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Chapter 1 

 

Overview 

 

 

1.1 Introduction 

 

As biomedical data sources continue to grow in size, complexity, and diversity, so does their potential to 

support research. Frequently collected for health care operations and delivery, such data can be reused to 

accelerate advancements in medicine, genomics, artificial intelligence, and public health1. However, 

realizing data’s full potential depends on its availability. Even the best dataset produces no value if it cannot 

be analyzed. As such, calls for and efforts to share data continue to increase. 

 

Yet sharing more data cannot come at the expense of an individual’s right to privacy2. Biomedical data may 

contain patients’ sensitive health information that could be misused. Therefore, data sharing must include 

appropriate privacy safeguards that are legally compliant, ethically justifiable, and technically feasible. 

 

In the United States, federal and state regulations – such as the Common Rule3, the Health Insurance 

Portability and Accountability Act of 1996 (HIPAA)4, and a rapidly growing collection of consumer data 

protection laws – such as the California Consumer Privacy Act (CCPA)5 – aim to support data sharing while 

preventing privacy intrusions. These laws permit several avenues to share data, depending on whether the 

data subjects can reasonably be identified and the associated risks. First, to share individually identifiable 

information, researchers ideally would obtain data subjects’ informed consent. While respecting subjects’ 

autonomy, obtaining informed consent may be impractical, particularly for large datasets. Restricting the 

shared dataset to consented records may also bias representation, as consenters and non-consenters 

frequently differ on important demographic features6,7. In cases in which the impracticality of obtaining 

consent hinders beneficial research, the data is already available, and the risks to patients is sufficiently low, 

the Common Rule and HIPAA allow identified data to be used for research without consent when the 

governing institution review board (IRB) waives such requirement3,8. HIPAA also contains many exceptions 

permitting the disclosure of unconsented identified data – such as for public health activities, judicial 

proceedings, and law enforcement8. Nevertheless, such exceptions cannot support large-scale data sharing 

while minimizing the privacy risks. Second, HIPAA permits sharing a Limited data set without informed 

consent, in which particular attributes are removed and data users are required to sign a data use agreement8. 

However, the prescribed transformations do not rely on tailored privacy risk assessments, such that they 
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could inadvertently expose patients to privacy risks9, and restricting access to those who sign a data use 

agreement limits the speed and breadth at which knowledge can be gained from the data. Finally, regulations 

permit sharing person-level data without obtaining informed consent and without data use agreements if 

there is little basis to believe the information can be used to identify an individual; that is, if the data is de-

identified.10 Even though de-identification requires obscuring information and cannot ensure individual 

anonymity11, in that de-identification cannot guarantee an individual cannot be re-identified, data stewards 

increasingly turn to de-identification for sharing large datasets. De-identification provides legal flexibility 

– as de-identified data is not considered personally identifiable information or protected health information8 

– to facilitate broad data dissemination and access. 

 

Nevertheless, de-identification’s promise depends on its ability to balance privacy protections while 

supporting the data’s intended use case. Complicating the process is the fact that data transformations that 

reduce subjects’ identifiability also typically degrade data utility (or usefulness). And despite this privacy-

utility tradeoff receiving considerable attention in the past decades – spurring the development of diverse 

privacy models, definitions, implementations, and optimizations12 – new solutions may be required to meet 

emerging needs and support data-driven technological innovation. 

 

De-identification’s propensity for creating data utility disparities presents another challenge to supporting 

meaningful research. De-identification algorithms disproportionately distort more distinguishable records 

compared to less distinguishable records13, where the difference in data utility can be so great that 

significant health disparities among minority populations may be masked14,15 and algorithmic 

discrimination may be exacerbated16,17. Disparities in privacy risks may also exist, where the minority 

populations retain greater privacy risk than the majority population in the de-identified dataset13,15. While 

such inequities carry substantial ethical implications, the privacy research community has not prioritized 

addressing them. The constraints to achieving equitable de-identification are not well understood and de-

identification methods that explicitly consider the distribution of both privacy risk and data utility between 

subgroups of patients have not been developed. 

 

To better support equitable research in diverse applications, this dissertation identifies and addresses several 

limitations of traditional de-identification methods, as illustrated in Figure 1.1. The first research aim 

(shown in blue) focuses on developing and validating a de-identification method that can flex with a 

dynamic dataset, or a dataset that regularly accumulates records at a varying rate, while enabling timely 

updates. This aim was motivated by the need to make COVID-19 pandemic data publicly available to 

support a data-driven pandemic response. However, the experimental results highlight de-identification’s 
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tendency to unequally preserve data utility between subgroups of patients. To better understand the unequal 

benefits afforded by current de-identification practices, the second research aim (shown in red) formalizes 

the data-based constraints to equalizing the privacy protections and data utility retention across patient 

subgroups. I discuss the implications of the fairness constraints and propose a data sharing model that relies 

on external deterrents to privacy intrusions to relax them. To complement the data sharing model, the third 

research aim (shown in green) develops a de-identification method that breaks transformation conventions 

and relaxes privacy guarantees to preserve minority subgroups’ representation better than standard 

approaches. 

 

 

 
 

Figure 1.1. Overview of research aims. 
 

 

I would like to note that alternative privacy enhancing technologies can also support data analytics while 

preserving patient privacy. Examples include secure multi-party computation and homomorphic encryption, 

which mitigate privacy intrusions by letting users compute over the data without giving users access to the 

data itself. While these technologies are gaining in popularity, they suffer from increased computational 

overhead and limit user’s ability to conduct exploratory analyses, preventing the technologies from 
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replacing data sharing altogether. As such, in this dissertation, I focus on how to use de-identification and 

data sharing frameworks to support privacy-preserving data sharing.  

 

 

1.2 Summary of contributions 

 

To support data-driven pandemic responses as well as biomedical research’s need for growing datasets, the 

first aim of this dissertation is to develop an approach to prospectively de-identify dynamic person-level 

datasets. Driven by a privacy risk estimation framework, the approach enables near-real time data sharing, 

while adjusting to the particular privacy risks of a given data sharing scenario and incorporating information 

priorities (i.e., prioritizing which variables should be preserved). Using a combination of real-world 

COVID-19 infection counts18, United States (U.S.) Census statistics19, and simulated data, I empirically 

validate the approach’s ability to both decrease the re-identification risk20 and preserve the evidence of 

underlying infection disparities (i.e., preserve data utility)21 when publicly sharing a COVID-19 disease 

case registry. I also evaluate the fairness of privacy protections and disparity detection utility, where fair is 

considered equality between subgroups of data subjects. I show that standard de-identification methods as 

well as the dynamic de-identification method can unequally expose subgroups to re-identification risk 

and/or mask evidence of their infection disparities. Particularly, I look at racial inequalities as actual 

disparities in infection22, hospitalization23, and mortality24 rates existed among racial minorities in the 

COVID-19 pandemic.  

 

The second aim of this dissertation is to evaluate the constraints to simultaneously achieving the fair 

distribution of risk and utility across groups in a de-identified dataset. Expanding upon preliminary fairness 

investigations for alternative transformation strategies16,25, I formally show that when records start with 

different re-identification risks, it becomes impossible for standard de-identification transformations to 

simultaneously equalize privacy risk and data utility. In fact, the unequal starting points with respect to risk 

imposes a tradeoff between achieving fair privacy and fair utility. Hence, I call the formalization the 

“fairness tradeoff theorem”. I then illustrate how the constraints necessarily induce privacy risk and data 

utility inequalities between racial subgroups in the United States. The mathematical impossibility of 

achieving fairness across both risk and utility forces data stewards to choose between prioritizing equal 

privacy protections and equal representation when sharing de-identified data. While how to solve this 

dilemma merits broader discussion from researchers, community representatives, and policy makers, I 

propose an initial solution here. Specifically, I outline the conceptual design of a data sharing framework, 

called the passport-visa model, in which de-identification data transformations paired with sociotechnical 
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safeguards allow more equal representation in a de-identified dataset while facilitating access to trustworthy 

users. 

 

While the passport-visa model relaxes the fairness constraints defined by the fairness tradeoff theorem, it 

relies on sociotechnical safeguards that can reduce data accessibility. To complement this data sharing 

model and relax data accessibility constraints, for the third aim of this dissertation, I develop a de-

identification method, called Altruistic Masking, that focuses on improving minorities’ representation in a 

de-identified dataset. This method is informed by the fairness tradeoff theorem, which makes a particular 

assumption derived from standard de-identification models and algorithms: that data transformations are 

deterministic. For example, all records corresponding to 20-year-old females would be transformed in the 

same manner by an algorithm. The deterministic constraint prevents potential cooperation between 

subgroups of records in a manner that more equally distributes the privacy and utility benefits of de-

identification. As such, Altruistic Masking leverages non-deterministic transformations to allow the 

majority subgroups’ records to contribute to the minority subgroups’ privacy protections such that the 

minority subgroups retain greater data utility. Notably, however, this comes at the cost of certain privacy 

guarantees provided by standard de-identification models. I develop an algorithm to implement such an 

approach and show how the resulting data more equally preserves group representation and subsequently 

better supports outcome disparity detection compared to state-of-the-art de-identification methods.  

 

 

1.3 Dissertation structure 

 

The remainder of this dissertation is as follows. Chapter 2 reviews the related work. In Chapter 3, I develop 

and validate the dynamic de-identification approach. The contents expand upon the publications dedicated 

to the development of the approach20 and to the evaluation of its ability to support infection disparity 

detection21. In Chapter 4, I investigate and define constraints to achieving fairness with respect to privacy 

risk and data utility in de-identified data and propose alternative data sharing strategies. Chapter 5 develops 

the Altruistic Masking de-identification method and evaluates the utility of the resulting data. Finally, in 

Chapter 6, I summarize the contributions of the dissertation, discuss their implications, and highlight future 

directions. 
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Chapter 2 

 

Literature Review 

 

 

2.1 Privacy legislation 

 

HIPAA was initially designed to ensure the continuation of individuals’ health insurance coverage between 

jobs. The U.S. law additionally sets standards for the electronic transfer of health information. Among those 

standards is the Privacy Rule, which was finalized in 2002 and implemented in April 2003. Intended to 

strike a balance between preserving patient privacy and supporting meaningful research, the Privacy Rule 

outlines standards to regulate “the use and disclosure of individuals’ health information—called ‘protected 

health information’ by organizations subject to the Privacy Rule — called ‘covered entities’”8. The Rule 

also specifies “standards for individuals' privacy rights to understand and control how their health 

information is used.”8 Covered entities include health plans, health care clearing houses, and health care 

providers. Since the passage of the HIPAA Omnibus Rule in 2013, the regulations additionally extend to 

covered entities’ “business associates,” or those who enter a contractual relationship as a business associate 

with a covered entity26. 

 

HIPAA provides for several approaches to share personal health information for research purposes. 

Identifiable health information can be shared if 1) the patients provide authorization to use and disclose 

their information or 2) an institutional review board (IRB) approves a waiver of individuals’ authorization. 

 

Alternatively, HIPAA permits sharing a Limited data set of person-level information without individual 

authorization. Instead, to share a Limited data set, the attributes outlined in Table 2.1 must be removed and 

the data recipient must sign a data use agreement prior to gaining access. 

 

Finally, HIPAA permits sharing individual health information without individual authorization or a data use 

agreement when the data is de-identified. HIPAA does not consider de-identified data protected health 

information8. The de-identification standard may be achieved by one of two alternative implementations: 

Safe Harbor and Expert Determination. Safe Harbor requires the removal of an expanded set of identifiers, 

relative to the Limited data set standard (Table 2.1). In addition to removing these fields, for a dataset to 

meet the Safe Harbor standard, “the covered entity [must] not have actual knowledge that the information 

could be used alone or in combination with other information to identify an individual who is a subject of 
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the information.”27 Expert Determination affords a more flexible approach to de-identification, where 

instead of a list of fields to be removed, the data steward may determine health information is not 

individually identifiable if “ [a] person with appropriate knowledge of and experience with generally 

accepted statistical and scientific principles and methods for rendering information not individually 

identifiable: 

 

• Applying such principles and methods, determines that the risk is very small that the information 

could be used, alone or in combination with other reasonably available information, by an 

anticipated recipient to identify an individual who is a subject of the information; and  

• Documents the methods and results of the analysis that justify such determination”27 

 

HIPAA’s federal regulation preempts state privacy laws, unless state laws require more stringent privacy 

protection28. In other words, HIPAA provides a minimum standard for protection. In the U.S., a growing 

number of states have passed comprehensive privacy laws, including California, Virginia, Utah, Colorado, 

Connecticut, and Tennessee5,29–32. These laws grant consumers the opportunity to control certain aspects of 

their personal information collected by businesses, such as the right to access and delete such data 

maintained by certain businesses33. Notably, all state laws provide exemptions for data covered by HIPAA 

and permit the dissemination of de-identified data.  

 

It could be argued that de-identifying data according to HIPAA’s standard also satisfies the Common Rule’s 

regulations, the primary regulations governing human subjects research in the U.S. Data subjects that are 

not identifiable in the data may be recategorized as “non-human” subjects under the Common Rule, and 

therefore the requirement to obtain human research subjects’ informed consent may not apply34. 

 

Outside the U.S., the European Union’s General Data Protection Regulation (GDPR) is arguably the most 

influential privacy legislation. Inspiring the legislation passed by several states, GDPR comprehensively 

regulates the storage and use of any data related to people in the European Union35. Similar to the U.S. laws 

permitting the dissemination of de-identified data, GDPR regulations do not apply to anonymous data. 

While de-identification as defined by HIPAA and anonymization as defined by GDPR both involve 

transforming data in a way that reduces the risk a data subject can be re-identified, GDPR defines 

anonymized data as that which has irreversibly rendered data subjects unidentifiable36,37. De-identification, 

on the other, only requires the re-identification risk to be “very small.”27 In this dissertation I focus on de-

identification as defined by HIPAA for sharing person-level information. 
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Table 2.1. Suppressed attributes for Limited data set and Safe Harbor standards27,38 

 

Suppressed Attribute Limited data set Safe Harbor 

Names X X 

Telephone number X X 

Fax numbers X X 

E-mail addresses X X 

Social Security numbers X X 

Medical record numbers X X 

Health-plan beneficiary numbers X X 

Account numbers X X 

Certificate and license numbers X X 

Vehicle identifiers and serial numbers, including license plate numbers X X 

Device identifiers and serial numbers X X 

Web Universal Resource Locators (URLs) X X 

Internet Protocol (IP) address numbers X X 

Biometric identifiers including fingerprints and voice prints X X 

Full-face photographic images and any comparable image X X 

Postal address information, other than town or city, State, and Zip code X  
All geographic subdivisions smaller than a state, including street address, 
city, county, precinct, ZIP code, and their equivalent geocodes, except for 
the initial three digits of the ZIP code if, according to the current publicly 
available data from the Bureau of the Census: 

A. The geographic unit formed by combining all ZIP codes with the 
same three initial digits contains more than 20,000 people; and 

B. The initial three digits of a ZIP code for all such geographic units 
containing 20,000 or fewer people is changed to 000 

 X 

All elements of dates (except year) for dates that are directly related to an 
individual, including birth date, admission date, discharge date, death date, 
and all ages over 89 and all elements of dates (including year) indicative 
of such age, except that such ages and elements may be aggregated into a 
single category of age 90 or older 

 X 

Any other unique identifying number, characteristic, or code, unless: 
A. The code or other means of record identification is not derived 

from or related to information about the individual and is not 
otherwise capable of being translated so as to identify the 
individual; and 

B. The covered entity does not use or disclose the code or other 
means of record identification for any other purpose, and does 
not disclose the mechanism for re-identification. 

 X 
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2.2 Privacy risk 

 

Individual privacy can be infringed upon through several types of disclosures11. First, identity disclosure 

occurs when a data recipient can re-identify an individual within a dataset. Second, attribute disclosure 

occurs when the recipient learns confidential information, such as HIV or cancer status, pertaining to a data 

subject. Learning such information may or may not require an accompanying identity disclosure. Third, 

membership disclosure occurs when the data recipient can determine an individual is a subject in the dataset, 

even if they do not know which record corresponds to the individual. This can also reveal potentially 

confidential information regarding the individual. For instance, if the dataset contains records of COVID-

19 disease cases, then learning an individual resides in the dataset reveals they have had COVID-19. 

 

Of the three main types of disclosures, the HIPAA Privacy Rule primarily regulates against identity 

disclosures, which can reveal the greatest amount of personal information. As such, de-identification via 

Expert Determination requires a re-identification risk assessment. The assessment measures the likelihood 

a data recipient can successfully re-identify data subjects, with respect to the recipient’s assumed 

background knowledge and how that knowledge can exploit the distinguishability of individual records. 

The assessment informs how to develop and tune de-identification models to share useful data while 

minimizing the re-identification risk. The assessment, and subsequently the protections, can be extended to 

consider attribute and membership disclosures as well39. Though it is often assumed that an adversary has 

perfect background knowledge when designing data sharing policies, several studies have demonstrated the 

inherent difficulty to obtain such information9,40. In fact, Xia et al.41 showed how such worst-case 

assumptions effectively overestimate the privacy risk. Thus, de-identification models need not provide 

perfect protection to reasonably mitigate the privacy risk. 

 

The attributes present in the dataset vary in terms of the re-identification risk they pose. Directly identifying 

attributes, such as name or address, must be removed from the dataset entirely. Quasi-identifying attributes 

are those that may combine to distinguishably represent individual data subjects and can be found in 

external, identified datasets42. For example, it has been estimated that about 63% of the United States 

population can be uniquely represented by their combination of sex (Male/Female), 5-digit ZIP code, and 

full date of birth43. Were a bad actor to obtain a dataset containing people’s names, sex, ZIP code, and date 

of birth (such as in a voter registration list9), or were they to know that information for a target individual, 

the bad actor could attempt re-identification on those quasi-identifying attributes. Figure 2 provides an 

example of such a re-identification attack. Finally, non-identifying attributes are those that can be shared 

without increasing an individual’s re-identification risk.  
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Figure 2.1. Example of a re-identification attack. (Left) Dataset wih direct identifiers, such as name, 
removed. (Right) Attacker’s background knowledge, which includes the name, date of birth, sex, and 5-
digit ZIP code for two individuals in the dataset. The unique combination of the quasi-identifying attributes 
{date of birth, sex, 5-digit ZIP} allows the attacker to re-identify record 3 as John Doe. The fact that records 
4 and 5 share the same set of quasi-identifying attributes makes it more difficult for the attacker to correctly 
re-identify Jane Roe. 
 

 

2.3 De-identification models 

 

One of the more well-studied and applied de-identification models is k-anonymity44. The k-anonymity 

model is designed to mitigate re-identification of individual records by ensuring that each record is 

indistinguishable, in terms of their combination of quasi-identifying values, from at least k – 1 other records. 

In other words, if we define the quasi-identifier as an individual’s set of quasi-identifying feature values 

(e.g., age, race, county of residence) and define each group of records with the same quasi-identifier as an 

equivalence class, a k-anonymous dataset is one in which each equivalence class contains k or more records. 

As it has been shown that the combination of only a few quasi-identifying features can uniquely represent 

the majority of large population datasets43,45,46, k-anonymity is often achieved by generalizing quasi-

identifiers to coarser representations and/or suppressing quasi-identifiers corresponding to small 

equivalence classes44,47. The generalization options follow a hierarchical structure (see Figure 3.4), where 

moving up the hierarchy generalizes the information to increase privacy at the cost of utility47. 

 

A k-anonymous dataset guarantees that every record in a dataset falls into an equivalence class size of k or 

greater. This, in turn, guarantees the probability an adversary can re-identify any individual in the dataset 



 

11 

on the first attempt is less than or equal to 1/k; and this upper bound holds against adversaries’ of varying 

background knowledge. For instance, the worst-case scenario against a strong adversary assumes 1) the 

adversary knows a target individual’s record is in the dataset, 2) the adversary knows all of the target 

individuals’ quasi-identifying features, and 3) the target individual resides in an equivalence class of size k. 

Since the target individual’s quasi-identifier looks like that of k – 1 other records, the probability the 

adversary re-identifies the individual on the first attempt is 1/k. Alternatively, the adversary could link the 

quasi-identifiers between the shared dataset to an identified population register, such as a voter registration 

list44,48. This re-identification method is often referred to as a marketer attack in the privacy literature48. 

Here, each record’s probability of being re-identified on the first attempt is one over the size of the 

equivalence class in the population. As the size of each equivalence class inside the dataset must be equal 

to or larger in size in the population, the probability an individual record is correctly re-identified on the 

first attempt is bounded to 1/k. Regardless of the attack method, were an adversary to be able to repeat a re-

identification attack, the probability of success may be greater than 1/k in subsequent attempts. Still, as 

shown by Xia et al.49, the expected number of attempts required to correctly re-identify a patient is directly 

proportional to k. 

 

Notwithstanding its intuitive approach to preserving patient privacy while sharing accurate information, k-

anonymity has some notable drawbacks. Namely, k-anonymity is susceptible to homogeneity attacks and 

background knowledge attacks39. In such attacks, an adversary can still learn potentially sensitive 

information (e.g., cancer or HIV status) about a target individual without correctly re-identifying them. For 

example, if 1) the adversary knows the target individual’s quasi-identifying features and 2) each record in 

the target individual’s equivalence class is reported to have cancer, the adversary can infer the target 

individual must have cancer from the homogeneous distribution. The adversary may also possess sufficient 

background knowledge to correctly infer the target individual’s sensitive attribute, even when the 

distribution of sensitive values within the equivalence class is non-homogenous. To alleviate such privacy 

disclosures, models such as l-diversity are applied in conjunction with k-anonymity to reduce the 

distinguishability and homogeneity of sensitive values39. 

 

An alternative to k-anonymity is statistical confidentiality methods, one of the most popular being the 

differential privacy model50. Instead of generalizing quasi-identifiers to make individual records less 

distinguishable, the model protects patient privacy by injecting a parameterized amount of noise into the 

data. Initially designed for sharing statistical aggregates, differential privacy provides formal privacy 

guarantees to every individual in a dataset. Namely, when an adversary queries a database, it is guaranteed 

the adversary cannot learn much more about any individual when the individual’s data is included in the 
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query calculation than when the individual’s data is not included. The difference in knowledge gained is 

controlled by a tunable parameter, e.  

 

A third alternative for privacy-preserving data sharing is synthetic data generation. Recently gaining in 

popularity, synthetic data generation involves synthesizing records that mimic the statistical properties of a 

dataset of interest that can be shared in place of the actual records. One of the growing collection of data 

synthesis methodologies is generative adversarial networks (GAN), in which one neural network model 

synthesizes fake records while the other discriminates between the real and fake records51. As the models 

compete, the synthesizing model improves performance until the fake records are relatively 

indistinguishable from the original records.  

 

Each of the aforementioned privacy models has inherent weaknesses. At a cursory level, k-anonymity may 

excessively reduce the granularity of the data while potentially exposing individuals to sensitive attribute 

disclosure39,52. Differential privacy was initially designed for sharing statistical aggregates instead of 

person-level data, and injecting noise may not be appropriate for every data sharing scenario53,54.  And while 

synthetic data is attractive for its aim to simulate the statistics of a dataset without sharing real patient 

records, its privacy risks are still not fully understood. Currently, membership and attribute disclosures are 

the most obvious concern, but there is still potential for the synthesizer to overfit to the real data and 

subsequently enable re-identification55–57. Nevertheless, in this work, I will focus on the k-anonymity model 

and its relaxed counterparts (i.e., marketer risk-guided generalization and suppression48) for several reasons. 

First, k-anonymity is commonly applied in practice to person-level datasets to the extent that federal and 

state legislation have established standard values of k58–60. Second, k-anonymity protects against identity 

disclosures more consistently than differential privacy and synthetic data generation57,61, satisfying the 

HIPAA Privacy Rule’s regulations. 

 

 

2.4 Privacy-preserving data sharing architecture 

 

Since de-identified data is not considered protected health information under HIPAA8, it can legally be 

shared without constraint. De-identified data can even be published online such that it is openly accessible 

and downloadable. While proponents of the sharing data in the public domain emphasize its ability to 

facilitate research, increasing accessibility in this manner also potentially increases the risk the data will be 

misused. Bad actors have equal access to such data, and any successful re-identifications would likely go 

undetected (unless they publish the results in an attempt to discredit the organization that published the 



 

13 

data) and unpunished (as the privacy violation is generally attributed to the publishing organization for not 

properly de-identifying the data). As such, data sharing initiatives often supplement de-identification with 

sociotechnical mechanisms to deter and further mitigate the risk of re-identification11,62. Examples of such 

mechanisms include requiring users to sign a data use agreement, requiring users to obtain institutional 

representation, imposing a financial cost for access, and limiting users’ access to the data to be within a 

monitored analytics environment with constraints on which operations a user can perform.  

 

Modeled in several investigations by Wan et al.63–65, the addition of sociotechnical mechanisms can 

effectively increase the penalty for data misuse in a manner that rational actors are disincentivized to attempt 

re-identification. The sociotechnical safeguards also allow for more granular and sensitive data to be shared, 

as exemplified by the difference between HIPAA’s Limited data set and Safe Harbor requirements27, while 

maintaining the re-identification risk below a tolerable threshold. Thus far, the combination of de-identified 

data with additional sociotechnical safeguards have effectively prevented re-identification66 and have been 

adopted by several data sharing initiatives. One example is MIMIC, a freely-available database of de-

identified electronic health record, medical imaging, and clinical notes67–69. Another is the National Institute 

of Health’s (NIH) All of Us Research Program, which is currently developing a research platform built on 

de-identified electronic health record, survey, and genomic data from diverse patient populations70. 

However, controlling access reduces the overall accessibility of the resource and may produce access 

inequities71. As such, many data sharing initiatives create tiers of access to provide varied offerings that 

each maintain patient privacy while varying the tradeoff between data utility and data accessibility. For 

example, All of Us has three tiers: a public tier, at which any user can access aggregate counts of the 

database; a Registered Tier, at which approved researchers gain access to a curated dataset of person-level 

data; and a Controlled Tier, at which researchers who obtain additional approvals gain access to more 

detailed information than provided in the Registered Tier as well as to genomic data72. 

 

 

2.5 De-identification algorithms 

 

There is an inherent tradeoff between patient privacy and data utility. Decreasing patient distinguishability 

requires distorting the raw data, but distortion degrades the retained information. As such, there has been a 

substantial amount of research in developing algorithms to minimize the distortion necessary to achieve k-

anonymity. However, it has been shown that the problem of finding the minimal amount of generalization 

is an NP-hard problem. As such, heuristic methods are often used to approximate the global optimum. 
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k-anonymity algorithms generally make several assumptions. First, they assume that generalization options 

for each quasi-identifying feature follow a hierarchical pattern, where moving up the hierarchy increases 

privacy at the cost of utility. Second, they often assume that increased generalization degrades utility. 

Optimization typically involves an information-theoretic cost function, where generalization increases the 

information lost. The cost function may consider the number of levels up each generalization hierarchy are 

taken47, or the divergence between the original data and the generalized data6,73,74. Third, the algorithms 

frequently assume all data records of a static dataset have been accumulated and are ready for dissemination. 

This assumption is particularly problematic for sharing infectious disease surveillance data or any other 

dynamic dataset with frequent updates, motivating the work in Chapter 3. Minimizing the generalization of 

the current version of a dataset may limit the data sharer’s ability to share updated information in the future. 

Moreover, waiting to accumulate records before retrospectively designing the data-sharing policy delays 

publishing the updated dataset, limiting the public’s situational awareness75–77. Finally, algorithms assume 

generalization and suppression transformations are deterministic, in that every record in an equivalence 

class prior to de-identification is transformed in the same manner by the de-identification algorithm. As I 

show in Chapter 4, this assumption constrains an algorithm’s ability to distribute risk and utility more 

equally between subgroups of records. In Chapter 5, I show how rescinding this assumption provides the 

flexibility to improve fairness. 

 

Some of the most influential k-anonymization algorithms include Sweeney’s original Datafly algorithm78, 

Sweeney’s theoretical MinGen algorithm47, Bayardo and Aggarwal’s heuristic-based search algorithm79, 

LeFevre’s Mondrian algorithm80, and El Emam and Dankar’s optimal lattice anonymization (OLA) 

algorithm6. The Mondrian algorithm, frequently used as a standard by which new algorithms are compared, 

uses a greedy search to partition quasi-identifiers into groups with k or more records and approximate the 

optimal local recoding for the dataset80. Local recoding variably generalizes individual records’ quasi-

identifier within the dataset, whereas global recoding applies the same generalization to all records in the 

dataset. Instead of a greedy search, the OLA algorithm leverages the monotonicity of generalization 

hierarchies to search a lattice of potential generalizations and identify the globally optimal global recoding6. 

OLA can apply any monotonic information loss measure, can use the loss measure to preferentially preserve 

certain features according to user-defined information priorities, and supports suppression of complete 

records to maximize the granularity of the remaining records. Notwithstanding their ability to guarantee k-

anonymity while minimally distorting the data compared to other algorithms, Mondrian and OLA were not 

designed for dynamic datasets. They do not account for how additional records may change the optimal 

generalization. 
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k-anonymization algorithms designed for dynamic datasets can be categorized into continuous data 

publishing or sequential data publishing applications. Continuous data publishing considers incrementally 

updating the shared dataset with the addition and deletion of records. Sequential data publishing involves 

sequentially sharing different subsets of attributes from the same underlying table. For continuous data 

publishing, Byun et al.81 initially demonstrated the disclosures that can occur when repeatedly applying 

standard k-anonymity algorithms to a monotonically increasing dataset. Pei et al.82 later introduced a 

method to k-anonymize such datasets, called “monotonic incremental anonymization.” Similar to the 

Mondrian algorithm, the accumulating records increase the sizes of the equivalence classes until they can 

be split into more specific quasi-identifiers. For datasets where records are removed and deleted, Xiao and 

Tao developed the m-invariance model, which adds counterfeit records to achieve k-anonymity83. Several 

extensions of m-invariance have been proposed to consider more complex dynamic datasets84,85. For 

sequential data publishing, Wang and Fung developed an algorithm to maintain k-anonymity against 

potential join attacks via global recoding86. Shmueli et al.87 extended this work with local recoding, while 

also allowing for the addition of records to the dataset. These continuous and sequential data publishing 

algorithms contribute to the theoretical foundations for achieving k-anonymity in dynamic datasets; 

however, they still require obtaining records prior to advising how to generalize the dataset. This can delay 

dataset updates and prevent long-term policy planning for maximum data utility. Moreover, these 

algorithms may be difficult to apply in practice.  

 

Notably, no k-anonymity algorithm, for static or dynamic datasets, explicitly considers how the de-

identification transformations may disproportionately mask or expose particular subgroups. Without 

considering fairness, the algorithms remain susceptible to inadvertently distributing privacy protections 

and/or utility in an unequal manner. 

 

 

2.6 The distribution of risk and benefits 

 

To incorporate the principle of fairness into data sharing, de-identification should explicitly consider both 

the distribution of the privacy risk across records as well as the extent to which de-identification algorithms 

mask individuals and groups. For example, Xu and Zhang demonstrated how, in a Pennsylvania inpatient 

dataset, non-White patients were more uniquely represented than White patients15. If the dataset was not 

de-identified, non-White patients would be exposed to greater re-identification risk. At the same time, they 

showed how applying the Texas de-identification procedure (a rule-based policy similar to Safe Harbor) 

induced substantially greater information loss among non-White patients than White patients. Furthermore, 



 

16 

the authors showed in a follow-up study how k-anonymity and differential privacy can mask disparities 

and/or create false disparities in dependent variables14. Their work implies an inherent tradeoff between the 

equitable distribution of the privacy risk and the equitable distribution of de-identification transformations. 

 

The differential accuracy between group representation imposed by de-identification algorithms not only 

affects the evidence of health disparities; it can also influence the development of fair machine learning 

(ML) models. For example, consider the scenario in which the de-identification algorithm removes the 

protected attribute from the dataset. This would impose one of the initial approaches to mitigating 

algorithmic bias via data pre-processing, referred to as fairness through unawareness88. Without seeing it, 

the model should hypothetically be able to assign a prediction independent of the protected attribute. 

However, protected attributes may be highly correlated with other features and the outcome (e.g., ZIP code 

correlating with race and ethnicity), making it difficult to completely blind the algorithm to the protected 

attribute89. Kleinberg et al.90 proved the mathematical limitations of fairness through unawareness, while 

showing how defining race-specific case-definition thresholds led to a more racially fair model than a 

racially unaware model. As such, algorithmic bias mitigation strategies that require access to the protected 

attribute hold greater promise to support algorithmic fairness. De-identification needs to make protected 

attributes available for health disparity research and ML model development. 

 

Research investigating the tradeoffs between privacy, utility, and fairness in the context of k-anonymity 

have been limited. Outside this dissertation, Xu and Zhang’s studies are the only to consider how 

generalization and suppression mask health disparities14,15. Recently, Wan et al.63 investigated how to 

incorporate a fairness constraint with a game theory-driven de-identification algorithm. The results 

identified a tradeoff between achieving fair privacy protections and fair utility retention between groups. 

Chester et al.91,92 also published two studies evaluating the effect of k-anonymity via generalization on 

developing fair ML models. They first investigated the interaction between k-anonymization, accuracy bias 

(unfairness), and inherent class imbalances in the dataset.91 They then investigated how k-anonymization 

impacted the effect of resampling to mitigate ML model bias.92 These studies provided evidence that k-

anonymization can weaken the effect of resampling on improving model fairness, but the interaction is 

complex. There was no clear correlation, for instance, between the value of k and fairness in prediction 

performance. This is likely due to the variability in correlation between the outcome and the quasi-

identifying attributes – it is possible they are not correlated at all. Moreover, if a quasi-identifying attribute 

is correlated with the outcome, it is still not guaranteed that a more granular representation of the attribute 

would improve model performance. Similar to other feature engineering, it could be that such an attribute 

needs to be generalized to a coarser representation for the model to capture its predictive signal. As such, 
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the impact of k-anonymity via generalization and suppression on ML prediction performance is likely to be 

nuanced and vary between datasets and applications. Nevertheless, the more de-identification can preserve 

data granularity and group representation, the more flexibility ML practitioners will have to develop 

accurate and fair predictive models. 

 

In contrast to k-anonymity, there have been many studies investigating the impact of differential privacy on 

fairness, with a particular focus on algorithmic fairness16. Zhu et al.93 and McGlinchey et al94. demonstrated 

how post-processing functions, such as non-negativity post-processing as applied to the U.S. Census data 

or histograms of populations counts within a dataset more generally, can induce additional bias into the 

data. The noise introduces skewed residual errors into the population counts, which Steed et al.17 showed 

could lead to inequities in Census-guided funding initiatives. Pujol et al.95 demonstrated that differentially 

private versions of the data can disproportionately impact smaller groups. One solution they proposed was 

to allocate additional privacy budget to groups at risk of disparate utility loss; however, without 

guaranteeing the initial privacy budget will be met. Otherwise, methods to mitigate the bias induced by 

differential privacy have focused on modifying the Differential Privacy Stochastic Gradient Descent (DP-

SGD) framework16. For example, Xu et al.96 proposed varying levels of privacy transformations across 

different protected groups to reduce accuracy disparities. However, improving fairness with respect to 

utility disproportionately distributed the privacy risk. Therefore, Tran et al. 97 proposed the addition of a 

fairness constraint to the DP-SGD framework to reduce excessive privacy risk differences across groups.  

 

There have also been several studies investigating the fairness of synthetic data generation. Bhanot et al.98 

showed how a data synthesizer may produce data in which historically marginalized groups are under-

represented. There have been several efforts to develop GAN-based synthesizers that mitigate bias in 

representation and ML model performance.99,100 However, without standard benchmarks for measuring 

privacy of utility of synthetic data57, it is unclear how improving fairness in representation may affect the 

fairness with respect to privacy protections. For example, Cheng et al.25 explored how incorporating 

differential privacy into synthetic data generation, with the goal of improving privacy protections, led to 

less fair ML model performance. If increasing privacy protections reduced model fairness, it is likely the 

converse is true. 

 

The insights provided from differential privacy and synthetic data generation are instructive, highlighting 

the tradeoffs between privacy risk, overall utility, fair privacy risk, and fair utility. However, the 

investigations have not sufficiently formalized the relationship between fairness with respect to privacy and 

fairness with respect to utility. Also, as mentioned above, the privacy risk as defined by differential privacy 
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may not directly correlate to re-identification risk as defined by HIPAA, and the privacy risks of synthetic 

data are still being worked out. The difference between how differential privacy, synthetic data generation, 

and generalization and suppression may induce bias into the data is also likely to be nuanced. And since 

generalization and suppression are so frequently applied to real-world biomedical data sharing initiatives, 

such de-identification methods merit further investigation. 

 

 

2.7 Health disparities and data representation 

 

The novel coronavirus 2019 (COVID-19) pandemic disproportionately impacted certain groups of people. 

McLaren24 found racial and ethnic minorities to have disproportionately high COVID-19 mortality rates in 

Spring 2020. Rossen et al.101 observed similar results comparing weekly, all-cause mortality rates in 2020 

to those in 2015-2019. They calculated that the number of deaths of Hispanic-Latino individuals increased 

by 53.6% on average in 2020. American Indian/Alaskan Native (AI/AN) persons, Black persons, and Asian 

persons experienced 28.9%, 32.9%, and 36.6% average increases, respectively. The authors also found 

notable increases in deaths for age groups 25+, with a contrasting decrease (over 2%) in deaths for 

individuals less than 25 years of age. Levin et al.102 discovered an exponential relationship between age and 

the infection fatality rate (IFR), where IFR for children under 10 was 0.002%, and 15% for individuals age 

85 and older. Other studies found disparities in infection22 and hospitalization rates23,103 as well. 

 

In several instances, disparities have been identified early enough to enable targeted interventions. The 

most common example is the state of Michigan, which found imbalanced infection and mortality rates 

between racial and ethnic groups early in the pandemic. The state responded by increasing testing resources 

and access to primary care physicians to minority subpopupulations104,105. Thanks in part to these measures, 

from April to November 2020, the percentage of COVID-19 cases in Michigan corresponding to African 

Americans dropped from 40.7% to 8%106. 

 

Yet, investigations into the differential impact of COVID-19 have been stifled limitations in the data. For 

instance, McLaren’s study revealed that the disproportionate mortality rates in minority groups peaked by 

summer 2020 before dissipating by the end of fall. The study also found that adjusting for occupation, 

education, income, and poverty rates reduced the effect for Asian Americans, but not for other minorities. 

The disparities were evolving over the course of the pandemic; however, McLaren could not identify the 

source of the transient effects. Due to the unavailability of person-level demographic information, he had 

to rely on cumulative death counts by county and county-level demographic information24. The dearth of 
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publicly available COVID-19 data with racial and ethnic information is widespread. Gross et al.107 found 

that only 28 states, and New York City, broke down COVID-19 mortality data by race and ethnicity. Only 

8 states provided datasets with <5% missingness. The early detection of disparities by public health 

researchers, as well as retrospective investigations of their sources, requires the publication of more 

informative person-level COVID-19 data. 

 

Though the work in this dissertation was initially motivated by the COVID-19 pandemic (see Chapter 3), 

disparities in health outcomes and data representation extend far beyond it. Minority groups – whether 

defined by race, ethnicity, gender identity, geographic location, educational attainment, or other 

demographic features – are often underrepresented in research initiatives. This has been due to differences 

in participation, recruitment, and consent; motivated, in part, by mistrust in medical research following 

unethical research practices6,108–110. The lack of diversity has subsequently limited the external validity of 

research findings and the benefit received among such populations111,112. Furthermore, underrepresented 

minorities have relatively poor health care access and suffer worse health outcomes relative to the majority 

groups113,114. Therefore, as representative data is critical to the pursuit of understanding health disparities 

and achieving health equity115–117, initiatives such as the NIH’s All of Us Research Program have sought to 

collect and share data on more diverse patient populations70. However, the question that remains and the 

question this dissertation investigates is: Can de-identified data sufficiently preserve minorities’ 

representation to support such pursuits? 
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Chapter 3 

 

Dynamically adjusting case-reporting policies 

 

 

3.1 Introduction 

 

The COVID-19 pandemic put a spotlight on infectious disease surveillance systems118 and the importance 

of making such information widely accessible119. The data produced by these systems contains important 

information regarding who is infected and when they were diagnosed and may additionally include 

information regarding potential risk factors and outcomes. Such data can fuel a wide variety of public health 

research endeavors. For instance, the data can be used to model disease transmissibility and simulate 

potential interventions76,120–122. It can be used to identify the pandemic’s disproportional impact on certain 

subpopulations and the sources of such disparities24,123. Furthermore, it can provide the public with 

situational awareness of outbreaks75–77. As such, an effective data-driven pandemic response depends on 

the accessibility of up-to-date infectious disease surveillance data. 

 

Despite the rapid growth in the volume and diversity of epidemiological resources and the significant efforts 

to advance surveillance infrastructure during the pandemic124,125, public data sharing on a wide scale 

remained limited126. As described Section 2.7, much of the publicly available data in the United States 

(U.S.) lacked important demographic information (e.g., race or ethnicity)75. The data that included such 

information were typically limited to aggregate counts at the state level24,75,123. Moreover, most of the 

initiatives that formed patient-level COVID-19 data repositories – such as the NIH’s National COVID 

Cohort Collaborative (N3C)127, the Datavant COVID-19 Research Database128, the Centers for Disease 

Control and Prevention’s (CDC) COVID-19 Case Surveillance datasets129–131, and the Global.health data 

science initiative132 – were not readily open to the public or did not include data shared in real time124. 

 

One of the primary factors that limited the public availability of person-level surveillance data with 

demographic information was concerns about an individual’s right to privacy. Public health authorities often 

lacked the resources to de-identify the data in-house and thus, citing privacy concerns, refused to share data 

directly with researchers133,134. Hence, the reliance on sharing aggregated counts through dashboards.  

 

Data sharing initiatives that had access to the person-level data and the resources to de-identify the data 

were also stifled by the rigidity of standard de-identification methods to publish useful data. One of the data 
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access tiers for N3C, for example, de-identified the data following Safe Harbor requirements135. However, 

Safe Harbor requires hiding epidemiologically critical factors, such as reducing the granularity of dates of 

events to their year27, which renders such a policy useless for characterizing infectious disease transmission. 

As such, N3C created another access tier that shared a Limited data set, thus requiring, under HIPAA, that 

users first sign a data use agreement to gain access.127 The alternative to Safe Harbor or sharing a Limited 

data set is to de-identify the data according to HIPAA’s Expert Determination implementation. For example, 

the CDC followed Expert Determination by k-anonymizing its COVID-19 surveillance datasets131. 

However, for reasons described in Section 2.5, standard de-identification methods that follow Expert 

Determination do not consider the nuances of pandemic data sharing and thus hinder the ability to share de-

identified data with maximal public health utility. The CDC’s datasets, for example, were consistently 

generalized in the same manner, regardless of the opportunity to share more granular information, and were 

updated on a monthly or bi-monthly basis131. To meet the needs of pandemic sharing, a more tailored de-

identification method must be developed. 

 

In this chapter, I introduce an approach to adaptively generate policies to publicly share de-identified 

patient-level epidemiological data in near real-time. Here, a policy defines the level at which each quasi-

identifying attribute is generalized. The approach is driven by a privacy risk estimation framework, which 

simulates disease cases to estimate the longitudinal privacy risk of sharing infected individuals’ data under 

a given generalization policy, in the absence of actual patient data. The approach periodically adjusts the 

policy applied, according to the forecasted re-identification risk, to allow the data sharer to adapt data 

granularity according to the influx of new patient records while simultaneously allowing periods of 

consistent quasi-identifier representation. I specifically apply the framework to illustrate how policies could 

be developed to share COVID-19 patient health information against adversaries who attempt patient re-

identification with varying levels of background knowledge. 

 

The chapter is structured as follows. First, I describe the privacy risk estimation framework and the dynamic 

policy approach. I then evaluate the privacy protections afforded by the dynamic policy using real-world 

COVID-19 disease case counts. I then evaluate the fairness of the privacy protections the dynamic policy 

provides, in terms of the distribution of privacy risk across racial subpopulations. Next, I evaluate the utility 

of the data shared via the dynamic policy approach. Specifically, I determine how well the data enables the 

detection of disproportionately elevated infection rates within a specific subpopulation. Such COVID-19 

disparities fluctuated longitudinally, emerging and dissipating as subpopulation outbreaks23,24. As such, the 

utility evaluation applies an outbreak detection algorithm to measure the timeliness and accuracy at which 

disparities can be detected. I then evaluate the fairness of detection performance, in terms of enabling 
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similar disparity detection times and accuracy between regions and subpopulations. For the evaluations, I 

compare several versions of the dynamic policy to policies resembling those applied to two publicly 

available COVID-19 datasets: 1) the CDC’s COVID-19 Case Surveillance Public Use Data with 

Geography129 and 2) the aggregated case counts that have been used in several disparity investigations107. 

Finally, I summarize the findings and describe future work. 

 

While the work presented in this chapter was originally motivated by the need to publish COVID-19 data, 

it should be recognized the framework applies to any type of dynamic dataset. For example, it could apply 

to any type of epidemiological disease spread and be used to address emerging data sharing needs, such as 

for vaccine registries136,137. The framework could also help large data sharing initiatives develop a de-

identification plan for how to adjust the generalization with the influx of new records as well as inform 

participant recruitment in order to optimize the resulting data’s utility (i.e., “How many more data subjects 

from group x do I need to share data under policy y while still meeting the risk threshold of z?”). 

 

 

3.2 Dynamic policy approach 

 

Due to the challenge of predicting exactly who will be infected, prospectively fixing a data sharing policy 

requires probabilistic risk assessment. The privacy risk estimation framework provides longitudinal privacy 

risk estimates for a data generalization policy within a specified geographic region. Given the appropriate 

population statistics, the framework can utilize any geographic level of detail (e.g., state, county, or ZIP 

code). In this chapter, I apply the framework to simulate disease spread on a county level to match the 

format of the COVID-19 surveillance data made accessible by the CDC129,130.   

 

 

3.2.1 Privacy risk estimation framework 

 

Figure 3.1 summarizes the framework. In the first step, a data generalization policy is selected, which 

defines the generalization of each quasi-identifying feature considered. Here, I consider basic demographic 

features and the date of diagnosis as quasi-identifying features, shown in Table 3.1, as they are typical 

features organizations have been requested to share. The actual quasi-identifier depends on the adversary’s 

assumed background knowledge and is a subset of the features presented in Table 3.1. 
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The second step generates the county-level population across the quasi-identifying features per the selected 

policy. I use population count data from the U.S. Census Bureau to calculate the number of people in the 

county that fall into each demographic group19, where each group is defined by a unique combination of 

quasi-identifier values, excluding date of diagnosis. 

 

The third step applies a Monte Carlo simulation (represented by the black box in Figure 3.1) to generate 

synthetic patient datasets using the county-level population distribution and a time series of new disease 

case counts. The time series’ periodicity defines the frequency at which the updated dataset is released (e.g., 

every day or every week). To simulate the COVID-19 pandemic, I input time series derived from the Johns 

Hopkins COVID-19 tracking data18. The details of the simulation algorithm are presented in Section 3.2.3. 

The algorithm computes the re-identification risk on the patient set at each time point, according to a 

specified risk measure. 

 

The fourth and final step of the framework uses the privacy risk distributions to estimate when the policy 

meets a privacy risk threshold. Computing the longitudinal privacy risk estimates under several data sharing 

policies for the same county identifies which policies likely meet the threshold at each point in the time 

series. The data sharer can then choose which policy to apply according to information priorities (e.g., 

prioritizing age granularity over sex granularity). 
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Figure 3.1. Privacy risk estimation framework. The curved rectangles represent processes, the cylinders represent data, and the hexagons represent 
user-defined parameters. The algorithm that performs the processes within the black box is in the core of the proposed framework and employs 
Monte Carlo random sampling. To obtain the privacy risk distributions, the simulation is repeated n times. The circled numbers denote the framework 
steps. 
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Table 3.1. The quasi-identifying features considered in this study. The middle column describes the 

generalization strategy for each feature. The third column provides an example generalization for each 

feature. In the case of sex and ethnicity, the information is either included or null. AIAN = American 

Indian/ Alaskan Native, and PI = Pacific Islander. (*These values cannot be generalized since I simulate 

on a county level. †This definition of a week is consistent with the one used by the CDC’s COVID-19 

case forecasts138.) 

 

Field Generalization Strategy Generalization Example 

State of residence None* NA 

County of residence None* NA 

Date of diagnosis 
Combine into week ranges 

(Sunday-Saturday†) 

01/05/21 ® 

    01/03/21 - 01/09/21 

Year of birth Convert to age ranges 
1980 ® 

    40-45 years old 

Sex Nullify value 
Female ® null, 

Male ® null 

Race Combine race groups 
AIAN ® AIAN or PI, 

PI® AIAN or PI 

Ethnicity Nullify value 
Hispanic-Latino ® null, 

Non-Hispanic ® null 

 

 

3.2.2 Privacy risk estimation 

 

There are various methods for measuring the risk a recipient with certain background knowledge 

successfully re-identifies individual records46,139. In this chapter, I consider combinations of two privacy 

risk measures and two quasi-identifiers. The privacy risk measures are the PK risk and marketer risk 

(defined below). The two quasi-identifiers are {state of residence, county of residence, year of birth, sex, 

race, and ethnicity} and {date of diagnosis, state of residence, county of residence, year of birth, sex, race, 

and ethnicity}; i.e., they only differ in terms of date of diagnosis. As presented in publication 20, the risk 

evaluations in Sections 3.3-4 considers two attack scenarios: 1) PK risk with respect to the quasi-identifier 
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that includes date of diagnosis and 2) marketer risk with respect to the quasi-identifier that does not include 

date of diagnosis. As presented in publication 21, the utility evaluations in Sections 3.5-6 consider three 

attack scenarios: 1) PK risk with respect to the quasi-identifier that includes date of diagnosis, 2) PK risk 

with respect to the quasi-identifier that does not include date of diagnosis, and 3) marketer risk with respect 

to the quasi-identifier that does not include the date of diagnosis. 

 

The PK risk is defined as the proportion of individuals in the dataset that fall into a group of size less than 

k, where each group is defined by a unique quasi-identifier value140,141. I evaluate this risk measure given a 

set of k values (5, 11, and 20) consistent with the standard thresholds used by public health 

authorities58,60,142–144. The PK risk assumes a data recipient knows 1) an individual is a member of the dataset 

and 2) the value of the target individual’s quasi-identifier. In this scenario, the data recipient attempts re-

identification to learn the target individual’s sensitive information from additional features included in the 

dataset (e.g., comorbidities145,146). The more unique the record’s representation, the more likely the data 

recipient can re-identify the individual43,46. I focus on this risk measure to follow the CDC’s application of 

k-anonymization147. The PK risk effectively measures the proportion of records that fail to achieve k-

anonymity for a given value of k and therefore allows the dynamic policy approach to identify 

generalization policies that are likely to meet k-anonymity. 

 

In practice, obtaining such patients’ quasi-identifying information is difficult9,40. Thus, evaluating the PK 

risk provides an upper bound of re-identification risk for the dataset. To demonstrate the approach’s 

flexibility as well as to offer a different perspective on privacy risk, in which the adversary has different 

assumed background knowledge, the second privacy risk measure is the marketer risk48. The marketer risk 

is an amortization of the re-identification risk across all records, relaxes assumption (1), and considers the 

scenario in which the data recipient is motivated to re-identify as many patients as possible to learn who 

has the infectious disease of interest. 

 

I highlight that, when applying the PK risk measure and assuming the adversary knows an individual’s date 

of diagnosis (i.e., date of diagnosis is part of the quasi-identifier), I assume the adversary knows the 

diagnosis occurred within a lagging period of time (e.g., within one, three, or five days prior to the 

documented date). I allow this flexible assumption as it is unlikely a data recipient knows the targeted 

individual’s exact diagnosis date41, particularly when the time from a diagnostic test to case report extends 

beyond one day. The group corresponding to an individual contains all patients in the simulated patient set 

that match the individual on the demographic features, with a diagnosis date falling within the lagging 

period.  
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3.2.3 Framework algorithm inputs 

 

The privacy risk estimation framework’s Monte Carlo-driven core algorithm (denoted by the black box in 

Figure 3.1) calculates the privacy risk estimates from four inputs: 1) the county’s demographic distribution, 

transformed according to the data generalization policy; 2) the time series of the number of new cases 

reported in the county, adjusted to match the generalization of date of diagnosis in the policy; 3) the size of 

the lagging period; and 4) the privacy risk measure. 

 

The first input is the demographic distribution. The distribution defines the number of county residents that 

fall into each demographic group, where each group is defined by a unique quasi-identifier value (excluding 

the date of diagnosis). For example, assume a policy designates sharing state and county of residence, date 

of diagnosis, and 30-year age ranges. The input distribution is the number of people living in the county 

that fall into each 30-year age interval. I obtain the county distributions for the quasi-identifying features 

listed in Table 3.1 from the U.S. 2010 Census PCT12 tables19. 

 

Each PCT12 table contains joint statistics on age, sex, and county for a given Census-defined race19. The 

race values include White, Black, Asian, Native Hawaiian or Pacific Islander (NHPI), American Indian or 

Alaskan Native (AIAN), Mixed, and Some Other Race (referred to as “Other” hereafter). An additional 

table (PCT12H) provides joints statistics for Hispanic-Latino residents without race, while another 

(PCT12I) provides the joint statistics of non-Hispanic White residents. I calculate joint statistics for age, 

race, sex, ethnicity, and county of residence by first subtracting the PCT12I table from the White race table 

(PCT12A). The remainder is the number of White, Hispanic-Latino residents per race, sex, and county 

combination. I then subtract these statistics from the PCT12H table. The new remainder is the number of 

non-White, Hispanic-Latino residents. I distribute the non-White, Hispanic-Latino individuals among the 

remaining races proportional to the size of each racial group per age, sex, and county combination. For 

example, assume 15 people in Davidson County are non-White, 35 years old, and female. Further, assume 

5 of the 15 residents are Asian and the other 10 are black or African American. Now, if there are 9 non-

White, Hispanic, 35-year-old female residents in Davidson, I assign 3 of the 5 Asian residents and 6 of the 

10 black or African American residents as Hispanic-Latino. Though this method may not accurately capture 

the true joint statistics of age, race, sex, and ethnicity per U.S. county, it provides a reasonable estimate for 

the framework. Distributing the Hispanic-Latino residents across all races spreads the county’s 

demographic distribution more equally among demographic groups. Randomly sampling from a more 
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uniform distribution produces more conservative risk estimates as individuals are more likely to be uniquely 

represented in the simulated dataset148. The final joint statistics for age, race, sex, ethnicity, and county are 

used to define the demographic distributions for each county, where the counts are aggregated according to 

the generalization policy’s specifications. 

 

The second input is the time series, which defines the number of new disease cases reported, or the number 

of new records added to the dataset, per time period. The algorithm calculates the privacy risk at each time 

point in the time series. The time series periodicity defines the date of diagnosis generalization (e.g., date 

or week) and the dataset release schedule. I use the Johns Hopkins COVID-19 tracking data for COVID-

19 disease case times series18. The Johns Hopkins data provides the cumulative number of COVID-19 cases 

diagnosed in each U.S. county on each day. Data preprocessing includes converting from cumulative counts 

to daily increases, and then setting all negative values to zero. To simulate the weekly release schedule, the 

preprocessed data is resampled into weekly periods (Sunday – Saturday). 

 

The third input is the length of the lagging period. This value is a positive number that adjusts the privacy 

risk calculation according to the assumed knowledge of a data recipient regarding the date of diagnosis. For 

example, if new disease cases are not reported until five to seven days after obtaining the test sample, it is 

unlikely that the data recipient can know the exact date of diagnosis of an individual in the dataset. It would 

be more reasonable in such a case to set a 5-day lagging period, which suggests the data recipient knows at 

best the 5-day range in which the patient was diagnosed. A 1-day lagging period (equivalent to no lag) in 

this scenario would overestimate the data recipient’s capabilities, inflate the privacy risk estimate, and 

potentially lead to unnecessary generalization of the data. 

 

The final input is the privacy risk measure. Here, it is either the PK risk or marketer risk for a specified 

quasi-identifier. Different measures and quasi-identifiers consider different types of re-identification 

attacks. I show several variations in this chapter. 

 

 

3.2.4 Privacy risk estimation framework algorithm 

 

3.2.4.1 PK risk implementation 

 

The algorithm follows the process described in Figure 3.2 to evaluate the PK risk. The algorithm first creates 

the uninfected population from the input demographic distribution, where each county resident is uniquely 
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represented by their demographic group (step 1). It then sums each value in Cases to obtain the total number 

of disease cases that will occur in the time series (2). The algorithm then applies Monte Carlo sampling to 

choose who gets “infected” from UninfectedPop and returns the list of individuals in random order (3). The 

sampling selects individuals without replacement, assuming equal weights across the entire uninfected 

population. Sampling one time without replacement prevents individual reinfection in the simulation. After 

initializing two lists (4 and 5), the algorithm enters a loop, which iterates for each value in the input time 

series (6). The first step within the loop removes the first c individuals from InfectedPop, counts how many 

of the individuals fall into each demographic group, and returns a vector of the results (7). The NewCases 

vector is added to a list of vectors from previous iterations, whose maximum size is the user-defined 𝑙𝑎𝑔 

(8-11). To evaluate the PK risk under the lagging period assumption, the algorithm calculates the cell-wise 

sum of the vectors in RecentCases (12). The resulting vector, CasesInPeriod, represents the number of 

records for each unique quasi-identifier value in the dataset, whose date of diagnosis falls within the lagging 

period. The PK risk is then calculated on this final vector (13) and appended to the results (14) before 

proceeding to the next loop iteration. 

 

The PK risk calculation is based on a formulation posed by Skinner and Elliott141. In the equation, let 𝐽 

denote the number of unique demographic groups allowed by the data generalization policy. Let 𝑓! denote 

the number of records in demographic group 𝑗, for 𝑗 = 1,… , 𝐽. Let 𝐼(⋅) denote the indicator function, where 

𝐼(𝐴) = 1 when 𝐴 is true and 𝐼(𝐴) = 0 otherwise. The PK risk is therefore 

 

∑ ∑ 𝐼2𝑓! = 𝑘4 ⋅ 𝑘"
!#$

%&$
'#$

𝑛
 (3.1) 

 

where 𝑛 is the total number of records shared in the lagging period and 𝐾 is the user-defined k value. The 

result is the proportion of the records shared in the lagging period that fall into a demographic group of size 

less than 𝐾. 

 

Repeating the algorithm produces a distribution of risk outcomes at each point in the time series. The 

distribution can be analyzed for the expectation, the range, and confidence intervals of the privacy risk 

measure.  
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Figure 3.2. PK risk estimation algorithm. 
 

 

3.2.4.2 PK risk algorithm complexity 

 

Here, I walk through the algorithm’s worst-case time complexity. When each county citizen falls into their 

own demographic group, step 1 makes 𝑛 executions, where 𝑛 is the size of the county’s population. 

Similarly, if every citizen is infected at some point in the time series, there are 𝑛 Monte Carlo random 

sampling executions. Within the loop, when all the cases occur on the same time point, step 7 makes 𝑛 

executions. The remaining steps execute in constant time until the PK risk calculation in step 13. The PK 

risk calculation executes 𝑙 times, where 𝑙 equals 𝑘 − 1 in Eqn. 3.1, for each non-empty demographic group. 

The value of 𝑙 typically remains between 1 and 20. When the number of groups equals the number of 

citizens, there are 𝑙𝑛 executions made. The complexity for the loop, and subsequently the algorithm, is 

therefore 𝑂(𝑙𝑛). Repeating the algorithm for 𝑚 simulations increases the complexity to 𝑂(𝑚𝑙𝑛). The 

Algorithm 1: PK Risk Estimation

Input : Demographics, a list of the number of people per
demographic bin in the county, where the bins are defined by
the data generalization policy;
Cases, a list of the new daily or weekly disease case counts in
the county;
lag, the length of the lagging period;
k, the specified k value for the PK risk calculation.

Output: PKrisk, a list of the PK risk values at each time point in
Cases.

1 UninfectedPop createPopulation(Demographics)
2 nSick  sum(Cases)
3 InfectedPop chooseInfected(nSick, UninfectedPop) // This

function Monte Carlo samples nSick individuals from

UninfectedPop without replacement.

4 RecentCases [ ]
5 PKrisk  [ ]
6 for c in Cases do

7 NewCases countPerBin(c,InfectedPop) // This function

removes the first c individuals from InfectedPop, and returns

a vector of the number those individuals that fall into each

demographic bin.

8 if length(RecentCases) = lag then

9 remove first vector from RecentCases
10 end if

11 RecentCases.append(NewCases)
12 CasesInPeriod cell-wise sum of the vectors in RecentCases
13 NewPKrisk  calculatePKrisk(CasesInPeriod,k)
14 PKrisk.append(NewPKrisk)
15 end for

16 return PKrisk

1
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number of simulations, 𝑚, is typically on the order of 1,000. Since most US counties possess more than 

1,000 residents (and may exceed 1,000,000), 𝑛 dominates the time complexity. 

 

3.2.4.3 Marketer risk implementation 

 

The marketer risk considers a different attack scenario than the PK risk, where the data recipient attempts 

to re-identify as many individuals in the shared dataset as possible by matching the quasi-identifier values 

in the shared dataset to those in a separate, identified dataset. A common example of the latter is a voter 

registration list9,46. Not every county resident registers to vote, but for simplicity, I assume in this analysis 

the data recipient possesses an identified dataset containing every county resident. This assumption models 

the worst-case scenario, in terms of the completeness of background knowledge from an identified 

population dataset in the context of a marketer attack. I further assume the dataset contains all demographic 

information listed in Table 3.1, except for the date of diagnosis, such that the quasi-identifier is defined as 

{state of residence, county of residence, year of birth, sex, race, and ethnicity}. Excluding the date of 

diagnosis better approximates the information provided by a voter registration list.  

 

Estimating the marketer risk requires a few adjustments to the PK risk estimation algorithm that considers 

date of diagnosis part of the quasi-identifier. First, the marketer risk is evaluated on the cumulative dataset 

at each time point as date of diagnosis is not considered quasi-identifying, and therefore no longer separates 

records into quasi-identifying windows of time. Without the date of diagnosis, the user does not specify a 

lagging period size. Neither does the user specify a k value, as the marketer risk measure incorporates all k 

values. Figure 3.3 describes the complete marketer risk estimation algorithm. 

 

The first three steps of the marketer risk estimation algorithm are identical to the first three steps step in the 

PK risk estimation algorithm. The algorithm first creates uninfected population from the input demographic 

distribution (step 1), obtains the total number of disease cases in the time series (2), and applies Monte 

Carlo random sampling to select who gets “infected” and returns the list of individuals in random order (3). 

The sampling is performed without replacement assuming equal weights across the entire uninfected 

population. Individual reinfection is again prevented. The algorithm maintains the total number of disease 

cases, or records, per demographic group in AllCases. The vector is initialized to all zeros (4). After 

initializing the marketer risk results list (5), the algorithm enters a loop, which iterates for each value in the 

input time series (6). The first step in the loop removes the first c individuals from InfectedPop and returns 

of vector of the new cases’ distribution across the demographic groups (7). The order of the NewCases 

vector matches the order of AllCases. To evaluate the marketer risk on the cumulative dataset up to the time 
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point corresponding to c, the algorithm adds the new cases to vector of previously reported cases (8). The 

resulting vector represents the number of records for each unique combination of quasi-identifier values in 

the cumulative dataset. The algorithm calculates the marketer risk on the updated AllCases vector (9). 

 

 

 
 

Figure 3.3. Marketer risk estimation algorithm. 
 

 

The marketer risk is calculated following the formulation from Dankar and El Emam48. In Eqn. 3.2, 𝐽 

represents the number of unique demographic groups allowed by the data sharing policy. 𝑓! represents the 

number of records in demographic group 𝑗 in the shared dataset, for 𝑗 = 1,… , 𝐽.  𝐹! represents the number 

of records in demographic group 𝑗 in the identified dataset, for 𝑗 = 1,… , 𝐽. It follows that (!
)!

 represents the 

expected proportion of correct matches between records in the shared and the identified datasets for 

demographic group j. 𝑛 represents the total number of records in the shared dataset. 

 

Algorithm 1: Test

Algorithm 2: Marketer Risk Estimation

Input : Demographics, a list of the number of people per
demographic bin in the county, where the bins are defined by
the data generalization policy;
Cases, a list of the new daily or weekly disease case counts in
the county.

Output: MarketerRisk, a list of the marketer risk values at each time
point in Cases.

1 UninfectedPop createPopulation(Demographics)
2 nSick  sum(Cases)
3 InfectedPop chooseInfected(nSick, UninfectedPop) // This

function Monte Carlo samples nSick individuals from

UninfectedPop without replacement.

4 AllCases zero vector of the same dimension as Demographics
5 MarketerRisk  [ ]
6 for c in Cases do

7 NewCases countPerBin(c,InfectedPop) // This function

removes the first c individuals from InfectedPop, and returns

a vector of the number those individuals that fall into each

demographic bin.

8 AllCases AllCases+NewCases
9 NewMarketerRisk  calculateMarketerRisk(AllCases)

10 MarketerRisk.append(NewMarketerRisk)
11 end for

12 return MarketerRisk

1
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(3.2) 

 

The result is the expected proportion of the records in the shared dataset correctly matched to records in the 

identified dataset. The marketer risk value is appended to the list of marketer risk values at the end of each 

loop (10). 

 

3.2.4.4 Marketer risk algorithm complexity 

 

The marketer risk algorithm’s worst case time complexity follows that of the PK risk algorithm until the 

marketer risk calculation in step 9. The calculation executes one time for each non-empty demographic 

group. When the number of groups equals the number of citizens, there are 𝑛 executions made. Therefore, 

the complexity for 𝑚 simulations of the algorithm is to 𝑂(𝑚𝑛), where 𝑛 is the size of the county’s 

population. 

 

 

3.2.5 Dynamic policy search 

 

3.2.5.1 PK risk 

 

To dynamically adapt policies according to an expected infection rate, I identify policies that are likely to 

satisfy a specific PK risk threshold at varying volumes of new case records. For the risk evaluation, I choose 

a k of 11, which is as a typical group size incorporated into guidance issued at the state58,60,143,144 and 

federal142 level. It is also the group size applied to CDC’s COVID-19 Public Use Data with Geography129. 

I henceforth refer to the PK risk when k is equal to 11 as the PK11 risk. I search for policies that meet a 

PK11 threshold of 0.01; i.e., the percentage of records falling into a demographic group of size 10 or smaller 

should be less than or equal to 1%. I summarize the search results in Figure 3.5. Similar investigations for 

k of 5 and 20 (other common group size thresholds) are also provided in Figures 3.6 and 3.7, respectively. 
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Figure 3.4. The generalization hierarchies for age, race, sex, and ethnicity used in this paper, adapted from 
those of Wan et al64. Each horizontal level is a potential generalization state for the data generalization 
policy. For example, the policy could specify generalizing age to 5-year age intervals to 15-year age 
intervals, or broader ranges. I represent year of birth as 1-year age at the bottom of the Age hierarchy. 
Moving up the hierarchies, the data becomes more generalized to increase privacy. An asterisk indicates the 
feature is generalized to a null value for all individuals, which is equivalent to suppression or non-release 
of the corresponding field. 
 

 

The search uses the privacy risk estimation framework to evaluate 96 alternative data sharing policies for 

each U.S. county (with available census tract information) across a range of case count values. The policies 

include six potential generalizations of age, four generalizations of race, two generalizations of sex, and 

two generalizations of ethnicity, specified by the generalization hierarchies shown in Figure 3.4. For each 

policy, county, and case number combination, the framework generates 1,000 PK risk estimates. A policy 

meets the threshold when the upper bound of the estimates’ 95% quantile range is less than or equal to 0.01. 

I choose to evaluate a policy in this manner to increase the likelihood supported policies meet the privacy 
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risk threshold in application. Note, the data sharer can adjust the size of the quantile range to modify the 

confidence a policy will meet a specific privacy risk threshold. 

 

To aid in readability of the PK11 policy search results in Figure 3.5, I represent the generalization of each 

quasi-identifier in a policy with a four-character alphanumeric code. From left to right, the characters 

represent the age, race, sex, and ethnicity generalizations. I further summarize the results by categorizing 

US counties by population size. 

 

Once a generalization policy meets the PK11 threshold for a given number of cases, it is unlikely records 

fall into a demographic group of size 10 or less. Further increasing the case volume increases the number 

of records in each group and decreases the PK11 value. As such, a policy is listed under the smallest case 

quantity at which the policy meets the PK11 threshold for every county in the category. It should also be 

noted there exists a parent-child relationship between policies. For example, policy 2*** is the parent of 

policy 3***, where the former only differs from the latter by generalizing age to a lesser degree. When a 

parent policy meets the PK11 threshold, all its child policies also meet the threshold.  

 

As Figure 3.5 displays, the number of acceptable policies increases with the number of new cases. In most 

cases, larger counties achieve more acceptable policies than smaller counties at a given case quantity. The 

maximum number of acceptable policies is 73. The most granular policies across all county categories are 

1C*e, 2Bse, and 3Ase. Each of these policies prioritizes different types of information. Policy 1C*e offers 

the most granular age information at the cost of race and sex information, while Policy 3Ase reduces age 

granularity to increase race and sex specificity. 

 

The case number values are window-size agnostic, such that the policy search results hold regardless of the 

time period considered. For example, assume a county with fewer than 1,000 residents updates its disease 

surveillance dataset daily. Further, assume the county adjusts for sets a 5-day lagging period assumption. 

When the expected number of new cases from the current day and the previous two days sum to 50, the 

current day’s records should be generalized according to either policy **** or **s*. The same policies are 

supported if, instead, the dataset is updated weekly (and diagnosis date is generalized to week of diagnosis) 

and 50 new cases are expected for the current week. 
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Figure 3.5. Generalization policies with a PK11 upper bound (calculated as the upper bound of the 95% quantile range of 1,000 framework 
simulations) less than or equal to 0.01 at varying disease case volume thresholds. A four-character alphanumeric code indicates the policy’s 
generalization levels. All policies additionally include state and county of residence and some generalization of diagnosis date. A policy is eligible 
to be listed under the minimum number of new cases (table column) at which it meets the PK11 threshold for every county in the category (table 
row). A maximum of two policies are listed in each cell among the actual number of policies supported. The number in the bottom right-hand corner 
of each cell indicates how many of the 96 searched policies meet the risk threshold at the case volume.  
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Figure 3.6. Generalization policies with a PK5 upper bound (calculated as the upper bound of the 95% quantile range of 1,000 framework 
simulations) less than or equal to 0.01 at varying disease case volume thresholds. A four-character alphanumeric code indicates the policy’s 
generalization levels. All policies additionally include state and county of residence and some generalization of diagnosis date. A policy is eligible 
to be listed under the minimum number of new cases (table column) at which it meets the PK5 threshold for every county in the category (table 
row). A maximum of two policies are listed in each cell among the actual number of policies supported. The number in the bottom right-hand corner 
of each cell indicates how many of the 96 searched policies meet the risk threshold at the case volume. 
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Figure 3.7. Policies with a PK20 upper bound (calculated as the upper bound of the 95% quantile range of 1,000 framework simulations) less than 
or equal to 0.01 at varying disease case volume thresholds. A four-character alphanumeric code indicates the policy’s generalization levels. All 
policies additionally include state and county of residence and some generalization of diagnosis date. A policy is eligible to be listed under the 
minimum number of new cases (table column) at which it meets the PK20 threshold for every county in the category (table row). A maximum of 
two policies are listed in each cell among the actual number of policies supported. The number in the bottom right-hand corner of each cell indicates 
how many of the 96 searched policies meet the risk threshold at the case volume. 
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3.2.4.2. Marketer risk-based policy search 

 

I apply the framework to search the same policy space as described in Figure 3.4 and identify data sharing 

policies that likely meet a marketer risk threshold of 0.01 at various dataset sizes. The search follows the 

same approach as the PK risk scenario. For each combination of U.S. county, case number, and policy I 

calculate the marketer risk on 1,000 independent simulations. From the 1,000 simulations, I calculate the 

upper bound of the 95% quantile range and compare the upper bound to a threshold of 0.01. The results 

indicate the minimum cumulative number of disease case records in the dataset at which a data sharing 

policy is supported for all counties in the population size category. I summarize the results in Figure 3.8. 

 

Selecting a policy according to the cumulative number of records notably affects dynamic policy 

application. First, selecting a policy now means applying the same set of quasi-identifier generalizations to 

the entire dataset, including previously released records. Second, changing the generalization scheme of 

previously released records creates a dependency between successively applied data sharing policies. The 

new policy must be a parent of the current policy. If it is not, the combined information across dataset 

releases could expose patient identities. These differences prompt the data sharer to choose a path according 

to information priorities. To demonstrate, in Figure 3.8, I select a single path for each county population 

category and generate a corresponding results table. 

 

Note, the nuances to the dynamic marketer risk-based policy approach would also occur in a scenario in 

which de-identification is guided by the PK risk and the quasi-identifier does not include date of diagnosis 

(see Section 3.5). 

 

Figure 3.8 shows the number of acceptable policies increases with the cumulative number of records. For 

counties with more than one million residents, all 96 policies are supported when the dataset includes at 

least 100 records. The smallest counties achieve the fewest number of acceptable policies, with 19 equally 

feasible policies. The larger counties’ results display a pattern where the number of supported policies at 

1,000 case records remains relatively constant as the size of the dataset increases. This pattern arises from 

an underlying difference between the marketer risk and the PK. For a given county and policy, the PK risk 

fluctuates with the number of case records shared in a time window. Conversely, the marketer risk for a 

given county and policy converges toward a specific value as more records are accumulated. The table also 

displays a different pattern for the two smallest categories, because the search removes counties with a total 

population less than the case number threshold of interest. 

 



 

16 

To further illustrate the relationship between the marketer risk and the size of the dataset, I apply the 

framework to a single data sharing policy throughout the COVID-19 pandemic in Davidson County, TN. 

The 1Ase policy (see the key in Figure 3.8) is applied to a daily release schedule and allows for 532 potential 

demographic groups. Figure 3.9 shows that as the size of the disease surveillance dataset increases, the 

expected (mean) marketer risk remains relatively constant, and the range of risk converges toward the 

expectation. I note that the expected marketer risk represents the expected proportion of records correctly 

matched to the identified dataset. Though the proportion remains constant, the number of individuals at risk 

increases with the size of the dataset. 

 

The relatively constant value for the marketer risk expectation is intuitive. Since the date of diagnosis is not 

considered a quasi-identifier in the attack scenario, the demographic groups increase in size as more records 

are added to the dataset. As the number of records in group 𝑗 in the shared dataset approaches the number 

of records in group 𝑗 in the identified dataset, the marketer risk (Eqn. 3.2) moves toward its limit, as shown 

in Eqn. 3.3: 

 

∑ 1"
!#$

𝑁
=	

𝐽
𝑁

 (3.3) 

 

where 𝑁 is the size of the identified dataset/total population. Eqn. 3.3 approximates the expected marketer 

risk estimated by the framework’s algorithm. The orange dotted line in Figure 3.9 was calculated using Eqn. 

3.4: 
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where 𝐽= is the number of demographic groups defined by the policy for which at least one person in the 

population corresponds. The value of 𝐽= is obtained from the U.S. Census data. Thus, the expected marketer 

risk can be mathematically approximated from the framework inputs without the complete Monte Carlo 

simulation. 
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Figure 3.8. (Top) Policies with a marketer risk upper bound (calculated as the upper bound of the 95% 
quantile range of 1,000 framework simulations) less than or equal to 0.01 at varying disease case volume 
thresholds. A four-character alphanumeric code indicates the policy’s generalization levels. All policies 
additionally include state and county of residence and some generalization of diagnosis date. A policy is 
eligible to be listed under the minimum number of new cases (table column) at which it meets the marketer 
risk threshold for every county in the category (table row). A maximum of two policies are listed in each 
cell among the actual number of policies supported. The number in the bottom right-hand corner of each 
cell indicates how many of the 96 searched policies meet the risk threshold at the case volume. The purple 
circles indicate the starting policy for each county population category, from which the generalization paths 
are generated in the table below. (Bottom) The child-parent generalization path for each category. Moving 
from left to right in a row, each new policy listed is a parent of those previously listed.  
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Figure 3.9. Marketer risk estimation of the 1Ase policy applied to daily releases of COVID-19 disease case 
surveillance data in Davidson County, TN. The expectation and quantile ranges were calculated from 1,000 
independent simulations. The marketer risk is evaluated each day (Top) on the cumulative number of cases 
(Bottom). The orange dotted line represents the marketer risk when the size of the shared dataset is equal 
to the size of the population. The height of the dotted line was calculated according to Eqn. 3.4.  
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3.3 Risk evaluation 

 

Now that the dynamic policy approach and privacy risk estimation framework have been described, I 

evaluate the dynamic policy approach’s ability to maintain the re-identification risk below an established 

threshold. This section begins with an overview of the evaluation methods and ends with a presentation of 

the results for both the PK risk (with date of diagnosis included in the quasi-identifier) and the marketer 

risk (with date of diagnosis not included in the quasi-identifier) scenarios. 

 

 

3.3.1 Evaluation overview 

 

I use the summarized policy search results and forecasted COVID-19 disease case counts to evaluate 

dynamic policy selection in the context of the COVID-19 pandemic. In this evaluation, I measure the 

proportion of data releases in which the PK11 or marketer risk likely remains below the policy search 

threshold of 0.01. The dynamic policy is evaluated for two distinct alternative data sharing scenarios: 1) a 

daily release schedule with a 1-day lagging period assumption and 2) a weekly release schedule. The daily 

release schedule shares the actual date of diagnosis, prioritizing date granularity at the potential cost of 

demographic granularity. The weekly release schedule generalizes the date to week of diagnosis. 

 

For every county that is both represented in the US Census PCT12 tables and Johns Hopkins COVID-19 

datasets, the PK11-driven dynamic policy method selects the generalization policy from the search results 

at the beginning of each week according to the forecasted COVID-19 case volumes. I use the CDC COVID-

19 ensemble model’s county-specific, one-week forecasts for its superior accuracy over other 

models138,149,150. I specifically used the model’s point estimates, calculated as the median of the point 

estimates of the various prediction models. For the evaluation, I collected all model predictions from August 

2020 through October 2021. I obtain daily increase predictions by uniformly distributing the weekly 

increase point estimate. In selecting policies for the daily release schedule, I use the minimum number of 

predicted cases in the week. This applies the most privacy preserving policy to all new cases reported in the 

week. For the weekly release schedule, I use the forecasted one-week increase.  

 

In the marketer risk scenario, I do not use the CDC’s COVID-19 ensemble prediction model to inform 

dynamic policy selection. Since the size of the dataset monotonically increases, the minimum number of 

case records will always occur on the first day of the week, regardless of the predicted weekly increase in 

case numbers. Therefore, at the beginning of each week (Sunday, to be consistent with the prior week 
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definition) I use the current total number of disease case records in the dataset to select the policy for the 

upcoming week. This applies the most private policy to the week’s new cases while allowing the policy to 

potentially change on a weekly basis. The policy for the weekly release schedule is chosen according to the 

size of the cumulative dataset at the end of each week (Saturday). 

 

After selecting the sequence of policies for each county, I estimate the privacy risk of sharing the actual 

reported number of records via the privacy risk estimation framework. I define the actual number of disease 

cases per day or week by the Johns Hopkins COVID-19 tracking data. The PK11 or marketer risk value for 

each time point in each county is calculated as the upper bound of the 95% quantile range of 1,000 

simulations. The evaluation measures the proportion of releases the upper bound remains below 0.01. 

 

I additionally evaluate the static application of a policy designed with current, retrospective de-

identification techniques, akin to those applied to the CDC’s COVID-19 Public Use Data with 

Geography129. The policy, hereafter referred to as the k-anonymous policy, shares age intervals in the form 

(0-17, 18-49, 50-64, and 65+); race (Black or African American, White, Asian, American Indian or Alaskan 

Native (AIAN), Native Hawaiian or Pacific Islander (NHPI), Multiple/Other); ethnicity (Hispanic-Latino 

and Non-Hispanic); sex (Female and Male); state and county of residence; and date or week of diagnosis. 

I note the CDC’s policy, from which the k-anonymous policy derives, was developed to meet regulatory 

requirements and public health standards under a different release schedule (once every two weeks to once 

every month) and in a retrospective manner (the actual patient records are collected, de-identified and 

released in a batch). The CDC’s policy is designed to achieve 11-anonymity (i.e., PK11 = 0) by generalizing 

the date of diagnosis to month and by nulling out quasi-identifier information for small groups44,129,131. Thus, 

the k-anonymous policy resembles a policy developed with traditional de-identification, but notably differs 

in its treatment of dates of events and in its assumption of no suppression. I further note this last feature is 

another unique factor to sharing surveillance data in near-real time. Suppression cannot be applied with 

confidence because it is almost impossible to forecast exactly which records will fall into small 

demographic groups. Notably, the CDC’s policy suppresses around 3% of each quasi-identifier to achieve 

11-anonymity147. 

 

To provide a specific illustration of the dynamic policy approach to daily releasing updated, record-level 

disease surveillance data, after the primary validation experiments, I additionally provide case studies for 

two Tennessee counties. The first, Davidson County, is a relatively large metropolitan region with a 

population of approximately 630,000 residents. The second, Perry County, is a relatively rural area with 
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around 8,000 residents. Table 3.2 displays the counties’ population demographics according to recent 

estimates from U.S. Census Bureau19. 

 

In each case study, I select a policy on a weekly basis in the same manner as the evaluation. However, to 

demonstrate how the framework incorporates the data recipient’s potential knowledge of diagnosis date (for 

the PK risk scenario), and accounting for the general turnaround time of COVID-19 diagnostic tests 

results151–153, I set a 5-day lagging period. Under these constraints, weekly dynamic policy selection first 

calculates a 5-day rolling sum of new disease case numbers through the coming week. The minimum value 

of the rolling sum is used to select the policy. I again estimate the privacy risk of sharing the actual number 

of records under the sequence of selected policies with the privacy risk estimation framework and the Johns 

Hopkins COVID-19 tracking data. To evaluate the dynamic policy under optimal case load forecasting, I 

repeat the process by replacing the forecasted case counts with the actual case numbers in policy selection. 
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Table 3.2. County demographics 

 

  

 
 

Davidson County, TN 

n = 626,681 

Perry County, TN 

n = 7,915 

Race 

White 385,039  (61.4%) 7,584 (95.8%) 

Black 173,730  (27.7%) 119  (1.5%) 

Asian 19,027  (3.0%) 14  (0.2%) 

AIAN 2,091  (0.3%) 48  (0.6%) 

NHPI 394  (0.06%) 0  (0%) 

Other 30,757  (4.9%) 30  (0.4%) 

Mixed 15,643  (2.5%) 120  (1.5%) 

Ethnicity 
Hispanic/Latino 61,086  (9.7%) 117  (1.5%) 

Non-Hispanic 565,595  (90.3%) 7,798  (98.5%) 

Age group 

[0, 10) 82,304  (13.1%) 927  (11.7%) 

[10, 20) 72,903  (11.6%) 1,041  (13.2%) 

[20, 30) 115,876  (18.5%) 819  (10.3%) 

[30, 40) 97,154  (15.5%) 887  (11.2%) 

[40, 50) 83,472  (13.3%) 980  (12.4%) 

[50, 60) 79,768  (12.7%) 1,192  (15.1%) 

[60, 70) 49,803  (7.9%) 1,096  (13.8%) 

[70, 80) 26,901  (4.3%) 645  (8.1%) 

[80, +] 18,500  (3.0%) 328  (4.1%) 

Sex 
Female 323,141  (51.6%) 3,941  (49.8%) 

Male 303,540  (48.4%) 3,974  (50.2%) 

*number of individuals (% of population) 
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3.3.2 PK risk evaluation 

 

I summarize the PK11 risk evaluation results, categorizing counties in the same manner as the policy search, 

in Table 3.3. There are several major findings. First, dynamically adapting the generalization policy meets 

the PK11 threshold more frequently than statically applying the k-anonymous policy. On average, the 

dynamic policy meets the threshold for at least 92.8% of the 448 daily releases and 96.0% of the 64 weekly 

releases. The k-anonymous policy meets the threshold as few as 11.8% of the daily releases and 0.4% of 

the weekly releases. Second, I find that new cases do not occur every day or every week, particularly in 

counties with fewer residents. As such, there are fewer days the PK11 upper bound can potentially exceed 

the threshold, inflating proportions in smaller counties. 
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Table 3.3. Average proportion of time periods where the upper bound of the 95% quantile range of the 
PK11 risk is less than or equal to 0.01 in the COVID-19 pandemic (August 2, 2020 to October 23, 2021). 
The average and 95% quantile range in each cell are taken across all counties in the corresponding 
population size category. The k-anonymous policy shares age intervals (0-17, 18-49, 50-64, and 65+), 
race (Black or African American, White, Asian, American Indian or Alaskan Native, Native Hawaiian or 
Pacific Islander, Multiple/Other), ethnicity (Hispanic-Latino and Non-Hispanic), sex (Female and Male), 
and state and county of residency. The k-anonymous policy is statically applied to each release. The daily 
release PK11 estimates apply a 1-day lagging period, while the weekly release estimates assume the 
actual date of diagnosis is generalized to week of diagnosis. 
 

 

Average proportion of daily  
releases that meet the PK11 threshold 

in the COVID-19 pandemic 
[95% Quantile Range] 

(n = 448) 

 

Average proportion of weekly releases 
that meet the PK11 threshold in the 

COVID-19 pandemic 
[95% Quantile Range] 

(n = 64) 
County 

Population 
Size 

k-anonymous 
Policy Dynamic Policy  k-anonymous 

Policy Dynamic Policy 

< 1,000 
(n = 35) 

0.900 
[0.790, 0.998] 

1 
[1, 1]  0.605 

[0.266, 0.987] 
0.999 

[0.984, 1] 

1,000 - 
50,000 

(n = 2,129) 

0.389 
[0.118, 0.815] 

0.971 
[0.902, 1]  0.072 

[0, 0.406] 
0.960 

[0.906, 1] 

50,000 - 
100,000 
(n = 398) 

0.181 
[0.042, 0.532] 

0.928 
[0.868, 0.987]  0.004 

[0, 0.031] 
0.974 

[0.922, 1] 

100,000 - 
1,000,000 
(n = 538) 

0.145 
[0.009, 0.521] 

0.947 
[0.882, 0.998]  0.008 

[0, 0.026] 
0.982 

[0.938, 1] 

> 1,000,000 
(n = 39) 

0.118 
[0.007, 0.304] 

0.961 
[0.874, 0.998]  0.057 

[0, 0.288] 
0.962 

[0.906, 1] 
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3.3.3 PK risk case studies 

 

Figure 3.10 shows how the forecasted case volumes do not match the weekly seasonality of the actual 

reported cases in Davidson County. Consequently, the CDC ensemble model tends to overestimate case 

loads, leading to the selection of more granular policies. Despite the rippling effects of the overestimation, 

the 95% quantile range of the forecast-driven PK11 remains below 0.01 throughout most of the time frame. 

Several days exceed the threshold, most of which occur when the selected policies disagree whether to 

share record-level data under the **** policy or to not share. When sharing fewer than 11 new case records 

in a 5-day window under the forecast-driven dynamic policy, all new records fall into a demographic group 

smaller than size 11, resulting in a PK11 of 1.0. Notably, the PK11 never exceeds the threshold when 

selecting policies according to the actual case counts. Adapting the policy according to perfect forecasts 

provides optimal privacy protection. 

 

Figure 3.11 shows that case counts remain relatively small before, as well as after, infection spikes in 

October 2020 and August 2021. Throughout most of these intervals of low-infection rates, the selected 

policies from each data source indicate that record-level data should not be shared on a daily basis. 

However, when the 5-day rolling sums oscillate around 11 cases, the forecasted values again overestimate 

the weekly minimum case loads, resulting in a PK11 of 1.0. Despite the privacy leaks in the forecast-driven 

dynamic policy, the dynamic policy guided by the actual disease case counts again maintains the PK11 

values below the threshold throughout the time frame. 
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Figure 3.10. Dynamic policy selection applied to Davidson County, TN in the COVID-19 pandemic 
(August 2, 2020 to October 23, 2021). (Top) The 5-day rolling sum of the forecasted and actual case counts 
reported in Davidson County. The forecasted counts are from the CDC’s COVID-19 ensemble model and 
the actual counts are from the Johns Hopkins surveillance data. The blue triangles and red squares denote 
the minimum value within each week (defined as Sunday-Saturday per the CDC model’s definition). The 
minimum values are used to select a policy from policy search results. (Middle) The selected policy at the 
beginning of each week in the pandemic. Each policy is represented by a 4-character alphanumeric code 
following the key in Figure 3.5. The policies are ordered by increasing case count thresholds from bottom 
to top. Green circles indicate agreement between the policies selected from the forecasted and actual case 
counts. (Bottom) The PK11 from sharing the actual number of records under the two sequences of policies 
detailed in the middle graph. The expectation and 95% quantile range are calculated from 1,000 independent 
framework simulations, while applying a 5-day lagging period assumption. The horizontal dashed line 
marks the PK11 threshold of 0.01. 
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Figure 3.11. Dynamic policy selection applied to Perry County, TN in the COVID-19 pandemic (August 
2, 2020 to October 23, 2021). (Top) The 5-day rolling sum of the forecasted and actual case counts reported 
in Davidson County. The forecasted counts are from the CDC’s COVID-19 ensemble model and the actual 
counts are from the Johns Hopkins surveillance data. The blue triangles and red squares denote the 
minimum value within each week (defined as Sunday-Saturday per the CDC model’s definition). The 
minimum values are used to select a policy from policy search results. (Middle) The selected policy at the 
beginning of each week in the pandemic. Each policy is represented by a 4-character alphanumeric code 
following the key in Figure 3.5. The policies are ordered by increasing case count thresholds from bottom 
to top. Green circles indicate agreement between the policies selected from the forecasted and actual case 
counts. (Bottom) The PK11 from sharing the actual number of records under the two sequences of policies 
detailed in the middle graph. The expectation and 95% quantile range are calculated from 1,000 independent 
framework simulations, while applying a 5-day lagging period assumption. The quantile ranges are too 
narrow to be seen outside the mean. The horizontal dashed line marks the PK11 threshold of 0.01. 
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3.3.4 Marketer risk evaluation 

 

Table 3.4 displays risk evaluation results for the marketer-risk driven dynamic policy. Dynamic policy 

selection, guided by the framework’s forecasts, never exceeds the marketer risk threshold of 0.01. For the 

smallest county size category, the total case number never reaches 100 and no data is shared. Data is shared 

for all other county size categories. For county’s with at least 50,000 residents, the k-anonymous policy 

meets the marketer risk threshold as frequently as the dynamic policy, but with lesser data utility in terms 

of available demographic groups. The k-anonymous policy allows for 112 unique combinations of age, race, 

sex, and ethnicity (or 112 unique quasi-identifier values). Under the dynamic policy selection and the case 

loads beginning in August 2020, counties with a population between 50,000 and 100,000 residents tend to 

share data with at least the 2Bse policy, which also designate 112 unique demographic groups. Counties 

with a population between 100,000 and 1,000,000 tend to share data with at least the 2Ase policy, which 

allows 196 groups. And the counties with at least 1 million residents apply the 0Ase policy that allows for 

2,884 groups. The dynamic policy selection tailors the data sharing policy to both case load and county 

population to balance privacy and utility better than the k-anonymous policy at the marketer risk threshold 

of 0.01. 
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Table 3.4. Average proportion of time periods where the upper bound of the 95% quantile range of the 
marketer risk is less than or equal to 0.01 in the COVID-19 pandemic (August 2, 2020 to October 23, 
2021). The average and 95% quantile range in each cell are taken across all counties in the corresponding 
population size category. The k-anonymous policy shares age intervals (0-17, 18-49, 50-64, and 65+), 
race (Black or African American, White, Asian, American Indian or Alaskan Native, Native Hawaiian or 
Pacific Islander, Multiple/Other), ethnicity (Hispanic-Latino and Non-Hispanic), sex (Female and Male), 
and state and county of residency. The k-anonymous policy is statically applied to each release. The daily 
release estimates assume the dataset is updated on a daily basis, while the weekly releases estimates 
assume the dataset is updated on a weekly basis.  
 

 

Average proportion of daily releases 
that meet the marketer risk threshold 

in the COVID-19 pandemic 
[95% Quantile Range] 

(n = 161) 

 

Average proportion of weekly 
releases that meet the marketer risk 

threshold in the COVID-19 pandemic 
[95% Quantile Range] 

(n = 23) 

County 
Population 

k-anonymous 
Policy Dynamic Policy  k-anonymous 

Policy Dynamic Policy 

< 1,000 
(n = 35) 

0.074 
[0, 0.345] 

1 
[1, 1]  0.072 

[0, 0.336] 
1 

[1, 1] 

1,000 - 50,000 
(n = 2,129) 

0.689 
[0, 1] 

1 
[1, 1]  0.691 

[0, 1] 
1 

[1, 1] 

50,000 - 
100,000 
(n = 398) 

1 
[1, 1] 

1 
[1, 1]  1 

[1, 1] 
1 

[1, 1] 

100,000 - 
1,000,000 
(n = 538) 

1 
[1, 1] 

1 
[1, 1]  1 

[1, 1] 
1 

[1, 1] 

> 1,000,000 
(n = 39) 

1 
[1, 1] 

1 
[1, 1]  1 

[1, 1] 
1 

[1, 1] 
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3.3.5 Marketer risk case studies 

 

The case studies results for Davidson County and Perry County are displayed in Figures 3.12 and 3.13, 

respectively. As the generalization path in Figure 3.8 instructs, the 1Ase policy is applied to every data 

release in Davidson County, TN, as the size of the dataset remains above 250 records throughout the time 

interval. The mean and 95% quantile range of the marketer risk remain below the threshold of 0.01 at each 

time point. The 95% quantile range, in this case, is too narrow to be seen outside the expectation. The 

generalization policy in Perry County, TN changes from 4*s* to 4Cs* the week after the number of disease 

case records in the dataset surpasses 500. The expectation and 95% quantile range of the marketer risk stay 

below the 0.01 marketer risk threshold throughout the time interval. 
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Figure 3.12. Dynamic policy selection applied to Davidson County, TN in the COVID-19 pandemic 
(August 2, 2020 to October 23, 2021). (Top) The cumulative sum of the case counts reported in Davidson 
County, according to the Johns Hopkins COVID-19 tracking data. The red squares represent the case record 
number value and the end of the previous week (through Saturday) used in selecting the next week’s policy 
from Supplementary Figure E5. (Middle) The selected policy at the beginning of each week in the 
pandemic. Each policy is represented by a 4-character alphanumeric code following the key in Figure 3.8. 
(Bottom) The marketer risk from sharing the actual number of records under the sequence of policies 
detailed in the middle graph. The expectation and 95% quantile range are calculated from 1,000 independent 
simulations. The horizontal dashed line marks the marketer risk threshold of 0.01. 
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Figure 3.13. Dynamic policy selection applied to Perry County, TN in the COVID-19 pandemic (August 
2, 2020 to October 23, 2021). (Top) The cumulative sum of the case counts reported in Davidson County, 
according to the Johns Hopkins COVID-19 tracking data. The red squares represent the case record number 
value and the end of the previous week (through Saturday) used in selecting the next week’s policy from 
Supplementary Figure E5. (Middle) The selected policy at the beginning of each week in the pandemic. 
Each policy is represented by a 4-character alphanumeric code following the key in Figure 3.8. (Bottom) 
The marketer risk from sharing the actual number of records under the sequence of policies detailed in the 
middle graph. The expectation and 95% quantile range are calculated from 1,000 independent simulations. 
The horizontal dashed line marks the marketer risk threshold of 0.01. 
  



 

33 

3.4 Risk fairness evaluation 

 

 
3.4.1 Distribution of PK risk 

 

Not only do data stewards have an ethical obligation to minimize the privacy risks of patients represented 

in a dataset, they also have an ethical obligation to equally distribute the risks between groups of 

patientsl13,71. As such, I use the framework to investigate how a data sharing policy is likely to distribute 

the privacy risk across demographic groups. First, I measure how the PK risk stratifies across racial groups 

at k=5, k=10, and k=20. I calculate the expected proportion of the overall PK risk to which each race 

corresponds when applying a single policy (1Bse, according to the key in Figure 3.5) for the duration of the 

COVID-19 pandemic within Davidson County, TN. The case counts input into the framework are the actual 

counts from the Johns Hopkins data.  

 

According to the US Census PCT12 tables, 61.4% of Davidson County residents are White, 27.7% are 

Black, 7.8% fall into the new Other group, and 3.0% are Asian. Figure 3.14 illustrates that the proportion 

of the privacy risk each racial subpopulation bears is not equal and varies over time. Around January 2021, 

the Asian subpopulation is expected to bear more of the overall PK5 risk than the other subpopulations, but 

less than the White and Black subpopulations for the overall PK11 and PK20 risk. This suggests that under 

the 1Bse generalization policy, Asian individuals are more likely to be more unique (i.e., fall into an 

equivalence class group of size 5 or less) than the other racial groups (more likely to fall into a equivalence 

class group between 6 and 20). The same phenomenon occurs for Black individuals around October 2020 

and April 2021. Note, the “Other” group shown in Figure 3.14 represents the combination of the initial 

racial subpopulations American Indian/Alaskan Native, Native Hawaiian/Pacific Islander, Mixed, and 

Other, which were generalized into a new Other group. Therefore, these subpopulations collectively bear 

the proportion of the PK risk shown below, but their individual contributions may vary. Still, the results 

highlight the unequal distribution of the privacy risk between groups. If fairness with respect to privacy is 

defined, in this scenario, as each group bearing an equal proportion of the PK risk, the distribution of risk 

is unfair. 
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Figure 3.14. The proportion of the overall expected PK5 (Top), PK10 (Middle), and PK20 (Bottom) each 
racial subpopulation bears, throughout October 2021 of the COVID-19 pandemic, when applying a 1Bse 
policy to Davidson County, TN. Proportion of risk is reported as the average of 1,000 independent 
framework simulations with a 5-day lagging period assumption. The racial subpopulations are based on the 
U.S. Census: 1) Asian, 2) Black, 3) White, and 4) Other, which is composed of Alaskan Native/American 
Indian, Pacific Islander/Native Hawaiian, Two or More Races, and Some Other Race.  
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3.4.2 Distribution of marketer risk 

 

I repeat the same experiment as above, this time calculating each racial subpopulation’s expected proportion 

of the overall marketer risk. Figure 3.15 shows that the two largest racial subpopulations, Black and White, 

essentially bear an equal amount of the overall amortized re-identification risk. The two smallest 

subpopulations do the same. 

 

 

 
 

Figure 3.15. The proportion of the overall expected marketer risk each racial subpopulation bears, 
throughout October 2021 of the COVID-19 pandemic, when applying a 1Bse policy to Davidson County, 
TN. Proportion of risk is reported as the average of 1,000 independent framework simulations. The racial 
subpopulations are based on the U.S. Census: 1) Asian, 2) Black, 3) White, and 4) Other, which is composed 
of Alaskan Native/American Indian, Pacific Islander/Native Hawaiian, Two or More Races, and Some 
Other Race.  
  



 

36 

3.5 Utility evaluation 

 

To complement the privacy risk evaluation of the dynamic policy approach to de-identifying a COVID-19 

pandemic registry in Section 3.3, in this section, I evaluate the utility of such data. Specifically, I evaluate 

the ability to detect simulated infection disparities within the data. 

 

This section begins with a description of the different types of de-identification methods considered in the 

evaluation, including variations of the dynamic policy approach and methods derived from two real-world 

COVID-19 datasets. I then describe how I simulate disparities in infectious disease surveillance data, 

provide details regarding how I detect disparities with an outbreak detection algorithm for each de-

identification method, and review the experimental design and performance evaluation measures. Finally, 

I present the results of the experiments. 

 

 

3.5.1 Data sharing policies and assumptions 

 

In this utility evaluation, I compare the ability to detect infection disparities between three variations of the 

dynamic policy approach, each considering an adversary with different background knowledge, as well as 

two de-identification policies derived from real-world COVID-19 datasets. In this section and the next 

(Section 3.6), a data sharing policy refers to the (static or dynamic) generalization applied to the quasi-

identifier values as well as the rate at which the dataset is update and released. This differs from the 

generalization policy defined in the previous sections that defined a single set of generalization 

specifications. 

 

All three dynamic policies include date of diagnosis and county of residence and are updated on a daily 

basis. The first dynamic policy, hereafter referred to as the strong adversary policy (SAP), is the same as 

the PK11 policy in Section 3.3. Similar to the PK risk case studies, I assume the adversary knows the date 

of diagnosis within a five-day period, accounting for the separation between diagnostic test date and date 

of confirmed diagnosis, and search for generalization strategies that are likely to meet a PK11 risk threshold 

of 0.01. To evaluate the optimal SAP implementation, in terms of forecasting the influx of new disease case 

records, I also assume the data sharer can estimate the number of daily cases that will accrue in the coming 

week within ± 5 cases. 
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The reasonable adversary policy (RAP) protects against an adversary who knows a target individual’s 

demographic information, but not their diagnosis date. Therefore, the quasi-identifier does not include date 

of diagnosis. This is likely a more reasonable assumption due to the difficulty of ascertaining a patient’s 

exact date of diagnosis41. Since date of diagnosis is not included in the quasi-identifier, similar to the 

marketer risk scenario, the data sharer updates the generalization strategy of all records in the dataset at the 

end of each week, according to the cumulative number of records. The generalization policy adaptation is 

also constrained to represent demographic quasi-identifiers with equal or greater granularity than previous 

strategies determine, following a generalization path.  

 

The marketer adversary policy (MAP) protects against the marketer attack in the same manner as in Section 

3.3. Again, I estimate the marketer risk under the assumption the adversary has an identified dataset that 

covers every population resident - a worst-case scenario. Figure 3.16 displays the dynamic policy search 

results guiding the three dynamic policies for both Davidson and Perry counties. For Davidson county, I 

prioritize generalization strategies that preserve race and ethnicity granularity. Due to Perry county’s racial 

and ethnic homogeneity (Table 3.2), for that county, I prioritize strategies that preserves age and sex 

granularity.  

 

The first of the two real-world COVID-19 dataset policies is the k-anonymous policy used in the risk 

evaluation in Section 3.3, originally derived CDC’s COVID-19 Case Surveillance Public Use Data with 

Geography129. In the utility evaluation, however, the k-anonymous policy is more similar to the CDC’s 

original policy by sharing month of diagnosis, instead of date or week. Due to the generalized month of 

diagnosis, I assume the dataset is updated on the first day of each month. Also, for simplicity and to match 

the dynamic policy implementation, the k-anonymous policy again differs from the CDC’s policy in that it 

does not strategically suppress quasi-identifiers to achieve 11-anonymity42.  

 

The Marginal Counts policy resembles the non-person-level data displayed in state COVID-19 

dashboards125 that have been used in several disparity investigations107. Though most racial data have been 

shared at the state level, for consistency with the other policies, I assume it shares county-level marginal 

counts for each race, ethnicity, age, and sex value, without preserving joint statistics. For example, the 

marginal counts for African Americans would be the daily counts of all African American cases, 

independent of ethnicity, age, and sex variation. I assume the dataset shared under this policy is updated on 

a daily basis. Table 3.5 summarizes the five de-identification policies’ details. 
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Figure 3.16. Dynamic policy search results for SAP, RAP, and MAP. The SAP and RAP strategies meet a PK11 threshold of 0.01, and the MAP 
strategies meet a marketer risk threshold of 0.01. 
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Table 3.5. Details of the de-identification policy assessed in this study. 

 

 
Strong 

Adversary 
Policy (SAP) 

Reasonable 
Adversary 

Policy (RAP) 

Marketer 
Adversary 

Policy (MAP) 
k-anonymous Marginal 

Counts 

Diagnosis date 
granularity Date Date Date Month Date 

Publication 
schedule Daily Daily Daily Monthly Daily 

Demographic 
generalization 

Varies 
between time 

periods 

Updated over 
time 

Updated over 
time Fixed Fixed, single 

feature 

Format Row-level Row-level Row-level Row-level 
Daily counts 

by feature 
value 

Includes 
comorbidity 
information 

Yes Yes Optional Yes No 

Assumed 
worst-case 
adversarial 
knowledge 

Target 
individual’s 

demographics 
and date of 
diagnosis 

Target 
individual’s 

demographics 

Identified 
dataset of 
population 
residents 

Target 
individual’s 

demographics 
and date of 
diagnosis 

NA 

 

 

3.5.2 Simulating surveillance data 

 

Labelling real world surveillance data for disparities can be both time consuming and arbitrary, such that 

outbreak detection is normally evaluated on simulated data154. For this evaluation, I generate partially 

synthetic data through constrained random sampling. It is partially synthetic in that the number of daily 

case records is informed by the Johns Hopkins University COVID-19 county-level tracking data18, but how 

the records distribute across demographic subpopulations is simulated. Since a disparity manifests as an 

anomalous increase in the number of cases corresponding to a specific demographic subpopulation relative 

to the subpopulation’s size23,24, the baseline distribution is generated by randomly sampling individuals 

from the population, without replacement. To simulate a disparity, I disproportionately sample from the 

affected subpopulation. 
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Figure 3.17. The pipeline for simulating disparity data in this study. 
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Figure 3.17 depicts the complete simulation process. A disparity is defined by a start date, peak date, 

duration, and subpopulation affected. In the simulation, all records are randomly sampled without 

replacement from the representative county population I generated from U.S. Census PCT12 tables19 (see 

Section 3.2). I generate the baseline demographic distribution by randomly assigning which county 

residents are infected on each day leading up to (step 1) and throughout the disparity period (2). To simulate 

a disparity in the specified subpopulation, I first calculate the standard deviation of the subpopulation’s 

baseline infection rate during the disparity period (3). I then generate a log-normal shaped epidemic curve155 

(4), whose values define the additional proportion of daily cases that need to correspond to the disparity 

subpopulation. For example, if the curve has a value of 0.2 on a given day, then an additional 20% of the 

day’s records need to correspond to the disparity subpopulation. I rely upon a log-normal shaped curve, 

following the standard practice in the literature, to approximate real world epidemic curves154,156. The curve 

reaches its apex on the peak date, at a value set to four times the standard deviation of the baseline infection 

rate. This induces a disparity proportional to the subpopulations’ baseline rate, peaking at a 99.9% 

significance level. In scenarios where no baseline cases correspond to the disparity subpopulation, and the 

standard deviation is zero, the peak value is set to a proportion value of 0.5. I then randomly replace records 

within the disparity period that do not belong to the disparity subpopulation with those that do, according 

to the proportion values defined by the epidemic curve (5). Finally, I continue baseline sampling for the 

remainder of the time series (6). 

 

All simulated disparities are 45 days in duration, as the evaluation emphasizes early disparity detection, 

with an epidemic curve increasing rapidly to a peak on day 10 before decreasing slowly155. The affected 

subpopulation is defined as a combination of demographic values the Census provides for race, ethnicity, 

sex, and age. The definition includes up to one value for each of these four features. Since a disparity 

typically affects a range of ages instead of an exact age, I transform age into age groups ([0, 10), [10, 20), 

[20, 30), [30, 40), [40, 50), [50, 60), [60, 70), [70, 80), [80, +]) when simulating and detecting disparities. 

 

 

3.5.3 Disparity detection 

 

Many outbreak detection algorithms have been developed as a consequence of the Defense Advanced 

Research Project Agency (DARPA) sponsoring the Bio-event Advanced Leading Indicator Recognition 

Technology (BioALIRT) project157. Unique among these algorithms is the What’s Strange About Recent 

Events (WSARE) algorithm158. Designed for multivariate categorical data that includes both spatial and 

temporal information, such as that available in Limited data sets, WSARE combines association rule 
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mining, hypothesis testing, and randomization to detect significant patterns in surveillance data159. The 

result is an algorithm that both detects subpopulation outbreaks and explains the features (e.g., race, ZIP 

code, etc.) describing the outbreak group. WSARE’s characteristics are unique as most outbreak detection 

algorithms, even state-of-the-art machine learning algorithms, either do not detect significant patterns in 

multivariate categorical data or do not explain the reason an alert was raised157,160,161. Moreover, WSARE 

has been implemented in several real world settings, including American and Israeli outbreak detection 

monitoring systems158. As such, WSARE provides the opportunity to detect disparate emerging disparities 

within COVID-19 surveillance data, and, therefore, to evaluate how well data sharing policies enable 

disparity detection. 

 

For each time period in the dataset, WSARE searches for the most statistically significant increase in case 

records using a set of rules. The rule consists of a single value for one or more covariates. For instance, 

WSARE may return an alert indicating an unusually high number of records from October 10, 2020, that 

correspond to 20-30-year-old males. WSARE uses a greedy search to identify the most anomalous rule 

through a series of Fisher Exact Tests162, comparing the current time period’s records to baseline records at 

a user-defined statistical significance threshold. False positives due to multiple hypothesis testing are 

mitigated via randomization tests. Variations of the WSARE algorithm (namely, 2.0, 2.5, 3.0) apply 

different methods for defining baseline records158. Here, I employ WSARE 2.0 because it does not require 

extensive historical data (which are likely unavailable in novel pandemics). WSARE 2.0 generates a 

baseline from dataset records 35, 42, 49, and 56 days prior to the date of evaluation. I apply WSARE 2.0 

to each de-identification policy. To further evaluate SAP, where the quasi-identifier generalization varies 

within the dataset, I additionally apply a variation of WSARE 3.0. This variation generates a baseline by 

randomly sampling up to 10,000 county residents from the U.S. Census population statistics. 

 

I apply WSARE to the de-identification policies in the following manner. On each day in the WSARE 2.0 

application to SAP, referred to as SAP 2.0, the quasi-identifiers in the current day’s records and the baseline 

days’ records are transformed to the most coarse version specified by the set of generalization strategies 

applied to those records. In the WSARE 3.0 application to SAP, referred to as SAP 3.0, the current day’s 

generalized records are compared to the census-derived baseline. For both RAP and MAP, the records in 

the full dataset are transformed according to the current day’s generalization strategy. To standardize this 

comparison between policies, I convert the k-anonymous policy’s month of diagnosis to date of diagnosis 

by randomly assigning a date within the month to each record. I generate assignments by randomly 

sampling the date with replacement, where each date within the month is equally weighted. For the Marginal 
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Counts policy, I consider a single covariate that includes all race, ethnicity, age group, and sex values. 

Finally, for comparison, I apply WSARE 2.0 to the raw data. 

 

 

3.5.4 Experimental design 

 

I broadly evaluate how well each of the de-identification policies enables disparity detection at different 

significance thresholds in both Davidson and Perry County, TN. I simulate 50 datasets, each with the same 

two-component disparity starting on a different day – every 10 days from 5/10/2020 to 9/12/2021. For 

Davidson county, the two components are Black or African American race and age group [30, 40). Likely 

due to the racial and ethnic homogeneity of the county residents and the constraints of the simulation 

method, I was unable to simulate detectable disparities with a racial or ethnic component in Perry county. 

Therefore, for Perry county, the disparity components are Female sex and age group [30, 40). I apply 

WSARE at five different statistical significance thresholds (0.1, 0.05, 0.01, 0.005, 0.001) to each dataset, 

under each de-identification policy. I then measure the proportion of the datasets in which the disparity is 

detected. I consider the disparity detected if WSARE raises an alert within the disparity period, and the 

alert’s feature value exactly matches or contains the true value. For instance, if the simulated disparity 

occurs in the [30, 40) age group and the data is shared under the k-anonymous policy, an alert for age group 

[18, 50) raised within the disparity period is considered an accurate detection. I also measure the time to 

detection, defined as the number of days since the start of the simulated disparity to the first date an alert is 

raised with correct demographic features. Note, the detection time considers the date at which the data is 

made available by the data sharing policy. If the disparity is not detected, I assign a detection time of 90 

days, or twice the disparity duration. Finally, I measure how many false positives are generated. False 

positives are defined as an alert raised during the disparity period that does not have any of the correct 

features and any alert raised outside the period. Since WSARE 2.0 generates a baseline from records 

occurring up to 56 days prior to the evaluation date, I do not count false positives (for any WSARE 

implementation) prior to day 56 or during the first 56 days following the simulated disparity. This is done 

because a representative baseline cannot be acquired. 
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3.5.5 Evaluation results 

 

I first measure the proportion of the 50 experiment datasets in which the disparity is accurately detected, at 

each statistical significance threshold. Figures 3.18 and 3.19 present the results for Davidson and Perry 

County, respectively.  

 

 

 
Figure 3.18. Proportion of detected disparities for Davidson County, TN, in which at least one of the 
simulated disparity features (left) and both features (right) are detected. The proportion is out of 50 different 
experiment datasets. 
 

 

In Davidson County, RAP and MAP detect the greatest proportion of the simulated disparities. In some 

cases, RAP and MAP detect more disparities than the raw data. When detecting at least one of the features 

defining the demographic subpopulation within which the disparate infection rate occurs (30–39-year-old 

African Americans), the k-anonymous and Marginal Counts policies also detect a large proportion of the 

disparities across the significance thresholds. However, the k-anonymous policy detects both demographic 

features only 20% of the time at a 0.1 significance level, and the Marginal Counts policy’s lack of joint 

statistics prevents the detection of both features entirely. The SAP 3.0 implementation detects one of the 

disparity features more often than the SAP 2.0. Yet, both implementations detect fewer disparities than the 

other policies, and neither detect both features. 
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Figure 3.19. Proportion of detected disparities for Perry County, TN, in which at least one of the simulated 
disparity features (left) and both features (right) are detected. The proportion is out of 50 different 
experiment datasets. 
 

 

In Perry County, MAP detects one of the disparity features (either Female or 30-39 years old) nearly as 

often as the raw data. The k-anonymous policy detects one of the features more often than RAP at statistical 

significance thresholds of 0.1 and 0.05 and less often at the other thresholds. SAP 2.0 did not detect any 

disparities, where SAP 3.0 detected one feature of less than 10% of the disparities at thresholds of 0.1 and 

0.05. None of the de-identification policies, nor the raw data, enabled both disparity features to be detected 

in Perry County.  

 

I next consider the detection times and false positives generated by each data sharing policy. I create 

Activity Monitoring Operating Characteristic (AMOC) curves by averaging the detection times and false 

positives for each policy at each significance threshold. A larger p-value threshold tends to decrease the 

detection time while increasing the false positive rate. A more significant threshold has the opposite effect. 

Thus, the results generate curves where the optimal value is a detection time of 1 day (1 day after the 

disparate infection rate began) with no false positives. Figures 3.20 and 3.21 present the AMOC curves for 

Davidson and Perry County, respectively.  

 

For Davidson County, the RAP and MAP policies enable the shortest times to detect at least one and both 

simulated disparity features. The Marginal Counts policy provides comparable detection times for detecting 

only one disparity feature. The SAP 2.0 and SAP 3.0 implementations do not support detection of both 

features either. However, SAP 2.0 and SAP 3.0 enable, on average, similar detection times to the k-
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anonymous policy while generating fewer false positives. This is because the k-anonymous policy’s 

monthly publication schedule delays the time to detection, even though the k-anonymous policy detects 

more disparities than either SAP implementation. 

 

For Perry County, MAP enables the earliest detection of at least one disparity feature, followed by RAP 

and the k-anonymous policy. Again, no policy enabled the detection of both disparity features, producing 

average detection times of 90 days. 

 

 

 
Figure 3.20. AMOC curves for Davidson County, TN, for detecting at least one of the simulated disparity 
features (left) and both features (right). Each point is the average of 50 different experiment datasets. 
 

 

 
Figure 3.21. AMOC curves for Perry County, TN, for detecting at least one of the simulated disparity 
features (left) and both features (right). Each point is the average of 50 different experiment datasets.  
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3.6 Utility fairness evaluation 

 

 

3.6.1 Evaluation overview 

 

I evaluate fairness with respect to data utility in the context of detecting infection disparities. That is, I 

consider a de-identification method to fairly preserve data utility if the resulting data supports equal 

disparity detection performance across subpopulations. The smaller the difference between the proportion 

of disparities detected and the smaller the difference between the disparity detection times, the fairer the 

performance is considered. 

 

In this experiment, I simulate 10 datasets with a single-component disparity for each of the race, ethnicity, 

age group, and sex values. There is one dataset for each of 10 dates spread across COVID-19’s multiple 

waves. I apply WSARE to search for the best single component increase at a significance threshold of 0.05. 

I measure bias, or the lack of fairness, between subpopulations data utility by calculating the standard 

deviation across subpopulations’ average proportion of disparities detected and average detection times. A 

smaller standard deviation indicates more fair disparity detection. I calculate both feature-specific standard 

deviations (e.g., race-specific deviations to measure racial bias) and standard deviations across all 

subpopulations. Additionally, I test for statistically significant differences in the detection performance, 

across all subpopulations, when sharing the data under the de-identification policies vs sharing the raw data. 

I do so with McNemar test and two-sided paired t-tests for the proportion of disparities detected and the 

average detection time, respectively. In each case, the null hypothesis is that the detection performance 

supported by the de-identification policies and the raw data is the same. 

 

 

3.6.2 Evaluation results 

 

3.6.2.1 Fairness of detection rates 

 

Table 3.6 displays the McNemar test results for any statistically significant differences in the proportion of 

disparities detected between the de-identification policies and the raw data. The subpopulation-specific 

results are shown in Table 3.7. 
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Table 3.6. McNemar test results for the proportion disparities detected (p-values). 

 

 Davidson Perry 

SAP 2.0 5.16 x 10-32 3.31 x 10-24 

SAP 3.0 3.02 x 10-6 1.32 x 10-23 

RAP 1 3.81 x 10-6 

MAP 1 0.774 

k-anonymous 1.52 x 10-5 0.0755 

Marginal Counts 3.05 x 10-5 1.53 x 10-5 
* Compared to raw data. Across all 200 simulated datasets. 

 

 

In Davidson County, RAP, MAP, and the raw data enable detection of 90% of all the disparities. The k-

anonymous and Marginal Counts enable the detection of 80% of all disparities. The SAP 3.0 

implementation outperforms the SAP 2.0 implementation, detecting 70% of the disparities to SAP 2.0’s 

30%. The McNemar tests suggest there is insufficient evidence to reject the null hypothesis that the 

proportion of disparities detected under the RAP and MAP policies are similar to that of the raw data. 

Regarding the other de-identification policies, however, there is sufficient evidence to reject the null 

hypothesis, where the SAP 2.0 implementation produces the most significant p-value. In terms of 

supporting relatively similar detection rates across racial groups in Davidson County, SAP is the fairest 

with a standard deviation of the proportion of disparities detected across racial groups of 0.1. However, 

SAP does not detect as many age group disparities. The SAP implementations’ differential performance 

between race and age group disparities reflects the dynamic policies’ prioritization of racial and ethnic 

granularity in Davidson County. Across all subpopulations, SAP 3.0, RAP, MAP, and the k-anonymous are 

the fairest, with a standard deviation of 0.2. 

 

In Perry County, only the MAP and k-anonymous policies produced p-values greater than 0.05 in the 

McNemar tests. The SAP implementations produced the most significant p-values. In fact, the SAP policy 

does not support disparity detection for almost any group. This is because SAP does not share many records 

due to excessively high privacy risks in the context of a strong adversary. The RAP and MAP’s differential 

performance between racial disparities and age group disparities reflect the dynamic policies’ prioritization 

for age group and sex granularity in Perry County. Though it detects fewer disparities overall, the k-

anonymous policy enables the fairest detection rate across all subpopulations, with a standard deviation of 

0.2.
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Table 3.7. Proportion of disparities detected in each single-feature subpopulation. 

 

 
 * Proportion is out of 10 experiment datasets 
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3.6.2.1 Fairness of detection times 

 

Table 3.8 displays the paired t-test results for any statistically significant differences in the average disparity 

detection times between the de-identification policies and the raw data. The subpopulation-specific results 

are shown in Table 3.9. 

 

In Davidson County, RAP and MAP enable the most similar detection times to the raw data. The paired t-

tests comparing detection times between the de-identification policies and the raw data, produced p-values 

of 0.350 and 0.271 for RAP and MAP, respectively. All the other policies generated p-values < 0.0001. In 

terms of supporting relatively similar detection times across subpopulations, the k-anonymous policy is, on 

average, the fairest, with a standard deviation of 14.2 days. However, the detection times are longer than 

those for RAP and MAP. Notably, RAP and MAP support relatively fair detection times across 

subpopulations, except for AIAN and NHPI, the two smallest subpopulations in Davidson County. 

 

In Perry County, the SAP implementations have the smallest standard deviations in average detection times. 

However, that is due to SAP broadly preventing disparity detection. Of the policies that generally detect 

disparities, MAP produces the most similar results to the raw data, with a p-value of 0.666, while the k-

anonymous policy is the fairest. Across all subpopulations, the k-anonymous policy’s standard deviation in 

detection time is 11.2 days. Regarding age group disparities, specifically, RAP and MAP support the fairest 

detection times. 

 

 

Table 3.8. Paired t-test results for average detection times (p-values). 

 

 Davidson Perry 

SAP 2.0 1.33 x 10-43 2.43 x 10-23 

SAP 3.0 4.07 x 10-9 5.68 x 10-23 

RAP 0.350 2.39 x 10-6 

MAP 0.271 0.666 

k-anonymous 5.57 x 10-27 1.17 x 10-8 

Marginal Counts 1.46 x 10-5 2.63 x 10-6 
† Compared to raw data. Across all 200 simulated datasets. 
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Table 3.9. Average time to detect, in days, disparities in each single-feature subpopulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    †Mean [95% quantile range] 
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3.7 Discussion 

 

 

3.7.1 Dynamic policy approach 

 

The aim of this work was to develop a de-identification method that supported timely publication of a de-

identified pandemic registry while preserving the data’s utility for public health research. 

 

In this chapter, I introduced a framework to dynamically adjust data sharing policies to publicly share 

infectious disease surveillance data in a timely manner. The framework forecasts privacy risk according to 

the expected volume of new cases, enabling data sharers to prospectively adapt policies before seeing 

caseloads while incorporating the uncertainty of who will be infected in the future. In Section 3.3, I 

demonstrated how dynamically changing the policy per the framework’s recommendations can maintain 

the privacy risk below the specified privacy risk threshold more frequently than statically applying a policy 

developed through retrospective de-identification methods, for both the PK and marketer risk-based 

approaches. In Section 3.5, I showed how dynamic policies designed with reasonable adversaries enable 

more timely and accurate detection of underlying disparities than data sharing policies derived from current, 

published COVID-19 datasets. 

 

The dynamic policy approach is designed to maximize the utility of surveillance data for public health 

research and disease surveillance use cases. It does so by fluctuating data generalization with the infection 

rate to avoid the potential identity exposures or the loss of utility inevitably imposed by fixed data sharing 

policies applied to dynamic datasets. The dynamic policy approach also bypasses the delay of accumulating 

patient records before performing a risk assessment and shares dates of events. I showed how these last two 

features are crucial for effective disease monitoring119,163, as they reduced the time to disparity detection. 

Furthermore, forecasting the privacy risk from population estimates enables greater consistency in quasi-

identifier representation, as the policy can be maintained throughout the forecasted interval of time, and 

enables the data sharer to design a data sharing policy in the absence of the actual data. Moreover, predicting 

which policies provide sufficient privacy protection could potentially automate patient de-identification. 

 

I demonstrated three approaches to dynamic policy adaptation. In the PK risk-based approach where it is 

assumed a strong adversary knows the target individual’s diagnosis date within a window of time (the PK11 

policy or SAP), I fixed county of residence and date of diagnosis granularity while increasing or decreasing 

the demographic granularity with the influx of new disease case records. I made this tradeoff to support 
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consistent data updates but acknowledge that it may induce certain data utility constraints. For instance, if 

an application requires uniform demographic granularity, the demographic values may need to be further 

generalized. An alternative dynamic policy approach could preserve the demographic granularity over time 

by using the privacy risk estimation framework’s predictions to generalize the date of diagnosis into 

variably sized time windows. Still, this would impose a utility constraint on date information and cause the 

data publication schedule to vary. In the PK-risk based approach where it is assumed a reasonable adversary 

does not know the target individual’s diagnosis date (RAP) and in the marketer risk-based approach (MAP), 

I showed how the dynamic policy can preserve date of diagnosis granularity while monotonically increasing 

the demographic granularity of the entire dataset over time. The weaker adversary increased the data 

sharer’s ability to share more granular information over time. This, intuitively, follows the privacy-utility 

tradeoff underlying data sharing. 

 

The disparity detection evaluation’s results suggest that both in large, urban populations and small, rural 

populations, RAP and MAP can support better disparity detection performance than the data sharing 

policies derived from current, publicly available COVID-19 datasets. RAP and MAP detected a larger 

proportion of both single and double-feature disparities than the other policies, and with lower detection 

times. The k-anonymous policy’s (in Sections 3.5-6) generalization of date of diagnosis induced uncertainty 

with respect to intramonth demographic variation in the dataset, broadly preventing the detection of more 

specific, multi-feature disparities. Its monthly data publication schedule also increased detection times. The 

Marginal Counts policy detected disparities in a timely manner, but its removal of joint distributions 

prevented the complete characterization of multi-feature disparities. Though SAP 3.0 outperformed SAP 

2.0, it still provided suboptimal detection performance for both counties.  

 

In this chapter, I evaluated several dynamic policies, each designed to meet a privacy risk threshold against 

adversaries with different types of background knowledge. I do not, however, advocate for which policy 

should be implemented in every case. This investigation showed how the privacy risk estimation 

framework’s flexibility can inform different approaches to dynamic policy adjustment. Furthermore, the 

results highlight the importance of adversarial modelling in data sharing policy development and selection. 

If the adversary does not know (or cannot know) the COVID-19 diagnosis date of a target individual, the 

data sharer has the potential to share more granular information under RAP or MAP. If the adversary can 

reasonably obtain such information, SAP and the k-anonymous policies provide better privacy protection. 

The difference in disparity detection performance between these two groups highlights the need to 

investigate the likelihood an adversary can know the date if diagnosis, if they even know the complete 

demographic information40,41. 
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3.7.2 Fairness in de-identification 

 

The fairness evaluations, with respect to risk (Section 3.4) and utility (Section 3.6), highlight minority 

subpopulations’ disadvantages in de-identified data. First, minority subpopulations may remain 

disproportionately exposed to re-identification compared to the majority group. When caseloads were high 

Davidson County, TN, around October 2021 and September 2021 (see Figure 3.10), the majority of records 

that fell into an equivalence class smaller than 5, 10, or 20 belonged to the Black, Asian, and (generalized) 

Other individuals (see Figure 3.14). This is because the majority of new disease cases corresponded to the 

White race, broadly increasing the racial subpopulations’ equivalence class sizes and reducing their 

distinguishability.  

 

Second, de-identification transformations can mask the evidence of health disparities. While the dynamic 

and real-world policies varied in their ability to support fair infection disparity performance, a consistent 

trend appeared: disparities were less frequently detected in smaller subpopulations, regardless of de-

identification method. For example, disparities in the NHPI population in Davidson County were detected 

less frequently than disparities in other racial subpopulations, for each policy. And, across all 

subpopulations, fewer disparities were detected in rural Perry County than in urban Davidson County. 

 

These disadvantages are a consequence of the fact that de-identification methods, by design, target the 

quasi-identifiers of the most unique individual records and, as the experiments in this chapter showed, the 

most unique records tend to correspond to minority subpopulations. Therefore, data stewards face an ethical 

dilemma when aiming to support public health research and an effective data-driven response to a 

pandemic: should the records that fall into the smaller equivalence class sizes be further distorted to preserve 

their privacy or should their granularity be maintained to preserve their representation? The former 

disproportionately removes records from minority subpopulations, who, in reality, suffered disparate 

outcomes during the COVID-19 pandemic101. The latter disproportionately exposes minority 

subpopulations to re-identification, whose communities, in reality, suffered discrimination during the 

COVID-19 pandemic164,165. Indeed, each subpopulation inherits its own privacy-utility tradeoff, and the 

tradeoffs are not equal71. And while the COVID-19 pandemic makes the implications of the tradeoff 

between fair privacy and fair utility more salient, the impact of this tradeoff extends, in our increasingly 

data-driven world, to our pursuit of health equity. Further complicating the matter is the fact that the fair 

privacy-fair utility tradeoff has received limited attention in the privacy community and therefore remains 

poorly understood14,63,71.   
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3.8 Limitations and future directions 

 

Despite the merits of this investigation, I wish to highlight several limitations to guide future extensions 

and transition into application. First, the dynamic, forecast-driven approach did not always meet the privacy 

risk threshold in the SAP, PK risk-based scenario. However, the framework’s policy search results remained 

relatively robust. Policies chosen from forecasted counts were typically similar or close to those chosen 

from actual case counts. And when overestimating the number of cases, the privacy risk did not always 

dramatically exceed the threshold. Furthermore, I selected policies according to a 95% empirical confidence 

interval, but the policy search can readily incorporate larger confidence intervals as organizations deem 

desirable. Expanding the intervals further increases the likelihood the dynamic policy will meet the 

threshold in application. Moreover, when adjusting policies according to the actual case counts, the privacy 

risk never exceeded the threshold. Thus, the dynamic policy approach can be improved through more 

accurate forecasts and a model that accounts for potential case load overestimation.  

 

Second, my approach did not incorporate suppression to protect the most unique patient records in the 

dataset. This is because it is nearly impossible to accurately forecast the exact records which will fall into 

small demographic groups. It is possible, however, during the enforcement of a selected policy (using the 

framework) to suppress actual patient records that need to be published and fall into population 

demographic bins corresponding to very few individuals, such as patient records that are population 

uniques, or patient records that correspond to population groups with fewer than k individuals (for PK risk). 

Such records with certainty would not meet the k-anonymity requirement. Additional risk analysis can be 

performed to estimate the risk of actual records in not meeting the k-anonymity requirement in a data release 

and suppress fields in records that are associated with a high estimated risk. Still, the framework’s policy 

search and the policy selection approach depend on many adjustable parameters (e.g., the number of 

performed simulations, the expected number of new disease cases, the specific bins randomly selected to 

simulate new cases, the size of the quantile range used for the confidence a policy will meet a given risk 

threshold), which can be adjusted to mitigate the need for suppression.  

 

Third, the privacy risk estimation framework depends on random sampling methods that may not 

realistically simulate the pandemic spread of disease. I assigned an equal likelihood of infection to all 

uninfected county residents at any given time in the simulations, and did not allow reinfections. In reality, 

the actual likelihood varies according to contact patterns of infectious individuals (i.e., through households 

or at work)166,167, and reinfections are possible, though not likely in the case of COVID-19168. Still, I believe 

that Monte Carlo simulations, constrained to run within the relatively contained geographic region of a 
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county, provide a reasonable range and estimate of infection outcomes, as they have shown to be adept at 

simulating complex, high-dimensional patterns169. Further framework refinement should address the 

possibility of reinfection for diseases for which reinfection is more likely. 

 

Fourth, the framework does not compute the re-identification risk of sharing a specific record. Rather, it 

estimates the range and expectation of privacy risk for a population. Future work should evaluate how well 

the framework’s estimates compare to the re-identification risk of sharing actual disease surveillance data. 

Fifth, the utility evaluations in Sections 3.5-6 measured the ability to detect a disparity without quantifying 

how accurately the disparity was represented by the data sharing policy. Though data representation may 

be sufficient for accurate detection, implying the data sharing policy sufficiently preserves the 

representation of the underlying disparate trends, it is likely the data sharing policies still distort disparity 

features (e.g., severity or duration). Moreover, the simulated surveillance data did not consider potential 

simultaneous disparities in multiple subpopulations. Future work should consider more complex disparities 

and quantify how well data sharing policies preserve their features. 

 

Fifth, my experiments using simulated data did not consider the effect of suppressing values and missing 

data on disparity detection. As k-anonymity is often achieved in practice through suppression42 and real-

world data is rarely complete, future work should quantify the robustness the policies’ performance under 

suppression and varying levels of missingness. 

 

Sixth, the data utility evaluations in Sections 3.5 and 3.6 relied on a single outbreak detection algorithm. It 

is possible that other outbreak detection algorithms improve performance and fairness. Notably, however, 

as discussed in Section 3.5, most outbreak detection algorithms were not designed to detect disparities in 

categorical data. Anomaly detection algorithms, from the statistical process control-based methods 

commonly applied by public health agencies to the state-of-the-art deep learning methods, often rely on 

univariate count data. Of the outbreak detection algorithms that take advantage of multivariate count data, 

most focus on monitoring disease spread in time and space with granular geolocation information161,170. 

Outbreak detection algorithms designed to detect changes in demographic subpopulations within 

categorical data are few, and even fewer are those that indicate which subpopulation experiences the 

outbreak160. In fact, to the extent of my knowledge, the only algorithm, other than WSARE, that combines 

association rule mining, hypothesis testing, and explainable disease surveillance is Neill and Kumar’s 

Multidimensional Subset Scan (MD-Scan)171. Alternatively, different statistical methods, such as 

regression24, could be used to identify temporal disparities. Future work should apply alternative algorithms 

and methods to more broadly evaluate the data share policies’ ability to preserve underlying disparities. 
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Finally, I focused my evaluation on disparities within counties while only briefly comparing performance 

between two counties. The difference in Davidson and Perry county performance suggests all five data 

sharing policies were unfair in terms of providing similar disparity detection performance between counties. 

Future work should analyze performance differences between all counties in a state or country. 

 

 

3.9 Conclusion 

 

Disease surveillance data is variable, between geographic areas and over time. As such, data must be 

frequently updated and de-identified in a manner that incorporates such dynamics. To support disease 

monitoring and disparity investigations by public health researchers and the general public, the data must 

also contain granular date information. The privacy risk estimation framework I introduced enables a 

prospective approach to surveillance data de-identification. In contrast to traditional methods, prospective 

policy selection offers increased flexibility to support near-real time data dissemination. I showed that 

forecast-driven de-identification offers better privacy protection than the static data sharing policy 

application when applied to a pandemic registry that increases in size at a variable rate. Moreover, I showed 

that when protecting against a potential adversary of reasonable strength – an adversary who, at most, 

knows a target individual’s complete demographic information – dynamic policy de-identification enables 

timely publication of person-level data that preserves evidence of underlying disparities better than current 

public datasets. As such, dynamic policy de-identification has the potential to support the detection and 

characterization of disparities, and the investigation of their sources, in current and future pandemics. 

 

Furthermore, the results of this work highlight a tradeoff between fairly distributing the privacy risk and 

fairly distributing the data utility when sharing de-identified data. The lack of understanding of this tradeoff 

and its significant societal implications serve as the motivation for the remainder of this dissertation. 
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Chapter 4 

 

Data-based constraints to fairness in de-identified data 

 

 

4.1 Introduction 

 

The COVID-19 pandemic was a single example of the modern data economy’s demands for ever growing 

amounts of data. The current enthusiasm around artificial intelligence requires larger and more diverse 

datasets to develop algorithms that are high performing, just and fair172,173. Data is also more frequently 

being recognized as a public good174, such that US National Institutes of Health’s recently updated their 

Data Management and Sharing Policy in a manner that “establishes the expectation for maximizing the 

appropriate sharing of scientific data generated from NIH-funded or conducted research”.175 The push for 

more data sharing, and the reliance on de-identification to support large-scale data sharing, makes the need 

to understand the potential privacy risk and data utility inequities of de-identification even more urgent. 

 

However, as described in Section 2.6 and despite the shared understanding among privacy researchers that 

more distinguishable populations have a less favorable privacy-utility tradeoff71, the fairness of de-

identification is not well understood13. Only recently has the privacy community begun to seriously 

investigate the interplay of fairness and de-identification, where most investigations empirically measure 

the extent to which de-identification data transformations degrade algorithmic fairness71. Several 

investigations have sought to formalize the tradeoff between privacy and fairness; however, they treat 

privacy as a binary outcome instead of a varying level of protection16. This limits the ability to define the 

relationship between fair privacy risks and fair data utility, and how one may have to be sacrificed for the 

other. Moreover, the investigations have missed the larger question: is it even possible to simultaneously 

equalize privacy risk and data utility, and, if not, how do we respond? 

 

In this chapter, I formalize the relationship between achieving fair privacy risk and fair data utility between 

records when de-identifying a dataset via generalization and suppression. I show that it is, in fact, 

impossible to achieve equal privacy and utility across groups in nearly all scenarios. I further illustrate the 

constraints and consequences defined by the impossibility theorem in the context of the k-anonymity 

privacy model. Finally, I discuss the ethical implications of the impossibility theorem and propose a data 

sharing model that supports sharing more representative data without sacrificing privacy protections. 
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4.2 The fairness tradeoff theorem 

 

In this section, I formally prove that it is not possible for generalization and suppression to simultaneously 

equalize the re-identification risk and data utility across records in a dataset that has unequal re-

identification risks prior to the implementation of these techniques. The proof is the first to explicitly 

consider both fairness with respect to privacy and fairness with respect to utility, and to formalize the 

tradeoff between the two. I begin the formalization by establishing several definitions. 

 

Definition. Dataset. 

Let 𝐷 be a dataset of 𝑛 records {𝑑$, 𝑑+, … , 	𝑑,} where each record corresponds to a single 

individual. Each record contains values for 𝑚 attributes, {𝐴$, 𝐴+, … , 	𝐴-}. Suppose there are no 

missing values for any 𝑑 ∈ 𝐷. 

 

As described in Section 2.2, quasi-identifying attributes contribute to the re-identification risk. A record’s 

quasi-identifier is defined as its set of quasi-identifying attributes. 

 

Definition. Quasi-identifier. 

The quasi-identifier of 𝐷, 𝑄., is the subset of attributes in 𝐷, D𝐴/ , … , 	𝐴!E ⊆ {𝐴$, … , 	𝐴-}, that can 

distinguish individual data subjects in a manner that can support re-identification.  

 

A record’s re-identification risk is inversely proportional to its distinguishability with respect to the quasi-

identifier. The more records with the same quasi-identifier value, the less distinguishable the records, and 

the lesser their re-identification risk. 

 

Definition. Equivalence class. 

An equivalence class, 𝑒, is the set of records that share the same quasi-identifier value.  

 

Let ℰ(𝐷) be the set of equivalence classes of a dataset 𝐷. I assume that all records 𝑑 ∈ 𝐷 that are suppressed 

share an equivalence class 𝑒∗ ∈ ℇ(𝐷). Finally, I define |𝑒∗| 	≡ |𝐷| + 1. 

 

Definition. Re-identification risk. 

Let 𝑒 be the equivalence class of 𝑑 and |𝑒| be the size of (number of records pertaining to) 𝑒. The 

re-identification risk of 𝑑 is $|2|. 
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To reduce a record’s re-identification risk, the quasi-identifier values of a subset of records in the dataset 

can be generalized to coarser representations, such that more records share its quasi-identifier value and 

therefore the record belongs to a larger equivalence class. Entire records can also be suppressed such that 

they are not present in the de-identified dataset. Generalization and suppression effectively reduce records’ 

distinguishability; however, this comes at the cost of data granularity. Hence, the privacy-utility tradeoff. 

 

A standard assumption in current generalization and suppression strategies is that of deterministic 

transformations, such that records with the same quasi-identifier value in the raw data (i.e., records that 

belong to the same equivalence class prior to de-identification) are transformed in the same manner by the 

de-identification function. This makes it so that records that belong to the same equivalence class before 

de-identification also belong to the same equivalence class after de-identification.  

 

Definition. Data transformation. 

Let 𝜙(𝑑) be a function that transforms attributes of a record 𝑑 ∈ 𝐷. I say that 𝜙 is determinisitic if 

for all 𝑑, 𝑑3 ∈ 𝐷 with 𝑑 = 𝑑3, 𝜙(𝑑) = 𝜙(𝑑3). I let 𝜙(𝐷) denote a dataset created by applying 𝜙 to 

each record 𝑑/ 

 

Let 𝐹(𝑑) return the size of the equivalence class of a record 𝑑. Similarly, 𝐹2𝜙(𝑑)4 will return the size of 

the equivalence class of the record 𝑑 transformed by	𝜙, i.e., 𝜙(𝑑). Thus, if 𝑑 is suppressed, 𝐹(𝑑) = |𝐷| +

1 (and note that |𝜙(𝐷)| = |𝐷|). 

 

Lemma 1. 

Suppose that 𝜙 is a deterministic function. Then for any 𝑒 ∈ 𝐸(𝐷) there is 𝑒3 ∈ 𝐸2𝜙(𝐷)4 such that 

𝑒 ⊆ 𝑒3. Moreover, 𝐹(𝑑) ≤ 𝐹2𝜙(𝑑)4 for all 𝑑 ∈ 𝐷. 

 

 Proof: 

Suppose that there is 𝑒 ∈ 𝐸(𝐷) and 𝑑, 𝑑3 ∈ 𝑒, and 𝜙(𝑑) ∈ 𝑒3 but 𝜙(𝑑3) ∉ 𝑒3for some 𝑒3 ∈

ℇ2𝜙(𝐷)4. Then 𝜙(𝑑) ≠ 𝜙(𝑑3). However, since 𝑑, 𝑑3 ∈ 𝑒, 𝑑 = 	𝑑3, which means that 𝜙 is not 

deterministic, a contradiction. Since 𝑒 ⊆ 𝑒3 for every 𝑒 ∈ 𝐸(𝐷) and some 𝑒3 ∈ 𝐸2𝜙(𝐷)4, it follows 

immediately that 𝐹(𝑑) ≤ 𝐹2𝜙(𝑑)4 for all 𝑑 ∈ 𝐷. 

∎ 

 



 

61 

Definition. De-identification. 

A deterministic function 𝜙 is a de-identification function if ∃	𝑑 ∈ 𝐷 such that 𝐹(𝑑) ≤ 𝐹2𝜙(𝑑)4. 

 

By its very nature, applying a de-identification function leads to utility loss. There are many ways to 

measure the utility loss. Here, I apply a domain-agnostic definition of the utility loss to a record 𝑑 ∈ 𝐷 from 

applying a de-identification function 𝜙 as 

 

𝑈𝐿(𝑑/; 𝜙) = 𝐹2𝜙(𝑑)4 − 𝐹(𝑑) (4.1) 

 

In other words, a record’s utility loss is defined as the difference between the size of a record’s equivalence 

class after and before being transformed by a deterministic de-identification function. Note that by Lemma 

1	𝑈𝐿(𝑑/; 𝜙) ≥ 0 for any deterministic 𝜙. 

 

I define utility loss in this manner for several reasons. First, the difference in group size is the same as 

measuring the information-theoretic entropy of the de-identified data compared to the raw data, except that 

this measure does not include the log transform. Measuring utility loss as entropy is commonly applied in 

practice when optimizing de-identification transformations, as it is monotonic (i.e., the entropy increases 

with increased generalization and suppression) and it considers the differential utility loss between groups 

within a non-uniform distribution6,74 – both critical for this fairness evaluation. Second, it measures utility 

loss in terms of the data’s intrinsic utility, which estimates the data’s global utility independent of a specified 

use case. Third, it intuitively measures the extent to which de-identification transformations have diluted a 

record’s presence in its equivalence class. For example, assume 2 records pertain to 20-year olds and 10 

records pertain to 21-year olds in the raw dataset. If age is generalized by 𝜙 such that all 12 records become 

part of the same equivalence class defined as 20-21 year olds, most of those records actually pertain to 21-

year olds. The presence of the 2 records pertaining to 20-year olds has been diluted by de-identification 

more than the presence of the 10 records pertaining to 21-year olds. Finally, this definition of utility loss 

generalizes to any utility loss measure that monotonically increases with the difference in a record’s 

equivalence class size before and after transformation, such that the theorems also generalize to such 

measures. 

 

Next is the key impossibility result. 
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Theorem 1. Impossibility of simultaneous fair risk and fair utility. 

Let 𝜙 be a deterministic de-identification function and suppose that ∃	𝑑, 𝑑3 ∈ 𝐷 such that 𝐹(𝑑) ≠

𝐹(𝑑3). Then either 𝐹2𝜙(𝑑)4 ≠ 𝐹2𝜙(𝑑3)4 or 𝑈𝐿(𝑑; 𝜙) ≠ 𝑈𝐿(𝑑3; 𝜙). 

 

Proof: 

Suppose 𝐹(𝑑) ≠ 𝐹(𝑑3), and both 𝐹2𝜙(𝑑)4 = 𝐹2𝜙(𝑑3)4 and 𝑈𝐿(𝑑; 𝜙) = 𝑈𝐿(𝑑3; 𝜙). Then 

𝑈𝐿(𝑑; 𝜙) = 𝐹2𝜙(𝑑)4 − 𝐹(𝑑) = 𝑈𝐿(𝑑3; 𝜙) = 𝐹2𝜙(𝑑3)4 − 𝐹(𝑑3). Since 𝐹2𝜙(𝑑)4 = 𝐹2𝜙(𝑑3)4, 

this implies that 𝐹(𝑑) = 𝐹(𝑑3), a contradiction. 

∎ 

 

I further strengthen this impossibility result by showing that it holds even up to approximations. This is 

formalized next. 

 

Theorem 2. Fairness tradeoff. 

Let 𝛾 ≥ 0 and 𝜖 ≥ 0. Suppose that ∃𝑑, 𝑑3 ∈ 𝐷 with |𝐹(𝑑) − 𝐹(𝑑3)| ≤ 𝛾, and let 𝜙 be a 

deterministic de-identification function such that Z𝐹2𝜙(𝑑)4 − 𝐹2𝜙(𝑑3)4Z ≥ 𝜖. Then |𝑈𝐿(𝑑; 𝜙) −

𝑈𝐿(𝑑3; 𝜙)| ≥ 𝜖 − 𝛾. 

 

Proof: 

|𝑈𝐿(𝑑; 𝜙) − 𝑈𝐿(𝑑3; 𝜙)| = [\𝐹2𝜙(𝑑)4 − 𝐹(𝑑)] − \𝐹2𝜙(𝑑3)4 − 𝐹(𝑑3)][	

= [\𝐹2𝜙(𝑑)4 − 𝐹2𝜙(𝑑3)4] − 2𝐹(𝑑) − 𝐹(𝑑3)4[	

≥ [\𝐹2𝜙(𝑑)4 − 𝐹2𝜙(𝑑3)4][ −	|𝐹(𝑑) − 𝐹(𝑑3)|	

≥ 𝜖 − 𝛾 

∎ 

 

I visually graph the fairness tradeoff theorem in Figure 4.1. The only time the risk and utility can be 

simultaneously equalized between two records in a dataset is when they start with the same re-identification 

risk (i.e., when 𝛾=0). Otherwise, either the records’ risk can be equalized (when 𝜖=0) or the records’ utility 

can be equalized (when |𝑈𝐿(𝑑; 𝜙) − 𝑈𝐿(𝑑3; 𝜙)|=0). Furthermore, the greater the difference is between 

their initial privacy risks, the greater the potential disparity in risk or utility after de-identification. 
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Figure 4.1. Visualization of fairness tradeoff theorem. Here, I assume |𝐹(𝑑) − 𝐹(𝑑3)| = 𝛾 and 
Z𝐹2𝜙(𝑑)4 − 𝐹2𝜙(𝑑3)4Z = 𝜖. 

 

 

4.3 Empirical illustration of the fairness tradeoff theorem 

 

I further illustrate the constraints to simultaneously equalizing privacy risk and data utility using the k-

anonymity privacy model42 (see Section 2.3). I use the k-anonymity model for its legal precedent, intuitive 

structure, and its natural implementation via generalization and suppression. Moreover, k-anonymity 

applies an equal privacy risk upper bound to all records, facilitating the demonstration of the differential 

utility loss that occurs when prioritizing fair privacy protections. Nevertheless, I highlight that the fairness 

constraints defined by the fairness tradeoff theorem extend beyond a single privacy model. 

 

This evaluation measures disparities in utility loss and privacy risk between racial subpopulations when k-

anonymizing the United States population. The analysis begins by identifying several ways generalization 

and suppression can disproportionately degrade the minorities’ data utility in the context of the k-anonymity 

model. Specifically, I evaluate the overall utility loss and distribution of utility loss across racial subgroups 

while varying the value of k for k-anonymization, while varying the proportion of records that can be 

suppressed, when k-anonymizing a uniformly distributed population (i.e., when all records start with the 
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same re-identification risk), and when varying the manner in which the race variable is generalized. I then 

evaluate the differential risks each racial subgroup must assume to achieve equal data utility after de-

identification. 

 

 

4.3.1 Experiment parameters 

 

I again represent the demographic distribution of the US population according to the 2010 Decennial Census 

PCT 12 tables19 (see Section 3.2.3). Each table contains joint statistics by age, sex (Male/Female), and 5-

digit ZCTA (used as a proxy for 5-digit ZIP code in our analysis) for each of seven different race values 

defined by the Census. Several tables also include joint statistics by ethnicity, but, here, I restrict the quasi-

identifier to {age, sex, race, and ZIP code}. The race values include American Indian or Alaskan Native 

(AIAN), Asian, Black, Native Hawaiian or Pacific Islander (NHPI), White, Mixed, and Other. I combine 

all race-specific counts for all 50 states plus Puerto Rico to create the final dataset. 

 

 

 
 

Figure 4.2. Distribution of group sizes for each race in the United States population, per the 2010 Decennial 
Census. Group size is defined as the number of individuals with the same set of values for race, age, sex, 
and ZIP5. Re-identification risk is inversely proportional to the group size. The numbers in parentheses 
indicate the number of United States residents corresponding to each race. For each distribution, brackets 
denote 95% confidence interval, boxes denote inter-quartile range, and orange line denotes median value. 
AIAN = American Indian or Alaskan Native; NHPI = Native Hawaiian or Pacific Islander. 
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The fairness tradeoff theorem shows that risk and utility cannot be equalized when records start with 

different privacy risks. Different starting points are likely to occur in nearly all populations, including 

between racial subgroups in the US population, as shown in Figure 4.2.  

 

 

 
 

Figure 4.3. Generalization hierarchies for the four quasi-identifying attributes in this chapter, where the 
race and age generalization hierarchies vary slightly from those used in Chapter 3 (see Figure 3.4). Differing 
from Figure 3.4, the “*” symbol denotes suppressing the record entirely from the dataset. Note, the Race 
hierarchy does not allow the Race attribute to be generalized to a null value.  
 

 

To implement k-anonymity, I defined generalization hierarchies for each of the quasi-identifying attributes, 

displayed in Figure 4.3. I searched for optimal generalizations, following the hierarchies, with three 

different algorithmic approaches that are standards in practice and the data privacy literature139. The first 

implements the OLA algorithm without suppression6 (see Section 2.5). Recall, the OLA algorithm applies 

global recoding, which consistently generalizes all records to the same levels in the hierarchy, where local 

recoding may vary generalization levels between subgroups of records (e.g., some records have 5-year age 

intervals while others have 10-year age intervals). OLA identifies the globally optimal global recoding 



 

66 

according to a monotonic utility loss measure. The utility loss measure is normalized entropy as defined in 

Eqn. 4.2, below. The second k-anonymization approach also implements OLA, but this time allowing 1% 

of all records to be entirely suppressed. The third approach implements the Mondrian algorithm, which uses 

a greedy search to approximate the optimal local recoding for the dataset80. The combination of 

implementations allows for the comparison between suppression and no suppression as well as between 

global and local recoding. 

 

I measure utility loss according to a normalized version of entropy as defined by Gionis and Tassa6,74. This 

is the same utility loss measure as defined in theorems above; however, we apply the log transform here to 

be consistent with the original entropy measure’s definition. Let dataset 𝐷 contain 𝑛 records 

{𝑑$, 𝑑+, … , 	𝑑,}. Let 𝐹(𝑑/) denote the size of 𝑑/’s equivalence class prior to de-identification and 𝐹2𝜙(𝑑/)4 

denote the size of 𝑑/’s equivalence class after de-identification by a deterministic de-identification function 

𝜙. The utility loss is defined as: 

 

∑ − log+ a
𝐹(𝑑/)

𝐹2𝜙(𝑑/)4
b4"∈.

𝑛
 

(4.2) 

 

I normalize the measure by the number of records to be able to compare values between racial subgroups 

of different sizes. 

 

 

4.3.2 Evaluating the effect of k 

 

I first measure 1) the overall utility loss and 2) the inequality in utility loss between racial subgroups as the 

Gini coefficient of each group’s respective entropy, while varying k. Figure 4.4 shows that increasing the 

value of k increases the overall utility lost in the dataset for all three algorithmic approaches. Increasing k 

also decreases the inequality in race-specific utility loss. This result is intuitive, as increasing the value of 

k requires more records from the less distinguishable subgroups to be distorted, equalizing with the 

distortion experienced by the smaller, more distinguishable subgroups. The results also highlight a tradeoff 

between overall utility and fairness with respect to utility when anonymizing a dataset, as the k-

anonymizations with the fairest distribution in utility also induced the greatest utility loss. The Mondrian 

algorithm induces the least amount of utility loss, via local recoding, and also the greatest inequality in 
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utility loss. Global recoding with suppression induces less utility loss and more utility loss inequality than 

global recoding without suppression. 

 
Figure 4.4. (Left) Overall utility loss, measured as entropy, when applying each k-anonymization 
implementation at k values of {2, 5, 11, 20, 50, 100}. (Right) Inequality in utility loss between racial 
subgroups measured as the Gini coefficient of the race-specific utility loss values (one for each of the seven 
racial subgroups defined in the US Census). The results show a tradeoff between minimizing the overall 
utility loss and minimizing the inequality of utility loss. 
 

 

 
Figure 4.5. Race-specific privacy-utility curves when k-anonymizing the United States population on the 
features: race, age, sex, and ZIP code. Utility loss is measured as entropy (Eqn. 4.2), which measures the 
divergence between the original data and the transformed data6. Privacy is gained at increasing values of k. 
Points correspond to k values {2, 5, 11, 20, 50} – thresholds found in current state and federal guidance. 
(Left) OLA k-anonymization algorithm with no records suppressed. (Center) OLA algorithm with up to 1% 
of all records suppressed. (Right) Mondrian k-anonymization algorithm. AIAN = American Indian or 
Alaskan Native; NHPI = Native Hawaiian or Pacific Islander.  
 

 

Figure 4.5 shows how each racial subgroup experiences a different privacy-utility tradeoff, represented as 

curves, when k-anonymizing the full US population. Each point on the curve indicates the average utility 
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loss records within a racial subgroup incur when being de-identified to a particular value of k. To 

simultaneously achieve fair privacy and fair utility, all race-specific curves must cross at the same point. 

Instead, they almost never cross; and when they do, only two or three curves cross at a time. In terms of 

utility distribution, the smaller and more distinguishable racial minorities lose more utility than the majority 

subgroup, across k values and algorithmic implementations. Again, since k-anonymity equalizes privacy 

risk, the racial subgroups’ utility loss cannot be equalized.  

 

 

4.3.3 Evaluating the effect of suppression 

 

I next evaluate how suppression affects different racial subpopulations. Here, I apply OLA at k=11 (CMS’ 

standard59) while varying the proportion of records within the dataset that can be suppressed by the 

algorithm. The suppression thresholds vary between 0 and 0.1. Figure 4.6 shows that increasing the amount 

of suppression generally increases the data utility (or decreases entropy/utility loss). Utility loss increases 

at a suppression threshold of 0.1 because at that point the algorithm can achieve 11-anonymity without any 

generalization – all records in equivalence classes smaller than 11 are suppressed – and the suppression 

induces greater utility loss. However, the benefit in utility generally comes at the cost of fairness in utility. 

Figure 4.7 provides a more detailed description of the racial subgroup-specific effects when increasing the 

proportion of total records suppressed. The minority racial subgroups are more likely to be suppressed than 

the majority and subsequently lose more utility than the majority. 
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Figure 4.6. Overall utility loss measured as entropy (left) and inequality in utility loss between racial 
subgroups (right) when varying the proportion of records suppressed. Each de-identification applies the 
OLA algorithm at k=11 to the US population. 
 

 

 

 

 

 

 
Figure 4.7. Race-specific utility loss (left) and proportion of racial subgroup’s records (right) when varying 
the overall proportion of records suppressed. Each de-identification applies OLA algorithm at k=11 to the 
US population. 
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4.3.4 Evaluating inequalities in a uniform distribution 

 

The fairness tradeoff theorem states that the risk and utility of records can only be equalized when they start 

with equal re-identification risk. Here, I measure utility loss inequalities when k-anonymizing a uniformly 

distributed/distinguishable population. 

 

I simulate a uniform distribution by first creating a dataset with all the race, age, and sex values available 

in PCT12 tables and 1,000 distinct ZIP code values (0-999). I then assign 3 individuals to each combination 

of race, age, sex, and ZIP code. Finally, I k-anonymize the uniform population in the same manner as before. 

Figure 4.8 shows the race-specific utility loss values at varying levels of k. 

 

 

 
Figure 4.8. Race-specific privacy-utility curves when k-anonymizing a uniformly distributed population 
on the features: race, age, sex, and ZIP code. Points correspond to k values {2, 5, 11, 20, 50}. 
 

 

The OLA implementations with and without suppression do not induce unequal utility loss between racial 

subgroups. They are also identical, as the records that are suppressed by the algorithm are those that are 

anomalously distinguishable. Since all records start with the same re-identification risk in this population, 

OLA does not suppress any records. Notably, however, the Mondrian algorithm unequally distributes data 

utility at some values of k. Specifically, Asian and NHPI subgroups have different utility than the Black and 

White subgroups, who have a different utility from the AIAN, Mixed, and Other subgroups. This is due to 

a combination of the Mondrian algorithm’s greediness80 and it locally recoding the dataset according to the 

imbalanced generalization hierarchy for race (Figure 4.3). The dataset is partitioned on the race attribute 

according to generalization level second from the bottom. This separates Black and White into their 
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individual races while grouping Asian and NHPI together and AIAN, Mixed, and Other together. This result 

highlights the potential for generalization hierarchies, which may be defined semantically or in a data-

driven manner176, to potentially bias the utility distribution in a de-identified dataset. 

 

 

4.3.5 Evaluating the effect of race generalization hierarchies 
 

Given the results of uniform distribution experiment, I investigate how race generalization hierarchy 

structure can influence the distribution of utility across racial subgroups when k-anonymizing the US 

population. Here, I define four different race generalization hierarchies, shown in Figure 4.9. The first, 

applied in all experiments thus far, attempts to preserve the semantics across race generalizations. For 

example, NHPI individuals may be more likely to have similar ancestry with Asian individuals than other 

groups. However, I note that the semantics are difficult to define and may differ between use cases, such 

that this hierarchy enforces one type of semantically driven generalization. Second, I test what happens 

when combining the larger and smaller subgroups via generalization. The most extreme combination 

generalizes White race, the largest and least distinguishable subgroup, with NHPI, the smallest and most 

distinguishable subgroup, via generalization. Third, I test how utility fairness is affected by removing the 

race values entirely, mimicking the concept of fairness via unawareness88. Finally, I test how the algorithms 

respond when enforcing no race generalization; records must contain the most specific values or be 

suppressed entirely. 

 

 

 
 

Figure 4.9. Four distinct race generalization hierarchies considered in our experiment. “*” symbol denotes 
suppressing the record entirely from the dataset. 
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As shown in Figure 4.10, the results are varied. With global recoding and no suppression (OLA – no 

suppression), forcing the algorithm to preserve the most specific race values produces the most equal 

distribution of data utility while removing the race variable produces the most inequality. However, the 

results are mixed across k-anonymity implementations and k values, and in no scenario is perfect utility 

equality achieved. Nevertheless, removing the race variable does not remove utility inequality among racial 

subgroups, highlighting the limitation of fairness via unawareness in the context of de-identification. 

 

 

 
Figure 4.10. Inequality in utility loss between racial subgroups when applying different race generalization 
hierarchies (shown in Figure S7) to each k-anonymization.  
 

 

4.3.6 Evaluating risk inequality when equalizing utility loss 

 

Finally, I take a different perspective to de-identification in which I equalize utility loss between racial 

subgroups while allowing their re-identification risks to vary. To do so, I k-anonymize each racial subgroup 

in the US population dataset independently on the quasi-identifying variables {age, ZIP code, sex}. To 

establish a utility loss upper bound, I first 100-anonymize (k = 100) the majority subgroup, or the White 

race subgroup. I then use a binary search to find the maximum value of k at which each of the other racial 

subgroups meets that utility loss upper bound. Figure 4.11 displays the maximum re-id risk ratios for each 

group, where the ratio is calculated as one over the subgroup-specific k value divided by 1/100 (the risk of 

the White subgroup). In most cases, the non-White racial subgroups assume about ten times as much risk 

as the White subgroup. In some cases, the racial minorities assume 100 times as much risk as the White 

subgroup, meaning that they are k-anonymized to a k value of 1. In other words, in such cases, there is no 

generalization that achieves the same utility as the White 100-anonymized subgroup. 
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Figure 4.11. Re-identification risk ratios when independently k-anonymizing each racial subgroup such 
that they retain at least as much utility as the 100-anonymized White subgroup. Re-id risk ratio is calculated 
as one over the k for the subgroup divided by 1/100 (the k for the White subgroup). 

 

 

4.4 Ethical implications of the fairness tradeoff theorem 

 

More distinguishable populations – such as racial and ethnic minorities, members of the LGBTQ 

community, those who live in rural areas, and other underrepresented groups – have a less favorable 

privacy-utility tradeoff than the majority population – a fact that cannot be remedied with better 

optimizations. Such populations must either retain high privacy risk to be represented in the dataset or have 

their representation significantly distorted if they are included at all. Given that individual privacy rights 

are a prominent component of US and international law and that no comparable regulations protect an 

individual’s right to data utility, practitioners repeatedly prioritize privacy. As a consequence, minority’s 

lack of representation can lead to inequitable benefits and interventions. For example, France’s prohibition 

of collecting data on individual’s race and ethnicity limited the country’s ability to identify vulnerable 

populations during the COVID-19 pandemic177. Data transformations can mask health disparities in 

underrepresented minorities, as shown in Chapter 3 and by Xu et al.14,15 in two different studies. 

Furthermore, even though the formalization of the problem in this chapter focuses on generalization and 

suppression, there exists growing empirical evidence that alternative data transformation strategies are 

similarly constrained. For instance, differential privacy has been shown to also mask health disparities14 as 

well as distort minorities’ representation in the 2020 Decennial Census16 in a manner that could lead to 
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inequities in Census-guided intitiatives17. Sharing a fully synthetic replica of a dataset can also exacerbate 

inequities in artificial intelligence performance25. 

 

While current privacy legislation motivates practitioners to prioritize equal privacy protections over equal 

data utility, navigating the ethical implications is more complex. Let us analyze it in the context of the 

guiding research principles outlined by the Belmont Report: respect for persons, beneficence, and justice178. 

 

First, the principle of respect for persons includes recognizing individuals’ personal dignity and autonomy. 

In terms of data sharing, this principle is regulated by requiring individuals’ informed consent to share their 

identified data. Their de-identified data, however, can be shared without their consent, as de-identified data 

is legally not considered personal data, evidently on the ground that  the privacy risks are sufficiently small 

that consent is not required. But were a data steward to prioritize equal representation when de-identifying 

a dataset, which necessarily allows the privacy risk to fluctuate between groups, at what point are minority 

groups’ records still considered “de-identified”? If the overall privacy risk of a dataset meets standard de-

identification thresholds but the subgroup-specific privacy risks do not, should those patients’ consent be 

required to share their data? 

 

Second, the principle of beneficence denotes the obligation to maximize benefits while minimizing harm. 

In terms of privacy-preserving data sharing, preserving minorities’ representation in the data set maximizes 

their potential benefit while preserving their privacy minimizes their potential harm from privacy intrusions. 

However, prioritizing minorities’ privacy protections over their data utility can also lead to potential harms. 

For example, when de-identification prevents health disparities from being detected, the disparities are not 

addressed. As argued by Faden et al.179, there is an ethical obligation to optimize health care for all 

individuals through meaningful research. The inherent tradeoff between fair privacy and fair utility in de-

identified data makes it difficult to maximize benefits while minimizing harms.  

 

Third, the principle of justice, as defined by the Belmont Report, is achieved by fairly distributing the risk 

and benefits across groups. The fairness tradeoff theorem clearly states that both cannot be concurrently 

equalized.  
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4.5 Rethinking privacy-preserving data sharing 

 

Alternative data sharing methods are required to resolve the ethical dilemma imposed by the data-based 

constraints to fair de-identification. Here, I discuss several. 

 

First, minority populations could be financially compensated for their privacy or utility loss. Steed et al.17 

recently analyzed how the application of differential privacy to the 2020 Census can lead to inequities in 

Census data-guided educational funding allocations. They showed that differential privacy is likely to 

distort the data in a way that school districts with more racial and ethnic minority students would receive 

less funding. To resolve this problem, they proposed, among other solutions, to financially compensate 

school districts that are expected to lose funding as the result of differential privacy transformations. While 

this may alleviate some of the inequities of de-identification, an economic solution is unlikely to 

accommodate all data sharing scenarios as proper compensation may not be feasible to define or fulfill. 

 

Another solution is to engage communities in the data sharing process174. For example, representatives from 

minority populations could be involved in determining an acceptable privacy-utility tradeoff for their 

communities in the de-identified data71. Respecting data sovereignty in this manner has proven beneficial 

for several data sharing initiatives, such as the All of Us Research Program’s consulting with Tribal 

nations180. Nevertheless, it remains possible for data transformations to become so unfavorable, either in 

risk or benefit, that communities would prefer not to be included in the dataset at all, further biasing 

representation. Indeed, relying solely on data transformations to protect individuals’ privacy severely 

constrains the ability to share representative data. Without additional privacy protection measures that do 

not require data distortion, it may not be possible to do so. 

 

To mitigate the unfairness of data transformation strategies, I propose that privacy practitioners, policy 

makers, and data sharing initiatives should supplement data transformations with additional sociotechnical 

mechanisms that deter users from invading individuals’ privacy in the first place. If no intrusion is 

attempted, patients’ privacy is equally protected, even when distinguishability varies across groups. 

Examples of such mechanisms include requiring users to a sign a data use agreement and constraining users’ 

access to within a monitored environment. While implementing sociotechnical deterrents has legal27 and 

practical180 precedents, the additional privacy protections they provide come at the expense of data 

accessibility. Obtaining access becomes more cumbersome and fewer users will gain access compared to 

sharing the data in the public domain. The challenge then becomes how to facilitate data access to 

trustworthy users while sufficiently disincentivizing bad actors from misusing the data. 
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To improve data accessibility while implementing sociotechnical deterrents to privacy intrusions, we 

propose a “passport-visa” credentialling model, an extension of the passport models proposed by Dyke et 

al.181 and implemented by the All of Us Research Program180. In the passport-visa model, each potential 

data user must first obtain a passport from a sponsoring institution. For example, this could be a researchers’ 

home institution. The sponsoring institution provides the individual with a passport according to their 

credibility. Credibility can be established through various sociotechnical mechanisms, such as requiring 

training on ethical research principles, requiring sponsorship from previously credentialed users, and/or 

contractual obligations. After obtaining a passport, the individual can then apply for a visa from the 

organization possessing the data of interest. The visa is granted according to the individual’s and sponsoring 

institution’s credibility, which may involve additional deterrents to data misuse. Upon receiving the visa, 

the individual then obtains access to the data resource. To standardize appropriate thresholds for credibility, 

we further propose that a generally agreed upon agency establish minimum standards for passport-visa 

approvals. The standards would serve as starting point, upon which passport- and visa-granting 

organizations could build upon as they see fit, to prevent negligence in granting data access. The standards 

would also adjust to the sensitivity of different data types, such that passports and visas are granted 

according to tiered levels of access (similar to different levels of security clearance or drivers’ licenses). 

 

To effectively limit data access to users who have a visa, the passport-visa model necessarily limits data 

access to controlled environments and frameworks. Otherwise, as is true with the public domain model, the 

data could be untraceably shared with anyone. Examples of controlled environments and frameworks 

include a centralized access model, where users can only access the transformed data within a monitored 

environment180, and blockchain solutions to track data usage182. Controlling the analytics environment also 

enables the set of potential data operations a user can perform to be restricted, which could wholly prevent 

certain types of misuse. 

 

While the passport-visa model limits data access compared to a public domain model, it is not as 

cumbersome as traditional access-control models. Traditionally, potential users must apply for access to 

each data resource, individually. Stewards of the resource must also define their own requirements for 

access and determine each potential user’s credibility, often with limited background information181. By 

contrast, a generally recognized passport, granted according to general standards, would establish baseline 

credibility to any visa-granting organization. This would reduce the visa-granting organization’s 

administrative burden and risk when granting a visa. The data sharing model may also limit the 
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administrative burden for the data user and the passport-granting institution, where the passport can be 

applied for and renewed on a regular or semi-regular basis. 

 

The passport-visa model also addresses several key components for effective deterrence in terms of 

implementing certain, severe, and swift consequences for data misuse183. First, by restricting access to 

controlled environments and frameworks, the model makes it easier for data misuse to be detected. Being 

able to reliably detect data misuse validates the threat of recourse in the event of a violation. 

 

Second, the passport-visa model can support the imposition of diverse penalties for privacy violations. For 

one, a violator can lose their visa and passport. Without a visa a user cannot access a single resource, but 

without a passport a user could not access any resource implementing the passport-visa model. The broader 

the adoption and reach of the passport, the greater the penalty a violator experiences for losing their 

passport. Further, it may be desirable to allow the person whose privacy was violated to seek legal redress 

from the visa-granting institution, the data user, and the data user’s sponsoring institution. The visa-granting 

institution could also seek redress from the user and their sponsoring institution, and the sponsoring 

institution could seek redress from the user. The levels of potential recourse increase the magnitude of 

penalties levied against the organizations and especially against the user. This increases the passport-visa 

model’s leverage to deterring data misuse, as the potential benefit a user could gain from an intrusion is 

unlikely to outweigh the penalty. 

 

 

4.6 Discussion 

 

The aim of this work was to define the constraints to simultaneously achieving the fair distribution of 

privacy risk and data utility in a de-identified data set and then to discuss the implications of and potential 

solutions to such constraints. 

 

In this chapter, I formally proved that it is impossible to concurrently equalize risk and utility between 

records that start with differing re-identification risks in the original data – a condition that is likely to be 

true in nearly all real-world datasets. I empirically illustrated the fairness constraints by applying the k-

anonymity model to the United States population and measuring race-specific disparities in data utility and 

privacy risk. The smaller the racial subpopulation, the greater was their utility loss (when equalizing privacy 

risk) or their privacy risk (when equalizing utility loss) compared to the majority population. While I 

focused on differences between racial subpopulations for their prevalence in health outcomes, the fairness 



 

78 

constraints apply to any quasi-identifying attribute that is unequally distributed within a population. The 

fairness constraints also apply to different methods of de-identification, as empirical investigations for 

differential privacy and synthetic data suggest. 

 

Navigating the fair privacy-fair utility tradeoff becomes more complex when realizing that the 

subpopulations most disadvantaged by the fairness constraints are also those who generally suffer worse 

health outcomes and discrimination. And while legal obligations to protect individuals’ privacy currently 

govern how de-identified data is transformed, competing ethical obligations demand we reevaluate how to 

share data for biomedical research. The solution I proposed is to combine de-identification transformations 

with sociotechnical deterrents to privacy intrusions, through a passport-visa credentialling model, such that 

data utility can be more fairly distributed without sacrificing privacy protections. The passport-visa 

credentialling model is more scalable, more generalizable, and facilitates access to trustworthy data 

recipients better than traditional controlled-access models. 

 

 

4.7 Limitations and future directions 

 

I highlight several limitations to this work. First, the fairness tradeoff theorem defined privacy risk as re-

identification risk and utility loss as a derivative of entropy. I defined privacy risk in this manner because 

of its prominence in privacy regulations: HIPAA and other privacy regulations do not apply to de-identified 

data, or data for which the re-identification risk is low. Even though fairness investigations related to 

differential privacy and synthetic data have illustrated similar constraints16,25 and these data transformation 

strategies consider different types of privacy intrusions, it is possible that other types of privacy risks are 

not constrained in the same manner as formalized by the impossibility theorem. Furthermore, it is possible 

other types of utility measures can be equalized with the privacy risk. One example is Latanya Sweeney’s 

precision metric (PREC)47,184, which measures the extent to which records are generalized with respect to 

the levels in each generalization hierarchy. It is trivial for every record in a data set to be generalized to the 

same level via global recoding (supporting equal utility as defined by PREC) and be k-anonymized to the 

same level of k (supporting equal privacy risk). However, PREC was initially designed for k-anonymity 

optimization and neglects the changes in the distribution of the data caused by generalization and 

suppression6. As such, I used a derivative of entropy. Still, it may be possible to equalize privacy risk and 

utility among records when utility is measured with respect to a particular use case, such as ML prediction. 

Future work should consider different types of privacy risks and specific use cases. 
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Second, the passport-visa credentialling model, like any controlled access model, introduces additional 

constraints and potential inequities to privacy-preserving data sharing. For instance, the passport-vias model 

may be expensive to implement. Data accessibility and data user privacy (as users’ actions and credentials 

would be tracked) are also limited by the passport-visa model. Moreover, obtaining a passport and visa may 

be easier for investigators from some subpopulations than others, which could create inequities in data 

access71. I argue that the constraints defined by the impossibility theorem and their ethical implications may 

require that accessibility and user privacy be reduced to obtain fairer data subject privacy and utility. 

However, accessibility and user privacy have their own tradeoffs. The public domain data sharing model 

represents one end of the spectrum, where anyone can access a published dataset and user’s actions and 

identities are never stored. The passport-visa model represents a preliminary solution that seeks to balance 

the data subjects’ needs and the data users’ needs. Future work should develop sociotechnical mechanisms 

and data sharing models that optimize the many tradeoffs inherent to data sharing, while reducing inequities 

in data access and prioritizing data subjects’ utility and privacy.  

 

Third, the passport-visa credentialling model cannot guarantee privacy protection. As with any 

credentialling system or deterrence mechanism, there is a risk that users defraud the system. There is also 

a risk that users will act irrationally183. There have been several theoretical investigations into the privacy 

protection afforded by sociotechnical systems63–65. There are also several real-world examples of successful 

implementations of sociotechnical deterrents, such as MIMIC67, which only requires users to sign a data-

use agreement to gain access. Nevertheless, future work should develop and validate sociotechnical 

mechanisms’ ability to deter privacy intrusions. 

 

Finally, the fairness tradeoff theorem assumed de-identification transformations are deterministic. This 

assumption is pervasive across generalization and suppression algorithms and models for the past decades. 

However, differential privacy and the randomized response method185 (originally developed to preserve 

survey respondent’s privacy by randomly adding noise to their answers) could be considered non-

deterministic transformation methods. While, again, empirical evidence suggests differential privacy is 

similarly constrained16, non-deterministic transformation methods offer a potential opportunity to relax 

such constraints if they explicitly consider the fairness of data utility. In Chapter 5, I investigate how more 

representative de-identified data can be shared by using non-deterministic transformations to allow 

cooperative privacy protections between groups.  

 

 



 

80 

4.8 Conclusion 

 

Even though controlling data access imposes additional challenges – such as passports and visas being 

unequally available among groups, the potential for fraud, the limitations of deterrence methods, and 

preventing truly “open science” – these challenges can be navigated and to some extent mitigated. The 

impossibility of achieving fairness with respect to both privacy risk and data utility via data transformations 

cannot. Our pursuit of a more equitable, data-informed society demands a different approach to data 

sharing; one in which data transformations are combined with external deterrents to simultaneously protect 

privacy and preserve the representation of the full population. At the same time, the fairness tradeoff 

theorem highlights potential avenues to develop de-identification transformation methods that relax, but 

perhaps not entirely resolve, the fairness constraints. This opportunity is the motivation for the next chapter. 
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Chapter 5 

 

Altruistic Masking: a method to improve fairness in de-identified data 

 

 

5.1 Introduction 

 

Records in a dataset have varying distinguishability prior to de-identification. The more unique the record 

is, the greater its initial privacy risk and the less favorable its privacy-utility tradeoff. As shown in Chapter 

4, it is the variability in starting points that imposeses a tradeoff between fairly distributing the privacy risks 

and fairly distributing data utility between subgroups of records in a de-identified dataset. While sharing 

data according to the passport-visa model can alleviate the fairness constraints, doing so reduces data 

accessibility and may create access inequities71. It may also be expensive to implement such a model, 

making it more feasible for large data sharing consortia to adopt compared to smaller organizations. 

Moreover, the passport-visa model still requires the data to be de-identified to some extent, such that 

minority subgroups’ representation may still be disproportionately distorted. Broadly supporting more 

equitable privacy-preserving data sharing needs additional methods that relax the data-based constraints to 

fair de-identification. 

 

While the fairness tradeoff theorem presented in Chapter 4 defines the constraints to achieving fairness in 

de-identified data via generalization and suppression, it also highlights a potential opportunity to alleviate 

such constraints. Namely, the theorem assumes de-identification transformations are deterministic. In other 

words, every record with the same quasi-identifier value (i.e., in the same equivalence class) prior to de-

identification will also have the same transformed quasi-identifier value after de-identification. This rigid 

assumption, that is derived from standard practice and appears to be ubiquitous among generalization and 

suppression methods, restricts the manner in which records can gain privacy – they can be generalized 

further or be suppressed. However, breaking such an assumption with non-deterministic transformations 

could allow for cooperation and contributions between subgroups. That is, if a subset of records in a large 

equivalence class is transformed in a manner that gives records in a smaller equivalence classes greater 

privacy protections, the records in the smaller equivalence classes could theoretically retain greater data 

utility while still gaining privacy. The altruistic contribution of privacy protection from the large 

equivalence class still comes at a cost, as transforming data always comes at the expense of utility; however, 

such a method would take utility from the group with a more favorable privacy-utility tradeoff instead of 
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taking from the group with a less favorable one. This, in turn, could allow for a more equal distribution of 

privacy risk and data utility in a de-identified dataset. 

 

In this chapter, I investigate the potential to leverage non-deterministic de-identification transformations to 

allow the majority subgroups’ records to contribute to the minority subgroups’ privacy, with the goal of 

improving minorities’ utility. I develop and validate such a de-identification method, called Altruistic 

Masking (AM). I first describe AM and the cooperative privacy protections it supports. Notably, AM allows 

subgroups of records to contribute to each other’s privacy protections in some respect, but it cannot provide 

the same privacy guarantees as k-anonymity. The nuance in privacy protections highlights yet another 

constraint to fairness in de-identified data, as it is the more distinguishable populations that are 

disadvantaged. Nevertheless, as I show, relaxing fairness with respect to such privacy guarantees provides 

the flexibility to more equally distribute data utility. After describing the AM method, I present an algorithm 

to implement it. Finally, I test the overall utility and distribution of utility of data de-identified using AM 

and compare it to that of standard k-anonymization methods. I measure utility both intrinsically, according 

to the entropy utility loss measure (Eqn. 4.2), as well as in the context of disparity detection. 

 

 

5.2 Conceptual description of Altruistic Masking 

 

AM supports cooperative privacy protections by mimicing the effect of unknown or missing data on patient 

distinguishability. Figure 5.1 displays variations of the same example dataset to illustrate this effect. Figure 

5.1A displays the ground truth dataset of which Figure 5.1B is an abstraction. In this example dataset, there 

are two equivalence classes that only differ in their race values: White (corresponding to the majority 

equivalence class with 7 records) and American Indian or Alaskan Native (AIAN) (corresponding to the 

minority equivalence class with 3 records). Assume that both the data steward and the adversary do not 

know record 8’s race value, as shown in the dataset in Figure 5.1B. This omission could be due to a variety 

of reasons, including clerical error or the patient declining to answer. If the adversary does not know and 

cannot infer the ground truth distribution shown in Figure 5.1A – an example of such an inference would 

be if there are only three individuals in the population with a race value of AIAN then record 8’s value must 

be White – then the adversary cannot confidently determine patient 8’s race value as either White or AIAN. 

Therefore, the uncertainty induced by the unknown value has a privacy protective effect for both records 

with race value White and records with race value AIAN, as the adversary would have to consider record 

8 as potentially belonging to both equivalence classes. 

 



 

83 

AM attemps to mimic the effect of unknown data by strategically masking values in records’ quasi-

identifiers to create uncertainty around their original equivalence class. The value that is masked is the 

quasi-identifying attribute for which the steward is optimizing fairness. For example, to improve the 

fairness of representation with respect to race, as shown here, the steward masks the race values in certain 

records. Improving the fairness of representation with respect to age would involve masking age values of 

certain records. While the number of records masked within each equivalence class depends on the privacy 

protection threshold the data steward defines, the records that are ultimately masked are chosen at random. 

The process of determining the number of records masked per equivalence class is described in Section 5.3. 

To protect against certain inference attacks, AM masks values under the assumption the adversary does 

know the ground truth distribution. Therefore, instead of only masking values from the majority 

equivalence class’ records, as shown in Figure 5.1C, it additionally masks records from the minority 

equivalence class’ records, as shown in Figure 5.1D. As at least one masked record comes from the minority 

equivalence class, the adversary is less certain which masked record belongs to each equivalence class. 

Sections 5.3 and 5.4 describe how AM tries to mask only one record from each minority equivalence class 

to maximize the minorities’ retained utility. However, the sections also describe how certain scenarios may 

demand more than one record from the minority equivalence class to be masked in order to meet the privacy 

risk threshold the data steward defines. 
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Figure 5.1. Varying representations of the same dataset. 
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Before deriving how many records must be masked to achieve specific privacy protection thresholds, I 

would like to highlight the differences between AM and standard de-identification methods. Figure 5.2 

shows the original data table shown in Figure 5.1A after additional generalization (Figure 5.2A) or 

suppression (Figure 5.2B). Figure 5.2C also shows an alternative to cooperative privacy protections where 

record 8’s race value is changed from AIAN to White.  

 

First, generalization (Figure 5.2A) of the race value may bring all records to the same granularity. It could 

be argued that such a transformation equally degrades utility between the two equivalence classes, as all 

records now have the same quasi-identifier. However, the majority of the generalized records still 

correspond to patients that originally had a race value of White. As such, and as captured by the entropy 

utility loss measure used in Chapter 4, the signal of the records originally having a race value of AIAN is 

diluted more than that of the records originally having a race value of White. AM, on the other hand, 

sacrifices a few records’ race values to preserve a more granular representation of the rest. And as I show 

later, most of the records that are masked derive from the majority equivalence classes. 

 

Second, suppressing (Figure 5.2B) the records entirely such that they are not shared with the adversary 

removes the minority equivalence class’ representation entirely. AM does not remove records from the 

dataset. AM does mask some values in some records, but only the values pertaining to the attribute for 

which fairness is being optimized. The remainder of the quasi-identifier is not modified. 

 

Third, replacing the race value in a majority equivalence class’ record with that of the minority equivalence 

class effectively decreases the distinguishability of records in the minority equivalence class. However, 

similar to generalization, the more that majority equivalence class records are mixed in, the more diluted 

the minority equivalence class’ signal becomes. AM instead creates an additional equivalence class where 

the race value is masked. The masked records vary in their original representation – in this example, some 

originally had a race value of White; others AIAN – but the unmasked records retain more accurate 

representation. 

 

AM aims to preserve minority representation better than these de-identification alternatives. It does so under 

the assumption that fewer, more granular, and more truthful records provide better representation and better 

preserves their signal for diverse applications than having less granualar (generalization), unshared 

(suppression), and untruthful records (flipping race values). 
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Figure 5.2. Alternative transformations to AM (Figure 5.1D) of the dataset shown in Figure 5.1A. 
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5.3 Privacy protections of Altruistic Masking 

 

In this section, I define the cooperative privacy protections AM supports. I show how AM provides similar 

privacy protections as k-anonymity, but it cannot provide the same privacy guarantees. 

 

 

5.3.1 Preliminaries 

 

Following the definitions presented thus far in this dissertation, I define a quasi-identifier as the set of 

features in the dataset that can enable re-identification. Quasi-identifying features are those that can be both 

known by an adversary and used to distinguish individual records, such as demographic features. I define 

an equivalence class as the set of records that share the same the same quasi-identifier value. I define the 

fairness attribute as the attribute for which the steward aims to optimize the fairness of de-identification 

trainsformations. I assume the fairness attribute is also part of the quasi-identifier such that the fairness 

attribute is masked by AM. I define a masking class as the set of records that share the same set of quasi-

identifying features minus the fairness attribute.  

 

Figure 5.3 visually depicts these concepts. The quasi-identifier consists of two attributes: age and race. 

There are three equivalence classes. The first includes 8 records corresponding to 21-years-old White 

individuals, the second includes 3 records corresponding to 21-years-old AIAN individuals, and the third 

equivalence class includes 3 records corresponding to 30-years-old AIAN individuals. Since the first two 

equivalence classes have the same quasi-identifier value but for the fairness attribute (the race attribute, in 

this example), they belong to the same masking class. The third equivalence class has a quasi-identifier 

value that differs with respect to both the age and fairness(race) attribute, and therefore belongs to a different 

masking class. To create cooperative privacy protections, the fairness attribute is the value that is masked 

by AM. Therefore, AM involves replacing certain records’ race values with “?”, or some sort of null value. 
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Figure 5.3. Preliminary concepts underlying AM. 
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Table 5.1 summarizes additional notation used to facilitate the derivation and description of the privacy 

protections. 𝐴/ represents the size of equivalence class 𝑖 prior to masking. 𝐵/ and 𝐶/ represent the number 

of records from equivalence class 𝑖 that are not masked and masked, respectively, by AM. Therefore, 𝐴/ =

𝐵/ + 𝐶/. The symbol 𝐷/! represents the number of records masked within masking class 𝑗 that do not belong 

to equivalence class 𝑖. Finally, 𝐸! represents the total number of records masked in masking class 𝑗, such 

that 𝐸! = 𝐶/ + 𝐷/!	for every equivalence class 𝑖 belonging to masking class 𝑗. Figure 5.4 provides an 

illustrative example describing this notation. 

 

 

Table 5.1. Preliminary notation. 

 

𝐴/ Size of equivalence class 𝑖 before masking. 

𝐵/ Number of records from 𝑖 that are not masked. 

𝐶/ Number of records from 𝑖 that are masked. 

𝐷/! 
Number of records masked within masking class 𝑗 that do not belong to 
equivalence class 𝑖. 

𝐸! Total number of records masked within masking class 𝑗. 
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Figure 5.4. Masking example and the corresponding notation values. 
 

 

5.3.2 Adversarial assumptions 

 

When modeling the privacy protections of AM, I assume the adversary attempts to re-identify a target 

individual in the dataset, instead of attempting to re-identify as many individuals as possible by linking the 

shared dataset to a population register (i.e., a marketer attack48). I further assume the adversary knows the 

target individual’s record is in the patient population, the target individual’s complete quasi-identifier, and 

the distribution of equivalence classes in the patient population. Finally, I assume the data steward does not 

know which individual the adversary is targeting such that similar privacy protections should be applied to 

every record in the dataset.  

 

Under these assumptions, I model three different attack strategies the adversary could take. Each strategy 

varies in how the adversary prioritizes attacking unmasked vs. masked records. Table 5.2 summarizes the 
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three strategies. The first attack strategy prioritizes attacking the unmasked records. The adversary 

iteratively attacks all unmasked records first. If the target individual cannot be re-identified from the 

unmasked records, the adversary then attacks the masked records. The second attack strategy is the converse 

of the first, where the adversary prioritizes attacking the masked records before attacking the unmasked 

records. In the third attack strategy, the adversary does not prioritize either masked or unmasked records. 

They attack either masked or unmasked records with equal probability.  

 

 

Table 5.2. Adversary’s potential attack strategies against a dataset with AM. 

 

Strategy With only one re-identification 
attempt 

With multiple re-identification 
attempts 

1 Randomly attack an unmasked record. Attack all unmasked records first, then 
attack masked records. 

2 Randomly attack a masked record. Attack all masked records first, then 
attack unmasked records. 

3 Randomly attack any masked or 
unmasked record. 

Iterate through all masked and 
unmasked records with equal 

probability. 
 

 

Ultimately, I assume that an attacker will act rationally such that they attack records in a manner that 

maximizes their rate of success. AM must then protect against the most potent attack, which I derive in the 

following sections. 

 

 

5.3.3 Re-identification risk on the first attempt 

 

I first define the expected probability an adversary re-identifies a targetted individual on the first attempt 

when the dataset is de-identified using AM. I define the re-identification risk at expectation as masked 

records are chosen randomly and the adversary does not know whether or not the target individual’s record 

has been masked. I define the expected re-identification risk on the first attempt for each of the three attack 

strategies. For all derivations, let target individual 𝑡 belong to equivalence class 𝑖 and masking class 𝑗. 

 

Against the first attack strategy (see Eqn. 5.1), the target individual’s expected re-identification risk is equal 

to the probability the target individual’s record is not masked by AM multiplied by the probability the 

adversary attacks the correct record given the target is not masked. The expected re-identification risks 
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against the second and third attack strategies are defined in Eqn. 5.2 and 5.3, respectively. To compare the 

re-identification risks of AM to that of k-anonymity, Eqn. 5.4 displays the expected re-identification risk in 

a k-anonymous dataset. Without masking, there is only one attack strategy: randomly attack a record in the 

target individual’s equivalence class.  

 

Strategy 1: 

 

𝐸(𝑟𝑒𝑖𝑑7|𝐴𝑀, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	1) 

= 	𝑃(𝑡	𝑖𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑) ∗ 𝑃(𝑟𝑒 − 𝑖𝑑7|𝑡	𝑖𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑)  

= p
𝐵/
𝐴/
q 	 ∗ p

1
𝐵/
q =

1
𝐴/

 

 

 

(5.1) 

 

Strategy 2: 

 

𝐸(𝑟𝑒𝑖𝑑7|𝐴𝑀, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	2) 

= 	𝑃(𝑡	𝑖𝑠	𝑚𝑎𝑠𝑘𝑒𝑑) ∗ 𝑃(𝑟𝑒 − 𝑖𝑑7|𝑡	𝑖𝑠	𝑚𝑎𝑠𝑘𝑒𝑑, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑚𝑎𝑠𝑘𝑒𝑑)  

= p
𝐶/
𝐴/
q ∗ a

1
𝐸!
b =

𝐶/
𝐴/𝐸!

 

 

 

 

(5.2) 

 

Strategy 3: 

 

𝐸(𝑟𝑒𝑖𝑑7|𝐴𝑀, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	3) 

= 	𝑃(𝑟𝑒 − 𝑖𝑑7|𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑚𝑎𝑠𝑘𝑒𝑑	𝑎𝑛𝑑	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑)  

=
1

𝐵/ + 	𝐸!
 

 
 
 

(5.3) 

 
Attack against k-anonymous dataset: 

 

𝐸(𝑟𝑒𝑖𝑑7|𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦) 

= $
8"
	𝑤ℎ𝑒𝑟𝑒	𝐴/ ≥ 𝑘  

 

(5.4) 
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Against an adversary who knows the original distribution of equivalence classes prior to AM, at least one 

record must be masked both within and outside the target individual’s equivalence class. Thus, 𝐶/ ≥ 	1 and 

𝐷/ ≥ 1 such that 𝐶/ + 𝐷/ =	𝐸! > 𝐶/. Therefore, the adversary maximizes their probability of re-identifying 

𝑡 by taking attack strategy 1. 

 

Notably, AM does not decrease the expected probability of re-identification on the first attempt against 

attack strategy 1. Without any masking, the expected probability would also be $
8"

. The expected risk is also 

equal to that of a k-anonymous dataset in the scenario that 𝐴/ = 𝑘. However, were a steward to choose 

between applying AM or k-anonymizing the dataset to a higher value of k, AM would not decrease the 

expected re-identification risk on the first attempt while k-anonymization would. Moreover, Eqn. 5.1 shows 

that AM does not provide the same privacy guarantees as k-anonymity, in that records are not guaranteed 

to remain in an equivalence class of a certain size. While masked records will be re-identified with a 

probability of 0, as attack strategy 1 involves attacking only masked records, unmasked records will be 

correctly re-identified with probability  $
9"

, which is greater than $
8"

. Hence, AM increases the risk of some 

of unmasked records while decreasing the risk of the masked records. Nevertheless, from the perspective 

of the adversary, who does not know if the target individual is masked, the expected probability of 

successful re-identification of a target individual in equivalence class 𝑖 remains to be $
8"

. 

 

To validate this mathematical derivation, I simulate re-identification attacks against target individual 𝑡 who 

resides in the dataset summarized in Table 5.3. There are 27 records unequally distributed between three 

equivalence classes. All equivalence classes belong to the same masking class. Record 𝑡 belongs to 

equivalence class 3. 

 

On each iteration of the simulation, one record is randomly masked from each equivalence class. The 

adversary then randomly chooses to attack either an unmasked record belonging to equivalence class 3 or 

one of the masked records, according to the attack strategy. Figure 5.5 shows the rate of re-identification 

calculated from 10,000 simulations. 
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Table 5.3. Summarized description of dataset used for re-identification simulations. All records belong to 
the same masking class. 
 

Equivalence class # records # masked 

1 14 1 

2 9 1 

3* 4 1 

Overall 27 3 

       * Target individual 𝑡 resides in this equivalence class. 

 

 

 

 

 

 

 
 

Figure 5.5. Re-identification rate of target individual 𝑡, when sharing the dataset described in Table 5.3 
against the attack strategies described in Table 5.2. Overall rates are defined as proportion of correct re-
identifications across 10,000 independent simulations. Overall = re-identification rate across all 
simulations. Unmasked = re-identification rate when 𝑡 is not masked via AM. Masked = re-identification 
rate when 𝑡 is masked via AM.  
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Following the mathematical derivation, the adversary maximizes their expected re-identification rate when 

applying attack strategy 1. The expected rate when applying AM against attack strategy 1 is equal to that 

of not applying AM, or $
8"
= $

:
. However, when applying AM to the dataset, 𝑡 is actually more likely to be 

re-identified (compared to the dataset without AM) when 𝑡 is not randomly chosen to be masked, denoted 

by the blue “X” at $
9"
= $

;
. 

 

Given these results, a rational adversary would attempt to re-identify a target individual using attack 

strategy 1, where the adversary only attacks unmasked records. The results highlight that AM does not 

decrease a target individual’s re-identification risk at expectation and may, in fact, randomly increase their 

re-identification risk. Nevertheless, as I show in the next section, AM protects records from re-identification 

by increasing the effort required to achieve correct re-identification. That is, it increases the expected 

number of attacks an adversary must attempt to correctly re-identify a target individual.  

 

 

5.3.4 Effort of re-identification 

 

De-identification methods that leverage generalization and suppression, and the privacy models that underly 

them, generally model an adversary that makes a single re-identification attempt. Against such an attack, 

the re-identification risk is estimated to be one over the records’ equivalence class size. However, as shown 

by Xia et al.49, a rational adversary (i.e., an adversary that considers both the cost and benefit of attempting 

re-identification and attacks in a manner that maximizes their payoff) may attack more than one record in 

the target individual’s equivalence class. The authors also show that an adversary’s motivation to attack, 

and ultimately a record’s risk of re-identification, depends on the amount of effort the adversary must exert 

to re-identify the individual. The greater the effort, the less likely it is that the adversary continues attacking 

records in search of the target individual. In some cases, the expected effort may be so great that a rational 

adversary would not attempt re-identification at all. Following this premise, I show how AM can increase 

the effort of re-identification to that of k-anonymity for a specified value of k. 

 

I define the effort an adversary must exert to re-identify a target individual as the expected number of 

attempts until correct re-identification. I use a hypergeometric distribution to model the attack scenario, 

such that the expected number of attacks until re-identification is defined as <=$
+

, where 𝑁 is the size of the 

pool of records the adversary attacks. The expected number of attempts until re-identification when 

applying AM against the three attack strategies outlined in Table 5.2 and when k-anonyming a dataset, are 
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defined below. Again, for all derivations, let target individual 𝑡 belong to equivalence class 𝑖 and masking 

class 𝑗. 

 

Strategy 1: 

 

𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠	𝑢𝑛𝑡𝑖𝑙	𝑟𝑒𝑖𝑑7|𝐴𝑀, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	1) 

= 𝑃(𝑡	𝑖𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑)𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠|𝑡	𝑖𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑) +

𝑃(𝑡	𝑖𝑠	𝑚𝑎𝑠𝑘𝑒𝑑)𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠|𝑡	𝑖𝑠	𝑚𝑎𝑠𝑘𝑒𝑑, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑚𝑎𝑠𝑘𝑒𝑑)  

= p
𝐵/
𝐴/
q p
𝐵/ + 	1
2 q + p

𝐶/
𝐴/
q p𝐵/ + 	

𝐸! + 1
2 q 

 

 

 

 

(5.5) 

 

Strategy 2: 

 

𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠	𝑢𝑛𝑡𝑖𝑙	𝑟𝑒𝑖𝑑7|𝐴𝑀, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	2) 

= 𝑃(𝑡	𝑖𝑠	𝑚𝑎𝑠𝑘𝑒𝑑)𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠|𝑡	𝑖𝑠	𝑚𝑎𝑠𝑘𝑒𝑑, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑚𝑎𝑠𝑘𝑒𝑑) +

𝑃(𝑡	𝑖𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑)𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠|𝑡	𝑖𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑)  

= p
𝐶/
𝐴/
q p
𝐸! + 1
2 q + p

𝐵/
𝐴/
q p𝐸! +	

𝐵/ + 	1
2 q 

 

 

 

 

(5.6) 

 

Strategy 3: 

 

𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠	𝑢𝑛𝑡𝑖𝑙	𝑟𝑒𝑖𝑑7|𝐴𝑀, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	3) 

= 𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠|𝑎𝑡𝑡𝑎𝑐𝑘𝑠	𝑚𝑎𝑠𝑘𝑒𝑑	𝑎𝑛	𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑	)  

=
𝐵/ + 	𝐸! + 1

2
 

 

 

(5.7) 
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Attack against k-anonymous dataset: 

 

𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠	𝑢𝑛𝑡𝑖𝑙	𝑟𝑒𝑖𝑑7|𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦) 

= 8"	=	$
+

	𝑤ℎ𝑒𝑟𝑒	𝐴/ ≥ 𝑘  

 

(5.8) 

 

To determine the adversary’s most potent attack strategy, I again simulate re-identification attacks against 

target individual 𝑡 in the dataset described in Table 5.3. Figure 5.6 displays the average number of attacks 

required to re-identify 𝑡 across 10,000 simulations.  

 

 

 
 

Figure 5.6. Average number of attacks until correctly re-identifying individual 𝑡, when sharing the dataset 
described in Table 5.3 against the attack strategies described in Table 5.2. The “overall” values are 
calculated as the average across 10,000 independent simulations. “unmasked” and “masked” are the overall 
results stratified into when when 𝑡 is not masked and masked by AM, respectively. 
 

 

The results are similar to those in Figure 5.5, in that the adversary is expected to minimize their effort in 

re-identifying 𝑡 when taking attack strategy 1. Therefore, I assume a rational adversary will again always 

use attack strategy 1 such that AM should protect against such a strategy. Individual 𝑡 again receives 

different privacy protections against strategy 1 depending on whether or not their record is ultimately 
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masked by AM. However, differing from the previous section, the overall expected number of attempts 

required to re-identify 𝑡 is slightly higher when AM is applied than when it is not. In fact, Eqn. 5.5 shows 

that increasing the number of records masked both within and outside 𝑡’s equivalence class increases the 

adversary’s expected effort to achieve re-identification. Therefore, I derive the number of records that must 

be masked in order for AM to require the same amount of effort at expectation as k-anonymity, for a 

specified value of k, shown below. 

 

𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠	𝑢𝑛𝑡𝑖𝑙	𝑟𝑒𝑖𝑑7|𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦) = 	𝐸(#𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠	𝑢𝑛𝑡𝑖𝑙	𝑟𝑒𝑖𝑑7|𝐴𝑀, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	1) 

𝑘 + 1
2

= p
𝐵/
𝐴/
q p
𝐵/ + 	1
2 q + p

𝐶/
𝐴/
q p𝐵/ + 	

𝐸! + 1
2 q	

𝑘 = 𝐴/ +
𝐶/𝐷/
𝐴/

	

𝑘	 − 𝐴/ =
𝐶/𝐷/
𝐴/

	

Δ/ =
𝐶/𝐷/
𝐴/

 

 

 

 

 

 

 

(5.9) 

 

Eqn. 5.9 shows that the privacy gain of AM – equal to the increase in the expected effort required to re-

identify a target individual – is proportional to both the number of records masked within 𝑡’s equivalence 

class, denoted by 𝐶/, and the number of records masked outside 𝑡’s equivalence class but within 𝑡’s masking 

class, denoted by 𝐷/. The latter, in particular, allows the majority groups’ records to contribute to the 

minority groups’ privacy protections. Figure 5.7 displays simulation results that show that AM can increase 

the adversary’s effort to re-identify 𝑡, on average, to that of k-anonymity at specified k-values. AM increases 

protections while only masking one record within 𝑡’s equivalence class (i.e., 𝐶/ = 1); the rest of the masked 

records come from the majority equivalence classes. With respect to Eqn. 5.9, 𝐶/ = 1 for all iterations and 

values of 𝐷/, and 𝐴/ = 4 (see Table 5.3). 
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Figure 5.7. Average number of attacks until correctly re-identifying individual 𝑡, when sharing the dataset 
described in Table 5.3 using AM against the attack strategy 1 (described in Table 5.2) and using k-
anonymity. The average number of attacks is calculated across 10,000 independent simulations. The k value 
for each value of 𝐷/ was defined using Eqn. 5.9, where 𝐶/ = 1	and 𝐴/ = 4 (see Table 5.3). 
 

 

5.3.5 Summary of Altruistic Masking’s privacy protections 

 

AM leverages non-determinstic transformations to allow cooperation in privacy protections such that the 

majority groups’ records can contribute privacy protections to the minority groups’ records. In this section, 

I showed how AM can reduce the re-identification risk by increasing an adversary’s expected effort to re-

identify a target individual. Given U.S. privacy legislation’s focus on reducing individual’s re-identification 

risk without mandating the correct manner in doing so, I argue that such a method could meet HIPAA’s 

Expert Determination standard.  

 

However, AM does not provide the same privacy guarantees as k-anonymity. Table 5.4 summarizes the 

differences. k-anonymity guarantees that every record in the dataset will fall into an equivalence class of 

size k or larger. Such a threshold applies an equal, or fair, upper bound to every record’s privacy risk. AM 

cannot guarantee that records fall into an equivalence class of a certain size. In fact, AM may increase the 

re-identification risk of records that are not randomly masked (as the size of their equivalence class is 

actually reduced) while decreasing the risk of those that are. Instead of ensuring that records belong to 

sufficiently large equivalence classes, AM focuses on increasing an adversary’s perceived cost of re-
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identification. As long as the adversary does not know which records are masked, AM imposes an equal, 

or fair, lower bound to the adversary’s expected effort to attempt re-identification. I argue that this serves 

as a relaxation of providing fair privacy protections to every record in a dataset, which, as I will show in 

the next sections, allow for more equal retention of data utility. Still, this represents another tradeoff to 

privacy-preserving data sharing: between providing more ideal privacy guarantees and more equal data 

utility.  

 

 

Table 5.4. Summary of AM and k-anonymity’s privacy protections. 

 

 AM k-anonymity 

Re-identification risk on 
the first attempt 

Does not change the risk at 
expectation. Unmasked records are 

exposed to greater risks than 
unmasked records, but all records 
have the same expected risk from 
the perspective of the adversary. 

Expected risk is bound to $
'
. 

Number of attempts to 
re-identify target 

individual 

Increases the number of attempts at 
expectation. Unmasked records 

require fewer attempts than masked 
records, but all records’ expected 

effort can be bound from the 
perspective of the adversary. 

Bounds the expected value to '=$
+

. 

Method to reduce re-
identification risk 

Create a new equivalence class of 
masked records to increase the 

record’s equivalence class size at 
expectation.  

Increase record’s equivalence class 
size. 

Fairness 
Applies a minimum threshold to an 
adversary’s expected effort to re-

identification. 

Applies a minimum equivalence 
class size threshold. 
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5.4 Implementation of Altruistic Masking 

 

 

5.4.1 Altruistic Masking pipeline 

 

Figure 5.8 describes the pipeline for implementing AM. As described by Eqn. 5.9, cooperative privacy 

protections require that minority equivalence classes contribute at least one record to be masked. Therefore, 

AM cannot protect population uniques and may not protect records in very small equivalence classes. As 

such, the first step of the pipeline is to k-anonymize the raw dataset to a large enough value of k to support 

masking. The user specifies the value of this initial k value, 𝑘/,/7/>?, as well as the generalization hierarchies 

that guide k-anonymization. The most straightforward method to increase the size of equivalence classes 

and masking classes is via global recoding. In this chapter, I k-anonymize the raw dataset using the OLA 

algorithm without suppression. I do not allow OLA to suppress records to avoid the disproportionate utility 

loss imposed by suppression (see Section 4.3.3). 

 

The second step of the pipeline applies AM. Guided by Eqn. 5.9, AM increases an adversary’s expected 

effort to re-identify any record to at least that of a k-anonymous dataset, where k is equal to the user-defined 

𝑘7>@A27. The user also specifies the fairness attribute as well as thresholds that limit the extent to which the 

minority and majority equivalence classes can be masked. The dataset is then masked according to the AM 

algorithm, producing the final de-identified dataset. 

 

 

 
 

Figure 5.8. De-identification pipeline for AM. 
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5.4.2 Altruistic Masking algorithm 

 

Details of the algorithm implementing AM are shown in Table 5.5 and Figure 5.9. In the first step (line 1), 

the algorithm makes a copy of the dataset that has been k-anonymized to a k value of 𝑘/,/7/>?. The algorithm 

then partitions the dataset into masking classes (2). The algorithm then enters a loop (3-27), iterating across 

each masking class class (3). The algorithm first identifies the majority (4) and minority (5) equivalence 

classes. The majority equivalence classes are those that already have at least 𝑘7>@A27 records. The minority 

equivalence classes are those that have less than 𝑘7>@A27 records. The algorithm then counts the total number 

of records belonging to the majority equivalence classes (6) and initializes the feasible variable to True. 

The AM algorithm is not guaranteed to achieve the cooperative privacy protections to the level of 𝑘7>@A27 

while meeting the majority and minority masking thresholds. The larger the difference is between 𝑘/,/7/>? 

and 𝑘7>@A27, the more records must be masked. In some instances, there are not enough that can be masked. 

As such, in addition to the transformed dataset, the algorithm returns whether the desired level of masking 

was feasible. 

 

The algorithm then enters a second loop (8-26), iterating across the minority equivalence classes within the 

current masking class (8). The algorithm counts the number of records in the current equivalence class (9), 

or 𝐴/ as defined in Table 5.1; initializes the number of records to be masked within that equivalence class 

to 1 (10), or 𝐶/; and counts the number of records that have already been masked within the masking class 

and outside the equivalence class (11), or 𝐷/!. The algorithm enters a while loop (12-21) in which it 

determines the minimal number of records that must be masked within the current minority equivalence 

class, 𝐶/, to meet the privacy protections threshold of 𝑘7>@A27. If 𝐶/ and 𝐷/! can remain below the minority 

and majority equivalence class masking thresholds – or if the masking is feasible – the corresponding 

number of records are randomly masked in the dataset (15-16). If it is not feasible, the algorithm terminates 

and returns the current version of the masked dataset and the feasible variable set to False (22-25). If 

masking is feasible for every equivalence class, the algorithm returns the transformed dataset and the 

feasible variable set to True (28). 
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Table 5.5. Description of pseudocode functions in Figure 5.9. 

 

Function Description 

getMaskingClasses(Data’, Attrfair) 
Partitions Data’ into unique masking classes with 
respect to Attrfair . 

getMajorityEquivalenceClasses(Data’, j, ktarget) 
Returns the indices of the records corresponding to 
equivalence classes within masking class j that 
have at least ktarget  records. 

getMinorityEquivalenceClasses(Data’, j, ktarget) 

Returns the indices of the records corresponding to 
equivalence classes within masking class j that 
have less than ktarget  records. The indices are 
partitioned into individual equivalence classes. 

sizeEquivalenceClass(i) Returns the size of equivalence class i before 
masking. 

alreadyMasked(Data*, j, i) 
Returns the number of records within masking 
class j and outside equivalence class i that have 
already been masked in Data*. 

numToMask(Ai, Ci, ktarget) 
Using Eqn. 5.9, returns the number of records that 
must be masked to achieve the privacy protections 
at ktarget. 

mask(number to mask, indices of records that can 
be masked, Data*, Attrfair) 

Randomly chooses, without replacement, which 
records are masked within the specified indices in 
Data*. Records that were previously masked are 
ignored. Masking involves changing Attrfair values 
to ‘?’ symbol, or equivalent. 
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Figure 5.9. AM algorithm. 
  

Algorithm 3: Altruistic Masking

Input : Data0, Dataset k -anonymized to kinitial;
ktarget, k value to which masking should protect;
Attrfair, fairness attribute.
ThresholdMajority, maximum proportion of majority
equivalence class records that can be masked;
ThresholdMinority, maximum proportion of minority
equivalence class records that can be masked.

Output: Data⇤, masked Dataset;
feasible, boolean indicating whether masking to ktarget was
feasible.

1 Data⇤  Data0

2 J  getMaskingClasses(Data0, Attrfair)
3 for j in J do

4 Imajority  getMajorityEquivalenceClasses(Data0, j, ktarget)
5 Iminority  getMinorityEquivalenceClasses(Data0, j, ktarget)
6 Nmajority  numberMajorityRecords(Data0, Imajority)
7 feasible True
8 for i in Iminority do

9 Ai  sizeEquivalenceClass(i)
10 Ci  1
11 Dmasked  alreadyMasked(Data⇤, j, i)
12 while Ci  (Ai ⇤ Thresholdminority) do
13 Dij  numToMask(Ai, Ci, ktarget)�Dmasked

14 if Dij  (Nmajority ⇤ Thresholdmajority) then
15 mask(Ci, i,Data⇤, Attrfair)
16 mask(Dij , Imajority, Data⇤, Attrfair)
17 break

18 else

19 Ci  Ci + 1
20 end if

21 end while

22 if Ci > (Ai ⇤ Thresholdminority) then
23 feasible False
24 return Data⇤, feasible
25 end if

26 end for

27 end for

28 return Data⇤, feasible

1
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5.5 Utility evaluation of Altruistic Masking 

 

In this section, I compare the overall utility and fairness with respect to utility that AM supports to that of 

standard k-anonymization methods. I measure utility in two ways. First, I measure intrinsic utility using the 

normalized entropy measure described in Eqn. 4.2. Second, I measure utility in the context of detecting 

disparate outcomes with respect to a binary attribute. Similar to Chapter 4, I define fairness with respect to 

utility in terms as equal data utility between racial subpopulations. 

 

The section begins by describing the datasets used in the evaluations and the de-identification methods 

being compared to AM. The intrinsic utility results are then presented, followed by the disparity detection 

utility results. 

 

 

5.5.1 Datasets and generalization hierarchies 

 

Two datasets are used in both the intrinsic utility and disparity detection evaluations: a simulated dataset 

and the Adult dataset from UC Irvine186. I use simulated data to evaluate how well the de-identification 

methods preserve the utility of racial subpopulations of varying proportions. The Adult dataset serves as an 

example of a real-world dataset upon which many de-identification methods have been tested. 

 

The simulated dataset contains four attributes: age, sex, race, and a binary outcome (used for the disparity 

detection). I define the quasi-identifier as {age, sex, race}. I define the generalization hierarchies for each 

quasi-identifying attribute as shown in Figure 5.10. The demographic feature values are selected by 

randomly sampling with replacement according to a feature-specific probability distribution. The age 

probability distribution is derived from the Adult dataset. The sex distribution is equally distributed between 

Female and Male. The race distribution includes three possible values: majority, minority, and super-

minority. The probability distribution of these values varies in the experiments. The binary outcome is 

randomly assigned to records according to a race-specific rate. Each iteration of the simulated dataset 

contains 100,000 records. Multiple iterations are performed to estimate each de-identification method’s 

expected performance in each experiment. 

 

The Adult dataset, also known as the Adult income dataset, is a sample of U.S. Census data containing 

several demographic and socio-economic features. I define the quasi-identifer as {age, gender (equivalent 

to biological sex in this case), race, native-country, educational-num, workclass, marital-status, 
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occupation}. I use the same generalization hierarchies for age and gender/sex as shown in Figure 5.10. The 

hierarchies for the other quasi-identifying attributes, including a different race hierarchy, are shown in 

Figure 5.11. As indicated by the hierarchies, I consider the “raw” Adult dataset to contain generalized forms 

of {native-country, workclass, marital-status, occupation}. I perform this initial generalization because of 

the attributes’ impact on k-anonymization algorithms. Each of these four attributes contain many values 

with skewed distributions. Since the k-anonymization algorithms minimize utility loss with respect to 

entropy, they frequently sacrifice age, race, and sex information to preserve these more entropic features. 

Therefore, to balance the scales, I initialize native-country, workclass, marital-status, and occupation to a 

more generalized starting point. Preprocessing also includes dropping duplicate records and records with 

null values, producing a final dataset of 45,175 records. The re-identification risk distribution for each racial 

subgroup is illustrated in Figure 5.12. 

 

 

 
 

Figure 5.10. Generalization hierarchies for the simulated dataset. The ‘*’ symbol denotes suppression of 
the complete record. 
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5.5.2 De-identification methods 

 

I compare AM’s ability to preserve overall data utility and support racial fairness with respect to utility to 

that of two variations of standard k-anonymization. Similar to Chapter 4, the variations apply global 

recoding using the OLA algorithm6, where the first implementation allows up to 1% of records to be 

suppressed and the second implementation does not apply suppression. As described in Section 5.4, de-

identifying the dataset via AM involves first k-anonymizing the dataset with the OLA algorithm (without 

suppression) to a k value of 𝑘/,/7/>?. AM is then applied to the 𝑘7>@A27 value, where 𝑘7>@A27 is equal to the 

k applied to the standard k-anonymization implementations. For example, AM with 𝑘/,/7/>? = 3 and 

𝑘7>@A27 = 11 would be compared to standard k-anonymization where 𝑘 = 11. All OLA implementations 

are optimized according to the entropy utility loss measure defined in Eqn. 4.2. 
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Figure 5.11. The generalization hierarchies guiding de-identification of the Adult dataset include those presented here and the age and sex hierarchies 
shown in Figure 5.10. The * symbol denotes suppression of the complete record. 
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Figure 5.12. Distribution of group sizes for each race in the Adult dataset. Group size is defined as the 
number of individuals with the same quasi-identifier value. Re-identification risk is inversely proportional 
to the group size. The numbers in parentheses indicate the number of records corresponding to each race. 
For each distribution, brackets denote 95% confidence interval, boxes denote inter-quartile range, and 
orange line denotes median value.  
 

 

5.5.3 Intrinsic utility evaluation 

 

5.5.3.1 Simulated data 

 

I first measure intrinsic data utility loss when applying each de-identification method to simulated data at 

various values of k. The probability distribution for the race values is defined as: {majority=0.9, 

minority=0.09, super-minority=0.01}. Figure 5.13 displays the overall utility loss in the dataset and the 

inequality, or unfairness, of the distribution of the utility loss across the racial subpopulations. Inequality is 

calculated as the Gini coefficient of the race-specific utility loss values. Figure 5.14 displays the race-

specific utility loss curves. AM is implemented with 𝑘/,/7/>? = 3 and k (𝑘7>@A27) values ranging from 3 to 

50. The expected values and 95% quantile intervals are calculated from 100 simulations. 
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Intuitively, AM’s utility loss at k =3 is equal to that of k-anonymity without suppression, as no masking is 

applied when 𝑘/,/7/>? = 𝑘7>@A27. As the value of k increases, AM retains greater data overall data utility 

than k-anonymization without suppression and more equally distributes data utility between racial 

subpopulations than both k-anonymization implementations. While k-anonymization with 1% suppression 

minimizes overall utility loss, it disproportionately reduces the utilty of the super-minority racial 

subpopulation, particularly at higher k values. AM, however, retains relatively consistent data utility for all 

racial subpopulations across k values. It also preserves more data utility for the super-minority group than 

the k-implementations for k values greather than and equal to 11. 

 

Figures 5.15 and 5.16 display the overall rates and race-specific rates, respectively, of suppression (for k-

anonymity) and masking (for AM) at the various k values. At k values greater than 30, AM masks more 

than 1% of all records, on average. The k-anonymization implementation with suppression limits 

suppression to below 1% of all records. Note that even though AM may mask more records than the k-

anonymity implementation is suppressing, masking only changes the race values of records while 

suppression removes the records from the dataset entirely. Figure 5.16 highlights how suppression targets 

the smaller groups in the dataset. The minority and super-minority racial subpopulations are suppressed 

more frequently than the majority. In some cases, more than 30% of super-minority records are expected 

to be suppressed. AM, on the other hand, targets the majority subpopulations’ records. At k = 50, the 

majority racial subpopulation is masked at a higher rate than the minority, which itself is masked at a higher 

rate than the super-minority. 
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Figure 5.13. (Left) Overall utility loss, measured as entropy (see Eqn. 4.2), when applying each de-
identification method at k values ranging from 3 to 50 to simulated data. (Right) Inequality in utility loss 
between racial subgroups measured as the Gini coefficient of the race-specific utility loss values. Expected 
values (lines) and 95% quantile ranges (shaded areas) are calculated from 100 independent simulations. 
The race value probability distribution when simulating the data was defined as {majority=0.9, 
minority=0.09, super-minority=0.01}. Each simulated dataset contained 100,000 records. 
 

 

 

 
 

Figure 5.14. Race-specific utility loss curves when de-identifying simulated data at varying levels of k. 
(Left) OLA k-anonymization algorithm with up to 1% of all records suppressed. (Center) OLA algorithm 
with no records suppressed. (Right) Altruistic Masking where 𝑘/,/7/>? = 3. Utility loss is measured as 
entropy according to Eqn. 4.2. Expected values (lines) and 95% quantile ranges (shaded areas) are 
calculated from 100 independent simulations. The race value probability distribution when simulating the 
data was defined as {majority=0.9, minority=0.09, super-minority=0.01}. Each simulated dataset contained 
100,000 records.   
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Figure 5.15. Total proportion of records either suppressed or masked when de-identifying simulated 
datasets at varying levels of k. Expected values (lines) and 95% quantile ranges (shaded areas) are calculated 
from 100 independent simulations. The race value probability distribution when simulating the data was 
defined as {majority=0.9, minority=0.09, super-minority=0.01}. Each simulated dataset contained 100,000 
records. 
 

 

 

 

 

 

 
 
Figure 5.16. Race-specific suppression and masking rates when de-identifying simulated data at varying 
levels of k. Expected values (lines) and 95% quantile ranges (shaded areas) are calculated from 100 
independent simulations. The race value probability distribution when simulating the data was defined as 
{majority=0.9, minority=0.09, super-minority=0.01}. Each simulated dataset contained 100,000 records.  
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I next evalute each de-identification method’s ability to minimize utility loss for the super-minority 

population, while varying the relative size of the super-minority population. The probability distribution 

for the race values is defined as: {majority=0.9 – x, minority=0.09, super-minority=x}. For the k-

anonymization implementations, k = 30. For AM, 𝑘/,/7/>? = 3 and 𝑘7>@A27 = 30. The expected values and 

95% quantile intervals are again calculated from 100 simulations. Figure 5.17 displays the overall utility 

loss results, Figure 5.18 displays the race-specific utility loss, Figure 5.19 displays the overall suppression 

and masking rates, and Figure 5.20 displays the race-specific suppression and masking rates. 

 

Figure 5.17 shows that k-anonymity with suppression minimizes the overall utility loss compared to the 

other de-identification methods. AM produces less overall utility loss than k-anonymity without 

suppression, while also reducing utility loss inequality. As shown in Figure 5.18, AM reduces the disparity 

in data utility between the super-minority race and the other racial subpopulations more often than the other 

de-identification methods. k-anonymization with suppression produces the greatest utility loss for the super-

minority group when the super-minority group is very small. This is because when the super-minority group 

makes up a sufficiently small proportion of the overall population, k-anonymization with suppression 

actually suppresses all of the super-minority’s records (Figure 5.20). 
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Figure 5.17. (Left) Overall utility loss, measured as entropy (see Eqn. 4.2), when applying each de-
identification method to simulated data within which the super-minority racial subpopulation makes up a 
different proportion of the overall population. (Right) Inequality in utility loss between racial subgroups 
measured as the Gini coefficient of the race-specific utility loss values. All de-identification methods are 
applied with a k value of 30. Expected values (lines) and 95% quantile ranges (shaded areas) are calculated 
from 100 independent simulations.  
 

 

 

 

 
 

Figure 5.18. Race-specific utility loss curves when de-identifying the simulated data with varying 
proportions of records corresponding to the super-minority race. (Left) OLA k-anonymization algorithm 
with up to 1% of all records suppressed. (Center) OLA algorithm with no records suppressed. (Right) 
Altruistic Masking where 𝑘/,/7/>? = 3. All de-identification methods are applied with a k value of 30. Utility 
loss is measured as entropy according to Eqn. 4.2. Expected values (lines) and 95% quantile ranges (shaded 
areas) are calculated from 100 independent simulations.  
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Figure 5.19. Total proportion of records either suppressed or masked in the simulated data by the de-
identification methods while varying the relative size of the super-minority population. Expected values 
(lines) and 95% quantile ranges (shaded areas) are calculated from 100 independent simulations. All de-
identification methods are applied with a k value of 30. 
 

 

 

 

 

 
 

Figure 5.20. Race-specific suppression and masking rates when de-identifying simulated data while 
varying the relative size of the super-minority population. Expected values (lines) and 95% quantile ranges 
(shaded areas) are calculated from 100 independent simulations. All de-identification methods are applied 
with a k value of 30.  
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5.5.3.2 Adult dataset 

 

I repeat the intrinsic utility evaluation on the Adult dataset. AM is implemented with 𝑘/,/7/>? = 11 and k 

(𝑘7>@A27) values ranging from 11 to 40. Figures 5.21-24 display the results in the same format as that of the 

simulated data. 

 

The results are similar to those of the simulated data. k-anonymity with suppression again minimizes overall 

utility loss (Figure 5.21). It also disproportionately suppresses records corresponding to the minority racial 

subpopulations, while AM masks more records from the majority subpopulation (White race) than from the 

minorities (Figure 5.23). In contrast to the simulated data, AM does not produce the least utility inequality 

for all k values (Figure 5.21). It does, however, consistently produce relatively low utility inequality. It also 

consistently retains greater overall data utility compared to k-anonymity without suppression. Furthermore, 

masking minimally degrades each racial subgroup’s utility after the initial k-anonymization to 𝑘/,/7/>? =

11 (Figure 5.22). 
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Figure 5.21. (Left) Overall utility loss, measured as entropy (see Eqn. 4.2), when applying each de-
identification method at k values ranging from 3 to 50 to the Adult dataset. (Right) Inequality in utility loss 
between racial subgroups measured as the Gini coefficient of the race-specific utility loss values. 
 

 

 

 

 

 

 

 
 

Figure 5.22. Race-specific utility loss curves when de-identifying the Adult dataset at varying levels of k. 
(Left) OLA k-anonymization algorithm with up to 1% of all records suppressed. (Center) OLA k-
anonymization algorithm with no records suppressed. (Right) Altruistic Masking where 𝑘/,/7/>? = 11. 
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Figure 5.23. Total proportion of records either suppressed or masked when de-identifying the Adult dataset 
at varying levels of k.  
 

 

 

 

 

 

 

 

 

 
 

Figure 5.24. Race-specific suppression and masking rates when de-identifying the Adult dataset at varying 
levels of k. 
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5.5.4 Disparity detection utility evaluation 

 

Since de-identification methods can mask the evidence of disparities14,15, as shown in Chapter 3, in this 

section, I evaluate AM’s ability to preserve such evidence compared to the standard k-anonymization 

methods. In the simulated data, I randomly assign a value for a binary outcome according to a race-specific 

rate. The rates are {majority: 0.1, minority: 0.2, super-minority:0.5}. In the Adult dataset, the outcome is 

defined as whether or not the individual has an annual salary of more than $50,000 dollars. 

 

I estimate disparities in the binary outcomes between racial subpopulations by applying a logisitic 

regression model. For the simulated dataset, the dependent variables include the three quasi-identifying 

features. The baseline values for categorical variables are {race_White, gender_Male}. Age is treated as a 

continuous variable, regardless of generalization. For the Adult dataset, the dependent variables include the 

seven quasi-identifying attributes and the hours-per-week variable. The baseline values for categorical 

variables are {race_White, gender_Male, marital-status_Married, native-country_US, workclass_Private, 

occupation_white_collar}. Age, educational-num, and hours-per-week are treated as continuous variables. 

For each dataset, the model includes only first order terms. In scenarios in which race values are generalized 

into coarser representations (i.e., minority and super-minority combined into “Other”), I assign the same 

estimated odds ratio to each racial subpopulation corresponding to the generalized value. Where an odds 

ratio cannot be estimated – for example, when records for a particular racial subgroup are not present in the 

de-identified dataset – I assign an odds ratio of 1. The more accurate the estimated odds ratio is, the better 

I consider the de-identification method to support disparity detection. 

 

5.5.4.1 Simulated data 

 

For the simulated data, I first evaluate disparity detection performance when varying the level of k. Similar 

to the intrinsic utility evaluation, the probability distribution for the race values is defined as: {majority=0.9, 

minority=0.09, super-minority=0.01}.  

 

Figure 5.25 displays the odds ratio estimates for the minority and super-minority populations across 100 

independent simulations.  k-anonymity with suppression supports the most accurate odds ratio estimates up 

to k=ll. Afterward, the minority and super-minority race values are generalized to “Other” and the same 

odds ratio is estimated for both groups. k-anonymity without suppression runs into the same problem at 

k=5. The expected odds ratios estimates from the dataset sharing AM are lesser than the true value for the 

super-minority race and greater than the true value for the minority race. This is because initializing the 
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dataset to 𝑘/,/7/>? = 3 involves generalizing the minority and super-minority race value to “Other” in a 

fraction of the simulations, as indicated by the 95% quantile ranges. Nonetheless, increasing the number of 

records masked (i.e., as 𝑘7>@A27 increases while 𝑘/,7/>? remains constant) does not change the odds ratios 

estimates at expectation. Therefore, on average, AM supports more accurate odds ratio estimation, for both 

the minority and super-minority populations, than the k-anonymity implementations at higher k values. 

 

Figure 5.26 displays the percentage of simulations in which the odds ratio estimate is statistically significant 

to a p-value of 0.05. Disparities for both the minority and super-minority subpopulations are detected in 

every simulation for each de-identification method. 

 

 

 
 

Figure 5.25. Odds ratio estimates for racial disparities in simulated data that has been transformed by 
different de-identification methods, when varying the level of k. Race probability distribution is defined as 
{majority=0.9, minority=0.09, super-minority=0.01}. Expected values (lines) and 95% quantile ranges 
(shaded areas) are calculated from 100 independent simulations. 
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Figure 5.26. Percentage of 100 simulations in which odds ratio estimate (displayed in Figure 5.25) has a p-
value less than 0.05. Race probability distribution is defined as {majority=0.9, minority=0.09, super-
minority=0.01}. 
 

 

I repeat the experiment, varying the race value probability distribution in the data simulation process in the 

same manner as the intrinsic utility evalution. For the k-anonymization implementations, k = 30. For AM, 

𝑘/,/7/>? = 3 and 𝑘7>@A27 = 30. Figure 5.27 displays the average odds ratio estimates, calculated across 100 

simulations. Figure 5.28 displays the percentage of simulations the odds ratios meet the statistical 

significance threshold of 0.05. 

 

Figure 5.27 shows that AM supports the most accurate odds ratio estimates of the de-identification 

implementations. When the proportion of the population corresponding to the super-minority race is 0.001, 

AM and k-anonymization without suppression provide essentially identical estimates. However, 

performance begins to diverge when the super-minority’s proportion is 0.002, with AM’s performance 

equaling that of the raw data starting at the super-minority proportion value of 0.02. k-anonymity without 

suppression’s performance never equals that of the raw data, but consistently improves as the proportion of 

the population corresponding to the super-minority groups increases. Notably, k-anonymization with 

suppression supports the worst disparity detection performance, despite it minimizing the data’s overall 

intrinsic utility loss (Figure 5.13). In fact, the disproportionate suppression rates of minority and super-

minority records (see Figure 5.20) consistently inhibit disparity detection. When the proportion all of 

population corresponding to the super-minority group is < 0.006, this k-anonymity implementation wholly 
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suppresses the super-minority population’s representation in the de-identified dataset such that the disparity 

cannot be detected (see Figures 5.27 and 5.28). 

 

 

 
 

Figure 5.27 Odds ratio estimates for racial disparities in simulated data that has been transformed by 
different de-identification methods, when varying proportion of the dataset corresponding to the super-
minority race. Expected values (lines) and 95% quantile ranges (shaded areas) are calculated from 100 
independent simulations. k=30 for all de-identification methods.  
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Figure 5.28 Percentage of 100 simulations in which odds ratio estimate (displayed in Figure 5.27) has a p-
value less than 0.05. k=30 for all de-identification methods. 
 

 

5.5.4.2 Adult dataset 

 

The race-specific odds ratio estimates and p-values for the Adult dataset, when varying the value of k, are 

displayed in Figure 5.29 and 5.30, respectively. In this case, the true odds ratios for racial disparities in 

having a salary above $50,000 dollars are not known. As such, the results highlight how the odds ratio 

estimates change when using the raw data vs. the de-identified versions. 

 

Figure 5.29 shows that k-anonymization implementations have an inconsistent effect on the odds ratio 

estimates, particularly at smaller k values. k-anonymization with suppression is the least stable, where 

sometimes it flips the direction of the disparity. For example, the odds ratio for Asian-Pac-Islander changes 

from <1 to > 1. k-anonymization without suppression does not flip the direction of the disparity, but it does 

change the estimated magnitude of the disparity. AM provides consistent odds ratio estimates across k-

values. Indeed, the odds ratio estimates depend more on the generalization applied to the dataset when 

initializing the dataset to 𝑘/,/7/>? than by the increasing number of records masked. The initial 

generalization combines Amer-Indian-Eskimo, Asian-Pac-Islander, and Other to “Not Black or White”. As 

such, the same odds ratio is estimated for the three original racial subpopulations. Whereas the Amer-Pac-

Islander and Other estimates from AM are very similar to those from the raw data, the Amer-Indian-Eskimo 

odds ratio from AM underestimates the disparity compared to the raw data. 
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In terms of the de-identification methods’ affect on the statistical significance of the estimated odds ratios, 

as shown in Figure 5.30, the k-anonymity implementations are again unstable. At some k values, k-

anonymity with and without suppression produces statistically significant odds ratio when the raw data does 

not, and vice versa. k-anonymity without suppression also produces. Notably, whereas masking has little 

effect on the magnitude of the odds ratio estimates (Figure 5.29), it can decrease the p-value of the estimated 

coefficients (Figure 5.30). As such, AM at higher masking rates (or greater difference between 𝑘7>@A27 and 

𝑘/,/7/>?) can produce statistically significant coefficients when the raw data does not. 
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Figure 5.29 Odds ratio estimates for racial disparities in the Adult dataset with respect to the binary outcome 
of having an annual salary greater than $50,000.  
 

 

 

 

 

 
Figure 5.30 p-values for the estimated odds ratio coefficients in Figure 5.29.  
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5.6 Discussion 

 

The aim of this work was to develop a non-deterministic de-identification method that relaxes the fairness 

constraints defined by the fairness tradeoff theorem, and identify any additional constraints to equailizing 

privacy risk and data utility in a de-identified dataset. 

 

In this chapter, I developed a de-identification method that leverages non-determinisitic data 

transformations to mimic the protective effect of missing data such that privacy protections can be 

cooperatively distributed between subgroups of records. Such cooperation allows larger equivalence classes 

to altruistically reduce the distinguishabilty of the smaller equivalence classes, increasing the data utility 

the smaller equivalence classes would otherwise retain. I derived the privacy protections Altruistic Masking 

can and cannot provide as well as developed an algorithm that implements a relaxed form of fair privacy 

protections while reducing the distortion applied to minority groups’ records. The resulting data preserved 

minorities’ data intrinsic utility better than standard k-anonymization, which was critical for supporting 

disparity detection. This was true in both simulated and real-world data. Furthermore, while I defined the 

fairness evaluation in terms of equal performance between racial subpopulations, AM can generalize to any 

quasi-identifying variable to support specific fairness criteria. 

 

Nonetheless, the improvement in fairness with respect to data utility comes at a price. AM cannot provide 

the same privacy guarantees as k-anonymity and other group-based privacy protection methods. AM instead 

provides fair privacy protections creating an equal floor to the adversary’s expected effort to re-identify a 

target individual. This highlights another fairness tradeoff in de-identification: more equal data utility can 

be provided at the expense of certain privacy guarantees, and vice versa. Moreover, the utility evaluations 

showed that AM cannot entirely equalize the distribution of data utility. The utility distribution of a masked 

dataset is still constrained to that of the initial k-anonymization, where k = 𝑘/,/7/>?.  

 

 

5.7 Limitations and future directions 

 

I acknowledge several limitations to guide future directions. First, AM’s privacy protections depend on the 

adversary’s rationality. AM assumes that increasing an adversary’s expected effort to re-identify a target 

individual will deter the adversary from attempting re-identification. While the effectiveness of such 

deterrence has been shown theoretically49,65, and arguably implied by the scant evidence of real-world re-

identifications187,188, it is still possible an adversary will repeatedly attack the dataset to re-identify a target 
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individual. Given that AM’s privacy protections are only fair at expectation, more distinguishable records 

that are not randomly masked could remain susceptible to re-identification. There are two potential 

solutions to this problem. First, privacy protections against motivated adversary’s can be enhanced by 

sharing the dataset in a monitored environment in which the re-identification attempts could be detected. 

However, as discussed in Chapter 4, this comes at the cost of data accessibility. Second, a data steward 

could reapply the AM algorithm such that a different version of the dataset is shared with each data 

recipient. This would make it so that the same record does not remain unmasked against every potential 

adversary, making it less likely the adversary’s target individual is unmasked. However, this would create 

potential for collusion. Were data recipients to combine several versions of the dataset, they may be able to 

reverse the masked values. Nevertheless, data sharing frameworks that prevent collusion could mitigate this 

risk. Future work should evaluate the privacy protections of AM, with and without additional deterrents and 

AM applications, against real-world attacks.  

 

Second, I developed AM to protect a re-identification attack in which a single individual is targeted. AM 

could provide better or worse privacy protections against other re-identification attacks, particularly those 

in which the adversary attempts to re-identify more than one individual40,48. The fairness of the re-

identification protections may also vary against diverse attacks. Furthermore, I did not consider how to 

incorporate AM into privacy models that protect against other types of privacy disclosures, such as l-

diversity protecting against sensitive attribute disclosures39. Future work should develop masking methods 

that protect against diverse attack methods and types. 

 

Third, AM may be susceptible to imputation and reverse-engineering. As imputation methods continuously 

improve, it may be possible that the masked values could be imputed from the residual information189. It 

may also be possible for the adversary to reverse-engineer the original dataset with knowledge of the AM 

algorithm, the masked dataset, and certain background knowledge (i.e., knowledge of the dataset’s original 

distribution). Future work should investigate how well masked values could be imputed and reverse-

engineered. 

 

Fourth, the utility evaluation results for the Adult dataset revealed there are more nuances to fairness in de-

identification. While the simulated data clearly showed that standard de-identification methods reduced 

racial subgroup’s data utility inversely proportional to their relative size in the population, the Adult dataset 

did not. In some cases, the largest racial subpopulation – the White race group – incurred the greatest utility 

loss. This is likely due to presence of the additional quasi-identifying attributes with skewed distributions. 

For example, if the White group had a more skewed distribution in terms of workclass than the other racial 
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groups, then generalizing that variable could lead to greater utility loss (as defined by entropy6,74) for the 

White group. Nevertheless, even with the additional variables, the results showed that standard k-

anoymization algorithms suppressed records corresponding to racial minorities more often than the White 

group. AM did not. Future work should evaluate AM’s ability to support detection of more complex 

disparities as well as support more diverse applications.  

 

Finally, I only considered fairness with respect to a single attribute. Ideally, de-identified data could fairly 

distribute the privacy risk and utility with respect to several attributes. Future work should investigate how 

to mask data in a way that supports fairness with respect to multiple attributes, and whether optimizing 

fairness with respect to one variable sacrifices the fairness with respect to others.  

 

 

5.8 Conclusion 

 

Non-deterministic de-identification methods can preserve the representation of minority subpopulations 

better than deterministic methods. I showed that such representation was critical for identifying underlying 

disparities. However, increasing fairness with respect to utility may require reducing fairness with respect 

to certain privacy guarantees. Once again, the smaller and more distinguishable populations are 

disadvantaged. While no silver bullet, Altruistic Masking represents another method by which fairness 

constraints can be relaxed in privacy-preserving data sharing. It also highlights nuances between privacy 

protections and privacy guarantees that may illuminate innovative solutions in the future.  
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Chapter 6 

 

Conclusion  

 

 

6.1 Summary 

 

As the demand for data increases, so does the need to develop data sharing methods that both protect 

individuals’ right to privacy and preserve equitable representation. This dissertation focused on developing 

de-identification and data sharing methods to address such needs, both within the context of a pandemic as 

well as for biomedical research more generally. It also identified privacy, utility, and fairness constraints to 

guide the development of privacy practice and regulation moving forward. The specific contributions are 

as follows. 

 

First, I developed a prospective and dynamic de-identification method, driven by a privacy risk estimation 

framework, to support pandemic data sharing. The framework enables a dataset that accumulates additional 

records at variable rates to be de-identified and shared in near-real time. The framework can also generalize 

to consider different types of quasi-identifier features, particular information priorities, and adversaries with 

varying background knowledge. I showed how data that is dynamically generalized according to the 

framework’s forecasts can both decrease patient distinguishability and support early and accurate disparity 

detection. The framework can also support the development of large data sharing consortia by informing 

how many subjects must be recruited from particular populations to meet privacy and utility thresholds. 

While these methods can optimize the privacy-utility tradeoff with respect to sharing dynamic datasets, the 

experiments highlighted minority groups’ disadvantage in de-identified data. The fairness experiments 

showed that more distinguishable groups are disproportionately exposed to re-identification and/or 

disproportionately distorted by de-identification transformations. This finding added to growing evidence 

of the privacy risk and data utility disparaties of de-identification14,15,71, which extend beyond pandemic 

data sharing. 

 

Second, I formalized and empirically illustrated the constraints to concurrently equalizing the distribution 

of risk and utility in a de-identified dataset. The formalization included the fairness tradeoff theorem, which 

states that when records start with different re-identification risks in the raw data, deterministic 

generalization and suppression transformations can either equalize risk or utility. They cannot equalize both 

simultaneously. As nearly all real-world datasets are expected to have records with variable 
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distinguishability prior to de-identification, the fairness tradeoff theorem defines an ethical dilemma that 

data stewards, data users, and policy makers must face. That is, they must decide whether to prioritize equal 

privacy or equal utility in de-identified data. I discussed several implications of the theorem in the context 

of current privacy legislation and several foundational research principles, highlighting regulations’ current 

prioritization of privacy over utility. I also discussed how the fairness constraints of de-identification 

transformations can be alleviated by supplementing de-identification with sociotechnical deterrents. 

However, doing so comes at the cost of data accessibility. To alleviate the constraints to fair privacy risk, 

fair data utility, and data accessibility, I proposed a scaleable controlled-access framework to data sharing, 

called the passport-visa model. The passport-visa model distributes the burden of verifying user 

trustworthiness and deterring data misuse between sponsoring insitutions (those who provide the passport) 

and data sharing organizations (those who grant the visa and share the data). Nevertheless, the passport-

visa model involves monitoring data users, to some extent, such that data user privacy must be considered. 

 

Finally, I developed a non-deterministic de-identification method to alleviate the constraints defined by the 

fairness tradeoff theorem. The method, called Altruistic Masking, breaks the conventions of standard de-

identification transformations to allow privacy protections to support cooperation in privacy protections. 

AM leverages such cooperation to transform the majority groups’ records in a manner that increases the 

minority groups’ privacy protections, enabling minorites to retain more granular representation in the de-

identified dataset while still meeting specified privacy risk thresholds. I showed how AM reduces re-

identification risk by increasing an adversary’s expected effort to re-identify a target individual. However, 

while AM can provide an equal floor to the adversary’s expected effort, I also showed how it cannot equally 

provide the same privacy guarantees as k-anonymity and other group-based privacy protection methods. 

Nevertheless, the utility evaluation demonstrates how sacrificing equality in certain privacy guarantees can 

improve minority subpopulations’ representation in a de-identified dataset beyond that afforded by 

deterministic transformation methods, enabling more accurate disparity detection and characterization.  

 

Collectively, this dissertation identifies several constraints to de-identification and data sharing beyond the 

privacy-utility tradeoff – the focus in the privacy research community for decades. The fairness tradeoff 

theorem defines a tradeoff between fair privacy risk and fair data utility. Sharing data using the passport-

visa model, and other controlled access models, imposes a tradeoff between relaxing the constraints of the 

fairness tradeoff theorem and data accessibility. Implementing a controlled access model may also impose 

a tradeoff between data user privacy and data subject privacy. Finally, the Altruistic Masking method 

defines a tradeoff between equally providing certain privacy guarantees and more equally preserving data 

utility. While this dissertation does not identify a silver bullet to address these tradeoffs – if one even exists 
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– the constraints reframe the problem of privacy-preserving data sharing. Indeed, if data is to be shared in 

a way that both preserves privacy and supports society’s pursuit of health equity, solutions must consider 

the constraints to privacy, utility, fairness, and accessibility. 

 

 

6.2 Future investigations 

 

Beyond those already stated at the conclusion of Chapters 3-5, there are several limitations to this work that 

should guide future investigations. First, the fairness investigations of Chapters 4 and 5 consider datasets 

retrospectively; they do not consider dynamic datasets such as those in Chapter 3. While the constraints 

defined by the fairness tradeoff theorem apply to any deterministic application of generalization and 

suppression, future work should consider how to adapt non-deterministic transformations, such as AM, to 

dynamic datasets.  

 

Second, the investigations do not consider how patient recruitment can impact the distribution of privacy 

risk in the raw dataset and, subsequently, the constraints to fair privacy and fair utility. Even though the 

empirical results using Census data in Chapter 4 indicate there are population constraints equalizing group 

size in the raw dataset, patient recruitment may be optimized to alleviate the fairness constraints190. Future 

work should investigate recruitment strategies that can prospectively optimize for fairness in de-identified 

data. 

 

Finally, I did not consider how de-identified data can support the development of artificial intelligence. De-

identification could satisfy AI’s growing demand for data while preserving patients’ privacy173; however, 

there is still limited understanding how generalization and suppression may impact the ability to develop 

algorithms that are high performing, just, and fair172,173. As shown in Chapter 3, generalization can dampen 

the noise to improve model performance. It could also be argued that the more granular the data, or the 

greater the data’s intrinsic utility, the more flexibility a developer has for feature engineering and signal 

detection. Nevertheless, the correlation between de-identified data that has been generalized and suppressed 

in a manner that optimizes intrinsic utility measures and model performance has been shown to be 

inconsistent91,92,191. Future work should investigate how de-identified data may affect the development of 

fair AI technologies. 
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