inclusion required patients were prescribed an antidepressant (see Table 

A.2) followed by a 56-day period in which no antidepressants were prescribed, as the recommended time for an 

antidepressant trial is 42-56 days.57 We also required patients to have either a problem list mention of MDD, or an 

MDD related ICD diagnosis code within 56 days following the initial antidepressant prescription. The list of ICD 

diagnosis codes is included in appendix Table A.1 and include MDD, dysthymic disorder, depressive disorder not 

elsewhere classified. We excluded any patients diagnosed with bipolar and schizophrenia disorder by ICD diagnosis 

code; exclusion codes are provided in Table A.12. 

 

For patients that met entry criteria, medical records were segmented into what we refer to as evaluation periods. 

These evaluation periods serve as the unit of analysis, and a patient may have several evaluation periods included in 

the study. A patient's first evaluation period commences with their initial appointment after they meet the entry 
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requirements. This evaluation period is then further split into two distinct phases: the intervention period and the 

outcome period. The intervention period begins at the start of the visit and lasts until either the end of the visit or at 

the time of any intervention that occurs within 14 days of the visit's conclusion, whichever took place later. The 

outcome period includes the 180 days that follow the end of the intervention period. The subsequent evaluation 

period is initiated at the patient’s first visit following the 180-day outcome period. 

 

This study compares new SSRI or SNRI antidepressant prescriptions with no new prescriptions or unchanged 

pharmacotherapy. New prescriptions are prescribed drugs with no record of that drug in the prior 180 days, 

identified at Anatomical Therapeutic Chemical (ATC) level 5. The adverse events considered in this study are the 

same as in chapter 2, SNOMED CT code definition are included in appendix Table A.5. Patients with previous 

instances of the outcome were excluded from effect estimates.  

 

The relationship between treatment and study outcomes is complex and not fully understood. Factors such as MDD 

severity, treatment resistance, socioeconomic status, social support, and comorbid conditions are hypothesized to be 

influential.34,73–75 Our study includes proxy variables for these factors to reduce confounding impact.64 Study 

covariates include age, gender, race/ethnicity, insurance status, healthcare usage, MDD interventions, antidepressant 

history and comorbidities. Comorbidities were grouped using Agency for Healthcare Research and Quality Clinical 

Classification Software (CCS)—an ICD code grouping intended to be clinically meaningful.44  

 

We showed in chapter 2 that covariate matching may reduce bias in treatment effect estimates. In order to 

potentially reduce bias and increase ability to identify heterogeneity, we restrict our analysis to a covariate-matched 

population. Given that the control population is selected to have similar baseline characteristics to the treated 

population, our target estimand therefore is more appropriate interpreted as a conditional average treatment effect 

among the treated (CATT).  

 

HTE model descriptions 

 

We evaluate HTE models leveraging the double machine learning (DML) paradigm from Athey and Imbens.89 DML 

models assume the data generating process 𝑌 = 𝜃(𝑋) × 𝑇 + 𝑔(𝑋) + 𝜖, with 𝑇 = 𝑓(𝑋) + η where 𝑔 and 𝑓 can be 
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any machine learning model, 𝜃 is the final function of  heterogeneity and 𝜖 and η are error terms. The causal forest 

model applies a modified random forest in which the tree splitting criteria maximizes the variance of 𝜏(𝑋) between 

sub-trees.88 Causal forest parameter estimates are shown to be asymptotically normal, allowing for valid and 

efficient CI estimation under sufficiently large samples. Additionally, causal forests have been shown to perform 

well in scenarios where there is low heterogeneity in treatment effect.92 The gradient boosted DML has shown 

superior performance to causal forest in some simulation studies, but is a higher variance estimator that may be 

prone to overfitting.90,94 We also include Linear DML models in this study that assume linearity in 𝜃, and have a 

reduced risk of overfitting. As a benchmark model, we fit a random forest to each outcome to evaluate whether a 

standard supervised learning risk model is effective in treatment prioritization for MDD adverse events. 

 

Semi-synthetic HTE analysis 

 

In order to evaluate model ability to estimate true HTE we simulate semi-synthetic outcomes utilizing the positive 

control synthesis approach and selected negative controls based on the methodology outlined in Schuemie et al.60 

This included considering factors such as drug product labels, reports from the FDA on adverse events, relevant 

publications, and the frequency observed in the study population. We select the psychoactive substance abuse 

negative control from Chapter 2 as a baseline outcome for semi-synthetic heterogeneity generation. 

 

The negative controls were then used to synthesize the positive controls from a heterogeneous data generating 

function ℎ(𝑋) × 𝑇. We include second order interaction terms in the heterogeneity function to simulate relationships 

between features.  

 

ℎ(𝑋) = ∑𝛽𝑖𝑥𝑖

𝑃

𝑖=1

+∑𝛽𝑗,𝑘𝑥𝑗𝑥𝑘
𝑗≠𝑘

 

 

The weight parameters (𝛽𝑖) were drawn from a normal distribution where the number of non-zero weights was 

varied to simulate different sparsity scenarios. In order to preserve measured confounding66 between the negative 

control outcomes (𝑦𝑛𝑐) and model covariates (𝑋), we trained a logistic regression model. This model provided a 
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predicted probability for each evaluation period that is as a baseline sample probability, prior to the addition of 

heterogeneity. The probabilities (Pr⁡(𝑦𝑛𝑐|𝑋 = 𝑥)) are a measure the relationship between the covariates and 

negative control. 

 

Sampling weights were then calculated by taking the inverse logit of the heterogeneity function plus the 

confounding function with the addition of an error term 𝑤𝑠𝑎𝑚𝑝 =  𝑒𝑥𝑝𝑖𝑡(ℎ(𝑋) + 𝑙𝑜𝑔𝑖𝑡(Pr⁡(𝑦𝑛𝑐|𝑋 = 𝑥)) + 𝜖). 

Synthetic outcomes were then sampled from a Bernoulli distribution using the sample weights 𝑦𝑠𝑦𝑛𝑡ℎ =

𝐵𝑒𝑟𝑛(𝑤𝑠𝑎𝑚𝑝). We sample the error term from a normal distribution 𝜖 = 𝑁(0,  𝜎2) and vary 𝜎 to simulate additional 

variance in the data generating function. 

 

Model evaluation 

 

Fitting the models to a matched data set required alteration to standard train-test splitting technique as performing 

matching prior to the train-test split could potentially result in information leakage from train to test data. The full 

dataset meeting entry criteria were split into a training and test set at a 1:1 ratio in order balance in the number of 

treated observations in the test set. If too few treated outcome cases are in the test set performance may be 

misleading and random variations could result in a split with very few outcomes in the treated group. Logistic 

regression propensity score matching was then done separately on the training and test sets. In the training set we 

perform 6:1 matching increase power and model ability to detect heterogeneity. In the test set we perform 2:1 

matching resulting in a 7:3 ratio in the final train and test sets. 

 

To train the Causal Forest and Gradient Boosting DML models the hyperparameters number of trees, minimum 

samples per leaf, minimum samples split, max tree depth were tuned. In addition, an early stopping criteria was also 

tuned in the Gradient Boosting model, as the Gradient Boosting DML has been shown to be a more flexible 

estimator and at increased risk of overfitting.90 Both Gradient Boosting DML and Causal Forest were tuned to 

optimize rscore,95 which minimizes deviance between CATE and the dependent variable residuals. Linear DML 

models used a linear heterogeneity function that was not tuned. 
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Evaluation of candidate HTE models involved examining a semi-synthetic outcome using metrics such as mean 

absolute error (MAE) and 95% confidence interval (CI) coverage of synthetic positive controls and Area Under the 

Targeting Operating Characteristic (AUTOC). AUTOC is a metric used to evaluate treatment prioritization rules. It 

measures risk reduction of adverse events by not treating patients above a certain risk threshold. This is done by 

ordering the patients by their estimated CATT, then calculating the risk difference as for increasing treatment risk 

quantiles. A well-calibrated model will have and increasing trend as the from the risk difference above the threshold 

to the full population risk. The area under this curve is then calculated and weighted by quantile. AUTOC is 

calculated directionally, with separate calculations for increased risk and protective AUTOCs. In an increased risk 

prioritization analysis, a higher AUTOC is better, and vice versa for a protective risk. An AUTOC below zero for an 

increased risk prioritization analysis indicates the model’s risk prioritization is worse than using the population 

average—in this case the ATT. The AUTOC was calculated on the risk difference scale, so even small values can be 

meaningful. P-values were calculated by bootstrapping on the test set to provide additional context.  

 

Figure 3-1 AUTOC metric description. 

AUTOC is a measure of HTE model calibration. Treatment priority quantile is plotted on the x-axis and treatment 

risk difference at or greater than the corresponding treatment priority quantile is plotted on the y-axis. The dotted 

line indicates the population risk difference, because we are working with a covariate matched dataset this is the 
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ATT. The blue line is the treatment operator curve and displays how the risk difference changes as the treatment 

priority quantile is increased. An increasing line in this trend indicates good calibration. The area under this curve 

is the AUTOC. An AUTOC of zero indicates performance no different than using the population average treatment 

effect. 

 

Evaluation of model calibration on adverse event heterogeneity, including insomnia and nausea, was done by 

measuring AUTOC, as MAE and CI coverage cannot be calculated without known CATT. To benchmark the 

evaluation, random forest models were fit to determine risk modeling effectiveness in treatment risk calibration. The 

random forest models were tuned by grid search cross validation. 

 

Results 

 

Semi-synthetic outcomes 

 

The HTE models were tested under varying conditions of heterogeneity, specifically varying noise and sparsity of 

feature space. Linear DML demonstrated consistent performance in 95% CI capture rate. Its 95% CI capture was 

stable as noise increased, in the scenario with 10 non-zero weights the capture rate was 92.6% with 0.0 noise and 

was 91.2% with noise parameter set to 0.05. In contrast, Causal Forest CI capture decreased as noise increased. In 

the 10 non-zero weight scenario CI capture was 85.6% with no noise and decreased to 2.5% when the noise 

parameter was set to 0.05. Causal Forests and Gradient Boosting DML had lowest MAE across heterogeneity 

scenarios. The MAE increased with noise in each model. Linear DML exhibited higher MAEs compared to Gradient 

Boosting DML and Causal Forest. AUTOC metric performance varies across models and data generating processes. 

for the psychoactive substance abuse negative control show in figure 3.2. In the appendix Figure A.13 we include 

AUTOC performance for the Vitamin D deficiency negative control outcome, which is the negative control with 

largest number of treated cases.  
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Figure 3-2 Modeling results for semi-synthetic outcomes. 
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For each outcome model performance trends are plotted as the noise parameter increases. A separate plot is 

included for each level of the non-zero weight parameter value. 

 

Adverse event outcomes 

 

The train dataset for insomnia included 10,717 evaluation periods, the test dataset included 4,593 evaluation periods. 

The nausea train set included 12,201 evaluation periods in the train and 5,163 in the test. The insomnia data train set 

had three variables with absolute standardized mean difference (ASMD) greater than 0.1. ASMD is a measure of 

covariate balance in a matched dataset, where low ASMD indicates balanced matching.96 The nausea dataset had 

four variables with ASMD greater than 0.1.  

 

AUTOC was calculated separately in the increased risk and protective directions. For the insomnia outcome, the 

Causal Forest model demonstrated the best AUTOC in both protective and increased risk categories, but was not 

statistically significant in either direction. The training AUTOC for the Causal Forest model in the increased risk 

direction was 0.96, the test AUTOC reduced by 85%. The Linear DML and Gradient Boosting DML had 89% and 

94% reductions in AUTOC from train to test. In the case of nausea, no significant evidence for heterogeneity was 

identified. Random forest models were included as a benchmark to assess whether risk modeling is sufficient to 

calibrate risk. For the insomnia outcome, the Random Forest model had Area Under the Receiver Operating 

Characteristic Curve (AUROC) of 0.62 and Area Under the Precision Recall Curve (AUPRC) of 0.033. For nausea, 

the model had AUROC of 0.69 and AUPRC of 0.054.  

Table 3-1 HTE model calibration on adverse event outcomes 

  

Increased Risk   Protective   

 

Model AUTOC p-value AUTOC p-value 

Insomnia Causal Forest 0.14 0.13 -0.12 0.16 

  GB DML 0.03 0.41 0.03 0.59 

  Linear DML 0.07 0.30 -0.03 0.41 

  Random Forest -0.06 0.65 0.09 0.77 
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Nausea Causal Forest -0.06 0.82 0.03 0.58 

  GB DML -0.02 0.58 0.03 0.59 

  Linear DML -0.13 0.90 0.17 0.83 

  Random Forest 0.08 0.32 -0.03 0.35 

 

 

Figure 3-3 Increased risk AUTOC curves for insomnia. 
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The AUTOC metric measures a HTE models ability to prioritize treatment risk. Treatment priority quantile is 

plotted on the x-axis and treatment risk difference at or greater than the corresponding treatment priority quantile is 

plotted on the y-axis. As predicted treatment risk increases, we would expect the observed treatment risk to increase 

as well. In the increased risk case, an increasing trend is risk difference for higher treatment priority quantiles 

indicates a well calibrated the model. 

 

Discussion 

 

This study evaluated the performance of HTE models under varying conditions with semi-synthetic outcomes. 

Overall, as noise was added, each model's performance decreased in MAE and CI capture. Gradient Boosting DML 

and Causal Forest models had similar MAE. However, Linear DML models had the most stable CI coverage across 

data generating functions. Causal Forest CI capture deteriorated most significantly as noise was added. Varying 

feature sparsity did not yield any identifiable difference in model performance. Despite moderate performance in 

predicting adverse risk, supervised learning-based risk models were not effective in prioritizing treatment of adverse 

event risk. 

 

We did not find statistically significant evidence for heterogeneity in either of the adverse event outcomes. The 

Causal Forest had the best AUTOC in both directions for the insomnia outcome. The Causal Forest model also had 

the least decrease in AUTOC from training to the test set in the insomnia outcome, suggesting less overfitting is 

taking place. Both the Causal Forest and Gradient Boosting DML followed similar tuning strategies with the 

exception that an early stopping criterion was added for Gradient Boosting DML. The train AUTOCs in the 

insomnia outcome were lower for Gradient Boosting DML, it may be that the tuning criteria used led to underfitting 

of the Gradient Boosting DML. 

 

Heterogeneity in nausea was not detected, and HTE model performance was worse than using the average in each 

model considered. The underlying reasons for this observed difference in heterogeneity between insomnia and 

nausea are unclear and warrant further investigation. This could involve exploring the influence of other factors 

related to SSRI/SNRI prescribing not considered in this study. Prior studies have found a higher prevalence of 
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nausea than reported in this study,72 suggesting nausea may be under-ascertained. It is possible that the ascertained 

nausea cases have many common characteristics that mask heterogeneity. 

 

The study aimed to identify which model is best calibrated to estimate heterogeneity in antidepressant adverse 

events. In the case of insomnia, calibration was best identified by the Causal Forest model, but the result was not 

statistically significant. Taking into consideration the results on semi-synthetic data, as well as the adverse event 

outcome each model had benefits and weaknesses depending on the modeling scenario. The Causal Forest and 

Gradient Boosting DML reduced MAE relative to Linear DML, but each was ineffective in CI capture as the noise 

parameter increased, while the Linear DML was consistent. It is unclear at this point, which if any of these metrics 

would be most meaningful to providers making antidepressant prescribing decisions. It is possible, providers would 

benefit from knowing which of their patients are at highest risk for an adverse event. Accurate and individualized 

point estimates and confidence intervals of adverse event risk also have potential to aid providers.    

 

This study is subject to several limitations. Firstly, due to power and data availability, a limited number of outcomes 

were considered. Future research that models heterogeneity in efficacy with a broader range of clinically meaningful 

outcomes would be beneficial. Our study indicated that HTE models overfit to training data. The model tuning 

process requires careful consideration to minimize bias and limited work has been done on the hyper-parameter 

tuning of HTE models. The tuning objectives can have a substantial impact on the results, suggesting a need for 

further exploration in this area. There are many additional HTE models worth consideration, including meta-learners 

that are algorithm agnostic, but require extensive tuning and are higher variance.97 The results of meta-learners are 

mixed compared to models included in our study, and tuning and evaluation best practices remain an open area of 

research.90,92,98,99 

 

Conclusion 

 

This study found that HTE models have potential to prioritize insomnia risk when prescribing a new antidepressant. 

The Linear DML model was best able to calibrate insomnia risk. Heterogeneity was not identified in the nausea 

outcome. In the semi-synthetic outcomes analysis the Gradient Boosting DML model had best CI capture and the 

Causal Forest performed best in MAE. Modeling objectives should be carefully considered when choosing metrics 
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to evaluate performance. Linear DML models assume linear heterogeneity and are less prone to overfit relative to 

other models considered. Despite moderate performance in outcome risk prediction, supervised learning-based risk 

models were found to be ineffective in prioritizing treatment for adverse event risk. The low CI capture rates in the 

causal forest model may be due to bias resulting from hyperparameter tuning, further research on hyper-parameter 

turning best practices could improve results. 
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Summary 
 

In this work, we began by developing methods for enhancing prognostic prediction in MDD. We then demonstrated 

techniques for identification and correction of bias in adverse event effect estimation in observational data. 

Additionally, we investigated the performance of machine learning models in predicting heterogeneous treatment 

effects under varying data generating processes and present necessary steps to clinically useful modeling of adverse 

event heterogeneity.  

 

Chapter 1 of this work focused on the potential benefits of pretraining in improving predictive accuracy of MDD 

risk models. Our findings suggest that predictive information learned by model weights may be lost at encoding, and 

that the use of LSTM pretrained models can enhance predictive performance and outperform state-of-the-art 

predictors in the MDD phenotype. As such, the use of pretrained weights and LSTM architectures may prove useful 

for future researchers developing risk models in MDD. We also demonstrate that pretrained models can improve 

predictive accuracy even when trained on data from a single site, which may be of particular interest to researchers 

and data scientists with limited resources for pretraining foundational EHR neural network models.  

 

Adverse event risk is an important consideration when a new antidepressant is prescribed.13,14 Electronic health 

record data capture routine care and are a potentially effective source for post-market safety surveillance. The 

observational nature of these data can result in biased analyses. In Chapter 2 we utilized empirical calibration to 

model and correct systematic biases. We observed a protective bias in our ATE estimates, which may be indicative 

of a healthy user bias or other forms of bias such as differential loss to follow-up. However, our estimates of ATT 

showed little bias, suggesting that a selection bias may exist in the full study population that decreases when we 

perform matching. 

 

Heterogeneity of antidepressant adverse events in MDD subpopulations is an important consideration in treatment 

decisions and patients with higher comorbid burden have been shown to be less likely to be prescribed 

antidepressants.16,17 In Chapter 3 we found that HTE models exhibited varied performance depending on the 

evaluation metric. Causal Forest and Gradient Boosting DML models performed relatively well at error 
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minimization, but performed worse in CI capture of the true effect. In contrast, Linear DML models displayed 

consistent performance in CI capture across parameter settings. Performance varied in the AUTOC metric across 

models and parameter settings and no definite conclusions can be extracted from the results. The AUTOC metric for 

prioritization has limitations, as this metric calculates risk differences for subsets of the population. It is possible that 

biases may vary across these subsets. There are other metrics such as the R-score, which has been shown to be 

effective in HTE model tuning and was utilized for tuning in this study.95 However, this metric is derived from a 

loss function and clinically contextualizing may be difficult.100  

 

This work has several limitations that should be acknowledged. We have discussed the observational nature of the 

study and the potential biases that may result. The study was conducted at a single site, which may limit the 

generalizability of the findings. Adverse event outcomes may have been underreported, and prior antidepressant 

therapy may have increased the tolerability of antidepressants in the patients studied in Chapters 2 and 3, potentially 

reducing the overall risk of adverse events in our study population. While the use of HTE models in informatics 

practice shows promise, the current state of research is still in its infancy, and the lack of understanding of HTE 

potential impact on clinical practice is a significant limitation.101 Additionally, most research on HTE models has 

been conducted using synthetically generated data, there remain research gaps that must be filled before HTE 

models can aid clinicians. 

 

This work presents many opportunities for future research. Researchers should consider comparing phenotype-

specific model pre-training—similar to models from Chapter 1—with foundational full electronic health record 

(EHR) pre-trained models.26 Additionally, it may be beneficial to augment in-place prediction models with pre-

trained weights, RBM embeddings also showed promise. This approach could serve as an alternative to using large 

foundational neural network models that may require extensive computational resources. 

 

The work done in chapters 2 and 3 may provide additional insights if the study were conducted at antidepressant 

initiation, as patients may have increased heterogeneity at this point resulting in more opportunity for impact of 

HTEs. Studying adverse event risk at initiation may result in increased bias, but patients with prior antidepressant 

therapy may have increased tolerability of medications reducing heterogeneity in outcomes.58 Changes in bias 
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resulting from the change in study population can be examined using the empirical calibration framework. 

Conducting a multi-site study of these methods would allow for external validation of our results which would 

increase impact and potentially lead to additional insights. Larger datasets from a multi-site study would allow for 

analysis of additional treatments and outcomes due to increased study power. Specifically, it would allow us to 

apply the methods from chapters 2 and 3 to both comparative safety between medications and include additional 

outcomes such as suicidality. 

 

In order for HTE models to have clinical impact more work is required to understand how evaluation metrics might 

impact clinical practice. This would likely be best accomplished through qualitative studies that include HTE model 

training materials, provider interviews, and potentially observation. To our knowledge there is no existing literature 

on qualitative evaluation of HTEs. However, qualitative studies examining utility of diagnostic machine learning 

models provide guidance for our work. Pumplun et al102 examine the adoption process of diagnostic models among 

clinicians. Their study resulted in categorization of factors that influence adoption of a diagnostic ML tool and 

provide a framework for assessing maturity of a machine learning adoption process. Sandhu et al103 show that 

unfamiliarity with machine learning in the clinical workforce causes concern around perceived utility and trust in the 

models. This concern may be exacerbated when the technology could be perceived as directive.104  

 

Tuning strategies for HTEs need to be refined to overcome the problem of overfitting described in Chapter 3. One of 

the key issues in this regard is to ensure that the tuning and model fitting objectives are appropriate for each sub-

model within the HTE. For example, in propensity score models, the objective is to achieve covariate balance rather 

than prediction performance.63 However, the precedent set of using machine learning techniques may lead to 

application of discrimination models where other forms of optimization may be superior.  

 

Empirical calibration strategies for HTE models may be able to address some of the observed performance issues in 

chapter 3. The Empirical Calibration framework as it currently stands assumes a linear error model, and more 

flexible models may be necessary. Additionally, there is limited work on HTE modeling in a matched patient 

population. Evaluation and implementation is complicated by taking this approach, but recent work using conformal 
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analysis with HTE models may provide a solution to effectively validating and generating predictions in 

production.99 

 

There is a notable gap in the literature regarding the implementation of useful HTE models. There is a need to 

identify the key features that make an HTE model effective in practice. Sociotechnical factors must be considered 

when implementing HTE models, especially with regards to concerns around physician autonomy. Ethical 

considerations must also be considered when using HTE models. For example, these models estimate treatment 

effects in subpopulations, which can introduce biases that negatively impact certain groups. It is important to 

carefully consider these ethical implications before implementing HTE models. Future studies should also 

investigate issues of fairness in HTE models to ensure that they do not perpetuate existing health disparities. 
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Appendix 
 

Table A.1-Depression ICD codes list 

 Code Description 

ICD-9 

311.x Depressive disorder, not elsewhere classified 

296.2x Major depressive disorder single episode 

296.3x Major depressive disorder recurrent episode 

300.4x Dysthymic disorder 

ICD-10 

F32.xx Major depressive disorder, single episode 

F33.xx Major depressive disorder, recurrent 

F34.1 Dysthymic disorder 

 

Table A.2-Antidepressant List with ATC code 

 

Code Name Code Name Code Name 

N06BA04 methylphenidate N06AA10 nortriptyline N06AX16 venlafaxine 

N06BA02 dexamfetamine N06AA11 protriptyline N06AX17 milnacipran 

N05AH04 quetiapine N06AA04 clomipramine N06AX06 nefazodone 

N05AH03 olanzapine N06AA21 maprotiline N06AX23 desvenlafaxine 

N05AE04 ziprasidone N06AA17 amoxapine N03AX09 lamotrigine 

N05AN01 lithium N06AA02 imipramine N05AX12 aripiprazole 

N06AF04 tranylcypromine N06AX24 vilazodone N06AB04 citalopram 

N06AF03 phenelzine N06AX12 bupropion N06AB03 fluoxetine 

N06AF01 isocarboxazid N06AX21 duloxetine N06AB05 paroxetine 

N06AA12 doxepin N06AX26 vortioxetine N06AB10 escitalopram 

N06AA09 amitriptyline N06AX05 trazodone N06AB08 fluvoxamine 

N06AA01 desipramine N06AX11 mirtazapine N06AB06 sertraline 

 

Table A.3 Autoencoder model parameters 

 

Attention Encoder Layers 

 Multi-head-attention(head size = 64, number of heads = 4) 

 Convolutional 1D(filters = 294, kernel size = 6, activation = 'relu') 

 Convolutional 1D(filters = 147, kernel size = 3, activation = 'relu') 

Attention Decoder   

 Multi-head-attention(head size = 64, number of heads = 4) 

 Multi-head-attention(head size = 64, number of heads = 4) 

 Convolutional 1D(filters = 294, kernel size = 6, activation = 'relu') 

 Time distributed dense(units = 147, activation = 'sigmoid') 

  

LSTM Encoder   

 LSTM(units=147, activation='relu') 
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 LSTM(units=147, activation='relu') 

LSTM Decoder   

 LSTM(units=147, activation='relu') 

 LSTM(units=147, activation='relu') 

 Time distributed dense(units = 147, activation = 'sigmoid') 

 

Table A.4-Antidepressant for SSRI and SNRI referenced in Chapters 2 and 3 

 

Clinical Grouping Medication Name (ATC Level 5) 

Selective serotonin reuptake inhibitors (SSRI) citalopram 

fluoxetine 

paroxetine 

escitalopram 

fluvoxamine 

sertraline 

Serotonin-norepinephrine reuptake inhibitors (SNRI) desvenlafaxine 

duloxetine 

venlafaxine 

milnacipran 

 

 

Table A.5-Adverse event SNOMED CT codes referenced in Chapters 2 and 3 

 

Outcome SNOMED CT code Description 

Suicidal Ideation and Behavior 439235 Self-inflicted injury 

 4181216 Self-administered poisoning 

 444362 Suicidal deliberate poisoning 

 4273391 Suicidal thoughts 

 440925 Suicide 

  4303690 Intentionally harming self 

Insomnia 439708 Disorders of initiating and maintaining sleep 

 436962 Insomnia 

  4305303 Sleep deprivation 

Nausea 31967 Nausea 

 30284 (exclude)  Motion sickness 

 

 

Table A.6-Negative control outcome concept IDs referenced in Chapter 2 

Concept ID code Description Treated case count 

436070 Vitamin D deficiency  84 

436230 Blood chemistry abnormal  67 

4150062 Knee pain  62 

437390 Hypoxemia  44 

437677 Abnormal findings on diagnostic imaging of lung  41 
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77646 Disorder of bone and articular cartilage  40 

434004 Hypervolemia  28 

200528 Ascites  25 

132736 Bacteremia  25 

4110815 Sensorineural hearing loss bilateral  24 

140648 Onychomycosis due to dermatophyte  23 

314754 Wheezing  23 

443257 Swelling-lump finding  22 

440276 Infection AND/OR inflammatory reaction due to internal 

prosthetic device implant AND/OR graft  

21 

136788 Spinal stenosis of lumbar region  21 

 

Table A.7-Negative control outcomes grouped, referenced in Chapter 2. 

 

ancestor 

concept ID 

code 

Ancestor description 

Treated 

case 

count 

Grouped concepts 

Number 

of 

concepts 

grouped 

433125 Infection due to 

Staphylococcus aureus 

31 Infection by methicillin sensitive 

Staphylococcus aureus 40481816, Methicillin 

resistant Staphylococcus aureus infection 

440940 

2 

4252534 Disease due to Gram-

negative bacillus 

24 Bacterial infection due to Pseudomonas 

438064, Infection due to Escherichia coli 

440320 

2 

4239381 Psychoactive substance 

abuse 

21 Cannabis abuse 434327, Opioid abuse 438130 2 

443238 Diabetic - poor control 21 Type II diabetes mellitus uncontrolled 

40482801, Type 1 diabetes mellitus 

uncontrolled 40484648 

2 

4018050 Localized infection 20 Posttraumatic wound infection 4153877, 

Localized infection of skin ANDOR 

subcutaneous tissue 443600 

2 

4161193 Disease due to Gram-

positive bacteria 

20 Septicemia due to enterococcus 133956, 

Staphylococcal infectious disease 435459 

2 

4090739 Nutritional disorder 31 Moderate protein calorie malnutrition weight 

for age 6074 percent of standard 4098458, 

Severe protein calorie malnutrition Gomez less 

than 60 percent of standard weight 4233565, 

Malnutrition of moderate degree Gomez 60 

percent to less than 75 percent of standard 

weight 436078 

3 

254068 Disorder of upper 

respiratory system 

28 Hypertrophy of tonsils 28457, Deviated nasal 

septum 377910, Hypertrophy of nasal 

turbinates 440129 

3 

73008 Enthesopathy 21 Enthesopathy of hip region 198846, 

Enthesopathy of foot region 4347178, Spinal 

enthesopathy 75347 

3 
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4042141 Ear and auditory 

finding 

20 Impacted cerumen 374375, Hearing loss of 

right ear 43021778, Asymmetrical 

sensorineural hearing loss 443577 

3 

4100932 Knee joint finding 31 Tear of meniscus of knee 4035415, Disorder of 

patellofemoral joint 4035422, Knee joint 

effusion 4115991, Current tear of medial 

cartilage ANDOR meniscus of knee 80242 

4 

436670 Metabolic disease 21 Disorder of the urea cycle metabolism 434311, 

Disorders of bilirubin excretion 434887, 

Lipoprotein deficiency disorder 435516, 

Disorder of lipid metabolism 437530 

4 

4302537 Digestive system 

finding 

21 Viral hepatitis without hepatic coma 193693, 

Diverticulosis of large intestine without 

diverticulitis 4164898, Ileostomy present 

4201717, Chronic viral hepatitis B without 

delta agent 439674, Viral hepatitis in mother 

complicating childbirth 45757141 

5 

4249437 Disease due to 

Alphaherpesvirinae 

20 Disseminated herpes zoster 4205455, Herpes 

simplex with complication 438962, Herpes 

simplex without complication 440021, Herpes 

zoster without complication 440329, Herpes 

simplex 444429 

5 

441969 Radiology result 

abnormal 

45 Mammography abnormal 4059049, Abnormal 

findings on diagnostic imaging of limbs 

4171776, Abnormal findings on diagnostic 

imaging of breast 434169, Abnormal findings 

diagnostic imaging heart coronary circulat 

435081, Abnormal findings on diagnostic 

imaging of skull and head 439154, Abnormal 

findings on diagnostic imaging of urinary 

organs 440529 

6 

320136 Disorder of respiratory 

system 

26 Traumatic pneumothorax without open wound 

into thorax 253896, Bronchiectasis 256449, 

Pleural plaque 4050884, Foreign body in 

bronchus 443287, Acute exacerbation of 

asthma 45771045, Acute exacerbation of mild 

persistent asthma 46270082 

6 

4042837 Disorder of neck 21 Cervical spondylosis with myelopathy 136198, 

Cervical spine ankylosis 4001454, Cervical 

disc disorder with radiculopathy 4067313, Late 

effect of fracture of cervical vertebra 4194739, 

Spinal stenosis in cervical region 436785, 

Displacement of cervical intervertebral disc 

without myelopathy 74725, Disorder of 

cervical spine 80497 

7 

4022449 Finding of shoulder 

region 

20 Disorder of joint of shoulder region 40484571, 

Nontraumatic rotator cuff tear 4172970, 

Impingement syndrome of shoulder region 

4344500, Derangement of shoulder 45757404, 

Full thickness rotator cuff tear 73564, Disorder 

of shoulder 77630, Adhesive capsulitis of 

shoulder 77644, Articular cartilage disorder of 

shoulder region 77955 

8 
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4024000 Urinary system finding 20 Incomplete emptying of bladder 193020, 

Urinary bladder stone 193520, Mechanical 

complication due to urethral indwelling 

catheter 194847, Poor stream of urine 

4012231, Atrophy of kidney 4058977, Absent 

kidney 4092879, Lower urinary tract 

symptoms 443350, Sign or symptom of the 

urinary system 77673 

8 

4027384 Inflammatory disorder 24 Acute osteomyelitis of pelvic region and or 

thigh 133570, Biceps tendinitis 4000968, 

Systemic inflammatory response syndrome 

associated with organ dysfunction 40479649, 

Rheumatic endocarditis 4169568, Systemic 

inflammatory response syndrome 434821, 

Contact dermatitis due to plants except food 

444375, Tibialis tendinitis 77081, Achilles 

tendinitis 77963, Tuberculosis of vertebral 

column 81496 

9 

435726 Mechanical 

complication of device 

24 Mechanical complication of dialysis catheter 

4070976, Displacement of internal fixation 

device 43022016, Mechanical complication 

due to coronary bypass graft 432499, 

Mechanical complication of device 435726, 

Mechanical complication of cardiac device 

implant ANDOR graft 438297, Mechanical 

complication of peritoneal dialysis catheter 

440302, Mechanical complication of 

genitourinary device implant ANDOR graft 

442012, Breakage of joint prosthesis 80008, 

Mechanical complication of internal joint 

prosthesis 80269, Prosthetic joint loosening 

80286 

10 

43021974 Complication 

associated with device 

21 Disorder of cardiovascular prostheses and 

implants 142026, Complication associated with 

insulin pump 43021246, Infection associated 

with implant 43021258, Complication 

associated with device 43021974, Disorders of 

urogenital prostheses or implants 76887 

5 

442019 Complication of 

procedure 

40 Subcutaneous emphysema resulting from a 

procedure 138056, Disorders of prostheses and 

implants of the nervous system 373105, 

Stenosis due to any device implant ANDOR 

graft 4008710, Complication of artificial skin 

graft and decellularized allodermis 4207606, 

Complication of surgical procedure 434547, 

Complication of gastrostomy 434675, Late 

effect of medical and surgical care 

complication 434814, Foreign body 

accidentally left during a procedure 442018, 

Gastric band procedure complication 45757691 

9 
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40484102 Abnormal finding on 

evaluation procedure 

45 Abnormal results of cardiovascular function 

studies 137989, Imaging of gastrointestinal 

tract abnormal 40482267, Cerebrospinal fluid 

examination abnormal 4065770, Urine 

cytology abnormal 4150384, Abnormal 

findings on microbiological examination of 

urine 4168689, Abnormal cytological findings 

in CSF 4168693, Abnormal results function 

studies of central nervous system 432451, 

Abnormal cervical smear 434165, Atypical 

squamous cells of undetermined significance 

on cervical Papanicolaou smear 434170, 

Electromyogram abnormal 441415, Atypical 

squamous cells of undetermined significance 

on anal Papanicolaou smear 443709 

11 

37311678 Finding of 

abdominopelvic 

segment of trunk 

27 Hypersplenism 192298, Malignant ascites 

192735, Pelvic organ injury without open 

wound into abdominal cavity 195682, 

Contusion of abdominal wall 196569, Lumbar 

spine ankylosis 4002140, Splenic infarction 

4044745, Lower back injury 4151985, 

Intraabdominal and pelvic swelling mass and 

lump 4168222, Closed fracture of lumbar 

vertebra without spinal cord injury 435933, 

Genitourinary tract infection in pregnancy  not 

delivered 74415, Disorder of coccyx 78235 

11 

4339410 Disorder of skeletal 

system 

20 Closed fracture of thoracic vertebra without 

spinal cord injury 316535, Disorder of 

intervertebral disc of thoracic spine 321389, 

Disorder of mastoid 373216, Cervicothoracic 

ankylosis 4002139, Elbow joint effusion 

4117881, Wrist joint effusion 4117883, 

Collapse of thoracic vertebra 4203555, 

Chondrocalcinosis 437064, Articular disc 

disorder of temporomandibular joint 74399, 

Arthropathy associated with a neurological 

disorder 74723, Hypertrophic osteoarthropathy 

74731, Polyarthropathy 75897, Closed fracture 

of vertebral column without spinal cord injury 

77403, Aseptic necrosis of bone 77650, 

Effusion of joint of hand 78834 

15 

43530815 Traumatic injury by 

site 

21 Open wound of forehead without complication 

138896, Open wound of face without 

complication 140259, Abrasion and or friction 

burn of trunk without infection 199192, Open 

wound of head without complication 372765, 

Injury of nose 4024306, Open wound of front 

wall of thorax 4050089, Abrasion of trunk 

4050704, Superficial injury of hand 4086197, 

Laceration of upper arm 4152933, Laceration 

of forearm 4155034, Scalp laceration 4166902, 

Abrasion and or friction burn of multiple sites 

443585, Injury of elbow 444189, Open wound 

of finger with complication 74806, Open 

wound of hand except fingers with 

16 
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complication 75686, Open wound of wrist 

without complication 78593 

 

 

Covariate Balance and Power Analysis Table A.8 

 

 Covariate Balance Power  

k:1 matching 

strategy 

Covariates w/ 

ASMD > 0.05 

Covariates w/ 

ASMD > 0.1 Insomnia Nausea 

1:1 1 0 0.40 0.41 

2:1 2 0 0.55 0.57 

3:1 5 1 0.68 0.69 

4:1 7 2 0.77 0.78 

5:1 8 3 0.84 0.85 

6:1 8 4 0.88 0.90 

 

Evaluation of k:1 matching results are displayed in Table A.6. For each k, we assess covariate balance by the 

number of features with absolute standardized mean difference greater than 0.05 and 0.1. Power analysis was 

conducted for each outcome using the pwrss library in R.1 We evaluated the power of detection of a statistically 

significant coefficient in a logistic regression model with risk ratio of 1.2, with baseline probabilities calculated for 

each outcome. The sample size corresponded to the number of samples available under the k:1 matching strategy. 

We also account for treatment-covariate multicollinearity with an assumption of 20% variation in treatment 

explained by covariates. Due to the infrequency of the SISB outcome, power does not reach an acceptable 

magnitude for values of k considered—at k=4 power is 0.22. Therefore, SISB is excluded from the study analysis. 

Insomnia and Nausea exceed 0.75 power at k=4. Though at k=4, covariate balance has decreased, we make this 

trade off in order to preserve a reasonable chance of effect detection. For the full dataset power was at least 0.99 for 

each outcome.    

 

Matching analysis covariate balance by outcome Table A.9 

 

Outcome N treated N control 

Count of 

covariates w/ 

ASMD > 0.05 

Covariates w/ ASMD > 0.05 

 
1 105 
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Nausea 3,420 13,680 6 

Psychiatry referral, prior ED visit, prior high 

utilization, alcohol related disorders, substance 

related disorders, prior SISB 

Insomnia 3,144 12,576 5 

Psychiatry referral, prior ED visit, alcohol 

related disorders, substance related disorders, 

prior SISB 

 

 

IPTW Distributions by outcome Figure A.10 

 
In figure A.8 we display histograms of the IPTW weights for each outcome. The weights are truncated at 5. The 

IPTW distributions are similar across outcomes with the majority of IPTW density is near 1. The medians for each 

IPTW distribution range from 1.011- 1.012. 

 

 

Figure A.11 follow up visit rate for study inclusion criteria 
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Figure A.9 compares the follow up visit rate of patients with the study inclusion criteria to those with a broader 

MDD definition at 1, 2, and 3 years following meeting inclusion criteria. The Broad MDD population includes 

MDD indication, age 18-90, bipolar and schizophrenia excluded.  

 
Table A.12 Bipolar and Schizophrenia Exclusion codes 

 

Diagnosis Version ICD 

Code 

Description 

Bipolar ICD9 296.* Bipolar I disorder, single manic episode, unspecified 

293.81 Psychotic disorder with delusions in conditions classified elsewhere 

293.82 Psychotic disorder with hallucinations in conditions classified elsewhere 

ICD10 F31.* Bipolar disorder 

Schizo-

phrenia 

ICD9 295.* Simple type schizophrenia, unspecified 

297.* Paranoid state, simple 

298.* Depressive type psychosis 

ICD10 F06.0 Psychotic disorder with hallucinations due to known physiological 

condition 

F06.2 Psychotic disorder with delusions due to known physiological condition 

F20.0 Paranoid schizophrenia 

F20.1 Disorganized schizophrenia 

F20.2 Catatonic schizophrenia 

F20.3 Undifferentiated schizophrenia 

F20.5 Residual schizophrenia 

F20.81 Schizophreniform disorder 

F20.89 Other schizophrenia 

F20.9 Schizophrenia, unspecified 

F21.* Schizotypal disorder 

F22.* Delusional disorders 

F23.* Brief psychotic disorder 

F24.* Shared psychotic disorder 

F25.0 Schizoaffective disorder, bipolar type 

F25.1 Schizoaffective disorder, depressive type 

F25.8 Other schizoaffective disorders 

F25.9 Schizoaffective disorder, unspecified 

F28.* Other psychotic disorder not due to a substance or known physiological 

condition 

F29.* Unspecified psychosis not due to a substance or known physiological 

condition 

 

 

Figure A.13-AUTOC for semi-synthetic outcomes with the Vitamin D Deficiency negative control outcome 
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