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CHAPTER I 

 

INTRODUCTION 

 

Though commonplace in other fields, intrinsically nonlinear models are used rarely in 

psychology and social science research. One purpose of this dissertation is to establish the utility 

of nonlinear models for social scientists by demonstrating the enhanced theoretical and 

substantive contributions that can be made through use of these models. Additionally, assessing 

the presence of moderation is often of key importance for psychological theory testing. However, 

methods for testing, plotting, and probing moderation were developed for linear models, and 

currently, their use remains largely restricted to linear models. Another goal of this dissertation is 

to develop novel analytical and software tools that enable the specification and examination of 

moderated parameters within intrinsically nonlinear models. Approaches to model specification, 

as well as methods for testing, plotting, and probing moderation, will be extended in novel ways 

for use in nonlinear models; additionally, a Shiny app that unifies this process will be introduced. 

The goal of the current chapter is to introduce key terms and concepts that will be referenced and 

intertwined throughout the remainder of the dissertation.  

 

Intrinsically Nonlinear Models 

In an intrinsically nonlinear model, the function that relates a predictor (x) to an outcome 

(y) is nonlinear in at least one of its parameters. It may be easiest to understand what it means for 

a model to be “nonlinear in its parameters” by contrasting this to a linear model. When a model 

is linear in its parameters, each additive term in the model contains only one parameter, and each 



 

2 

 

parameter (except the intercept) is a multiplicative constant of one or more predictors (Panik, 

2014). All other models are nonlinear (Sit & Poulin-Costello, 1994). As an example, the 

quadratic model (Eq. 1.1) is linear in its parameters, whereas the power model (Eq. 1.2) is 

nonlinear in its parameters. In the following equations (and throughout the dissertation), letters 

from the Latin alphabet (a, b, c, etc.) will be used to represent nonlinear model parameters, 

whereas 𝜀 will denote an error term. 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝜀.     (1.1) 

𝑦 = 𝑎𝑥𝑏 + 𝜀.       (1.2) 

More formally, intrinsically nonlinear models can be defined by their first derivatives. After 

taking the first derivative of the function with respect to each parameter, a model is intrinsically 

nonlinear if at least one of these first derivatives contains one or more model parameters (Bates 

& Watts, 1988; Ratkowsky, 1990).  

Models may be described as nonlinear according to how parameters appear in the 

regression equation, or according to the shape of the relation between x and y (Panik, 2014). 

Throughout this dissertation, nonlinear will be used to reference models that are nonlinear in at 

least one parameter in the regression equation, according to the above definition. In other 

contexts, nonlinear is used more broadly to describe relations between x and y that do not follow 

a straight line; for example, the quadratic model is often referred to as a nonlinear model, despite 

being linear in its parameters. For clarity, curvilinear will be used as a broader descriptor for 

relationships between x and y that do not follow a straight line.   

The scope of this dissertation will be limited to parametric nonlinear models. These 

models are defined prior to being fit to the data, in terms of their shape and the parameters that 

govern that shape (Panik, 2014). Nonparametric nonlinear models take on a shape that is 
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informed by the data rather than by prespecified functional form; for example, the generalized 

additive mixed model (GAMM) is largely nonparametric (Lin & Zhang, 1999; Wood, 2017). A 

more detailed treatment of the contrasts between parametric and nonparametric nonlinear models 

will be reserved for the discussion. 

There exist a wide variety of parametric nonlinear models that can characterize a diverse 

array of relations between x and y (Ratkowsky, 1990; Sit & Poulin-Costello, 1994). There are 

models that involve lower and/or upper asymptotes, minima, maxima, non-constant rates of 

change, inflection points, multiple regions/phases of relationships, and more features. Whatever 

the hypothesized nature of the relation between two variables, there is likely to be an intrinsically 

nonlinear model that can approximate that relationship. Though each approximates a specific 

functional form, as a collection, nonlinear models offer much greater flexibility than linear 

models (Archontoulis & Miguez, 2015). Linear models are very restrictive in terms of the nature 

of the relationship between x and y that can be well-approximated. For example, linear models 

without polynomial terms assume that as x increases by one unit, the corresponding change in y 

is constant across all possible values of x. Polynomial models assume a very specific type of 

curvilinear relation exists between x and y (e.g., in the quadratic model, a symmetric parabola). 

Problematically, it is often not reasonable to expect that psychological constructs will be related 

in one of the specific ways allowed by linear models. Intrinsically nonlinear models allow us to 

entertain the possibility of a great many more relationships that are likely to be more realistic.  

Often, each parameter in a nonlinear model governs a particular aspect of the curve. This 

is akin to a linear model whose appearance is controlled by two parameters: the intercept 

parameter governs the location of the line along the y-axis, and the slope parameter governs the 

direction and steepness of the line. Nonlinear models may contain one, two, three, four, or more 
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parameters, and each of those parameters often corresponds to a specific attribute of the curve. 

Beyond intercepts and slopes, a much more diverse variety of curve characteristics can be 

pinpointed by the parameters that are estimated in a nonlinear model. 

As an example, consider a two-parameter exponential model. In this model, the steepness 

of the slope decreases as x increases, until the relation between x and y eventually levels off to an 

upper or lower asymptote. One way to express the two-parameter exponential model is:  

     𝑦 = 𝑎 ∗ exp (
𝑏

𝑥
) + 𝜀,             (1.3) 

where the model is governed by two parameters, a and b. Parameter a governs the vertical 

location of the asymptote, whereas parameter b governs the concavity of the curve. When b is 

positive, the function decreases toward a lower asymptote (i.e., is concave up), whereas when b 

is negative, the function increases toward an upper asymptote (i.e., is concave down). When b is 

closer to zero, the curve is steeper and reaches the asymptote earlier. Figure 1.1 depicts how the 

curve changes as parameter a is varied and b is held constant, as well as when parameter a is 

held constant and b is varied.  

 

Figure 1.1. Exponential Curve Examples. 
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Nonlinear models may contain even more parameters that each correspond with a unique 

attribute of the curve. As another example, consider the logistic function, which may be 

controlled by up to four parameters. One version of the four-parameter logistic model is:  

𝑦 =  𝑎 +  𝑏 ∗ (1 + exp(−𝑐(𝑥 − 𝑑)))
−1

+ 𝜀.          (1.4) 

Here, parameter a governs the lower asymptote, b governs the vertical distance between the 

lower and upper asymptotes (i.e., total change), c governs the steepness of the curve (sometimes 

referred to as “slope” or “rate of approach”), and d governs the location along the x-axis at which 

the slope of the curve is greatest (also referred to as the “inflection point” or “surge point” of the 

curve). Figure 1.2 displays versions of the logistic curve where each parameter is varied and the 

others are held constant.  

 

Figure 1.2. Logistic Curve Examples. 
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 This example highlights the level of detail that can be obtained from nonlinear models 

when each parameter uniquely corresponds to a specific characteristic of the curve. The clear 

mapping between each model parameter and each attribute of the curve yields parameters with 

unambiguous and interpretable meaning. Upon estimating, for example, a logistic model to 

approximate learning trajectories, we can draw precise conclusions about those trajectories 

because each parameter influences the shape of the curve in a unique and specific manner (e.g., a 

larger parameter c indicates that learning occurs faster, whereas a smaller parameter d indicates 

that learning occurs earlier). As will be discussed in later chapters, the benefits of these 

straightforward mappings are also highly relevant when moderation of parameters is introduced. 

 By contrasting the exponential and logistic models with the quadratic model, we can 

further understand the benefits of straightforward mappings between model parameters and 

important aspects of the curve. The classic version of the quadratic model is given in Eq. 1.1. 

This curve is governed by three parameters. Parameter a controls the y-intercept, parameter b 

controls the slope of the line tangent to the parabola where x = 0, and parameter c controls the 

quadratic aspect of the curve, which corresponds to the parabola’s overall curvature.  

Figure 1.3 illuminates key weaknesses of the classic quadratic model. Although there is a 

straightforward connection between parameter a and the location of the y-intercept, parameters b 

and c govern characteristics of the curve that are unlikely to be substantively important. When 

parameter b is varied, the slope of the tangent line at x = 0 changes, and when parameter c is 

varied, the curvature of the parabola changes; if using the quadratic function to model, for 

example, trajectories of happiness across the lifespan, it is unclear how parameters b and c could 

be interpreted in a way that facilitates useful conclusions. Indeed, Cudeck and Harring (2010) 

note that “the coefficients of polynomial functions do not have a clear-cut and scientifically 
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meaningful interpretation.” Additionally, parameters b and c incidentally govern attributes of the 

parabola other than those named above, including the location of the parabola’s minimum along 

the x-axis. Therefore, our ability to substantively interpret these parameters suffers further, and if 

parameters b or c are found to be moderated, our ability to make meaningful sense of that 

moderation is limited. 

 

Figure 1.3. Quadratic Curve Examples. 

 

 

Nonlinear Mixed-Effects Models 

 Although nonlinear models remain relatively uncommon in social science, when they are 

implemented, they often take the form of nonlinear mixed-effects (NLME; Pinheiro & Bates, 

2000) models in studies of psychological growth or change over time. NLME models are ideal 

for longitudinal contexts because they can account for the dependence that arises when the same 

individuals are assessed repeatedly, such that multiple observations (level 1) are nested within 

each individual (level 2) in a hierarchical data structure. In NLME growth models, variables may 
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exist at level 1 or level 2. Level-1 variables change across timepoints or assessments (e.g., affect, 

blood pressure), whereas level-2 variables are static and describe person-level characteristics 

(e.g., gender, age, socioeconomic status). Additionally, the parameters that govern the growth 

trajectory can be treated as fixed or random. If treated as fixed, then the parameter is assumed to 

be the same for all individuals, and if treated as random, then the parameter is allowed to vary 

across individuals. Random parameters enable the researcher to understand which attributes of 

the growth trajectory differ across people (Blozis & Harring, 2021; Cudeck & Harring, 2007, 

2010; Davidian & Giltinan, 2003; Harring & Blozis, 2014; Pinheiro & Bates, 2000). 

As an example, consider the two-parameter exponential model given in Eq. 1.3, which 

may easily be modified into a NLME model. Suppose we have obtained repeated measurements 

of vocabulary development among children; each child in our study was assessed multiple times, 

so our data are hierarchically nested. We also suspect that both model parameters will differ 

across children. We can specify our NLME model as follows:  

𝑦𝑡𝑖 = 𝑎𝑖 ∗ exp (
𝑏𝑖

𝑡
) + 𝜀𝑡𝑖,    (1.5) 

where 

𝑎𝑖 = 𝑎00 + 𝑎𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑏𝑖 = 𝑏00 + 𝑏𝑅𝑒𝑠𝑖𝑑𝑖. 

In Eq. 1.5, t (time) is the predictor, 𝑦𝑡𝑖 is the observation taken for individual i at time t, 𝑎𝑖 is the 

value of a for individual i, 𝑏𝑖 is the value of b for individual i, and 𝜀𝑡𝑖 is the level-1 residual for 

individual i at time t. Additionally, each individual-specific coefficient (𝑎𝑖, 𝑏𝑖) is made up of two 

components. The fixed component (𝑎00, 𝑏00) denotes the mean value of the coefficient for all 

individuals in the sample. The random component (𝑎𝑅𝑒𝑠𝑖𝑑𝑖, 𝑏𝑅𝑒𝑠𝑖𝑑𝑖) denotes the deviation of 
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the individual-specific coefficient from the mean value. The (co)variances of the random 

components (𝑎𝑅𝑒𝑠𝑖𝑑𝑖, 𝑏𝑅𝑒𝑠𝑖𝑑𝑖) are estimated, as well as the variance of the level-1 residuals. 

 In summary, NLME models afford researchers all the key advantages described in the 

prior section, including clearly interpretable parameters, with the added benefit that nested data 

structures can be accommodated. Later chapters will review successful use cases of nonlinear 

models in social science, many of which are NLME models. 

 

Parameterization 

 The concept of a model’s parameterization is also important to define. Most nonlinear 

functions can be expressed in several equivalent ways (Cudeck & Harring, 2010; Preacher & 

Hancock, 2015). These expressions may contain different parameters that are each associated 

with a different attribute of the curve, and therefore, a different interpretation. All these 

parameterizations yield the same functional form, but the interpretations of the parameters 

themselves will vary in usefulness depending on the research context. For example, Cudeck and 

Harring (2010) introduce two potentially useful parameterizations of a three-parameter 

exponential model. The first is:  

𝑦 =  𝑎 − (𝑎 − 𝑏)exp(−𝑐 ∗ 𝑥) + 𝜀,     (1.6) 

where a corresponds to the upper asymptote, b is the y-intercept of the curve, and c governs the 

rate of approach toward the upper asymptote. The second parameterization is:  

𝑦 = 𝑎 −  (𝑎 − 𝑏)2−
𝑥

𝑐 + 𝜀.    (1.7) 

Here, a again corresponds to the upper asymptote and b again corresponds with the y-intercept of 

the curve. However, c corresponds to the x-value at which the curve is halfway between the y-

intercept and the upper asymptote. Both parameterizations yield a curve with the same shape, but 
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parameter c in Eq. 1.6 corresponds to a different attribute of that curve than parameter c in Eq. 

1.7. Depending on the application, one of these parameterizations may be more useful than the 

other. For example, if using an exponential model to characterize cognitive skill acquisition, the 

interpretation of parameter c may be useful for understanding the general rate at which the skill 

is acquired over time. When modeling the relation between font size and reading speed, as in 

Cudeck and Harring (2010), the interpretation of parameter c was more useful for pinpointing the 

font size (x-value) at which reading speed reached 50% of its maximum. In summary, any 

function can be expressed so that the most important attributes of the curve are represented by a 

specific parameter. Choosing a parameterization that enables the direct testing of key hypotheses 

can greatly improve the substantive utility of the model, and as will be demonstrated in later 

chapters, becomes important when moderation of parameters is examined. 

 

Linear Moderation 

It is also important to define linear moderation, as linear (rather than nonlinear) 

moderation will be the focus of this dissertation. In the context of ordinary least squares (OLS) 

linear regression, linear moderation occurs when the slope of the focal predictor, x, changes as a 

linear function of the moderator, z. Preacher et al. (2006) use the following notation to represent 

the regression equation:  

   𝑦 = 𝛾0 + 𝛾1𝑥 + 𝛾2𝑧 + 𝛾3𝑥𝑧 + 𝜀,     (1.8) 

where the 𝛾s are the linear regression weights and 𝜀 is the error term. From here, we can define 

the prediction equation, which denotes the expected value of y conditional on specific values of x 

and z: 

𝐸[𝑦|(𝑥, 𝑧)] =  𝛾0 +  𝛾1𝑥 + 𝛾2𝑧 +  𝛾3𝑥𝑧,    (1.9) 
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where the carat symbol (^) denotes the sample estimate of the corresponding linear regression 

parameter. Rearranging Eq. 1.9, we can obtain the estimated simple slope of x (also referred to as 

the conditional slope or conditional effect; Aiken & West, 1991; Darlington, 1990), which 

represents the effect of x on y at a particular value of the moderator:  

𝜔̂1 =  𝛾1 +  𝛾3𝑧.      (1.10) 

Eq. 1.10 shows that 𝜔̂1 is a linear function of the moderator. However, linear moderation can be 

defined more generally such that it also applies to the parameters of nonlinear models. 

In general, linear moderation occurs when a parameter varies linearly according to the 

value of the moderator. In other words, a certain predictor (the moderator) linearly influences a 

parameter which governs some aspect of the curve linking x to y. For example, consider the two-

parameter exponential model given in Eq. 1.3. A moderator may linearly influence any of these 

parameters, or in other words, any attribute of the curve that is governed by these parameters. 

Suppose we hypothesize that a moderator z linearly influences parameter a, which governs the 

vertical location of the asymptote. To reflect that this parameter is allowed to change linearly 

according to the value of the moderator, we could specify the moderated model as follows:  

     𝑦 = (𝑎𝑜 + 𝑎1 ∗ 𝑧) ∗ exp (
𝑏

𝑥
) + 𝜀,        (1.11) 

where 𝑎0 denotes the value of parameter a when the moderator is zero, and 𝑎1 denotes the linear 

effect of z on a. In other words, as the moderator increases by one unit, the vertical location of 

the asymptote changes by 𝑎1.  

 Later chapters will expand on the substantive insight that can be gained by incorporating 

moderators into nonlinear models. For now, it is important to establish that it is indeed possible 

to examine linear moderation of any parameter in a nonlinear model, and that each parameter of 

a nonlinear model often corresponds with a specific characteristic of the curve.  
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The Johnson-Neyman Technique 

 When a parameter is found to be moderated, it is useful to follow up on that result in 

order to understand the nature of the moderation. Key insights can be gained from visualizing 

how the moderated parameter changes as the value of the moderator changes. This process is 

often referred to as “plotting and probing” moderation. A variety of methods exist for visually 

probing moderation; however, all were developed for linear models, and their use remains 

largely restricted to the linear modeling framework. In OLS regression, when the slope of the 

focal predictor is found to be moderated, that result is visually probed to gain insight into how 

the slope changes across different values of the moderator.  

 The most popular method for probing moderation is the pick-a-point approach (Aiken & 

West, 1991). Here, the researcher chooses a few values of the moderator (typically the mean ± 1 

SD) and plots the relation between x and y at each of those values. See Figure 1.4 for an 

example. Using Eq. 1.10, it is straightforward to compute the simple slope of the focal predictor 

at any chosen value of z.  

The pick-a-point approach remains popular because it is easy to implement and produces 

intuitive plots that are straightforward to understand and interpret. However, this approach 

suffers from notable weaknesses. First, the researcher evaluates the conditional slope of x at only 

a few values of z; these values are inherently arbitrary and are often chosen automatically, which 

can be problematic. For example, if the three typical values of z (the mean, ± 1 SD) are chosen 

without first examining the data, then it is possible that a chosen z-value was not observed in the 

sample or was observed very sparsely. Therefore, extrapolation problems can easily arise 

(Bodner, 2016). Second, the use of only a few z-values inherently limits the insight the 

researcher can gain about x’s effect across the full observed range of z (Bauer & Curran, 2005; 
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McCabe et al., 2018). It is more useful to understand the conditional slope of x, and our certainty 

about that conditional slope, at all observed values of the moderator rather than at just a few. 

 

Figure 1.4. Pick-a-Point Plot Example

 

 

 The Johnson-Neyman (JN) technique (Johnson & Fay, 1950; Johnson & Neyman, 1936) 

is a general method that evaluates the conditional effect of a focal predictor across all possible 

values of the moderator. The JN technique improves upon the major weaknesses of the pick-a-

point approach, affording two major advantages (Bauer & Curran, 2005). First, results of the JN 

technique communicate whether the simple slope of x is significant at every possible value of the 

moderator. Second, confidence bands communicate how certain we are about the simple slope of 

x at all possible values of the moderator, rather than at just a few. 

The JN technique was originally developed for categorical-by-continuous moderation. 

Given two groups (i.e., a group mean difference), the JN technique could compute the values of 
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the moderator for which the group mean difference was significant. Since then, the technique has 

been extended so that it also applies to continuous-by-continuous moderation (Bauer & Curran, 

2005). The JN technique allows us to answer: given a continuous predictor x and a continuous 

moderator z, for which values of z is the conditional slope of x significantly different from zero? 

The JN technique answers this question by deriving significance boundaries, which demarcate 

regions of significance. The regions of significance contain the z-values at which the conditional 

slope of x is significant. 

Calculating significance boundaries is relatively straightforward with the JN technique. 

Recall from Eq. 1.10 that in a moderated linear model, the simple slope of x can be defined as 

𝜔̂1 =  𝛾1 +  𝛾3𝑧. The standard error of this simple slope will be the square root of its variance, 

which is given by Aiken and West (1991) as: 

𝑣𝑎𝑟(𝜔̂1) = 𝑣𝑎𝑟(𝛾1) + 2𝑧𝑐𝑜𝑣(𝛾1, 𝛾3) +  𝑧2𝑣𝑎𝑟(𝛾3) .    (1.12) 

When the pick-a-point approach is used, we choose a few values of z, compute 𝜔̂1 and 

𝑆𝐸(𝜔̂1) at each of those values, and assess the significance of  𝜔̂1 at each of those values. This is 

accomplished by the usual t-test:  

𝑡 =  
𝜔̂1

𝑆𝐸(𝜔̂1)
,     (1.13) 

where both 𝜔̂1 and 𝑆𝐸(𝜔̂1) are functions of z. The obtained t-statistic is then compared to a 

critical t-value (𝑡𝑐𝑟𝑖𝑡) with n – p – 1 degrees of freedom, where n is sample size and p is the total 

number of predictors in the model.  

The JN technique essentially reverses the process of the typical significance test. Rather 

than solving for a t-statistic and comparing it to 𝑡𝑐𝑟𝑖𝑡 to assess significance, we first choose a 

𝑡𝑐𝑟𝑖𝑡 and solve for the values of the moderator that yield it: 

± 𝑡𝑐𝑟𝑖𝑡 =  
𝜔̂1

𝑆𝐸(𝜔̂1)
.    (1.14) 
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This equation can be solved for values of z through use of the quadratic formula. The obtained 

values of the moderator indicate the points at which the simple slope of x passes from non-

significance to significance.  

 In addition to solving for significance boundaries, the results of the JN technique can be 

plotted to gain a fuller understanding of the simple slope of x across all observed values of z. See 

Figure 1.5 for an example. In this figure, the moderator is on the x-axis, and the conditional slope 

of the focal predictor is on the y-axis. We can now visualize the simple slope of the focal 

predictor across all values of the moderator, and the accompanying confidence bands 

communicate our certainty about that simple slope at each value of the moderator.  

In Fig. 1.5, the vertical line denotes a significance boundary, and the confidence band 

denotes moderator values at which the simple slope of x is significantly different from zero 

(blue) or not (red). Up to two significance boundaries may exist, but one, both, or none of them 

may fall within the observed range of the moderator. In this example, one significance boundary 

was within the range of observed data, so one vertical line is shown. When two significance 

boundaries exist, the simple slope of x may be significant either between or outside of them.  

Overall, the JN technique yields much richer information about the nature of an 

interaction than the pick-a-point approach. It affords insight into the value of the moderated 

parameter across every value of the moderator, and pinpoints the precise value(s) of the 

moderator where that parameter passes from statistical significance to non-significance.  

In summary, when a parameter is found to be moderated, there are a variety of methods 

available for visually understanding the nature of that moderation. Of these methods, the JN 

technique provides the richest information. At present, the use of the JN technique is restricted to 
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linear models. One goal of this dissertation will be to derive novel extensions of the JN technique 

for examination of moderated parameters in nonlinear models. 

 

Figure 1.5. Johnson-Neyman Plot Example. 

  

 

Summary 

 This chapter introduced intrinsically nonlinear models and began to delineate some of 

their benefits, specifically, clear mappings between model parameters and important attributes of 

the curve. Additionally, linear moderation was introduced alongside methods for visually 

probing moderation, including the pick-a-point and Johnson-Neyman techniques. These topics 

have been treated as disparate in most current literature; while some methodologists have 

discussed the utility of jointly examining curvilinear relations and moderation (e.g., Karaka-

Mandic et al., 2012; Li, 2018; Miller et al., 2013; Mize, 2019), these discussions have remained 

limited to quadratic models, as well as models with linear predictor sets and logit or probit link 
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functions. Therefore, a central goal of this dissertation is to facilitate the joint use of intrinsically 

nonlinear models and methods for plotting and probing moderation.  

 The goal of Chapter 2 is to review both the methodological and applied literature 

pertaining to nonlinear models for social science. A variety of nonlinear model families will be 

introduced, and to demonstrate their utility, examples of their use across diverse research areas 

will be reviewed. Chapter 3 delineates current barriers to the uptake of (moderated) nonlinear 

models in social science research, in an effort to identify the gaps that need to be filled in order 

to facilitate use of these models. Theoretical, logistical, and software-based challenges will be 

reviewed. Chapters 4 and 5 aim to address the theoretical and conceptual challenges faced by 

social scientists who seek to implement nonlinear models and examine moderation of the 

parameters within those models. Chapter 4 presents guidelines for selecting a nonlinear 

functional form, choosing an appropriate parameterization, and specifying the moderated 

nonlinear model. In Chapter 5, a novel extension of the Johnson-Neyman technique is derived, 

which enables its application to moderated nonlinear models. Chapter 6 aims to address current 

logistical and software-based challenges by introducing a novel software tool that was developed 

in the Shiny web application framework in R. The software tool provides a code-free interface in 

which each step of nonlinear model specification, testing, evaluation, and visual probing can be 

easily implemented. Finally, Chapter 7 discusses future directions and opportunities for 

extension of this work. 
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CHAPTER II 

 

REVIEW OF THE METHODOLOGICAL AND APPLIED LITERATURE 

 

 The aim of this chapter is to provide a thorough review of nonlinear models and their 

usefulness for social science research. The first section focuses on nonlinear model families and 

examples of their implementation in social science. In the second section, popular alternatives to 

nonlinear models are introduced (including polynomial models, piecewise linear models, and 

latent basis models) and their key drawbacks relative to nonlinear models are discussed. 

 

Nonlinear Models 

 To motivate the use of nonlinear models for social science research, it is important to 

review and demonstrate the many unique advantages that they afford. I begin by summarizing 

the methodological arguments that have been made in favor of nonlinear models. Next, I will 

review a variety of nonlinear model families, their key features, and how those features map onto 

patterns that are often observed or expected in social science research. Throughout, I will present 

a variety of applied examples wherein nonlinear models were successfully implemented, 

highlighting the nuanced substantive conclusions that these models afford.  

 

Methodological Arguments and Key Advantages  

Many methodologists have argued in favor of nonlinear models for use in social science 

research. Most attention has been devoted to the benefits of nonlinear models for the study of 

psychological change over time; therefore, their advantages within longitudinal contexts are best 
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understood. A common assertion is that linear models often do not align with hypothesized or 

observed trajectories. Cudeck (1996) pointed out that the most “natural” way to represent 

changes in human behavior over time is often with a nonlinear model. In many situations, 

modeling linear growth is “simply inconsistent” with hypothesized change processes, including 

those in which growth is expected to occur at different rates across different portions of the 

trajectory, which are common in psychology (Choi et al., 2009). Indeed, Cudeck and Harring 

(2007) argue that in most cases, given what is known about growth processes, linear models are 

“conceptually unsatisfactory.” For most areas of psychological change, nonlinear models often 

portray a more realistic representation of the process (Grimm et al., 2011), and yield better 

model-data fit with fewer estimated parameters than linear models (Vonesh & Carter, 1992). 

The better match between nonlinear models and expected trends is best highlighted when 

we consider that linear models (including polynomials) assume that trajectories continue toward 

positive or negative infinity in both directions. This is a strong assumption that typically does not 

align with known properties of development (e.g., academic skills are not expected to increase, 

plateau, then decrease across childhood, as implied by the quadratic model). As such, linear 

models’ accuracy tends to suffer in the extremes (Choi et al., 2009), and their generalizability 

beyond the time period of a given study is severely limited (Archontoulis & Miguez, 2015). 

Linear models may be able to approximate a portion of the growth process accurately, but cannot 

characterize the entire range of the trajectory (McCormick et al., 2023). For visualizations of this 

important limitation, see Figure 2.1. Ultimately, when curvilinear growth processes occur, linear 

models can at best provide incomplete approximations of these processes, whereas nonlinear 

models are often better matched to the hypothesized underlying system (Choi et al., 2009; 

Grimm et al., 2011; Pinheiro & Bates, 2000).  
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Figure 2.1. Example of Incompatibility Between Hypothesized Curvilinearity and Linear Models. 

 
Note. The hypothesized trajectory is denoted in green, the model-implied trajectory is denoted in 

blue, and the observed range of the data is denoted in pink.  
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Methodologists have also emphasized that nonlinear models enable better connections 

between model parameters and theory, arguing that each parameter should map as directly as 

possible onto the specific hypothesis or theory that is being defined and tested. Therefore, each 

model parameter should correspond to a specific and substantively important aspect of 

development (i.e., of the curve under study). Cudeck and Harring (2007) argued that in order to 

gain novel information about individual change, parameters must have “unambiguous 

definitions.” Echoing this sentiment, Grimm et al. (2011) note that “a model is of little use when 

its parameters do not map onto theoretical notions of change or what is known about the 

developmental system under investigation.” As introduced in Chapter 1, relative to linear and 

polynomial models, the parameters of nonlinear models often map much more clearly onto 

specific attributes of the curve (Blozis & Harring, 2021; McCormick, 2023; Pinheiro & Bates, 

2000; Ram & Grimm, 2007). As later examples show, these straightforward mappings can be 

translated to novel insight and enhanced contribution to theory.  

In summary, two key arguments underlie methodologists’ support of nonlinear models 

for characterizing psychological data. First, nonlinear models are typically well matched to the 

ways in which psychological and behavioral change are hypothesized to occur. Second, 

nonlinear models are defined by parameters that correspond with substantively meaningful 

attributes of the curve. Together, these benefits mean that nonlinear models are very well suited 

for informing theory, directly testing key hypotheses, and identifying interindividual variation in 

substantively important aspects of development. To date, these arguments have been made in the 

context of longitudinal social science research; however, later examples will show that the same 

benefits apply to cross-sectional applications of nonlinear models.  
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In the following sections, I will provide detailed descriptions of the nonlinear models that 

have proven most useful for social science and review applied examples wherein those models 

were successfully implemented. Each section will begin by describing a family of nonlinear 

models (i.e., a group of models that yield similar-looking curves), the key features of the curves 

that they yield, and examples of how these features correspond with expected trends in the 

context of social science research. In addition, where possible, I will review use cases from the 

applied literature, which demonstrate the many advantages afforded by nonlinear models across 

a broad variety of research contexts and study designs.  

 

Sigmoidal Models 

Nonlinear sigmoidal models yield S-shaped curves, which are characterized by change 

that is slower near the extremes and more rapid in the middle. All sigmoidal curves contain an 

inflection point, which is the location along the x-axis at which the rate of change of the slope 

(i.e., the first derivative) switches from increasing to decreasing. Popular models in the sigmoidal 

family are the logistic, Gompertz, and Richards models.  

A popular parameterization of the logistic model is:  

𝑦 =  𝑎 +  𝑏 ∗ (1 + exp(−𝑐(𝑥 − 𝑑)))
−1

+ 𝜀,   (2.1) 

where a governs the height of lower asymptote, b governs the vertical distance between the 

lower and upper asymptotes, c governs the rate of change, and d governs the x-value at which the 

inflection point (i.e., fastest rate of change) occurs. An important feature of the logistic curve is 

that it is symmetric around the inflection point, such that half of the total change in y occurs 

before the inflection point and half occurs after. 

 Similarly, the Gompertz model is often parameterized as:  



 

23 

 

   𝑦 = 𝑎 + 𝑏 ∗ (exp (−exp (−𝑐(𝑥 − 𝑑)))) + 𝜀,   (2.2) 

where a is the height of the lower asymptote, b is the distance between the lower and upper 

asymptotes, c governs rate of change, and d governs the x-value at which the inflection point 

occurs. Unlike the logistic curve, the Gompertz curve is not symmetric around the inflection 

point. Rather, the Gompertz curve is structured such that 37% of the total change in y occurs 

below the inflection point, and the rest occurs above it.  

 Finally, a popular parameterization of the Richards model is:  

𝑦 =  𝑎 +  𝑏 ∗  ((1 +  𝑠 ∗ (exp (−𝑐(𝑥 − 𝑑)))
1

𝑠⁄

)

−1

+ 𝜀,   (2.3) 

where a is the lower asymptote, b is the distance between the lower and upper asymptotes, c 

governs rate of change, d governs the x-location of the inflection point, and s governs the amount 

of asymmetry before and after the inflection point. As s approaches 1, the curve approaches the 

logistic curve, such that the curve is symmetric around the inflection point; as s approaches 0, the 

curve approaches the Gompertz curve (Boedecker, 2021). Due to the asymmetry parameter, the 

Richards model is more general than the Gompertz and logistic models.  

The logistic, Gompertz, and Richards models introduced here are a very small subset of 

the many sigmoidal models from which researchers may choose. First, versions of these 

functions with fewer parameters exist. For example, in the three-parameter versions of the 

logistic and Gompertz functions, there is no parameter for the lower asymptote because it is 

constrained to zero (see Sit & Poulin-Costello, 1994). There is a two-parameter version of the 

logistic function wherein only the lower asymptote and rate of change are estimated (e.g., 

Rockwood et al., 2008). Additionally, there are many more sigmoidal models that are popular in 

other fields but have yet to be implemented in social science research, save for a few rare 
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examples. Other sigmoidal models include the Weibull model (see McNeish et al., 2020; Panik, 

2014; Wood et al., 2015) and the Janoschek model (see Panik, 2014; Wood et al., 2015).  

 

Figure 2.2. Examples of Sigmoidal Curves. 

 

 

There are a few hallmark characteristics of sigmoidal curves that are important to 

consider. Given the presence of both lower and upper asymptotes, sigmoidal curves are well 

suited for processes with logical boundaries or “limiting behavior” (Rast et al., 2011). For 

example, when acquiring a new skill, natural boundaries range from complete absence of the 

skill to mastery of the skill (Choi et al., 2009). Similarly, the outcome variable of interest may 

possess natural lower and upper bounds due to the measurement scale being used, such as the 

minimum and maximum scores on a standardized test. Increasing functions are well suited for 

processes like learning, whereas decreasing functions are well suited for processes like behavior 

extinction or memory loss (Choi et al., 2009; Rockwood et al., 2008). There are many other 

contexts, in both longitudinal and cross-sectional research, where these patterns are expected.  
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In a sigmoidal curve, the first asymptote reflects the expectation that the variable on the 

x-axis must increase somewhat before change in y begins to occur. In longitudinal research, the 

first asymptote reflects that a certain amount of time, trials, or practice may be required before 

noticeable change in the outcome starts. This is frequently expected in studies of learning, task 

performance, and rehabilitation (Feng et al., 2019). In learning contexts, Choi et al. (2009) note 

that “the lower plateau implies an initial lag during which time the subject has relatively slow 

acquisition (perhaps because the subject is not fully prepared for the task, developmentally 

and/or motivationally)” (p. 622). Additionally, first asymptotes may be expected in cross-

sectional research, such as experimental contexts in which a stimulus must be present to some 

degree before a response is expected.  

The second asymptote reflects the expectation that at some point along the x-axis, x will 

no longer affect y, resulting in a plateau or leveling off which has also been referred to as 

“change offset” (McNeish et al., 2023). Such a pattern is frequently expected in social science 

applications. When the second asymptote corresponds with an upper bound, this may reflect that 

the process or relation under study must reach a logical maximum, such as mastery of a skill, 

which must be approached because it cannot be exceeded. For Shing et al. (2012) and Zhao et al. 

(2022), the upper bound was a perfect score on the task being studied. For decreasing logistic 

functions, the second asymptote may be a known minimum, such as the minimum score on a 

memory or cognition task. The second asymptote may also reflect expectations of a diminishing 

effect of x as x increases, regardless of the boundaries of y. In longitudinal contexts this may be 

described as an equilibrium or a “final” level of y that will be maintained over the long term. In 

cross-sectional contexts, hypotheses concerning diminishing returns, plateaus, or leveling off are 

often consistent with this expectation.  
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Another key characteristic of sigmoidal functions is what Choi et al. (2009) refer to as the 

“surge area.” As the curve moves away from the first asymptote, change occurs slowly at first, 

then accelerates until change is most rapid (i.e., until the inflection point is reached), then 

decelerates throughout the approach toward the second asymptote. This results in a surge area, or 

a portion of the x-axis where the effect of x on y is strongest. The surge area often corresponds 

with expectations of a critical period, such as an age range during which reading skills are gained 

most rapidly (e.g., Cameron et al. 2015). Vocabulary development is another relevant example, 

“where children initially acquire new words slowly, beginning at about 1 year of age, then 

quickly increase the rate of acquisition until later in the preschool years when this rate begins to 

slow down again” (Burchinal & Appelbaum, 1991, p. 29). Parameters that govern the shape and 

location of the surge area (e.g., its steepness, the x-location at which the inflection point occurs, 

x-locations that define the boundaries of the surge area) are often of key substantive utility.  

For these reasons, numerous applied examples of sigmoidal models can be found in 

studies of learning, academic achievement trajectories, and skill acquisition. In these 

applications, key goals are to characterize learning trajectories as accurately as possible, to 

identify early predictors of later achievement, and to explore sources of interindividual 

variability in learning trajectories. Sigmoidal models enable identification of relationships 

between individual characteristics and a variety of attributes of the learning trajectory, which are 

often better aligned with theoretical expectations and are more relevant for academic 

interventions. Additionally, sigmoidal models tend to better characterize these growth 

trajectories, as learning does not occur linearly.  

For example, Anthony and Ogg (2020) and Cameron et al. (2015) used Gompertz models 

to approximate trajectories of science, math, and reading skills throughout elementary school. 



 

27 

 

Both studies used the parameterization given in Eq. 2.2, and important moderators were found to 

affect various attributes of the curve. Anthony and Ogg (2020) observed that children with better 

executive function at baseline had earlier inflection points and greater total growth in their 

science trajectories, suggesting that these students “hit the ground running” early in elementary 

school, and “the gaps that open by this time do not close” (p. 1576). Cameron et al. (2015) found 

that important demographic variables (including gender, race/ethnicity, and socioeconomic 

status) moderated total growth, location of the inflection point, and rate of growth. In these 

applications, use of the Gompertz curve allowed for new insight about both the shape and timing 

of the trajectory of academic skills, including pinpointing the time at which growth is most rapid. 

This was essential for identifying the “critical period” of learning in each domain (Cameron et 

al., 2015), and whether that critical period differed across children.   

Use cases of sigmoidal models to characterize learning also span beyond school-aged 

children. Rast et al. (2011) modeled change over time in a verbal learning task among older 

adults, using a sigmoidal model with the following parameterization:  

𝑦 = 𝑎 − (𝑎 − 𝑏) exp(−(𝑥 − 1)𝑐) + 𝜀,   (2.4) 

where a is the upper asymptote, b is the lower asymptote (initial performance), and c governs 

rate of approach (learning rate). Each parameter was hypothesized to vary according to cognitive 

skills measured at pre-test. The authors found that greater cognitive skills at baseline predicted a 

higher upper asymptote and a faster learning rate.  

Sigmoidal models have also proven useful in studies of cognitive growth and decline. 

Two excellent examples include Womack et al. (2022) and Ricker et al. (2018), each of which 

implemented Gompertz models as in Eq. 2.2. Findings indicated that important aspects of 

cognitive growth, which corresponded with parameters of the Gompertz model (e.g., initial 
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asymptote, growth rate, location of maximum growth, total growth), were moderated by the key 

child-level variables under study. Moderation of these parameters was in line with theoretical 

expectations, and findings were well-explained in terms of their implications and substantive 

relevance. For instance, Womack et al. (2022) found that higher family SES was associated with 

an earlier inflection point and a slower rate of growth, suggesting that cognitive growth began 

earlier and continued for a longer period of time among high-SES children. This finding aligned 

with past work linking higher SES with “positive cognitive developmental outcomes;” however, 

the moderated Gompertz model allowed for a more nuanced examination of the precise aspects 

of growth that were positively influenced by high SES. Finally, in an example of a decreasing 

sigmoidal model, Rockwood et al. (2008) used a two-parameter logistic model to approximate 

cognitive decline among older adults with dementia, noting that the logistic model characterized 

expected trends much better than a linear model.  

Beyond academic and cognitive change, sigmoidal models have been implemented in a 

variety of other longitudinal contexts with respect to a diverse array of psychological 

phenomena. Many examples can be found in the neuroscience literature. Here, NLME Gompertz 

models have been used to characterize interindividual differences in brain maturation (e.g., 

Darchia et al., 2022; Sadeghi et al., 2013, 2017; Wright et al., 2014) and logistic models have 

been used to characterize reward signals in the brain (e.g., Sonnenschein et al., 2003). Gompertz 

models have also been used to approximate the progression of neuropathy symptoms (e.g., 

Adams et al., 2015) and brain activity during sleep (e.g., Campbell et al., 2012).  

Sigmoidal models have also been applied to cross-sectional data across a variety of social 

science contexts, where their key benefits (e.g., better connections between parameters and 

theory, better alignment with hypothesized patterns) have also been realized. For example, some 
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studies find that participants’ ability to correctly identify facial expressions is best characterized 

by a logistic model. Here, the x-axis typically corresponds to “signal strength,” or the degree to 

which the face being viewed contains the target emotion (e.g., anger). The y-axis corresponds to 

the proportion of trials where the participant correctly identifies the target emotion. Of note, the 

use of a sigmoidal model – which involves a first asymptote – signals the expectation that the 

target emotion must be present at least somewhat before participants begin to correctly identify 

it. In these studies, relevant parameters of the logistic model include rate of change (i.e., the 

steepness of the curve relating signal strength to correct identification) and “shift point,” which 

has been defined in multiple ways. Zhao et al. (2022) defined shift point as the location along the 

x-axis at which the curve began to increase, whereas D’Hondt et al. (2015) were interested in the 

location along the x-axis at which the proportion of correct trials crossed 50%. Zhao et al. (2022) 

found that both slope and shift point were moderated by schizophrenia status, such that people 

with schizophrenia had a later shift point and a steeper slope. In other words, to begin to 

correctly identify the target emotion, people with schizophrenia required a greater presence of 

the target emotion. People with schizophrenia also displayed less uncertainty about the target 

emotion, such that their correct identifications increased more rapidly from 0% to 100%. 

D’Hondt et al. (2015) tested whether slope and shift point differed across participants with vs. 

without alcohol dependence, finding that people with alcohol dependence had a significantly 

later shift point.  

Another interesting area in which sigmoidal models have been applied pertains to hearing 

and auditory ability (e.g., McCrory & Cooper, 2004; Pogorzelski, 2022; Stelmachowicz et al., 

2000). In these applications, the x-axis contains an indicator of the difficulty of the auditory 

stimulus being listened to, such as the duration of sound exposure, the audibility of speech, or the 
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magnitude of the difference between two tones. The y-axis contains an indicator of performance, 

such as the proportion of trials where the tone with higher pitch is correctly identified or where a 

word is recognized correctly. These studies find that the relation between difficulty and 

performance is best characterized by a logistic model. Additionally, tests for moderation allow 

researchers to identify key interindividual differences in performance, which often have 

implications for intervention and treatment. For Stelmachowicz et al. (2000), parameters of 

interest were rate of approach toward the upper asymptote and inflection point (i.e., the audibility 

level at which 50% correct speech identification was reached). These parameters differed across 

normal-hearing vs. hearing-impaired children, and findings were discussed in terms of the utility 

of hearing aids for hearing-impaired children. McCrory and Cooper (2004) observed that general 

intelligence moderated the inflection point of the logistic curve, such that higher general 

intelligence was associated with a lower inflection point. In this application, this meant that 

participants with greater intelligence required less exposure to the stimulus in order to 

successfully distinguish between two tones. The authors used this result to inform theoretical 

models concerning intelligence and auditory ability.  

In another cross-sectional example, Shing et al. (2012) modeled the effects of practice 

time (PT) on processing accuracy and working memory performance using a NLME logistic 

model. The authors provided strong a priori justification for their model choice, noting that the 

shape of the logistic function is well-matched to theoretical expectations of how processing 

occurs: “the function assumes (a) a minimum amount of PT is required to initiate processing, (b) 

beyond this minimum amount, PT is translated into carrying out the core cognitive processes 

necessary for achieving the task, and (c) after a certain maximum amount of PT, there is little to 

be gained by having more PT available” (p. 452). Multiple parameters of the logistic model were 
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treated as random and tested for moderation by age group. Age moderated both the rate of 

change and the upper asymptote, such that younger adults reached a higher asymptote faster.  

Finally, some recent theoretical work has hypothesized cross-sectional relations that take 

on a specific sigmoidal shape. Rigoli and Martinelli (2021) defined a new model of subjective 

value as it relates to eating disorders. In the subjective value literature, it is of interest to model 

relations between the actual value of an outcome (on the x-axis, e.g., grades in school) and the 

subjective or perceived value of that outcome (on the y-axis, e.g., perceived success in school). 

The authors propose that this relation should be characterized with a logistic model, wherein 

multiple parameters are theoretically important. First, the inflection point represents the true 

value of the outcome (e.g., the actual school grade) at which perceived value goes from being 

less than that actual value (perceived as relative failure) to greater than that actual value 

(perceived as relative success). A high inflection point would signify that most actual outcomes 

are perceived as relative failure, which has been linked to perfectionism, low self-esteem, and 

eating disorders. Second, the slope of the curve represents the rate at which actual outcomes 

switch from being perceived as complete failures to complete successes. A steeper slope may be 

indicative of dichotomous thinking, a cognitive pattern that has been repeatedly linked to eating 

disorders. The authors hypothesize that eating disorder status, as well as other relevant variables, 

likely moderate these parameters. This work enables empirical studies to target specific and 

nuanced hypotheses about subjective value. Although such examples remain rare, they offer a 

glimpse into the rich insight to be gained from incorporating sigmoidal (and more generally, 

nonlinear) models into psychological theories and hypotheses.   

In summary, sigmoidal models – including variations of the logistic, Gompertz, and 

Richards models – have been implemented in numerous areas of social science. Examples of 



 

32 

 

their utility span across longitudinal, cross-sectional, observational, and experimental designs. 

The hallmark features of sigmoidal models, including both an upper and lower asymptote, a 

surge area, and an inflection point, often map straightforwardly onto hypothesized patterns.  

 

Exponential Models 

 The exponential family is characterized by curves in which the relationship between x 

and y is strongest initially, then decreases as an asymptote is approached. These curves are 

sometimes described as an inverted J-shape (e.g., McNeish & Dumas, 2017). Importantly, these 

curves do not contain an inflection point, as the strength of the relation between x and y is always 

decreasing. Popular models in this family are the three-parameter exponential (3PE) and the 

Michaelis-Menten (MM) models, though in social science, the 3PE has been used most. Curves 

in the exponential family may increase toward an upper asymptote (exponential growth) or 

decrease toward a lower asymptote (exponential decay). 

 A popular parameterization of the 3PE model (e.g., Ram et al., 2005) is:  

𝑦 =  𝑎 +  𝑏 ∗  exp(−𝑐 ∗ 𝑥) + 𝜀,    (2.5) 

where a is the asymptote, b is the distance between the y-intercept and the asymptote, and c 

governs the rate of approach toward the asymptote. Other parameterizations of the 3PE have also 

been used in psychology; for example, Codd and Cudeck (2014) used a parameterization where b 

corresponds to the y-intercept rather than the distance between the y-intercept and the asymptote. 

 The MM model has historically been used less than the 3PE in social science research. 

However, its classic parameterization differs from the 3PE in potentially useful ways, resulting 

in increased popularity in recent years. A popular parameterization of the MM model is:  

𝑦 =  𝑎 +  
𝑏𝑥

𝑐 + 𝑥
+ 𝜀 ,       (2.6) 
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where a is the y-intercept, b is the vertical distance between the y-intercept and the asymptote, 

and c is the x-value at which half of the change between the intercept and the asymptote has 

occurred. The interpretation of parameter c has proven useful in studies of academic achievement 

trajectories and learning (e.g., Codd & Cudeck, 2014; Johnson & Hancock, 2019; McNeish & 

Dumas, 2017; McNeish & Matta, 2018).  

As is true for the sigmoidal family, there are many other versions of the models 

mentioned above, such as the two-parameter exponential, which forces the y-intercept to be zero 

(see Ratkowsky, 1990) and the generalized MM, which allows for an inflection point (see Lopez 

et al., 2000; McNeish & Dumas, 2017). There are also a variety of models in the exponential 

family that are popular in other fields but have been used scarcely in social science research. 

Examples include the von Bertalanffy model (see McNeish & Dumas, 2017; Panik, 2014; 

Ratkowsky, 1990; Wood et al., 2015) the McDill-Amateis model (see Panik, 2014), and the 

power model (see Sit & Poulin-Costello, 1994). Finally, there are some nonlinear models that 

can take on either an exponential or a sigmoidal shape, including the Schnute model (see Panik, 

2014; Wood, 2023) the Morgan-Mercer-Flodin model (see McNeish et al., 2020), and a 

combined model developed by Wood (2023), which is a weighted combination of the 

exponential and logistic functions, and the degree to which the curve resembles either is 

controlled by a weight parameter.  

Key differentiators between the exponential family and the sigmoidal family are that 

models in the exponential family do not involve an inflection point and do not contain a first 

asymptote. The absence of the first asymptote implies that as x increases, rapid change in y 

begins occurring immediately. Therefore, exponential models are well-suited for processes that 

“proceed quickly at first and level off to some threshold” (Johnson & Hancock, 2019, p. 698). 
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This pattern is known to occur in many social science contexts, such as studies of procedural 

learning, which are learning experiments wherein participants are exposed to a novel task and 

aim to improve their performance on the task across multiple experimental trials (e.g., Codd & 

Cudeck, 2014; Cudeck, 1996; Johnson & Hancock, 2019; Ram et al., 2005). For such tasks, it is 

often expected that performance will improve rapidly beginning with the first trial, and that 

improvement will be most pronounced over the course of the earliest trials. We can contrast 

these examples with those from the sigmoidal family, where it was expected that the x-variable 

(e.g., time, trials) would increase somewhat before pronounced change in y began to occur. 

 

Figure 2.3. Examples of Exponential Curves. 

 

 

There are also cross-sectional scenarios where a model from the exponential family may 

be most appropriate. In cross-sectional studies, it is often expected that the relation between x 

and y will be strongest at lower levels of x, and will weaken at the highest levels of x. Such 

hypotheses often involve “diminishing returns” or “plateauing associations,” and have arisen 

across various areas of psychology. For example, the relations between social interaction 
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quantity and wellbeing (e.g., Kushlev et al., 2018; Ren et al., 2022), interpersonal exchange 

quality and relationship satisfaction (e.g., Cazzell et al., 2022), as well as cognitive ability and 

creativity (e.g., Jauk et al., 2013) have been hypothesized to follow such patterns. In each 

example, theory leads the researchers to expect the presence of a final, but not initial, asymptote, 

such that the relation between x and y weakens as x increases. Although quadratic or piecewise 

linear models are typically implemented to characterize these patterns (the disadvantages of 

which will be discussed later), models from the exponential family are well suited for 

approximating such trends. 

 Exponential models have proven useful for modeling psychological change over time in a 

variety of domains, including psychopathology and addiction research. In one example, Burke et 

al. (2007) used NLME models to study trajectories of depressive symptoms among adults who 

experienced the loss of a spouse. Citing past work that suggests recovery is most rapid at first 

and then slows over time, they implemented a 3PE model with the following parameterization:    

𝑦 = 𝐹 + (𝐿 − 𝐹) exp(−𝑆 ∗ 𝑡) + 𝜀,    (2.7) 

where t (time) is the predictor, parameter F governs the asymptote (referred to as “final” level of 

depressive symptoms), L governs the initial level (referred to as depressive symptoms at time of 

loss), and S governs rate of change (referred to as rate of adjustment). All parameters were 

treated as random (i.e., were allowed to vary across individuals), and estimates were discussed in 

terms of coping and loss theory as well as implications for intervention. Additionally, pre-loss 

coping efficacy and marital quality were predictive of lower depression at multiple timepoints 

(i.e., were significant moderators of F and L). The authors noted that use of a nonlinear model 

allowed them to avoid “simplifying assumptions” of linear change, and increased their power to 

detect relationships between moderators and key aspects of the adjustment trajectory.  
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 Aside from procedural learning tasks, there are other learning and skill acquisition 

contexts in which models from the exponential family have proven useful. For example, 

Burchinal and Appelbaum (1991) used a decreasing 3PE model to characterize the trajectory of 

children’s speech errors (termed “phonological processes”) from ages three to six. The authors 

chose the 3PE model on a theoretically informed, a priori basis, noting that an inflection point 

was not expected in this trajectory: “The rate of decline in these articulation errors is markedly 

rapid initially and then gradually slows until all of these processes are eliminated” (p. 31). The 

authors found that children’s speech intelligibility at first and last assessment were correlated 

with the rate of change parameter in the 3PE model, such that greater speech intelligibility was 

associated with a more rapid decrease in speech errors.  

 In some recent applications, the MM model has been used to characterize long-term 

learning trajectories wherein an inflection point was not observed. For example, McNeish and 

Dumas (2017) chose a NLME MM model to approximate change in academic ability factor 

scores over the course of kindergarten to 8th grade. Upon plotting factor scores for random 

subsamples of children, the authors observed that the trajectories did not appear to have an 

inflection point, and indeed, the MM model yielded a lower BIC than the Gompertz model. 

Further, by examining interindividual variation in the parameters of the MM model, the authors 

gained substantively useful insights into how learning trajectories vary across children. “Early 

bloomers” were identified as children for whom the y-intercept was in the top quintile, but 

midpoint of growth and upper asymptote were in the bottom quintile. “Fast learners” were 

children whose y-intercept was in the bottom quintile, but midpoint and upper asymptote were in 

the top quintile. Finally, “late bloomers” were children with a y-intercept in the bottom quintile, 

midpoint in the top quintile, and upper asymptote in the middle quintile.    
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 In summary, models from the exponential family are useful for approximating trends 

wherein the strength of relation between x and y decreases as x increases. Exponential models 

have enabled researchers to characterize trajectories of learning, skill acquisition, and 

psychopathology, and the unique parameterizations offered by each model have been leveraged 

to gain maximally useful insights. Models from the exponential family have yet to be widely 

applied to cross-sectional social science research; however, there are a variety of contexts in 

which expected patterns correspond well with an exponential model. These contexts include 

hypotheses of plateauing associations and diminishing returns.  

 

Trigonometric Models 

Prior sections focused on nonlinear models in which the function relating x to y is 

monotonic, meaning the curve is always increasing or always decreasing. However, there may be 

situations in which non-monotonic models are better suited for the process or relation under 

study. Trigonometric models may be well suited for these applications, as they yield curves with 

cyclical increases and decreases. Two popular trigonometric models are the sine and cosine 

models. A common parameterization of the sine model is:  

𝑦 = 𝑎 ∗ sin (
2𝜋

𝑏
(𝑥 − 𝑐)) + 𝜀,     (2.8) 

and a popular parameterization of the cosine model is:  

𝑦 = 𝑎 ∗ cos (
2𝜋

𝑏
(𝑥 − 𝑐)) + 𝜀.    (2.9) 

In Eqs. 2.8 and 2.9, 2a is the amplitude of the curve, which is the distance between its minimum 

(troughs) and maximum (peaks), b is the wavelength of the curve, and c shifts the curve left and 

right.  
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Figure 2.4. Examples of the Cosine Curve. 

 

  

Trigonometric models have been utilized in social science applications where cyclical 

patterns were expected. For example, Hipp et al. (2004) used a cosine model to approximate 

crime rates over time among residential communities. Crime rates were the highest during the 

summer months and lowest during the winter months, which was well-characterized by the 

cyclical nature of the cosine model. Additionally, community-level moderators were 

incorporated to predict the amplitude of the curve (i.e., variability of crime rates throughout the 

year); greater temperature variability in the community, as well as a greater number of social 

establishments in the community, were predictive of greater amplitude. Similarly, Kelley et al. 

(2007) used a NLME cosine model to approximate blood pressure and heart rate changes during 

the multi-day period between dialysis sessions. Here, more medication was predictive of a lower 

wave amplitude, i.e., less heartrate variability over the course of the observation period. The 

authors concluded that individuals who took more medication exhibited a “blunted” wave. 

Interestingly, both applications incorporated a linear term into the model to account for overall 
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growth/decline over the course of the study period, in addition to the “periodicity” that was 

approximated by the cosine portion of the model, highlighting the flexibility of the nonlinear 

modeling framework. 

In summary, trigonometric models are ideal for approximating cyclical relationships, 

which are often hypothesized in psychology and social science research. The use of 

trigonometric models remains rare in social science; however, there are a variety of areas in 

which trigonometric models are likely to be especially useful and informative. Namely, in 

ecological momentary assessment (EMA) studies, emotions, symptoms, and behaviors are often 

expected to fluctuate on a daily, weekly, and/or monthly basis (e.g., Beddig et al., 2020; 

Kuhlmann et al., 2023; Probst et al., 2017; Wilson et al., 2017).  

 

Peaked Models 

While trigonometric models are ideal for approximating cyclical relations, there may be 

applications in which the expected trend is non-monotonic, but not cyclical. Peaked models, such 

as the inverse quadratic and Bragg models, are well suited for such applications.  

The classic parameterization of the inverse quadratic model (e.g., Sit & Poulin-Costello, 

1994) contains parameters that are not easily interpretable; therefore, Preacher and Hancock 

(2015) partially reparameterized the model to contain one interpretable parameter. Building upon 

their presentation, an even more interpretable parameterization of the inverse quadratic model is:  

𝑦 =  
𝑥

(𝑎−1−2𝑏𝑐)𝑥+𝑐(𝑏2+ 𝑥2)
+ 𝜀,     (2.10) 

where a is the maximum y-value, b is the location along the x-axis where a occurs, and c governs 

the rate of increase and decrease around the peak.  
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The Bragg model resembles the equation for a normal distribution (Ratkowsky, 1990) 

and has been presented as:  

𝑦 = 𝑎 + 𝑏 ∗ exp(−𝑐(𝑥 − 𝑑)2) + 𝜀,    (2.11) 

where a governs the starting and ending y-value (in the inverse quadratic function, this is 

constrained to zero), b is the vertical distance between a and the maximum y-value, c governs the 

rate of increase/decrease around the peak, and d governs the location along the x-axis where the 

peak occurs.  

 Like the model families discussed previously, there are a variety of other peaked models 

that are used in other fields but have yet to be applied to social science research. These models 

are sometimes referred to as bell-shaped curves. Some examples include the equations for Beta 

distribution and the Normal distribution (see Archontoulis & Miguez, 2015), the flat parabola 

(see Ratkowsky, 1990), and the inverse cubic function (see Sit & Poulin-Costello, 1994). 

 

Figure 2.5. Examples of Peaked Curves. 
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 Piecewise linear models or nonparametric models are typically used in applications 

where a peaked nonlinear model was well matched to the trend under study. In these 

applications, the observed trend was non-monotonic, and characterized by an increase toward a 

peak followed by a decrease toward an asymptote. For example, Schlotz et al. (2022) used a 

latent basis model to characterize cortisol trajectories before, during, and after a stressful task; 

cortisol levels began at baseline, increased during the task, reached a peak, then gradually 

decreased back to baseline. Devonshire et al. (2023) used a piecewise linear model to 

approximate interparental conflict during and after an intervention; here, conflict briefly 

increased during Phase 1 of the intervention, then decreased throughout Phase 2, and leveled off 

toward an asymptote following the conclusion of the intervention. Finally, Walters et al. (2022) 

used a quadratic model to characterize trajectories of alcohol misuse during and after a 

smartphone intervention; drinking behaviors initially increased before significantly decreasing 

throughout the latter half of the study period.  

In summary, peaked nonlinear models have yet to gain popularity within social science 

research; however, the functional forms that they yield are ideal for applications in which the 

expected trend is non-monotonic but not cyclical. Peaked models may be particularly useful for 

characterizing responses to stressful stimuli and behavioral interventions.  

 

Section Summary 

 The goal of this section was to provide an in-depth review of nonlinear models and their 

advantages for social science research. First, I reviewed the key benefits of nonlinear models that 

have been outlined by methodologists. Second, I described common nonlinear model families, 

their hallmark characteristics, and how those characteristics map onto trajectories and patterns 
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that are common to social science. Finally, these points were illuminated via a variety of 

empirical examples. Although this section focused on the sigmoidal, exponential, trigonometric, 

and peaked families, it is important to note that there are many more nonlinear models with great 

potential for psychology and social science. In future applications, scientists need not restrict 

their focus to models reviewed here.  

 

Alternatives to Nonlinear Models 

 In addition to reviewing the utility of nonlinear models for social science, it is also useful 

to review the drawbacks of linear models – and other alternative methods that are often used – 

when curvilinear patterns are hypothesized or observed. In each of the following sections, 

common alternative methods (including polynomial models, latent basis models, piecewise linear 

models, and variable transformations) will be introduced, and their drawbacks compared to 

nonlinear models will be reviewed. Additionally, I will review empirical examples wherein the 

alternative method was used in place of a nonlinear model. In these examples, the conclusions 

that were drawn will be contrasted with the potential insights that could have been gained 

through use of a nonlinear model, highlighting the limitations of each alternative method. This 

chapter is not the result of an exhaustive or systematic review of the applied literature, but rather, 

focuses on selected empirical examples from diverse research areas.  

 

Polynomial Models 

Polynomial models, including the quadratic and cubic models, are pervasive in social 

science research. When curvilinear patterns are observed or expected, the polynomial model is 

the most common method for characterizing these patterns (Cudeck & Harring, 2010; 
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McCormick, 2023; Simonsohn, 2018). Because polynomial models are linear in their parameters, 

their use was originally motivated by the relative computational ease with which they could be 

fit, as opposed to the challenges that often arose with nonlinear models (Blozis & Cudeck, 1999; 

McNeish et al., 2023). However, this obstacle is much less salient given present-day computing 

power, and many methodologists now argue that the common use of polynomial models as 

“catch-all” tests for curvilinearity is problematic (e.g., Choi et al., 2009; Grimm et al., 2011). 

The disadvantages of relying on polynomial models have largely been argued in the context of 

longitudinal research, and are reviewed next.   

Limitations 

First, polynomial functions are not monotonic, and therefore imply that the growth 

trajectory will at some point reverse direction and approach positive/negative infinity at both 

extremes. This feature yields major incongruence between theoretically-expected and model-

implied trajectories (Cudeck & Harring, 2007, 2010; Grimm & Ram, 2009). For example, 

academic skills are not expected to increase, reach a maximum, and later decrease across 

childhood; rather, it is known that growth decelerates and eventually stops when an upper 

asymptote is reached. Similarly, following treatment, psychopathology symptoms are not 

expected to decrease, reach a minimum, and then increase back to positive infinity. Additionally, 

because polynomial models force a directional change where not realistic, the location of the 

inflection point(s) tends to be highly influenced by observations at the tails of the x-range (Fjell 

et al., 2010; McCormick et al., 2023). 

Second, given the fundamental incongruence between trajectories implied by polynomial 

models and expected trajectories, it follows that polynomial models can approximate only a 

small portion of the entire hypothesized trajectory (Blozis, 2004; Choi et al., 2009; McCormick 
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et al., 2023; McNeish et al., 2023; Pinheiro & Bates, 2000). See Figures 2.1 and 2.2 for a review 

of this limitation. The polynomial model acts as a descriptor of growth patterns within the 

observed range of the data, but precludes inferences or generalizations beyond this range.  

Third, the classic parameterizations of polynomial models suffer from poor parameter 

interpretability. As noted in Chapter 1, mappings between the parameters and key characteristics 

of the curve are often unclear. As a result, the substantive conclusions that can be drawn from 

polynomial models are typically limited, and moderation of polynomial terms is difficult to 

interpret (Cudeck & Harring, 2010; Grimm et al., 2011; McCormick, 2023; McNeish et al., 

2023). Later examples will further demonstrate this drawback.  

Fourth, polynomial models inherently impose specific theoretical assumptions that often 

go unacknowledged. For example, Ram and Grimm (2007) explain that the quadratic model 

imposes strict assumptions regarding how change occurs: at each successive measurement 

occasion, change occurs by (1) a fixed amount – the linear term – and (2) another amount that 

changes from occasion to occasion in a predetermined fashion, but without a clear definition or 

interpretation – the quadratic term. Individuals may differ only in terms of these aspects of 

change; any other interindividual differences are treated as error by the model. These inherent 

assumptions are exceedingly difficult to justify or connect to a psychological theory. 

Finally, polynomial models are susceptible to false positive results when the true data-

generating pattern is asymptotic. In a simulation study by Simonsohn (2018), quadratic models 

were fit to data exhibiting the following trends: (1) an initial strong positive slope followed by a 

plateau, consistent with functions from the exponential family, and (2) a logistic function. For 

each of these trends, the quadratic model yielded exceedingly high false-positive rates that often 

reached 100%. It was therefore concluded that the quadratic model is especially prone to false 
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positive results when the true function flattens out or exhibits asymptotic behavior. While the 

quadratic model is highly likely to fit better than the linear model in these scenarios, it is not an 

accurate characterization of the data-generating process.  

Longitudinal Examples  

The drawbacks of polynomial models are easy to observe in a variety of longitudinal 

examples from diverse literatures, including education, psychopathology, substance use, and 

cognitive science. First, consider a study by Lee (2010), who modeled reading and math 

achievement from 4th to 12th grade using quadratic growth mixture models. In this study, a key 

hypothesis was that eighth grade was a “major turning point in the growth trajectory.” Therefore, 

the analytic approach was to center time (the predictor) at eighth grade, so that the linear 

parameter corresponded with instantaneous rate of change at eighth grade. The major drawback 

of this approach is that it assumes, rather than tests, that eighth grade is indeed a turning point in 

the growth trajectory. In contrast, many sigmoidal models contain parameters for (1) the location 

of the inflection point and (2) instantaneous rate of change at the inflection point. These models 

would allow us to directly estimate whether there is indeed a turning point in the growth 

trajectory at eighth grade, and if so, the growth rate during eighth grade. In this example, a 

nonlinear model would have enabled direct testing of key study hypotheses, whereas the 

quadratic model did not. 

In other examples, we can observe that the nonsensical trajectories implied by 

polynomial models typically do not align with the expectations, interpretations, or substantive 

conclusions of the researchers. In longitudinal psychopathology research, study goals often 

involve characterizing the trajectory of psychopathology symptoms over a key developmental 

timespan, identifying moderators of the shape and timing of that trajectory (e.g., LoParo et al., 
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2024; Morgan et al., 2022; Romano et al., 2022), or tracking symptom trajectories following an 

intervention (e.g., Kang et al., 2022; Walters et al., 2022). A commonly observed pattern is for 

symptoms to decrease rapidly at first and eventually level off, resulting in a curvilinear 

trajectory. However, in all the examples referenced here, analyses were limited to quadratic 

models, and trajectories’ substantive interpretations were not supported by the model. For 

example, in their study of psychotic symptoms, Morgan et al. (2022) identified a latent class 

wherein symptoms decreased rapidly then plateaued. This class was interpreted as the 

“remitting” class. Importantly, the quadratic model does not imply that the trajectory will level 

off (i.e., remain stable at a lower asymptote), and therefore is not consistent with the “remitting” 

label. Rather, the quadratic model forces a directional change, implying that the trajectory will 

decrease, reach a minimum, then increase back to positive infinity in a symmetric manner. The 

quadratic model characterizes only a portion of the assumed pattern, resulting in unsubstantiated 

conclusions regarding the entire course of the trajectory. A nonlinear model allowing for 

asymptotic behavior would have much better supported the interpretation of this trajectory. 

These examples also highlight that – due to limited interpretability of their parameters – 

polynomial models severely limit the level of detail that can be obtained through parameter 

estimates. Comparing linear and quadratic/cubic models essentially tests whether the trajectory is 

linear or curvilinear, and any further conclusions are largely descriptive and subjective (e.g., they 

arise from visual inspection of model-implied trajectories). Contrast this to nonlinear models, 

which afford more quantifiable information about the trajectory (McNeish et al., 2023). For 

example, in Morgan et al.’s (2022) “remitting class,” a nonlinear model would enable us to 

estimate key quantities such as the age at which the lower asymptote of psychotic symptoms is 

typically reached, the age at which decreases in psychotic symptoms tend to begin, the age at 
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which this decrease the most rapid, and/or any other specific aspects of the trajectory that are 

substantively useful. Much more detailed quantitative information about these trajectories could 

be obtained via the parameter estimates of nonlinear models. 

Cross-Sectional Examples 

These same drawbacks apply to cross-sectional research. When curvilinear relations are 

hypothesized or observed, the most common approach is to fit a quadratic model. However, due 

to the strict assumptions about the shape of curvilinearity that are imposed by the quadratic 

model, there are many examples of clear mismatches between quadratic model-implied patterns 

and the curvilinear patterns that are theorized. Therefore, reliance on the quadratic model tends 

to result in an inability to test key study hypotheses.  

For example, Cazzell et al. (2022) explored the relation between the quality of 

interpersonal exchanges and marital satisfaction among couples. They found the quadratic term 

to be significant, seemingly confirming their hypothesis of “plateauing associations” between 

exchange quality and relationship satisfaction. Akin to longitudinal applications, the quadratic 

model was able to approximate a portion of the expected pattern, but generalizations regarding 

the entire shape of the relation (i.e., that the effect of interpersonal exchange quality continuously 

diminishes as exchange quality increases) were unsubstantiated by the quadratic model. A 

nonlinear model allowing for asymptotic behavior would align much better with the researchers’ 

expectations, and empirical evidence in favor of such a model would offer much stronger 

evidence in favor of the plateauing associations hypothesis.  

Ren et al. (2022) faced a similar problem in their study of social interaction frequency 

and wellbeing. At the highest frequencies, their goal was to assess whether the positive effects of 

social interaction would be reduced (an asymptotic trend) or reversed (a trend characterized by 
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increase, plateau, and decrease). Their statistical approach was to fit a piecewise linear model (to 

approximate the asymptotic trend) and quadratic model (to approximate the reversed-direction 

trend). Problematically, the symmetric parabola enforced by the quadratic model did not match 

well to the reversed-direction trend, which was theorized to be asymmetric and contain a plateau. 

The authors acknowledged this limitation, noting: “this approach assumes a quadratic 

relationship that forces the parabola to bend at a single turning point and be symmetric around 

said point. This assumption prevents us from evaluating the two competing hypotheses regarding 

the shape of the curve.” In this example, a polynomial model could not achieve a match between 

model-implied and theoretically-expected patterns. By confining themselves to linear models, the 

authors were unable to directly test their hypotheses and their contribution to theory was limited 

in kind.  

Moderation 

When polynomial models are used to characterize curvilinear relationships, moderators 

of the quadratic or cubic term are often found to be significant. By incorporating moderators of 

these terms, authors can merely assess whether the overall shape or curvature of the trend differs 

according to the moderator. Therefore, most conclusions are largely subjective, as they arise 

from visually inspecting model-implied relations for different values of the moderator. This 

analytic approach precludes researchers from drawing more precise conclusions about 

moderation, thereby inhibiting their ability to test hypotheses and inform theory. Indeed, many 

methodologists have argued that when curvilinear relations are present and moderation is of key 

substantive interest, the greatest advantage of the nonlinear model is its clear-cut and 

interpretable parameters (Burke et al., 2007; Choi et al., 2009; Harring & Blozis, 2014; Preacher 

& Hancock, 2012, 2015; Ram & Grimm 2007). 
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Due to the pervasiveness of polynomial models in social science research, examples of 

moderated quadratic or cubic terms are common and span diverse areas of study (e.g., cortisol 

trajectories, Zhan et al., 2023; posttraumatic stress trajectories, Dar & Iqbal, 2020). As a running 

example, we will consider a study by Kim et al. (2023). Here, the quadratic model was used to 

characterize trajectories of happiness across the lifespan, which followed an inverted U-shape. 

Agreeableness and neuroticism moderated the quadratic term. To probe this result, the authors 

used post-hoc analyses including the pick-a-point approach (to visualize the parabola at different 

levels of agreeableness) and the JN technique (to plot values of the quadratic term at different 

levels of agreeableness). Ultimately, the authors’ conclusions were limited to largely qualitative 

information about how agreeableness and neuroticism affected the overall curvature of the 

trajectory. A nonlinear model would have allowed for moderation of parameters that map more 

directly onto distinct attributes of the curve, such as maximum happiness levels, rate of change 

to/from the maximum throughout the lifespan, and starting/ending happiness levels.  

Relatedly, examining moderation of the quadratic term does not yield substantively 

useful model-implied values, because the value of the quadratic term carries little interpretability. 

In Kim et al. (2023), the JN plot showed that when agreeableness was at its mean, the quadratic 

term was equal to about 0.001, whereas when agreeableness was high, the quadratic term was 

equal to about 0.003. Substantively, these numbers mean little. Suppose the authors instead used 

a nonlinear model containing a parameter that governed, for example, the age at which maximum 

happiness was reached. Moderation of this term – and subsequent probing – could have yielded 

substantively useful quantitative results such as the age at which more vs. less agreeable people 

reach peak happiness. Such model-implied values are practically meaningful, and likely would 

have better informed theory and future studies.   
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U-Shaped Hypotheses 

In some contexts, there is theoretical reason to believe that the trajectory or relation under 

study is best characterized by a polynomial model. Such hypotheses have arisen with respect to 

the trajectory of episodic memory across the lifespan (e.g., Taconnat et al., 2023), relations 

between employee qualifications and employers’ motivating behaviors (e.g., Jiang et al., 2022), 

relations between conscientiousness and task performance (e.g., Harris-Watson et al., 2022), and 

relations between SES and depressive symptoms (e.g. Korous et al., 2023), each of which are 

theorized to follow an inverted U-shape. As a running demonstrative example, I will discuss an 

application from the industrial/organizational literature. Here, psychologists have theorized that 

workplace diversity exhibits a “too-much-of-a-good thing (TMGT)” effect, such that the relation 

between workplace diversity and workplace success/thriving will show an inverted U-shape 

(Pierce & Aguinis, 2013). When such hypotheses arise, the typical approach is to simply 

compare fits of the linear and quadratic models. Wu et al. (2023) implemented this approach as 

they explored relations between age diversity and team effectiveness. Seemingly “confirming” 

the TMGT effect, they compared the linear and quadratic models and found the quadratic term 

was statistically significant. 

 I argue that in the presence of U-shaped hypotheses, there are still advantages to 

considering nonlinear candidate models, and it is insufficient to only compare the quadratic 

model against the linear model. First, the linear model is likely akin to a “straw man hypothesis” 

that will almost certainly be rejected, such that this rejection does not provide strong evidence in 

favor of the U-shaped hypothesis. If the quadratic model fits better than the linear model, there 

may be a variety of data-generating relationships underlying this result. Recall that Simonsohn 

(2018) observed exceedingly high false-positive rates for the quadratic model when data 
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exhibited a sigmoidal or exponential relationship. This suggests that although the quadratic 

model fits better than linear, this does not necessarily confirm the presence of an inverted U-

shape in the data.  

Demonstrating the superiority of the quadratic model compared to other models 

characterized by curvilinearity, rather than the linear model alone, would provide much stronger 

support in favor of the hypothesized trajectory. For example, comparing the quadratic model 

against the 3PE or MM model allows the research to pinpoint whether – at high levels of 

diversity – team success decreases or simply levels off. Such a specific question cannot be 

answered by comparing the linear and quadratic models. Testing a variety of models against each 

other, each of which characterizes a feasible curvilinear relationship, would be much more 

informative for theory. For an example, see Figure 2.6. Even if a polynomial model is ultimately 

chosen as the best model, critically comparing that model against several nonlinear candidate 

models garners much greater support for the chosen model (Cudeck & Harring, 2007). 

 

Figure 2.6 Example of Testing a Feasible Alternative Hypothesis with a Nonlinear Model.  
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 In summary, when theory leads us to expect a U-shaped relation between key constructs, 

comparing the quadratic model to a linear model provides only weak support in favor of that 

theory. To more rigorously assess the presence – and nature – of a curvilinear relationship, 

implementing nonlinear models and comparing a diverse set of functional forms will provide 

stronger evidence in support of a given theory. 

 

Latent Basis Models 

Upon observing curvilinear growth patterns, many studies use latent basis models as a 

means of approximating those patterns. In latent basis models (a variant of latent growth curve 

models), some factor loadings are constrained and others are freely estimated (McArdle, 2009), 

which means that no specific shape is imposed on the model-implied trajectory. This approach 

offers greater flexibility than polynomial models in terms of the functional forms that can be 

approximated, but also possesses important drawbacks.  

First, latent basis models do not require the researcher to form a priori expectations about 

the shape of the trajectory; rather, the shape of the curve is fully informed by the data. This 

feature has been described as advantageous if the researcher has no prior expectations about the 

shape of the curve or is uninterested in testing for specific types of nonlinear growth trajectories 

(e.g., McNeish & Matta, 2018); however, other methodologists have criticized the latent basis 

model for being “atheoretical” (Grimm et al., 2011). I argue that the non-confirmatory nature of 

the latent basis model is, overall, a drawback. Latent basis models do not possess the primary 

advantage of the parametric nonlinear model, which is strong connection between model 

parameters and theory; therefore, latent basis models do not facilitate strong hypothesis- or 

theory-testing. Indeed, McCormick et al. (2023) argue, “the idea that these data-driven 
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approaches can replace more theoretically informed forms of trajectories is likely ill-conceived 

both practically and theoretically… They are most often not useful as explanatory models and 

instead are most useful as descriptive or purely predictive models” (p. 13). In other words, latent 

basis models limit the researcher to merely describing curvilinear patterns, rather than testing a 

priori hypotheses about curvilinear patterns. 

Second, latent basis models suffer from poor parameter interpretability (McCormick et 

al., 2023). Depending on how the model is specified, the estimated parameters that govern the 

shape of the trajectory may correspond with (1) the proportion of total change that has occurred 

at a given timepoint, or with (2) the amount of change that has occurred at a given time point, 

proportional to the change that occurred between the first two timepoints. These interpretations 

are often not substantively useful, and therefore, any moderation of these parameters is unlikely 

to be meaningful.  

Third, latent basis models do not permit generalizability outside of the observation 

period, as they provide only a descriptive picture of the observed data (Grimm et al., 2011). 

Fourth, latent basis models often require more estimated parameters than a nonlinear model that 

would approximate the data equally well (Grimm et al., 2011). Finally, latent basis models tend 

to overfit the local features of a data set (McCormick et al., 2023).  

These drawbacks are highlighted in the following examples from educational research. In 

both applications, key study hypotheses involved whether student-level variables moderated 

academic skill trajectories. Chen et al. (2014) used latent basis mixture models in their study of 

math and science achievement trajectories for children held back in first grade. Two latent 

classes were identified, and differences in their trajectories were probed visually; one class was 

descriptively termed the “low intercept, high growth” group, whereas the other was termed the 
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“high intercept, slow growth” group. To incorporate moderation, various student-level variables 

(e.g., learning skills, self-regulation, prosocial behavior) were added as predictors of class 

membership. Lesaux et al. (2007) took a similar approach to approximate reading skill 

trajectories for native and non-native English elementary students. Latent basis growth curve 

models were fit separately for each group (native vs. non-native English speakers), and to 

investigate group similarities and differences in the growth trajectory, increasingly strict 

invariance constraints were imposed. In both examples, model parameters did not directly 

correspond with specific attributes of the growth trajectory. Therefore, it was not possible to 

directly test for moderation by student-level variables. The use of moderated nonlinear models 

would have allowed these researchers to pinpoint whether specific characteristics of academic 

growth trajectories (e.g., overall improvement, time/age at which growth was fastest, overall rate 

of improvement over time) were moderated by the key student characteristics under study (e.g., 

learning skills, native English-speaking status). Though latent basis models may do better than 

polynomials in terms of characterizing curvilinear trajectories, they still preclude many 

inferences and direct tests of key hypotheses. 

 

Piecewise Models 

In the presence of a curvilinear pattern or a nonconstant strength of the relation between x 

and y, another common approach is to implement piecewise models. In most piecewise models, a 

different linear slope of x is estimated across different segments of x; however, other types of 

relations, such as quadratic or cubic, can also be incorporated into any segment (e.g., Feng et al., 

2019; Harring et al., 2021; McNeish et al., 2023). The values of x that demarcate the segments 

are referred to as knot points, and may be pre-specified by the researcher or freely estimated. 
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Piecewise models have been argued to be advantageous in some contexts, such as if the location 

of the knot point is theoretically important (Kohli & Harring, 2013). However, compared to 

parametric nonlinear models, piecewise models possess notable drawbacks.  

First, it is often not realistic to impose an instantaneous change in slope at each knot 

point. Cudeck and Harring (2010) note that often, “a more plausible assumption is that the 

transition between phases is gradual and smooth” (p. 303). The abrupt change in the relation 

between x and y is a strong assumption that is often not well-aligned with psychological theory 

(Ram & Grimm, 2007). To highlight this point, Briet et al. (2023) discuss an example from the 

intelligence literature. Here, it is hypothesized that the relation between intelligence and 

creativity weakens as intelligence levels increase; however, most theories do not posit a specific 

breakpoint at which the relation abruptly changes. Use of the piecewise linear model is not 

justified in the absence of such a theory.  

Second, because piecewise models are linear, they imply that the trajectory will 

increase/decrease toward infinity in either direction. This feature results in “increasingly 

questionable” accuracy toward the extremes of the observed data (Choi et al., 2009), as well as 

lack of generalizability beyond this observed range. Third, Burke et al. (2007) note that 

piecewise linear models require the researcher to make the “simplifying assumption” of local 

linearity throughout the change process, which may not be realistic. Fourth, as the following 

examples will demonstrate, piecewise linear models typically involve more estimated parameters 

than nonlinear models that would approximate the observed trajectory equally well (McNeish et 

al., 2023). Often, these parameters do not correspond with the most important attributes of the 

trajectory under study, precluding hypothesis tests and direct incorporation of moderators.  
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Finally, analytic approaches that empirically test for the presence of a knot point have 

been shown to yield exceedingly high false positive rates under many data conditions (Breit et 

al., 2023). Segmented regression analyses (SRA) are often used to either confirm or disconfirm 

whether a piecewise linear relation is present, and if so, where along the x-axis the knot point is 

located. In many areas of social science, SRA is used if it is suspected that the strength of the 

relation between x and y changes across different levels of x, but it is unknown whether the 

relation can be modeled with a piecewise linear model. In a simulation study, Briet et al. (2023) 

found that when the data generating relation was quadratic or exponential, a popular SRA 

method yielded false positive rates of 58 – 83%. In these conditions, SRA incorrectly indicated 

the presence of a knot point. As a result, these authors strongly recommended against empirically 

testing for piecewise linear relations, and instead suggested the use of nonlinear models.  

The drawbacks of piecewise models are demonstrable in a variety of empirical 

applications from diverse research areas and study designs. For example, in their study of 

reading score trajectories from kindergarten to 3rd grade, Aikens and Barbarin (2008) observed 

non-constant rates of change upon plotting their data. The growth rate was slow across the 

earliest timepoints, fastest throughout 1st grade, then slow again over the latest timepoints 

(indeed, consistent with the shape of a sigmoidal model). To accommodate the pattern, they used 

a piecewise linear model with three segments; the knot points were chosen by the researchers, 

such that the segments corresponded roughly to the three periods that appeared to display 

different growth rates. Of key substantive interest was whether student demographics, family 

characteristics, and neighborhood characteristics moderated initial reading levels and reading 

growth rates. These variables were incorporated as moderators of the intercept and slope 

segments, resulting in a very complex model with approximately 50 estimated parameters. 
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Indeed, these moderation tests could have been incorporated more directly through use of a 

nonlinear model, where initial reading levels, growth rates, and final reading levels can be 

estimated as model parameters. Interindividual differences in these important aspects of the 

reading trajectory could have been probed with far fewer parameters.  

In another example, Devonshire et al. (2023) tracked interparental conflict behavior 

during and after a family intervention, where they observed non-monotonic trajectories with 

varying rates of change. Conflict behaviors increased between pretest and posttest, decreased 

between the posttest and 12-month follow-up measurement occasions, and leveled off between 

the 12-month and 3-year measurement occasions (consistent with the shape provided by peaked 

nonlinear models). The authors fit a 3-segment piecewise linear model (though noted that the 

ideal location of the knot points was “not obvious”), then incorporated intervention condition as 

a moderator of the intercept and each of the three slopes. Specifically, this analytic method 

allowed the authors to assess whether the intervention moderated (1) initial levels of 

interparental conflict, (2) the rate at which conflict increased during the intervention, (3) the rate 

at which conflict decreased following the intervention, and (4) the rate at which conflict changed 

throughout the following three years. Through use of a peaked nonlinear model, the authors 

could have assessed moderation of more substantively useful aspects of the conflict trajectory, 

while implementing an equal or smaller number of tests. For example, consider the Bragg model 

given in Eq. 2.11, where in this example, the parameters would govern: (1) the starting and 

ending levels of interparental conflict, (2) the maximum level of conflict reached at the peak, (3) 

the rate of increase and decrease around that peak, and (4) the time at which the peak was 

reached. By testing for moderation of these parameters, the authors likely would have gained 

more useful insight into how their intervention affected interparental conflict. For example, were 
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maximum conflict levels lower or higher for parents in the intervention? Was that maximum 

level reached earlier or later? Perhaps most importantly, did parents in the intervention group 

display lower or higher asymptotic levels of conflict? These questions could not be directly 

answered via the piecewise linear model.  

 

Variable Transformations 

When curvilinear relationships are observed among variables in their original metric, 

some researchers rely on transformations to achieve linear relations. For example, in their study 

of reading and math trajectories, Shin et al. (2013) observed growth rates that decelerated over 

time. Therefore, they implemented a linear model where the log-transformation of time was the 

predictor. The authors argued that this approach yielded better interpretability than a quadratic 

model because only one model parameter (rather than two) governed the change rate. However, 

it was difficult to interpret growth in terms of meaningful units of time. Indeed, Cohen et al. 

(2003) note that transformations should yield “conceptually meaningful units,” and when 

transformations result in less interpretable parameter estimates, it may be unwise to implement 

them. This approach also suffers from the other identified drawbacks of linear models, such as 

nonsensical model-implied trajectories outside the study period.  

 

Summary 

 The goal of this chapter was to motivate the use of nonlinear models within social science 

by reviewing their many benefits in the presence of curvilinear relations. By exploring examples 

that successfully implemented nonlinear models, and contrasting these with examples that were 

restricted to alternative approaches, it is easy to see the advantages that nonlinear models 
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provide. Better congruence between model-implied and theoretically expected trends, more 

interpretable parameters, and more detailed insight into moderation are some of the primary 

benefits highlighted here. These benefits apply to longitudinal, cross-sectional, experimental, and 

observational research across diverse subjects of study within the social sciences.   
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CHAPTER III  

 

BARRIERS TO THE UPTAKE OF NONLINEAR MODELS IN SOCIAL SCIENCE 

 

Despite their many benefits, intrinsically nonlinear models are implemented far less 

frequently than linear models across the social sciences. There are many likely reasons for this 

disparity. For example, limitations in education and training are important to consider. Upon 

conducting an exhaustive review of psychology graduate programs, Aiken et al. (2008) 

concluded that comprehensive methodological training was not required and/or not offered in 

most programs. Similarly, Flake et al. (2020) note that most psychology graduate students do not 

receive formal methodological training beyond the first-year statistics sequence. It is reasonable 

to expect that these few required statistics courses remain restricted to linear models in terms of 

course material. This has likely resulted in a general lack of awareness of nonlinear models and 

their usefulness among psychological scientists. Indeed, Baldwin (2017) notes that without better 

statistical training, “researchers can get stuck in a rut of one or two methods and never… develop 

perspective that comes from using new and alternative methods” (p. 13). With little-to-no 

exposure to nonlinear modeling and its advantages, psychology researchers are likely to maintain 

the status quo of relying on linear approaches.   

Historically, researchers were largely restricted to the linear framework – even when 

curvilinear patterns were observed – due to limitations in computing power (Blozis & Cudeck, 

1999; McNeish et al., 2023). Indeed, linear models are computationally easier for software to fit 

than nonlinear models, which require iterative estimation (Ratkowsky, 1990). Even though 

present-day computing power largely mitigates this obstacle, linear models remain pervasive. 
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Overall, there is a general lack of precedent for applying nonlinear models to psychological 

research questions. Researchers therefore face challenges in mapping models onto theory, 

dealing with practical issues that often arise from iterative estimation, and carrying out the 

modeling process with software. In this chapter, these challenges are expanded upon in turn.  

 

Theoretical Challenges 

The first major challenges that social scientists face when implementing nonlinear 

models concern model-theory connections. First, the researcher is required to choose a nonlinear 

model from among the very large number that exist. This is a major departure from the linear 

modeling framework, where fewer models are possible. Indeed, some methodologists have noted 

that for social scientists, selecting a nonlinear model may be the most difficult step of the entire 

modeling process (e.g., Blozis & Harring, 2021; Cudeck & Harring, 2010). Cudeck and Harring 

(2007) regard this step as “the major scientific issue when using nonlinear models” (p. 625).  

Making the choice even more difficult, many resources on nonlinear modeling assume 

that the researcher will already know which function is most appropriate for their data. For 

example, Ritz and Streibig (2008) note: “it is implicitly assumed that the data analyst has some 

prior knowledge about which kind of function f should be used” (p. 2). Similarly, Motulsky and 

Christopolous (2004) state: “in many cases, picking a model will be easy, as you will likely be 

choosing a model that is conventionally used in your field” (p. 62). This assumption is often 

made because most nonlinear functions were derived with respect to a specific biological 

process. Textbook examples, therefore, tend to concern certain biological phenomena with a 

well-known accompanying nonlinear equation; for example, many kinetics processes are known 

to follow the Michaelis-Menten equation, and dose-response processes can typically be modeled 
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by a logistic function (Davidian & Giltinan, 1995; Motulsky & Christopolous, 2004; Ritz & 

Streibig, 2008). Similarly, the Preece-Baines and Jenss-Bayley equations were developed 

specifically to model humans’ physical growth over time (Grimm et al., 2011; Jenss & Bayley, 

1937; Preece & Baines, 1978), and the Gompertz curve was developed to model tumor growth 

(Laird, 1964). Unfortunately, most nonlinear functions were not developed with the intention of 

modeling change over time of a psychological construct, or relationships between multiple 

psychological constructs. Therefore, such obvious pairings between a given topic of study and a 

corresponding nonlinear model are typically not available. It is often less clear how 

psychologists should choose an appropriate nonlinear model.  

Social scientists also face the challenge of choosing a useful parameterization. Indeed, a 

primary benefit afforded by the nonlinear model is that its parameters are interpretable and can 

be connected in useful ways to the theory under study (Cudeck & Harring, 2010; Ram & Grimm, 

2007). However, to accomplish this connection, “active conceptualization” is required on the 

part of the researcher (Grimm et al., 2011) to pinpoint the precise attributes of the curve that are 

substantively important, and to ensure the model contains parameters that correspond with each 

of those attributes. This process of explicit model-theory mapping may feel foreign to 

researchers who are familiar only with linear models. Within the linear modeling framework, 

estimated attributes of the curve are largely restricted to baseline levels (intercepts), linear 

growth rates, and strengths of linear relationships. Therefore, these quantities typically must be 

the basis of key study hypotheses. In nonlinear models, an extremely diverse array of quantities 

can be represented by model parameters, which opens up the possibility of more nuanced and 

specific theories and hypotheses that can be tested via the model. Therefore, more critical 

thought is required from the researcher to make connections between parameters and theory.  
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These challenges are exacerbated when moderation is introduced. In nonlinear contexts it 

may be more difficult to map specific moderations onto theory (Cudeck & Harring, 2010). When 

past theories have largely been informed by linear-by-linear interactions, there is less basis to 

inform expectations of how specific parameters of a nonlinear model may be moderated. For 

example, though there is vast prior research concerning aptitude-by-treatment interactions, most 

of this research has involved linear models (Preacher & Sterba, 2019). Therefore, forming 

hypotheses about moderation of specific aspects of nonlinear learning processes may be difficult 

due to limited prior research.  

Finally, nonlinear models require the researcher to rely more on theory and expectation – 

and less on empirical evidence – when deciding which predictors, moderators, and covariates to 

include in the model. In the absence of theory to inform a priori expectations about the “best” 

model, within the linear modeling framework it is easy to explore which predictor(s) ought to be 

included in a model. Procedures such as forward, backward, and stepwise regression have been 

written about extensively and are readily available in major software packages, and therefore, are 

frequently used to empirically determine the optimal predictor set for a given outcome. Analogs 

of these procedures do not exist for nonlinear models (Ratkowsky, 1990). The expectation that 

the researcher will begin the modeling process with knowledge of not only the correct model, but 

also the optimal predictor(s) to include, is likely attributable to the original applications for 

which nonlinear models were developed. For example, in controlled experimental studies of 

plant growth, the choice of which predictor(s) to include is likely to be obvious. These choices 

are far less straightforward for psychologists considering competing theories, uncontrolled 

observational research designs, latent variables, myriad potential covariates, and less precedent 
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on which to base nonlinear analyses. Therefore, arriving at the “best” model specification may be 

a challenging process in nonlinear regression (Cudeck & Harring, 2010).  

 

Practical Challenges 

 Psychologists also face a greater variety of logistical challenges when fitting nonlinear 

models. First, convergence problems arise regularly, often due to misspecification. However, 

many aspects of misspecification may cause nonconvergence, and it is often difficult to identify 

the specific source of convergence problems. Choosing a functional form that does not 

approximate the observed data well, or including too few or too many random effects in a NLME 

model, is a common cause of nonconvergence (Pinheiro & Bates, 2000; Ratkowsky, 1990). 

Similarly, if the functional form of the model is too complex for the data, nonconvergence rates 

tend to be high (Savalei & Kolenikov, 2008; Wood, 2023). Nonconvergence is also more 

frequent when the model has a larger number of parameters to be estimated, and therefore 

becomes more likely as more terms (e.g., moderators) are introduced (Gallant, 1987; Sit & 

Poulin-Costello, 1994). Aside from misspecification, another cause of nonconvergence is an 

inadequate number of observations across all regions of the design space (Bates & Watts, 1988). 

Although sparse observations in certain regions of the data space can lead to questionable 

inferences and lack of generalizability in moderated linear models (Bodner, 2016), it typically 

will not preclude the estimation of parameters. Ultimately, if the model does not converge, then 

assessments of model fit, model selection, and model interpretation cannot be undertaken 

(Motulsky & Christopolous, 2004). Non-estimability is common to the nonlinear framework 

because all nonlinear models, whether they include random effects or not, rely on iterative 

estimation procedures (described in Appendix A).  
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Second, when implementing nonlinear models, it is important to supply start values for 

each parameter. The choice of start values is nontrivial, because if start values are too dissimilar 

to the best-fitting parameter values, convergence is less likely. Reasonable start values should 

yield a curve that corresponds to the observed data somewhat closely. To quickly generate 

adequate start values, the researcher would need to possess in-depth knowledge of how each 

parameter changes the appearance of the nonlinear curve; for example, in the logistic model, 

what does the curve look like when the parameter governing rate of approach is equal to 0.5 

versus 1? Psychology researchers typically do not possess this knowledge a priori. In such 

situations, it is recommended that the researcher plot the function, with various values chosen for 

each parameter, to gain an understanding of how the parameters govern the curve and therefore 

arrive at reasonable start values that match the observed data (Bates & Watts, 1988; Ratkowsky, 

1990); however, this process is likely to be arduous and time-consuming for the typical 

researcher using extant software. Selecting good start values becomes even more important as 

models become more complex (Burke et al., 2007), so this step is salient when moderators are 

involved. Although the implications of start values have never been discussed with respect to 

moderated nonlinear models specifically, it is likely especially important – and difficult – to 

choose good start values for these models due to their increased complexity. 

A third challenge that becomes salient in nonlinear regression is that certain parameters 

may need to be constrained to a constant (i.e., not estimated) in order to achieve convergence. 

This is more true as the number of estimated parameters increases, and is therefore likely to 

become relevant in moderated nonlinear models. In moderated linear models, although such 

constraints may be applicable, there is no consequence if the researcher does not incorporate 

them into the model.  
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Similarly, when working with NLME models, the researcher must decide whether each 

parameter should be treated as random or fixed. McCormick (2023) notes that for most nonlinear 

models, there is no clear hierarchy or ordering of parameters that may aid researchers as they 

decide what to treat as random vs. fixed. We can contrast this with linear models, where 

parameters often fall into an intuitive hierarchy. For example, consider a cubic polynomial model 

– where all parameters are specified as random – that does not converge. The typical first step is 

to specify the cubic term as fixed, and if the model still does not converge, to then specify the 

quadratic term as fixed, and so on. There is an intuitive “top down” approach that can be taken 

when searching for a linear mixed model that converges. When NLME models do not converge, 

the process by which to constrain parameters becomes less clear.  

In summary, nonlinear models are estimated through iterative procedures, which means 

that they commonly fail to converge. Convergence problems arise more frequently as models 

possess more parameters, and therefore, moderated models may face these problems frequently. 

Such practical challenges almost never arise for linear models, and therefore, they serve as 

further barriers to the uptake of nonlinear regression models in psychology.   

 

Software Challenges 

 In addition to the theoretical and practical challenges that psychology researchers face 

when choosing and fitting a nonlinear model, there are also new obstacles presented when 

carrying out this process with software. Regardless of the software being used, platforms for 

nonlinear modeling are different and more complex than those used for linear modeling; the 

researcher must become familiar with new functions, formulas, and procedures. These 

procedures are often notably more complicated than those available for linear models, as 
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nonlinear models are not offered as standard options in many major software packages. Indeed, 

McCormick (2023) notes that due to the complicated nature of current software utilities for 

nonlinear modeling, nonlinear models remain largely restricted to advanced methodological 

applications. 

 The first roadblock encountered by researchers using R, SAS, or SPSS is that the 

nonlinear model formula must be manually entered. Depending on the model, this step alone 

may be arduous and become error prone as the model increases in complexity. A simple example 

is the two-parameter power model, with no moderation: y = a*(x*exp(b)). In contrast, 

suppose the researcher wishes to implement a four-parameter logistic model with each parameter 

moderated. The corresponding formula could be: 

y = (a0 + a1*z) + (b0 + b1*z) / (1 + exp(-(c0 + c1*z)*(x – (d0 + d1*z)))). 

For the typical social scientist, manually coding the model formula quickly becomes difficult. If 

the researcher is fitting a NLME model, then specification of fixed and random effects 

introduces further complexities in the required code (Pinheiro et al., 2023).  

 Additionally, if and when convergence failures occur, it is up to the researcher to 

manually address this problem. The most commonly recommended strategies include choosing a 

nonlinear model with a less complex functional form or fewer parameters, entering different start 

values, centering and/or scaling variables, reparameterizing the model, adjusting the convergence 

criterion, and/or increasing the maximum number of iterations that the estimation algorithm will 

attempt before it stops (Bates & Watts, 1988; Gallant, 1987; Motulsky & Christopoulos, 2004; 

Preacher & Hancock, 2015; Ratkowsky, 1990; Wood, 2023). For NLME models, further 

strategies include changing the number of random effects in the model, rescaling the predictors 

to have more similar ranges, reparameterizing the random effects covariance matrix via a 

Cholesky composition, or the more advanced option of decomposing the random effects 
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covariance matrix via factor analysis (Bates et al., 2014; Cheng et al., 2010; Hedeker & Gibbons, 

1996; Kohli et al., 2019; McNeish et al., 2020; McNeish & Bauer, 2022). In the most dire of 

circumstances, some methodologists have even recommended using a “brute force” approach of 

searching over a grid of all possible combinations of parameter estimates (Archontoulis & 

Miguez, 2015). Some of these strategies are available in popular software packages such as SAS 

and R. However, many R functions designed to carry out these strategies are not geared toward 

social scientists, and instead, are couched within packages written for biologists or agricultural 

researchers. This may result in increased difficulty for psychology researchers to carry out these 

procedures when convergence fails.  

When model parameters are hypothesized to be moderated, the limitations of current 

software become even more apparent. At present, there is no unified resource, function, package, 

or tool that enables researchers to easily incorporate moderation into their nonlinear model 

specification, or to subsequently plot and probe moderation of nonlinear model parameters. It 

would be up to the researcher to write code to do this from scratch. This significantly hinders 

researchers’ ability to understand the nature of moderation in nonlinear regression models, and is 

likely a primary reason why moderation is not explored more frequently in such models.  

Extant R packages for plotting and probing moderation cannot accommodate nonlinear 

models. Functions that were developed specifically for probing interactions, such as those in the 

interactions (Long, 2019) and reghelper (Hughes & Beiner, 2023) packages, accept a model 

object that has already been created. However, the model objects that are supported by these 

functions are those that are linear in the parameters, such as lm, glm, aov, lme, and merMod 

objects. When nonlinear models are fit in R, different kinds of model objects are created, which 

cannot be inputted into extant utilities for plotting and probing. Additionally, extant software 
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options for fitting nonlinear models are accompanied by few or no plotting capabilities. Although 

SAS procedures like NLIN and NLMIXED enable the incorporation of moderated parameters, 

there are no straightforward options for plotting or probing the output of such an analysis. The 

same is true for nls objects (nonlinear regression models, created in base R) and nlme objects 

(NLME models, created with the nlme package; Pinheiro et al., 2023) in R. In summary, popular 

software packages do not offer straightforward functionality for plotting, probing, and/or 

visualizing the results of a moderated nonlinear model. It would be up to the researcher to 

manually create code from scratch to carry out the desired computations and plots.  

There is a clear need for unified software utilities that easily allow for plotting and 

probing of moderation within nonlinear models. At minimum, there ought to be simple ways to 

plot the curve linking x to y across different values of the moderator (i.e., the pick-a-point plot), 

whether that moderator is categorical or continuous. At best, the JN technique would be 

incorporated into plotting functionality, but extensions of the JN technique to nonlinear models 

currently do not exist.  

Beyond plotting capabilities, a maximally useful piece of software could go further to 

unify the entire process of fitting, testing, evaluating, and plotting/probing a moderated nonlinear 

model. Prototypes of such tools exist for linear regression. For example, McCabe et al. (2018) 

developed a Shiny interface called interActive which provides a code-free environment for the 

researcher to carry out each step of the modeling process. Steps for data upload, specifying and 

testing the significance of two-way interactions, adding covariates, and plotting and probing are 

all available. However, these utilities only accommodate intrinsically linear models.  
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Summary 

 Researchers in psychology and other social sciences face a variety of barriers that make 

the implementation of nonlinear models challenging. First, it is difficult for social scientists to 

choose a nonlinear model with strong theoretical motivation, often due to a lack of precedent 

and/or models that were developed with respect to a biological process. For similar reasons, it 

can also be challenging to parameterize the chosen model such that each parameter corresponds 

with a substantively important attribute of the curve. Second, researchers face new logistical 

challenges that follow from iterative estimation methods, including choosing good start values, 

constraining parameters when appropriate, and implementing strategies to overcome 

nonconvergence. Third, researchers must contend with scattered and incomplete software 

utilities for fitting nonlinear models and including moderated parameters. 

 The subsequent chapters of this dissertation aim to equip readers with knowledge and 

tools to overcome many of the largest barriers identified here. Chapters 4 and 5 address 

theoretical challenges, whereas Chapter 6 addresses software-based challenges.  



 

71 

 

CHAPTER IV 

 

SELECTING, PARAMETERIZING, AND SPECIFYING MODERATED NONLINEAR 

MODELS 

 

 In Chapter 3, I reviewed the most salient conceptual challenges that arise when social 

scientists seek to implement nonlinear models. The purpose of this chapter is to summarize 

methodological recommendations, as well as provide new guidelines, to supply researchers with 

resources for overcoming these challenges. The primary steps discussed here are selecting a 

nonlinear model, choosing a useful parameterization, conceptualizing moderation and 

incorporating it into the nonlinear model specification, and adding covariates.  

 

Choosing a Nonlinear Model 

 Methodologists have noted that choosing a nonlinear model may be the most important, 

yet most daunting, stage of the nonlinear modeling process (Blozis & Harring, 2021; Choi et al., 

2009). For reasons noted in Chapter 3, social scientists face exacerbated challenges at this stage 

because most nonlinear functions were derived with respect to a specific biological phenomenon. 

The purpose of this section is to provide a review of the options for social scientists at this stage 

of the modeling process. Here, I synthesize potential approaches to model selection that have 

been suggested by social science methodologists, collect prototypical examples of each approach 

to provide a basis from which to draw for future analyses, and propose guidelines for thinking 

about this decision.  

 I begin by reviewing general considerations for choosing a nonlinear model. First, it is 

important to acknowledge that in social science applications, there is almost never an objectively 
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“correct” choice. Often, the best we can do is find a model that is better than others in some way 

(Cudeck & Harring, 2010; Myung & Pitt, 1998; Wood et al., 2015). There are likely to be 

multiple nonlinear models that fit the data similarly well, making the best choice unclear. Indeed, 

Cudeck and Harring (2010) note that in the same situation and with the same data set, different 

researchers would likely end up with different nonlinear models. Therefore, rather than focusing 

on choosing the “correct” model, it is more feasible to simply focus on transparency about how 

the model was chosen. An emphasis on transparency is not uncommon in statistics; in data 

analysis situations where subjective decisions are required, such as choosing priors in Bayesian 

estimation, methodologists frequently advocate for detailed explanation of how those decisions 

are made (Flake et al., 2020). Indeed, this theme carries over to nonlinear modeling (Cudeck & 

Harring, 2010).  

 Second, Cudeck and Harring (2007, 2010) present three general criteria with which to 

evaluate nonlinear models in social science applications – fit, appropriateness, and 

interpretability – which are helpful to keep in mind while thinking through model choice. 

Regarding fit, the chosen model should follow the data reasonably closely. Fit may be evaluated 

by plotting the fitted curve over a scatterplot of the observed data, and/or assessing fit statistics 

and empirical indicators of model-data fit. Regarding appropriateness, the chosen model should 

make sense conceptually and correspond with expected patterns in the data, given the scientific 

context of the study. For example, if prior research or theory leads the researcher to believe that 

the observed pattern will level off or plateau, then the chosen model should include an 

asymptote. This criterion can be evaluated only by substantive expertise, and is inherently 

subjective, again pointing to the idea that different researchers will have different opinions about 

an ideal model. Finally, for interpretability, the parameters of the chosen model should have 
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clear meaning and correspond with the aspects of the curve that are most important for the given 

application. Parameter interpretability is a key advantage of nonlinear models, so this criterion is 

sometimes argued to be the most important (Grimm et al., 2011; Preacher & Hancock, 2015).   

While keeping these general criteria in mind, there are many potential approaches to 

choosing a nonlinear model and their corresponding rationales differ greatly. Next, I will outline 

three potential approaches that have been proposed and implemented in social science contexts, 

which vary in the degree to which they rely on theory vs. observed data. Examples will be 

provided for each approach, and their benefits and drawbacks will be discussed. 

 

Theory-Driven Approach 

 The ideal approach for selecting a nonlinear model is to make the choice based on 

substantive expertise and expectations about how to best inform, update, or test theory. The 

theory-driven approach is largely confirmatory; the researcher begins the statistical analysis 

process by enumerating a priori expectations and hypotheses to be tested. The purpose of the 

statistical model is to provide evidence for or against these a priori hypotheses, and results must 

then be reconciled with existing theory (Meehl, 1978). Therefore, this approach places strong 

emphasis on model-theory connections, and relying on substantive expertise – rather than the 

observed data – to make decisions about the model. 

Psychological theories are often expressed verbally and are imprecise. Translating a 

vague verbal theory into a formal theory, which can be represented by a mathematical model, 

forces the researcher to be precise about the patterns and structures that they expect to observe. 

Formation of specific, formal theories (i.e., mapping theories to mathematical models) facilitates 

replicability (Chen et al., 2024; Haslbeck et al., 2022). Additionally, formal theories are specific 
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enough to be falsifiable, which is paramount for determining whether the theory falls short of 

explaining psychological phenomena (Haslbeck et al., 2022; Meehl, 1978, 1986). 

Therefore, strong theoretical justification for the chosen model is likely to result in a 

scientifically valid, practical, and substantively meaningful model (Archontoulis & Miguez, 

2015; Cudeck & Harring, 2007; Grimm et al., 2011; Motulsky & Christopoulos, 2004; Ram & 

Grimm, 2007). Indeed, MacCallum (2003) notes that because all models are wrong, “At best, 

they can provide an approximation of the real world that has some substantive meaning and 

some utility” (p. 114-115). Whether the chosen model provides substantive meaning and utility 

is largely informed by the expertise of the researcher, and corresponds closely with the 

appropriateness and interpretability criteria. For appropriateness, Ram and Grimm (2007, p. 

304) note that “models should be selected so that they match with one’s beliefs (i.e., theory) 

about how change is structured,” and for interpretability, the function's parameters should yield 

meaningful, useful, and interesting substantive information (Cudeck & Harring, 2007). 

Prioritizing these criteria enables the researcher to ensure that the model is a direct and specific 

reflection of the theory being tested. There are many social science contexts in which it is 

possible to choose a nonlinear model on fully theoretical grounds.  

First, the researcher may be approximating relations between variables for which the 

model was originally intended. Functions are typically derived such that their parameters yield 

substantively useful information about the intended process, so this scenario is likely to yield a 

model that affords meaningful scientific conclusions. For example, the Jenss-Bayley function 

(Jenss & Bayley, 1937) was derived specifically to model human growth over the first six years 

of life. Preacher and Hancock (2012) used this model to investigate whether breastfeeding over 

the life span was associated with growth deficits at various timepoints throughout childhood. 
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Similarly, the Preece-Baines function (Preece & Baines, 1978) was created to model growth in 

human height over the course of childhood, puberty, and adulthood. Grimm et al. (2011) noted 

that this function has useful parameters that map onto developmental theory, and therefore, used 

a Preece-Baines model to test for relationships between growth patterns and pubertal timing. In 

summary, there are some social science applications in which a nonlinear model can be used for 

its original purpose, especially if the application involves physical growth or change. If feasible, 

this approach yields strong model-theory connections.  

Second, there may be a psychological theory that suggests a specific nonlinear model is 

the most appropriate for a given study. One example (see Chapter 2) is the subjective value 

theory proposed by Rigoli and Martinelli (2021). These authors posited that relations between 

actual and subjective value should be characterized with the logistic model (i.e., articulated a 

formal theory), provided rationale for this argument, and detailed how between-person 

variability in each parameter of the logistic model would map onto theory. Ideally, future studies 

will test this model empirically, and citing this foundation as rationale for the logistic model will 

result in a theoretically well-supported analysis. Indeed, in their discussion of growth curve 

models, Ram and Grimm (2007) note the need for “precise articulation of the types of changes 

we expect” (p. 304); when that articulation is provided, the nonlinear model that best maps onto 

our expectations often becomes clear. Ideally, emergence of such formal theories will facilitate 

greater use of theoretically motivated nonlinear models. Theories that cite a specific nonlinear 

model are currently rare in social science, but if they exist, provide ideal justification for 

choosing a nonlinear model in empirical work.  

Third, past findings and theory may not explicitly point to a specific model, but may 

enable the researcher to infer that a model is best suited for their application. For example, in 
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their study of adjustment following the loss of a spouse, Burke et al. (2007) cited past work that 

suggests “adjustment should happen more rapidly at first, when the individual is furthest from 

equilibrium, and should slow over time as the individual nears his or her equilibrium level of 

adjustment” (p. 406). Given this expected pattern, the authors chose a decreasing exponential 

model. Although theory did not explicitly connect the adjustment process to the exponential 

model, the researchers inferred that this model was a good match to theoretically expected 

patterns. Additionally, the chosen model contained parameters that were substantively useful. 

Taken together, this approach resulted in a chosen nonlinear model with strong scientific 

justification. It is possible that a different nonlinear model would have fit the data equally well or 

slightly better. However, the chosen model corresponded well with theoretical expectation 

(acceptability) and contained meaningful parameters (interpretability); because these key criteria 

were met, it was not necessary to compare multiple models.    

 Fourth, there may be an accumulation of prior findings to establish a precedent for use of 

a given model. A large cache of consistent evidence in favor of a model, particularly if 

theoretical contributions have been made through use of that model, can yield strong 

justification. For example, many studies of academic and cognitive development (e.g., Anthony 

& Ogg, 2020; Cameron et al., 2015; Ricker et al., 2018; Womack et al., 2022), find that the 

Gompertz model exhibits better goodness-of-fit to the data than other linear and nonlinear 

models. It has been speculated that the Gompertz curve aligns particularly well with learning 

processes because most total growth occurs after the inflection point. Cameron et al. (2015) posit 

that the inflection point signifies the shift from acquisition of foundational skills to slow and 

steady learning, and that this shift is theoretically expected to occur early in the learning process 

for both reading and math. Therefore, consistent findings that the Gompertz model fits well to 
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learning data are in line with theory. Additionally, past studies have demonstrated that the 

parameters of the Gompertz model correspond with substantively important aspects of learning, 

which has enabled rich theoretical contributions in this area. Taken together, evidence points to 

strong theoretical rationale for use of the Gompertz model to approximate learning trajectories.  

Similarly, several studies have demonstrated the benefits of the logistic function for 

approximating pubertal development throughout childhood and adolescence (e.g., Beltz et al., 

2014; Marceau et al., 2011; Marceau et al., 2015). In these studies, the logistic model has yielded 

rich insight due to the substantive relevance of each model parameter. The rate-of-growth 

parameter corresponds with pubertal tempo, or the speed at which pubertal development occurs 

over the course of observation, and parameter that governs location of the inflection point 

corresponds with pubertal timing, or the age at which the individual is halfway through pubertal 

development. Pubertal timing and tempo are key quantities that have been found to be associated 

with a variety of predictors and outcomes over the lifespan; therefore, model parameters that 

directly correspond with these aspects of development have yielded novel insight. In future 

studies, drawing on this accumulation of past findings to provide theoretical justification for the 

logistic model will be a strong approach.  

 To summarize, there are many scenarios in which the researcher can take a theory-driven 

approach to choosing a nonlinear model. There may be a nonlinear function that was derived for 

the same purpose as the study, there may be psychological theory that suggests a certain model is 

ideal, or there may be a strong accumulation of evidence supporting the theoretical utility of a 

certain model for a given application. In all these cases, the appropriateness criterion is 

inherently met, and the interpretability criterion is usually inherent, as well. Additionally, the 

theory-driven approach facilitates the enumeration of specific, falsifiable, formal theories on an a 
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priori basis. For a more detailed review of the benefits of this approach, and more generally, the 

advantages of theory formalization, see Haslbeck et al. (2022).  

However, it has also been argued that there are drawbacks to a theory-driven approach. 

Perhaps most importantly, the theoretically motivated model may not fit well to the data. Some 

methodologists have suggested that strong substantive justification and interpretable parameters 

may overshadow suboptimal model-data fit, contending that it is acceptable to prioritize 

appropriateness and interpretability over fit (e.g., Cudeck & Harring, 2007). On the other hand, 

Wood et al. (2015) take a largely opposite stance, arguing that model-data fit should be 

prioritized over theoretical motivation. The authors posit that rather than confirming a pre-

existing theory, identifying a model with weaker theoretical motivation but better model-data fit 

may better serve the process of theory updating. These ideas are important to address, but at the 

same time, it is essential to note that good fit without appropriateness and interpretability yields 

a substantively useless model (Grimm et al., 2011; Ram & Grimm, 2007). Overall, I argue that 

the benefits of a theory-driven approach outweigh the potential drawbacks.  

 

Mix of Theory- and Data-Driven Approaches 

 Although it is ideal to choose a nonlinear model based on theoretical rationale, there is 

often not enough theory or research to support this approach. The next-best approach is to use a 

mix of theoretical and empirical justification for the chosen model. This may involve using 

theory and past findings to inform a small set of candidate models, then using data-driven 

information to select one model from among the candidates. Comparing model selection criteria 

like AIC and BIC, inspecting graphs of each candidate model with the observed data, and/or 

evaluating diagnostic plots are all frequently recommended. Indeed, many social science 
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methodologists have argued that it is acceptable to choose a model on both theoretical and 

empirical grounds (e.g., Grimm et al., 2011). If the model’s parameters are interpretable and 

useful, and the model makes sense conceptually, then it is appropriate to select a model on the 

grounds that it performs well with the observed data (Cudeck & Harring, 2007, 2010). 

 In these situations, substantive knowledge can often help the researcher formulate 

expectations about the general shape of the curve. This general shape may lead the researcher to 

a family of nonlinear models; multiple models from that family can then be fit to the observed 

data, and the “best” model is chosen empirically. For example, in their study of science 

achievement trajectories, Anthony and Ogg (2020) compared the fit of logistic, Gompertz, and 

Richards models. The authors stated: “Based on prior research, we anticipated that a sigmoidal 

‘s-shaped’ nonlinear curve would provide the best fit for science growth” (p. 1569). In this 

context, substantive knowledge helped the researchers direct their attention to the sigmoidal 

family, then AIC and BIC were used to select one model.   

 In another example, McNeish and Dumas (2017) took a mixed approach to selecting a 

nonlinear model to approximate trajectories of academic ability, by “choosing a small number of 

models that align well with our theoretical modeling goals and then compar[ing] the empirical fit 

of these models” (p. 71). The authors began by plotting their data to visually inspect trends; they 

noted that there did not appear to be a lower asymptote or inflection point, and the rate of growth 

was strongest initially and decreased with the passage of time. These observations steered them 

toward the exponential family, and therefore, the Michaelis-Menten (MM) model and the von 

Bertalanffy model were chosen as the candidate set. (The Gompertz model was also included in 

the candidate set to account for the possibility that an inflection point existed in the data but was 

not visually apparent). The MM model yielded the lowest BIC, and importantly, yielded the most 
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substantively interpretable parameters given the context of the study. Therefore, the MM model 

was chosen based on fit, while also considering appropriateness and interpretability. 

 These examples demonstrate that, when relying on a mix of theoretical and empirical 

justification to create a candidate set and select a nonlinear model, the weight placed on theory 

vs. empirical evidence may vary notably. Anthony and Ogg (2020) relied solely on past findings 

to arrive at a small set of candidate models, whereas McNeish and Dumas (2017) relied largely 

on graphical evidence to create a candidate set. The prior process is more representative of a 

confirmatory approach, whereas the latter process is more representative of an exploratory 

approach to model selection.  

When employing a mixed approach to nonlinear model selection, there is little consensus 

regarding how to prioritize theory vs. empirical evidence. Although Cudeck and Harring (2007) 

note that “graphical displays are irreplaceable in judging whether a function is appropriate” (p. 

625) and suggest plotting sample data alongside each curve in the candidate set, they also 

strongly encourage prioritizing appropriateness and interpretability when selecting a nonlinear 

model. Other methodologists have more firmly argued that better model-theory connections are 

the primary benefit afforded by nonlinear models, and therefore should be the primary 

motivation for their use, as opposed to better model-data fit (e.g., Preacher & Hancock, 2015; 

Ram & Grimm, 2007). Additionally, arguments in favor of a confirmatory approach would 

suggest that any reliance on sample data to select a model would compromise the a priori quality 

that theories and hypotheses should possess. Ultimately, the weight placed on theory vs. 

empirical evidence may be determined by (1) the availability of theory and prior findings to 

inform expectations about the shape of the curve, and (2) the researcher’s willingness to rely on 

sample data to inform model choice. 
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In summary, the mixed approach enables the researcher to choose a nonlinear model that 

is substantively useful, while also integrating empirical evidence regarding model-data fit. 

Therefore, this approach enables the incorporation of the appropriateness, interpretability, and 

fit criteria, and the researcher may strike whatever balance of the three that is warranted. 

Somewhere in the process of creating the candidate model set and/or selecting the “best” model, 

theory and interpretation are considered, which greatly increases the likelihood of selecting a 

substantively useful model. However, there are also disadvantages to this approach. First, 

conclusions may be the result of capitalizations on chance or overfitting to the sample data. 

Second, many classic model selection indices and indicators of model performance are unreliable 

when applied to nonlinear models, which will be discussed further in the next section.  

 

Data-Driven Approach 

 When taking a data-driven approach to choosing a nonlinear model, the researcher 

typically defines a large pool of candidate models and relies heavily on model selection criteria 

and/or goodness-of-fit statistics to choose the “best” model from among the candidates. To 

preface this discussion, I note that the candidate pool may include nonparametric or 

semiparametric models; however, the scope of this dissertation is restricted to parametric models. 

Therefore, this section will focus on parametric models, used in scenarios where little-to-no 

theory or prior knowledge is considered throughout the process of creating the candidate pool 

and choosing the “best” model. For example, in many applications, researchers compare the fit 

of a diverse array of conceptually distinct parametric models, including linear, quadratic, cubic, 

piecewise linear, sigmoidal, and exponential, and choose the “best” model based on selection 

criteria and/or goodness-of-fit statistics (e.g., Darchia et al., 2022; Ricker et al., 2018; Womack 
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et al., 2022; Wright et al., 2014). Most of the arguments presented in this section would also 

apply if nonparametric and/or semiparametric models were included in the candidate pool, but 

nonparametric and semiparametric models suffer from the additional drawback of 

uninterpretable parameters.   

Choosing a nonlinear model based on empirical evidence constitutes an exploratory, 

rather than confirmatory, approach. Typically, when there is sufficient theory to inform 

expectations about the patterns that will be observed, a confirmatory approach can be taken such 

that a formal theory may be articulated and a corresponding model may be chosen before the 

data are analyzed or even collected (Haslbeck et al., 2022). In contrast, the data-driven approach 

largely eliminates the need for the researcher to enumerate theory-driven hypotheses in an a 

priori manner. Relatedly, the nonlinear model that fits best to the data may not make sense 

conceptually, so the appropriateness and interpretability criteria may easily be unmet. Of course, 

it is important that the chosen nonlinear model corresponds reasonably well with the observed 

data, consistent with the fit criterion, but meeting the fit criterion without meeting the 

appropriateness and interpretability criteria is likely to result in a model that is not very useful 

(Archontoulis & Miguez, 2015; Cudeck & Harring, 2010; Grimm et al., 2011).  

 In additional to the conceptual and theoretical issues that may easily arise, another 

drawback of the data-driven approach is that empirical indicators of model performance (most of 

which were developed for linear models) often do not perform well when applied to nonlinear 

models. For example, sole use of empirical model selection criteria is not always a reliable way 

to select the best nonlinear model for the data at hand. Information criteria like AIC and BIC 

balance goodness-of-fit to the data with model complexity, which is accounted for by the number 

of estimated parameters in the model; however, especially for nonlinear models, the number of 
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model parameters does not always reflect the complexity of the functional form (Preacher & 

Yaremych, 2023). Therefore, model selection criteria may not perform optimally when applied 

to nonlinear models.  

Three studies have systematically investigated the performance of model selection 

criteria for choosing a nonlinear model, and all have observed that AIC and BIC are fallible 

under many realistic data conditions. In a study of model selection criteria for NLME models, 

Christensen (2019) found that AIC, AICC, BIC, CAIC, and HQIC became less likely to correctly 

select the nonlinear data-generating model when the “distinctiveness” of the curve was lower. 

For example, when the data-generating function was logistic, but the distinctiveness of that 

logistic curve was low, correct selection rates were no higher than 3% across all data conditions. 

Rohloff et al. (2022) found that information criteria including AIC and BIC were susceptible to 

overfitting (i.e., choosing a nonlinear model that was more complex than the data-generating 

function) when sample size was small and residual variance of y was large. Wood et al. (2015) 

found that BIC was less likely to correctly identify the data-generating nonlinear model when 

measurement reliability was low and sample size was small. Overall, sole reliance on model 

selection criteria may not always result in the “best” model choice, as their performance is highly 

variable based on characteristics of the nonlinear model and the data.   

 Other metrics that are often used to select and compare models are 𝑅2 and adjusted 𝑅2. 

However, it has been repeatedly argued that these are poor indicators of performance for 

nonlinear models (Archontoulis & Miguez, 2015; Ratkowsky, 1990; Wallach, 2006). 𝑅2 is 

informed by the total sum of squares (y’s deviations from its mean) and the regression sum of 

squares (y’s deviations from the regression line). Therefore, 𝑅2 effectively compares the 

intercept-only model to the regression model, and it is assumed that the intercept-only model is 
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nested within the regression model. It follows that 𝑅2 makes sense only for models that involve a 

constant or intercept term. Nonlinear models frequently do not contain an intercept term, so the 

logic of 𝑅2 does not apply to these nonlinear models, leading to conclusions that “𝑅2 does not 

have any obvious meaning for a nonlinear regression model” (Ratkwosky, 1990, p. 44). 

Although adjusted 𝑅2 attempts to account for model complexity by incorporating the number of 

parameters in the model, this is not always indicative of functional form complexity for 

nonlinear models, and the same logical issues arise. In summary, reliance on 𝑅2 or adjusted 𝑅2 

for selecting a nonlinear model is unlikely to be a meaningful or useful approach.  

 Another data-driven way to choose from among a set of candidate nonlinear models is to 

graph each function with the observed data, then visually inspect how well each model follows 

the data. Cudeck and Harring (2007) recommend this approach over the use of model selection 

criteria. However, this approach may be difficult in the presence of “messy” data that do not 

follow any curve closely. In social science, it is common to observe high residual variance, such 

that much of the variability in y is left unexplained by the chosen model (Rohloff et al., 2022). In 

these cases, visual inspection will usually not yield a clear conclusion about which model best 

characterizes the data. This approach also suffers from the same drawbacks as model selection 

criteria, namely, a lack of emphasis on the researcher’s prior knowledge and theory.  

 Despite the drawbacks discussed here, some methodologists have argued in favor of a 

data-driven approach to model selection. For example, Wood et al. (2015) encourage comparing 

broad “classes” of statistical models, including linear, latent basis, and parametric nonlinear, then 

selecting from among the classes based on empirical values like BIC. These authors argue that an 

exploratory approach does more to inform the research area (compared to a confirmatory 

approach) by addressing whether alternative explanations underlying the data are plausible, and 
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by potentially identifying better-fitting models to pursue in future research. To counter the 

argument that a data-driven model selection process risks overcapitalization on chance, the 

authors posit that identifying unexpected patterns is how psychological theory moves forward. 

At the same time, most methodologists to have addressed this topic argue in favor of prioritizing 

appropriateness and interpretability, or at least balancing them with considerations of fit.  

 In summary, due to conceptual issues and the fallibility of empirical model selection 

indices, taking a solely data-driven approach to model selection may easily lead to a model 

choice that is not theoretically motivated. By instead drawing on past findings, theory, and 

substantive expectations – even to narrow down the candidate set to models that are conceptually 

appropriate – the chosen model is much more likely to facilitate meaningful theory testing. 

Therefore, I argue that it is preferable to choose a nonlinear model in a way that at least 

somewhat, but preferably fully, relies on theory.  

 

Choosing a Parameterization 

 

Identifying Substantively Important Attributes of the Curve 

Choosing a useful parameterization is essential for meeting the interpretability criterion. 

The central goal of parameterization is for the chosen model to contain parameters that 

correspond with the most substantively meaningful and theoretically important attributes of the 

curve (Cudeck & Harring, 2007; Ram & Grimm, 2007). Therefore, the ideal parameterization of 

a given nonlinear function is likely specific to a particular research context and/or a particular 

study. Preacher and Hancock (2012, 2015) note there are many reasons why it is ideal for the 

most important attributes of the curve to correspond directly with a model parameter. First, it is 
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often easier to directly estimate the quantity of interest as part of the model, rather than via post 

hoc calculations. Second, an estimated parameter yields both point and interval estimates, which 

allow us to test hypotheses (via significance tests) and determine how precisely these key 

quantities have been estimated. Third, in NLME models, parameters can be treated as random to 

reflect expected interindividual differences in certain attributes of the curve. Fourth, any 

parameter can be constrained to a constant if this makes conceptual sense for the corresponding 

attribute of the curve.  

The final benefit of useful parameterization is that moderators can be incorporated 

directly for each parameter, which allows the researcher to identify whether the corresponding 

attribute of the curve varies according to any relevant variable. Preacher and Hancock (2015) 

argue this to be the most important benefit. Cudeck and Harring (2010) note that when 

moderation is incorporated, the moderated parameter essentially becomes a dependent variable 

that is predicted by the moderator (more on this in the following section); therefore, in order for 

the moderation to be interpretable, it is essential for the parameter to have a clear definition.  

Any nonlinear model can be parameterized in an infinite number of ways. The process of 

translating a given model from one parameterization to another is called reparameterization. The 

mathematical details of reparameterization are beyond the scope of this dissertation, but steps for 

carrying out this process are described by Preacher and Hancock (2012, 2015). The general 

process involves (1) isolating the "target aspect” of the curve, (2) expressing it in terms of other 

model parameters, (3) substituting that expression back into the original equation, and (4) 

simplifying. This process may involve simple algebra or calculus. Ultimately, deciding which 

attributes of the curve are most substantively important will require critical thought from the 

researcher (Grimm et al., 2011). Here, my goal is to catalyze this process by providing examples 
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of useful reparameterizations. These examples demonstrate the flexibility of reparameterization, 

as well as the diverse hypotheses that can be tested via thoughtfully reparameterized models.  

For instance, in longitudinal applications, recent methodological work has focused on 

reparameterizations that enable the researcher to determine the specific time (i.e., location along 

the x-axis) at which a certain criterion (i.e., y-value) is reached. In one example, Johnson and 

Hancock (2019) reparameterized the MM model such that it contains a time-to-criterion (T2C) 

parameter. The T2C is a flexible parameter that indicates the location along the x-axis at which 

any criterion y-value is reached. The criterion y-value is pre-specified by the researcher, and is 

flexible according to the research context; it could be set to a certain test score that indicates 

competency, or a certain level of performance on an experimental task.  

In a similar example, Choi et al. (2009) implemented a logistic model and derived 

parameters that they referred to as jerk points, which are the locations along the x-axis that 

demarcate the asymptotes from the surge area in a sigmoidal curve. Indeed, the x-locations at 

which change begins and ends are often substantively important in many areas of social science, 

including learning and development. McNeish et al. (2023) note that “researchers often are not 

only interested in the ultimate level that people reach but also in how fast they get there” (p. 

402). Reparameterizing a nonlinear model – particularly a sigmoidal model – is one approach to 

estimating such key quantities.  

Thinking about reparameterizations in an alternative way, McCormick (2023) notes that 

there may be contexts in which it is useful to reparameterize a model such that a parameter 

corresponds to the value of y at a theoretically important value of x. As examples of this type of 

research question, the author cites the number of words acquired by 20 months of age 

(Huttenlocher et al., 1991) and levels of drug/alcohol use upon entry to a university (Derefinko et 
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al., 2016). The chosen value of x may reflect a developmental milestone or a timepoint that is 

otherwise meaningful. In a similar example, Preacher and Hancock (2012) reparameterized a 

Jenss-Bayley model that tracked infant weight (y-axis) over the course of zero to two years of 

age (x-axis). Here, they created a parameter that corresponded to model-implied weight at any 

chosen x-value. This parameter enabled the authors to estimate and examine individual 

differences in weight at any timepoint throughout the trajectory. 

In summary, even if previously nonexistent, it is possible to create a parameterization of 

any nonlinear model such that the most important attributes of the curve -- for a given study -- 

are each represented by a unique parameter. In some applications, important attributes of the 

curve may correspond with x-values at which a certain level of y is reached, y-values at 

important locations along the x-axis, and/or locations along the x-axis at which change begins 

and ends. However, many more attributes of the curve can be isolated and estimated via 

reparameterization. There is great flexibility in this regard, and researchers need not remain 

confined to parameterizations that have been used in previous research.  

 

Implementing Constraints 

Another aspect of parameterization is deciding whether certain parameters should be 

constrained. In some contexts, it may be appropriate to constrain a parameter to a constant (e.g., 

zero), meaning the parameter is not estimated at all. Constraining a parameter implies that the 

corresponding attribute of the curve is “known and common” to all individuals (Choi et al., 

2009). Parameter constraints are often intuitive and arise from knowledge of the variables under 

study. For example, Marceau and colleagues (2011, 2015) used NLME logistic models to 

approximate pubertal development, wherein the lower asymptote was constrained for all 
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individuals (as the minimum score on the pubertal developmental scale) and the upper asymptote 

was constrained for all individuals (as the maximum score on the pubertal development scale). It 

is often reasonable to constrain lower and/or upper asymptotes if the y-variable under study has a 

known minimum or maximum that is expected to be realized for all individuals. If a parameter is 

constrained to a constant, it does not need to be estimated, which simplifies the model and 

facilitates convergence.  

 

Special Considerations for NLME Models 

In NLME models, additional constraints must be considered, as the researcher must 

decide whether each parameter should be treated as random (i.e., variable across individuals) or 

fixed (i.e., the same for all individuals). This is an important decision, because inaccurate 

specification of the random effects can lead to biased standard errors of the fixed effect estimates 

(Cho et al., 2022; McNeish & Bauer, 2022). There are a variety of approaches that have been 

recommended for choosing which parameters to treat as random vs. fixed. Ideally, the decision 

would be made on substantive grounds. If interindividual variability is theoretically expected for 

certain attributes of the curve, then the corresponding parameters should be specified as random 

(Cudeck, 1996; Grimm et al., 2011; Grimm & Ram, 2009; McNeish & Bauer, 2022; Preacher & 

Hancock, 2012).  

In the absence of substantive justification for treating parameters as random vs. fixed, one 

popular approach is to begin with a “maximal” random effects structure – which typically means 

specifying all parameters as random – and then progressively removing random terms if the 

model does not converge (e.g., McNeish et al., 2020; McNeish & Bauer, 2022; Pinheiro & Bates, 

2000). However, the optimal order by which to remove random terms is often unclear 
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(McCormick et al., 2023). Several approaches have been suggested by methodologists. Harring 

and Blozis (2014) note that convergence problems are most often caused by random coefficients 

that enter the model nonlinearly (e.g., parameters that appear within exponents), rather than 

random coefficients that enter the model linearly (e.g., parameters that appear outside of 

fractions and exponents). Therefore, if a model with maximal random effects does not converge, 

a straightforward approach is to locate the parameters that enter the function nonlinearly and 

treat them as fixed. Alternatively, removal of random effects could be based on substantive 

justification. If the interindividual variability of a certain parameter is of great theoretical or 

practical importance, then the random effects associated with the less substantively important 

parameters could be removed first (e.g., McNeish et al., 2020). Although the top-down approach 

remains popular in practice, McNeish and Bauer (2022) note that constraining a parameter to be 

fixed due to convergence difficulties – rather than the expectation that there is no interindividual 

variability in that parameter – is neither substantively justified nor desirable. 

Other, largely data-driven, approaches to choosing a random effects structure have also 

been proposed. For example, Feng et al. (2019) suggest the use of nested model comparisons like 

the likelihood ratio test (LRT) to decide on a random effects structure; in addition to LRTs, Cho 

et al. (2022) recommend comparing goodness-of-fit criteria like RMSE, AIC, and BIC. 

Graphical approaches, such as plotting the curve separately for each individual to inspect which 

attributes may differ across persons, have also been illustrated (e.g., Cho et al., 2022; Pinheiro & 

Bates, 2000). In summary, the degree to which the researcher relies on theory vs. empirical 

evidence may vary widely when specifying a random effects structure for a NLME model. Like 

other aspects of model parameterization, it is ideal to rely primarily on theory when specifying 
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this piece of the NLME model. Regardless of the chosen justification for the inclusion vs. 

removal of random terms, it is ideal to be transparent about how these decisions were made.  

 

Incorporating Moderators 

 In social science, tests for moderation are often regarded as the most useful step of the 

entire modeling process. Moderation analysis has been described as “the very heart of theory 

testing in the social sciences” (Cohen et al., 2003, p. 255), as it enables us to assess where, when, 

and for whom certain processes and relations may occur (Hayes & Preacher, 2013). In the 

context of nonlinear models, Choi et al. (2009) note that knowledge about moderation is 

“invaluable” in determining for whom an intervention might be most useful or when it should be 

implemented. Similarly, Cudeck and Harring (2010) argue that “the search for effective 

covariates is in many ways the most valuable part of a successful application.” Therefore, it is 

important to approach the incorporation of moderators with intentionality. The goal of this 

section is to describe different approaches by which moderators may be incorporated into 

nonlinear models, as well as the benefits and drawbacks of each approach. 

When incorporating moderation into nonlinear models, interesting conceptual 

considerations arise that are not applicable to the linear framework. In a nonlinear model, 

parameters may correspond with many attributes of the curve. Any of these parameters – and 

relatedly, any attribute of the curve – may be hypothesized to be moderated. Therefore, in 

nonlinear models we can think of moderation much more broadly than we do in the linear 

framework. In linear models, the linear effect of the focal predictor is typically hypothesized to 

change at a fixed rate across different values of the moderator. In nonlinear models, any attribute 

of the curve corresponding to a model parameter may be hypothesized to change across different 
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values of the moderator. Because such a large variety of curve attributes may be moderated, it 

becomes important to carefully consider the rationale for either including or excluding a 

moderator of each parameter. Next, I will review two opposing approaches that may be taken 

when deciding how to specify a moderated nonlinear model, which I will term the omnibus 

approach and the selective approach. 

 

Omnibus Approach 

When implementing the omnibus approach, if a variable is expected to moderate any 

model parameter, then it is included as a moderator of all model parameters. For example, 

consider a four-parameter Gompertz model (Eq. 2.2) where time is on the x-axis and reading 

skills are on the y-axis. Suppose that we have created a reading intervention. We hypothesize that 

the intervention will moderate parameter d (the timing of most rapid growth) and parameter b 

(total growth); for children who receive the intervention, the most rapid reading improvement 

will occur earlier and total reading improvement will be greater. According to the omnibus 

approach, we should also incorporate our intervention as a moderator of the other two model 

parameters, which govern the lower asymptote and rate of learning, even though we have no 

theoretical basis to expect that the intervention will moderate these attributes of the trajectory. 

Under the omnibus approach, our model will be:  

𝑦 = (𝑎0 +  𝑎1𝐼𝑛𝑡) + (𝑏0 + 𝑏1𝐼𝑛𝑡) ∗ (exp (−exp (−(𝑐0 +  𝑐1𝐼𝑛𝑡)(𝑥 − (𝑑0 +  𝑑1𝐼𝑛𝑡))))) + 𝜀,      (4.1) 

where parameter a has been replaced with (𝑎0 +  𝑎1𝐼𝑛𝑡), parameter b has been replaced with 

(𝑏0 + 𝑏1𝐼𝑛𝑡), and so on. This equation reflects that each parameter is linearly moderated by Int. 

The most substantively important parameters are highlighted in red: 𝑏1 is the effect of Int on total 

growth, and 𝑑1 is the effect of Int on the time of fastest growth.  
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 The omnibus approach is consistent with how moderators are incorporated in linear 

regression. Consider a simple linear regression equation with focal predictor x:  

𝑦 =  𝛾0 +  𝛾1𝑥 + 𝜀.     (4.2) 

 When we incorporate a moderator z into Eq. 4.2, this is represented by an interaction term 

involving xz. However, it is standard practice to also include the “main effect” of the moderator:  

𝑦 =  𝛾0 +  𝛾1𝑥 + 𝛾2𝑧 +  𝛾3𝑥𝑧 + 𝜀.    (4.3) 

Inclusion of the “main effect” of z means that, in addition to the linear effect of x being 

moderated, the intercept is also moderated. Rearranging Eq. 4.3, we see that both the slope of x 

and the intercept change linearly as a function of z:  

𝑦 =  (𝛾0 +  𝛾2𝑧) + (𝛾1 +  𝛾3𝑧)𝑥 + 𝜀.   (4.4) 

Therefore, all attributes of the line are moderated by z, even though in many cases, moderation of 

the linear effect of x is the theoretically motivated component of the model.  

The omnibus approach is common in linear regression because it is backed by strong 

methodological support. If the x and z terms were omitted from Eq. 4.3 and only the interaction 

term was included, then any first-order effects of x and z that were correlated with the xz term 

would be incorrectly attributed to the interaction (Cohen et al., 2003). The same principle applies 

in more complicated linear models involving moderation; for example, when three-way 

interactions are involved, methodologists strongly recommended that all lower-order interactions 

also be included in the model (Aiken & West, 1991; Cohen, 1978; Cohen et al., 2003). Including 

all lower-order terms serves to linearly partial out the lower-order effects from the interaction; 

therefore, the interaction term accounts for variance in y that is above and beyond any variance 

in y that is accounted for by the lower-order terms, yielding an interpretable interaction effect.  



 

94 

 

Social science methodologists have argued that when an interaction term is included, it is 

acceptable to omit lower-order terms from the model only if there is strong theory that dictates 

the effects of the lower-order terms must be zero (Aiken & West, 1991; Fisher, 1988; Kmenta, 

1986). Indeed, omitting the main effect of z from Eq. 4.3 imposes the assumption that the main 

effect of z (𝛾2) is zero. Put another way, omitting the main effect of z means we assume that the 

intercept is not moderated by z. Therefore, if the intercept is moderated by z even slightly, then 

the model is misspecified, and that effect will be incorrectly absorbed by the effect of the 

interaction term (𝛾3). To avoid this potential misspecification, it is recommended to always 

include lower-order terms, consistent with the omnibus approach.  

Similar arguments could be made in favor of the omnibus approach for nonlinear models 

involving moderation. Returning to our earlier example, we suspect that parameters b and d of 

the Gompertz model are moderated by our intervention. However, it is certainly possible that the 

intervention will also – at least slightly – moderate parameters a and c of the model, even if the 

intervention was not designed for this purpose. Including the intervention as a moderator of all 

model parameters, as shown in Eq. 4.1, accounts for this possibility. Therefore, if the 

intervention incidentally moderates any unexpected attributes of the curve, the model will not be 

misspecified. This is a major advantage of the omnibus approach. 

In linear regression, the benefits of the omnibus approach far outweigh the costs. OLS 

regression estimates are obtained from closed-form solutions; iterative estimation is not 

necessary and convergence problems almost never arise, regardless of the complexity of the 

model. Therefore, the computational burden of including multiple lower-order terms is nearly 

nonexistent. Even if the omnibus approach yields a model that is more complex than necessary 

(e.g., some lower-order terms could have been omitted but were not), this is of little consequence 
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in linear regression. The primary consequence of an overly complex model is likely to be 

interpretational difficulties (Cohen et al., 2003). However, in nonlinear models involving 

moderation, potential costs of the omnibus approach are much more salient. Nonlinear model 

estimates are obtained iteratively, meaning that convergence problems arise frequently. 

Convergence becomes less likely when models are too complex (Bates & Watts, 1988; Gallant, 

1987; Pinheiro & Bates, 2000; Sit & Poulin-Costello, 1994; Ratkowsky, 1990). Therefore, the 

omnibus approach may easily result in a nonlinear model wherein the number of parameters 

makes estimation unfeasible, which is a major disadvantage.   

 

Selective Approach 

 Given the drawbacks of the omnibus approach for nonlinear models, it may be useful to 

consider taking a selective approach to adding moderators. Using the selective approach, the 

model is specified such that the moderator influences only the parameters for which there is 

theoretical reason to expect moderation. Returning to our Gompertz example, our intervention 

was designed to moderate parameters b and d. Therefore, we would specify our model as: 

𝑦 = 𝑎 + (𝑏0 +  𝑏1𝐼𝑛𝑡) ∗ (exp (−exp (−𝑐(𝑥 − (𝑑0 +  𝑑1𝐼𝑛𝑡))))) + 𝜀,           (4.5) 

where Int moderates only parameters b and d.  

 The selective approach does not correspond with how moderators are incorporated in 

linear regression. Indeed, there are important drawbacks to the model given in Eq. 4.5, which 

arise from imposing the assumption that the effect of Int on parameters a and c is zero. First, this 

implies that any interindividual differences in parameters a and c should be considered error, 

which is a strong and potentially unrealistic assumption (Ram & Grimm, 2007). Second, if Int 

incidentally moderates parameters a or c, even though this is not hypothesized or expected, then 
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the model will be misspecified and estimates may be biased. Akin to the problems that arise in 

moderated linear models without lower-order terms, the unspecified moderation of parameters a 

or c may be incorrectly absorbed by the moderation terms involving parameters b and d, leading 

to erroneous conclusions.  

 There are also important advantages to the selective approach. First, and perhaps most 

importantly, the selective approach facilitates fully theoretically-motivated model specification. 

The Gompertz model in Eq. 4.1 – created according to the omnibus approach – does not 

accurately reflect our expectations grounded in substantive expertise. In contrast, the model in 

Eq. 4.5 – created according to the selective approach – closely aligns with our hypotheses 

regarding the intervention and how it will affect reading development. The selective approach 

enables us to articulate precisely which aspects of the curve we hypothesize to be moderated, and 

to then specify the model such that only those hypotheses are tested with our analysis. Therefore, 

the selective approach is likely to result in a more substantively justified model, as opposed to 

the omnibus approach. Second, compared to the omnibus approach, the selective approach 

facilitates specification of a more parsimonious model. With fewer parameters to be estimated, 

convergence of the nonlinear model becomes more likely.  

 

Summary 

 When specifying a moderated nonlinear model, interesting conceptual and logistical 

considerations arise that are unique to the nonlinear framework. Many attributes of the curve 

may be moderated, necessitating careful consideration about how the moderation of each 

parameter may map onto theory, and convergence failures become a salient issue, necessitating 
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intentional inclusion and/or exclusion of moderators. Here, I presented two potential avenues for 

incorporating moderators, termed the omnibus and selective approaches. 

 At present, it is unclear whether the omnibus or selective approach is the better way to 

incorporate moderators into a nonlinear model. Simulation studies may be helpful for developing 

methodological recommendations about which approach is optimal, and whether the optimal 

approach may differ according to study context and data conditions. For example, if a researcher 

implements the selective approach and an important moderator is omitted, what are the 

consequences of that omission? Are estimates biased, and if so, what is the magnitude of that 

bias? Which parameter estimates tend to be biased? Do results change depending on the 

magnitude of the omitted moderation effect, the functional form of the curve, and/or sample 

size? Similarly, if the researcher implements the omnibus approach and creates a model that is 

more complex than necessary (i.e., is more complex than the data-generating function), how is 

the likelihood of convergence affected? Do results change depending on the functional form 

and/or sample size? These questions will be interesting avenues for future research.  

 

Incorporating Covariates 

 A final conceptual issue to address is the incorporation of covariates or control variables. 

This aspect of model specification has received little attention in the broader nonlinear modeling 

literature, as it is largely unique to social science. As an example, for nonlinear models fit to data 

from controlled experiments in the biological or plant sciences, the incorporation of covariates is 

not typically necessary. In social science applications, it is typical to control for the effects of 

many covariates in an effort to isolate the effect of the focal predictor (e.g., controlling for child 
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age, gender, and SES while testing for the effect of an educational intervention). This section 

expands on the specification of nonlinear models involving covariates. 

 When thinking about how to incorporate covariates, it is again helpful to reference the 

process that is followed within the linear framework. Begin with a simple linear regression 

model, containing a focal predictor x and three covariates 𝑤1 − 𝑤3:  

𝑦 =  𝛾0 +  𝛾1𝑥 + 𝛾2𝑤1 + 𝛾3𝑤2 +  𝛾4𝑤3 + 𝜀.   (4.6) 

Rearranging this equation illuminates that in fact, covariates are moderators of the intercept. The 

intercept changes linearly as a function of each covariate:  

𝑦 =  (𝛾0 + 𝛾2𝑤1 + 𝛾3𝑤2 +  𝛾4𝑤3) +  𝛾1𝑥 + 𝜀.   (4.7) 

Therefore, in linear regression, we can think of covariates as additional moderators (i.e., 

predictors) of the intercept. By including covariates in this way, the estimated slope of the focal 

predictor is above and beyond the effects of the covariates (Cohen et al., 2003). Therefore, the 

inclusion of covariates as moderators of the intercept effectively “controls for” their effects.  

Can this approach to incorporating covariates – i.e., including covariates as moderators of 

y’s intercept – be extended to nonlinear models? In most cases, it appears not. A variety of 

problems would follow from this approach. First, nonlinear models often do not contain a 

parameter that corresponds directly to the y-intercept. Therefore, incorporation of an intercept 

moderator is not always possible (unless the researcher is willing to reparameterize the model 

such that it contains an intercept parameter). Second, even if it is possible to directly incorporate 

a moderator of the intercept, the intercept parameter (and/or moderation of it) may not be 

substantively useful or important. Third, it is unclear whether including a covariate as a 

moderator of the intercept would constitute “controlling for it” in the sense familiar from the 
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linear framework; in multiple linear regression, the effects of the predictors can be neatly 

partialled out from one another, whereas this is not necessarily the case for nonlinear regression.  

Alternatively, it may be tempting to alter a nonlinear model by adding a new linear term 

for each covariate; this approach would mimic the model specification process followed within 

the linear framework. For example, consider the cosine model (Eq. 2.9), which has no parameter 

for the y-intercept. Adding a linear term for each of three covariates, 𝑤1 − 𝑤3, would yield:  

𝑦 = 𝑎 ∗ sin (
2𝜋

𝑏
(𝑥 − 𝑐)) + 𝑓1𝑤1 + 𝑓2𝑤2 + 𝑓3𝑤3 + 𝜀,  (4.8) 

where 𝑓1 − 𝑓3 are linear effects of the covariates 𝑤1 − 𝑤3. This approach is also problematic. 

First, it adds parameters to the model that were not there before, which fundamentally alters the 

shape of the curve. Second, it constrains the covariates’ effects on all other parameters to be 

zero, implying there is theoretical reason to believe that each covariate exerts only a linear effect 

on the outcome variable. In summary, familiar approaches to incorporating covariates – though 

commonplace in linear modeling – are likely to create problems if applied to nonlinear models. 

To successfully incorporate covariates into a nonlinear model, the model should reflect 

that we expect the covariates to have some influence over the shape of the curve. The curve has – 

ideally – been selected a priori, so inclusion of covariates should not fundamentally alter the 

functional form. For example, the inclusion of a covariate should not cause the curve to change 

from exponential to sigmoidal, or to change from a sine wave to a linearly increasing sine wave. 

To avoid fundamentally altering the functional form, we should include covariates as predictors 

of the original model parameters, rather than introducing new terms containing the covariates as 

we do in linear regression. The original model parameters (e.g., in Eq. 4.8, parameters a, b, and 

c) govern all the theoretically important attributes of the curve, so if a covariate has any notable 

influence over the curve, it should be realized in its effect on each of those model parameters.  
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As an example, Cameron et al. (2015) fit Gompertz models that approximated growth of 

reading and math skills over time. Gender, parental education, family SES, and race/ethnicity 

were included as covariates for each model parameter. This model specification was: 

𝑦 = (𝑎0 +  𝑎1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑎2𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙𝐸𝑑 + 𝑎3𝑆𝐸𝑆 +  𝑎4𝑅𝑎𝑐𝑒) + 

(𝑏0 + 𝑏1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏2𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙𝐸𝑑 + 𝑏3𝑆𝐸𝑆 + 𝑏4𝑅𝑎𝑐𝑒) ∗ 

𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−(𝑐0 +  𝑐1𝐺𝑒𝑛𝑑𝑒𝑟 +  𝑐2𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙𝐸𝑑 + 𝑐3𝑆𝐸𝑆 + 𝑐4𝑅𝑎𝑐𝑒)(𝑥 − (𝑑0 +  𝑑1𝐺𝑒𝑛𝑑𝑒𝑟 +

                     𝑑2𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙𝐸𝑑 + 𝑑3𝑆𝐸𝑆 + 𝑑4𝑅𝑎𝑐𝑒)))) + 𝜀,      (4.9) 

where 𝑎0 is the value of parameter a when all covariates are zero, 𝑎1 is the linear effect of 

Gender on parameter a, 𝑎2 is the linear effect of ParentalEd on parameter a, 𝑎3 is the linear 

effect of SES on parameter a, and 𝑎4 is the linear effect of Race on parameter a. Other 

parameters are interpreted analogously. This model specification ensures that the effect of each 

variable on each parameter is above and beyond the effects of the other variables, effectively 

isolating the influence of each predictor on each attribute of the curve.  

Eq. 4.9 shows that mathematically, moderators and covariates are the same in nonlinear 

models. Therefore, the distinction between “moderators” and “covariates” is purely substantive. 

Whether a variable is considered a moderator or a covariate may depend on whether its influence 

on the shape of the curve is theoretically important or not. Additionally, this means that when we 

incorporate covariates into a nonlinear model, we may again make use of either the omnibus 

approach or the selective approach.  

Following the omnibus approach, if we expect a covariate to affect any model parameter, 

then we include it as a predictor of all model parameters. While this approach enables us to avoid 

potential model misspecifications, it can quickly yield a very complex model – especially if there 

are multiple covariates – that makes estimation infeasible. In contrast, the selective approach 
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requires the researcher to consider whether theory suggests the covariate will influence some 

attributes of the curve but not others. This approach is likely to yield a theoretically well-justified 

model, but risks misspecification and bias if an important effect of a covariate is omitted. Finally, 

if the model contains “focal” or theoretically important moderators, we may opt for neither of the 

above approaches, and instead incorporate covariates as additional predictors of any parameters 

that are already predicted by a “focal” moderator. This approach will ensure that the effects of 

any focal moderators are above and beyond the effects of any control variables that also 

influence certain attributes of the curve. Again, it is unclear which of these approaches to 

incorporating covariates is “optimal,” and whether the optimal approach may change depending 

on the data, the model, and/or the research context.    

 

Moderators and Covariates in NLME Models 

 Nonlinear mixed-effects (NLME) models present unique conceptual challenges regarding 

the incorporation of moderators and covariates. It is often of key substantive importance to 

introduce moderators to explain interindividual variation in the growth trajectory. The general 

process of NLME modeling is to first determine which attributes of the curve vary across people 

(i.e., which parameters should be treated as random), and then incorporate moderators to explain 

that variation (Blozis & Harring, 2021; Cudeck & Harring, 2007, 2010; Davidian & Giltinan, 

2003; Harring & Blozis, 2014). As a special case, Pinheiro and Bates (2000) note that the 

inclusion of moderator(s) can occasionally cause the variance of a random coefficient to drop so 

low that it can instead be treated as fixed; in these cases, all between-person variation is 

explained by the moderator(s). 
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 As a reminder, in NLME growth models, variables may exist at level 1 or level 2. Level-

1 variables change across timepoints or assessments, whereas level-2 variables are static and 

describe person-level characteristics. Level-1 variables are sometimes termed time-varying 

covariates (TVCs), and level-2 variables are sometimes termed time-invariant covariates (TICs). 

 Generally, when moderators are included in NLME models, they are level-2 variables 

(Blozis & Harring, 2021; Cudeck & Harring 2007, 2010; Davidian & Giltinan, 2003; Harring et 

al., 2012). In NLME models, the goal of including moderators is to explain across-person 

variability in the random coefficients, and this is best accomplished with predictors that change 

across (rather than within) persons. Therefore, the inclusion of level-2 moderators in NLME 

models has received much attention in the methodological literature. In terms of model 

specification, adding level-2 moderators to a NLME model closely resembles the process of 

adding moderators to a single-level nonlinear model, such that moderators are included as 

predictors of the moderated parameter.  

As an example, consider a NLME Gompertz model that characterizes repeated 

measurements of math ability among elementary-aged children. Treating all four parameters as 

random, our model specification is:   

𝑦𝑡𝑖 = 𝑎𝑖 + 𝑏𝑖 ∗ (exp (−exp (−𝑐𝑖(𝑡 − 𝑑𝑖)))) +  𝑒𝑡𝑖,      (4.10) 

where 

𝑎𝑖 = 𝑎00 + 𝑎𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑏𝑖 = 𝑏00 + 𝑏𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑐𝑖 = 𝑐00 + 𝑐𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑑𝑖 = 𝑑00 + 𝑑𝑅𝑒𝑠𝑖𝑑𝑖. 



 

103 

 

We can add moderators to Eq. 4.10 by including person-level variables as predictors of each 

person-specific coefficient. In this way, we explain interindividual variation in the coefficients. 

Adding Gender and SES as covariates, we obtain:  

𝑦𝑡𝑖 = 𝑎𝑖 + 𝑏𝑖 ∗ (exp (−exp (−𝑐𝑖(𝑡 − 𝑑𝑖)))) +  𝑒𝑡𝑖,     (4.11) 

where 

𝑎𝑖 = 𝑎00 + 𝑎01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑎02𝑆𝐸𝑆𝑖 + 𝑎𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑏𝑖 = 𝑏00 + 𝑏01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏02𝑆𝐸𝑆𝑖 + 𝑏𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑐𝑖 = 𝑐00 + 𝑐01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑐02𝑆𝐸𝑆𝑖 + 𝑐𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑑𝑖 = 𝑑00 + 𝑑01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑑02𝑆𝐸𝑆𝑖 + 𝑑𝑅𝑒𝑠𝑖𝑑𝑖. 

Here, each individual-specific coefficient is now predicted by that individual’s gender and 

socioeconomic status. Coefficient 𝑎00 is now interpreted as the mean value of a among children 

with Gender = 0 and SES = 0. Coefficient 𝑎01 is the effect of Gender on a, and coefficient 𝑎02 is 

the effect of SES on a. Finally, the random component 𝑎𝑅𝑒𝑠𝑖𝑑𝑖 is interpreted as individual i's 

conditional residual, or in other words, their remaining deviation from the mean value of a after 

accounting for the effects of Gender and SES. The coefficients for the other parameters are 

interpreted analogously. In summary, both mathematically and conceptually, moderation in 

NLME models is similar to moderation in single-level nonlinear models.  

 In addition to incorporating moderators, it is also common to incorporate covariates into 

NLME models. Here, level-1 variables (TVCs) become more relevant, as both TVCs and TICs 

are often useful to include. Adding TICs is straightforward because level-2 covariates are 

mathematically the same as level-2 moderators. TICs are simply included as additional 

predictors of the person-specific coefficients. Therefore, the distinction between a level-2 

moderator and a TIC is purely conceptual.     
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 TVCs are often mentioned on a conceptual level in discussions of NLME growth models. 

For example, Blozis and Harring (2021) note: “A response may be assumed to follow a function 

that relies only on time, or the function may additionally include covariates such as time-varying 

covariates in which a response is assumed to be due to time along with variables that also change 

with time” (p. 541). However, there is sparse information regarding how to specify a NLME 

model involving TVCs. The incorporation of TVCs into NLME models is a more complex issue 

than for linear mixed models, where TVCs are simply added as additional level-1 predictors of 

the outcome (Grimm et al., 2016); for reasons outlined earlier, this approach is nonsensical for 

NLME models. 

Davidian and Giltinan (1995, 2003) and Pinheiro and Bates (2000) have briefly addressed 

TVC specification for NLME models. These authors suggest that TVCs should be incorporated 

into the model in the same way that TICs are incorporated: as additional predictors of the person-

specific coefficient. If the coefficient is predicted by both a TIC and a TVC, then the coefficient 

is both person-specific and time-specific. For example, let us add a TVC, executive function, as a 

predictor of parameter c in Eq. 4.11. According to Pinheiro and Bates (2000) and Davidian and 

Giltinan (1995; 2003), our model specification would be:  

𝑦𝑡𝑖 = 𝑎𝑖 + 𝑏𝑖 ∗ (exp (−exp (−𝑐𝑡𝑖(𝑡 − 𝑑𝑖)))) +  𝑒𝑡𝑖,     (4.12) 

where 

𝑎𝑖 = 𝑎00 + 𝑎01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑎02𝑆𝐸𝑆𝑖 + 𝑎𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑏𝑖 = 𝑏00 + 𝑏01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏02𝑆𝐸𝑆𝑖 + 𝑏𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑐𝑡𝑖 = 𝑐00 + 𝑐01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑐02𝑆𝐸𝑆𝑖 + 𝑐03𝐸𝑥𝑒𝑐𝐹𝑢𝑛𝑐𝑡𝑖 + 𝑐𝑅𝑒𝑠𝑖𝑑𝑖, 

𝑑𝑖 = 𝑑00 + 𝑑01𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑑02𝑆𝐸𝑆𝑖 + 𝑑𝑅𝑒𝑠𝑖𝑑𝑖. 
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Here, parameter c now has the subscript ti to denote that it is time-specific as well as person-

specific. In summary, some methodologists have proposed that TVCs can be incorporated into a 

NLME model in the same way as TICs, but the inclusion of TVCs yields a random coefficient 

with a slightly different interpretation. However, examples of this type of model specification are 

scarce. It may be a useful avenue for future research to further investigate the interpretational 

complexities that arise from incorporating TVCs into NLME models.  

 

Summary 

 Social scientists working with nonlinear models face a variety of conceptual challenges. 

Unique considerations arise when choosing a model, identifying a useful parameterization, 

incorporating moderators, and incorporating covariates. Many approaches that are familiar in 

linear regression are no longer applicable for nonlinear models. Therefore, the goal of this 

chapter was to synthesize recommendations and provide guidelines for approaching each stage of 

the model selection and specification process. Ideally, these resources will be useful for 

researchers seeking to optimize the substantive utility of their nonlinear models and make 

choices that are well grounded in theory.   
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CHAPTER V 

 

EXTENDING THE JOHNSON-NEYMAN TECHNIQUE FOR MODERATED 

PARAMETERS IN NONLINEAR MODELS 

 

 In the previous chapter, I addressed a variety of conceptual and theoretical challenges that 

arise when choosing and specifying nonlinear models in social science research, including how 

to approach the incorporation of moderators. After those moderators have been incorporated, the 

model has been fit, and certain parameters are found to be significantly moderated, it is often of 

key substantive interest to extract more detail about the nature of that moderation. However, at 

present, researchers are limited in their ability to follow up on moderation results when working 

with nonlinear models.  

As noted in Chapter 1, the JN technique is considered the optimal method for plotting and 

probing statistically significant moderation. The JN technique provides rich information about 

how the moderated parameter and its standard error (SE) change as the moderator changes. 

Additionally, the JN technique enables the computation of significance boundaries, which are 

moderator values at which the parameter goes from being statistically significant to 

nonsignificant. However, the JN technique was developed for linear models. While some work 

has discussed its application to quadratic models (e.g., Kim et al., 2023; Miller et al., 2013), at 

present, use of the JN technique is restricted to intrinsically linear models. Therefore, the purpose 

of this chapter is to present novel extensions of the JN technique – both conceptual and 

mathematical – to facilitate its use for plotting and probing any linearly moderated parameter, 

particularly those in nonlinear models. 
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Conceptual Extensions of the JN Technique 

Before presenting mathematical extensions of the JN technique for use in moderated 

nonlinear models, it is important to address the conceptual extensions that are also necessary. To 

structure this discussion, I will describe how the JN technique has been used to date (i.e., in 

linear models), and then describe differences that arise for nonlinear models. 

In linear models, when moderation is introduced, the moderated quantity is almost always 

the simple slope of the focal predictor. Therefore, when the JN technique is implemented, 

significance boundaries denote the value(s) of the moderator at which the simple slope passes 

from significance to nonsignificance. However, in moderated nonlinear models, any parameter 

other than a slope may be moderated. Therefore, the JN technique must be extended such that it 

can determine the value(s) of the moderator at which any moderated parameter passes from 

significance to nonsignificance. As noted in previous chapters, the parameters of nonlinear 

models map onto a diverse array of curve attributes, including rates of change, locations along 

the x-axis of inflection points or peaks, asymptotes, wave amplitudes, and more. For many of 

these parameters, it will be necessary to conceptualize “significance” in new ways.  

Conceptualizations of significance are almost always the same in linear models. 

Generally, a slope is considered significant if it is statistically distinguishable from zero; 

significance tests for simple slopes treat zero as the null value, and the JN technique is designed 

to find moderator values at which the simple slope of x is detectably different from zero. 

However, for the parameters of nonlinear models, it may not make sense to treat zero as the null 

value. In other words, whether a parameter is statistically distinguishable from zero may not be 

useful substantive information.  
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The possibility of a nonzero null value is perhaps the most important conceptual 

extension that arises when applying the JN technique to moderated nonlinear models. As a 

running example, consider the study by Womack et al. (2022) in which Gompertz models 

characterized cognitive development among children from age 3 months to 15 years. This study 

utilized the popular parameterization of the Gompertz model:  

𝑦 = 𝑎 + 𝑏 [𝑒𝑥𝑝 (−𝑒𝑥𝑝(−𝑐(𝑥 − 𝑑)))] + 𝜀,     (5.1) 

where a is the lower asymptote, b is the difference between the upper and lower asymptotes (i.e., 

total growth), c is the average rate of growth, d is the location along the x-axis (i.e., age) at which 

growth is the fastest, and 𝜀 is the residual. Multiple moderators were found to significantly affect 

the shape of the curve. First, gestational age moderated parameters a, b, c, and d, such that earlier 

gestational age was related to a smaller lower asymptote, greater total growth, slower average 

rate of growth, and an earlier inflection point. Second, household socioeconomic status (SES) 

moderated all four model parameters, such that higher SES was related to a smaller lower 

asymptote, greater total growth, a slower average rate of growth, and an earlier inflection point. 

Third, household chaos moderated parameters b and d, such that greater household chaos was 

related to less total growth and a later inflection point.  

After identifying significant moderation, the next step is to probe these results to gain a 

more thorough understanding of how gestational age, household SES, and household chaos 

affect the development of cognitive ability. First, let us consider moderation of the inflection 

point (parameter d). Greater household chaos and lower SES were related to a later inflection 

point. Womack et al. (2022) note that an earlier inflection point is desirable in this context; 

children with a delayed inflection point exhibit their most rapid gains in cognitive ability later in 

life, meaning that throughout much of childhood they are tasked with “catching up” to their peers 
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whose most rapid development occurred earlier. Therefore, the authors note that it may be 

worthwhile for interventions to target children with a later inflection point. It would be useful to 

probe moderation results to determine the levels of SES, household chaos, and/or gestational age 

at which the inflection point is significantly delayed. The JN technique is ideal for this purpose. 

To find the moderator values at which the inflection point is significantly delayed, we 

must first define “significance” for this context. The default behavior of the JN technique is to 

find the moderator value(s) at which parameter d is significantly different from zero; however, a 

null value of zero is not sensible here. In this study, children were assessed from 3 months to 15 

years of age; there is no “age zero” within the window of observation. Testing whether the 

inflection point is significantly different from zero will not yield substantively useful 

information, as the inflection point is expected to be – and indeed is – very far from zero years of 

age among all children in the study. Therefore, we must define a different null value, or in other 

words, a different benchmark with respect to which the “significance” of parameter d should be 

determined.  

Choosing a useful null value for parameter d (or for any moderated parameter in a 

nonlinear model) will be inherently subjective; however, it is always possible to be transparent 

about how the null value was chosen. For example, we may use prior research and/or clinical 

cutoffs to determine a useful null value. Perhaps clinicians or other researchers have found that 

when most cognitive development occurs after four years of age, it becomes unlikely that the 

child will fully “catch up” to their peers by the time development is complete. In this case, four 

years of age may be a useful null value for parameter d. The JN technique would then answer: at 

what gestational age, or at what levels of household SES and chaos, does the inflection point 

become significantly different from four? Alternatively, we may use information from the 
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sample to inform our choice of null value. Among the Womack et al. (2022) sample, the mean 

age of inflection was 3.26 years, with a 95% confidence interval of [3.12, 3.41]. We may decide 

that the upper limit of the confidence interval (3.41), or one or two standard deviations above the 

mean of 3.26, should be treated as a benchmark for a “significantly” delayed inflection point.  

Similarly, results indicated that parameter b was moderated by gestational age, SES, and 

household chaos. Because parameter b reflects total growth in cognitive ability over the course 

of ~15 years, a null value of zero is not appropriate for this parameter. Indeed, the average value 

of parameter b was 17.01 with a 95% CI of [15.55, 18.47]. Parameter b is notably different from 

zero among all children in the sample, and implementing the JN technique with zero as the null 

value is unlikely to yield substantively useful information. To choose a useful null value for 

parameter b, we may again turn to information from our sample, or to clinical and/or empirical 

findings regarding cognitive development. For example, perhaps children whose total growth is 

five or fewer points tend to end up with long-term cognitive deficits. Treating five as the null 

value may allow us to identify gestational ages, SES levels, and household chaos levels that do 

and do not correspond with deficits in asymptotic (i.e., long-term) cognitive ability. Regardless 

of the null value that we choose, the JN technique enables us to find the moderator values at 

which the parameter becomes statistically distinguishable from that null value.  

It is also important to consider that it may not always be appropriate to apply the JN 

technique to moderated parameters in nonlinear models. First, it may not be possible to generate 

a useful null value. As an example, parameter c in Eq. 5.1 reflects rate of growth from the lower 

to upper asymptote. Parameter c was moderated such that earlier gestational age and higher 

household SES were related to a slower rate of growth. We could follow up on this result with 

the JN technique; however, it may not be sensible to do this, because there may not be a useful 
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null value for parameter c. Although all children’s cognitive ability is expected to improve 

throughout childhood, there may not be a certain rate at which that improvement is expected to 

occur. Perhaps rate of improvement has not been found to be as clinically important as other 

aspects of the curve – like timing of the inflection point or total growth – such that there are no 

set benchmarks at which rate of growth is considered optimal or deficient. The absence of a 

useful null value reflects that there is no specific value against which the “significance” of the 

parameter can be evaluated. In these cases, rather than evaluating the significance of the 

parameter against a certain benchmark, it may be more substantively useful to rely on descriptive 

information about moderation. For example, it may be sufficient to use pick-a-point plots to 

visualize how the parameter changes as the moderator changes. 

Second, there may not be useful substantive insight to be gained from applying the JN 

technique to a moderated parameter of a nonlinear model. Moderation of a parameter may be 

included simply to avoid model misspecification rather than to gain important substantive 

information. This is a common practice in linear models; higher intercepts often accompany 

lower slopes and lower intercepts often accompany higher slopes, such that if our goal is to 

meaningfully examine moderation of a slope, we must also moderate the intercept in order to 

obtain an accurate estimate of how the slope is moderated. As discussed in Chapter 4, this 

“omnibus” approach may also be useful for nonlinear models; for example, if working with a 

Gompertz model where we expect parameter b (total growth) to be moderated, it may be 

necessary to moderate parameter a (the lower asymptote) in order to accurately estimate how 

parameter b is moderated. In this case, the moderation of parameter a is simply included to allow 

for intraindividual variability in that parameter rather than to test specific hypotheses about 

moderation. Indeed, this may be the case for parameter a in the Womack et al. (2022) model, 
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which reflects the lower asymptote of cognitive ability. Parameter a was found to be moderated 

by gestational age and household SES; however, JN-derived information about the moderation of 

parameter a may not be useful. There may not be scientifically meaningful information to be 

gained, or hypotheses to be tested, by applying the JN technique to this result.  

As a final note, the preceding discussion of null values for certain parameters, as well as 

the applicability of the JN technique for certain parameters, is not applicable to all research 

contexts. These hypothetical examples are only illustrations with which to demonstrate the 

conceptual considerations that arise when applying the JN technique to moderated nonlinear 

models, and the rationales provided here are not universal. For example, in the context of the 

Womack et al. (2022) data, it was clear that zero would not be a logical null value for parameter 

b, which reflected total cognitive growth over the course of ~15 years. However, in other 

contexts, it may be completely appropriate to compare total growth against a benchmark of zero. 

Similarly, in the Womack et al. (2022) example, I suggested there may not be a useful null value 

for parameter c, which reflected rate of growth in cognitive ability. However, there may be many 

contexts in which there is a well-established and useful benchmark against which to compare 

growth rates (for example, perhaps scores on a standardized assessment are expected to increase 

ten points per year). In summary, the rationales provided here should not be considered universal 

to all applications of sigmoidal curves. Whether the JN technique is appropriate for a given 

moderated parameter – and if so, the appropriate null value – will be a subjective conclusion that 

varies across models, measurement scales, and research contexts.  

In summary, novel conceptual considerations arise when applying the JN technique to 

moderated parameters within nonlinear models. In many cases, the “significance” of a moderated 

parameter must be conceptualized in new ways, as comparing the parameter to a null value of 
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zero may not yield substantively useful information. Additionally, it will be important to 

consider whether implementing the JN technique is justified in the first place. In all cases, it will 

be essential to provide transparency and justification for JN-related decisions. Having addressed 

these conceptual extensions, in the following section I present a mathematical extension of the 

JN technique for use with nonzero null values.  

 

Mathematical Extension of the JN Technique 

 This section begins with a brief refresher of the key JN equations that were introduced in 

Chapter 1. Start with the simple linear regression equation for the expected value of y, 

conditional on values of x and z:  

𝐸[𝑦|(𝑥, 𝑧)] =  𝛾0 +  𝛾1𝑥 + 𝛾2𝑧 +  𝛾3𝑥𝑧,    (5.2) 

where x is the focal predictor, z is the moderator, and the 𝛾s are the estimated regression 

coefficients. The simple slope of x, which is the effect of x on y at a particular value of the 

moderator, can be expressed as:  

𝜔̂ =  𝛾1 + 𝛾3𝑧.     (5.3) 

The standard error of 𝜔̂ is the square root of its variance, which is given by: 

𝑣𝑎𝑟(𝜔̂) = 𝑣𝑎𝑟(𝛾1) + 2𝑧𝑐𝑜𝑣(𝛾1, 𝛾3) +  𝑧2𝑣𝑎𝑟(𝛾3).   (5.4) 

The first goal of this section is to establish that the JN technique can be applied to 

linearly moderated parameters in nonlinear models. To do so, we must obtain expressions for 

what I will refer to as the simple parameter (akin to a simple slope) and the standard error of that 

simple parameter.    

To obtain an expression for a simple parameter, recall that in Chapter 1 we established 

that, generally, linear moderation occurs when a model parameter varies linearly as a function of 
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the moderator. Working from this definition, it is straightforward to incorporate linear 

moderation of any parameter into a nonlinear model specification. For example, we can extend 

the Gompertz model given in Eq. 5.1, such that parameter b is linearly moderated by z:  

  𝑦 = 𝑎 + (𝑏0 + 𝑏1𝑧) [𝑒𝑥𝑝 (−𝑒𝑥𝑝(−𝑐(𝑥 − 𝑑)))] + 𝜀,   (5.5) 

where b has been replaced by 𝑏0 + 𝑏1𝑧. Here, 𝑏0 is the value of parameter b when z is zero, and 

𝑏1 is the change in parameter b when z increases by one unit. The expression for the estimate of 

the simple parameter b is given by 

𝜔̂𝑏 = 𝑏̂0 + 𝑏̂1𝑧,     (5.6) 

as this quantity reflects the estimated value of parameter b at a particular value of z. In summary, 

when any parameter is linearly moderated, the expression for the “simple parameter” is very 

similar to the expression for a simple slope given in Eq. 5.3.  

Next, we must obtain an expression for the variance (and subsequently, SE) of a simple 

parameter estimate. To do so, we can apply the delta method, which is a very general method for 

deriving the variance of a function of one or more parameters – including a linear combination of 

parameters (Dorfman, 1938; Rao, 1965; Raykov & Marcoulides, 2004). Indeed, Aiken and West 

(1991) applied the delta method to derive the variance of a simple slope given in Eq. 5.4. To 

understand how Eq. 5.4 was derived, consider that a simple slope (Eq. 5.3) is a weighted linear 

combination. The elements are the estimated parameters which make up the simple slope, 𝜸̂′ =

[𝛾1  𝛾3], and the weight vector is 𝒘′ = [1  𝑧]. More specifically, the weight vector contains the 

first partial derivatives of Eq. 5.3 with respect to each component parameter in turn (Raykov & 

Marcoulides, 2004). The variance of a linear combination in this form is a function of Σ𝛾, which 

is the asymptotic covariance matrix (ACOV) of the estimated coefficients, and the weight vector: 

𝜎𝛾
2 = 𝒘′Σ𝛾𝒘.      (5.7) 
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Aiken and West (1991) used this general fact to derive the variance of a simple slope. First, 

rewrite Eq. 5.3 as a weighted linear combination:  

𝜔̂ = (1)𝛾1 + (𝑧)𝛾3.     (5.8) 

To find the variance of 𝜔̂, use the general formula for the variance of a linear combination given 

in Eq. 5.7. Here, Σ𝛾 is still the ACOV of the estimated coefficients, and the weight vector is: 

 𝒘′ = [1  𝑧].      (5.9) 

Therefore, we have: 

𝑣𝑎𝑟(𝜔̂) = [1  𝑧] [
𝑣𝑎𝑟(𝛾1) 𝑐𝑜𝑣(𝛾1, 𝛾3)

𝑐𝑜𝑣(𝛾̂1, 𝛾3) 𝑣𝑎𝑟(𝛾3)
] [

1
𝑧

].   (5.10) 

Simplifying this expression yields Eq. 5.4.  

Aiken and West (1991) note that this method holds only for linear combinations. 

Importantly, our scope here is restricted to linear moderation, and any simple parameter that is 

subject to linear moderation can be expressed as a linear combination, such as Eq. 5.6. Therefore, 

it is possible to derive the variance (and subsequently, SE) of any simple parameter estimate 

using the delta method. As long as the model is parameterized so that the moderated quantity is 

expressed as a linear combination, we will obtain an ACOV of parameter estimates that contains 

the necessary elements to derive the variance of the simple parameter. For example, in our 

moderated Gompertz model, the simple parameter b is given in Eq. 5.6. To obtain the variance of 

𝜔̂𝑏, express 𝜔̂𝑏 as a weighted linear combination,  

𝜔̂𝑏 = (1)𝑏̂0 + (𝑧)𝑏̂1,     (5.11) 

and apply Eq. 5.7,  

  0 0 1

0 1 1

ˆ ˆ ˆvar( ) cov( , ) 1
ˆvar( ) 1

ˆ ˆ ˆcov( , ) var( )
b

b b b
z

zb b b


   
=    

   

,   (5.12) 

which simplifies to:  
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2

0 0 1 1
ˆ ˆ ˆ ˆˆvar( ) var( ) 2 cov( , ) var( )b b z b b z b = + + .    (5.13) 

The variance and covariance estimates in Eq. 5.13 will be contained within the ACOV of the 

nonlinear model’s parameter estimates.  

The expression for the variance of a simple parameter, given in Eq. 5.13, closely 

resembles the expression for the variance of a simple slope, given in Eq. 5.4. In both cases, the 

variance of the simple parameter depends on three estimates: the variance of the term which 

denotes the simple parameter when z is zero (𝛾1, 𝑏̂0), the variance of the term which denotes the 

change in the simple parameter when z increases by one unit (𝛾3, 𝑏̂1), and the covariance of those 

two terms. Eq. 5.13 shows that regardless of the complexity of the overall nonlinear model, the 

necessary elements of the ACOV pertain only to the parameter estimates within the linear 

combination.  

In summary, for any linearly moderated parameter, we can obtain expressions for the 

simple parameter estimate and its variance. This result rests on the fact that, despite being 

couched within a nonlinear model, a linearly moderated parameter can be expressed as a linear 

combination. As a result, we can apply the JN technique to any linearly moderated quantity in a 

nonlinear model.  

We are now in a position to conduct a significance test of any simple parameter at any 

value of the moderator. Therefore, we can proceed with the JN technique as we usually would. 

Let us briefly revisit the typical JN equation that was introduced in Chapter 1:  

± 𝑡𝑐𝑟𝑖𝑡 =  
𝜔̂

√var(𝜔̂)
.     (5.14) 

The JN technique reverses the process of the significance test. We first select a critical t-value 

(𝑡𝑐𝑟𝑖𝑡), then we solve for the value(s) of the moderator that yield it. The numerator of the fraction 

in Eq. 5.14 is the simple slope of x, and is replaced with Eq. 5.3. Similarly, var(𝜔̂) in the 
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denominator of the fraction is replaced with Eq. 5.4. Then, the equation can be solved for values 

of z using the quadratic formula.  

No null value is explicitly represented in Eq. 5.14 because the JN technique assumes that 

the null value (i.e., the value against which “significance” is established) is zero. Next, I will 

present a more general version of the JN technique that allows the null value to be nonzero. We 

can develop this extension using the original JN formulae that were created in the context of 

linear regression, continuing with the notation in Eqs. 5.2 – 5.4. To allow for any null value of 𝜔̂, 

which I will denote 𝜔0, expand Eq. 5.14 to:  

± 𝑡𝑐𝑟𝑖𝑡 =  
𝜔̂−𝜔0

√var(𝜔̂)
.     (5.15) 

We must rearrange Eq. 5.15 such that the equation can be solved with the quadratic formula. In 

other words, we must obtain an equation of the form:  

𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0.     (5.16) 

Begin by rearranging Eq. 5.15 so that it is set equal to zero:    

( )2 2

0
ˆ ˆvar( ) ( ) 0critt   − − =

.     

Next, substitute var(𝜔̂) with Eq. 5.4, expand the squared term, and substitute 𝜔̂ with Eq. 5.3:   

( ) ( )2 2 2 2

1 1 3 3 0 0
ˆ ˆ ˆ ˆ ˆ ˆvar( ) 2 cov( ) var( ) 2 0critt z z      + + − − − =    

( ) ( ) ( )2 2 2 2 2 2

1 1 3 3 1 1 3 3 1 3 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆvar( ) 2 cov( ) var( ) 2 2 0critt z z z z z           + + − + + + + − = .  

Distribute, then rearrange to collect the terms with 𝑧2, z, and without either: 

2 2 2 2 2 2 2 2

1 1 3 3 1 1 3 3 0 1 0 3 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆvar( ) 2 cov( ) var( ) 2 2 2 0crit crit critt t z t z z z z            + + − − − + + − =   

( ) ( )2 2 2 2 2 2 2

3 3 1 3 1 3 0 3 1 1 0 1 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆvar 2 cov( ) var( ) 2 0crit crit critz t z t t                − + − + + − + − =    

. (5.17) 

The bracketed terms in Eq. 5.17 are a, b, and c in the quadratic formula:  
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( )2 2

3 3
ˆ ˆvarcrita t  = − ,      (5.18) 

( )2

1 3 1 3 0 3
ˆ ˆ ˆ ˆ ˆ2 cov( )critb t      = − + ,    (5.19) 

2 2 2

1 1 0 1 0
ˆ ˆ ˆvar( ) 2critc t     = − + − .    (5.20) 

Importantly, if 𝜔0 = 0, then Eqs. 5.18-5.20 reduce to the a, b, and c terms that were derived for 

the original JN technique (Bauer & Curran, 2005).  

 Using the a, b, and c terms given in Eqs. 5.18-5.20, we can use the quadratic formula to 

solve for values of z, which are the significance boundaries:  

𝑧 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
.     (5.21) 

 Besides significance boundaries, another important component of the JN technique is to 

visualize the value of the simple parameter, as well as our confidence about that simple 

parameter, across all values of the moderator. We can use the expressions presented in this 

chapter for this purpose. For example, returning to the moderated Gompertz model given in Eq. 

5.5, we can use the JN technique to plot the simple parameter b along with its confidence band at 

all values of z. The confidence band will be given by:  

𝜔̂𝑏 ± 𝑡𝑐𝑟𝑖𝑡√var(𝜔̂𝑏),     (5.22) 

where both the simple parameter b and the width of the confidence band vary as a function of the 

moderator (Bauer & Curran, 2005).  

In summary, I have shown that for any linearly moderated parameter in a nonlinear 

model, it is possible to obtain expressions for the simple parameter as well as its variance. 

Additionally, I presented a more general version of the JN technique that enables us to solve for 

significance boundaries using any null value of the moderated parameter, zero or nonzero.  
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Demonstration 

 To illustrate the ideas and extensions presented above, let us revisit the Womack et al. 

(2022) example. In this section, I will present results and figures from simulated data that were 

designed to resemble those presented in the Womack et al. (2022) study. Figure 5.1 shows the 

mean function relating age to cognitive scores among the sample; using the parameterization of 

the Gompertz function given in Eq. 5.1, parameter estimates were a = 86.47 (lower asymptote), b 

= 17.01 (total growth), c = 0.58 (rate of growth), and d = 3.26 (location of the inflection point).  

 

Figure 5.1. Mean Function Relating Age to Cognitive Scores in Womack et al. (2022)  

 

 

Our simulated data make use of the fact that household SES moderated all four model 

parameters, such that higher SES was related to a smaller lower asymptote, greater total growth, 

a slower average rate of growth, and an earlier inflection point. SES was standardized such that 

its M = 0 and SD = 1. For simplicity (the real data were nested and modeled with a latent growth 

curve), data were simulated according to the following model specification:  
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     𝑐𝑜𝑔𝑆𝑐𝑜𝑟𝑒 = (𝑎0 + 𝑎1𝑆𝐸𝑆) +        

       (𝑏0 + 𝑏1𝑆𝐸𝑆) [𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−(𝑐0 + 𝑐1𝑆𝐸𝑆)(𝑥 − (𝑑0 + 𝑑1𝑆𝐸𝑆))))] + 𝜀.          (5.23)  

Data were generated according to the parameter estimates reported in Womack et al. (2022), 

such that 𝑎0 = 86.47, 𝑎1 = –1.31, 𝑏0 = 17.01, 𝑏1= 5.57, 𝑐0 = 0.58, 𝑐1 = –0.17, 𝑑0 = 3.26, and 𝑑1 =  

–1.00. Residual variance was set to 5.  

For a preliminary visualization of this moderation, we can begin by inspecting a pick-a-

point plot that displays the model-implied relation between age and cognitive score at three 

values of SES. The SES levels shown in Figure 5.2 are –1, 0, 1, which correspond to the mean   

± 1SD.  

 

Figure 5.2. Pick-a-Point Plot of Cognitive Score vs. Age at Three SES Levels. 

 

 

 The pick-a-point plot indicates that household SES has quite a pronounced effect on total 

growth of the curve. To better understand how SES affects total growth in cognitive ability, let 

us create a JN plot depicting the relation between SES and parameter b. Using the formulae 
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given in the preceding equations, we can compute and plot (1) the conditional value of parameter 

b at each observed value of SES, (2) the corresponding confidence band surrounding the simple 

parameter, and (3) significance boundaries that denote SES values at which parameter b passes 

from statistical significance to nonsignificance. We can begin by implementing the default 

behavior of the JN technique, which finds significance boundaries using zero as the null value. 

Here, the significance boundaries are –3.991 and –2.776, and we obtain the plot shown in Figure 

5.3.  

 

Figure 5.3. JN Plot for Parameter b, Using Zero as the Null Value.  

 

 

 Only one significance boundary (–2.776) is shown in Figure 5.3 because the other 

boundary (–3.991) was outside of the observed range of SES. The boundary depicted in Fig. 5.3 

indicates that when household SES is greater than –2.776, parameter b is significantly greater 

than zero. However, it does not seem sensible to treat zero as the null value here. First, it is not 
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substantively useful to assess whether total cognitive growth over ~15 years is different from 

zero. Second, the rug plot along the x-axis in Figure 5.3 – which shows the observed values of 

SES in our sample – indicates that only three individuals reported an SES level below the 

significance boundary. For basically all the children in our sample, the model implies that 

parameter b is significantly greater than zero. The lack of observed data around the significance 

boundaries, as well as the meaning of parameter b in this research context, suggest that this null 

value is not particularly useful or informative.  

 Let us recompute the significance boundaries using a more sensible null value. Again, 

suppose prior research indicates that total growth of five or fewer points is indicative of long-

term deficiencies in cognitive ability. Treating five as the null value, we find that the significance 

boundaries are –2.715 and –1.937, and we obtain the plot given in Figure 5.4. 

 

Figure 5.4. JN Plot for Parameter b, Using Five as the Null Value.  
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 Before unpacking these results, first observe the differences between Fig. 5.3 and Fig. 

5.4. In both figures, the conditional value of b and its confidence band are the same across all 

observed values of SES, as these quantities are computed independently of the chosen null value. 

However, most other components of the plot have changed because they depend on the null 

value. First, the location of the horizontal dashed line has changed. This dashed line denotes the 

null value; in Fig 5.3 it intersects the y-axis at zero, whereas in Fig. 5.4 it intersects the y-axis at 

five. Second, the vertical lines that denote significance boundaries have moved. Third, the 

shading of the confidence band – which indicates regions of the moderator where parameter b is 

significant and nonsignificant – has also changed in accordance with the significance boundaries.   

New results indicate that when household SES is less than –2.715, parameter b is 

significantly smaller than five, and when household SES is greater than –1.937, parameter b is 

significantly larger than five. At SES levels between the two boundaries, parameter b is 

statistically indistinguishable from five.  

Our findings imply that, for children whose family SES is at or below about –1.937 (i.e., 

about 2 SDs below the mean) on our standardized SES measure, additional intervention may be 

necessary to protect against long-term deficits in cognitive growth. When household SES is less 

than –1.937, model-implied total growth is either indistinguishable from five points, or is 

significantly smaller than five points. These children may show long-term cognitive deficits. On 

the other hand, when household SES is greater than –1.937, our model implies that total 

cognitive growth will be significantly greater than five points. These children are unlikely to 

show long-term cognitive deficits. In summary, we have pinpointed the SES levels at which total 

cognitive growth is and is not significantly reduced. Using the adapted version of the JN 
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technique with a nonzero null value, we have obtained more useful substantive information by 

finding the SES levels at which parameter b is detectably different from a meaningful value.  

 

Summary 

 To apply the JN technique for use in moderated nonlinear models, both conceptual and 

mathematical extensions are necessary. Conceptually, it becomes important to think critically 

about the “significance” of the moderated parameter, and whether zero is an appropriate value 

against which to compare the parameter. A nonzero null value may be more appropriate, and 

justification for the chosen value should be provided. Mathematically, after establishing that it is 

possible to obtain the necessary quantities for the JN technique for linearly moderated 

parameters in nonlinear models, I presented a more general version of the original JN formulae. 

The more general extension allows the moderated parameter to be tested for significance using a 

nonzero null value. In the following chapter, I present a software interface which incorporates 

these JN extensions.  
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CHAPTER VI 

 

CURVEBUILDER: AN INTERACTIVE NONLINEAR MODELING TOOLKIT IN 

SHINY 

 

 For social scientists seeking to implement nonlinear models in their work, a major barrier 

is a lack of accessible software tools, as detailed in Chapter 3. Given the shortcomings of extant 

software, I created an open-source application, CurveBuilder, the aim of which is to unify and 

simplify each step of the nonlinear modeling process. CurveBuilder was created in R using the 

Shiny web application framework (Chang et al., 2022) and can be accessed at 

https://haleyyaremych.shinyapps.io/CurveBuilder/. The application provides a code-free 

environment for users to complete all steps of the analysis process, including uploading data, 

visually choosing start values, specifying models, plotting results, and probing significant 

moderation. This chapter begins by documenting the functionality of the application, followed by 

multiple examples of its use.  

 

CurveBuilder Documentation 

 

Visualize Curves  

 The Visualize Curves tab is intended to be a learning tool for researchers to familiarize 

themselves with popular nonlinear models and their parameters. There is no need to upload one’s 

own data in order to use this tab. In this tab, the selected curve is plotted, and as users adjust 

parameter values, the plot updates. This display makes it easy to understand how each parameter 

governs the appearance of the curve. Ideally, this feature will help researchers understand which 

https://haleyyaremych.shinyapps.io/CurveBuilder/
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model parameters are theoretically important and/or which parameters may be expected to be 

moderated.  

 There are a variety of pre-specified nonlinear functions available to view in this tab. 

Additionally, there is a “Write my own function” option, where the user can enter any equation 

with up to 5 parameters. This option is intended for nonlinear functions that are not included as 

pre-specified options, or for different parameterizations of the functions that are provided.  

 There are a few simple display options for the plot created in this tab. First is the “lock y-

axis scale” checkbox, which, if checked, locks the y-axis range at -10 to 10. If unchecked, the y-

axis will auto-scale to the curve. If viewing a custom curve, the user can also edit the minimum 

and maximum values of the x-axis.  

 An error message may appear if the user enters a custom function with incorrect syntax. 

See Using the custom curve option, below, for more detail about how to use the custom curve 

functionality.  

 

Data Upload 

 The Data Upload tab allows the user to begin working with their own data, which can 

later be used to fit models and create plots. Accepted file types are .csv, .sav, and .xlsx. Prior to 

uploading their data to CurveBuilder, users should conduct any necessary data cleaning and pre-

processing, as this functionality is not available in-app. For example, if planning to fit a model 

containing a multicategorical predictor, the user should create coding variables prior to data 

upload (coding variables can be any type). Additionally, variable centering is not conducted in-

app, so any desired centering and scaling should be conducted prior to data upload. Finally, if 

using a mixed-effects model for grouped data, data must be in long format.  
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 Upon data upload, the app conducts basic checks to avoid downstream errors. First, any 

date variables (e.g., variables of the POSIXct class) are converted to character variables. Second, 

if a column name is duplicated, “.1” is appended to the second instance of the column name. For 

example, if two columns are named ID, then the second ID column will be renamed to ID.1.  

 

Preview Start Values  

 When fitting nonlinear models, start values for each parameter are required. These start 

values should yield a curve that corresponds relatively well with the data, or else convergence 

problems are likely. However, it can be difficult to generate adequate start values. The goal of 

the Preview Start Values tab is to ease this burden. In this tab, users can plot their observed data 

with a nonlinear curve overlaid. Parameter values can be adjusted until the curve appears to 

follow the data well. Those parameter values can then be imported as start values when the 

model is fit later, in the Create Model tab. The user simply selects a variable for the x-axis, a 

variable for the y-axis, a nonlinear function to display (pre-specified or custom), and can then 

begin adjusting parameter values until the curve corresponds well with the data. 

 There are a few plot options in this tab. First, rather than plotting all observations, the 

user may plot a random subsample of the data. This option is recommended for very large data 

sets (Cudeck & Harring, 2007); in addition to decluttering the plot, which can make it easier to 

visually identify trends, this option will also speed up the rendering of the plot. For very large 

data sets (i.e., tens of thousands of rows), plots may take a few minutes to render if plotting all 

observations. Second, the user may color-code the scatterplot according to a moderator. This 

functionality is intended to help the user get a sense of whether certain aspects of the curve (i.e., 

parameters) may be moderated, and if so, what reasonable start values for the effect(s) of the 
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moderator may be. If the moderator is categorical, the plot will be colored by each unique value 

of the moderator found in the data set. If the moderator is continuous, the moderator will be 

grouped into quintiles (five groups, which each contain 20% of the moderator values), and the 

plot will be color-coded according to moderator quintiles.  

 An error message may appear if one of the selected variables makes it impossible to 

create the plot (“Plot couldn’t be created. Selected variable(s) may be of wrong type”). This may 

occur if the user selects an x-variable that has all NA values, takes on just one unique value in the 

data set, or is read as a factor rather than a numeric variable. An error message may also appear 

if the user enters a custom function with syntax errors. See Using the custom curve option, 

below, for details about troubleshooting these errors.  

 

Create Model  

 The goal of the Create Model tab is to provide a code-free environment for users to 

specify and fit nonlinear models, which may include random effects and/or moderation. Required 

input from the user includes (1) a nonlinear function, (2) a predictor and outcome variable, and 

(3) start values for model parameters. All other input is optional. The outcome variable should be 

continuous, as the app cannot accommodate generalized nonlinear models.  

Entered start values should yield a curve that corresponds with the data relatively well. 

The Preview Start Values tab may be helpful for identifying good start values; start values 

identified in the Preview tab can be easily imported by clicking the Import start values from 

Preview tab button. As a note, some readers may be aware that there are self-starter functions 

available in R, which automatically generate start values for a given nonlinear model (see 

Miguez, 2022; Onofri, 2020; Pinheiro et al., 2023; Ritz et al., 2015; Ritz & Streibig, 2008). Self-
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starter functions are not implemented in CurveBuilder because they are highly specific to a given 

parameterization of a given nonlinear model; any changes or adjustments to that model 

necessitate a new self-starter function. For example, a Gompertz model with moderated 

parameter a and a Gompertz model with moderated parameter b require different self-starter 

functions. Therefore, the exclusion of self-starters enables maximal generality in terms of the 

nonlinear models, parameterizations, and moderation that the user may specify.    

Model Options 

If the user chooses to add moderation to the model, they will be required to indicate the 

parameter(s) that are moderated, moderator(s) for each of those parameters, and start values for 

each moderating effect. Any number of moderators can be added for any number of model 

parameters. Moderators can be continuous, binary, or multicategorical, in which case the user 

should enter the set of coding variables as moderators (any type of coding variable is allowed). 

Choosing start values for moderating effects is a required step. These start values can be thought 

of as the moderator’s expected effect on the parameter; as the moderator increases by one unit, 

by how much is the moderated parameter expected to change? See Examples 1 and 2, below, for 

more detail.  

 The user may also choose to treat some parameters as random, creating a NLME model. 

If so, the user should simply indicate the name of the grouping variable and which model 

parameters should be treated as random, and should make sure data are in long format.  

Options for Troubleshooting Nonconvergence 

If attempting to fit a model that fails to converge, CurveBuilder offers a few options for 

users to try, each of which may help with convergence. First, the user may adjust the maximum 

iterations that will occur before the maximum likelihood algorithm stops. By default, this is set 
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to 50 (consistent with both nls and nlme defaults), but if experiencing convergence problems, it 

may help to increase this number.  

Second, the user may adjust the tolerance for the convergence criterion. For models 

without random effects, tolerance is set to 1×10-5 (consistent with nls defaults), and for models 

with random effects, tolerance is set to 1×10-6 (consistent with nlme defaults). Making the 

criterion less strict (i.e., making it larger) may help achieve convergence. The maximum 

likelihood algorithm stops when likelihood values obtained from adjacent iterations change by an 

amount that is less than the convergence criterion; this signals that model estimates are not 

changing much from iteration to iteration, meaning the model has converged. Therefore, a less 

strict tolerance makes it easier for the convergence criterion to be reached.  

Third, the user may toggle on the option to show the results from the final iteration. This 

option coincides with the returnObject argument in nlme, and the warnOnly argument in nls. By 

default, these are each set to FALSE, but turning on the toggle sets them to TRUE. If turned on, 

CurveBuilder will return results that were obtained on the final iteration of the estimation 

algorithm, even if convergence was not achieved at this point.  

R Code  

As the user specifies the model, the app builds the appropriate R code to fit the model. If 

there are no random effects, the app constructs a call to the nls function in base R. If there are 

random effects, the app constructs a call to the nlme function from the nlme package (Pinheiro et 

al., 2023). The first requirement of both nls and nlme is a nonlinear function representing the 

relation between x and y. The app starts with code for the nonlinear function given by the user 

(either prespecified or custom) and modifies that code to contain the correct variable names, as 

well as to reflect any moderation that is specified.  
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When the “Show R Code” option is switched on, the user can view the R code that is 

being generated as they specify the model. This may be helpful to ensure correct specification 

and for learning purposes. If the “Show R Code” switch is turned on and changes are made to the 

model, simply turn the switch off and back on to view these changes in the R code. Additionally, 

this R code may be copy-and-pasted into the user’s local R environment. From there, the model 

could be run locally (rather than in-app), which may be helpful for very large or complex models 

that are expected to take a long time to converge. Finally, the user may use this R code as a 

starting point for specifying a more advanced model, perhaps with additional features that are not 

enabled by the app (e.g., fitting a custom model with more than five base parameters, specifying 

an autocorrelation structure, modeling heteroscedastic variance, etc.). For a discussion and 

examples of incorporating the latter advanced features, see Davidian and Giltinan (1995) and 

Blozis and Harring (2021).  

Next, we will review a variety of code examples to demonstrate correspondence between 

model specification and the R code that is created by CurveBuilder. In Example 1, we suppose 

the user selects the Gompertz model with no moderation and no random effects. For simplicity, 

let the predictor variable be x and the outcome be y. Code for the Gompertz model is: 

y ~ a + b*(exp(-exp(-c*(x-d)))),   (6.1) 

and after the user has specified start values, the final nls call will look like this:  

model = nls(y ~ a + b * (exp(-exp(-c*(x-d)))),  

  data = data,  

 start = c(a = 2, b = 2, c = 1, d = 5),  

     control = nls.control(maxiter = 50, 

       tol = 1e-05, 

                            warnOnly = FALSE),  

 na.action = na.omit) 
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In Example 2, suppose the user selects a Gompertz model with no random effects, but 

indicates that a variable called mod should moderate parameter b. To incorporate this 

moderation, the code is updated as follows:  

y ~ a + (b0 + b1*mod)*(exp(-exp(-c*(x-d)))).  (6.2) 

Notice that parameter b has been replaced with (b0 + b1*mod), such that b0 is the value of 

parameter b when mod is zero, and b1 is the change in parameter b when mod increases by one 

unit. After the user has specified start values and made any other desired adjustments, the final 

nls call will look like this:  

model = nls(y ~ a + (b0 + b1*mod) * (exp(-exp(-c*(x-d)))),  

  data = data,  

 start = c(b1 = 3, b0 = 2, a = 2, c = 1, d = 5),  

     control = nls.control(maxiter = 50, 

       tol = 1e-05, 

                            warnOnly = FALSE),  

 na.action = na.omit) 

Notice that the nls call now contains start values for b0 and for b1. In CurveBuilder, the start 

value entered for b will be treated as the start value for b0. Additionally, an input box will appear 

where the user can specify the start value for “mod on b,” which is mod’s effect on b, which is 

the parameter b1.  

For Example 3, suppose the user has selected a Gompertz model with no moderation, but 

has specified that parameters c and d should be treated as random effects. Because random 

effects are involved, the app will construct a call to nlme. Code for the unmoderated Gompertz 

model remains the same as (6.1). Once the user has specified the grouping variable, start values, 

and any other adjustments, the final nlme call will look like this:  
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model = nlme(y ~ a + b*(exp(-exp(-c*(x-d)))),  

 data = data,  

 fixed = a + b + c + d ~ 1,  

 random = c + d ~ 1,  

 groups = ~grp,  

 start = c(a = 2, b = 2, c = 1, d = 5),  

 control = nlmeControl(maxIter = 50, 

                            tolerance = 1e-06, 

                            returnObject = FALSE),  

    na.action = na.omit) 

In Example 4, we will add complexity to the model in Example 3 by specifying that 

parameter b is moderated by the variable mod. Because parameter b is not random, the function 

code will be updated identically to (6.2). The final nlme call looks like this:  

model = nlme(y ~ a + (b0 + b1*mod)*(exp(-exp(-c*(x-d)))),  

 data = data,  

 fixed = a + b0 + b1 + c + d ~ 1,  

 random = c + d ~ 1,  

 groups = ~grp,  

 start = c(b1 = 3, b0 = 2, a = 2, c = 1, d = 5),  

 control = nlmeControl(maxIter = 50, 

                            tolerance = 1e-06, 

                            returnObject = FALSE),  

    na.action = na.omit) 

Finally, for Example 5, we can add to the model by specifying that parameter b is 

moderated by mod, and that parameter b is a random effect. Code for this scenario is adapted 

from the code introduced by Grimm et al. (2016) for linear mixed growth models with time-

invariant covariates. The function code will be updated as follows:  

y ~ a + (b0 + b1*mod + bResid)*(exp(-exp(-c*(x-d)))).    (6.3) 
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Here, parameter b has been replaced with (b0 + b1*mod + bResid). Parameter b now contains a 

moderated fixed component and a random component. The final nlme call will look like this:  

model = nlme(y ~ a+(b0 + b1*mod + bResid)*(exp(-exp(-c*(x-d)))),  

 data = data,  

 fixed = a + c + d + b0 + b1 ~ 1,  

 random = a + bResid + c ~ 1,  

 groups = ~grp,  

 start = c(b1 = 3, b0 = 2, a = 2, c = 1, d = 5),  

 control = nlmeControl(maxIter = 50, 

                            tolerance = 1e-06, 

                            returnObject = FALSE)),  

    na.action = na.omit) 

Troubleshooting  

If the model converges, then in the Create Model tab, “Success message will appear 

here…” is replaced with “Model successfully converged!” in green. Otherwise, R delivers an 

error, and a simplified error message will be shown in-app. Errors are caused by either user error 

or convergence failure. The app begins by checking for signs of user error. If not using the 

custom curve option, user errors are simple (e.g., a missing start value) and will be clearly 

communicated in the error message. If using the custom curve option, user error may arise from 

syntax errors in the custom equation. See the following section, Using the custom curve option, 

for details.  

If user error is not detected, the app searches R’s error message for keywords that 

indicate convergence failure (e.g., “singular”, “singularity”, “convergence”). When these 

keywords are found, the app shows a simple message, “The model failed to converge. Try 

entering different start values or simplifying model” to remove the user burden of deciphering a 

cryptic error message. If the app cannot find a keyword, it will simply display the original error 
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message with “The following error occurred:”. However, even in these cases, the error message 

usually indicates convergence failure.  

 

Using the Custom Curve Option  

 The custom curve option – found in the Visualize Curves, Preview Start Values, and 

Create Model tabs – greatly enhances the generality of the app by allowing the user to visualize 

and fit any nonlinear (or linear) model. However, the custom function entered by the user must 

be written with syntax that is readable in R. Therefore, care must be taken by the user to ensure 

that the custom function is valid and has appropriate syntax. The purpose of this section is to 

provide guidelines for writing custom functions that are appropriate for R.  

Parameter and Variable Names  

The custom function may contain up to five parameters. (However, in the Create Model 

tab, additional parameters can be added to the model by including any number of moderators, so 

the final model may have more than five parameters). Any parameters contained within the 

custom function must also be listed in the boxes below. Users should be sure to double check 

that the parameters listed in the custom function are also listed in the boxes, and check for typos 

– any discrepancies will result in an error message and a model that fails to converge. Parameters 

can have any name (e.g., “a”, “alpha”, “a0”), but parameter names cannot begin with a number 

or contain punctuation (e.g., “0a”, “a.”). Parameter names are not treated as case sensitive. 

Naming one parameter “a” and naming another parameter “A” will result in two parameters with 

the same name, leading to an error. The function should contain “x” and should not contain any 

variable names from the data set. The function should not contain “y =” or “y ~”. Following 

these guidelines will ensure that plots and models are created correctly by the app.  
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Syntax Guide  

If the custom function contains R syntax errors, this will result in an error message and a 

model that fails to converge. Refer to Table 6.1 for a simple syntax guide for custom functions. 

Additionally, it is strongly recommended that users do write custom equations from scratch and 

do not copy and paste equations from LaTeX or any other equation display system. Copy-and-

pasted equations likely contain R syntax errors; for example, there may be missing asterisks (*) 

for multiplication, and symbols such as dashes and asterisks may be unreadable in R.  

Adding Moderation  

In the Create Model tab, any custom parameter may be moderated. Parameter names will 

auto populate in the appropriate input boxes, enabling the user to add moderation by point-and-

click. Users should add moderators to the custom function with these point-and-click input 

boxes, and should not add moderation into the custom equation. If moderation is indicated in the 

custom equation but not with point-and-click input boxes, this will not be recognized by the app 

as moderation, and later functionality that is specific to moderated parameters (i.e., pick-a-point 

plots, Johnson-Neyman plots) will not be available.  

Troubleshooting  

If using the custom curve option in the Visualize Curves and Preview Start Values tabs, 

error messages are the result of user error. Check for syntax issues, as well as mismatches 

between the parameter names in the custom equation and the parameter names in the boxes 

below. In the Create Model tab, the model may fail to converge due to user error, or because the 

model is too ill-fitting or complex. Some straightforward user errors can be caught by the app 

(e.g., the custom equation does not contain “x”), and if these errors are detected, a simple error 

message will be displayed in-app. However, some syntax errors cannot be caught until the model 
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is fit and fails to converge. Therefore, if a custom model fails to converge, check carefully for 

syntax errors and/or parameter name mismatches. If all user errors have been corrected and the 

model still fails to converge, the model is likely too complex or ill-fitting, or the starting values 

need to be adjusted.  

 

Table 6.1. Syntax Guide for Custom Functions.  

Rule Good Example(s) Bad Example(s) 

 

Multiplication must be 

indicated with an asterisk (*) 

a*x a(x) 

ax  

a∗x [center asterisk copied 

from a LaTeX equation] 

 

Powers must be indicated 

with a carat (^) 

x^3 

x^b 

x^-1 

x^1/2 

 

x3 

x**3 

xb 

 

Euler’s number (e) must be 

indicated with exp() 

exp(b) 

exp(7) 

expb 

e(b) 

e^b 

e7 

e(7) 

e^7 

 

Subtraction must be indicated 

with a short dash (-) 

b - c b – c [long dash copied from 

a LaTeX equation] 

 

Open parentheses must be 

accompanied by closed 

parentheses 

 

a + b*(x^c) a+b*(x^c 

Operators and/or symbols 

must be readable by R  

 

Note: by default, the log() 

function computes log base 

10  

pi 

sqrt(x) 

sin(x) 

cos(x) 

tan(x) 

log(x) [log base 10] 

log(x, 20)  [log base 20]  

 

ln(x)  

inv(x) 

inverse(x) 
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Results 

 If the model converges, the Results tab populates with model information and output 

tables. The model selection and performance indices are the log likelihood, AIC, BIC, and root 

mean squared error (RMSE), which have been widely recommended for the evaluation of 

nonlinear models (e.g., Archontoulis & Miguez, 2015; Cho et al., 2022; Wallach, 2006).  

The Parameter Estimates table contains fixed effect estimates and their precisions. If 

moderation has been included in the model, the name of each moderated parameter (e.g., b) is 

replaced by multiple parameters (e.g., b0 and b1). If parameter b is moderated, then b0 is the 

estimated value of b when the moderator is zero, and b1 is the estimated change in parameter b 

when the moderator increases by one unit. The parameter name will be accompanied by the 

moderator name to clarify these results. If parameter b is moderated by Age and Gender, then the 

table will contain rows showing b0, b1 (Effect of Age on b) and b2 (Effect of Gender on b). If the 

model includes random effects, then the Random Effect Variances table also appears. This table 

shows the level-2 variance and standard deviation (SD) of each random parameter, level-2 

correlations among the random parameters, as well as level-1 residual variance and SD. 

Additionally, the user may choose to display the asymptotic covariance (ACOV) matrix of 

parameters, the asymptotic correlation matrix of parameters, and/or the raw R output for the 

model. All tables in the Results tab can be copy-and-pasted directly into a Word document; they 

will copy as tables and will maintain their formatting. 

 

Plots 

 The Plots tab has four parts, each of which yields plot(s) that enable the user to evaluate 

the model’s fit to the data, visualize results, and test hypotheses about moderation if applicable.  
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Model Evaluation 

This tab contains four plots. First, the residuals vs. fitted y-values plot is useful for 

evaluating residual homoscedasticity, and for identifying any remaining patterns in the data that 

are not accounted for by the model (Motulsky & Christopoulos, 2004; Seber & Wild, 1989). For 

models without random effects (i.e., those created with nls), the plot displays standardized 

residuals. For models with random effects (i.e., those created with nlme), the plot displays level-

1 conditional standardized residuals, consistent with the recommendations given in Cho et al. 

(2022). Second, the residual autocorrelation plot is helpful for assessing the independence of 

residuals, particularly within longitudinal data. The x-axis of this plot is lag, where lag = 1 means 

the residual for observation t is correlated with the residual for observation t-1, and lag = 2 

means the residual for observation t is correlated the residual for observation t-2, and so on. The 

x-axis ranges from lag = 0 to lag = 15. The y-axis of this plot is the average correlation of the 

given pair of residuals. Third and fourth, this tab displays a histogram of standardized residuals 

and a QQ-plot of standardized residuals, each of which are useful for evaluating whether the 

residuals are normally distributed (Cho et al., 2022).  

Observed Data and Fitted Values  

Here, the observed predictor and outcome variables are plotted with fitted values from the 

model. This plot is helpful for ensuring that model-implied values correspond well with the 

observed data. For models without random effects (nls objects), fitted values are obtained via the 

fitted() function in R. For models with random effects (nlme objects), fitted values are obtained 

from the fitted values attribute of the model (e.g., model$fitted); from here, population fitted 

values are extracted, which correspond to the fixed effects only (see Pinheiro et al., 2023). The 
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plot is created with geom_smooth() from the ggplot2 package (Wickham et al., 2016). The axis 

labels and title can be easily edited to prepare the plot for inclusion in a publication.  

The fitted values can also be viewed with a confidence band. The band shown in the plot 

is a 95% confidence band obtained through simulation. Here, we assume that the parameter 

estimates follow a multivariate normal distribution; the means are the parameter estimates given 

in the Results tab (for nlme models, the fixed effect estimates), and the (co)variances are the 

ACOV of the parameter estimates also shown in the Results tab. To obtain the confidence band, 

1000 sets of parameter estimates are drawn from this multivariate normal distribution, and fitted 

y-values are obtained for each set of parameter estimates. Finally, the 2.5th and 97.5th percentiles 

of these y-values are extracted, and those percentiles are plotted to create the confidence band. 

For further detail about simulation-based confidence bands, see Bolker (2008).     

Pick-a-Point  

Pick-a-point plots display the relation between x and y at different values of the 

moderator. The focal predictor is on the x-axis, and the y-axis is the predicted value of y given x 

and given a certain value of the moderator. If the model contains multiple moderators, only one 

moderator can be plotted at a time. 

Predicted values are obtained with the predict() function in R, which works for both nls 

and nlme objects. If there are other moderators in the model – besides the moderator that is the 

basis of the pick-a-point plot – they are held constant at their means when computing predicted 

values. If working with a nlme object (i.e., a NLME model), predictions are population level.  

The pick-a-point plot created in CurveBuilder is highly customizable. First, along with 

predicted values, the plot also displays the observed data, and this feature can be switched on or 

off. Second, the user may choose to display the moderator with color-coding or with paneling. If 
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using color-coding, there is an option to convert to grayscale (e.g., if grayscale is needed for 

publication). Whether using color-coding or paneling, the moderator legend, axis labels, and title 

are always editable.  

The app can create pick-a-point plots for a continuous, binary, or multicategorical 

moderator. If the moderator is binary, no further user input is needed. The user should ensure the 

binary variable takes on only two values in the data set (besides missing values). If the moderator 

is indicated to be binary but more than two values are detected, the plot will not render.  

If the moderator is multicategorical (i.e., has three or more categories), the user must 

indicate how many categories there are (the app can accommodate up to 20 categories) and select 

the coding variables that represent the multicategorical variable. Any type of coding variable 

(e.g., dummy codes, (un)weighted effect codes, contrast codes) is allowed. If there are k 

categories, the user should ensure that k – 1 coding variables are selected. Internally, the app 

iterates through the rows of the data set and stores each unique pattern that the coding variables 

take on (e.g., if there are three dummy codes, 1,0,0; 0,1,0; 0,0,1; 0,0,0). Based on these patterns, 

the app creates a single categorical variable that is used to color-code or panel the plot. The 

coding variable patterns that correspond with each category are displayed in-app, so the user can 

update the moderator labels appropriately. See Example 2 for more detail.  

If the moderator is continuous, the user may plot three or five values of the moderator. 

The user must indicate these moderator values (the plot will begin rendering once the user begins 

entering them). To help choose moderator values, the app displays the moderator mean and SD. 

If plotting three values, the user may choose to plot the mean ± 1SD. Similarly, if plotting five 

values, the user may wish to plot the mean ± 1SD and ± 2SD. However, any values may be 

entered here. Once the user enters moderator values, the data will be binned according to the 
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small multiples procedure described by McCabe et al. (2018). As an example of how this binning 

occurs, suppose the moderator’s mean = 0, SD = 1, and range is -3 to 3. Next, suppose the user 

has entered five moderator values to be plotted: -2, -1, 0, 1, and 2. The data will be binned as 

follows: bin 1 = [-3, -1.5], bin 2 = [-1.5, -0.5], bin 3 = [-0.5, 0.5], bin 4 = [0.5, 1.5], and bin 5 = 

[1.5, 3]. Bins are created by finding the halfway point between each entered moderator value. 

Then, the observed data are color-coded or paneled according to bin.  

Johnson-Neyman  

Johnson-Neyman (JN) plots offer a more detailed method for understanding and testing 

hypotheses about moderation. Here, the x-axis is the moderator, and the y-axis is the conditional 

value of the moderated parameter. This plot is available only for continuous moderators. If the 

model contains multiple continuous moderators, only one can be plotted at a time. 

When JN plots are used for linear models, the moderated quantity on the y-axis is always 

a simple slope, i.e., the slope of the focal predictor conditional on the value of the moderator. In 

CurveBuilder, because any parameter of any nonlinear model may be moderated, the y-axis may 

contain any simple parameter, i.e., any parameter that is conditional on the value of the 

moderator, such as a simple asymptote or a simple rate of growth. The line in the JN plot depicts 

this simple parameter, and the surrounding confidence band depicts the standard error of the 

simple parameter. For details about how this simple parameter and its standard error are 

computed, see Chapter 5.  

The app also computes significance boundaries for the JN plot. These significance 

boundaries depend on the null value for the moderated parameter, which is specified by the user. 

Significance boundaries are denoted by a solid vertical line, and the null value is denoted by a 

dashed horizontal line in the plot. By default, the null value is zero, but this can be changed 
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depending on the parameter and the research context (see Chapter 5 for a discussion of nonzero 

null values in moderated nonlinear models). If the null value is zero, then the significance 

boundaries indicate the moderator values at which the parameter goes from being significantly 

different from zero to non-significantly different from zero (using alpha = .05). In other words, 

significance boundaries indicate the moderator values at which the confidence band transitions 

from containing zero to not containing zero. The same logic applies to nonzero null values; for 

example, if the user indicates a null value of two, then the app implements the equations given in 

Chapter 5 to find the moderator values at which the parameter goes from being significantly 

different to non-significantly different from the new null value; the plot and significance 

boundaries are updated accordingly. Significance boundaries are displayed in the plot only if 

they fall within the observed range of the moderator. Thus, although up to two significance 

boundaries may exist, the plot may display one or zero.  

Beneath the plot, a short sentence about the significance boundaries is displayed. 

Significance boundaries are presented here regardless of whether they are within the observed 

range of the moderator. Additionally, if there are two significance boundaries, the app indicates 

whether the parameter is significant between or outside the boundaries. 

The JN plot has many customizable features. First, a rug plot is displayed along the x-

axis, which depicts observed values of the moderator. This feature may be switched on or off, 

but keeping it on is recommended. If there are regions of the moderator where observed values 

are sparse, then conditional values of the moderated parameter in these regions may need to be 

interpreted with caution. (For example, if the moderator ranges from -3 to 3, but there are only 

two observations that are >2, then conditional values of the moderated parameter when the 

moderator is >2 are likely unreliable.) Second, the confidence band is color-coded according to 
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statistical significance, and this color-coding may be converted to grayscale if needed for 

publication purposes. Finally, the axis labels and the plot title are editable.  

 

CurveBuilder Examples 

 

Example 1: Custom Functions and a Continuous Moderator 

 In this example, we will explore the utilities available in CurveBuilder for creating 

custom functions, as well as visualizing results when the model involves a continuous moderator. 

We will work with a simulated data set inspired by Ren et al. (2022). The goal of this study was 

to characterize the relation between frequency of social interactions and psychological wellbeing. 

The authors sought to compare multiple competing hypotheses about this relation. First, the 

“More is Better” hypothesis assumes a linear relation between interaction quantity and 

wellbeing. Second, the “Inverted U” hypothesis can be roughly approximated by a quadratic 

relation, such that more interaction promotes greater wellbeing, but at the highest interaction 

frequencies, there is a detrimental effect. Third, the “Diminishing Returns” hypothesis posits that 

at the highest levels of interaction quantity, interaction quantity has little impact on wellbeing, 

meaning the effect of interaction quantity levels off. Ren et al. (2022) evaluated these hypotheses 

by comparing the fit of linear, quadratic, and piecewise linear models. In this example, we will 

compare these same models, but we will replace the piecewise linear model with a nonlinear 

curve indicative of “diminishing returns.” Finally, the authors explored whether extraversion 

moderated the relation between interaction quantity and wellbeing; these results were null, but 

for demonstrative purposes, our simulated data will yield significant moderation that is 

consistent with the authors’ hypotheses.    



 

145 

 

Step 0: Visualize Curves  

One goal of this analysis is to characterize the “Diminishing Returns” hypothesis with a 

nonlinear model rather than a piecewise linear model. (For a discussion of the advantages of 

nonlinear models for assessing hypotheses of “diminishing returns” or “plateauing associations,” 

see Chapter 2.) To explore our options, we can make use of the Visualize Curves tab. Within this 

tab, there is a group of functions listed under the exponential category, which yield curves that 

are consistent with the diminishing returns hypothesis. For each of these functions, we can read 

about the parameters that control the shape of the curve and use the available sliders to further 

understand each parameter. Upon exploring each option, we may note that the Jenss-Bayley 

function and the Preece-Baines function each assume a two-phase relation between x and y; there 

are parameters that govern the first “phase” of the curve and parameters that govern the second 

“phase” of the curve. Because our current hypothesis does not posit a two-stage relation, we may 

choose to eliminate these options. Therefore, we can further explore the Three-Parameter 

Exponential (3PE) function (Fig. 6.1) and the Michaelis-Menten (MM) function (Fig. 6.2).  
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Figure 6.1. Three-Parameter Exponential Function in the Visualize Curves Tab.  

 

 

 

 

Figure 6.2. Michaelis-Menten Function in the Visualize Curves Tab. 
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These functions yield curves that correspond well with our hypothesized trend. 

Parameters a and b are interpreted similarly in the two functions, but the meaning of parameter c 

differs. In the 3PE function, parameter c is the rate of change, whereas in the MM function, 

parameter c is the location along the x-axis at which 50% of change has occurred. While either 

interpretation could be useful, parameter c of the MM function often yields more concrete 

insights (McNeish et al., 2023). Let us proceed with the MM model for further analyses.  

Step 1: Data Upload 

Upon uploading our data, we see a summary of the variables available to us (Fig. 6.3): 

intQuant is interaction quantity, which ranges from 1 to 7. In Ren et al. (2022), this was the mean 

of three items that assessed how often participants spent an evening with family, someone from 

their neighborhood, or a friend. ev is the Extraversion factor from the Big Five, which has been 

standardized. wb is psychological wellbeing, which was an average of three measures which 

assessed happiness, life satisfaction, and social wellbeing on a scale ranging from 0-10.    

 

Figure 6.3. Interaction Quantity Data Summary in Data Upload Tab.  

 

 

Step 2: Preview Start Values 

Next, we will use the Preview Start Values tab to identify parameter values for the MM 

model that correspond with our data relatively well. Because the data set is large (10,000 rows), 
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we will plot a subsample of the data for a less cluttered display. Any size subset of the data can 

be plotted here, but we will maintain the default value of a 25% random sample. After indicating 

our predictor and outcome variables, we see that parameter values of a = 3.5, b = 3, and c = 2.5 

yield a relatively well-fitting curve (Fig. 6.4.). 

  

Figure 6.4. Preview Start Values Tab with Michaelis-Menten Curve.  

 

 

Steps 3 and 4: Create Model and Results 

In this section, we will alternate between the Create Model and Results tabs to 

demonstrate the process of fitting multiple models and carrying out model selection. Let us begin 

by fitting the MM model, which is consistent with the Diminishing Returns hypothesis. To fit 

this model in the Create Model tab, we simply select Michaelis-Menten as our desired function, 

indicate intQuant and wb as our predictor and outcome variable, and import the start values that 
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were just identified in the Preview tab. Additionally, we specify that all three parameters are 

moderated by ev. CurveBuilder then prompts us to enter start values for the effects of ev on 

parameters a, b, and c. As ev increases by one unit, about how much do we expect parameters a, 

b, and c to change? To increase the likelihood of convergence, we should consider any prior 

knowledge and hypotheses when choosing these start values. Ren et al. (2022) suggest “less 

extraverted individuals may be more likely to experience reduced wellbeing at high levels of 

interaction quantity” (p. 1069). For less extraverted people, wellbeing may be lower at the 

highest levels of intQuant, meaning that for more extraverted people, wellbeing may be higher at 

the highest levels of intQuant. To incorporate this expectation into our start values, note that 

parameter b governs the vertical distance between the intercept and the asymptote of the curve. 

For more extraverted people, the asymptote may be higher, as it corresponds with wellbeing at 

the highest levels of intQuant. Therefore, we can enter a positive start value (say, 1) for the effect 

of ev on parameter b. We have insufficient information to inform start values for the effect of ev 

on parameters a and c, so we can leave these at zero. After entering these specifications and 

clicking Fit Model, the text under the button changes from “Success message will appear 

here…” to “Model successfully converged!”, meaning the model converged (Fig. 6.5).  

In the Results tab (Fig 6.6), we see a table of parameter estimates. Note that parameter a 

has been replaced with a0 and a1 (Effect of ev on a), such that a0 is the estimated intercept when 

the moderator ev is zero, and a1 is the estimated change in the intercept when ev increases by 

one unit. Similarly, parameter b has been replaced with b0 and b1 (Effect of ev on b), such that 

b0 is the estimated total growth when ev is zero, and b1 is the change in total growth when ev 

increases by one unit. We also see that AIC = 28426 and BIC = 28477 for the MM model. 
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Figure 6.5. Fitting the Moderated MM Model in the Create Model Tab.  

 

 

Figure 6.6. Results Tab for the Moderated MM Model.  

 

 

Next, we must compare the MM model to the linear and quadratic models, which 

correspond with the More is Better and Inverted U hypotheses, respectively. We can create these 

linear models as custom functions. (Although these models will be created via calls to nls, or to 
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nlme if random effects are included, both can accommodate linear models.) Let us begin by 

returning to the Create Model tab and specifying the moderated linear model. We simply enter 

the linear model, b0 + b1*x, into the custom function input box, and in the boxes below, indicate 

that b0 and b1 are the model parameters. Additionally, we specify ev as a moderator of both b0 

and b1. Because good start values are not essential for linear models, we can leave all start 

values at zero for simplicity. Upon fitting the model, the Create Model tab indicates that 

convergence was achieved (Fig. 6.7).  

In the Results tab (Fig. 6.8), parameter names have been updated like they were in the 

MM model; b0 has been replaced with b00 and b01 (Effect of ev on b0), and b1 has been 

replaced with b10 and b11 (Effect of ev on b1). The model converged after 1 iteration because 

iterative estimation is not necessary for linear models. We also see that for this model, AIC = 

28662 and BIC = 28698. AIC and BIC for the linear model are both higher than those observed 

for the MM model. So far, we have garnered support for the Diminishing Returns hypothesis 

over the More is Better hypothesis.      

 

Figure 6.7. Fitting the Moderated Linear Model in the Create Model Tab.  
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Figure 6.8. Results Tab for the Moderated Linear Model.  

 

  

Next, let us return to the Create Model tab, and use the custom function feature to fit a 

quadratic model consistent with the Inverted U hypothesis. After entering the quadratic function, 

listing each parameter, and specifying ev as a moderator of each, CurveBuilder indicates that the 

model has converged (Fig. 6.9).  

 

Figure 6.9. Fitting the Moderated Quadratic Model in the Create Model Tab.  
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In the Results tab (Fig. 6.10), we see parameter estimates for b00 (the intercept when ev 

is zero), b10 (the linear term when ev is zero), b20 (the quadratic term when ev is zero), b01 

(change in intercept when ev increases by one unit, b11 (change in the linear term when ev 

increases by one unit), and b21 (change in the quadratic term when ev increases by one unit). For 

this model, AIC = 28476 and BIC = 28526. AIC and BIC indicate that the quadratic model fits 

better than the linear model, but worse than the MM model. Overall, we have obtained support 

for the Diminishing Returns hypothesis over the More is Better and Inverted U hypotheses.  

 

Figure 6.10. Results Tab for the Moderated Quadratic Model.  

 

 

AIC and BIC for the MM model are the lowest, suggesting that this model fits best to the 

data. Therefore, we will proceed with this model for further evaluation and interpretation. As 

shown in Figure 6.6, we have obtained estimates for a0 (parameter a when ev is zero), a1 (the 

change in parameter a when ev increases by one unit), b0 (parameter b when ev is zero), b1 (the 

change in parameter b when ev increases by one unit), c0 (parameter c when ev is zero), and c1 
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(the change in parameter c when ev increases by one unit). To interpret these estimates, note that 

ev has been centered such that its mean is zero. Therefore, ev = 0 means that ev is at its mean.   

Parameter a0 = 2.80, and parameter a is the y-intercept. Therefore, for individuals with 

mean levels of extraversion, we can expect a psychological wellbeing score of about 2.80 when 

social interaction frequency is zero. Parameter a1 = -0.49, indicating that as extraversion 

increases, the y-intercept decreases by about 0.49. In other words, more extraverted people are 

less happy and satisfied when interaction frequency is zero. Next, parameter b0 = 4.15, and 

parameter b is the vertical distance between the intercept and asymptote of the curve. For 

individuals with average extraversion, frequent social interaction results in a wellbeing score that 

is about 4.15 points higher than the y-intercept (i.e., wellbeing with zero interaction). 

Additionally, b1 = 0.95, meaning that as extraversion increases, this vertical distance also 

increases; more extraverted people benefit more from frequent social interaction. Finally, 

parameter c0 = 2.60, and c is the location on the x-axis at which 50% of change has occurred. 

Here, “50% of change” can be interpreted as the halfway point of wellbeing relative to its 

maximum. For people with average extraversion, the halfway point of wellbeing occurs at an 

interaction frequency of about 2.6. Additionally, c1 = -0.42, meaning as extraversion increases, 

the halfway point of wellbeing occurs at a smaller x-value. In other words, more extraverted 

people require fewer social interactions to reach the halfway point of wellbeing.   

Step 5: Plots 

In the Plots tab, we can begin with Model Evaluation (Fig 6.11) to assess how well the 

moderated MM model characterizes our data. The Residuals vs. Fitted Y-Values plot shows no 

patterns in terms of residual mean or variance. The Residual Autocorrelation plot shows 
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correlations near zero for lag = 1 and beyond. The Histogram and QQ Plot of Residuals both 

indicate that residuals are normally distributed. All plots indicate good model-data fit.   

 

Figure 6.11. Model Evaluation Plots for the Moderated MM Model.  

   

 

 

Proceeding to the Data and Fitted Values tab, we can visualize how the model-implied y-

values correspond with our observed data. Once again, this plot also indicates satisfactory 

model-data correspondence. To prepare this plot for publication, we can edit the x- and y-axis 

labels as desired (Fig. 6.12). 
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 Figure 6.12. Data and Fitted Values Plot for the Moderated MM Model.  

 

  

Next, we will use pick-a-point and JN plots to gain a better understanding of how 

extraversion moderates the relation between interaction quantity and wellbeing. The Pick-a-Point 

tab allows us to plot the curve linking intQuant to wb at various values of ev. Because ev is a 

continuous moderator, we can plot the curve at either three or five values of ev. Here, we will 

select five values. At the bottom of the left-hand panel, the mean and SD of ev are shown, which 

may help us choose values to plot. Because ev has been standardized, we see its mean is about 

zero and its SD is about one. Therefore, we may select -2, -1, 0, 1, and 2 as the ev values at 

which to plot the curve. The observed data will be split into five bins according to these values 

(see prior section for binning details).  

 We can choose to view the curves with or without the observed data, and we may display 

ev values either with color or with paneling. The default plot, with observed data and color, is 

shown in Figure 6.13.  
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Figure 6.13. Pick-a-Point Plot with Default Settings for the Moderated MM Model.  

   

 

Because there are so many data points, the display in Figure 6.13 appears a bit cluttered. It would 

also be helpful to make the legend labels more descriptive. After making those edits, as well as 

editing the plot axes and title, and switching off the observed data layer, we obtain the plot 

shown in Figure 6.14.  
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Figure 6.14. Customized Pick-a-Point Plot for the Moderated MM Model.  

 

 

Another way to declutter the plot – without sacrificing the observed data – is to use paneling 

rather than color coding. After selecting this option and editing the panel labels, we obtain the 

plot shown in Figure 6.15.  
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Figure 6.15. Pick-a-Point Plot with Paneling for the Moderated MM Model.  

 

 

Next, we can gain even more detailed information about our moderation results by 

creating JN plots. The JN plot shows the moderator on the x-axis and the moderated parameter 

on the y-axis. Because parameters a, b, and c are all moderated by ev, CurveBuilder allows us to 

choose which parameter to view on the y-axis. Ren et al. (2022) provided the most detailed 

hypothesis regarding ev’s moderation of parameter b, so here we will focus on parameter b. It 

was hypothesized that parameter b, interpreted as the difference in psychological wellbeing at 

very frequent social interaction compared to zero social interaction, would increase as 
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extraversion increased. Our findings supported this hypothesis. Placing ev on the x-axis and the 

conditional value of parameter b on the y-axis, we obtain the JN plot shown in Figure 6.16.  

 

Figure 6.16. JN Plot with Default Settings for the Moderated MM Model.  

   

 

 

The increasing line indicates that as extraversion increases, parameter b increases. The 

surrounding confidence band is informed by the standard error of b across the observed range of 

extraversion. The rug plot along the x-axis shows observed values of ev.  

 Many components of the plot are informed by the null value that we have indicated in the 

left-hand panel. (By default, the null value is set to zero, but this can be changed.) The dashed 

horizontal line indicates the null value, and the confidence band is color-coded to denote whether 

the parameter is significant (blue) or not (red). The significance boundary – denoted by a vertical 

line – is the moderator value at which parameter b goes from being nonsignificant to significant. 
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Although two boundaries were calculated, only the boundary that falls within the observed range 

of the moderator is shown. The exact values of both significance boundaries are given in a 

sentence under the plot; the boundaries are -5.214 and -3.754, and when extraversion is outside 

of these boundaries (i.e., less than -5.214 or greater than -3.754), parameter b is significantly 

different from zero.  

 Suppose that for our purposes, a null value of zero is nonsensical for parameter b. We 

likely expect that more frequent social interaction will be related to greater wellbeing for all 

people in our study, so parameter b being greater than zero is not interesting. Indeed, the rug plot 

indicates that only one individual’s realized value of ev falls outside the region of significance. 

Instead, we may want to know: at what levels of extraversion is parameter b significantly greater 

than one? In other words, at what levels of extraversion does frequent social interaction result in 

a greater than one-point boost to psychological wellbeing? Since our wellbeing scale ranges from 

0-10, this would reflect a 10% change. Perhaps this is what we consider “significant,” so let us 

instead enter 1 as the null value for parameter b. After making this change, and editing the x-axis 

label of the JN plot, we get the plot shown in Figure 6.17. 
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Figure 6.17. JN Plot with Custom Null Value for the Moderated MM Model.  

 

 

The sentence below the plot reads: “When ev = -3.95 and -2.849, parameter b crosses the 

threshold of significance, with 1 as the null value. Parameter b is significant outside those 

boundaries.” Before interpreting this output, note that the rug plot shows only one observation 

below the significance boundary of -3.95. This boundary should likely be interpreted with 

caution. Focusing on the second boundary, we find that when extraversion is greater than -2.849, 

parameter b is significantly greater than one. In other words, for individuals whose standardized 

extraversion score is greater than -2.849, frequent social interaction leads to a boost in 

psychological wellbeing that is significantly greater than one point. Only the individuals with 

extremely low extraversion experience a wellbeing boost that is not significant according to our 

definition.  
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 In CurveBuilder, we could make more JN plots to visualize how parameters a and c 

change as extraversion changes, and for each plot, we could specify null values that are specific 

to the parameter and to our research context.  

Conclusions  

In this example, we compared the MM, linear, and quadratic models to characterize the 

relation between social interaction quantity and psychological wellbeing. We found that the MM 

model best characterized our data, providing support for the Diminishing Returns hypothesis 

described by Ren et al. (2022). Extraversion moderated all three parameters of the MM model. 

More extraverted people had a lower y-intercept (indicating lower wellbeing when interaction 

quantity was zero), greater growth from the y-intercept to the asymptote (indicating a greater 

boost to psychological wellbeing due to frequent social interaction), and a lower x-axis location 

of 50% growth (indicating that fewer social interactions were required to reach the halfway point 

of psychological wellbeing). Overall, it appears that more extraverted people are more negatively 

impacted by the absence of social interactions, and more positively impacted by a greater 

frequency of interaction. More extraverted people may also make the most of each social 

interaction, as they reach halfway levels of wellbeing with fewer interactions.   

 

Example 2: Logistic Function and a Multicategorical Moderator 

 Next, we will explore how to use CurveBuilder to fit a nonlinear model with a 

multicategorical moderator. For this example, we will work with a simulated data set based on 

findings from the field of hearing and auditory ability. In these applications, the x-axis reflects 

some aspect of difficulty of the auditory stimulus being listened to, such as the duration of sound 

exposure or the audibility of speech. The y-axis reflects some aspect of performance, such as the 
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proportion of trials where the tone with higher pitch is correctly identified or where a word is 

recognized correctly. These studies find that the relation between difficulty and performance is 

best characterized by a logistic function (McCrory & Cooper, 2004; Pogorzelski, 2022; 

Stelmachowicz et al., 2000). Additionally, one study (Stelmachowicz et al., 2000) found that the 

rate of approach toward the upper asymptote, as well as the location of the inflection point, 

differed across normal-hearing vs. hearing-impaired children. Given the consistency of past 

findings, in this example we will take a theory-driven approach to model selection, in which we 

choose our model a priori and do not empirically compare models.  

 In our simulated example, we suppose the children in our study listened to spoken words 

and the audibility of speech was varied. Our outcome of interest is the percentage of trials in 

which the word was correctly identified. Based on prior findings in this field, we select the 

logistic function to model the relation between audibility and correct word identification: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑎 + 𝑏/(1 + exp (−𝑐 ∗ (𝑎𝑢𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑑))). 

 Our key research question is whether parameters c and d, which correspond with the rate 

of approach toward the upper asymptote and the location of the inflection point, respectively, are 

moderated by hearing ability. The children in our study are grouped according to three hearing 

ability levels: (1) normal-hearing, (2) slightly hearing-impaired, and (3) severely hearing-

impaired. The data set contains two dummy codes that reflect these groupings. Normal-hearing 

children are treated as the reference group and coded [0, 0]; slightly hearing-impaired children 

are coded [1, 0]; and severely hearing-impaired children are coded [0, 1].  

Step 1: Data Upload 

Because we have chosen a nonlinear model a priori, we will bypass the Visualize Curves 

tab and begin with the Data Upload tab. Upon uploading our data, we see a summary of our 
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variables, including grp (a factor variable indicating hearing ability of the child), dummy1, 

dummy2, aud for audibility, and percentCorrect. See Figure 6.18. 

 

Figure 6.18. Audibility Data Summary in the Data Upload Tab.  

 

 

Step 2: Preview Start Values 

Before we fit the model, we must determine appropriate start values that yield a logistic 

curve that corresponds relatively well to our data. In the Preview Start Values tab, we begin by 

selecting the logistic function and indicating our predictor and outcome variables. We can also 

color-code the plot according to the moderator. Although we will use dummy1 and dummy2 in 

the model, we also have the grp available, which contains all grouping information in a single 

variable. Therefore, for visualization purposes we can indicate grp as the moderator. (We could 

also color-code by dummy1 and dummy2 separately.) Already, it is clear that the logistic curve is 

moderated by hearing ability. See Figure 6.19. 

 

 

 

 

 



 

166 

 

Figure 6.19. Preview Start Values Tab with Audibility Data.  

 

 

From the plot, we see that different start values will correspond best with different groups 

of the moderator; understanding how these start values change across groups will help us when 

we specify the model in Step 3. To begin, let us identify the start values that match best with the 

reference group, normal-hearing children, which is shown in red. Start values of a = 0, b = 90, c 

= 1, and d = 2 yield a curve that matches fairly well with the red points (Fig. 6.20). 
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Figure 6.20. Preview Start Values for Normal-Hearing Children.  

 

 

Following this same process, we can visually choose start values for slightly hearing-

impaired children (blue) and severely hearing-impaired children (green). Using the Preview Start 

Values functionality, we find that start values of a = 0, b = 90, c = 1, and d = 3 seem to yield a 

well-matching curve to the blue dots, and start values of a = 0, b = 90, c = 0.5, and d = 4 yield a 

well-matching curve to the green dots. These plots are not shown, but the reader is encouraged to 

use CurveBuilder to visualize these results. 

By previewing start values, we gain a preliminary understanding of how parameters c and 

d change across groups. We find that parameter c ≈1 for normal-hearing children and slightly 

impaired children, and ≈0.5 for severely impaired children. We also observe that parameter d is 
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≈2 for normal-hearing children, ≈3 for slightly impaired children, and ≈4 for severely impaired 

children. For all groups, parameter a was held constant at 0, and parameter b was held constant at 

90. We will use this information in the Create Model tab in Step 3. 

Step 3: Create Model 

To fit this model, we begin by selecting the logistic function, indicating aud as the 

predictor and percentCorrect as the outcome. We also indicate that parameters c and d are 

moderated by dummy1 and dummy2. To select the best start values, it is ideal to incorporate what 

we know about how parameters c and d change across groups. It is not uncommon to simply 

indicate zero as the start values for any moderating effects (e.g., Grimm et al., 2016), and 

whereas this may yield convergence sometimes, the likelihood of convergence will be higher if 

we incorporate what we learned about parameters c and d in the Preview tab. We must indicate 

start values for c, d, the effects of dummy1 on c and d, and the effects of dummy2 on c and d. The 

interpretation of the effect of a coding variable will change depending on the coding scheme. 

Because we are using dummy codes, we can interpret the effect of dummy1 on c as follows: the 

difference in parameter c between slightly hearing-impaired children (coded 1 on dummy1) and 

normal-hearing children (the reference group). Similarly, the effect of dummy2 on c is the 

difference in parameter c between severely hearing-impaired children (coded 1 on dummy2) and 

normal-hearing children (the reference group). Interpretations for parameter d are analogous. The 

start values we give for c and d will be treated as the start values for the reference group.  

Beginning with a start value for c, we found that among normal-hearing children, c was 

≈1. Therefore, we can indicate 1 as our start value for c. Our Preview plots suggested that c was 

also ≈1 for slightly hearing-impaired children, suggesting that c may be the same for these 

groups; therefore, we can indicate 0 for dummy1’s effect on c. Among severely hearing-impaired 



 

169 

 

children we observed that c was ≈0.5, suggesting that as we go from normal-hearing children to 

severely hearing-impaired children, c decreases by about 0.5. Therefore, we enter -0.5 as our 

start value for dummy2’s effect on c. We follow a similar process for parameter d. The start value 

for d is for normal-hearing children (the reference group). The start value for dummy1’s effect on 

d is difference in d between slightly impaired children and normal-hearing children. The start 

value for dummy2’s effect on d the difference in d between severely impaired children and 

normal-hearing children. Finally, we can indicate that start values for a and b should be 0 and 90, 

respectively. After entering all this information, the model converges (Fig. 6.21). 

 

Figure 6.21. Fitting the Moderated Logistic Model in the Create Model Tab.  

 

 

Step 4: Results 

The Results tab (Fig. 6.22) shows the model converged after 4 iterations. In the estimates 

table, c has been replaced with c0, c1, and c2. The value of c0 indicates that c = 1.46 among 

normal-hearing children. As we go from normal-hearing children to slightly impaired children, c 
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decreases by 0.47. As we go from normal-hearing children to severely impaired children, c 

decreases by 0.95. Similarly, d has been replaced by d0, d1, and d2. We find that d = 2.01 among 

normal-hearing children, increases by 1.05 for slightly impaired children, and increases by 2.02 

for severely impaired children. For all groups, a = 0.31 and b = 89.96. 

 We can also choose to view the asymptotic correlation matrix of parameter estimates to 

assess whether the model is overparameterized. Highly correlated parameters sometimes suggest 

that the model can be simplified (Motulsky & Christopoulous, 2004). For this model, most 

correlations are low (<0.5), suggesting this model is not too complex for our data.  

 

Figure 6.22. Results Tab for the Moderated Logistic Model.  
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Step 5: Plots 

Because the Model Evaluation and Fitted Values plots are discussed in other examples, 

this example bypasses those tabs and begins with the Pick-a-Point tab. To create the pick-a-point 

plot, we indicate that the moderator is multicategorical and has 3 categories, and we select 

dummy1 and dummy2 as the indicator variables for the moderator. Given this input, 

CurveBuilder will create a pick-a-point plot with default settings, shown in Figure 6.23.  

 

Figure 6.23. Pick-a-Point Plot with Default Settings for the Moderated Logistic Model.  

 

 

 

In Figure 6.23, the plot is color-coded by hearing ability, but it would be ideal to add 

more descriptive labels to the legend. In the left-hand column, we are given information about 

how the labels in the plot correspond with the coding variables. The group labeled as “Category 

1” in the plot is coded [0, 1] on dummy1 and dummy2, which means that Category 1 is severely 

hearing-impaired children. Similarly, because “Category 2” is coded [0, 0], we know this group 
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is normal-hearing children. Finally, “Category 3” is coded [1,0], so this group is slightly hearing-

impaired children. We can create a publication-ready plot by customizing the labels accordingly 

(see Fig. 6.24). Because the moderator is not continuous, the JN plot is not available.  

 

Figure 6.24. Customized Pick-a-Point Plot for the Moderated Logistic Model.  

 

 

 

 

 

 

 

Conclusions 

In this example, we fit a logistic model to characterize the relation between speech 

audibility and correct word identification, in which parameters c and d were moderated by 

hearing ability. We found that for all hearing ability groups, parameter a was close to zero, 
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suggesting that at low levels of speech audibility, children are unlikely to correctly identify any 

words. For all groups, parameter b was 89.96, suggesting that when speech was highly audible, 

children correctly identified the correct word about 90% of the time, regardless of hearing 

ability. Interestingly, we found that parameter c was greatest for normal-hearing children, and 

decreased as hearing impairment got worse. This implies that as speech becomes more audible, 

normal-hearing children more quickly transition to correct word identification. Hearing-impaired 

children have a slower rate of approach toward the upper asymptote, suggesting that as speech 

becomes more audible, their performance improves but does not improve as rapidly as normal-

hearing children. Finally, we found that parameter d was lowest for normal-hearing children and 

increased as hearing impairment worsened. Parameter d is the location of the inflection point 

along the x-axis, or in this context, the speech audibility level at which children correctly identify 

words in 50% of trials. Therefore, among normal-hearing children, less audibility is required to 

successfully identify words half of the time. Hearing-impaired children require more audibility to 

reach 50% correct identification.    

 

Example 3: Jenss-Bayley Function and Random Effects  

 Finally, we will explore how to use CurveBuilder to fit a nonlinear model with random 

effects. NLME models are useful for modeling longitudinal data; when study subjects are each 

assessed on multiple occasions, mixed-effects models allow us to account for observations 

nested within individuals. In this example, we will work with height data collected as part of the 

Berkeley Growth Study (Jones & Bayley, 1941) and presented by Grimm et al. (2016). The 

Berkeley Growth Study tracked the height of 83 children over the course of 1 to 36 months of 

age – assessments were taken at 1, 3, 6, 9, 12, 15, 18, 24, and 36 months. The data set is freely 
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available for download at https://www.guilford.com/companion-site/Growth-

Modeling/9781462526062 (Grimm et al., 2016).  

 To characterize height trajectories, we will implement a Jenss-Bayley model. The Jenss-

Bayley function was created to approximate changes in human height over time (Jenss & Bayley, 

1937) and incorporates the fact that growth tends to occur in two distinct phases. During infancy, 

growth is rapid and can be characterized by an exponential model, whereas during the toddler 

years, rate of growth stabilizes, and can be characterized by a linear model. The Jenss-Bayley 

model is available in CurveBuilder with the following parameterization:  

ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑎 + 𝑏𝑡 + 𝑒𝑥𝑝(𝑐 + 𝑑𝑡), 

where height is the outcome variable, t (time) is the predictor, a is the intercept of the linear 

asymptote, b is the slope of the linear asymptote, exp(c) is the vertical distance between the y-

intercept and the intercept of the linear asymptote, and exp(d) is the ratio of acceleration of 

growth at time t to time t – 1.  

Step 1: Data Upload 

Because we have a priori knowledge about the nonlinear function that should be used for 

these data, we will bypass the Visualize Curves tab and proceed to Data Upload. Here we see a 

summary of the variables in the data set: subject ID, gender, age (the predictor), and height (the 

outcome). See Figure 6.25. 

Step 2: Preview Start Values 

Next, we will determine appropriate start values to use for the Jenss-Bayley model. Start 

values for a and b should reflect the intercept and slope of the linear portion of growth. Start 

values for c and d determine the shape of the early exponential portion of growth. It appears that 

a = 60, b = 1, c = 2, and d = -0.5 fit the data relatively well; see Figure 6.26. 

https://www.guilford.com/companion-site/Growth-Modeling/9781462526062
https://www.guilford.com/companion-site/Growth-Modeling/9781462526062
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Figure 6.25. Summary of Height Data in the Data Upload Tab.  

 

 

Figure 6.26. Preview Start Values Tab for the Jenss-Bayley Model.  

 

 

Steps 3 and 4: Create Model and Results 

In this section, we will alternate between the Create Model and Results tabs (and briefly, 

the Plots tab) to demonstrate the process of fitting multiple models and carrying out model 

selection. In the Create Model tab, we select the Jenss-Bayley function and import the start 
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values that were found in Step 2. For demonstrative purposes, I will begin by specifying a model 

with no random effects. In other words, this model ignores the nested structure of the data. The 

model specification is shown in Figure 6.27.  

Skipping to the Model Evaluation tab under Plots, we immediately see that this is an 

insufficient model for the data (Fig. 6.28). The residual autocorrelation plot indicates that 

adjacent residuals are highly correlated, emphasizing the need for a mixed-effects model to 

account for dependencies within individuals.  

 

Figure 6.27. Fitting the Jenss-Bayley Model without Random Effects.  
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Figure 6.28. Model Evaluation Plots for the Jenss-Bayley Model without Random Effects. 

 

 

 

To add random effects to the model, we return to the Create Model tab. We select ID as 

the grouping variable, and we must select which parameters should be treated as randomly 

varying across individuals. A popular approach is to start with the maximal number of random 

effects, and if the model doesn’t converge, to progressively remove random terms (e.g., McNeish 

et al., 2020; McNeish & Bauer, 2022). Therefore, we may begin by specifying that parameters a, 

b, c, and d are all random. However, this model fails to converge.  

Deciding which parameter(s) to treat as fixed is often not a straightforward decision, as 

the parameters within nonlinear models typically are not organized into an intuitive hierarchy 

(McCormick et al., 2023). In this example, which parameter to treat as fixed is not obvious. As 
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one option, we may consider the fact that – as was seen in the Preview Start Values plot – most 

growth occurs within the linear portion of the Jenss-Bayley curve. Only the first two or three 

timepoints seem to correspond with the exponential portion of the curve. Therefore, it may be 

reasonable to expect that parameters a and b, which govern the linear portion of the curve, may 

be more variable across individuals. If we remove parameter c from the random effects, the 

model still fails to converge, but if we remove parameter d from the random effects, the model 

converges (Fig. 6.29).  

  

Figure 6.29. Fitting the NLME Jenss-Bayley Model in the Create Model Tab.  

 

 

Results for this model (Fig. 6.30) indicate that, in our sample, the typical Jenss-Bayley 

curve is characterized by a linear intercept of 69.18 and a linear slope of 0.77. The distance 

between the linear intercept and the actual y-intercept is exp(2.89) = 17.99, meaning the typical 

y-intercept is 69.18 – 17.99 = 51.19 cm. In the exponential portion of the curve, the ratio of 

growth acceleration is exp(-0.17) = 0.84, meaning that as age increases, growth tends to slow by 
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a factor of about 0.84. Additionally, we found that the intercept of the linear portion of the 

growth curve (a), the slope of the linear portion of the growth curve (b), and the distance 

between the linear intercept and the actual y-intercept (c) varied across individuals.  

 

Figure 6.30. Results Tab for the NLME Jenss-Bayley Model.  

 

   

Step 5: Plots 

Beginning with the Model Evaluation tab (Fig. 6.31), diagnostic plots indicate that this 

model fits well to the data. The Residuals vs. Fitted Y-Values plot shows that residuals have 

constant variance over the range of y. The Residual Autocorrelation Plot shows that at lag = 1 

and beyond, adjacent residuals are correlated near zero. Incorporation of random parameters has 

accounted for all the dependency among the residuals. Finally, the Histogram of Residuals and 

QQ Plot of Residuals show that the residuals are relatively normally distributed.  

Next, we examine the Data and Fitted Values plot (Fig. 6.32), which indicates that the 

model-implied y-values correspond well with the observed data.  

Because this model does not contain moderators, the Pick-a-Point and Johnson-Neyman 

plots are not available. 
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Figure 6.31. Model Evaluation Plots for the NLME Jenss-Bayley Model.  

 

 

Figure 6.32. Data and Fitted Values Plot for the NLME Jenss-Bayley Model.  
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Conclusions  

In this example, we used CurveBuilder to fit a nonlinear mixed-effects model to 

characterize changes in height over the course of infancy and toddlerhood. We iteratively used 

the Create Model tab, Results tab, and Model Evaluation plots to arrive at the best-fitting model. 

We found that most aspects of the growth curve varied across individuals, including both 

parameters governing the linear portion of the curve, as well as the parameter related to the y-

intercept of the curve; however, the growth rate during the exponential portion of the curve 

needed to be treated as constant to facilitate convergence. These results could be used to inform 

future analyses to find potential moderators of these variable aspects of the growth curve.  
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CHAPTER VII 

 

DISCUSSION 

 

 Throughout the preceding chapters, I have presented methods and software that enable 

researchers to better integrate linear moderation and parametric nonlinear models. At the same 

time, there are abundant opportunities for extension of the models and techniques presented here, 

as well as myriad research questions regarding moderated nonlinear models that have yet to be 

answered. This chapter expands upon these unanswered questions, discusses extensions, and 

summarizes key considerations for successful implementation of moderated nonlinear models.  

 

Future Directions for CurveBuilder 

 The primary goal of CurveBuilder is to simplify and unify each stage of the nonlinear 

modeling process, and there are many areas in which CurveBuilder may be expanded to further 

accomplish this goal. These include more avenues for dealing with convergence failures, broader 

utilities related to reparameterization, and advanced functionality for NLME models.  

 In its current state, CurveBuilder offers a few utilities for troubleshooting 

nonconvergence. The user may easily adjust the model specification by selecting a simpler 

functional form or by using graphical utilities to choose adjusted starting values, increase the 

iteration cap for the maximum likelihood estimator, adjust the convergence tolerance, or simply 

view the results that were obtained in the final iteration of the estimation algorithm. While these 

approaches have been suggested by various methodologists (e.g., Bates & Watts, 1988; Gallant, 

1987; Ritz & Streibig, 2008), they may not always be effective. Because nonconvergence 
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remains a very common problem in nonlinear models, the practicality of CurveBuilder would 

notably increase if there were even more utilities available for addressing nonconvergence. 

Specifically, convergence problems are especially salient for NLME models, and specialized 

approaches to improve the likelihood of convergence have been developed for these models. 

Reparameterizing the random effects covariance matrix via a Cholesky decomposition has been 

shown to be effective for improving convergence rates (Lindstrom & Bates, 1988; McNeish & 

Bauer, 2022). More recently, McNeish and Bauer (2022) proposed decomposing the random 

effects covariance matrix via factor analysis; these authors note that it is possible to carry out this 

method in SAS and SPSS; however, extensions to the R environment have yet to be developed. 

In summary, there are a variety of approaches for dealing with nonconvergence, which range 

from basic to advanced. However, most of these approaches – especially those that are more 

complex – require fairly involved software procedures and have largely been restricted to more 

advanced applications. Any or all of these approaches will be useful to integrate into the easy-to-

use interface provided by CurveBuilder.  

 Another important aspect of nonlinear model fitting is parameterization; however, 

CurveBuilder currently does not offer extensive utilities for reparameterizing a chosen model. If 

a user wishes to implement a model with a parameterization that differs from the prespecified 

offering, they must use the custom function option to manually create their desired 

reparameterization. There are many ways that CurveBuilder may be expanded in the future to 

enable easier reparameterization. First, a greater variety of parameterizations of each model 

could be offered as prespecified options. For example, the sigmoidal models provided in 

CurveBuilder contain parameters for (1) the lower asymptote, (2) the difference between the 

upper and lower asymptote (i.e., total change), (3) the rate of change, and (4) the x-location of 
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the inflection point. However, in some applications of sigmoidal models, it may be more useful 

to estimate the upper asymptote itself rather than total change. In other contexts, estimating jerk 

points (i.e., locations along the x-axis where the surge area begins and ends) may be more useful 

than estimating the location of the inflection point. Many of the models in CurveBuilder also 

exist in versions with fewer parameters, such as the three-parameter Gompertz and logistic, 

whose lower asymptote is constrained to zero (Sit & Poulin-Costello, 1994). Second, another 

area for expansion will be to provide easier functionality for constraining certain parameters to 

constants. Although the user may use the custom function option to create a model with 

constraints, it would be ideal for CurveBuilder to contain a code-free way of doing this. A simple 

interface for adding constraints would ease this aspect of parameterizing the chosen model, as 

well as aiding with nonconvergence problems as discussed in Chapter 4. 

 The utility of CurveBuilder for fitting NLME models could also be expanded by 

incorporating advanced functionality that is specific to these models. First, in order to obtain a 

well-fitting NLME model, it is often necessary to account for autocorrelation (i.e., when there is 

remaining correlation between adjacent observations, even after accounting for the nested 

structure of the data). Autocorrelation is commonly observed in longitudinal data, and there are a 

variety of ways to model it, such as by incorporating an autoregressive (AR) component and/or a 

moving average (ARMA) component (Cho et al., 2022; Davidian & Giltinan, 1995; Pinheiro & 

Bates, 2000). Additionally, heteroscedasticity is common to longitudinal data, wherein the 

variance of the residuals is not constant across the observed range of the predictor(s). It is often 

necessary to model heteroscedasticity explicitly, which may involve treating residual variance as 

a function of the predictor(s) (Blozis & Harring, 2021; Cho et al., 2022: Davidian & Giltinan, 

1995; Pinheiro & Bates, 2000). Both autocorrelation and heteroscedasticity can be incorporated 



 

185 

 

into nlme objects (Pinheiro et al., 2023); however, in its current state, CurveBuilder does not 

provide functionality to do so. To incorporate these components, the user could use the R code 

generated by CurveBuilder as a starting point, and within their local R environment, add to that 

code such that it contains the desired autocorrelation and/or heteroscedasticity components. 

However, it would be ideal if these advanced features were incorporated within the simple 

interface provided by CurveBuilder. Incorporating these features into future versions of 

CurveBuilder will greatly enhance its practicality for fitting NLME models.  

 Many other advanced model specification options may be integrated into CurveBuilder in 

the future. In a maximally general app, users would be able to add complexity to the model in a 

variety of ways, such as by adding covariates and/or incorporating higher-order interactions. 

Additionally, enabling the user to select their choice of estimator (e.g., nonlinear least squares, 

weighted least squares, maximum likelihood, sandwich estimators) would likely be useful. At 

present, CurveBuilder implements the default estimator for nls (nonlinear least squares) and nlme 

(maximum likelihood) objects. However, depending on the model and data conditions, there are 

many scenarios in which it is useful or necessary to use a different estimator (see Appendix A). 

These are just a few ways that the model specification tools in CurveBuilder may be expanded in 

future versions to enable greater generality. 

 

Moderated Nonlinear Model Extensions 

 There are a variety of opportunities for extension of the moderated nonlinear models 

presented throughout this dissertation. While many of these extensions have been developed or 

proposed within the methodological literature, most have yet to enjoy regular use in empirical 

applications.  
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In all the examples presented throughout this dissertation, the functional form relating x 

to y is assumed to be the same across all values of the moderator (e.g., the curve is always 

characterized by a Michaelis-Menten or logistic function). However, there may be scenarios in 

which the fundamental shape of the curve is hypothesized to differ according to the moderator. 

Methodologists have proposed a few ways to test such a hypothesis. Codd and Cudeck (2014) 

and Kohli et al. (2016) presented a combination of the NLME model and the mixture model, 

which Kohli et al. (2016) termed the Nonlinear Random Coefficient Mixture Model (NRMM). 

Like other mixture models, the NRMM includes a group membership probability parameter, and 

various covariates and moderators may be included as predictors of group membership. 

Importantly, the NRMM allows the nonlinear trajectories of the latent classes to embody 

different functional forms. The authors note that such a model may be ideal for characterizing 

differential responses to treatment: “Suppose that some individuals improve more consistently 

throughout the observation period, while others improve initially but then relapse and decline 

after an unspecified amount of time. Assume the first group improves nonlinearly such that the 

Michaelis-Menten model is appropriate, and that the second group follows a quadratic function” 

(Codd & Cudeck, 2014, p. 65). The NRMM has many advantages; not only can the fundamental 

shape of the trajectory change across groups, but the use of a mixture model also reflects that 

those groups may be unobservable. Additionally, the researcher is required to specify the 

nonlinear functions for each group a priori, which encourages a theory-driven approach to model 

creation. In the above example, the Michaelis-Menten and quadratic models were chosen based 

on the a priori expectation that some individuals would respond continuously positively to 

treatment, whereas others would eventually relapse.  
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Implementing a different approach, Wood (2023) presented a combined model that 

contains both the logistic and exponential models as special cases, as well as a weight parameter 

that governs how closely the curve resembles either. The weight parameter may be allowed to 

vary across groups. As such, the model can accommodate different functional forms across 

values of the moderator, and allows the data to determine whether the curve more closely 

resembles the logistic or exponential model as the moderator changes. In addition, Wood (2023) 

proposes that this framework could be extended to create combined models involving other 

parametric curves; for example, the Jenss-Bayley model could be combined with another model 

of physical growth. Extensions of the combined model framework are likely to be an interesting 

avenue for future research, as they enable straightforward examination of whether and how the 

functional form may vary according to an observed moderator.  

Additionally, the scope of this dissertation was limited to linear moderation of the 

parameters within nonlinear models, as well as a single moderator acting in isolation. More 

complex patterns of moderation may be incorporated into nonlinear models in the future. First, 

the parameters of a nonlinear model could be governed by higher-order interactions, such as 

interactions among two or three moderators. Such higher-order terms are very commonly 

incorporated into moderated linear models (Aiken & West, 1991; Cohen et al., 2003); however, 

at present, their involvement in nonlinear models remains rare. A useful extension of 

CurveBuilder will be to incorporate easy specification of higher-order interactions, as well as 

more extensive graphical utilities that allow the user to visualize the nature of, for example, a 

two-way interaction. When higher-order interactions are probed within the linear framework, the 

pick-a-point plot is extended such that the line relating x to y is plotted at different values of the 

first moderator, and paneled according to values of the second moderator (e.g., Aiken et al., 
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2012). Such an extension will be useful to add to CurveBuilder in the future. Second, it is also 

possible for nonlinear model parameters to be nonlinearly moderated. Here, the parameter does 

not change linearly according to the moderator; rather, any function relating the moderator to the 

parameter may be specified (Cudeck & Harring, 2007). Nonlinearly moderated parameters 

within nonlinear models will enable researchers to articulate and test more nuanced hypotheses.   

 

Future Directions for the Johnson-Neyman Technique 

 One goal of this dissertation was to extend the Johnson-Neyman (JN) technique to 

accommodate nonzero null values, which was accomplished in Chapter 5. At the same time, 

there are a variety of nuanced issues that arise when applying the JN technique to probe 

moderation within nonlinear models, raising interesting questions to be pursued in future work.  

 A unique feature of some nonlinear model parameters is that their ranges are bounded. 

The parameters of a linear model (e.g., intercept, slope, quadratic and cubic terms) are 

unbounded in that they may take on any value from positive to negative infinity. In contrast, 

some nonlinear model parameters must take on certain values in order for the model to be 

defined and/or for the model to make sense. For example, the symmetry parameter in the 

Richards function (Eq. 2.3) must be positive. Additionally, certain parameters may have logical 

bounds depending on the context of a study. If using a sigmoidal model to characterize learning, 

then the lower asymptote of the model cannot be smaller than the minimum observable y-value 

(e.g., the minimum score on a standardized test) and the upper asymptote cannot be larger than 

the maximum observable y-value (e.g., the maximum score on a standardized test).   

 The sampling distributions of bounded parameters may be nonnormal at sample sizes that 

are common in social science research (Feng et al., 2019). However, both nonlinear least squares 
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and maximum likelihood estimation assume that parameter estimates follow a normal sampling 

distribution (Motulsky & Christopoulos, 2004). This assumption underlies the computation of a 

simple parameter’s standard error, and subsequently, the confidence bands of the JN plot. Thus, 

use of the JN technique rests on the assumption that parameter estimates follow a normal 

sampling distribution (Aiken & West, 1991; Bauer & Curran, 2005). Therefore, there are 

multiple questions that will be worthwhile to pursue in future work. First, under what conditions 

does the normality assumption tend to be violated for the bounded parameters of moderated 

nonlinear models? At what sample sizes do nonnormal sampling distributions begin to approach 

normality? Second, can the JN technique be adapted for use in conditions where the sampling 

distributions of parameters are known to be nonnormal? Such extensions will be important for 

ensuring that the JN technique yields accurate results when probing moderated nonlinear models.  

 Similar questions arise for parameters that are created via reparameterization of a given 

model. We can expect that sampling distributions for one parameterization of, say, the three-

parameter exponential (3PE) model may differ in important ways from the sampling distributions 

for an alternative parameterization. The normality of parameters in one parameterization will not 

necessarily imply the normality of parameters in a reparameterization of the same model 

(Johnson & Hancock, 2019). In future work, it will be important to further examine the sampling 

distributions of parameters that result from reparameterization, given the cruciality of this 

assumption for the JN technique.  

 

Considerations Regarding Sample Size, Temporal Design, and Measurement 

 When working with nonlinear models, a variety of factors affect the likelihood of 

convergence, statistical power to identify effects and functional forms, and the accuracy of 
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parameter estimates. To enhance the probability that a theoretically well-motivated model will 

converge and will be estimated with reasonable accuracy, researchers must consider sample size, 

temporal design (in longitudinal contexts), and measurement reliability. Each of these factors has 

received varying amounts of attention in the methodological literature; extant findings and 

recommendations, as well as opportunities for future research, are summarized next.  

 First, sample size is a key consideration when working with nonlinear models. Generally, 

smaller sample size tends to be associated with a lower likelihood of model convergence, as well 

as reduced ability of model selection criteria to select the correct model. For example, in studies 

of longitudinal NLME models, the likelihood of convergence is found to be highly related to the 

number of measurement occasions (McNeish & Bauer, 2022). All extant studies of information 

criteria (ICs; e.g., AIC, BIC) for nonlinear model selection have found that sample size strongly 

impacts performance. Rohloff et al. (2022) observed that at smaller sample sizes, ICs were more 

likely to select an incorrect, overly complex model. Other studies (e.g., Christensen, 2019; 

Wood, 2023; Wood et al., 2015) have found that at smaller sample sizes, ICs are less likely to 

select the correct functional form, and less likely to select the correct predictor set for NLME 

models. However, researchers must balance the statistical advantages of larger sample size with 

the logistical costs of collecting more data (Moskowitz et al., 2017; Timmons & Preacher, 2015). 

Due to financial limitations, as well as concerns about participant attrition, fatigue, and/or 

practice effects, it is not always feasible to collect as much data as is ideal for convergence 

likelihood, accuracy, and precision of the nonlinear model to be estimated. Additionally, 

Timmons and Preacher (2015) note that in many cases, the relation between sample size and 

precision/accuracy embodies a pattern of diminishing returns, such that beyond a certain sample 

size, there is not much to be gained from collecting more data.  
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 Given these findings, it appears that researchers would benefit greatly from the ability to 

easily conduct power analyses for a planned nonlinear model. However, at present, the tools to 

do so are limited. While power analysis approaches have been discussed in the context of 

(potentially nonlinear) growth curve models in the structural equation modeling framework (e.g., 

Diallo et al., 2014; Diallo & Morin, 2015; Zhang & Wang, 2009), there is less guidance for 

researchers going about sample size determination for nonlinear and/or NLME models. As an 

example of the tools that could be created, Lafit et al. (2021) recently developed a user-friendly 

Shiny app that conducts simulation-based power analysis for longitudinal multilevel models; 

however, this tool is restricted to linear models. A similarly user-friendly tool to conduct power 

analysis for nonlinear and/or NLME models would be a very useful avenue for future work. 

 The importance of sampling design is compounded when moderation is introduced. As 

discussed in Chapter 3, an inadequate number of observations across all regions of the design 

space is known to be a cause of nonconvergence for nonlinear models (Bates & Watts, 1988). 

Therefore, we can expect that when certain attributes of a nonlinear curve are hypothesized to be 

moderated, it will be important to obtain sufficient observations across a wide-enough range of 

the moderator, such that the effect of the moderation can be observed and estimated with 

reasonable accuracy and precision. However, methodological work has yet to address this topic. 

A useful direction for future work would be to provide more concrete recommendations and 

guidelines for researchers seeking to obtain adequate power to detect moderation within 

nonlinear models.           

 In addition to sample size considerations, researchers conducting longitudinal studies 

must also plan a temporal design, which is the timing and spacing of measurement occasions 

(Collins & Graham, 2002; Timmons & Preacher, 2015). Measurement occasions may be evenly 
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or unevenly spaced throughout a study period, and in unevenly spaced designs, occasions may be 

concentrated at the right, left, middle, or extremes of the range of the x-axis. Timmons and 

Preacher (2015) found that for intrinsically nonlinear models – including the power, exponential, 

and Gompertz models – concentrating measurement occasions where the curvature of the 

function was greatest tended to result in the best recovery of population parameters (i.e., the least 

bias). However, in order to strategically concentrate measurement occasions in this way, the 

researcher must have an a priori expectation of the timepoint(s) at which curvature is likely to be 

greatest. Therefore, the authors strongly encourage researchers to consider theory when planning 

a temporal design. Indeed, planning temporal design requires the researcher to consider similar 

questions as they would for a traditional power analysis (Timmons & Preacher, 2015), including 

anticipating the functional form, as well as reasonable parameter values for that form.  

 A unique aspect of nonlinear models is that many are asymptotic. Interestingly, models 

with asymptotes raise distinct issues with respect to sampling and temporal design. A common-

sense argument is that in order to estimate an asymptote with reasonable accuracy, there must be 

a sufficient number of observations in the range of the x-axis where the asymptote occurs. If 

there are few or no observations in the asymptotic region, some methodologists have argued that 

it is nonsensical to estimate the asymptote and instead recommend constraining it to a constant 

(e.g., Motulsky & Christopoulos, 2004). However, in certain contexts, it may be difficult or 

impossible to obtain any observations within the x-axis range corresponding to the asymptote, 

especially within longitudinal studies of psychological change. Often, it is not feasible to observe 

individuals for so long that the asymptotic level of the outcome is reached, but at the same time, 

the asymptote may be of key substantive utility and important to estimate. McNeish and Dumas 

(2017) discussed this issue in their study of long-term growth in academic ability, wherein they 
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implemented Michaelis-Menten (MM) NLME models. Here, the upper asymptote of the MM 

model was a key substantive quantity referred to as the subject’s capacity, or in other words, “the 

maximum amount of ability that an individual could develop given the individual’s current and 

past ability levels” (p. 62). By design, there were no observations within the time period that 

corresponded with the asymptote, as the model was intended to predict future capacity. Indeed, 

the authors note that as observed timepoints become further away from the “future event” (i.e., 

the time at which asymptotic levels are reached), the estimate of those asymptotic levels 

becomes more uncertain. This raises the interesting question of “how close is close enough” in 

terms of the distance between the final measurement occasion and the time at which the final 

asymptote is reached. This question has yet to be addressed in methodological research 

(McNeish & Dumas, 2017), but is likely to be a viable avenue for future work.      

 Measurement reliability is another factor that strongly affects power, accuracy, and 

efficiency within the nonlinear modeling framework. In general, it is well-known that statistical 

power is affected by measurement reliability (i.e., the proportion of variability in observed scores 

that is attributable to true score variability rather than measurement error). However, 

measurement quality has received less attention in the nonlinear modeling literature (Jacobucci 

& Grimm, 2020); the few studies to have investigated reliability find that it strongly increases the 

probability that the researcher will arrive at the correct model specification. For example, Wood 

et al. (2015) generated data that followed a Gompertz curve, and found that BIC’s ability to 

correctly select the Gompertz model (from among a candidate set of other parametric nonlinear 

models) was strongly impacted by the internal consistency of the outcome variable. Similarly, in 

his presentation of the combined exponential and logistic model, Wood (2023) found that in 

order for BIC to correctly select the combined model, an ICC of at least 0.7 and at least 10 
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measurement occasions were necessary. Finally, in their study of machine learning approaches 

for model selection, Jacobucci and Grimm (2020) found that when the data-generating function 

was nonlinear but measurement reliability was low, machine learning algorithms incorrectly 

selected a linear model in 97% of replications. In summary, extant findings suggest that 

measurement reliability is a key factor that impacts researchers’ ability to correctly identify 

nonlinear functional forms; however, methodological work investigating this topic remains 

scarce. Future work may benefit from more in-depth explorations of the impact of measurement 

error within the nonlinear modeling framework.  

 

Drawbacks of Nonlinear Models 

 While a key goal of this dissertation has been to demonstrate the utility of nonlinear 

models for psychological research, it is also important to acknowledge that nonlinear models 

may not always be the optimal choice for every research context. Depending on the hypotheses 

to be tested and the goals of the analysis, there are situations where alternative approaches may 

provide more useful substantive insight. An example will be discussed next. 

Recently, methodologists have pointed out potential drawbacks of nonlinear models 

when key hypotheses concern the demarcation between asymptotes and the growth area. 

McNeish et al. (2023) refer to these demarcation points as the x-axis location of “change onset” 

and “change offset.” Typically, a sigmoidal model would best characterize a trend that consists 

of an initial no-change period, a rapid-change period, and a final no-change period. However, 

sigmoidal curves never actually reach the asymptotes; rather, they infinitely approach the 

asymptotes. Therefore, change is always occurring to some degree, and defining the location at 

which change “begins” and “ends” will be arbitrary (Feng et al., 2019). As an example, working 
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with a logistic model, Choi et al. (2009) defined these locations as the two jerk points of the 

curve; jerk points were identified as the x-axis locations at which the function’s third derivative 

was equal to zero. On the other hand, McNeish et al. (2023) argue that in order to define the 

point where a final asymptote is “reached,” the researcher must set some threshold for declaring 

growth completed, such as finding the x-axis location at which 99% or 99.9% of growth toward 

the asymptote has occurred. Given these issues, piecewise models may be the better choice when 

key study hypotheses concern the timing of change onset and offset (Feng et al., 2019; McNeish 

et al., 2023), as piecewise models contain knot points that unambiguously define the transitions 

between change phases.  

Importantly, the preceding arguments are motivated by the theoretical and substantive 

contribution that can be made by the model. Although practical factors (e.g., estimation 

difficulties, ease of software implementation) are not trivial and are often considered when 

researchers are deciding between linear and nonlinear models, the ultimate motivation for the 

chosen model should rest on its correspondence with theory and ability to test useful hypotheses.  

 

Nonparametric Approaches 

The scope of this dissertation was intentionally restricted to parametric nonlinear models. 

However, it is useful to contrast these models with nonparametric approaches and discuss the 

pros and cons of each framework. The generalized additive mixed model (GAMM) is largely 

nonparametric and has been implemented in many social science research contexts. GAMMs 

enable the researcher to model complex nonlinearities that may not correspond with a known 

mathematical function. Rather than requiring the researcher to specify the functional form a 

priori, GAMMs estimate the functional form empirically by linking together a (potentially large) 
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number of curvilinear functions that are joined by knot points. The researcher may control the 

overall degree of curvilinearity by specifying the number of basis functions and/or the general 

“wiggliness” that is allowed (e.g., Cho et al., 2023), but overall, the functional form is informed 

by the data rather than by the researcher’s hypotheses about its shape.  

A key advantage of GAMMs is that they are more flexible than parametric nonlinear 

models, as they can approximate any curvilinear functional form (Cho et al., 2022). Therefore, 

GAMMs may be best suited for research contexts wherein a highly complex curvilinear pattern 

is expected, “which cannot be described by a single, unified equation” (McCormick et al., 2023, 

p. 13), or wherein the researcher is uninterested in specifying the functional form a priori. For 

example, using illustrative data from a cluster randomized controlled trial (C-RCT) that aimed to 

reduce women’s depressive symptoms, Cho et al. (2023) specified a GAMM to evaluate the 

nonlinear interaction between the treatment effect and a level-1 predictor (pre-test depression). 

The functional form linking pre-test depression to post-test depression was curvilinear. To 

accurately estimate the interaction, it was necessary to account for the fact that the “wiggliness” 

of this curvilinearity differed across clusters – which was accommodated by the GAMM – but it 

was not substantively useful to obtain specifics about the nature or shape of that curvilinearity, as 

this was unrelated to key study hypotheses.  

Despite the enhanced flexibility provided by nonparametric models like the GAMM, their 

essential drawback is that unlike the parametric nonlinear model, the parameters of a GAMM 

cannot be mapped directly onto specific attributes of a curve. Therefore, these parameters 

typically do not correspond to substantively meaningful quantities. McCormick et al. (2023) 

argue that GAMMs bear significant resemblance to machine learning models, and as such, may 

be better suited for explanation and/or prediction rather than hypothesis testing. Ultimately, 
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nonparametric and semiparametric methods embody a modeling framework that differs in 

important ways from the parametric framework emphasized in this dissertation. Nonparametric 

and semiparametric methods are better suited for exploratory endeavors, whereas parametric 

methods are better suited for confirmatory endeavors. The choice of which framework to 

implement will depend on the research context and study goals. Overall, it is important to 

understand that parametric nonlinear models are the optimal approach for linking model 

parameters to theory and for testing hypotheses developed on an a priori basis. 

 

Dissertation Summary 

 The overarching goal of this dissertation was to integrate the topics of parametric 

nonlinear models and linear moderation, which have largely been treated as disparate in extant 

literature. Key contributions include detailing the utility of nonlinear models for social science 

research, summarizing current barriers – both conceptual and logistical – to the uptake of 

nonlinear models, and providing guidelines for various stages of the model specification process, 

including choosing a nonlinear function, choosing a useful parameterization, incorporating 

moderators, and incorporating covariates. Additionally, conceptual and mathematical extensions 

of the JN technique were presented, such that the technique can now be applied to moderated 

nonlinear models. Finally, a new Shiny app was created that enables researchers to specify, fit, 

evaluate, and visualize moderated nonlinear models in a code-free environment. Ideally, the 

methods and software presented here will reduce most of the key barriers that social scientists 

currently face when implementing moderated nonlinear models, and the use of such models will 

increase across our field.  
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APPENDIX A 

 

ESTIMATION METHODS FOR NONLINEAR MODELS 

 

Nonlinear Least Squares 

Nonlinear regression models can be estimated by a variety of iterative methods. Perhaps 

the most popularly discussed estimator is nonlinear least squares. Davidian and Giltinan (1995) 

refer to this as ordinary least squares (OLS) because the usual OLS criterion – minimizing the 

sum of squared residuals – is the same as it is for linear models. Most other sources refer to this 

estimator as “nonlinear least squares” to highlight the fact that estimates are now obtained via an 

iterative procedure. Many methodologists agree that when all assumptions of nonlinear 

regression are met, nonlinear least squares is the best estimator because it is the easiest to 

implement (Davidian & Giltinan, 1995; Motulsky & Christopolous, 2004).  

However, if any assumptions are violated, nonlinear least squares becomes inefficient 

and standard errors become inconsistent, meaning they will not approach the true standard errors 

as sample size increases. The performance of nonlinear least squares estimation has never been 

investigated with respect to moderated nonlinear models specifically. However, given its 

sensitivity to assumption violations, it may not be robust enough to perform optimally in 

common moderation scenarios. For example, Franzese and Kam (2009) note that, in scenarios 

where the moderator is categorical, there is an implicit assumption that residual variance is equal 

across the groups defined by the moderator. However, this assumption is not often checked. It 

could be argued moderation introduces new assumptions and/or makes it more difficult for 

researchers to check whether assumptions have been violated; therefore, because of its strong 
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reliance upon all assumptions being met, nonlinear least squares may not be the best estimator 

for these models. This would be a useful topic for future research to examine.  

 

Weighted Least Squares 

When assumption violations are present, specifically if error variance is found to be 

heteroscedastic, the weighted least squares estimator is a frequently suggested alternative for 

nonlinear regression (e.g., Davidian & Giltinan, 1995; Sit & Poulin-Costello, 1994). The 

weighted least squares estimator still seeks to minimize the sum of squared residuals. However, 

residuals are now given weights that are inversely proportional to the variance of y at that point. 

Through this procedure, residuals associated with y-values that are more variable (i.e., less 

certain) are given less weight in determining the parameter estimates. A drawback of this 

estimation method is that the user is required to supply a weighting scheme, which means they 

must choose from many schemes that exist. For example, Motulsky and Christopolous (2004) 

suggest “relative weighting” by the variance of y. In contrast, Davidian and Giltinan (1995) 

advocate for iteratively reweighted least squares (IRLS), where initial weights are derived from 

nonlinear least squares estimates, then the model is re-fit, the weights are updated, and this 

process is repeated until convergence is achieved. Still other options are available. The R 

function nls requires the user to compute and supply weights in vector form, whereas SAS PROC 

NLIN has the capacity to implement IRLS. Weighted least squares yields superior estimates in 

the presence of heteroscedastic residuals, which is sometimes cited as the most common 

assumption violation in nonlinear regression; however, regardless of the software chosen, 

incorporating weights is not straightforward for the user. The performance of the weighted least 

squares estimator with respect to moderated nonlinear models has never been assessed, but this 



 

200 

 

would be an important topic for future study. There may be additional considerations – which 

arise in moderated models specifically – that influence the performance of the weighted least 

squares estimator. For example, if a categorical moderator is present, and the residuals behave 

differently across groups defined by the moderator, the best weighting scheme may become 

unclear. Alternatively, the presence of a continuous moderator may further complicate matters. 

Future work should assess whether there are conditions under which weighted least squares is the 

optimal estimation method for moderated nonlinear regression models. 

 

Sandwich Estimators 

Sandwich estimators are another option when errors are non-normal and/or residuals are 

heteroscedastic, and is recommended by Ritz and Streibig (2008). Here, parameters are estimated 

with nonlinear least squares, then the covariance matrix of parameter estimates is adjusted. The 

adjustment yields standard errors that are robust to residual heteroscedasticity and non-normal 

errors. Ritz and Streibig (2008) argue that this approach is more straightforward than explicitly 

modeling non-constant variance, and is easier than creating a weighting scheme for weighted 

least squares estimation. After fitting a nonlinear model, sandwich estimates can easily be 

obtained through the sandwich() function on nls objects in R, and significance tests of each 

parameter can be re-calculated from the adjusted standard errors. Indeed, in the presence of 

assumption violations, it seems that the simplicity of the sandwich estimator is its major strength 

relative to weighted least squares. The performance of this estimator has never been assessed 

with respect to nonlinear moderated models; however, it would be useful to examine whether the 

adjustment still functions as intended when parameters are moderated.  
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Maximum Likelihood 

When parameter estimates must be obtained iteratively, maximum likelihood (ML) is 

generally a popular estimation method. However, in the single-level nonlinear regression 

literature, ML has received less attention than least squares estimation methods. Davidian and 

Giltinan (1995) note that, asymptotically and when all assumptions are met, nonlinear least 

squares estimates are equivalent to ML estimates. However, these authors advocate for the use of 

least squares methods rather than ML. They note that ML estimation relies heavily on the 

normality-of-residuals assumption, and therefore is highly sensitive to outliers. Additionally, if 

the researcher chooses to explicitly model variance heteroscedasticity by incorporating a 

variance function, the ML estimator will be sensitive to misspecification. Likely for these 

reasons, ML estimation is not an option in popular software including SAS PROC NLIN and nls 

in R. However, it is the preferred and default method for NLME models.  

Of the various R packages for fitting NLME models, each employs a slightly different 

estimation method that is based in ML. Stegmann et al. (2018) provide a useful review of these 

packages and their performance. The nlme package (Pinheiro et al., 2023) maximizes the log-

likelihood by using an algorithm that alternates between two steps: a penalized nonlinear least 

squares step, and a linear mixed effects step. The algorithm alternates between updating the fixed 

effects estimates and the random effects estimates while holding the other constant. Stegmann et 

al. note that this estimation method is “state of the art for its speed and sensitivity.” The lme4 

package provides the nlmer function for nonlinear mixed-effects models. Here, the estimation 

algorithm alternates between three steps until convergence is achieved: penalized iteratively 

reweighted least squares, integrating out the random effects, and nonlinear optimization of the 

objective function. The saemix package uses a stochastic approximation of the likelihood by 
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using a modification of the E-M algorithm. Although saemix is slower to converge, simulation 

studies have shown that it yields substantially higher convergence rates than nlme and lme4, 

especially when models are more complex. This finding suggests that saemix may be especially 

well-suited for moderated nonlinear models. The performance of these packages for moderated 

NLME models has never been compared; however, such a comparison would be useful to 

explore in future research.  
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