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CHAPTER 1

Uniform inference of impulse response in vector autoregressive models

1.1 Introduction

Impulse response analysis based on autoregressive models is an important tool in empirical macroe-

conomics to describe dynamic interactions between variables (Kilian and Lütkepohl (2017)). How-

ever, it is well known that statistics of autoregressive models with unit root or near unit roots are

no longer asymptotically Gaussian. In fact, as discussed in Phillips (2014) and Mikusheva (2007),

standard inference procedures on impulse responses might fail in the presence of near unit roots,

while pointwise local to unity methods might fail as roots are far enough from unity. Such phe-

nomenon calls for a uniform solution to inference of impulse responses, as discussed in Park and

Phillips (1988), Park and Phillips (1989), Mikusheva (2007), Mikusheva (2012), Inoue and Kilian

(2020) and Montiel Olea and Plagborg-Møller (2021).

While uniform inference methods in autoregressions has been studied in the aforementioned

studies, the existing studies either focus on univariate autoregressions instead of vector autoregres-

sions, or have trouble accommodating longer horizons. Mikusheva (2007) established uniform ap-

proximation to LR statistics and considered grid bootstrap methods in univariate autoregressive

models, and Mikusheva (2012) extended the results to a class of vector autoregression models, al-

though the discussion was restricted to existence of at most one unit root. VAR impulse response

inference has been shown to be uniform at short horizons in Inoue and Kilian (2020), but the result

breaks down at longer horizons. For local projections, Montiel Olea and Plagborg-Møller (2021)

provides analogous results that remain valid at somewhat longer horizons, but also break down as

horizons increase, as in many empirical studies.

In this chapter, we provide a more general result for VAR inference that applies to all horizons,

in a wide class of vector autoregression models with potentially multiple unit roots. We suggest

constructing and performing inference on impulse responses via a Wald test, similar to Lütkepohl

et al. (2015). We show that when using lag augmentation, the Wald test has uniformly valid size,

and thus the confidence intervals constructed by inverting the Wald test and calculating impulse

responses has uniformly controlled size. A simulation study is also conducted to evaluate the finite
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sample performance of our method, and to compare it to that of some recent uniform inference

methods, especially the lag-augmented local projection discussed in Montiel Olea and Plagborg-

Møller (2021) and Xu (2023).

Our main contribution to the literature is twofold.

First, as mentioned above, we propose a method of estimation and inference of that is uniformly

valid in a large class of vector autoregression models, allowing for multiple potential unit roots.

The method is not only uniformly valid over the parameter space, but also across horizons. In

addition, since our method is based on inverting a Wald statistic, in principle we could construct

confidence interval with uniformly controlled coverage rate for not only impulse responses, but also

any function of VAR parameters.

Second, we provide a simulation study involving vector autoregressions with various degrees

of persistence that confirms the uniform validity of our method in finite sample. We also compare

these results with uniform inference methods via local projections, which sheds light on the gen-

eral comparison between local projection and VAR methods of impulse response inference. Our

results show that in general the relative performance is largely dependent on the persistence level

and horizon. Our method provides better coverage rate and shorter confidence intervals when the

persistence level is very high or exact unit root exists. Meanwhile, our method also outperforms

local projection methods at low persistence level unless the horizon is very short. On the contrary,

local projection methods tend to perform well when the roots are mildly large, but not very close to

1.

The remainder of the paper is organized as follows: In section 1.2, we establish our model and

assumptions. Section 1.3 establishes the uniform validity of the Wald statistic constructed after

running a lag-augmented regression, and thus provides the foundation of our proposed inference

method. Section 1.4 contains the simulation results that examines the accuracy of our method

in finite sample and compares it to that of other methods in the literature. Finally, section 1.5

summarizes and concludes the chapter.
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1.2 Model setup

1.2.1 Assumptions

Throughout this chapter, we consider the following model:

yt = Qy†
t +d†

(I−ΨL)y†
t = ut

(1.1)

yt ,y
†
t are N dimensional vectors, Q and Ψ are N×N matrices. We assume that Q is invertible and

Psi is a diagonal matrix. ut is a stationary process such that Φ(L)ut = εt where Φ(L) is of order

p−1. εt is an N×1 vector of martingale difference sequence.

Suppose y†
0 = y†

−1 = · · ·= y†
−p+1 = 0. This setup implies a VAR(p) model for yt :

Π(L)yt = d +Qεt , Π(L) = QΦ(L)(I−ΨL)Q−1, d = Π(1)d† (1.2)

so that QPhi(L)(I−ΨL)Q−1 can be interpreted as a decomposition of the original lag polynomial

Pi(L).

We present the details of our assumption on the parameter space in the following Assump-

tion 1.1:

Assumption 1.1. Assume that

E


 εt

vech(εtε
′
t −Σ)


 εt

vech(εtε
′
t −Σ)


′=

Σ 0

0 Σ4

 (1.3)

3



and E[‖εt‖6]< K for some constant K. We consider the following parameter space:

Θ =

{(
diag(Ψ)′,vec(Q)′,vec(Φ)′,d′,vech(Σ),vech(Σ4)

)′
:

Ψ = diag(ψ1, . . . ,ψN),

Q ∈Q ⊂RN×N ,

Φ = (Φ1, . . . ,Φp−1) ∈P ⊂RN×(N p−N),

d ∈D ⊂ RN ,

Σ ∈S ⊂RN×N ,Σ4 ∈S4 ⊂R
N(N+1)

2 ×N(N+1)
2

}
(1.4)

where Q,P,D ,S ,S4 are compact sets, and there exists constants K2 ≥ K1 > 0 and δ ∈ (0,1)

such that

(1) ψ j ∈ [−δ ,1] for all j = {1,2, . . . ,N}

(2) Σ is positive definite and any eigenvalue λΣ of Σ satisfies K1 ≤ λΣ ≤ K2

(3) Σ4 is positive definite and any eigenvalue λΣ4 of Σ4 satisfies K1 ≤ λΣ4 ≤ K2

(4) For any Q ∈Q, Q is invertible and any eigenvalue λQ of Q satisfies K1 ≤ |λQ| ≤ K2

(5) For any (Φ1, . . . ,Φp−1) ∈P , D(L) = ∑
∞
j=0 D jL j := Φ(L)−1 exists and ‖D j‖ ≤ K2δ j for all j

The assumption of diagonality on Ψ is similar to that in Elliott (1998), Mikusheva (2012)

and Montiel Olea and Plagborg-Møller (2021). This assumption rules out explosive processes or

processes with integration order larger than 1, but includes all stationary processes, and many I(1)

or near I(1) processes. Compared to the literature, our inclusion of an arbitrary invertible matrix Q

further expands the parameter space we cover. However, we do restrict each process y1,t , . . . ,yN,t to

have at most one unit root, as in Mikusheva (2012), Inoue and Kilian (2020) and Montiel Olea and

Plagborg-Møller (2021).

1.2.2 Lag-augmented regression

To obtain a uniformly valid Wald statistic, we utilize lag augmentation and augment the model by

one lag.
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Let Π= [−Π1, . . . ,−Πp] denote the slope coefficient estimates used to construct the Wald statis-

tic, and let x∗t = [1,y′t−1, . . . ,y
′
t−p,y

′
t−p−1]

′ denote the augmented regressors which includes one addi-

tional lag. By the Frisch-Waugh theorem, let x∗1,t = [1,y′t−p−1]
′ and x∗2,t = [y′t−1, . . . ,y

′
t−p]

′, we know

that the estimator for Π, Π̂ can be written as:

Π̂−Π =

(
T

∑
t=1

Qεtx∗
′

2,t

) T

∑
t=1

x∗2,tx
∗′
2,t −

(
T

∑
t=1

x∗2,tx
∗′
1,t

)(
T

∑
t=1

x∗1,tx
∗′
1,t

)−1( T

∑
t=1

x∗1,tx
∗′
2,t

)−1

≡

(
T

∑
t=1

Qεtx∗
′

2,t

)
M∗x

(1.5)

As a theoretical device, similar to Toda and Yamamoto (1995), let xt = [1,∆y†′
t−1, . . . ,∆y†′

t−p,y
†′
t−p−1]

′.

Then x∗1,t and x∗2,t can be written as

x∗1,t =

 1 01×N p . . . 01×N

d† 0N×N p Q

xt ≡ P1xt (1.6)

where P1 is a (N +1)× (N p+N +1) matrix, and

x∗2,t =



d† Q Q . . . Q Q

d† 0 Q . . . Q Q
. . . . . . . . .

...
. . . . . .

d† 0 0 . . . 0 Q


xt ≡ P2xt (1.7)

where P2 is an N p×(N p+N+1) matrix. These notations will be helpful for deriving our theoretical

results in section 1.3. Appendix A includes additional notations used throughout this chapter.

1.3 Main results

Eventually, we seek to perform inference on the structural impulse response functions, which we

achieve by inverting the Wald test for candidate parameters and using these to construct confidence

sets for impulse responses. To establish the uniform validity of such method, we follow Andrews

et al. (2020), which provides a framework of obtaining uniform size through pointwise asymptotics

under specific parameter sequences.
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1.3.1 Theoretical device and additional assumptions

Following Andrews et al. (2020), we consider sequences {θT} ⊂Θ such that

cT (θT ) =



T (1−ψ1,T )

T (1−ψ2,T )

...

T (1−ψN,T )

θT


→ c =



c1

c2

...

cN

θ


∈ [0,+∞]N×Θ (1.8)

By investigating the pointwise asymptotic of statistics under these parameter sequences, we can ob-

tain the asymptotic size of the Wald test, and by extension the confidence sets of impulse responses,

in a uniform sense.

Without lost of generality, for a given parameter sequence satisfying (1.8), we may assume that

there exists an integer 1 ≤ k ≤ N such that c j = +∞ for the for all j ≤ N− k, and c j ∈ [0,+∞) for

all j > N− k. Such a sequence can be interpreted as the last k roots being near or exact unit root

and the first N− k roots being stationary.

Corresponding to the above characterization, let y†
1,t be a vector of the first N−k elements of y†

t

and y†
2,t a vector of the rest so that y†

t = (y†′
1,t ,y

†′
2,t)
′, then we have

xt =



1

x3,t

y†
1,t−p−1

y†
2,t−p−1


(1.9)

where all the first differences are collected into x3,t .

Now we introduce some additional notations. Let C = diag(c1, . . . ,cN). In order to uniformly

bound the decaying rate of moving average coefficients, let ψ∗j = max
{
|ψ j|, 1+δ

2

}
and Ψ∗ =

diag(ψ∗1 , . . . ,ψ
∗
N). This ensures that power of roots ψ j are by construction bounded by the same

power of the corresponding ψ∗j .
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Corresponding to xt , we partition the matrices C, Ψ and Ψ∗ as

C =

C1 0

0 C2

 , Ψ =

Ψ1 0

0 Ψ2

 , Ψ
∗ =

Ψ∗1 0

0 Ψ∗2

 (1.10)

where C2,Ψ2,Ψ
∗
2 are k× k.

Let ε∗t = Qεt , let Σ∗ = QΣQ′ denote the variance of ε∗t , and let

Σ
∗
4 = LN(Q⊗Q)DNΣ4D′N(Q

′⊗Q′)L′N (1.11)

where LN and DN are elimination and duplication matrices defined in Appendix A.1.

In multiple occasions throughout the proof, we need to focus on specific rows/columns/elements

of a matrix. To that end, let e j denote a row vector of proper length with its j-th element being 1

and all other elements being 0.

Let Λ be a normalizing matrix:

Λ =

 1√
T

IN p+1 0

0 Λ†

 (1.12)

where

Λ
† =



max
{

1
T ,

1√
T
(1−ψ∗21 )1/2

}
0 . . . 0

0 max
{

1
T ,

1√
T
(1−ψ∗22 )1/2

}
. . . 0

...
...

. . .
...

0 0 . . . max
{

1
T ,

1√
T
(1−ψ∗2N )1/2

}


=

Λ1 0

0 Λ2


(1.13)

so that Λ1, Λ2 are (N− k)× (N− k) and k× k diagonal matrices respectively.
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Let Uk be a diagonal matrix whose last k diagonal elements are 1 and the rest are 0, and let

JC2(x) =
∫ x

0
e(s−x)C2UkD(1)dB(s) (1.14)

where B(s) is a Brownian motion with variance Σ∗. (Recall that D(L) = Φ(L)−1)

In addition to the model assumptions in previous section, we impose the following technical

assumption so that the least square estimator is always uniformly well-defined:

Assumption 1.2.

lim
K→∞

lim
T→∞

inf
θ∈Θ

P

(
λmin

(
E

[
T

∑
t=1

Λxtx′tΛ
′

])
≥ 1/K

)
= 1 (1.15)

This assumption is similar in spirit to Assumption 3 in Montiel Olea and Plagborg-Møller (2021)

and Assumption 4 in Xu (2023). For a more detailed discussion on the necessity and verification of

this assumption, see Montiel Olea and Plagborg-Møller (2021).

1.3.2 Asymptotics under drifting parameter sequences

In this section, we present Lemmas 1.1, 1.2, 1.3 and 1.4, which establish the asymptotic distribu-

tion of the relevant statistics under an arbitrary parameter sequence satisfying (1.8). Lemma 1.1

establishes the convergence of ∑
T
t=1 xtx′t at the appropriate rate.

Lemma 1.1. For sequences {θT} ⊂Θ satisfying (1.8), suppose there exists k ∈ {1, . . . ,N} such that

c j ∈ [0,+∞) for all j > N− k, and c j =+∞ for all j ≤ N− k, then

Λ

T

∑
t=1

xtx′tΛ
′−

1 0 0
∫ 1

0 JC2(x)
′dx

0 E[ 1
T ∑

T
t=1 x3,tx′3,t ] E[ 1√

T ∑
T
t=1 x3,ty

†′
1,t−p−1Λ′1] 0

0 E[ 1√
T ∑

T
t=1 Λ1y†

1,t−p−1x′3,t ] E[Λ1 ∑
T
t=1 y†

1,t−p−1y†′
1,t−p−1Λ′1] 0∫ 1

0 JC2(x)dx 0 0
∫ 1

0 JC2(x)JC2(x)
′dx


p−→ 0

(1.16)
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Proof. We obtain the result following a block by block approach. The (1,1) block is straightfor-

ward. The (4,4) block and (1,4) and (4,1) blocks follow from Lemma 1(iii) in Elliott (1998).

(i) We start from the (3,3) block. First, write y†
t as

y†
t =

t

∑
j=0

Ψ
jut− j =

t

∑
j=0

Ψ
j

(
t− j

∑
l=0

Dkεt− j− j

)

=
t

∑
j=0

(
j

∑
l=0

Ψ
j−kDl

)
εt− j ≡

t

∑
j=0

Fjεt− j

(1.17)

We have

‖emFj‖ ≤
j

∑
l=0
‖emΨ

j−l‖‖Dl‖ ≤
j

∑
l=0
|ψm| j−l‖Dl‖

≤Const ·ψ∗ j
m

j

∑
l=0

δ l

ψ∗lm
≤Const ·ψ∗ j

m

(1.18)

The above equation provides us the basis to bound the moments of the relevant elements.

For (3,3) block, we are dealing with ”stationary” roots, or in other words, we are focusing on

m,n ≤ N− k, for which we have T (1−ψ∗m),T (1−ψ∗n )→ +∞. This guarantees that for T large

enough, ψ∗m,ψ
∗
n < 1, so that 1

1−ψ∗m
and 1

1−ψ∗n
are well-defined, and

∣∣∣E [emy†
t y†′

t e′nemy†
t+sy

†′
t+se

′
n

]
−E

[
emy†

t y†′
t e′n
]

E
[
emy†

t+sy
†′
t+se

′
n

]∣∣∣
=

∣∣∣∣∣ t

∑
j1=0

t

∑
j2=0

t+s

∑
j3=0

t+s

∑
j4=0

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]
−E

[
t

∑
j1=0

t

∑
j2=0

emFj1εt− j1ε
′
t− j2F ′j2e′n

]
E

[
t+s

∑
j3=0

t+s

∑
j4=0

emFj3εt+s− j3ε
′
t+s− j4F ′j4e′n

]∣∣∣∣∣
≤

∣∣∣∣∣ ∑
j1= j3−s 6= j2= j4−s

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j4−s6= j2= j3−s

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j2= j3−s= j4−s

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
=O

(
∑

l
ψ
∗2l+s
m ∑

l
ψ
∗2l+s
n

)
+O

(
∑

l
ψ
∗l
m ψ

∗l+s
n ∑

l
ψ
∗l+s
m ψ

∗l
n

)
+O

(
∑

l
ψ
∗2l+s
m ψ

∗2l+s
n

)

=O
(

ψ∗sm ψ∗sn

(1−ψ∗m)(1−ψ∗n )

)
+O

(
ψ∗sm ψ∗sn

1−ψ∗mψ∗n

)

(1.19)
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The above equation implies that

∣∣∣∣∣Var

[
T

∑
t=1

emΛ1y†
1,t−p−1y†′

1,t−p−1Λ
′
1e′n

]∣∣∣∣∣
≤ 2

T
(1−ψ

∗2
m )(1−ψ

∗2
n )

· max
1≤t≤T

T−t+p+1

∑
s=0

∣∣∣Cov
(

emy†
2,t−p−1y†′

2,t−p−1e′n,emy†
2,t+s−p−1y†′

2,t+s−p−1e′n
)∣∣∣

=O
(

T−1
)
·O
(
(1−ψ

∗
m)(1−ψ

∗
n )
)

·
(

O
([

(1−ψ
∗
m)(1−ψ

∗
n )(1−ψ

∗
mψ
∗
n )
]−1
)
+O

(
(1−ψ

∗
mψ
∗
n )
−2
))

=O
(

T−1(1−ψ
∗
m)
−1
)
+O(T−1) = o(1)

(1.20)

due to T (1−ψ∗m),T (1−ψ∗n )→+∞. Thus, by the multivariate Chebyshev inequality,

P

(∥∥∥∥∥vec

(
Λ1

T

∑
t=1

y†
1,t−p−1y†′

1,t−p−1Λ
′
1

)
−E

[
vec

(
Λ1

T

∑
t=1

y†
1,t−p−1y†′

1,t−p−1Λ
′
1

)]∥∥∥∥∥> x

)
→ 0 (1.21)

(ii) Now consider the (4,3) and (3,4) blocks. We follow similar steps as in part (i). As argued

10



in part (i), for n < N− k, ψ∗n < 1 for large enough T , so similar to part (i), we can obtain

∣∣∣E [emy†
t y†′

t e′nemy†
t+sy

†′
t+se

′
n

]∣∣∣
=

∣∣∣∣∣ t

∑
j1=0

t

∑
j2=0

t+s

∑
j3=0

t+s

∑
j4=0

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
≤

∣∣∣∣∣ ∑
j1= j3−s6= j2= j4−s

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j4−s6= j2= j3−s

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j2= j3−s= j4−s

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j2 6= j3−s= j4−s

E
[
emFj1εt− j1ε

′
t− j2F ′j2e′nemFj3εt+s− j3ε

′
t+s− j4F ′j4e′n

]∣∣∣∣∣
=O

(
∑

l
ψ
∗2l+s
m ∑

l
ψ
∗2l+s
n

)
+O

(
∑

l
ψ
∗l
m ψ

∗l+s
n ∑

l
ψ
∗l+s
m ψ

∗l
n

)

+O

(
∑

l
ψ
∗2l+s
m ψ

∗2l+s
n

)
+O

(
(∑

l
ψ
∗l
m ψ

∗l
n )2

)

=O
(

T ψ∗sn

(1−ψ∗n )

)
+O

(
ψ∗sn

(1−ψ∗n )
2

)
+O

(
ψ∗sn

1−ψ∗n

)
+O

(
1

(1−ψ∗n )
2

)

(1.22)

where last two steps depend on ψ∗m ≤ 1 and for T large enough, ψ∗n < 1.

Now notice that for large enough T , by construction, Λ2 =
1
T Ik. Then we have

∣∣∣∣∣∣E
( 1

T

T

∑
t=1

emy†
2,t−p−1y†′

1,t−p−1Λ
′
1e′n

)2
∣∣∣∣∣∣

≤ 2
T 2 (1−ψ

∗2
n ) max

1≤t≤T

T−t+1

∑
s=0

∣∣∣E (emy†
2,t−p−1y†′

1,t−p−1e′nemy†
2,t+s−p−1y†′

1,t+s−p−1e′n
)∣∣∣

=O
(

T−2
)
·O
(

1−ψ
∗
n

)
·
[

O
(

T ψ∗sn

(1−ψ∗n )

)
+O

(
ψ∗sn

(1−ψ∗n )
2

)
+O

(
ψ∗sn

1−ψ∗n

)
+O

(
1

(1−ψ∗n )
2

)]
=O

(
1

T (1−ψ∗n )

)
+O

(
1

T 2(1−ψ∗n )
2

)
+O

(
1

T 2(1−ψ∗n )

)
+O

(
1
T

)
=o(1)

(1.23)

by T (1−ψ∗n )→+∞ for n≤ N− k.
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Thus, by the multivariate Chebyshev inequality,

P

(∥∥∥∥∥vec

(
Λ2

T

∑
t=1

y†
2,t−p−1y†′

1,t−p−1Λ
′
1

)∥∥∥∥∥> x

)
→ 0 (1.24)

(iii) Now consider the (4,2) and (2,4) blocks. First notice that for the difference terms,

∆y†
t = y†

t − y†
t−1 =

t

∑
j=1

G jεt− j (1.25)

where G j = Fj−Fj−1 for j ≥ 1 and G0 = F0 = I. For any m = 1, . . . ,N,

‖emG j‖= ‖
j

∑
l=0

emΨ
j−lDl−

j−1

∑
l=0

emΨ
j−l−1Dl‖

= ‖emD j + em(Ψ− I)
j−1

∑
l=0

Ψ
j−l−1Dl‖

≤ ‖D j‖+(1−ψm)
j

∑
l=0

ψ
j−l

m ‖Dl‖

≤Const ·

(
δ

j +(1−ψm)ψ
∗ j
m

j

∑
l=0

δ l

ψ∗lm

)

≤Const ·
(
δ

j +(1−ψm)ψ
∗ j
m
)

(1.26)
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Then for 1≤ j ≤ p,

∥∥∥E
[
emy†

t−p−1∆y†′
t− je

′
nemy†

t−p−1+s∆y†′
t− j+se

′
n

]∥∥∥
=

∥∥∥∥∥ t−p−1

∑
j1=0

t− j

∑
j2=0

t−p−1+s

∑
j3=0

t− j+s

∑
j4=0

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∥∥∥∥∥
≤

∥∥∥∥∥ ∑
j1= j2−(p− j+1)6= j3−s= j4−(p− j+1)−s

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∥∥∥∥∥
+

∥∥∥∥∥ ∑
j1= j3−s6= j2−(p− j+1)+ j= j4−(p− j+1)−s

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∥∥∥∥∥
+

∥∥∥∥∥ ∑
j1= j4−(p− j+1)−s 6= j2−(p− j+1)= j3−s

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∥∥∥∥∥
+

∥∥∥∥∥ ∑
j1= j2−(p− j+1)= j3−s= j4−(p− j+1)−s

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∥∥∥∥∥
=O
([

∑
l

ψ
∗l
m

(
(1−ψn)ψ

∗l+(p− j+1)
n +δ

l+(p− j+1)
)]2

)
+O

([
∑

l
ψ
∗2l+s
m

][
∑

l

(
(1−ψn)ψ

∗l
n +δ

l
)(

(1−ψn)ψ
∗l+s
n +δ

l+s
)])

+O
([

∑
l

ψ
∗l
m

(
(1−ψn)ψ

∗l+s+(p− j+1)
n +δ

l+s+(p− j+1)
)]

·
[
∑

l
ψ
∗l+s
m

(
(1−ψn)ψ

∗l+(p− j+1)
n +δ

l+(p− j+1)
)])

+O
(

∑
l

ψ
∗2l+s
m

(
(1−ψn)ψ

∗l+(p− j+1)
n +δ

l+(p− j+1)
)(

(1−ψn)ψ
∗l+s+(p− j+1)
n +δ

l+s+(p− j+1)
))

(1.27)

Let

κ(ψ∗n ) =


1

1−ψ∗n
if ψ∗n < 1

T if ψ∗n = 1
(1.28)

Notice that if N− k+1≤ n≤ N, since

(1−ψn)
1

1− 1+δ

2

≤ 2
1− 1+δ

2

=
4

1−δ
(1.29)

we have

(1−ψn)κ(ψ
∗
n )≤max

{
4

1−δ
,T (1−ψn)

}
= O(1) (1.30)

13



Meanwhile, if 1 ≤ n ≤ N− k, then for large enough T , ψ∗n,T < 1 since T (1−ψn,T )→ +∞. Thus,

for large enough T ,

(1−ψn,T )κ(ψ
∗
n,T ) =

1−ψn,T

1−ψ∗n,T
= O(1) (1.31)

Therefore (1−ψn)κ(ψ
∗
n ) = O(1). Back to (1.27), for the first term,

(
∑

l
ψ
∗l
m

(
(1−ψn)ψ

∗l+(p− j+1)
n +δ

l+(p− j+1)
))2

≤
(
(1−ψn)κ(ψ

∗
n )+

1
1−δ

)2
= O(1)

(1.32)

Similarly, for the second term,

(
∑

l
ψ
∗2l+s
m

)(
∑

l

(
(1−ψn)ψ

∗l
n +δ

l
)(

(1−ψn)ψ
∗l+s
n +δ

l+s
))

≤T
(

δ s

1−δ 2 +
(1−ψn)(δ

s +ψ∗sn )

1−δ
+(1−ψn)

2
κ(ψ∗n )ψ

∗s
n

)
=O
(

T δ
s
)
+O

(
T (1−ψn)ψ

∗s
n

) (1.33)

the third term,

(
∑

l
ψ
∗l
m

(
(1−ψn)ψ

∗l+s+(p− j+1)
n +δ

l+s+(p− j+1)
))

(
∑

l
ψ
∗l+s
m

(
(1−ψn)ψ

∗l+(p− j+1)
n +δ

l+(p− j+1)
))

≤
(
(1−ψn)ψ

∗s
n κ(ψ∗n )+

δ s

1−δ

)(
(1−ψn)κ(ψ

∗
n )+

1
1−δ

)
=O(ψ∗sn )+O(δ s)

(1.34)

and the fourth term

∑
l

ψ
∗2l+s
m

(
(1−ψn)ψ

∗l+(p− j+1)
n +δ

l+(p− j+1)
)(

(1−ψn)ψ
∗l+s+(p− j+1)
n +δ

l+s+(p− j+1)
)

≤(1−ψn)
2
ψ
∗s
n κ(ψ∗n )+

1−ψn

1−δ
(δ s +ψ

∗s
n )+

δ s

1−δ

=O((1−ψn)ψ
∗s
n )+O(δ s)

(1.35)

14



Therefore for all m,n such that N− k+1≤ m≤ N and 1≤ n≤ N− k,

∥∥∥∥∥∥E

( 1
T 3/2

T

∑
t=1

emy†
2,t−p−1∆y†′

t− je
′
n

)2
∥∥∥∥∥∥

≤ 1
T 2 max

t

T−t

∑
s=−t

∥∥∥E
[
emy†

t−p−1∆y†′
t− je

′
nemy†

t−p−1+s∆y†′
t− j+se

′
n

]∥∥∥
=O
(

T−2
)(

O
(

T
)
+O

( T
1−δ

)
+O

(
T (1−ψn)κ(ψ

∗
n )
)

+O
(

κ(ψ∗n )
)
+O

( 1
1−δ

)
+O

(
(1−ψn)ψ

∗s
n

)
+O(

1
1−δ

)

)
=o(1)

(1.36)

Since (1−ψn)κ(ψ
∗
n ) = O(1) and T−1κ(ψ∗n ) = O(1). Thus, by the multivariate Chebyshev inequal-

ity,

P

(∥∥∥∥∥vec

(
1

T 3/2

T

∑
t=1

y†
2,t−p−1∆y†′

t− j

)∥∥∥∥∥> x

)
→ 0 (1.37)

which implies that

P

(∥∥∥∥∥vec

(
1

T 3/2

T

∑
t=1

y†
2,t−p−1x′3,t

)∥∥∥∥∥> x

)
→ 0 (1.38)

(iv) The proofs for the (3,2) and (2,3) blocks are similar to part (iii). For m≤ N− k, we know

15



that ψ∗m,T < 1 for large enough T since T (1−ψm)→+∞. Hence, we have

∣∣∣Cov
(

emy†
t−p−1∆y†′

t− je
′
n,emy†

t−p−1+s∆y†′
t− j+se

′
n

)∣∣∣
=

∣∣∣∣∣ t−p−1

∑
j1=0

t− j

∑
j2=0

t−p−1+s

∑
j3=0

t− j+s

∑
j4=0

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]
−

t−p−1

∑
j1=0

t− j

∑
j2=0

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′n

] t−p−1+s

∑
j3=0

t− j+s

∑
j4=0

E
[
emFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
≤

∣∣∣∣∣ ∑
j1= j3−s6= j2−(p− j+1)= j4−(p− j+1)−s

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j4−(p− j+1)−s 6= j2−(p− j+1)= j3−s

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j2−(p− j+1)= j3−s= j4−(p− j+1)−s

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
=O
(

δ s

1−ψ∗m
+

(1−ψn)ψ
∗s
n

1−ψ∗m

)
+O

(
ψ
∗s
m

)
+O

(
ψ
∗s
m +δ

s
)

(1.39)

and therefore∥∥∥∥∥Var

(
1√
T

T

∑
t=1

emΛ2y†
2,t−1∆y†′

t− je
′
n

)∥∥∥∥∥
≤1−ψ∗2m

T
max

t

T−t

∑
s=−t

∥∥∥Cov
(

emy†
t−1∆y†′

t− je
′
n,emy†

t+s−1∆y†′
t+s− je

′
n

)∥∥∥
=O
(

T−1
)
·O
(

1−ψ
∗
m

)
·
(

O
( 1

1−ψ∗m

)
+O

( 1
1−ψ∗m

)
+O

( 1
1−ψ∗m

+
1

1−δ

))
=o(1)

(1.40)

for all m,n such that 1≤ m≤ k and 1≤ n≤ N. Thus, by the multivariate Chebyshev inequality,

P

(∥∥∥∥∥vec

(
1√
T

Λ1

T

∑
t=1

y†
1,t−p−1∆y†′

t− j

)
−E

[
vec

(
1√
T

Λ1

T

∑
t=1

y†
1,t−p−1∆y†′

t− j

)]∥∥∥∥∥> x

)
→ 0 (1.41)

which implies that

P

(∥∥∥∥∥vec

(
1√
T

Λ1

T

∑
t=1

y†
1,t−p−1x′3t

)
−E

[
vec

(
1√
T

Λ1

T

∑
t=1

y†
1,t−p−1x′3t

)]∥∥∥∥∥> x

)
→ 0 (1.42)
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(v) Now consider the (2,2) block. Similar as previous blocks, we have

∣∣∣Cov
(

em∆y†
t ∆y†′

t− je
′
n,em∆y†

t+s∆y†′
t+s− je

′
n

)∣∣∣
=

∣∣∣∣∣ t

∑
j1=0

t− j

∑
j2=0

t+s

∑
j3=0

t+s− j

∑
j4=0

E
[
emG j1εt− j1ε

′
t− j− j2G′j2e′nemG j3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]
−

t

∑
j1=0

t− j

∑
j2=0

E
[
emG j1εt− j1ε

′
t− j− j2G′j2e′n

] t+s

∑
j3=0

t+s− j

∑
j4=0

E
[
emG j3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
≤

∣∣∣∣∣ ∑
j1= j3−s 6= j2+ j= j4+ j−s

E
[
emG j1εt− j1ε

′
t− j− j2G′j2e′nemG j3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j4+ j−s6= j2+ j= j3−s

E
[
emG j1εt− j1ε

′
t− j− j2G′j2e′nemG j3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
+

∣∣∣∣∣ ∑
j1= j2+ j= j3−s= j4+ j−s

E
[
emG j1εt− j1ε

′
t− j− j2G′j2e′nemG j3εt+s− j3ε

′
t+s− j− j4G′j4e′n

]∣∣∣∣∣
=O
([

∑
l
(δ l +(1−ψm)ψ

∗l
m )(δ l+s +(1−ψm)ψ

∗l+s
m )

]
[
∑

l
(δ l +(1−ψn)ψ

∗l
n )(δ l+s +(1−ψn)ψ

∗l+s
n )

])
+O

([
∑

l
(δ l +(1−ψm)ψ

∗l
m )(δ l+s− j +(1−ψn)ψ

∗l+s− j
n )

]
[
∑

l
(δ l +(1−ψn)ψ

∗l
n )(δ l+s +(1−ψm)ψ

∗l+s
m )

])
+O

(
∑

l

[
(δ l+ j +(1−ψm)ψ

∗l+ j
m )(δ l +(1−ψn)ψ

∗l
n )

(δ l+ j+s +(1−ψm)ψ
∗l+ j+s
m )(δ l+s +(1−ψn)ψ

∗l+s
n )

])

(1.43)

The first term can be bounded as follows:

[
∑

l
(δ l +(1−ψm)ψ

∗l
m )(δ l+s +(1−ψm)ψ

∗l+s
m )

]
[
∑

l
(δ l +(1−ψn)ψ

∗l
n )(δ l+s +(1−ψn)ψ

∗l+s
n )

]
≤
(

δ s

1−δ
+

(1−ψm)(ψ
∗s
m +δ s)

1−δ
+(1−ψm)

2
ψ
∗s
m κ(ψ∗m)

)
(

δ s

1−δ
+

(1−ψn)(ψ
∗s
n +δ s)

1−δ
+(1−ψn)

2
ψ
∗s
n κ(ψ∗n )

)
=O
(

δ
s
)
+O

(
(1−ψm)ψ

∗s
m

)
(1.44)
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Similarly, for the second term we have

[
∑

l
(δ l +(1−ψm)ψ

∗l
m )(δ l+s− j +(1−ψn)ψ

∗l+s− j
n )

]
[
∑

l
(δ l +(1−ψn)ψ

∗l
n )(δ l+s +(1−ψm)ψ

∗l+s
m )

]
≤
(

δ s− j

1−δ
+

(1−ψm)δ
s− j

1−δ
+

(1−ψn)ψ
∗s− j
n

1−δ
+(1−ψm)(1−ψn)ψ

∗s− j
n κ(ψ∗m)

)
(

δ s

1−δ
+

(1−ψm)ψ
∗s
m

1−δ
+

(1−ψn)δ
s

1−δ
+(1−ψm)(1−ψn)ψ

∗s
m κ(ψ∗n )

)
=O
(

δ
s
)
+O

(
(1−ψm)ψ

∗s
m

)
+O

(
(1−ψn)ψ

∗s
n

)
(1.45)

and for the third term we have

∑
l

[
(δ l+ j +(1−ψm)ψ

∗l+ j
m )(δ l +(1−ψn)ψ

∗l
n )

(δ l+ j+s +(1−ψm)ψ
∗l+ j+s
m )(δ l+s +(1−ψn)ψ

∗l+s
n )

]
=∑

l

[(
δ

2l+ j +(1−ψm)ψ
∗l+ j
m δ

l +(1−ψn)ψ
∗l
n δ

l+ j +(1−ψm)(1−ψn)ψ
∗l+ j
m ψ

∗l
n

)
(

δ
2l+ j+s +(1−ψm)ψ

∗l+ j+s
m δ

l+s+

(1−ψn)ψ
∗l+s
n δ

l+ j+s +(1−ψm)(1−ψn)ψ
∗l+ j+s
m ψ

∗l+s
n

)]

≤∑
l

[
(3δ

l +(1−ψm)(1−ψn)ψ
∗l
m ψ

∗l
n )(3δ

l+s +(1−ψm)(1−ψn)ψ
∗l+s
m ψ

∗l+s
n )

]
=O
(

δ
s
)
+O

(
(1−ψm)ψ

∗s
m

)

(1.46)

Therefore ∣∣∣∣∣Var

(
1
T

T

∑
t=1

em∆y†
t−1∆y†′

t− je
′
n

)∣∣∣∣∣
≤ 1

T
max

t

T−t

∑
s=−t

∥∥∥Cov
(

em∆y†
t−1∆y†′

t− je
′
n,em∆y†

t+s−1∆y†′
t+s− je

′
n

)∥∥∥
=O
(

T−1
)
·
(

O
(

1
)
+O

(
(1−ψm)κ(ψ

∗
m)
)
+O

(
(1−ψn)κ(ψ

∗
n )
))

=o(1)

(1.47)
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for all m,n. Thus, by the multivariate Chebyshev inequality,

sup
θ∈Θk,T

P

(∥∥∥∥∥vec

(
1
T

T

∑
t=1

∆y†
t−1∆y†′

t− j

)
−E

[
vec

(
1
T

T

∑
t=1

∆y†
t−1∆y†′

t− j

)]∥∥∥∥∥> x

)
= o(1) (1.48)

which implies that

sup
θ∈Θk,T

P

(∥∥∥∥∥vec

(
1
T

T

∑
t=1

x3,tx′3,t

)
−E

[
vec

(
1
T

T

∑
t=1

x3,tx′3,t

)]∥∥∥∥∥> x

)
= o(1) (1.49)

(vi) Consider the (1,3) and (3,1) blocks. Since T (1−ψ∗m)→+∞ for 1≤ m≤ N− k, we have

that ψ∗m,T < 1 for large enough T . Notice that

∣∣∣∣E [emy†
1,ty

†′
1,t+se

′
m

]∣∣∣∣≤
∣∣∣∣∣ t

∑
j1=0

t+s

∑
j2=0

E
[
emFj1εt− j1ε

′
t+s− j2F ′j2e′m

]∣∣∣∣∣
=O

(
∑

l
ψ
∗2l+s
m

)
= O

(
ψ∗sm

1−ψ∗m

) (1.50)

Then ∣∣∣∣∣∣E
( 1√

T

T

∑
t=1

emΛ1y†
1,t−p−1

)2
∣∣∣∣∣∣

≤ 1
T
(1−ψ

∗2
m )max

t

T−t

∑
s=−t

∣∣∣∣E [emy†
1,ty

†′
2t+se

′
m

]∣∣∣∣
=O
(

T−1
)
·O
(
(1−ψ

∗
m)

)
·O
(

1
(1−ψ∗m)

2

)
= o(1)

(1.51)

since T (1−ψ∗m)→+∞. By the multivariate Chebyshev inequality, this implies that

1√
T

T

∑
t=1

Λ1y†
1,t−p−1

p−→ 0 (1.52)
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(vii) Finally, consider the (1,2) and (2,1) blocks. Notice that for any 1≤ j ≤ p

∣∣∣∣E [em∆y†
t− j∆y†′

t− j+se
′
m

]∣∣∣∣≤
∣∣∣∣∣ t− j

∑
j1=0

t− j+s

∑
j2=0

E
[
emG j1εt− j− j1ε

′
t− j+s− j2G′j2e′m

]∣∣∣∣∣
=O

(
∑

l
δ

2l+s

)
+O

(
(1−ψm)∑

l
ψ
∗l
m δ

l+s

)

+O

(
(1−ψm)

2
∑

l
ψ
∗2l+s
m

)
+O

(
(1−ψm)∑

l
ψ
∗l+s
m δ

l

)

=O(δ s)+O((1−ψm)ψ
∗s
m )

(1.53)

Then ∣∣∣∣∣∣E
( 1

T

T

∑
t=1

em∆y†
t− j

)2
∣∣∣∣∣∣≤ 1

T
max

t

T−t

∑
s=−t

∣∣∣∣E [em∆y†
t− j∆y†′

t− j+se
′
m

]∣∣∣∣
=O
(

T−1
)
·
(

O
(

1
)
+O

(
(1−ψm)κ(ψ

∗
m)
))

= o(1)

(1.54)

which, by the multivariate Chebyshev inequality, gives that

1
T

T

∑
t=1

∆y†
t− j

p−→ 0 (1.55)

This implies that
1
T

T

∑
t=1

x3,t
p−→ 0 (1.56)

Lemma 1.2 establishes the convergence of ∑
T
t=1 εtx′t at the appropriate rate. Lemmas 1.1 and 1.2,

once combined, give the asymptotic distribution of the slope estimator.

Lemma 1.2. For sequences {θT} ⊂Θ satisfying (1.8), suppose there exists k ∈ {1, . . . ,N} such that

c j ∈ [0,+∞) for all j > N− k, and c j =+∞ for all j ≤ N− k. Let SΣ = Σ1/2, ζ ∗t = [x′3,t ,y
†′
1,t−p−1]

′,
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Sζ ∗ = (E[∑T
t=1 ζ ∗t ζ ∗

′
t ])1/2, and let Λ̃ =


1√
T

0 0

0 S−1
ζ ∗ 0

0 0 Λ2

, then

T

∑
t=1

vec
(

S−1
Σ

εtx′tΛ̃
′
)

d−→


Z1

Z2

vec
(

S−1
Σ

(∫ 1
0 JC2(x)dB(x)′

)′)


where [Z′1,Z
′
2]
′ ∼ N(0, IN(N p+N−k+1)).

Proof. Again, we take a block by block approach. The third block follows from Lemma 1(iv)

in Elliott (1998).

Now consider the first and second block. Let SΣ = Σ1/2. In addition, let ζt = [1,ζ ∗
′

t ]′ and

Sζ =
(
E
[
∑

T
t=1 ζtζ

′
t
])1/2, XTt = vec

(
S−1

Σ
(θT )εt(θT )ζt(θT )

′Sζ (θT )
−1′
)

and let FTt be a filtration

FTt = σ(εs(θT ) : 0≤ s≤ t)

i.e. the smallest σ -algebra such that all εs are measurable for 0 ≤ s ≤ t. The desired result can be

shown by verifying the following (Davidson (1994)):

(1) E [XTt ] = 0;

(2) ∑
T
t=1 E [XTtX ′Tt |FTt−1]→ I in probability;

(3) ∑
T
t=1 E

[
‖XTt‖2

1{‖XTt‖> ε}
∣∣∣FTt−1

]
→ 0 in probability for all ε > 0;

(1) is straightforward. To verify (2), let

ζ̃t = S−1
ζ

ζt

ε̃t = S−1
Σ

εt
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and

Λ
∗ =


1√
T

0 0

0 1√
T

IN p 0

0 0 Λ1

 (1.57)

Then a typical element in ∑
T
t=1 E [XTtX ′Tt |FTt−1] is

T

∑
t=1

E
[
eiε̃t ζ̃

′
t e′jemζ̃t ε̃

′
t e
′
n

∣∣∣FTt−1

]
=

T

∑
t=1

e jζ̃t ζ̃
′
t e′m1{i = n} (1.58)

Meanwhile, in Lemma 1.1 we showed that

Λ
∗

T

∑
t=1

ζtζ
′
t Λ
∗′−E

[
Λ
∗

T

∑
t=1

ζtζ
′
t Λ
∗′
]

p−→ 0 (1.59)

Therefore by Assumption 1.2, we have

S−1
ζ

T

∑
t=1

ζtζ
′
t S−1′

ζ

p−→ I (1.60)

and thus (2) holds.

To verify (3), it is sufficient to show that

T

∑
t=1

E
[∥∥∥ε̃t ζ̃

′
t

∥∥∥4 ∣∣∣FTt−1

]
p−→ 0 (1.61)

Notice that

T

∑
t=1

E
[∥∥∥ε̃t ζ̃

′
t

∥∥∥4 ∣∣∣FTt−1

]
≤

T

∑
t=1

E
[
‖ε̃t‖4

∥∥∥ζ̃t

∥∥∥4 ∣∣∣FTt−1

]
= E

[
‖ε̃t‖4

] T

∑
t=1
‖ζ̃t‖4

≤E
[
‖ε̃t‖4

]∥∥∥S−1
ζ

Λ
∗−1
∥∥∥4 T

∑
t=1
‖Λ∗ζt‖4

=E
[
‖ε̃t‖4

][
tr
(
(Λ∗Sζ S′

ζ
Λ
∗′)−1

)]2 T

∑
t=1

∥∥∥Λ
∗
ζt

∥∥∥4

≤Const ·
[
λmin

(
Λ
∗Sζ S′

ζ
Λ
∗′
)]−2 T

∑
t=1

∥∥∥Λ
∗
ζt

∥∥∥4

(1.62)
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Then by Assumption 1.2, it is sufficient to show that

T

∑
t=1

E
[
‖Λ∗ζt‖4

]
→ 0 (1.63)

To show this, notice that

‖Λ∗ζt‖4 =

(
1
T
+

N−k

∑
n=1

[1−ψ∗2n

T
(eny†

t−p−1)
2
]
+

p

∑
l=1

N

∑
n=1

[ 1
T
(en∆y†

t−l)
2
])2

(1.64)

Therefore we may expand the right-hand side, and it is sufficient to show the convergence for each

element of the expansion. As a demonstration, here we show that

1−ψ∗2m

T 2

T

∑
t=1

E
[
(emy†

t−p−1)
2(en∆y†

t− j)
2
]
→ 0 (1.65)

for any 1≤ j ≤ p and any 1≤ m≤ N− k. To see this, notice that

∥∥∥E
[
emy†

t−p−1∆y†′
t− je

′
nemy†

t−p−1∆y†′
t− je

′
n

]∥∥∥
=

∥∥∥∥∥ t−p−1

∑
j1=0

t− j

∑
j2=0

t−p−1

∑
j3=0

t− j

∑
j4=0

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt− j3ε

′
t− j− j4G′j4e′n

]∥∥∥∥∥
≤

∥∥∥∥∥ ∑
j1= j2−(p− j+1)6= j3= j4−(p− j+1)

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt− j3ε

′
t− j− j4G′j4e′n

]∥∥∥∥∥
+

∥∥∥∥∥ ∑
j1= j3 6= j2−(p− j+1)= j4−(p− j+1)

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt− j3ε

′
t− j− j4G′j4e′n

]∥∥∥∥∥
+

∥∥∥∥∥ ∑
j1= j4−(p− j+1)6= j2−(p− j+1)= j3

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt− j3ε

′
t− j− j4G′j4e′n

]∥∥∥∥∥
+

∥∥∥∥∥ ∑
j1= j2−(p− j+1)= j3= j4−(p− j+1)

E
[
emFj1εt− j1ε

′
t− j− j2G′j2e′nemFj3εt− j3ε

′
t− j− j4G′j4e′n

]∥∥∥∥∥
=O
(

1
)
+O

( 1
1−ψ∗m

)
+O

(
1
)
+O

(
1
)

(1.66)

Therefore ∥∥∥E
[
(1−ψ

∗2
m )emy†

t−p−1∆y†′
t− je

′
nemy†

t−p−1∆y†′
t− je

′
n

]∥∥∥= O(1) (1.67)

and thus
1−ψ∗2m

T 2

T

∑
t=1

E
[
(emy†

t−p−1)
2(en∆y†

t− j)
2
]
→ 0 (1.68)
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Other elements from the right-hand side of (1.64) can be bounded similarly.

Lemma 1.2 extends the argument in Lemma 1.2, and is useful to show the joint convergence of

the slope and variance estimators.

Lemma 1.3. For sequences {θT} ⊂ Θ satisfying (1.8), suppose there exists k ∈ {1, . . . ,N} such

that c j ∈ [0,+∞) for all j > N− k, and c j = +∞ for all j ≤ N− k. Let ζt = [1,x′3,t ,y
†′
1,t−1]

′, and

Sζ =
(
E
[
∑

T
t=1 ζtζ

′
t
])1/2. Let SΣ = Σ∗1/2 and S4 = Σ

∗1/2
4 . Then

vec
(

S−1
Σ ∑

T
t=1 εtζ

′
t S−1′

ζ

)
√

T S−1
4 vech

(
Σ̂∗−Σ∗

)
 d−→ N

(
0, IN(N p−k+1)+N(N+1)/2

)
(1.69)

where Σ̂∗ = 1
T ∑

T
t=1 ε̂∗t ε̂∗

′
t .

Proof. First, following the proof of Proposition 1 in Inoue and Kilian (2020), we have that

√
T S−1

4 vech
(
Σ̂
∗−Σ

∗)
=

1√
T

S−1
4

T

∑
t=1

vech
(

ε̂
∗
t ε̂
∗′
t −Σ

∗
)

=
1√
T

S−1
4

T

∑
t=1

vech
(

ε
∗
t ε
∗′
t −Σ

∗+(Π̂−Π)x∗t x∗
′

t (Π̂−Π)′

− (Π̂−Π)x∗t ε
∗′
t − ε

∗
t x∗

′
t (Π̂−Π)′

)
=

1√
T

S−1
4

[ T

∑
t=1

vech
(

ε
∗
t ε
∗′
t −Σ

∗
)
+ vech

(
(Π̂−Π)PΛ

−1
Λ

T

∑
t=1

xtx′tΛ
′
Λ
−1′P′(Π̂−Π)′

)
− vech

(
(Π̂−Π)PΛ

−1
Λ

T

∑
t=1

xtε
∗′
t +

T

∑
t=1

ε
∗
t x′tΛ

′
Λ
−1′P(Π̂−Π)′

)]

(1.70)

By Lemmas 1.1 and 1.2, we have

1√
T

[
vech

(
(Π̂−Π)PΛ

−1
Λ

T

∑
t=1

xtx′tΛ
′
Λ
−1′P′(Π̂−Π)′

)
− vech

(
(Π̂−Π)PΛ

−1
Λ

T

∑
t=1

xtε
∗′
t +

T

∑
t=1

ε
∗
t x′tΛ

′
Λ
−1′P(Π̂−Π)′

)]
p−→ 0

(1.71)

Now let

X1t = vec
(

S−1
Σ

εtζ
′
t S−1′

ζ

)
, X2t =

1√
T

S−1
4 vech

(
ε
∗
t ε
∗′
t −Σ

∗
)

(1.72)
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and let XTt = [X1t(θT )
′,X2t(θT )

′]′ and SΣ = Σ1/2. Additionally, let FTt be a filtration

FTt = σ(εs(θT ) : 0≤ s≤ t)

i.e. the smallest σ -algebra such that all εs are measurable for 0≤ s≤ t.

(1.71) suggests that it is sufficient to show that

T

∑
t=1

XTt
d−→ N(0, I) (1.73)

The desired result can be shown by verifying the following (Davidson (1994)):

(1) E [XTt ] = 0;

(2) ∑
T
t=1 E [XTtX ′Tt |FTt−1]→ I in probability;

(3) ∑
T
t=1 E

[
‖XTt‖2

1{‖XTt‖> ε}
∣∣∣FTt−1

]
= 0 in probability for all ε > 0;

Again, (1) is straightforward. To show (2), Notice that we already showed that

T

∑
t=1

E
[
X1tX ′1t |FTt−1

] p−→ IN2 p−Nk

in Lemma 1.2. Meanwhile, we also have

T

∑
t=1

E
[
X2tX ′2t |FTt−1

]
=

T

∑
t=1

E
[

1
T

(
S−1

4 vech
(

ε
∗
t ε
∗′
t −Σ

))(
S−1

4 vech
(

ε
∗
t ε
∗′
t −Σ

))′ ∣∣∣FTt−1

]
=S−1

4 E
[

vech
(

ε
∗
t ε
∗′
t −Σ

∗
)

vech
(

ε
∗
t ε
∗′
t −Σ

∗
)′]

S−1′
4 = IN(N+1)/2

(1.74)

and for a typical element of X1t , emS−1
Σ

εtζ
′
t S−1′

ζ
e′n,

T

∑
t=1

E
[(

emS−1
Σ

εtζ
′
t S−1′

ζ
e′n
)

X ′2t

∣∣∣FTt−1

]
=

1√
T

T

∑
t=1

E
[(

emS−1
Σ

εtζ
′
t S−1′

ζ
e′n
)(

S−1
4 vech

(
εtε
′
t −Σ

))′ ∣∣∣FTt−1

]
=

1√
T

T

∑
t=1

(enS−1
ζ

ζt)E
[
(emS−1

Σ
εt)
(
S−1

4 vech
(
εtε
′
t −Σ

))′]
= 0

(1.75)
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Therefore (2) holds. To verify (3), it is sufficient to show that

T

∑
t=1

E
[
‖XTt‖4 ∣∣FTt−1

]
p−→ 0 (1.76)

To show this, notice that

‖XTt‖4 =
(
‖X1t‖2 +‖X2t‖2)2

(1.77)

We already showed that
T

∑
t=1

E
[
‖X1t‖4 ∣∣FTt−1

]
p−→ 0 (1.78)

in Lemma 1.2, and by construction, it is not difficult to show that

T

∑
t=1

E
[
‖X2t‖4 ∣∣FTt−1

]
p−→ 0 (1.79)

Meanwhile, we have

‖X1t‖2 =
N

∑
m=1

N p−k

∑
n=1

(emS−1
Σ

εtζ
′
t S−1′

ζ
e′n)

2 (1.80)

and

T

∑
t=1

E
[(

emS−1
Σ

εtζ
′
t S−1′

ζ
e′n
)2
‖X2t‖2

∣∣∣FTt−1

]
=E
[(

emS−1
Σ

εt
)2∥∥S−1

4 vech
(
εtε
′
t −Σ

)∥∥2
] 1

T

T

∑
t=1

(enS−1
ζ

ζt)
2

(1.81)

Now notice that

1
T

T

∑
t=1

(enS−1
ζ

ζt)
2

≤ 1
T

T

∑
t=1

∥∥∥S−1
ζ

ζt

∥∥∥2
≤ 1

T

∥∥∥S−1
ζ

Λ
∗−1
∥∥∥2 T

∑
t=1
‖Λ∗ζt‖2

=
1
T

tr
(
(Λ∗Sζ S′

ζ
Λ
∗′)−1

) T

∑
t=1

tr(Λ∗ζtζ
′
t Λ
∗′)

≤Const ·
[
λmin

(
Λ
∗Sζ S′

ζ
Λ
∗′
)]−1

tr

(
1
T

T

∑
t=1

Λ
∗
ζtζ
′
t Λ
∗′
)

p−→ 0

(1.82)
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Combining the above, we have

T

∑
t=1

E
[
‖X1t‖2 ‖X2t‖2 ∣∣FTt−1

]
p−→ 0 (1.83)

Therefore (1.76) holds which implies that (3) holds.

Lemma 1.4 establishes the consistency of the estimator for the fourth moment of the errors.

Lemma 1.4. For sequences {θT} ⊂Θ satisfying (1.8), suppose there exists k ∈ {1, . . . ,N} such that

c j ∈ [0,+∞) for all j > N− k, and c j =+∞ for all j ≤ N− k. Let

Σ̂
∗
4 =

1
T

T

∑
t=1

vech(ε̂∗t ε̂
∗′
t − Σ̂

∗)vech(ε̂∗t ε̂
∗′
t − Σ̂

∗)′ (1.84)

then

Σ̂
∗
4

p−→ Σ
∗
4 (1.85)

Proof. The proof is similar to that of Lemma B.1 in Inoue and Kilian (2020). Let ξt = (Π̂−Π)x∗t ,

then we have

Σ̂4−Σ4

=
1
T

T

∑
t=1

[
vech(ε̂∗t ε̂

∗′
t − Σ̂

∗)vech(ε̂∗t ε̂
∗′
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∗)′−Σ
∗
4

]
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1
T
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∑
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[
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∗
t −ξt)

′−Σ

)
vech

(
(ε∗t −ξt)(ε

∗
t −ξt)

′−Σ
∗
)′
−Σ

∗
4

+ vech
(
(ε∗t −ξt)(ε

∗
t −ξt)

′−Σ
∗
)

vech
(

Σ̂
∗−Σ

∗
)′

+ vech
(

Σ̂
∗−Σ

∗
)

vech
(
(ε∗t −ξt)(ε

∗
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′−Σ
∗
)′

+ vech
(

Σ̂
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∗
)

vech
(

Σ̂
∗−Σ

∗
)′]

(1.86)
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In addition, for the first term,

1
T

T

∑
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[
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ε
∗
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+ vech
(

ξtξ
′
t −ξtε

∗′
t − ε

∗
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(
ξtξ
′
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t − ε

∗
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(1.87)

Now notice that

1
T

T

∑
t=1

ξtξ
′
t =

1
T

T

∑
t=1

(Π̂−Π)PΛ
−1

Λxtx′tΛ
′
Λ
−1′P′(Π̂−Π)′

p−→ 0 (1.88)

1
T

T

∑
t=1

ε
∗
t ξ
′
t =

1
T

T

∑
t=1

ε
∗
t x′tΛ

′
Λ
−1′P′(Π̂−Π)

p−→ 0 (1.89)

vech(Σ̂∗−Σ
∗)

p−→ 0 (1.90)

By Lemmas 1.1, 1.2, and 1.3. Then by applying the arguments in Inoue and Kilian (2020) for each

entry, we obtain

Σ̂
∗
4−Σ

∗
4

p−→ 0 (1.91)

1.3.3 Uniform validity of a Wald test

After obtaining the asymptotics of the statistics in the previous section, we can now construct a

Wald test that is uniformly valid across the parameter space. First, in Lemma 1.5, we examine the

asymptotic distribution of the Wald statistic under a drifting parameter sequence (1.8).

Lemma 1.5. For sequences {θT} ⊂Θ satisfying (1.8), suppose there exists k ∈ {1, . . . ,N} such that
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c j ∈ [0,+∞) for all j > N− k, and c j =+∞ for all j ≤ N− k.

γ =

 vec(Π∗)

vech(Σ∗)

 , γ̂ =

 vec(Π̂∗)

vech(Σ̂∗)

 (1.92)

and

Σγ =

M∗x ⊗Σ∗ 0

0 T−1Σ∗4


Σ̂γ =

M∗x ⊗ Σ̂∗ 0

0 T−1Σ̂∗4


(1.93)

Then the Wald statistic

(γ̂− γ)′Σ̂−1
γ (γ̂− γ)

d−→ χ
2
N2 p+N(N+1)/2 (1.94)

Proof. First let

SM = M∗1/2
x , SΣ∗ = QSΣ, SΣ = Σ

1/2, S4 = Σ
∗1/2
4 (1.95)

and

Sγ =

S′M⊗SΣ∗ 0

0 T−1/2S4

 , Ŝγ =

S′M⊗ ŜΣ∗ 0

0 T−1/2Ŝ4

 (1.96)

Then

Ŝ−1
γ (γ̂− γ) =

(S′M⊗ Ŝ−1
Σ

Q−1
)

vec(Π̂−Π)
√

T Ŝ−1
4 vech(Σ̂∗−Σ∗)

 (1.97)
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The first block can be rewritten as

(
S′M⊗ Ŝ−1

Σ
Q−1)vec
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)
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(1.98)

Now we inspect P1 and P2 more closely. For P1, we notice that

P1 =

1 0

0 Q


 1 01×N p . . . 01×N

Q−1d† 0N×N p IN

≡ Q∗P∗1 (1.99)

For P2, we notice that

P2 = (IN⊗Q)



Q−1d† IN IN . . . IN IN

Q−1d† 0 IN . . . IN IN

. . . . . . . . .
...

. . . . . .

Q−1d† 0 0 . . . 0 IN


≡ (IN⊗Q)P∗2 (1.100)

Now we defined two diagonal matrices: (N +1)× (N +1) matrix Λ∗1 and N p×N p matrix Λ∗2:

Λ
∗
1 =

 1√
T

01×N

0N×1 Λ†

 , Λ
∗
2 =

1
T

IN p (1.101)
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Using the above characterization, we can rewrite (1.98) as
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(1.102)

The last equation holds because Q∗, (IN⊗Q), Λ∗1 and Λ∗2 are invertible.

Meanwhile, for P∗1 we have

Λ
∗
1P∗1 Λ

−1 =

 1 01×N p 01×N
√

T Λ†Q−1d† 0 IN

 (1.103)

Notice that
√

T Λ† is a diagonal matrix with elements being of the form

max
{

1√
T
,(1−ψ

∗2
j )1/2

}
≤ 1 (1.104)
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Similarly for P∗2 , we have

Λ
∗
2P∗2 Λ

−1 =



Q−1d† IN IN . . . IN
1
T Λ†−1

Q−1d† 0 IN . . . IN
1
T Λ†−1

. . . . . . . . .
...

. . . . . .

Q−1d† 0 0 . . . 0 1
T Λ†−1


(1.105)

and 1
T Λ†−1 is a diagonal matrix with elements being of the form

min
{

1,(T (1−ψ
∗2
j ))−1/2

}
≤ 1 (1.106)

These characterizations guarantee that the elements of Λ∗1P∗1 Λ−1 and Λ∗2P∗2 Λ−1 are bounded. Then

by Lemmas 1.1 and 1.2, we have

(
S′M⊗ Ŝ−1

Σ
Q−1)vec

(
Π̂−Π

) d−→ N(0, IN2 p) (1.107)

This combined with Lemma 1.3 and 1.4 gives

Ŝ−1
γ (γ̂− γ)

d−→ N(0, IN2 p+N(N+1)/2) (1.108)

which implies that

(γ̂− γ)′Σ̂−1
γ (γ̂− γ)

d−→ χ
2
N2 p+N(N+1)/2 (1.109)

Notice that the limiting distribution does not depend on cT , so naturally we have the following

theorem giving the uniform validity of the Wald statistic:

Theorem 1.6. Let

CPT (θ) = P
(
(γ̂T − γ)′Σ̂−1

γ,T (γ̂T − γ)≤ q1−α

(
χ

2
N2 p+N(N+1)/2

))
(1.110)
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where q1−α(·) denotes the 1−α quantile. Then

limsup
T→∞

sup
θ∈Θ

CPT (θ) = liminf
T→∞

inf
θ∈Θ

CPT (θ) = 1−α (1.111)

Proof. By Corollary 2.1 in Andrews et al. (2020), we only need to verify their Assumption B1∗ and

Assumption B2∗. It is straightforward to verify Assumption B2∗ for the parameter space Θ and the

way we set up the parameter sequence (1.8). To verify Assumption B1∗, consider a sequence θT

satisfying (1.8) with the corresponding cT . By Lemma 1.5, we have

(γ̂T − γ)′Σ̂−1
γ,T (γ̂T − γ)

d−→ χ
2
N2 p+N(N+1)/2 (1.112)

Since this limiting distribution does not depend on cT , we have CPT (θ)→ 1−α and hence As-

sumption B1∗ holds.

Based on Theorem 1.6, we obtain the following result for any function of the VAR parameters:

Corollary 1.7. Let f (γ) be a function of γ and

S1−α

f ,T =
{

f (γ)
∣∣∣(γ̂T − γ)′Σ̂−1

γ,T (γ̂T − γ)≤ q1−α

(
χ

2
N2 p+N(N+1)/2

)}
(1.113)

Then

liminf
T→∞

inf
θ∈Θ

P
(

f (γ(θ)) ∈ S1−α

f ,T

)
≥ 1−α (1.114)

In particular, if f (γ) is one-to-one, then

limsup
T→∞

sup
θ∈Θ

P
(

f (γ(θ)) ∈ S1−α

f ,T

)
= liminf

T→∞
inf

θ∈Θ

P
(

f (γ(θ)) ∈ S1−α

f ,T

)
= 1−α (1.115)

Regarding impulse response functions, consider the confidence intervals obtained through in-

verting the Wald test for candidate parameters and calculating corresponding impulse responses. By

Corollary 1.7, these intervals should have uniformly valid (potentially conservative) coverage rate.
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1.4 Simulation

In this section, we examine the finite sample performance of our method. We consider bivariate

Gaussian VAR(1) models of the following form:

yt =

π1 0

0.5 π2

yt−1 +ut (1.116)

ut
iid∼ N

0,

 1 0.5

0.5 3


 (1.117)

with y0 = 0. This DGP is similar to the bivariate process used in Kilian (1998a) and Lütkepohl et al.

(2015). Due to the setup of our model, we assume that π1 6= π2 so that the slope coefficient matrix

can be diagonalized. For structural identification, we assume a recursive structure such that the first

variable does not respond to the second structural shock.

1.4.1 Coverage rate

To demonstrate the finite-sample coverage accuracy of our method, we conduct two simulation

studies for reduced-form and structural impulse responses respectively. We consider the reduced-

form response since the uniform local projection method in Montiel Olea and Plagborg-Møller

(2021) and Xu (2023) are proposed for reduced-form models, although the former could be extended

to accommodate recursive identification as discussed in Plagborg-Møller and Wolf (2021)

Now for reduced-form impulse responses, we consider the following five methods of construct-

ing confidence interval for the impulse responses, in order to compare the performance of our

method with other uniformly valid methods, especially local projection based procedures.

(1) The first method, referred to as LAVAR, is our method based on the Wald statistic constructed

after lag-augmented regression on the VAR model. For this method, we report the size of the

Wald test based on the VAR slope parameters, which does not depend on the horizon.

(2) The second method is based on the test proposed in Montiel Olea and Plagborg-Møller (2021).

They recommend running lag-augmented local projections, and using the Eicker-Huber-White

heteroskedasticity robust standard errors. We refer to this method as LALPHC.
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(3) The third method is similar to the second except it uses the HAR approach recommended

in Lazarus et al. (2018). More specifically, we use an equally weighted cosine (EWC) long

run variance estimator, following their suggestions on selecting the critical value and tuning

parameter. This method is referred to as LALPHAR.

(4) The fourth method, referred to as LALPMG, again runs lag-augmented local projections, but

uses the martingale variance estimator proposed in Xu (2023). In contrast to Xu (2023) which

assumes infinite order DGP, we maintain the assumption that the lag order is known in order to

obtain consistent comparison with the other methods.

(5) The final method, referred to as LALPB, follows the bootstrap procedure in Montiel Olea and

Plagborg-Møller (2021). Although the uniform validity of the method is not established in their

work, their simulation study has shown that the bootstrap procedure significantly improves

coverage rates when roots are close to 1.

The nominal size is set to 0.1, and for the local projection methods, we consider five horizons

h ∈ 1,6,12,36,60. The sample size is set to T = 240 and the number of Monte Carlo simulations

is M = 1000. For LALPB, we set the number of bootstrap repetitions to be 2000. The results are

summarized in Table 1.1.

From the results, the Wald test in our method yields valid size over various degrees of persis-

tence. This implies that if the researcher first invert the test to obtain candidate parameters, then

calculate the impulse responses using these parameters, the obtained confidence interval should

have valid size across different degrees of persistence and across all horizons. For the local pro-

jection methods, all of them lead to under coverage when at least one of the roots is close to 1 and

horizon is not short, which is consistent with the theoretical and simulation results in Montiel Olea

and Plagborg-Møller (2021) and Xu (2023). Among these methods, while the martingale variance

estimator proposed in Xu (2023) is not meant to improve coverage rates at near unit root, it does

seem to give slightly better coverage rates than HC/HAR variance estimators, which is also demon-

strated in Xu (2023). The bootstrap method in Montiel Olea and Plagborg-Møller (2021) mitigates

the coverage rate problem significantly, but still fails to reach the nominal coverage rate at longer

horizons. Compared to the univariate results in Montiel Olea and Plagborg-Møller (2021), the cov-

erage distortion of the local projection methods start to be significant at much shorter horizons,
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Table 1.1: Coverage rate comparison for reduced-form impulse responses

h LAVAR LALPHC LALPHAR LALPMG LALPB
π1 = 0.50, π2 = 0.49 1 0.90 0.90 0.90 0.90 0.89

6 0.90 0.88 0.88 0.89 0.88
12 0.90 0.89 0.88 0.89 0.89
36 0.90 0.90 0.89 0.92 0.89
60 0.90 0.88 0.88 0.92 0.88

π1 = 0.90, π2 = 0.89 1 0.89 0.87 0.87 0.89 0.88
6 0.89 0.85 0.84 0.86 0.86
12 0.89 0.84 0.83 0.84 0.86
36 0.89 0.82 0.82 0.87 0.85
60 0.89 0.86 0.85 0.93 0.90

π1 = 0.99, π2 = 0.98 1 0.89 0.89 0.90 0.90 0.89
6 0.89 0.83 0.81 0.82 0.89
12 0.89 0.73 0.70 0.72 0.88
36 0.89 0.49 0.45 0.50 0.85
60 0.89 0.28 0.27 0.34 0.71

π1 = 1.00, π2 = 0.99 1 0.88 0.89 0.89 0.89 0.90
6 0.88 0.80 0.79 0.80 0.87
12 0.88 0.65 0.63 0.64 0.87
36 0.88 0.31 0.32 0.34 0.80
60 0.88 0.15 0.15 0.20 0.69

π1 = 1.00, π2 = 0.50 1 0.89 0.90 0.90 0.90 0.90
6 0.89 0.84 0.84 0.85 0.87
12 0.89 0.74 0.74 0.75 0.83
36 0.89 0.50 0.50 0.56 0.75
60 0.89 0.33 0.37 0.42 0.60

The results are for the response of the second variable to the first reduced form shock

when there are two roots close to 1.

For the second study, we consider a similar comparison for structural impulse responses. Based

on Plagborg-Møller and Wolf (2021), the recursive identification assumption in VAR models can

be equivalently implemented in local projection by regressing y2,t+h on y1,t (and yt−1 when imple-

menting lag augmentation). In this case, the martingale variance estimator in Xu (2023) could not

be constructed, but the other LALP methods could be accommodated in a straightforward fashion.

Therefore, we consider LAVAR, LALPHC, LALPHAR and LALPB. For our result, LAVAR, we

report the size of the Wald test based on both the slope and variance parameters. For LALPB, again

we set the number of bootstrap repetitions to be 2000. We summarize the results in Table 1.2.

Results for structural impulse responses are overall similar to those for reduced-form impulse
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Table 1.2: Coverage rate comparison for structural impulse responses

h LAVAR LALPHC LALPHAR LALPB
π1 = 0.50, π2 = 0.49 1 0.87 0.90 0.88 0.91

6 0.87 0.89 0.88 0.90
12 0.87 0.90 0.89 0.90
36 0.87 0.92 0.90 0.92
60 0.87 0.90 0.89 0.90

π1 = 0.90, π2 = 0.89 1 0.87 0.91 0.88 0.94
6 0.87 0.87 0.86 0.90
12 0.87 0.82 0.80 0.86
36 0.87 0.82 0.79 0.86
60 0.87 0.86 0.85 0.90

π1 = 0.99, π2 = 0.98 1 0.85 0.91 0.88 0.94
6 0.85 0.84 0.81 0.90
12 0.85 0.72 0.65 0.89
36 0.85 0.43 0.40 0.82
60 0.85 0.23 0.23 0.70

π1 = 1.00, π2 = 0.99 1 0.85 0.92 0.89 0.94
6 0.85 0.80 0.76 0.87
12 0.85 0.67 0.62 0.87
36 0.85 0.30 0.30 0.83
60 0.85 0.16 0.15 0.74

π1 = 1.00, π2 = 0.50 1 0.85 0.90 0.89 0.93
6 0.85 0.84 0.81 0.88
12 0.85 0.75 0.71 0.87
36 0.85 0.49 0.48 0.70
60 0.85 0.35 0.35 0.60

The results are for the response of the second variable to the first structural shock

responses. Our method now has a slightly larger size than the nominal size, mostly due to the

relatively small sample size, as it is well known that the estimation of higher moments of the error

tend to be less accurate compared to the other components of the model. The size distortion of

the local projection methods is similar to that for reduced-form impulse responses. In addition,

in contrast to the reduced-form results, the bootstrap method gives larger coverage rates at short

horizons for near unit root/unit root processes.

1.4.2 Median length

In this section, we provide a method of constructing confidence intervals using our Wald test in

practice. In order to provide better guidance for empirical application of uniform inference methods,
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we also compare the median length of the confidence intervals for structural impulse responses using

the four methods discussed in the previous section: LAVAR, LALPHC, LALPHAR and LALPB.

To construct confidence interval using our method (LAVAR), we need to invert our test statis-

tic. Ideally we could evaluate the Wald statistic across a grid over the entire parameter space to

construct the confidence set, but this might be computationally burdensome when the dimension of

the parameter space is large. To attenuate such burden, we recommend searching over a Bayesian

VAR posterior obtained with an uninformative prior in practice. More specifically, we implement

the following procedure:

1. Estimate the model to obtain Π̂, Σ̂ and Σ̂4. Construct γ̂ and Σ̂γ .

2. Obtain the posterior distribution of (Π,Σ) from a Bayesian VAR model with diffuse prior.

3. Draw a (Π,Σ) from the posterior. Construct γ .

4. Discard the draw if it does not fit the parameterization (1.1). Otherwise, construct the Wald

statistic

(γ̂− γ)′Σ̂−1
γ (γ̂− γ)

and conduct the Wald test using the critical value q1−α(χ
2
N2 p+N(N+1)/2).

5. Repeat (3) & (4) until we have enough accepted draws of Π and Σ. We set this number to

5000.

6. Calculate the upper and lower bound of the structural impulse responses corresponding to

these draws to construct the confidence interval.

For each Monte Carlo simulation, we generate T = 240 samples, and the number of bootstrap repe-

titions is set to 2000 for LALPB. Similar to previous simulation studies, we consider five horizons:

h ∈ 1,6,12,36,60. Total number of simulations is M = 1000. The results are summarized in Ta-

ble 1.3.

Overall, consistent with the observations in Li et al. (2021), our simulation results corroborate

that neither VAR methods nor LP methods necessarily produces shorter confidence intervals across

all horizons. In fact, the relative performance highly depends on the horizons and persistence.

We make the following observations on the results:
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Table 1.3: Median lengths and coverage rates of structural impulse response confidence intervals

h LAVAR LALPHC LALPHAR LALPB
π1 = 0.50, π2 = 0.49 1 0.72 (0.99) 0.43 (0.91) 0.42 (0.89) 0.46 (0.92)

6 0.36 (0.99) 0.49 (0.90) 0.49 (0.89) 0.50 (0.90)
12 0.08 (0.99) 0.50 (0.90) 0.50 (0.88) 0.50 (0.90)
36 1.5e-4 (0.99) 0.53 (0.91) 0.53 (0.88) 0.53 (0.90)
60 3.1e-7 (0.99) 0.56 (0.90) 0.57 (0.88) 0.57 (0.90)

π1 = 0.90, π2 = 0.89 1 0.75 (0.98) 0.52 (0.92) 0.50 (0.90) 0.60 (0.94)
6 2.01 (0.99) 1.02 (0.88) 0.99 (0.87) 1.09 (0.90)
12 3.37 (0.99) 1.46 (0.83) 1.39 (0.80) 1.65 (0.88)
36 5.16 (0.99) 1.80 (0.80) 1.73 (0.79) 1.89 (0.85)
60 5.23 (0.99) 1.87 (0.86) 1.82 (0.83) 1.94 (0.90)

π1 = 0.99, π2 = 0.98 1 0.73 (0.98) 0.54 (0.91) 0.52 (0.90) 0.65 (0.94)
6 2.22 (0.98) 1.31 (0.85) 1.25 (0.80) 1.41 (0.88)
12 4.30 (0.97) 2.55 (0.71) 2.29 (0.65) 3.02 (0.87)
36 13.63 (0.97) 7.18 (0.39) 6.36 (0.35) 12.72 (0.83)
60 22.57 (0.97) 8.83 (0.23) 8.10 (0.22) 17.68 (0.67)

π1 = 1.00, π2 = 0.99 1 0.74 (0.98) 0.55 (0.91) 0.53 (0.90) 0.66 (0.95)
6 2.27 (0.95) 1.35 (0.81) 1.32 (0.77) 1.49 (0.86)
12 4.30 (0.91) 2.70 (0.64) 2.52 (0.59) 3.30 (0.85)
36 13.60 (0.86) 8.61 (0.29) 7.80 (0.26) 15.72 (0.81)
60 22.75 (0.85) 11.76 (0.14) 15.72 (0.14) 28.66 (0.72)

π1 = 1.00, π2 = 0.50 1 0.44 (0.99) 0.43 (0.91) 0.43 (0.88) 0.46 (0.92)
6 0.61 (0.97) 0.61 (0.85) 0.59 (0.83) 0.65 (0.90)
12 0.72 (0.97) 0.78 (0.73) 0.75 (0.71) 0.89 (0.86)
36 1.06 (0.97) 1.05 (0.44) 1.00 (0.44) 1.32 (0.72)
60 1.13 (0.97) 1.09 (0.31) 1.08 (0.31) 1.31 (0.57)

The results are for the response of the second variable to the first structural shock

and are reported as ”median length (coverage rate)”

First, for strictly stationary model where π1 = 0.5 and π2 = 0.49, the length of our intervals

shrink to 0 as horizons increase, although the exact horizon at which our method start to have lower

length depends on the persistence of the DGP. Meanwhile, the length of LP confidence intervals

does not shrink to zero as horizon increases, which is also noted in Li et al. (2021).

In contrast, when π1 = 0.9 and π2 = 0.89, the intervals of our methods are larger than those

from local projection methods. However, consistent with the earlier size studies and Corollary 1.7,

our method provides conservative intervals, while local projection methods have coverage rate dis-

tortions, especially at longer horizons. In this scenario, LALPB manages to largely, although not

completely, mitigate the distortions while having comparable lengths to non-bootstrap methods.

39



For models with roots very close to 1 or exactly 1, the confidence intervals from our method

still manage to reach nominal coverage rate, except for π1 = 1 and π2 = 0.99 at larger horizons,

in which case the coverage rates are still fairly close to the nominal rate. In comparison, the local

projection methods all suffer from severe size distortions. Similar to previous results, The bootstrap

method LALPB mitigates the distortions, but still has a significantly lower coverage rate than the

nominal rate at larger horizons. Moreover, when exact unit root exists, LALPB actually yields larger

confidence intervals that has worse coverage rates, compared to our method.

Finally, for our method, as briefly mentioned in the above discussion, the actual coverage rates

of the confidence intervals are higher than the nominal rate (and the coverage rates from size studies)

for stationary models and slightly lower for highly persistent models. This could be attributed to

multiple factors. First, for a specific component of the impulse response at a fixed horizon, the

mapping between it and the VAR parameters is not one-to-one. By Corollary 1.7, our method will

give conservative coverage rates when we are focusing on a specific component at a fixed horizon.

Second, we construct the confidence interval using a projection approach. The true confidence

set might not be a connected interval, which implies that our confidence intervals can be slightly

conservative. Lastly, when the DGP is highly persistent, the magnitude of the impulse responses

becomes highly sensitive to the model parameters. This means that a finer grid or more candidate

draws are needed for our method to approximate the true confidence set, and the coverage rates

might suffer if the amount of draws is not enough.

1.5 Conclusions

While uniform inference methods eliminate pretesting issues and provide reliable results for em-

pirical applications, the discussion on uniformly valid inference methods for impulse responses in

autoregressive models in the literature has been largely focusing on univariate models. In this chap-

ter, we propose a method to construct uniformly valid confidence intervals for impulse responses in

a large class of vector autoregressive models, via a uniformly valid Wald test. Our method not only

allows for uniform inference on the structural impulse responses, but also for any function of the

VAR parameters.

We also provide a simulation study that not only establishes the finite sample validity of our

method, but also provides a comparison between inference under VAR and LP method of construct-
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ing impulse responses. We find that there is no universally better performing method, but at very

high persistence level, our method leads to significantly less coverage distortions than local projec-

tion methods, while our confidence intervals have comparable or lower lengths. In addition, when

the roots are strictly stationary, confidence intervals from VAR methods gradually shrinks towards 0

length as horizon increases while those from local projection methods do not. However, we do note

that when the roots are mildly large, local projection with bootstrap tend to give shorter confidence

intervals, without significant size distortions.

As to future directions of research, our results could be extended from both a theoretical and

an applied perspective. Theoretically, our model setup does not include all non-stationary models,

and relaxing our modelling assumptions could lead to a more general uniform inference theory. It is

also worth investigating the possibility of a uniformly valid test constructed without lag augmenta-

tion, which might involve further characterization of the limiting behavior of multivariate stochastic

integrals. From an application perspective, the general question of numerically inverting a statisti-

cal test could be further examined, and development in this aspect could lead to more efficient and

wider empirical implementation of our proposed method.
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CHAPTER 2

Identification through non-Gaussianity in factor-augmented vector autoregression models

2.1 Introduction

A common theme of criticisms of VAR models is the relative small amount of information used in

them. The number of VAR parameters increases rapidly when the number of variables increases,

which severely limits the amount of information a researcher is able to include in the model.

On one hand, this could lead to omitted variable bias and as a result, puzzling empirical results.

For example, Christiano et al. (1999) find the existence of the puzzle when using a three variable

structural VAR to examine the effects of monetary policy. From a theoretical perspective, a small

VAR system also does not incorporate enough information compared to the actual decision-making

process of agents or central banks. Stock and Watson (2005), Ramey (2016) and Stock and Watson

(2016) provide more discussion on the impact of not including enough variables. On the other hand,

the small amount of variables included also limits the amount and scale of economic interaction

we could estimate and investigate, as impulse responses can only be calculated for the included

variables in VARs.

To address such degree-of-freedom problem, Bernanke et al. (2005) proposes the factor aug-

mented vector autoregression model (FAVAR) which, instead of a priori selecting a few economic

variables, includes a low dimensional vector of observed and unobserved factors that contains the

bulk of information about the economy. Such approach allows researchers to include a rich set of in-

formation while keeping the amount of parameters, or the dimensionality of the problem, tractable.

This provides researcher the benefits of both avoiding selection of specific variables from a variety

of conceptually similar noisy time series, and avoiding the problem that a small set of variables

might not properly span the entire space of shocks which lead to inaccurate structural shocks. Due

to these benefits, FAVAR has been used in the empirical literature, to study a wide range of domes-

tic and international macroeconomic problems, such as in Mumtaz and Surico (2009), Wu and Xia

(2016), Ho et al. (2018) and Dahlhaus et al. (2018).

Structural FAVAR includes structural VAR as a component, and similar to the latter, requires

additional identification assumptions. For example, Bai et al. (2016) proposes three sets of statis-
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tical identification restrictions that assume no contemporaneous correlation between observed and

unobserved factors, although the economic interpretation of these restrictions might not always be

of economic interest. Meanwhile, as Stock and Watson (2016) has pointed out, the identification

problem in FAVAR is similar to that of structural VAR, with the additional complication of esti-

mating the unobserved factors. Therefore, in the literature, various economic assumptions similar

to that of structural VAR are imposed in order to identify the structural FAVAR model. For ex-

ample, Bernanke et al. (2005) focuses on the identification of impulse responses, and assumes a

recursive structure on the factors. To accommodate such structure, the researcher needs to a priori

separates the variables into slow-moving and fast-moving (compared to the structural shock of inter-

est) categories. In contrast to the above assumptions directly on the elements of covariance matrices

or the structural matrix, Yamamoto and Hara (2022) assumes the existence of structural breaks that

leads to identification through heteroskedasticity.

However, conventional identification restrictions for structural VAR might face additional short-

comings for FAVAR models. For example, in a small scale structural VAR, a researcher utilizing

short run recursive identification scheme could conduct additional robustness checks through chang-

ing the order of the variables. However, in typical recursive FAVAR identification schemes, such as

the “slow-R-fast” scheme as seen in Bernanke et al. (2005) or Ho et al. (2018), a researcher has to a

priori separate a large amount of economic variables into slow moving and fast moving categories,

and then extract the slow moving and fast moving factors from variables in the two categories re-

spectively. This implies that the robustness check is not as simple as reordering the variables as

in structural VAR models. In other words, the need for additional identification schemes exist, es-

pecially in a FAVAR context, so that the conventional identification restrictions could be tested as

over-identifying restrictions.

This chapter aims to complement the aforementioned research and provide a method to identify,

estimate and perform inference on structural impulse responses in FAVAR models using alterna-

tive statistical assumptions, following the literature of identification through non-Gaussianity in

structural VAR, such as Lanne et al. (2017), Gouriéroux et al. (2017), Lanne and Luoto (2021),

and Fiorentini and Sentana (2023). For a literature review and a more detailed overview of such

identification scheme, we refer the readers to Kilian and Lütkepohl (2017) and Montiel Olea et al.

(2022). Originating from the engineering problem of independent component analysis (ICA), the

43



assumption of independent and non-Gaussian structural shocks implies that we can decompose the

reduced form shocks without additional economic assumptions. In other words, such assumption

reduces the identification problem of the structural shocks to normalization that does not affect struc-

tural impulse responses to each shock. From a practitioner’s perspective, this method can be used

to supplement conventional economically oriented identification restrictions, and provide additional

testing tools and robustness checks.

Independence and non-Gaussian distribution might sound like strong assumptions, but they

are often well justified in empirical economic applications. While a large body of empirical and

theoretical macroeconomic research assumes Gaussian shocks, there has been an increasing num-

ber of studies that question such assumptions. For example, Christiano (2007) presents evidence

against assuming Gaussian likelihood in DSGE modelling, while Mishkin (2011) also suggested

that many shocks hitting the economies could display non-Gaussian features such as fat tail. Fur-

thermore, Cúrdia et al. (2014) shows strong evidence against Gaussian shocks, and Müller (2013)

also discusses the potential problems when shocks are misspecified. All of these studies suggest

not only the possibility, but also the necessity of investigating non-Gaussian shocks in statistical

modelling. As to independence, the structural shocks, by its definition and construction, are meant

to be orthogonal and be able to span the space of the economy. This means that in traditional Gaus-

sian settings, while independence is not explicitly required, the commonly used uncorrelatedness

assumption implies independence between the shocks. In fact, as discussed in Lanne et al. (2017)

and Gouriéroux et al. (2017), independence might be the more appropriate concept of orthogonality

for structural shocks.

FAVAR models are traditionally estimated in two steps, with a principal component first step

followed by a least square estimation of the VAR model using the estimated factors. To incorporate

non-Gaussian assumptions, it is natural to consider a similar two-step estimator with the second

step substituted with a proper estimator proposed in the structural VAR literature. In this chapter,

we choose to implement maximum likelihood estimation in Lanne et al. (2017), which assumes

correct specification of the distribution of the structural shocks. Alternatively, there are also methods

that relax such assumption. For example, Gouriéroux et al. (2017) estimates all the reduced form

parameters by quasi-MLE using Gaussian density, and the structural matrix by quasi-MLE using

non-Gaussian densities, although their assumption on the normalization of the structural matrix
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is somewhat uncommon in empirical research. Alternatively, Lanne and Luoto (2021) provides a

GMM estimator that exploits fourth moment of the structural shocks, and Fiorentini and Sentana

(2023) recommends a quasi-MLE using discrete location scale mixture of normal distributions.

We leave the possible implementation of these procedures to future research, and hope that our

theoretical results provide some insights on alternative estimators of FAVAR identified through non-

Gaussianity.

Our contribution to the literature is fourfold:

First, as mentioned above, we propose a two-step estimator and the relevant inference results,

under the assumption of independence and non-Gaussianity of structural shocks, for structural im-

pulse responses in FAVAR models. The first step is a principal component estimation of the un-

observed factors, and the second step, assuming that the distribution of the structural shocks are

known, implements a maximum likelihood estimation (MLE). While in practice additional eco-

nomic interpretation is needed to label the structural shocks, this method could accommodate a

variety of economic intuitions and is a useful complement to the usual identification assumptions.

We also briefly discuss testing conventional identification restrictions as over-identifying restrictions

under our setup.

Other than proving the consistency and asymptotic normality of our estimator, our theoreti-

cal results also provide insights in two-step estimators with general M-estimation second step in

FAVAR models, which could potentially accommodate various other estimation methods under

non-Gaussianity assumption, such as the quasi-MLE in Gouriéroux et al. (2017) and Fiorentini

and Sentana (2023), or GMM in Lanne and Luoto (2021).

In addition, we provide simulation results that not only validates our method in finite sample, but

also complement the existing literature by examining the effect of assuming
√

T
N → 0. The results

show that Delta method intervals based on such assumption suffers significantly when T is much

larger than N, but bootstrap intervals based on this seem to be less impacted.

Finally, we revisit the results in Bernanke et al. (2005) as a demonstration of our method, and

show that their identification assumption is rejected under our setting. We also produce impulse

responses of the same macroeconomic variables to monetary policy shock, and show that while the

general implications are not affected by this difference in identification strategy, there are some key

differences in the results. Most importantly, our results do not support the existence of price puzzle
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as strongly as the original results, and our results indicate a stronger and more consistent impact of

monetary policy on output. This suggests that while their identification scheme is convenient and

standard in the literature, empirical researchers should be wary of the economic implications and

possibly refer to alternative identification schemes as robustness check.

The chapter is organized as follows. In section 2, we set up the model, define the notations

and present the identification result on structural impulse response functions. Section 3 provides the

relevant consistency and inference results for a two-step estimator. Section 4 presents simulation re-

sults that examine the finite sample validity of the estimation method. In section 5, we demonstrate

the empirical application of our method by re-examining the results of Bernanke et al. (2005). Sec-

tion 6 summarizes and concludes the chapter and provides discussion on potential future research

directions.

2.2 Model and identification

2.2.1 Assumptions

Throughout this chapter, we consider a standard structural FAVAR model,

xt =

[
Λ Γ

] ft

yt

+ut (2.1)

gt =
p

∑
j=1

A jgt− j + et (2.2)

where gt = ( f ′t ,y
′
t)
′ is an r×1 vector of factors and et = Bεt is an r×1 error vector. ft is an r1×1

vector of unobserved factors, yt is an r2× 1 vector of observed factors and r1 + r2 = r. A1, . . . ,Ap

and B are r× r matrices. Λ and Γ are N× r1 and N× r2 matrices of factor loading respectively. Let

Ξ = (Λ,Γ), X = (x1, . . . ,xT )
′, F = ( f1, . . . , fT )

′, Y = (y1, . . . ,yT )
′ and G = (g1, . . . ,gT )

′ = (F,Y ).

For identification of the structural impulse responses, we consider the following assumption on the

structural shocks εt :

Assumption 2.1. (Identification through non-Gaussianity) Assume that the structural shocks εt are

i.i.d. and zero mean. Assume that the components ε1,t , . . . ,εr,t have variances σ2
i respectively, are

mutually independent, and at most one of them is Gaussian.

This assumption is similar to its counterparts in Lanne et al. (2017) and Gouriéroux et al. (2017),
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and is in contrary to traditional identification schemes which normally imposes restrictions on A j

and B while requiring only cross-sectional uncorrelatedness and no distributional assumption on εt .

In principle, non-Gaussian of the structural errors implies non-Gaussian reduced form errors, which

can be tested in data, such as in Kilian and Demiroglu (2000). Testing of independence is signifi-

cantly more difficult. While there exists several statistical tests for independence (see Herwartz and

Maxand (2020) for a review), the structural shocks identified under different schemes might have

different economic interpretation, and simply testing independence for shocks identified under an

alternative identification scheme does not necessarily validate or invalidate independence assump-

tion presented above. Kilian and Lütkepohl (2017), Montiel Olea et al. (2022) and Lanne and Luoto

(2021) also pointed out some potential problems of independence and non-Gaussian assumptions,

but we leave addressing these issues to future research.

In addition to Assumption 2.1, we need assumptions to guarantee extraction of factors and

stationarity of the VAR.

Assumption 2.2. (Factor model)

(1) The factors F satisfy E
[
‖Ft‖4

]
≤ M and T−1F ′MY F

p−→ ΣF as T → ∞, where ΣF is positive

definite and MY = IT −Y (Y ′Y )−1Y ′.

(2) The factor loading of the unobserved factors are deterministic and N−1Λ′Λ→ ΣΛ, a fixed pos-

itive definite matrix as N→ ∞.

(3) The eigenvalues of the r1× r1 matrix ΣΛΣF are distinct

Assumption 2.3. (Idiosyncratic errors)

(1) { ft}, {εt} and {ut} are three mutually independent groups.

(2) E(uit) = 0, E(u8
it)≤M.

(3) E(uisu jt) = τi jst , |τi jst |< τM
st for all i, j and |τi jst |< τM

i j for all s, t such that T−1
∑

T
s,t=1 τM

st ≤M,

N−1
∑

N
i, j=1 τM

i j ≤M and (NT )−1
∑i, j,s,t |τi jst | ≤M.

(4) For all s, t, E(|N−1/2
∑

N
i=1(uisuit −E(uisuit))|4)≤M

Assumption 2.4. (VAR model)
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(1) The structural matrix B is positive, i.e. det(B)> 0.

(2) The roots of det(In− zA1−·· ·− zpAp) = 0 are all outside the unit circle.

Assumptions 2.2, 2.3 and 2.4 are standard assumptions in the FAVAR literature. They are simi-

lar to Assumption A(iii), A(iv), B and C in Yamamoto and Hara (2022). Assumption 2.2 is a stan-

dard regularity condition to guarantee extraction of r1 unobserved factors. In particular, Assump-

tion 2.2(1) guarantees that factors are non-degenerate and (2) guarantees that all elements of the

factors contribute to the variance of xt , whereas (3) is a technical assumption to ensure the unique-

ness of the principal component procedure. Assumption 2.3 imposes restrictions on the dependence

structure of the idiosyncratic errors in the factor model (2.1). Assumption 2.3(1) is standard in

the literature, see Bai and Ng (2006). Although Gonçalves and Perron (2014) provides a weaker

set of alternative assumptions, we choose not to adopt them for simplicity. Assumption 2.3(2) and

(3) permits weak serial and cross-sectional dependence, and leads to the approximate factor model

as in Chamberlain and Rothschild (1983). Assumption 2.4 guarantees that the structural VAR is

well-defined and stationary.

2.2.2 Identification through non-Gaussianity

Under the assumptions in the previous section, which both allows for identification of the VAR

through non-Gaussianity and guarantees the existence of a proper principal component first step

estimator, we have the following identification result on the structural impulse responses:

Proposition 2.1. If Assumptions 2.1, 2.2, 2.3 and 2.4 hold, then the impulse response function of the

observed factors yt to the structural shocks Φy(h) is point identified. In addition, the approximate

impulse response function of the variables xt to the structural shocks Φx(h) is also point identified.

Proof. Following the literature, (see Bai and Ng (2006) and Gonçalves and Perron (2014)), a ran-

dom rotation of the unobserved factors ft , H ft can be consistently estimated by a principal compo-

nent estimator. Then the factors gt are extracted as a rotation of itself, Qgt , where

Q =

H 0

0 Ir2


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Now left multiply equation (2.2) by Q, we can write it as

g∗t =
p

∑
j=1

A∗jg
∗
t− j +B∗εt (2.3)

where g∗t = Qgt , A∗j = QA jQ−1 and B∗ = QB. Under Assumption 2.1, by Proposition 1 in Lanne

et al. (2017), if there exists another set of A†
1, . . . ,A

†
p,B

† and ε
†
T such that

g∗t =
p

∑
j=1

A†
jg
∗
t− j +B†

ε
†
t (2.4)

then

(A†
1, . . . ,A

†
p) = (A∗1, . . . ,A

∗
p), B† = B∗DP, ε

†
t = P′D−1

εt (2.5)

where D is a diagonal matrix with nonzero diagonal elements, and P is a permutation matrix. In

other words, the structural impulse responses

Φ
†(h) = JAAA†hJ′B†′P′D−1

Σ
1/2
ε = JAAA∗hJ′B∗Σ1/2

ε = Φ
∗(h) (2.6)

where J = [Ir×r,0r×(n−1)r]. And more importantly,

Φ
∗(h) = JAAA∗hJ′B∗Σ1/2

ε = JMAAAhM−1J′QBΣ
1/2
ε = QJAAAhJ′BΣ

1/2
ε = QΦ(h) (2.7)

where M = diag
(
Q, I(N−1)r×(N−1)r

)
. Now we partition Φ∗(h) (and similarly Φ(h)) into

Φ
∗(h) =

Φ∗f 1(h) Φ∗f 2(h)

Φ∗y1(h) Φ∗y2(h)

 (2.8)

such that Φ∗f 1(h) is the response of ft to the first r1 structural shocks, Φ∗f 2(h) is the response of

ft to the rest r2 structural shocks, and Φ∗g1(h),Φ
∗
g2(h) are similarly defined. Then considering the

partition of Q, we have

Φ
∗
f 1(h) = HΦ f 1(h), Φ

∗
f 2(h) = HΦ f 2(h),

Φ
∗
g1(h) = Φg1(h), Φ

∗
g2(h) = Φg2(h)

(2.9)
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Now the response of yt to the structural shocks under the alternative set of parameters is

Φ
∗
y(h) =

[
Φ∗g1(h) Φ∗g2(h)

]
=

[
Φg1(h) Φg2(h)

]
= Φy(h) (2.10)

So that Φy(h) is point identified. In addition, we have

Φ
∗
x(h) = ΛH−1

[
Φ∗f 1(h) Φ∗f 2(h)

]
+Γ

[
Φ∗g1(h) Φ∗g2(h)

]
= Λ

[
Φ f 1(h) Φ f 2(h)

]
+Γ

[
Φg1(h) Φg2(h)

]
= Φx(h)

(2.11)

So that the approximate response Φx(h) is point identified.

The above result shows that the structural impulse response of the observed factor yt , along

with the approximate responses of the information variables Xt , are impacted by neither the rota-

tion introduced in the principal component first step, nor the potential permutation and scaling from

identification through non-Gaussianity. However, we do stress that this is a statistical identification

result, rather than an economical one, as the structural shocks do not necessarily carry any specific

economic meaning. To properly label the structural shocks, as suggested in Lanne et al. (2017), one

could inspect the shape and signs of the estimated impulse responses, and refer to a variety of eco-

nomic theory and intuition. This process will be further discussed and demonstrated in section 2.5

2.3 Estimation, inference and testing

In this section, we propose a two-step estimator of the FAVAR model and provide the relevant

consistency and inference results. For the first step, we consider a principal component estimation

for the factors. Notice that (2.1) can be written as

MY X = MY FΛ
′+MYU (2.12)

Let F̃ consist of
√

T times the eigenvectors corresponding to the r1 largest eigenvalues of

T−1N−1MY XX ′M′Y
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arranged in descending order, where the normalization T−1F̃ ′F̃ = Ir1 is used. It is commonly known

in the factor model literature (see Bai and Ng (2006) and Gonçalves and Perron (2014)) that f̃t

actually estimates a rotation of the true factors, i.e. H ft , where

H = Ṽ−1 F̃ ′MY F
T

Λ′Λ

N
(2.13)

where Ṽ is the r1×r1 diagonal matrix with the diagonal elements being the r1 the largest eigenvalues

of the matrix T−1N−1MY XX ′M′Y , in descending order. Correspondingly, let g̃t = ( f̃ ′t ,y
′
t)
′, G̃ =

(g̃1, . . . , g̃T )
′ = (F̃,Y ). Then g̃t = Qgt where

Q =

H 0

0 Ir2

 (2.14)

with H defined above.

After obtaining an estimate of the unobserved factors, following Lanne et al. (2017), we consider

a maximum likelihood estimation of the VAR model. To this end, assume that εi,t has a density

σ
−1
i fi(σ

−1
i x;λi) where λi is a vector of parameters.

Let θ = (σ ′,λ ′,π ′,β ′)′ where σ = (σ1, . . . ,σr)
′, λ = (λ ′1, . . . ,λ

′
r)
′, π = vec(A1, . . . ,Ap) and

β = vecd◦(B) where vecd◦ denotes the vector obtained by removing the diagonal elements of B

from vec(B). We consider the VAR parameter space Θ = Θσ ×Θλ ×Θπ ×Θβ where

1. Θσ =Rr
+.

2. Θλ = Θλ1× . . .Θλr with each Θλi being an open subset of Rdi . Let d = ∑
r
i=1 di.

3. Θπ ⊂ Rn2 p an open set such that Assumption 2.4 is satisfied. In addition, for any π ∈ Θπ

we have that the corresponding π∗ where π∗ = vec(A∗1, . . . ,A
∗
p) and A∗i = QAiQ−1 satisfies

π∗ ∈Θπ almost surely.

4. Θβ = vecd◦(B) with B is an open set of structural matrices satisfying a normalization

scheme with diagonal elements being 1. For an example of such set (and the correspond-

ing normalization scheme), see Lanne et al. (2017).

Suppose the true parameter is θ0 = (σ0,λ0,π0,β0), with π0 = vec(A01, . . . ,A0p) and β0 = vecd◦(B0).
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The parameter space assumptions guarantee that θ0 is an interior point. To guarantee the validity of

maximum likelihood estimation, we need to be more specific with the distribution of the structural

shocks, on which we impose the following assumption:

Assumption 2.5. (Density) The following conditions hold for f1, . . . , fr:

(1) fi(x;λi)> 0 and is twice continuously differentiable with respect to (x;λi).

(2) fi,x(x;λi,0)> 0, fi,xx(x;λi,0) and fi,xλ (x;λi,0) are integrable with respect to x.

(3)
∫

supλi∈Θλi
‖ fi,λi(x;λi)‖dx < ∞ and

∫
supλi∈Θλi

‖ fi,λλ (x;λi)‖dx < ∞

(4) The matrix E[lθ ,t(θ0,G)l′
θ ,t(θ0,G)] is positive definite.

(5) For all x ∈R,

x2 f 2
i,x(x;λi,0)

f 2
i (x;λi,0)

and
‖ fi,λ (x;λi,0)‖2

f 2
i (x;λi,0)

are dominated by c0(1+ |x|c1) with c0 ≥ 0,0≤ c1 ≤ 2 and

∫
|x|c2 fi(x;λi,0)dx < ∞

(6) For all x ∈R and λi ∈Θλi ,
f 2
i,x(x;λi)

f 2
i (x;λi)

and
∣∣∣∣ fi,xx(x;λi)

fi(x;λi)

∣∣∣∣
are dominated by a0(1+ |x|a1),

∥∥∥∥ fi,xλ (x;λi)

fi(x;λi)

∥∥∥∥ and
∥∥∥∥ fi,x(x;λi)

fi(x;λi)

fi,λ (x;λi)

fi(x;λi)

∥∥∥∥
are dominated by a0(1+ |x|a2),

∥∥∥∥ fi,λ (x;λi)

f 2
i (x;λi)

∥∥∥∥2

and
∥∥∥∥ fi,λλ (x;λi)

fi(x;λi)

∥∥∥∥
are dominated by a0(1+ |x|a3), with a0 ≥ 0, 0≤ a1,a2,a3 ≤ 2, and

∫
(|x|2+a1 + |x|1+a2 + |x|a3) fi(x;λi,0)dx < ∞
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(7) For all x ∈R and λi ∈Θλi ,

∣∣∣∣ fi,xxx(x;λi)

fi(x;λi)

∣∣∣∣ , ∣∣∣∣ fi,xx(x;λi) fi,x(x;λi)

f 2
i (x;λi)

∣∣∣∣ and
∣∣∣∣ fi,x(x;λi)

fi(x;λi)

∣∣∣∣3

are dominated by b0(1+ |x|b1),

∥∥∥∥ fi,λλx(x;λi)

fi(x;λi)

∥∥∥∥ ,

∥∥∥∥ fi,x(x;λi) fi,λλ (x;λi)

f 2
i (x;λi)

∥∥∥∥ ,∥∥∥∥∥ fi,λ (x;λi) f ′i,xλ
(x;λi)

f 2
i (x;λi)

∥∥∥∥∥ and
∥∥∥∥ fi,x(x;λi) fi,λ (x;λi) fi,λ (x;λi)

′

f 3
i (x;λi)

∥∥∥∥
are dominated by b0(1+ |x|b2), with b0 ≥ 0, 0≤ b1,b2 ≤ 2, and

∫
(|x|b1 + |x|b2) fi(x;λi,0)dx < ∞

These assumptions impose restrictions on the smoothness and tail behavior of the density func-

tion, and are similar to Assumptions 4 and 5 in Lanne et al. (2017), with the additional requirement

of a1,a2,a3,b1,b2,c1 ≤ 2. More specifically, (1), (2), (3) and (4) guarantees the differentiability

and the information matrix equality. (5), (6) and (7) ensures the proper asymptotic behavior of the

score vector and hessian matrix, and also allows for bounding the estimation error introduced in the

principal component estimation of the factors. While the additional requirement on the magnitude

of the parameters might seem restrictive, notice that these parameters represents a trade-off between

smoothness and heavy tail. Larger parameters allow for the density and derivatives to have large

fluctuations, but at the price of more restrictive tail behavior. In macroeconomic applications, most

non-Gaussian distributional assumptions are used to accommodate heavy tails of the variables and

shocks, which implies that the magnitude of the aforementioned parameters should not be too large.

In fact, Assumption 2.5 is satisfied by many commonly used non-Gaussian density function, such

as the Student’s t-distribution (with degrees of freedom larger than 4) and the logistic density.

Now we introduce some additional notations due to the principal component estimation. Taking
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into account the rotation introduced in factor estimation, let

V = p limṼ, ΣF̃F = p lim
(

F̃ ′MY F
T

)
,

H0 = p limH =V−1
ΣF̃FΣΛ,

Q0 = p limQ =

H0 0

0 Ir2


(2.15)

Let A∗i,0 = Q0Ai,0Q−1
0 . While Q0B0 may not be an element of B, by Proposition 1 and 2 in Lanne

et al. (2017), there must exist matrices diagonal matrices D1, D2 and permutation matrix P such

that B∗0 = Q0B0D1PD2 ∈ B. Correspondingly, let σ∗0 = D−1
2 P′D−1

1 σ0 denote the standard error

of D−1
2 P′D−1

1 εt and λ ∗0 denote the reassembled parameter vector after permutation P′. Now let

π∗0 = vec(A∗1,0, . . . ,A
∗
p,0), β ∗0 = vecd◦(B∗0) and θ ∗0 = (σ∗

′
0 ,λ ∗

′
0 ,π∗

′
0 ,β ∗

′
0 )′.

Now we show that the MLE exists and consistently estimates such transformation of the true

VAR parameters. The likelihood function is

LT (θ ,G) =
1
T

T

∑
t=p+1

lt(θ ,gggt)

=
1
T

T

∑
t=p+1

[
r

∑
i=1

log fi(σ
−1
i ιiB−1et(θ ,gggt);λi)− log(det(B))−

r

∑
i=1

logσi

] (2.16)

where gggt = [g′t , . . . ,g
′
t−p]

′, ιi is a 1× r vector with its i-th element being 1 and other elements being

0 and

et(θ ,gggt) = gt −A1gt−1−·· ·−Apgt−p (2.17)

For simplicity of notation, here we ignore the fact that et does not depend on the elements of θ other

than π .

Theorem 2.2. (Consistency) Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, there exists a double

indexed sequence of solutions θ̂N,T to the FOCs Lθ ,T (θ , G̃) = 0 such that θ̂N,T −θ ∗0
p−→ 0 as N,T →

∞.
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Proof. Consider a sphere Θ∗ε = {θ ∗ : ‖θ ∗−θ ∗0 ‖= ε} for some sufficiently small ε . We have

LT (θ
∗, G̃)−LT (θ

∗
0 , G̃) =

[
LT (θ

∗, G̃)−LT (θ
∗,GQ′0)

]
+
[
LT (θ

∗
0 ,GQ′0)−LT (θ

∗
0 , G̃)

]
+
[
LT (θ

∗,GQ′0)−LT (θ
∗
0 ,GQ′0)

] (2.18)

Let g̃ggt = [g̃′t , . . . , g̃
′
t−p]

′ and ggg∗t = [Q0g′t , . . . ,Q0g′t−p]
′.

(i) For the first term, a mean value expansion gives

LT (θ
∗, G̃)−LT (θ

∗,GQ′0)

=
1
T

T

∑
t=p+1

[
vec(g̃ggt −ggg∗t )

′lg,t(θ ∗,ggg
†
t )
] (2.19)

where ggg†
t is between g̃ggt and ggg∗t . Let

xi(θ ,gggt) = σi(θ)
−1

ιiB(θ)−1et(π(θ),gggt) (2.20)

Then

vec(g̃ggt −ggg∗t )
′lg,t(θ ∗,ggg

†
t )

=(g̃ggt −ggg∗t )
′



Ir

−A∗
′

1
...

−A∗
′

p


B∗−1′


σ
∗−1
1

f1,x(x1(θ
∗,ggg†

t );λ ∗1 )
f1(x1(θ ∗,ggg

†
t );λ ∗1 )

...

σ∗−1
r

fr,x(xr(θ
∗,ggg†

t );λ ∗r )
fr(xr(θ ∗,ggg

†
t );λ ∗r )


(2.21)

We have

|LT (θ
∗, G̃)−LT (θ

∗,GQ′0)|

≤

(
1
T

T

∑
t=p+1

(
t

∑
s=t−p

‖g̃s−Q0gs‖2

))1/2(
1
T

T

∑
t=p+1

‖lg,t(θ ∗,ggg†
t )‖2

)1/2 (2.22)
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By Lemma A.1 in Bai (2003), we have

1
T

T

∑
t=1
‖g̃t −Q0gt‖2 = Op(δ

−2
NT ) (2.23)

where δNT = min{
√

N,
√

T}. Meanwhile, by Assumption 2.5, for any t, we have

sup
θ ∗∈Θ∗ε

‖lg,t(θ ∗,ggg†
t )‖2 ≤Const · sup

θ ∗∈Θ∗ε

max
1≤i≤r

(1+ |xi(θ
∗,ggg†

t )|a1) (2.24)

Notice that

xi(θ
∗,ggg†

t )

=xi(θ
∗,ggg∗t )+σ

∗−1
ιiB∗−1(g†

t −Q0gt −A∗1(g
†
t−1−Q0gt−1)−·· ·−A∗p(g

†
t−p−Q0gt−p))

(2.25)

Then by the Minkowski inequality we have

sup
θ ∗∈Θ∗ε

1
T

T

∑
t=1
|xi(θ

∗,ggg†
t )|2

≤

((
sup

θ ∗∈Θ∗ε

1
T

T

∑
t=1
|xi(θ

∗,ggg∗t )|2
)1/2

+Const ·
( 1

T

T

∑
t=1
‖g†

t −Q0gt‖2
)1/2

)2

≤

((
sup

θ ∗∈Θ∗ε

1
T

T

∑
t=1
|xi(θ

∗,ggg∗t )|2
)1/2

+Const ·
( 1

T

T

∑
t=1
‖g̃t −Q0gt‖2

)1/2
)2

(2.26)

From the expression xi(θ
∗,ggg∗t ), due to boundedness of the coefficients for ggg∗t when θ ∗ ∈ Θ∗ε , it is

straightforward to verify that {xi(θ
∗,ggg∗t )|θ ∗ ∈ Θ∗ε} is equicontinuous (as functions of ggg∗t ). Then by

Assumption 5 and Theorem 3.2 in Rao (1962), we can establish that

sup
θ ∗∈Θ∗ε

1
T

T

∑
t=1
|xi(θ

∗,ggg∗t )|2 = Op(1) (2.27)

Combining the above, we have

sup
θ ∗∈Θ∗ε

1
T

T

∑
t=p+1

‖lg,t(θ ∗,ggg†
t )‖2 = Op(1) (2.28)
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Therefore

sup
θ ∗∈Θ∗ε

|LT (θ
∗, G̃)−LT (θ

∗,GQ′0)|= Op(δ
−2
NT ) = op(1) (2.29)

as N,T → ∞.

(ii) Similarly, for the second term we have

sup
θ ∗∈Θ∗ε

|LT (θ
∗
0 ,GQ′0)−LT (θ

∗
0 , G̃)|= op(1) (2.30)

as N,T → ∞.

(iii) For the third term, notice that this term is not affected by the estimation of factors and does

not depend on N. Then following the proof of Theorem 1 in Lanne et al. (2017), we have a Taylor

expansion

LT (θ
∗,GQ′0)−LT (θ

∗
0 ,GQ′0)

=(θ ∗−θ
∗
0 )
′Lθ ,T (θ

∗
0 ,GQ′0)

+
1
2
(θ ∗−θ

∗
0 )
′
[

Lθ ,T (θ
†,ggg∗t )−E

(
lθθ ,t(θ

†,ggg∗t )
)]

(θ ∗−θ
∗
0 )

+
1
2
(θ ∗−θ

∗
0 )
′
[

E(lθθ ,t(θ
†,ggg∗t ))−E

(
lθθ ,t(θ

∗
0 ,ggg
∗
t )
)]

(θ ∗−θ
∗
0 )

+
1
2
(θ ∗−θ

∗
0 )
′E
(

lθθ ,t(θ
∗
0 ,ggg
∗
t )
)
(θ ∗−θ

∗
0 )

=S1 +S2 +S3 +S4

(2.31)

For S1, notice that

et(π
∗
0 ,ggg
∗
t ) = Q0gt −A∗1,0Q0gt−1−·· ·−A∗p,0Q0gt−p = Q0et(π0,gggt) (2.32)
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we have

LT (θ
∗
0 ,GQ′0) =

1
T

T

∑
t=p+1

lt(θ ∗0 ,ggg
∗
t )

=
T

∑
t=p+1

[
r

∑
i=1

log fi(σ
∗−1
i ιiD−1

2 P′D−1
1 B−1

0 Q−1
0 Q0et(π0,G);λ

∗
i )

− log|det(Q0B0D1PD2)|−
r

∑
i=1

logσ
∗
i

]

=
1
T

T

∑
t=p+1

(lt(θ0,gggt)−Const)

=LT (θ0,G)− (T − p)
T

·Const

(2.33)

which implies that lθ ,t(θ ∗0 ,ggg
∗
t ) = lθ ,t(θ0,gggt) and Lθ ,T (θ

∗
0 ,GQ′0) = Lθ ,T (θ0,G). Hence, we have

Lθ ,T (θ
∗
0 ,GQ′0) = Lθ ,T (θ0,G)

p−→ 0 (2.34)

which gives S1
p−→ 0 and thus

sup
θ ∗∈Θ∗ε

S1
p−→ 0 (2.35)

For S2, for a compact and convex set Θ∗0 ⊂Θ that contains θ ∗0 as an interior point, similar to Lemma

2 in Lanne et al. (2017), we can establish that:

sup
θ ∗∈Θ∗0

∥∥∥∥∥ 1
T

T

∑
t=p 1

lθθ ,t(θ
∗,ggg∗t )−E[lθθ ,t(θ

∗,ggg∗t )]

∥∥∥∥∥ p−→ 0 (2.36)

and that E[lθθ ,t(θ
∗,ggg∗t )] is continuous in θ ∗ at θ ∗0 . This implies that for small enough ε such that

Θ∗ε ⊂Θ∗0, we have

sup
θ ∗∈Θ∗ε

S2
p−→ 0 (2.37)

For S3 and S4, we use the continuity of E[lθθ ,t(θ
∗,ggg∗t )] established above, and the negative definite-

ness of E[lθθ ,t(θ
∗
0 ,ggg
∗
t )]. Then we have

sup
θ ∗∈Θ∗ε

S3 +S4 <−Const · ε2 (2.38)
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Combining (i), (ii) and (iii), we have

P

(
sup

θ ∗∈Θ∗ε

LT (θ
∗, G̃)< LT (θ

∗
0 , G̃)

)
→ 1 (2.39)

as N,T → ∞, which implies the existence and the consistency of a solution sequence, see Serfling

(1980), pp. 147-148 and Shao (2003), pp. 290.

To perform inference, we now derive the asymptotic distribution of the parameter estimates.

Theorem 2.3. (Asymptotic Normality) Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, we have

√
T (θ̂ ∗−θ

∗
0 )

d−→ N(0,(−E[lθθ ,t(θ0,gggt)])
−1) (2.40)

as N,T → ∞ and
√

T
N → 0.

In addition,
(
−Lθθ (θ̃

∗, G̃)
)−1 is a consistent estimator of (−E[lθθ ,t(θ0,gggt)])

−1.

Proof. Let θ̂ ∗ be the MLE. We have

0 =
√

T Lθ ,T (θ̂
∗, G̃) =

√
T Lθ ,T (θ

∗
0 , G̃)+

√
T Lθθ ,T (θ̃

∗, G̃)(θ̂ ∗−θ
∗
0 ) (2.41)

So
√

T (θ̂ ∗−θ
∗
0 ) = (Lθθ ,T (θ̃

∗, G̃))−1
√

T Lθ ,T (θ
∗
0 , G̃) (2.42)

For Lθθ ,T (θ̃
∗, G̃), we have

Lθθ ,T (θ̃
∗, G̃) =

1
T

T

∑
t=p+1

lθθg,t(θ
∗, g̃ggt)

=
1
T

T

∑
t=p+1



lσσ ,t(θ
∗, g̃ggt) lσλ ,t(θ

∗, g̃ggt) lσπ,t(θ
∗, g̃ggt) lσβ ,t(θ

∗, g̃ggt)

lσλ ,t(θ
∗, g̃ggt)

′ lλλ ,t(θ
∗, g̃ggt) lλπ,t(θ

∗, g̃ggt) lλβ ,t(θ
∗, g̃ggt)

lσπ,t(θ
∗, g̃ggt)

′ lλπ,t(θ
∗, g̃ggt)

′ lππ,t(θ
∗, g̃ggt) lπβ ,t(θ

∗, g̃ggt)

lσβ ,t(θ
∗, g̃ggt)

′ lλβ ,t(θ
∗, g̃ggt)

′ lπβ ,t(θ
∗, g̃ggt)

′ lββ ,t(θ
∗, g̃ggt)


(2.43)
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Following Lanne et al. (2017), let

Σ = diag(σ1, . . . ,σr) (2.44)

gt = (1,g′t−1, . . . ,g
′
t−p)

′ (2.45)

and

et(θ ,gggt) = diag(e1,t(θ ,gggt), . . . ,er,t(θ ,gggt)) (2.46)

ex,t(θ ,gggt) = diag(e1,x,t(θ ,gggt), . . . ,er,x,t(θ ,gggt)) (2.47)

where

ei,t(θ ,gggt) = ι
′
i B
−1et(θ ,gggt) (2.48)

ei,x,t(θ ,gggt) =
fi,x(σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

(2.49)

In addition, define block diagonal matrices

exx,t(θ ,gggt) = diag(e1,xx,t(θ ,gggt), . . . ,er,xx,t(θ ,gggt)) (2.50)

eλλ ,t(θ ,gggt) = diag(e1,λλ ,t(θ ,gggt), . . . ,er,λλ ,t(θ ,gggt)) (2.51)

exλ ,t(θ ,gggt) = diag(e1,xλ ,t(θ ,gggt), . . . ,er,xλ ,t(θ ,gggt)) (2.52)

where

ei,xx,t(θ ,gggt) =
fi,xx(σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

−

(
fi,x(σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

)2

(2.53)

ei,xλ ,t(θ ,gggt) =
f ′i,xλ

(σ−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

−
fi,x(σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

f ′i,λ (σ
−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

(2.54)

ei,λλ ,t(θ ,gggt) =
fi,λiλi(σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

−
fi,λ (σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

f ′i,λ (σ
−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

(2.55)
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Then the blocks of the Hessian are

lσσ ,t = Σ
−2 +2Σ

−3et(θ ,gggt)ex,t(θ ,gggt)+Σ
−4e2

t (θ ,gggt)exx,t(θ ,gggt) (2.56)

lσλ ,t =−Σ
−2et(θ ,gggt)exλ ,t(θ ,gggt) (2.57)

lσπ,t = gt ⊗B−1′(Σ−2ex,t(θ ,gggt)+Σ
−3et(θ ,gggt)exx,t(θ ,gggt)) (2.58)

lσβ ,t = H′(B−1⊗B−1′)[et(θ ,gggt)⊗ (Σ−2ex,t(θ ,gggt)+Σ
−3et(θ ,gggt)exx,t(θ ,gggt))] (2.59)

lλλ ,t = eλλ ,t (2.60)

lλπ,t =−(Irp+1⊗B−1′
Σ
−1)(gt ⊗exλ ,t(θ ,gggt)) (2.61)

lλβ ,t =−H′(B−1⊗B−1′
Σ
−1)(et(θ ,gggt)⊗exλ ,t(θ ,gggt)) (2.62)

lππ,t = (Ir⊗B−1′
Σ
−1)(gtg

′
t ⊗exx,t(θ ,gggt))(Ir⊗B−1′

Σ
−1)′ (2.63)

lπβ ,t = gt ⊗
[(

Ir⊗diag(ex,t(θ ,gggt))
′)(B−1′⊗Σ

−1B−1)H
]

+gt ⊗
[
B−1′

Σ
−1 (et(θ ,gggt)

′⊗exx,t(θ ,gggt)
)
(B−1′⊗Σ

−1B−1)H
] (2.64)

lββ ,t = H′(B−1⊗B−1′)(et(θ ,gggt)et(θ ,gggt)
′⊗exx,t(θ ,gggt))(B

−1′⊗Σ
−1B−1)H

+H′(B−1⊗ Ir)
(
(et(θ ,gggt)diag(ex,t(θ ,gggt))

′)⊗ Ir
)
(Σ−1B−1⊗B−1′KrrH)

+H′Krr(B−1′
Σ
−1⊗B−1)((diag(ex,t(θ ,gggt))et(θ ,gggt))⊗ Ir)(B−1′⊗ Ir)H

+H′(B−1⊗B−1′)KrrH

(2.65)

where H is a special elimination matrix defined following footnote 8 of Lanne et al. (2017), and Krr

is the commutation matrix such that Krrvec(A) = vec(A′) for any r× r matrix A.

Now notice that

vech(Lθθ ,T (θ̃
∗, G̃)−Lθθ ,T (θ̃

∗,GQ′0))

=
1
T

T

∑
t=p+1

[
vec(g̃ggt −Q0gggt)

′ ∂vech(lθθ ,t(θ
∗,ggg†

t ))

∂ggg

] (2.66)

To characterize ∂vech(lθθ ,t(θ
∗,ggg†

t ))
∂ggg , consider the derivative of an arbitrary element from each block.
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First for lσσ ,t , let

ei,xxx,t(θ ,gggt) =
fi,xxx(σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

+2

(
fi,x(σ

−1
i ei,t(θ ,gggt);λi)

fi(σ
−1
i ei,t(θ ,gggt);λi)

)3

−3
fi,xx(σ

−1
i ei,t(θ ,gggt);λi) fi,x(σ

−1
i ei,t(θ ,gggt);λi)

f 2
i (σ

−1
i ei,t(θ ,gggt);λi)

(2.67)

Then consider the i-th diagonal element of lσσ ,t(θ
∗,ggg†

t ), we have

∂

∂gt−s

(
σ
∗−2
i +2σ

∗−3
i ei,t(θ

∗,ggg†
t )ei,x,t(θ

∗,ggg†
t )+σ

∗−4
i e2

i,t(θ
∗,ggg†

t )ei,xx,t(θ
∗,ggg†

t )
)

=

(
2σ
∗−3
i ei,x,t(θ

∗,ggg†
t )+2σ

∗−4
i ei,t(θ

∗,ggg†
t )ei,xx,t(θ

∗,ggg†
t )+2σ

∗−4
i ei,t(θ

∗,ggg†
t )ei,xx,t(θ

∗,ggg†
t )

+σ
∗−5
i e2

i,t(θ
∗,ggg†

t )ei,xxx,t(θ
∗,ggg†

t )

)
ι
′
i B
∗−1(−A∗s )

(2.68)

For lσλ ,t , consider the j-th element of its i-th diagonal block, we have

∂

∂gt−s

(
−σ

∗−2
i ei,t(θ

∗,ggg†
t )e

( j)
i,xλi,t

(θ ∗,ggg†
t )
)

=

[
e( j)

i,xλi,t
(θ ∗,ggg†

t )−ei,t(θ
∗,ggg†

t )
( f ( j)

i,xλ
(σ∗−1

i ei,t(θ
∗,ggg†

t );λi)

fi(σ
∗−1
i ei,t(θ ∗,ggg

†
t );λi)

−
fi,xx(σ

∗−1
i ei,t(θ

∗,ggg†
t );λi) f ( j)

i,λ (σ
∗−1
i ei,t(θ

∗,ggg†
t );λi)

f 2
i (σ

∗−1
i ei,t(θ ∗,ggg

†
t );λi)

+
2 f 2

i,x(σ
∗−1
i ei,t(θ

∗,ggg†
t );λi) f ( j)

i,λ (σ
∗−1
i ei,t(θ

∗,ggg†
t );λi)

f 3
i (σ

∗−1
i ei,t(θ ∗,ggg

†
t );λi)

)]
σ
∗−3

ι
′
i B
∗A∗s

≡
(

e( j)
i,xλi,t

(θ ∗,ggg†
t )−ei,t(θ

∗,ggg†
t )e

( j)
i,xxλi

)
σ
∗−3

ι
′
i B
∗A∗s

(2.69)

Now lσπ,t is a Kronecker product of two matrices, so we consider the product of arbitrary elements

of each matrix. We have

∂

∂gt−s

[
g†(m)

t− j (B
∗−1)(n,m)

(
σ
∗−2
n en,x,t(θ

∗,ggg†
t )+σ

∗−3
n en,t(θ

∗,ggg†
t )en,xx,t(θ

∗,ggg†
t )
)]

=(B∗−1)(n,m)

[(
σ
∗−2
n en,x,t(θ

∗,ggg†
t )+σ

∗−3
n en,t(θ

∗,ggg†
t )en,xx,t(θ

∗,ggg†
t )
)

ιm

+g†(m)
t− j

(
2σ
∗−3
n en,xx,t(θ

∗,ggg†
t )+σ

∗−4
n en,t(θ

∗,ggg†
t )en,xxx,t(θ

∗,ggg†
t )
)

ι
′
nB∗−1(−A∗s )

] (2.70)

For lσβ ,t , notice that H′(B∗−1⊗ B∗−1′) does not depend on G, so we consider an element from
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[et(θ
∗,ggg†

t )⊗ (Σ−2ex,t(θ
∗,ggg†

t )+Σ∗−3et(θ
∗,ggg†

t )exx,t(θ
∗,ggg†

t ))].

Similar as above, we obtain

∂

∂gt−s

[
ei,t(θ

∗,ggg†
t )
(

σ
∗−2
j e j,x,t(θ

∗,ggg†
t )+σ

∗−3
j e j,t(θ

∗,ggg†
t )e j,xx,t(θ

∗,ggg†
t )
)]

=

(
σ
∗−2
j e j,x,t(θ

∗,ggg†
t )+σ

∗−3
j e j,t(θ

∗,ggg†
t )e j,xx,t(θ

∗,ggg†
t )

)
ι
′
i (−A∗s )

+ei,t(θ
∗,ggg†

t )

(
2σ
∗−3
j e j,xx,t(θ

∗,ggg†
t )+σ

∗−4
j e j,t(θ

∗,ggg†
t )e j,xxx,t(θ

∗,ggg†
t )

)
ι
′
jB
∗−1(−A∗s )

(2.71)

For lλλ ,t , consider the ( j,k)-th element of its i-th diagonal block, we have

∂

∂gt−s

(
e( j,k)

i,λiλi,t
(θ ∗,ggg†

t )
)

=

{
f ( j,k)
i,xλλ

(σ∗−1
i ei,t(θ

∗,ggg†
t );λi)

fi(σ
∗−1
i ei,t(θ ∗,gggt);λi)

−
f ( j,k)
i,λλ

(σ∗−1
i ei,t(θ

∗,ggg†
t );λi) fi,x(σ

∗−1
i ei,t(θ ,gggt);λi)

f 2
i (σ

∗−1
i ei,t(θ ,gggt);λi)

− 1

f 2
i (σ

∗−1
i ei,t(θ ∗,ggg

†
t );λi)

[
f ( j)
i,λ (σ

∗−1
i ei,t(θ

∗,ggg†
t );λi) f (k)i,xλ

(σ∗−1
i ei,t(θ

∗,ggg†
t );λi)

+ f ( j)
i,xλ

(σ∗−1
i ei,t(θ

∗,ggg†
t );λi) f (k)i,λ (σ

∗−1
i ei,t(θ

∗,ggg†
t );λi)

]
−

f ( j)
i,λ (σ

∗−1
i ei,t(θ

∗,ggg†
t );λi) f (k)i,λ (σ

∗−1
i ei,t(θ

∗,ggg†
t );λi) fi,x(σ

∗−1
i ei,t(θ

∗,ggg†
t );λi)

f 3
i (σ

∗−1
i ei,t(θ ∗,ggg

†
t );λi)

}

·σ∗−1
ι
′
i B
∗−1(−A∗s )

≡e( j,k)
i,λiλix

σ
∗−1

ι
′
i B
∗−1(−A∗s )

(2.72)

For lλπ,t , the first term (Irp+1⊗B∗−1Σ∗−1) does not depend on G, thus we consider an element of

the second term gt ⊗exλ ,t(θ
∗,ggg†

t ).

∂

∂gt−s

(
g†(m)

t−i e(n)j,xλ j,t
(θ ∗,ggg†

t )
)

=1{i = s}e(n)j,xλ j,t
(θ ∗,ggg†

t )ιm +σ
∗−1
j g†(m)

t−i e(n)j,xxλ j,t
(θ ∗,ggg†

t )ι
′
jB
∗−1(−A∗s )

(2.73)

where 1{·} is the indicator function.

For lλβ ,t , again −H′(B−1⊗B∗−1′Σ∗−1) does not depend on G, so we consider an element of

et(θ
∗,ggg†

t )⊗exλ ,t(θ
∗,ggg†

t ).

∂

∂gt−s

(
ei,t(θ

∗,ggg†
t )e

(m)
j,xλ j,t

(θ ∗,ggg†
t )
)
= ι
′
i (−A∗s )+e(m)

j,xxλ j,t
(θ ∗,ggg†

t )ι
′
jB
∗−1(−A∗s ) (2.74)
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For lππ,t , notice that (Ir⊗B∗−1′Σ∗−1) does not depend on G, we consider an element from the

middle component (gtg′t ⊗exx,t(θ ,gggt)):

∂

∂gt−s

(
g†(m)

t−i g†(n)
t− j ei,xx,t(θ

∗,ggg†
t )
)
=ei,xx,t(θ

∗,ggg†
t )(1{i = s}ιm +1{ j = s}ιn)

+g†(m)
t−i g†(n)

t− j ei,xxx,t(θ
∗,ggg†

t )σ
∗−1

ι
′
i B
∗−1(−A∗s )

(2.75)

For lπβ ,t , again we have B∗−1′ ⊗Σ∗−1B∗−1H and B∗−1′Σ∗−1′ does not depend on G. Then for

the first term, we have

∂

∂gt−s
g†(m)

t−i e j,x,t(θ
∗,ggg†

t ) = e j,x,t(θ
∗,ggg†

t )1{i = s}ιm +g(m)
t−i e j,xx,t(θ

∗,ggg†
t )σ

∗−1
ι
′
jB
∗−1(−A∗s ) (2.76)

For the second term, we have

∂

∂gt−s
g†(m)

t−i e j,t(θ
∗,ggg†

t )ek,xx,t(θ
∗,ggg†

t )

=e j,t(θ
∗,ggg†

t )ek,xx,t(θ
∗,ggg†

t )1{i = s}ιm

+g†(m)
t−i

(
ek,xx,t(θ

∗,ggg†
t )ι
′
j + e j,t(θ

∗,ggg†
t )ek,xxx,tσ

∗−1
ι
′
k

)
B∗−1(−A∗s )

(2.77)

Now that we have the above characterization of ∂vech(lθθ ,t(θ
∗,ggg†

t ))
∂ggg , we notice that Assumption 2.5

implies bounds on

‖ei,t(θ
∗,ggg†

t )‖, ‖ei,x,t(θ
∗,ggg†

t )‖,

‖ei,xx,t(θ
∗,ggg†

t )‖, ‖ei,xλi,t(θ
∗,ggg†

t )‖,

‖ei,xxx,t(θ
∗,ggg†

t )‖, ‖ei,xxλi,t(θ
∗,ggg†

t )‖, and ‖ei,xλiλi(θ
∗,ggg†

t )‖

(2.78)

by

Const · sup
θ ∗∈Θ∗ε

(
1+ |xi(θ

∗,ggg†
t )|c
)

(2.79)

where c ∈ {c1,a1,a2,a3,b1,b2} is the corresponding power.

Then following the same arguments as in eq(2.22) to eq(2.29), we obtain

Lθθ ,T (θ̃
∗, G̃)−Lθθ ,T (θ̃

∗,GQ′0)
p−→ 0 (2.80)
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Combined with eq(2.36), we have

Lθθ ,T (θ̃
∗, G̃)

p−→ E(lθθ ,t(θ
∗
0 ,ggg
∗
t )) = E(lθθ ,t(θ0,gggt)) (2.81)

Now notice that

√
T Lθ ,T (θ

∗
0 , G̃) = (

√
T Lθ ,T (θ

∗
0 , G̃)−

√
T Lθ ,T (θ

∗
0 ,GQ′0))+

√
T Lθ ,T (θ

∗
0 ,GQ′0) (2.82)

For the second term, by Theorem 1 in Lanne et al. (2017), we have

√
T Lθ ,T (θ

∗
0 ,GQ′0)

d−→ N(0,(−E[lθθ ,t(θ0,gggt)])
−1) (2.83)

Meanwhile, for the first term, recall that we previously showed that

sup
θ ∗∈Θ∗ε

|LT (θ
∗, G̃)−LT (θ

∗,GQ′0)|= Op(δ
−2
NT ) (2.84)

which implies that

sup
θ ∗∈Θ∗ε

|
√

T
(
LT (θ

∗, G̃)−LT (θ
∗,GQ′0)

)
|= Op(

√
T δ
−2
NT ) = op(1) (2.85)

as N,T → ∞ when
√

T
N → 0. Combining all of the above, we obtain that

√
T (θ̂ ∗−θ

∗
0 )

d−→ N(0,(−E[lθθ ,t(θ0,gggt)])
−1) (2.86)

as N,T → ∞ and
√

T
N → 0. To estimate the asymptotic variance, notice that eq(2.81) implies that

(
−Lθθ (θ̃

∗, G̃)
)−1 p−→ (−E(lθθ ,t(θ0,gt)))

−1 (2.87)

Therefore
(
−Lθθ (θ̃

∗, G̃)
)−1 is a consistent estimator of the asymptotic variance.

The above result, Theorem 2.3, implies that the first step principal component estimation does

not affect the asymptotic variance of the second step estimates. This is consistent with the result

in Bai and Ng (2006) where they consider a least square second step. Gonçalves and Perron (2014)
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shows that under the assumption
√

T
N → c 6= 0, such result no longer holds and an asymptotic bias

will be introduced in the least square second step. For our maximum likelihood second step, a

similar result might also hold, but we leave this issue for future work. In our simulation practice,

we will evaluate the impact of this assumption in finite samples.

Other than inference, the above asymptotic normality result also implies that standard test-

ing procedures could be used to test many conventional identification assumptions, as discussed

in Lanne et al. (2017). For example, short-run restrictions, which normally involves assuming some

elements of B to be zero, could be tested via standard Wald or likelihood ratio tests. Although

already stressed in the literature, we reiterate the following remarks due to their importance in em-

pirical research. First, not all restrictions could be tested, since we restrict B to have unit diagonal

elements. Second, the test results should be interpreted as under a specific ordering, rather than

under all ordering. To be more specific, for example, when testing B(1,3) = B(2,3) = 0 when there

are three factors in total, this should be interpreted as the first two factors do not respond to the

third shock contemporaneously, rather than that there exists a shock that do not affect two of the

factors. These problems are no different from those of testing identification restrictions in structural

VAR, which are further discussed in section 4.6 in Lanne et al. (2017). In a FAVAR context, the

identification assumptions, while are often mathematically identical or similar to the structural VAR

identification restrictions, sometimes involve a slightly different economic interpretation due to the

factor estimation, which the researcher should be careful with. We will discuss this point further in

Section 2.5.

2.4 Simulation

In this section, we examine the finite sample performance of the proposed method via Monte Carlo

simulations. Following Bai et al. (2016) and Yamamoto and Hara (2022), we consider a data gener-

ating process with a VAR(1) for the autoregressive part, as following:

xt =

[
Λ Γ

] ft

yt

+ut (2.88)

gt = Agt−1 +Bεt (2.89)
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For the VAR model(2.88), we set r1 = 2 and r2 = 1 so that r = 3.

A =


0.6 0 0

0 0.4 0

0 0 0.2

 , B =


1.0 0.4 0.8

0.2 1.0 −0.3

−0.6 0.4 1.0

 (2.90)

For the factor model(2.89), the idiosyncratic errors are i.i.d. across both time and cross-sections,

generated from the standard normal distribution. The factor loading are generated as an r×1 random

vector where each element is independently drawn from the standard normal distribution. Since we

assume the factor loading are deterministic, we keep the realization of the factor loading the same

through different Monte Carlo repetitions. We set the total number of simulations to M = 1000. The

structural errors εit are generated using independent t location scale distributions, with the location

parameter being 0, scale parameter σi = 1 and degree of freedom λi = 6. We focus on the estimation

and inference of the structural impulse response of the third factor, i.e. the observed factor, to the

third shock. We assume that the number of unobserved factor r1 is known.

To construct confidence intervals for impulse responses, the theoretical results in previous sec-

tions implies a Delta method approach. However, in practice, the derivatives of the impulse re-

sponses with respect to parameters, especially the shape parameters, can be difficult to evaluate

depending on the choice of distribution. To address this, we also consider a residual-based boot-

strap method. The detailed steps are:

1. Estimate the model and obtaining the parameter estimates and the residuals ût and ε̂t .

2. Demean ε̂t over T and i.i.d. resample to obtain e†
t . Resample ût i.i.d. as well to obtain u†

t .

3. Generate the bootstrap sample G† and X† through the parameter estimates.

4. Regress X† on G† to get bootstrap estimates of factor loading. Use G† to obtain maximum

likelihood estimates of the VAR parameters. Calculate the impulse responses of interest using

the bootstrap estimates.

5. Repeat step 2-4 500 times.

6. Construct the confidence intervals using the bootstrap impulse responses.
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This takes into the account of our theoretical results which suggest that the first step estimation has

no effect on the second step variances asymptotically. For a more detailed discussion on bootstrap

methods in two-step estimation of FAVAR, see Gonçalves and Perron (2014) and Yamamoto (2019).

The simulation results are presented in Table 2.1

Table 2.1: Coverage rates of 90% confidence intervals

coverage rates
T=50, N=50 h = 0 1 2 3 4 5
Delta method 0.79 0.84 0.82 0.82 0.82 0.83
Bootstrap 0.87 0.81 0.82 0.82 0.85 0.87

T=50, N=150 h = 0 1 2 3 4 5
Delta method 0.81 0.87 0.83 0.84 0.84 0.85
Bootstrap 0.88 0.85 0.84 0.88 0.89 0.90

T=150, N=50 h = 0 1 2 3 4 5
Delta method 0.77 0.82 0.82 0.81 0.78 0.81
Bootstrap 0.88 0.84 0.83 0.84 0.87 0.88

T=150, N=150 h = 0 1 2 3 4 5
Delta method 0.81 0.88 0.86 0.84 0.86 0.85
Bootstrap 0.93 0.87 0.84 0.86 0.90 0.91

T=300, N=300 h = 0 1 2 3 4 5
Delta method 0.84 0.87 0.87 0.87 0.89 0.89
Bootstrap 0.92 0.86 0.88 0.91 0.90 0.91

We can see that both the Delta method and bootstrap confidence intervals performed reasonably

well, especially when the sample sizes increase.

Based on the simulation, we make the following observation:

1. While the bootstrap confidence intervals have good coverage rates across the board, the cover-

age rate distortion does not seem to completely disappear even when T =N = 300. A possible

explanation for this could be our assumption of
√

T
N → 0. As demonstrated in Gonçalves and

Perron (2014), an asymptotic bias arise when
√

T
N → c where c 6= 0, for a two-step estimator

of FAVAR with principal component first step and linear regression second step, in contrast

to the result in Bai and Ng (2006). Although we have a maximum likelihood second step,

it is likely that under when
√

T
N → c 6= 0, our method also results in a bias. To remedy this,

we attempt an alternative bootstrap procedure that add re-estimation of the factors in step
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4, although results (not reported) show no significant difference. This is consistent with the

simulation results in Yamamoto (2019) that such correction might not significantly improve

the coverage rates unless T is significantly larger than N.

2. The Delta method intervals seem to suffer significantly when T is significantly larger than

N, which is a sign of the potential violation of our assumption of
√

T
N → 0. This is possibly

explained by the potential bias we discussed in the earlier point. However, it is interesting that

the bootstrap intervals do not seem to suffer as much. It might also relate to the computational

problem in the next point.

3. The Delta method intervals of impact period response seem to show signs of under coverage,

although the coverage rates gradually increase as T increases. This might be a computational

issue, as we use the numerical hessian as the estimator for variance. Alternatively, we use the

numerical score to construct the estimator, but the result (not reported) is largely similar.

2.5 Empirical application

In this section, we replicate the results of Bernanke et al. (2005) as a demonstration of our method.

To investigate the role of monetary policy shocks in explaining economic fluctuations, Bernanke

et al. (2005) proposed and implemented FAVAR to incorporate more information compared to a

small scale baseline structural VAR. They examine monthly data of 120 macroeconomic variables

from January 1959 through August 2001, and found that by incorporating these additional variables,

the price puzzle is significantly attenuated compared to a baseline 3 variable structural VAR model.

To identify the structural matrix, Bernanke et al. (2005) chooses the federal funds rate as the

observed factor and assumed that the unobserved factors are all slow moving, i.e. do not respond

to monetary policy shocks contemporaneously. To properly justify this, part of the macroeconomic

variables are assumed to have no contemporaneous response to a monetary policy shock.

On the contrary, we do not need to impose contemporaneous response restrictions on any vari-

able. Our method, however, as in Lanne et al. (2017), does not naturally imply economic interpreta-

tion of the structural shocks. To achieve identification, we inspect impulse responses for the federal

funds rate, and choose the shock that incurs a positive response at impact which decreases gradually

as horizon increases. While not reported here, the responses of most observed macroeconomic vari-
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ables to the four statistically identified structural shocks are quite distinct, such that the selection of

variables used to economically label the monetary shock is not crucial.

To better compare the results, we use the same data set as in Bernanke et al. (2005). A detailed

description of the variables and the corresponding transformation (first difference and logarithms,

etc.) can be found in their Appendix 1. The baseline specification of Bernanke et al. (2005) includes

three unobserved factors and thirteen lags, while five unobserved factors and seven lags are also

investigated respectfully and yield similar results as the baseline specification. Considering the

computational burden of maximum likelihood estimation, we include three unobserved factors and

seven lags. We assume the structural shocks all follow t-distribution, which is widely used in

empirical literature as a heavier tailed replacement of Gaussian distribution. Due to our theoretical

assumptions, we restrict the degrees of freedoms to be larger than 4. The impulse responses are

reported in standard deviation units, and are normalized such that the federal funds rate has a 25-

basis point increase at impact from the monetary policy shock.

We first estimate the model and conduct a Wald test on the assumption that all the unobserved

factors do not respond to the monetary shock contemporaneously. The test yield a p-value of 0.0355,

which rejects the null hypothesis. Notice that this is not a test of the economical identification as-

sumption in Bernanke et al. (2005). They a priori categorize the macroeconomic variables in slow

and fast categories, and by assuming that the unobserved factors do not respond to the monetary

shock contemporaneously, they also impose additional assumptions on the factor loading (see Stock

and Watson (2016) for a detailed discussion and Han (2015) for an over-identification test on these

type of restrictions). Our test, to be more specific, shows that if we use information from all vari-

ables without imposing these assumptions, then the factors indeed respond to monetary shock con-

temporaneously. Alternatively, we extract the factors assuming slow and fast moving variables as

in Bernanke et al. (2005). Now a Wald test on the no contemporaneous response assumption yields

a p-value of 0.4357, which no longer rejects the null. Again, this does not directly verify their iden-

tification assumption. However, it does seem to indicate that their extraction method, under their

assumption, correctly produces factors that have no contemporaneous response to the monetary

shock.

To further investigate the empirical implication of the aforementioned problem, we also examine

the responses to a monetary policy shock of the 20 macroeconomic variables as in figure II-V
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in Bernanke et al. (2005). The impulse responses and the 90% confidence intervals, constructed

using the bootstrap procedure given in Section 2.4, are presented in Figure 2.1.

To better demonstrate the differences between our results and figure II in Bernanke et al. (2005),

we also plot their point estimates along with our results in Figure 2.2. Their point estimates are

labeled as IRF-BBE, while our point estimates and confidence intervals are labeled as IRF-nonG

and CI-nonG. We also provide a comparison of the 90% confidence intervals in Figure 2.3, where

their confidence intervals are labeled CI-BBE and our confidence intervals are labeled CI-nonG.

The results show that, while our testing procedure indicates problems in the identification strat-

egy in Bernanke et al. (2005), the impulse responses, especially the point estimates, are not sig-

nificantly different from theirs. The point estimate of the response of CPI to monetary shocks still

suggests the existence of price puzzle. However, the lower bounds of the confidence intervals are

now negative across all horizons, which allows for non-existence of price puzzle. This result is in

stark contrast to the results in Bernanke et al. (2005). Their two-step estimator produces confidence

intervals that are non-negative at least in the very short run, and while their Bayesian estimator

allows for no price puzzle, the confidence intervals are too wide to be properly interpreted.

In addition, our method produces a significantly larger trough effect on industrial production,

and the negative impact seem to continue well past the 48 months mark. Similarly, the effect on

exchange rate also seems to be more persistent compared to Bernanke et al. (2005). One final major

difference is that several real variables, such as total employment and unemployment rate, seem to

respond to the monetary shock contemporaneously, which is consistent with the testing result we

discussed earlier.

2.6 Conclusions

This chapter proposes a method of incorporating the identification strategy using non-Gaussianity

assumptions, recently developed in the structural VAR literature, into FAVAR settings. We first show

that the structural impulse responses of the observed variables are point identified, regardless of the

potential rotation, permutation and scaling introduced by factor estimation and VAR estimation.

Then following such idea, we propose a two-step estimator with a principal component first stage to

estimate the factors and a maximum likelihood second stage to estimate the VAR parameters, and

provide the relevant asymptotic results for the estimator. The asymptotic results not only provide the
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foundation for inference on the structural impulse responses, but also implies testing methods for

many conventional identification restrictions. We also conduct a simulation study that demonstrates

the construction of confidence intervals using our proposed estimator, and the results from the study

confirms the finite sample validity our method.

To further demonstrate the application of our method in an empirical setting, we revisit the data

set used in Bernanke et al. (2005) and compare the results. Despite obtaining impulse responses

of relatively similar shape for the key macroeconomic variables, we do note two key differences in

the results: First, our results, while not completely eliminating price puzzle, also do not support its

existence as strongly as Bernanke et al. (2005). Furthermore, our results also suggest a stronger and

more persistent effect of monetary policy on output and exchange rate.

As to potential future work, there remains several important unresolved issues on identification

through non-Gaussianity in FAVAR models. From a technical viewpoint, the estimator proposed

in our study requires correct specification of the likelihood. Several recent studies in structural

VAR with non-Gaussian errors suggest that such issue could be avoided through Quasi-MLE or

GMM estimators, and future research could further investigate whether these methods could be

incorporated in the estimation and inference in FAVAR. From an empirical perspective, the general

issue of labeling shocks under a statistical identification scheme could use more work. In addition,

allowing usage of categorical variables and variables of different frequencies could significantly

expand the possibility of empirical application. We hope that this study stimulates future research

to address these directions.
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Figure 2.1: Impulse responses to monetary policy shock
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Figure 2.2: Point estimates comparison
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Figure 2.3: Confidence intervals comparison
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Appendix A

Appendix for Chapter 1

A.1 Notations

For an m×n matrix A, ‖A‖ denote the Frobenius norm of A. Let vec(A) denote the vectorization of

A:

vec(A) = [A1,1, . . . ,Am,1,A1,2, . . . ,A1,n, . . . ,Am,n]
′

where Ai, j denotes the i, j-th element of A.

If A is an n×n square matrix, let λmin(A) denote the smallest eigenvalue of A. Furthermore, if

A is positive definite, let A1/2 denote the Cholesky factor of A.

If A is an n×n symmetric matrix, let vech(A) denote the half vectorization of A:

vech(A) = [A1,1, . . . ,An,1,A2,2, . . . ,An,2, . . . ,An−1,n−1,An,n−1,An,n]

The duplication matrix Dn for n×n matrices is the unique n2× n(n+1)
2 matrix such that for any n×n

symmetric matrix A,

Dnvech(A) = vec(A)

The elimination matrix Ln for n×n matrices is the unique n(n+1)
2 ×n2 matrix such that for any n×n

symmetric matrix A,

Lnvec(A) = vech(A)

Throughout chapter 1, all op(·), Op(·), o(·) and O(·) are uniform over the relevant parameter spaces
unless stated otherwise.
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