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CHAPTER 1

INTRODUCTION

Clonal Hematopoiesis of Indeterminate Potential (CHIP) is an age-related condition having significant im-

plications on a person’s health, as it is associated with an increased risk of hematological malignancies,

cardiovascular diseases, and other age-related diseases. Aging brings about changes in hematopoietic stem

cells, situated in the bone marrow, leading to the development of genetic mutations. These somatic mutations

gradually accumulate in various tissues, given the pivotal role of these stem cells in generating all blood cells.

Mutations can be categorized into passenger and driver mutations. Passenger mutations are incidental genetic

changes occurring alongside driver mutations, holding little consequence. In contrast, driver mutations are

specifically associated with an increased risk of various diseases. Driver mutations instigate clonal expansion,

causing an accelerated proliferation of blood cells. While advantageous for the cells, this heightened growth

poses potential harm to the overall health of the individual. The significance of CHIP lies in its potential as

a predictive biomarker for health outcomes, and has garnered increased attention due to its potential to serve

as an early indicator of health risks (2).

From previous studies, we know that there are certain genes that driver mutations occur in the context

of CHIP (3). However, these mutations are not uniformly distributed, with around 75% of these mutations

occurring in TET2 (Ten-Eleven Translocation 2) and DNMT3A (DNA Methyltransferase 3A), genes that

have been previously linked to blood cancer. In the realm of CHIP research, investigation of these two

genetic players, and effectively identifying and quantifying the presence of CHIP cells amidst the broader

cellular landscape, is challenging.

Single-Cell RNA Sequencing (scRNA-seq) is a groundbreaking genomics technique that examines gene

expression within individual cells, revealing intricate cellular diversity and function (4). Applied to CHIP,

scRNA-seq uncovers unique RNA expression signatures in mutated blood cells, shedding light on disease

mechanisms (5). In order to differentiate CHIP cells from non-CHIP cells, our laboratory at Vanderbilt

University Medical Center (VUMC) attempted to utilize single cell sequencing methods to determine the

transcriptional phenotype of the mutated cells.

This undertaking proved more challenging than anticipated, primarily due to a technical obstacle. Specifi-

cally, the CHIP mutations under scrutiny, DNMT3A and TET2, are not well expressed in terminally differen-

tiated cells such as Peripheral Blood Mononuclear Cells (PBMCs), resulting in scarce RNA transcripts. This

predicament indicates conventional methods cannot directly ascertain genetic measurements of DNMT3A

and TET2. Therefore, the process of differentiating CHIP cells is not as straightforward as conducting 3’
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RNA-seq and identifying cells carrying the mutant RNA transcript. To overcome this hurdle, our laboratory

employs a novel approach, utilizing co-occurring mitochondrial DNA Single Nucleotide Variants (SNVs) as

barcodes to identify mutant cells within our 3’ RNA-seq dataset.

This current methodology makes use of MAESTER (Mitochondrial Analysis and Estimation of Single-

cell Transcriptional Error) to accurately attribute genetic variants to specific cells, enabling the identification

of CHIP cells (6). It focuses on the mitochondrial genome (mtDNA) and helps identify variants and lineage

relationships among single cells. It utilizes a combination of computational techniques to process the data

and make inferences regarding cellular diversity and genetic variants.

However, the current methodology is time-consuming and cost-intensive. This prompts a pivotal question:

What if the intricate post scRNA-seq processes could be circumvented altogether? This inquiry forms the

basis of our study. An approach consisting of training and deploying a machine learning (ML) classifier to

proficiently identify CHIP cells could offer a more streamlined and resource-efficient approach at informing

and stratifying the risk of patients with CHIP.

1.1 Research Aims

Aim 1: Building a More Cost-Effective Solution - To utilize ML classifiers from sklearn (Random Forest,

LinearSVC, etc.) in contrast to current methodologies utilizing MAESTER for identifying CHIP cells. The

goal is to determine the economic and logistical advantages of this new process.

Aim 2: Determining the Most Specific Gene/Expression for CHIP - To discover the gene or gene

expression that exhibits the highest specificity for CHIP. Identifying the most specific genetic markers for

CHIP is essential for precise diagnosis and classification.

Aim 3: Uncovering Distinct RNA Expression Signatures in CHIP Cells - To identify unique RNA

expression signatures within CHIP cells and pinpoint a specific cell subtype that serves as the archetypal

representation of CHIP in terms of RNA expression. Understanding the specific RNA expression patterns

in CHIP cells and identifying a prototypical cell subtype are crucial for characterizing this condition at the

molecular level.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Single-Cell RNA Sequencing

In the realm of genomics, Single-Cell RNA Sequencing (scRNA-seq) has emerged as a powerful tool, en-

abling researchers to delve deep into the intricate world of gene expression at the individual cell level. This

technology not only provides insights into cellular diversity but also unravels the underlying molecular mech-

anisms governing various biological processes. One of the primary challenges in harnessing the potential of

scRNA-seq data is managing its complexity. With thousands of genes measured in each cell, these datasets

inherently reside in high-dimensional spaces. To navigate this intricate landscape, researchers employ dimen-

sionality reduction techniques. Principal Component Analysis (PCA) is one such approach.

PCA aims to identify linear combinations of genes that capture the primary transcriptional variations

between cells. However, PCA is not without its limitations. The limitations of using PCA in scRNA-seq data

analysis include its sensitivity to gene expression magnitude, skewness caused by zero counts (cases where

a specific gene is not expressed in a particular cell), and reduced effectiveness in high-dimensional scRNA-

seq data, necessitating the consideration of alternative techniques such as neural networks and probabilistic

models to address these challenges (7).

Another essential aspect of scRNA-seq data analysis is identifying transcriptionally similar cells and

grouping them into communities. Neighbor graphs play a pivotal role in this process. These graphs are con-

structed to link cells that share transcriptional similarities, facilitating downstream analysis and visualization,

including the utilization of techniques such as t-Distributed Stochastic Neighbor Embedding (t-SNE) (8) and

Uniform Manifold Approximation and Projection (UMAP) (9) embeddings. These methods are incredibly

effective at capturing subpopulations and the inherent structures within scRNA-seq data.

For visualization and in-depth analysis of scRNA-seq data, UMAP and t-SNE are indispensable tools.

These techniques create two-dimensional embeddings that represent the underlying structure of the data.

What sets UMAP and t-SNE apart is their ability to discount global distances and prioritize the preservation

of local neighborhood relationships within the data. As a result, they excel in capturing subpopulations,

continuous cellular trajectories, and other intricate structures concealed within the vast landscape of scRNA-

seq data. When it comes to exploring feature-to-feature interactions, tools like UMAP and t-SNE provide

powerful dimensionality reduction techniques to visualize complex relationships.

However, if our focus is on univariate feature selection, we shift our attention to a different approach.
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Univariate feature analysis involves assessing the statistical significance of individual features in isolation,

without considering the influence of other features. This evaluation relies on the statistical relationship be-

tween each feature and the target variable. This process is typically carried out using pandas dataframes

with the programming language Python and class label columns, enabling us to select the most informative

features that contribute significantly to predictive models or further analyses. While UMAP and t-SNE help

us understand intricate relationships, univariate feature selection helps us pinpoint the essential elements for

our specific analytical goals.

Our data science pipeline embarks on the journey of data exploration, analysis, and modeling with uni-

variate feature selection and another goal in mind: to reduce the number of predictors as far as possible

without compromising predictive performance. Indeed, this is the goal behind feature selection (10). These

objectives drive our study for precision and efficiency in classifying CHIP cells and allow us to uncover

the most informative and influential attributes, leaving behind the noise and redundancy that often clutters

datasets. By enhancing interpretability, we aim to unlock the patterns hidden within the data while paving

the way for precise, cost-effective, and practical diagnostic methodologies.

2.2 Types of Machine Learning Models

Figure 2.1 provides an overview of machine learning algorithms, with this study focusing on supervised

learning. The choice of supervised learning is driven by the critical need for interpretability in biological

applications. Interpretability plays a pivotal role as it connects computational predictions with biological

insights, allowing the identification of key genes, aiding hypothesis generation, and guiding focused experi-

mental design.

Figure 2.1: Types of Machine Learning Algorithms (1)

In the context of machine learning, supervised learning entails training an algorithm using labeled data

to facilitate its ability to make predictions or classify new, unlabeled data by discerning patterns from the

4



labeled training data. In this research, we harnessed and tested six distinct supervised learning models for the

purpose of binary classification.

2.2.1 Bernoulli Naı̈ve Bayes

Naı̈ve Bayes training algorithms are considered rudimentary yet serve as valuable initial steps in classification

tasks. These algorithms rely on fundamental probability principles, making a simplistic assumption that

all features within a dataset are independent, and subsequently endeavor to classify data. Specifically, the

Bernoulli Naı̈ve Bayes model focuses on the presence or absence of features.

2.2.2 AdaBoost

AdaBoost represents a machine learning strategy employing a sequential ensemble technique aimed at data

classification. This method combines multiple classifiers to enhance overall predictive accuracy. The core

concept involves assigning weights to both the classifiers and data instances in a way that encourages clas-

sifiers to prioritize challenging-to-classify observations. AdaBoost uses the algorithm known as AdaBoost-

SAMME (11).

2.2.3 Logistic Regression

Binary Logistic Regression models are specifically tailored for distinguishing between two distinct categories,

for example, ”Mutant” and ”Wildtype.” The primary objective of this algorithm is to establish a connection

between features and the likelihood of a specific outcome. In contrast to linear regression, logistic regression

refrains from directly fitting a straight line to the data. Instead, it models the relationship by fitting an S-

shaped curve, known as the Sigmoid curve, to the observations.

2.2.4 Support Vector Machine

SVC, the Support Vector Machine classifier implementation using libsvm (12), is a powerful tool for classifi-

cation tasks. It provides robust results for various datasets. LinearSVC (Linear Support Vector Classification)

shares similarities with SVC but differs in its underlying implementation. Instead of relying on libsvm, Lin-

earSVC is built upon liblinear (13). This distinction grants LinearSVC greater flexibility when it comes to

selecting penalties and loss functions, making it adaptable to a wide range of problem scenarios. Addition-

ally, LinearSVC exhibits superior scalability when dealing with datasets that encompass a substantial number

of samples. This scalability makes it particularly well-suited for handling large and complex datasets where

computational efficiency is paramount.
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2.2.5 Stochastic Gradient Descent

SGD classifiers represent a class of linear classifiers that employ Stochastic Gradient Descent (SGD) as their

training method. By default, these models are configured as linear Support Vector Machines (SVMs). The

concept of gradient descent, underpinning SGD, involves an iterative process. It initiates from a randomly

chosen point on a mathematical function and incrementally moves down the function’s slope in discrete steps,

seeking to reach the lowest point, or minimum, of that function. This approach proves particularly valuable

when finding optimal points is not feasible through traditional methods like setting the slope of the function

to zero.

What sets SGD apart from traditional gradient descent methods is its incorporation of randomness in the

descent algorithm. In each iteration, it randomly selects a single data point from the dataset. This stochastic

element reduces the overall computational burden, making SGD particularly advantageous when dealing

with sizable datasets. Consequently, it enhances the efficiency and applicability of SGD to larger and more

complex data scenarios.

2.2.6 Random Forest

Decision Trees represent non-parametric supervised learning techniques employed for both classification

and regression tasks. These classifiers can be envisioned as schematic, flowchart-like structures where the

journey from the root node to a leaf node signifies the application of classification rules. Each internal node

within the tree signifies a test conducted on a particular feature, while each leaf node designates a class label,

representing the final decision made after traversing the tree and evaluating all relevant features.

Random Forest constitutes a supervised machine learning algorithm grounded in ensemble learning, a

method that combines multiple algorithms of the same type, often utilizing multiple Decision Tree classifiers.

This amalgamation results in an assembly of trees, aptly referred to as a ”forest.” The algorithm’s fundamental

steps encompass: (a) selecting n random records from the dataset, (b) constructing a decision tree based on

this subset, (c) determining the desired number of trees for the algorithm, (d) iterating through steps (a) and

(b) until the designated number of trees is achieved, and (e) assigning a category to new records, particularly

in the context of classification problems, based on the majority consensus among predictions made by each

tree within the forest.

2.3 Evaluation Metrics

Confusion Matrix: A confusion matrix is a table that is often used to evaluate the performance of a classi-

fication model. It provides a summary of the predicted and actual class labels for a set of data. Figure 2.2

depicts a straightforward example of a confusion matrix.
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Figure 2.2: Confusion Matrix

Precision: Precision gauges the accuracy of positive predictions made by the model by calculating the

ratio of true positive predictions (correctly predicted positive instances) to the sum of true positive and false

positive predictions.

Recall: This metric assesses the model’s ability to correctly identify positive instances by determining

the ratio of true positive predictions to the sum of true positive and false negative predictions.

F1-score: The F1-score offers a balanced assessment by taking the harmonic mean of precision and

recall. It serves as a useful measure for evaluating the trade-off between precision and recall.

Specificity: Specificity focuses on the model’s capacity to correctly identify negative instances, as it

quantifies the ratio of true negative predictions (correctly predicted negative instances) to the sum of true

negative and false positive predictions.

Accuracy: Accuracy is a fundamental metric used to assess the overall correctness of a model’s predic-

tions. It calculates the ratio of correctly predicted instances (both true positives and true negatives) to the

total number of instances in the dataset. Accuracy provides an easy-to-understand measure of how well a

model performs across all classes, making it a suitable choice when all classes are of equal importance and

when there is no significant class imbalance. It is particularly useful in scenarios where achieving a balance

between precision and recall is not critical, and the primary goal is to maximize overall correctness. How-

ever, it may not be the best metric to use when working with imbalanced datasets, where a class of interest is

underrepresented, as high accuracy can be misleading when the model predominantly predicts the majority

class.

K-fold Cross Validation: This widely adopted technique is employed for robust performance assessment.

It involves dividing the labeled dataset into k equally sized folds and iteratively training and evaluating the

model k times, using distinct subsets for training and testing in each iteration. K-fold cross-validation yields

a more dependable estimate of the model’s performance and helps mitigate the risk of overfitting.
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CHAPTER 3

METHODOLOGY

3.1 Data Gathering - scRNA-seq Datasets

The two datasets used in this study collectively serve as both the training and test data for separate CHIP

identification tasks. These labelled scRNA-seq datasets were obtained from VUMC as a result of calling

MAESTER. The class label column in each dataset, ”Clone”, represents the classification of each cell as either

”Mutant” (indicating the presence of CHIP) or ”Wildtype” (indicating the absence of CHIP). Recognizing

the efficiency discrepancy in handling thousands of columns between R and pandas dataframes, we adopted

a column-wise reduction strategy.

The TET2 dataset shown in Table 3.1 encompasses data from individuals with a TET2 mutation in their

hematopoietic stem cells. This mutation exerts a profound influence, resulting in the transmission of the

TET2 mutation to the blood cells generated by the mutated hematopoietic stem cells, which makes up our

rows of data. The ”celltype.de” column encompasses various cell types, including CD14 Mono, CD4 T cell,

CD8 T cell, NK, gdT, B, CD4 CTL, Treg, DC, ILC, Platelet, Eryth, MAIT, and HSPC. The dataset consists of

a comprehensive set of features, including numerical data derived from scRNA-seq of a specific gene Single

Nucleotide Polymorphism (SNP), categorical data describing cell types based on reference mapping, and the

class label ”Clone”. In total, the dataset comprises 8,585 rows of data.

Features
Feature Description

Gene SNP (726 columns) (Numerical) scRNA-seq data regarding
a specific gene SNP.

celltype.de (Categorical) Cell type based on
reference mapping.

Clone (Class label) Mutant/Wildtype.

Rows of Data
Class #Clones

Mutant 4,425
Wildtype 4,160

Table 3.1: Summary of scRNA-seq Data for TET2 Mutated Set

The DNMT3A dataset shown in Table 3.2 encompasses data from individuals with a DNMT3A mutation

in their hematopoietic stem cells. Only one cell type, CD14 Mono, is of interest with this dataset, and

as such, there is no ”celltype.de” column present. CHIP typically leads to a bias towards myeloid cells.

In hematopoiesis, the process of blood formation in the bone marrow, two major cell types are involved:
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lymphoid and myeloid cells. When a CHIP mutation is present, it tends to promote a higher proportion of

myeloid cells. Therefore, our focus was directed towards investigating these myeloid-skewed cells. The rows

of data correlate to CD14 Mono cells that have a DNMT3A mutation in them. In total, the dataset comprises

3,163 rows of data.

Features
Feature Description

Gene SNP (2000 columns) (Numerical) scRNA-seq data regarding
a specific gene SNP.

Clone (Class label) Mutant/Wildtype.

Rows of Data
Class #Clones

Mutant 1,478
Wildtype 1,685

Table 3.2: Summary of scRNA-seq Data for DNMT3A Mutated Set

3.2 Pipeline for Determining the Best Classifier for CHIP Detection

To identify the optimal classifier for scRNA-seq data analysis, we utilized the TET2 dataset, primarily due to

its larger dataset size in comparison to the DNMT3A dataset. As illustrated in the pseudocode in Figure 3.1,

our methodology encompassed a systematic approach of data exploration, pre-processing, and the selection of

a range of classifiers from scikit-learn (sklearn). Then, we designed a well-structured pipeline and performed

rigorous experimentation. The goal was to pinpoint the classifier that consistently demonstrates superior

performance across 30 train/test sessions.

3.2.1 Pre-Processing

Prior to delving into the analysis, we undertake an essential phase of exploratory data analysis and data cleans-

ing. This includes loading the data from the Comma-Separated Values (CSV) file into a pandas dataframe

and subsequently removing rows with missing or null values to ensure our analysis is based on complete and

reliable data. Additionally, we meticulously eliminate any duplicate entries to eliminate redundancy.

In the realm of scRNA-seq data, a common and pivotal pre-processing step is log normalization. This

transformation plays a fundamental role in centering the data and adjusting for right-skewness. Log trans-

formed expression values are widely embraced in the initial analysis of scRNA-seq data due to their straight-

forward nature and ease of interpretation (14). Log transformed values provide an effective means to approx-

imate log-fold changes in gene expression between individual cells, a metric often more pertinent than raw

counts. This becomes especially crucial in processes like clustering and trajectory analysis, where assessing
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Figure 3.1: Pseudocode for Pipeline for Determining the Best Classifier

relative differences in gene expression takes precedence. Furthermore, log transformation helps attenuate

the impact of random count fluctuations, particularly in the context of highly abundant genes, where these

fluctuations would otherwise introduce substantial yet inconsequential differences between cells.

It is worth noting that the data used in this study was already log transformed before loading the data into

a dataframe. Standardization on top of normalization is not necessary in the context of scRNA-seq data, as

issues related to scale and variance are addressed from log normalization alone.

3.2.2 Training and Testing of Models

In this analysis, it is important to recognize the balanced nature of false positives and false negatives in the

context of CHIP detection. While CHIP is a significant risk factor, it does not provide a definitive indicator

of blood cancer, hematological malignancies, cardiovascular diseases, or other age-related diseases. As such,

we chose not to weight the data in favor of one outcome over the other, underlining the importance of this

research while maintaining a balanced perspective.

To establish reliable and unbiased training and testing sessions for our models, we follow a step-by-step

process. Firstly, we randomly shuffle the data to prevent any potential bias. Afterward, the dataset is split
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into two segments: the training set, which serves as the foundation for teaching our model, and the test set,

which plays a vital role in assessing the model’s predictions.

When splitting the data into a training set (0.67%) and testing set (0.33%), we employ stratified sampling

on both the ”celltype.de” column and the class label column ”Clone.” This method ensures that the compo-

sition of different cell types and the distribution of Mutant and Wildtype labels remains proportional in both

the training and test datasets.

To prepare our data for the model’s understanding, we implement a ”OneHotEncoding” transformation

process within a ”Pipeline” object. This technique is essential for converting categorical data into a format

that the model can work with effectively, improving compatibility and overall algorithm performance.

To fine-tune our model for maximum accuracy, we utilize a ”GridSearchCV” object for hyperparameter

tuning. This involves an exhaustive search for the most suitable combination of hyperparameters using a

n-fold cross-validation approach. The primary goal here is to optimize our model, making it as precise as

possible. In this context, we choose 5-fold cross-validation, as the size of our dataset does not necessitate the

extra execution time required for a 10-fold cross-validation. Our model then goes through a training phase,

where it learns from the data in the training set. It absorbs information and patterns that will enable it to make

predictions on unseen data effectively.

To evaluate the model’s performance, we consider two key aspects. First, we calculate the average accu-

racy across five different training and testing splits using 5-fold cross-validation. This metric gives us a robust

measure of the model’s performance. Second, we examine how well the model performs on the pre-separated

test set, often referred to as the ”golden holdout” set, as another method of ensuring our model has not overfit

on the training data.

In this specific context, we opt for accuracy as our primary metric. This choice aligns with the nature

of our data, characterized by a relatively balanced distribution of class labels. Unlike other scenarios where

precision-recall or Receiver Operating Characteristic (ROC) curves might be more suitable, accuracy provides

a straightforward and comprehensive measure of our model’s effectiveness, making it well-suited for our

datasets.

To identify the optimal classifier for CHIP detection, we performed 30 independent training sessions

for each classifier. We calculated the average cross-validation accuracy for each classifier, a score derived

from 5-fold cross-validation applied in each of the 30 runs. We also assessed each classifier’s performance

against a golden holdout set, meticulously kept separate from the cross-validation process. By analyzing the

averaged scores from these diverse evaluations, we identified the classifier consistently demonstrating the

greatest robustness and reliability when applied to the dataset.
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ML Classifier %AVG CV Score %AVG Golden
Holdout Set Score

AdaBoost 92.85% 93.62%
LogisticRegression 88.38% 91.44%

LinearSVC 87.39% 91.55%
RandomForest 93.75% 93.95%

BernoulliNaiveBayes 93.55% 93.59%
SGD 89.25% 93.83%

Table 3.3: Models’ Accuracy

Taking both the average cross-validation scores and the average golden holdout set scores into consid-

eration, Random Forest emerged as the top-performing classifier, as indicated in Table 3.3. For the feature

pruning tasks that lie ahead, we leverage permutation importance, a model-agnostic approach, to effectively

reduce noise and uncover the genuinely significant features within scRNA-seq data.

3.3 Pipeline for CHIP Detection

With the best-performing classifier in hand, we move forward to the next phase, building upon the foundation

we have established. This involves integrating several additional steps, shown in the pseudocode for the

pipeline in Figure 3.2, each designed to refine the model’s performance and identify key features in the

context of CHIP detection.

One pivotal addition is the integration of permutation importance, an approach recognized for its model-

agnostic nature. In this context, ”model-agnostic” means that permutation importance is not bound to a

specific machine learning model. Instead, it serves as a versatile technique applicable to various models.

Permutation importance’s core concept is to evaluate feature significance by perturbing features and assessing

their impact on the model’s performance. Features that, when shuffled, result in a substantial performance

drop are deemed more significant.

The primary goal behind introducing permutation importance into our pipeline is feature pruning. We aim

to reduce dataset noise, focusing our analysis on the most informative and influential features. Identifying

these key features enables us to gain deeper insights into CHIP classification, particularly in the context of

the Mutant cells. These features play a crucial role in understanding the genetic components that differentiate

Mutant from Wildtype cells in our dataset.

Incorporating permutation importance is a substantial addition to our analysis, significantly impacting the

overall execution time. It serves as the rationale behind the development of two distinct pipelines instead of a

singular one for both sets of data. To efficiently manage this time-consuming task while balancing thorough
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Figure 3.2: Pseudocode for the Pipeline for CHIP Detection

analysis and practicality, we modify our approach and deliberately reduce the number of train/test sessions

from 30 to 10. This adjustment allows us to save time while still generating a substantial volume of results.

Throughout these 10 runs, we track and record key features consistently deemed highly significant. These

features, demonstrating their relevance across multiple sessions, become the focal point of our analysis.

The final step involves conducting a single train/test session using these top features, enabling us to extract

valuable insights while efficiently managing computational resources.

13



CHAPTER 4

RESEARCH FINDINGS AND DISCUSSION

4.1 TET2 Dataset

Using the CHIP Detection pipeline, we first identify the top 30 most significant features across 10 train/test

sessions. Subsequently, we perform final train/test sessions while varying the feature count. The objective is

to maintain high accuracy while increasing the feature count, retaining only those features that consistently

appear across multiple runs. To gain further insights into the model’s accuracy and identify potential areas of

improvement, we employ a confusion matrix, a powerful tool for assessing classification results.

In the TET2 dataset, we observed that when using features with a count greater than 3, the Random Forest

classifier accurately classified CHIP cells 91% of the time. However, when we increased the feature count

to more than 4, the accuracy dropped to 79%. This suggests that the ideal feature count is 3 or greater, as

these features are the most influential for prediction. The meticulous feature selection process that guided

us through dataset refinement resulted in the reduction of the initial 727 columns to a more focused and

streamlined set of 13 key columns. Figure 4.1 illustrates the confusion matrix for the Random Forest model

against the testing data, as well as the accuracy, precision, recall, and F1-scores. A visual representation of

key features (all representing gene SNPs) is provided in Figure 4.2.

Figure 4.1: Final Confusion Matrix - TET2 Dataset
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Figure 4.2: Final Significant Features - TET2 Dataset

4.2 DNMT3A Dataset

In the DNMT3A dataset, we conducted a similar series of runs with varying feature counts. When using

features with a count greater than 3, the Random Forest classifier accurately classified CHIP cells 82% of

the time. Subsequently, in runs with features exceeding a count of 4, the accuracy increased to 83%. Fur-

ther attempts with features having a count greater than 5 resulted in a maintained accuracy of 81%. These

outcomes suggest that the accuracy differences between feature counts of 3, 4, and 5 are negligible, indicat-

ing that features with a count greater than 5 can be utilized to inspect key features effectively. Our pipeline

streamlined this dataset from its initial 2000 columns to a more concentrated selection of 3 essential columns.

Figure 4.3 below illustrates the confusion matrix for the Random Forest model against the testing data, as

well as the accuracy, precision, recall, and F1-scores. Considering the accuracy and recognizing the disparity

in sample size compared to the TET2 dataset, the identification of these key features highlights the potential

benefits of incorporating additional data to further refine the subsetting process for CD14 Mono cells. A

visual representation of crucial features is presented in Figure 4.4.
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Figure 4.3: Final Confusion Matrix - DNMT3A Dataset

Figure 4.4: Final Significant Features - DNMT3A Dataset
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CHAPTER 5

CONCLUDING REMARKS

Through the analytical pipeline we built, we successfully reduced both scRNA-seq datasets from their many

initial columns to just several key columns, leading to reduced noise, computation efficiency, dimensionality

reduction, and easier data interpretation. While the term ”redundancy” may not be entirely fitting, the dataset

contains substantial overlap and interrelated information among its features. This discovery underscores the

importance of employing careful feature selection and dimensionality reduction techniques, as it indicates

the potential for optimizing the dataset to streamline and enhance the efficiency of our analysis.

As our analysis unfolded, we noted a fascinating alignment between some of the genes that surfaced

prominently in this specialized CD14 Mono subset and the findings from earlier differential expression anal-

yses within our laboratory. This alignment strengthens the significance of these genes in characterizing CHIP

cells and their distinctive RNA expression signatures.

The presented study aims to harness the power of machine learning classifiers on scRNA-seq expression

data to advance our comprehension of CHIP. This research endeavor not only enhances our understanding of

CHIP cells but also pinpoints genes specific to CHIP, potentially holding diagnostic and therapeutic signifi-

cance. The methodology proposed here is not confined to this specific dataset; it can be seamlessly applied

to a broader spectrum of single-cell RNA expression data analysis, making it a valuable and versatile contri-

bution to the realm of genomics research.

5.1 Challenges Faced

Aim 1: Building a More Cost-Effective Solution - Expanding upon the findings, it is imperative to consider

the intrinsic challenges posed by scRNA-seq data. This type of data can be incredibly sparse, often compris-

ing tens of thousands of columns. While R has the capability to handle such data efficiently, pandas, does not

share this advantage. The process of loading data with tens of thousands of columns and thousands of rows

into a pandas dataframe can be exceptionally time-consuming, sometimes taking several days. To circumvent

this, we implemented a column-wise data reduction strategy, allowing us to work with a more manageable

dataset.

While acknowledging the fact that R has a tidymodels package for machine learning, our decision to

opt for Python with pandas dataframes stems from the extensive support and rich ecosystem of libraries

available. Python, coupled with pandas, provides a robust framework that seamlessly integrates with an array

of libraries, offering a comprehensive tool set for machine learning tasks. The versatility and community
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support surrounding Python, including popular libraries like scikit-learn and TensorFlow, played a pivotal

role in our choice.

Despite the limitations imposed by data reduction, it is important to recognize the potential for cost-

effectiveness in the long run. A key element of this approach could involve training a classifier rigorously

and then saving it as a pickle file (with a .pkl extension). This saved classifier could be easily loaded and

utilized for the identification of new rows of information in future scenarios. While current methodologies

relying on MAESTER are costly and time-consuming, our objective is to integrate a robust and efficient

classifier into our pipeline. This step serves as a critical advancement toward optimizing cost-efficiency,

minimizing expenditures, and accelerating CHIP cell identification. As we continue to refine this approach,

we aim to transition to a more streamlined and practical method in the future.

Aim 2: Determining the Most Specific Gene/Expression for CHIP - Through our CHIP Identification

pipeline, we aimed to identify the genes that exhibit the highest specificity for CHIP, recognizing their pivotal

role in achieving precision in the diagnosis and classification of this condition. Exploration with the TET2

dataset successfully pinpointed 13 key genes that play a pivotal role in the identification of CHIP cells vs.

non-CHIP cells using a Random Forest model that accurately classified CHIP cells 91% of the time.

These key features predominantly encompass genetic SNPs, highlighting their significance in the clas-

sification of CHIP cells. The genes and expressions associated with these SNPs represent insights that re-

searchers and clinicians can delve into to gain a more profound understanding of CHIP and its underlying

genetic components.

Aim 3: Uncovering Distinct RNA Expression Signatures in CHIP Cells - To enhance the specificity

of our analysis, we narrowed our focus to CD14 Mono cells within the DNMT3A dataset, a cell subtype of

particular interest in the context of CHIP. This strategic narrowing down of our focus allowed us to delve

deeper into the unique RNA expression patterns characterizing CHIP cells. Exploration with the DNMT3A

dataset successfully pinpointed 3 key features that play a pivotal role in the identification of CHIP cells vs.

non-CHIP cells using a Random Forest model that accurately classified CHIP cells 81% of the time.

This precise subset came with its own set of intricacies. Upon reducing our dataset exclusively to CD14

Mono cells, a distinct data balance issue came to the forefront. The resulting dataset was characterized by

a significant abundance of Mutant cells and a notable scarcity of Wildtype cells. While this configuration

provided valuable insights into the RNA expression profiles of CHIP cells, it raised a fundamental challenge

regarding data balance.

To address this concern in future analyses, we should consider the implementation of two viable tech-

niques. One approach involves the fabrication of data using techniques like bootstrapping or Synthetic Mi-

nority Over-sampling Technique (SMOTE) (15), allowing the introduction of synthetically balanced data
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points. The alternative method revolves around data duplication, ensuring a relative equilibrium between

Wildtype and Mutant cell counts. The overarching goal is to maintain a balanced dataset, thereby enabling

the continued use of accuracy as a reliable metric for performance assessment. However, it is noteworthy that

other evaluation metrics such as ROC and precision-recall curves can be considered if they align better with

the specific analytical goals.
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CHAPTER 6

FUTURE WORK

Our current study serves as a robust stepping stone for future research endeavors. As we look ahead, several

avenues for refining our analysis and extending its scope come to the forefront. Here are some key aspects to

consider for future improvements and research directions:

• Diverse Classifiers: One potential avenue for improvement involves the incorporation of different

classifiers from the sklearn library. By diversifying the set of classifiers used for training, we can

assess how different models perform and continue to select the most suitable one for the task.

• Ensemble Learning: The use of an ensemble learning classifier, such as a ”Vote Classifier” that com-

bines the predictions of the top-performing classifiers, may improve accuracy. However, it is important

to note that this approach can reduce the classifier’s ability to generalize to data it has not encountered

outside the training dataset.

• Exploration of Mislabelled Data: An investigation into mislabelled data within each dataset could

uncover potential patterns and insights.

• Addressing Data Imbalance: In scenarios of data imbalance, methods such as ”RandomUnderSam-

pler” play a vital role in equalizing datasets, particularly when one class has a notable majority over the

other. This action enhances model performance and mitigates potential biases. In future analyses where

data scarcity is an issue, synthetic data generation through bootstrapping or data duplication could be

considered to ensure an even distribution of Wildtype and Mutant cell counts. These strategies lead to

a balanced dataset, allowing continued utilization of accuracy as a performance metric.

• Alternative Performance Metrics: If the data exhibits severe imbalance, it may be necessary to tran-

sition from using accuracy as the primary performance metric. Instead, metrics like ROC curves or

precision-recall curves can provide a more informative evaluation of model performance.

• Cross-Validation: Increasing the number of folds in cross-validation (e.g., 10-fold) is a computationally-

intensive option but is typically not necessary unless working with exceptionally large datasets. For

most standard-sized datasets, a 5-fold cross-validation strategy is sufficient.

• Dimensionality Reduction Techniques: While dimensionality reduction techniques like Recursive

Feature Elimination with Cross-Validation (RFECV) and Principal Component Analysis (PCA) can be
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useful, they are not essential. Instead, we can opt for model-agnostic approaches to feature selection

and pruning, such as LIME or SHAP.

• Model-Agnostic Approaches: Besides permutation importance, exploring other model-agnostic meth-

ods like Local Interpretable Model-Agnostic Explanations (LIME) (16) and SHapley Additive exPla-

nations (SHAP) (17) can offer a more comprehensive understanding of feature importance.

• New Feature Creation: Beyond ”OneHotEncoding” categorical data, the creation of new features

should only be considered if they provide substantial and meaningful information. It is important to

avoid introducing noise into the dataset through unnecessary feature generation.

• New Categorical Columns: The inclusion of new categorical columns should be approached with

caution. Additional categorical variables may not contribute significantly to the analysis and can po-

tentially introduce noise.

• Null Value Handling: In scenarios where null values are present, the use of a ”SimpleImputer” within

the pipeline can be considered as an alternative to removing null-valued rows beforehand. This ap-

proach allows us to retain valuable data while addressing missing values effectively.

• Incorporating New Data: If additional data becomes available, it could significantly enrich the anal-

ysis and contribute to the overall effectiveness of the CHIP Identification system.

These considerations and potential enhancements serve as a road map for future iterations of our CHIP

identification pipeline, offering opportunities to refine and expand our approach for improved results.
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