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CHAPTER 1

Introduction

1.1 Overview

Hearing is the outcome of a series of complex steps that translate sound wave signals into electrical signals.

In normal hearing, sound waves induce pressure oscillations in the cochlear fluids, which in turn initiate a

traveling wave of displacement along the basilar membrane (BM) from the base to the apex. This membrane

divides the cochlea along its length and produces a maximal response to sounds at different frequencies. The

range of frequencies is distributed along the cochlear duct from base to apex. The base of the cochlea is

narrow and stiff, so higher frequencies are transduced. The apical end or apex is wide and flexible, so lower

frequencies are transduced Santi and Tsuprun (1988). Because the motion of BM is then sensed by hair

cells that are attached to the BM, these sensory cells are tonotopically mapped, e.g. they are fine-tuned to

respond to different characteristic frequencies of the received sounds. The activation of the corresponding

hair cells releases chemical transmitters to electrically stimulate the spiral ganglion nerve cells Raphael and

Altschuler (2003); Rask-Andersen et al. (2012). And the electrical signal is propagated along the auditory

nerve fibers (ANFs), traveling through the brain stem, and finally reaching the auditory cortex allowing the

brain to sense and process the sounds. In summary, the sound signal is decomposed by BM and hair cells, and

the ANFs send this information to the brain to hear the sound. For patients suffering sensorineural hearing

loss, which is principally caused by damage or destruction of the hair cells, however, the decomposition

process of incoming sound waves cannot be performed. In this situation, direct stimulation of the ANFs is

possible if they are intact and this can be done with a neural prosthesis called a cochlear implant (CIs) Wilson

and Dorman (2008); Greenberg et al. (2004).

With over 500,000 recipients worldwide, CIs are considered the standard-of-care treatment for profound

sensory-based hearing loss. A CI replaces the hair cells with an externally worn signal processor that de-

composes the incoming sound into signals sent to an electrode array that is surgically implanted into the

cochlea (see Figure 1.1). Electrode arrays have up to 22 contacts depending on the manufacturer, dividing

the available ANFs to, at most, 22 frequency bands or stimulation areas when using monopolar stimulation.

Because there are around 30,000 auditory nerve fibers and each fiber serves as an independent neural chan-

nel corresponding to a certain characteristic frequency in natural hearing Spoendlin and Schrott (1989), the

electrodes on a CI array stimulate nerves corresponding to a wide range of frequencies and have a limited

spectral resolution. Thus, after surgery, CI recipients need to undergo many programming sessions with an
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Figure 1.1: Example of a cochlear implant’s external and internal parts. Image retrieved from NIDCD (2019)

audiologist who adjusts the settings for every single electrode to improve overall hearing performance, result-

ing in a so-called MAP. Mapping involves determining patient-specific settings for the CI processor including

stimulation levels assigned to each active electrode, sound frequency bands assigned to each active electrode,

which electrodes will be activated or deactivated, etc.

The vast majority of CI recipients can benefit from the implant with a satisfactory average postoperative

word and sentence recognition rate Buss et al. (2008); Dorman et al. (2011); Gifford et al. (2008, 2014);

Litovsky et al. (2006). Yet a significant number of CI recipients experience poor outcomes and restoration

to normal fidelity is rare even among the best performers Moberly et al. (2016); Pisoni et al. (2017); Dren-

nan and Rubinstein (2008); Lenarz et al. (2012). This is partially due to a trial-and-error process used in

the programming sessions. Since the patients need weeks of experience with given settings before hearing

performance stabilizes due to learning effects, this procedure can be frustratingly long. And because it relies

heavily on subjective feedback from patients, the programming sessions generally lead to sub-optimal out-

comes. Besides that, two other factors also have a high impact on the effectiveness of the CI: the channel

overlapping problem among CI electrodes and the variable health status of patients’ ANFs.

The focus of this doctoral research is on the development of patient-specific models of CI recipients to

provide unique and objective information to audiologists in the programming session. The key areas in which

we seek to improve the existing literature are the estimation of the inner ear electrical potential, learning from

patients’ clinical measurements to predict patient-specific electro-anatomical parameters, prediction of the
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auditory nerve health, auditory nerve fiber segmentation, and a super-resolution method on conventional CT

images to generate high-resolution tissue electrical classification maps.

1.2 Physiological CI Measurements

Several physiological measurements are available nowadays via CI devices in the clinical setting. These

measurements are used to verify the device and electrode function. Some of them also allow us to better un-

derstand patient-specific information such as tissue resistivity, voltage distribution, and auditory nerve health

after the insertion of the electrode carrier. Because the data are measured using intracochlear electrodes,

patients do not need to keep still or be sedated during the measurements.

Figure 1.2: Electrical field imaging of a 16 electrode CI array. Each subplot corresponds to a different probe
electrode and the x-axis indicates the recording electrode.

One of the widely used measurements is called electrical field imaging (EFI). It is obtained by activating

one CI electrode at a time (probe electrode) while measuring the voltage at each of the remaining electrodes

in the cochlea. All the probe electrodes will use the same current level and pulse width to initiate a stimulus.

Although referred to as “electrical field imaging” by the manufacturer of the Advanced Bionics device, it

obviously has the limitation that only the voltage gradient at the location of the CI electrode is known.
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Basically, EFI measures have shown a voltage gradient that is about three times larger toward the base (with

apical stimulation) than toward the apex (with basal stimulation) Mens (2007). Figure 1.2 shows an example

of EFI which captures the electrical potential distribution of a CI array that has 16 electrodes where each

subplot corresponds to a different probe electrode.

Electrically evoked compound action potential (ECAP) is another frequently used physiological mea-

surement in the clinical setting. It is a synchronous physiological response from an aggregate population of

auditory nerve fibers in response to electrical stimulation characterized by a negative deflection followed by a

positive peak Hughes (2012); Bourien et al. (2014). The amplitude of an ECAP is measured by the difference

between the negative and positive peaks. Because the ECAP is an early-latency response, artifacts created by

the stimulating CI electrode need to be separated from the physiological potential Briaire and Frijns (2005).

To isolate the neural response from the stimulus artifact, there are several methods to measure ECAPs using

CI. The first of which is the alternating polarity method, where ECAP is measured as the average response

from the auditory nerves when both cathodic-leading and anodic-leading bi-phasic current pulses are used

(Figure 3a). Another method is the forward-masking subtraction (FMS) method. In FMS, two distinct pulses

are used, namely masker and probe pulses, which are injected into the cochlea with a masker-probe interval

(MPI). When the interval is short enough, the ANFs that are activated by the masker will be in a refractory

state when the probe pulse is injected. Thus, if the masker and probe stimulate the same group of ANFs,

the addition of the recorded responses from the individual masker and probe pulses subtracting the recorded

responses for when masker and probe are used together with a sufficiently short MPI will result in the ECAP

signature of probe (Figure 1.3(b)). And by keeping the probe electrode constant and varying the masker elec-

trode, the overlapping stimulation area can be estimated by measuring the ECAP magnitude extracted using

FMS.

Two frequently used ECAP-based functions are the amplitude growth function (AGF) and the spread of

excitation (SOE) function. AGF samples how the amplitude of recorded ECAPs (µV) grows as the injecting

current increases for the stimulation pulse signal. And SOE measures the overlapping fraction of ECAP

responses for two stimulating electrodes that are generated from the same ANFs Hughes (2012). The AGF

measurements were mainly collected using the alternating polarity method while the SOE data is commonly

obtained using the FMS method. AGF functions should increase as the current is increased, but the gradient

implies the electrical characteristics of the inner ear. SOE function is expected to increase as the spatial

distance between the masker and the probe electrode decrease and vice versa because the closer those two

electrodes are, the bigger simulating area they will share.
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Figure 1.3: Explanation of the artifact reduction methods we used to collect clinical ECAPs via CI and
simulate ECAPs via our ANF model. With (a) alternation polarity and (b) forward masking subtraction.

1.3 Image-guided CI Programming Techniques

CIs induce hearing sensation by stimulating auditory nerve pathways within the cochlea using the CI elec-

trode array, which is designed to stimulate nerve pathways corresponding to a predefined frequency band-

width. Because the CI array is inserted blindly during the implantation, the placement of CI arrays is usually

not optimal and the distance between the electrodes and ANFs varies. Electrodes that are distant to the

stimulation sites of healthy nerves usually share a broader stimulation area, e.g., recruit a similar group of

ANFs with its neighboring electrodes. The nerves in this overlapped stimulation area may fail to recover

from their refractory period in the consecutive electrical stimulus and negatively affect CI performance Boëx

et al. (2003); Fu and Nogaki (2005). Although audiologists can provide a deactivation plan for electrodes,

only suboptimal outcomes are achievable in most cases due to lacking objective information about the neural

stimulation patterns of electrodes. To solve this problem, our lab has developed the first image-guided CI

programming technique (IGCIP) Noble et al. (2013). IGCIP aims at providing unique and objective informa-

tion that audiologists can use to define patient-specific CI processor settings. More specifically, we are able to

obtain the spatial relationship between the electrodes on the CI array and the spiral ganglion nerves in IGCIP

via accurate CT-based cochlear anatomy segmentation and CI electrode localization techniques. IGCIP also

proposed to use the electrode distance-versus-frequency (DVF) curves to visualize the programming-relevant

spatial relationship, which described the Euclidian distance from each electrode to the spiral ganglion sites
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characterized by the corresponding frequencies. By picking a subset of electrodes that consists of as many

electrodes as possible and minimizes competition in their peak activation region as a CI activation plan,

IGCIP leads to significant improvement in speech recognition, spectral resolution, and subjective hearing

quality Noble et al. (2015, 2016). Because the activation/deactivation plan needs to be manually selected,

methods that can automatically generate the activation electrode set Zhao et al. (2016); Zhang et al. (2018)

were proposed to improve the original approach.

1.4 Electro-anatomical Model of the Inner Ear

The success of IGCIP shows the potential of customized CI electrode programming using image-based tech-

nologies. However, IGCIP simulates the nerves’ activation pattern using only the spatial information between

electrodes and SG nerve sites while the electrical characteristic also varies from patient to patient Malherbe

et al. (2015). It is possible that the method could be improved with a more comprehensive estimation of the

interaction between the CI electrode and auditory nerves. So, as an extending work to IGCIP, Cakir et al.

Cakir et al. (2017b,a) introduced a patient-specific high-resolution electro-anatomical model (EAM) which

allows us to customize patient-specific tissue resistivities and estimate intra-cochlear electric potential (EP)

created by the CI for individual patients. Compared to other groups who also investigate the voltage distri-

bution and neural activation within the cochlea taking advantage of three-dimensional EAMs Whiten (2007);

Kalkman et al. (2015); Goldwyn et al. (2010); Hanekom (2001), the method proposed by Cakir et al. Cakir

et al. (2017b) incorporates patient-specific differences and can be applied in vivo. The EAM proposed by

Cakir et al. utilizes an active shape model to register nine µCT images with tissue labels with patients’ CT

images and create high-resolution segmentations for individual patients. And by assigning resistivity values

to the bone, neural tissue, soft tissue, and electrolytic fluid in patients’ label maps, a system of linear equations

can be created by solving Poisson’s Equation for electro-statistics using the finite difference method (FDM).

The resulting electric potential map can then be used to simulate nerve activation patterns, which provide a

physics-based estimation compared to the coarse distance-based method used in IGCIP. However, in order to

generate a reasonable estimation of EP in the inner ear for different patients, we first need to find the patient-

specific resistivity set for those four tissue types. Cakir et al. Cakir et al. (2017a) proposed to use a grid

search and compare the resulting EPs with the clinical measurement of EFI. And the resistivity values that

minimize the mean squared error between simulated EFI and clinical EFI are chosen as the patient-specific

electrical parameters.
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1.5 Auditory Nerve Model

EAMs allow a physics-based estimation of the electrical potential within a given anatomical structure, and

auditory nerve models permit the estimation of neural stimulation patterns due to the electric potential pro-

duced by CI electrodes. By directly simulating the current spread and neural activation along the auditory

nerve fibers, auditory nerve models lead to a more accurate estimation of neural stimulation patterns than

considering only the voltage distribution at SG sites. We need to investigate two critical questions before

coupling an auditory nerve model to the EAM: (1) Where are the nerves? (2) How does an auditory nerve

react to a stimulus? To solve these two questions, we need a nerve segmentation method and biological

model.

1.5.1 Auditory Nerve Segmentation

Auditory nerve fibers are invisible in traditional CT or µCT images due to lack of resolution. The spatial

resolution of CTs is commonly 0.3 to 0.6 mm and the resolution of µCT we used to build the EAMs is usually

0.03mm, while auditory nerve fibers are approximately 2µm in width. Therefore, our lab proposed a novel

auditory nerve fiber segmentation method that relies on prior knowledge of the morphology of the fibers

Cakir et al. (2019). This approach treats the fiber localization problem as a path-finding problem, where

the aim is to find a path connecting the unmyelinated terminal to the soma to the internal auditory canal

(IAC) endpoint with a shape that matches the expected shape of the fiber. Several landmarks are provided,

including the starting points between the basilar membrane (BM) and the osseous spiral lamina (OSL) where

the unmyelinated terminals are located, the Rosenthal’s Canal (RC) where somas are located, and the IAC

endpoints where the central axons terminated (see Figure 1.4a). Paths representing 75 fiber bundles that are

evenly spaced along RC was found using Dijkstra’s algorithm DIJKSTRA (1959) which gives the shortest

path connecting all the landmarks and splines were fit to them in order to smooth the shape (see Figure 1.4b).

Because the paths are computed independently and in close proximity, sometimes they overlap or cross. As

a post-processing step, manual edits to some of the paths are required.

1.5.2 Biological Model

We need a biological model for the auditory nerve fibers to describe how electrical current spreads along

the auditory nerve when a stimulus is injected by some CI electrodes. In a 2000 study, Rattay et al. Rattay

et al. (2001b) developed a compartmental auditory nerve fiber model using a modified Hodgkin-Huxley

(HH) formulation and used this model to study the influence of the effect of different nerve subunits on the

excitation of the nerve fibers Litovsky et al. (2006). This model introduced three major features that differ

from other nerve models.
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Figure 1.4: An overview of ANF bundle segmentation: (a) shows the landmarks used during automatic path
finding to localize ANF bundles. (b) shows the segmentation results after being fitted to a spline and manual
adjustment.
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First, they use a compartment model which consists of several subunits with individual geometric and

electric parameters. As shown in Figure 1.5(a), a nerve fiber consists of peripheral nodes and internodes,

somatic, pre-somatic, and post-somatic regions, and central nodes and internodes. Each of these subunits can

be thought of as a compartment that is modeled by an electrical circuit with distinctive electrical properties.

The detailed geometry parameters are shown in Figure 1.5 and electrical parameters are listed in Table 1.1.

Second, Ion channel dynamics are described by a modified Hodgkin-Huxley (HH) model, namely, the

‘warmed’ HH (wHH) model. wHH includes sodium, potassium, and leakage currents and has the following

form:

dV
dt

=
[
−gNam3h(V −VNa)−gKn4 (V −VK)−gL (V −VL)+ istimulus

]
/c (1.1)

dm
dt

= [−(αm +βm)m+αm]k (1.2)

dh
dt

= [−(αh +βh)h+αh]k (1.3)

dn
dt

= [−(αn +βn)n+αn]k (1.4)

k = 3T−6.3 (1.5)

V =Vi −Ve −Vrest (1.6)

where V , Vi, Ve, and Vrest are the membrane, internal, external, and resting voltages, and VNa, VK , and

VL are the sodium, potassium, and leakage battery voltages, respectively. gNa, gK , gLare the maximum

conductance and m, h, n are probabilities with which the maximum conductance is reduced with respect

to measured gating data, for sodium, potassium, and leakage, respectively. istimulus is the current produced

by electrode stimulation and c is the membrane capacity. Finally, α and β are voltage-dependent variables

that were fitted from measured data, and k is the temperature coefficient and T is the temperature degree

in Celsius. With wHH, the gating processes are accelerated (m, h, n are multiplied by 12) which best fit

to observed temporal behavior of human auditory nerves compared to the original HH model, and leakage

conductance are multiplied by the factor 10 to simulate 10-fold channel density. Third, the influence of

membrane noise is also taken into account in their approach by adding ion channel current fluctuations in the

active compartments (unmyelinated terminal, node of Ranvier, pre- and post-somatic compartment, soma).

These features allow the model to simulate the electrically excited auditory nerves in the human cochlea more

accurately than models based on animals.
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Figure 1.5: ANF biological models. (a) A healthy ANF has a myelinated peripheral axon. Ion channels and
leakage gates are located in the nodes of Ranvier. (b) An unhealthy ANF whose peripheral axon has become
unmyelinated but still partially functional. Only passive channels remain on the unmyelinated peripheral
axon.

Table 1.1: Electrical properties of our biological human ANF model

Electrical properties Topology Values

Resistivity (Ω cm)

Intracellular 50

Peripheral terminal 1

Presomatic region 1

Soma 1/3

Capacitance (µF cm−2)

Postsomatic region 1

Peripheral internode 1/40

Central internode 1/80

Node of Ranvier 1

Internode 1

Conductance (mS cm−2)
Soma 1

Other 10
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Since the CI electrodes do not directly contact any fraction of auditory nerve fibers, the neural activations

are caused by the rapid change of external electrical potential. We implemented our biological model based

on Rattay’s model Rattay et al. (2001b) using the Neuron library Carnevale and Hines (2006) which supports

the simulation of external stimulus of customized nerve models. Thus, we are able to simulate the neural

activation patterns using the resting potential and stimulation potential map from EAMs.

1.6 Deep learning techniques

Deep learning has emerged as a transformative technology in the field of medical imaging, revolutionizing

the way healthcare professionals analyze and interpret complex medical images. With its ability to automati-

cally learn hierarchical representations from large datasets, deep learning has shown remarkable potential in

improving accuracy, efficiency, and diagnostic outcomes in medical imaging tasks.

Medical imaging plays a critical role in diagnosing and monitoring various diseases and conditions, in-

cluding cancer, cardiovascular diseases, neurological disorders, and musculoskeletal conditions. Tradition-

ally, the interpretation of medical images has relied on the expertise of radiologists and clinicians, who man-

ually analyze the images to detect abnormalities, classify diseases, and make treatment decisions. However,

this process is time-consuming, subjective, and can be prone to human error.

Deep learning-based approaches have overcome many of the limitations associated with traditional meth-

ods by leveraging the power of neural networks to automatically learn relevant features and patterns directly

from medical images. These algorithms can extract intricate and subtle details from images, enabling more

accurate and consistent analysis. By training on large datasets comprising annotated medical images, deep

learning models can learn to identify complex patterns and abnormalities that may be imperceptible to the

human eye.

Convolutional neural networks (CNNs) have emerged as the backbone of deep learning for medical imag-

ing. CNNs excel at learning spatial hierarchies of features, making them well-suited for tasks such as image

classification, segmentation, and detection. With multiple convolutional layers, these networks can capture

increasingly complex and abstract representations of medical images, enabling them to identify subtle disease

markers and abnormalities.

One of the foundational architectures in deep learning for medical imaging is the U-Net Ronneberger

et al. (2015). U-Net is a CNN architecture that has demonstrated remarkable success in medical image seg-

mentation tasks. It comprises a contracting path, which captures contextual information through successive

convolutional and pooling layers, and an expansive path, which utilizes upsampling and convolutional layers

to generate high-resolution segmentation maps. U-Net has been widely used for various segmentation tasks,

such as delineating organs, tumors, and lesions in medical images.
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Another influential architecture in deep learning is the generative adversarial network (GAN) Goodfellow

et al. (2014). GANs consist of a generator and a discriminator network that work in tandem. The generator

network learns to synthesize realistic medical images, while the discriminator network aims to distinguish

between real and synthetic images. Through an adversarial training process, GANs can generate highly

realistic and diverse medical images that closely resemble real patient data. GANs have been applied in

medical image synthesis, reconstruction, and augmentation tasks, offering valuable opportunities for data

augmentation, rare pathology simulation, and training set expansion.

Deep learning has demonstrated remarkable potential in numerous medical imaging applications. Computer-

aided detection (CAD) systems empowered by deep learning algorithms can assist radiologists in the detec-

tion and localization of abnormalities in mammograms, chest X-rays, and computed tomography (CT) scans.

Deep learning-based image segmentation methods have achieved exceptional accuracy in delineating struc-

tures and organs of interest, facilitating treatment planning, quantitative analysis, and surgical guidance.

Furthermore, deep learning has also enabled advancements in medical image synthesis and reconstruc-

tion. By training generative models, such as variational autoencoders (VAEs) ? and GANs Creswell et al.

(2018), on large datasets of medical images, it is possible to generate synthetic images that closely resemble

real patient data. These synthetic images can be used to augment limited datasets, generate diverse examples

for training, and simulate rare pathological conditions for educational purposes.

In conclusion, deep learning has revolutionized medical imaging by harnessing the power of neural net-

works to automate and enhance the analysis of complex medical images. With architectures like U-Net and

GANs, deep learning has made significant strides in tasks such as segmentation, detection, reconstruction,

and synthesis. As the technology continues to advance and more data becomes available, deep learning is

expected to play an increasingly pivotal role in shaping the future of medical imaging, ultimately benefiting

patients and healthcare professionals alike.

1.7 Challenges

The EAMs of cochlear implants show great potential for improving the hearing outcomes of CI users, how-

ever, applying the EAMs in clinical settings is difficult. On the one hand, the effectiveness of the methods

derived from EAMs is hard to be verified with limited data acquired during or after the CI surgery. Some

physiological characteristics, such as the number of ANFs or the health of ANFs, are impossible to be mea-

sured directly. Therefore we need to design novel evaluation metrics to evaluate our proof-of-concept studies.

On the other hand, our current implementation of EAMs has several drawbacks that may affect its perfor-

mance. Our research calls for an effective solution to applying EAMs in clinical settings and improving the

effectiveness of EAMs. In this context, we have identified a number of challenges that we address in this
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doctoral research:

Challenge 1. There are around 30,000 auditory nerve fibers and each fiber serves as an independent

neural channel corresponding to a certain characteristic frequency in natural hearing. However, CI arrays

have a very limited spectral resolution depending on the number of CI electrode and their interface with the

nerves. The methods we introduced in previous sections all aimed at producing a better deactivation plan that

minimizes the channel overlapping problem to improve CI performance Bierer and Litvak (2016). But the

drawback is that this reduces the already very limited number of spectral channels, further compressing the

frequency spectrum.

Challenge 2. Our current model assumes that the auditory nerve fibers along the length of the cochlea

are equally healthy, while the health status of auditory nerve fibers varies substantially across individuals.

And auditory nerve fibers health is one of the key factors affecting hearing outcomes Nadol Jr et al. (1989);

Lousteau (1987); Khan et al. (2005). Although the EAM is customized electrically and anatomically, it has

not taken the differences in nerve health into account yet. One remaining challenge is coupling the biological

nerve model with the current implementation of EAM and customizing the nerve model to reflect nerve

fibers’ health status. And since neural health is impossible to be directly tested, we also need to develop a

novel method to evaluate the auditory nerve health estimation.

Challenge 3. The current EAM of cochlear implants is customized for individual patients via patient

CT-based segmentation and patient-specific electrical parameters. However, the process of searching for the

optimal electrical parameters is very computationally expensive. First, the EP map is calculated by solving

Poisson’s Equation for electro-statistics using FDM. This is achieved by applying the bi-conjugate gradient

optimizer to the high-dimensional linear equations, which require substantial computational resources. Sec-

ond, the current approach utilizes a grid search to find the optimal resistivity values for each type of tissue.

An EP map is calculated for each CI electrode at each iteration and compared with clinical EFI. Thus, it takes

days of computation time and may still result in sub-optimal parameters if the grid was not fine enough.

Challenge 4. The high-resolution patient segmentation relies on a thin plate spline transformation that

registers nine µCTs to the patient CT image using meshes of scala tympani, scala vestibuli, and modiolus.

Although these cochlea substructures can be accurately registered because of the one-to-one point correspon-

dence, the soft tissue, bone, and air in the region of interest are labeled using a majority voting based on

the transformed µCTs’ segmentations. This results in a less accurate segmentation surrounding the cochlea

because of the non-rigid transformation and the anatomical differences between ex-vivo µCTs and in-vivo

patient CTs. Existing methods have not well explored how to handle this problem.

Challenge 5. The existing auditory nerve segmentation method uses path-finding algorithms to connect

automatically estimated landmarks. However, manual correction is needed as a post-processing step in most
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cases because: (1) the paths are computed independently and sometimes they overlap or cross, and (2) the

whole path is defined by 3 landmarks and the mesh of scala tympani, so the nerve fibers are not aware of the

boundary of IAC. Moreover, the peripheral part of nerve fibers is assumed to extend along the direction that

is parallel to the central axis of the modiolus, while the natural never fibers are supposed to spiral along the

length of IAC.

1.8 Research contributions

In this thesis, we explore the methods that may improve the current patient-specific EAM and CI performance

based on the challenges described in Section 1.6. First, we propose a CI electrode sequence optimization algo-

rithm that may improve the CI performance without losing any spectral resolution (Contribution 1, Challenge

1). Second, we introduce a novel method for auditory nerve health estimation where the nerve health is pa-

rameterized for each patient and can be trained and evaluated using available ECAP functions (Contribution

2, Challenge 2). Third, we develop machine learning based methods to generate the patient-specific EP map

and electrical parameters within seconds, which usually takes days to calculate using the traditional FDM +

grid search method (Contribution 3 and 4, Challenge 3). Fourth, we introduce a super-resolution segmenta-

tion method that can generate 8X higher-resolution tissue label maps of the inner ear using patient CT images

without the help of µCTs (Contribution 5, Challenge 4). At last, We also proposed a novel fully-automatic

auditory nerve segmentation method to generate accurate auditory nerve fiber trajectories (Contribution 6,

Challenge 5).

Contribution 1. Cochlear implant electrode sequence optimization using patient-specific neural stimula-

tion models

Due to the refractory behavior of the nerve fibers, nerves become insensitive to further stimulation for a

period of time following prior stimulation. As a result, when multiple electrodes stimulate the same fibers,

masking artifacts can occur, where one electrode may fail to stimulate certain nerve bundles due to preceding

stimulation by another electrode. This phenomenon is also known as the channel overlapping problem. To

solve this problem, existing methods usually come up with a deactivation plan to minimize this artifact. But

the drawback is that this reduces the already very limited number of spectral channels, further compressing

the frequency spectrum.

In this research, we propose a new method to reduce channel overlapping problems by determining a

customized firing order of the electrodes on the CI array using image-based models of patient-specific neural

stimulation patterns. Our models permit estimating the time delay needed after firing an electrode so that

the nerve fibers they stimulate can recover from the refractory period. These predictions allow us to design

an optimization algorithm that determines a customized electrode firing order that minimizes the negative
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effects of overlapping stimulation between electrodes. The customized order reduces how often nerves that

are in a refractory state from previous stimulation by one electrode are targeted for activation by a subsequent

electrode in the sequence. Our experiments show that this method is able to reduce the theoretical stimulation

overlap artifacts and could lead to improved hearing outcomes for CI recipients.

Contribution 2. Auditory nerve fiber health estimation using patient-specific cochlear implant stimula-

tion models

Cochlear implants restore hearing using an array of electrodes implanted in the cochlea to directly stimu-

late auditory nerve fibers. The existing inner ear models for cochlear implants like IGCIP and EAM assume

that all the ANFs along the length of the cochlea are equally healthy, while the health status of ANFs is one

of the key factors affecting hearing outcomes.

In this work, we propose patient-customized, computational ANF stimulation models, which are not only

coupled with our patient-specific (EAMs) to ensure electrical and anatomy customization but also estimate

neural health status along the length of the cochlea. We implement a biological nerve model proposed by

Rattay et al. [37] and drive the nerve model using electrical potentials sampled from the electrical field at

auditory nerve fiber locations. We tune neural health parameters for each ANF bundle so that simulated

amplitude growth functions for each electrode in the array best match the corresponding clinically measured

ones. We then conduct a validation study in which we evaluate our health prediction by simulating the spread

of excitation (SOE) functions with the estimated neural health parameters and compare the results to clinically

measured SOE. Experiments with 8 subjects show promising model prediction accuracy, which suggests our

modeling approach may provide an accurate estimation of ANF health for CI users.

Contribution 3. Cochlear implant electric potential estimation using 3D neural networks

In order to provide objective information to the audiologist for programming, our group has developed

EAMs to permit estimating which auditory neural sites are stimulated by which CI electrodes. To do this, we

have proposed physics-based models to calculate the electric potential in the cochlea generated by electrical

stimulation. However, solving these models requires days of computation time and substantial computational

resources.

With the rapid development of machine learning for computer vision tasks, 3D U-net is widely used in

the segmentation, enhancement, and diagnosis of medical images. Yet, generating physics-based 3D elec-

tric potential maps has not been well explored. In this work, we propose a deep-learning based method to

estimate the patient-specific electric potential maps using a 3D U-Net-like architecture with a physics-based

loss function that reflects Poisson’s equation for electrostatics as a self-supervised loss term. Our network

is trained with a dataset generated by solving physics-based models and the results show that the proposed

method can achieve similar accuracy to the traditional method and largely improves the speed of estimating
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the intra-cochlear electric potential.

Contribution 4. Patient-specific electro-anatomical modeling of cochlear implants using deep neural

networks

In previous research, our group has developed methods that use patient-specific electrical characteristics

to simulate the activation pattern of auditory nerves when they are stimulated by CI electrodes. However,

estimating those electrical characteristics require extensive computation time and resources. In this work, we

propose a deep-learning-based method to coarsely estimate patient-specific electrical characteristics using a

cycle-consistent network architecture. These estimates can then be further optimized using a limited-range

conventional searching strategy. Our network is trained with a dataset generated by solving physics-based

models. The results show that our proposed method can generate high-quality predictions that can be used in

the patient-specific model and largely improves the speed of constructing models.

Contribution 5. Super-resolution segmentation for inner-ear CT images

In our current implementation of the high-resolution EAM, the tissue label maps are obtained from non-

rigid registration of specimens’ inner-ear segmentations. A total of nine specimens µCT-level segmentations

are used and the voxel labels are obtained via a majority voting. Herein, we proposed a deep learning archi-

tecture, SRSegN, that is able to perform super-resolution segmentation for pre-operative inner-ear CT images.

The deep learning model combines the advantages of convolutional networks and Transformer encoders, and

features a dual-encoder architecture where a convolutional encoder is used to extract low-resolution features

and a Transformer-based encoder is used to perform upsampling and extract super-resolution features. The

proposed model not only outperforms the traditional registration-based method, but also achieved better seg-

mentations performance than multiple state-of-the-art deep learning based segmentation models in terms of

dice coefficient on both cochlear dataset and a large public dataset.

Contribution 6. Automatic auditory nerve fiber segmentation

The traditional auditory nerve fiber segmentation method proposed by Cakir et al. Cakir et al. (2019)

relies heavily on manual inspection and adjustment. And the central axons of the resulting nerve fibers may

still be localized mistakenly even after manual correction because the landmarks used in that method are not

representative enough and the assumption that central axons all proceed straight towards the same direction

once entering the modiolus. In this work, we introduced a fully automatic ANF segmentation method. The

peripheral and central axon of an ANF will be estimated individually based on five sets of automatically

generated landmarks. The fast marching method is used to find the geodesic paths for the peripheral axons

between the surfaces of the scala tympani (ST) and scala vestibuli (SV) meshes. Cylindrical coordinate

systems are constructed based on the landmarks and are used to smoothly interpolate trajectories for the spiral

central axons. Experiments show that our proposed method outperforms the original method and achieves
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impressive performance with 0 overlapping ANFs and 0 ANFs passing through the bone. The number of

ANFs that pass through ST or SV is also reduced by 36.1

1.9 Thesis Organization

The rest of this dissertation is organized as follows. Section 2 describes the CI electrode sequence optimiza-

tion method; Section 3 describes the ANF health estimation method and contributions; Section 4 describes

an alternative UNet-based method for computing electrical potential maps of the inner ear; Extending this

UNet architecture, section 5 introduces the multi-task cycle-consistent neural network for generating elec-

trical potential maps as well as predicting the patient-specific electrical parameters; Section 5 introduce the

novel architecture of SRSegN for µCT-level segmentations using conventional pre-operative CT images; and

Section 6 describes the new ANF segmentation method which is fully-automatic, fast, robust and outperforms

the original method.
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CHAPTER 2

Cochlear Implant Electrode Sequence Optimization using Patient Specific Neural Stimulation Models

2.1 Introduction

Cochlear implants (CIs) are an effective treatment for patients who suffer sensory-based hearing loss. In CI

surgery, an array of electrodes is implanted into the inner ear to permit electrical stimulation of the auditory

nerve. The number of electrodes on an electrode array ranges from 12 to 22 depending on the manufacturer.

After surgery, CI recipients undergo many programming sessions with an audiologist who adjusts the CI

processor settings to improve performance. However, lacking objective information about what settings

will lead to better performance, a trial and error procedure is implemented. Traditionally, the programming

process includes determining the set of electrodes that need to be activated as well as the dynamic range

of electric current for each electrode Noble et al. (2015). As weeks of experience with given settings are

needed to indicate long-term outcome with those settings, this process can be frustratingly long and lead to

suboptimal outcomes.

In a previous study, our lab developed a patient-specific model of auditory nerve fiber activation, which

relies on CT-based intra-cochlear anatomy segmentation Noble and Dawant (2015) and localization of CI

electrodes Zhao et al. (2019) in order to create a high-resolution electro-anatomical model (EAM) Cakir et al.

(2017a,b). Experiments have shown that our model accurately estimates intra-cochlear voltage distributions.

Therefore, when these voltage estimates are input into neural activation models, we are able to estimate the

stimulation status of nerve bundles at different locations in the cochlea.

Typically, when an electrode on the array injects a certain electrical current into the cochlea, a number of

nerve bundles get activated. With the help of our patient-specific model, we can estimate which nerve fibers

are stimulated by which electrodes and find which fiber populations are stimulated by multiple electrodes

(see Figure 2.1). Due to the refractory behavior of the nerve fibers, nerves become insensitive to further

stimulation for a period of 1 or more milliseconds (ms) following prior stimulation. As a result, when multiple

electrodes stimulate the same fibers, masking artifacts can occur, where one electrode may fail to stimulate

certain nerve bundles due to preceding stimulation by another electrode. Masking is a phenomenon known to

negatively affect hearing outcomes Fu and Nogaki (2005); Boëx et al. (2003). Therefore, a reduction of these

cross-electrode masking effects should lead to improved CI performance.

CIs activate one channel at a time in order to mitigate electric field interactions and pre-define a channel

firing order that is executed in each stimulation frame. Most manufacturers use a sequential firing order.

18



CIs manufactured by Advanced Bionics Corp. (Valencia, CA) will by default select a non-sequential firing

order so that adjacent electrodes that are most likely to have overlapping stimulation will not be activated one

immediately after another to reduce masking effects. However, this is done in a one-size-fits-all manner and

does not account for patient-specific masking, which may be non-uniform across the array. In this work, we

propose a new method to detect masking effects using our patient-specific model and to customize the firing

order to minimize the masking effect.

Figure 2.1: A patient-specific model where 75 nerve bundles are segmented around the electrode array.

Figure 2.2: Simplified schematic illustration of how the Masker-Probe Interval (MPI) affects the second
stimulation of nerve fibers.

2.2 Method

In this section, we will show details of our experimental methods and optimization algorithm. The data we

used in experiments are four patient-specific EAMs we created in a previous research study Cakir et al.
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(2017b). The resistivity values of different tissue classes have been optimized to match patient-specific

impedance measurements. These four models have sixteen electrodes on their CI array. The models provide

an estimate of the electric potential generated by each of the electrodes through the cochlear tissue.

2.2.1 Masking effect quantification

In the models we constructed for our four patients, 75 nerve fiber bundles were segmented Cakir et al. (2019)

(see Figure 2.1). For each fiber bundle a fiber stimulation model can be created that is driven using the

electric potential estimated by the EAM. Using these models, we find that each electrode on the array is able

to electrically stimulate several nerve bundles in an area near them. When nerves are activated, they generate

an action potential. The compound action potential among all activated fibers can be measured using the

implant, similar to the simulated responses shown in Figure 2.2. The groups of bundles recruited by each

electrode overlap with each other.

As masking effects prevent nerve fibers to be electrically evoked by two electrodes within the refractory

period, a certain amount of time is required for any nerve fiber to return to its resting potential between its

last activation and the next one. The time delay after firing a ‘masker’ electrode and before firing a ‘probe’

electrode is called the masker-probe interval (MPI) (see Figure 2.2). Therefore, we quantify the masking

effect for a masker-probe pair as the smallest MPI required to wait after stimulating a masking electrode

before the probe is able to stimulate a required fraction τ of the nerve bundles it recruits with resting state

stimulation. We refer to this as the minimum non-masking MPI (mMPI) and define τ to be 0.9 in our

experiments.

A binary search is used to find the mMPI for each electrode pair (v, u), where v and u are electrodes on

an array, and stimulation with v and u is simulated using our patient-specific models. Notice that mMPI is an

asymmetric measure, and the mMPI for pair (v, u) and pair (u, v) could, in general, be different. The mMPI

estimated for all electrode pairs can be recorded in a mMPI matrix, where the element at index (v, u) in the

mMPI matrix is the mMPI when using masker v to mask probe u.

2.2.2 Electrode sequence optimization

After obtaining the mMPI matrix, we are able to construct a graph that represents the overlapping relationship

between electrodes. The nodes in this graph represent each electrode, and the edges between electrodes rep-

resent the corresponding mMPI. Since both of the patient models we used in this research have 16 electrodes,

their representing graphs will be fully connected weighted directed graphs with 16 vertices.

Determining an optimal electrode firing sequence is equivalent to finding a Hamiltonian path of this graph

with the minimum cost. However, it is not possible to assign a single cost locally to each edge as would be
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typically done with a graph approach because, given an electrode sequence (or a path in this graph), any

electrode in the sequence will not only be affected by its adjacent electrode but also by the second or third

electrodes before it in the sequence. This is because the mMPIs are substantially longer than the width of

each pulse in the sequence. Thus, considering the stimulation pulse width, the time delay required to ensure

non-masking conditions between the ith and jth electrodes in the sequence would be mMPI(ei, e j) – W |i– j|,

where W is the pulse width, to account for the time delay that exists in the sequence between ei and e j. We

design our cost function for adding a new electrode en+1 to a given electrode sequence S = {e1,e2,e3, . . . ,en}

to be

cn+1 =
m

∑
i=1

∂iM (en−i+1,en+1) (2.1)

where M is the channel overlap timing matrix, and ∂i are weighting factors indicating the influence of

former electrodes in the sequence. In our experiments, we set m = 2, ∂1=0.7 and ∂2=0.3 so that mMPI for the

previous two electrodes is included, and the mMPI for the most recent electrode has the greatest importance.

Because the electrode sequence represents one frame, and CIs will stimulate one frame after another,

the first electrode stimulated in this frame will be affected by the last two electrodes in the last frame, and

similarly, the last two electrodes in this frame will also affect stimulation status in the next frame. To capture

the inter-frame interactions, we define the total cost of a full-frame sequence S as

C =
n

∑
i=3

ci +∂1M (e1,e2)+∂2M (en,e2)+∂1M (en,e1)+∂2M (en−1,e1) (2.2)

Because our cost function uses non-local constraints, standard path-finding methods such as Dijkstra’s

algorithm cannot be used. Thus, the path-finding algorithm we use to attempt to minimize this cost function

is based on the optimization method we have used in prior work for electrode localization Noble and Dawant

(2015). The algorithm starts with a random electrode as its seed node. Then, the L-1 remaining nodes are

determined by growing a list of candidate paths {p} that stem from the seed node.

At each iteration, the Grow stage allows the growth of new candidate paths by adding all possible one-

node extensions to each candidate path in {p} from the last iteration. Then the number of candidate paths

is reduced in the Prune stage by sorting and keeping the P paths with the lowest cost while discarding the

remaining paths with a higher cost to limit the number of stored paths from growing exponentially in each

iteration. This algorithm is shown in Algorithm 1. It is executed with P = 10000 to find the optimal sequence.

This algorithm provides no guarantee of finding a global optimum; however, it permits non-local constraints

and has controllable computational efficiency.
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Algorithm 1 Path finding algorithm

Input: overlapping relationship graph whose nodes are all the electrodes on the array and edges described
by overlap timing matrix. L = Num. of electrodes in the final sequence, and P = maximum num. of
candidate path
Initialize list of candidate paths {p}= {{e1,Cost(e1)}}
for L-1 iterations do

Grow
Initialize new list of candidate paths {q}=
for each candidate path in {p} do

Find child nodes in {p}, {c} = {n, Cost(n, {p})}
for each node in {c} do

Add new path to list {q} = {q}|({p} + {c})
end for

end for
Prune
Sort candidate paths in {q}N

1 by increasing path cost
Update p = {q}P<<N

1
end for
Output: {p1}

Table 2.1: Average mean absolute difference between simulated and measured AGF and SOE.

Patient 1
Firing order Cost

Sequential order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17.50 ms
Skip 4 electrode 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 10.01 ms
Optimized order 1 13 5 15 12 7 2 11 6 4 10 9 3 14 8 16 9.01 ms

Patient 2
Firing order Cost

Sequential order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17.29 ms
Skip 4 electrode 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 6.95 ms
Optimized order 1 14 11 3 16 9 2 13 8 4 12 7 6 5 15 10 5.38 ms

Patient 3
Firing order Cost

Sequential order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16.30 ms
Skip 4 electrode 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 5.28 ms
Optimized order 1 12 8 14 3 6 11 16 2 10 5 15 9 4 13 7 4.70 ms

Patient 4
Firing order Cost

Sequential order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18.60 ms
Skip 4 electrode 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 9.46 ms
Optimized order 1 7 12 2 8 5 13 6 16 11 3 15 10 4 14 9 8.81 ms
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2.3 Experiments and results

The mMPI matrix for four patient-specific models is shown in Figure 2.3. The y-axis represents the electrodes

that serve as “maskers”, and the x-axis represents the electrodes that serve as “probes”. As we can see

in Figure 21, the MPI between the masker and probe is negatively correlated with the distance between

electrodes on the array because the further two electrodes are from each other the less overlapping area they

share.

Using these mMPI matrices, the optimized electrode sequence results are shown in Table 6. ‘Sequential

order’ indicates firing all the electrodes one by one from the beginning of the array to the end. This method

is used by two CI manufacturers and could cause severe masking effects. The ‘skip 4 electrodes’ order is one

that is used by default by Advanced Bionics, where every 5th electrode in the array is activated starting from

e1, followed by e2, then e3, then e4. This method indeed avoids much of the overlap problem, but it is still

limited by not taking into account patient-specific mMPI. Compared to the sequential order used by some

CI manufacturers and the skipping order used by one manufacturer, the optimized firing order has a cost as

defined by equation(2.2) for all patient models in our experiments.

2.4 Conclusion

To the best of our knowledge, this is the first time that an algorithm for patient-specific optimization of

cochlear implant electrode firing order has been proposed. Such optimized firing orders could help to improve

cochlear implant performance.

In this study, we have used our patient-specific model to predict the stimulation status of nerve bundles.

With the help of these predictions, we are able to quantify how much one electrode is affected by another by

computing the minimum non-masking masker-probe-interval. we proposed a new method to assist audiolo-

gists by determining a customized firing order of the electrodes on the CI array using image-based models

of patient-specific neural stimulation patterns. Our models permit estimating the time delay needed after

firing an electrode so that the nerve fibers they stimulate can recover from the refractory period. Specifically,

we have proposed an algorithm to optimize the firing order using a graph-based path-finding algorithm that

permits non-local constraints. Our preliminary experiments show that our optimized firing orders have better

theoretical masking performance than traditional methods.

Our future work will include evaluating our method on a larger dataset and implementing the optimized

firing order with research subjects to evaluate whether it leads to improved hearing outcomes.
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Figure 2.3: mMPI matrix for four patient-specific models. The y-axis represents the electrodes that serve as
‘maskers’, and the x-axis represents the electrodes that serve as ‘probes’. And the brighter the pixel is, the
bigger the masking effect will be.
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CHAPTER 3

Auditory Nerve Fiber Health Estimation using Patient Specific Cochlear Implant Stimulation Models

3.1 Introduction

Hearing is the outcome of a series of complex steps that translate sound wave signals into electrical signals.

In normal hearing, sound waves induce pressure oscillations in the cochlear fluids, which in turn initiate a

traveling wave of displacement along the basilar membrane (BM). This membrane divides the cochlea along

its length and produces maximal responses to sounds at different frequencies Wilson and Dorman (2008).

Because the motion of BM is then sensed by hair cells that are attached to the BM, these sensory cells are

fine-tuned to respond to different frequencies of the received sounds. The activation of the corresponding

hair cells releases chemical transmitters to electrically stimulate the spiral ganglion nerve cells. And the

electrical signal is propagated along the auditory nerve fibers (ANFs), traveling through the brain stem, and

finally reaching the auditory cortex allowing the brain to sense and process the sounds. In summary, the sound

signal is decomposed by BM and hair cells, and the ANFs send this information to the brain to hear the sound.

For patients suffering sensorineural hearing loss, which is principally caused by damage or destruction of the

hair cells, however, the decomposition process of incoming sound waves cannot be performed.

In this situation, direct stimulation of the ANFs is possible if they are intact Greenberg et al. (2004). A

CI replaces the hair cells with an externally worn signal processor that decomposes the incoming sound into

signals sent to an electrode array. Electrode arrays have up to 22 contacts depending on the manufacturer,

dividing the available ANFs to, at most, 22 frequency bands or stimulation areas when using monopolar

stimulation. Studies have shown that hearing outcomes with CIs are dependent on several factors including

how healthy the ANFs are Nadol Jr et al. (1989).

Our group has been developing EAMs in order to provide objective information that can assist audiol-

ogists with programming Cakir et al. (2017b,a). Building on those studies, in this study we propose to use

these EP models as input to ANF activation models to predict neural activation caused by electrical stimula-

tion with the CI. We also propose the first in vivo approach to estimate the health of individual ANFs for CI

patients using these models.

In summary, herein we propose patient-customized, image-based computational models of ANF stimula-

tion. We also present a validation study in which we verify the model’s accuracy by comparing its predictions

to clinical neural response measurements. Our methods provide a patient-specific estimation of the electro-

neural interface in unprecedented detail and could enable novel programming strategies that significantly
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improve hearing outcomes with CIs.

3.2 Related works

Several groups have proposed methods for predicting neural activation caused by electrical stimulation Rattay

et al. (2001b); Malherbe et al. (2016); Cartee (2000). Most of these methods use physiologically-based

active membrane nerve models driven by physics-based estimation of the voltage distribution within a given

anatomical structure. However, these studies either lack the capacity to be applied in-vivo or only confine

themselves to anatomical customization instead of constructing both anatomically and electrically customized

models that take advantage of physiological measurements that are clinically available. It is possible that

these models need to be fully customized in order to prove useful for clinical use. Thus, in this work, we

are proposing patient-customized, computational ANF stimulation models, which are not only coupled with

our patient-specific EAMs to ensure electrical and anatomy customization but also estimate neural health

status along the length of the cochlea. Our models permit accurately simulating physiological measurements

available via CIs.

Our ANF stimulation models are built on three critical components: the biological auditory nerve model

proposed by Rattay et al. (see Chapter I, section 5.2), the CT-based high-resolution EAM of the electrically

stimulated cochlea (see Chapter I, section 4), and the auditory nerve fiber segmentation proposed by our

group (see Section 1.5.2). These models help to describe auditory nerves from biological, electrical, and

spatial features respectively. In the next section, we will illustrate our approach to combining these models

and build our novel, health-dependent ANF stimulated models based on them.

3.3 Methods

We start the methods section with an overview of the proposed approach, followed by subsections providing

more detail regarding novel components of the work. There are approximately 30,000 ANFs in a healthy

human cochlea Spoendlin and Schrott (1989). We represent them using auditory nerve bundles that are

segmented along the length of the cochlea as shown in Figure 5a.

To reduce the computational cost of our approach, we represent only 75 distinct bundles, each represent-

ing potentially hundreds of fibers. Our proposed nerve bundle action potential model is PM ∗HM+PU ∗H ∗

(1−M), where PM and PU are the action potential responses of single ANF cell biological nerve models for

a myelinated fiber and the degenerated, unmyelinated fiber model, respectively. H is the number of living

fibers in the bundle that can be recruited for stimulation. M is the fraction, among those ANFs, of healthy

versus degenerated ones. Thus, the bundle action potential is the superposition of the two fiber models’ action

potential predictions scaled by the number of such fibers we estimate to be present in the bundle. We have
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designed an approach, described below, to determine patient-customized values for these two parameters for

each of the 75 distinct bundles.

The biological ANF model permits simulating action potentials (APs) created by ANFs as a result of

the EP the ANF is subjected to. The EP sampled at discrete locations along the fiber bundle – each node

of Ranvier (black nodes between myelinated segments in Figure 1.5b) – is used to drive the ANF activation

model. The EP generated by the CI electrodes can drive the ANF models and can be estimated using our

CT-based high-resolution EAM of the electrically stimulated cochlea as described previously.

Next, we will use our bundle model to simulate neural response measurements that can be clinically ac-

quired. These measurements include recordings acquired using the CI electrodes of the combined AP signal

that is created by the set of ANFs activated following a stimulation pulse created by the CI. Such measure-

ments are called ECAPs. Several ECAP-based functions can be clinically acquired. The most common are

the AGF, which samples how the magnitude of recorded ECAPs (µV) grow as the current is increased for

the stimulation pulse signal; and the SOE function, which measures the fraction of ECAP responses for two

stimulating electrodes that are generated from the same ANFs Hughes (2012); Briaire and Frijns (2005).

Both AGFs and SOEs can be simulated using our models and clinically measured using the patient’s im-

plant. While both AGF and SOE are rich with information about the electro-neural interface and have been

acquirable for CI patients for decades, these metrics are not routinely used for clinical programming because

they have been difficult to interpret. Thus, the method we propose provides a unique opportunity to:

(1) estimate neural health by tuning model neural health parameters so that model-predicted ECAP func-

tions match clinically measured ones.

(2) provide a physical explanation for the AGF and SOE measurements. Both of these typically unknown

quantities could significantly improve an audiologist’s ability to program the CI.

We tune neural health parameters for each ANF bundle so that simulated AGF functions for each electrode

in the array best match the corresponding clinically measured ones. Finally, we conduct a validation study

in which we evaluate our health prediction by simulating SOE functions using the model with the estimated

neural health parameters and compare the results to clinically measured SOE to demonstrate the predictive

value of our proposed models. The following subsections detail each step of our approach.

3.3.1 Dataset

N = 8 patients who had undergone CI surgery were used to create neural health estimation models. All the

patients underwent pre- and post-implantation CT imaging needed to localize the intra-cochlear position of

the electrodes and to create the tissue classification maps for the EAM models. The three clinical electro-

physiological measurements critical for tuning and evaluating our models (EFI, AGF, and SOE) were also
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Figure 3.1: Overview of the ANF models. It shows the spatial distribution of ANF bundles colored with a
nerve health estimate.

collected for all electrodes, for all patients with institutional review board approval.

3.3.2 Nerve Model

For each nerve fiber model, we follow the approach of Rattay et al. as we described in Chapter I, section

1.5.2. The modeling is done using the NEURON simulation environment. The overview of the auditory nerve

fiber used in this study is shown in Figure 5b. As shown in the figure, each nerve model consists of three

subunits which are the peripheral axon, the soma, and the central axon. The peripheral axon is located near

hair cells in a human cochlea. They are myelinated when the fiber is healthy and fully functional. It is also

common in patients with hearing loss that fibers, where the peripheral axon has become unmyelinated, exist

and could have a weaker response to stimulation. We define them as functional but ‘unhealthy’ ANFs. Then

we can parameterize the health of each nerve bundle by varying the number of fibers, H, as well as the ratio

of myelinated vs unmyelinated fibers, M, for each ANF bundle.

Our bundle model simulates bundle APs to the estimated EP generated by CI electrodes as previously

discussed. Subsequently, ECAP measurements can be simulated in the model. To do this, each node of

Ranvier for each bundle is treated as a current source, and the same finite difference method used in EAM

for estimating EP created by the CI is repurposed for estimating the EP created by the APs generated by

all the bundles. This is done by defining bundle nodes as current sources corresponding to cross-membrane
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current. Thus, the result of each bundle model drives a new EAM to estimate the EP created by the ANFs in

the cochlea. The value of the EP is then recorded at the site where the recording electrode is located. This

process directly simulates the clinical ECAP measurement process.

In summary, the ECAP simulation can be divided into three steps: (1) for a given stimulating electrode,

we calculate the EP using an EAM and record the resulting EP at the nodes of Ranvier for each nerve bundle;

(2) we use those voltages as input to the neural activation models for both myelinated and unmyelinated

nerves to compute our combined nerve bundle AP; and (3) we estimate the EP created by the bundle APs

using another EAM, permitting simulated ECAP measurement from the position of recording electrode. In

practice, in the final step, an EAM can be created independently for each bundle and the compound response

at the recording electrode is then given by

simulated ECAP =
75

∑
i=1

PM,i H i Mi +PU,i Hi (1−Mi) (3.1)

where PM,i and PU,i represent the value of the EF sampled at the recording electrode for the simulated

ECAP of the myelinated and unmyelinated ANF model in the ith nerve bundle, respectively, and Hi and Mi

are the number of fibers and fraction of those fibers that are healthy for the ith nerve bundle.

3.3.3 Optimization process

Spoendlin et al. Spoendlin and Schrott (1989) found that for a healthy human cochlea, the average number

of fibers can vary between 500 fibers per millimeter (mm) to 1400 fibers per mm depending on the location

within the cochlea. Given that a nerve bundle in our model can represent a region as wide as 0.4 mm along the

length of cochlea, we have set the boundary values for the number of functional nerve fibers to be between 0

(all unresponsive) and 550 (all responsive) and the healthy ratio or the myelination ratio from 0 (all responsive

nerve fibers are damaged) to 1 (all responsive nerve fibers are healthy).

Instead of determining values for Hi and Mi for each of the 75 nerve bundles independently, a set of

control points are used to enforce spatial consistency in parameter values. We define n+1 control points along

the length of the cochlea, where n is the total number of active electrodes. The control points are positioned

to bracket each electrode. The parameters at those control points were randomly initialized with Hi between

0 to 550 and Mi from 0 to 1. The parameters for each nerve bundle are then linearly interpolated along the

length of the cochlea using the control points.

We use the bounded Nelder-Mead simplex optimization algorithm D’Errico (2019) to optimize values at

the control points. The cost function is calculated as the mean absolute difference between the simulated

and measured AGF values for each electrode. Starting from a random initialization at each control point,

our algorithm will iteratively calculate the parameters of every nerve bundle by interpolating control point
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values, simulate AGF using those parameters to evaluate the cost function discussed above, and determine

new control point parameters using the Nelder-Mead simplex method until a maximum iteration number

is reached or the change in error falls below the termination threshold (0.1µV). Algorithm pseudocode is

presented in Algorithm 2.

In our implementation, AGF values that were less than 35µV were not included in the optimization

process because low AGF values tend to be below the noise floor and are usually excluded from clinical

analyses. During our experiments, Algorithm 1 is executed from 250 different random initializations for each

patient model. The final fiber count and healthy ratio for every nerve bundle are determined as the median

values across the 10 optimization runs that resulted in the lowest average error. This procedure diminishes

the likelihood of choosing sub-optimal parameters that are local minima.

Algorithm 2 Estimate the patient-specific neural health parameters

Input: PAGF = Patient AGF measurement
Variable: SAGF = Simulated AGF data, H = Number of nerve fibers within bundles, M = Myelination ratio
of fibers within bundles
Output: HC = Fiber count assigned to each control point, MC = Myelination ratio assigned to each control
point
Start: Assign threshold and maxIteration, randomly assign HC and MC
while ∆|error|> threshold and counter < maxIteration do

Interpolate H and M using HC and MC
end while
for each electrode i do

errorAGF [i] = mean(abs(PAGF [i] - SAGF [i]))
end for
error = mean(errorAGF)
Optimize HC and MC using a constrained nonlinear search based on the Nelder-Mead simplex

3.4 Results

The average absolute differences between the simulated and measured AGF and SOE values for fully cus-

tomized EAMs are shown on the left side of Table 1. The average absolute difference between the simulated

and the measured AGF values could be interpreted as the training error. Mann-Whitney U tests reveal signif-

icant improvement in AGF errors after training (p¡0.01). The error between the simulated and the measured

SOE can be interpreted as the testing error since SOE was not used to optimize neural health parameters.

Further, SOE is likely more sensitive to neural health than AGF because it is much more dependent on the

spatial distribution of ANFs that contribute to the neural responses. The average SOE error across all patients

after optimizing neural health parameters using our proposed method is 39.5µV.

In Figure 3.3, we plot the simulation and clinical result of both AGF and SOE for subject 1. Both the

quantitative and qualitative comparisons show excellent agreement between neural stimulation responses that
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Figure 3.2: (a) Comparison between measured and simulated AGF data. (b) Comparison between measured
and simulated SOE data.
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Figure 3.3: SOE testing error for patient-customized versus generic models for Subject 4.

are clinically measured and those that are predicted by our parameter-optimized models. We further compare

the difference between neural health estimation using our fully customized models vs. generic models, where

default electrical properties are used, for the first six subjects on the right side of Table 3.1.

The AGF error (training error) resulting from the generic and electrically customized models is similar

while the testing error with fully customized models is much smaller than generic models. A one-sided Mann-

Whitney U test reveals significantly better (p¡0.05) testing error with the fully customized model compared

to the generic models. Example plots demonstrating the superiority of SOE simulations using customized for

one subject are shown in Figure 3.2. These results imply our patient-specific EAMs are critical, not only for

EFI simulation but also for accurate neural health estimation. An example neural health estimation result is

shown in Figure 3.1, where the neural health color codes are a combined function of both health parameters

equal to H(0.5+M). Varying health of several regions of nerves was identified by the proposed method in

order for prediction to match measured AGF.

3.5 Conclusion

In this research, we developed an approach to estimate the health of ANFs using patient-customized, image-

based computational models of CI stimulation. The resulting health parameters provide an estimate of the

health of ANF bundles. It is impossible to directly measure the number of healthy ANFs in vivo to validate our

estimates, however, experiments with 8 subjects show promising model prediction accuracy, with excellent

agreement between neural stimulation responses that are clinically measured and those that are predicted

by our parameter optimized models. These results suggest our modeling approach may provide an accurate

estimation of ANF health for CI users.

With the current IGCIP approach, assumptions are made about electrical current spread to estimate which
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Table 3.1: Average mean absolute difference between simulated and measured AGF and SOE.

Fully Customized Models Generic Models

Subject No.

AGF error –

before

optimiz. health (µV)

AGF error –

after

optimiz. health (µV)

SOE error-

testing error(µV)

AGF error –

after

optimiz. health(µV)

SOE error-

testing error(µV)

1 58 16 31 22 53

2 187 19 32 48 49

3 299 39 37 28 76

4 66 37 44 39 102

5 131 11 29 19 56

6 97 8 21 15 36

7 62 17 48 - -

8 141 26 59 - -

Average 134 21.6 39.5 28.5 62.0

fiber groups are activated based on their distance to the electrode. Our estimation of the health of ANFs

may improve our estimation of neural stimulation patterns and lead to highly customized IGCIP strategies

for patients.

Our future work includes evaluating the effectiveness of novel patient-customized programming strategies

that use these models. Further, our methods could provide an unprecedented window into the health of the

inner ear, opening the door for studying population variability and intra-subject neural health dynamics.
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CHAPTER 4

Cochlear Implant Electric Field Estimation using 3D Neural Networks

4.1 Introduction

Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-based hearing

loss on Deafness and (NIDCD). In CI surgery, an array of electrodes is implanted into the inner ear to permit

electrical stimulation of the auditory nerve. The number of electrodes on an electrode array ranges from 12

to 22 depending on the manufacturer. After surgery, CI recipients undergo many programming sessions with

an audiologist who adjusts the CI processor settings to improve performance. However, lacking objective

information about what settings will lead to better performance, a trial-and-error procedure is implemented.

As weeks of experience with given settings are needed to indicate long-term outcomes with those settings,

this process can be frustratingly long and lead to suboptimal outcomes Wolfe and Schafer (2014); Vaerenberg

et al. (2014).

In a previous study, our group has proposed an image-guided cochlear implant programming (IGCIP)

technology that can estimate auditory nerve activation patterns in order to simplify the traditionally tedious

post-operative programming procedure and improve hearing outcomes Noble et al. (2013). It has been proved

that our programming strategy does significantly improve hearing outcomes Noble et al. (2015, 2016). How-

ever, IGCIP estimates the neural stimulation patterns of the electrodes in a relatively coarse manner using only

the spatial relationship between the electrodes and where the nerve should be and assuming all the nerves are

healthy. To perform better estimation of neural activation, we further proposed image-based patient-specific

electro-anatomical models (EAMs) Cakir et al. (2017a,b), which is an anatomical and electrically customized

intra-cochlea. Several groups have used EAMs to study intra-cochlear voltage distribution and its effect on

neural activation. However, these models either cannot be applied in vivo, thus, patient-specific differences

cannot be incorporated Frijns et al. (2001); Whiten (2007); Kalkman et al. (2015), or lack of accuracy due to

using CT images and rigid registration [10]. Our EAMs are created using µCT images of cochlea specimens.

These high resolution models are spatially registered to patient CT data and electrically adapted to patient-

specific configuration to ensure fully customization. Based on our patient-specific EAMs, we have developed

helpful techniques such as automatic CI electrode sequence optimization Liu et al. (2020b) and auditory nerve

fiber health estimation Liu et al. (2020a) to provide unique objective information for programming process

with audiologists. However, calculating the electric field (EF) generated by each CI electrode is a bottle-

neck in creating EAMs, which requires days of computation time and consumes substantial computational
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resources.

In our current system, the EP is calculated by solving the finite difference method (FDM) solution to

Poisson’s equation for electrostatics, which is given by

∇ · J =−σ∇
2
Φ (4.1)

where Φ is the EP, J is the electric current density and σ is the conductivity. Such system can be solved

as an optimization problem using the biconjugate gradient method with an average time of 135 seconds on

a CPU for a volume of 251×251×151. The EPs of different electrical characteristics (i.e. the conductivities

for each tissue type), and different current sources (different activated electrodes) are calculated to find the

conductivity set that best fits the clinical measurements of EFI. EFI is obtained by activating one CI electrode

at a time (probe electrode) while measuring the voltage at each of the remaining electrodes in the cochlea,

thus sampling the intra-cochlear potentials at the sites where the electrodes sit, which are sensitive to patient-

specific tissue conductivities. Thus, voltage values are sampled from each simulated EP at the electrodes’

positions and compared to corresponding measurements to find patient-specific tissue conductivities. Since

over 1000 EP maps are needed to be simulated for each CI electrode during the searching process to find

optimal conductivities for each tissue type Cakir et al. (2017a) and a good initialization is required for each

simulation, 1200 to 2400 hours of computation time is needed in the whole process of creating an EAM

for a single patient. In this work, we propose a more efficient method to estimate the intra-cochlea voltage

distribution based on 3D U-Net-like architecture taking advantage of GPU resources.

4.2 Method

In this section, we will start with an overview of the task followed by details of our dataset and network

architecture. The goal of this neural network is to predict the electric potential of a cochlea that is electrically

stimulated by CI electrodes. Because the intra-cochlea tissue was assumed to be electrically linear and the

impedances of all the tissue types were assumed to be purely resistive, the activated CI electrode is modeled

as a unit electric current source as the solution to such can be linearly scaled to simulate varying current

levels. The input to our neural network includes a 3D resistivity map of the cochlea and an inverse distance

map of the current source (see Figure 4.1). The network is trained to predict an electric potential map with

the same size as the input when the current source injects 1 Amp of electrical current.

4.2.1 Data

Three types of images were generated to construct the dataset: the cochlea resistivity maps, the inverse

distance map of the current source, and the corresponding electric potential map. To do this, 8 label maps

were generated from 8 patient CT images as described in Cakir et al. (2017a). These label maps contain
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different labels corresponding to different tissue types including air, electrolytic fluid, soft tissue, neural

tissue, and bone. Electrode positions were also localized and encoded in these label maps following the

approach proposed in Zhao et al. (2019). The original size of label maps is 251×251×151, and they were

downsampled to 96×96×56 to reduce the computational cost. Data augmentation is performed by selecting

electrical resistivity values for each tissue type in the range from 50% to 150% of their default values found by

other groups, with air, bone, neural tissue, soft tissue, and electrolytic fluid being assigned resistivity values of

∞, 5000, 300, 300, and 50 ΩcmGeddes and Baker (1967), respectively. The air is considered fully insulating

to ensure numerical stability in solving the system. We also simulate the far-field ground by modeling the

entire border of the volume as ground. Because the number of electrodes on the electrode array is 16 for our 8

subjects, 16 inverse distance maps of current sources are created for every resistivity map. We generated 2000

pairs of resistivity maps and current source distance maps from 5 patients’ label maps by varying resistivity

values to serve as a training dataset. The corresponding electric potential maps were then calculated for each

resistivity map and for each activated electrode using the EAMs. We then generated 1200 sets of images in

the same way from another 3 patients as the testing set (see Figure 4.1).

Figure 4.1: Inverse distance maps of the current sources, intra-cochlea resistivity maps, and their correspond-
ing electric potential maps.

4.2.2 Network architecture

Our network is based on the U-net architecture proposed by Ronneberger et al. Ronneberger et al. (2015).

As illustrated in Figure 7, each step in the contracting path (left side) consists of two 3D convolutions, each

followed by a batch normalization, a rectified linear unit (ReLU), and a 3D max pooling. And in the expansive

path (right side), each step consists of a concatenation with the feature map from the contracting path, three

3D convolutional layers, each followed by a ReLU and an up-sampling layer implemented as a transposed

convolution operator from Pytorch Paszke et al. (2019). Note that the convolutional layers on the left side are
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slightly different from those on the right side since convolutions in the contracting path do not include the

addition of a learnable bias which is already included in batch normalization layers.

Figure 4.2: Network Architecture. Each blue box corresponds to a multi-channel feature map.

4.2.3 Training

The resistivity map – current source distance map pairs and their corresponding electric potential maps were

used to train the network with the Adam optimization method Kingma and Ba (2014) implementation of

Pytorch. The input size is 2×96×96×56 and the output volume is 96×96×56. We used a batch size of 1 as

recommended in [49] and a learning rate of 0.0001 during the training process. Because the aim of our neural

network is to find out the solution to a physical model (as described in equation 1), which is different from

other traditional image processing tasks, we propose to use an energy function that encourages the predictions

to obey Kirchhoff’s current law, which states that for any node in an electrical circuit, the sum of currents

flowing into that node is equal to the sum of currents flowing out of that node. To construct such a loss

function, we decided to use a similar method described in Cakir et al. (2017b). In our system, each voxel

represents a node that has 6 neighbors in the circuit, and the algebraic sum of currents flowing out of each

non-ground voxel should be zero unless that voxel is defined as the current source, which is given by

6

∑
i=1

Ineibi = Is (4.2)

Ineibi =
1

ρ +ρneibi

(
Φneibi −Φ

∆x
)∆y∆z (4.3)

α0Φ+α1Φneib1 +α2Φneib2 +α3Φneib3 +α4Φneib4 +α5Φneib5 +α6Φneib6 = Is (4.4)
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Is =


0, current source

1, other non-ground voxels
(4.5)

where Ineibi represents the current flow from its ith neighbor and Is equals 0 if the voxel is not a current

source and 1 if it is. And according to Ohm’s law, the current flow from one voxel to another can be illustrated

by equation (4.3) where ρ ,Φ, ρneibi and Φneibi represent the resistivity and voltage of the central node and its

ith neighbor’s, respectively. ∆x, ∆y and ∆z are the voxel size in centimeters. By substituting equation (4.3)

into (4.2), we can get (4.4) where αi can be calculated using ρ , ρneibi and the voxel size. As shown in equation

(4), Is can be represented as a linear combination of the voltage of the central node and its neighbors, and this

is true for every voxel in our system. Thus, we are able to construct a system of linear equations for all the

voxels which is given by

AΦ = b (4.6)

where A is a coefficient matrix consisting of αi j, Φ is the electric potential map, and b is a column vector

whose elements equals 1 when its corresponding voxel is the current source and 0 otherwise. A and b are

then modified by adding the following boundary conditions:

(1) Air nodes are forced to have zero values in Φ as they have infinite resistivity;

(2) If a non-air node is adjacent to at least one air nodes, Neumann boundary conditions are implemented;

(3) Rows representing ground nodes are deleted from A and b so that sinks are not constrained by Pois-

son’s equation. The overall energy function we used during our training is a weighted sum of rooted mean

squared error (RMSE) and our customized loss function as described below:

Loss = w1∗ sqrt
(

mean
[
(Φ−ΦGT )

2
])

+w2∗mean[(AΦ−b)2] (4.7)

where Φ and ΦGT are the predicted electric potential maps and ground truth respectively. Since the

ground truth does not appear in the customized loss, our loss function is a hybrid of a traditional supervised

loss term and a self-supervised term which benefit the estimation of a real physical process as described in

the next section.

4.3 Experiments and results

Table 4.1 shows the root-mean-squared error (RMSE) and the physics-based loss we obtained from models

trained with different weights in our loss function at their respective best epochs. As shown in the table, a

higher weight for the loss derived from Kirchhoff’s current law helps the model have better performance on

both RMSE and the physics-based loss in a certain range. However, our experiments also indicate that it is a

trade-off as putting a weight on physics-based loss (w2) that is larger than 1000 or using the physics-based
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loss only will lead to reduced precision in terms of RMSE and even divergence of the training process. To

achieve better performance of electric potential estimation, tuning of these weights is needed. And we found

that our network works best when w1=1 and w2=500. Figure 4.3. shows examples of the electric potential

prediction by the model trained with optimal weights together with their corresponding resistivity maps and

ground truth.

Table 4.1: Testing errors of models trained with different weights in loss function

w1, w2 RMSE (µV) mean[(AΦ−b)2] (µA2)

1, 0 25.65 2.13

1, 100 19.12 1.74E-02

1, 500 17.98 2.79E-03

1, 1e3 24.05 1.94E-03

1, 2e3 29.31 9.22E-04

0, 1 Diverge -

Table 4.2: MSE of EFI simulation (mV2)

Subject No. Deep learning method Physics-based method

1 1.31 0.81

2 25.36 1.12

3 3.92 0.85

The goal of electric potential estimation is to help build EAMs where EFIs are used to select the optimal

electrical resistivity values as we introduced previously. Thus, we demonstrate to estimate the EFI by sam-

pling the electric potential predicted by the neural network at the electrode positions. Those estimated EFIs

can be evaluated by comparing them with patients’ clinically measured EFIs and EFI simulations produced

by our traditional physics-based method. Figure 4.4 shows the EFI of the same patient at the same electrodes

with three different methods. And in Table 4.2, we calculated the mean squared error (MSE) between EFI

simulation from the deep learning method and clinical measurements. We also do the same calculation for our

physics-based method for comparison. These results show that the neural network achieves similar accuracy
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to the physics-based model both qualitatively and quantitatively.

The executing time of our network is 1.371 seconds for a single input, which is 100 times faster than the

physics-based model. This largely speeds up the process of calculating electric potential and thus the process

of creating EAMs that helps to improve cochlea implant performance.

4.4 Conclusion

In this work, we have used our 3D neural networks to predict the intra-cochlea electric potential generated by

CI electrodes. We proposed to add a physics-based self-supervised loss term in the loss function to penalize

the prediction results when Kirchhoff’s current law is violated. By using proper weights in our loss function,

the accuracy of the model can also be improved in terms of RMSE. The results we have obtained show that

our network is able to predict electric potential maps as well as EFI with similar accuracy to our physics-

based method. The proposed neural network architecture largely speeds up the process of calculating electric

potential and thus the process of creating EAMs that helps to improve cochlea implant performance. To the

best of our knowledge, this is the first time that a 3D Unet-like architecture is used for intra-cochlea electrical

field estimation.

Our future work includes improving the accuracy by enlarging our dataset and performing augmentation,

evaluating the sensitivity of the results, and expanding the architecture to a model that predicts optimal

resistivity values.
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Figure 4.3: Electric field prediction results by models trained with optimal hyperparameters compared with
ground truth.
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Figure 4.4: EFI simulation results by proposed method and physics-based method compared with clinical
measurements.
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CHAPTER 5

Patient-specific Electro-anatomical Modeling of Cochlear Implants Using Deep Neural Networks

5.1 Introduction

Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-based hearing

loss NIDCD (2019). In CI surgery, an electrode array is implanted into the inner ear to permit direct electrical

stimulation of the auditory nerve fibers (ANFs). Hearing outcomes with CIs depend heavily on the electro-

neural interface, which is a function of several patient-specific factors, including the anatomical structure

of the patient’s cochlea, the health status of ANFs, the placement of the CI array, and the patient-specific

tissue resistivity characteristics. An audiologist will adjust the CI processor settings for each CI recipient

after surgery to attempt to improve overall hearing performance. However, because the factors that affect the

electro-neural interface are traditionally not known by the audiologist, a trial-and-error procedure is imple-

mented for programming. Further, since the patients need weeks of experience with given settings before

hearing performance stabilizes due to learning effects, this programming procedure can be frustratingly long

and generally lead to suboptimal outcomes.

Several groups have studied the intra-cochlear voltage distribution and its effect on hearing outcomes

using different method. Frijns et al. Frijns et al. (1995) used a rotationally symmetric model of a guinea

pig cochlea and human cochlea to solve for the voltage distribution using boundary element method. Whiten

et al. Whiten (2007) create human cochlea model from histological images using finite difference method

(FDM). Although these models have been shown to be useful, they cannot be customized to show the patient-

specific differences in volume, shape, number of turns and length etc Avci et al. (2014). Malherbe et al.

Malherbe et al. (2016) rigidly register a high-resolution photomicrograph of a single cochlea to patient CT

image in order to estimate these anatomical differences. However, we have shown that a rigid registration is

less accurate than a high-resolution non-rigid model to estimate patient-specific anatomy Cakir et al. (2017b).

Our group has developed image-guided CI programming (IGCIP) techniques Noble et al. (2013), where

CT-based electrode localization is performed to coarsely estimate the electro-neural interface by simply es-

timating the distance from each electrode to the sites where the nerves should be. Audiologists can infer

the electro-neural interface using this information by assuming that electrodes that are more distant to the

nerves create broader, more highly overlapping excitation patterns. This permits providing simple, yet unique,

electro-neural interface information to audiologists for use in adjusting patient-specific processor settings and

leads to significant improvement in hearing outcomes as shown in several studies (e.g., Noble et al. (2015,
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2016)). Extending this work, to attempt to perform more accurate estimation of neural activation, we have

proposed a system in which ANF bundles can be directly modeled Cakir et al. (2019), and their stimulation

by the implanted CI can be simulated on a patient-specific basis Cakir et al. (2017a). With these models, it is

possible to simulate numerous electrical measurements that can be acquired from the patient’s CI. Further, by

parameterizing these models with patient-specific tissue resistivity parameters as well as patient-specific ANF

health, we can estimate these critical electro-neural interface parameters for individual patients by optimizing

them to obtain a better agreement between measurements from the CI and the model simulation estimations.

Thus, this direct modeling approach permits a far more comprehensive estimation of the electro-neural in-

terface than was possible using simple electrode distances and could lead to further improvement in hearing

outcomes when used by the audiologist for programming Cakir et al. (2017b).

In our current system, the ANF activation model, which is constructed following the biological auditory

nerve model proposed by Rattay et al. Rattay et al. (2001b,a), is driven by estimates of the electric potentials

(EPs) along the length of the ANF that result from activation of a CI electrode [17]. The EPs for each electrode

are estimated by solving the FDM solution to Poisson’s equation for electrostatics. The inputs to the FDM

are the tissue class map of the cochlea and surrounding tissues, the location of the active CI electrode current

source within the map, and the resistivity values of the tissue classes. The FDM outputs a resulting EP map,

which can be sampled at the ANF locations to drive the ANF activation models (Figure 5.1). The EP map

can also be sampled at the locations of the inactive electrodes, and this measurement (termed “Electric Field

Imaging” (EFI) by one CI manufacturer) can similarly be acquired from the patient’s CI. EFI captures the

electric potential at inactive electrodes when one electrode is activated and is sensitive to tissue resistivity.

Thus, it provides a means to optimize the estimated resistivity set for each patient. To do this, we have found

a grid search to be effective, where tissue resistivity parameters for air, bone, soft tissue, electrolytic fluid,

and neural tissue are searched on a grid. For each set of unique tissue resistivity values, the FDM is used to

estimate an EP map, and the optimal set is determined as the one that results in minimum mean squared error

between actual EFI and simulated EFI sampled from the resulting EP map. Once the EP map that results in

simulated EFI that best fits clinical measurements is found, we can use it to drive the ANF models.

While effective in finding plausible tissue resistivity parameters, the grid search process requires substan-

tial computational resources. Each FDM evaluation requires an average time of 135 seconds on a CPU for a

volume of 251 x 251 x151 voxels if a reasonable initialization is used. Since over 2000 FDM evaluations are

needed to be simulated for each CI electrode, and there are 16-22 electrodes, 1200 to 2400 hours of compu-

tation time are needed in the whole process of creating an EP map for a single patient with a search grid fine

enough to achieve mean absolute errors in EFI fitting of 0.3mV.

In this study, our hypothesis is that deep learning methods can alleviate or reduce the need to use FDM
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and speed up the generation of the EP maps Liu and Noble (2021). We propose a method that predicts patient-

specific resistivity values and EP maps at the same time based on cycle-consistent adversarial networks.

Figure 5.1: A slice of tissue label map (a): scala vestibuli (SV) and scala tympani (ST) are electrolytic fluid
(blue), modiolus (orange), soft tissue (green), CI electrode (dark blue circles), bone (yellow) and air (dark
blue area); And electrical potential map (b): SV (yellow contour), ST (blue contour), modiolus (red contour),
auditory nerve fibers (black dashed- lines), and electrodes (black circles).

5.2 Method

The primary goal of our neural network is to estimate the patient-specific resistivity set. The inputs to the

network are the target EFI, the tissue class map of the same patient, and the electrode locations. We employ

a multitask learning approach, where in addition to the resistivity set, a secondary goal of the network is

to estimate the EP map. Our results demonstrate the multitask approach results in more accurate resistivity

estimates. Due to the limitation of GPU memory, the input volumes to our network are all downsampled to

101 x 101 x 61 voxels.

5.2.1 Network architecture

Our network is built based on the cycle-consistent adversarial networks (Cycle GAN) Zhu et al. (2017) as

shown in Figure 11. Cycle GAN has been widely used in various image-to-image translation tasks with

unpaired datasets. In this work, we propose a novel variant of it. Our network consists of two sub-networks:

sub-network A predicts the patient-specific resistivity values using the tissue label map of the inner ear, a

distance map of the current source (an activated electrode), and the actual EFI measured from the patient;

sub-network B estimates the corresponding EP map given the tissue resistivity map and the same distance

map of the current source as used in A. This architecture is cycle consistent because the tissue resistivity
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map, which is one of the inputs to part B, can be obtained by assigning predicted resistivity values from

sub-network A to corresponding tissue labels available in the tissue label map. And the EFI, which is one of

the inputs to A, can also be estimated by sampling potentials from the predicted EP map from sub-network

B (as shown in Figure 5.2). The architectures of those two sub-networks mainly consist of a 3D version of

resNet-18 He et al. (2016) and a 3D Wasserstein GAN (WGAN) Arjovsky et al. (2017) respectively, which

are depicted in Figure 5.3(a) and Figure 5.3(b). The Wasserstein GAN uses a U-net-like generator based

on the architecture proposed by Ronneberger et al. Ronneberger et al. (2015) and a critic composed of 4

convolutional layers followed by a linear layer. Our implementation is different from the original Cycle

GAN implementation as follows: (1) Sub-network A is not an adversarial network. (2) Sub-network B is a

WGAN-GP Gulrajani et al. (2017) instead of conditional GAN because we found it to be more effective in

pilot testing. (3) We use paired datasets during training. In section 3, we will compare the performance of our

architecture to an individually trained sub-network A and a multi-task U-net-like network, which are more

commonly used with paired datasets, to illustrate the advantage of our cycle-consistent architecture.

5.2.2 Dataset

Four types of data were generated to construct the dataset: the electrical resistivity set, the tissue label map,

the distance map of the current source, and the corresponding EP map. The resistivity set contains the

resistivity values of different tissue types including electrolytic fluid, soft tissue, neural tissue, and bone. We

generate the resistivity set by randomly selecting resistivity values for each tissue type in the range from 50%

to 150% of their default values found by other groups, with bone, neural tissue, soft tissue, and electrolytic

fluid being assigned resistivity values of 5000, 600, 300, and 50 Ωcm Geddes and Baker (1967), respectively.

The tissue label maps have labels for the four tissue types above as well as a label for air, which is considered

fully insulating during the computation of corresponding EP to improve numerical stability. Label maps were

generated from 20 patient CT images using active shape models generated from µCT specimens to follow the

method described in Cakir et al. (2017a). The distance maps compute the normalized Euclidean distance to

the current source – the activated electrode on the CI array. The activated CI electrode is modeled as a unit

electric current source (1 µAmp) as the solution to such can be linearly scaled to simulate varying current

levels. Because the number of electrodes on the electrode array is 16 for all our 20 subjects, 16 distance

maps of current sources are created for every label map. By assigning a simulated resistivity set to a patient

label map and selecting one electrode as the current source, a corresponding EP map is calculated using FDM

following the method in Cakir et al. (2017a). In our training set, 10 patient label maps are used, and a total

of 100 resistivity sets and corresponding EP maps are simulated for each of the 16 electrodes serving as

the current source. Then, all the resulting EP maps are sampled at the site of the CI electrode to obtain the
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Figure 5.2: Proposed network architecture: blue lines show the forward direction and red lines show the back
propagation direction labeled with different loss terms.
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simulated EFIs, which consist of a 16-element vector for each current source. Two patient label maps and 320

resistivity sets are used to generate the validation set in a similar manner. For the testing set, 8 patient label

maps were used, and 10 simulated sets of data were constructed for each patient. During testing, we run our

network to estimate the resistivity set for each of the 16 electrodes and determine the final estimate to be the

mean across the 16 runs. While our multitask network also estimates an EP map, we find the potentials in the

estimated EP map are unstable around electrode sites, which makes the sampled voltage values not accurate

enough to simulate EFI directly. Thus, in our approach to simulate EFI, we sample EP maps produced by

FDMs that use the estimated resistivity set from our network, rather than sampling the network-estimated EP

maps.

Figure 5.3: The sub-structures in the proposed network: (a) shows the implementation of 3D ResNet-18 used
in sub-network A. (b) shows the 3D U-net used as the generator in the sub-network B.

5.2.3 Training

We first consider a forward cycle in our network. Let EFI denote the input EFI data, which is a 16x1 float

vector in our case, and res = fA(labelMap,distMap,EFI) denotes the predicted resistivity set, where fA is the
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sub-network A, labelMap and distMap are input tissue label map and distance map of the current source re-

spectively. We can use res to generate a fake resistivity map ̂resMap f ake by assigning predicted resistivity val-

ues to labelMap and use the fake resistivity map as input to sub-network B: ÊP = fB( ̂resMap f ake,distMap),

where ÊP is the reconstructed electrical potential map using the fake resistivity map.

The forward cycle loss is:

Loss f orwardcyc = |EFI − ÊFI|2 (5.1)

where ÊFI is the EFI produced by sampling from ÊP at CI electrode positions. Similarly, in a backward

cycle, we will have EP = fB(resMap,distMap), where EP is the prediction of sub-network B with a real

resistivity Map denoted resMap. We can sample EF in the same way and obtain the fake EFI: ÊFI f ake. Then

a resistivity set and resistivity map can be estimated by sub-network A:

r̂es = fA(labelMap,distMap, ÊFI f ake)→ ̂resMap (5.2)

We define the backward cycle loss by

Lossbackwardcyc = |resMap− ̂resMap|2 (5.3)

Besides the cycle-consistent loss, an L2 loss is also added for both sub-network as we use a paired dataset

that has ground truths:

L2res = |res− resGT |2 (5.4)

L2EP = |EP−EPGT |2 (5.5)

where resGT and EPGT are target values of the resistivity set and electrical potential map. Moreover,

we also introduced the same self-supervised physics-based loss function LossPhy, which penalizes estimated

potential maps that do not preserve Kirchhoff’s current law as described in Liu and Noble (2021), and the

Wasserstein loss LossW as described in [62] to our network. In summary, the loss for the generators is defined

by

Loss = w1 ∗Loss f orwardcyc +w2 ∗Lossbackwardcyc +w3 ∗L2res +w4 ∗L2EF +w5 ∗LossPhy +w6 ∗LossW (5.6)

where the weights were 0.5, 0.5, 0.5, 1, 0.002, and 1 respectively. We use the Adam optimizer with

a learning rate of 0.0001 and default coefficients used for computing running averages of gradient and its

square (0.9, 0.999) in its PyTorch implementation. As for hyperparameters of the critic, which provides the

adversarial loss to WGAN-GP, we use the same setting as described by Gulrajani et al. (2017) where the
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gradient penalty coefficient λ = 10 and the number of critic iterations per generator iteration ncritic = 5. In the

next section, we will compare the cycle-consistent model to individually trained sub-network A and a multi-

task U-net. These two models are trained with LossA = L2res and LossUnet = w4 ∗L2EF +w5 ∗LossPhy +w6 ∗

LossW respectively using Adam with the same parameters. And all the models are trained with a batch size of

1 for 800 epochs. The following experiments are conducted using the epoch with minimum validation error

for each model.

Figure 5.4: A multi-task 3D U-net architecture: the encoder and decoder are the same as shown in Figure
3.3(b).

5.3 Experiments and results

We conducted three sets of experiments. The first set of experiments compares the performance of resistivity

set prediction of our cycle-consistent network to an individually trained 3D ResNet-18 (as described in Figure

5.3(a)) and a multi-task 3D U-Net (as described in Figure 5.3(b)). To evaluate the self-supervised physics-

based loss term LossPhy as discussed in the previous section, w5, the weight of that term is set to 0.002 and 0

for Cycle-Net1 and Cycle-Net2 respectively. We also compared our cycle-consistent network to the multi-task

network in terms of EP map estimation. As shown in Table 5.1, the cycle-consistent network outperformed

the other two architectures in resistivity set prediction and has a similar accuracy in EP prediction compared

to multi-task U-Net. In our second set of experiments, we generate EFIs using FDM with the resistivity values

estimated by the cycle-consistent network. We calculate the mean absolute error (MAE) of the reconstructed

EFIs. As is shown in Figure 5.5, The average MAE of all testing cases is 0.51 mV. Figure 5.6 shows examples

of the reconstructed EFI that has an MAE at 0.48 mV. This allows us to visualize how the error in resistivity

value may affect our patient-specific EAMs quantitatively. The result shows that the predicted resistivity

set can already produce a reasonably similar EFI simulation compared to the target. The network is able to

achieve this level of accuracy using only 0.84 seconds of computation for the inference.
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Figure 5.5: Mean absolute difference (MAE) between the reconstructed EFIs and ground truths.

Table 5.1: Testing errors of different architectures. The mean absolute errors (MAE) of four tissue types are
displayed in the order of electrolytic fluid, soft tissue, neural tissue, and bone.

Architecture MAE of resistivity set values (Ωcm) MAE of resistivity values for each tissue type (Ωcm) MAE of EP (mV)

Cycle-Net1 157.5 9, 102,99, 420 0.202

Cycle-Net2 168.9 8, 118, 112, 438 0.255

Sub-Net A 184.4 7, 108, 103, 520 NA

Multi-task Net 167.1 10, 102, 103, 453 0.190
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Figure 5.6: An example of the target EFI (in blue), reconstructed EFI using predicted resistivity values
(in red), and reconstructed EFI using optimized resistivity set generated by a searching strategy starts from
network prediction (in yellow). The MAE between red lines and blue lines is 0.48. Yellow lines in (a)
show the result of an optimized resistivity set using the Nelder-Mead method, which lead to an MAE of 0.29
compared to the target. Yellow lines in (b) show the optimized resistivity set given by grid search, which
leads to an MAE of 0.11.
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In our last set of experiments, we propose to use a searching strategy in which the resistivity values

estimated by our deep learning method are used to initialize a refinement optimization step to further improve

accuracy. Two strategies are evaluated for refining the resistivity values: grid search and the Nelder-Mead

simplex algorithm [63] implemented in MATLAB. Using Nelder-Mead simplex, reduction in errors plateaus

at 0.3mV at an average of 67 iterations, which is equal to about 40 hours of computation time. Using a grid

search to reach the same level of error requires more computation time (an average of around 600 hours,

which is less than half of the original searching time used in our traditional method), but grid search is able

to lead to even better results (errors of 0.1mV) when the searching grid is finer, requiring an average of 2400

hours computation time. Example results are shown in Figure 3.6(b).

5.4 Conclusion

In this work, we aim to jump over the most computationally expensive process of building a patient-specific

EAM – the grid searching by predicting patient-specific resistivity parameters directly using deep neural

networks. We introduced a novel cycle-consistent network that predicts resistivity values for patient-specific

cochlear implant neural activation models. Experiments show that our network can generate high-quality

predictions that can largely improve the speed of constructing models.

We also showed that the predicted result can be further refined by applying traditional optimization meth-

ods. When cluster parallel computing is available, grid search can lead to an optimized resistivity set more

rapidly (4 hours for coarse grid, 16 hours for fine grid using the resources of the Advanced Computing Center

for Research and Education at Vanderbilt University) because Nelder-Mead simplex algorithm cannot decide

the next searching direction until finishing the calculation in the last iteration. However, the Nelder-Mead

simplex algorithm uses fewer computation resources and is still able to achieve reasonable accuracy. Because

the EP estimations of our network are overall good but still unstable around electrode sites, they cannot be

used to simulate EFI.

So, our future work includes investigating multi-resolution grid search as a means to further reduce com-

putation while still achieving accurate results, improving the performance of EP estimation in the regions

around the electrodes, and applying this method for patient-customized programming in a clinical setting.
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CHAPTER 6

Super-resolution segmentation for inner ear CT images

6.1 Introduction

Performing accurate patient-specific high-resolution segmentation for inner-ear tissue is essential for building

electro-anatomical models (EAMs). Thanks to the rapid development of deep learning, fully convolutional

neural networks (FCNNs) have been widely applied for processing and analyzing medical image modalities

and have achieved state-of-the-art performance with leading network infrastructures, especially in the area of

image semantic segmentation Hesamian et al. (2019); Ronneberger et al. (2015); Çiçek et al. (2016); Oktay

et al. (2018); Abdollahi et al. (2020); Isensee et al. (2021); Yu and Koltun (2015); Zhao et al. (2017); Peng

et al. (2017). Despite the success of these FCNN models, Transformer-based approaches have gradually

dominated computer vision tasks in both medical and non-medical scenarios recently due to their capability

of learning from a larger receptive field Dosovitskiy et al. (2020); Wang et al. (2021); Zheng et al. (2021); Liu

et al. (2021); Wu et al. (2021). Several deep-learning-based cochlear anatomy segmentation methods have

been proposed using CT images Zhang et al. (2019); Fan et al. (2020), but they mainly focus on the intra-

cochlear anatomy instead of the tissue type surrounding the cochlea. Image super-resolution (SR) is another

area that greatly benefits from the rapid development of deep neural networks. Deep-learning-based single

image SR models Dong et al. (2014); Tai et al. (2017); Shocher et al. (2018); Iglesias et al. (2021); Zeiler et al.

(2010) and learning-based upsampling methods have outperformed traditional machine learning methods and

statistical methods in both medical and non-medical scenarios. However, SR methods for medical images

usually need a post-segmentation, diagnosis, or classification algorithm to prove useful.

In this work, we propose the Super-Resolution Segmentation Network (SRSegN) for Computed Tomogra-

phy images (CTs). In particular, we leverage the power of Transformer backbones and convolutional encoders

for volumetric medical image segmentation while simultaneously performing multi-scale super-resolution on

the segmentation. We introduced a novel architecture, Super-Resolution Transformer (SRTrans), that is tai-

lored to extract and upsample features from volumetric data. The contributions of this work include:

1. We propose an end-to-end architecture that performs super-resolution segmentation for volumetric

Computed Tomography images.

2. We propose a novel super-resolution transformer encoder together with a hierarchical convolutional

encoder-decoder architecture that perform multi-scale image segmentation.

3. We evaluated the proposed architecture on our cochlear dataset and the AMOS public dataset. Our
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model outperforms competing approaches on both datasets.

Figure 6.1: Overview of SRSegN.

6.2 Related Works

6.2.1 Semantic segmentaion

FCNN-based segmentation. Semantic segmentation identifies the class label of each pixel in the image.

One of the most widely used and well-known architectures for medical image segmentation is the U-Net Ron-

neberger et al. (2015). This FCNN employs an elegant encoder-decoder design where the encoder extracts

features using convolutional layers and downsamples them with pooling layers, and the decoder is symmetric

to the encoder and upsamples the features with transposed convolution operators. By introducing the skip

connection between the layers of equal resolution in the encoder and decoder, good localization and the use

of context are possible at the same time. The success of U-Net has attracted a lot of attention in the area of

image segmentation since 2015, and a number of variants such as 3D U-Net Çiçek et al. (2016), Attention U-

Net Oktay et al. (2018) and VNet Abdollahi et al. (2020) were proposed to further improve the performance

of U-Net. Compared to datasets in other scenarios, datasets in the medical domain are usually small, noisy,

or lack diversity. Therefore, nnUNet Isensee et al. (2021) was proposed to provide a standard pipeline for

training 2D and 3D UNet, which automatically configures the pre-processing, data augmentation, network

architecture, and post-processing approaches based on the fingerprint of each dataset. The nnUNet has been

tested on 23 public datasets of biomedical images and has outperformed most competitors since 2020. FC-

NNs preserve spatial information throughout the forward propagation because of the nature of convolution

operators. However, the size of convolutional kernels also limits the receptive field of FCNNs, which further

limits their performance in learning long-range dependencies for high-resolution images. Researchers have

been focused on improving FCNN by enlarging the receptive field Yu and Koltun (2015); Zhao et al. (2017);

Peng et al. (2017). However, these methods introduced empirical modules, making the resulting framework

computationally demanding and complicated. Different from FCNNs, Transformer-based architectures may

benefit from a larger receptive field and have recently gained traction for semantic segmentation tasks.

Transformer-based backbones. Transformers were first proposed for natural language processing Vaswani
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et al. (2017). To make use of Transformers for computer vision tasks, Dosovitskiy et al. proposed Vison

Transformer (ViT) in 2020 Dosovitskiy et al. (2020), where images are reshaped into a sequence of flattened

2D patches and then projected to an embedding space with additive positional information. By doing so, the

global spatial information of images can be learned using the same multi-head self-attention (MSA) mecha-

nism as text embeddings. ViT proved that a pure Transformer can achieve state-of-the-art performance on 2D

image classification datasets. More recently, a number of methods were proposed that explored the potential

of using Transformer backbones for 2D image segmentation. Wang et al. first introduced Pyramid Vision

Transformer (PVT) Wang et al. (2021), demonstrating the potential of a pure Transformer backbone in dense

prediction tasks. Beyond PVT, multiple Transformer models were proposed for the 2D image segmentation

task Zheng et al. (2021); Liu et al. (2021); Xie et al. (2021a). SETR Zheng et al. (2021) directly adopts ViT

as a backbone to extract features from images and achieves impressive performance with a simple decoder.

Swin Liu et al. (2021) proposed a hierarchical Transformer whose representation is computed with Shifted

windows in order to improve the efficiency of self-attention computation and enhance the connection among

non-overlapping patch embeddings. Segformer Xie et al. (2021a) focuses on another type of hierarchical

Transformer encoder, featuring overlapping patch merging and efficient self-attention.

Hybrid networks. Extending pure Transformer backbones, methods such as Cvt Wu et al. (2021) and

Coat Xu et al. (2021) are proposed to combine the advantages of FCN and Transformer. In the domain of

medical images, many attempts have been made to integrate Transformer encoders with the elegant archi-

tecture used by UNet. TransUNet Chen et al. (2021) replaces the last convolutional stage in UNet with a

ViT encoder to improve the quality of low-resolution high-level features. CoTr Xie et al. (2021b) adds a

Transformer-based encoder between the FCNN encoder and decoder, enhancing the ability of skip connec-

tions in traditional U-Net variants. UNETR Hatamizadeh et al. (2022) and Swin-UNETR Hatamizadeh et al.

(2021) use tailored ViT Dosovitskiy et al. (2020) and Swin Liu et al. (2021) that capture multi-scale features

to replace typical convolutional encoders and demonstrate state-of-the-art performance on medical image

semantic segmentation datasets.

6.2.2 Image super-resolution

Super-resolution (SR) refers to the process of increasing the spatial resolution of images. Inherently, image

SR is an ill-posed inverse problem since there are always multiple high resolution (HR) images corresponding

to a single low-resolution (LR) image. In recent years, deep-learning-based SR models have achieved state-

of-the-art performance on various benchmarks of SR Wang et al. (2020). In this section, we will mainly

focus on supervised deep learning models for SR. Most of the SR models can be attributed to three classes

according to how upsampling is performed: pre-upsampling framework, post-upsampling framework, and
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progressive upsampling framework.

The pre-upsampling framework utilizes predefined interpolation methods to upscale LR images before

refining them using deep neural networks. Dong et al. first adopted this framework and proposed SRCNN

Dong et al. (2014) in 2014, which consists of only three convolutional layers but still outperformed other non-

deep-learning SR approaches at that time. This straightforward framework has inspired many SR models Tai

et al. (2017); Shocher et al. (2018) since then. Similarly, in the area of medical imaging SR, Iglesias et al.

proposed SynthSR Iglesias et al. (2021) in 2021, which uses a combination of trilinear interpolation and U-

Net to synthesize HR MRIs. Although pre-upsampling architectures enable neural networks to be designed

independently from image sizes and scaling factors, computational inefficiency prevents the implementation

of complex network architectures.

Figure 6.2: Architecture of SRSegN.

The post-upsampling framework makes use of upsampling algorithms to increase image resolution at the

end of the network. These upsampling algorithms can be traditional interpolation methods or learning-based

upsampling layers such as transposed convolution (deconvolution) Zeiler et al. (2010) or sub-pixel convo-

lution Shi et al. (2016). Since the upscaling of image resolution only happens after the computationally

expensive feature extraction process, multiple novel models were proposed without introducing much com-

putational complexity, such as SRGAN Ledig et al. (2017), EDSR Lim et al. (2017) and DSRN Han et al.

(2018). However, the major drawback of post-upsampling framework is that the upsampling is performed in

only one step, greatly increasing the learning difficulty for scaling factors larger than 2. The progressive up-

sampling framework upscales the image to a higher resolution and refines the image using a similar network

module at each step. Therefore, the learning difficulty can be greatly reduced by decomposing a difficult

task into simple tasks, especially with large upsampling factors. Ahmad et al. adopted this framework and

proposed a GAN-based SR model Ahmad et al. (2022), which achieved impressive results on four medical

image datasets.
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6.3 Method

An overview of the proposed architecture is shown in Figure. 6.1. SRSegN consists of three components: (1)

A convolutional encoder that extracts features from an LR image; (2) Our novel and efficient Transformer-

based encoder, SRTrans, which progressively upsamples images and extracts features to refine HR segmenta-

tions; and (3) A convolutional decoder that merges multi-resolution features from both encoders and performs

dense predictions.

6.3.1 Convolutional Encoder

Although Vision Transformers enjoy a larger receptive field than FCNNs, they are unable to properly capture

localized information. We propose to combine the advantages of both architectures by introducing a dual-

path encoder. The convolutional encoder is used to extract features from the input LR images. We define the

3D input volume x ∈RH×W×D with a resolution (H, W , D). For each step of the encoder, the feature map will

be downsampled by a convolutional layer whose stride is two, while the number of channels will be doubled.

6.3.2 Super-Resolution Transformer Encoder

Convolutional patch embedding. Traditional Transformer-based encoders create a 1D sequence of a 2D

image by dividing the image into flattened, uniform, non-overlapping patches. Each sequentialization patch

will be projected to a higher-dimension space, and a pre-calculated positional encoding will be added in order

to preserve the spatial information of the original image. In SRTrans, we propose to perform the volumetric

patch embedding using a convolutional operator as follows:

x̂ = Norm(Flatten(Convembed (x))) (6.1)

xv = LinearC→Ĉ (x̂) (6.2)

where Convembed (·) refers to a 3D convolution whose kernel size, stride, and padding are 2+p, p, and 1,

respectively. Flatten(·) refers to reshaping features of (Hp, Wp, Dp, C) into (Hp·Wp·Dp, C). And LinearC→Ĉ

refers to the linear projection taking in a C-dimensional vector and generating a Ĉ-dimensional vector. The

resulting embedding is equivalent to splitting the image into non-overlapping patches of (p, p, p). By applying

this convolutional patch embedding, we are able to replace manually designed positional encoding with

learnable positional features. At the same time, each patch embedding now includes the information from

nearby voxels due to the sliding convolution kernel, and adjacent patches overlap with each other because the

kernel size is larger than the sliding stride. In general, convolutional patch embedding improves Transformer’s

ability to learn intra-patch features.
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Figure 6.3: Overview of the SRTrans encoder, which consists of convolutional overlapping patch embedding,
sequence reduced multi-head self-attention, and channel-wise attention feed-forward network. SRTrans up-
samples the input feature maps progressively.

Efficient self-attention and channel attention. Self-attention calculates three matrices in each head:

Q, K, and V. Each row vector of these matrices represents the learnable query, key, and value vector for a

corresponding patch embedding. All of these matrices have the same dimensions (N,Ĉ), where N = H×W×D
p3

is the length of the sequence, and the self-attention is calculated by:

Q, K, V = LinearĈ→Chidden
(xv) (6.3)

Attention(Q,K,V ) = So f tmax
(

QKT
√

dhead

)
V (6.4)

where dhead is a constant scaling factor, which is usually equal to the hidden size of an individual head.

Since MSA is a very computing intensive process, especially for HR volumetric data, we propose to

reduce the cost of time and space by applying a sequence reduction process. Inspired by PVT Wang et al.

(2021) and SegFormer Xie et al. (2021a), the sequence-reduced matrix K is calculated as follows:

xr = Reshape
(

xv,
H
p
,
W
p
,

D
p

)
(6.5)

x̂r = Flatten(Downsample(xr, R)) (6.6)

K, V = LinearĈ→Chidden
(x̂r) (6.7)

Q = LinearĈ→Chidden
(xv) (6.8)

where Reshape(·, H
p ,

W
p ,

D
p ) restores the flattened tensor of (N,Ĉ) to a 3D feature map of (H

p ,
W
p ,

D
p , Ĉ).

Downsample(·, R) refers to a downsampling process with a reduction ratio of R3. It is implemented using
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a convolutional layer whose kernel size and stride are both equal to R, while the input and output channel

numbers remain the same. After reducing the sequence length as described in equation (6.6), the dimensions

of x̂r are ( N
R3 ,Ĉ) and the dimensions of K, V are ( N

R3 ,Chidden) while the shape of Q is the same as the original

MSA. By doing so, the number of parameters used in the MSA mechanism is reduced by R3, while the

calculation of attention described in equation (6.4) remains unchanged.

Another drawback of the original MSA mechanism is that only spatial attention is considered. Similar to

SegFormer Xie et al. (2021a) and SegNext Guo et al. (2022), we add a depth-wise convolutional layer to the

feed-forward network (FFN) in order to introduce channel-wise attention to the features (as shown in Figure

6.3).

Progressive upsampling block. Although the MSA and FFN modules preserve the resolution of flattened

3D features, the patch embedding process downscales the input image from (H,W,D) to (H
p ,

W
p ,

D
p ), where p

is the constant patch size. Reducing the patch size to 1 may improve the quality of features, and the output

tensor can be easily reshaped to match input dimensions, but the time and space complexity will increase

exponentially. Therefore, we propose to use two consecutive upsampling layers that increase the spatial

resolution of feature maps generated by the Transformer encoder. The first upsampling layer interpolates the

feature map so that its dimensions become the same as the input image or feature before patch embedding.

The second upsampling layer upsamples the feature map with a ratio of 2 using a deconvolutional operator,

achieving a 2X SR and refining the high-frequency information. We define the input image as y0. As a result,

the proposed SRTrans encoder is able to perform SR with a hierarchical architecture as follows:

xi = PatchEmbed (yi−1) | i ∈ [1,U ] (6.9)

zi
j = FFN

(
MSA

(
zi

j−1
))

| zi
0 = ẋi, j ∈ [1,L] (6.10)

yi = DeConvratio=2(U psampleratio=p
(
zi

L
)
) | i ∈ [1,U ] (6.11)

where L and U are the number of transformer encoder layers and the number of 2-times SR we would

like to perform, respectively. U psampleratio=p (·) refers to a trilinear interpolation that upsamples the feature

with a ratio of p, where p is the patch size used in patch embedding. The multi-scale output from SRTrans

includes z1
0, y1, y2, . . . , yU , where z1

0 provides features extracted from the original-resolution image.

6.3.3 Decoder

The proposed decoder adopts a fully convolutional architecture in order to refine features from both of our

encoders. We define the convolutional encoder, the SRTrans encoder, and the decoder as F , H , and D ,
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respectively. At each step of the decoder, it performs feature fusion according to:

f 1
out , f 2

out , . . . , f D
out = F (x) (6.12)

hD
out , hD+1

out , . . . , hD+U
out = H (x) (6.13)

di =


D(Concat(di−1, f i

out)), i < D

D(Concat(di−1, f D
out +hD

out)), i = D

D(Concat(di−1,hi
out)), i > D

(6.14)

where D is the number of pooling layers in the convolutional decoder and U is the number of deconvo-

lutional layers in the SRTrans encoder. { f 1
out , f 2

out , . . . , f D
out} and {hD

out , hD+1
out , . . . , hD+U

out } refer to the feature

maps whose resolution get higher as their superscripts get larger. For example, f 1
out is the most LR feature

from the bottom of our convolutional encoder, and hD+U
out is the most HR feature from the SRTrans. f D

out and

hD
out refer to the features that have the same dimensions as the input image, we use an addition to merge them

before they are fed to the decoder.

6.3.4 Loss function

The loss function we used is a combination of dice coefficient loss and cross-entropy loss. The dice loss is

implemented as follows:

Ldc =− 1
K

K

∑
i=1

2|Uk ∩Vk|
|Uk|+ |Vk|

(6.15)

where U ∈ X , V ∈ Y , are the softmax output of the network and one-hot encoding of the ground truth

respectively. K refers to the number of classes or output channels. We also adopted the deep-supervision

technique introduced by Lee et al. Lee et al. (2015) in order to provide additional gradient signals and

facilitate the learning process according to:

Ltotal =
U

∑
i=0

1
2i (L

i
dc +L i

CE ) (6.16)

where U is the number of deconvolutional layers in SRTrans and i = U refers to the lowest-resolution

segmentation. Therefore, the weights get higher as the resolution gets closer to our target SR segmentation.

We use trilinear interpolation to downsample ground truth segmentations to obtain the ground truths used by

deep-supervision losses.
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Table 6.1: Summary of datasets.

Dataset name Total Samples Testing set Num. of classes SR ratio

Cochlea 8 4-folds cross-validation 3 8

Amos 500 200 15 4

6.4 Experiments

6.4.1 Dataset

Two CT datasets are used to validate the effectiveness of the proposed architecture, as shown in Table 6.1.

Our cochlear dataset contains 8 samples obtained from 8 cadaveric cochlea specimens. Each of them has

a CT scan and an HR CT scan (referred to as µCT) that have been rigidly registered with each other. The

conventional CTs were acquired using a Xoran XCAT scanner and resampled to an isotropic voxel spacing of

0.3mm. The µCTs are obtained using a ScanCo µCT scanner and resampled into an isotropic voxel spacing of

0.0375 mm. Our manual labels of µCTs contain 3 classes excluding the background: air, soft tissue (including

neural tissue, electrolytic fluid, and soft tissue), and bone. Thanks to the hierarchical upsampling architecture

of the proposed method, we can simply define U = 3 in SRTrans and train the network to generate 8X SR

segmentation. During training, input CTs are cropped to 16×16×16, so that the size of target HR segmentation

is 128×128×128. During inference, images are predicted using a sliding window that overlaps by half the size

of a patch for adjacent predictions. We use 4-fold cross-validation to evaluate our architecture on this dataset.

With limited data, a large SR ratio, and labels acquired from HR µCTs, this dataset provides a challenging

task.

To better test the generalizability of our method, we also evaluated SRSegN on the AMOS dataset Ji et al.

(2022). AMOS is a public, large-scale, clinical dataset released in 2022 for abdominal organ segmentation.

The winner of the segmentation challenge used a modified version of nnUNet Isensee et al. (2023). This

dataset includes 500 CT scans and voxel-level labels for 15 organs. We resampled all the CTs into their

median spacing of (2mm, 0.68mm, 0.68mm). Since there are multiple small organs, we decided to use an

SR ratio of 4. Therefore, LR CTs are obtained by downsampling the original CT four times using a trilinear

interpolation and then resampling the synthesized LR CT into a voxel spacing of (8mm, 2.72mm, 2.72mm).

As all CTs and their corresponding LR version are resampled, LR CTs are cropped to 16×40×40 and the

network is trained to produce 64×160×160 SR segmentations. We follow the official train/test set split [47]

where 300 CTs are used for training and 200 CTs are used for testing, and 122 out of the 200 CTs in the

test set are out of distribution data. We randomly selected 100 samples from the training set to serve as our
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validation set.

During pre-processing, we applied clipping using 0.5 and 99.5 percentiles of the foreground voxels as

well as normalization using the global foreground mean and a standard deviation on all images.

Table 6.2: Comparison to state-of-the-art methods on cochlear dataset.

Models Num of params DSC-Air DSC-Soft tissue DSC-Bone Mean

SRGAN 9.2M 0.856 0.691 0.905 0.817±0.026

nnUNet 31.17M 0.871 0.736 0.929 0.845±0.014

VNet 22.4M 0.884 0.726 0.901 0.837±0.019

UNETR 128M 0.861 0.735 0.916 0.852±0.018

SRSegN(ours) 29.3M 0.887 0.747 0.932 0.865±0.008

6.4.2 Results

The performance of SRSegN is evaluated by the dice similarity coefficient (DSC) on both datasets. We

also present the mean normalized surface dice (NSD) on the AMOS dataset. For both metrics, a higher

score indicates a better result. Besides, we also provide a comparison of the number of parameters for

each method in Table II. Since our architecture performs SR and segmentation at the same time, while most

other segmentation models expect the dimensions of input and output to be the same, we interpolate the

LR input image so that it matches the resolution of the target HR label map before feeding it to non-SR

models. Because we are also interested in exploring the tense prediction ability of normal SR models, we

trained the SRGAN Ledig et al. (2017) model with our loss functions. TABLE 6.2 shows the results with

the cochlea dataset, and TABLE 6.3 shows the results with the AMOS dataset. The best scores are shown

in bold. As shown in Table II, SRSegN outperforms SRGAN, nnUNet, VNet and UNETR by 5.9%, 2.4%,

3.4%, and 1.5%, respectively, on the cochlea dataset, while the capacity of the model stays reasonable. On

the AMOS dataset, our method also outperforms the competitors in all fifteen organ classes by 74.3%, 1.1%,

4.3%, and 3.4%, respectively, in terms of NSD. Figure 6.4 presents qualitative comparisons of inner-ear tissue

segmentation and multi-organ segmentation.
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Table 6.3: Comparison to state-of-the-art methods on AMOS dataset.

Organs

Models
SRGAN nnUNet VNet UNETR SRSegN(ours)

SPL 0.886 0.948 0.946 0.947 0.950

RKI 0.885 0.953 0.950 0.950 0.953

LKI 0.869 0.955 0.955 0.955 0.955

GBL 0.731 0.832 0.798 0.787 0.836

ESO 0.713 0.857 0.841 0.844 0.863

LIV 0.937 0.971 0.969 0.969 0.971

STO 0.861 0.923 0.918 0.921 0.926

AOR 0.866 0.950 0.946 0.949 0.951

IVC 0.852 0.916 0.908 0.911 0.918

PAN 0.773 0.862 0.854 0.854 0.868

RAG 0.568 0.727 0.717 0.721 0.730

LAG 0.513 0.754 0.737 0.744 0.758

DUO 0.742 0.831 0.807 0.815 0.835

BLA 0.782 0.870 0.864 0.865 0.883

PRO/UTE 0.753 0.822 0.806 0.809 0.825

DSC Mean 0.782 0.878 0.868 0.869 0.882

NSD Mean 0.432 0.745 0.722 0.728 0.753

Table 6.4: Data augmentation details.

SRTrans
Modifications

Cochlea dataset AMOS dataset
DSC-Air DSC-Tissue DSC-Bone DSC Mean NSD Mean

Original 0.887 0.747 0.932 0.882 0.753
None 0.819 0.609 0.835 0.763 0.446

FCNN 0.850 0.719 0.919 0.827 0.692
ViT 0.840 0.700 0.923 0.849 0.714
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6.4.3 Ablation study

We analyze the effect of our dual-encoder and SRTrans with an ablation study, as shown in Table 6.4. The

first row presents the performance of the original SRSegN. The second and third rows show the model where

SRTrans is totally removed and SRTrans is replaced by an FCNN, respectively. In the last row, we replaced

the convolutional patch embedding, efficient MSA, and our FFN with traditional patch embedding, MSA

and MLP. Experiments showed that: (1) the upsampling encoder improves network performance; and (2) the

traditional ViT modules are not as good as the proposed modules used in SRTrans.

6.4.4 Implementation details

We implemented SRSegN in Pytorch. As for other models, they are obtained from the latest-released official

implementations. All of the models were trained on a NVIDIA A5000 GPU, and they were trained for 200K

iterations with a cosine decay learning rate that is initialized to 0.001 and decays towards zero every 250

iterations. We used a batch size of 2 and the AdamW optimizer for all models except for nnUNet, which

used an SGD optimizer. As the SR ratio, patch size, and task difficulty are different with the cochlea dataset

and AMOS dataset, we list the detailed configuration of SRSegN for both tasks in TABLE 6.5. It should be

noted that SRTrans extracts multi-scale features from the input image, which includes one set of features of

the original resolution and N set of features of SR resolution, where N equals the number of upsampling steps

in SRTrans. Therefore, when the number of upsampling steps is 3, SRTrans contains four stages, and each of

the stages can be individually configured. Also, we set the hidden size of patch embeddings and MLPs equal

to the base number of features.

6.5 DISCUSSION AND CONCLUSIONS

In this work, we introduced a hybrid architecture, SRSegN, for super-resolution segmentation of volumetric

CT images. We proposed to use a dual-encoder architecture where the convolutional encoder downsamples

feature maps and the transformer encoder upsamples feature maps. Unlike FCNNs, which lack the ability to

process HR images due to a relatively small receptive field, the convolutional encoder in SRSegN extracts

features from very low-resolution input, which leads to a large receptive field with a 3×3×3 convolutional

kernel. Also, because traditional pure transformer-based methods are unable to properly capture localized

information, we proposed to use transformer encoders only for the upsampling process of feature maps,

where global information is more important. The multi-scale features learned by both encoders are merged

via a decoder, where HR details are refined and SR segmentation can be generated. Unlike many models that

were designed for a specific SR task or SR ratio, the hierarchical design of SRSegN allows it to be easily

applied to any SR task and generate multiple SR segmentations with different resolutions all at once.
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Figure 6.4: Qualitative comparison of different models in the cochlea dataset (left three columns) and AMOS
dataset (right three columns).
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Table 6.5: Implementation details.

Module Cochlear dataset AMOS dataset

Num. upsampling 3 2

Num. downsampling 3 3

Dropout rate 0 0.1

Base num. features 64 72

Patch embed size [2, 2, 2, 4] [2, 4, 4]

Num. Trans head [6, 6, 8, 8] [8, 8, 8]

Num. Trans layers [3, 6, 6, 3] [6, 6, 6]

Sequence reduction ratio [1, 2, 2, 4] [1, 2, 4]

The proposed method is also tailored for 3D volumetric data in terms of efficiency and performance.

We introduced the novel SRTrans encoder as one of the core components of SRSegN. Convolutional patch

embedding and channel-wise attention are used to improve the shortcomings of the original ViT encoder.

Considering the huge dimensions of SR volumetric medical data, we also applied the sequence reduction

technique.

We validated the SRSegN on two different datasets. The cochlear dataset contains real HR µCTs for each

corresponding conventional CT. The µCTs cannot be obtained from subjects in-vivo, but µCT-level label maps

are necessary to build computational CI models. Therefore, SRSegN provides a novel and accurate method

to help provide important information for CI modeling. Due to the limited number of samples in the cochlea

dataset, we further explored the generalizability of SRSegN using the AMOS dataset. Although the LR

images are simulated by simply downsampling CTs with a trilinear interpolation, we are able to test SRsegN’s

effectiveness in solving ill-posed problems on this large dataset that includes 500 samples. Experiments show

that the proposed method outperforms SRGAN, nnUNet, VNet, and UNETR by 5.9%, 2.4%, 3.4%, and 1.5%

in terms of DSC, respectively, on the cochlea dataset. And it also has the best performance for all 15 organ

segmentation tasks in terms of both DSC and NSD on the AMOS dataset.

To the best of our knowledge, this is the first method tailored for super-resolution segmentation of CTs.

Such models could be critical for building high-resolution CI computational models. Although SRSegN

demonstrates impressive results, there are opportunities for further enhancement. The introduction of semi-
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supervised or weakly-supervised learning techniques could address the challenges associated with acquiring

high-resolution medical images and voxel-level labels, providing a more cost-effective and accessible solu-

tion. Multi-task, multi-modality variants also hold potential for improving the overall performance. In our

future work, we will focus on addressing these limitations and exploring the aforementioned variations.
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CHAPTER 7

Automatic auditory nerve fiber segmentation

7.1 Introduction

A cochlear implant (CI) is a sophisticated auditory prosthetic device that consists of an externally worn

sound signal processor and a surgically implanted electrode array. The purpose of the CI is to directly

stimulate the auditory nerve fibers (ANFs), bypassing the damaged cochlea and restoring auditory perception

in individuals with hearing loss. Since the CI electrode array is blindly inserted into the cochlea through a

small opening during CI surgery, the intra-cochlear position of the array is generally unknown. The placement

of the array in the scalae and the distance from each CI electrode to the ANFs are critical factors that determine

hearing outcomes Rubinstein (2004); Holden et al. (2013); Wanna et al. (2014). In previous research, a semi-

automatic ANF segmentation method Cakir et al. (2019) was introduced in order to sample electric potentials

along ANF segmentations and permit the simulation of neural activation patterns due to the CI electrode

array. However, there are a few drawbacks to the original ANF segmentation method.

First of all, the peripheral axons of the estimated nerve fiber trajectories sometimes overlap with each

other. The peripheral axon of an ANF refers to the segment from the unmyelinated terminal adjacent to hair

cells to the nerve body (soma) located within Rosenthal’s Canal (RC). In the original segmentation method,

this part is localized by finding the shortest path between two landmarks on the patient-specific mesh of

the Scala Tympani (ST). Since the resolution of the ST mesh is not fine enough, the shortest paths found

by Dijkstra’s algorithm are not the geodesic shortest paths on ST’s surface, resulting in jagged trajectories.

And since every path is calculated independently, adjacent paths may share the same vertex on the mesh and

overlap with each other. Another problem raised by limited mesh resolution and Dijkstra’s algorithm is that

the nerve fibers may pass through the scala structures, including ST and Scala Vestibuli (SV). Besides the

peripheral part, the central axon of nerve fibers may also be localized incorrectly. The original segmentation

method assumes that all the nerve fibers will proceed straight and parallel outward from the modiolus into the

Internal Auditory Canal (IAC). However, the last set of landmarks that determine the proceeding direction of

nerve fibers is located in the modiolus, providing inaccurate directions for nerves. As a result, almost half of

the number of ANF segmentations would pass through the bone instead of gathering in the IAC. In order to

solve the problems described above, the original method required manual inspection and correction of each

individual nerve fiber.

In this paper, we will introduce a novel, fully automated ANF segmentation method. We propose to use
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five sets of automatically generated landmarks located in ST, RC, Modiolus and IAC to perform stable and

reliable path finding. The peripheral axon of a nerve fiber is calculated using an image-based fast march-

ing method, and the central axon trajectory is localized in a cylindrical coordinate, forming into a bundle

spirally in the modiolus and extending naturally through the IAC. We evaluated the proposed method on 10

subjects, and experiments show that our new segmentation method has better performance both qualitatively

and quantitatively.

Figure 7.1: Automatically generated landmarks. (a) Five sets of landmarks. The BM curve and RC curve
define the peripheral axons, and the RC curve and IAC curves define the central axons of ANFs. (b) Two
cylindrical coordinate systems are defined based on those landmarks. We use cylindrical coordinates to
interpolate ANFs’ paths between landmarks.

7.2 Method

7.2.1 Landmarks

We create high-resolution EAMs for CI patients using techniques described in Cakir et al. (2017a) where

patient-specific ST, SV meshes are generated by an active shape model (ASM) using pre-operative CT images.

Since conventional CT images do not have adequate resolution to directly visualize nerve fibers, which are

approximately 2µm in width, their positions need to be inferred from prior knowledge of the morphology of

the fibers. We introduce five sets of landmarks that help to localize an ANF from the unmyelinated terminal

to the IAC, as shown in Figure 7.1.

The first set of landmarks is located where the osseous spiral lamina meets the Basilar Membrane (BM)

between ST and SV. We refer to these landmarks as the BM curve. They serve as the starting points of each

nerve fiber and are manually selected by an expert on the ST mesh of our ASM. Because the ST meshes

produced by the same ASM are all point-to-point correlated, we only need to perform this manual selection

once, and it can be applied to any EAM in the future. The second set of landmarks aims to indicate the
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location of ANF’s soma and is referred to as the RC curve. To obtain this curve, we first defined landmarks

representing the RC within nine specimen cochleae. Each specimen cochlea has been scanned using a ScanCo

scanner, and the resulting µCT images have a voxel size of approximately 0.036mm isotropic, which is about

10 times higher resolution than conventional CT images and can help us localize the RC accurately. We then

project each RC curve of specimens to the patient space through a thin-plate-spline (TPS) transformation that

registers the specimen’s ST mesh to the patient’s ST mesh because the RC is closely adjacent to the ST. The

last three sets of landmarks are located in Modiolus and IAC. They provide a cylindrical coordinate system

for the central axon of ANFs, allowing them to proceed spirally outwards from the modiolus into the IAC

where they form a nerve bundle and ultimately proceed to the auditory cortex. These three landmarks are

generated in a similar way as the RC curve, but only one specimen cochlea is used as a reference for the TPS

transformation. We refer to them as the IAC curves.

In summary, the landmarks can be automatically generated for CI users based on pre-defined vertices in

the ASM or landmarks of specimens. With their help, we are able to accurately localize the starting point,

soma, and the proceeding direction of the central axon of each ANF. In the following sections, we will

describe in detail how to determine the final segmentation of the peripheral and central axons using these

landmarks respectively.

7.2.2 Peripheral axon

The peripheral part of an ANF is defined by the BM curve and the RC curve. The RC curve is divided into

80 evenly spaced points that determine the location of the somas for each ANF path. Morphological studies

have shown that most of the peripheral axons of ANF extend radially towards the center Li et al. (2021).

Therefore, in order to find the corresponding points on the BM curve, we project both the BM curve and the

RC curve to the same plane along the direction of the “mid-modiolar axis”. The middle modiolus axis is

defined by connecting the most apex point in the RC and the first IAC curve (as shown in Figure 7.2(a)). We

define the circle center according to the points in the last 180 degrees of the projected RC curve and calculate

the radian of each point on it. We assume that the first point on the BM curve always corresponds to the first

point on the RC curve and define an upper boundary for the distance between two adjacent nerves so that

ANFs located at the most basilar part are not too sparse. For each RC point, we find its corresponding point

on the BM according to the radians.

Each pair of points on the BM curve and RC curve determines the starting point and endpoint of an

ANF’s peripheral part. We use the fast marching method to find the geodesic path that connects these two

landmarks. The fast marching algorithm Sethian (1999) is a numerical method that is able to solve boundary

value problems of the Eikonal equation ∇D(x) = P(x), which describes a level set function whose front
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Figure 7.2: The peripheral axons of ANFs. (a) We project the RC curve and BM curve along the direction
defined by connecting the most apex point on the first IAC curve (in cyan) and RC curve (in blue). (b) We
define the circle center based on the projected RC curve (in blue) and calculate radians accordingly. (c)
Nerves at the basilar part are oblique and will be calculated differently.

advances with speed P(x). The resulting function D is a time function, and if the speed P is constant, it can

be regarded as the distance function to the starting point. Once we obtain the time function D, we are able

to extract a good approximation of the geodesic path by backtracking from the endpoint using the gradient

descent of D. In our case, the nerve fibers are expected to proceed along the surface of ST or SV and should

never pass through them. Therefore, the traveling front is supposed to be slow near the ST and SV, and totally

stopped in the normal direction of their surfaces. Herein, we generate the speed map P using binary masks

of ST and SV. The masks are combined and smoothed by a 3D Gaussian filter whose size is 9 and whose

standard deviation equals 2. In our implementation, the fast marching algorithm computes the time function

to the point on the RC curve according to the speed map P, and the computation terminates as soon as the

marching front reaches the corresponding point on the BM curve. Then we calculate the gradient descent and

extract the path that represents the peripheral axon by backtracking from the BM curve (as shown in Figure

7.3).

Although most of the peripheral axons can be segmented successfully following the method described

above, ANFs located at the most basilar part of the cochlea are oblique Sethian (1999) and need to be treated

differently. We identify these oblique nerves by finding the points on the BM curve whose radians are smaller

than their corresponding points on the RC curve. For these oblique nerves, we manually add a vector field that

points towards the tangent direction to the BM curve to the gradient vector field of D, forcing those nerves to

bend slightly. The vector field is calculated for each ANF as follows:
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V i
x = (1−Normalize(DistBM (x, i)))∗ (imax − i)2

imax
2 , i ∈ 1, 2, . . . , imax (7.1)

where x ∈R3 is a point in space, V i
x is the additive vector field for the i− th oblique ANF, assuming there

are a total of imax oblique ANFs, and DistBM(x, i) represents the Euclidean distance from x to the tangent line

of BM curve at the i-th point. As a result, the vector field has more impact on the peripheral part of peripheral

axons, and the weights will decrease as they come closer to the non-oblique normal ANFs.

7.2.3 Central axon

The RC curve and three IAC curves determine the paths of central axons. Unlike the original ANF segmen-

tation method which assumes that all the central axons proceed straight through the modiolus and IAC, our

predefined landmarks in the IAC will guide the central axons to proceed spirally along the direction of the

central axis of the IAC. In order to smoothly interpolate the nerve fibers between those landmarks, we define

two cylindrical coordinate systems. The first cylindrical axis is defined by connecting the last node on the

RC curve and the last node in the middle IAC curve. The zero-degree vector is defined by making a straight

line that go through the first node on the RC curve and is perpendicular to the cylindrical axis. Similarly,

the second cylindrical axis is found using the first and last IAC curves, with its zero-degree pointing to the

direction of the first node on the first IAC curve. We interpolate the ANFs that are located between the RC

curve and the first IAC curve using the first cylindrical coordinate system, and the remaining central axons

are interpolated under the second cylindrical coordinate system. We define the number of control points as

m. The first cylindrical coordinate system uses the corresponding points on the RC curve and IAC curve to

interpolate a nerve fiber, and the second one uses one control point from each of the three IAC curves, so m

= 2 and 3, respectively. In both cylindrical coordinate systems, the interpolation is performed according to:
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ĥi
1 ,ĥi
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where i indicates the i− th nerve fiber out of a total of N ANFs, CylinCoord(·) transfers a point from

the Cartesian coordinate to the cylindrical coordinate, and ρ , ϕ , and h are the radius, radian, and height

in the cylindrical coordinate system, respectively. Linear(p, ·) performs a linear interpolation that creates

p evenly sampled points out of the input, while Linear
(
Ĥ, ·

)
sampling the input values according to the

relative distance indicated by the vector Ĥ. In the end, CartCoord(·) calculates the Cartesian coordinates for

each input in the cylindrical coordinate. In summary, we constructed two cylindrical coordinate systems to

interpolate the points between the RC and IAC, and within the IAC, separately. The landmarks under the

Cartesian coordinate will be transferred to a cylindrical coordinate, and the radius, radian, and height will be

linearly interpolated, respectively. Finally, we transform the coordinate back to the Cartesian coordinate and

obtain the spiral central axons that proceed through the IAC.

Figure 7.3: The setup for the fast marching algorithm. (a) The marching front starts from the RC curve (in
cyan) and ends at the BM curve (in red). Then the path is found by backtracking from the BM curve to the
RC curve. (b) The speed map P that is used by the fast marching algorithm. It is generated using ST (blue
mesh) and SV (yellow mesh) masks, where they are combined and smoothed by a Gaussian filter.

7.3 Experiments

Since the original method is a semi-automatic approach, we compare the result of the proposed method with

both initial ANF trajectories and manually optimized trajectories from the original method. As shown in Table

1, the result of our proposed method outperforms the semi-automatic method for all ten CI subjects used in the

experiment. For each approach, the first column indicates the number of ANFs that overlap with one or more

adjacent ones, and the second column and the third column show the number of ANFs that pass through the

ST or SV, or the bone surrounding the IAC. We edit the peripheral axons during the semi-automatic method’s

manual correction by viewing the ANF segmentation in a 3D view using customized software, and we then

modify those automatically generated paths in accordance with the ST mesh so that they never cross over one
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another and always travel along the surface of ST. As for central axons, we attempted to prevent them from

passing through the bone by manually moving the last set of landmarks that decide the proceeding direction

in the modiolus. Experiments show that the manual adjustment indeed improves the ANF segmentation

results for the original method, however, our proposed method is able to achieve better performance fully

automatically, with zero overlapping ANFs, zero ANFs that go into the bone, and 36.1% fewer ANFs that go

through the ST or SV.

We also present the voltage distribution along ANFs due to the stimulation of the CI electrode array (as

shown in Figure 7.4), where Nerve 1 is located at the basilar part of the cochlea and Nerve 65 is located at the

apex region, and each figure corresponds to the electrical field due to a certain CI electrode. The results of

the proposed method are plotted in solid lines while the results of the original method are plotted in dashed

lines. For nerves that can be properly adjusted in the original method (such as Nerve 45 and Nerve 65), the

voltage distributions along the new nerve trajectory and old nerve trajectory are similar. In contrast, for nerves

like Nerve 1 and Nerve 25, the electrical potentials are significantly larger at the central axons of the new

nerve segmentation. This is because those ANFs pass through the bone in the original nerve segmentation

while they can be constrained correctly in the IAC with our proposed method. In Figure 7.5, we present the

trajectories of Nerve 1 generated by the original method (green line) and the proposed method (purple line).

The red circle shows the location where the ANF estimated by the old method goes into the bone from the

modiolus (red mesh/contour), while our proposed method is able to address this problem. Such improvement

may be critical for increasing the accuracy and stability of EAMs.

Table 7.1: Comparison of ANF segmentation result using the original semi-automatic method and the pro-
posed method.

Subject

Semi-automatic method

(Before manual correction)

Semi-automatic method

(After manual correction)

The proposed method

Num.

overlap

Num.

cross STSV

Num.

cross bone

Num.

overlap

Num.

cross STSV

Num.

cross bone

Num.

overlap

Num.

cross STSV

Num.

cross bone

1 29 10 45 0 5 42 0 1 0

2 33 5 34 0 1 32 0 2 0

3 33 20 39 0 10 35 0 11 0

4 22 2 32 0 0 32 0 0 0

5 26 10 38 0 8 35 0 5 0

6 30 8 46 0 8 41 0 4 0

7 27 2 34 0 2 32 0 3 0

8 26 11 36 0 10 33 0 5 0

9 19 7 41 0 7 37 0 2 0

10 32 12 36 0 10 34 0 6 0

Avg. 27.7 8.7 38.1 0 6.1 35.3 0 3.9 0
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Figure 7.4: Voltage distribution along ANFs. Dashed lines represent ANF segmentation obtained using
the original semi-automatic method proposed in Cakir et al. (2019) and solid lines represent our proposed
method.

Figure 7.5: Visualication of ANFs generated by the original method (green line) and the proposed method
(purple line).
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7.4 Conclusion

Localizing ANFs is essential for building EAMs and improving hearing outcomes for CI users. In this paper,

we introduce a patient-specific, fully automatic ANF segmentation method. Unlike the traditional method

which requires a lot of effort to manually inspect and adjust each individual ANF trajectory, the proposed

method achieved better performance by utilizing automatically generated landmarks, the fast-marching algo-

rithm, and cylindrical coordinate systems. We also include the oblique ANFs in the high-frequency region

that do not exist in the original method so that the EAMs can simulate neural activations across a broader

spectrum. We evaluated the new segmentation method using 10 cochlea subjects. Experiments show that the

proposed method achieved impressive performance with zero overlapping ANFs and zero ANFs proceeding

towards the bone. The number of ANFs that pass through ST or SV is also reduced by 36.1%. We also visu-

alize the ANF segmentation together with ST, SV, and Modiolus in Figure 7.5, which shows good agreement

with real human ANF imaging obtained using recent techniques Li et al. (2021). In conclusion, we introduce

a fully automatic, fast, and robust ANF segmentation method, that outperforms the original segmentation

method both qualitatively and quantitatively. Our future work includes comparing the activation thresholds

of the original and newly obtained ANF segmentations, creating EAMs using the proposed method, and

collecting subjective scores for the original and new ANF shapes from experts.

Figure 7.6: ANF trajectories generated by the proposed method.
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CHAPTER 8

Concluding remarks

This dissertation has focused on improving the performance and customization of CIs through various re-

search projects. The goal was to address the challenges faced in providing patient-specific EAM and op-

timizing CI outcomes. By addressing these challenges, this research contributes to the advancement of CI

technology and has the potential to improve the hearing outcomes for CI recipients.

8.1 Summary of Research Contributions

This doctoral research has made several key contributions to the field of cochlear implants:

Customized Electrode Firing Order: One major contribution was the development of an optimization

algorithm for the firing order of electrodes in CIs. By utilizing patient-specific neural stimulation models,

this method minimized the negative effects of overlapping stimulation, enhancing CI performance without

compromising spectral resolution.

Auditory Nerve Fiber Health Estimation: Another significant contribution was the development of

computational models to estimate the health of auditory nerve fibers. By incorporating patient-specific EAMs

and the biological ANF model, this approach provided an estimation of nerve health along the cochlear length

based on post-operative physiological measurements that are available in clinical settings, offering valuable

insights for personalized CI programming and improved hearing outcomes.

Efficient Electric Potential Estimation: A key challenge in CI modeling is the computational complex-

ity of estimating patient-specific electric potentials. This research proposed a deep learning-based method

that significantly reduced computation time while accurately estimating intra-cochlear electric potentials.

This approach enables faster and more efficient EAM construction.

Patient-Specific Electrical Characteristic Estimation: This research introduced a deep learning-based

method for estimating patient-specific electrical characteristics. By combining a cycle-consistent network ar-

chitecture with conventional searching strategies, this approach provided high-quality predictions, enhancing

the speed and accuracy of CI modeling and programming.

Super-Resolution Segmentation: A critical aspect of CI modeling is accurate segmentation of inner-ear

CT images. This research proposed a deep learning architecture, SRSegN, which outperformed traditional

methods and provided high-quality segmentation, enabling more precise modeling of CIs. Additionally, we

conducted experiments on a large multi-class segmentation dataset, showcasing the architecture’s impressive

performance. These findings indicate the potential of SRSegN to be utilized in various medical image datasets
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beyond cochlear imaging.

Automatic Auditory Nerve Fiber Segmentation: This research developed a fully automatic method

for auditory nerve fiber segmentation. By estimating peripheral and central axons individually based on

automatically generated landmarks, this approach significantly improved segmentation accuracy, enhancing

the fidelity of auditory nerve fiber trajectories in CI models.

8.2 Discussion and future work

While this dissertation has made improvements and contributions to our current computational models of CIs,

it is important to acknowledge the current limitations of the research:

(1) Limited clinical validation: Although the proposed methods have shown promising results in simula-

tion and experimental setups, further validation and clinical studies are necessary to assess their real-world

effectiveness and impact on CI recipients. Extending the research to larger and more diverse patient co-

horts will provide more comprehensive insights into the generalizability and robustness of the developed

techniques.

(2) Data availability: Acquiring high-resolution medical images and voxel-level labels for training deep

learning models remains a challenge. The limited availability of such data hinders the scalability and general-

izability of the proposed methods. Exploring approaches like semi-supervised or weakly-supervised learning

could help alleviate this limitation by leveraging existing data more effectively.

(3) Model interpretability: Deep learning models, such as SRSegN, are often considered black boxes due

to their complex architectures. While these models achieve impressive results, understanding the underly-

ing decision-making process and ensuring their reliability and safety in clinical applications are essential.

Developing techniques for model interpretability and explainability would enhance the trustworthiness and

adoption of the proposed methods.

To address the current limitations and pave the way for further research, the following future works are

suggested:

(1) Clinical validation: Conduct extensive clinical studies to evaluate the performance and impact of the

proposed methods in real-world CI recipients.

(2) Data augmentation and Transfer Learning: Augmenting the available data through techniques like

data synthesis, domain adaptation, and transfer learning can help alleviate the data scarcity issue. Leveraging

pre-existing annotated datasets or leveraging knowledge from related medical imaging domains can enhance

the training and generalization capabilities of the developed models.

(3) Model optimization and efficiency: Further optimize the proposed models to improve their efficiency

and reduce computational resource requirements. Exploring model compression, quantization, and hard-
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ware acceleration techniques can enable the deployment of these models on resource-constrained platforms,

making them more accessible and practical for real-time applications.

(4) Exploration of different biological models of ANF: it would be valuable to investigate and incorporate

alternative biological models of auditory nerve fibers (ANFs) into the CI research. While the current research

utilizes the Rattay et al. model Rattay et al. (2001b), which has shown promising results, exploring different

ANF models can provide a more comprehensive understanding of the complexities and variations in neural

responses.
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