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CHAPTER 1

Background

1.1 Open Clusters

Open clusters (OCs) are single stellar populations that formed together. They were observed in antiquity by

their close grouping of positions in the night sky. It is now possible today to group these stars as bonafide

clusters based on their relative positions and proper-motions in the sky thanks to astrometric surveys such as

Gaia. Currently thousands of OCs have been identified and are widespread throughout the Milky Way disk

(Friel, 1995; Kharchenko et al., 2013; Dias et al., 2014; Cantat-Gaudin et al., 2018b; Hunt and Reffert, 2020).

Studying OCs offers insights into theories of star formation (Kroupa, 2001) and provides a direct view of the

high mass end of the stellar initial mass function. Their lower stellar density allows for clearer observations

of stars as compared to the more crowded regions in globular clusters.

Open clusters serve as an important laboratory for astronomers to answer many unresolved questions in

the field. OCs are sites of few-body dynamical mechanisms that can produce unique astronomical objects

such as Blue Straggler stars (Perets, 2015; Toonen et al., 2020; He and Petrovich, 2017). Taken as a whole,

the OC population are key tracers of chemical enrichment throughout the Galactic disk (Spina et al., 2021).

The youngest OCs have been used to investigate the distribution and dynamics of the Milky Way spiral arms

(Hao et al., 2021).

1.1.1 Identifying Open Cluster Populations

Distinguishing the members of an open cluster from the background of field stars can be difficult and numer-

ous techniques have been developed to tackle the problem. Many techniques rely on finding the population

of stars in proper-motion space. In proper-motion space, the population of stars that form an OC will appear

as a concentrated grouping of similar proper-motions. This grouping can be identified straightforwardly for

those open clusters whose proper-motions are high enough that they are separate and distinct from the galac-

tic field stars (e.g., Melotte 25 (the Hyades) in Figure 1.1, top-panel). However, more embedded OCs, such

as Melotte 20 (see Figure 1.1, bottom-panel), present a greater challenge.

With the advent of precise astrometric data from the Gaia survey (see Prusti et al., 2016; Brown et al.,

2018), it is now possible to distinguish and computationally extract open clusters even when the kinematics of

the cluster and field stars are not significantly different from one another. We briefly review some commonly

employed methods here, but see Hunt and Reffert (2020) for a thorough and comprehensive review.

Once OC candidates have been selected and preliminary membership is assigned, it is still necessary

1
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Figure 1.1: Proper-motion vector plot for Melotte-25, aka The Hyades Cluster (top panel, purple dots),
and Melotte-20, aka the Alpha Persei Cluster (bottom panel, purple dots). Manually selecting open cluster
members using vector point diagrams in proper-motion are easier (top panel) for some clusters than for more
embedded clusters (bottom panel).
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to ensure that the selected group of stars is a true physical cluster. One of the more reliable confirmation

techniques for the overall cluster is to directly inspect the candidates in color-magnitude space. A group

of stars with a narrow range of parallax can masquerade as a cluster within a CMD. However, false cluster

members with erroneous parallax measurements will appear in unphysical locations within the CMD. Re-

quiring member stars to be clustered in proper-motion as well as distance also limits false-positive cluster

identification. As open clusters represent a single stellar population, the color-magnitude plot will exhibit

well-known properties: the main sequence, the binary main sequence, and the red giant branch sequence if

the cluster is sufficiently old. This technique becomes even more effective when previous values of the star

cluster are known, such as metallicity ([Fe/H]), age, and extinction (AV ). A theoretical isochrone can then

be generated to compare the observed colors and magnitudes of the stars with what would be expected from

stellar evolutionary theory.

Perhaps the hardest aspect of such confirmation methods is that they are often performed manually for

each individual OC. This can become a daunting task, considering that the Milky Way Star Cluster (MWSC)

catalog Kharchenko et al. (2013) contains over 2000 open clusters. There have been many attempts at au-

tomating the detection and identification of open clusters within astrometric data sets in recent years. Cantat-

Gaudin et al. (2018b) performed searches of open clusters using the UPMASK (Krone-Martins and Moitinho,

2014) algorithm, based on k-means clustering. Hunt and Reffert (2020) developed a thorough review of nu-

merous clustering algorithms with respect to open clusters.

1.2 Binary Stars

There is a growing consensus that the majority of stars form in binary-star systems (hereafter “binaries”) or

higher order multiple systems. These systems are thought to have formed within fragmenting giant molecular

clouds undergoing collapse due to loss of hydrostatic equilibrium. Binaries are a fundamental component

of a plethora of astrophysical problems and are very common throughout the universe. About half of the

stars in the Milky Way are found in binaries (Duchêne et al., 2013; Duchene et al., 2018), and the binary

demographics and evolution of binaries are key unknowns in many astrophysical contexts (e.g., Price-Whelan

et al., 2019; Rix et al., 2019).

However, binaries are also critical benchmark systems: for example, binaries provide one of the few ways

to infer stellar distances without the use of stellar evolution models (Soderblom, 2010; Serenelli et al., 2021),

and enable an important channel for calibrating models of stellar parameters across a range of stellar masses

(Kraus and Hillenbrand, 2009; Stacy et al., 2009) as most binary-star components are assumed to be coeval

in the field.

3



1.2.1 Eclipsing Binary Stars

A crucial class of benchmark binaries are eclipsing binaries (Serenelli et al., 2021) (EBs), in which the binary

system orbit is aligned sufficiently to our line of sight for one star to pass in front of the other star. This transit

causes a measurable dip in the brightness of the binary system. Most EBs will have two transits visible in their

light curve; the primary eclipse (more massive primary star transits in front of the less massive secondary)

and a secondary eclipse (less massive star transits in front of more massive primary). The eclipse shapes

and timing provide information about both the orbital properties of the system, such as inclination, period,

eccentricity, and orientation, and also intrinsic properties of the stellar components, such as the radius ratio

and surface brightness ratio (e.g. Andersen, 1991; Torres et al., 2010b; Miller et al., 2020; Cunningham et al.,

2020).

Both historically and continuing today, benchmark EB systems are often first identified from time-domain

photometric observations and subsequently observed spectroscopically to obtain radial velocity time series

of the systems (e.g. Baroch et al., 2022; Hong et al., 2022). With recent all-sky, high-cadence, time-domain

photometric surveys such as the Kepler Mission (Prša et al., 2011) and the Transiting Exoplanet Survey

Satellite (TESS; Ricker et al., 2014; Stassun et al., 2018), it has become possible to identify large samples

of ∼ 104 EB systems across a range of stellar types (Kirk et al., 2016; Prša et al., 2022). Especially useful

EB systems are those with small secondary components (e.g., Torres, 2013; Gill et al., 2020; Sebastian et al.,

2022) in which a star with well-predicted structure and parameters (e.g., a 1 M⊙ primary star) has a low-mass

companion (e.g., a 0.3 M⊙ star) with much more uncertain intrinsic and atmospheric parameters (Kraus et al.,

2011; Cassisi and Salaris, 2019).

1.2.2 Spectroscopic Binary Stars

Spectroscopic binaries (SBs), like eclipsing binaries, require some alignment in the orbit with respect to

our line of sight to be observed. Spectroscopic binaries can offer different constraints on orbital parameters

depending on whether the spectra encodes a detection of one (SB1) or two (SB2) stars. However, due to

a degeneracy between the inclination and semi-major axis, SB1s alone can only provide population level

inferences of binary demographics (Badenes et al., 2018; Price-Whelan et al., 2020). SB1s, coupled with

available ancillary data, are ideal to perform analyses of binary-star field and cluster populations. In addition

to this SB2s do not typically sample the entire mass-ratio range due to observed SB2s typically being two

near equal mass stars. Observing a binary system both as an EB as well as an SB is the ideal case. It is

possible to determine both stellar and orbital parameters to high precision for both stars in a binary only

when photometric measurements of EBs are coupled with spectroscopically determined radial velocities of

SBs.
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1.3 Data

1.3.1 Astrometric data from Gaia DR2

The Gaia satellite (Prusti et al., 2016) has greatly broadened our understanding of stars throughout the Milky

Way. Since launching in December 2013, Gaia’s repeated measurements of billions of stars across the night

sky have produced one of the best and largest astrometric catalogues to date. Now in its third data release DR3

(Gaia Collaboration et al., 2022), there are more than 1.8 billion stars with 5 dimensional (α , δ , ϖ , µα∗, µδ )

astrometric solutions with micro-arcsecond uncertainties, and approaching a faint limit of magnitude 21.5.

This catalog has become an indispensable component at numerous scales in the astronomical community

from wide binaries to stellar streams throughout the Milky Way.

1.3.2 Time-series flux measurements from the TESS Satellite

The successor to the Kepler spacecraft (Batalha et al., 2010), the Transit Exoplanet Survey Satellite (here-

after, TESS) (Ricker et al., 2014; Sullivan et al., 2015; Stassun et al., 2017, 2019) is now in its 5th year of

operation in the second extended mission. The time-domain photometric data from TESS has helped make

breakthroughs in the field of exoplanets and in the study of binaries because of its high-cadence, nearly

all-sky-coverage observations of over 200,000 stars, covering almost 70% of the night sky. TESS observes

targets continuously within a particular sector over a span of 13.5 with a short 2-minute cadence; each sector

has at least 27 total days of observing time.

The resulting data contains a large number of high quality time-series light curve flux data for each star

in the TESS Input Catalog (Stassun et al., 2017). Having this continuous, short-cadence light curve data

enables studying periodic behavior present in the observed stars over many timescales (e.g., stellar flares

(Günther and Daylan, 2021), stellar rotation (Doyle et al., 2020), stellar pulsations (Cunha et al., 2019), and

stellar/sub-stellar companions (Prša et al., 2022; Gandolfi et al., 2018, respectively). Pre-processed TESS

light curves from the TESS-SPOC processing group (Caldwell et al., 2020) provide an easily accessible data

set of time-series flux data that can be harnessed to characterize EBs.

1.3.3 Time-series radial velocities from the APOGEE Spectrograph

The Sloan Digital Sky Surveys (SDSS) have been in operation for nearly 20 years. The recently released 17th

data release from SDSS (Abdurro’uf et al., 2022) marks the final data release in SDSS-IV (Blanton et al.,

2017), and contains a full release of the APOGEE-2 spectroscopic data (spectral resolution R ∼ 22,500)

(Majewski et al., 2017; Beaton et al., 2021; Santana et al., 2021). The APOGEE-2 data set contains over

∼ 2.6 million individual spectra for over 700,000 stars. The APOGEE project was originally designed to

only perform spectroscopic chemical analysis of stars, which required multiple visits to accumulate a high
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enough signal to noise ratio. With multiple spectra and long time baselines, these data can be repurposed to

provide time series radial velocity measurements (e.g., Troup et al., 2016; Badenes et al., 2018; Price-Whelan

et al., 2018).

1.4 Methods

1.4.1 Distribution-based Clustering with GMM

Gaussian Mixture Models (GMMs) (Pearson, 1893) describe a data set using a number of multivariate Gaus-

sian components. GMM is a ’top-down’ method that attempts to represent a data-set as a mixture of multi-

variate Gaussians. An individual Gaussian, or component, of the model represents the cluster. GMMs have

already been used to identify and characterize a number of astronomical objects, including individual open

clusters (Gao, 2018), the galaxy red sequence (Hao et al., 2009), and supernovae/host galaxy populations

(Holoien et al., 2016).

GMMs allow for mixed memberships, wherein a data point can have a probability of belonging to multiple

components. K-means and DBSCAN typically assign each data point only to one component or cluster.

GMMs also have fewer hyperparameters to tune than DBSCAN or other similar agglomerative clustering

methods. The resulting covariance matrices from a well-fit GMM effectively describe the shape, scaling, and

orientation of components within the data. Determining the right number of cluster components to employ

for any particular GMM fit is important to draw accurate conclusions. However there are numerous ways to

determine the best number of GMM components a posteriori, such as the statistical metrics like the Bayesian

Information Criterion or methods such as component number cross-validation.

As Cabrera-Cano and Alfaro (1990) cautions in their analysis of ∼ 300 stars in NGC-2420, care must

be taken when fitting an OC dataset with GMMs. If the field star fraction is too large, the OC may be

overwhelmed by field stars along the line of sight. An open cluster may be also be less separable if the

distribution of field stars is strongly non-Gaussian. Both of these situations may produce less than optimum

results, although a quantitative analysis of the effect of these potential issues on a given cluster was not

addressed.

1.4.1.1 Extreme Deconvolution GMM

It is ideal for a GMM to fit the intrinsic, underlying distribution rather than noisy discrete data. To accom-

plish this the observed measurements must first be deconvolved from their uncertainties Bovy et al. (2011)

developed a method to determine the underlying distribution function in the presence of noisy data called

‘Extreme Deconvolution’.

Extreme Deconvolution Gaussian Mixture Models (hereafter, XDGMM) combine the two techniques to
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ideally fit the true, intrinsic distribution with a Gaussian mixture model. XDGMM has already been employed

successfully to characterize members of a Galactic open cluster (Olivares et al., 2019) and to calculate mean

cluster positions and proper-motions in the case of an actively disrupting open cluster (Price-Whelan et al.,

2019). However, these use cases of XDGMM were for a small number of individual systems.

1.4.2 Bayesian Inference

The most frequently used methods to determine the orbital parameters usually rely on some generative model

(such as a two-body keplerian orbit) which takes a vector of parameters which can be called ‘θ ’. This gen-

erative model is incorporated into a likelihood function which computes the similarity of the model synthetic

data with the observed data using a statistical metric such as the χ2 parameter. The likelihood function can be

maximized in order to infer the orbital parameters, that coupled with the generative model, best approximate

the observed data.

However this process, simply referred to as ‘Maximum Likelihood’ (hereafter ML), has a number of

shortcomings, such as: ML infers the mode of a distribution which is not as robust to skewed distributions as

the median of the distribution. ML does not directly generate uncertainties on the parameter modes inferred.

ML does not take into account any relevant prior information that may help better infer the desired parameters.

We can correct for these issues by using Bayes Theorem (Bayes, 1763) to perform our inference which

is written out as P(θ |(D) = P(D|θ) ·P(θ)/P(D). Here P(D|θ) is our likelihood function and P(θ) is our

prior function. P(D) is called the ‘Bayesian Evidence’ and while it is an important quantity, it is also usually

very computationally expensive to calculate and primarily useful in comparing different models. As our

framework currently only uses one orbital model, it can be safely ignored for now.

The Bayes theorem equation is fundamentally an integral over the whole of the parameter space we are

interested in. Fully evaluating the integral is a computational intractable endeavor. However we can evaluate

this equation numerically using Markov Chain Monte Carlo (hereafter, MCMC). MCMC is an iterative way

to evaluate P(θ |D) (known as the posterior distribution) by drawing samples for θ . The probabilities of the

values in θ are calculated in the prior. These values are then used in our generative model and compared with

the data in the likelihood function.

1.4.3 Hamiltonian Monte Carlo

Most MCMC methods rely on the ‘Metropolis-Hastings’ algorithm (otherwise known as ‘random-walk’)

(Metropolis et al., 1953) to draw samples to construct the posterior distributions. Most of the samples drawn

throughout the MCMC process are correlated and thus most MCMC evaluations rely on running a chain of

samples long enough such that sufficient uncorrelated samples are drawn to properly approximate the target
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posterior distribution. It is also possible to run N multiple chains of samples with N multiple starting values

of θ , known as ‘walkers’, in order to more effectively explore the parameter space concurrently.

Unfortunately, the efficacy of MCMC relies on the presumption of properly exploring the parameter

space from which the distributions of the variable posteriors can be inferred. MCMC algorithms that rely on

a random walk to explore a parameter space usually suffer from an incapacity to identify whether effective

exploration of the target distribution is being achieved. Characterizing an MCMC run as ‘converged’ then

typically rely on post-MCMC sampling techniques such as calculating the auto-correlation length of samples

to determine if the number of samples drawn is enough; this process may need to be repeated several times

to properly derive posteriors for very geometrically complicated problems.

Hamiltonian Monte Carlo (Duane et al., 1987) (hereafter HMC) draws from the properties of Hamiltonian

physics to exploit the differential geometry of a parameter space, even if its non-physical in nature, in order to

efficiently explore that parameter space in building posterior distributions. HMC methods rely on calculating

the gradients within a parameter space in order to explore it efficiently (see Neal, 2012).

HMC can still be potentially undermined if the two hyper-parameters, step size (ε) and number of steps

(L), are not set adequately. The No U-Turn Sampling (NUTS) algorithm (Hoffman and Gelman, 2014)

was developed to allow researchers to bypass the usually time consuming process of performing multiple

iterations of sampling runs with varying ε and L values to determine how best to explore a parameter space.

The NUTS algorithm actively adjusts ε and L during sampling as well as terminating sampling when the

algorithm confirms that the parameter exploration is beginning to double-back onto itself in order to maintain

computational efficiency.
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CHAPTER 2

Membership lists for 431 open clusters in Gaia DR2 using extreme deconvolution Gaussian Mixture

Models

Abstract 1

Open clusters are groups of stars that form at the same time, making them an ideal laboratory to test theories

of star formation, stellar evolution, and dynamics in the Milky Way disk. However, the utility of an open

cluster can be limited by the accuracy and completeness of its known members.

Here, we employ a “top-down” technique, extreme deconvolution gaussian mixture models (XDGMM),

to extract and evaluate known open clusters from Gaia DR2 by fitting the distribution of stellar parallax and

proper motion along a line-of-sight. Extreme deconvolution techniques can recover the intrinsic distribution

of astrometric quantities, accounting for the full covariance matrix of the errors; this allows open cluster

members to be identified even when presented with relatively uncertain measurement data. To date, open

cluster studies have only applied extreme deconvolution to specialized searches for individual systems.

We use XDGMM to characterize the open clusters reported by Ahumada and Lapasset (2007) and are

able to recover 420 of the 426 open clusters therein (98.1%). Our membership list contains the overwhelming

majority (> 95%) of previously known cluster members. We also identify a new, significant, and relatively

faint cluster member population and validate their membership status using Gaia eDR3.

We report the fortuitous discovery of 11 new open cluster candidates within the lines of sight we analyzed.

We present our technique, its advantages and challenges, as well as publish our membership lists and updated

cluster parameters.

2.1 Introduction

Open clusters (OCs) are single stellar populations that formed together. Thousands of OCs have been iden-

tified and are widespread throughout the Milky Way disk (Friel, 1995; Kharchenko et al., 2013; Dias et al.,

2014). Studying OCs offers insights into theories of star formation (Kroupa, 2001) and provides a direct view

of the high mass end of the stellar initial mass function. OCs are also sites of few-body dynamical mech-

anisms that can produce unique astronomical objects such as Blue Straggler stars (Perets, 2015; ?; He and

Petrovich, 2017). Taken as a whole, the OC population are key tracers of chemical enrichment throughout

the Galactic disk (Spina et al., 2021).

Identifying the members of a particular open cluster can be difficult and numerous techniques have been

1Published in Astrophysical Journal, Volume 923, Number 1, 2021
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developed to tackle the problem. Many techniques rely on finding the population of stars in proper-motion

space. In proper-motion space, the population of stars that form an OC will appear as a compact group

of similar proper-motions. This grouping can be identified straightforwardly for those open clusters whose

proper-motions are high enough that they are separate and distinct from the galactic field stars (e.g., Melotte

25 (the Hyades) in Figure 1.1, top-panel). However, more embedded OCs, such as Melotte 20 (see Figure

1.1, bottom-panel), present a greater challenge.

With the advent of precise astrometric data from the Gaia survey (see Prusti et al., 2016; Brown et al.,

2018), it is now possible to distinguish and computationally extract open clusters even when the kinematics of

the cluster and field stars are not significantly different from one another. We briefly review some commonly

employed methods here, but see ? for a thorough and comprehensive review.

Cluster and cluster member identification algorithms that use astrometric data leverage the compact nature

of a cluster in some combination of position, distance, and proper motion. Most techniques employ what

could be called a ‘bottom-up’ approach in which the star cluster is built up out of smaller components until

all the stars within a line of sight are either considered a ’cluster’ star or a ’field’ star.

Algorithms such as K-means (Utsunomiya et al., 1996), fit a K number of clusters to data by itera-

tively finding K mean centroids until some convergence threshold is met. Other algorithms, such as DB-

SCAN (Daszykowski and Walczak, 2009), assign groupings of stars to clusters using inter-particle distance.

One benefit of these algorithms is that they are not confined to proper-motion data, and have been success-

fully applied to position and multi-dimensional astrometric data (Gao, 2018; Castro-Ginard et al., 2018).

Both DBSCAN and K-means have been used to identify stars in known open clusters, but they have also been

successfully employed to find new open cluster candidates (?Liu and Pang, 2019; Castro-Ginard et al., 2019).

Despite its power and versatility, K-means algorithms necessitate pre-defining the number of clusters that

are to be found. This may be difficult to do without explicit prior knowledge of how the data are distributed

along the dimensions of interest. Workflows using K-means also typically assume that the data are all dis-

tributed spherically, a clear limitation when presented with more realistic cluster shapes (?). DBSCAN is

more generalized than K-means in that it can find non-symmetric clusters distributed throughout the data,

and also doesn’t require a preset number of clusters. However, it becomes computationally expensive when

considering large data sets in more than 3 dimensions, as all of the pairwise distances between data points

must be calculated. The hyperparameters used in DBSCAN to define clusters also needs to be fine-tuned,

requiring hyperparameter optimization which can become computationally expensive.

Once OC candidates have been selected and preliminary membership is assigned, it is still necessary

to ensure that the selected group of stars is a true physical cluster. One of the more reliable confirmation

techniques for the overall cluster is to directly inspect the candidates in color-magnitude space. A group
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of stars with a narrow range of parallax can masquerade as a cluster within a CMD. However, false cluster

members with erroneous parallax measurements will appear in unphysical locations within the CMD. Re-

quiring member stars to be clustered in proper-motion as well as distance also limits false-positive cluster

identification. As open clusters represent a single stellar population, the color-magnitude plot will exhibit

well-known properties: the main sequence, the binary main sequence, and the red giant branch sequence if

the cluster is sufficiently old. This technique becomes even more effective when previous values of the star

cluster are known, such as metallicity ([Fe/H]), age, and extinction (AV ). A theoretical isochrone can then

be generated to compare the observed colors and magnitudes of the stars with what would be expected from

stellar evolutionary theory.

Perhaps the hardest aspect of such confirmation methods is that they are often performed manually for

each individual OC. This becomes a daunting task, considering that the Milky Way Star Cluster (MWSC)

catalog Kharchenko et al. (2013) contains over 2000 open clusters.

There have been great strides in automating the process of open cluster membership construction to be

able to take a census of the Milky Way population.

Cantat-Gaudin et al. (2018a) recently performed one of the largest OC automated analyses in Gaia DR2,

deriving mean cluster parameters (α , δ , µα∗, µδ , ϖ , rcore, etc) as well as individual membership lists for

1229 OCs throughout the Milky Way. Cantat-Gaudin and Anders (2019) updated these results and grew their

catalog to 1481 clusters.

Their method relies on finding all sub-clumps defined by running a K-means algorithm in their chosen

sight lines. They then use the minimum spanning tree metric, Λ (Allison et al., 2009), to distinguish between

concentrated star cluster sub-clumps and uniformly distributed sub-clumps of the same number that are found

in the field. This was done iteratively to construct their final open clusters out of these sub-clumps. Finally,

they produce membership probabilities by re-sampling the 3x3 covariance matrices of the stars and re-running

their algorithm.

’Top-down’ cluster identification algorithms, which aim to characterize the environment that includes the

cluster, offer an alternative to the ’bottom-up’ approach. Gaussian Mixture Models (GMMs) (?) describe a

data set using a number of multivariate Gaussian components. GMM is a ’top-down’ method that describes a

line of sight (or subset thereof) as a mixture of multivariate gaussians. An individual gaussian, or component,

of the model represents the cluster. GMMs have already been used to identify and characterize a number of

astronomical objects, including individual open clusters (Gao, 2018), the galaxy red sequence (Hao et al.,

2009), and supernovae/host galaxy populations (Holoien et al., 2016).

GMMs allow for mixed memberships, wherein a data point can have a probability of belonging to multiple

components. K-means and DBSCAN typically assign each data point only to one component or cluster.
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GMMs also have fewer hyperparameters to tune than DBSCAN or other similar agglomerative clustering

methods. The resulting covariance matrices from a well-fit GMM effectively describe the shape, scaling, and

orientation of components within the data.

As Cabrera-Cano and Alfaro (1990) cautions in their analysis of ∼ 300 stars in NGC-2420, care must

be taken when fitting an OC dataset with GMMs. If the field star fraction is too large, the OC may be

overwhelmed by field stars along the line of sight. An open cluster may be also be less separable if the

distribution of field stars is strongly non-gaussian. Both of these situations may produce less than optimum

results, although a quantitative analysis of the effect of these potential issues on a given cluster was not

addressed.

It is ideal for a GMM to fit an intrinsic, underlying distribution rather than noisy discrete data. To accom-

plish this the observed measurements must first be deconvolved from their uncertainties Bovy et al. (2011)

developed a method to determine the underlying distribution function in the presence of noisy data called

‘Extreme Deconvolution’.

Extreme Deconvolution Gaussian Mixture Models (hereafter, XDGMM) combine the two techniques to

ideally fit the true, intrinsic distribution with a gaussian mixture model. XDGMM has already been employed

successfully to characterize members of a Galactic open cluster (?) and to calculate mean cluster positions

and proper-motions in the case of an actively disrupting open cluster (Price-Whelan et al., 2019). However,

these use cases of XDGMM were for a small number of individual systems.

In this paper, we use XDGMM to identify members of known open clusters within Gaia DR2. We

construct an automated pipeline to address the shortcomings of GMM cluster fitting – computational cost,

the number of gaussian components to fit, and selection of the gaussian component associated with the cluster.

In Section 3.2 we discuss the Gaia DR2 data. In Section 2.3 we describe our method to extract open

clusters. We present the mean cluster parameters and the properties of designated cluster members as well

as a validation of our results via comparison with the literature in Section 3.4. In Section 2.5, we describe

the serendipitous discovery of 11 new candidate open clusters not found in the current literature. Finally, we

summarize our findings on open cluster extraction using an automated machine learning method and discuss

future work in Section ??.

2.2 Data

We first assemble a list of open clusters to consider using the cluster catalog from Ahumada and Lapas-

set (2007), originally created in their search for blue straggler stars. They constructed a catalog of 427

open clusters throughout the Milky Way, using Johnson UBV photometry (Johnson and Knuckles, 1955) and

isochrones (Girardi et al., 2000). We remove one known asterism (NGC-1252 Kos et al., 2018; Angelo et al.,
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2019; Cantat-Gaudin and Anders, 2019) from consideration. This reduces the total number of open clusters

we consider to 426.

The effectiveness of any search for or characterization of open clusters will depend upon the input data.

Gaia DR2 contains 5 dimensional astrometric measurements – position (α , δ ), proper motion (µα∗, µδ ),

and parallax (ϖ) – and photometry for over 1.3× 109 sources (Lindegren et al., 2018). The quality of this

data set makes it ideal for open cluster searches while its quantity presents a challenge. Attempting a global

XDGMM fit over the entire sky is computationally prohibitive and would yield a suboptimal result even if

possible (Section 2.3).

For each cluster, we define a target field of potentially associated Gaia DR2 sources. The target field of

view is centered on the position of the cluster and has conservatively-wide opening angle to ensure that we

do not remove potential cluster members and affect our subsequent analysis. While Ahumada and Lapasset

(2007) report both cluster positions and angular sizes, we supplement their measurements with the more

recent open cluster catalog efforts of Dias et al. (2018) and Kharchenko et al. (2013). The addition of these

catalogs and variation amongst them also captures the uncertainty of these input cluster parameters in our

analysis. Our target field center is the median of the positions reported in these cluster catalogs. The opening

angle is equal to 1.5× the largest cluster angular diameter reported amongst Ahumada and Lapasset (2007),

Dias et al. (2018), and Kharchenko et al. (2013).

We searched for all Gaia DR2 sources within the 426 target fields of view. We obtained the astrometric

[α , δ , µα∗, µδ , ϖ] and photometric [G, GBP, GRP] measurements, as well as the relevant uncertainties and

correlation coefficients. In addition to the Gaia DR2 data, we collected all previous distance determinations to

the clusters in our sample through the Simbad (Wenger et al., 2000) database. These distance measurements

will be used in a pre-processing step described in Subsection 2.3.1. We used the AstroQuery python module

(Ginsburg et al., 2019) to query both Gaia DR2 and Simbad.

2.3 Methods

Ultimately, we identify a cluster and its members via a XDGMM fit of the density field represented by

standardized µα∗, µδ , and ϖ measurements and uncertainties of stars in the cluster vicinity. Our procedure’s

computational cost and its effectiveness correlates with the density contrast between the cluster and field. We

address both of these concerns by first restricting each target field to a manageable subsample.

The position information of the subsample of stars associate with each cluster is only used for validation

purposes (Section ??). We make this decision based on the work of Hillenbrand and Hartmann (1998), Kuhn

et al. (2014), and Kuhn et al. (2017). These works considered clustering of star clusters using their observed

on-sky positions. They found that a multivariate normal distribution may not be best fit to these distributions.
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We scale the measurements and uncertainties of interest to account for the different variance of each

feature before applying the XDGMM fit. Finally, we establish quantitative metrics to select the number of

components to include in the XDGMM fit and to select the individual component corresponding to the cluster.

The details of our method follow.

2.3.1 Data Preprocessing

The Gaia DR2 data is known to have systematics that, if unaccounted for, can lead to erroneous or biased

results (Vasiliev, 2019). We use the recommendations from Lindegren et al. (2018) to account for systematics

found within the parallax and proper-motion data. In particular, we subtract the -0.029 mas parallax zero-

point from all of our stars and exclude all stars fainter than 18th Gaia G magnitude. Our faint limit reduces the

total number of stars included in our analysis. Stars with mG > 18 typically have high fractional astrometric

uncertaines in Gaia DR2 making them ill-suited for cluster-finding (e.g. Cantat-Gaudin and Anders, 2019;

Hunt and Reffert, 2020). We also correct for the inertial spin found within the proper-motions of bright

sources2 using the recommendations from Lindegren (2019).

After applying the global corrections and limits, we preprocess the input data within each cluster target

field independently. The goal is to remove obvious field stars and astrometric outliers from consideration as

cluster members. This reduces the dynamic range of parallax and proper motion and, in turn, increases the

signal of any over-density associated with the cluster.

We first remove outlier stars in proper motion. Stars with µα∗ or µδ measurements more than 10σ away

from the median of their target are dropped from consideration. Individual high proper-motion stars may

skew the feature scaling within a target field. This step is performed for all clusters except for the high

proper-motion cluster Melotte-25 (the Hyades cluster).

We remove parallax outliers only if more than 104 stars in a target field remain eligible for XDGMM

fitting. We found that this numerical threshold strikes a good balance between ensuring a complete cluster

membership list given our magnitude limit and maintaining computational efficiency of the XDGMM fitting.

If a target sample contains > 104 stars, we discard the stars least likely to be at the distance of the known

cluster.

The open clusters have uncertain literature distances and there is uncertainty measured parallax of each

star. For these reasons, we do not simply discard stars using a strict delta parallax cut-off. Rather, we employ

a simple probabilistic model to determine the stars least likely to be within the literature parallax range of the

cluster.

We assume the parallax of cluster members is distributed normally with a mean µ and standard deviation

2Gaia DR2 G < 11
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σ given by:

µ = med(ϖlit), σ =


0.25 ·med(ϖlit) , if med(ϖlit)> 1 mas

0.25 mas, if med(ϖlit)< 1 mas
(2.1)

where med(ϖlit) is the median of the cluster parallaxes reported in the three cluster catalogs sources we

examine (Section 3.2). We set σ to depend on med(ϖlit). Clusters with a literature parallax less than 1 mas

(distance greater than 1 kpc) have a constant σϖ of 0.25 mas. Clusters with a literature parallax greater than

1 mas have their σϖ set to a 25% of their median literature parallax. This ensures that the parallax distribution

of nearby clusters is not excessively truncated.

We use bootstrap sampling to calculate the probability that each stellar parallax measurement is drawn

from the cluster parallax distribution. For each star, we sample a normal distribution with mean µ = ϖobs

(gaiadr2.parallax) and σ = σϖobs (gaiadr2.parallax error) 1000 times. We then evaluate the PDF of the

corresponding cluster, defined in equation 2.1, at the locations of these 1000 samples. The star’s probability

of parallax overlap is then the mean of the 1000 PDF evaluations.

Only the 104 stars with the highest parallax overlap probability within the target field are kept and subject

to XDGMM fitting. After this step, all target fields have been reduced to a maximum of 104 stars based on

the closeness of their parallax and proper motion to the parent cluster. All of the analysis and XDGMM fit

procedure described below pertain only to these restricted data.

2.3.2 Scaling the µα∗, µδ , ϖ data

Feature scaling is necessary to establish an appropriate shape of the parameter space as we are fitting 3-

dimensional data with unequal means and variance. We use ’StandardScaler’ from the Scikitlearn (?)

python package, which shifts and scales the data in each to dimension to a mean of zero and a variance of

one.

We first smooth the data before scaling to ensure we calculate the scaling parameters accurately. The

smoothed distribution is a simple resampling of the [µα∗, µδ , ϖ] distribution according to the uncertainty

covariance matrix (equation 2.2). We resample each star Nsamples times such that StandardScaler uses ap-

proximately 5× 104 coordinate positions (i.e., Nsamples× Ndata = ∼ 5× 104, where Ndata is the number of

stars remaining in the field after pre-processing). The shift and scale parameters found for the smooth distri-

bution are then applied to the actual measurements prior to fitting. We scale the measurement uncertainties

as well, to preserve the fractional uncertainty of each measurement in the transformed data space.
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2.3.3 Extreme Deconvolution Gaussian Mixture Models

Gaussian Mixture Models employ the assumption that any N-dimensional data can be represented as the

summation of K components, each of which is an N-dimensional Gaussian. The K Gaussian distributions

have K means, and K covariances.

XDGMM takes into full account the full covariance matrix representing the uncertainty on µα∗, µδ , and

ϖ , and the correlation ρ for each data point. This covariance matrix is assembled as written in equation 2.2.



σ2
µα∗ σµα∗σµδ

ρµα µδ
σµα∗σϖ ρϖµα∗

σµδ
σµα∗ρµα µδ

σ2
µδ

σµδ
σϖ ρϖµδ

σϖ σµα∗ρϖµα∗ σϖ σµδ
ρϖµδ

σ2
ϖ


(2.2)

We perform an XDGMM fit of the scaled astrometric data and the associated scaled covariance matrices

using the XDGMM python wrapper (Holoien et al., 2016). Each cluster target field is fit independently.

2.3.4 The Optimal Number of Mixture Components

We fit each cluster-specific scaled data set a total of nine times, using from 2 to 10 Gaussian components.

We do not fit more than 10 components to keep the model fitting computationally efficient. All model fits

converge within a tolerance of 1×10−8 and use a random seed of 999.

Of the nine XDGMM fits to a cluster, we select the best-fit model according to the Bayesian Information

Criterion (BIC Ghosh, Jayanta K. et al., 2006). The BIC is commonly used to select between models when

fitting to a data set as it strikes a balance between maximizing the likelihood and penalizing the introduction

of new parameters to avoid over-fitting. The BIC is defined as,

BIC = x · logn − logL̂, (2.3)

where x is the number of parameters needed in the XDGMM fit, n is the number of data points, and L̂ is the

maximized likelihood of the model. The best-fit model has the lowest BIC score.

We find that the optimal number of components in the best-fit model is typically between 5 and 8 and

correlates with the number of stars in the target field. Heavily populated target fields (>5000 stars) generally

required more components in the best-fit model than sparsely populated fields .
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2.3.5 Identifying Open Clusters with Information Theory

We use the differential entropy information metric to select the gaussian component that best describes the

open cluster. Differential entropy is a measure of how compact a distribution is within a volume. In this case,

we can ascertain the compactness of each gaussian component in the scaled data space. For a multivariate

gaussian, the differential entropy (h) can be written as,

h =
d
2
+

d
2

ln(2π)+
1
2

ln(|Σ|), (2.4)

where d is the dimension of the parameter space and Σ is the determinant of the covariance matrix for the

multivariate gaussian of each component in the best-fit XDGMM (see Ahmed and Gokhale, 1989).

We automatically designate the component with the lowest differential entropy as the cluster component.

2.3.5.1 Individual membership probabilities

Once we have determined the optimal number of components and which component belongs to the open

cluster, we employ bootstrap resampling to calculate the open cluster membership probabilities of each star

in the scaled target field. We assign each star within a target field to a component using the XDGMM code’s

built-in ’predict’ function. We then generate a new scaled [ϖ , µα∗, µδ ] value for each star from its scaled 3x3

covariance matrix. We recompute component assignments for each star for a total of 100 iterations. The final

membership probability of any one star is the number of times that the star was assigned to the open cluster

component out of 100.

2.3.5.2 Validation of fit results

We visually inspect the resulting open cluster model results by plotting four different characteristics of the

cluster stars with a membership probability above 50%. We plot the proper-motion of the stars in α and δ

the G and GBP - GRP color-magnitude diagrams, the positions in l and b, and ϖ as a function of G-band

magnitude. We show these four panels for the cluster NGC-6583 in Figure 2.1 as an example.

We define a successful open cluster retrival, in the broadest sense, via visual validation. Statistical tests

can be found in Section 3.4. We retrieve a known open cluster when the resulting members (probability

>50%) are concentrated in proper-motion vector space, form a relatively well-defined isochronal color-

magnitude sequence, are centered within the target field on-sky, and occupy a narrow distribution in parallax

as a function of G-band magnitude.
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Figure 2.1: An example four panel plot used for visual validation of a fully automatic XDGMM extraction.
The open cluster is NGC-6583. In all four panels, the field is given by gray dots, and the cluster stars are
given by the red circles, where the lower membership probability stars tend towards white in color. The top
left panel is a vector point diagram plot in proper motion. The top right panel is a color-magnitude diagram
using Gaia filters. The bottom left panel is a plot of positions in galactic coordinates. The bottom right panel
is a plot of the parallax measurements for cluster stars as a function of their Gaia G-band magnitude.
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2.4 Results

We successfully recover 420 of the 426 known open clusters targeted. The probable members of these iden-

tified clusters are highly concentrated in proper-motion and parallax space relative to field stars and populate

a narrow isochrone in the color-magnitude diagram (Section 2.3.5.2). We statistically validate our cluster

membership designations and the astrometic location of the recovered clusters in Section 2.4.2.

Our automated pipeline to select the best-fit XDGMM and identify the individual Gaussian component

corresponding to the cluster target required no human intervention in 95% of the investigated target fields. In

these 385 fields, the lowest differential entropy (h) component of the best-fit model represented the targeted

cluster. The remaining 41 fields required manual analysis of XDGMM fits. We found the target cluster was

fit by the second lowest h component of the best-fit model in 29 of the manual analysis fields. In nearly all

(28/29) of these target fields, the minimum h component was either a spatially adjacent known open cluster

or a new open cluster candidate (Section 2.5). All told, the minimum h component of the best-fit XDGMM

identified a cluster or candidate cluster in 413 of the 426 target fields.

None of the best-fit model components fit describe the known cluster in remaining 12 target fields. We

visually inspected all 54 (∑10
i=2 i) components within the 9 BIC-scored model fits to each of these target fields

in search of a component that corresponded to the known open cluster. We identified a Gaussian component

that represented the open cluster in 6 of these target fields.

In the remaining 6 target fields, we were unable to recover a cluster candidate component either auto-

matically or manually despite convergence of the XDGMM code. At least 2 of these 6 targeted clusters

likely violate our assumption of the open cluster being a significant over-density in the [µα∗, µδ , ϖ] space.

Ruprecht-46 may be an asterism masquerading as a cluster, as was recently argued by Cantat-Gaudin et al.

(2020). Collinder-228 is a well-known cluster in the Carina Nebula, but Feigelson et al. (2011) found that the

cluster is a composition of many sparse groups with no clear central concentration.

Nevertheless, our automated pipeline was successful in a variety of conditions. Within the 385 target

fields with a fully automated and successful target cluster recovery:

1. The target field contains a total number of stars as few as 123 stars and as many as 1×104 stars

2. The number of cluster member stars (with a membership probability > 0.5) was as few as 40 stars and

as many as ∼ 3700 stars

3. Cluster members comprised a wide range, 0.64% – 54.5%, of all stars in the target field

This work is, to the best of our understanding, the first to report central parameters using Gaia DR2 for

some of the target clusters. We identify 11 clusters that are not included in the Gaia DR2 based cluster
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Name α δ ϖ σϖ µα∗ σµα∗ µδ σµδ
N0.85 r50 Dm16 Dm Dm84 RGC ZGC

deg deg mas mas mas/yr mas/yr mas/yr mas/yr deg kpc kpc kpc kpc kpc
Berkeley-42 286.31 1.90 0.09 0.11 -2.84 0.26 -5.95 0.25 236 0.02 10.46 11.041 11.62 6.54 -0.43
Bochum-1 96.33 19.90 0.23 0.06 -0.19 0.08 -0.43 0.07 29 0.13 4.47 4.58 4.69 12.81 0.32
Bochum-14 270.52 -23.70 0.31 0.09 0.25 0.13 -1.06 0.10 107 0.13 3.05 3.08 3.11 5.25 -0.01
Bochum-7 131.10 -45.97 0.18 0.03 -3.09 0.10 3.65 0.15 59 0.19 5.40 5.48 5.56 10.32 -0.16
Collinder-96 97.62 2.84 0.12 0.07 0.13 0.29 0.38 0.36 57 0.11 7.89 8.25 8.61 16.05 -0.43
NGC-1931 82.80 34.24 0.45 0.05 0.37 0.12 -1.91 0.19 27 0.09 2.22 2.26 2.29 10.55 0.04
NGC-2467 118.18 -26.37 0.19 0.03 -2.55 0.08 2.58 0.11 154 0.09 5.09 5.16 5.24 11.59 0.08
NGC-3247 156.71 -57.93 0.32 0.11 -6.49 1.20 3.02 0.60 225 0.05 2.96 2.98 3.00 8.08 0.01
NGC-6514 270.65 -22.90 0.85 0.04 0.33 0.32 -1.68 0.20 113 0.23 1.16 1.17 1.17 7.14 0.02
Trumpler-24 254.01 -40.47 0.84 0.02 0.49 0.62 -1.80 0.54 19 0.49 1.19 1.20 1.20 7.15 0.06
Trumpler-27 264.08 -33.49 0.49 0.01 -0.15 0.08 -1.28 0.06 20 0.20 2.00 2.03 2.06 6.28 -0.01
XDOCC-01 19.90 58.35 1.26 0.06 -1.68 0.11 -0.34 0.06 22 0.17 0.78 0.79 0.80 8.80 -0.03
XDOCC-02 84.05 34.30 0.80 0.05 0.28 0.11 -2.29 0.07 26 0.14 1.21 1.26 1.31 9.57 0.06
XDOCC-03 107.01 -13.05 0.88 0.04 -3.32 0.36 0.55 0.13 25 0.21 1.12 1.14 1.15 8.95 -0.02
XDOCC-04 118.83 -24.17 0.33 0.04 -2.71 0.08 3.06 0.09 60 0.21 2.84 3.02 3.22 10.06 0.14
XDOCC-05 121.75 -29.90 0.60 0.02 -3.66 0.05 3.56 0.03 19 0.12 1.59 1.63 1.68 9.06 0.07
XDOCC-06 130.93 -48.15 0.77 0.04 -6.38 0.11 3.61 0.09 33 0.06 1.27 1.29 1.32 8.47 -0.05
XDOCC-07 159.48 -58.72 2.28 0.04 -14.32 0.23 0.93 0.23 21 0.15 0.43 0.43 0.43 8.01 0.02
XDOCC-08 270.76 -22.73 0.73 0.05 0.67 0.11 -2.57 0.08 51 0.12 1.32 1.34 1.37 6.79 0.01
XDOCC-09 293.60 25.00 1.83 0.04 -0.46 0.10 -8.74 0.37 47 0.66 0.54 0.55 0.55 8.04 0.05
XDOCC-10 305.42 37.29 0.51 0.06 -2.39 0.11 -5.23 0.12 40 0.16 1.88 1.91 1.95 7.87 0.03
XDOCC-11 317.73 47.72 0.47 0.04 -1.01 0.05 -1.74 0.05 21 0.10 1.99 2.06 2.13 8.54 0.02

Table 2.1: Cluster parameters for 11 open clusters confirmed in this work and 11 newly discovered open
clusters. All σ values in this table are median absolute deviations (MAD) multiplied by the factor 1.4826 to
approximate a standard deviation. The ’dmode16’ and ’dmode84’ values are the 16th and 84th percentiles of
the distance posterior distribution. ’dmode’ is the 50th percentile of the distance posterior distribution. The
full table of 431 cluster parameters will be made available electronically.

catalogs of Cantat-Gaudin et al. (2018a), Cantat-Gaudin and Anders (2019), Castro-Ginard et al. (2018),

Castro-Ginard et al. (2019) Castro-Ginard et al. (2020), Ferreira et al. (2020), Sim et al. (2019), Liu (2019),

or Hunt and Reffert (2020). Cluster parameters for these systems can be found in Table 2.1.

Our cluster member catalog contains 261662 stars with non-zero membership probability (Pmem). In our

subsequent analysis, we define members, probable members, and highly probable members of a cluster as

those stars with Pmem greater than 0.5, 0.85, and 0.95, respectively.

The member catalog of the 420 recovered open clusters includes 171939 cluster members, 125235 prob-

able members, and 95920 highly probable members.

2.4.1 Cluster Astrometric Parameters and Distances

We determine robust central astrometric coordinates [α , δ , ϖ , µα∗, µδ ] of each cluster using the measure-

ments of probable members (Table 2.1).

To do so, we first remove potential outlier measurements via a sigma-clipping procedure. We calculate
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an initial coordinate median and median absolute deviation (MAD), both weighted by inverse measurement

uncertainty, of probable members. We estimate σ assuming a normal distribution using σ̂ = 1.4826×MAD

(e.g., Huber, 1980). We discard all outlier measurements not within ±3 σ of the initial weighted median.

We then recalculate the weighted median and MAD of the non-outlier stars for each of the 5 astrometric

parameters. We list these median values and the standard deviation estimator σ̂ in Table 2.1. We also calculate

the r50 radius, containing half of the cluster members, using the cluster positions and list these values in 2.1.

Cluster distance, while not a direct astrometric measurement, can be ascertained to a relatively high

precision because each cluster member can be assumed to lie at nearly the same distance along the line of

sight. Simple parallax inversion is not adequate to measure physical distances using Gaia DR2. This is due to

the nature of the Gaia DR2 parallax measurements which may be close to zero or even negative. We obtain

individual cluster distances through Bayesian Inference (see Luri et al., 2018, for more details).

The posterior probability of the cluster distance can be expressed as,

P
(
r|{ϖ},{σϖ},L

)
∝ P

(
r|L

)
P
(
{ϖ}|r,{σϖ}

)
, (2.5)

where P(r|L) is the exponential decreasing space density prior (?):

P(r|L) =


1

2L3 r2e−r/L, if r > 0

0, otherwise
(2.6)

and P({ϖ}|r,{σϖ}) is the likelihood of observing the set of parallax measurements given a true cluster

distance r and the set of measurement uncertainties and is given by,

P({ϖ}|r,{σϖ}) = ∏
i=1

1√
2πσ2

ϖi

exp
(
−

(ϖi − 1
r )

2

2σ2
ϖi

)
. (2.7)

We set the length scale ‘L’ within our prior to be 1 kpc and compute the posterior over a distance range

of [0.01, 30] kpc.

We sample the posterior distribution and compute the 16th, 50th, and 84th percentile distances for all 420

open clusters and the open cluster candidates (Section 2.5). Table 2.1 contains our distance measurements

to the 11 newly confirmed open clusters in Gaia DR2 and our 11 new open cluster candidates. The full

table of all 420 open clusters mean astrometric parameters and inferred distances will be made available

electronically.

We acknowledge that the range between the 16th and 84th distance percentiles may be artificially narrow.

Equation 2.7 implicitly assumes that all cluster members reside at a singular distance rather than occupy a
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small, realistic range in distance along the line of sight. The assumption greatly simplifies the calculation

and is relatively accurate for distant clusters. However, our treatment may not be the most suitable for very

nearby open clusters such as Melotte-25 (the Hyades, ϖ∼ 21mas), and Melotte-22 (the Pleiades, ϖ∼ 7mas).

2.4.2 Verification of our catalog results

To ascertain some measure of the veracity of our results, we first compare our central cluster parameters and

membership lists to previously published membership catalogs. In addition, we use the more recent Gaia

eDR3 data (Brown et al., 2020) to determine if the cluster members unique to this work are actual cluster

stars or field contamination.

2.4.2.1 Comparison with previous results in the literature

We can further scrutinize our results by comparing the mean cluster parameters for our sample with those clus-

ters which have entries within the literature. We plot the empirical cumulative distribution functions(eCDF)

of the residuals between each cluster’s parameter calculated in this work with the literature parameters in

Figure 2.2.

The difference in ϖ , µα∗, and µδ was computed for 392 clusters this work has in common with Cantat-

Gaudin et al. (2020). We find that the difference in ϖ , µα∗, and µδ is quite small, with median values of

0.031 mas, -0.002 mas yr−1, and 0.004 mas yr−1, respectively. The offset of 0.031 mas in the ϖ appears to

come from our application of the −0.029 mas zero-point offset (see Section 2.3.1). Removing this zero-point

offset from the cluster ϖ values leads to a median difference of only 0.002 mas with the literature values.

This level of agreement with a study using a completely different cluster identification algorithm is strong

evidence that we successfully recover the central location of our target clusters.

We find good agreement between our inferred cluster distances and those from Cantat-Gaudin and Anders

(2019). The median difference in distance is −0.003 kpc. The range between the 84th and 16th percentiles

in the distance discrepancy is only 0.036 kpc.

We also find good agreement in r50, the radius containing half the cluster members. The median differ-

ence in r50 between the results of Cantat-Gaudin and Anders (2019) and our own is 0.003 deg. We do report

much smaller r50 values for about 10% of clusters (Figure 2.2, bottom left, x <-0.10 deg). Upon investiga-

tion, we find that these clusters, according to Cantat-Gaudin et al. (2020), extend beyond the aperture radius

employed in this work to define the input target field (Section 3.2). Thus, the cluster members recovered in

this work may populate as wide a range in position for the clusters with large angular sizes. However, based

on the agreement in cluster mean ϖ , µα∗, and µδ , this does not appear to affect our ability to recover the bulk

of the clusters in question.
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Figure 2.2: (In order from left to right) Comparison empirical cumulative distribution (eCDF) plots of the
mean cluster ϖ , µα∗(black solid line) and µδ (red dashed line), distance from Bayesian inference (black solid
line), and on-sky size containing half of all cluster members (r50). The ϖ , µα∗, µδ , distance from Bayesian
inference, and r50 eCDF plots are comparing the 386 clusters this work has in common with Cantat-Gaudin
and Anders (2019). There is overall excellent agreement between mean open cluster parameters in our catalog
with the values in the literature from different methods.

The general agreement in cluster mean parameters suggests that our cluster member lists have significant

overlap with those of Cantat-Gaudin et al. (2020). We compare our catalog with the catalog of Cantat-

Gaudin et al. (2020) using Gaia DR2 source ids at a membership probability of > 25%, > 50%, and > 95%.

We correct the aperture size to match our target field aperture.

At the lowest level of membership probability we find our that our cluster member list contains 98.7% of

the members reported by Cantat-Gaudin et al. (2020) at the same membership probability according to their

method. This overlap decreases to 96.1% at the next membership level. The overlap decreases to 81.1% at

the highest level of membership.

The overlap in cluster members is a strong argument that our cluster member designation is largely ac-

curate, since our method to construct the cluster membership lists differs from that of Cantat-Gaudin et al.

(2020). The alternative, that our discrepant methods share the same false positives, appears unlikely.

We find that member stars in our catalog that are not found in Cantat-Gaudin et al. (2020) are fainter than

the member stars shared in common between our two catalogs. The median Gaia DR2 G-band magnitude

of common member stars with Pmem> 50% is 15.67. The unique member stars found in this work have a

median Gaia DR2 G-band magnitude of 16.77, a difference of 1.1 magnitudes. At Pmem > 95%, the median

Gaia G-band of unique member stars identified in this work is still 0.6 magnitudes fainter than the highly

probable members common to both catalogs. This could indicate that the XDGMM fit is more sensitive to

the fainter stars in each target field, given the full treatment of each star’s individual covariance matrix.
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2.4.2.2 Hertzsprung-Russell Diagrams of our Open Clusters

Open clusters populate isochrones within the Hertzsprung-Russell Diagram (HRD). The HRD is a well-

known figure that relates a star’s evolutionary state to its color and absolute magnitude, in lieu of temperature

and luminosity measurements, respectively. We can check the reliability of our method of selecting open

cluster groups by placing them on the HRD and checking to see the bulk population properties of our member

catalog.

We calculate the absolute magnitudes of each cluster star prior to placing it on the HRD. The majority

of the open clusters considered in this work reside within the galactic disk of the Milky way, occupying the

galactic latitude (b) range [-20,20]. We need to correct for reddening and extinction due to galactic dust, as

well as distance, to be able to place the cluster member stars on the HRD accurately.

Dust extinction and distance has already measured for 392 clusters in our recovered sample of 420

(93.3%) by Cantat-Gaudin et al. (2020). In Cantat-Gaudin et al. (2020) a neural network was developed

and trained on CMDs of synthetic clusters constructed from 347 real cluster parameters in the literature, the

bulk of which came from Bossini et al. (2019).

We use the polynomial fit equations of Babusiaux et al. (2018) to determine the Gaia DR2 passband ex-

tinction values, AG, ABP, ARP for all stars in the 392 clusters with AV measurements from Cantat-Gaudin et al.

(2020). However, some stars have poor photometry such that the Gaia extinction coefficients could not be cal-

culated. We circumvent this by selecting a high quality sample of stars from each cluster. We select the stars

within each cluster with a probability > 0.85. We also exclude all stars with gaiadr2.phot bp rp excess factor

>1.5+0.03·(GBP - GRP)2 as this is indicative of large systematic errors within the GBP and GRP colors (Riello

et al., 2018). The median AG, ABP, ARP values of these high quality cluster stars is then used to de-extinct

and de-redden stars all other stars in each cluster. This approach allows us to apply dust corrections to all

probable cluster members, even those with more problematic photometry. However, this means we do not

account for differential reddening present in very distant or heavily extincted open clusters.

We plot the extinction-corrected absolute G band magnitude as well as the de-reddened GBP - GRP color

of cluster members in Figure 2.3. We plot the HRDs of stars with membership probabilities greater than 50%

(left panel), greater than 85%(middle panel), and greater than 95% (right panel). We also color code the stars

by their parent cluster age as predicted in Cantat-Gaudin et al. (2020).

Our HRD contains various groups at different stages of stellar evolution, such as the main-sequence, main-

sequence turn off, and red-giant branch. All of these features are clearly visible even at the 50% membership

probability threshold(Figure 2.3, left panel). We also recover 12 white dwarfs as high probability cluster

members with this application of XDGMM. 5 are apparent members of the Beehive cluster (NGC-2632), 3
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are in the Hyades cluster (Melotte-25) while the Coma star cluster (Melotte-111), the Pleiades (Melotte-22),

Graff’s cluster (IC-4756), and the Pincushion cluster (NGC-3532) each have 1 white dwarf.

The overwhelming majority of the cluster member stars appear in physically sensible regions of the HRD.

While it is true that a group of stars sharing the same parallax will form a diagonal sequence within the HRD,

our general and close agreement with the mean cluster parameters of previous studies (Section 2.4.2.1) is

good evidence that we do not claim to find a known cluster at an incorrect astrometric position. Instead,

the lack of stars at unphysical locations in the diagram, even at Pmem> 50%, suggests that our membership

classification does not suffer from significant field contamination due to erroneous or uncertain parallax

measurements. Stars with intrinsic parallax different from the target cluster would appear above or below the

main locus.

The clear age gradient and features in the HRD offer more evidence that our cluster member designations

are largely accurate. The main sequence turn-off in older clusters in clearly more red and dim than in younger

clusters. If we erroneously labeled all stars near the cluster parallax as cluster members, the correlation

between cluster age and turn-off position may have been weakened by field interlopers. In addition, we only

find stars along the pre-main-sequence in the youngest clusters. The age labels of each cluster are taken from

Cantat-Gaudin et al. (2020), who use an entirely different method of determining cluster membership. The

cluster ages shown in Figure 2.3 are completely decoupled from our cluster membership designations, yet the

age-dependent features above remain.

Our cluster membership probabilities are calculated independent of any photometry, but we find a corre-

lation between membership probability and position on the HRD relative to the expected locations predicted

by cluster isochrones. A small percentage of stars appear between the main sequence and white dwarfs;

others are redder than the red giant branch. These outliers are far less prominent in the Pmem> 95% panel.

This correlation is clearly apparent for stars just below the main sequence (GBP −GRP ≈ 1 and G ≈ 7.5;

GBP −GRP ≈ 0 and G ≈ 2.5), colder than the main sequence turnoff, and with intermediate colors relative

to the red clump and upper main sequence.

2.4.2.3 Membership Testing with Gaia eDR3

Gaia eDR3 (Brown et al., 2020) yields an opportunity to validate our cluster membership lists. The Gaia

eDR3 astrometric data is nominally at higher precision than Gaia DR2 and can serve as a check on the

quality of our cluster stars memberships. Specifically, we can statistically test for cluster membership by

comparing the Gaia DR2 and eDR3 parallax measurements of the same star.

We first assume that the observed parallax does not suffer from systematic uncertainty nor bias and is

normally distributed about the true parallax in both Gaia eDR3 and DR2. The observed parallax in either data
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Figure 2.3: Hertzsprung - Russell diagram of all member stars within the 392 open clusters recovered in this
work that also have predicted ages, extinctions, and distances in Cantat-Gaudin et al. (2020). All stars plotted
have a GBP - GRP excess factor less than 1.5+0.03·(GBP - GRP )2. Stars with at least a 0.25 membership
probability are plotted in the left panel, the 0.50 membership level stars are plotted in the middle panel, and
the 0.95 membership level The stars are plotted in the right panel. The three Gaia passbands (G, GBP, GRP)
have been corrected for extinction and reddening using the methods described in ?. We find that our use of
XDGMM is able to properly capture multiple phases of open cluster evolution with no apparent biases.

release is then (as in Luri et al., 2018),

p(ϖ j|ϖtrue) ∝ N (ϖtrue,σϖ j) (2.8)

where the subscript j ∈ [DR2, eDR3] refers to the specific data release, ϖtrue is the true parallax of the

star, N (µ,σ2) represents a normal distribution with mean µ and variance σ2, and σϖ j is the uncertainty of

the parallax measurement in each data release .

The relationship between the parallax measurements in both Gaia data sets and the parallax (distance) of

the cluster will be different for cluster and field stars. The true distance of a cluster corresponds to a singular

cluster parallax, 1/dclus = ϖclus, if we ignore the small intrinsic width of the cluster. The observed parallax of

a star relative to the cluster parallax is simply δϖ j = ϖ j −ϖclus, where j again identifies the specific Gaia data

release. For a bonafide cluster member, ϖtrue = ϖclus and thus one expects the eDR3 parallax measurement

to be closer to the true cluster parallax; i.e., |δϖeDR3 |< |δϖDR2 | if σϖeDR3 < σϖDR2 . However, ϖtrue ̸= ϖclus for

field stars in which case we expect |δϖeDR3 | ∼ |δϖDR2 |.

The difference between Gaia eDR3 and DR2 measurements of the observed parallax relative to the cluster

parallax, δϖeDR3 − δϖDR2 should therefore be different for cluster and field stars. We define this change in

relative parallax ∆ϖ for a single star in terms of the relative Gaia DR2 parallax measurement as,
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∆ϖ = δϖeDR3 −δϖDR2

= ϖeDR3 −ϖDR2

= N (0,1)σϖeDR3 −N (0,1)σϖDR2

= N (0,1)σϖeDR3 − (δϖDR2 −ϖtrue +ϖclus)

(2.9)

where the final two equalities make use of N (µ,σ2)≡ N (0,1)σ +µ and our definition of δϖDR2.

When the true parallax of a star is different from ϖclus, as is the case for field stars, ∆ϖ will have no

dependence on δϖDR2 as δϖDR2 ∝ ϖtrue − ϖclus. Cluster stars, however, will show a strong correlation

between ∆ϖ and δϖDR2. Since ϖtrue = ϖclus for cluster members, −δϖDR2 = −N (0,1)σϖDR2 and thus,

∆ϖ ∝ −δϖDR2.

Figure 2.4 shows the distribution of ∆ϖ and δϖDR2 for the field stars and member stars in NGC-188

line-of-sight. We identified field stars as those with < 1% membership probability; ∆ϖ has little or no

dependence on δϖDR2 for these stars (filled contours). Bonafide cluster members (open line contours) show

a strong, negative correlation between ∆ϖ and δϖDR2. The bonafide cluster member designation applies

to those stars with cluster membership > 50% in both our catalog and that of Cantat-Gaudin et al. (2020).

Using this definition, we are confident that nothing inherent to our cluster membership analysis is driving the

correlation seen in Figure 2.4.

We statistically assess the relationship shown in Figure 2.4 across all target fields using simple linear

regression3. In each target field, we fit a line to ∆ϖ vs. δϖDR2 for three distinction populations – field stars,

bonafide cluster members, and unique cluster members. Unique cluster members are probable members

(> 85% membership probability) according to our analysis but have zero cluster membership probability

according to Cantat-Gaudin et al. (2020) (see the black points in Figure 2.4 for an example). We attempt to

match all stars considered in our XDGMM fits with its Gaia eDR3 counterpart using the crossmatch provided

by the Gaia team (gaiaedr3.dr2 neighbourhood). To ensure a clean match, we demand that the eDR3 target

is within 0.15 mas of the DR2 source on the sky and that the eDR3 and DR2 Gaia magnitudes do not differ

by more than 0.1 mag.

The resulting catalog contains ∼ 1.7× 106 stars. Along each line of sight, we assume the true cluster

parallax is the median observed parallax of the bonafide cluster members. We require at least 20 bonafide

members to ensure a robust measurement of ϖclus and at least 15 members of any other group to perform

the fitting procedure. Finally, the intercept of the linear fit must be near zero to guard against significant

differences in the observed parallax systematics between the two data releases (see below for details). These

3as implemented by CURVE FIT, a part of the SCIPY python package
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Figure 2.4: The observed parallax relative to the cluster in Gaia DR2 (δϖDR2) compared to the change
in this relative parallax between Gaia eDR3 and DR2 for the target field containing the cluster NGC 188.
Field stars (filled contours, darker colors represent higher density) show almost no correlation between these
quantities. Bonafide cluster members (open contours, lighter colors denote higher density) show a strong
negative correlation. Stars identified as cluster members in our analysis but absent from Cantat-Gaudin et al.
(2020) are shown as individual points. See text for details.
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Figure 2.5: The distribution of linear slope fit to the ∆ϖ vs. δϖDR2 data within three stellar populations
along each line of sight. The slope measures the degree of correlation between the two quantities; each line
represents the empirical cumulative distribution function of slope within a population. The slope of bonafide
cluster members (yellow; median of −0.58) is significantly more negative than that of field stars (blue;
median of −0.02). The distribution of slope measured for cluster members uniquely identified in this work
(magenta; median of −0.48) is intermediate to the field and bonafide member distributions. The similarity
of the bonafide and unique cluster member slope distributions suggests that a majority of the unique cluster
members are likely genuine. See text for details.

requirements limit our analysis to 307 sightlines for the bonafide cluster member and field populations and

88 sightlines for the unique member stars. The linear fit is performed across the same domain for all three

groups. The fit only applies to stellar measurements within the extent of δϖDR2 for cluster stars, including

both bonafide and unique members. Performing the regression across the same domain ensures the most

straightforward comparison between cluster and field stars.

We show the distribution of the ∆ϖ vs. δϖDR2 slope measured from the above regression for field,

bonafide cluster member, and unique cluster member stars in Figure 2.5. The slope of the bonafide cluster

members (yellow line) is significantly negative with a median slope of −0.58. The bonafide cluster members

show a strong negative correlation between the dependent and independent quantities as predicted by equa-

tion 2.9. However, the expected slope for a pure cluster member sample is −1. We discuss potential reasons

for this deviation below. Field stars (blue line) show almost no correlation between ∆ϖ and δϖDR2; their

median target field slope is −0.02. Given our assumptions, the expected slope value for field stars is zero and

near our actual result. The distribution of slopes measured for unique cluster members (pink line) is much
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closer to that of bonafide cluster members than that of field stars; the median slope is −0.48.

Figure 2.5 presents strong evidence that the majority of unique cluster members genuinely belong to a

cluster. The unique cluster members clearly show a correlation between the observed parallax in Gaia eDR3

and Gaia DR2 that is not seen in the field stars. The most negative slope recorded for field stars is −0.28

for any line of sight. The measured slope of the unique cluster member stars is < −0.28 in over 90% of all

lines of sight considered. Further, the similarity of the slope distributions of the bonafide and unique cluster

member stars suggests that they are largely drawn from the same distribution of cluster-relative parallax

(δϖDR3, δϖDR2). However, the distribution of slopes for the unique cluster stars is not as negative as that

of the bonafide cluster members. We therefore conservatively conclude between 5% and 45% of the unique

cluster stars are possible false positives. We identify 9,118 unique cluster member stars meet the data criteria

detailed within this subsection and more than 7,500 probable unique cluster member stars were removed from

this analysis. The increase in probable cluster membership due to our unique cluster stars is significant even

if the false positive rate is near the high-end of our estimated range.

To simplify the calculation of ∆ϖ and related quantities, we made several assumptions that are likely

incorrect in detail but do not detract from our line of reasoning. The Gaia reported parallax contains some

systematic error and is likely biased. In our calculations, we do correct for the global parallax offset of

0.029mas in Gaia DR2 (Lindegren et al., 2018) and 0.017mas in Gaia eDR3 (Lindegren et al., 2020) but then

assume no additional systematic errors. A significantly non-zero intercept of the linear fit to ∆ϖ vs. δϖDR2

along a sight-line suggest influential and dissimilar bias in the parallax measurements of the two Gaia data re-

leases. To mitigate this where possible, we remove any sightline in which the absolute value of the intercept is

greater than one-tenth the median uncertainty in the observed parallax of the population under consideration.

All of the reported statistics from Figure 2.5 include this restriction. Finally, clusters do have intrinsic width,

often near the scale of δϖ for cluster members. The combination of these effects contributes to the change

in the slope distribution for bonafide and unique cluster members relative to the expectation of −1 and likely

contributes to the slight negative skew seen in Figure 2.5 for field stars. Still, the slope distributions of the

bonafide member and field stars are sufficiently different from that of field stars to support our conclusions

above.

2.5 Eleven Previously Unidentified Open Cluster Candidates

We report the serendipitous discovery of 11 previously unpublished open cluster candidates. These candi-

dates were found as components with relatively low differential entropy within the best-fit XDGMM of the

420 target fields with a successful recovery of the central target cluster. When looking for candidates in a

given field, we considered all non-target cluster components of the best-fit model that had a differential en-
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tropy within a factor of 4 of the target cluster. We find 97 components that meet this differential entropy

requirement.

The low differential entropy components must pass several tests before we consider them cluster candi-

dates. First, we check to see that the cluster is spatially compact as well compact in proper-motion.

We check compactness in proper-motion by employing the proper-motion dispersion check developed

by Cantat-Gaudin and Anders (2019, section 5.3). We calculate the total dispersion in proper-motion for

each component and compare it to their analytical threshold. We examine the on-sky spatial compactness

of each candidate using the method of Cantat-Gaudin et al. (2018c, section 2.3). We compare the sum of

the minimum spanning tree branch lengths of the candidate cluster member positions to those of a randomly

generated position distribution of the same size. We remove 44 candidates that do not meet both these

requirements.

We then examine the parallax and sky position distributions of the remaining 53 candidates. We calculate

the slope of ∆ϖ vs. δϖDR2 using the probable members of each component (see Section 2.4.2.3 for details).

Only 3 candidates do not have a slope < −0.4, which is more negative than the field members within any

target field (Figure 2.5).

We then determine if any of the 50 candidates were previously reported using Gaia DR2 data. To do so,

we checked for overlap between the Gaia DR2 source IDs of our candidate members and the source IDs of

membership lists from the literature. We compiled a list of all unique source IDs reported as members of

any cluster by Cantat-Gaudin et al. (2018c), Cantat-Gaudin and Anders (2019), Castro-Ginard et al. (2018),

Castro-Ginard et al. (2019) Castro-Ginard et al. (2020), Ferreira et al. (2020), Sim et al. (2019), Liu (2019),

and ?. One or more of these studies previously identified a cluster with members from 39 of our candidates.

Only 11 previously unreported candidate clusters remained.

Finally, we estimate the physical size of each candidate. We calculate a physical r50 value, the radius

encompassing 50% of the candidate member stars, using the candidate’s bayesian inversion parallax distance

(see 2.4.1). The 11 remaining candidates span a physical r50 value ranging from 1.15 parsecs to 11.3 parsecs,

placing them in the bulk of typical open cluster sizes (see Cantat-Gaudin and Anders, 2019, Figure 4).

The final 11 newly discovered open cluster candidates all have different parent target fields. The gaussian

component associated with the candidate had either the lowest (6 of 11 fields) or second-lowest differential

entropy of the best-fit components.

We stress that these 11 systems are open cluster candidates. The member stars of these systems occupy

a relatively small, compact volume in the space of ϖ , µα∗, and µδ . All candidates passed the statistical tests

mentioned above and their qualitative characteristics (see below) are consistent with being open clusters.

Still, confirming these candidates as bonafide open clusters will require dedicated observational follow-up and
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detailed investigation. The 11 clusters are called XDOCC (eXtreme Deconvolution Open Cluster Candidates)

and numbered [1-11].

We present the color-magnitude diagrams of the 11 new open cluster candidates in Figure 2.6 and report

their central parameters in Table 2.1. We get age, distance, and extinction estimates for the 11 cluster can-

didates by using the Auriga Neural Net developed by Kounkel et al. (2020). The Auriga neural net has been

trained on Gaia DR2 photometry [G, GBP, GRP], 2MASS (Skrutskie et al., 2006) photometry [J, H, K], and

Gaia DR2 parallaxes in order to predict cluster age, distance, and interstellar extinction (AV ). We also plot

isochrones using the derived parameters from Auriga, assuming solar metallicity in Figure 2.6. We describe

the 11 new candidates and their predicted Age, AV , and distance from the Auriga Neural Net below.
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Figure 2.6: Multi plot color-magnitude diagrams of the 11 newly discovered open clusters within this work.
Cluster member stars are plotted as orange colored points. The points are colored by their membership
probability, where darker colors == higher probability. The points are sized by their GBP - GRP uncertainty,
where bigger == lower uncertainty. The isochrone age, distance, and extinction values are predictions from
the Auriga Neural Net developed by Kounkel et al. (2020). All isochrones have been set to a solar metallicity.
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CHAPTER 3

An Open, Flexible Framework for Binary Orbital Parameter Inference: Modeling Spectroscopic

Eclipsing Binaries with APOGEE and TESS data

3.1 Introduction

Binary-star systems (hereafter “binaries”) are a fundamental component of a plethora of astrophysical prob-

lems and are very common throughout the universe. About half of the stars in the Milky Way are found in

binaries (Duchene et al., 2018), and the binary demographics and evolution of binaries are key unknowns in

many astrophysical contexts (e.g., Price-Whelan et al., 2019; Rix et al., 2019). However, binaries are also

critical benchmark systems: for example, binaries provide one of the few ways to infer stellar distances with-

out the use of stellar evolution models (Soderblom, 2010; Serenelli et al., 2021), and enable an important

channel for calibrating models of stellar parameters across a range of stellar masses (Kraus and Hillenbrand,

2009; Stacy et al., 2009) as most binary-star components are assumed to be coeval in the field.

A crucial class of benchmark binaries are eclipsing binaries (Serenelli et al., 2021) (EBs), in which the

eclipse shapes and timing provide information about both the orbital properties of the system, such as incli-

nation, period, eccentricity, and orientation, and also intrinsic properties of the stellar components, such as

the radius ratio and surface brightness ratio (e.g. Andersen, 1991; Torres et al., 2010b; Miller et al., 2020;

Cunningham et al., 2020). Especially useful EB systems are those with small secondary components (e.g.,

Torres, 2013; Gill et al., 2020; Sebastian et al., 2022) in which a star with well-predicted structure and param-

eters (e.g., a 1 M⊙ primary star) has a low-mass companion (e.g., a 0.3 M⊙ star) with much more uncertain

intrinsic and atmospheric parameters (Kraus et al., 2011; Cassisi and Salaris, 2019). Spectroscopic binaries,

on the other hand, can offer different constraints on orbital parameters depending on whether the spectra en-

codes a detection of one (SB1) or two (SB2) stars. However, due to a degeneracy between the inclination and

semi-major axis, SBs alone can only provide population level inferences of binary demographics (Badenes

et al., 2018; Price-Whelan et al., 2020). SB1s, coupled with available ancillary data, are ideal to perform

analyses of binary-star field and cluster populations.

Both historically and continuing today, benchmark EB systems are often first identified from time-domain

photometric observations and subsequently observed spectroscopically to obtain radial velocity time series

of the systems (e.g. Baroch et al., 2022; Hong et al., 2022). With recent all-sky, high-cadence, time-domain

photometric surveys such as the Kepler Mission (Prša et al., 2011) and the Transiting Exoplanet Survey

Satellite (TESS; Ricker et al., 2014; Stassun et al., 2018), it has become possible to identify large samples of ∼
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104 EB systems across a range of stellar types (Kirk et al., 2016; Prša et al., 2022). These systems then require

spectroscopic follow-up to obtain radial velocity and spectroscopic stellar parameter constraints to determine

accurate intrinsic parameters (masses, radii, etc.), but follow-up programs at this scale are challenging given

the required time-domain observations needed. Luckily, large spectroscopic surveys, in terms of the number

of targets, obtain time-resolved spectroscopic data as a part of their survey strategy or targeting programs,

such as the APO Galactic Evolution Experiment (APOGEE; Majewski et al., 2017).

In the case of APOGEE, the time coverage is typically sparse and over long baselines (months to a

decade; see, e.g., Figure 2 in Price-Whelan et al. 2020). Still, APOGEE observed over 50,000 observed

sources have more than 5 spectroscopic epochs. In this work, we are ultimately interested in generating a

framework that can reliably infer orbital parameters for these EBs with sparse or small number of radial ve-

locity measurements. Radial velocities are difficult and expensive to measure with high enough cadences and

over time baselines en masse. Mining the population of EBs with sparse time-series radial velocity data for

orbital parameters will enlarge the overall sample of binary parameters from which population demographics

can be better constrained.

Here we develop a framework for the generalized joint modeling of SEBs with this goal in mind; we use

a smaller subset of SEBs as a testbed to demonstrate the method, characterize its reliability and precision,

and understand its limitations.

Multiple packages already exist and are currently in use by the community to perform joint fitting to

time-series radial velocities and light curve data, such as PlanetPack (Baluev, 2013; Baluev et al., 2020),

Allesfitter (Günther and Daylan, 2021), Exofast (Eastman et al., 2013, 2019), Exoplanet (Foreman-Mackey

et al., 2021), Juliet (Espinoza et al., 2019), and Ellc (Maxted, 2016). However, a majority of these packages

are typically well-suited to fit to double-lined spectroscopic binaries (SB2s) or light curves with multiple

transiting exoplanets. These modeling packages employ Bayesian inference to obtain orbital solutions and

intrinsic parameters of the component orbiting bodies based on the observed data provided. The utility of

these packages is that they enable constructing or specifying a likelihood function for the observed data

simultaneously given parameters that pertain to both the intrinsic stellar parameters of the binary components

and the orbital architecture of a system. This likelihood function can then be combined with prior probability

distribution functions (PDFs) to construct a posterior PDF for the parameters.

Modern modeling frameworks usually perform Markov Chain Monte Carlo (hereafter MCMC) sampling

to draw samples from the posterior PDF, which can then be used to compute statistics of the posterior or

marginal posteriors for parameters of interest. Different packages offer different methods to perform MCMC

sampling (such as ensemble sampling methods, nested sampling, or Hamiltonian Monte Carlo methods),

each with advantages and disadvantages for generating posterior samples. For example, ensemble sampling
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methods typically have trouble generating posterior samples when the shape of the posterior PDF is highly-

correlated or irregular, and generally do not scale well to large numbers of parameters. Nested sampling

handles multimodality and complex posterior PDF shapes better, but also scales poorly with the number

of parameters. Hamiltonian Monte Carlo (hereafter HMC) methods can generally handle more irregular

posterior PDF shapes and scale well with the number of parameters. HMC performs inference by using

the gradients of the posterior PDF with respect to the parameters to explore it more efficiently. However,

calculating the gradients during sampling can be computationally expensive.

The existing EB modeling frameworks currently implement one or more of these sampling methods,

which we briely discuss. Allesfitter (Günther and Daylan, 2021), for example, uses ensemble or nested

sampling methods through the emcee (Foreman-Mackey et al., 2013) or dynesty packages (Speagle, 2020),

respectively. Juliet (Espinoza et al., 2019) enables modeling time-series SB1 data with light curve data

using nested sampling. Exoplanet (Foreman-Mackey et al., 2021) can fit both flux and radial velocity time-

series data and is able to use HMC sampling methods because it is built upon the PyMC3 (Salvatier et al.,

2016) model building framework which is optimized for fast gradient calculations. This infrastructure is built

with performing fast calculations of gradients in probabilistic models in mind, correcting a computational

bottleneck when performing HMC sampling.

One of the main issues with constructing a flexible, generalized Bayesian probabilistic framework is

the necessity to be able to handle many different and highly-irregular posterior parameter spaces. The data

we want to model, light curve flux measurements and time-series radial velocity measurements, are both

influenced by the orbital parameters of their host binary system, as well as the orientation in space with

respect to us. Jointly modeling both the radial velocity data with the light curve allows us to infer the binaries

orbital parameters and orientation completely. However, the posterior PDF can also be irregularly-shaped

due to choices of parametrization or complex degeneracies between parameters, causing many samplers to

under-perform or fail.

The implementation of HMC used by Exoplanet includes the No U-Turn Sampler (hereafter NUTS, see

Hoffman and Gelman, 2014). NUTS is a modification of an HMC sampler that tunes the model’s hyperpa-

rameters as samples are drawn to efficiently explore the posterior parameter space. Tuning hyperparameters

otherwise typically involves costly re-runs of models with different hyperparameter values.

We build our framework using Exoplanet as we focus on flexibility to be able to properly infer orbital

parameters for a varied combination of SEBs with only SB1 data and automation to tackle a large enough

sample to infer binary population demographics. The NUTS algorithm to perform flexible HMC inference

without costly external hyperparameter tuning meets both design requirements of our proposed framework.

We demonstrate the capabilities of this framework with a sample of spectroscopic eclipsing binaries with
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light curve data from the TESS mission and single-line radial velocity data from the APOGEE surveys.

Currently, there has not yet been an investigation into the capabilities of jointly fitting SEBs with TESS and

APOGEE data en masse. We hope to showcase both the exquisite nature of the high quality data within

TESS and APOGEE, as well as the robustness of our framework as a tool to the astronomical community.

3.2 Data

The successor to the Kepler spacecraft (Batalha et al., 2010), the Transit Exoplanet Survey Satellite (here-

after, TESS) (Ricker et al., 2014; Sullivan et al., 2015; Stassun et al., 2017, 2019) is now in its 5th year of

operation in the second extended mission. The time-domain photometric data from TESS has helped make

breakthroughs in the field of exoplanets and in the study of binaries because of its high-cadence, nearly

all-sky-coverage observations of over 200,000 stars, covering almost 70% of the night sky. TESS observes

targets continuously within a particular sector over a span of 13.5 with a short 2-minute cadence; each sector

has at least 27 total days of observing time.

The resulting data contains a large number of high quality time-series light curve flux data for each star

in the TESS Input Catalog (Stassun et al., 2017). Having this continuous, short-cadence light curve data

enables studying periodic behavior present in the observed stars over many timescales (e.g., stellar flares

(Günther and Daylan, 2021), stellar rotation (Doyle et al., 2020), stellar pulsations (Cunha et al., 2019), and

stellar/sub-stellar companions (Prša et al., 2022; Gandolfi et al., 2018, respectively).

The Sloan Digital Sky Surveys (SDSS) have been in operation for nearly 20 years. The recently released

17th data release from SDSS (Abdurro’uf et al., 2022) marks the final data release in SDSS-IV (Blanton et al.,

2017), and contains a full release of the APOGEE-2 spectroscopic data (spectral resolution R ∼ 22,500)

(Majewski et al., 2017; Beaton et al., 2021; Santana et al., 2021). The APOGEE-2 data set contains over

∼ 2.6 million individual spectra for over 700,000 stars. The APOGEE project was originally designed to

only perform spectroscopic chemical analysis of stars, which required multiple visits to accumulate a high

enough signal to noise ratio. With multiple spectra and long time baselines, these data can be repurposed to

provide time series radial velocity measurements (e.g., Troup et al., 2016; Badenes et al., 2018; Price-Whelan

et al., 2018).

For our initial list of binaries we sought to have well-sampled radial velocity data. We opted to use the

candidate binaries identified by modeling the time-resolved “epoch” radial velocity data in APOGEE data

release 17 (Abdurro’uf et al., 2022), as released in the The Joker value-added catalog. This sample was

identified using the custom Monte Carlo sampler The Joker (Price-Whelan et al., 2017), which was designed

to use radial velocity measurements from single lined binaries (SB1s) to fit a six parameter binary orbital

model and infer posterior distributions with the capacity to handle multi-modal solutions. The pipeline used

37



to process and run The Joker on the APOGEE DR17 data follows the procedure used in Price-Whelan et al.

(2020). We will demonstrate with our framework that the inclusion of photometric data into the orbital model

will break some of the degeneracies present when only modeling with radial velocities.

Further quality cuts were implemented on this catalog of binaries from APOGEE DR17 to produce a

“gold sample” that can be reliably employed to consider orbital properties with stellar parameters. In general

we require that each system have clean APOGEE data, reliable APOGEE stellar parameters, well-behaved

posteriors from The Joker, and measurements determined by the STARHORSE project. We restate those

quality cuts below; in particular, we require that the APOGEE binary-star systems have:

1. unimodal (in orbital period) posterior samples produced from The Joker,

2. close cross-matches with Gaia and 2MASS within (2′′),

3. analyzed by the STARHORSE project (Queiroz et al., 2018),

4. no APOGEE fiber contaminants (< 2′′ with ∆G > −5), using Gaia EDR3 (Gaia Collaboration and

Brown, 2020) source positions and photometry,

5. no bright neighbors (< 10′′ with ∆G >−2.5), again using Gaia EDR3 photometry,

6. reliable stellar parameters from the APOGEE pipeline,1

7. small inferred excess radial-velocity variance (sMAP < 0.5 km s−1),

8. more than 5 APOGEE visits (Nvisits > 5).

The resulting Gold sample contains 2,666 binary systems. We truncate the gold sample further by requiring

that all binary systems have a spectroscopic orbital period less than 30 days according to the maximum a

posteriori period sample generated from The Joker for each system. We set this period limit to 30 days to

limit our initial sample to low eccentricity binaries, due to tidal circularization of tight binaries. We reduce

our binary sample to 1,741 binary systems with this period cut.

We choose to only consider pre-processed TESS light curves from the TESS-SPOC processing group

(Caldwell et al., 2020). This is not a fundamental step in our framework, nor is it necessary for the proper

employment of our framework, but is a choice in data to reduce the amount of pre-processing of TESS full

frame images to produce the light curves used in this work. We build our framework to be able to handle any

time-series data with flux measurements, time-stamps, and flux uncertainties.

1−0.5 < logg < 5.5
3500 K < Teff < 10000 K
−2.5 < [M/H]< 0.5
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We employ the LightKurve (Lightkurve Collaboration et al., 2018) Python module to search and down-

load all available TESS short cadence (2 min) light curves across all sectors for the 1,741 spectroscopic

binary systems identified from The Joker and APOGEE data. We find 104 binary systems with TESS light

curve data. We find that there are 57 binary systems in our sample with noticeable or conspicuous transits

visible in the light curve after a rudimentary BLS period determination using LightKurve. We visual inspect

the resulting light curves for both a primary and secondary transit to limit our sample to non-grazing orbital

orientations. Our final sample has 12 binaries which met this requirement.

3.3 Methods

We construct a generalized framework that will be used to build different SEB orbital models with parameters

constrained using both the radial velocity measurements from APOGEE and the light curve flux measure-

ments from TESS. To that end, we design our framework to perform a series of functions such that flexibility

is maximized while only minimal external intervention is required once the framework is initiated for a target

binary system.

The likelihood function in our framework comes from the internal orbital model Exoplanet assuming

a Keplerian orbit. The orbital model is constructed with the primary component mass and radius, the mass

ratio, the surface brightness ratio, the radius ratio, along with the eccentricity, argument of periastron, impact

parameter, and period. The secondary component mass and ratio are depend on the primary component

parameters and ratios mentioned above. The light curve model is constrained by these parameters as well as

limb darkening parameters for the primary and secondary component.

We list the full suite of parameters that go into our framework along with short descriptions in Table 3.1.

We initialize the framework with the period and transit epoch times derived in Section 3.2, where we perform

a manual inspection to decide to utilize either the TESS period/transit epoch or the APOGEE The Joker-

derived period/transit epoch. Future versions of our framework may rely on calculating the signal detection

efficiency (SDE, Alcock and Parker, 2019) of phase folded data to automatically select best period/transit

epoch combination.

We calculate initial estimates for some of the parameters we use to initialize our priors using the Isochrones

python package. We infer initial individual component stellar parameters by sampling the MIST (Dot-

ter, 2016) evolutionary isochrones built into the Isochrones package. These posterior PDFs derived from

Isochrones help inform the prior PDFs used in our orbital modeling framework for the log-primary mass

logM1, the log-primary radius logR1, the log-radius ratio logk, the log-mass ratio logq, and the log-surface

brightness ratio logs.

With these estimates we initialize our priors, as well as our transit model likelihood function, within
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Figure 3.1: Each panel shows a phase-folded TESS light curve for the 12 spectroscopic eclipsing binary
systems in our sample. All light curves have been phase-folded with a Box Least Squares-derived period
and eclipse epoch from the TESS light curves, except for TIC 169820068, which is phase-folded using the
maximum a posteriori period from The Joker using APOGEE radial velocities. The flux values for all
systems have been normalized to parts per thousand, ppt, and plotted in black, and phases are shown in
time units. A rolling median flux of the light curve is over-plotted as the solid (orange) line. The light curves
selected for this sample have a wide range of transit geometries, making them suitable as an initial test sample
for our framework.
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a PyMC3 model within the Exoplanet package. We sample using HMC to construct the posterior SEB

orbital parameters, allowing effective Bayesian sampling within ill-behaved and high dimensional parameter

spaces. Posterior distributions which are multi-modal or have irregularly shaped geometries are an obstacle

for any Monte Carlo sampler. Spectroscopic eclipsing binaries, in particular, can have high dimensional

posterior parameter spaces. These issues stem from the combination of intrinsic binary dynamics as well as

observational orientations from our line of sight. There are also numerous degeneracies between these two

groups of parameters, further complicating sampling the posteriors effectively. HMC sampling, by design, is

able to sample posteriors such as these and is the best choice to build our generalized framework.

3.3.1 Hamiltonian Monte Carlo

The most frequently used methods to determine the orbital parameters usually rely on some generative model

(such as a two-body keplerian orbit) which takes a vector of parameters which can be called ‘θ ’. This gen-

erative model is incorporated into a likelihood function which computes the similarity of the model synthetic

data with the observed data using a statistical metric such as the χ2 parameter. The likelihood function can be

maximized in order to infer the orbital parameters, that coupled with the generative model, best approximate

the observed data.

However this process, simply referred to as ‘Maximum Likelihood’ (hereafter ML), has a number of

shortcomings, such as: ML infers the mode of a distribution which is not as robust to skewed distributions as

the median of the distribution. ML does not directly generate uncertainties on the parameter modes inferred.

ML does not take into account any relevant prior information that may help better infer the desired parameters.

We can correct for these issues by using Bayes Theorem (Bayes, 1763) to perform our inference which

is written out as P(θ |(D) = P(D|θ) ·P(θ)/P(D). Here P(D|θ) is our likelihood function and P(θ) is our

prior function. P(D) is called the ‘Bayesian Evidence’ and while it is an important quantity, it is also usually

very computationally expensive to calculate and primarily useful in comparing different models. As our

framework currently only uses one orbital model, it can be safely ignored for now.

The Bayes theorem equation is fundamentally an integral over the whole of the parameter space we are

interested in. Fully evaluating the integral is a computational intractable endeavor. However we can evaluate

this equation numerically using Markov Chain Monte Carlo (hereafter, MCMC). MCMC is an iterative way

to evaluate P(θ |D) (known as the posterior distribution) by drawing samples for θ . The probabilities of the

values in θ are calculated in the prior. These values are then used in our generative model and compared with

the data in the likelihood function.

Most MCMC methods rely on the ‘Metropolis-Hastings’ algorithm (otherwise known as ‘random-walk’)

(Metropolis et al., 1953) to draw samples to construct the posterior distributions. Most of the samples drawn
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throughout the MCMC process are correlated and thus most MCMC evaluations rely on running a chain of

samples long enough such that sufficient uncorrelated samples are drawn to properly approximate the target

posterior distribution. It is also possible to run N multiple chains of samples with N multiple starting values

of θ , known as ‘walkers’, in order to more effectively explore the parameter space concurrently.

Unfortunately, the efficacy of MCMC relies on the presumption of properly exploring the parameter

space from which the distributions of the variable posteriors can be inferred. MCMC algorithms that rely on

a random walk to explore a parameter space usually suffer from an incapacity to identify whether effective

exploration of the target distribution is being achieved. Characterizing an MCMC run as ‘converged’ then

typically rely on post-MCMC sampling techniques such as calculating the auto-correlation length of samples

to determine if the number of samples drawn is enough; this process may need to be repeated several times

to properly derive posteriors for very geometrically complicated problems.

Hamiltonian Monte Carlo (Duane et al., 1987) (hereafter HMC) draws from the properties of Hamiltonian

physics to exploit the differential geometry of a parameter space, even if its non-physical in nature, in order to

efficiently explore that parameter space in building posterior distributions. HMC methods rely on calculating

the gradients within a parameter space in order to explore it efficiently (see Neal, 2012).

HMC can still be potentially undermined if the two hyper-parameters, step size (ε) and number of steps

(L), are not set adequately. The No U-Turn Sampling (NUTS) algorithm (Hoffman and Gelman, 2014)

was developed to allow researchers to bypass the usually time consuming process of performing multiple

iterations of sampling runs with varying ε and L values to determine how best to explore a parameter space.

The NUTS algorithm actively adjusts ε and L during sampling as well as terminating sampling when the

algorithm confirms that the parameter exploration is beginning to double-back onto itself in order to maintain

computational efficiency.

Posterior distributions which are multi-modal or have irregularly shaped geometries are an obstacle for

any Monte Carlo sampler. Spectroscopic eclipsing binaries, in particular, can have high dimensional posterior

parameter spaces. These issues stem from the combination of intrinsic binary dynamics as well as observa-

tional orientations from our line of sight. There are also numerous degeneracies between these two groups

of parameters, further complicating sampling the posteriors effectively. HMC sampling is able to sample

posteriors such as these and is the best choice to build a generalized framework.

3.3.2 Assumptions in our framework

Jointly modeling a binary with its light curve flux measurements as well as radial velocity measurements

makes it possible to infer all of the binary orbital parameters individually. We make certain assumptions

to develop a clear structure to the solution for the problem. The assumptions we make with respect to the
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APOGEE radial velocity data are similar to the assumptions made in Price-Whelan et al. (2017), only now

we use the more recent DR17 APOGEE data from Abdurro’uf et al. (2022).

Our assumptions about the radial velocity data summarily concern the time dependent gravitational pull

from a single unseen companion acting on the observed star within a detached two-component binary. The

assumptions on the light curve data similarly concern a completely-detached, eclipsing, two-component bi-

nary that does not have significant stellar activity contributing to the flux variability. For both the individual

flux measurements and the individual radial velocity measurements we assume that the noise is Gaussian

with variances set by the reported measurement uncertainties.

In detail, our assumptions about the APOGEE radial velocity data are:

1. The radial velocity data represent unbiased measurements of only the more luminous star in a binary

system.

2. The time dependence of the radial velocity measurements originates only from movement of the ob-

served star caused by the gravitational pull of a (spectroscopically-unseen) secondary star (i.e. there

are no internal processes in the star which may produce a significant RV signal).

3. The noise model for the radial velocity measurements is Gaussian.

Our assumptions about the TESS light curves are:

1. The primary (secondary) transits in the light curve are the result of a primary star being eclipsed by a

secondary star (and vice-versa) as they orbit around their common center of mass.

2. Limb-darkening effects from either star can be adequately described by a two-parameter quadratic

function (Espinoza and Jordán, 2015, 2016).

3. The out-of-eclipse flux of each binary’s light curve can be effectively modeled by a Gaussian process

employing a stochastically-damped harmonic oscillator (SHO) kernel.

4. The individual light curve flux measurements can be viewed as samples from a Gaussian distribution

with variances given by the reported flux uncertainties.

3.3.3 Phase parameter estimates from TESS light curves

We must first convert all of the measurements (radial velocity and flux) to the same epoch, as well as sort the

data points within each set of measurements to be chronologically in order, and zeroed out such that both sets

of observation times are centered with respect to either the APOGEE epoch time or TESS epoch time. We
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already have two estimates of these parameters: The The Joker results in Price-Whelan et al. (2020) (MAP P

and MAP T0) and the TESS BLS-derived parameters (see Section 3.2).

We plot all of the phased radial velocity and flux data using both the period, and epoch time (t0) estimates

from both the APOGEE MAP parameters from the The Joker results for that system, as well as the BLS-

derived period and epoch time from the TESS light curve. We visually inspect the quality of the phase curves

folded and centered by each different transit epoch time estimate. We find in 11/12 systems that the TESS

light curve estimates for period and t0 are more successful at folding both sets of data (TESS and APOGEE)

into tightly defined phase curves.

3.3.4 Informed Priors with Isochrones

We set the the priors of log primary mass (logM1), log primary radius (logR1), log mass ratio (logq), log

surface brightness ratio (logs), and log radius ratio (logk) using values derived from the Isochrones package

(Morton, 2015). Isochrones is a python package that wraps data from the MESA Isochrones & Stellar

Tracks (MIST, also see Choi et al., 2016; Dotter, 2016) with additional functions to perform stellar parameter

fitting to single stars as well as binary stars.

We use the Isochrones ‘Binary Star Model’ to infer binary component stellar parameters from the avail-

able photometry of our 12 SEB systems. BinaryStarModel performs nested sampling using the Multi-

Nest (Feroz et al., 2009) package which is wrapped into the PyMultiNest (Buchner et al., 2014) package.

Nested sampling performed by MultiNest allows for quick, efficient sampling of the parameter space pos-

sibly multi-modal posterior distributions. The Binary Star Model fits the available photometry under the

assumption that each SEB is an unresolved binary in each the pass-bands.

We query and download the available 2MASS J,H,K magnitudes (Skrutskie et al., 2006), the Gaia eDR3

G, GBP, and GRP magnitudes (Riello et al., 2020), as well as the TESS magnitude (Sullivan et al., 2015) data

for each binary system in our sample. The calculated TESS magnitude is retrieved from the header data of

the LightKurve data for each TIC system.

The Binary Star Model has support for custom prior distributions for distance, age, [Fe/H], mass, AV,

and a special parameter used internally by Isochrones called the Equivalent Evolutionary Phase (EEP). The

EEP is used to approximate stellar evolution along the non-domain, curvilinear main-sequence as well as the

later stellar evolutionary stages of a star. We set the distance prior to be a Normal distribution centered on

the photo-geometric distance (r med photogeo) derived by Bailer-Jones et al. (2020) using Gaia eDR3

photometry and astrometry. The spread of this distribution is set to 3× the average of the two inferred

quantiles of the photo-geometric distance (r lo photogeo and r hi photogeo)

We use the available APOGEE measurements of [Fe/H], Teff, and logg to truncate the eventual parameter
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space that Isochrones nested sampler explores. Truncating the parameter space helps the nested sampling

reach convergence faster. The posterior distributions generated from this sampling will be used as initial

values for the priors we ultimately use in our PyMC3 framework to model SEBs.

We perform a rudimentary grid search with Isochrones to set informed limits on the sampling priors

Isochrones uses in the Binary Star Model. We use the Isochrones MISTEvolutionTrackGrid in-

terpolator to bootstrap sample across a grid of isochrones spanning the Isochrones EEP range after the

pre-main sequence phase [202-1700] and masses spanning [0.1 M⊙–50 M⊙, M∆ = 0.025 M⊙]. We set the

metallicity [Fe/H] value to the APOGEE measured [Fe/H]. The Teff and logg APOGEE measurements are

then used to perform acceptance/rejection of the grid search generated isochrones. We keep the generated

isochrones which have a Teff and logg value within the APOGEE measured Teff ± 500 K and logg ± 0.5

dex, respectively. The bounds for the uniform priors Isochrones uses for mass, age, and EEP are set to the

min/max ranges calculated from the accepted isochrones.

We run the Isochrones nested sampler with the aforementioned bounds and run until convergence. We

take the primary component mass (logM1) to be the greater of the two masses derived with Isochrones. We

calculate the surface brightness of each component according to Graczyk et al. (2017, Equations 2 & 3) to get

the surface brightness ratio, logs. We construct logq and logk as the ratio of the secondary component value

over the primary component value for mass and radius, respectively. We sigma clip the logM1, logR1, logq,

logk, and logs distributions to within 5 σ . We use the median absolute deviation (MAD) of each distribution

multiplied by a factor of 1.4286 to perform sigma clipping. The MAD parameter is more robust to outliers

than the standard deviation. The scale parameter of 1.4286 is used so the MAD more closely approximates

the standard deviation the of normal distribution (see Leys et al., 2013). The µ,σ values from the sigma

clipped logM1, logR1, logq, logk, and logs distributions are used to generate the values for the priors we use

in our SEB orbital model (see Section 3.3.5).

3.3.5 The Exoplanet Binary Orbital Model

Our priors will be used to construct the orbital model within the Exoplanet python module (Foreman-Mackey

et al., 2021), along with relevant noise terms. We compute the likelihood of the parameters of this orbital

model using both the APOGEE-measured radial velocities and the TESS light curve flux measurements.

The logM1, logR1, logq, logk, and logs priors have µ values that are set using the µ values derived from

Isochrones (see Section 3.3.4). We let the variance of these five priors vary within the Exoplanet model by

setting all five variances with two inverse Gamma distribution priors. We set one inverse gamma prior for the

logM1 and logR1 variances, and another inverse gamma prior for the three SEB ratio (logk, logq, and logs)

variances. The inverse gamma priors are initialized with σ values from Isochrones priors multiplied by a
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large factor of 256, which we set arbitrarily, to account for possible biases within the Isochrones framework

arising from its use of the MIST stellar model grid fitting under an assumption of blended photometry.

We employ a Gaussian process using the Celerite2 package (Foreman-Mackey et al., 2017; Foreman-

Mackey, 2018) to model the out-of-transit light curve flux of each eclipsing system. We use the SHO kernel

in our Gaussian process. The two parameters that dictate the behavior of our Gaussian process are ρGP, the

un-damped period of the SHO, and σGP, the standard deviation of the process. We also include a σLC prior

to model the jitter present in the TESS light curve flux measurements. We only have one noise parameter

for the radial velocity measurements, logσRV , to model the jitter present in the APOGEE radial velocity

measurements. We set logσRV with a log-normal prior, bounded at an upper value of 10km s−1.

We employ a unit disk function built into Exoplanet to sample (e cosω , e sinω). We then calculate the

eccentricity e, and argument of periastron ω as (e cosω)2 + (e sinω)2, and arctan e sinω

e cosω
, respectively. We

provide an estimate of e cosω to our model by performing a two stage BLS fit to the TESS light curve. We

use the built-in transit masking capabilities of the LightKurve module to mask out the primary transit of each

binary’s TESS data and refit a second BLS to estimate transit parameters for the secondary eclipse.

We derive an estimate for e cosω by rearranging Equation 33 from Winn (2010) using the transit epoch

time T0,1 for the primary eclipse and the transit epoch time T0,2 for the secondary eclipse. The e cosω value

we derive and e sinω , which we set to 0.0, are used to initialize the Exoplanet unit-disk function from which

we derive values of eccentricity e and argument of periastron ω .

The impact parameter b is modeled internally using the Exoplanet impact parameter distribution func-

tion, which is conditioned on the radius ratio k (not to be confused with the radial velocity semi-amplitude

K). We use quadratic limb darkening parameters (Kipping, 2013) for both the primary and the secondary

light curve transits in our model.

We parameterize the orbital period P of the binary as a function of the epoch time of first transit t0, and

the last epoch of transit tN , such that P = (tN− t0)
Ntransits

. This parameterization of the period removes a degeneracy

present between period and t0. This degeneracy arises from the long time baselines in the TESS observations

and the shortness of the period of these binaries (≲ 50 days) which introduces a numerical sensitivity in the

calculation of tN . We model both the mean light curve flux and mean radial velocity present in each set of

observations with normal distribution priors with a µ of zero and a σ of 10 ppt and 50 km s−1, respectively.

3.3.6 Calculating the Maximum a posteriori values to initiate sampling

We use PyMC3 to calculate the Maximum a posteriori (hereafter, MAP) estimates of our orbital parame-

ters. The MAP estimates are useful to initiate sampling within a parameter space which bolsters the HMC

sampler’s ability to construct reliable posterior distributions moreso than random initializations.
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Figure 3.2: A visualization of the light curve of TIC 20215452 to demonstrate the usage of a Gaussian
process to remove the background flux from a light curve. Top: A small section of the unfolded light curve
of this system shown as colored markers, with the unfolded Gaussian process plotted as the dashed (gold)
line, and the unfolded eclipse model over-plotted as the solid (cyan) line. Middle: The complete folded
phase curve (markers, colored by absolute time), the folded Gaussian process model (group of dotted lines),
and the folded eclipse model (colored solid line). The Gaussian process and the light curve data points are
colored by absolute time in all panels. Bottom: The folded light curve (colored markers) with the fitted
Gaussian process subtracted from the TESS data points. The light curve model is over plotted in cyan. Using
a Gaussian process to model the background light curve flux allows for generalized fitting of multiple types
of stellar variability.
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Table 3.1: Priors used in the joint RV–LC orbit model (this work)

Parameter Name Distribution Hyper-parameters Description
σlogm1 ,σlogr1 Inverse Gamma (7, 0.25) SD of M1,R1 priors

σlogk,σlogq,σlogs Inverse Gamma (6, 0.5) SD of logk, logq, logs priors
logM1 Normal (µlogm1 ,σlogm1) Mass of primary
logR1 Normal (µlogr1 ,σlogr1) Radius of primary
logq Normal (µlogq,σlogq) Ratio of component masses
logs Normal (µlogs,σlogs) Ratio of component surface brightness
logk Normal (µlogk,σlogk) Ratio of binary component radii

b Uniform [0,1+ k] Impact parameter
(e,ωa) Unit-Disk (

√
ecosωest ,0.0) Unit disk function

t0 Normal (t0, 3 d) Time of the first transit
tN Normal (tN , 3 d) Time of the Nth transit
u1 – [u1,0,u1,1]

b Limb darkening coefficients of primary
u2 – [u2,0,u2,1]

b Limb darkening coefficients of secondary
µRV Normal (0, 50 km s−1) Mean background radial velocity
µLC Normal (0, 10 ppt ) Mean background light curve flux
σGP Inverse Gamma † SD of Gaussian process
ρGP Inverse Gamma † Un-damped period of Gaussian process
σLC Inverse Gamma † Light curve flux ‘jitter’ term

logσRV Truncated Normal (log(σ̃RV ), 10 km s−1) Radial velocity jitter term
a - argument of periastron
b - Uninformative prior for quadratic limb-darkening parameters as implemented by Kipping (2013)
† - We utilize the inverse gamma distribution parameter estimation algorithms outlined by Michael Betancourt

We perform MAP estimation steps on individual parameters in a sequential order before estimating all

19 parameters simultaneously. Sequential MAP estimates increase the numerical stability of the final MAP

estimate of all 19 parameters. The order of the sequence is allowed to vary between different SEB systems to

increase the flexibility of the framework.

The first MAP estimations that take place occur on radius ratio ‘logk’, which greatly influences the depth

of the two transit dips. The impact parameter ‘b’ is next optimized as it influences the transit duration in our

orbital model. The unit disk function ‘ecs’ is then optimized as the eccentricity calculated from it potentially

influences the time between the primary and secondary transit as well as also affect the shape of the model fit

to the radial velocity data.

The MAP parameter estimates for [(t0, tN), (u1,u2), logM1, logR1, logs, logq, mean-rv, mean-lc] are

ordered to maximize the gradient of the likelihood. This order is calculated in a brute force manner, looping

through the set of parameters until the MAP step resulting in the maximum positive change in the log-

likelihood is found. The parameter considered in this MAP step is then removed from the set and the loop is

restarted. This loop continues until all parameters in the set are optimized.

The MAP estimates of the σGP, σLC, and ρGP parameters are performed simultaneously in a single step.

This allows the transit model has been fit to the data as much as possible before attempting to fit the Gaussian
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process to the out-of-transit background flux. Performing these MAP estimates before the transit model is

fully fit to the light curve data may lead to the Gaussian process over-fitting. The logσRV parameter is also

optimized after the completion of the brute force loop to avoid over-estimating the jitter in the radial velocity

background.

The two inverse gamma priors which set the variances for logM1, logR1, logk, logq, and logs are not

optimized until the final MAP step. The very broad initial variance parameters on the five orbital parameter

priors remain throughout the previous steps to maximize flexibility in estimating the MAP values for all

parameters. All 19 orbital model parameters have their MAP estimations performed simultaneously in the

final step.

We iteratively perform sigma clipping to remove outliers from the SEB light curve. We calculate the

residuals of the light curve model with the TESS data and mask light curve data points with ∥residuals∥ >

5σ . MAP values are recomputed after each sigma clipping of the light curve for a maximum of 10 iterations

or until no light curve data points are masked as outliers.

3.3.7 Sub-sampling the light curve using the transit model

We use the MAP values computed after sigma clipping is completed to sub sample the out-of-transit flux to

reduce computational time of sampling. The out-of-transit flux in a light curve is not simply background.

It contains important information about the stars such as stellar variability, surface pulsations, and rotation

signatures. Our framework models the background flux with a Gaussian process and treats this flux variability

as “nuisance” or additional, correlated noise. We acknowledge that there is information to be distilled from

the background flux and may integrate that functionality into our framework at a later time.

We perform targeted sub-sampling of the light curve background flux for our sample of SEB systems.

This step is performed to (a) reduce computational cost of evaluating the likelihood across the entire light

curve observation for a binary system with every sampling step, and (b) reduce density of background flux to

increase transit visibility, as in the case for TIC 144441148 (Figure 3.1, row 2, column 2).

We mask out the primary and secondary transits along the entire light curve using the transit model with

the MAP values estimated in the previous sub section. We sub-sample the out-of-transit light curve flux data

with a random uniform draw down to a specified size. We find that sub-sampling the light curves to ∼5000

data points provides the best balance of computational efficiency and sampling reliability for all 12 SEB

systems.
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3.3.8 Generating posterior samples with the Exoplanet orbital model

We perform sampling using the priors and likelihood function in the Exoplanet model with 6 sampling

chains. Each chain is set to run for 5000 tuning steps and 1000 draw steps. We consider each model to have

converged upon the completion of sampling when the rank normalized split-r̂ values for all of the model

sampling parameters are below 1.01 (see Vehtari et al., 2019). The rank normalized split-r̂ value improves

upon the split-r̂ () diagnostic’s ability to detect convergence between multiple sampling chains.

3.4 Results

We successfully infer orbital and stellar parameters for all 12 of our spectroscopic eclipsing binary systems in

the short-period APOGEE–TESS cross-match sample. We plot both the radial velocity phase curves and the

GP-subtracted, transit-phased light curves for all 12 fitted systems using the median orbital model parameters

in Figure 3.3. We also plot the 68th and 95th confidence intervals of the orbital model in both the phase curves

in Figure 3.3. We plot an orrery of the 12 SEBs with a top-down view of their orbits from median of our

model posteriors in Figure 3.4 to visualize the different binary component configurations modeled with our

framework.

We also list a summary of important binary parameters in Table 3.2. The super-scripts (sub-scripts) listed

with each column in 3.2 are the upper (lower) bound uncertainty calculated from the Bayesian Credible

Interval (hereafter, BCI) for each parameter. The BCI for a parameter can be interpreted as the interval of the

marginal posterior PDF within which the true parameter value falls with a specified probability (see Dahn,

1978). The BCI probability is we set to 0.68.

The median mass of the primary components in our SEB sample is 1.06M⊙ with a 16th and 84th percentile

of 0.75M⊙ and 1.31M⊙, respectively. The median mass of the secondary components is 0.32M⊙ with a 16th

and 84th percentile of 0.17M⊙ and 0.49M⊙, respectively. There are 10 SEB systems which have a median

eccentricity ≲ 0.05 but BCIs largely consistent with zero. SEB system (TIC 285108067) is the only non-

circular orbit in our sample, with a median eccentricity of 0.35.

Our framework infers tight posterior distributions for the component masses in each SEB. The primary

masses in our sample of 12 SEBs have a median uncertainty of 3.81%, with a 16th and 84th percentile of

3.68% and 4.63%, respectively. The secondary masses have a median uncertainty of 2.54%, with a 16th and

84th percentile of 2.20% and 3.80%, respectively.

The median values of the orbital solution period largely agree with the orbital periods derived from the

light curve BLS periodigram analysis. The median orbital period of our SEB sample is 5.25 days with a 16th

and 84th percentile of 2.73 days and 11.07 days, respectively. We briefly describe the inferred parameters and

orbital structure of the 12 systems in our sample below, ordered by their TIC ID.
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TIC-ID M1 R1 M2 R2 P a ecc q
M⊙ R⊙ M⊙ R⊙ days R⊙ – –

20215452 0.69+0.04
−0.04 0.79+0.02

−0.02 0.33+0.02
−0.01 0.35+0.01

−0.01 0.59576+8e−07
−7e−07 3.0+0.05

−0.04 0.0112+0.0063
−0.0112 0.48+0.01

−0.02
28159019 1.23+0.05

−0.05 1.99+0.04
−0.04 0.34+0.01

−0.01 0.35+0.01
−0.01 4.61877+3.6e−06

−4.1e−06 13.57+0.18
−0.17 0.0018+0.0009

−0.0018 0.28+0.0
−0.01

99254945 0.77+0.03
−0.03 0.71+0.01

−0.01 0.33+0.01
−0.01 0.32+0.0

−0.0 7.70784+2.83e−05
−2.58e−05 16.97+0.19

−0.19 0.0052+0.0005
−0.0004 0.43+0.01

−0.01
126232983 0.89+0.03

−0.03 1.65+0.09
−0.08 0.14+0.0

−0.0 0.14+0.01
−0.01 4.53432+3.91e−05

−4.35e−05 11.66+0.14
−0.14 0.003+0.0014

−0.003 0.16+0.0
−0.0

144441148 0.82+0.03
−0.04 1.76+0.12

−0.09 0.14+0.0
−0.0 0.71+0.08

−0.08 5.81856+5.07e−05
−4.03e−05 13.41+0.14

−0.18 0.0169+0.0037
−0.0031 0.17+0.0

−0.0
164458426 1.54+0.06

−0.06 1.93+0.05
−0.09 0.2+0.01

−0.0 0.21+0.01
−0.01 4.69331+1.35e−05

−1.29e−05 14.2+0.19
−0.15 0.0022+0.0011

−0.0021 0.13+0.0
−0.0

164527723 1.15+0.04
−0.04 1.85+0.05

−0.04 0.18+0.01
−0.01 0.26+0.01

−0.01 2.73987+3e−06
−2.9e−06 9.06+0.12

−0.1 0.0097+0.0109
−0.0097 0.16+0.01

−0.01
165453878 1.07+0.05

−0.04 1.14+0.02
−0.02 0.2+0.01

−0.01 0.22+0.0
−0.0 2.7076+5.3e−06

−5.3e−06 8.84+0.14
−0.11 0.0019+0.0017

−0.0019 0.19+0.0
−0.0

169820068 1.2+0.05
−0.05 4.29+0.08

−0.09 1.04+0.02
−0.02 1.13+0.03

−0.03 29.74447+0.0001755
−0.0001856 52.85+0.58

−0.52 0.01+0.0012
−0.0011 0.87+0.01

−0.02
258108067 0.69+0.03

−0.02 1.62+0.02
−0.02 0.44+0.01

−0.01 0.5+0.01
−0.01 12.96863+0.0001022

−0.0001597 24.14+0.24
−0.24 0.3477+0.001

−0.0013 0.63+0.01
−0.01

271548206 1.05+0.04
−0.04 0.93+0.02

−0.02 0.36+0.01
−0.01 0.42+0.01

−0.01 7.44835+1.41e−05
−1.21e−05 17.99+0.19

−0.21 0.0322+0.0022
−0.0019 0.35+0.01

−0.0
272074664 1.61+0.1

−0.07 1.9+0.04
−0.03 0.7+0.02

−0.02 0.63+0.01
−0.01 10.47626+5.7e−06

−5.8e−06 26.63+0.45
−0.34 0.0546+0.0005

−0.0005 0.44+0.01
−0.01

Table 3.2: Relevant posterior distribution values for orbital parameters of the 12 SEBs considered in this
work, ordered in ascending TIC number. The uncertainties for all parameters listed are calculated from the
Highest Density Interval (HDI) for each parameter posterior distribution at a 68% probability (The HDI can
be considered as the minimum width Bayesian Credible Interval)

TIC 20215452 This system has the shortest orbital period of the systems in our sample, with a period of

about P ≈ 0.60 days. The median of the eccentricity posterior distribution is about 0.01. The computed

semi-major axis of the system is 2.99 R⊙. The primary component has a mass of M1 ≈ 0.69 M⊙. The

mass ratio q2 of this system is about q ≈ 0.48.

TIC 28159019 This system has a significantly curved primary eclipse, while its secondary transit displays

a flatter eclipse. This system has the lowest inferred eccentricity in our sample with a posterior dis-

tribution mode of 0.002 and a credible interval on the eccentricity posterior that is consistent with

zero. The computed semi major-axis of the system is 13.57 R⊙. The orbital period of this system is

P ≈ 4.62 days. The primary component mass is M1 ≈ 1.23M⊙ and the system’s mass ratio is q ≈ 0.28.

TIC 99254945 This binary system has a computed orbital period of about P ≈ 7.71 days. The semi-major

axis of this system has been calculated to be 16.97 R⊙. The median of the eccentricity posterior

distribution is found to be 0.005. The primary mass is found to be M1 ≈ 0.77 M⊙. The mass ratio for

this binary system is q ≈ 0.43. This system has the deepest observed primary transit (-18.52%) in our

sample.

TIC 126232983 This binary system has a very shallow and inconspicuous secondary transit. The orbital

period of this system is about P ≈ 4.53 days. The median of the eccentricity posterior distribution is

about 0.003 but the credible interval is consistent with zero. The semi-major axis of this system has

2We define q to be (M2/M1)
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been computed to be 11.66 R⊙. The primary component mass is M1 ≈ 0.89 M⊙. The mass ratio is

q ≈ 0.161.

TIC 144441148 This binary system is the only binary system in our sample which has a non-existent sec-

ondary transit in the light curve. The orbital period for this system was computed to be P ≈ 5.82 days.

The semi-major axis was computed to be 13.41 R⊙. The median of the eccentricity posterior distribu-

tion was found to be 0.02. The primary component mass was found to be M1 ≈ 0.82 M⊙. The mass

ratio is q ≈ 0.17. Our framework infers a secondary component mass of M1 ≈ 0.14 M⊙ but a radius

of R2 ≈ 0.71 M⊙. We take this radius inference as un-reliable as it is non-physical, as seen on the

mass-radius plot in Figure 3.5 (black triangle). We discuss this un-reliable inference further in Section

3.5.

TIC 164458426 This binary system has some interesting periodic signals in the background flux that prohibit

a visual observation of the secondary transit without subtraction of the background flux by a Gaussian

process. The orbital period was computed to be P≈ 4.69 days. The median of the eccentricity posterior

distribution was found to be 0.002 but the credible interval is consistent with zero. The semi-major axis

was computed to be 13.42 R⊙. The primary component mass was found to be M1 ≈ 1.54 M⊙. The

mass ratio is q ≈ 0.13.

TIC 164527723 This binary system has a computed orbital period of P ≈ 2.71 days. The semi-major axis

was computed to be 9.06 R⊙. The median of the eccentricity posterior distribution was found to be

0.010 but the credible interval is consistent with zero. The primary component mass was found to be

M1 ≈ 1.10 M⊙ and the mass ratio is q ≈ 0.16.

TIC 165453878 This binary system has a computed orbital period of P ≈ 2.71 days. The median of the

eccentricity posterior distribution is found to be 0.002 but with a credible interval consistent with zero.

The semi-major axis was computed to be 8.84R⊙. The primary mass component was found to be

M1 ≈ 1.07 M⊙ and the mass ratio was found to be q ≈ 0.19.

TIC 169820068 This binary is the only system in our sample where the APOGEE-derived period and epoch

transit time served to fold the RV phase curve and flux time-series phase curve better than the TESS

light curve derived values. The orbital period was found to be P ≈ 29.74 days, making it the longest

period binary in our sample. The semi-major axis is computed to be about 52.85 R⊙. The median of

the eccentricity posterior distribution was found to be 0.01. The primary component mass was found

to be M1 ≈ 1.20 M⊙. The secondary component mass was found to be M2 ≈ 1.04 M⊙. The mass

ratio was found to be q ≈ 0.87 This is also the only system in our sample for which the final orbital
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model produces a larger secondary transit than the primary transit. The primary component radius is

R1 ≈ 4.29 R⊙, which is much larger than main-sequence mass-radius relations. These peculiarities

raise the implication that the primary component star is an evolved star.

TIC 258108067 This binary system has the highest median eccentricity in our sample at 0.35. This system

necessitated the relaxation of automatically setting a ceiling on e cosω of 0.01 in the initialization

of the orbital model. The orbital period was computed to be P ≈ 12.97 days. The semi-major axis is

computed to be 24.14 R⊙. The primary component mass and mass ratio were found to be M1 ≈ 0.69 M⊙

and q ≈ 0.63, respectively.

TIC 271548206 This binary system has very broad background flux in the light curve data, making the

secondary transit more than difficult to visual identify. The orbital period was computed to be P ≈

7.45 days. The semi-major axis was computed to be 17.99 R⊙. The median of the eccentricity posterior

distribution was found to be 0.03. The primary component mass was found to be M1 ≈ 1.05 M⊙. The

mass ratio was found to be q ≈ 0.35.

TIC 272074664 This binary system has a computed orbital period of P ≈ 10.48 days. The semi major was

computed to be 26.63 R⊙. The median of the eccentricity posterior distribution was found to be 0.05.

The primary component mass was found to be M1 ≈ 1.60 M⊙, which is the largest in our sample. The

mass ratio was found to be q ≈ 0.44.

3.5 Discussion

We demonstrated here the flexibility of our framework to derive complete orbital parameter posterior distribu-

tions for a sample of 12 different SEBs with a varying number of radial velocity measurements and different

light curve transit geometries. There are 11 binary systems in our sample did not have model framework set-

tings that required further manual fine-tuning before sampling took place. Only one system, TIC 285108067,

required manual intervention in relaxing the circular eccentricity setting. Our framework only requires a

TESS TIC ID in order to be initialized, allowing a list of EB systems to be modeled simultaneously.

The final orbital models constructed from our inferred orbital parameters and plotted over the TESS +

APOGEE data in Figure 3.3 highlight the varied configurations of SEBs that our framework is able to model.

Figure 3.3 also illustrates the power of jointly considering the TESS + APOGEE data. In the case of a very

noisy out-of-transit flux and a very shallow secondary transit, such as TIC 144441148, the well sampled

radial velocity measurements likely bolsters the framework’s ability to constrain the orbital parameters.

Our framework is also capable of modeling SEBs with sparsely observed secondary transits which is the

case for the systems TIC 169820068 and TIC 258108067 (see Figure 3.8 in the Appendix). TIC 258108057,
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Figure 3.3: Plotted phased radial velocity - light curve for the 12 modeled TESS–APOGEE SEBs in this
work. Even rows are the radial velocity phase curves for the 12 systems. Odd rows are the transit light
curves for the 12 systems. The data points in each system are plotted as black dots. The final orbital model
in both the light curve and radial velocity phase curves is plotted in orange. The 68% and 95% confidence
intervals plotted as transparent orange fill. Our framework is able to reliably infer orbital parameter posterior
distributions for SEBs with varied data.
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Figure 3.4: Face-on plot of all 12 TIC SEBs considered in this work, ordered by increasing TIC-ID. The
primary component is plotted on the blue orbit, the secondary component is plotted on the orange orbit. The
relative symbol sizes of all binary components are to scale with each other. The relative sizes of plotted
component symbols are not to scale to the plotted orbits. Each plot has a small scale indicator of either 1 AU,
5 AU, or 10 AU. Each SEB has it’s TIC-ID listed below it’s orbit.
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in particular, has a number of characteristics that highlight the flexibility of our framework: it has only 5

radial velocity measurements, and has a sparsely observed secondary transit in the light curve data, and is an

eccentric binary.

We have plotted the mass-radius contours created from the posterior distributions of the 12 SEBs we

modeled in this work in Figure 3.5. We have plotted the masses and radii of the 95 eclipsing binaries which

were characterized in Torres et al. (2010a) in Figure 3.5 as well. The Torres et al. (2010a) binaries trace out

a mass-radius main sequence that most of the median mass and radii estimates for our sample fall within as

well.

We have marked out the minimum mass and radius measured in the Torres et al. (2010a) EB sample in

Figure 3.5 as gray dash lines. The inferred primary masses and radii in our sample fall within this range

of masses and radii. There are 4 secondary components which have masses and radii that fall below these

ranges. These lower masses and radii highlight the higher overall sensitivity that is achievable by jointly

modeling both the TESS + APOGEE data with a Bayesian probabilistic framework.

3.5.1 Spectroscopic Eclipsing Binaries populations as benchmarks

Recently there has been increased work into measuring the parameter distributions of binary populations

using Bayesian hierarchical inference. Bayesian hierarchical inference is performed similarly to ‘standard’

Bayesian inference with a prior and a likelihood informing a posterior. The ‘hierarchical’ aspect refers to the

prior being modifiable during sampling with a ‘hyper-prior’ informing on what shape the prior distribution

might have. The prior distribution shape is then inferred as sampling takes place.

Bayesian hierarchical inference has been used to explore the a number of different characteristic distribu-

tions important to the understanding of binaries. Price-Whelan et al. (2020) measured the long period binaries

eccentricity distributions with results from The Joker. Lyttle et al. (2021) measured the distributions of stellar

helium abundance (Y ) using Kepler dwarfs and sub-giants in a Bayesian hierarchical model. Hwang et al.

(2022) used Bayesian hierarchical inference to measure the eccentricity distribution of wide binaries using

astrometric data from Gaia DR3.

Our framework generates full posterior distributions for all binary orbital parameters rather than just

a single value for the peak (or median) and the range of an appropriate interval. The complete posterior

distributions of these orbital parameters can be used to perform more robust Bayesian hierarchical inference.

The shape of the posterior distributions of each population member in a Bayesian hierarchical inference can

better inform the shape of the hyper-prior of interest.

Our framework is able to infer full orbital parameter estimates for SEBs with single-component radial

velocities. Single-lined SEBs are the more commonly observed than double-lined SEBs. This arises from the
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Figure 3.5: Plot of the masses and radii for primary (blue diamonds) and secondary (orange diamonds)
components in the 12 SEBs considered in this work. The 1σ contours (blue and orange lines) for each binary
component’s mass and radius posterior distributions are plotted to highlight the covariance between mass and
radius. We plot the mass-radius measurements from Torres et al. (2010a) for the primary (filled black circles)
and secondary (empty black circles) components. The vertical/horizontal gray dashed line demarcate the
minimum determined mass/radius from the Torres et al. (2010a) catalog, respectively. We plot mass-radius
values of a solar metallicity MIST isochrone at 5 Myr (solid red line), 100 Myr (dash red line ), 1000 Myr
(dashed dot red line), and 12000 Myr (dotted red line).
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lower probability of observing shifts from both stars in the spectra unless directed long-term spectroscopic

observations are carried out. Double-lined SEBs are also not as frequently observed as single-lined SEBs

since single-lined SEBs occur more frequently across the range of mass ratio ‘q’. Double-line SEBs are

usually only observed when the masses of both components are near-equal. The more frequently occurring,

and more easily observed single-lined SEBs can be used as population level calibrators for stellar evolution

models.

Our framework currently only focuses on modeling single-lined SEBs, and in future work we will ex-

pand our framework to also model double-lined SEBs. The addition of a secondary set of radial velocity

measurements will result in tighter posterior distributions of the inferred parameters. This will only increase

our framework’s capabilities for flexible SEB parameter inference and its potential for binary population

parameter inference.

3.5.2 Comparison with results from Gaia DR3

The recent release of the Gaia DR3 (Prusti et al., 2016; Vallenari et al., 2022) there has been a massive

quantity of eclipsing, astrometric, and spectroscopic binary data released taken by the Gaia spacecraft and

processed by the Gaia collaboration. We some compare our orbital parameters and stellar parameters for

the binary systems which were bright enough in the Gaia passbands to have available data in Figure 3.6. In

the left most panel of Figure 3.6 we have plotted the derived orbital period for our binary systems on the

x-axis and the Gaia DR3 periods on the y-axis. The residuals of the two period measurements lie in the range

between ±2×10−3 days, indicating excellent agreement between the two.

In the middle panel of Figure 3.6 we have plotted the orbital eccentricity for our binary systems (x-axis) as

well as the Gaia DR3 eccentricities (y-axis). It appears that our framework infers more circularized eccentric-

ities than the Gaia DR3 measurements. This is true for all the plotted binary systems except TIC 281508067

which has the highest eccentricity in our sample; both the Gaia DR3 eccentricity as well as our framework

inferred eccentricity agree very well. Error-bars are plotted, though smaller than plot symbols for our mea-

surements of eccentricity.

In the right most panel of Figure 3.6 we have plotted the inferred surface gravity, logg, calculated from

our framework (x-axis) for the primary stars in our sample against their logg (column=LOGG) measurements

from APOGEE (Majewski et al., 2017) DR17 (y-axis). The spectrographic logg APOGEE measurements

show good agreement within errors with the Bayesian framework derived logg values derived in this work.
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3.5.3 Possible radius inflation in secondary components

There is a developing consensus that there are observed deviations in measured radii of low-mass stars

(<1 M⊙) from the radii predicted by stellar evolutionary models. The mechanism that generates this ob-

served ‘radius inflation’ is still not entirely clear but it’s believed to be originating from strong magnetic

fields interrupting the convective process, large star spots affecting the pressure and temperature of a star,

or a combination of both. Radius inflation can cause a single star to move vertically on the Hertzsprung-

Russell diagram because of changes in luminosity and be mistakenly identified as belonging to the binary

main-sequence, thereby biasing photometric studies of binaries, especially in open clusters. Moreover, radius

inflation can directly impact exoplanet characterizations as precision of the transit parameters from a light

curve are greatly driven by the precision of the stellar radius.

There are some secondary components near the lower end of the mass range in Figure 3.5 that lie above

the expected main sequence that is outlined by the MIST isochrones also plotted (red lines). We speculate

that these secondary stars might be undergoing radius inflation and perform a rudimentary analysis to explore

that possibility.

We generate several thousand theoretical radii for secondaries with component masses <1 M⊙ using the

MIST isochrones in the Isochrones package. These isochrones span a uniform grid in age, consider only

the main-sequence phases of stellar evolution (202 > EEP > 654), and use the APOGEE derived [Fe/H] for

each system. We calculate the median percent deviation of our framework’s inferred radii from the theoretical

MIST radii we generate.

We find five secondary components in our sample may be undergoing radius inflation. The secondary

components in TIC 20215452 and TIC 28159019 have radii that are inflated on the order of ∼7% and ∼6%,

respectively. The other three secondary components of TIC 285108067, TIC 271548206, and TIC 164527723

have larger inflated radii on the order of ∼20%, ∼16%, and ∼17%, respectively. This analysis is largely

speculative and non-exhaustive but it does illustrate the versatility of this framework in inferring component

radii at the low-mass end.

3.5.4 Non-physical stellar parameter inferences

Our framework is able to infer orbital parameter solutions for detached SEB systems that are largely agnostic

of stellar evolutionary models. However this also opens up the framework to possibly inferring non-physical

parameters in some solutions. This is the case for SEB system TIC 144441148. The median inferred mass

and radius for the secondary component are M2 ≈ 0.14 M⊙ and R2 ≈ 0.71 R⊙, respectively. These stellar

parameters are non-physical for a star, given its position (black triangle) on the mass-radius plot in Figure

3.5. The mass-radius plot can be considered an analog for the Hertzsprung-Russel diagram, and as such, there
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Figure 3.6: Plot of three separate orbital parameters as well as stellar parameters one to one plots comparing
the inferred values for our binary systems and the values derived by the Gaia collaboration from their recently
released Gaia DR3 (Holl et al., 2022) as well as APOGEE(Majewski et al., 2017). Panel A is comparing the
orbital period of the binary system, and each system for which there is a period measurement is labeled by
the last four digits of its TIC id. Panel B is a similarly labeled plot comparing the orbital eccentricity for our
binary systems. Panel C is a stellar parameter comparison plot of the inferred surface gravity, logg, of the
primary stars in our sample with the logg values calculated by APOGEE.

should not be stars in that area of the mass-radius space.

We consider the secondary component mass to be reliable since the component masses are derived from

orbital dynamics constrained by the radial velocity measurements. TIC 144441148 is one of the SEB systems

in our sample with over 20 APOGEE radial velocity measurements. The model radial velocity phase curve

agrees very well with the radial velocity measurements in Figure 3.33.

The source of this non-physical solution is likely a result of the light curve data for this system, which

constrains the primary component radius and secondary component radius via the radius ratio prior logk. The

light curve for this SEB does not appear to have secondary transit present, which might indicate a grazing

eclipsing binary. Our framework infers a large impact parameter of b ≈ 1.38 which further suggests a grazing

eclipse for near circular orbits.

There are a number of different sources for an eclipsing binary to have a grazing orbit. A third orbiting

body may induce perturbations in the orbit of the binary, affecting the transit depths. Stellar pulsations may

cause changes in the stellar radii and affect the inference of logk. Stellar pulsations can be found by consid-

ering the out-of-transit flux in a light curve. Our framework only considers the out-of-transit background flux

as a nuisance parameter in its current implementation by design. Future implementations of this framework

would have to address the particularities of grazing eclipsing binaries.

3column 1, row 3
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3.5.5 Covariances within the posteriors

We find most of the posterior distributions of the inferred orbital parameters for these systems to be well-

behaved. However we do visually identify a covariance between logM1, logq, and logR1. This covariance

appears to be present in all posterior distributions, even in systems where the posterior distributions are well

behaved (i.e. a defined unimodal shape with little to no covariance between other parameters).

We plot an example of ’well behaved’ posterior distributions in the form of a corner plot for TIC 272074664

in Figure 3.7. In the corner plot of logR1 and logM1 (Figure 3.7, row 2, column 1) we can see the skewed

covariance present between the these two orbital parameters.

This skewed contour shape is present after transforming to the logM1 and logR1 posterior values to Mp

and Rp, respectively. Figure 3.5 shows the still skewed shape of the transformed logM1 and logR1 posteriors.

This skewed shape is indicated that the logM1 and logR1 priors are influenced by their relation in defining

the primary star’s density, which is an important value attainable through light curve analysis. The shape of

the secondary components mass-radius contours are also skewed despite no sampling taking place over any

secondary component parameters.

The skewed shape of the secondary component’s mass and radius stems from being calculated from

multiplying (or adding in log space where we sample) the mass ratio q by the primary component mass.

The skewed shape of the sampled logq posteriors broadcast into the calculated secondary component mass.

Additionally, the secondary component radius is calculated from multiplying the radius ratio k by the primary

component ratio, reproducing a similarly skewed shape.

3.6 Conclusion

In this work we have introduced a novel framework to infer orbital parameters for 12 spectroscopic eclipsing

binaries (SEBs). We use available photometric TESS data and the spectroscopic APOGEE data together to

infer the parameters of a two-component binary orbital model within a Bayesian Probabilistic framework.

The TESS light curves are downloaded using the LightKurve package and a high resolution box-least

squares (BLS) fit is performed to infer an initial orbital period and time of transit. The TESS light phase

curve and the APOGEE radial velocity phase curve are centered and folded by this initial orbital period and

time of transit for 11 out of the 12 binary systems. We find the two similar parameters derived using only

radial velocities within the The Joker catalog (Price-Whelan et al., 2020) resulted in a better folded phase

curve for TIC 169820068.

This framework uses Hamiltonian Monte Carlo (HMC) to perform sampling of posteriors. We select

HMC to perform sampling within our framework because of its reliability to properly explore a parameter

space, as well as scaling well to large number of dimensions. Our framework is constructed to be able to
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perform all necessary operations to model an binary system without further manual modification because of

the built in capabilities of Exoplanet that we construct our framework upon.

We run our framework around a small sample of 12 spectroscopically eclipsing binaries. We use the

Isochrones package to derive informed values for the parameters that we use to initialize our priors for each

binary orbital model. We recover reliable SEB model parameter distributions for 11 of our binary systems

using the same framework with almost no manual intervention necessary. Only one of our systems has a

partially reliable model parameter inference, due to a non-physical secopndary radius. We will continue this

work and scaling our framework to fit the larger sample of binaries within both the APOGEE and TESS

surveys in order to construct a benchmark catalog of SEBs with fully modeled orbital parameters.
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Figure 3.7: Corner plot of posterior values of (logM1, logR1, logq, logs, b, t0, tN , ecc, ω) for binary system
TIC 196820068. The 2-dimensional contour on each corner is the equivalent 1-σ . The orange lines on each
contour plot are the final MAP values for each variable after the 2nd round of MAP optimizations (see Section
3.3.6). The left and right vertical dashed blue lines on each 1-dimensional histogram plots of each variable
are the 16th and 84th quantiles, respectively.
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Figure 3.8: Side by side plots of all light curves (left panel) and all radial velocity curves (right panel).
Both the radial velocity data and the light curve data have been plotted chronologically. The orbital model
constructed with the best parameters are used to produce both the model transit light curve (left panel, orange
line) and the radial velocity curve (right panel, orange line). Light curve data and radial velocity data are
plotted in both panels as black dots. Each system also has its full orbital period is plotted as blue shading.
One full orbital period is plotted for each plot starting from either the first transit or the start of radial velocity
observations.
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CHAPTER 4

Discussion

This work encompasses machine learning frameworks developed and applied to perform: Detection and

identification of open cluster (OC) members from astrometric data. Inference of orbital parameters of single-

lined spectroscopic eclipsing binaries (SEB1s) using different, sparse time-series data.

In Chapter 2 the Gaia astrometric measurements of α , δ , and ϖ , were used with their accompanying

measurement uncertainties to perform unsupervised clustering using a variant of Gaussian mixture models,

extreme deconvolution Gaussian mixture models (XDGMM) to find open cluster groups and determine their

individual stellar members. The high precision of Gaia DR2 astrometry can be fully employed in XDG-

MMs with the full 3x3 covariance matricies for all stars to increase sensitivity to lower mass, fainter cluster

members, which typically have higher measurement uncertainties. This XDGMM framework used two other

metrics that were used to increase flexibility in the framework to automatically fit hundreds of lines of sight.

The Bayesian Information Criterion served to automatically select the best number of Gaussian components

to fit in any line of sight. The Differential Entropy was used to quantify which Gaussian component had the

smallest volumetric ’spread’ in the parameter space under the assumption that the open cluster would be the

most concentrated against the more uniform field stars.

These metrics were successfully employed in majority of open cluster classifications in this work, but im-

provements in future works can greatly improve their efficacy. The Bayesian Information Criterion marginal-

izes the XDGMM fit by the number of components used but this takes into account the entire data set,

including field and open cluster stars. This led to a small number of instances in the framework where more

components were used than was necessary. This also revealed that some of the open clusters could be better

modeled by fitting more than just one Gaussian component. Indeed, this has started appearing in the liter-

ature, with Tarricq et al. (2022) demonstrating it is possible to fit a ’core’ and a ’halo’ Gaussian mixture

component to open clusters to better characterize sub-structure. This highlights that a better metric in the

future will better measure how well the model is performing solely centering the open cluster and not the

entire line of sight.

Similarly the use of differential entropy as a cluster component detection method leaves room for im-

provement in future works. For example, the differential entropy could not be reliably used in a blind search

for open clusters. Its usage in this work relied on the assumption that in the open cluster component has the

lowest differential entropy compared to the surrounding distribution of field stars. The few times this assump-

tion was broken in this work was when the line of sight data set contained another, previously identified, open

65



cluster, or an undiscovered open cluster candidate.

There have been numerous ventures into a more encompassing method to identify true open clusters. This

comes as many previously designated open clusters in pre-Gaia catalogs have been found to be asterisms

once they were reanalyzed with higher precision Gaia astrometry (Cantat-Gaudin and Anders, 2019). Neural

networks have been presented as a worthwhile method to identify open clusters. Neural networks are capable

of learning non-linear relationships within data, and can correctly learn to identify open cluster features

present the color-magnitude distribution. Cantat-Gaudin et al. (2020) used a dense neural network to predict

open cluster parameters (age, extinction Av, distance) based on a training set composed of identified open

clusters and simulated open clusters. Hunt and Reffert (2023) employed a Bayesian convolutional neural

network to perform True/False positive validations of open clusters identified in Gaia DR3 data, and compare

the neural networks efficacy to human identifiers.

In Chapter 3 a flexible Bayesian framework was constructed using the Exoplanetpython package to

perform inference of single-lined Spectroscopic Eclipsing binary (SEB1s) orbital parameters using time-

series flux data from TESS and sparse time-series radial velocities from APOGEE. This framework performed

Bayesian inference using Hamiltonian Monte Carlo (HMC) sampling. HMC differs from other Markov Chain

Monte Carlo methods by using gradient information of the parameter space to guide its sampling. This

implementation also uses the ”No U-Turn sampler” (NUTS) in order to both tune HMC hyperparameters as

well as terminating sampling when the sampler has sufficiently explored the parameter space.

Future work on this framework would consist of expanding its flexibility as well as bolstering its abil-

ity to handle sparse data sets. Currently as little as 5 radial velocity measurements prove sufficient to infer

reliable orbital parameters. However it may be possible to reduce that threshold to 3 radial velocity mea-

surements given a more well parameterized orbital model. Removing the framework’s reliance on a near

circular eccentricity will also expand it’s capabilities. TIC 258108067 was an eccentric binary which needed

the circular eccentricity assumption manually relaxed for a successful fit to take place. This demonstrates

that the framework can handle non-circular eccentricities, but a more nuanced treatment will be necessary to

take advantage of the all of identified binaries in the The Joker catalog.

Further improvements to this framework can take place in the initial determination of period, epoch of

first transit, and transit duration times from the TESS flux light curves. The box least squares (BLS) is very

ubiquitous in constructing an accurate periodigram of a light curve. However there have been recent attempts

at constructing a model that will better fit the transit flux data without the need for a high resolution frequency

grid to search through. Hippke et al. (2019) developed ’Transit Least Squares’ as a more optimized algorithm

that also takes into account relevant physics present in a transit such as limb darkening. A better fitting model

to the light curve will also produce more accurate estimates of transit duration lengths, improving light curve
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masking in the framework discussed in Chapter 3.

As more and more high precision measurements are produced by surveys such as the Gaia satellite,

JWST, and the upcoming Vera Rubin observatory, it is clear that automated methods of machine learning will

be essential to perform analyses on such large and growing data sets to reach science goals. It is also clear

that as the field pushes the limits of observations to the most distant and faintest objects that measurement

uncertainties be addressed via Bayesian methods to ensure both uncertainties in measurements and models

are considered. Bayesian methods of inference also advantageous when trying to infer parameters from

sparse data sets. This is crucial in order to perform large uniform analyses of stellar populations such as

SEB1s which have are more numerous in the literature than SEB2s. Automated Bayesian machine learning

inference methods will continue to improve our understanding of star clusters and binary stars so that a fully

realized star formation theory can be achieved.
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C., Bombrun, A., Borrachero, R., Bossini, D., Bouquillon, S., Bourda, G., Bragaglia, A., Bramante, L.,
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Zucker, S., Zurbach, C., and Zwitter, T. (2018). Gaia Data Release 2. Astronomy & Astrophysics, 616:A1.

Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Brightman, M., Merloni, A., Salvato, M.,
Donley, J., and Kocevski, D. (2014). X-ray spectral modelling of the AGN obscuring region in the CDFS:
Bayesian model selection and catalogue. Astronomy and Astrophysics, 564:1–25.

Cabrera-Cano, J. and Alfaro, E. J. (1990). A Non-parametric Approach to the Membership Problem In Open
Clusters. Astronomy and Astrophysics, 235:94–102.

Caldwell, D. A., Tenenbaum, P., Twicken, J. D., Jenkins, J. M., Ting, E., Smith, J. C., Hedges, C. L., Faus-
naugh, M. M., Rose, M., and Burke, C. J. (2020). TESS Science Processing Operations Center FFI Target
List Products. Publications of the Astronomical Society of the Pacific, 124(919):1000–1014.

Cantat-Gaudin, T. and Anders, F. (2019). Clusters and mirages: cataloguing stellar aggregates in the Milky
Way. (2010):1–24.

Cantat-Gaudin, T., Anders, F., Castro-Ginard, A., Jordi, C., Romero-Gomez, M., Soubiran, C., Casamiquela,
L., Tarricq, Y., Moitinho, A., Vallenari, A., Bragaglia, A., Krone-Martins, A., and Kounkel, M. (2020).
Painting a portrait of the Galactic disc with its stellar clusters. (1925).

Cantat-Gaudin, T., Jordi, C., Vallenari, A., Bragaglia, A., Balaguer-Núñez, L., Soubiran, C., Bossini, D.,
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Guillout, P., Guiraud, J., Gutiérrez-Sánchez, R., Guy, L. P., Hatzidimitriou, D., Hauser, M., Haywood,
M., Helmer, A., Helmi, A., Sarmiento, M. H., Hidalgo, S. L., Hładczuk, N., Holland, G., Huckle, H. E.,
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D., Simon, A. E., Smith, A. M. S., Steller, M., Szabó, G. M., Thomas, N., Udry, S., Van Grootel, V., and
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