
LEVERAGING COMPILED LANGUAGES TO OPTIMIZE PYTHON FRAMEWORKS

By

Ethan Mayer

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

December 16, 2023.

Nashville, Tennessee

Approved:

Gabor Karsai, Ph.D.

Abishek Dubey, Ph.D.

ii

ACKNOWLEDGMENTS

I would like to thank Professor Gabor Karsai for his help and guidance during my graduate

career. I would also like to thank my family for their never-ending support and generous funding

that allowed me to complete the work required to write this thesis.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ... ii

LIST OF TABLES .. v

LIST OF FIGURES .. vi

I INTRODUCTION.. 1

I.1 RIAPS ... 1

II BACKGROUND .. 4

II.1 Python ... 4

II.2 Cython ... 5

II.3 Motivation ... 7

III IMPLEMENTATION .. 12

III.1 Cython Investigation.. 12

III.2 C++ Investigation .. 17

III.3 Python Control .. 21

IV RESULTS .. 23

IV.1 Messaging Tests .. 27

 IV.1.1 Messaging Test 1 Results...27

 IV.1.2 Messaging Test 2 Results...29

IV.2 Light Computational Load Tests ... 32

 IV.2.1 Light Computational Load Test 1 Results...32

 IV.2.2 Light Computational Load Test 2 Results...35

iv

IV.3 Heavy Computational Load Tests .. 39

 IV.3.1 Heavy Computational Load Test 1 Results..39

 IV.3.2 Heavy Computational Load Test 2 Results..41

IV.4 Function Calls Tests .. 45

 IV.4.1 Function Calls Test 1 Results...45

 IV.4.2 Function Calls Test 2 Results...47

IV.5 Memory Allocation Tests .. 51

 IV.5.1 Memory Allocation Test 1 Results..51

 IV.5.2 Memory Allocation Test 2 Results..53

V CONCLUSIONS AND FUTURE WORK ... 57

V.1 Conclusions ... 57

V.2 Future Work .. 58

REFERENCES ... 60

v

LIST OF TABLES

Table Page

IV.1 Test Details.. 23

IV.2 Test Parameter and Variable Details... 24

IV.3 Messaging Test Results... 32

IV.4 Light Computational Load Test Results.. 38

IV.5 Heavy Computational Load Test Results.. 44

IV.6 Function Calls Test Results... 50

IV.7 Memory Allocation Test Results... 56

vi

LIST OF FIGURES

Figure Page

II.1 Python GIL Visualization with Python Threads.. 5

II.2 Cythonize Process.. 6

II.3 Performance comparison between single-core and multi-core Intel processors using

SPECint2000 and SPECfp2000 benchmarks... 8

II.4 RIAPS Python Hierarchy... 10

III.1 RIAPS Python + Cython Hierarchy... 14

III.2 Cython Debugger Graphical Overview.. 16

III.3 RIAPS Python + C++ Hierarchy.. 18

III.4 Python + C++ Prototype Implementation.. 20

III.5 Python Control Implementation... 22

IV.1 Test Message Sequence Diagram.. 26

IV.2 Python Control Messaging Test 1 Results... 27

IV.3 Python + C++ Prototype Messaging Test 1 Results.. 28

IV.4 Python Control Messaging Test 2 Results... 29

IV.5 Python + C++ Prototype Messaging Test 2 Results.. 31

IV.6 Python Control Light Computational Load Test 1 Results... 33

IV.7 Python + C++ Prototype Light Computational Load Test 1 Results.................................. 34

IV.8 Python Control Light Computational Load Test 2 Results... 36

IV.9 Python + C++ Prototype Light Computational Load Test 2 Results.................................. 37

IV.10 Python Control Heavy Computational Load Test 1 Results... 39

vii

IV.11 Python + C++ Prototype Heavy Computational Load Test 1 Results................................ 41

IV.12 Python Control Heavy Computational Load Test 2 Results... 42

IV.13 Python + C++ Prototype Heavy Computational Load Test 2 Results................................ 43

IV.14 Python Control Function Calls Test 1 Results... 45

IV.15 Python + C++ Prototype Function Calls Test 1 Results.. 47

IV.16 Python Control Function Calls Test 2 Results... 48

IV.17 Python + C++ Prototype Function Calls Test 2 Results.. 49

IV.18 Python Control Memory Allocation Test 1 Results... 51

IV.19 Python + C++ Prototype Memory Allocation Test 1 Results.. 52

IV.20 Python Control Memory Allocation Test 2 Results... 54

IV.21 Python + C++ Prototype Memory Allocation Test 2 Results.. 55

1

CHAPTER I

Introduction

The objective of this thesis was to investigate possibilities of improving the performance of

frameworks such as the Resilient Information Architecture Platform for Smart Grid framework

(RIAPS) [1], a large, embedded software framework written entirely in Python. Due to the nature

of the Python programming language, fast performance was traded for ease of use and

accessibility, and the result was a platform that is not focused on being a strictly real-time system.

However, novel techniques were investigated to determine which is the ideal solution to enhance

the performance of RIAPS. Using faster, compiled languages, such as C++, performance-centric

parts of RIAPS can be sped up significantly. This is then implemented and tested in order to

quantify the performance improvement. All of the code developed for this research was written by

me can be found on GitHub (https://github.com/EthanMayer/Leveraging-Compiled-Languages-to-

Optimize-Python-Frameworks) under the open-source Apache License Version 2.0.

I.1 RIAPS

RIAPS is a software platform that allows developers to build applications for modern systems

using a component-oriented approach. Recently, the push towards distributed, real-time, and

embedded computing necessitated the creation of a framework to support this. The primary

application of this software is the “Smart Grid”, the future of the internet-connected energy grid,

where RIAPS can serve as a foundational tool for creating distributed computing systems. RIAPS

was created by the Vanderbilt Institute of Software Integrated Systems (ISIS) with funding from

2

the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy. RIAPS

includes tools such as an application run-time system (component model, messaging framework,

security framework), run-time services (discovery service, deployment service, time

synchronization service), design-time tools (modeling language, code generators), and operation

services (application deployment and control). RIAPS aims to provide programmers with both

design and run-time tools for building embedded software that can be used in areas such as the

Smart Grid.

The platform is written entirely in Python due to its ease of use and general convenience.

Consequently, performance is largely limited by the language’s single core nature, and it cannot be

considered a real-time system. “Single core” in this instance means that all Python code will

ultimately run on a single processor. Although the threading Python library is used to handle the

execution of developer applications, this is simply a convenient abstraction that is ultimately

executed sequentially for each instance of the Python Interpreter. Thus, since no true parallel

multithreading takes place, RIAPS acts as a single-core program with both the RIAPS platform and

developer application sharing time on a single processor. Although the platform is designed to be

run in a distributed environment, with several different nodes distributed throughout a Smart Grid,

the speed of each individual node in the network is limited by that node’s single-core performance.

Theoretically, multiple actors can be run on the same node with multiple components, each in a

separate actor. However, this is a very performance-intensive solution since a separate Python

interpreter would be used for each actor.

The ideal solution would consist of using parallel software threads to handle running the

developer applications on separate cores. True threads can run on separate cores in parallel. With

these threads, the RIAPS platform can be separated from the developer application(s) and run in

3

parallel. Thus, RIAPS’s overhead can be separated from the developer code via separate threads,

and each developer application thread would run faster, resulting in a more real-time system.

POSIX Threads, otherwise known as pthreads, can be used to spawn separate, parallel threads so

there is no performance bottleneck occurring on a single processor core. Since RIAPS is written in

Python, a different language will have to be used to run the developer application while using a

communication library, such as ZeroMQ (ZMQ), to communicate back with RIAPS.

4

CHAPTER II

Background

This chapter will lay the foundation for the motivation for this thesis by explaining the context of

the research. Once the technical aspects of languages used in RIAPS are fully presented, the reason

for this research will become clear. The details of both Python and Cython are discussed, as well as

the motivating factors driving this project.

II.1 Python

Python [2] is one of the most popular modern programming languages. Unlike traditional compiled

languages, such as C or C++, Python is an interpreted language; the CPython interpreter, written in

C, interprets Python code (in the form of bytecode) that runs on a virtual machine. The Python

interpreter, as it is currently implemented, does not take advantage of multiple processor cores that

may be available to it. Usually, there exists only one interpreter to run Python programs, thus in

general, two Python threads cannot be run in parallel, only concurrently on a single processor core.

A Global Interpreter Lock (GIL) exists that only allows the Python interpreter to be used by a

single Python thread at a time. Unlike C or C++, there exists no true multithreading, and all

“threading” done in Python is ultimately sequentially executed via sharing time on a single

processor. Thus, the multicore computing power that accompanies all modern CPUs cannot be

leveraged by Python to improve performance. This limitation is visualized in Figure II.1 below.

5

Figure II.1: Python GIL Visualization with Concurrent Python Threads [3].

 ZeroMQ, also known as ZMQ, is the library used for communication in RIAPS and the other

implementations in this research [4]. ZMQ is a fast and lightweight open-source networking library

that provides a framework for communicating with different threads. This library is available in

multiple languages, including Python and C++, and also allows messaging between them using

objects such as sockets and ports. It offers multiple different transport methods, most notably

transports such as in-process and inter-process, and allows for easy implementations of common

communication patterns, such as communication between a pair of sockets. It should be noted that,

due to the thread-safe nature of ZMQ and the prevalence of threads in both RIAPS and this

research, a socket must first be created by the thread that intends to use it.

II.2 Cython

Cython [5], commonly described as “Python at the speed of C”, is a programming language that is

a superset of the Python programming language with the additional, optional ability to declare and

use C types and functions. Cython is a compiled language that generates C/C++ files that, when

compiled, are automatically wrapped in interface code, producing extension modules that can be

6

imported by regular Python code. The intended use case of Cython is for developers to pinpoint

slow and generally computationally intensive components of their project and then either replace

them with Cython or write Cython code to interface with a C/C++ file written to do the same job.

The step-by-step Cythonize process can be seen below in Figure II.2. In this figure, setup.py is the

Python file that is normally used for all Cython projects that defines aspects of the Cythonize

process and initiates it. hello.pyx is the Cython file, as denoted by the .pyx file type, that will be

Cythonized. After calling setup.py, the Cython compiler generates hello.c from the hello.pyx

Cython code. This hello.c file is then compiled, by an ordinary C compiler, into the shared library

file hello.so. From here, the actual Python program, launch.py, can import the Cython function

from this shared library.

Figure II.2: Cythonize Process [6].

7

 As stated previously, since Cython is a superset of Python, all Python code and libraries natively

work with Cython, meaning Python code can call Cython code and vice versa. Additionally,

Cython can import and use any C/C++ library as long as a Cython header file is made to wrap the

C header files. In fact, several Python libraries already have Cython modules, such as ZMQ, since

Cython is used in the backend of the libraries to speed them up. Since the result is a mixture of

Python and C/C++ code, Cython gives developers a large amount of flexibility between the ease of

use of Python and the speed and technical ability of C/C++. Thus, this option seems particularly

enticing when considering methods to speed up Python-based RIAPS.

II.3 Motivation

In the last decade, single-core performance has started to plateau. As Moore’s law slows down, the

rate at which single-core performance is improving is reducing drastically. There are many factors

contributing to this slowdown; the inability to keep doubling the number of transistors on a die is

hindering potential maximum performance. Additionally, more transistors and faster clock

frequencies lead to more heat production and energy consumption. The ability to draw heat off a

die with the same surface area as a former die with lower heat production is difficult. The drastic

increase in energy consumption for marginally faster clock speeds is leading to a slow-down in the

rate at which single-core performance is increasing.

To counteract this, modern CPUs have put more emphasis on including multiple independent

cores on each chip. As newer generations of CPUs are released, more individual cores continue to

be added to each chip. Even if single-core performance increases slow down, adding additional

cores can allow the industry to keep up exponential speed gains. On paper, benchmarks show

multicore performance increasing exponentially and far outpacing single-core performance. This

8

performance difference was recently quantified by Dr. Abinash Roy in 2009 and visualized in

Figure II.3 [7].

Figure II.3: Performance comparison between single-core and multi-core Intel processors using

SPECint2000 and SPECfp2000 benchmarks [7].

According to their research, increasing the performance of a single core by 13% will require a

20% clock frequency increase, leading to a 73% increase in power consumption. On the other

hand, decreasing clock frequency by 20% reduces performance by 13% but also reduces energy

consumption by 49%. Thus, if multiple cores can be effectively utilized, they can each be

individually slower and still yield faster overall results with less energy consumption. The future of

fast and energy-efficient computation is multicore, so modern frameworks must be designed with

this in mind.

9

Since Python is strictly single-core, RIAPS as a framework is also strictly single-core. Python’s

threading library allows the use of Python threads, which are non-preemptive and concurrent, and

synchronization primitives, such as locks, that in tandem can be used to separate tasks into

concurrent threads within the same Python interpreter. Although the threading Python library is

used as an abstraction to separate the developer-defined application from the RIAPS runtime, all

code is ultimately executed sequentially via sharing time on a single core. Sharing time on a single

processor is done via context switching, which occurs when the processor swaps from executing

one thread to another. The default context switching interval in Python is 5 milliseconds, so each

thread is run for that amount of time before the next thread is run. A visualization of this single-

threaded behavior can be seen below in Figure II.4. Each ComponentThread is a Python thread that

runs a developer’s application code. These Python threads are placed vertically in the visual below

to denote their concurrent, not parallel, execution.

10

Figure II.4: RIAPS Python Hierarchy.

Due to this single-core nature and considering the slow-down of single core performance

improvements, large performance improvements will not be seen when upgrading processors or

microcontrollers. In contrast, upgrading to multiple cores opens up the opportunity for significant

performance increases. Additionally, the base energy cost of running a Python program at a certain

speed would be much higher than running an equivalent, perfectly multithreaded program at the

11

same speed. RIAPS is intended to be distributed across embedded devices, which are generally

energy-conscious and not using high clock frequencies. Thus, a more modern and multithreaded

approach is warranted.

12

CHAPTER III

Implementation

This chapter will discuss the implementation of the solutions created during this research. As

explained in Chapter II, the motivation for these implementations was to design a proof-of-

concept multicore solution for RIAPS. As the project progressed, multiple different prototypes in

different programming languages were made in order to determine the most optimal solution for

RIAPS. The two primary implementations created were a Python + Cython Prototype and a Python

+ C++ Prototype.

III.1 Cython Investigation

A significant amount of research went into investigating whether Cython would be a suitable

solution to making RIAPS a more real-time system. Cython’s intended function is to be used as a

drop-in replacement for the backend of slow Python code or libraries in order to speed them up;

RIAPS’s needs fit this requirement well. Replacing the mechanism that handles spawning threads

for the developer’s application would contribute greatly toward making RIAPS a more real-time

system. Since this proposed solution is intended to be a drop-in replacement through the use of

Cython, a very minimal amount of RIAPS that has been written in Python would need to change.

The first step was to study Cython and create a proof-of-concept prototype before attempting to

integrate anything into RIAPS. Fortunately, since Cython is simply a superset of Python, there was

only minimal syntax that needed to be learned. Even when using C-style syntax, such as for static

typing, Python’s normal syntax patterns were followed, making the process a smooth transition.

13

Compiling Cython was simple, and when importing from other Python programs, there was no

noticeable difference from the importer’s perspective when compared to importing normal Python

libraries.

This process became more difficult when implementing multithreading. The goal was to

demonstrate using Cython as a bridge between a pure Python program and pure POSIX threads.

While researching, it became apparent that using the pthread library to spawn true POSIX threads

within Cython was a relatively novel and rare approach to parallelization in Cython. In Cython,

when a C library is to be imported and used, a Cython header file must be made, similar to a C

header file, declaring all classes and functions in Cython syntax. For many C libraries, such as the

standard library, ZeroMQ, and others, these header files already exist because of their use in

Python. However, due to its novel nature, for the pthread library, a custom Cython header file had

to be created to allow the import and use of pthread in Cython. Once I created this header file that

declared all classes and functions in pthread, it could be imported by Cython.

The goal was to change the RIAPS hierarchy seen previously in Figure II.2 to a truly

parallelized environment seen below in Figure III.1. Each ComponentThread is a pthread launched

by Cython that runs a developer’s application code. These pthreads are placed horizontally in the

visual below to denote their parallel and simultaneous execution. The only change that was

required for this implementation was converting the comp.py Python file that usually handles

component threads into a comp.pyx Cython file. Thus, all Python syntax stays the same while

additional C-style syntax was added to import the pthread library and launch pthreads instead of

Python threads. Since the developer application and RIAPS runtime are distinct and not directly

reliant on each other, parallelizing the developer application threads would be an ideal solution.

Not only would the RIAPS overhead be free to handle more tasks, but the developer application

14

could also be more performance-intensive without slowing down the overall framework execution.

This is especially important for modern CPUs with many separate processor cores.

The goal was to change the RIAPS hierarchy seen previously in Figure II.2 to a truly

parallelized environment seen below in Figure III.1. Each ComponentThread is a pthread launched

by Cython that runs a developer’s application code. These pthreads are placed horizontally in the

visual below to denote their parallel and simultaneous execution. The only change that was

required for this implementation was converting the comp.py Python file that usually handles

component threads into a comp.pyx Cython file. Thus, all Python syntax stays the same while

additional C-style syntax was added to import the pthread library and launch pthreads instead of

Python threads. Since the developer application and RIAPS runtime are distinct and not directly

reliant on each other, parallelizing the developer application threads would be an ideal solution.

Not only would the RIAPS overhead be free to handle more tasks, but the developer application

could also be more performance-intensive without slowing down the overall framework execution.

This is especially important for modern CPUs with many separate processor cores.

Figure III.1: RIAPS Python + Cython Hierarchy.

15

Problems arose when considering the interactions between the Python framework and C-based

pthreads. Firstly, debugging is a challenge when compared to Python or C individually. Cython’s

usual debugging process uses an extension for the GNU debugger (cygdb) so that Cython code can

be debugged via the command line. With this, the convenience of visual debugging via IDE tools

usually present for Python and C is lost. Additionally, using cygdb alone is not sufficient to debug

the entire program. The upper-level Python running RIAPS may also have to be debugged.

Additionally, cygdb will not account for the pthreads spawned by Cython, so these will have to be

debugged separately if needed. Working on a production-level and security-minded framework

such as RIAPS requires a significant amount of attention to detail when it comes to solving

complex issues, so difficulties experienced in debugging could be prohibitive. A comprehensive

multi-level Cython debugger has been investigated [8], and a graphical overview of it can be seen

below in Figure III.2. This debugger intended to unify the debugging of the multiple layers of

Cython into a comprehensive debugger complete with a GUI. However, using this debugger

proved challenging and time-consuming, and questions arose whether this comprehensive

debugging solution was worth the effort to use. While it allowed for comprehensive debugging of

Cython programs, the time required for the setup and learning process made it not worth using.

16

Figure III.2: Cython Debugger Graphical Overview [8].

Memory management across all of these different levels of the hierarchy also presents another

challenge. One of the benefits of Cython was the seamless integration with Python, thus making it

an ideal facilitator when transferring Python data structures to the pthreads. Using cross-language

libraries, such as pybind11, would allow the C layer to receive and operate directly on Python

objects used by RIAPS. However, since the Global Interpreter Lock would still have to be used

when accessing these data structures, performance could be lost, potentially to the point of

defeating the purpose of this research.

When taking all of these inconveniences and challenges into account, there may be more

practical alternatives to integrating the speed of compiled languages in RIAPS. Thus, the research

17

pivoted at this point towards eliminating this middle ground and thus eliminating the added

complexity from it. Cython was originally chosen due to the novelty of this particular use case and

for the perceived ease of integration so that it can act as a bridge between Python and C. However,

the added complexity outweighed the benefits.

III.2 C++ Investigation

After realizing that Cython was likely not the ideal solution to optimizing RIAPS, a simplified

approach was the new goal. Going directly from Python to a compiled language, such as C++,

would be a stark transition but would avoid the complexity of an intermediate layer. Thus, the

research pivoted to directly bridging the gap between RIAPS’s Python runtime and developer

applications made with C++.

The core motivation and goal of the Python + C++ Prototype remains the same as the previous

investigation; in order to observe a performance increase, the most inefficient aspect of RIAPS

must be tackled. Developer application threads must use real, parallelizable threads, such as

pthreads, so that a single processor core does not have to execute both the RIAPS overhead and

developer application concurrently. Thus, the developer application must be written in C++. The

goal remains to change the RIAPS hierarchy seen previously in Figure II.2 to a truly parallelized

environment; however, in this implementation, Cython will not be used. The new proposed

hierarchy diagram is seen below in Figure III.3. Each ComponentThread is a pthread launched

directly by C++ that runs a developer’s application code. These pthreads are placed horizontally in

the visual below to denote their parallel and simultaneous execution.

18

Figure III.3: RIAPS Python + C++ Hierarchy.

Since the Cython intermediate layer has been removed, Python will now directly interface with

the lower C++ layer. Using the CDLL function from the ctypes Python library, C++ functions

found in a shared library can be executed. A shared library, which is a .so file on Unix systems and

a .dll file on Windows, is a compiled file that cannot be executed alone but instead is meant to

contain functions that can be loaded and called by other executables or shared libraries at load time

or runtime. This method is done as opposed to being directly copied by the linker at compile time

and bundled into the executable.

However, when a C++ function in the shared library is loaded and called by Python, this

function is not necessarily executed in parallel with the calling Python program. This C++ function

must instead act more like a main function. No core functionality was executed here except for

launching pthreads so that other C++ functions, also loaded from the shared library, can be

executed in parallel.

Since there is less of a bridge between the Python and C++ layers, all communication occurred

through sending ZMQ messages back and forth between RIAPS and the developer application C++

threads. Since the original implementation of RIAPS held this same design philosophy, not many

19

additional changes would be required to be made to RIAPS. As discovered with Cython in the

previous section, Python objects can no longer be sent as-is due to the GIL requirement. In order

for C++ to manipulate these Python data structures directly, the GIL would have to be acquired by

the pthread each time they are accessed, which introduces the same performance issues seen in

Python due to the presence of a single Python interpreter.

In order to ensure the communication system is language-agnostic, all data structures being

exchanged between Python and C++ were serialized into a universal format, such as JSON. While

Python’s native serialization methods, such as pickle, do not include native support for complex

data structures, such as named tuples, a library such as jsonplus was used to handle all JSON-

related functions. Similarly in C++, nlohmann’s json library was used for the deserialization and

serialization of all message data after being received and before being sent, respectively.

Before integrating into RIAPS, a prototype was implemented as a proof-of-concept of this

design. As described above, an upper-level Python program will load and call a C++ main function

from a shared library. This main function will then spawn pthreads that run in parallel and handle

receiving/processing/sending data to and from the Python level via JSON. A visualization of this

prototype can be seen below in Figure III.4.

20

Figure III.4: Python + C++ Prototype Implementation.

The general flow of the prototype is as follows: the “main” thread, written in Python, launched a

C++ function from a shared library. After launching this function and passing the correct

parameters to it, which are necessary to setup the ZMQ ports, etc., the only purpose of the Python

main thread was to send and receive messages while JSON serializing and deserializing them,

respectively. The ZMQ Poller was used to handle detecting incoming messages on the two ports,

one for each thread, so that no time is wasted being blocked while waiting to receive from one of

the threads.

Each of the C++ worker pthreads executed in parallel simultaneously since no locking devices,

such as mutexes or semaphores, are present due to the absence of shared resources. Each thread

performed some sort of work, of which there are five options: no work, light math computation

(iteratively calculate the Fibonacci number of the square root of the current message number),

heavy math work (iteratively calculate the Fibonacci number of the current message number),

21

function calls (recursively calculate the Fibonacci number of the current message number), and

memory allocation (allocate and free memory between each message). All of this work was in

addition to the normal JSON serialization done upon sending a message and deserialization done

upon receiving a message. Once the total number of target messages was achieved, the program

exited.

III.3 Python Control

The primary purpose of the Python Control Implementation was to generate test data representative

of a baseline of performance. Since RIAPS is programmed entirely with Python, a control in this

same form was needed to perform comparisons against the other tests performed for this research.

The Python Control Implementation functioned identically to the other Python + C++ Prototype,

but the entire program was written in pure Python. Thus, due to the GIL, all threading was

ultimately executed sequentially, and these results are expected to be the slowest in all cases. The

work done by the Python main thread and the Python worker threads was identical in each

respective test case to the work described above for the Python + C++ Prototype. A visualization of

this workflow can be seen below in Figure III.5.

22

Figure III.5: Python Control Implementation.

23

CHAPTER IV

Results

This chapter will discuss the results of the prototypes implemented in Chapter III. Before actual

integration into RIAPS can occur, these prototypes need to produce quantitative data to serve as

justification for their proof-of-concept designs. The Python + C++ Prototype will have test results

shown alongside a Control Implementation that is written in pure Python. Several different test

categories will be shown for different workloads. These tests are listed in Table IV.1. The

parameters and variables present in each test are detailed in Table IV.2.

Test
Message

Amount
Work Notes

Messaging Tests 100k; 500k; None Only work done is JSON serialization/deserialization

Light

Computational

Load Tests

100k; 500k

Square

Root

Fibonacci

The Fibonacci number of the square root of the

current message number is calculated iteratively

Heavy

Computational

Load Tests

1k; 5k Fibonacci
The Fibonacci number of the current message

number is calculated iteratively

Function Calls

Tests
10; 40

Recursive

Fibonacci

The Fibonacci number of the current message

number is calculated recursively

Memory

Allocation Tests
100k; 500k

Memory

Allocation

100 data structures of 4 KB size are allocated and

freed

Table IV.1: Test Details.

24

Test Parameter Value Notes

CPU Apple M1 ARM; 8 cores; no thermal throttling or power saving; starts idle

RAM 16 GB No memory bottlenecks, such as swapping, occur

Runs per Test 10 Ensures external factors are averaged out

Printing/Logging None
No printing/logging done to avoid bottlenecks (writing to

output/buffer)

Main Thread Python All implementations have a Python main thread

Worker Threads 2
All implementations use 2 worker threads; thread language

varies

Communication ZMQ All communication is done via PAIR sockets

Message Format JSON
Data serialized before being sent; messages deserialized after

being received

Message Number Variable Number of pairs of messages sent/received varies

Work Variable
Amount and type of work (if any) done between messages

varies; see details for each test’s work below

Table IV.2: Test Parameter and Variable Details.

For every test in this chapter, certain test parameters were able to be kept constant. Every test

was run on an Apple M1 ARM 8-core processor, and there was no throttling present, whether for

thermal reasons or for power-saving. No tasks or apps were actively running in the background,

and the CPU started at idle for each test. The system has access to 16 gigabytes of RAM, so no

memory issues occurred, such as swapping, to slow the tests down. Since there are many external

factors that can affect the performance of a program being benchmarked, such as OS scheduling or

interrupts, 10 runs were performed sequentially for each test to ensure these external factors can be

25

averaged out. Additionally, no printing or logging of any kind is done, so the test results will not be

influenced by waiting for I/O or waiting to write to a buffer. During each test, a Python main

thread launches two worker threads, both in Python for the Python Control Implementation or both

in C++ for the Python + C++ Prototype, and these threads are communicated with via ZMQ PAIR

sockets. Each pair of messages consists of one message sent to a worker thread and one message

sent back to the main thread. All messages sent consist of data in JSON form. Upon receiving a

message, it is deserialized and the data is extracted. When sending a message, the data that is to be

sent is first serialized into JSON. This process is visualized in the message sequence diagram seen

below in Figure IV.X. In this diagram, the main thread and both worker threads are shown with

their ZMQ PAIR sockets and the messages between them. Two types of example tests, the 100,000

message tests and the 500,000 message tests, are shown in the diagram. The points at which the

test timer starts and ends are clearly demarcated as to visually show which parts of the program are

being timed for the results later in this chapter.

26

Figure IV.1: Test Message Sequence Diagram.

For each test involving C++ pthreads, their CPU affinity was set to ensure that each of the two

pthreads were run simultaneously on separate CPU cores. Processor affinity is used to force the

27

execution of a thread on a certain CPU core. Although the pthread library has its own functions to

set CPU core affinity, these only work on Linux, and these tests were run on MacOS. Thus, the

thread_policy_set MacOS API function was used to ensure that each pthread will be executed

simultaneously on different CPU cores [9].

IV.1 Messaging Tests

IV.1.1 Messaging Test 1 Results

For the first Python Control Implementation messaging test, 100,000 pairs of messages were sent

and received between the main thread and each worker thread for a total of 200,000 pairs of

messages, or 400,000 total messages. Besides the JSON serialization/deserialization process

described previously, no other computational work was done in between messages. The results of

this test can be seen below in Figure IV.2.

Figure IV.2: Python Control Messaging Test 1 Results.

17.968

16.5

17

17.5

18

18.5

19

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 100,000 Message Pairs, No Work

Time (s)

Average (s)

28

Out of the 10 runs performed for this first Python Control Implementation test, the time per run

ranged from the quickest at 17.195 seconds to the longest at 18.565 seconds with the average time

per test being 17.968s. Since there was no further work to do besides sending and receiving

messages, these tests were relatively quick.

For the first Python + C++ Prototype messaging test, 100,000 pairs of messages were sent and

received between the main thread and each worker thread for a total of 200,000 pairs of messages,

or 400,000 total messages. Besides the JSON serialization/deserialization process described

previously, no other computational work was done in between messages. The results of this test

can be seen below in Figure IV.3.

Figure IV.3: Python + C++ Prototype Messaging Test 1 Results.

Out of the 10 runs performed for this first Python + C++ Prototype messaging test, the time per

run ranged from the quickest at 13.638 seconds to the longest at 14.191 seconds with the average

13.912

12

12.5

13

13.5

14

14.5

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 100,000 Message Pairs, No Work

Time (s)

Average (s)

29

time per test being 13.912 seconds. As expected, this prototype was able to send and receive the

same number of messages as the Python Control Implementation in less time. Using C++ worker

threads led to an average speed-up of 23%.

IV.1.2 Messaging Test 2 Results

For the second Python + C++ Prototype messaging test, 500,000 pairs of messages were sent

and received between the main thread and each worker thread for a total of 1,000,000 pairs of

messages, or 2,000,000 total messages. This test was identical to the previous Messaging Test 1

but with more messages to simulate a higher throughput application. Besides the JSON

serialization/deserialization process described previously, no other computational work was done

in between messages. The results of this test can be seen below in Figure IV.4.

Figure IV.4: Python Control Messaging Test 2 Results.

87.126

84

85

86

87

88

89

90

91

92

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 500,000 Message Pairs, No Work

Time (s)

Average (s)

30

Out of the 10 runs performed for this second Python Control Implementation test, the time per

run ranged from the quickest at 86.411 seconds to the longest at 91.021 seconds with the average

time per test being 87.126 seconds. Each run here ran longer than the previous Python Control

Implementation test due to the significant increase in messages. When compared, this test averaged

handling 400% more message pairs in about 385% more time. As seen in the results graph, this test

benefited from Python’s caching mechanism, which allowed each run after the first run to

consistently complete on average around 5% faster. However, the initial slow run was necessary

for this future speed improvement.

For the second Python + C++ Prototype messaging test, 500,000 pairs of messages were sent

and received between the main thread and each worker thread for a total of 1,000,000 pairs of

messages, or 2,000,000 total messages. As with the Python Control Implementation for this test,

this test was identical to the previous Messaging test but with more messages to simulate a higher

throughput application. Besides the JSON serialization/deserialization process described

previously, no other computational work was done in between messages. The results of this test

can be seen below in Figure IV.5.

31

Figure IV.5: Python + C++ Prototype Messaging Test 2 Results

Out of the 10 runs performed for this second Python + C++ Prototype messaging test, the time

per run ranged from the quickest at 69.11 seconds to the longest at 70.018 seconds with the

average time per test being 69.5 seconds. As with the previous messaging test, this prototype was

able to send and receive the same number of messages as the Python Control Implementation in

less time. Using C++ worker threads led to an average speed-up of 20%. When compared to the

previous Python + C++ messaging test, this test averaged handling 400% more message pairs in

about 400% more time, a linear scaling.

Of the two messaging tests performed here, the Python + C++ Prototype implementation

consistently performed faster than its Python Control Implementation counterpart. A summary of

the results can be seen below in Table IV.3. Since no work was done in this test, this is the worst-

case scenario for performance for the Python + C++ Prototype. Still, the speed-up over the Python

69.5

67.5

68

68.5

69

69.5

70

70.5

71

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 500,000 Message Pairs, No Work

Time (s)

Average (s)

32

Control Implementation averaged 23% and 20% for each test, respectively, representing the floor

for performance increases.

Test Metric Messaging Test 1 Messaging Test 2

Number of Messages Sent to Each Thread 100,000 500,000

Python Control Average Time (s) 17.968 87.126

Python Control Variance (s) 0.224 1.768

Python Control Standard Deviation (s) 0.494 0.329

Python Control Range (s) 1.370 4.610

Python + C++ Prototype Average Time (s) 13.912 69.500

Python + C++ Prototype Variance (s) 0.022 0.045

Python + C++ Prototype Standard Deviation (s) 0.148 0.212

Python + C++ Prototype Range (s) 0.553 0.908

Python + C++ Prototype Average Speed-Up 23% 20%

Table IV.3: Messaging Test Results.

IV.2 Light Computational Load Tests

IV.2.1 Light Computational Load Test 1 Results

For the first Python Control Implementation test with light computational load, 100,000 pairs of

messages were sent and received between the main thread and each thread for a total of 200,000

pairs of messages, or 400,000 total messages. In addition to the JSON serialization/deserialization

process, further computational work was done by each worker thread in between messages to

simulate a light workload that may be performed by a developer application. To simulate

33

computational work, a function to calculate the Fibonacci number of an input number was created.

Thus, each worker thread received an integer representing the number of the current message,

found the Fibonacci number corresponding to the square root of this number, and sent it back to the

main thread. The results of this test can be seen below in Figure IV.6.

Figure IV.6: Python Control Light Computational Load Test 1 Results

Out of the 10 runs performed for this first Python Control Implementation test, the time per run

ranged from the quickest at 18.372 seconds to the longest at 19.768 seconds with the average time

per run at 19.018 seconds. Although the number of total message pairs remained the same, the

average time per run here was 1.05 seconds longer than the first Python Control Implementation

test due to the presence of the Fibonacci calculation, explained above, done by each thread in

between each message. Thus, the presence of work here slowed the total execution of the program

19.018

17

17.5

18

18.5

19

19.5

20

20.5

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 100,000 Message Pairs, Sqrt. Fib.

Time (s)

Average (s)

34

down by 6%, a small yet noticeable slowdown of each run.

For the first Python + C++ Prototype test with light computational load, 100,000 pairs of

messages were sent and received between the main thread and each thread for a total of 200,000

pairs of messages, or 400,000 total messages. In addition to the JSON serialization/deserialization

process, further computational work is done by each worker thread in between messages in the

same way as described above for the equivalent Python Control Implementation test. The results of

this test can be seen below in Figure IV.7.

Figure IV.7: Python + C++ Prototype Light Computational Load Test 1 Results

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 13.446 seconds to the longest at 14.051 seconds with the average time

per run at 13.916 seconds. Although the Fibonacci calculation, explained above, is done by each

13.916

12

12.5

13

13.5

14

14.5

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 100,000 Message Pairs, Sqrt. Fib.

Time (s)

Average (s)

35

thread in between each message, the average time per run was unchanged from the Messaging Test

1 without the workload. Due to the speed of a compiled language such as C++ and other

advantages, such as compiler optimizations and running in parallel on separate CPU processors,

this workload ended up being negligible and did not slow down this test by a quantifiable amount

of time, avoiding the 6% slowdown experienced by the Python Control Implementation during this

test. Additionally, the Python + C++ Prototype experienced a 27% speed-up when compared to the

equivalent Python Control Implementation test.

IV.2.2 Light Computational Load Test 2 Results

For the second Python Control Implementation test with light computational load, 500,000 pairs

of messages were sent and received between the main thread and each thread for a total of

1,000,000 pairs of messages, or 2,000,000 total messages. In addition to the JSON

serialization/deserialization process, further computational work was done by each worker thread

in between messages via the square root Fibonacci calculation. The results of this test can be seen

below in Figure IV.8.

36

Figure IV.8: Python Control Light Computational Load Test 2 Results

Out of the 10 runs performed for this second Python Control Implementation test, the time per

run ranged from the quickest at 102.115 seconds to the longest at 108.19 seconds with the average

time per run at 102.975 seconds. Each run here ran an average of 18% longer than the previous no-

work equivalent Python Control Implementation test, a large decrease in speed. When compared to

the previous Python Control Implementation test in this section, this test averaged handling 400%

more message pairs in about 441% more time; this scaling is worse than the one-to-one scaling

seen in the messaging tests previously due to the presence of the computational work. Once again,

the benefits of Python’s caching mechanism are obvious from the initial outlier in the graph and

allowed each run after the first run to consistently complete on average around 5% quicker.

For the second Python + C++ Prototype test with light computational load, 500,000 pairs of

messages were sent and received between the main thread and each thread for a total of 1,000,000

102.975

99

100

101

102

103

104

105

106

107

108

109

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 500,000 Message Pairs, Sqrt. Fib.

Time (s)

Average (s)

37

pairs of messages, or 2,000,000 total messages. In addition to the JSON

serialization/deserialization process, further computational work was done by each worker thread

in between messages in the same way as above to simulate light computational load. The results of

this test can be seen below in Figure IV.9.

Figure IV.9: Python + C++ Prototype Light Computational Load Test 2 Results

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 69.479 seconds to the longest at 71.702 seconds with the average time

per run at 70.071 seconds. Once again, although the Fibonacci calculation was done by each thread

in between each message, the average time per run is virtually unchanged from the equivalent

message test without the workload. This workload continues to be negligible, and C++ manages to

70.071

68

68.5

69

69.5

70

70.5

71

71.5

72

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 500,000 Message Pairs, Sqrt. Fib.

Time (s)

Average (s)

38

avoid the 18% slowdown experienced by the Python Control Implementation during this test. The

Python + C++ Prototype experienced a 32% speed-up when compared to the equivalent Python

Control Implementation test.

Of the two light computational load tests performed here, the Python + C++ Prototype

implementation performed faster than its Python Control Implementation counterpart in both tests.

A summary of the results can be seen below in Table IV.4. Since computational load was

introduced between each message, the average speed-up increased due to C++ excelling at

mathematical calculations, boosting the average speed-up to 27% and 32% for each test,

respectively.

Test Metric

Light

Computational

Load Test 1

Light

Computational

Load Test 2

Number of Messages Sent to Each Thread 100,000 500,000

Python Control Average Time (s) 19.018 102.975

Python Control Variance (s) 0.358 3.054

Python Control Standard Deviation (s) 0.598 1.748

Python Control Range (s) 1.396 6.075

Python + C++ Prototype Average Time (s) 13.916 70.071

Python + C++ Prototype Variance (s) 0.026 0.415

Python + C++ Prototype Standard Deviation (s) 0.162 0.664

Python + C++ Prototype Range (s) 0.605 2.223

Python + C++ Average Prototype Speed-Up 27% 32%

Table IV.4: Light Computational Load Test Results.

39

IV.3 Heavy Computational Load Tests

IV.3.1 Heavy Computational Load Test 1 Results

For the first Python Control Implementation test with heavy computational load, 1,000 pairs of

messages were sent and received between the main thread and each thread for a total of 2,000 pairs

of messages, or 4,000 total messages. In addition to the JSON serialization/deserialization process,

further computational work was done by each worker thread in between messages to simulate a

heavy workload that may be performed by a developer application. To simulate computational

work, a function to calculate the Fibonacci number of an input number was created. Thus, each

worker thread received an integer representing the number of the current message, found the

Fibonacci number corresponding to the number, and sent it back to the main thread. The results of

this test can be seen below in Figure IV.10.

Figure IV.10: Python Control Heavy Computational Load Test 1 Results

0.211

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 1,000 Message Pairs, Fibonacci

Time (s)

Average (s)

40

Out of the 10 runs performed for this first Python Control Implementation test, the time per run

ranged from the quickest at 0.208 seconds to the longest at 0.213 seconds with the average time per

run at 0.211 seconds. The timescale for this test was in sub-seconds due to the relatively small

number of messages. Although the number of total message pairs has significantly decreased

compared to the previous tests, the computational work performed in between each message took

much longer. In other words, the computational workload influenced test runtime far more than

communication due to the increased workload. Unlike the previous Light Computational Load Test

1, where the maximum Fibonacci number to be calculated was 316, here the maximum Fibonacci

number to be calculated was 1,000 due to the removal of the square root operator.

For the first Python + C++ Prototype test with heavy computational load, 1,000 pairs of

messages were sent and received between the main thread and each thread for a total of 2,000 pairs

of messages, or 4,000 total messages. In addition to the JSON serialization/deserialization process,

further computational work was done by each worker thread in between messages in the same way

as described above for the equivalent Python Control Implementation test. The results of this test

can be seen below in Figure IV.11.

41

Figure IV.11: Python + C++ Prototype Heavy Computational Load Test 1 Results

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 0.132 seconds to the longest at 0.169 seconds with the average time per

run at 0.138 seconds. The timescale for this test was in sub-seconds due to the relatively small

number of messages. As stated previously, the maximum Fibonacci number that was calculated

here is 1,000, compared to 316 in the previous Light Computational Load Test 1. Here, the Python

+ C++ Prototype already experienced a 35% speed-up when compared to the equivalent Python

Control Implementation test.

IV.3.2 Heavy Computational Load Test 2 Results

For the second Python Control Implementation test with heavy computational load, 5,000 pairs

0.138

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 1,000 Message Pairs, Fibonacci

Time (s)

Average (s)

42

of messages were sent and received between the main thread and each thread for a total of 10,000

pairs of messages, or 20,000 total messages. In addition to the JSON serialization/deserialization

process, further computational work was done by each worker thread in between messages via the

Fibonacci calculation. The results of this test can be seen below in Figure IV.12.

Figure IV.12: Python Control Heavy Computational Load Test 2 Results

Out of the 10 runs performed for this second Python Control Implementation test, the time per

run ranged from the quickest at 2.468 seconds to the longest at 2.694 seconds with the average

time per run at 2.565 seconds. Now that the number of messages has increased, the maximum

Fibonacci number that was calculated here is 5,000 compared to 707 from the Light Computational

Load Test 2. This work, which was performed in between each message, took up a significant

2.565

2.25

2.35

2.45

2.55

2.65

2.75

2.85

2.95

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 5,000 Message Pairs, Fibonacci

Time (s)

Average (s)

43

portion of the total time of each run.

For the second Python + C++ Prototype test with heavy computational load, 5,000 pairs of

messages were sent and received between the main thread and each thread for a total of 10,000

pairs of messages, or 20,000 total messages. In addition to the JSON serialization/deserialization

process, further computational work was done by each worker thread in between messages in the

same way as above to simulate heavy computational load. The results of this test can be seen

below in Figure IV.13.

Figure IV.13: Python + C++ Prototype Heavy Computational Load Test 2 Results

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 0.669 seconds to the longest at 0.743 seconds with the average time per

run at 0.712 seconds. The timescale for this test was in sub-seconds due to the relatively small

number of messages. Although a large Fibonacci calculation was done by each thread in between

0.712

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 5,000 Message Pairs, Fibonacci

Time (s)

Average (s)

44

each message, up to the 5,000th number, the runtime was still very quick. Here, C++’s

computational advantage is obvious. The Python + C++ Prototype experienced a 72% speed-up

when compared to the equivalent Python Control Implementation test.

Of the two heavy computational load tests performed here, the Python + C++ Prototype

implementation performed faster than its Python Control Implementation counterpart in both tests

by a significant amount. A summary of the results can be seen below in Table IV.5. Since heavy

computational load was introduced between each message, the average speed-up significantly

increased due to C++ excelling at mathematical computation, boosting the average speed-up to

35% and 72% for each test, respectively.

Test Metric

Heavy

Computational

Load Test 1

Heavy

Computational

Load Test 2

Number of Messages Sent to Each Thread 1,000 5,000

Python Control Average Time (s) 0.211 2.565

Python Control Variance (s) 0.000 0.003

Python Control Standard Deviation (s) 0.002 0.057

Python Control Range (s) 0.005 0.226

Python + C++ Prototype Average Time (s) 0.138 0.712

Python + C++ Prototype Variance (s) 0.000 0.000

Python + C++ Prototype Standard Deviation (s) 0.011 0.020

Python + C++ Prototype Range (s) 0.037 0.074

Python + C++ Average Prototype Speed-Up 35% 72%

Table IV.5: Heavy Computational Load Test Results.

45

IV.4 Function Calls Tests

IV.4.1 Function Calls Test 1 Results

For the first Python Control Implementation function calls test, 10 pairs of messages were sent and

received between the main thread and each thread for a total of 20 pairs of messages, or 40 total

messages. In addition to the JSON serialization/deserialization process, further computational work

was done by each worker thread in between messages to simulate a function-call-heavy workload

that may be performed by a developer application. To simulate this type of work, a function to

recursively calculate the Fibonacci number of an input number was created. Thus, each worker

thread received an integer representing the number of the current message, found the Fibonacci

number corresponding to the number recursively, and sent it back to the main thread. The results of

this test can be seen below in Figure IV.14.

Figure IV.14: Python Control Function Calls Test 1 Results

0.012

0

0.02

0.04

0.06

0.08

0.1

0.12

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 10 Message Pairs, Recursion

Time (s)

Average (s)

46

Out of the 10 runs performed for this first Python Control Implementation test, the time per run

ranged from the quickest at 0.002 seconds to the longest at 0.105 seconds with the average time per

run at 0.012 seconds. The timescale for this test was in sub-seconds due to the relatively small

number of messages. The initial outlier can be explained with Python’s caching mechanism; thus,

the range of run times was large here due to caching having a significant impact on subsequent run

times. A 98% speedup was observed after the first run due to caching. Although 10 message pairs,

and thus calculating the Fibonacci number of 10, may seem small, Python’s speed slowed

exponentially when dealing with recursive function calls. This is not surprising, since the time

complexity of a recursive Fibonacci solution is O(2n), otherwise known as exponential. Thus, this

light test served as a safe baseline.

For the first Python + C++ Prototype function calls test, 10 pairs of messages were sent and

received between the main thread and each thread for a total of 20 pairs of messages, or 40 total

messages. In addition to the JSON serialization/deserialization process, further computational work

was done by each worker thread in between messages in the same way as described above for the

equivalent Python Control Implementation test. The results of this test can be seen below in Figure

IV.15.

47

Figure IV.15: Python + C++ Prototype Function Calls Test 1 Results

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 0.002 seconds to the longest at 0.007 seconds with the average time per

run at 0.003 seconds. The timescale for this test was in sub-seconds due to the relatively small

number of messages. Since C++ handled recursive function calls better, and the computation was

relatively light, this implementation was able to run very fast. Here, the Python + C++ Prototype

already ran 75% faster when compared to the equivalent Python Control Implementation test

above.

IV.4.2 Function Calls Test 2 Results

For the second Python Control Implementation function calls test, 40 pairs of messages were

sent and received between the main thread and each thread for a total of 80 pairs of messages, or

0.003

0

0.005

0.01

0.015

0.02

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 10 Message Pairs, Recursion

Time (s)

Average (s)

48

160 total messages. In addition to the JSON serialization/deserialization process, further

computational work was done by each worker thread in between messages via the recursive

Fibonacci calculation. The results of this test can be seen below in Figure IV.16.

Figure IV.16: Python Control Function Calls Test 2 Results

Out of the 10 runs performed for this second Python Control Implementation test, the time per

run ranged from the quickest at 41.829 seconds to the longest at 42.975 seconds with the average

time per run being 41.983 seconds. As stated previously, Python’s runtime rises exponentially

when increasing the amount of function calls. Despite only performing Fibonacci calculations for a

number that is 300% larger than the last function call test, the average runtime was a staggering

349,758% longer. It is sufficient to say that, of all the tests presented in this research, Python

performed the worst at function calls.

41.983

41

41.5

42

42.5

43

43.5

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 40 Message Pairs, Recursion

Time (s)

Average (s)

49

For the second Python + C++ Prototype function calls test, 40 pairs of messages were sent and

received between the main thread and each thread for a total of 80 pairs of messages, or 160 total

messages. In addition to the JSON serialization/deserialization process, further computational work

was done by each worker thread in between messages in the same way as above to simulate heavy

function-call load. The results of this test can be seen below in Figure IV.17.

Figure IV.17: Python + C++ Prototype Function Calls Test 2 Results

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 0.547 seconds to the longest at 0.551 seconds with the average time per

run being 0.549 seconds. The timescale for this test was in sub-seconds due to the relatively small

number of messages. While performing Fibonacci calculations for a number that was 300% larger

than the last function call test, the average runtime was 18,200% longer. While this seems like a

0.549

0.54

0.542

0.544

0.546

0.548

0.55

0.552

0.554

0.556

0.558

0.56

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 40 Message Pairs, Recursion

Time (s)

Average (s)

50

large percentage, the original runtimes for the previous Function Calls Tests for this

implementation were very small. Additionally, this was still 19 times faster scaling than Python

when going from a small amount to a large amount of function calls. C++’s function-calling

advantage was abundantly clear with a 99% speed-up when compared to the Python Control

Implementation counterpart.

Of the two function calls tests performed here, the Python + C++ Prototype implementation

performed staggeringly faster than its Python Control Implementation counterpart in both tests. A

summary of the results can be seen below in Table IV.6. Due to the large number of function calls,

C++ was able to achieve an average speed-up of 75% and 99% for each test, respectively.

Test Metric
Function Calls

Test 1

Function Calls

Test 2

Number of Messages Sent to Each Thread 10 40

Python Control Average Time (s) 0.012 41.983

Python Control Variance (s) 0.001 0.111

Python Control Standard Deviation (s) 0.031 0.333

Python Control Range (s) 0.103 1.146

Python + C++ Prototype Average Time (s) 0.003 0.549

Python + C++ Prototype Variance (s) 0.000 0.000

Python + C++ Prototype Standard Deviation (s) 0.001 0.001

Python + C++ Prototype Range (s) 0.005 0.004

Python + C++ Prototype Average Speed-Up 75% 99%

Table IV.6: Function Calls Test Results.

51

IV.5 Memory Allocation Tests

IV.5.1 Memory Allocation Test 1 Results

For the first Python Control Implementation memory allocation test, 100,000 pairs of messages

were sent and received between the main thread and each thread for a total of 200,000 pairs of

messages, or 400,000 total messages. In addition to the JSON serialization/deserialization process,

further computational work was done by each worker thread in between messages to simulate a

memory-heavy workload that may be performed by a developer application. To simulate this type

of work, 100 data structures, each 4 KB in size, were created and then deleted by each thread in

between each message. In Python, this operation takes the form of allocating lists of this size

within a temporary scope that ceases to exist by the time the next message is sent. The results of

this test can be seen below in Figure IV.18.

Figure IV.18: Python Control Memory Allocation Test 1 Results

220.682

200

205

210

215

220

225

230

235

240

245

250

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 100,000 Message Pairs, Memory Allocation

Time (s)

Average (s)

52

Out of the 10 runs performed for this first Python Control Implementation test, the time per run

ranged from the quickest at 217.077 seconds to the longest at 246.436 seconds with the average

time per run at 220.682 seconds. Once again, the effects of caching were observed in the first

outlier on the graph; subsequent runs gained a 12% speedup after the first run. Python was also

slow at memory operations; this test is 1,128% slower than the equivalent Python Control

Implementation results from Messaging Test 1.

For the first Python + C++ Prototype memory allocation test, 100,000 pairs of messages were

sent and received between the main thread and each thread for a total of 200,000 pairs of messages,

or 400,000 total messages. In addition to the JSON serialization/deserialization process, further

memory-oriented computational work was done by each worker thread in between messages in the

same way as described above for the equivalent Python Control Implementation test. The results of

this test can be seen below in Figure IV.19.

Figure IV.19: Python + C++ Prototype Memory Allocation Test 1 Results

14.264

14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 100,000 Message Pairs, Memory Allocation

Time (s)

Average (s)

53

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 14.119 seconds to the longest at 14.41 seconds with the average time

per run at 14.264 seconds. C++’s memory operations were fast due to its low-level nature, so this

test was only 3% slower than the equivalent no-work Python + C++ Prototype test in Messaging

Test 1 with the same number of messages. This implementation also ran 94% faster when

compared to the equivalent Python Control Implementation test above.

IV.5.2 Memory Allocation Test 2 Results

For the second Python Control Implementation function calls test, 500,000 pairs of messages

were sent and received between the main thread and each thread for a total of 1,000,000 pairs of

messages, or 2,000,000 total messages. In addition to the JSON serialization/deserialization

process, further computational work was done by each worker thread in between messages via the

same memory operations as the previous test. The results of this test can be seen below in Figure

IV.20.

54

Figure IV.20: Python Control Memory Allocation Test 2 Results

Out of the 10 runs performed for this second Python Control Implementation test, the time per

run ranged from the quickest at 1087.762 seconds to the longest at 1096.141 seconds with the

average time per run at 1090.916 seconds. While caching seemed to have an effect on the overall

test runtime early on, time per run rises later in the test and drops the overall caching speed

advantage to only 1%. When compared to the equivalent 500,000 message no-work Python

Control Implementation test, the average runtime here was 1,152% longer.

For the second Python + C++ Prototype memory allocation test, 500,000 pairs of messages

were sent and received between the main thread and each worker thread for a total of 1,000,000

pairs of messages, or 2,000,000 total messages. In addition to the JSON

serialization/deserialization process, further computational work was done by each worker thread

1090.916

1081

1083

1085

1087

1089

1091

1093

1095

1097

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python, 500,000 Message Pairs, Memory Allocation

Time (s)

Average (s)

55

in between messages in the same way as above to simulate heavy memory operations load. The

results of this test can be seen below in Figure IV.21.

Figure IV.21: Python + C++ Prototype Memory Allocation Test 2 Results

Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run

ranged from the quickest at 71.021 seconds to the longest at 71.785 seconds with the average time

per run at 71.339 seconds. Despite performing these memory operations between each message,

this test only experienced a 3% increase in average runtime when compared to the equivalent

Python + C++ Prototype results from Messaging Test 2. Similar to the Memory Allocation Test 1,

the speedup here experienced by the Python + C++ Prototype was 93% when compared to its

Python Control Implementation counterpart.

Of the two memory allocation tests performed here, the Python + C++ Prototype

71.339

70

70.5

71

71.5

72

72.5

73

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e
(s

)

Run

Graph of Test v. Time
Python + C++, 500,000 Message Pairs, Memory Allocation

Time (s)

Average (s)

56

implementation performed extremely fast in both tests, much faster than its Python Control

Implementation counterpart and almost as fast as the same messaging tests without any work. A

summary of the results can be seen below in Table IV.7. C++ was able to achieve an average

speed-up of 94% and 93% for each test, respectively.

Test Metric
Memory Allocation

Test 1

Memory Allocation

Test 2

Number of Messages Sent to Each Thread 100,000 500,000

Python Control Average Time (s) 220.682 1090.916

Python Control Variance (s) 74.318 6.818

Python Control Standard Deviation (s) 8.621 2.611

Python Control Range (s) 29.359 8.379

Python + C++ Prototype Average Time (s) 14.264 71.339

Python + C++ Prototype Variance (s) 0.009 0.069

Python + C++ Prototype Standard Deviation (s) 0.093 0.263

Python + C++ Prototype Range (s) 0.291 0.761

Python + C++ Prototype Average Speed-Up 94% 93%

Table IV.7: Memory Allocation Test Results.

57

CHAPTER V

Conclusions and Future Work

This chapter will discuss the conclusions drawn from both the discussion of the implementation of

the tests in Chapter III and the results of each test shown in Chapter IV. Once a final conclusion

has been drawn on which design is the best and most beneficial for RIAPS, future work can be

discussed as it relates to the details and intricacies involved with moving this proof-of-concept

prototype design to full integration with a large framework such as RIAPS.

V.1 Conclusions

Python’s drawbacks cause it to be a slow language, especially when compared to traditional,

compiled languages. Due to the nature of Python and the existence of the GIL, no true parallel

multithreading can be achieved, severely limiting its ability to fully use the computational

resources available on modern computers and embedded devices. Since RIAPS is entirely

programmed in Python, this distributed framework will suffer from the same performance issues.

Many different approaches were considered and attempted when looking for a solution to these

performance issues in the Python-based RIAPS. Cython seemed like an efficient and easily

integrated middle layer that would help facilitate the transition from high-level Python to lower-

level parallelized C code. While integration with Python was easy, the interactions between Python

and low-level compiled code were not necessarily easier via Cython. The added complexities of a

middle layer, along with the fact that facilitating the transfer of Cython data structures to compiled

code was slow due to the GIL, ruled Cython out as an effective solution.

58

Direct Python–C++ integration offers a fast and achievable solution for parallelism to optimize

RIAPS. Compiling C++ functions to a shared library that can be accessed by Python gives Python

scripts the ability to launch pthreads. Serializing Python data structures to a language-agnostic

format, such as JSON, allows threads to execute free of the GIL. Prototype implementations and

tests show the benefits and promise of this approach. Overall, the Python + C++ Prototype

implementation performed better in every test compared to the Python Control Implementation.

The worst-case scenario for a speed-up, which was shown with the communication-only

messaging test, still yielded a 20%-23% average runtime reduction. When introducing load,

depending on the type of load, speed increases of up to 99% can be observed. Thus, this direct

Python–C++ integration improves RIAPS performance in every situation while not introducing

any unmanageable drawbacks.

V.2 Future Work

The majority of future work to be done involves integrating this C++ prototype implementation

into the RIAPS framework. Due to technical limitations, such as the fact that RIAPS can only run

on Linux due to library dependencies, development directly onto RIAPS would have been time-

consuming to set up properly in the timeframe and scope of this research. The Python + C++

Prototype implementation serves as a solid proof-of-concept for future work to implement true

parallelization into RIAPS. All developer applications hosted by RIAPS would experience an

increase in performance. Many developer applications, such as computationally intensive, high-

function call, or memory-intensive ones, would benefit greatly from this truly parallel capability.

RIAPS’s component model, which currently serves as a convenient encapsulation of the developer

59

application, will be the target of the parallelization. Developer applications written in C++ can be

compiled into shared libraries and then launched as a component within RIAPS.

60

References

[1] Ghosh, Purboday & Eisele, Scott & Dubey, Abhishek & Metelko, Mary & Madari, István

& Völgyesi, Péter & Karsai, Gabor. (2020). Designing a Decentralized Fault-Tolerant Software

Framework for Smart Grids and its Applications. Journal of Systems Architecture. 109. 101759.

10.1016/j.sysarc.2020.101759.

[2] Hasecke, Jan Ulrich, “python: a programming language changes the world,” Available:

https://brochure.getpython.info/media/releases/prerelases/psf-python-brochure-vol-1-final-

content-preview. [Accessed Nov. 10, 2023].

[3] Beazley, David, “Understanding the Python GIL,” Pycon 2010, Atlanta, GA, USA, 2010.

Available: https://speakerdeck.com/dabeaz/understanding-the-python-gil?slide=10. [Accessed

Nov. 10, 2023].

[4] The ZeroMQ Authors, “ZeroMQ: An open-source universal messaging library,” Available:

https://zeromq.org/. [Accessed Nov. 10, 2023].

[5] Behnel, Stefan & Bradshaw, Robert & Woods, David & Valo, Matúš & Dalcín, Lisandro,

“Cython: C-Extensions for Python,” Available: https://cython.org. [Accessed Nov. 10, 2023].

[6] Pokorny, David Brooks, “Cython CPython Ext Module Workflow,” Available:

https://commons.wikimedia.org/wiki/File:Cython_CPython_Ext_Module_Workflow.png.

[Accessed Nov. 10, 2023].

[7] Roy, Abinash & Xu, Jingye & Chowdhury, Masud. (2009). Multi-core processors: A new

way forward and challenges. 454 - 457. 10.1109/ICM.2008.5393510.

[8] M. Florisson, “Multi-Level Debugging for Cython,” 14th Twente Student Conference on

IT, vol. 14, no. 1, Jan. 2011.

61

[9] Apple, inc. “Apple Developer Function thread_policy_set,” Available:

https://developer.apple.com/documentation/kernel/1418892-thread_policy_set. [Accessed Nov.

10, 2023].

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	Page
	CHAPTER I
	Introduction
	I.1 RIAPS

	CHAPTER II
	Background
	This chapter will lay the foundation for the motivation for this thesis by explaining the context of the research. Once the technical aspects of languages used in RIAPS are fully presented, the reason for this research will become clear. The details o...
	II.1 Python
	II.2 Cython Cython [5], commonly described as “Python at the speed of C”, is a programming language that is a superset of the Python programming language with the additional, optional ability to declare and use C types and functions. Cython is a compi...
	Figure II.2: Cythonize Process [6].
	As stated previously, since Cython is a superset of Python, all Python code and libraries natively work with Cython, meaning Python code can call Cython code and vice versa. Additionally, Cython can import and use any C/C++ library as long as a Cy...
	II.3 Motivation
	In the last decade, single-core performance has started to plateau. As Moore’s law slows down, the rate at which single-core performance is improving is reducing drastically. There are many factors contributing to this slowdown; the inability to keep ...
	To counteract this, modern CPUs have put more emphasis on including multiple independent cores on each chip. As newer generations of CPUs are released, more individual cores continue to be added to each chip. Even if single-core performance increases ...
	Figure II.3: Performance comparison between single-core and multi-core Intel processors using SPECint2000 and SPECfp2000 benchmarks [7].
	According to their research, increasing the performance of a single core by 13% will require a 20% clock frequency increase, leading to a 73% increase in power consumption. On the other hand, decreasing clock frequency by 20% reduces performance by 13...
	Since Python is strictly single-core, RIAPS as a framework is also strictly single-core. Python’s threading library allows the use of Python threads, which are non-preemptive and concurrent, and synchronization primitives, such as locks, that in tande...
	Figure II.4: RIAPS Python Hierarchy.
	Due to this single-core nature and considering the slow-down of single core performance improvements, large performance improvements will not be seen when upgrading processors or microcontrollers. In contrast, upgrading to multiple cores opens up the ...

	CHAPTER III
	Implementation
	III.1 Cython Investigation
	The goal was to change the RIAPS hierarchy seen previously in Figure II.2 to a truly parallelized environment seen below in Figure III.1. Each ComponentThread is a pthread launched by Cython that runs a developer’s application code. These pthreads are...
	III.2 C++ Investigation
	III.3 Python Control

	CHAPTER IV
	Results
	IV.1 Messaging Tests
	IV.1.1 Messaging Test 1 Results
	IV.1.2 Messaging Test 2 Results
	IV.2 Light Computational Load Tests
	IV.2.1 Light Computational Load Test 1 Results
	IV.2.2 Light Computational Load Test 2 Results
	IV.3 Heavy Computational Load Tests
	IV.3.1 Heavy Computational Load Test 1 Results
	IV.3.2 Heavy Computational Load Test 2 Results
	IV.4 Function Calls Tests
	IV.4.1 Function Calls Test 1 Results
	IV.4.2 Function Calls Test 2 Results
	IV.5 Memory Allocation Tests
	IV.5.1 Memory Allocation Test 1 Results
	IV.5.2 Memory Allocation Test 2 Results

	CHAPTER V
	Conclusions and Future Work
	V.1 Conclusions
	V.2 Future Work

	References

