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CHAPTER 1

Sensitivity Analysis for Treatment Effects with Endogenously Censored Duration Outcome

1.1 Introduction

Many program evaluation problems involve censored outcomes. A few classical examples include survival time of

patients in clinical trials, duration of unemployment, length of marriage, the lifetimes of firms, and so forth. In addition

to the usual problems with counterfactual analyses, censoring poses additional challenges to researchers, as it is well

known that the marginal and joint distributions of the latent outcome and the censoring variable are not identifiable if

the censoring mechanism is left entirely unrestricted (Tsiatis, 1975). One popular approach to restoring identification is

by assuming that the two variables are independent, possibly conditional on observed covariates. Although prevalent,

such an assumption can easily be violated in many practically relevant applications. Subject attrition due to unobserved

factors being correlated with the latent outcome, and the presence of competing events are among the most frequently

encountered reasons for the failure of the proposed assumption. As a concrete example, consider clinical patients who

receive poor prognosis. They may decide to withdraw from trials based on such result, causing a positive correlation

between survival and abandonment times. Ignoring this dependence would lead to biased assessments of the treatment.

Methodologies under dependent censoring have received less attention relative to their independent counterpart,

partly due to a lack of consensus on how the dependence should be modeled. The current literature is divided between

imposing a known censoring mechanism and making no assumptions about it at all. At one extreme, if we assume

that the dependence structure is fully characterized by a known copula, we can recover distributional information of

the latent duration from observed durations (see Zheng and Klein (1995)). However, such results are sensitive to the

specification of the true copula. On the other extreme, robust approaches, such as the ones proposed by Khan and

Tamer (2009) and Khan et al. (2016), utilize minimal theoretical restrictions and are likely to generate uninformative

identified sets.

In reality, researchers often have some prior information on the censoring mechanism, which may come from

auxiliary data, scientific theory, or expert opinion. For instance, in the clinical trial example, we may assume the

latent and censoring times are positively correlated based on prior research findings. It is crucial that identification and

inference procedures built by researchers allow one to flexibly incorporate partial information as such when addressing

policy relevant questions.

With this goal in mind, we follow the partial identification approach proposed by Fan and Liu (2018), and assume

that the true copula of latent outcome and censoring time belongs to the well-known Archimedean family. We do
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not, however, directly specify the true copula. The Archimedean copulas serve two purposes here. First, it allows the

distribution of potential outcome be explicitly expressed in the form of copula-graphic-type estimands (see Rivest and

Wells (2001)) that we denominate as bound generating functions (BGF). Such functions are smooth functionals of

the observed (sub-) distributions and are indexed by the level of dependence censoring. Second, many one-parameter

Archimedean families are endowed with a concordance ordering (Nelsen, 2007). The BGFs inherit such a property, and

as a result, are ordered in terms of the first-order stochastic dominance (FOSD) relations. This natural ordering then

allow us to explicitly derive the bounds of identified sets for various treatment effects. To the best of our knowledge,

this copula-based partial identification approach to program evaluation has not yet been covered in the literature.

Analytical forms of the bounds render sensitivity analysis with respect to the level of dependent censoring es-

pecially convenient. With endogenously censored data, such analyses are crucial for obtaining convincing policy

assessments, because the assumptions on the censoring mechanism are intrinsically untestable.

Our second contribution is the incorporation of the single-index structure into the aforementioned copula-based

approach, based on which, we propose estimation procedures for the BGFs, as well as the bounds of the treatment

effects, using a novel single-index copula graphic (SICG) estimator. The dimension-reduction feature of this new

estimator is particularly attractive in the current context, where fully nonparametric methods such as those adopted

by Braekers and Veraverbeke (2005), Lopez (2011), and Fan and Liu (2018), tend to be plagued by the “curse of

dimensionality”, due to the multitude of baseline covariates needed for justifying the unconfoundedness setting.

We provide comprehensive large sample results for the proposed estimators, including a uniform linear expansion

for the new SICG estimator. Based on these, we establish functional central limit theorems for the BGFs as well as

the bounds of the treatment effects. To conduct uniformly valid inference, we propose easy-to-implement multiplier

bootstrap procedures, and show the bootstrap uniform confidence sets are asymptotically accurate.

We illustrate the proposed methodology through Monte Carlo studies and an empirical application in which we

compare the relative efficacy of two treatment protocols for acute lymphoblastic leukaemia (ALL): GHS-2000 and

AHOPCA ALL-2008. Using data from a series of clinical studies conducted in Honduras, prior work by Bernasconi

et al. (2022) found that the more recent treatment plan leads to better survival prospects for patients in the first three

years post treatment. Their results depend crucially on the potential survival time and abandonment-of-treatment being

independent conditionally on observed covariates. When we depart from this assumption, however, this conclusion

may not continue to hold according to the results of our sensitivity analysis.

Related literature: This article contributes to an extensive literature on program evaluation with censored data.

The majority of works in this literature rely on the random censoring assumption. See, e.g. Anstrom and Tsiatis

(2001), Hubbard et al. (2000), Lee and Lee (2005), Frandsen (2015), Sant’Anna (2016), Sant’Anna (2021), and so
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on. Models that accommodate dependent censoring are gaining attention. For instance, Beyhum et al. (2021), and

Crommen et al. (2022) both study inference problems with endogenous treatment models. Our paper differs from

these two, as we neither impose strong completeness nor functional-form assumptions on the data generating process

(DGP), and we do not aim for point identification.

This article is also related to the literature on dependent censoring and competing risk models. Early contribution

by Tsiatis (1975) shows that the joint distribution of the competing risks is not identified, and the best obtainable

bounds are the worst-case bounds derived by Peterson (1976). These results allude to the difficulty of accounting

for endogenous censoring without extra constraints or external information. To model the dependence between the

potential outcome and the censoring variable, we follow the copula-based approach. With a fully known copula, Zheng

and Klein (1995) propose a nonparametric estimator, which extends the one by Kaplan and Meier (1958), and call it

the copula-graphic estimator. Rivest and Wells (2001) show that the estimator has a closed-form expression when

attention is restricted to the Archimedean copulas. Braekers and Veraverbeke (2005), Huang and Zhang (2008), and

Chen (2010) further extend it by incorporating covariates. The known copula assumption is imposed in all of the above

works. In a linear quantile regression setting, Fan and Liu (2018) propose a partial identification approach that allows

copula to vary within a prespecified class. This paper extends their approach to the program evaluation framework.

More recently, Czado and Van Keilegom (2021), Deresa and Van Keilegom (2020), and Deresa et al. (2022) also allow

an unknown copula, but they establish its identifiability via strong distributional restrictions.

We also build on the literature of single-index estimation with censored data. As a powerful dimension-reduction

device, single-index models are widely popular in semiparametric duration analysis, cf. Lopez (2011), Lopez et al.

(2013), and Bouaziz and Lopez (2010). The available results all rely on the random censoring assumption, and are

not directly applicable to the copula-based setting. The novel SICG estimator proposed in this paper fills this gap. It

is worthwhile to mention that it is not restricted to the scope of this article and can be used in many other settings.

Additionally, since we follow Li and Patilea (2018) and impose the single-index structure directly on the potential

laws, rather than on the observed distributions, our estimation procedure for the index parameter is greatly simplified

relative to the aforementioned papers.

Organization of the article: Section 1.2 introduces the framework for endogenous censoring and the treatment

effect parameters. Section 1.3 presents the single-index model, and in addition, introduce Archimedean copulas,

and the bound generating functions. We also provide identification results on the aforementioned quantities in this

section. Next, in Section 1.4, we propose a multi-step estimation procedure for various treatment effects, using the

identification results derived in Section 1.3. We also establish large sample theories for the proposed estimators in this

section. Section 1.5 establishes the validity of multiplier bootstrap procedures, and provide practical guidelines for
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constructing uniform bootstrap confidence bands. In Section 1.6, we illustrate the finite sample performance of our

proposed estimators and the bootstrap confidence sets, via Monte Carlo simulations. Section 1.7 presents an empirical

application, and Section 1.8 concludes. Proofs and auxiliary results are collected in Section 1.9.

1.2 Setup and Parameter of Interest

1.2.1 Model Framework

Consider a program in which the outcome of interest is measured by the amount of time until a target event occurs.

Let T ∈ T ⊂ [0,∞) denote such an outcome. We also observe an indicator D for binary treatment: D = 1 if the unit

is treated and D = 0 otherwise. Following Neyman-Rubin potential outcome framework (see e.g. Rubin (1974)),

we denote by T1 and T0 the values that T would have taken if D is equal to one or zero, respectively. As a result,

T = DT1 +(1−D)T0. A vector X ∈X ⊂ Rk of baseline covariates is recorded prior to the program. In an ideal

setting, we would observe (T1,T0,D,X), and make inferences thereof. However, the ideal data is coarsened in two

ways.

First, we only observe the realized event time T but not the potential outcomes T1 and T0. Moreover, the realized

T is subject to right censoring by a random variable, C ∈ T . As a result, we only have access to Y = min{T,C} and

a no-censoring indicator R, where R = 1 if T ≤C, and R = 0, otherwise. Same as the outcome of interest, C,Y and R

are also functions of D, i.e. U = DU1 +(1−D)U0, where U ∈ {C,Y,R} and Ud stands for the potential realization of

U under treatment d. Thus, the available data W consists of (Y,R,D,X). Let SU |V (·|v) = P(U > ·|V = v) denote the

survival function of a random variable U given V = v. Our goal is to make inferences on functionals of STd |X , using

information from observed samples of W .

In observational studies, treatment is not randomly assigned. Therefore, the treatment, the event time, and the

censoring variable are all likely confounded. To address the relationship between the treatment and latent duration

outcomes, we focus on the unconfoundedness setup. That is, we impose the following assumption on the underlying

data generating process,

Assumption 1.1 (Unconfoundedness) (T1,T0,C1,C0)⊥⊥ D|X .

Assumption 1.1 implies that, selection into treatment is solely based on observable characteristics. The assumption

is akin to the standard unconfoundedness condition in the program evaluation literature, as found in complete obser-

vations (cf. Rosenbaum and Rubin (1983), Hirano et al. (2003), and Firpo (2007)), as well as censored outcomes (cf.

Lee and Lee (2005), and Sant’Anna (2016, 2021)). It differs from the latter two, however, by requiring independence

of the joint law, rather than on the potential event time only. This strengthened condition is necessary since the event

and censoring times can remain dependent, even after adjusting for the covariates.
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Since the observed duration Y and the censoring indicator R are deterministic functions of T and C, the above

assumption immediately implies that (Y1,Y0,R1,R0) ⊥⊥ D|X . We also note that since the experimental setting can be

viewed as a special case of Assumption 1.1, all of our theories presented below will automatically carry over to the

randomized-controlled-trial setting.

1.2.2 Parameters of Interest

We will work mainly with the following four types of treatment effects under the unconfoundedness setup:

(Restricted) Average Treatment Effect: AT E(t)≡ E
[
T̃1(t)− T̃0(t)

]
,

Distributional Treatment Effect: DT E(t)≡ FT1(t)−FT0(t),

Quantile Treatment Effect: QT E(τ)≡ F−1
T1

(τ)−F−1
T0

(τ),

Cumulative Hazard Treatment Effect: CHT E(t)≡ ΛT1(t)−ΛT0(t),

where T̃d(t) ≡ 1{Td ≤ t} · Td +1{Td > t} · t is generated from Td by censoring the latter at t. The restricted ATE

converges to the usual ATE as t increases. We adopt this restricted measure over the global one primarily because of

the challenges posed by the right tail of the potential outcome distributions. As we will discuss in Section 1.4, they

become increasingly close to boundaries as t grows, and therefore, increasingly difficult to estimate accurately, which

in turn causes inference issues for the global ATE measure.1 This measure is also used by Westling et al. (2021).

The quantile function F−1
Td

(·) and the cumulative hazard function ΛTd (·) associated with treatment type d ∈ {0,1}

are defined by F−1
Td

(τ) ≡ inf{y : FTd(y) ≥ τ} and ΛTd : FTd 7→
∫
[0,·]

1
1−F−Td

dFTd , with F−(x) ≡ lims↑t F(s), respectively.

Note that each of these policy effects can be represented as the difference between smooth functionals of FTd . These

functionals, denoted by FTd 7→ ϒ(FTd (·))(·), are usually called the treatment responses. It can be shown that each of

the treatment responses introduced here respects the FOSD relations of FTd . That is, either ϒ(F(·))(u)≥ ϒ(G(·))(u) or

ϒ(G(·))(u)≥ ϒ(F(·))(u) for all u, whenever F(t)≥G(t), for all t. Such a property will be exploited for characterizing

identified set for the treatment effects. There are examples of treatment responses that violate the FOSD relation. For

instance, the Gini coefficients and Lorenz curves respect second-order stochastic dominance relations but not the

first-order one. Consequently, our identification analysis do not apply in these cases.

Under independence censoring mechanism, the policy parameters are known to be point identified from the ob-

served data. See e.g. Hubbard et al. (2000), Lee and Lee (2005), and Sant’Anna (2016). However, when the censoring

1Another censored ATE measure, frequently encountered in the literature, is defined as AT E(t) = E[T11{T1 ≤ t}−T01{T0 ≤ t}]. However,
since the treatment response E[Td1{Td ≤ t}] does not respect the first order stochastic dominance relations of FTd , it is incompatible with the
analytical framework adopted in this paper.
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mechanism is entirely unrestricted, the best attainable result is the worst-case bounds by Peterson (1976). We aim to

take the middle ground in this paper, and try to address the following type of question: if the level of dependence can

be restricted to a given range, what values of the treatment effects are consistent with this information? The answer

depends on two factors: (i) the quantification of the level of dependence censoring and (ii) a link from the censoring

mechanism to the policy parameters. These two ingredients are discussed in detail in the next section.

1.3 Identification

We describe our identification strategy in this section. Our main result can be divided into two parts. We first introduce

a single-index model, and discuss the identification of its index parameters. Then, in the second part, we provide the

identification results on the distributions of potential durations and the treatment effects through the lens of copula

theory. Despite the order of our exposition, the majority of results in the second part are relatively independent, and

can be established without the embedding of the single-index structure.

1.3.1 Single-Index Model

Semiparametric models offer a good compromise between the parametric approach, which relies on strong assump-

tions on the functional form assumption that may not hold in practice, and the fully nonparametric one, which suffers

from the curse of dimensionality. A well-known example of such a dimension reduction device is the single-index

model, widely adopted in duration analysis. See, for instance, Xia et al. (2010), Bouaziz and Lopez (2010), Lopez

et al. (2013), Li and Patilea (2018), and Bücher et al. (2021). For a generic conditional distribution of Y given X , the

single-index model assumes that FY |X (y|x) = G(y,x′γ†), where G is an unknown bivariate function, and γ† is the vec-

tor of index parameters. In general, the coefficients are only identified up to a scale, thus requiring normalization for

point identification. To this end, we arrange the covariates such that the first k1 variables are absolutely continuously

distributed, and the remaining k2 variables are binary. We set the coefficient associated with the first element, x[1], to 1,

and let xγ = x[1]+ x′[−1]γ , where x[−1] collects all the other covariates and γ is the corresponding subvector of γ†. Note

that this normalization is not entirely innocuous as it imposes a positive effect on the first component of the covariates.

Assumption 1.2 (Single index structure) (Td ,Cd)⊥⊥ X |Xγd , where γd is an interior point of a compact set Γ⊂Rk−1,

for d ∈ {0,1}.

Assumption 1.2 is an index sufficiency condition on the joint law of the event time and the censoring variable. A

similar restriction appears in Li and Patilea (2018) under the random censoring mechanism. Note that the true index

coefficient may vary across treatment groups, reflecting potential differences in the treatment response heterogeneity.

However, the indices are restricted to be the same across the marginal laws of Td and Cd , for each d ∈ {0,1}. An
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immediate consequence of the index sufficiency condition is that Xγd can be viewed as a balancing score, meaning

that the potential outcomes are independent of the treatment choices conditional on this index. The result is formally

stated in Lemma 1.1.

Lemma 1.1 Under Assumptions 1.1 and 1.2, (Td ,Cd ,Yd ,Rd)⊥⊥ D|Xγd , for d ∈ {0,1}.

The lemma essentially states that the property of unconfoundedness, as induced by the conditioning set X , is main-

tained under a coarse partition of X generated by the index Xγd . This matching condition is crucial for establishing

the identification of γγγ ≡ (γ ′1,γ
′
0)
′ from the observed data.

With slight abuse of notation, we write Gd,r(·,xγ) = FY,R|D,Xγ(·,r|d,xγ), and define fd(u) = ∂FXγ,D(u,d)/∂u, for

(d,r) ∈ {0,1}2, where the functional form of Gd,r and fd depends on γ . Furthermore, we define

Ed,r,γ(t)≡ 1{D = d}
{
1{R = r,Y ≤ t}−Gd,r(t,Xγ)

}
Ud,γ(t,d,r)≡ Ed,r,γ(t) fd(Xγ),

and let Ed,r,γ,` and Ud,γ,` be the same functions defined with observation W`.

Exploiting the balancing property of the index, we will show in Theorem 1.1 that, under the index sufficiency

condition, E[Ud,γd ,`(t,r)|X ] = 0 almost surely, for each t,d, and r. This conditional moment restriction will serve as

the basis for the identification of the index parameters. To fully exploit the informational content of such a conditional

restriction, we will follow the “integrated conditional moment approach” common in the specification testing literature.

See, e.g. González-Manteiga and Crujeiras (2013) for a review. The idea is to characterize the conditional moment

restriction as an infinite number of unconditional moment equations via some well-chosen family of weight functions

{ϑ(X ;z) : z ∈Z }. That is,

E[Ud,γd ,1(t,r)|X ] = 0 a.s.⇔ E[Ud,γd (t,r)ϑ(X ;z)] = 0 a.e. in z ∈Z , (1.3.1)

Lemma 1 of Escanciano (2006b) provides primitive conditions on the family of weights for the equivalence in the

preceding display to hold. Here, we list a few examples that satisfy the equivalence condition: (i) ϑ(X ;z) = 1{X ≤ z},

with z ∈Rk, see e.g., Stute (1997) and Domı́nguez and Lobato (2004); (ii) ϑ(X ;z) = 1{X ′z1 ≤ z2}, with z = (z1,z2)∈

S×R, where Sk is the (k− 1)-dimensional unit sphere, see e.g. Escanciano (2006a); (iii) ϑ(X ;z) = exp(iz′X), with

z ∈ Rk and i =
√
−1, see e.g., Bierens (1982) and Lavergne and Patilea (2013).
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Now, we define

Jd(γ;ϑ)≡
∫

T ×{0,1}

∫
z∈Z

∥∥E[Ud,γ(t,r)ϑ(X ;z)]
∥∥2 dΠZ(z)dΠT,R(t,r), (1.3.2)

where ΠZ is an integrating measure that is absolutely continuous with respect to the dominant measure of z. Similarly,

ΠT,R is an integrating measure for (t,r) that is specified by the researcher. It is not necessarily related to the unobserved

law of T . In Theorem 1.1, we will show that γd = argminγ∈Γ Jd(γ;ϑ), d ∈ {0,1}, and the minimization yields a

unique solution, if the conditions given in Assumption 1.3 are fulfilled.

Assumption 1.3 (Identification of index)

1. (i) X = X c×X b ≡Π
k1
`1=1[¯

x`1 , x̄`1 ]×{0,1}k2 ; (ii) infxγ∈XΓ
fd(Xγ)> 0, where XΓ ≡ {xγ : x ∈X ,γ ∈ Γ}; (ii)

T = [0, ȳ], where ȳ = inf{y : inf(r,d,x)∈{0,1}2×X FYd ,Rd |Xγd
(y,r|xγd) = 1}.

2. P(D = d|X)> 0, almost surely.

3. There exist sets T0 ⊂ T , such that for each t ∈ T0, (i) the function z 7→ FYd ,Rd |Xγd
(t,r|z) is differentiable in z;

(ii) there exists a set X0 ⊂X , such that P(X ∈X0)> 0, and ∂FYd ,Rd |Xγd
(t,r|v)/∂v|v=xγd 6= 0, for all x ∈X0.

4. For each γ ∈ Γ, there exists an open interval V0 satisfying (i) V0 ⊂ ∩k2−1
`=0 {X

c
γ + γk1+`}∩X c

γ , where X c
γ =

{x[1]+ γ1x[2]+ ...+ γk1−1x[k1] : (x[1], ...,x[k1]) ∈X c}, and (ii) for each t ∈T0, if FYd ,Rd |Xγd
(t,r|v+u) = FYd ,Rd |Xγd

(t,r|v) for all v ∈ V0, then u = 0.

Assumptions 1.3.1 and 1.3.2 are standard. We allow for continuous covariates as well as discrete ones. Here, the

discrete variables are all assumed to be binary, but the restriction can be easily relaxed. Note that Assumption 1.2.1(ii)

implies that t̄ ≤ c̄, where t̄ and c̄ are the upper bounds in the support of the event time and the censoring variable,

respectively. Outcome beyond ȳ will never be observed, thus the entire distribution FTd |Xγd
, and thus the ATE, can be

identified only if t̄ ≤ c̄. When the interest lies in functionals that do not involve the entire distribution, this assumption

is not needed. Assumption 1.3.2 is the usual overlapping condition on the treatment assignment mechanism, imposed

to guarantee that the conditional distribution Gd,r are well defined on XΓ. The next two conditions, adapted from

Assumptions 4.1 and 4.2 in Ichimura (1993), are imposed to ensure the identifiability of the index parameters. Together

with the normalization restriction, Assumption 1.3.3 secures identification of index coefficients corresponding to the

continuous covariates. Assumption 1.3.4 restricts the shape of XΓ, and when it is assumed in addition, the coefficients

for binary covariates are point identified as well.
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Theorem 1.1 Under Assumptions 1.1, 1.2, 1.3.1, and 1.3.2 it holds that (i)

E[Ud,γd (t,r)|X ] = 0, almost surely, ∀(d,r, t) ∈ {0,1}2×T . (1.3.3)

(ii) If in addition, Assumptions 1.3.3 and 1.3.4 hold, γ 6= γd implies E[Ud,γ(t,r)|X ] 6= 0, almost surely, for all (d,r, t) ∈

{0,1}2×T0. (iii) If in addition, ϑ belongs to any of the classes of functions in Lemma 1 of Escanciano (2006b),

and
∫
T0×{0,1} dΠT,R(t,r) > 0, we have that Jd(γ;ϑ) ≥ 0, ∀γ ∈ Γ, and the equality holds if and only if γ = γd , for

d ∈ {0,1}.

Theorem 1.3 is a global identification result. It shows that the index parameters can be recovered as the unique

minimizer of the minimum distance type criterion, (1.3.2). Compared with similar approaches by Bouaziz and Lopez

(2010), Strzalkowska-Kominiak and Cao (2014), and Li and Patilea (2018), we do not directly impose the uniqueness

of single-index structure, but rather derive it from primitive and mild conditions on the underlying DGP.

As an implication of Theorem 1.3, we show how γγγ can be estimated based on a reformulation of Jd(γ;ϑ).

Towards this end, we note that, by means of the law of iterated expectations, Jd(γ,ϑ) can be written as

Jd(γ;ρ) =
∫

T ×{0,1}
E
[
ρ(X1,X2)Ud,γ,1(t,r)Ud,γ,2(t,r)

]
dΠT,R(t,r), (1.3.4)

where ρ(x1,x2)≡
∫

z∈Z ϑ(x1,z)cϑ(x2,z)dΠZ(z), and Ac is the conjugate transpose of A. The function ρ might appear

complicated at first, but a convenient closed-form usually follows once an appropriate weight function and integrating

measure combination is chosen. For instance, when ϑ(X ;z) = exp(iz′X) and ΠZ(z) = Φ(z), where Φ(·) is the CDF of

k-variate standard normal distribution, ρ(x1,x2) = exp(−‖x1− x2‖/2).2 Other examples can be found in Escanciano

(2006b) and Sant’Anna et al. (2022). The new criterion (1.3.4) follows the minimum distance function of Li and Patilea

(2018) closely, inheriting many attractive properties of theirs. For one, since the dimension reduction hypothesis is

imposed on joint laws of Td and Cd , (1.3.2) does not involve complicated conditional Kaplan-Meier type integrals as

is common in the literature. See, e.g. Xia et al. (2010), Bouaziz and Lopez (2010), and Strzalkowska-Kominiak and

Cao (2014). Moreover, no trimming is required, due to the inclusion of fd in Ud,γ . As such, we may avoid dealing

with convoluted multi-step procedures as appeared in Delecroix et al. (2006), and Bouaziz and Lopez (2010).

We propose to estimate the index parameters γγγ by minimizing the sample analogue of (1.3.4). The integration with

2Here we have used the fact that ∫
Rk

exp(iu′t) · exp(−u′u/2)
(2π)k/2 du = EU [exp(iU ′t)] = exp(−t ′t/2),

where the first equality follows by the definition of characteristic function for random variable U , and the second is due to the assumption that U
follows the k-variate standard normal distribution.
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respect to ΠT,R may also be avoided when the it is replaced by a suitable empirical measure. Details of the estimation

procedure are provided in Section 1.4.

Remark 1.1 The index sufficiency condition can be tested based on (1.3.4), following the approach proposed by

Maistre and Patilea (2019). Let Q(γ) be a (k−1)×(k−1)-invertible matrix with the first column given by γ . Consider

the following function

Jd(γ;ρ,g)≡
∫

T̃ ×{0,1}
E
[
ρ(X ′1Q(γ),X ′2Q(γ))Ud,γ,1(t,r)Ud,γ,2(t,r)Jg(X2γ,X1γ)

]
dΠT,R(t,r),

where J(·) is a symmetric kernel function, g is a bandwidth, and Jg(u,v)≡ g−1J(g−1(v−u)). If Assumption 1.2 does

not hold, after adjusting for Xγ , the dependence on X would drive Jd(γ;ρ,g) away from zero, uniformly in γ ∈ Γ

and for a suitably chosen bandwidth sequence. In turn, we may construct the test statistic based on sample analogues

of Jd(γ,ρ,g), and use multiplier bootstrap to generate the critical values. The idea is formalized in Algorithm 1.9.2.

Remark 1.2 We would like to emphasize here that point identification of the index parameters does not imply that of

the marginal distribution of Td , as well as the joint distribution of Td and Cd . For the latter, Peterson (1976)’s worse

case bounds are applicable here and they are equivalent to the fully nonparametric case, provided that Assumption 1.2

indeed holds.

1.3.2 Partial Identification through Copula

From Sklar (1959)’s theorem, we know that, conditionally on X = x, there exists a conditional survival copula, Cx(·, ·) :

[0,1]2 7→ [0,1], such that

P(Td > t,Cd > c|X = x) = Cx(STd |X (t|x),SCd |X (c|x)),

for t,c ∈ T . Moreover, if the conditional survival functions are absolutely continuous, then Cx is unique; otherwise

it is only uniquely determined on the range of the survival functions. Sklar’s results allow us to separate the analysis

of the marginal laws and the dependence structure. As is discussed in Section 1.1, we mainly focus on parameter

Archimedean families, but similar identification result can be established for nonparametric families as well. In-

troduced by Genest and MacKay (1986a; 1986b), Archimedean copulas are widely used in economic applications for

modeling a variety of dependence structures. The family is characterized by a generator function φθ (·) : [0,1] 7→ [0,∞)

that is usually indexed by a parameter θ ∈Θ:

{
C (u,v;θ) = φ

[−1]
θ

(φθ (u)+φθ (v)) : θ ∈Θ

}
.
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For each θ , φθ is a known continuous, convex, strictly decreasing function with φθ (1) = 0. In the above definition,

φ
[−1]
θ

stands for the pseudo-inverse of φθ , as defined by

φ
[−1]
θ

(s) =


φ
−1
θ

(s), 0≤ s≤ φθ (0)

0 φθ (0)≤ s≤ ∞.

If φθ (0) = ∞, φ
[−1]
θ

= φ
−1
θ

, and the copula is said to be strict.

We do not seek to identify parameter θ in this article. Instead, we treat it as a sensitivity parameter that is varied,

to trace out a family of identified sets. Prior information on the dependence structure, such as model restrictions and

expert opinions, will be translated as constraints on θ , which will serve to restrict the size of the identified set.

In place of a random censoring condition, the censoring mechanism of this paper are defined through mild restric-

tions on the copula functions as seen below.

Assumption 1.4 (Copula)

1. (i) The conditional distribution of (T1,T0,C1,C0) is absolutely continuous respect to the Lebesgue measure. (ii)

Conditional distributions FYd ,Rd |D,X (y,r|d,x) and FTd |X (y|x) are differentiable with respect to y ∈ T , for x ∈X

and r,d ∈ {0,1}.

2. The true conditional survival copula of (Td ,Cd), Cx(·, ·), is strict and belongs to the one parameter Archimedean

family C (·, ·;θ) with generator function φθ (·) indexed by θ ∈Θ≡ [
¯
θ , θ̄ ], for any x ∈X and d ∈ {0,1}.

3. Let φ
′
θ
(u) = ∂φθ (u)/∂u, for u ∈ (0,1). It holds that φ

′
θ1
(·)/φ

′
θ2
(·) is strictly increasing for any θ1,θ2 ∈ Θ with

θ1 < θ2.

Assumption 1.4.1 is a smoothness condition on the duration outcomes, requiring that the event and censoring times

admit densities on the support of Y . Discretely-measured times pose an additional challenge for identification. Ac-

commodating discrete outcomes along the lines of Kim (2021) will be left for future work. Assumption 1.4.2 stipulates

that the conditional copulas belong to an Archimedean family with the same type of generator function, but the index

parameters are potentially different depending on x. While the assumption streamlines the discussion of identification

and sensitivity analysis, it is not restrictive and can be relaxed to allow for nonparametric generator functions. We let

θ ∗d (x) denote the true copula parameter associated with Cx under treatment d. Archimedean copulas can be justified

in the context of a mixed proportional hazards model with common frailty term, but it is not restricted to such models.

See e.g. Joe (1997) and Nelsen (2007) for detailed expositions. Many Archimedean families include the indepen-

dence copula, φθ (u) = logu−1, either as a special case or as a limiting one. This feature is particularly convenient
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for sensitivity analysis using Archimedean copulas. Assumption 1.4.3 and Corollary 4.4.6 in Nelsen (2007) imply the

family of copulas is endowed with a concordance ordering, meaning that C (u,v;θ1)≤ C (u,v;θ)≤ C (u,v;θ2), for all

u,v ∈ [0,1]2 and θ ∈ [θ1,θ2]. As a result, θ sufficiently characterizes the level of dependence between Td and Cd . This

property plays a major part in generating analytical bounds for the treatment effects.

Generator functions satisfying Assumption 1.4.3 are common. A few well-known examples include: (i) Clayton

copula: max{u−θ + v−θ −1,0}−1/θ , with the generator φθ (u) = 1
θ
(u−θ −1); (ii) Gumbel copula: exp(−[(− logu)θ+

(− logv)θ ]1/θ ), with the generator φθ (u) = (logu−1)θ ; (iii) Gumbel-Hougaard copula: uvexp(−θ logu logv), with

the generator φθ (u) = log(1−θ logu). For a comprehensive list, see Table 4.1 in Nelsen (2007) and Table 1 in Fan

and Liu (2018).

Provided that the true copula belongs to the Archimedean family, the distribution of Td can be explicitly expressed,

in terms of the generator function φθ , Gd,1, and sd ≡ 1−Gd , d ∈ {0,1}. We denote the linking function as the

conditional bound generating function (BGF), which is defined as follows

sTd (t,xγ,θ)≡ φ
−1
θ

(
−
∫ t

0
φ
′
θ (sd(y,xγ))Gd,1(dy,xγ)

)
, (1.3.5)

for (t,d,xγ,θ)∈T ×{0,1}×XΓ×Θ. For a function θ(·) : X →Θ, the unconditional BGF, sTd ,γ(·,θ(·)) : T ×XΓ→

[0,1], is defined by sTd ,γ(t,θ(·)) = E[sTd (t,Xγ,θ(X))]. We suppress the subscript γ , when it is evaluated at its true

value.

The next theorem formally states how the conditional and marginal distributions of T0 and T1 can be recovered

from the observed (conditional) distributions, via the BGFs.

Theorem 1.2 For d ∈ {0,1}, (i) under Assumptions 1.1–1.3, 1.4.1, and 1.4.2, STd |X (·|x) ∈
{

sTd (·,xγd ,θ) : θ ∈Θ
}
,

a.e. for x ∈X , and STd (·) ∈
{

sTd (·,θ(·)) : θ(x) ∈Θ,x ∈X
}

. The identified sets are uniformly sharp over T , for

d ∈ {0,1}.

(ii) Suppose Assumptions 1.1–1.4 hold. If in addition, for any θ1,θ2 ∈ Θ such that θ1 ≤ θ ∗d (·) ≤ θ2, we have

sTd (t,xγd ,θ2)≤ STd |X (t|x)≤ sTd (t,xγd ,θ1), and sTd (t,θ2)≤ STd (t)≤ sTd (t,θ1), a.e. for (t,x) ∈T ×X . The identified

sets are uniformly sharp across t and x, for each d ∈ {0,1}.

As a direct implication of the theorem, when the true copula is known, or equivalently when
¯
θ = θ̄ , the distribution

of potential event time can be point identified from data. The result thus extends Rivest and Wells (2001) and Braekers

and Veraverbeke (2005)’s findings to the program evaluation framework. Furthermore, this implies that, when the

outcome is randomly censored, the potential survival distribution can be recovered with the famous Kaplan-Meier

estimator as proposed by Beran (1981) and Dabrowska (1989). We remark that when the index sufficiency condition
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fails, conclusions of Theorem 1.2 will continue to hold with (1.3.5) replaced by its nonparametric counterpart.

Remark 1.3 There is no way to learn about the true copula family from data. Prior work including Zheng and Klein

(1995), Huang and Zhang (2008), Lo and Wilke (2010), and Fan and Liu (2018) finds that the choice of generating

functions are less important than that of the level of dependence θ . Extensive numerical evidence suggests biases

caused by misspecification of the copula family are negligible compared to that caused by θ . As such, the choice of

copula family itself does not accord much identification power.

Remark 1.4 Due to the convexity of the generator function and by construction, the function t 7→ sTd (t,xγd ,θ) is

monotonically decreasing and bounded between [0,1] for each (d,θ) ∈ {0,1}×Θ. These constraints may not be

respected when sTd is replaced by its estimator. We discuss a remedy in remark 1.5.

The name BGF is motivated by the fact that the ordering of such functions, as induced by the concordance ordering

of the copula, yields a convenient characterization for the bounds of the treatment effects. Each type of the treatment

effects introduced in Section 1.2 consists of treatment responses that respect the FOSD relations of STd . As a result,

bounds of BGFs can be translated to those of the treatment responses. Exploiting this insight, we derive closed-form

bounds for various treatment effects in the next proposition.

Let us denote qd,γ,θ (τ)≡ inf{y : sTd ,γ(y,θ)≤ 1−τ} as the τ-th quantile of 1− sTd ,γ(·,θ), for τ ∈ (0,1). Again, the

subscript γ is omitted when it is evaluated at its true value.

Proposition 1.1 Suppose that Assumptions 1.1–1.4 hold, and that θ1 ≤ θ ∗d (·) ≤ θ2, for d ∈ {0,1} and θ1,θ2 ∈ Θ.

Then, we have

νAT E(t,θθθ) ∈
[∫

[0,t]

(
sT1(y,θ2)− sT0(y,θ1)

)
dy,

∫
[0,t]

(
sT1(y,θ1)− sT0(y,θ2)

)
dy
]
, (1.3.6)

νDT E(t,θθθ) ∈ [sT0(t,θ2)− sT1(t,θ1), sT0(t,θ1)− sT1(t,θ2)], (1.3.7)

νQT E(τ,θθθ) ∈ [q1,θ2(τ)−q0,θ1(τ), q1,θ1(τ)−q0,θ2(τ)], (1.3.8)

νCHT E(t,θθθ) ∈ [log(sT0(t,θ2))− log(sT1(t,θ1)), log(sT0(t,θ1))− log(sT1(t,θ2))], (1.3.9)

where θθθ = (θ1,θ2), t ∈T and τ ∈ (0, τ̄). The identified sets are uniformly sharp across t or τ , depending on j.

For a fixed x ∈ X , bounds for the conditional treatment effects can be determined by replacing sTd (t,θ) and

qd,θ (τ) in the previous displays with sTd (t,xγd ,θ) and qx
d,θ (τ)≡ inf{y : sTd (y,xγd ,θ)≤ 1− τ}, respectively.

For each j ∈ {AT E,DT E,QT E,CHT E}, we let the lower and upper bound be denoted by νlb, j(u,θθθ) and νub, j(u,

θθθ), and let them by denominated as the lower and upper overall treatment effect bound functions (TEBF) for type j,
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respectively. We use the vector ννν j = (νlb, j, νub, j)
′ to collect the bounds.3 With slight abuse of notation, the index

variable u, is allowed to vary depending on the type of treatment effect under consideration. In particular, u = τ if

j = QT E, and u = t if j ∈ {AT E,DT E,CHT E}.

Proposition 1.1 is the first contribution of the paper. It implies that, if the true copula parameter mappings (θ ∗0 (·),

θ ∗1 (·)) lies between constants θ1 and θ2, the bounds of treatment effects can be expressed as smooth functionals of

{(sTd (·,θ1), sTd (·,θ2))}d∈{0,1}. Moreover, the lower and upper bounds are related by νlb(·,θθθ) = νub(·, θ̆θθ), where

θ̆θθ = (θ2,θ1). The size of the identified set is determined by the strength of prior information. As the interval [θ1,θ2]

narrows, the identified sets become smaller. In the limit, the true copula is known, and the treatment effects can

be point identified. This result generalizes those found in Lee and Lee (2005) and Sant’Anna (2016), to the case

where independent censoring is no longer maintained. Again, even if the index sufficiency condition fails, results of

Proposition 1.1 can be preserved with appropriate modifications to the BGFs.

1.4 Estimation and Large Sample Theory

The estimation of TEBFs consists of three steps. We sketch the steps here, in an informal way to illustrate the main

idea, and the details are provided in subsequent subsections. In the first step, we estimate the index parameters γγγ by

minimizing an estimator of (1.3.4). Next, we construct a consistent estimator for the conditional and average BGFs.

For this purpose, we propose a new single-index copula graphic estimator. In the last step, we construct estimates of

TEBFs using the BGFs estimated in the preceding step.

1.4.1 Single-Index Parameters

As we mentioned earlier, when ΠT,R is chosen to be FY,R, the empirical analogue of (1.3.4) admits an analytical

expression. Hence, we keep this choice fixed for the remainder of the paper. We can also use other integrating measures

that only involve the observed laws. For instance, we may set ΠT,R = FY,R|D=d or ΠT,R = FY,R=1|D=d , correspondingly

for Ud,γ and d ∈ {0,1}. Given a univariate kernel function L(·) and a bandwidth b that changes with sample size n, we

define the sample analogue of Uγ and J as

Ûd,γ,i(y,r) =
1

n−1 ∑
j=1

{
Id,y,r,i− Id,y,r, j

}
Lb(Xiγ,X jγ),

Ĵd(γ;ρ) =
1
n2

n

∑
`=1

{
n

∑
i=1

n

∑
j=1

ρ(Xi,X j)
(
Ûd,γ,i(Y`,R`)Ûd,γ, j(Y`,R`)

)}
, (1.4.1)

3Analogous remarks apply to the conditional TEBFs, νννx
j = (νx

lb, j,ν
x
ub, j)

′, where the definitions for νx
lb, j and νx

ub, j should be apparent.
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where Id,y,r,` = D`1{R` = r,Y` ≤ y}, and Lb(x,y) = b−1L
(
b−1 (y− x)

)
. Then, for a user-specified weighting function

ρ(·), we estimate γd by minimizing Ĵd . That is,

γ̂d = argmin
γ∈Γ

Ĵd (γ;ρ) , (1.4.2)

for d ∈ {0,1}.

Under the regularity conditions to be specified in Section 1.4.3, we can show that the proposed index estimator

is consistent, converges at the parametric rate, admits an asymptotic linear representation, and converges to a normal

distribution. These results are established in Section 1.9.2. Among these results, it is worth noting that the consistency

and convergence rate are particularly useful for establishing the uniform expansion and other properties of the con-

ditional BGF estimator. Similar results for the unconditional case would further hinge on the existence of the linear

representation.

1.4.2 BGF Estimators

Exploiting Proposition 1.2, estimators of BGFs can be constructed from estimators of the index coefficient γγγ and the

observed distributions {Gd,r}d,r∈{0,1}. For the latter, we propose to use the Nadaraya-Watson-type kernel estimator.

Specifically, for any γ ∈ Γ, we let

Ĝd,r(y,xγ) =
1
n ∑

n
i=1 Id,y,r,iKh (xγ,Xiγ)

1
n ∑

n
i=11{Di = d}Kh (xγ,Xiγ)

≡
κ̂d,r,y(xγ)

f̂d(xγ)
, (1.4.3)

Ĝd(y,xγ) = Ĝd,1(y,xγ)+ Ĝd,0(y,xγ), (1.4.4)

where K(·) is a univariate kernel function, potentially different from L(·), and h is a bandwidth parameter.4 The

observed survival function estimator is given by ŝd = 1− Ĝd , . Replacing sd and Gd,1 in (1.3.5) with these estimators,

we get

ŝTd (t,xγ,θ)≡ φ
−1
θ

{
− 1

f̂d(xγ)n

n

∑
i=1

φ
′
θ (ŝd(Yi,xγ)) Id,t,r,iKh (xγ,Xiγ)

}
, (1.4.5)

4It is well known that kernel estimators exhibit large bias around the boundary points. In practice, we may modify estimators of κ̂d,r,y and f̂d
as follows to avoid the boundary issue

κ̃d,r,y(xγ) = κ̂d,r,y(z), and f̃d(xγ) = f̂d(z),

where z = min{Xγ}+ h if xγ ∈ [min{Xγ},min{Xγ}+ h], z = max{Xγ}− h if xγ ∈ [max{Xγ}− h,max{Xγ}]; otherwise, z = xγ . We keep the
untransformed estimator to simplify technical analysis. Results can be extended to the modified estimators with relative ease.
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and ŝTd (t,θ) = n−1
∑

n
i=1 ŝTd (t,Xiγ̂d ,θ), for all t,d,x, and θ . We note that (1.4.5) is an extension of the plug-in es-

timator of Fan and Liu (2018) to single-index models. Although their estimator can also accommodate multivariate

(continuous) covariates, it is, however, not generally recommended due to the curse of dimensionality. We call ŝTd

the single index copula graphic (SICG) estimator, because it is first-order asymptotically equivalent to the following

estimator

s̃Td (t,xγ,θ)≡ φ
−1
θ

{
−

n

∑
Yi≤t

Ri (φθ (ŝd(Yi,xγ))−φθ (ŝd(Yi,xγ)−wi,n(x,γ)))

}
,

where wi,n(x,γ)≡ 1{Di = d}Kh(xγ,Xiγ)/(n f̂d(xγ)). This estimator directly adapts the nonparametric copula graphic

estimator in Braekers and Veraverbeke (2005) to the single-index models. Due to the first-order equivalence, inference

results in Section 1.4 and 1.5 automatically apply to s̃T,d as well.

When the independence copula is assumed, i.e. φθ (u) =− logu, (1.4.5) becomes

ŝTd ,ind(t,xγ) = exp

(
−

n

∑
i=1

wi,n(x,γ)Ri

∑
n
j=1 w j,n(x,γ)1

{
Yj > Yi

}) (1.4.6)

≈∏
Yi≤t

(
1−

wi,n(x,γ)

∑
n
j=1 w j,n(x,γ)1

{
Yj > Yi

})Ri

, (1.4.7)

where the asymptotic equivalence follows roughly from Taylor expanding the exponential function. When there is no

treatment, (1.4.7) coincides with the conditional single-index Kaplan-Meier estimator, as proposed by Strzalkowska-

Kominiak and Cao (2014) or Li and Patilea (2018). On the other hand, under random censoring, the average BGF can

be directly estimated using the standard Kaplan-Meier estimator of Kaplan and Meier (1958), without going through

the conditioning step.

Remark 1.5 Note that the random function t 7→ ŝTd (t,xγ̂d ,θ) necessarily lies between [0,1] due to the range constraint

on φ
−1
θ

(·). However, as discussed in the previous section, the estimator may not be monotonically decreasing in finite

samples, even though its population counterpart is indeed constrained to be. To enforce the shape constraint, we plan to

rearrange the initial estimator using the procedure proposed by Chernozhukov et al. (2010). This will result in a proper

conditional survival function. From Chernozhukov et al. (2010), we find that the initial and rearranged estimators are

asymptotically equivalent if sTd (t,xγd ,θ) is indeed monotone. For this reason, our focus will be on the asymptotic

results for the initial estimator in the following sections.
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1.4.3 Uniform Linear Expansion

In this section, we will provide a linear expansion for the conditional SICG estimator ŝTd (t,xγ̂d ,θ) that is valid

uniformly across t,x, and θ , based on which, a uniform linear representation for the unconditional SICG estimator

ŝTd (t,θ) is also derived. These uniform representations are crucial for establishing results on weak convergence and

bootstrap validity. Here, we first introduce and discuss several assumptions necessary for deriving the claimed results.

Assumption 1.5 (Data)

1. The data {Yi,Ri,Di,Xi}n
i=1 are independently and identically distributed.

2. There exists yo ∈ (0, ȳ] and υo > 0 such that, for each d ∈ {0,1}, FYd ,Rd |Xγd
(yo,1|xγd)≤ 1−υo almost surely in

x ∈X . Let T̃ ≡ [0,yo].

Assumption 1.5.1 is standard. Assumption 1.5.2, which is also imposed by Rivest and Wells (2001), and Fan and

Liu (2018), strengthens Assumption 1.2.1 by further restricting the support of the event time. Since many generator

functions are not finite at 0, the condition is imposed to avoid dealing with a divergent φ−1(·), in a neighborhood of

the origin.

For the following set of assumptions, we define a shrinking neighborhood of γd by Γd,n ≡ {‖γ− γd‖ ≤Cn−1/2},

for some positive constant C.

Assumption 1.6 (Smoothness)

1. For a positive integer s ≥ 2 and d = 0,1, (i) The function v 7→ fd,γd (v), is (s+ 1)-times continuously differen-

tiable, and the derivatives up to order s are bounded; (ii) ∂
(s+1)
v fd,γd (v) is Lipschitz continuous in v with the

Lipschitz constant being independent of v.

2. For d,r ∈ {0,1}, (i) the function v 7→ FY,R|D,Xγd
(y,r|d,v) is (s+ 1)-times continuously differentiable and the

derivatives up to order s are bounded uniformly on T̃ ; (ii) ∂
(s+1)
v FY,R|D,Xγd

(y,r|d,v) is Lipschitz continuous in v

with the Lipschitz constant being independent of y and v; (iii) y 7→ FY,R|D,Xγd
(y,r|d,v) is continuously differen-

tiable and the first-order derivative is uniformly bounded with respect to v; (iv) ∂yFY,R|D,Xγd
(y,r|d,v) is Lipschitz

continuous in both y and v, where the Lipschitz constants are independent of y, and v; (v) ∂vFY,R|D,Xγd
(y,r|d,v)

is Lipschitz continuous in y with the Lipschitz constant being independent of v and y;

3. (i) The functions v 7→ E[X[`]|Xγd = v], and v 7→ E[X[`]X[ j]|Xγd = v], `, j = 2, ...,k, are four times continuously

differentiable, and the derivatives up to fourth order are all bounded; (ii) the fourth order derivatives are Lipschitz

continuous in v. For r = 0,1, `1 = 0,1, and `2 = 0,1, (iii) v 7→ ρ
γ

`1,`2
(y,v) is continuously differentiable and the
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derivatives are bounded uniformly on T̃ ×X ×Γd,n;5 (iv) ∂vρ
γ

`1,`2
(y,v) is Lipschitz continuous in v with the

Lipschitz constant being independent of y, x, and γ ∈ Γd,n.

4. (i) u 7→ φθ (u) is three times continuously differentiable with the third order derivative φ
′′′
θ
(u) ≤ 0 and φ

′′′
θ
(u)

being bounded uniformly for (u,θ)∈ [υo,1]×Θ; (ii) 1/φ̇
−1
θ

(z) and φ̈
−1
θ

(z) are bounded away from 0 for (z,θ)∈

[0,y∗o]×Θ, where φ̇
−1
θ

(z)≡ φ
′
θ
(φ−1

θ
(z)), φ̈

−1
θ

(z)≡ φ
′′
θ
(φ−1

θ
(z)), and y∗o = (1−υo)sup(u,θ)∈[υo,1]×Θ

∣∣∣φ ′θ (u)∣∣∣; (iii)

φ
′
θ
(u) and φ

′′
θ
(u) are Lipschitz continuous in θ with Lipschitz constant being independent of u ∈ [υo,1].

Assumption 1.6 gathers a set of smoothness conditions on various functions. Assumptions 1.6.1 and 1.6.2 are as-

sumed in most of prior works, including Delecroix et al. (2006), Bouaziz and Lopez (2010), Xia et al. (2010), and Chi-

ang and Huang (2012). Assumption 1.6.3 serves to bound the bias and to control the rate of first-order remainder terms.

Assumption 1.6.4 stipulates that the generator functions exhibit enough smoothness with respect to both u and θ . These

requirements, akin to Assumption (C8) in Braekers and Veraverbeke (2005) and Assumption G in Fan and Liu (2018),

are necessary when establishing uniformity of the linear expansion of the SICG estimator with respect to θ . Now, we

define ψa
d,r(t,x)≡−

(
x[−1]−E[X[−1]|xγd ]

)
∂Gd,r(t,v)/∂v|v=xγd , and Vd(t,r)≡ E

[
ψa

d,r(t,X)ψa
d,r(t,X)′ fd(Xγd)

2
]
.

Assumption 1.7 (Index Estimation)

1. (i) The class of functions {v 7→ gd,r,γ(v; t) : (d,r, t,γ)∈ {0,1}2×T ×Γ} is of the VC type with bounded envelop

function,6 where gd,r,γ(v; t) is either of the following functions and their derivatives up to the second order:

v 7→ fd,γ(v), v 7→ FY,R|D,Xγ(t,r|d,v), v 7→ E[X[`]|Xγ = v], v 7→ E[X[`]X[ j]|Xγ = v],

for `, j = 2, ...,k; (ii) for d ∈ {0,1} and each sequence δn→ 0,

sup
‖γ−γd‖≤δn

sup
(t,r,v)∈T ×{0,1}×XΓ

∣∣gd,r,γ(v; t)−gd,r,γ(v; t)
∣∣→ 0.

2. There exists a set Tv ⊂ T , such that P((Y,R) ∈Tv×{0,1}) > 0 and Vd(t,r) is positive definite for each

(t,r,d) ∈T ×{0,1}2.

This assumption collects several regularity conditions needed for showing asymptotic behavior of the index esti-

mator γ̂γγ . The first condition provides uniform control for the local difference of second order derivatives of (1.4.1),
5For a matrix X , X⊗` with `= 0,1,2 denote 1,X , and XX ′, respectively. Define

ρ
γ

`1 ,`2
(y,xγ)≡ ∂

`2
xγ

{
fd(xγ)E

[
G`1

d (y,Xγd)(x[−1]−X[−1])
⊗`2 |Xγ = xγ

]}
. (1.4.8)

6Precise definition of VC (Vapnik-Cěrvonenkis) type class is recalled in Section 1.9.3
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while the second condition is imposed to guarantee that the Hessian matrix is positive definite, and thus, the asymptotic

variance matrix is invertible.

Assumption 1.8 (Kernel)

1. The kernel function, L(·) is symmetric, supported on [−1,1], and of bounded variation; (ii) it is twice con-

tinuously differentiable on (−1,1) and the derivatives up to the second order are continuous and of bounded

variation.

2. The kernel function, K(·) is symmetric, supported on [−1,1] and of bounded variation; (ii) it is twice con-

tinuously differentiable on (−1,1) with uniformly continuous and bounded derivatives; (iii)
∫

K(u)du = 1,∫
u`K(u)du = 0 for nonnegative integers ` < s, and

∫
usK(u)du < ∞.

Assumption 1.9 (Bandwidth)

1. The bandwidth b satisfies: b→ 0, logn/
(
nb3
)
→ ∞, nb4→ 0, as n→ ∞.

2. The bandwidth h satisfies: h→ 0, logn/(nh3)→ 0, and nh2s→ 0, as n→ ∞.

The restrictions on the kernel and the bandwidth are relatively mild. Assumptions 1.8.1 and 1.9.1 are imposed

to ensure the estimation error from estimating γγγ is of the order less than n−1/2. Meanwhile, Assumptions 1.8.2 and

1.9.2 provide rates control for the conditional SICG estimator. The smoothness conditions on the kernel functions

serve two purposes: (1) it guarantees that L(b−1(·γ − xγ)) and K(h−1(·γ − xγ)) belong to the VC type class, which

is necessary for establishing uniform convergence of several U-processes arising from the expansion of the kernel

estimators; (2) it also allows us to control the rate of bias terms by means of Taylor expansions. Assumption 1.8 is

satisfied by frequently used kernel functions, such as uniform, triangular, biweight, triweight, Epanechnikov kernels,

etc. The Gaussian kernel, however, is ruled out due to the compact support condition.7

Due to the single-index structure, bandwidth conditions are independent of the dimension of X , k, meaning our

estimator is not subject to the “curse of dimensionality”. As a result, higher order kernels are not necessary when the

covariate is multivariate. We require nb3/ logn,nh3/ logn diverge to infinity, so that the first-order expansion of the

kernel function with respect to γ is uniformly convergent. By imposing nh2s→ 0, we undersmooth to make the bias

disappear asymptotically.

Remark 1.6 As is the case for all semiparametric estimators, the smoothing parameters play a crucial role in the

trade-off between reducing bias and variance. It is therefore desirable to have a data-adaptive way of choosing the
7Compactness of the kernel function is not essential, and can be relaxed by imposing conditions on the tail diminishing rate of the kernels. See,

e.g. Maistre and Patilea (2019) for a detailed treatment.
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parameter. One possibility is to estimate b and γd simultaneously via minimizing (1.4.1) with respect to (b,γ). In

practice, we may follow a simple grid search procedure: (i) pick a finite grid {b`}m
`=1 from the set [bln−ι ,bun−ι ], for

some positive constants bl < bu and some ι that fulfills Assumption 1.9.1. (ii) Minimize (1.4.1) with respect to γ , and

record the minimum {Ĵd(b)}d∈{0,1} for each b in the grid, and keep the value of bandwidth such that {Ĵd(b)}d∈{0,1}

attains the minimum value. When a second-order kernel is adopted, i.e. s = 2, we may set h equal to b.

Now, we define a few more quantities related to the influence functions. Let Ed,γ = ∑r=0,1 Ed,r,γ , and ψa
d =

∑r=0,1 ψa
d,r. Moreover, ψb

d (W )≡
∫
T̃ ×{0,1} E[ψa

d,r(y,X1) fd(X1γd)ρ(X1,X)|X ] Ud,γd (y,r)dFY,R(y,r), and

Vd ≡
∫

T̃ ×{0,1}
E
[
ψ

a
d (y,X1)ψ

a
d (y,X2)

′ fd,γd (X1γd) fd,γd (X2γd)ρ(X1,X2)
]

dFY,R(y,r),

Ψd ( f1, f2)(t,x,θ)≡
1

φ ′
θ

(
sTd (t,xγd ,θ)

) {−∫ t

0
φ
′′
θ (sd(y,xγd)) f1(y)Gd,1(dy,xγd)

+φ
′
θ (sd(t,xγd)) f2(t)−

∫ t

0
φ
′′
θ (sd(y,xγd)) f2(y)sd(dy,xγd)

}
,

where Ψd(·, ·) is a functional mapping from `∞(T̃ )× `∞(T̃ ) to `∞(T̃ ×X ×Θ), for d ∈ {0,1}.8

Theorem 1.3 (Uniform asymptotic linear representation) Suppose Assumptions 1.1–1.9 hold,

ŝTd (t,xγ̂d ,θ)− sTd (t,xγd ,θ) =
1
n

n

∑
i=1

∑
j∈{s,b,l}

η j,d(Wi,x, t,θ)+ rn(x, t,θ)

where

ηs,d(W,x, t,θ) = Kh (xγd ,Xγd)Ψd
(
Ed,γd ,Ed,1,γd

)
(t,x,θ)/ fd(xγd),

ηb,d(W,x, t,θ) = Kh (xγd ,Xγd)Ψd
(
Gd(·,Xγd)−Gd(·,xγd),Gd,1(·,Xγd)−Gd,1(·,xγd)

)
(t,x,θ)/ fd(xγd),

ηl,d(W,x, t,θ) = ψ
b
d (W )′V−1

d Ψd
(
ψ

a
d ,ψ

a
d,1
)
(t,x,θ)/ fd(xγd)

and sup(t,x,θ)∈T̃ ×X ×Θ
|rn(x, t,θ)|= Op

(
(logn)1/2 n−1h−3/2

)
.

This theorem is the second main result of this article. It shows that, the conditional SICG estimator is asymptoti-

cally linear, and its influence functions can be split into four parts. The first two term, ηs,d and ηb,d , are associated with

the stochastic part and the bias of the usual kernel expansions. Of the two, the first component dominates in the limit

with a uniform rate of Op

(
(logn)1/2 ·n−1/2h−1/2

)
, free from the curse of dimensionality. The third component, ηl,d ,

8For a generic set S , `∞(S ) is the space of all uniformly bounded real functions on S , equipped with the supremum norm, ‖ f‖S ≡
sups∈S | f (s)|.
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is unique to the SICG estimator. It arises from the estimation of the index parameters and converges at the parametric

rate, implying that the estimation error of the index coefficients is asymptotically negligible. Consequently, the main

conclusions of the previous theorem remain intact when estimators other than γ̂γγ are used, provided that such estimators

are root-n consistent.

1.4.4 Weak Convergence

This uniform linear representation allows us to apply techniques in the empirical process literature to establish weak

convergence of the bound generating processes. The weak convergence, denoted by “⇒”, is in the sense of Hoff-

mann–Jørgensen–Dudley, as recalled in Section 1.9.3. See, also Definition 1.3.3 of Van Der Vaart and Wellner (1996).

The convergence takes place in `∞(S ).

Before stating the results, we will first need to introduce a few notations again. For θθθ = (θ1,θ2) ∈ Θ2, we collect

the conditional and unconditional SICG estimators by Ŝx(t,θθθ) ≡
(
ŝT1(t,xγ̂d ,θ1), ŝT0(t,xγ̂d ,θ2)

)′, and by Ŝ(t,θθθ) ≡(
ŝT1(t,θ1), ŝT0(t,θ2)

)′, respectively. Analogously, the BGFs are collected by Sx and S, respectively.

We refer to Ĝx
n (·, ·) ≡

√
nh
(
Ŝx (·, ·)−Sx (·, ·)

)
, for a fix x ∈ X , as the conditional bound generating process

(CBGP), and let Ĝn (·, ·) ≡
√

n
(
Ŝ(·, ·)−S(·, ·)

)
stand for the unconditional bound generating process (UBGP). The

main goal of this section is to show that both CBGP and UBGP converge weakly to centered Gaussian processes. For

this purpose, we need an additional assumption, which is given as follows.

Assumption 1.10 (i) 1/φ̇
−1
θ

(z) is Lipschitz continuous in θ with Lipschitz constant being independent of θ and

z∈ [0,y∗o]; (ii) u 7→ φ
′′
θ
(u) is (s+1) times continuously differentiable with the (s+1)-th order derivative being bounded

uniformly for (u,θ) ∈ [υo,1]×Θ;

Assumption 1.10.(i) not only allows us to bound the derivative of φ
−1
θ

(·) uniformly, but also contributes to control-

ling the size of the functional space associated with influence functions of the CBGP. Assumption 1.10.(ii) strengthens

Assumption 1.6.4.(i). It ensures that the bias from approximating the UBGP by an empirical process is uniformly

negligible. Most generator functions of the Archimedean family satisfy this stronger smoothness condition.

In the following corollary, we establish weak convergence of the CBGP. Its proof is the combination of Theorem

1.3 and Theorem 10.6 in Pollard (1990), the latter of which provides a set of sufficient conditions for the weak

convergence of triangular arrays of non-identically distributed random elements.

Corollary 1.1 (i) Under the assumptions of Theorem 1.3, and suppose that Assumption 1.10.(i) hold, then Ĝx
n (·, ·)⇒

Gx (·, ·) , in `∞(T̃ ×Θ2)× `∞(T̃ ×Θ2), where Gx is a two-dimensional, tight, centered Gaussian process with covari-

ance function,

Σ
x
η(t,θθθ) = E

[
ϕϕϕ

x(W, t1,θθθ 1)ϕϕϕ
x(W, t2,θθθ 2)

′] ,
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for each t≡ (t1, t2)′ ∈ T̃ × T̃ , θθθ = (θθθ ′1,θθθ
′
2)
′ ∈Θ2×Θ2, and for j = 1,2, θθθ j = (θ j, θ̃ j), and ϕϕϕx(w, t,θθθ j) = (ηs,1(w,x,

t,θ j),ηs,0(w,x, t, θ̃ j)).

To the best of our knowledge, this result is new to the literature. This result differs from Theorem 2 in Braekers

and Veraverbeke (2005) in a number of ways. First, our CBGP is indexed not only by the time t but also by the

copula parameter θ . In comparison, they study a similar process indexed by the time only. Consequently, our result

generalizes theirs by relaxing the restrictive assumption that copula is completely known. Given the non-identifiability

result from Tsiatis (1975), this generalization is a crucial initial step in our sensitivity analysis. Secondly, they consider

a univariate fixed design for the covariates, whereas we adopt a single-index model that accommodates multivariate

random variables, and allows them to be either discrete or continuous. Despite these differences, the covariance

functions share a similar structure in the two papers. See Section 1.9.3.3 for formulas.

The following corollary records results on the UBGP that are parallel to Theorem 1.3 and Corollary 1.1.

Corollary 1.2 (i) Suppose the assumptions of Theorem 1.3, and Assumption 1.10 hold, we have that, for (d, t,θ) ∈

{0,1}× T̃ ×Θ,

ŝTd (t,θ)− sTd (t,θ) =
1
n

n

∑
i=1

ϕd(Wi, t,θ)+Rn(t,θ),

where ϕd = ∑
2
j=1 ϕd, j,

ϕd,1(W, t,θ) = Ψd
(
Ed,γd ,Ed,1,γd

)
(t,X ,θ) f (Xγd)/ fd(Xγd),

ϕd,2(W, t,θ) = sTd (t,Xγd ,θ)− sTd (t,θ),

and sup(t,θ)∈T̃ ×Θ
|Rn(t,θ)|= op

(
n−1/2

)
.

(ii) Furthermore, Ĝn (·, ·)⇒G(·, ·), in `∞(T̃ ×Θ2)× `∞(T̃ ×Θ2), where G is a two-dimensional, tight, centered

Gaussian process with covariance function

Σϕ(t,θθθ) = E
[
ϕϕϕ(W, t1,θθθ 1)ϕϕϕ(W, t2,θθθ 2)

′] ,
for each t≡ (t1, t2)′ ∈ T̃ × T̃ and θθθ = (θθθ ′1,θθθ

′
2)
′ ∈Θ2×Θ2, and for j = 1,2, θθθ j = (θ j, θ̃ j), and ϕϕϕ(W, t,θθθ j) = (ϕ1(W,

t,θ j), ϕ0(W, t, θ̃ j)).

As a first result, Corollary 1.2 provides a uniform linear expansion for the unconditional SICG estimator. The

influence function can be decomposed into two parts. The first part, ϕd,1, comes from estimating the conditional
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BGF. It is the linear representation of the first-order Hoeffding projection of the dominant U process. The second

component, ϕd,2, arises from the sampling variation of X . Based on this uniform expansion, we show that the UBGP,

as a process indexed by both t and θ , converges weakly to a centered Gaussian process. The rates of convergence are,

however, different from the CBGP.

With these two corollaries in hand, we are equipped to present inference theories on the estimators of TEBFs.

According to our discussion earlier, TEBFs are smooth functionals of the BGFs. It implies that, we can apply the

functional delta method (see e.g. Theorem 3.9.5 in Van Der Vaart and Wellner (1996)), and show that the plug-in

estimators of TEBFs will satisfy functional central limit theorems.

Now, let us define plug-in estimators for TEBFs. For i = 1, ...,n, denote the i-th order statistics of Y in the sample

by Yi:n. Let the quantile curve estimator be given by q̂d,θ (τ) ≡ inf{y : ŝTd (y,θ) ≤ 1− τ}, and its conditional version,

by q̂x
d,θ (τ) ≡ inf{y : ŝTd (y,xγ̂d ,θ) ≤ 1− τ}. With these notations, and in view of (1.3.6) - (1.3.9), we consider the

following estimators of the lower TEBFs,

ν̂lb,AT E(t,θθθ)≡
n−1

∑
i=1

1
{

Y(i+1):n ≤ yo
}(

Y(i+1):n−Yi:n
)(

ŝT1(Yi:n,θ2)− ŝT0(Yi:n,θ1)
)
, (1.4.9)

ν̂lb,DT E(t,θθθ)≡ ŝT0(t,θ2)− ŝT1(t,θ1), (1.4.10)

ν̂lb,QT E(τ,θθθ)≡ q̂1,θ2(τ)− q̂0,θ1(τ), (1.4.11)

ν̂lb,CHT E(t,θθθ)≡ log(ŝT,0(t,θ2))− log(ŝT,1(t,θ1)), (1.4.12)

where θ1 ≤ θ2. t ∈ T̃ , and τ ∈ (0,τo), where τo ≡ 1− sup(x,θ)∈X ×Θ sTd (yo,xγd ,θ). Estimators of the upper TEBFs

can be constructed by swapping the places of θ1 and θ2 on the right hand side of preceding equations. Here, we have

restricted the upper bound of T to yo, in order to avoid entering into the explosive tail area of the generator functions.

Consistency of the ATE requires that yo be sufficiently close to ȳ. Toward this end, we may set yo as a large value close

to Yn:n in practice.

To understand the formula for ν̂lb,AT E , we note that ŝT1(t,θ) and ŝT0(t,θ) are step functions in t, with jumps at

{Yi:n}n
i=1 only. The integral over [0, t] can thus be divided into intervals with end points set by the order statistics. In

each interval, the integrand is constant, yielding the product form.

In the remainder of this section, we will investigate the asymptotic behavior of
√

n(ν̂νν j−ννν j) as well as
√

nh(ν̂ννx
j−

νννx
j), for j ∈ {AT E,DT E,QT E,CHT E}. Again, let us introduce a few quantities, which are related to the influ-

ence functions of limiting processes. For θθθ = (θ1,θ2) ∈ Θ2, with θ1 ≤ θ2, define ψψψ j(W,u,θθθ) = (ψ1, j(W,u,θ2)−

ψ0, j(W,u,θ1), ψ1, j(W,u,θ1)−ψ0, j(W,u,θ2))
′ and ψψψx

j(W,u,θθθ) = (ψx
1, j(W,u,θ2)−ψx

0, j(W,u,θ1), ψx
1, j(W,u,θ1)−ψx

0, j

(W,u,θ2))
′, for j ∈ {AT E,QT E}. Meanwhile, we let ψψψ j(W,u,θθθ) = (ψ1, j(W,u,θ1)−ψ0, j(W,u,θ2),ψ1, j(W,u,θ2)−
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ψ0, j(W,u,θ1))
′ ψψψx

j(W,u,θθθ)= (ψx
1, j(W,u,θ1)−ψx

0, j(W,u,θ2),ψ
x
1, j(W,u,θ2)−ψx

0, j(W,u,θ1))
′, for j∈{DT E,CHT E},

where

ψd,AT E(W, t,θ) =
∫
[0,t]

ϕd(W,y,θ)dy, ψ
x
d,AT E(W, t,θ) =

∫
[0,t]

ηs,d(W,x,y,θ)dy,

ψd,DT E(W, t,θ) =−ϕd(W, t,θ), ψ
x
d,DT E(W, t,θ) =−ηs,d(W,x, t,θ),

ψd,QT E(W,τ,θ) =
ϕd(W,qd,θ (τ),θ)

fTd (qd,θ (τ),θ)
, ψ

x
d,QT E(W,τ,θ) =

ηs,d(W,x,qx
d,θ (τ),θ)

fTd ,x(q
x
d,θ (τ),θ)

,

ψd,CHT E(W, t,θ) =−ϕd(W, t,θ)
sTd (t,θ)

, ψ
x
d,CHT E(W, t,θ) =−

ηs,d(W,x, t,θ)
sTd (t,xγd ,θ)

,

for d ∈ {0,1}.

The next theorem establishes uniform central limit theorems for the conditional and overall TEBF estimators.

Theorem 1.4 (i) Suppose the assumptions of Corollary 1.1 hold. Then, for j = AT E,DT E,CHT E,

√
nh
(
ν̂νν

x
j(·, ·)−ννν

x
j(·, ·)

)
⇒ ν

′
j,Sx(Gx)(·, ·),

in `∞(U ×Θ2)× `∞(U ×Θ2),9 where ν ′j,Sx(Gx)(·, ·) is a tight, two-dimensional, centered Gaussian process with

covariance kernels Σx
j(u,θθθ) = E[ψψψx

j(W,u1,θθθ 1)ψψψ
x
j(W,u2,θθθ 2)

′], and u = (u1,u2), θθθ = (θθθ ′1,θθθ
′
2)
′. If in addition, for

d ∈ {0,1}, 0 < inf(τ,θ)∈(0,τo)×Θ fTd (qd,θ (τ),θ) < sup(τ,θ)∈(0,τo)×Θ fTd (qd,θ (τ),θ) < ∞, we have, in `∞(U ×Θ2)×

`∞(U ×Θ2),

√
nh
(
ν̂νν

x
QT E(·, ·)−ννν

x
QT E(·, ·)

)
⇒ ν

′
QT E,Sx(Gx)(·, ·).

The tight, two-dimensional process ν ′QT E,Sx(Gx) is centered Gaussian with covariance kernel

Σ
x
QT E(τττ,θθθ) = E[ψψψx

QT E(W,τ1,θθθ 1)ψψψ
x
QT E(W,τ2,θθθ 2)

′].

(ii) Suppose the assumptions of Corollary 1.2 hold. Then, for j ∈ {AT E,DT E,CHT E},

√
n(ν̂νν j (·, ·)−ννν j (·, ·))⇒ ν

′
j,S(G)(·, ·) ,

in `∞(U ×Θ2)× `∞(U ×Θ2), where ν ′j,S(G)(·, ·) is a tight, two-dimensional, centered Gaussian process with covari-

9Definition of the set U depends on the type of treatment effect under consideration. Specifically, U =∅ if j = AT E, U = (0,τo), if j =QT E.
Otherwise, U = T̃ .
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ance kernels Σ j(u,θθθ) =E[ψψψ j(W,u1,θθθ 1)ψψψ j(W,u2,θθθ 2)
′], and u = (u1,u2), θθθ = (θθθ ′1,θθθ

′
2)
′. If in addition, for d ∈ {0,1},

0 < inf(τ,x,θ)∈(0,τo)×X ×Θ fTd ,x(q
x
d,θ (τ),θ) < sup(τ,x,θ)∈(0,τo)×X ×Θ fTd ,x(q

x
d,θ (τ),θ) < ∞, we have, in `∞(U ×Θ2)×

`∞(U ×Θ2),

√
n(ν̂ννQT E(·, ·)−νννQT E(·, ·))⇒ ν

′
QT E,S(G)(·, ·).

The tight, two-dimensional process ν ′QT E,S(G) is centered Gaussian with covariance kernel

ΣQT E(τττ,θθθ) = E[ψψψQT E(W,τ1,θθθ 1)ψψψQT E(W,τ2,θθθ 2)
′].

Theorem 1.4 forms the basis for pointwise as well as uniform inference on the TEBFs. Nonetheless, the result

cannot be directly used for such a purpose, since the limit processes contain various unknown quantities. The approx-

imation of these quantities can be avoided by means of a standard nonparametric bootstrap procedure. However, its

implementation requires recalculating estimators of γγγ , the BGFs, and the TEBFs in each bootstrap iteration. Since

optimization of (1.4.1) is computationally intensive, we adopt an alternative multiplier bootstrap procedure that entails

approximating the influence functions, but dispense with the need for reoptimizations.

1.5 Multiplier Bootstrap

In this section, we propose simulation methods, based on the multiplier bootstrap, for approximating the limiting

processes introduced in the previous section. We show the bootstrapped processes converge uniformly to the limiting

Gaussian processes defined in Corollaries 1.1, 1.2, and Theorem 1.4. Given these theoretical results, we then provide

practical algorithms for conducting pointwise and uniform inference on the treatment effects.

Let {ξi,b}n
i=1 be a sequence of random variables with zero mean and unit variance. We call them the multiplier

weights. These weights are drawn independently of the main sample {Wi}n
i=1. Given the weights, we define the

following two multiplier processes,

Gx
n,ξ (t,θθθ)≡ n−1/2h1/2

n

∑
i=1

ϕϕϕ
x∗(Wi,ξi, t,θθθ), and Gn,ξ (t,θθθ)≡ n−1/2

n

∑
i=1

ϕϕϕ
∗(Wi,ξi, t,θθθ),

where ϕϕϕx∗ ≡ (η∗s,1,η
∗
s,0)
′, and η∗s,d(W,ξ , t,θ) ≡ ξ ·ηs,d(W, t,θ). We also have ϕϕϕ∗ ≡ (ϕ∗1 ,ϕ

∗
0 )
′, and ϕ∗d (W,ξ , t,θ) ≡

ξ
{

ϕd,1(W, t,θ)+ϕd,2(W, t,θ)
}

. Since the influence functions contain unknown quantities, we need to replace them

with their estimates in practice. We propose reusing Ĝd(y,xγ̂d) and Ĝd,1(y,xγ̂d) in the construction of the influence
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function estimators:

Êd,γ̂d (y,x) = 1{D = d}(1{Y ≤ y}− Ĝd(y,xγ̂d)),

Êd,1,γ̂d (y,x) = 1{D = d}(R1{Y ≤ y}− Ĝd,1(y,xγ̂d)),

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,x,θ) =

1
φ ′

θ

(
ŝT,d(t,xγ̂d ,θ)

) {φ
′
θ (ŝd(t,xγ̂d)) Êd,1,γ̂d (t,x)

+
1

n f̂ (xγ̂d ,d)

n

∑
i=1

Id,t,iφ
′′
θ (ŝd(Yi,xγ̂d))(Êd,1,γ̂d (Yi,x)−RiÊd,γ̂d (Yi,x))Kh(xγ̂d ,Xiγ̂d)

}
.

We define the estimated multiplier processes by substituting the above estimators into the multiplier processes. Specif-

ically,

Ĝx
n,ξ (t,θθθ) = n−1/2h1/2

n

∑
i=1

ϕ̂ϕϕ
x∗(Wi,ξi, t,θθθ), and Ĝn,ξ (t,θθθ) = n−1/2

n

∑
i=1

ϕ̂ϕϕ
∗(Wi,ξi, t,θθθ),

where ϕ̂ϕϕx∗ = (ϕ̂x∗
1 , ϕ̂x∗

0 )′, ϕ̂ϕϕ∗ = (ϕ̂∗1 , ϕ̂
∗
0 )
′, ϕ̂x∗

d (W,ξ , t,θ) = ξ · η̂s,d(W,x, t,θ), ϕ̂∗d (W,ξ , t,θ) = ξ · {ϕ̂d,1(W, t,θ)+

ϕ̂d,2(W, t,θ)}, and

η̂s,d(W,ξ ,x, t,θ) =
Kh(xγ̂d ,X γ̂d)

f̂ (xγ̂d ,d)
Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,x,θ), (1.5.1)

ϕ̂d,1(W, t,θ) =
f̂ (X γ̂d)

f̂ (X γ̂d ,d)
Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,X ,θ), (1.5.2)

ϕ̂d,2(W, t,θ) = ŝT,d(t,X γ̂d ,θ)−En[ŝT,d(t,X γ̂d ,θ)]. (1.5.3)

Assumption 1.11 (Multiplier weights) {ξi}n
i=1 is a sequence of i.i.d. random variables, defined on a probability

space independent of {Wi}n
i=1, satisfying E[ξ1] = 0 and E[ξ 2

1 ] = 1.

There are several different choices for ξ that are commonly encountered in the literature. For instance, when ξ = N ,

where N is a standard normal random variable, it is referred to as the Gaussian multiplier method, as seen in Giné

and Zinn (1984). When ξ = N1/
√

2+(N 2
2 − 1)/2, where N1 and N1 are mutually independent standard normal

random variables, it corresponds to the wild bootstrap method, as seen in Mammen (1993).

In the next theorem, we show that the estimated multiplier processes Ĝx
n,ξ and Ĝn,ξ approximate Gx and G,

respectively. The approximation, formally termed as conditional weak convergence in probability, where the condition

is on the main sample, is in the sense of Section 2.2.3 in Kosorok (2008).

Theorem 1.5 Under the assumptions of Theorem 1.3, Assumptions 1.10, and 1.11, we have that (i) Ĝx
n,ξ

p
→
ξ
Gx, and

(ii) Ĝn,ξ
p
→
ξ
G .
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Theorem 1.5, combined with the functional delta method for the bootstrap (see e.g. Theorem 3.9.11 in Van

Der Vaart and Wellner (1996)), allows us to establish the validity of plug-in estimators of Hadamard differentiable

functionals. Let us first define the estimated multiplier processes for the bound curves, Ĝξ , j and Ĝx
ξ , j, by

Ĝx
ξ , j(u,θθθ) = n−1/2h1/2

n

∑
i=1

ψ̂ψψ
x∗
j (Wi,ξi,u,θθθ), and Ĝξ , j(u,θθθ) = n−1/2

n

∑
i=1

ψ̂ψψ
∗
j(Wi,ξi,u,θθθ), (1.5.4)

for j ∈ {AT E,DT E,QT E,CHT E}, θθθ = (θ1,θ2)
′ ∈ Θ2, with θ1 ≤ θ2. In the preceding definition, we use the fol-

lowing estimators of the influence functions: ψ̂ψψ∗j(W,ξ ,u,θθθ) ≡ ξ · (ψ̂1, j(W,u,θ2)− ψ̂0, j(W,u,θ1), ψ̂1, j(W,u,θ1)−

ψ̂0, j(W,u,θ2))
′ and ψ̂ψψx∗

j (W,ξ ,u,θθθ) ≡ ξ · (ψ̂x
1, j(W,u,θ2)− ψ̂x

0, j(W,u,θ1), ψ̂
x
1, j(W,u,θ1)− ψ̂x

0, j(W,u,θ2))
′, j ∈ {AT E,

QT E}; moreover, ψ̂ψψ∗j(W,ξ ,u,θθθ)≡ ξ ·(ψ̂1, j(W,u,θ1)− ψ̂0, j(W,u,θ2), ψ̂1, j(W,u,θ2)− ψ̂0, j(W,u,θ1))
′ ψ̂ψψx∗

j (W,ξ ,u,θθθ)

≡ ξ · (ψ̂x
1, j(W,u,θ1)− ψ̂x

0, j(W,u,θ2), ψ̂
x
1, j(W,u,θ2)− ψ̂x

0, j(W,u,θ1))
′, for j ∈ {DT E,CHT E}, where

ψ̂d,AT E(W, t,θ) =
n−1

∑
i=1

1
{

Y(i+1):n ≤ t
}(

Y(i+1):n−Yi:n
)

ϕ̂d(W,Yi:n,θ), (1.5.5)

ψ̂
x
d,AT E(W, t,θ) =

n−1

∑
i=1

1
{

Y(i+1):n ≤ t
}(

Y(i+1):n−Yi:n
)

η̂s,d(W,x,Yi:n,θ), (1.5.6)

ψ̂d,DT E(W, t,θ) =−ϕ̂d(W, t,θ), ψ̂
x
d,DT E(W, t,θ) =−η̂s,d(W,x, t,θ), (1.5.7)

ψ̂d,QT E(W,τ,θ) =
ϕ̂d(W, q̂d,θ (τ),θ)

f̂Td (q̂d,θ (τ),θ)
, ψ̂

x
d,QT E(W,τ,θ) =

η̂s,d(W,x, q̂x
d,θ (τ),θ)

f̂Td ,x(q̂
x
d,θ (τ),θ)

, (1.5.8)

ψ̂d,CHT E(W, t,θ) =− ϕ̂d(W, t,θ)
ŝTd (t,θ)

, ψ̂
x
d,CHT E(W, t,θ) =−

η̂s,d(W,x, t,θ)
ŝTd (t,xγ̂d ,θ)

, (1.5.9)

for d ∈ {0,1}. In (1.5.8), f̂Td (t,θ) and f̂Td ,x(t,θ) are any first-stage estimators of fTd (t,θ) ≡ −∂ sTd (y,θ)/∂y|y=t and

fTd ,x(t,θ)≡−∂ sTd (y,xγd ,θ)/∂y|y=t , respectively, that are uniformly convergent as required in the assumption below.

Assumption 1.12 (First stage density estimator) There exist first stage estimators f̂Td (t,θ) and f̂Td ,x(t,θ) that are

consistent for fTd (t,θ) and fTd ,x(t,θ), respectively, uniformly over T̃ ×X ×Θ, for d ∈ {0,1}.

In Section 1.9.3.4, we describe an estimator of the conditional density and show that it fulfills the preceding

assumption.

Corollary 1.3 Suppose the assumptions of Theorem 1.4, Assumptions 1.11, and 1.12 hold, we get (i) Ĝx
ξ , j

p
→
ξ

ν ′j,Sx

(Gx), and (ii) Ĝξ , j
p
→
ξ

ν ′j,S(G), for j ∈ {AT E,DT E,QT E,CHT E}.
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1.5.1 Bootstrap Confidence Bands

The functional central limit theorems for multiplier bootstrap established in the previous section can be used to con-

duct point-wise and uniform inference for the TEBF estimators. We provide an algorithm for constructing uniform

confidence bands of the overall TEBF estimators in what follows. An analogous procedure that produces uniform

confidence bands of the conditional TEBF estimators is given in Section 1.9.1.3.2. Point-wise confidence intervals are

by-products of these two algorithms.

Let Ĝlb,ξ , j and Ĝub,ξ , j denote the first and second component of Ĝξ , j, respectively.

Algorithm 1.5.1 (Uniform confidence sets of overall TEBFs)

1. Select a finite grid set Um ≡ {u1,u2, ...,um} from U , where the index u depends on the type of treatment effect

under consideration. Pick a set ΘΘΘl ≡ {θθθ 1, ...,θθθ l} with θθθ s = (θ1,s,θ2,s) ∈Θ2, and θ1,s ≤ θ2,s, for all s = 1, ..., l.

In Steps 2-5, the calculations will be performed for d,r ∈ {0,1}, t ∈ T̃ , τ ∈ (0,τo), θθθ ∈ΘΘΘl , and u ∈Um.

2. Estimate γ̂d , Ĝd,1(t,xγ̂d), Ĝd(t,xγ̂d), and ŝTd (t,θ). If j = QT E, compute q̂d,θ (τ) and f̂Td (t,θ).

3. Calculate ν̂ j(u,θθθ), ϕ̂d,1(W, t,θ), ϕ̂d,2(W, t,θ), and ψ̂ j(W,θ).

4. Sample {ξ b
i }n

i=1 from a distribution with zero mean and unit variance, independently from data. Calculate ψ̂ψψ∗j ,

and G
ξ b, j(u,θ).

Repeat Step 4 for b = 1, ...,B, where B is some large integer.

5. For `= lb,ub, compute the (1−α)-th quantile ĉB
n,`, j(α,Um,ΘΘΘl) of

{
max1≤i≤m,1≤s≤l

∥∥∥G`,ξ b, j(ui,θθθ s)
∥∥∥}B

b=1
, and

construct the uniform confidence band

CB
n,`, j(1−α,Um,ΘΘΘl)≡

{
ν̂`, j(u,θθθ)±n−1/2ĉB

n,`, j(α,Um,ΘΘΘl) : u ∈Um,θθθ ∈ΘΘΘl

}
.

The null hypothesis, which posits that a given TEBF is identically 0 over the index set Um, can be tested directly

using the simulated bootstrap critical values. More generally, tests of FOSD relations, such as {ν j,`(u,θθθ) ≤ 0 : u ∈

Um,θθθ ∈ ΘΘΘl}, and tests of homogeneity, such as {ν j,`(u,θθθ) =
∫
Um

ν j,`(ũ,θθθ)dũ : u ∈ Um,θθθ ∈ ΘΘΘl} can also be easily

constructed using the simulated bootstrap process
{
G`,ξ b, j

}B

b=1
, which is a byproduct of Algorithm 1.5.1.

Note that CB
n,`, j(1−α,Um,ΘΘΘl) are uniform across both u and θ . Pointwise confidence sets are immediately avail-

able from the two aforementioned procedures, by setting Um = {u∗}, ΘΘΘl = {θθθ ∗}, for some u∗ and θθθ
∗ specified by the

researcher.
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We denote the confidence set generated by Algorithm 1.9.1 as Cx,B
n,`, j(1−α,Um,ΘΘΘl). The next theorem confirms

that the uniform bootstrap confidence bands for both conditional and overall TEBFs are asymptotically accurate.

Theorem 1.6 Suppose the assumptions of Corollary 1.3 hold, we have

lim
n→∞

inf
(u,θθθ)∈Um×ΘΘΘl

P
(

ν
x
`, j(u,θθθ) ∈Cx,B

n,`, j(1−α,Um,ΘΘΘl)
)
= 1−α,

lim
n→∞

inf
(u,θθθ)∈Um×ΘΘΘl

P
(
ν`, j(u,θθθ) ∈CB

n,`, j(1−α,Um,ΘΘΘl)
)
= 1−α,

for x ∈X , ` ∈ {lb,ub}, and j ∈ {AT E,DT E,QT E,CHT E}.

1.6 Monte Carlo Study

Results from the previous section imply that the estimators and uniform confidence bands for the conditional and

overall TEBFs will exhibit desirable properties when sample size is sufficiently large. But what about their small-

sample performance? To address this question, we conducted a small scale Monte Carlo experiment. The DGP for the

simulations consists of the following four aspects:

1. The conditional survival functions: For d ∈ {0,1}, both Td and Cd follow the conditional Exponential distribu-

tion. Specifically, S`d |X (t|x) = exp
(
−λ`,d(xγd)t

)
, where the hazard rate parameter λ`,d(xγd) > 0, for x ∈X ,

` ∈ {T,C}, and d ∈ {0,1}.

2. The copula function: The true conditional survival copula is assumed to belong to the Archimedean family with

the Gumbel generator function: φθ (u) =
(
logu−1

)θ and

Cx(u,v) = exp
(
−
[
(logu−1)θ∗d (x)+(logv−1)θ∗d (x)

]1/θ∗d (x)
)
,

where θ ∗d (x)⊂ [1,∞), for all x ∈X and d ∈ {0,1}.

3. The covariates: X = (X1,X2,X3), where X1 and X2 are drawn from truncated normal distribution with mean

and standard deviation equal to 0.5 and 1, respectively. The two variables are restricted to lie in [0.01,1]. The

remaining one X3, is a binary variable, following Bernoulli(0.5). The three variables are mutually independent.

4. The treatment assignment mechanism: the treatment status D is determined by D = 1{p(X)>U}, where U

follows Uniform[0, 1], and

p(X) =
exp(−0.1X1 +0.1X2)

1+ exp(−0.1X1 +0.1X2)
,
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is the true propensity score function.

The BGF admits an analytical form when λT,d(·) = λC,d(·) ≡ λd(·). Such simplification is handy when checking

the coverage of our bootstrap confidence sets. By symmetry, we have that SYd |X (y|x) = exp
(
−21/θ∗d (x)λd(xγd)y

)
, and

SYd ,Rd |X (y,1|x) = 2−1 exp
(
−21/θ∗d (x)λd(xγd)y

)
, implying a population censoring rate of 50%. Now, from (1.4.5) and

by direct calculations,

sTd (t,xγd ,θ) = φ
−1
θ

(
2−1

φθ

(
exp
(
−21/θ∗d (x)λd(xγd)t

)))
, for d ∈ {0,1}.

This formula simplifies further when the true copula is Gumbel. In this case, sTd (t,xγd ,θ) = exp(−21/θ∗d (x)−1/θ ·

λd(xγd)t), equivalent to an exponential distribution with a rate parameter equal to βd(xγd ,θ) ≡ 21/θ∗d (x)−1/θ
λd(xγd).

As a direct consequence, νx
AT E,lb(θθθ) = β1(xγ1,θ2)

−1−β0(xγ0,θ1)
−1, and the overall average effect is also immediately

available via taking the expectation with respect to X . In the following, we set γ1 = γ0 = (0.5,0.5)′, λ1(v) =
√

v+v/2,

and λ0(v) =
√

v. As a result, the true DTE is heterogeneous and uniformly negative across the index set.

To generate variables from the Gumbel copula, we follow the algorithm provided in Section 2.9 in Nelsen (2007),

for which purpose, we assume the true copula parameters are θ ∗0 (·) = 1 and θ ∗1 (·) = 1.25. That is, censoring is

independent for the treated group, whereas T0 and C0 are correlated with Kendall’s τ equal to 0.2.

In Figure 1.1, we plot unconditional BGFs and DTEs across various levels of the sensitivity parameter, alongside

the corresponding Peterson’s bounds. We observe that the worse case bounds (the upper bound in particular) are

highly non-informative and the BGFs provide significant improvement over the worst-case bounds under the assumed

censoring mechanism. One may question whether the gap between the two can be completely bridged by varying

theta. The answer to this question is contingent on the copula under consideration and specifically whether it admits

Hoeffding-Frechet bounds as limiting cases. For instance, the Gumbel copula is unable to bridge the gap entirely,

due to its inherent incapability to model negative correlation. Additionally, the figure illustrates the stochastic domi-

nance relations, as influenced by the concordance ordering within the copula family. Consequently, we can observe a

correlation between the size of the identified set and the range of theta values chosen by the researcher.

To assess the performance of TEBF estimators over an index set Um, we adopt average and median integrated

bias, integrated root mean square error (IRMSE), and the coverage rate as the criterion of evaluation.10 Regarding

the index set Um, we use an equidistant grid between 0.1 and 1.5 with the interval size of 0.05 for the ATE, DTE

and CHTE. For the QTE, an equidistant grid between 0.25 and 0.75 with a step size of 0.05 is adopted. We let both

10Consider a Monte Carlo experiment with S replications, the average integrated bias is defined by S−1
∑

S
s=1
∫

u∈Um

∣∣ f̂s(u)− f (u)
∣∣du, median

integrated bias denotes the 50-th percentile of
{∫

u∈Um

∣∣ f̂s(u)− f (u)
∣∣du
}S

s=1, and the IRMSE, by
(

S−1
∑

S
s=1
∫

u∈Um

∣∣ f̂s(u)− f (u)
∣∣2 du

)1/2
, where

f (·) is any one of the ν j,`(·), for `= lb,ub, and j ∈ {AT E,DT E,QT E,CHT E}.
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Figure 1.1: BGFs and DTEs with multiple levels of θ

Notes: The left panel depicts the unconditional BGFs for the control group and the right panel illustrates the overall DTEs. In each plot, the
dashed curve depicts the function when the independent censoring mechanism is assumed (equivalently, Gumbel copula with θ = 1). The
green solid curves represent the true functions (Gumbel copula with θ = 1.25). The red solid curves depict the Peterson’s worst-case bounds.

L(·) and K(·) be the Epanechnikov kernel: L(u) = K(u) = 0.75(1− u2)1{|u| ≤ 1}. For treatment group d ∈ {0,1},

the bandwidth b is chosen as the value from the set
{

2−0.5k(n/2)−0.26
}6

k=−1, that minimizes the estimated criterion

Ĵd(γ̂d ,ρ), where we let ρ(v) = exp(−‖v‖2 /2). We then set the bandwidth h equal to b. To assess the impact of

first-step estimation, we provide a set of “oracle” results where the single index parameters take their true values along

with “feasible” results where the parameters are estimated according to the procedure from Section 1.4.1.

Table 1.1 reports simulation results based on 1,000 Monte Carlo replications of samples with size n = 1,000. For

each type of treatment effect, we show results for two different range of θ : a narrower one with θθθ = (1,1.5), and a

wider one with θθθ = (1,2). Given the one-to-one mapping between θ and Kendall’s τ , the two θθθ choices correspond

to Kendall’s τ lying between [0,1/3] and [0,1/2], respectively. Results in Table 1.1 suggest that our TEBF estimators

exhibit minimal bias, and their confidence intervals generally achieve close-to-nominal-level coverage, irrespective of

the choice of copula parameters, the type of treatment effects and whether the effect is conditional. The (C)CHTE

perform relatively worse than the other three types, in terms of integrated bias and IRMSE. This is to be expected as

the log transformations tend to induce higher bias.

When comparing oracle and feasible results, we find that the oracle results generally exhibit smaller bias and
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IRMSE, and they have better coverage properties. The difference is more prominent when conditional treatment

effects are considered. This is partially due to the fact that the component in the expansion of the conditional TEBFs,

which is associated with the single-index estimation, is of a lower order than the component appearing in the overall

TEBFs, even though both are negligible in the first order. To improve the performance of our bootstrap procedure

for conditional TEBFs, one may consider adding the influence functions associated with first stage estimation when

constructing the bootstrap processes. This is left for future research.

Overall, the results from finite-sample studies align with the theoretical predictions discussed in Sections 1.4 and

1.5.

1.7 Empirical Illustration

In this section, we revisit Bernasconi et al. (2022) on the effect of acute lymphoblastic leukaemia treatment where

survival time is subject to dependent censoring caused by the abandonment of treatment. ALL is a major cause of

cancer diagnoses among people under 18 years old, accounting for nearly 25% of all cancer diagnoses (Howlader

et al., 2016). Wide disparities in cure rates has been documented between high-income (approximately 80%) and

mid-and-low-income (approximately 35%) countries (Gatta et al., 2005; Howard and Wilimas, 2005). Abandonment

of treatment is seen as a major factor for such disparities (Mostert et al., 2011). Decision to withdraw treatment can be

affected by various factors including distance to the treatment facility, family economic status, and personal beliefs,

many of which also have an impact on the quality of treatment. As such, the independent censoring assumption is not

appropriate in this context.

The data comes from two subsequent clinical studies conducted in Honduras between 2000 and 2015. During

the period from 2000 to 2007, a protocol called GHS-2000 were adopted to treat ALL patients. In the second period

(2008–2015), the treatment follows a new protocol denominated AHOPCA ALL-2008.11 We view GHS-2000 as the

control group (d = 0) and AHOPCA ALL-2008 as the treated group (d = 1). Treatment effects in this context translate

to the comparative effectiveness of the two protocols. The outcome of interest T is formally defined as the time since

treatment to the first event among relapse, resistance to treatment, secondary malignant neoplasm, and death. The

outcome is subject to both administrative censoring, which is independent of the EFS time, and endogenous censoring

in the form of abandonment of treatment. Following Bernasconi et al. (2022), we combine the two types of censoring

into a composite variable C, and we use potential event-free-survival (EFS) to denote STd under protocol d ∈ {0,1}.

The baseline covariates of the study include biological characteristics such as gender, age, white blood cell count,

central nervous system involvement (CNS), cancer histology, and socio-economic factors: family unity, living con-

11Details of these two protocols can be found in Marjerrison et al. (2013) and Navarrete et al. (2014)

32



Table 1.1: Monte Carlo results for the conditional and overall TEBFs

(a) Lower Conditional TEBF Upper Conditional TEBF

Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

CATE 0.040 0.032 0.051 0.929 CATE 0.040 0.032 0.051 0.934
CDTE 0.072 0.062 0.081 0.933 CDTE 0.073 0.063 0.082 0.928
CQTE 0.066 0.057 0.133 0.924 CQTE 0.067 0.057 0.134 0.936

CCHTE 0.186 0.151 0.259 0.937 CCHTE 0.186 0.151 0.259 0.937

Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

CATE 0.026 0.021 0.033 0.938 CATE 0.025 0.020 0.032 0.942
CDTE 0.046 0.040 0.051 0.947 CDTE 0.047 0.039 0.051 0.927
CQTE 0.043 0.036 0.086 0.932 CQTE 0.045 0.039 0.089 0.938

CCHTE 0.114 0.096 0.138 0.938 CCHTE 0.114 0.096 0.138 0.938

(b) Lower Conditional TEBF Upper Conditional TEBF

Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

CATE 0.039 0.032 0.051 0.932 CATE 0.039 0.031 0.050 0.936
CDTE 0.070 0.061 0.079 0.927 CDTE 0.071 0.062 0.080 0.923
CQTE 0.062 0.053 0.125 0.925 CQTE 0.063 0.054 0.127 0.930

CCHTE 0.192 0.157 0.267 0.939 CCHTE 0.190 0.156 0.259 0.943

Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

CATE 0.025 0.020 0.032 0.936 CATE 0.025 0.020 0.032 0.938
CDTE 0.046 0.040 0.050 0.948 CDTE 0.046 0.039 0.050 0.929
CQTE 0.040 0.034 0.081 0.929 CQTE 0.044 0.038 0.085 0.941

CCHTE 0.118 0.100 0.144 0.939 CCHTE 0.119 0.102 0.144 0.940

(c) Lower Overall TEBF Upper Overall TEBF

Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

ATE 0.023 0.018 0.028 0.958 ATE 0.023 0.019 0.028 0.956
DTE 0.041 0.036 0.044 0.965 DTE 0.041 0.036 0.044 0.963
QTE 0.037 0.033 0.074 0.961 QTE 0.038 0.032 0.074 0.965

CHTE 0.103 0.091 0.122 0.966 CHTE 0.102 0.088 0.120 0.967

Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

ATE 0.021 0.018 0.026 0.954 ATE 0.021 0.018 0.026 0.963
DTE 0.039 0.034 0.042 0.954 DTE 0.039 0.035 0.042 0.950
QTE 0.036 0.031 0.071 0.948 QTE 0.038 0.034 0.074 0.949

CHTE 0.097 0.085 0.115 0.951 CHTE 0.096 0.085 0.114 0.957

(d) Lower Overall TEBF Upper Overall TEBF

Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Feasible Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

ATE 0.022 0.018 0.028 0.963 ATE 0.022 0.019 0.027 0.957
DTE 0.040 0.035 0.042 0.965 DTE 0.040 0.035 0.043 0.966
QTE 0.035 0.031 0.069 0.968 QTE 0.036 0.032 0.071 0.965

CHTE 0.107 0.096 0.127 0.965 CHTE 0.104 0.091 0.123 0.968

Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate Oracle Avg. Intg. Bias Med. Intg. Bias IRMSE Cvg. Rate

ATE 0.021 0.017 0.026 0.954 ATE 0.021 0.017 0.025 0.966
DTE 0.038 0.034 0.041 0.955 DTE 0.038 0.034 0.041 0.954
QTE 0.034 0.030 0.068 0.957 QTE 0.036 0.032 0.071 0.958

CHTE 0.100 0.088 0.119 0.952 CHTE 0.099 0.087 0.118 0.957

Notes: Simulations are based on 1,000 Monte Carlo experiments with samples of size n = 1,000. Panels (a) and (c) present results for conditional
and overall TEBF with θθθ = (1,1.5). Panels (b) and (d) correspond to θθθ = (1,2). In each panel, “feasible” represents results generated with the
single-index parameters estimated following Section 1.4.1, whereas the results in the “oracle” sub-panel correspond to those generated using the
true single-index parameters. “Avg. Intg. Bias”, “Med. Intg. Bias”, “IRMSE”, and “Cvg. Rate” stand for the average integrated bias, median inte-
grated bias, integrated root mean squared errors, and 95% empirical coverage probability, respectively. The empirical coverage probability is based
on bootstrap confidence sets computed with 1,999 multiplier bootstrap replications.
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Table 1.2: Summary statistics

GHS-2000 (No. Obs. = 514) AHOPCA ALL-2008 (No. Obs. = 536)

Statistics Mean St. Dev. Pctl(25) Median Pctl(75) Mean St. Dev. Pctl(25) Median Pctl(75)

Follow-up Duration, Years 4 3.84 0.47 2.73 7.59 2.29 2.05 0.71 1.55 3.47
Abandonments 21% 0.41 0 0 0 15% 0.35 0 0 0
Age 7.67 4.36 3.79 6.79 11.26 7.67 4.94 3.45 6.01 11.82
White Blood Cell Count 4.64 10.01 0.45 1.13 4.24 4.28 8.52 0.53 1.11 4.07
Time to Hospital 4.05 2.85 1.5 4 6 2.87 2.03 1 3 4
Male 61% 0.49 0 1 1 53% 0.5 0 1 1
CNS 6% 0.23 0 0 0 13% 0.34 0 0 0
Linage 92% 0.27 1 1 1 93% 0.26 1 1 1
Living Condition 62% 0.49 0 1 1 46% 0.5 0 0 1
Family Type 45% 0.5 0 0 1 14% 0.35 0 0 0
Phone at Home 36% 0.48 0 0 1 42% 0.49 0 0 1

Note: Summary statistics for two protocols for ALL treatment. The left panel describes the GHS-2000 group (2000 - 2007). The right
panel is for the AHOPCA ALL-2008 group (2008-2015). ”MALE”, ”CNS”, ”Lineage”, ”Living Condition”, ”Family Type”, ”Phone at
Home” are the dummy variables. These variables stand for whether the subject is male, the involvement of the central nervous system, the
type of tumor lineage, whether the patient lives in an urban neighborhood, whether the patient lives in a united family, and if the patient
owns a home phone.

ditions, home phone ownership, and distance to the hospital. Table 1.2 summarizes these characteristics for patients

undergoing each of the two protocols. Instead of performing multiple imputations as in Bernasconi et al. (2022), miss-

ing cases are removed. Results from the table show that patients from the AHOPCA ALL-2008 group are less likely

to withdraw treatment, more likely to live in a rural neighborhood, and tend to live closer to the clinic. To account for

these imbalances across the treatment groups, Bernasconi et al. (2022) relies on an inverse probability of treatment and

censoring weighting strategy, which further depends on the assumption that, conditional on the baseline covariates,

the potential EFS and abandonment are mutually independent. Such a restriction, however, is not necessary for our

proposed methodology.

The main finding of Bernasconi et al. (2022) is that the AHOPCA ALL-2008 protocol leads to better potential EFS

in the first three years and the difference tapers off in the long term (approximately 5 years). Could these results carry

over to the case of dependent censoring? To address this question, we consider two scenarios that are characterized by

different ranges of the copula parameter θ . Specifically, we assume that the true copula belongs to the Gumbel family

and the indexing parameters lie in (1,1.5) for the first case and in (1,2) for the second. Both scenarios feature a mild

positive correlation pattern between the EFS and withdrawal time, and both encompass independent censoring as a

limiting case. When mapped to Kendall’s τ , the maximum levels of positive correlation under the two scenarios are

1/3 and 1/2, respectively.

In the first step of analysis, we assess the validity of the index sufficiency assumption. In light of Remark 1.1, we

can implement the specification test (Algorithm 1.9.2) as presented in Section 1.9.2.2. The null hypothesis is that the
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single index assumption holds for the joint distribution of (Td ,Cd), d ∈ {0,1}. The bootstrap test cannot reject the null

for either treatment group at the 10% level, indicating that our methodology can be applied to this context.

Estimation of the BGFs and TEBFs closely follows the procedures described in Section 1.6. As in Bernasconi

et al. (2022), we consider two different time frames: 3 and 5 years post-treatment. For the shorter period, the TEBFs

are estimated over the index set U3, which is equivalent to {0.05,0.06, ...,0.29,0.3} when the (C)QTE is considered,

while U3 = {0,0.1, ...,2.9,3.0} for all other types of treatment effects. For the longer period, the index set U5 =

{0.05,0.06, ...,0.44,0.45} is employed for the (C)QTE, and U5 = {0,0.1, ...,4.9,5.0} for all other types of treatment

effects. For all of our analyses of the conditional treatment effect, we fix the conditioning set at the “representative”

observation, which is the sample average of the baseline covariates.

Figure 1.2: Estimates of the potential EFS curves

Notes: The top plot depicts the unconditional potential survival curve estimates, whereas the bottom figure represents conditional survival curve esti-
mates. The solid curves represent SICG estimates for the two protocols, with the independence copula. For each The shaded areas are bounded from
above and below by SICG estimates, using Gumbel copula parameters of 1 and 1.5, respectively. The Peterson’s worst case bounds for the treated and
control group are depicted with dot-dash and dashed curves correspondingly.
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Figure 1.3: Distributional treatment effect estimates

Notes: The top and bottom plots represent overall and conditional DTE estimates along with their 95% uniform confidence bands, respectively. The
solid black lines and the dark gray area depict the DTE estimates and their uniform confidence bands under the independent censoring mechanism.
Dashed (dot-dash) lines and the light gray area depict the upper (lower) bound of the DTE and the corresponding uniform confidence bands, with a
Gumbel copula and θθθ = (1,1.5). The confidence bands are computed following the bootstrap procedures in Algorithms 1.5.1 and 1.9.1, respectively,
with 1,999 bootstrap replications. The Peterson’s worst case bounds for the DTE are delineated with dot-dash and dashed curves correspondingly.

We turn now to a discussion of the estimation results. Figure 1.2 presents the estimated potential EFS curves.

Our findings mirror the original results of Bernasconi et al. (2022), revealing that the new protocol improves survival

prospects in the initial years following treatment. However, this beneficial effect appears to taper off over a year

earlier than previously indicated. Moreover, if we loosen the independent censoring condition, the beneficial effect

may completely vanish. This is evidenced by the overlapping of the estimated identified sets of potential EFS, even

under the stricter configuration, θθθ a. It is also worth noting that our identified set is significantly narrower than the one

derived from the no-information bounds, emphasizing our ability to provide a flexible middle ground compared to the

most robust approach.
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Table 1.3: Estimation results for conditional and overall TEBFs

(a) Treatment Effect Estimators under Independent Censoring

ATE(3) mad.DTE mad.QTE mad.CHTE CATE(3) mad.CDTE mad.CQTE mad.CCHTE

0.078 -0.062 0.630 -0.071 0.051 -0.061 0.370 -0.071
[ -0.157, 0.314 ] [ -0.189, 0.139 ] [ -1.61, 2.15 ] [ -0.244, 0.189 ] [ -0.082, 0.184 ] [ -0.139, 0.097 ] [ -0.784, 1.034 ] [ -0.187, 0.142 ]

Treatment Effect Estimators with θθθ a = (1, 1.5)

ATE(3) mad.DTE mad.QTE mad.CHTE CATE(3) mad.CDTE mad.CQTE mad.CCHTE

Lower Bd. -0.097 -0.094 -0.490 -0.145 -0.128 -0.100 -0.460 -0.121
[ -0.329, 0.136 ] [ -0.222, 0.128 ] [ -1.564, 1.324 ] [ -0.325, 0.181 ] [ -0.26, 0.004 ] [ -0.177, 0.076 ] [ -1.038, 0.728 ] [ -0.24, 0.119 ]

Upper Bd. 0.198 0.090 0.800 0.129 0.193 0.096 0.680 0.152
[ -0.034, 0.431 ] [ -0.168, 0.221 ] [ -1.377, 2.247 ] [ -0.235, 0.323 ] [ 0.059, 0.327 ] [ -0.108, 0.175 ] [ -0.512, 1.232 ] [ -0.16, 0.277 ]

Treatment Effect Estimators with θθθ b = (1, 2)

ATE(3) mad.DTE mad.QTE mad.CHTE CATE(3) mad.CDTE mad.CQTE mad.CCHTE

Lower Bd. -0.205 -0.124 -0.720 -0.196 -0.230 -0.124 -0.680 -0.174
[ -0.442, 0.032 ] [ -0.251, 0.127 ] [ -1.648, 1.138 ] [ -0.386, 0.19 ] [ -0.366 , -0.095 ] [ -0.202, 0.078 ] [ -1.226, 0.606 ] [ -0.296, 0.122 ]

Upper Bd. 0.268 0.140 1.040 0.208 0.270 0.141 0.830 0.245
[ 0.034, 0.502 ] [ -0.165, 0.274 ] [ -1.329, 2.439 ] [ -0.255, 0.429 ] [ 0.134, 0.406 ] [ -0.091, 0.222 ] [ -0.451, 1.331 ] [ -0.152, 0.386 ]

(b) Treatment Effect Estimators under Independent Censoring

ATE(5) mad.DTE mad.QTE mad.CHTE CATE(5) mad.CDTE mad.CQTE mad.CCHTE

0.169 -0.064 2.860 -0.099 0.018 -0.061 -1.310 0.073
[ -0.26, 0.598 ] [ -0.211, 0.158 ] [ -6.271, 9.041 ] [ -0.332, 0.248 ] [ -0.227, 0.263 ] [ -0.151, 0.129 ] [ -4.084, 3.144 ] [ -0.228, 0.231 ]

Treatment Effect Estimators with θθθ a = (1, 1.5)

ATE(5) mad.DTE mad.QTE mad.CHTE CATE(5) mad.CDTE mad.CQTE mad.CCHTE

Lower Bd. -0.219 -0.122 -2.320 -0.211 -0.359 -0.100 -2.290 -0.133
[ -0.651, 0.213 ] [ -0.268, 0.146 ] [ -7.76, 5.69 ] [ -0.451, 0.24 ] [ -0.596 , -0.123 ] [ -0.189, 0.088 ] [ -5.017, 2.877 ] [ -0.298, 0.164 ]

Upper Bd. 0.407 0.090 3.550 0.163 0.288 0.144 1.060 0.299
[ -0.027, 0.841 ] [ -0.189, 0.242 ] [ -4.023, 7.643 ] [ -0.317, 0.439 ] [ 0.048, 0.529 ] [ -0.12, 0.234 ] [ -1.185, 2.285 ] [ -0.222, 0.486 ]

Treatment Effect Estimators with θθθ b = (1, 2)

ATE(5) mad.DTE mad.QTE mad.CHTE CATE(5) mad.CDTE mad.CQTE mad.CCHTE

Lower Bd. -0.458 -0.152 -3.220 -0.273 -0.570 -0.124 -2.830 -0.192
[ -0.877 , -0.039 ] [ -0.296, 0.144 ] [ -8.706, 5.696 ] [ -0.524, 0.252 ] [ -0.815 , -0.325 ] [ -0.21, 0.087 ] [ -5.504, 2.734 ] [ -0.356, 0.164 ]

Upper Bd. 0.537 0.157 4.090 0.323 0.427 0.199 1.430 0.442
[ 0.108, 0.966 ] [ -0.183, 0.309 ] [ -3.954, 8.114 ] [ -0.355, 0.644 ] [ 0.187, 0.668 ] [ 0.107, 0.291 ] [ -1.097, 2.577 ] [ 0.241, 0.644 ]

Notes: The results in Panel (a) and (b) are generated using the index sets U3 and U5, respectively. Estimates of treatment effects are displayed
in the first row of each panel. Except for the ATE and CATE, the value with the maximum absolute deviation (mad) from 0 over the index set
is reported for each treatment effect. Numbers in square brackets represent the corresponding 95% bootstrap confidence intervals, based on
1,999 bootstrap replications. These are calculated following Algorithms 1.5.1 and 1.9.1, for the overall and conditional cases, respectively.

The findings are further validated by the overall and conditional DTE estimates illustrated in Figure 1.3. According

to the uniform confidence bands of (C)DTE under independent censoring, the newer protocol does not statistically

significantly outperform the older one, even in the shorter post-treatment period. The introduction of dependent

censoring does not alter this conclusion. That said, this conclusion is valid only under the maintained ranges of θ ,

which include the special case of non-informative censoring. In order to generalize this to other dependence patterns,

we would need to perform robustness checks with corresponding levels of θ .

More comprehensive results are compiled in Table 1.3. Here, we not only report the “mean” values for (C)DTE

as captured by (C)ATE, but also provide the values with the maximum absolute deviations from zero over their index

sets for other types of TEBFs. Additionally, the table includes 95% uniform confidence sets corresponding to these

reported TEBF estimates. Although Table 1.3 does not conclusively demonstrate treatment effect nullity across the
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entire Gumbel copula family, it does suggest that there are no significant differences between the two protocols, on

average and uniformly over the index sets, regardless of the type of policy effect under consideration. This observation

aligns with the findings depicted in Figures 1.2 and 1.3. Furthermore, this conclusion remains valid across different

correlation scenarios and analysis periods.

In sum, when we deviate from the conditional independence censoring mechanism, we do not find enough evidence

supporting that AHOPCA ALL-2008 leads to more favorable early-year survival prospects.

1.8 Conclusion

In this paper, we proposed a framework for conducting sensitivity analysis on various treatment effect parameters when

the latent duration is subject to dependent censoring. In order to obtain bounds of policy effects, we first derived bounds

on the distribution of the potential outcome. Such bounds follow naturally from the concordance ordering we imposed

on the Archimedean copulas. Moreover, we embedded a single-index structure into our identification framework, as

an attempt to curb the “curse of dimensionality” and to make our method practically feasible. Given these results, we

then proposed estimation procedures and established asymptotic properties of the resulting semiparametric estimators.

To conduct uniformly valid inference, we proposed multiplier bootstrap procedures that are easy to implement, and

showed the uniform confidence sets thus constructed are asymptotically accurate. Monte Carlo simulations confirm

our theoretical findings. Applying our methodology to real data, we revisited Bernasconi et al. (2022). Under a

conditional independence assumption, and when the early-year survival prospect is concerned, they conclude in favor

of AHOPCA ALL-200. Our sensitivity analysis demonstrates that such a conclusion may not continue to hold when

we depart from the assumption of random censoring.

While we limit our discussion to the classical unconfoundedness design in this paper, our proposed methodology

can be applied to other policy setups, such as the local treatment effect framework, as considered by Imbens and

Angrist (1994), Angrist et al. (1996), Abadie (2003) and Frölich and Melly (2013); difference-in-differences models,

cf. Card and Krueger (1994), Heckman et al. (1997), Abadie (2005), and Athey and Imbens (2006); and marginal

treatment effect setup, such as Heckman and Vytlacil (2001), and Heckman and Vytlacil (2005). Upon appropriate

modifications of the identification assumptions, BGFs and TEBFs can be easily derived along similar lines of Theorem

1.2 and Proposition 1.1, based on which, many policy relevant questions can be addressed.

1.9 Supplementary Appendix

This supplemental appendix contains proofs of the main theorems, auxiliary lemmas, and results. Section 1.9.1 collects

the proofs of the main results of the paper. Section 1.9.2 introduce additional results on the single-index estimator, and

Section 1.9.3 presents auxiliary results.
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1.9.1 Proofs of Main Results

1.9.1.1 Proof of Results from Section 1.3

1.9.1.1.1 Identification of Single-index Parameters

Proof of Lemma 1.1. The proof is based on the so-called decomposition and contraction relationships of the Graphoid

axioms by Dawid (1979):

Decomposition: A⊥⊥ (B,C)|D implies that A⊥⊥ B|D,

Contraction: A⊥⊥ B|D and A⊥⊥C|(B,D) implies that A⊥⊥ (B,C)|D,

for generic random variables A,B,C,D. For each d = 0,1, (Td ,Cd)⊥⊥D|X , under Assumption 1.1. Since the sigma field

generated by Xγd is a subset of that generated by X , we have (Td ,Cd)⊥⊥D|X ,Xγd . Together with the index sufficiency

condition, (Td ,Cd) ⊥⊥ X |Xγd , we deduce from the contraction relationship that (Td ,Cd) ⊥⊥ (D,X)|Xγd , which implies

that (Td ,Cd)⊥⊥ D|Xγd by the decomposition relationship. Since Yd and Rd are deterministic functions of (Td ,Cd), the

desired result follows. �

Proof of theorem 1.1. For the first half of part (i), note that for any (t,x,d,r) ∈T ×X ×{0,1}2,

E[1{D = d,R = r,Y ≤ t}|X ] = FY,R|D,X (t,r|d,X)E[1{D = d}|X ],

where FY,R|D,X (t|d,X) = FYd ,Rd |D,X (t,r|d,X) = FYd ,Rd |X (t,r|X) = FYd ,Rd |Xγd
(t,r|Xγd), almost surely. The second equal-

ity follows under Assumption 1.1, and the last holds under Assumption 1.2. On the other hand,

E[Gd,r(t,Xγd)|X ] = Gd,r(t,Xγd) = FYd ,Rd |D,Xγd
(t,r|d,Xγd) = FYd ,Rd |Xγd

(t,r|Xγd),

almost surely. The third equality is due to Lemma 1.1. Thus, (1.3.3) holds almost surely.

The converse part can be established by contradiction, applying similar arguments as in the proof of Theorem 4.1 in

Ichimura (1993). Suppose there exists d ∈ {0,1} and γ∗ ∈ Γ, such that γ∗ 6= γd , and E[Uγ∗(t,d,r)|X ] = 0 almost every-

where for (t,r) ∈T0×{0,1}2. Note that under Assumption 1.2, it continues to hold that E[1{D = d,R = r,Y ≤ t}|X ]

= FYd ,Rd |Xγd
(t,r|Xγd)E[1{D = d}|X ] almost surely.

For any x ∈X0, let v = xγ∗ and γ̄ = γd− γ∗, we have

FYd ,Rd |Xγd
(t,r|xγd) = FYd ,Rd |Xγd

(
t,r|v+

k−1

∑
`=1

γ̄`x[`+1]

)
= Gd,r(t,v),
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where the second equality holds almost surely. Fix v and take partial derivative of the middle term in the above

display with respect to {x[`]}
k1
`=2. It follows that ∂FYd ,Rd |Xγd

(t,r|xγ)/∂xγ|xγ=xγd · γ̄[`] = 0, for ` = 1, ...,k1− 1. Recall

our assumption on X0, ∂FYd ,Rd |Xγd
(t,r|xγ)/∂xγ|xγ=Xγd 6= 0 with positive probability. Consequently, γ∗` = γd,`, for

`= 1, ...,k1−1.

Under Assumption 1.3.3 with γ = γd , there exists an open interval V0 such that for all v ∈ V0,

FYd ,Rd |Xγd
(t,r|v) = FYd ,Rd |Xγd

(t,r|v+ γ̄`) = Gd,r(t,v),

where `= k1, ...,k−1. In view of the first equality, we find from Assumption 1.3.4 (ii) that γ̄` = 0, and thus, γ∗` = γd,`,

for `= k1, ...,k−1. This contradicts the supposition that γ∗ 6= γd . Hence, part (ii) follows.

To show part (iii), we first note that Jd(γ;ϑ)≥ due to its construction. Next, when γ 6= γd ,

Jd(γ;ϑ)≥
∫

T0×{0,1}

∫
z∈Z

∥∥E[Ud,γ,`(t,r)ϑ(X ;z)]
∥∥2 dΠZ(z)dΠT,R(t,r)> 0

where the second inequality follows because ϑ is chosen such that the equivalence in (1.3.1) holds, and from part (ii),

we have E[Ud,γ,`(t,r)|X ]> 0, ∀(d,r, t) ∈ {0,1}2×T0. �

1.9.1.1.2 Identification of Treatment Effects

Proof of Theorem 1.2. Proof of the first half of part (i) is a slight modification of Lemma 1 of Braekers and Veraverbeke

(2005). For a fixed x∈X , we know from Assumption 1.4.2 that the true copula is Archimedean and indexed by θ ∗d (x),

and

∂SYd ,R|X (ỹ,1|x)/∂ ỹ|ỹ=y = ∂STd ,Cd |X (ỹ, ỹ|x)/∂ ỹ|ỹ=y = ∂C (STd |X (ỹ|x),SCd |X (ỹ|x);θ
∗
d (x))/∂ ỹ|ỹ=y

=−
φ
′
θ∗d (x)

(STd |X (y|x))S
′
Td |X (y|x)

φ
′
θ∗d (x)

(SYd |X (y|x))
.

The first equality is due to Tsiatis (1975), the second is by Assumption 1.4.2, and the last is due to the construction

of the Archimedean copula. Multiplying the far left and right sides by φ
′
θ∗d (x)

(SYd |X (y|x)) and integrating them with

respect to y over [0, t] gives

∫ t

0
φ
′
θ∗d (x)

(SYd |X (y|x))SYd ,R|X (dy,1|x) = φθ∗d (x)
(
STd (t|x)

)
. (1.9.1)
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Note that

sd(y,xγd) = E [E[D1{Y > y}|D = d,X ]|D = d,Xγd = xγd ]

= E [E[1{Yd > y}|X ]|D = d,Xγd = xγd ]

= E
[
SYd |X (y|X)|D = d,Xγd = xγd

]
= E

[
SYd |Xγd

(y|Xγd)|D = d,Xγd = xγd
]

= SYd |Xγd
(y|xγd) = SYd |X (y|x),

where the first equality follows by the tower property of conditional expectation. The second is by Assumption 1.1,

and the third is due to Assumption 1.2. The last one holds under Assumption 1.2. Same lines of arguments lead to

sd,1(y,xγd) = SYd ,R|X (y,1|x). Substituting these equations into (1.9.1) and taking the inverse of φθ∗d (x)
on both sides, the

desired result then follows by noting that θ ∗d (x) ∈Θ for all x ∈X and d ∈ {0,1}. The second half of (i) follows from

the preceding analysis by taking expectation of sTd (·,Xγd ,θ(X)) with respect to X .

Part (ii) follows directly from part (i) and Proposition 2 of Rivest and Wells (2001), and therefore, the proof is

omitted. �

Proof of Proposition 1.1. Under Assumption 1.1–1.3, γγγ is identified by Theorem 1.1. When θ1 ≤ θ ∗d (·) ≤ θ2, the

same arguments as in Theorem 1.2 lead to STd (t) ∈ [sTd (t,θ2), sTd (t,θ1)], for t ∈T .

The identified sets for the four types of treatment effects can then be derived using the fact that each of their

corresponding treatment responses respects the stochastic dominance relations of the potential survival functions.

Take the restricted ATE as an example,

E
[
T̃d(t)

]
=−

∫ t

0
yd(1−FTd (y))+ tSTd (t)

=
∫ t

0
(1−FTd (y))dy− t(1−FTd (t))+ tSTd (t)

=
∫ t

0
STd (y)dy,

where the second line follows from an integration by part. Consequently,
∫
[0,t]
(
sT1(y,θ2)− sT0(y,θ1)

)
dy≤E

[
T̃1(t)

]
−

E
[
T̃0(t)

]
≤
∫
[0,t]
(
sT1(y,θ1)− sT0(y,θ2)

)
dy.

Sharpness is inherited from that of the potential causal curves. Results for the conditional treatment effects can be

shown with similar arguments. �
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1.9.1.2 Proof of Results from Section 1.4

1.9.1.2.1 Uniform Linear Representation

Proof of Theorem 1.3. The proof is similar to that of Theorem 4.1 in Fan and Liu (2018), with substantial differ-

ences due to the use of single-index estimator. We first provide a uniform linear expansion for φθ

(
ŝTd (t,xγ̂d ,θ)

)
−

φθ

(
sTd (t,xγd ,θ)

)
, the desired result then follows by a second order Taylor expansion of φ

−1
θ

. We let sd,r ≡ 1/2−Gd,r

and its estimator ŝd,r ≡ 1/2− Ĝd,r for r = 0,1. Observe that

φθ

(
ŝTd (t,xγ̂d ,θ)

)
−φθ

(
sTd (t,xγd ,θ)

)
(1.9.2)

=
∫ t

0
φ
′
θ (ŝd(y,xγ̂d)) ŝd,1(dy,xγ̂d)−

∫ t

0
φ
′
θ (sd(y,xγd))sd,1(dy,xγd)

=
∫ t

0

{
φ
′
θ (ŝd(y,xγ̂d))−φ

′
θ (sd(y,xγd))

}
sd,1(dy,xγd)

+
∫ t

0
φ
′
θ (sd(y,xγd))

{
ŝd,1(dy,xγ̂d)− sd,1(dy,xγd)

}
+
∫ t

0

{
φ
′
θ (ŝd(y,xγ̂d))−φ

′
θ (sd(y,xγd))

}{
ŝd,1(dy,xγ̂d)− sd,1(dy,xγd)

}
=
∫ t

0
φ
′′
θ (sd(y,xγd)){ŝd(y,xγ̂d)− sd(y,xγd)}sd,1(dy,xγd) (1.9.3)

+φ
′
θ (sd(t,xγd))

{
ŝd,1(t,xγ̂d)− sd,1(t,xγd)

}
(1.9.4)

−
∫ t

0
φ
′′
θ (sd(y,xγd))

{
ŝd,1(y,xγ̂d)− sd,1(y,xγd)

}
sd(dy,xγd) (1.9.5)

+ rn,1(t,x,θ)+ rn,2(t,x,θ)

where

rn,1(t,x,θ) =
1
2

∫ t

0
φ
′′′
θ (ζ (y,x)){ŝd(y,xγ̂d)− sd(y,xγd)}2 sd,1(dy,xγd),

rn,2(t,x,θ) =
∫ t

0

{
φ
′
θ (ŝd(y,xγ̂d))−φ

′
θ (sd(y,xγd))

}{
ŝd,1(dy,xγ̂d)− sd,1(dy,xγd)

}
.

The random function ζ lies between ŝd and sd . The second equality follows by direct manipulation. The fourth line is

due to a second order Taylor expansion of φ ′
θ
(ŝd) around sd , which also produces the remainder rn,1, and the fifth one

follows by an integration by part on the term in the third line.

The proof proceed in two steps: we first derive the dominating terms of (1.9.3) - (1.9.5), and then we show th two

remainder terms rn,1 and rn,2 are asymptotically negligible.

Step 1: expansion of first-order terms.

It suffices to show (1.9.3). (1.9.4) and (1.9.5) can be handled analogously. Let φ̈ θ
d,γ(y,x)≡ φ ′′

θ
(sd(y,xγ)). A second
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order Taylor expansion of ŝd with respect to γ around γd yields

∫ t

0
φ̈

θ
d,γd

(y,x){ŝd(y,xγ̂d)− sd(y,xγd)}sd,1(dy,xγd)

=
∫ t

0
φ̈

θ
d,γd

(y,x)(ŝd(y,xγd)− sd(y,xγd))sd,1(dy,xγd)

− (γ̂d− γd)
′
∫ t

0
φ̈

θ
d,γd

(y,x)
∫ t

0
φ̈

θ
d,γd

(y,x)∂γ Ĝd(y,xγd)sd,1(dy,xγd)

+(γ̂d− γd)
′
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ Ĝd(y,xγ̃d)−∂γ Ĝd(y,xγd)
}

sd,1(dy,xγd)

≡Ln,1 +Ln,21 +Ln,22,

where γ̃d lies between γ̂d and γd . We rewrite the first term as

Ln,1 =−
∫ t

0
φ̈

θ
d,γd

(y,x)
(

κ̂d,y(xγd)

f̂d(xγd)
−Gd(y,xγd)

)
sd,1(dy,xγd)

=− 1
n f̂d(xγd)

n

∑
i=1

Kh (xγd ,Xiγd)
∫ t

0
φ̈

θ
d,γd

(y,x)Ed,γd ,i(y,x)sd,1(dy,xγd)

=− 1
n fd(xγd)

n

∑
i=1

Kh (xγd ,Xiγd)
∫ t

0
φ̈

θ
d,γd

(y,x)Ed,γd ,i(y,x)sd,1(dy,xγd) (1.9.6)

+
f̂d(xγd)− fd(xγd)

n fd(xγd) f̂d(xγd)

n

∑
i=1

Kh (xγd ,Xiγd)
∫ t

0
φ̈

θ
d,γd

(y,x)Ed,γd ,i(y,x)sd,1(dy,xγd). (1.9.7)

where Ed,γ,`(y,x)≡ 1{D` = d}(1{Y` ≤ y}−Gd(y,xγ)). Note that the difference between Ed,γ,`(y,x) and Ed,γ,`(y) lies

in whether X is fixed at x.

We divide (1.9.6) into two parts,

− 1
n fd(xγd)

n

∑
i=1

Kh (xγd ,Xiγd)
∫ t

0
φ̈

θ
d,γd

(y,x)Ed,γd ,i(y)sd,1(dy,xγd), (1.9.8)

− 1
n fd(xγd)

n

∑
i=1

Kh (xγd ,Xiγd)
∫ t

0
φ̈

θ
d,γd

(y,x)(Ed,γd ,i(y,x)−Ed,γd ,i(y))sd,1(dy,xγd) (1.9.9)

The first term in the preceding display is centered and belongs to ηs,d . The second term corresponds to the first-order

bias and is part of ηb,d .

By the definition of Ĝd , (1.9.7) is equal to

f̂d(xγd)− fd(xγd)

fd(xγd)

∫ t

0
φ̈

θ
d,γd

(y,x)
(
Ĝd(y,xγd)−Gd(y,xγd)

)
sd,1(dy,xγd)

. sup
T̃ ×X

∣∣ f̂d(xγd)− fd(xγd)
∣∣ · sup

T̃ ×X

∣∣Ĝd(y,xγd)−Gd(y,xγd)
∣∣= Op

(
logn
nh

)
,
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uniformly over Θ. The inequality follows by (1.9.36) and (1.9.37). The equality is due to Assumption 1.9.2.

Regarding Ln,21, we have

− (γ̂d− γd)
′
∫ t

0
φ̈

θ
d,γd

(y,x)G(1)
d (y,xγd)sd,1(dy,xγd)

− (γ̂d− γd)
′
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ Ĝd(y,xγd)−G(1)
d (y,xγd)

}
sd,1(dy,xγd)

Under Assumption 1.6.4, φ
′′
θ
(u) is bounded on [υo,1] uniformly in θ . Meanwhile, sd(y,x) is bounded in the same

interval whenever y ∈ T̃ , uniformly in x ∈X . Consequently, φ̈ θ
d,γd

(y,x) is bounded on T̃ ×X ×Θ. By (1.9.32), the

last term is bounded from above by supT̃ ×X

∥∥∥∂γ Ĝd(t,xγd)−G(1)
d (t,xγd)

∥∥∥‖γ̂d− γd‖=
(

Op

(
(logn)1/2 n−1/2h−3/2

)
+

O(hs)) ·Op
(
n−1/2

)
, which is Op

(
(logn)1/2 n−1h−3/2

)
under our rate condition on the bandwidth. Therefore, Ln,21 is

dominated by

−1
n

n

∑
i=1

∫ t

0
φ̈

θ
d,γd

(y,x)G(1)
d (y,xγd)

′sd,1(dy,xγd)V−1
d ψ2(Xi,γd).

From Lemma 1.8, we deduce that Ln,22 has a uniform rate of Op
(
n1/2

)
·Op

(
(logn)1/2 n−1h−5/2

)
= op((logn)1/2·

n−1h−3/2).

So far, we have derived the leading terms of (1.9.3). The other two terms, (1.9.4) and (1.9.5), can be treated

analogously.

Step 2: uniform asymptotic negligibility of rn,1 and rn,2.

By the mean value theorem, we have

sup
(t,x,θ)∈T̃ ×X ×Θ

rn,1(t,x,θ). sup
(t,x,θ)∈T̃ ×X ×Θ

∣∣∣φ ′′′θ (ζ (t,x))
∣∣∣{ŝd(t,x)− sd(t,x)}2 ,

We can deduce from (1.9.36), and Assumption 1.6.4 that the right hand side is of order Op
(
logn ·n−1h−1

)
+O(h2s),

which is Op
(
logn ·n−1h−1

)
under Assumption 1.9.2.

Next, we show rn,2 = Op
(
logn ·n−1h−1

)
as well. Perform a third order Taylor expansion of φ ′

θ
with respect to sd ,

rn,2(t,x,θ) =
∫ t

0

{
φ̈

θ
d,γd

(y,x)(ŝd(y,xγ̂d)− sd(y,xγd))
}{

ŝd,1(dy,xγ̂d)− sd,1(dy,xγd)
}

(1.9.10)

+
1
2

∫ t

0
φ
′′′
θ (ζ (y,x)){ŝd(y,xγ̂d)− sd(y,xγd)}2{ŝd,1(dy,xγ̂d)− sd,1(dy,xγd)

}
.
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The second term is asymptotically dominated in view of Lemma 1.4. Focusing on the first term, we have

(1.9.10) =
∫ t

0

{
φ̈

θ
d,γd

(y,x)(ŝd(y,xγ̂d)− ŝd(y,xγd))
}{

ŝd,1(dy,xγ̂d)− ŝd,1(dy,xγd)
}

(1.9.11)

+
∫ t

0

{
φ̈

θ
d,γd

(y,x)(ŝd(y,xγ̂d)− ŝd(y,xγd))
}{

ŝd,1(dy,xγd)− sd,1(dy,xγd)
}

(1.9.12)

+
∫ t

0

{
φ̈

θ
d,γd

(y,x)(ŝd(y,xγd)− sd(y,xγd))
}{

ŝd,1(dy,xγ̂d)− ŝd,1(dy,xγd)
}

(1.9.13)

+
∫ t

0

{
φ̈

θ
d,γd

(y,x)(ŝd(y,xγd)− sd(y,xγd))
}{

ŝd,1(dy,xγd)− sd,1(dy,xγd)
}

(1.9.14)

We analyze (1.9.11), (1.9.12), and (1.9.14) in turn. Via integration by parts, (1.9.13) can be handled in the same

fashion as (1.9.12), and therefore, the proof is omitted.

We provide results for (1.9.11). By a first-order Taylor expansion of ŝd(y,xγ̂d) in γ around γd , we get

(γ̂d− γd)
′
∫ t

0
φ̈

θ
d,γd

(y,x)∂γ Ĝd(y,xγ̃d)∂γ ′Ĝd(dy,xγ̆d)(γ̂d− γd),

where γ̃d and γ̆d lie between γ̂d and γd . Let Id,t,1,i = Ri1{Di = d,Yi ≤ t}. Expanding the partial derivative in the

integrator, we get

(γ̂d− γd)
′

nh2 f̂d(xγ̆d)

n

∑
i=1

Id,t,1,iφ̈
θ
d,γd

(Yi,x)∂γ Ĝd(Yi,xγ̃d)K(1) ((Xiγ̆d− xγ̆d)/h)(X[−1],i− x[−1])
′(γ̂d− γd)

− (γ̂d− γd)
′

nh f̂d(xγ̆d)2

n

∑
i=1

Id,t,1,iφ̈
θ
d,γd

(Yi,x)∂γ Ĝd(Yi,xγ̃d)K((Xiγ̆d− xγ̆d)/h)∂γ ′ f̂d(xγ̆d)(γ̂d− γd)

≡ Ln,31 +Ln,32.

Rewrite Ln,31 as

(γ̂d− γd)
′

nh2 fd(xγ̆d)

n

∑
i=1

Id,t,1,iφ̈
θ
d,γd

(Yi,x)∂γ Ĝd(Yi,xγ̃d)K(1) ((Xiγ̆d− xγ̆d)/h)(X[−1],i− x[−1])
′(γ̂d− γd) (1.9.15)

− (γ̂d− γd)
′( f̂d(xγ̆d)− fd(xγ̆d))

nh2 fd(xγ̆d) f̂d(xγ̆d)

·
n

∑
i=1

Id,t,1,iφ̈
θ
d,γd

(Yi,x)∂γ Ĝd(Yi,xγ̃d)K(1) ((Xiγ̆d− xγ̆d)/h)(X[−1],i− x[−1])
′(γ̂d− γd). (1.9.16)

The term in (1.9.15) can be further decomposed as

(γ̂d− γd)
′

nh fd(xγ̆d)

n

∑
i=1

Id,t,1,iφ̈
θ
d,γd

(Yi,x)G
(1)
d (Yi,xγ̃d)K

(1)
h (xγ,Xiγ)(X[−1],i− x[−1])

′(γ̂d− γd)
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− (γ̂d− γd)
′

nh fd(xγ̆d)

n

∑
i=1

Id,t,1,iφ̈
θ
d,γd

(Yi,x)(∂γ Ĝd(Yi,xγ̃d)−G(1)
d (Yi,xγ̃d))K

(1)
h (xγ,Xiγ)(X[−1],i− x[−1])

′(γ̂d− γd).

From (1.9.33), we find that, Assumptions 1.3.1 and 1.6, G(1)
d (y,xγ) is bounded uniformly on T̃ ×XΓ. Additionally,

φ̈ θ
d,γd

(y,x) is bounded on T̃ ×X ×Θ under Assumption 1.6.4. Hence, the first term can be bounded from above by

M1

h
‖γ̂d− γd‖2 sup

(y,x,γ)∈T̃ ×X ×Γd,n

{∥∥∥G(1)
d (y,xγ)

∥∥∥∥∥x[−1]
∥∥} sup

(x,γ)∈X ×Γd,n

{
1
n

n

∑
i=1

∣∣∣K(1)
h (xγ,Xiγ)

∣∣∣}

= Op(n−1h−1) = op
(
logn ·n−1h−1) ,

where the last equality holds uniformly over Θ. In view of (1.9.37), we deduce that the second is bounded by

M2

h
‖γ̂d− γd‖2 sup

(y,x,γ)∈T̃ ×X ×Γd,n

{∥∥∥∂γ Ĝd(y,xγ)−G(1)
d (y,xγ)

∥∥∥∥∥x[−1]
∥∥} sup

x∈X

{
1
n

n

∑
i=1

∣∣∣K(1)
h (xγ,Xiγ)

∣∣∣}

= Op(n−1h−1) ·
(

Op

(
(logn)1/2 n−1/2h−3/2

)
+O(hs)

)
= op

(
logn ·n−1h−1) ,

uniformly over Θ. Applying similar reasoning, we are able to show that (1.9.16) is the order Op((logn)1/2n−3/2·

h−3/2), and Ln,32 = Op
(
n−1
)
, both of which are op

(
logn ·n−1h−1

)
.

Next, we bound (1.9.12). A Taylor expansion of ŝd(y,xγ̂d) around γd yields,

(1.9.12) =−(γ̂d− γd)
′
∫ t

0

{
φ̈

θ
d,γd

(y,x)∂γ Ĝd(y,xγd)
}{

ŝd,1(dy,xγd)− sd,1(dy,xγd)
}

+(γ̂d− γd)
′
∫ t

0

{
φ̈

θ
d,γd

(y,x)
(
∂γ Ĝd(y,xγ̃d)−∂γ Ĝd(y,xγd)

)}{
ŝd,1(dy,xγd)− sd,1(dy,xγd)

}
≡ (γ̂d− γd)

′Bn,1 +(γ̂d− γd)
′Bn,2.

Bn,1 can be rewritten as

Bn,1 =
∫ t

0

{
φ̈

θ
d,γd

(y,x)∂γ Ĝd(y,xγd)
}

d
{

κ̂d,1,y(xγd)

fd(xγd)
−Gd,1(y,xγd)

}
− f̂d(xγd)− f (xγd ,d)

f (xγd ,d) f̂d(xγd)

∫ t

0

{
φ̈

θ
d,γd

(y,x)∂γ Ĝd(y,xγd)
}

dκ̂d,1,y(xγd).

Similar analysis along the lines of Ln,31 gives a uniform bound of Op

(
(logn)1/2 n−1/2h−1/2

)
for the second term.
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Expanding the partial derivative in the first term leads to

1
f (xγd ,d)2

∫ t

0
φ̈

θ
d,γd

(y,x)∂γ κ̂d,y(xγd)d
[
κ̂d,1,y(xγd)− f (xγd,1,d)Gd,1(y,xγd)

]
(1.9.17)

−
∂γ f̂d(xγd)

fd(xγd) f̂d(xγd)2

∫ t

0
φ̈

θ
d,γd

(y,x)κ̂d,y(xγd)d
[
κ̂d,1,y(xγd,1)− fd(xγd)Gd,1(y,xγd)

]
(1.9.18)

− ( f̂d(xγd)− f (xγd ,d))
f (xγd ,d)2 f̂d(xγd)

∫ t

0
φ̈

θ
d,γd

(y,x)∂γ κ̂d,y(xγd)d
[
κ̂d,1,y(xγd)− fd(xγd)Gd,1(y,xγd)

]
+

∂γ f̂d(xγd)( f̂d(xγd)
2− f (xγd ,d)2)

f (xγd ,d)3 f̂d(xγd)2

∫ t

0
φ̈

θ
d,γd

(y,x)κ̂d,y(xγd)d
[
κ̂d,1,y(xγd)− fd(xγd)Gd,1(y,xγd,1)

]
.

As f̂d(xγd) converges uniformly to fd(xγd) in probability, the last two terms are clearly dominated by the first two in

the limit. We therefore focus on the convergence of (1.9.17) and (1.9.18).

Let κd,y(xγ) = E[1{D = d,Y ≤ y}Kh (xγ,Xγ)] and κd,1,y(xγ) = E[R1{D = d,Y ≤ y} ·Kh (xγ,Xγ)]. The integra-

tor of (1.9.17) can be decomposed into a centered term νd,1(y,x,γd) =
(
κ̂d,1,y(xγd)−κd,1,y(xγd)

)
and a bias term

µd,1(y,x,γd) =
(
κd,1,y(xγd)− fd(xγd)Gd,1(y,xγd)

)
.

Regarding the centered part, let us define

Ln,41,` ≡
1

nh f (xγd ,d)2

n

∑
i=1

∫ t

0
φ̈

θ
d,γd

(y,x)Id,y,i(K
(1)
h (xγd ,Xiγd)(X`,i− x`)

−E[Id,yK(1)
h (xγd ,Xγd)(X`− x`)])νd,1(dy,x,γd),

Ln,42,` ≡
1

f (xγd ,d)2

∫ t

0
φ̈

θ
d,γd

(y,x)E[Id,yh−1K(1)
h (xγd ,Xγd)(X`− x`)]νd,1(dy,x,γd).

The first term can be represented as a degenerate second order U process indexed by ω . Specifically,

Ln,41,`(ω) =
1

n2h3

{
n

∑
i=1

g1,`(Wi,Wi,ω)+
n

∑
i6= j

g1,`(Wi,Wj,ω)

}
≡ La

n,41,`(ω)+Lb
n,41,`(ω),

where

g1,`(W1,W2,ω) =
1

f (xγd ,d)2

{
g11(W1,ω)g12,`(W2,Y1,ω)−

∫
g11(w1,ω)g12,`(W2,y1,ω)dFW (w1)

}
,

g11(W1,ω) =Id,t,1,1hKh(xγd ,X1γd),

g12,`(W2,y,ω) =φ̈
θ
d,γd

(y,x)
{

Id,y∧t,2hK(1)
h (xγd ,X2γd)(X2,`− x`)

−
∫
1{d2 = d,y2 ≤ y∧ t}hK(1)

h (xγd ,x2γd)(x2,`− x`)dFW (w2)

}
.
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Direct calculation shows

sup
ω∈Ω

∣∣La
n,41,`(ω)

∣∣. 1
nh

sup
x∈X

{
1
n

n

∑
i=1

∣∣∣K(1)
h (xγd ,Xiγd)Kh(xγd ,Xiγd)

∣∣∣}= Op

(
1

nh2

)
.

Now, define the following class of functions

G1 ≡
{
(w1,w2) 7→ g1,`(w1,w2,ω) : ` ∈ {2, ...,k}, ω ∈Ω

}
. (1.9.19)

By Lemma 1.7, it belongs to the VC type class with a bounded envelop. Standard calculations reveal that the maximum

variance of U process kernel supg∈G1
E[g2] is of the order O(h2). By the maximal inequality in Lemma 1.5, we con-

clude that E
[
supω∈Ω

∣∣∣n−2
∑

n
i6= j g1,`(Wi,Wj,ω)

∣∣∣] = O
(
logn ·n−1h

)
. Applying the Markov inequality and multiplying

the U statistic by h−3, we deduce that supω∈Ω

∣∣∣Lb
n,41,`(ω)

∣∣∣= Op
(
logn ·n−1h−2

)
.

By Lemma 1.4, the expectation in side Ln,42,` is uniformly convergent to ∂xγ Gd,1(y,xγd)(x`−E[X`|xγd ]). Thus,

Ln,42,` ≡
1

nh f (xγd ,d)2

n

∑
i=1

{
Id,t,1,iφ̈

θ
d,γd

(Yi,x)
(
∂xγ Gd,1(Yi,xγd)(x`−E[X`|xγd ])

)
hKh(xγd ,Xiγd)

−E
[
Id,t,1φ̈

θ
d,γd

(Y,x)
(
∂xγ Gd,1(Y,xγd)(x`−E[X`|xγd ])

)
hKh(xγd ,Xγd)

]}
+hsrn,3(t,x,θ),

where sup(t,x,θ)∈T̃ ×X ×Θ
|rn,3(t,x,θ)|= op(1). The first term on the right hand side can be bounded via the maximal

inequality as long as the following class of function is of the VC type:

G2 ≡
{

w 7→ g2,`(w,ω) : ` ∈ {2, ...,k}, ω ∈Ω
}
, (1.9.20)

where

g2,`(W,ω) = f (xγd ,d)−2
{

Id,t,1φ̈
θ
d,γd

(Y,x)
(
∂xγ Gd,1(Y,xγd)(x`−E[X`|xγd ])

)
hKh(xγd ,Xγd)

−
∫

r11{d1 = d,y1 ≤ t} φ̈
θ
d,γd

(y1,x)
(
∂xγ Gd,1(y1,xγd)(x`−E[X`|xγd ])

)
hKh(xγd ,x1γd)dFW (w1)

}
.

Note that supg2∈G2
E[g2

2] = O(h). Consequently, Ln,42,` = Op

(
(logn)1/2 ·n−1/2h−1/2

)
by the maximal inequality from

Lemma 1.5

Turning to the bias part of (1.9.17), we define

Ln,5,` ≡
1
n

n

∑
i=1

X`,i− x`
h f (xγd ,d)2

∫ t

0
φ̈

θ
d,γd

(y,x)Id,y,iK
(1)
h (xγd ,Xiγd)µd,1(dy,x,γd),
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for `= 2, ...,k. Integrating by parts gives

Ln,5,` =
1
n

n

∑
i=1

X`,i− x`
h f (xγd ,d)2 φ̈

θ
d,γd

(t,x)Id,y,iK
(1)
h (xγd ,Xiγd)µd,1(t,x,γd)

−
X`,i− x`

h f (xγd ,d)2

∫ t

0
Id,y,iK

(1)
h (xγd ,Xiγd)µd,1(y,x,γd)φ̈

θ
d,γd

(dy,x)

−
X`,i− x`

h f (xγd ,d)2 Id,t,iµd,1(Yi,x,γd)φ̈
θ
d,γd

(Yi,x)K
(1)
h (xγd ,Xiγd), (1.9.21)

Due to the uniform convergence of the gradient estimator by (1.9.35), the first term is uniformly bounded from above

by

sup
(t,x,θ)∈T̃ ×X ×Θ

{∣∣ fd(xγd)
−2∣∣ ∣∣∣φ̈ θ

d,γd
(t,x)

∣∣∣ ·{∥∥∥G(1)
d (t,xγd)

∥∥∥+∥∥∥∂γ Ĝd(t,xγd)−G(1)
d (t,xγd)

∥∥∥}}
· sup
(t,x)∈T̃ ×X

{∣∣µd,1(t,x,γd)
∣∣}= Op(1) ·O(hs).

Since φ
′′
(·) and sd(·,xγd) are both continuously differentiable with bounded derivative under Assumption 1.6, we can

deduce from the mean value theorem that the second term is also of the order Op(hs). Standard bias calculation yields

(1.9.21) =−
∫

usK(u)du
nh2−s

n

∑
i=1

g3,`(Wi,ω)+hs+1rn,4,`(t,x,d,θ),

where sup(t,x,θ)∈T̃ ×X ×Θ

∣∣rn,4,`(t,x,d,θ)
∣∣= Op(1) and, for ` ∈ {2, ...,k},

g3,`(W,ω) =
X`− x`

f (xγd ,d)2 Id,t φ̈
θ
d,γd

(Y,x)∂ s
xγ

{
fd(xγd)Gd,1(Y,xγd)

}
hK(1)

h (xγd ,Xγd).

Once again, Lemma 1.7 establishes that

G3 ≡
{

w 7→ g3,`(w,ω) : ` ∈ {2, ...,k}, ω ∈Ω
}
, (1.9.22)

is of VC type with bounded envelop. Maximal variance is of the order O(h). We then deduce from Lemma 1.5 and the

Markov inequality that (1.9.21) is of the order Op

(
(logn)1/2 n−1/2hs−3/2

)
, uniformly over ω ∈Ω. Overall, (1.9.17) is

Op

(
(logn)1/2 ·n−1/2h−1/2

)
. Following same arguments, we can deduce that (1.9.18) is Op

(
(logn)1/2 ·n−1/2h1/2

)
.

The same procedure can be followed to decompose Bn,2. In what follows, we derive the convergence rate for the
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κ̂d,1,y part only since the denominator f̂d can be treated analogously. Specifically, define

Bn,21 ≡ f (xγd)
−1
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ Ĝd(y,xγ̃d)−∂γ Ĝd(y,xγd)
}

νd,1(dy,x,γd)

= f (xγd)
−1
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ κ̂d,y(xγ̃d)

f̂d(xγ̃d)
−

∂γ κ̂d,y(xγd)

f̂d(xγd)

}
νd,1(dy,x,γd),

− f (xγd)
−1
∫ t

0
φ̈

θ
d,γd

(y,x)

{
κ̂d,y(xγ̃d)∂γ f̂d(xγ̃d)

f̂ 2
d (xγ̃d)

−
κ̂d,y(xγd)∂γ f̂d(xγd)

f̂ 2
d (xγd)

}
νd,1(dy,x,γd).

From similar arguments applied in Lemma 1.8, one deduces that each of the two terms is dominated a degenerate

second order U process that converges at a rate of Op
(
logn ·n−1h−7/2δn

)
, uniformly for ‖γ̃d− γd‖ ≤ δn. Since δn =

Op
(
n−1/2

)
, we find from Assumption 1.9.2 that Bn,21 = op

(
logn ·n−1/2h−1

)
.

Bn,22 ≡ f (xγd)
−1
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ Ĝd(y,xγ̃d)−∂γ Ĝd(y,xγd)
}

µd,1(dy,x,γd)

= fd(xγd)
−2
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ κ̂d,y(xγ̃d)−∂γ κ̂d,y(xγd)
}

µd,1(dy,x,γd)

− f̂d(xγ̃d)− f̂d(xγd)

fd(xγ̃d) fd(xγd)2

∫ t

0
φ̈

θ
d,γd

(y,x)∂γ κ̂d,y(xγd)µd,1(dy,x,γd)

− f (xγd)
−1
∫ t

0
φ̈

θ
d,γd

(y,x)

{
κ̂d,y(xγ̃d)∂γ f̂d(xγ̃d)

f̂ 2
d (xγ̃d)

−
κ̂d,y(xγd)∂γ f̂d(xγd)

f̂ 2
d (xγd)

}
µd,1(dy,x,γd)+(s.o.)

≡Ba
n,22(t,x,θ)+Bb

n,22(t,x,θ)+Bc
n,22(t,x,θ)+(s.o.)

Integration by parts turns Ba
n,22 into three terms. Applying arguments of Lemma 1.8, and properly accounting for the

biases, to each of the terms, one deduces that sup‖γ−γd‖≤δn
sup(t,x,θ)∈T̃ ×X ×Θ

∥∥∥Ba
n,22(t,x,θ)

∥∥∥ = Op((logn)1/2n−1/2·

hs−5/2δn). The same uniform rate applies to Bb
n,22, and, after further decomposition, to Bc

n,22.

Collect results on Bn,1 and Bn,2, and multiply them by Op
(
n−1/2

)
. We conclude that (1.9.12) is op

(
logn ·n−1h−1

)
.

Lastly, we bound (1.9.14). Rewriting the term as

∫ t

0

{
φ̈

θ
d,γd

(y,x)
(
νn,d(y,xγd)+µd(y,xγd)

)}{
νn,d,1(dy,xγd)+µd,1(dy,xγd)

}
=
∫ t

0

{
φ̈

θ
d,γd

(y,x)νn,d(y,xγd)
}

νn,d,1(dy,xγd)+
∫ t

0

{
φ̈

θ
d,γd

(y,x)νn,d(y,xγd)
}

µd,1(dy,xγd)

+
∫ t

0

{
φ̈

θ
d,γd

(y,x)µd(y,xγd)
}

νn,d,1(dy,xγd)+
∫ t

0

{
φ̈

θ
d,γd

(y,x)µd(y,xγd)
}

µd,1(dy,xγd).

Applying arguments similar to those from Lemma 3.1 of Lopez (2011) and Lemma A.2 of Fan and Liu (2018) yields

that the last three terms are asymptotically dominated by the first one due to under-smoothing. Hence, we provide
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detailed derivation for the first term only. Let

Ln,6 =
∫ t

0

{
φ̈

θ
d,γd

(y,x)νn,d(y,xγd)
}

νn,d,1(dy,xγd)

=
1

n2h2

{
n

∑
i=1

g4(Wi,Wi,ω)+
n

∑
i 6= j

g4(Wi,Wj,ω)

}
≡ La

n,6 +Lb
n,6,

where

g4(W1,W2,ω) =

{
g41(W1,ω)g42(W2,Y1,ω)−

∫
g41(w1,ω)g42(W2,y1,ω)dF(y1,x1,d1,r1)

}
,

g41(W1,ω) = R11{D1 = d,Y1 ≤ t}hKh(xγd ,X1γd),

g42(W2,y,ω) = φ̈
θ
d,γd

(y,x){1{D2 = d,Y2 ≤ y∧ t}hKh(xγd ,X2γd)

−
∫
1{d2 = d,y2 ≤ y∧ t}hKh(xγd ,x2γd)dF(y2,x2,d2)

}
.

Note that the second term is a degenerate second order U process. Lemma 1.7 indicates that the class

G4 = {(w1,w2) 7→ g4(w1,w2,ω) : ω ∈Ω} (1.9.23)

is of VC type with a bounded envelop. Standard calculation implies that supω∈Ω

∣∣∣La
n,6

∣∣∣=Op(n−1h−1) and the maximal

variance supg∈G4
E[g2] is O

(
h2
)
. Another application of Theorem 8 of Giné and Mason (2007) and the Markov

inequality yields that Lb
n,6 is of order Op

(
logn ·n−1h−1

)
uniformly over Ω.

Gathering results on (1.9.11) - (1.9.14), we conclude that sup(t,x,θ)∈T̃ ×X ×Θ
|rn,2(t,x,θ)|= Op

(
logn ·n−1h−1

)
=

op
(
n−1/2

)
, concluding the proof of Step 2.

To finish the proof, we deduce from a second order Taylor expansion of φ
−1
θ

that, for each (t,x,θ) ∈ T̃ ×X ×Θ,

ŝTd (t,xγ̂d ,θ)− sTd (t,xγd ,θ) =
1

φ
′
θ
(sTd (t,xγd ,θ))

(
φθ

(
ŝTd (t,xγ̂d ,θ)

)
−φθ

(
sTd (t,xγd ,θ)

))
−

φ̈
−1
θ

(s̃d(t,x,θ))

φ̇
−1
θ

(s̃d(t,x,θ))3

(
φθ

(
ŝTd (t,xγ̂d ,θ)

)
−φθ

(
sTd (t,xγd ,θ)

))2
,

where the random function s̃d(t,x,θ) lies between ŝTd (t,xγ̂d ,θ) and sTd (t,xγd ,θ). From Assumption 1.6.4, it holds

that both 1/φ̇
′
θ
(z) and φ̈

−1
θ

(z) are uniformly bounded when z ∈ [0,y∗o]. Also, by the definition of y∗o, the event

1{s̃d(t,x,θ)≤ y∗o} has the asymptotic probability equal to one, uniformly in (t,x,θ). As a result, the second term

is asymptotically negligible. This concludes the proof. �

51



1.9.1.2.2 Weak Convergence of CBGP and UBGP

Proof of Corollary 1.1. The uniform representation from Theorem 1.3 consists of four parts. Standard analysis us-

ing maximal inequality implies that sup(t,x,θ)∈T̃ ×X ×Θ

∣∣n−1
∑

n
i=1 ηl,d(Wi,x, t,θ)

∣∣= Op(n−1/2). Multiplying the quan-

tity by
√

nh gives a rate of Op
(
h1/2

)
= op(1) for the second part. Moreover,

√
nhsup(t,x,θ)∈T̃ ×X ×Θ

rn(x, t,θ) =

Op

(
(logn)1/2 n−1/2h−1

)
= op(1) under Assumption 1.9.2. Next, we show that

√
nh sup

(t,x,θ)∈T̃ ×X ×Θ

∣∣∣∣∣n−1
n

∑
i=1

ηb,d(Wi,x, t,θ)

∣∣∣∣∣= op(1).

Let η̃b,d ≡ ηb,d−E[ηb,d ] denote the centered version of ηb,d . Standard bias calculation shows that E[ηb,d(W,x, t,θ)] =

O(hs). Under Assumption 1.6, the rate of bias holds uniformly in (t,x,θ) ∈ T̃ ×X ×Θ. Define

Gb ≡ {w̃ 7→ K(xγd , x̃γd)Ψd(Gd(·, x̃γd)−Gd(·,xγd),Gd,1(·, x̃γd)−Gd,1(·,xγd))(t,x,θ) :

(t,θ) ∈ T̃ ×Θ}. (1.9.24)

From Lemma 1.7, this is a VC type class with bounded entropy. We show below that its maximum variance is O(h2).

It suffices to illustrate on the first part, i.e.

E

[
K(xγd ,Xγd)

2
(∫ t

0
φ̈

θ
d,γd

(y,x){Gd(y,Xγd)−Gd(y,xγd)}sd,1(dy,xγd)

)2
]

= h3
∫
R

u2k(u)2du ·
(∫ t

0
φ̈

θ
d,γd

(y,x)∂xγ Gd(y, x̆γd)sd,1(dy,xγd)

)2

≤ h3
∫
R

u2k(u)2du · sup
(u,θ)∈[υo,1]×Θ

∣∣∣φ ′′θ (u)∣∣∣2 sup
(y,x)∈T̃ ×X

{∣∣∂xγ Gd(y,xγd)
∣∣2 ∣∣sd,1(y,xγd)

∣∣2}= O(h3),

where the first equality is due to the mean value theorem and a change of variable. The inequality follows under As-

sumption 1.6. It follows by Lemma 1.5 and after multiplying by h−1, that sup(t,x,θ)∈T̃ ×X ×Θ

∣∣n−1
∑

n
i=1 ηb,d(Wi,x, t,θ)

∣∣
= Op

(
(logn)1/2 n−1/2h1/2

)
. Combining with the result on bias, we have

√
nhsup(t,x,θ)∈T̃ ×X ×Θ

|n−1
∑

n
i=1 ηb,d(Wi,

x, t,θ)|= Op

(
(logn)1/2 h+n1/2hs+1/2

)
, which is op(1) under Assumption 1.9.2.

Hence, it remains to prove the weak convergence of

Ĝx†
n ≡

n

∑
i=1

f x
ni(t,θ ,d),

where f x
ni(t,θ ,d) ≡ n−1/2h1/2ηs,d(Wi,x, t,θ), for each (d, t,θ) ∈ {0,1}× T̃ ×Θ and given a fixed value x. This

task can be accomplished by invoking the functional central limit theorem for non-identically distributed stochastic
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process as presented in Lemma 1.6. Note that under Assumption 1.5.1, the triangular array { f x
ni(t,θ ,d)} is row-wise

independent. By definition of ηs,d(Wi,x, t,θ), and Assumption 1.6, all of the array components f x
ni(t,θ ,d) are right

continuous in both t and θ , which implies that the triangular array is separable. Consequently, { f x
ni(t,θ ,d)} is AMS

by Lemma 2 of Kosorok (2003).

To verify manageability, we first note that

Gη = {w̃ 7→ K(xγd , x̃γd)Ψd(Ed,γd ,Ed,1,γd )(t,x,θ) : (t,θ) ∈ T̃ ×Θ}, (1.9.25)

is a VC class with an envelop ∑d=0,1 Hη ,d(x̃γd) by Lemma 1.7, where 0 ≤ Hη ,d(·) < M for all x̃ ∈X and a positive

constant M. Multiplying n−1/2h−1/2 preserves the VC property and we conclude by Theorem 11.21 in Kosorok (2008)

that { fni} is manageable with the envelop {Fni}, where Fni(w̃) = n−1/2h−1/2
∑d=0,1 Hη ,d(x̃γd), for all i = 1, ...,n.

For condition (ii), we define χx
n,d(t,θ) = ∑

n
i=1 f x

ni(t,θ ,d)−E[ f x
ni(t,θ ,d)]. As a result of the independence of Wi

and Wj when i 6= j and the fact that E[ f x
ni(t,θ ,d)] = 0,

E[χx
n,d1

(t1,θ1)χ
x
n,d2

(t2,θ2)] =
n

∑
i=1

E [ f x
ni(t1,θ1,d1) f x

ni(t2,θ2,d2)] .

Furthermore, the right hand side is identically zero if d1 6= d2 due to the definition of Ed,γ and Ed,1,γ . Condition (ii) is

trivially satisfied in this case, and thus we focus on d1 = d2 = d. From direct calculations in Section 1.9.3.3, we find

E [ f x
ni(t1,θ1,d) f x

ni(t2,θ2,d)] =
1
n

σ
2
d,x(t1,θ1, t2,θ2)+O(n−1h). (1.9.26)

where σ2
d,x is defined in (1.9.38). Under Assumptions 1.8.1 and 1.6, ‖K‖, φ

′
· , φ

′′
· , Gd and Gd,1 are all uniformly

bounded. In addition, fd(xγd) and φ
′
· (sTd (·,xγd , ·)) are uniformly bounded away from zero for each x ∈X , under

Assumptions 1.3.1 and 1.6.4. Since h→ 0 as n→ ∞, limn→∞E[χx
n,d1

(t1,θ1)χ
x
n,d2

(t2,θ2)] = σ2
d,x(t1,θ1, t2,θ2) and the

limit is well-defined. As a result, condition (ii) holds.

Next, condition (iii) follows from the fact that

n

∑
i=1

E∗[F2
ni]≤ 2 ∑

d=0,1

∫
XΓ

h−1H2
η ,d(x̃γd) f (x̃γd)dx̃γd = 2 ∑

d=0,1
C2

d

∫
[−1,1]

f (xγd +uh)du < ∞,

where the second equality follows from a change of variable, and the last inequality is due to Hη ,d being uniformly

bounded.
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Regarding the Lindeberg type condition (iv), note that

n

∑
i=1

E∗[F2
ni1{Fni > ε}]

=
∫

Xγ0

∫
Xγ1

h−1

(
∑

d=0,1
Hη ,d(x̃γd)

)2

1

{
n−1/2h−1/2

∑
d=0,1

Hη ,d(x̃γd)> ε

}
f (x̃γ1, x̃γ0)dx̃γ1dx̃γ0

=
∫
R

∫
R

h

(
∑

d=0,1
Cd1{|ud | ≤ 1}

)2

·1

{
n−1/2h−1/2

∑
d=0,1

Cd1{|ud | ≤ 1}> ε

}
f (xγ1 +u1h,xγ0 +u0h)du1du0.

Since nh→∞, the limit of the right hand side as n→∞ equals zero for each ε by the dominated convergence theorem.

Thus condition (iv) is satisfied.

In view of (1.9.26), we obtain from expanding the square in ρn(s, t) that ρn(t1,θ1, t2,θ2) = ρ(t1,θ1, t2,θ2)+O(h),

with ρ(t1,θ1, t2,θ2) =
{

σ2
d,x(t1, t1,θ1,θ1)−2σ2

d,x(t1, t2,θ1,θ2)+σ2
d,x(t2, t2,θ2,θ2)

}1/2
for each (t1, t2,θ1,θ2) ∈ T̃ 2×

Θ2. Since the second term vanishes as n→ ∞ and the first one is independent of n, we have ρ(t1,n,θ1,n, t2,n,θ2,n)→ 0

implies ρ0(t1,n,θ1,n, t2,n,θ2,n)→ 0, for all deterministic sequences of {t1,n,θ1,n} and {t2,n,θ2,n}.

We have shown that the triangular array { fni} satisfies conditions (i) - (v) of Lemma 1.6, which implies that Ĝx†
n

converges weakly to a two-dimensional Gaussian process with covariance function Σ
x†
η (·, ·). Lemma 1.10 shows that

Σx
η (·, ·) = Σ

x†
η (·, ·)+o(1). Combining this result with the fact that Ĝx

n− Ĝx†
n = op(1) concludes the proof. �

Proof of Corollary 1.2. Proof of part (i). In view of the uniform representation from Theorem 1.3, we obtain

ŝTd (t,θ)− sTd (t,θ) =En
[
sTd (y,Xγd ,θ)−E[sTd (y,Xγd ,θ)]

]
+En

[
ŝT,d(y,X γ̂d ,θ)− sTd (y,Xγd ,θ)

]
≡An,1 +An,2.

The first term is an empirical process indexed by ϕd,2. Utilizing the uniform linear representation in Theorem 1.3, we

can further decompose An,2 as

1
n2

n

∑
i=1

n

∑
j=1

{
h−1g5(Wi,Wj, t,h,θ)+g6(Wi,Wj,θ)+ηb,d(Wi,X j, t,θ)

}
+

1
n

n

∑
i=1

+rn(Xi, t,θ),
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where

g5(W1,W2, t,h,θ) =
hKh(X2γd ,X1γd)

fd(X2γd)
Ψ(Ed,γd ,1,Ed,1,γd ,1)(t,X2,θ),

g6(W1,W2,θ) =
ψb

d (X1)
′V−1

d
fd(X2γd)

Ψ(ψa
d ,ψ

a
d,1)(t,X2,θ).

From the proof of Corollary 1.1, we find that sup(t,x,θ)∈T̃ ×X ×Θ

∣∣n−1
∑

n
i=1 ηb,d(Wi,x, t,θ)

∣∣=Op

(
(logn)1/2 n−1/2h1/2

)
+O(hs), thus the double mean involving ηb,d is uniformly op

(
n−1/2

)
under Assumption 1.9.2. Additionally, from

Theorem 1.3 we have rn(x, t,θ) = op
(
n−1/2

)
uniformly over X × T̃ ×Θ, thus the last term is also asymptotically

negligible.

Consequently, it suffices to work on the first two terms. We will show (a) the U-process indexed by g5 is asymptot-

ically equivalent to an empirical process indexed by E[g5|W1], and (b) the U-process indexed by ηl,d is asymptotically

negligible.

We focus on (a) first. It is straightforward to show that Ψ(Ed,γd ,1,Ed,1,γd ,1)/ fd(xγd) is uniformly bounded. We

therefore deduce from direct calculations that sup(t,θ)∈T̃ ×Θ

∣∣∣ 1
n2h ∑

n
i=1 g5(Wi,Wi, t,h,θ)

∣∣∣= Op
(
n−1h−1

)
. Observe that,

by Lemma 1.7,

G5 =
{
(w1,w2) 7→ g5(w1,w2, t,h,θ) : (t,h,θ) ∈ T̃ ×H ×Θ

}
, (1.9.27)

is of VC type with bounded envelop. Also, E[g5|W2] = 0 and supg∈G5
E[g2] = O(h). As a result, we may deduce from

the maximal inequality in Lemma 1.5 that

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣
{

1
n(n−1)h

n

∑
i6= j

g5(Wi,Wj, t,h,θ)−
1
nh

n

∑
i=1

E[g5(Wi,Wj, t,h,θ)|Wi]

}∣∣∣∣∣
= Op

(
logn ·n−1h−1/2

)
= op

(
n−1/2

)
,

which implies that the second order U process can be uniformly approximated by an empirical process indexed by the

conditional mean. Let An,21 denote this process, for which we have the following

E[g5(W1,W2, t,h,θ)|W1]

=h
∫ Kh(xγd ,X1γd)

fd(xγd)
Ψ(Ed,γd ,1,Ed,1,γd ,1)(t,x,θ) f (xγd)d(xγd)

=h
∫ K(u)

fd(X1γd +uh)φ ′
θ

(
sTd (t,X1γd +uh,θ)

)
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·
{∫ t

0
φ̈

θ
d,γd

(y,X1γd +uh)1{D1 = d}(1{Y1 ≤ y}−Gd(y,X1γd))sd,1(dy,X1γd +uh)

−φ
′
θ (sd(t,X1γd +uh))1{D1 = d}(R11{Y1 ≤ t}−Gd,1(t,X1γd))

−
∫ t

0
φ̈

θ
d,γd

(y,X1γd +uh)1{D1 = d}(R11{Y1 ≤ y}−Gd,1(y,X1γd))

·sd(dy,X1γd +uh) f (X1γd +uh)}du

=
h f (X1γd)

fd(X1γd)
Ψ(Ed,γd ,1,Ed,1,γd ,1)(t,X1,θ)+O

(
hs+1) .

The second equality follows by a change of variable and the last one is due to Assumption 1.8.1. Since φ
′
θ
(·),φ ′′

θ
(·),

Gd(y, ·),Gd,1(y, ·), fd(·), and f (·) are all (s+1) times continuously differentiable with uniformly bounded derivatives

under Assumption 1.6, the rate of the bias holds uniformly over T̃ ×Θ.

Now, we show (b). Observe that g6 is multiplicatively separable in W1 and W2. The part involving W1 is

Op
(
n−1/2

)
and not indexed by (t,θ), it then suffices to show that the empirical process indexed by g61(W2, t,θ) ≡

Ψd(ψ
a
d ,ψ

a
d,1)(t,X2,θ)/ fd (X2γd) is op(1). Note that

E[ψa
d (y,X2)|X2γd ] = E[∂xγ Gd(y,X2γd)(EX1γd [X1|X2γd ]−X2)|X2γd ]

= ∂xγ Gd(y,X2γd)(EX1γd [X1|X2γd ]−EX2γd [X2|X2γd ]) = 0,

where the last equality holds because X1 and X2 are identically distributed. The same result holds for ψa
d,1. By Fubini’s

theorem, and the law of iterated expectation, it follows that E[g61] = 0. Next, let

G6 =
{
(w1,w2) 7→ g61(w1,w2, t,θ) : (t,θ) ∈ T̃ ×Θ

}
. (1.9.28)

Lemma 1.7 establishes that it is of the VC type with bounded envelop. Moreover, its maximal variance is O(1). We

deduce from Lemma 1.5 that En[g61(W2, t,θ)] = Op
(
n−1/2

)
uniformly over T̃ ×Θ. Overall, the U process indexed

by g6 is Op(n−1), and thus, asymptotically negligible.

Proof of part (ii). In view of the uniform representation established in the previous part, weak convergence follows

from Theorem 2.1 of Kosorok (2008) if the class of function

Gϕ ≡ {w 7→ ϕd(w, t,θ) : (d, t,θ) ∈ {0,1}× T̃ ×Θ} (1.9.29)

is Donsker. We see from Lemma 1.7 that Gϕ of VC type, which implies that it is Donsker by Theorem 19.14 in Van der

Vaart (1998). �
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1.9.1.2.3 Functional Delta Method

Before proving Theorem 1.4, we state a general result on functional delta method. Let ν(·) denote a generic functional

mapping from `∞(T̃ ×Θ2)× `∞(T̃ ×Θ2) to a normed space `∞(U ×Θ2)× `∞(U ×Θ2).

Lemma 1.2 (i) Suppose this functional of interest is Hadamard differentiable at Sx, for a fix x ∈X , tangentially to a

space C (U ×Θ2) with derivative ν ′Sx , and that the assumptions of Corollary 1.1 hold, then

√
nh
(
ν
(
Ŝx)(·, ·)−ν (Sx)(·, ·)

)
⇒ ν

′
Sx(G)(·, ·)≡Gx

ν ,

in `∞(U ×Θ2)× `∞(U ×Θ2), where Gx
ν is a two-dimensional Gaussian process with zero mean and covariance

function,

Σ
x
ν(u,θθθ) = E

[
ϕϕϕ

x
ν(W,u1,θθθ 1)ϕϕϕ

x
ν(W,u2,θθθ 2)

′] ,
where ϕϕϕx

ν ≡ ν ′Sx(ϕϕϕx), for each u = (u1,u2)
′ ∈U ×U , and θθθ = (θθθ ′1,θθθ

′
2)
′ ∈Θ2×Θ2.

(ii) Suppose ν(·) is Hadamard differentiable at S tangentially to a space C (U ×Θ2) with derivative ν ′S, and that

the assumptions of Corollary 1.2 hold, then

√
n
(
ν
(
Ŝ
)
(·, ·)−ν (S)(·, ·)

)
⇒ ν

′
S(G)(·, ·)≡Gν ,

in `∞(U ×Θ2)× `∞(U ×Θ2), where Gν is a two-dimensional Gaussian process with zero mean and covariance

function,

Σν(u,θθθ) = E
[
ϕϕϕν(W,u1,θθθ 1)ϕϕϕν(W,u2,θθθ 2)

′] ,
where ϕϕϕν ≡ ν ′S(ϕϕϕ), for each u = (u1,u2)

′ ∈U ×U , and θθθ = (θθθ ′1,θθθ
′
2)
′ ∈Θ2×Θ2.

Proof of Theorem 1.4. We establish Hadamard differentiability for each type of treatment effects and the desired

result would then follow by a direct application of Lemma 1.2. The cases for DTE and CHTE follow immediately

from Lemma 3.9.25 in Van Der Vaart and Wellner (1996). Next, note that integration with respect to the Lebesgue

measure is a linear operator, which implies that νννAT E (·, ·) is linear in (sT1 ,sT0), and thus, is Hadamard differentiable

by definition.

For QTE, it suffices to show that the mapping qd,·(·) : `∞(T̃ ×Θ) 7→ `∞((0, τ̄)×Θ) is Hadamard differentiable.

The proof is similar to that of Lemma 3.9.23 in Van Der Vaart and Wellner (1996). Let ht→ h uniformly in `∞(T̃ ×Θ),

with h being continuous. Thus, sTd + tht ∈ `∞(T̃ ×Θ) for all t > 0. Let qd,θ ,t(τ)≡ inf{y : (sTd + tht)(y,θ)≤ 1− τ}.

Due to sTd (·,θ) and (sTd + tht)(·,θ) being restricted to T̃ for each θ , it holds that qd,θ ,t(τ),qd,θ ,t(τ) ∈ T̃ , for all
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(τ,θ) ∈ (0,τo)×Θ. By the definition of qd,θ ,t , we have

1− (sTd + tht)(qd,θ ,t(τ)− εd,t,θ (τ),θ)≤ τ ≤ 1− (sTd + tht)(qd,θ ,t(τ),θ),

where εd,t,θ (τ) = t2∧qd,θ ,t(τ)> 0. Under Assumptions 1.6.2 and 1.6.4, sTd (qd,θ ,t(τ)−εd,t,θ (τ),θ) = sTd (qd,θ ,t(τ),θ)

+O(εd,t,θ (τ)), uniformly in (τ,θ) ∈ (0,τo)×Θ. This further implies that

−th(qd,θ ,t(τ)− εd,t,θ (τ))+ rt(τ,θ)≤ sTd (qd,θ ,t(τ),θ)− sTd (qd,θ (τ),θ)≤−th(qd,θ ,t(τ))+ rt(τ,θ),

where rt(τ,θ) = o(t), uniformly in τ and θ . From the continuous differentiability of sTd (y,θ) in y and the derivative

− fTd (y,θ) being uniformly bounded, we deduce that
∣∣qd,θ ,t(τ)−qd,θ (τ)

∣∣ = O(t), uniformly in τ and θ . Applying

Taylor expansion of the middle term in the preceding display allows us to conclude that qd,·(·) is Hadamard differen-

tiable at sTd (·, ·), with derivative given by h 7→ h(qd,·(·), ·)/ fTd (qd,·(·), ·), for d ∈ {0,1}. Another application of Lemma

3.9.25 in Van Der Vaart and Wellner (1996) yields the Hadamard differentiability of νννQT E (·, ·), concluding our proof.

�

1.9.1.3 Proofs for Results from Section 1.5

1.9.1.3.1 Weak Convergence of Multiplier Bootstrap Processes

Proof of Theorem 1.5. Proof of part (i) We first show that Gn,ξ
p
→
ξ
G. In view of Theorem 11.19 in Kosorok (2008),

the conditional weak convergence follows under Assumption 1.11 if the triangular array { f x
ni}n

i=1, with f x
ni(t,θ ,d) =

n−1/2h1/2ηs,d(Wi,x, t,θ), satisfies the conditions of Lemma 1.6. Note that we have verified these conditions in Corol-

lary 1.1. Hence, the desired result holds. Next, we prove

sup
(t,θθθ)∈T̃ ×Θ2

∥∥∥Ĝx
ξ (t,θθθ)−Gx

n,ξ (t,θθθ)
∥∥∥= op(1). (1.9.30)

Decompose η̂s,d(W,ξ ,x, t,θ) as

Kh(xγ̂d ,X γ̂d)−Kh(xγd ,Xγd)

fd(xγd)
ξ Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

−
(

f̂d(xγ̂d)− fd(xγd)
)

Kh(xγd ,Xγd)

fd(xγd) f̂d(xγ̂d)
ξ Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

+
Kh(xγd ,Xγd)

fd(xγd)
ξ
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,x,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

}
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−
(

f̂d(xγ̂d)− fd(xγd)
)
(Kh(xγ̂d ,X γ̂d)−Kh(xγd ,Xγd))

fd(xγd) f̂d(xγ̂d)
ξ Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

−
(

f̂d(xγ̂d)− fd(xγd)
)

Kh(xγd ,Xγd)

fd(xγd) f̂d(xγ̂d)
ξ
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,x,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

}
+

Kh(xγ̂d ,X γ̂d)−Kh(xγd ,Xγd)

fd(xγd)
ξ
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,x,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

}
−
(

f̂d(xγ̂d)− fd(xγd)
)
(Kh(xγ̂d ,X γ̂d)−Kh(xγd ,Xγd))

fd(xγd) f̂d(xγ̂d)

·ξ
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,x,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

}
=An,1(W,ξ )+An,2(W,ξ )+An,3(W,ξ )+An,4(W,ξ )+An,5(W,ξ )+An,6(W,ξ )+An,7(W,ξ ).

The first three terms are obtained from the “first-order” expansion, the rate of which is dominating. Crude bounds

based on uniform rates from Lemma 1.4 can be utilized to control the remaining three terms.

By a Taylor expansion, we have

An,1(W,ξ ) =
h−1K(1)

h (x′γd ,X ′i γd)(x[−1]−X[−1],i)
′(γ̂d− γd)

fd(xγd)
ξ Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

+
h−2K(2)

h (x′γ̃d ,X ′i γ̃d)((x[−1]−X[−1],i)
′(γ̂d− γd))

2

fd(xγd)
ξ Ψd

(
Ed,γd ,Ed,1,γd

)
(t,x,θ)

=An,11(W,ξ )+An,12(W,ξ ).

Due to the independence of the bootstrap weights, E[An,1(X ,ξ )|X ] = 0, the empirical process n−1/2h1/2
∑

n
j=1 An,11(Wj,

ξ j) is centered, and by Lemma 1.5, is of the order Op
(
logn ·n−1/2h−1

)
= op(1), uniformly in t and θ . For the second

term, using the uniform boundedness of K(2), Ed,γ , and the compactness of X , we deduce that

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
j=1

An,11(Wj,ξ j)

∣∣∣∣∣= op(n−1/2h1/2).

Note that n−1/2h1/2
∑

n
j=1 An,2(Wj,ξ j) can be bounded by

n1/2h1/2
∣∣∣∣ f̂d(xγ̂d)− fd(xγd)

fd(xγd) f̂d(xγ̂d)

∣∣∣∣ ·
∣∣∣∣∣1n n

∑
i=1

Kh(xγd ,Xiγd)ξ Ψd
(
Ed,γd ,i,Ed,1,γd ,i

)
(t,x,θ)

∣∣∣∣∣
= n1/2h1/2 Op

(
(logn)1/2 n−1/2h−1/2

)
·Op

(
(logn)1/2 n−1/2h−1/2

)
= Op

(
logn ·n−1/2h−1/2

)
,

which is op(1) uniformly in t and θ .

From Lemma 1.9 with `= 0, we deduce that sup(t,θ)∈T̃ ×Θ

∣∣∣n−1/2h1/2
∑

n
j=1 An,3(Wj,ξ j)

∣∣∣= Op
(
logn ·n−1/2h−1/2

)
.
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Next, for s1 = 4,5, n−1/2h1/2
∑

n
j=1 An,s1(Wj,ξ j) are bounded by

∣∣∣∣ f̂d(xγ̂d)− fd(xγd)

fd(xγd) f̂d(xγ̂d)

∣∣∣∣ ·
∣∣∣∣∣n−1/2h1/2

n

∑
j=1

An,s2(Wj,ξ j)

∣∣∣∣∣ ,
for s2 = 1,3, respectively, both of which converge uniformly at a rate of Op

(
logn ·n−1h−1

)
.

By a Taylor expansion of Kh(xγ̂d ,X γ̂d) around γd , and by applying Lemma 1.9 with `= 1, we get

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
j=1

An,6(Wj,ξ j)

∣∣∣∣∣= ‖γ̂d− γd‖ ·Op

(
(logn)1/2 n−1/2h−3/2

)
= Op

(
(logn)1/2 n−1h−3/2

)
.

Lastly, n−1/2h1/2
∑

n
j=1 An,7(Wj,ξ j) is bounded by

∣∣∣∣ f̂d(xγ̂d)− fd(xγd)

fd(xγd) f̂d(xγ̂d)

∣∣∣∣ ·
∣∣∣∣∣n−1/2h1/2

n

∑
j=1

An,6(Wj,ξ j)

∣∣∣∣∣ ,
which converges at a rate of Op

(
logn ·n−3/2h−2

)
uniformly over T̃ ×Θ. Collecting the results on An,1 to An,7 implies

that (1.9.30) holds.

To finish the proof, note that by the triangular inequality,

∣∣∣Eξ |w[h(Ĝx
n,ξ )]−E[h(Gx)]

∣∣∣≤ ∣∣∣Eξ |w[h(Ĝx
n,ξ )]−Eξ |w[h(Gx

n,ξ )]
∣∣∣+ ∣∣∣Eξ |w[h(Gx

n,ξ )]−E[h(Gx)]
∣∣∣ ,

for each h ∈ BL1. The second term on the right hand side converges to zero since Gx
n,ξ

p
→
ξ
Gx. By Jensen’s inequality

and the definition of BL1, Eξ |w[|h(Ĝx
n,ξ )− h(Gx

n,ξ )|] ≤ 2Pξ |w

(
|Ĝx

n,ξ −Gx
n,ξ |> ε

)
+ ε , for any ε ∈ (0,1). Due to the

dominated convergence theorem, the first term on the right hand side goes to zero since Ĝx
n,ξ −Gx

n,ξ = op(1). Taking

“sup” over BL1 shows Ĝx
n,ξ

p
→
ξ
Gx.

Proof of part (ii) The proof is similar in structure to that of the first part. Thus, we provide a sketch of proof only.

In view of Theorem 10.4 in Kosorok (2008), Gn,ξ
p
→
ξ
G provided Gϕ as defined in (1.9.29) is a Donsker class. The

latter condition is proved in Lemma 1.7. In view of the discussion at the end of the last part, it remains to show that

sup(t,θθθ)∈T̃ ×Θ2

∥∥Ĝξ (t,θθθ)−Gn,ξ (t,θθθ)
∥∥= op(1).

We establish uniform convergence of ξ · ϕ̂d,1(W, t,θ) first. Decompose the term as

f̂ (X γ̂d)− f (Xγd)

fd(Xγd)
ξ Ψd

(
Ed,γd ,Ed,1,γd

)
(t,X ,θ)
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−
f (Xγd)

(
f̂d(X γ̂d)− f (Xγd ,d)

)
fd(Xγd) f̂d(X γ̂d)

ξ Ψd
(
Ed,γd ,Ed,1,γd

)
(t,X ,θ)

+
f (Xγd)

fd(Xγd)
ξ
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,X ,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,X ,θ)

}
−
(

f̂ (X γ̂d)− f (Xγd)
)(

f̂d(X γ̂d)− f (Xγd ,d)
)

fd(Xγd)2 f̂d(X γ̂d)
ξ Ψd

(
Ed,γd ,Ed,1,γd

)
(t,X ,θ)

+
f̂ (X γ̂d)− f (Xγd)

fd(Xγd)
ξ
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,X ,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,X ,θ)

}
−

f (Xγd ,d)
(

f̂d(X γ̂d)− f (Xγd ,d)
)

fd(Xγd) f̂d(X γ̂d)
ξ
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,X ,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,X ,θ)

}
−
(

f̂d(X γ̂d)− f (Xγd ,d)
)(

f̂d(X γ̂d)− f (Xγd ,d)
)

fd(Xγd) f̂d(X γ̂d)
ξ

·
{

Ψ̂d
(
Êd,γ̂d , Êd,1,γ̂d

)
(t,X ,θ)−Ψd

(
Ed,γd ,Ed,1,γd

)
(t,X ,θ)

}
=An,1(W,ξ )+An,2(W,ξ )+An,3(W,ξ )+An,4(W,ξ )+An,5(W,ξ )+An,6(W,ξ )+An,7(W,ξ ).

It can be shown, via direct analysis in the case of An,1 and An,2 or by further decomposition à la Lemma 1.9 for

An,3, that the first three terms are dominated by second order degenerate U processes. Therefore, we can deduce from

Lemma 1.5 that

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2
n

∑
j=1

An,`(Wj,ξ j)

∣∣∣∣∣= Op

(
logn ·n−1/2h−1/2

)
,

for `= 1,2,3. Similar analysis implies that the An,4-An,6 and An,7 are governed by third order degenerate U processes

and a fourth order degenerate U processes, respectively, with

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2
n

∑
j=1

An,`(Wj,ξ j)

∣∣∣∣∣= Op

(
(logn)3/2 n−1h−1

)
,

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2
n

∑
j=1

An,7(Wj,ξ j)

∣∣∣∣∣= Op

(
(logn)2 n−3/2h−3/2

)
,

for `= 4,5,6. We therefore conclude that

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2
n

∑
j=1

{
ϕ̂d,ξ ,1(Wj,ξ j, t,θ)−ϕd,ξ ,1(Wj,ξ j, t,θ)

}∣∣∣∣∣= Op

(
logn ·n−1/2h−1/2

)
= op(1),

for d = 0,1. Regarding ξ ϕ̂d,2, we note that

n−1/2
n

∑
j=1

{
ϕ̂d,ξ ,2(Wj,ξ j, t,θ)−ϕd,ξ ,2(Wj,ξ j, t,θ)

}
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=n−1/2
n

∑
j=1

ξ j
{

ŝT,d(t,X j γ̂d ,θ)− sTd (t,X jγd ,θ)
}

+n1/2En[ξ ] ·
{
En[ŝT,d(t,X γ̂d ,θ)]−E[sTd (t,Xγd ,θ)]

}
.

The term in the second line can be analyzed as in the previous part. Due to Assumption 1.11, we have that n1/2En[ξ ] =

Op(1). The uniform convergence of ŝT,d(t,X γ̂d ,θ) to sTd (t,Xγd ,θ) as proved in Theorem 1.3, implies that En[ŝT,d(t,

X γ̂d ,θ)]−E[sTd (t,Xγd ,θ)] = op(1), uniformly over T̃ ×Θ. Combining the two results, we deduce that the last term

in the previous display is also op(1), concluding the proof. �

Proof of Corollary 1.3. Since integration with respect to the Lebesgue measure is a linear, and thus, Lipschitz con-

tinuous, mapping, the results for the ATE then follow from Theorem 1.5 and the continuous mapping theorem for

multiplier bootstrap, cf. Proposition 10.7 in Kosorok (2008). The case for the DTE also follows trivially from the con-

tinuous mapping theorem. Now, let us consider the QTE. Let Ψx
n,d(t,θ) ≡ n−1/2h1/2

∑
n
i=1 ξi · η̂s,d(Wi,x, t,θ). Using

this quantity, we write

sup
(τ,θ)∈(0,τo)×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
i=1

ξ

(
ψ̂

x
d,QT E(W,τ,θ)−

η̂s,d(W,x,qx
d,θ (τ),θ)

fTd ,x(q
x
d,θ (τ),θ)

)∣∣∣∣∣ (1.9.31)

= sup
(τ,θ)∈(0,τo)×Θ

∣∣∣∣∣Ψx
n,d(q̂

x
d,θ (τ),θ)

f̂Td ,x(q̂
x
d,θ (τ),θ)

−
Ψx

n,d(q
x
d,θ (τ),θ)

fTd ,x(q
x
d,θ (τ),θ)

∣∣∣∣∣
≤ sup

(τ,θ)∈(0,τo)×Θ

∣∣∣∣∣Ψx
n,d(q̂

x
d,θ (τ),θ)

f̂Td ,x(q̂
x
d,θ (τ),θ)

−
Ψx

n,d(q̂
x
d,θ (τ),θ)

fTd ,x(q
x
d,θ (τ),θ)

∣∣∣∣∣
+ sup

(τ,θ)∈(0,τo)×Θ

∣∣∣∣∣Ψx
n,d(q̂

x
d,θ (τ),θ)

fTd ,x(q
x
d,θ (τ),θ)

−
Ψx

n,d(q
x
d,θ (τ),θ)

fTd ,x(q
x
d,θ (τ),θ)

∣∣∣∣∣
. sup

(τ,θ)∈(0,τo)×Θ

∣∣Ψx
n,d(q̂

x
d,θ (τ),θ)

∣∣ sup
(τ,θ)∈(0,τo)×Θ

∣∣ f̂Td ,x(q̂
x
d,θ (τ),θ)− fTd ,x(q

x
d,θ (τ),θ)

∣∣
+ sup

(τ,θ)∈(0,τo)×Θ

∣∣Ψx
n,d(q̂

x
d,θ (τ),θ)−Ψ

x
n,d(q

x
d,θ (τ),θ)

∣∣ .
From the fact that q̂x

d,θ converges uniformly to qx
d,θ , and the definition of τo, we deduce that supτ∈(0,τo) q̂x

d,θ (τ) ≤

yo with probability approaching one. Note that,

sup
(τ,θ)∈(0,τo)×Θ

∣∣ f̂Td ,x(q̂
x
d,θ (τ),θ)− fTd ,x(q

x
d,θ (τ),θ)

∣∣
≤ sup

(τ,θ)∈(0,τo)×Θ

∣∣ f̂Td ,x(q̂
x
d,θ (τ),θ)− fTd ,x(q̂

x
d,θ (τ),θ)

∣∣+ sup
(τ,θ)∈(0,τo)×Θ

∣∣ fTd ,x(q̂
x
d,θ (τ),θ)− fTd ,x(q

x
d,θ (τ),θ)

∣∣
≤ sup

y∈T̃

∣∣ f̂Td ,x(y,θ)− fTd ,x(y,θ)
∣∣+M1 sup

(τ,θ)∈(0,τo)×Θ

∣∣q̂x
d,θ (τ)−qx

d,θ (τ)
∣∣= op(1).
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Regarding the second inequality, the first term follows by the observation above the display and Assumption 1.12,

while the second term follows by the continuous differentiability of fTd ,x, which implied by Assumption 1.6.2 and

Theorem 1.2. The last equality is due to Assumption 1.12 and the fact that q̂x
d,θ (τ) converges to qx

d,θ (τ) uniformly

over (0,τo)×Θ.

We have shown, in Theorem 1.5, that Ψx
n,d(·, ·) converges weakly to a centered Gaussian process. It follows

immediately, by Prokhorov’s theorem and the fact that supτ∈(0,τo) q̂x
d,θ (τ) ≤ yo with probability approaching one,

that sup(τ,θ)∈(0,τo)×Θ

∣∣∣Ψx
n,d(q̂

x
d,θ (τ),θ)

∣∣∣= Op(1). Moreover, since Ψx
n,d(·, ·) is equicontinuous and that q̂x

d,θ converges

uniformly to qx
d,θ , we get that, conditional on the sample path {Wi}n

i=1,

sup
(τ,θ)∈(0,τo)×Θ

∣∣Ψx
n,d(q̂

x
d,θ (τ),θ)−Ψ

x
n,d(q

x
d,θ (τ),θ)

∣∣= op(1).

Collecting the results, we deduce that (1.9.31)
p
→
ξ

0. In addition, by same lines of reasoning as in the proof for

Theorem 1.5(i), it is straightforward to show that Ψx
n,d(q

x
d,·(·), ·)/ fTd ,x(q

x
d,·(·), ·)

p
→
ξ

ν
′
QT E,SSSx(Gx)(·, ·). This completes

the proof for Ĝx
ξ ,QT E .

To conclude, we note that, the proof for the unconditional QTE and for the DTE’s will follow by largely parallel

analyses, and thus, we omit it. �

1.9.1.3.2 Bootstrap Confidence Sets

In this section, we first describe an algorithm for constructing uniform confidence sets for conditional TEBFs. Then,

we validate the resulting confidence sets by proving Theorem 1.6. Let Ĝx
lb,ξ , j and Ĝx

ub,ξ , j denote the first and second

component of Ĝx
ξ , j, respectively.

Algorithm 1.9.1 1. Same as Step 1 of Algorithm 1.9.1. In Steps 2-5, the calculations will be performed for

d,r ∈ {0,1}, t ∈ T̃ , τ ∈ (0,τo), θθθ ∈ΘΘΘl , and u ∈Um.

2. Estimate γ̂d , Ĝd,1(t,xγ̂d), Ĝd(t,xγ̂d), ŝTd (t,xγ̂d ,θ), following (1.4.2), (1.4.3), (1.4.4), and (1.4.5). If j = QT E,

compute q̂x
d,θ (τ) and f̂Td ,x(t,θ), following (1.9.39).

3. Calculate ν̂x
j (u,θθθ), η̂s,d(W,x, t,θ), and ψ̂x

j (W,θ), based on (1.5.1) and (1.5.6) - (1.5.9), respectively.

4. Sample {ξ b
i }n

i=1 from a distribution with zero mean and unit variance, independently from data. Calculate ψ̂ψψx∗
j ,

and Gx
ξ b, j(u,θ).

Repeat Step 4 for b = 1, ...,B, where B is some large integer.
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5. For `= lb,ub, compute the (1−α)-th quantile ĉx,B
n,`, j(α,Um,ΘΘΘl) of

{
max1≤i≤m,1≤s≤l

∥∥∥Gx
`,ξ b, j(ui,θθθ)

∥∥∥}B

b=1
, and

construct the uniform confidence band

Cx,B
n,`, j(1−α,Um,ΘΘΘl)≡

{
ν̂

x
`, j(u,θθθ)±n−1/2h−1/2ĉx,B

n,`, j(α,Um,ΘΘΘl) : u ∈Um,θθθ ∈ΘΘΘl

}
.

Proof of Theorem 1.6. The proof is a direct consequence of Theorem 1.4, Corollary 1.3, and the continuous mapping

theorem for the multiplier bootstrap, cf. Theorem 2.6 in Kosorok (2008). �

1.9.2 Single-Index Estimator

In this section, we establish large sample properties of the index coefficients estimator γ̂γγ . The results, as presented in

the following lemma, are largely based on Proposition 1 in Li and Patilea (2018). We show that γ̂γγ is consistent for γγγ ,

converges to γγγ at the parametric rate. Moreover,
√

n(γ̂γγ− γγγ) admits an asymptotic linear representation, and converges

in distribution to a normal distribution.

Lemma 1.3 Under Assumptions 1.1, 1.3, 1.4.1, 1.5, 1.6.1–1.6.3, 1.7, 1.8.1 and 1.9.1, it holds that

γ̂d− γd =
1
n

n

∑
i=1

V−1
d ψ

b
d (Wi)+op

(
n−1/2

)
, (1.9.32)

for d ∈ {0,1}, where ψa
d and Vd are defined in Section 1.4.3. Furthermore,

√
n(γ̂γγ− γγγ)

d−→ N(0,Σγγγ),

where

Σγγγ ≡

 Σγ1 000

000 Σγ0

 ,

and Σγd ≡V−1
d E[ψb

d (W )ψb
d (W )′]V−1

d .

Proof of Lemma 1.3. The linear expansion follows from the same lines of argument as in that of Proposition 1 in Li and

Patilea (2018). We show how their Assumption 8.1 can be fulfilled by parallel conditions in our context. Condition

(1) is satisfied under Assumptions 1.5.1 and 1.3.1. Condition (2) holds under Assumptions 1.4.1 and 1.5.2. Conditions

(3) and (4) follow from Theorem 1.1, which holds under Assumptions 1.1–1.3. Condition (5) is satisfied under 1.3.1.
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Condition (6) is due to Assumptions 1.6.1–1.6.3. Lastly, Assumptions 1.7.2, 1.7.1, 1.8.1 imply Conditions (7)–(9),

respectively. We remark that Assumption 1.9.1 is slightly weaker than Condition (10). However, their proof carries

through, under this weaker condition, if the maximal inequality from Lemma 1.5, instead of the main corollary of

Sherman (1994), is employed in the proof.

To conclude, we note that ψb
1 ·ψb

0 = 0, and thus the covariance between γ̂1− γ1 and γ̂0− γ0 is 0. �

1.9.2.1 Single-Index Kernel Estimator

In this section, we present a lemma documenting some well-known facts on single-index kernel estimators. These

results will be used repeated throughout the appendix. First, we introduce some quantities,

K(1)(u)≡ dK(u)/du, K(2)(u)≡ d2K(u)/du2, K( j)
h (u,v)≡ K( j)((u− v)/h)/h, for j = 1,2,

G(1)
d (y,xγ)≡

{
ρ

γ

1,1/ρ
γ

0,0−ρ
γ

1,0ρ
γ

0,1/ρ
γ

0,0
2
}
(y,xγ), (1.9.33)

and analogous definition for the sub-distributions should be apparent. We remark that G(1)
d (y,xγ) is, in general, not

equal to ∂γ Gd(y,xγ) . When γ = γd , the expression simplifies, and we find, by direct calculations, that G(1)
d (y,xγd) =

∂xγ Gd(y,xγd) ·E [(x−X)|Xγd = xγd ] .

In the following lemma, we provide convergence rates for single-index kernel density and conditional distribution

estimators. Let H ≡ [hln−ζ ,hu], for some positive number hl ,hu, and 0 < ζ < 1/3.

Lemma 1.4 Suppose Assumptions 1.3.1, 1.5, 1.4.1, 1.6.3, 1.8.2, and 1.9.2 hold, then

sup
(y,x,h,γ)∈T̃ ×X ×H ×Γ

∣∣ f̂d(xγ)−ρ0,0(y,xγ)
∣∣= Op

(
(logn)1/2 n−1/2h−1/2

)
+O(hs), (1.9.34)

sup
(y,x,h,γ)∈T̃ ×X ×H ×Γ

∣∣κ̂d,y(xγ)−ρ1,0(y,xγ)
∣∣= Op

(
(logn)1/2 n−1/2h−1/2

)
+O(hs), (1.9.35)

sup
(y,x,h,γ)∈T̃ ×X ×H ×Γ

∣∣Ĝd(y,xγ)−Gd(y,xγ)
∣∣= Op

(
(logn)1/2 n−1/2h−1/2

)
+O(hs) (1.9.36)

sup
(y,x,h,γ)∈T̃ ×X ×H ×Γ

∥∥∥∂γ Ĝd(y,xγ)−G(1)
d (y,xγ)

∥∥∥= Op

(
(logn)1/2 n−1/2h−3/2

)
+O(hs), (1.9.37)

for `= 1,2. Analogous results hold for Ĝd,r, and ∂γ Ĝd,r, with r = 0,1.

Proof of Lemma 1.4. The proof follows from standard kernel techniques, cf. Einmahl and Mason (2005). It is also

implicit in that of Theorem 1 in Chiang and Huang (2012), and hence, is omitted. �
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1.9.2.2 Test of Single-Index Assumption

In this section, we introduce a formal specification test of Assumption 1.2. Let

Ĵd(γ;ρ,g) =
1

n2(n−1)

n

∑
i=1

n

∑
j 6=i

{
ρ(X ′i Q(γ),X ′jQ(γ))Jg(X ′i γ,X ′jγ)

n

∑
`=1

Ûd,γ,i(Y`,R`)Ûd,γ, j(Y`,R`)

}
,

V̂Jd (γ;ρ,g) =
1

n2(n−1)2

n

∑
i=1

n

∑
j 6=i

ρ(X ′i Q(γ),X ′jQ(γ))2Jg(X ′i γ,X ′jγ)
2

·

{
1
n

n

∑
`=1

Ûd,γ,i(Y`,R`)Ûd,γ, j(Y`,R`)

}2

,

T̂Jd (γ;ρ,g) =
Ĵd(γ;ρ,g)√
V̂Jd (γ;ρ,g)

,

Ĵd(γ,ξ ;ρ,g) =
1

n2(n−1)

n

∑
i=1

n

∑
j 6=i

ξiξ j

{
ρ(X ′i Q(γ),X ′jQ(γ))Jg(X ′i γ,X ′jγ)

n

∑
`=1

Ûd,γ,i(Y`,R`)Ûd,γ, j(Y`,R`)

}
,

V̂Jd (γ,ξ ;ρ,g) =
1

n2(n−1)2

n

∑
i=1

n

∑
j 6=i

ξ
2
i ξ

2
j ρ(X ′i Q(γ),X ′jQ(γ))2Jg(X ′i γ,X ′jγ)

2

·

{
1
n

n

∑
`=1

Ûd,γ,i(Y`,R`)Ûd,γ, j(Y`,R`)

}2

,

T̂Jd (γ,ξ ;ρ,g) =
Ĵd(γ,ξ ;ρ,g)√
V̂Jd (γ,ξ ;ρ,g)

.

Algorithm 1.9.2 1. Solve for the minimizer of Ĵd(γ;ρ) in γ ∈ Γ, γ̂d , for each d ∈ {0,1}.

2. Search for a (k−1)× (k−2) matrix Q−1(γ̂d) such that Q(γ̂d) = [γ̂d Q−1(γ̂d)] is an orthogonal matrix.

3. Calculate Ĵd(γ̂d ;ρ,g), V̂Jd (γ̂d ;ρ,g), and T̂Jd (γ̂d ;ρ,g).

4. Sample {ξ b
i }n

i=1 from a distribution with zero mean and unit variance, independently from data. Calculate

Ĵd(γ̂d ,ξ
b;ρ,g), V̂Jd (γ̂d ,ξ

b;ρ,g), and T̂Jd (γ̂d ,ξ
b;ρ,g).

Repeat Step 4 for b = 1, ...,B, where B is some large integer.

5. Compute the α/2-th and (1−α/2)-th quantiles of {T̂Jd (γ̂d ,ξ
b;ρ,g)}B

b=1, reject the null hypothesis that As-

sumption 1.2 holds if T̂Jd (γ̂d ;ρ,g) lies outside the interval defined by these two critical values.

1.9.3 Auxiliary Results

1.9.3.1 Definitions and Additional Results

In this section, we provide several results related to the results in the main text. First, we introduce the notion of

covering numbers and the VC type (or Euclidean) class. Let ‖·‖Lr(P) denote {E[| f (W )|r]}1/r Given a class of functions
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F defined on a space X , a probability measure Q, the covering number N (ε,F ,Lr(Q)), is the minimum number of

Lr(Q) balls of radius ε needed to cover F . The centers of these balls is not required to be in F . A function F : X 7→R

is called an envelop for F if | f (x)| ≤ F(x) for all x ∈X and all f ∈F . We say F is of the VC type with respect

to an envelop function F if there exists positive constants A and V ≥ 1 satisfying supQ N (ε ‖F‖L2(Q) ,F ,L2(Q)) ≤

(A‖F‖L2(Q) /ε)V , for all ε ∈ (0,2‖F‖L2(Q)] and the supremum is taken over all probability measures Q with 0 <

‖F‖L2(Q) < ∞. We say that the VC class F admits the characteristics A and V .

Given a function g of m variables, let U (m)
n (g) = (n−k)!

n! ∑i∈Im
n

g(Xi1 , ...,Xim), with Im
n = {(i1, ..., ik) : 1≤ i j ≤ n, i j 6=

il , i f j 6= l}. Let the Hoeffding projections of g with respect to a measure P be defined as πkg = (δx1 −P)× ·· · ×

(δxk −P)×Pm−kg and π0 = E[g(X1, ...,Xm)]. If g is symmetric in its entries, we define the Hoeffding decomposition

as U (m)
n (g)−E[g] = ∑

m
j=1

m!
j!(m− j)!U

( j)
n (π jg). The following Lemma, due to Giné and Mason (2007), establishes a

maximal inequality for moment of the U processes which plays a crucial role in our derivation of the uniform linear

representations.

Lemma 1.5 (Giné and Mason, 2007, Theorem 8) Let F be a measurable collection of symmetric functions Sm 7→R

with an envelop function F and let P be any probability measure on the space (S,S ). Assume F is bounded by M > 0

and F is a VC class with respect to F with characteristics A and V . Then for every m ∈ N, A≥ em, V ≥ 1, there exist

constants C1 and C2 such that

nk/2E
[∥∥∥U (k)

n (πk f )
∥∥∥

F

]
≤C1σ

(
log

A‖F‖L2(Pm)

σ

)k/2

,

for k = 0,1, ...,m, assuming nσ2 ≤C2 log
(

2‖F‖L2(Pm) /σ

)
, where σ2 satisfies

∥∥Pm f 2
∥∥≤ σ2 ≤ PmF2.

Let inner and outer expectations be denoted by E∗ and E∗ as in Section 1.2 of Van Der Vaart and Wellner (1996).

We say a sequence of stochastic process Xn : E 7→ D, where E and D are metric spaces, converges weakly to X ,

denoted by Xn ⇒ X if E∗[h(Xn)]→ E[h(X)], for all h ∈ Cb(D) where Cb(D) denotes the space of the real-valued

bounded continuous functions defined on D.

We follow the definition of conditional weak convergence in probability as appeared in Section 2.2.3 in Kosorok

(2008). The notation Xn
p
→
ξ

X means that suph∈BL1

∣∣Eξ |w[h(Xn)]−E[h(X)]
∣∣ p→ 0 and E∗

ξ |w[h(Xn)]−Eξ |w∗[h(Xn)] =

0, where BL1 is the space of functions f : D 7→ R with Lipschitz norm bounded by 1. Namely, ‖ f‖
∞
≤ 1 and

| f (x)− f (y)| ≤ d(x,y), for x,y ∈ D. The operator Eξ |w denotes the conditional expectation over the weights ξ given

the remaining data.

The following lemma, originated from Theorem 10.6 of Pollard (1990) and restated in Theorem 11.16 of Kosorok

(2008) is key to establishing weak convergence of conditional processes.
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Lemma 1.6 (Kosorok, 2008, Theorem 11.16) Suppose a triangular array stochastic processes { fni(t) : i = 1, ...,n, t ∈

T} consisting of row-wise independent processes is almost measurable Suslin (AMS). Define χn(t) = ∑
n
i=1 fni(t) and

ρn(s, t) =
(
∑

n
i=1E

[
( fni(s)− fni(t))2

])1/2, for s, t ∈ T . (i) the { fni} are manageable, with envelops {Fni} which are also

independent within rows; (ii) H(s, t)= limn→∞ ∑
n
i=1E[χn(s)χn(t)] exists for every s, t ∈ T ; (iii) limsupn→∞E∗[F2

ni]<∞;

(iv) limn→∞ ∑
n
i=1E∗

[
F2

ni1{Fni}> ε
]
= 0; (v) ρ(s, t) = limn→∞ ρn(s, t) exists for every s, t ∈ T . For all determinis-

tic sequences {sn} and {tn}, if ρ(sn, tn)→ 0 then ρn(sn, tn)→ 0. Then T is totally bounded under the ρ pseudo-

metric and χn converges weakly on `∞(T ) to a tight, centered Gaussian process χ concentrated on {g ∈ `∞(T ) :

g is uniformly ρ-continuous}, with covariance function H(s, t).

Precise definitions of AMS and manageable triangular arrays can be found in Section 11.4.1 in Kosorok (2008).

Direct check of these two conditions is usually not easy. To address this issue, Kosorok (2008) presents sufficient

conditions: by Lemma 11.15 in Kosorok (2008), the triangular array is AMS whenever it is separable12, and for

manageability to hold, Lemma 11.21 in Kosorok (2008) implies that the VC type condition on the triangular array

suffices.

Lastly, we recall the definition of Hadamard differentiability, see pp. 272-273 in Van Der Vaart and Wellner

(1996). We say a mapping ν : Dν ⊂D→ E is called Hadamard differentiable at F ∈Dν , tangentially to a set D0 ⊂D,

if there is a continuous linear map ν
′
F : D→ E such that

ν(F + tnhn)−ν(F)

tn
→ ν

′
F(h),

for all converging sequences {tn} ⊂R with tn→ 0 and {hn} ⊂D with hn→ h ∈D0, such that F + tnhn ∈Dν as n→∞,

for all n.

1.9.3.2 Auxiliary Lemmas

Lemma 1.7 Suppose that the assumptions of Theorem 1.3 hold. The function classes, G1 - G6, Gb, Gη , and Gϕ as

defined in (1.9.19), (1.9.20),(1.9.22), (1.9.23), (1.9.27), (1.9.28), (1.9.24), (1.9.25), and (1.9.29) are of VC type with

bounded envelop.

Proof of Lemma 1.7. We first identify the sub-classes that constitute the above functional classes and show that the

uniform entropy condition is satisfied for each of these sub-classes. Then, we illustrate on how we use results on the

12A triangular array of stochastic process { fni(t) : i = 1, ...,n, t ∈ T} is separable if, for all n≥ 1, there exists a countable set Tn ∈ T such that

E∗
[
1

{
sup
t∈T

sup
s∈Tn

n

∑
i=1

( fni(s)− fni(t))
2 > 0

}]
= 0.
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sub-classes to show that the functional classes in the theorem is of VC type. Define

M1 ≡ {y 7→ 1{y≤ t} : t ∈ T̃ },

M2 ≡ {x1 7→ K((x1γd− xγd)/h)1{|x1γd− xγd | ≤ h} : (x,h) ∈X ×H },

M3 ≡ {x1 7→ K(1)((x1γd− xγd)/h)1{|x1γd− xγd | ≤ h} : (x,h) ∈X ×H },

M4,1 ≡ {y 7→ ∂
`
xγ Gd(y,xγd) : ` ∈ {0,1,2, ...,s},(d,x) ∈ {0,1}×X },

M4,2 ≡ {y 7→ ∂
`
xγ Gd,1(y,xγd) : ` ∈ {0,1,2, ...,s},(d,x) ∈ {0,1}×X }.

M4,3 ≡ {∂Gd(y,xγd)/∂y|y=t : (d, t,x) ∈ {0,1}× T̃ ×X }.

M4,4 ≡ {∂Gd,1(y,xγd)/∂y|y=t : (d, t,x) ∈ {0,1}× T̃ ×X }.

M5 ≡ {∂ `
xγ fd(xγd) : ` ∈ {0,1,2, ...,s},(d,x) ∈ {0,1}×X }.

By Lemma 19.15 in Van der Vaart (1998), M1 is of VC type with the constant envelop. Under Assumption 1.8.2,

both K(·) and K(1)(·) are of bounded variation, Lemma 22(i) of Nolan and Pollard (1987) implies that M2,1 and M2,2

belong to the VC class with a constant envelop. Next, since ∂ `
v FYd ,Rd |D,Xγd

(y,r|d,v), `= 0, ...,s, is Lipschitz continuous

with respect to xγd under Assumption 1.6.2(i), Lemma 2.13 of Pakes and Pollard (1989) implies M4,1 and M4,2 are

of VC type with bounded envelop functions. The proof for M4,3,M4,4, and M5 follows the same arguments based

on the Lipschitz continuity of ∂yFYd ,Rd |D,Xγd
(y,r|d,v) with respect to y and v, and of ∂v fd,γd (v) with respect to v, as

implied by Assumption 1.6.2(iv), and 1.6.1(i), respectively.

Now we are ready to show why the functional classes in the lemma are of VC type. We illustrate on G1 and Gη .

All others follow by same lines of reasoning.

We focus on G1 first. Note that the class that g11 belongs to is a product of a finite set {(r1,d1) 7→ r11{d1 = d} ,d ∈

{0,1}}, M1, and M2, and thus, it is of VC type by Corollary A.1 in Chernozhukov et al. (2014). Since all three sub-

classes have finite envelops, their product also does. Regarding g12, we first show that Mφ ≡ {y 7→ φ
′′
θ
(sd(y,xγd)) :

(x,θ) ∈X ×Θ} is also a VC class with bounded envelop. For any x1,x2 ∈X and θ1,θ2 ∈Θ, we have

∣∣∣φ ′′θ1
(sd(y,x1γd))−φ

′′
θ2
(sd(y,x2γd))

∣∣∣
≤
∣∣∣φ ′′θ1

(sd(y,x1γd))−φ
′′
θ2
(sd(y,x1γd))

∣∣∣+ ∣∣∣φ ′′θ2
(sd(y,x1γd))−φ

′′
θ2
(sd(y,x2γd))

∣∣∣
≤M1 |θ1−θ2|+ sup

(θ ,u)∈Θ×[υo,1]

∣∣∣φ ′′′θ (u)
∣∣∣ sup
(y,x)∈T̃ ×X

∣∣∂xγ Gd(y,xγd)
∣∣‖x1− x2‖‖γd‖

≤M1 |θ1−θ2|+M2 ‖x1− x2‖ ≤
√

2max{M1,M2}
∥∥(θ1,x′1)

′− (θ2,x′2)
′∥∥ ,
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where M1 and M2 are positive constants. The second inequality is due to the Lipschitz continuity condition on φ
′′
θ

, and

the third follows because φ
′′′
θ

and ∂xγ Gd are uniformly bounded under Assumption 1.6.4, and 1.6.2. The last one is by

Hölder’s inequality. Another application of Lemma 2.13 of Pakes and Pollard (1989) yields the desired result.

Let Mx = {x̃ 7→ x̃`−x` : `= 2, ...,k,x∈X }. Since X is compact, Mx is a VC class because N (ε supx∈X
∥∥x[−1]

∥∥ ,
Mx,L2(Q))≤C (diam(X )/ε) , for a positive constant C independent of ε . Applying Corollary A.1 in Chernozhukov

et al. (2014) again on the product of M1, M3, Mφ , Mx, and the finite set {(y1,y2,d2) 7→ 1{d2 = d,y2 ≤ y1} ,d ∈

{0,1}} yields that the first half of g12 belongs to a VC class. Next, by Lemma 5 of Sherman (1994), we deduce

that {y1 7→
∫
1{d2 = d,y2 ≤ y1∧ t}hK(1)(xγd ,x′2γd)(x2,l−xl)dF(w2) : ω ∈Ω} and {w2 7→

∫
g11(w1,ω)g12(w2,y1,ω)

dF(w1) : ω ∈ Ω} are both of the VC type. Since fd(xγd) is uniformly bounded away from 0, {1/ fd(xγd)
2 : (d,x) ∈

{0,1}×X } admits a finite envelop. Applying Corollary A.1 in Chernozhukov et al. (2014) yet again concludes the

proof.

Turning to Gη , we first show that for a fixed x, the set Mθ ≡ {1/φ
′
θ
(sTd (t,xγd ,θ)) : (t,θ)× T̃ ×Θ} belongs to the

VC class. Recall that sTd (t,xγd ,θ) = φ
−1
θ

(∫ t
0 φ

′
θ
(sd(y,xγd))sd,1(dy,xγd)

)
. Hence,

1/φ
′
θ1
(sTd (t1,xγd ,θ1))−1/φ

′
θ2
(sTd (t2,xγd ,θ2))

≤
{

1/φ
′
θ1
(sTd (t1,xγd ,θ1))−1/φ

′
θ2
(sTd (t1,xγd ,θ2))

}
+
{

1/φ
′
θ2
(sTd (t1,xγd ,θ2))−1/φ

′
θ2
(sTd (t2,xγd ,θ2))

}
≡∆1 +∆2.

Decomposing the first term further into,

|∆1| ≤
∣∣∣∣1/φ̇

−1
θ1

(∫ t1

0
φ
′
θ1
(sd(y,xγd))sd,1(dy,xγd)

)
−1/φ̇

−1
θ1

(∫ t1

0
φ
′
θ2
(sd(y,xγd))sd,1(dy,xγd)

)∣∣∣∣
+

∣∣∣∣1/φ̇
−1
θ1

(∫ t1

0
φ
′
θ2
(sd(y,xγd))sd,1(dy,xγd)

)
−1/φ̇

−1
θ2

(∫ t1

0
φ
′
θ2
(sd(y,xγd))sd,1(dy,xγd)

)∣∣∣∣
≡∆11 +∆12.

For the first term, we have

|∆11| ≤ (1−υo) sup
(z,θ)∈[0,y∗o]×Θ

∣∣∣∣∣φ
′′
θ
(φ−1

θ
(z))(

φ̇
−1
θ

(z)
)3

∣∣∣∣∣ sup
(u,θ)∈[υo,1]×Θ

∣∣∣φ ′θ (u)∣∣∣ |θ1−θ2|= M3 |θ1−θ2| .
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Under Assumption 1.10.(ii), ∆12 ≤M4 |θ1−θ2|.

|∆2| ≤ sup
(z,θ)∈[0,y∗o]×Θ

∣∣∣∣∣ φ̈
−1
θ

(z)(
φ̇
−1
θ

(z)
)3

∣∣∣∣∣
·
∣∣∣∣∫ t1

0
φ
′
θ2
(sd(y,xγd))sd,1(dy,xγd)−

∫ t2

0
φ
′
θ2
(sd(y,xγd))sd,1(dy,xγd)

∣∣∣∣
≤ sup

(z,θ)∈[0,y∗o]×Θ

∣∣∣∣∣ φ̈
−1
θ

(z)(
φ̇
−1
θ

(z)
)3

∣∣∣∣∣ · sup
(u,θ)∈[υo,1]×Θ

∣∣∣φ ′θ (u)∣∣∣ sup
(y,x)∈T̃ ×X

∣∣∂xγ Gd,1(y,xγd)
∣∣ |t1− t2|

=M5 |t1− t2| .

where inequalities hold by the mean value theorem and under Assumptions 1.6.2, and 1.6.4. Combining the bounds

and applying Hölder’s inequality, we conclude by Lemma 2.13 of Pakes and Pollard (1989) that Mθ is a VC class.

Next, following similar analysis as in the previous part, we deduce from Corollary A.1 of Chernozhukov et al.

(2014) that {w1 7→ 1{d1 = d}(1{y1 ≤ y}−Gd(y,x1γd))∂yGd,1(y,xγd) : (d,y,θ)∈ {0,1}×T̃ ×Θ} for a given x∈X

is a VC class with a finite envelop. Applying Lemma 5 of Sherman (1994), we get {w1 7→
∫
1{y1 ≤ t}1{d1 = d}·

(1{y1 ≤ y}−Gd(y,x1γd))∂yGd,1(y,xγd)dy : (d, t,θ) ∈ {0,1}× T̃ ×Θ} also belongs to the VC class with an envelop

Fη ,1 = Gd,1(yo∧ yc,xγd). This is due to

∫
1{y1 ≤ t}1{d1 = d}(1{y1 ≤ y}−Gd(y,x1γd))∂yGd,1(y,xγd)dy

≤ 2
∫ t

0
∂yGd,1(y,xγd)dy≤ Gd,1(yo∧ yc,xγd).

Analogous results can be established for the other two parts of Ψd .

Combining these results with the fact that {x1 7→ K((x1γd − xγd)/h) : (t,h) ∈ T̃ ×H } is VC with an envelop

C1{|x1γd− xγd | ≤ h}, we deduce that Gη is of the VC type, with the envelop given by ∑d=0,1 Cd1{|x1γd− xγd | ≤ h}

where C0 and C1 are positive constants. Setting Hη ,d(x1γd) =Cd1{|x1γd− xγd | ≤ h} concludes the proof. �

Lemma 1.8 Under the assumptions of Theorem 1.3, for any δn = Op
(
n−1/2

)
,

sup
‖γ̃d−γd‖≤δn

sup
(t,x)∈T̃ ×X

∥∥∥∥∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ Ĝd(y,xγ̃d)−∂γ Ĝd(y,xγd)
}

sd,1(dy,xγd)

∥∥∥∥
= Op

(
(logn)1/2 n−1/2h−5/2

δn

)
+O(δn).
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Proof of Lemma 1.8. Split the term inside the norm operator into

∆1(t,x,θ)≡
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ κ̂d,y(xγ̃d)

f̂d(xγ̃d)
−

∂γ κ̂d,y(xγd)

f̂d(xγd)

}
sd,1(dy,xγd),

∆2(t,x,θ)≡−
∫ t

0
φ̈

θ
d,γd

(y,x)

{
κ̂d,y(xγ̃d)∂γ f̂d(xγ̃d)

f̂ 2
d (xγ̃d)

−
κ̂d,y(xγd)∂γ f̂d(xγd)

f̂ 2
d (xγd)

}
sd,1(dy,xγd).

Decomposing ∆1 and ignoring smaller order terms gives

∆1(t,x,θ) = fd(xγd)
−1
∫ t

0
φ̈

θ
d,γd

(y,x)
{

∂γ κ̂d,y(xγ̃d)−∂γ κ̂d,y(xγd)
}

sd,1(dy,xγd)

+
f̂d(xγ̃d)− f̂d(xγd)

fd(xγ̃d) fd(xγd)

∫ t

0
φ̈

θ
d,γd

(y,x)∂γ κ̂d,y(xγd)sd,1(dy,xγd)+(s.o.).

We investigate the uniform rate of the first term only. The second term exhibits the same rate and is simpler. Define

∆11(t,x,θ , γ̃d)≡
∫ t

0
φ̈

θ
d,γd

(y,x)E[∂γ κ̂d,y(xγ̃d)−∂γ κ̂d,y(xγd)]sd,1(dy,xγd),

∆12(t,x,θ , γ̃d)≡
∫ t

0
φ̈

θ
d,γd

(y,x){∂γ κ̂d,y(xγ̃d)−∂γ κ̂d,y(xγd)

−E[∂γ κ̂d,y(xγ̃d)−∂γ κ̂d,y(xγd)]}sd,1(dy,xγd).

By Fubini’s theorem and standard change of variables,

∆11(t,x,θ , γ̃d) = h−2
∫ t

0
φ̈

θ
d,γd

(y,x)·

E
[
ρ

γ̃d
1,1(y,X γ̃d)K(1)((X γ̃d− xγ̃d)/h)−ρ

γd
1,1(y,Xγd)K(1)((Xγd− xγd)/h)

]
sd,1(dy,xγd)

=h−1
∫ t

0
φ̈

θ
d,γd

(y,x) ·
{∫

R
K(1)(u)ρ γ̃d

1,1(y,xγ̃d +uh) fd(xγ̃d +uh)du

−
∫
R

K(1)(u)ργd
1,1(y,xγd +uh) fd(xγd +uh)du

}
sd,1(dy,xγd)

=
∫
R

uK(1)(u)du ·
∫ t

0
φ̈

θ
d,γd

(y,x) ·
{(

∂ zρ
γ̃d
1,1(y,z)|z=xγ̃d fd(xγ̃d)+ρ

γ̃d
1,1(y,xγ̃d)∂z fd(z)|z=xγ̃d

)
−
(

∂ zρ
γd
1,1(y,z)|z=xγd fd(xγd)+ρ

γd
1,1(y,xγd)∂z fd(z)|z=xγd

)}
sd,1(dy,xγd),

where ρ
γ

1,1 is defined in (1.4.8). The second equality follows by Taylor expansion and the fact that
∫
[−1,1] K

(1)(u)du= 0.

By the Lipschitz continuity of ρ
γ

1,1(y,xγ),∂xγ ρ
γ

1,1(y,xγ), fd(xγ), and ∂xγ fd(xγ), with respect to γ as implied by Assump-

tion 1.7.1, and by the fact that ‖γ̃d− γd‖ ≤ δn, we conclude that sup‖γ̃d−γd‖≤δn
sup(t,x,θ)∈T̃ ×X ×Θ

‖∆11(t,x,θ , γ̃d)‖ =

O(δn).
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The centered term ∆12 can be bounded using following empirical process

Gδ ,n ≡ {w 7→ gδ (w,ω, γ̃d) : ω ∈Ω,‖γ̃d− γd‖ ≤ δn} ,

where gδ (W,ω, γ̃d)≡ gδ ,1(W,ω, γ̃d)−
∫

gδ ,1(W,ω, γ̃d)dFW (W ), and

gδ ,1(W,ω, γ̃d)≡
∫ t

0
φ̈

θ
d,γd

(y,x)1{D = d,Y ≤ y}sd,1(dy,xγd)

·
{

K(1)((X γ̃d− xγ̃d)/h)−K(1)((Xγd− xγd)/h)
}
.

Applying similar lines of arguments as in Lemma 1.7, it is straightforward to show that Gδ ,n is a VC type class

with bounded envelop, for each δn. From the continuous differentiability of K(1)(·), we deduce by similar arguments

to Lemma 8.4 in Maistre and Patilea (2019) that
∣∣∣K(1)((X γ̃d− xγ̃d)/h)−K(1)((Xγd− xγd)/h)

∣∣∣≤ δnh−1||K(2)((Xγd −

xγd)/h) ||+Cδ 2
n h−2, for some positive constant C. Combine this fact with the uniform boundedness of φ̈ θ

d,γd
, and sd,1,

and we find that supgδ∈Gδ
E[g2

δ
] is bounded from above at the rate of O

(
δ 2

n h−1
)
. We then conclude from applying the

maximal inequality in Lemma 1.5 that sup‖γ̃d−γd‖ sup(t,x,θ)∈T̃ ×X ×Θ
‖∆12(t,x,θ , γ̃d)‖= Op

(
(logn)1/2 n−1/2h−5/2δn

)
.

For ∆2, we have

∆2(t,x,θ , γ̃d) =− f−2
d (xγ̃d)

∫ t

0
φ̈

θ
d,γd

(y,x)
{

κ̂d,y(xγ̃d)− κ̂d,y(xγd)
}

∂γ f̂d(xγ̃d)sd,1(dy,xγd)

− f−2
d (xγd)

∫ t

0
φ̈

θ
d,γd

(y,x)κd,y(xγd)
{

∂γ f̂d(xγ̃d)−∂γ f̂d(xγd)
}

sd,1(dy,xγd)

+
( fd(xγ̃d)+ fd(xγd))( f̂d(xγ̃d)− f̂d(xγd))

f−2
d (xγ̃d) f−2

d (xγd)

·
∫ t

0
φ̈

θ
d,γd

(y,x)κd,y(xγd)∂γ f̂d(xγd)sd,1(dy,xγd).

Arguing as in the case of ∆1, one finds that the second term in the above display dominates the other two with a

uniform rate of Op

(
(logn)1/2 n−1/2h−5/2δn

)
+O(δn). Gathering results on ∆1 and ∆2 completes our proof. �

Lemma 1.9 Suppose the conditions of Theorem 1.5 hold. Then

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
i=1

gd,γd ,`(Xi,x)
{

Ψ̂d
(
Êd,γ̂d ,i, Êd,1,γ̂d ,i

)
(t,x,θ)−Ψd

(
Ed,γd ,i,Ed,1,γd ,i

)
(t,x,θ)

}∣∣∣∣∣
= Op

(
(logn)1/2 n−1/2h−(2`+1)/2

)
,

where gd,γd ,`(X ,x) = h−(`+1)K(`)(xγd ,Xγd)/ f (xγd ,d), for `= 0,1.
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Proof of Lemma 1.9. Define η3,1(t,xγ) ≡ φ ′
θ

(
sTd (t,xγ,θ)

)
, η3,2(t,xγ) ≡ φ ′′

θ
(sd(t,xγ)) , η3,3(W, t,γ) ≡ 1{D = d}·

(1{Y ≤ t}−Gd(t,Xγ)), η3,4(t,xγ) ≡ sd,1(t,xγ), η3,5(W, t,γ) ≡ 1{D = d}
(
R1{Y ≤ t}−Gd,1(t,Xγ)

)
, and for ` =

1, ...,5, let the estimator of η3,` be denoted by η̂3,`. Their definitions should be apparent. Index on θ is suppressed.

From Theorem 1.3 and Lemma 1.4, we have

sup
(t,θ)∈T̃ ×Θ

∣∣η̂3,`(t,xγd)−η3,`(t,xγd)
∣∣= Op

(
(logn)1/2 n−1/2h−1/2

)
,

for `= 1,2,4.

Given these notations, we divide Ψd into

Ψd,1(W, t,xγ) =
1

η3,1(t,xγ)

∫ t

0
η3,2(y,xγ)η3,3(W,y,xγ)η3,4(dy,xγ),

Ψd,2(W, t,xγ) =
−1

η3,1(t,xγ)
η3,4(t,xγ)η3,5(W, t,xγ),

Ψd,3(W, t,xγ) =
1

η3,1(t,xγ)

∫ t

0
η3,2(y,xγ)η3,5(W,y,xγ)η3,4(dy,xγ),

and thus Ψd(Ed,γ ,Ed,1,γ) = ∑
3
`=1 Ψd,`. We illustrate on Ψd,1, since the other two terms share a similar structure. From

tedious manipulation, it can be shown that Ψ̂d,1(W, t,xγ̂d)−Ψd,1(W, t,xγd) = ∑
10
`=1 A3,`(W, t,x), where

A3,1(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)

∫ t

0
η3,2(y,xγd)η3,3(W,y,γd)η3,4(dy,xγd),

A3,2(W, t,x) =
1

η3,1(t,xγd)

∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))η3,3(W,y,γd)η3,4(dy,xγd),

A3,3(W, t,x) =
1

η3,1(t,xγd)

∫ t

0
η3,2(y,xγd)(η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))η3,4(dy,xγd),

A3,4(W, t,x) =
1

η3,1(t,xγd)

∫ t

0
η3,2(y,xγd)η3,3(W,y,γd)(η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)),

A3,5(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)

·
∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))η3,3(W,y,γd)η3,4(dy,xγd),

A3,6(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)

·
∫ t

0
η3,2(y,xγd)(η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))η3,4(dy,xγd),

A3,7(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)

·
∫ t

0
η3,2(y,xγd)η3,3(W,y,γd)(η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)),
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A3,8(W, t,x) =
1

η3,1(t,xγd)

∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))

· (η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))η3,4(dy,xγd),

A3,9(W, t,x) =
1

η3,1(t,xγd)

∫ t

0
η3,2(y,xγd)(η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))

· (η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)),

A3,10(W, t,x) =
1

η3,1(t,xγd)

∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))

·η3,3(y,xγd)(η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)),

A3,11(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)

·
∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))(η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))η3,4(dy,xγd),

A3,12(W, t,x) =
1

η3,1(t,xγd)

∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))

· (η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))(η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)),

A3,13(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)

·
∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))η3,3(W,y,γd)(η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)),

A3,14(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)

·
∫ t

0
η3,2(y,xγd)(η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))(η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)),

A3,15(W, t,x) =−
η̂3,1(t,xγ̂d)−η3,1(t,xγd)

η3,1(t,xγd)η̂3,1(t,xγ̂d)
·
∫ t

0
(η̂3,2(y,xγ̂d)−η3,2(y,xγd))

· (η̂3,3(W,y, γ̂d)−η3,3(W,y,γd))(η̂3,4(dy,xγ̂d)−η3,4(dy,xγd)).

Following the same type of analysis we have used so far, namely performing Taylor expansion, integration by

parts, and applying the maximal inequality from Lemma 1.5 whenever appropriate, we get

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
i=1

gd,γd ,`(Xi,x)A3,`1(Wi, t,x)

∣∣∣∣∣= Op

(
(logn)1/2 n−1/2h−(2`+1)/2

)
,

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
i=1

gd,γd ,`(Xi,x)A3,`2(Wi, t,x)

∣∣∣∣∣= Op

(
logn ·n−1h−(`+1)

)
,

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
i=1

gd,γd ,`(Xi,x)A3,`3(Wi, t,x)

∣∣∣∣∣= Op

(
(logn)3/2 n−3/2h−(2`+3)/2

)
,

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
i=1

gd,γd ,`(Xi,x)A3,15(Wi, t,x)

∣∣∣∣∣= Op

(
(logn)2 n−2h−(`+2)

)
.
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for `= 0,1, `1 = 1,2,3,4, `2 = 5,6,7,8,9,10, and `3 = 11,12,13,14. As a result,

sup
(t,θ)∈T̃ ×Θ

∣∣∣∣∣n−1/2h1/2
n

∑
i=1

gd,γd ,`(Xi,x)
(
Ψ̂d,1(Wi, t,xγ̂d)−Ψd,1(Wi, t,xγd)

)∣∣∣∣∣= Op

(
(logn)1/2 n−1/2h−(2`+1)/2

)
.

Analogous results hold for Ψd,2 and Ψd,3, concluding the proof. �

1.9.3.3 Covariance Functions

Lemma 1.10 Suppose the assumptions of Corollary 1.1 hold. Then, it holds that, Σx
η (·, ·) = Σ

x†
η (·, ·)+o(1), where

Σ
x†
η (t,θθθ) =

 σ2
1,x(t1, t2,θ1,θ2) 0

0 σ2
0,x(t1, t2,θ3,θ4)

 ,

and

σ
2
d,x(t1, t2,θ1,θ2) =

‖K‖2
2

fd(xγd)φ
′
θ1
(sTd (t1,xγd ,θ1))φ

′
θ2
(sTd (t2,xγd ,θ2))

·
{∫ t1

0

∫ t2

0
φ̈

θ1
d,γd

(y1,x)φ̈
θ2
d,γd

(y2,x)

· {Gd(y1∧ y2,xγd)−Gd(y1,xγd)Gd(y2,xγd)}sd,1(dy2,xγd)sd,1(dy1,xγd)

+
∫ t1

0
φ̈

θ1
d,γd

(y1,x)φ̇
θ2
d,γd

(t2,x)
{

Gd,1(y1∧ t2,xγd)−Gd(y1,xγd)Gd,1(t2,xγd)
}

sd,1(dy1,xγd)

−
∫ t1

0

∫ t2

0
φ̈

θ1
d,γd

(y1,x)φ̈
θ2
d,γd

(y2,x)

·
{

Gd,1(y1∧ y2,xγd)−Gd(y1,xγd)Gd,1(y2,xγd)
}

sd(dy2,xγd)sd,1(dy1,xγd)

+
∫ t2

0
φ̇

θ1
d,γd

(t1,x)φ̈
θ2
d,γd

(y2,x)
{

Gd,1(y2∧ t1,xγd)−Gd(y2,xγd)Gd,1(t1,xγd)
}

sd,1(dy2,xγd)

+ φ̇
θ1
d,γd

(t1,x)φ̇
θ2
d,γd

(t2,x)
{

Gd,1(t1∧ t2,xγd)−Gd,1(t1,xγd)Gd,1(t2,xγd)
}

−
∫ t2

0
φ̇

θ1
d,γd

(t1,x)φ̈
θ2
d,γd

(y2,x)
{

Gd,1(t1∧ y2,xγd)−Gd,1(y2,xγd)Gd,1(t1,xγd)
}

sd(dy2,xγd)

−
∫ t1

0

∫ t2

0
φ̈

θ1
d,γd

(y1,x)φ̈
θ2
d,γd

(y2,x)

·
{

Gd,1(y1∧ y2,xγd)−Gd(y2,xγd)Gd,1(y1,xγd)
}

sd,1(dy2,xγd)sd(dy1,xγd)

−
∫ t1

0
φ̇

θ2
d,γd

(t2,x)φ̈
θ1
d,γd

(y1,x)
{

Gd,1(y1∧ t2,xγd)−Gd,1(t2,xγd)Gd,1(y1,xγd)
}

sd(dy1,xγd)

+
∫ t1

0

∫ t2

0
φ̈

θ1
d,γd

(y1,x)φ̈
θ2
d,γd

(y2,x)

·
{

Gd,1(y1∧ y2,xγd)−Gd,1(y1,xγd)Gd,1(y2,xγd)
}

sd(dy2,xγd)sd(dy1,xγd)
}

(1.9.38)
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Proof of Lemma 1.10. When d1 6= d2, Ψd1(Ed,γd ,Ed,1,γd ) ·Ψd2(Ed,γd ,Ed,1,γd ) = 0, implying the off-diagonal element of

the covariance matrix is 0, regardless of t and θ . For terms on the main diagonal, the proof is analogous to that of

Lemma C.1 in Fan and Liu (2018), and thus, we omit the details. �

1.9.3.4 First-Stage Estimator for the QTE

To estimate the bound curves for the QTE, we replace fTd ,x(t,θ) and fTd (t,θ), with preliminary estimates f̂Td ,x(t,θ)

and f̂Td (t,θ), respectively. Validity of multiplier bootstrap procedure in Section 1.5.1 hinges on the estimates being

uniformly consistent in (t,θ). In what follows, we provide estimators, based on the analytical expression of fTd , that

satisfy this property. Using the closed form expression for sTd from Theorem 1.2, we deduce that

fTd ,x(t,θ) =
φ
′
θ
(sd(t,xγd))

φ
′
θ
(sTd (t,xγd ,θ))

· fd,1(t,xγd),

where fd,1(t,xγ) = −∂tsd,1(t,xγ). The fraction in the above display can be estimated by reusing γ̂d , ŝd , and ŝTd from

(1.4.2), (1.4.4), and (1.4.5), respectively. For fd,1(t,xγ), we will use the SIM conditional density estimator as follows.

Let Hx(·) and Hy(·) be kernel functions associated with Y and Xγ , respectively. Given the sequences of bandwidth

λx and λy that fulfill the conditions in Assumption 1.13, the rescaled kernel are once again defined by H j
λ
(u,v) =

λ−1H(λ−1(v−u)), for j = x,y. Now we let

f̂d,1(t,xγ) =
∑

n
i=11{Di = d,Ri = 1} ·Hy

λy
(t,Yi) ·Hx

λx
(xγ,Xiγ)

∑
n
i=11{Di = d} ·Hx

λx
(xγ,Xiγ)

, (1.9.39)

In addition, we will have fTd ,x estimated by f̂Td ,x(t,θ) = φ
′
θ
(ŝd(t,xγ̂d)) f̂d,1(t,xγ̂d)/φ

′
θ
(ŝTd (t,xγ̂d ,θ)). For the uncon-

ditional density fTd , we can estimate it by taking the sample average of f̂Td ,X (t,θ) with respect to X , i.e. f̂Td (t,θ) ≡

n−1
∑

n
i=1 f̂Td ,Xi(t,θ).

Assumption 1.13 For j = x,y, (i) the kernel function, H j(·) is symmetric, compactly supported, and of bounded

variation;13 (ii) it is twice continuously differentiable and the second order derivative is continuous and of bounded

variation; (iii) λ j → 0, logn · n−1/2λyλx → 0, as n→ ∞. For d ∈ {0,1}, (iv) v 7→ ρ
γ

f ,d(y,v), where ρ
γ

f ,d(y,xγ) ≡

fd(xγ)E
[
∂yGd,1(y,Xγd)|Xγ = xγ

]
, is continuously differentiable and the derivative is bounded uniformly on T̃ ×

X ×Γd,n; (v) ∂vρ
γ

f ,d(y,v) is Lipschitz continuous in v with the Lipschitz constant being independent of y, x, and

γ ∈ Γd,n.

13The compactness assumption could be relaxed at the expanse of longer proof, and therefore, the Gaussian kernel could be accommodated.
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Lemma 1.11 Under the assumptions of Corollary 1.2 and Assumption 1.13, it holds that sup(t,x,θ)∈T̃ ×X ×Θ
| f̂Td ,x(t,θ)

− fTd ,x(t,θ)|= op(1), and sup(t,θ)∈T̃ ×Θ

∣∣ f̂Td (t,θ)− fTd (t,θ)
∣∣= op(1), for d ∈ {0,1}.

Proof of Lemma 1.11. We first show that sup(t,x,θ)∈T̃ ×X ×Θ

∣∣ f̂d,1(t,xγ̂d)− fd,1(t,xγd)
∣∣ = op(1). By the triangular

inequality, we have that

∣∣ f̂d,1(t,xγ̂d)− fd,1(t,xγd)
∣∣≤ ∣∣ f̂d,1(t,xγ̂d)− f̂d,1(t,xγd)

∣∣+ ∣∣ f̂d,1(t,xγd)− fd,1(t,xγd)
∣∣ (1.9.40)

≡∆ f ,1(t,x, γ̂d)+∆ f ,2(t,x, γ̂d).

Along lines of arguments similar to that of Lemma 1.8, we get that sup‖γ−γd‖≤δn
sup(t,θ)∈T̃ ×Θ

∣∣∆ f ,1(t,x,γ,θ)
∣∣ =

Op

(
(logn)1/2 n−1/2λ−3/2δn

)
+O(δn). The second part arises from bias calculations, which depends crucially on As-

sumptions 1.13(iv) and 1.13(v). Next, it follows, by standard bias calculation and direct application of Theorems 1 and

4 in Einmahl and Mason (2005), that sup(t,x,θ)∈T̃ ×X ×Θ

∣∣∆ f ,2(t,x)
∣∣ = Op

(
(logn)1/2 n−1/2λ

−1/2
y λ

−1/2
x +λ 2

x +λ 2
y

)
,

which is op(1) under Assumption 1.13(iii). Combining these results, we conclude that the left hand side of (1.9.40) is

op(1).

Now, observe that

f̂Td ,x(t,θ)− fTd ,x(t,θ) =

{
φ
′
θ
(ŝd(t,xγ̂d))

φ
′
θ
(ŝTd (t,xγ̂d ,θ))

−
φ
′
θ
(sd(t,xγd))

φ
′
θ
(sTd (t,xγd ,θ))

}
f̂d,1(t,xγ̂d)

+
φ
′
θ
(sd(t,xγd))

φ
′
θ
(sTd (t,xγd ,θ))

{
f̂d,1(t,xγ̂d)− fd,1(t,xγd)

}
.

From the fact that ŝd and ŝTd are uniformly convergent, that φ̇
−1
θ

(z) is uniformly bounded away from 0 on [0,y∗o], and

that, for each (t,x)∈ T̃ ×X , φ(ŝTd (t,xγ̂d)) belongs to [0,y∗o] with probability approaching 1, we deduce that the differ-

ence inside the curly braces in the first line is op(1). Under Assumption 1.6.3, we have φ
′
θ
(sd(t,xγd))/φ

′
θ
(sTd (t,xγd ,θ))

is uniformly O(1).

The function fd,1(·, ·γd) is uniformly bounded from Assumption 1.6.2. It then follows from the uniform conver-

gence results we derived earlier, that f̂d,1(t,xγ̂d) is also uniformly bounded across (t,x) ∈ T̃ ×X . Consequently,

sup(t,x,θ)∈T̃ ×X ×Θ

∣∣ f̂Td ,x(t,θ)− fTd ,x(t,θ)
∣∣ = op(1). We notice that this also implies that sup(t,θ)∈T̃ ×Θ

| f̂Td (t,θ)−

fTd (t,θ)|= op(1), for d ∈ {0,1}, which concludes our proof. �
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CHAPTER 2

Two Sample Unconditional Quantile Effect

This chapter is adapted from the working paper “Two Sample Unconditional Quantile Effect” and has been reproduced

with the permission of my co-authors Atsushi Inoue and Tong Li.

2.1 Introduction

Missing data is a ubiquitous problem in empirical studies. Consider the scenario where a researcher is interested

in conducting counterfactual analysis on a target variable, but it is entirely missing from the dataset of interest. In

such circumstances, counterfactual policy effects cannot be identified from the primary dataset alone, and therefore,

external information and/or stronger identifying assumptions are necessary. In this paper, we utilize both to achieve

identification. Specifically, we focus on the situation where the missing variable can be found in another dataset and

the information from which can be used to recover target policy parameters in the population of interest, under a set

of commonly assumed restrictions on both the data structure and the model primitives.

To fix ideas, consider the following example. Suppose we are interested in studying the effect of a counterfactual

change in the distribution of actual labor market experience on some distributional features of yearly earnings. Our

main dataset does not record respondents’ work history, and therefore, we cannot recover their actual labor market

experience. Suppose the variable is available from a second dataset, but it may not be a reliable source of information

on income or it may not be representative of the target population we aim to analyze. In this case, we would benefit

from combining information from both samples to identify and estimate our parameter of interest.

Research on counterfactual policy effects under data combination is scarce. Our paper fills this gap by proposing

a new framework that accommodates such a data structure. In this paper, we focus on one particular type of coun-

terfactual policy effects, the unconditional quantile effect (UQE). It measures the effect of a marginal change in the

unconditional distribution of a single covariate on the quantiles of a target outcome. We provide identification results

for UQE under various types of marginal distributional change. The key insight of our identification strategy is that

some covariates present in both datasets can be excluded from the outcome equation, which would provide a source

of exogenous variations that allows us to recover the joint distribution of missing variables, otherwise not identified

using the two samples separately.

The second contribution of the paper is to propose novel semiparametric estimators based on these identification

results. Departing from the literature on the estimation of counterfactual quantile effects—see, e.g. Firpo et al.
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(2009b), Sasaki et al. (2022), etc.—which focuses primarily on the marginal location shift (MLS) of a covariate, we

provide estimators of UQE under two general types of counterfactual distributional changes, namely the marginal

distributional shift (MDS) and the marginal quantile shift (MQS),1 the latter of which includes MLS as a special case.

To the best of our knowledge, large sample results for these two cases are new to the literature. We apply these results

to study a variant of Mincer’s earnings function. Using data from Integrated Public Use Microdata Sample (IPUMS)

as our main data source and the Panel Study of Income Dynamics (PSID) as the auxiliary sample, we investigate the

counterfactual effect of actual work experiences on income. The effect profiles with MDS and MQS are found to be

similar in shape.

This paper belongs to the growing literature on the (marginal) unconditional policy effect. Since Firpo et al.

(2009b) introduced the method of unconditional quantile regressions (UQR), the study of unconditional policy effect

has gained much attention. In general, this parameter differs from the one identified by the conditional quantile

regression (Koenker and Bassett Jr, 1978), where marginal effects on the conditional quantile are the locus of attention.

Applied researcher are often interested in the shifts in the quantiles of unconditional distribution of a target outcome.

For instance, one may take an interest in how wage distribution changes in response to marginal increases in some

characteristics of the labor force, such as education level and experience. Conditional quantile regression cannot be

applied to address this type of questions, whereas UQR suits the goal.

Rothe (2012) generalizes the method of Firpo et al. (2009b), and analyzes a variety of counterfactual policy ef-

fects. He formalizes the idea of ceteris paribus distributional change and provides extensive results for both fixed and

marginal policy shifts. Our identification framework is closely related to his treatment of the latter type. Focusing on

the special case of quantile effects, we extend his identification results to a data combination setting and provide novel

inference theories specifically tailored to the distinct features of combined samples. For recent development in this

literature, see Firpo et al. (2018), Martinez-Iriarte and Sun (2020), Martı́nez-Iriarte (2023), and Sasaki et al. (2022).

For a comprehensive survey on counterfactual distributions and decomposition methods, see Fortin et al. (2011).

Our paper also builds on the econometric methods of data combination. In economics, this strand of literature

stems from the two-sample instrumental variables (TSIV) model that was first introduced by Klevmarken (1982),

Angrist and Krueger (1992), Arellano and Meghir (1992), and is later extended by Ridder and Moffitt (2007), Inoue

and Solon (2010), among others. Conceptually, the semiparametric data combination model we consider here is

different from the traditional missing data problem (Robins et al., 1994). It is more closely related to the “verify-out-

of-sample” model in Chen et al. (2008), and also to Imbens and Lancaster (1994), Fan et al. (2014), Graham et al.

(2016), Hirukawa et al. (2020), and Buchinsky et al. (2022), to name a few.

1The precise definitions of MLS, MDS, and MQS are given in Section 2.3.
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The paper is organized as follows. In the next section, we describe the model and assumptions on the data structure.

In Section 2.3 we introduce the parameter of interest, and then present identification results for continuously distributed

and discrete target covariates, respectively. Section 2.4 discusses the estimation strategy and large sample results. We

apply the method to study the income effect of real labor market experience in Section 2.5. Section 2.6 concludes.

Proofs and auxiliary results are collected in Sections 2.7 and 2.8.

2.2 Setup

The objective of our paper is to analyze the effect of a counterfactual change in the marginal distribution of the

covariate of interest, X , on the quantiles of the target outcome, Y , under data combination. The precise definition

of the counterfactual policy effect is provided in Section 2.3. When X is exogenous, and all the variables relevant

for analysis are observed from a single data source, counterfactual policy effects can be analyzed either directly by

applying tools from Firpo et al. (2009b) and Rothe (2012), or indirectly by recovering the structural function using

standard identification results such as Matzkin (2003) and Matzkin (2007). However, when the variables of interest

are scattered among several different data sources, we face a fundamental identification problem: The conditional

distribution of Y given X is not identified from any single sample. In this case, existing methods do not provide an

immediate solution.

Throughout this paper, we consider the scenario where our Y and X are sourced from two different data sets. The

outcome is contained in the principal or main sample, Ss = {Yi,Zi}ns
i=1, from the study population, Ps. The target

covariate is missing completely from Ss. However, it is observed in the auxiliary sample, Sa = {Xi,Zi}na
i=1, from the

auxiliary population, Pa, which does not contain observations of Y .

We now formally describe our structural model. We allow variables from two populations to be determined by

different mechanisms. For the study population,

Ys = gs(Xs,Z1,εs), (2.2.1)

Xs = hs(Z,ηs), (2.2.2)

where Ys ∈Y ⊂R is the potential outcome in the study population, εs ∈ E ⊂Rdε is a vector of unobserved heterogene-

ity term. Equation (2.2.1), links the target outcome, a scalar variable, Xs ∈X ⊂R, and a vector of exogenous variables,

Z1. Here, Xs is the potential covariate of interest in the study population, which is in turn determined by (2.2.2). We

can think of (2.2.2) as the reduced form relationship between Xs and Z, where Z = (Z′1,Z
′
2)
′ ∈ Z ≡ Z1×Z2 ⊂ Rdz

includes both the exogenous variables in the outcome equation and a vector of excluded instrument, Z2. The vector
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of instrument, Z, is available in both samples, and therefore, it serves to establish a link between two samples. The

model in (2.2.1) accommodates general nonseparability between covariates and the unobserved heterogeneity. We do

not impose any parametric or shape restriction on gs.

Variables in the auxiliary population are determined by

Ya = ga(Xa,Z1,εa) and Xa = ha(Z,ηa),

where ga and ha are generally different from gs and hs, respectively.

Let R denote the sample membership indicator. That is, Ri = 1, if i-th draw comes from the study population,

i = 1, ...,n = ns + na. Let Y = RYs +(1−R)Ya and X = RXs +(1−R)Xa. If no variable is missing, we are able to

observe (Ys,Ya,Xs,Xa). However, in our context, only RY and (1−R)X are observed. We then construct a pseudo-

merged sample S using the two data sources as S = {Ri,RiYi,(1−Ri)Xi,Zi}n
i=1. Let A = (R,RY,(1−R)X ,Z) and

W = (X ′,Z′1)
′ collect the observed variables and the covariates in the outcome equation, respectively. Throughout the

paper, we arrange the data in such a way that Ri = 1 for i = 1, ...,ns and Ri = 0 for i = ns +1, ...,n. The merged sample

may not correspond to any real-world population. We impose the following set of assumptions on the merged sample

so it can mimic a random sample from a pseudo population. These assumptions are largely based on Assumption 1 in

Graham et al. (2016).

Assumption 2.1 (Data Structure)

(a) Supp(FZ|R=1)⊂ Supp(FZ|R=0).

(b) (i) ns/(ns +na)→ Q0; (ii) R follows a Bernoulli distribution, with E[R] = Q0.

(c) There is a unique measurable function r(·) : Z → [0,1], such that for all z ∈Z ,

fZ|R(z|1)
fZ|R(z|0)

=
1−Q0

Q0

r(z)
1− r(z)

.

(d) (i) Q0 ∈ (ε1,1− ε1) for some ε1 ∈ (0,1/2); (ii) ε2 < r(z)< 1− ε2 for some ε2 ∈ (0,1/2), and for all z ∈Z .

(e) (Xs|Z,R = 1) d
= (Xa|Z,R = 0).

Assumption 2.1(a) is a support condition on the commonly observed variables. It ensures that we will be able

to find, for all the observations in the study sample, comparable units in the auxiliary sample, Assumption 2.1(b)

imposes a pseudo randomization scheme on R, and therefore, allows us to view the merged data as a random sample
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from the pseudo-merged population. Let `(·) denote the conditional likelihood ratio of Z across two population, i.e.

`(z)≡ fZ|R(z|1)/ fZ|R(z|0). Assumption 2.1(c) expresses this likelihood ratio as a function of r(·), which plays the role

of the “propensity score” function of R given Z. In our context, this is the probability that one observation belongs

to the study population conditional on the value that instrumental variables take. The first part of Assumption 2.1(d)

indicates that ns grows at the same order of magnitude as na. The second part of Assumption 2.1(d) ensures that

the pseudo-true merged population is not a degenerate one conditional on all possible values of Z. By Assumption

2.1(b)–(d) and Bayes’ Law, we have r(z) = P(R = 1|Z = z), and thus, r(·) can be viewed as the propensity score

function.

Assumption 2.1(e) is a rank similarity condition. It requires the conditional distribution of Xs given Z in the

principal population coincide with that of Xa in the auxiliary population. In view of the structural relation in (2.2.2),

the assumption is satisfied if hs = ha and (ηs|Z,R= 1) d
= (ηa|Z,R= 0). Assumption 2.1(e) is the only cross-population

restriction we impose on our data structure, which means the conditional distribution of Y given (X ,Z), and therefore,

the conditional distribution of Y given Z and the marginal distribution of Z are all allowed to differ across Ps and

Pa. This assumption is weaker than Assumption 1(ii) of Graham et al. (2016), as we do not impose a rank similarity

condition on the outcome, which would imply FYs|ZR=1(·|·) = FYa|ZR=0(·|·).

2.3 Identification

In this section, we first introduce the definition of UQE. Then, we develop a set of identification results, for the cases

when X is continuously distributed, and when it is discrete, respectively.

2.3.1 Parameter of Interest

Our definition of the unconditional policy effect depends on the notion of a counterfactual experiment, which is

formally defined as follows:

Definition 2.1 (Counterfactual Experiment) Let φ ≡ (Ũs, G̃s, Z̃, R̃, ε̃s, g̃s) : Ω→ K([0, 1])×D(X )×Z ×{0,1}×

E × l2(X ,Z1,E ), where K([0,1]) is the collection of all non-empty closed subsets of the unit interval, and D(X )

denotes the space of distribution functions on X . We say Φ is the set of counterfactual experiments, if for all φ ∈Φ,

we have (i) G̃−1
s (Us) = G̃−1

s (U ′s) almost surely for all Us,U ′s ∈ Ũs; (ii) (ε̃s, Z̃, R̃)
d
= (εs,Z,R); (iii) g̃s = gs, (iv) for all

Us ∈ Us and Ũs ∈ Ũs, there exists Ũ ′s ∈ Ũs and U ′s ∈ Us, respectively, such that (Ũ ′s |Z̃1, R̃ = 1) d
= (Us|Z1,R = 1) and

(Ũs|Z̃1, R̃ = 1) d
= (U ′s |Z1,R = 1), where Us = {Ŭ ∈U [0,1] : (F−1

Xs|R(Ŭs|1)|Z1,R = 1) d
= (Xs|Z1,R = 1)}.

The definition of counterfactual experiments does not specify the counterfactural target covariate X̃s directly. It

is implicitly defined through the first two elements of φ . The first element, Ũs, is a set of rank variables associated
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with the counterfactual target covariate, X̃s. When X̃s is absolutely continuous, Ũs becomes a singleton set, but the

set is generally not degenerate when the distribution of X̃s contains a mass point. The second component, G̃s, is

the counterfactual distribution of X̃s conditional on the study population. When the target covariate is continuously

distributed, G̃s is continuous and strictly increasing, and therefore, X̃s is uniquely determined by X̃s = G̃−1
s (Ũs), where

Ũs is the only element in Ũs. However, when the target covariate contains mass points, there is a set of counterfactual

rank variables that correspond to the same target covariate in the study population. This equivalent class is defined by

Condition (i).

Following Rothe (2012), we restrict our attention to counterfactual changes where only the marginal distribution of

Xs is changed, while the marginal distribution of Z and the dependence structure between Xs and Z remain unaffected.

This notion of a ceteris paribus change is formally characterized by Conditions (ii)–(iv). Condition (ii) implies that

the joint distribution of the observed variables (Z,R) and the latent variable εs remain unchanged across counterfactual

experiments. Under Condition (iii), the structural production function, g is also not affected by the counterfactual

change. Condition (iv) imposes a rank similarity condition. It says the conditional rank of the counterfactural target

covariate follows the same distribution as the status quo. Due to the possibility of multiplicity of rank variables, the

condition is also framed in terms of a set equivalence condition. When we restrict attention to absolutely continuous

target covariates, both Us and Ũs are singleton sets. Hence, this condition reduces to (X̃s|Z̃1, R̃ = 1) d
= (Xs|Z1,R = 1).

Each counterfactual experiment φ represents a modification of the underlying economic system. It completely

determines the counterfactual outcome in the study population. Yet we remain largely agnostic as to the counterfactual

change in the auxiliary population. The definition also leaves the mechanism causing the change in the marginal

distribution of the target covariate unspecified.

Remark 2.1 Our definition of counterfactual experiments relaxes the rank invariance conditions imposed by Rothe

(2012). Instead, counterfactual changes in our context only need to satisfy a rank similarity or copula invariance

condition.

With the counterfactual experiments defined, we now construct the counterfactual covariate vector by W̃G =

(G̃−1
s (Ũs), Z̃′1)

′. The counterfactual outcome of the study population is then defined as Ỹs = g̃s(W̃G, ε̃s), which fol-

lows a marginal distribution, FỸs
, and a conditional distribution restricted to the principal population, FỸs|R=1. Note

that the unconditional distribution is not well-defined, due to the lack of information on counterfactual changes in the

auxiliary population. Therefore, we focus exclusively on the counterfactual distribution conditional on the study pop-

ulation in what follows. When X is discrete, a single counterfactual experiment is mapped to a set of counterfactual

outcomes, and we denote the corresponding set of counterfactual distributions by FỸs
.

In our context, the sequence of counterfactual distributions is defined in terms of the “marginal” distribution of
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the potential covariate Xs in the study population, rather than the true unconditional distribution of the observed X .

Although Xs is missing from the main dataset, and therefore, its marginal distribution cannot be directly identified

from the study population, we show in Theorem 2.1 that it can be recovered from the auxiliary data under the rank

similarity assumption we impose in Assumption 2.1.

The policy parameter we seek to identify in this paper is the pathwise derivative of counterfactual distributional

effect conditional on the study population. It is adapted from the definition of the marginal partial distributional policy

effect (MPPE) by Rothe (2012).

Definition 2.2 (Marginal Partial Distributional Policy Effect) Let Φ∗ ≡ {φt}t≥0 ⊂ Φ denote a sequence of coun-

terfactual experiments, such that G̃s,t → FXs|R=1, as t ↓ 0. The MPPE for a given functional ν : D(Y )→ R and a

sequence of F̃s,t ∈FỸs,t
is defined by,

MPPE(ν ,{Ỹs,t}t≥0)≡
∂ν(FỸs,t |R̃=1)

∂ t

∣∣∣∣∣
t=0

= lim
t↓0

ν(FỸs,t |R̃=1)−ν(FYs|R=1)

t
.

We consider two specific types of counterfactual distributional changes: MDS and MQS. The defintion of the former

is due to Firpo et al. (2009b). It denotes a small perturbation in the distribution of Xs, in the direction of G. MQS,

on the other hand, considers a minuscule change in the quantiles of Xs. This type of policy change includes the MLS,

G−1
t,ls(u)≡ F−1

Xs|R(u|1)+ t, as a special case.

Definition 2.3 (Counterfactual Policy Distributions)

Marginal Distributional Shift (MDS): Gt,p(x) = FXs|R(x|1)+ t(G(x)−FXs|R(x|1)).

Marginal Quantile Shift (MQS): G−1
t,q (u) = F−1

Xs|R(u|1)+ t(G−1(u)−F−1
Xs|R(u|1)).

Remark 2.2 Figure 2.1 illustrates how the rates of change between the two types of counterfactuals are related.

Under the condition that FXs|R=1 is compactly supported with strictly positive density on X , MQS in a user-specified

direction, q(x), can be approximated in the limit by MDS with G(x) = FXs|R(x|1)− fXs|R(x|1)q(x).

Turning to the case of quantiles, the quantile operator for a particular τ is defined by, ντ(FYs|R=1) = F−1
Ys|R=1(τ). With

the understanding that MPPE associated with a counterfactual experiment is generally a set when the X is discretely

valued, we suppress the index with respect to {Ỹs,t}t≥0 for notational convenience, and denote the MPPE with MDS,

MPPE(ντ ,{Ỹs,t}t≥0), and MPPE with MQS, MPPE(ντ ,{Ỹs,t}t≥0), by UQEp(τ,G) and UQEq(τ,G), respectively.

Here, and in what follows, the qualifier “unconditional” in UQE should be understood as conditional on (or relative

to) the study population.
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Figure 2.1: Marginal distributional shift and marginal quantile shift

Notes: The blue curve depicts the data distribution of X . The red curve depicts a counterfac-
tual distribution in the sequence {Gt}t↓0, which can be induced by two equivalent policy changes.

2.3.2 First Step Identification

If there is no missing variable, the joint distribution of (Y,X ,Z) is directly identifiable from a random sample. Under

data combination, however, only the “marginal” conditional distributions: FYs|ZR=1 and FXa|ZR=0, can still be separately

identified from the two samples, respectively. The conditional distribution, FYs|XsZ1R=1, is generally not identifiable

without further cross-population assumptions.

Instead of seeking identification of the entire conditional distribution, FYs|XsZ1R=1 (·|·, ·,1), we demonstrate in

Sections 2.3.3 and 2.3.4 that UQE, and MPPE in general, can be identified using information on a finite set of points

of Ys. For any τ that belongs to this set, we define qτ as the τ−th quantile of Ys. Choice of τ depends on research

interest. For instance, it can include only the median, the quartiles of Ys, etc. This flexibility allows us to obtain

identification under much milder restrictions on the pseudo-merged population.

Identification is achieved through the excluded instrument variables, Z2. To ease notational burden, we define

Λ(x,z1)≡ FYs|XsZ1R(qτ |x,z1,1) for a given τ and for all x ∈X and z1 ∈Z1.
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Assumption 2.2 εs ⊥⊥ Z2|Xs,Z1,R = 1.

Assumption 2.2 implies that Z2 can be excluded from the outcome equation, and therefore, can be used as a source of

exogenous variation to proxy for the missing covariate in the study population. Note that Λ is generally not identified

without an exogenous instrument Z2. We illustrate this point with a linear normal model in Example 2.1.

Under Assumptions 2.1 and 2.2, the following moment-matching equation holds,

E [1(Y ≤ qτ)|Z,R = 1]−E [Λ(W )|Z,R = 0] = 0, a.s. (2.3.1)

Equivalently, Λ can be identified based on a likelihood-ratio-weighting equation,

E
[

R1(Y ≤ qτ)− (1−R)Λ(W )
r(Z)

1− r(Z)

∣∣∣∣Z]= 0, a.s. (2.3.2)

The next assumption is about the global identification of Λ.

Assumption 2.3 Λ is the unique solution to (2.3.1) or (2.3.2) almost surely.

Assumption 2.3 is a high level condition. It is implied by a bounded completeness condition on the auxiliary

population.2 Note that Λ is globally identified as long as E[Λ(W )− Λ̃(W )|Z,R = 0] = 0 implies Λ = Λ̃, which follows

immediately if Λ is measurable with respect to W , and W is bounded complete for Z, relative to the auxiliary popu-

lation.3 Although Canay et al. (2013) show that the completeness condition is untestable against general alternatives,

we use two examples to show that the assumption is reasonable in some special cases.

The completeness condition implicitly imposes some constraints on the support of the excluded instrument. When-

ever X is continuously distributed, Z2 is generally required to be continuous. In Example 2.1, we show that when both

X and Z2 are continuous, Assumption 2.3 holds when the structural errors follow a joint normal distribution, which

is a commonly-adopted assumption in empirical practices. However, our method does not apply if the instrument has

finite support or otherwise violates the bounded completeness condition, the latter of which is likely to occur if the

strength of the instrument is weak.

On the other hand, when X is discretely valued, we show via Example 2.2 that Assumption 2.3 can be satisfied

with a discrete instrument. The key requirement is a rank condition on conditional probability matrices of Xa given

Z. When the set of Z1 is empty, we can uses Cragg and Donald (1996) or Robin and Smith (2000) to test the rank

condition.
2For two random element U and V , we say U is bounded complete for V , relative to a subpopulation S = s, if for all bounded measurable

functions δ (·), E[δ (U)|V,S = s] = 0 implies δ (U)≡ 0 almost surely.
3Bounded completeness is weaker than the commonly adopted completeness condition appearing in Newey and Powell (2003) and Fan et al.

(2014). We refer readers to Hoeffding et al. (1977), Blundell et al. (2007), and Lehmann (1986) for detailed discussions.
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In Section 2.4, we base our estimation and inference on parametric identification of Λ. In this case, we assume that

FYs|XsZ1R(qτ |x,z1,1) = Λ(x,z1;β0), for some β0 ∈ θβ ⊂ Rdβ . In Lemma 2.3, we provide a set of sufficient conditions

which allow us to establish a global parametric identification condition analogous to Assumption 2.3.

Lemma 2.1 FYs|XsZ1R(qτ |·, ·,1) is point identified under Assumptions 2.1–2.3.

Lemma 2.1 establishes the nonparametric identification of Λ. The proof for the parametric case follows along

exactly the same line so we omit it here. In the next example, we verify the identification assumptions in a conditional

normal model.

Example 2.1 (Conditional Normal Model) Let the structural equations of the study population be given by

Ys = gs(Xs,Z1)+ εs,

Xs = hs(Z)+ηs,

where εs and ηs are jointly normally distributed. Specifically, for positive-valued functions ψy(·) and ψx(·), we have

(εs,ηs)|Z,R = 1∼ N

0,

ψy(Z1) 0

0 ψx(Z1)


 .

Then, Λ(w) = Φ(ψy(z1)
−1/2(qτ −gs(w))), where Φ(·) denotes the CDF of standard normal distribution. Suppose the

reduced-form of X given Z in the auxiliary population is Xa = ha(Z)+ηa, Assumption 2.1(e) is satisfied if hs = ha = h,

and (ηs|Z,R= 1) d
= (ηa|Z,R= 0). Assumption 2.2 holds if Z2⊥⊥ εs|Xs,Z1,R= 1. Assume, in addition that, conditional

on z1, Supp(FZ2) contains an open set and that h(z1, ·) maps open sets of z2 into open sets. Assumption 2.3 then follows

by Theorem 2.2 in Newey and Powell (2003).

Turning to the linear case, let gs(w) = γs1x+ γ ′s2
z1, h(z) = δ ′1z1 +δ ′2z2, ψy = ψx = 1, ηs ⊥⊥ (εs,Z2), and therefore,

E [1(Y ≤ qτ)|Z,R = 1] = Φ((qτ − (γs1δ ′1 + γs2)
′Z1− γs1δ ′2Z2)/(1+ γ2

s1
)1/2). As a consequence, (γs1 ,γ

′
s2
)′ are uniquely

determined by (2.3.1) or (2.3.2), if and only if δ2 6= 0.

Example 2.2 (Discrete Covariates) Suppose Xs,Xa, and Z2 are all discretely valued. Assume that Supp(FX j |Z1=z1) =

{x1, ...,xl} and Supp(FZ2|Z1=z1) = {z
1, ...,zk}, for j = s,a and for all z1 ∈ Supp(FZ1). Let P j

u,t(z1,r) = P(X j = xu|Z2 =

zt ,Z1 = z1,R = r) for j = s,a and r = 0,1. Assumption 2.1(e) holds if for all u ∈ {1,2, ..., l} and t ∈ {1,2, ...,k},

Ps
u,t(Z1,1) = Pa

u,t(Z1,0) with probability 1. Moreover, let P j(·, ·) denote the matrix of probabilities where the (u, t)-th

entry is equal to P j
u,t(·, ·). Then by Theorem 2.4 in Newey and Powell (2003), bounded completeness, and hence,

Assumption 2.3, holds if rank(Pa(Z1,0)) = l with probability 1.
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2.3.3 Identification with Continuously Distributed Covariates

In this section, we establish the identification of UQEq and UQEp when the distribution of X is absolutely continuous.

Before stating the main result, we need some additional identifying assumptions.

Assumption 2.4

(a) (i) εs ⊥⊥ Us|Z1,R = 1; (ii) there exists a t0 sufficiently close to 0, such that for all t ≤ t0 and φt ∈ Φ∗, ε̃s,t ⊥⊥

Ũs,t |Z̃1,t , R̃t = 1.

(b) Supp(G)⊂ Supp(FX |ZR(·|Z,1)) almost surely.

Assumption 2.5 FY |R=1 is continuously differentiable in an open neighborhood of qτ with strictly positive density

function fY |R=1.

Assumption 2.4(a)(i) imposes that conditional on Z1, structural error εs is independent of the rank variable Us

in the study population. This is much weaker than the commonly assumed strict independence condition that Xs

is independent of εs unconditionally. Conditional exogeneity has also been imposed by Firpo et al. (2009b), Rothe

(2012), and Chernozhukov et al. (2013a), among others. Assumption 2.4(a)(ii) requires the conditional independence

condition of part (a) to hold when counterfactual experiments get sufficiently close to the status quo. Under the rank

invariance condition imposed by Rothe (2012), it is automatically implied by Assumption 2.4(a)(i). Assumption 2.4(b)

ensures that the conditional distribution of Ys given W is identified over the support of W . Assumption 2.5 imposes a

smoothness condition on the distribution of target outcome, which implies that F−1
Y |R=1 is Hadamard differentiable at

FY |R=1, tangentially to the set of functions that are continuous at qτ .

The main theoretical result of this section is given as follows:

Theorem 2.1 Suppose that Assumptions 2.1–2.5 hold, and that the distribution of X is absolutely continuous with

respect to the Lebesgue measure, both UQEp(τ,G) and UQEq(τ,G) are identified.

(a) For UQEq, we have

UQEq(τ,G) =− 1
fYs|R(qτ |1)(1−Q0)

E [(1−R)`(Z)Λx(X ,Z1)gq(X)] ,

where gq(x)≡ G−1(FXs|R(x|1))− x, Λx(x,z1)≡ ∂Λ(x̃,z1)/∂ x̃|x̃=x, and FXs|R(x|1) =
1

1−Q0
E [(1−R)`(Z)1(X ≤ x)].

(b) Suppose in addition that X is compact, and FXs|R=1 is continuously differentiable on X with strictly positive

density function fXs|R=1. Then we have,

UQEp(τ,G) =− 1
fYs|R(qτ |1)(1−Q0)

E [(1−R)`(Z)Λx(X ,Z1)gp(X)] ,
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where gp(x)≡−
G(x)−FXs|R(x|1)

fXs |R(x|1)
, and fXs|R(x|1) =

1
1−Q0

∂E [(1−R)`(Z)1(X ≤ x)]/∂x.

Remark 2.3 The compactness condition on X is assumed to ensure the existence of pathwise derivative of the inverse

map. It can be relaxed by imposing a boundary condition on Λx. Specifically, we may assume that Λx vanishes when

x 6∈ [FXs|R=1(q1)+ ε,FXs|R=1(q2)− ε], for 0 < q1 < q2 < 1 and some ε > 0.

2.3.4 Identification with Discrete Covariate

Let the support of X be {x1, . . . ,xl}. When X is discrete, MQS is not well-defined and we consider MDS only, with

counterfactual experiments defined through a fixed discrete distribution, G. As indicated by Example 2.2, results in

this section hold when Z2 are both continuously and discretely valued.

Assumption 2.6

(a) (i) εs ⊥⊥Us|Z1,R = 1, for all Us ∈ Us; (ii) there exists a t0 sufficiently close to 0, such that for all t ≤ t0 and

φt ∈Φ∗, εs,t ⊥⊥ Ũs,t |Z̃1,t , R̃t = 1, for all Ũs,t ∈ Ũs,t .

(b) Supp(G)⊂ Supp(FXs|R=1).

(c) For all Us ∈Us, FUs|Z1R(us|z1,1) is continuously differentiable in us, for all z1 ∈Z1.

Assumption 2.6(a) is the counterpart of Assumption 2.4(a) for discrete covariates. Since the rank variables are

no longer uniquely pinned down by strictly increasing quantile functions, we strengthen Assumption 2.4(a) so that

conditional independence holds for all the rank variables in the equivalent class. With this identifying assumption

in hand, we are ready to present the following identification result. For j = 1, . . . , l, let the period bound generating

function be defined by

hqτ
(x j,x j−1,z1)≡−

(Λ(x j−1,z1)−Λ(x j,z1)) · (G(x j−1)−FXs|R(x
j−1|1))

fYs|R(qτ |1)
.

Theorem 2.2 Suppose that Assumptions 2.1–2.3, 2.5, and 2.6 hold, UQEp(τ,G) is partially identified, with

UQEp(τ,G) ∈

[
∑

j∈J+

hqτ
(x j,x j−1,z†

1, j)+ ∑
j∈J−

hqτ
(x j,x j−1,z∗1, j),

∑
j∈J+

hqτ
(x j,x j−1,z∗1, j)+ ∑

j∈J−
hqτ

(x j,x j−1,z†
1, j)

]
,

where J+≡{ j∈{1, . . . , l} : G(x j−1)≤FXs|R(x
j−1|1)} (J− is analogously defined), z∗1, j ≡ argsupz1∈Z1

(Λ(x j−1,z1)−

Λ(x j,z1)), z†
1, j ≡ arg infz1∈Z1(Λ(x

j−1,z1)−Λ(x j,z1)), and FXs|R(x
j|1) = E[ 1−R

1−Q0
`(Z)1(X ≤ x j)], for j ∈ {1, . . . , l}.
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Theorem 2.2 indicates that UQEp is generally partially identified with bounds generated by hqτ
. In the special case

when Λ(x,z1) is constant in z1, the identified set of UQEp reduces to a singleton.

If X is binary and Gt,p(x) = 1{0 ≤ x < 1}(FXs|R(0|1)− t) + 1{x ≥ 1}, hqτ
reduces to −(Λ(1,z1)−Λ(0,z1))

/ fY |R(qτ |1). In such circumstance, Theorem 2.2 corresponds to the two-sample generalization of Theorem 5 in Rothe

(2012), when ν in that paper takes on the quantile functional.

2.4 Estimation and Inference

In this section, we discuss estimation and inference for our two-sample UQE. First, we describe an estimation proce-

dure for UQEq and UQEp as identified in Theorem 2.1. We then show that our estimator is consistent and asymptoti-

cally normal in Theorem 2.3.4

2.4.1 Estimation Procedure

Following the discussion in Section 2.3, we first propose an estimator of the conditional probability, Λ. Here, we

restrict our attention to the parametric setting where Λ is indexed by a vector of parameter, β . We use a moment-

matching method based on (2.3.2) to estimate β . The estimation of β consists of four-steps. In the first step, we

estimate qτ by solving

q̂τ ≡ arg min
q∈Y

En[R(τ−1(Y ≤ q)) · (Y −q)]. (2.4.1)

The next three steps follow closely the Auxilliary-to-Study Tilting (AST) method proposed by Graham et al. (2016).

Using the AST estimator, β and the propensity score can be jointly estimated from moment restrictions in (2.3.2). To

implement the estimator, we first estimate the propensity score, r(z). Towards this end, we assume that the propensity

score takes a parametric form, i.e. r(z) = L(k(z)′γ), where L(·) is any link function that satisfies Assumption 2.7(e).

Using L(·), γ̂ can be obtained by solving the following problem,

γ̂ ≡ arg max
γ∈Θγ

En
[
R log(L(k(Z)′γ))+(1−R) log(1−L(k(Z)′γ))

]
. (2.4.2)

The AST estimator augments the conditional maximum likelihood estimator γ̂ with tilting parameters. The resulting

estimator of β is more efficient than the one based on γ̂ alone. Let t(z) be a vector of known functions of z with

a constant term as the first element. Denote the tilting parameters associated with the auxiliary data and the study

4Here we focus on the scenario where the distribution of X is absolutely continuous. When X is discrete, the problem features partially identified
parameters defined by the intersection bounds. Chernozhukov et al. (2013b) provide an extensive treatment of this topic. We omit discussion here
and refer readers to Appendix D in Rothe (2012) for a detailed discussion on how to apply their method.
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sample, by λa and λs, respectively. They are estimated by solving,

En

[(
1−R

1−L(k(Z)′γ̂ + t(Z)′λ̂a)
−1

)
L(k(Z)′γ̂)t(Z)

]
= 0, (2.4.3)

En

[(
R

L(k(Z)′γ̂ + t(Z)′λ̂s)
−1

)
L(k(Z)′γ̂)t(Z)

]
= 0. (2.4.4)

Using λ̂s and λ̂a, we compute study and auxiliary sample tilts, which are defined as follows:

π̂
s
i ≡

L(k(Zi)
′γ̂)

L(k(Zi)′γ̂ + t(Zi)′λ̂s)
, π̂

a
i ≡

L(k(Zi)
′γ̂)

1−L(k(Zi)′γ̂ + t(Zi)′λ̂a)
. (2.4.5)

Also let e(z) be a dβ -dimensional vector of known functions of z, and g(a; q̂τ , γ̂, λ̂s, λ̂a,β )≡ (π̂sr1(y≤ q̂τ)− π̂a(1−

r)Λ(w;β ))e(z). Now, in the last step, β can be estimated by

β̂ ≡ arg inf
β∈Θβ

L̂n(β ), (2.4.6)

where L̂n(β )≡
∥∥∥En[g(A; q̂τ , γ̂, λ̂s, λ̂a,β )]

∥∥∥2

Ωn
and ‖x‖2

Ωn
≡ x′Ωnx, for a sequence of positive definite weighting matri-

ces Ωn.

Using these quantities, we can obtain Λx(w; β̂ )≡ ∂Λ(x̃,z1; β̂ )/∂ x̃|x̃=x, and ̂̀(z)≡ na
ns
· L(k(z)′ γ̂+t(z)′λ̂s)

1−L(k(z)′ γ̂+t(z)′λ̂a)
. Throughout

this section, we assume that the counterfactual distribution G is known. In practice, if G is not known, it may be esti-

mated from an independent sample; see e.g. Rothe (2010). Using the above estimates and F̂Xs|R=1(·)≡ Ena [
̂̀(z)1(X ≤

·)], where Ena [X ] denotes n−1
a ∑

n
i=ns+1 Xi, ĝq can be obtained as the plug-in estimator. For gp, we need an estimator for

fX |R=1(·). Our identification relies on a compact support condition, and it is well known that the Prazen-Rosenblatt

density estimator is not valid near the boundary of support. To overcome this challenge, we introduce trimming.5 For

a kernel Kx with compact support, and some bandwidth bx, we let

f̂X |R(x|1)≡ Ena

[̂̀(Z)Ibx Kbx (X− x)
]
,

where Kbx(·) ≡ b−1
x Kx(·/bx). Ibx is a trimming indicator, which equals one for x ∈ {[x+ρxbx/2, x̄−ρxbx/2]}, where

x, x̄, and ρx are the lower and upper bound, of X , and the diameter of Supp(Kx), respectively. The density, fY |R, can

also be estimated using a kernel density estimator. Specifically, for any kernel function Ky(·) that satisfies Assumption

5Trimming is widely adopted in the literature; see e.g. Härdle and Stoker (1989), Powell et al. (1989) among others. This specific trimming
function is inspired by Guerre et al. (2000) and Li et al. (2002). As an alternative, we can use a local polynomial density estimator that adjusts for
the boundary bias adaptively; see Cattaneo et al. (2020) for details.
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2.8(b), let f̂Y |R(y|1)≡ Ens [Kby (Yi− y)], where Ens [X ]≡ n−1
s ∑

ns
i=1 Xi and Kby(y)≡ b−1

y Ky(y/by).

Now, plugging in the estimators of nuisance quantities, UQE j(τ,G) can thus be estimated by,

ÛQE j(τ,G)≡− 1

f̂Y R(q̂τ |1)
Ena [

̂̀(Z)Λx(W ; β̂ )ĝ j(X)], j = p,q. (2.4.7)

We summarize the estimation procedure in the following algorithm.

Algorithm 2.4.1 (Plug-in Estimator for ÛQE)

1. Compute the empirical quantile estimator q̂τ by solving (2.4.1).

2. Compute the conditional maximum likelihood estimator γ̂ by solving (2.4.2).

3. Solve (2.4.3) and (2.4.4) to get λ̂ j, and use them to compute π̂ j, for j = s,a, following (2.4.5).

4. Use the above quantities to compute β̂ , by solving (2.4.6).

5. Compute Λx(·; β̂ ), ̂̀(·), F̂Xs|R=1(·), f̂Xs|R=1(·). Using these quantities to compute ĝ j, for j = p,q.

6. For j = p,q, compute the plug-in estimator ÛQE j following (2.4.7).

2.4.2 Large Sample Results

In this section, we present inference results for the estimators introduced in the previous section. We first establish

large sample properties of β̂ , for which purpose, some additional regularity conditions are in order.

Assumption 2.7

(a) (i){(Ri,RiYi,(1−Ri)Xi,Zi)}n
i=1 are i.i.d.; (ii) let θ ≡ (γ,λs,λa,β ) ∈Θ≡Θβ ×Θ2

λ
×Θβ , then Θ is compact, and

θ0 lies in the interior of Θ.

(b) FY |ZR=1(y|z) is absolutely continuous and differentiable in y ∈ Y0 for all z ∈Z , where Y0 is a compact subset

of Y , and

sup
(y,z)∈Y0Z

| fY |ZR(y|z,1)| ≤ c1 < ∞.

(c) (i) Λ(w;β ) is twice continuously differentiable in β with uniformly bounded derivatives, for all w ∈ W ; (ii)

0≤ infw,β Λ(w;β ),supw,β Λ(w;β )≤ 1; (iii) Λx(·;β ) is continuously differentiable in β , and supw,β |Λx(w;β )| ≤

c2 < ∞.

93



(d) There exists a symmetric, non-random matrix Ω, such that ||Ωn−Ω||= Op(δω,n), where δω,n = o(1), and that

c−1
3 ≤ λmin(Ω)≤ λmax(Ω)≤ c3.

(e) There is a unique γ0 ∈Θγ , and known function L(·) such that (i)

`(z) =
1−Q0

Q0
· L(k(z)′γ0)

1−L(k(z)′γ0)
.

(ii) L(·) is strictly increasing, twice continuously differentiable, with bounded first and second order derivatives;

(ii) limx→−∞ L(x) = 0 and limx→∞ L(x) = 1; (iii) 0 < c4 < L(k(z)′γ + t(z)′λ j)≤ c5 < 1 for all (γ,λ j) ∈Θγ ×Θλ ,

j = s,a, and z ∈Z .

(f) E[|| j(Z)||4]<+∞, where j = k, t,e.

Assumption 2.7(a) is standard in the microeconometric literature. Assumption 2.7(b) requires the conditional den-

sity fY |ZR(·|·,1) be bounded uniformly for all (y,z) ∈ Y0Z . Assumption 2.7(c) imposes mild smoothness conditions

on the parametric function Λ(·, ·; ·), requiring it to be bounded between the unit interval, thus behaving like a distri-

bution function. Assumption 2.7(d) states that Ωn is consistent for Ω, which is positive definite. Assumption 2.7(e)

implies that the true “propensity score” is known up to finite dimensional γ0. It also specifies smoothness and bound-

edness conditions on the parametric propensity score. Finally, due to the estimation of qτ , we impose a finite fourth

moment condition in Assumption 2.7(f), which is stronger than the usual square-integrability condition.

Lemma 2.2 Suppose that Assumptions 2.1–2.5 and Assumption 2.7 hold, then (i) β̂
p→ β0; furthermore, (ii) suppose

that the Jacobian matrix, MΩ, as defined in (2.8.5), is invertible, then

√
n(β̂ −β0) =

1√
n

n

∑
i=1

ψβ (Ai;θ0,qτ)+op(1),

where ψβ (A;θ0,qτ) is given by (2.8.8), and (iii)

√
n(β̂ −β0)

d→ N(0,Σβ ),

where Σβ ≡ E[ψβ (A;θ0,qτ)ψβ (A;θ0,qτ)
′].

Lemma 2.2 shows that the parameters of FYs|XsZR=1 are consistently estimated by β̂ . Furthermore, it admits an

asymptotic linear representation with influence function given by ψβ (A;θ0,qτ), which plays a key role in establishing

the large sample properties of UQE. Towards this ends, we need the following set of assumptions.
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Assumption 2.8

(a) (i) FY |R=1(·) is absolutely continuous and differentiable over y ∈ Y ; (ii) fY |R=1(·) is uniformly continuous; (iii)

the density fY |R=1(y) is strictly bounded away from 0, three times continuously differentiable in y with uniformly

bounded derivatives for y in Y0, such that qτ ∈ Y0.

(b) The kernel function Ky(·) is symmetric, continuous, bounded, with a compact support, and such that (i)
∫

Ky(y)

dy = 1; (ii)
∫

yKy(y)dy = 0.

(c) by→ 0, log(n)n−1b−1
y → 0, and nb5

y → c6 < ∞.

(d) (i) X is compact; (ii) G is continuously differentiable on X with strictly positive density.

Assumption 2.8(a) strengthens Assumption 2.5 and imposes stronger smoothness conditions on the distribution of

Ys. Assumption 2.8(b) states several regularity conditions on kernel functions, which is standard in the literature.

Assumption 2.8(c) specifies admissible rate for the bandwidth parameter. We can choose by = O(n−κ
s ), for κ ∈

[1/5,1/2). Assumption 2.8(d) imposes support and smoothness conditions for the counterfactual target covariate.

Asymptotic properties of ÛQE are formally characterized in the next theorem.

Theorem 2.3 Under Assumptions 2.1–2.5, 2.7, and 2.8, (i) the following linear expansions hold,

ÛQEq(τ,G)−UQEq(τ,G) =
1
n

n

∑
i=1

ψq +Bq(τ,G,by)+op(n−1/2).

Suppose in addition that Assumption 2.9 holds, (ii) then we have

ÛQE p(τ,G)−UQEp(τ,G) =
1
n

n

∑
i=1

ψp +Bp(τ,G,by)+op(n−1/2),

where, ψ j, j = p,q, is defined in Section 2.7.2, B j(qτ ,G,by) ≡
b2

y f
′′
Y |R(qτ |1)d j(θ0,G)

2 f 2
Y |R(qτ |1)

·
∫

y2Ky(y)dy, and d j(θ0,G) ≡
1

1−Q0
E[(1−R)`(Z)Λx(X ,Z1;β0)g j(X)], for j = p,q.

(iii) Therefore, √
nby(ÛQE j(τ,G)−UQE j(τ,G)−B j(qτ ,G,by))

d→ N(0,Σ j),

where, Σ j ≡
d2

j (θ0,G)

f 3
Y |R(qτ |1)Q0

∫
K2

y (y)dy, for j = p,q.

From the linear expansions in Theorem 2.3, we conclude that UQE converges at a rate that is slower than root-n.

This result is mainly driven by the nonparametric estimation of the density fY |R=1, and therefore, the estimator is
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nonparametric in essence. Moreover, the asymptotic expansion includes an asymptotic bias term, B(τ,G,by). If we

assume, as in Firpo et al. (2009a), nb5
y → 0 or κ < 1/5, the bias vanishes asymptotically.

Remark 2.4 Estimators for the asymptotic variance of UQEp(τ,G) and UQEq(τ,G) can be constructed using their

empirical counterparts. Specifically, let

Σ̂ j ≡
d̂ j,n(θ̂ ,G)2

f̂ 3
Y |R(q̂τ |1)En[R]

∫
K2

y (y)dy,

where d̂ j,n(θ̂ ,G)≡ Ena [
̂̀(Z)Λx(W ; β̂ )ĝ j(X)]. Under a suitable rate condition on by, consistency of Σ̂ j follows directly

from the first two parts of Theorem 2.3. To achieve better finite-sample performance, we can add the root-n terms

of the influence functions to the variance estimator, based on which, we propose the following improved variance

estimator,

Σ̂ j,imp ≡ byEn[ψ̂ j(A; θ̂ , q̂τ ,by)
2]. (2.4.8)

In the above definition, ψ̂ j(a; θ̂ , q̂τ ,by) is a plug-in estimator of the influence function, ψ j(A;θ0,qτ ,by), for j = p,q.

A detailed description of the construction of ψ̂ can be found in Section 2.8.3.

Remark 2.5 Theorem 2.3 implies that tests of the unconditional quantile effect converges at a non-parametric rate

in general. Nonetheless, for the null of zero, positive, and negative effects, we can still construct tests that have

power against departures of the null at the parametric rate. For example, to test the null: H0 : UQE j(τ,G) = 0, it is

equivalent to test H ′0 : d j(β0,G) = 0, as UQE j(τ,G) = 0⇔ d j(β0,G) = 0, for j = p,q. From Theorem 2.3, we know

that d̂ j,n(β̂ ,G) converges at the parametric rate. Moreover, we have

√
nV̂−1/2

d, j (d̂ j,n(θ̂ ,G)−d j(θ0,G))
d→ N(0,1), (2.4.9)

where V̂d, j is an estimator of Vd, j ≡ E[ψd, j(A;θ0,qτ)
2], with ψd, j, j = p,q, defined in Section 2.7.2. The result in

(2.4.9) can be used to test H ′0, applying standard testing procedures.

2.5 Empirical Illustration

We apply our identification and estimation methods to a variant of the Mincer’s regression. Our main goal here is to

demonstrate the bias from using potential instead of actual labor experience in human capital earnings models.

Identifying the causal relationship between earnings and human capital accumulation has been a focus of labor

economic studies for decades. Traditionally, Mincer’s regression has been widely used to quantify the link between

labor wage, education and labor market experience.
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Most datasets do not provide respondents’ actual work histories. Therefore, many researchers choose to proxy

the variable with potential work experience. The potential experience measure is usually calculated by subtracting

years of schooling plus some constant (typically 6 years) from age. Despite the popularity of this practice, many labor

economists believe that the return to actual experience tends to be biased when we employ the potential experience as

proxy; see e.g. Regan and Oaxaca (2009). One of their main arguments is that any lapse in labor force participation

would be implicitly assumed away when potential experience instead of the actual one is used. There is little reason to

believe that the return to employed experience is the same as that of the unemployed period. Hence, it is still preferable

to use the actual labor experience.

We use the 1970 wave of IPUMS as our main sample. The data is a 1-in-10,000 national random sample of the

population. The outcome of interest is the natural log of yearly earnings. The target covariate, actual work experience,

is missing from IPUMS. To apply the procedure described in Section 2.4, we need a dataset where the actual work

experience is available. For that purpose, we use the 1972 wave of PSID as cleaned by Hirukawa et al. (2020). Detailed

work histories are available in PSID. Therefore, it allows us to recover the actual labor market experience. However,

running analysis directly with PSID may not be ideal due to the fact that it is not nationally representative. Our method

is able to address this issue by combining information from both samples.

To estimate FYs|XsZ1R=1, we consider the following specification,

P(log(Income)≤ y) = Λ(β0 +β1educ+β2black+β3south

+β4married +β5experr +β6exper2
r ), (2.5.1)

where experr stands for individual’s actual or realized work experience, educ denotes the highest grade completed by

the respondent, black,married, and south are dummy variables which take one if the person is black, married, and

lives in the south, respectively. The actual work experience serves as our Xs. It enters (2.5.1) with linear and quadratic

terms. We let (educ,black,south,married) be the set of included instruments Z1, and the potential experience, experp,

be the excluded instrument Z2.

Mincer et al. (1974) derives the relationship between schooling, labor market experience and earnings by means of

an accounting identity model. We assume that realized labor experience, rather than potential experience as constructed

by econometricians, determines post-school investment, and therefore, observed earnings. This belief is embodied

in Assumption 2.2, which requires that earnings are independent with potential experience, conditional on actual

experience and education. This restriction holds if the mechanism that governs the discrepancy between potential

and actual experience is unrelated to the wage determination process. Note that it in principle rules out cases where
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Table 2.1: Summary statistics

Variable Mean St. Dev. Min 25th Pctl. Median 75th Pctl. Max

Data Source A: The IPUMS Sample (1970s)

Income 7,923.98 6,218.37 50 4,050 7,050 10,050 50,000
Log(Income) 8.64 0.97 3.91 8.31 8.86 9.22 10.82

Age 38.29 13.88 17 26 37 50 65
Education 11.43 2.71 5 10 12 13 17

Black 0.07 0.25 0 0 0 0 1
South 0.26 0.44 0 0 0 1 1

Married 0.75 0.43 0 0 1 1 1
Potential Experience 20.86 14.7 0 8 20 33 53

Data Source B: The PSID Sample

Income 8,966.52 5,905.47 50 5,069 8,000 11,359 70,000
Log(Income) 8.88 0.74 3.91 8.53 8.99 9.34 11.16

Age 37.8 12.37 17 26 37 47 65
Education 12.14 3.06 5 11 12 16 17

Black 0.27 0.44 0 0 0 1 1
South 0.41 0.49 0 0 0 1 1

Married 0.89 0.31 0 1 1 1 1
Potential Experience 19.65 13.42 0 7 18 30 53
Actual Experience 18.87 12.23 0 8 18 28 56

Data Source C: The IPUMS Sample (1980s)

Potential Experience 18.99 14.49 0 6 16 31 53

Notes: Summary statistics for IPUMS and PSID. The top panel uses male subsample (aged between 17 to 65) from the 1970
wave of IPUMS with a sample size of 5,807. The middle panel uses the male subsample (aged between 17 to 65) from the
1972 wave of PSID with a sample size of 2,339. The bottom panel uses male subsample (aged between 17 to 65) from the
1980 wave of IPUMS with a sample size of 533,517.

individuals leave labor market in response to wage rate fluctuations.

Visual check of the actual-experience-specific age-income profiles can serve as a preliminary test of the exclusion

restriction. There are many reasons why such a parsimonious model is often refuted by data. See Heckman et al.

(2006), Lemieux (2006), and the references therein for a detailed discussion of the empirics. Nevertheless, we believe

that our modification of the benchmark Mincer regression suffices for an illustrative purpose.

Due to the relatively large support, we treat experience as a continuous variable. We assume that, given potential

experience and the set of controls, actual labor experience follows the same distribution in the two samples, which

implies that Assumption 2.1(e) holds. Additionally, we assume the errors of structural equations follow a joint normal

distribution. Therefore, Assumption 2.3 follows by Example 2.1.

We provide estimation results when Λ(·) takes either the logistic link or the probit link. To implement the AST

estimator, we choose j(Z) = (Z′1,Z
′
2)
′, for j = k, t,e. The density of Ys is estimated using by = n−0.01

s bn,0, where

bn,0 ≡ 1.06min{σ(Ys), interquartile(Ys)}n−0.2
1 is the usual “rule-of-thumb” bandwidth.

Table 2.1 reports the descriptive statistics for the two samples. Following the standard practice in labor economics,
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Table 2.2: Estimation results for unconditional quantile effects

Quantile Level 0.25 0.5 0.75 0.25 0.5 0.75

Logit Link Probit Link
MDS

UQE2s(τ) -0.2297 -0.0612 -0.0296 -0.2304 -0.0619 -0.0299
(0.0587) (0.0125) (0.0054) (0.0576) (0.0124) (0.0055)

H0 : UQE2s = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MQS

UQE2s(τ) -0.2159 -0.0611 -0.0305 -0.2159 -0.0615 -0.0308
(0.0779) (0.0164) (0.0063) (0.0778) (0.0164) (0.0063)

H0 : UQE2s = 0 0.0043 0.0002 0.0000 0.0043 0.0002 0.0000
MLS

UQE2s(τ) 0.0956 0.0241 0.0135 0.0957 0.0243 0.0143
(0.0154) (0.0020) (0.0011) (0.0151) (0.0020) (0.0011)

H0 : UQE2s = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: In each panel, the first two rows report point estimates and standard error using our two sample estimator.
The last row of each panel reports the p-value associated with the Wald test of zero effect.

we use only the data on men aged between 17 and 65 when the surveys are taken. To ensure that Assumption 2.1(a)

holds, we further trim the IPUMS sample to match the sample bounds observed in the PSID data set. This leaves

us with a sample of ns = 5,807 respondents for IPUMS and na = 2,339 for PSID.There are considerable differences

between the two datasets. Individuals who are black, married and/or lives in the south are over-represented in PSID

compared to the nationally representative IPUMS. On average, an individual in PSID has 0.78 years more potential

experience than actual experience.

For UQE with MDS and MQS, we take the smoothed empirical distribution of experp from the 1980 wave of

IPUMS 1-in-100 sample (trimmed to match the support of the PSID sample) as the target counterfactual distribution.

The policy question we would like to answer with this counterfactual is as follows: What is the unconditional quantile

effect if the distribution of labor market experience shifts marginally towards that is observed in the 1980s. Due to the

large sample size of the counterfactual sample (n = 533,517), we can ignore the sampling variation and treat the target

distribution as known. As shown in Table 2.1, we find that less-experienced workers tend to have even fewer years of

experience in the counterfactual scenario than in the status quo, and the opposite is true for workers closer to the right

tail of the distribution.

We report estimation results in Table 2.2 and Figure 2.2. A few remarks are in order. First, our estimates suggest

that the counterfactual effect of a marginal shift in the distribution of actual experience is heterogeneous across in-

come groups. The effect is larger in magnitude for the lower-income groups as expected. When MDS and MQS are

considered, the quantile effects are uniformly negative and the shapes of the effect curves are similar. The marginal

shift could decrease the (log) earning by anything between 0.03 and 0.23 across income quantiles. For reference,
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Figure 2.2: Unconditional quantile effect of actual experience on log(Earnings).

Notes: The top panel: Results for UQE with MDS. The middle panel: Results for UQE with MQS. The bottom panel: Results for UQE with MLS.
All three plots contain the UQE of potential experience based on IPUMS (two-dash lines), the UQE of actual experience based on PSID (dashed
lines), the two-sample UQE (solid lines), and the two-sided 95% confidence intervals based on the improved variance estimator (shaded area).

when the logistic link is assumed, the marginal effect of MDS amounts to a reduction of 20.5% in annual earnings for

individuals the first quartile, 5.9% at the median, and 2.9% at the third quartile, respectively. The MLS estimates are
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of different signs from MDS and MQS. The marginal upward shift in the actual experience would increase a median

worker’s income by 2.4%.

Next, we consider the bias caused by using potential experience in lieu of the actual experience. We note that, one-

sample UQE estimates based on IPUMS tend to be smaller in magnitude at lower income quantiles than that based on

the combined data. Eventually, the two estimators converge at higher income levels.6

2.6 Concluding Remarks

In this paper, we propose a framework to identify and estimate unconditional quantile policy effect under data com-

bination. We establish the identification of UQE under two main conditions: a rank similarity assumption and a

conditional independence assumption, based on which, we provide estimators for the identified UQE and derive their

large sample properties.

Our current approach can be extended in the following directions. First, although we have restricted our attention

to the quantile effect throughout this paper, our results can be easily extended to other statistical functionals such

as mean, interquartile, and inequality measures. It would be interesting to see how the identification requirements

change with respect to the functional we adopt. Second, we have focused exclusively on the pointwise identification

and inference. While extension to uniform results seem straightforward, it comes at a cost of stronger cross-sample

restrictions. Under such assumptions, conditional quantile regression is likely feasible. Comparing conditional and

unconditional quantile effects, as in Firpo et al. (2009b), under our two-sample structure, would also be an interesting

direction for future research.

2.7 Appendix

2.7.1 Proofs of Lemmas and Theorems in Section 2.3

Proof of Lemma 2.1: We provide proof for the nonparametric identification here. The proof for the parametric case

follows along exactly the same line and is omitted. We shall show (2.3.1) first,

E[1(Y ≤ qτ)|Z,R = 1] = E[E[1(Ys ≤ qτ)|Xs,Z,R = 1]|Z,R = 1]

= E[E[1(Ys ≤ qτ)|Xs,Z1,R = 1]|Z,R = 1]

= E[Λ(Xs,Z1)|Z,R = 1]

= E[Λ(Xa,Z1)|Z,R = 0]

= E[Λ(W )|Z,R = 0],

6Our analysis is local to the direction of counterfactual change, and therefore, does not allow the result to be extrapolated globally. For the
same reason, the comparison between UQE2s and UQEpsid is not meaningful.
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where the second equality is by Assumption 2.2, and the fourth line follows by Assumption 2.1(e). Likewise for

(2.3.2),

E[R1(Y ≤ qτ)|Z] = E[1(Y ≤ qτ)|Z,R = 1] ·P[R = 1|Z]

= E[Λ(W )|Z,R = 0] · r(Z)

= E[(1−R)Λ(W )|Z] · r(Z)
1− r(Z)

.

Thus, Lemma 2.1 follows immediately from (2.3.1) (or (2.3.2)) and Assumption 2.3. �

Lemma 2.3 Suppose (i) Λ(w;β ) is measurable with respect to w for all β ∈ Θβ ; (ii) W is bounded complete for Z,

relative to the auxiliary population; (iii) Λ(w;β ) is differentiable with respect to β ; and (iv) ∂Λ(·;β )/∂β is uniformly

bounded and ∂Λ(·;β )/∂β 6≡ 0 for all β ∈ Θβ . Then, under Assumptions 2.1 and 2.2, β0 can be uniquely identified

from (2.3.1) or (2.3.2).

Proof of Lemma 2.3: From Lemma 2.1, we know that β0 solves (2.3.1) or (2.3.2). It remains to show uniqueness.

Suppose, there is β1, β1 6= β0, that solves (2.3.1), then, E[Λ(W ;β1)−Λ(W ;β0)|Z,R = 0] = 0. By MVT, this and (iii)

implies that E[∂Λ(W ;β )/∂β |
β=β̃
|Z,R = 0](β1−β0) = 0, for some value between β0 and β1. Condition (i), (ii), and

(iv) then imply that E[∂Λ(W ;β )/∂β |
β=β̃
|Z,R = 0] 6≡ 0, which leads to a contradiction. �

Proof of Theorem 2.1: We shall first prove the identification result for a fixed counterfactual distribution. Next, we

take the derivative of the counterfactual experiments with respect to t. The result of Theorem 2.1 then follows by the

fact that Hadamard derivative operator of the quantile functional is linear. For any t ≤ t0, fix εt ∈Φ∗, and we have that

FỸs,t |R(qτ |1)

=
∫

P(gs(X̃s,t , Z̃1,t , ε̃s,t)≤ qτ |X̃s,t = x, Z̃1,t = z1, R̃t = 1)dFX̃s,t Z̃1,t |R̃t
(x,z1|1)

=
∫

P(gs(G−1
t (Ũs,t), Z̃1,t , ε̃s,t)≤ qτ |Ũs,t = u, Z̃1,t = z1, R̃t = 1)dFŨs,t Z̃1,t |R̃t

(u,z1|1)

=
∫

P(gs(G−1
t (u),Z1,εs)≤ qτ |Z1 = z1,R = 1)dFUsZ1|R(u,z1|1)

=
∫

P(gs(G−1
t (u),Z1,εs)≤ qτ |Us = u,Z1 = z1,R = 1)dFUsZ1|R(u,z1|1)

=
∫

P(gs(Xs,Z1,εs)≤ qτ |Xs = G−1
t (u),Z1 = z1,R = 1)dFUsZ1|R(u,z1|1)

=
∫

P(gs(Xs,Z1,εs)≤ qτ |Xs = G−1
t (u),Z1 = z1,R = 1)dFUsZ|R(u,z|1)

=
∫

P(gs(Xs,Z1,εs)≤ qτ |Xs = G−1
t (FXs(x)),Z1 = z1,R = 1)dFXsZ|R(x,z|1)
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=
∫

FYs|XsZ1R(qτ |G−1
t (FXs|R(x|1)),Z1,1)dFXsZ|R(x,z|1)

=
∫

FYs|XsZ1R(qτ |G−1
t (FXs|R(x|1)),Z1,1)

r(z)(1−Q0)

Q0(1− r(z))
dFXZ|R(x,z|0)

= E
[

FYs|XsZ1R(qτ |G−1
t (FXs|R(X |1)),Z1,1)

r(Z)(1−Q0)

Q0(1− r(Z))
|R = 0

]
=

1
1−Q0

E
[
(1−R)`(Z) ·FYs|XsZ1R(qτ |G−1

t (FX |R(X |1)),Z1,1)
]
,

where the second line follows by the definition of FỸs,t
(qτ), the third one comes from the definition of Ũs,t and a change

of variable from x to u, the fourth equality follows by the construction of Φ∗ and Assumptions 2.4(a) and (b), the fifth

line is again by Assumption 2.4(a), the eighth one follows by the definition of Us and standard change-of-variable

argument, the tenth line is by Assumptions 2.1(a)–(c) and Bayes’ Law.

To obtain the marginal distributional effect, we take derivative of FGt
Ỹs|R

(qτ |1) with respect to t and evaluate it at

t = 0. For the marginal distributional shift,

∂FỸs,t |R(qτ |1)
∂ t

∣∣∣∣∣
t=0

=
∫

∂FYs|XsZ1R(qτ |x,z1,1)
∂x

·
∂G−1

t,p (FXs|R(x|1))
∂ t

∣∣∣∣∣
t=0

· r(z)(1−Q0)

Q0(1− r(z))
dFW |R(w|0)

=
1

1−Q0
E

[
(1−R)`(Z) · ∂Λ(X ,Z1)

∂x
·

∂G−1
t,p (FXs|R(x|1))

∂ t
|t=0

]
.

Observe that
∂G−1

t,p (·)
∂ t |t=0 is the pathwise derivative of the inverse map H 7→ H−1 at FXs|R=1 in the direction of

G−FXs|R=1. By Lemma 3.9.23 in Van Der Vaart and Wellner (1996), the inverse map is Hadamard differentiable

under the conditions specified in the theorem, with the derivative map given by,

φ 7→ −(φ/h)◦H−1,

where h is the first-order derivative of H. Let φ(·) = G(·)−FXs|R=1(·) and H = FXs|R=1, it follows immediately that,

for all u ∈ [0,1],
∂G−1

t,p (u)
∂ t

∣∣∣∣∣
t=0

=−
G(F−1

Xs|R=1(u))−u)

fXs|R=1(F
−1
Xs|R=1(u))

,

and hence, for all x ∈X ,
∂G−1

t,p (FXs|R(x|1))
∂ t

∣∣∣∣∣
t=0

=
FXs|R(x|1)−G(x)

fXs|R=1(x)
.
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Analogously, for marginal quantile shift,

∂FỸs,t |R(qτ |1)
∂ t

∣∣∣∣∣
t=0

=
∫

∂FYs|XsZ1R(qτ |x,z1,1)
∂x

·
∂G−1

t,q (FXs|R(x|1))
∂ t

∣∣∣∣∣
t=0

· r(z)(1−Q0)

Q0(1− r(z))
dFW |R(w|0)

=
1

1−Q0
E
[
(1−R)`(Z) · ∂Λ(X ,Z1)

∂x
· (G−1(FX |R=1(X))−X)

]
,

where the second equality follows from Lemma 2.1 and the definition of G−1
t,q (·).

To identify FXs|R=1, we exploit the following fact

FXs|R=1(·) = E[1(X ≤ ·)|R = 1]

=
∫

Z

∫
X

1(x≤ ·)dFX |ZR(x|z,1)dFZ|R(z|1)

=
∫

Z

∫
X

1(x≤ ·) · (1−Q0)r(z)
Q0(1− r(z))

dFX |ZR(x|z,0)dFZ|R(z|0)

= E
[
(1−Q0)r(Z)
Q0(1− r(Z))

1(X ≤ ·)|R = 0
]

=
1

1−Q0
E [(1−R)`(Z)1(X ≤ ·)] ,

where the third line is due to Assumption 2.1 and Bayes’ Law.

Theorem 2.1 then follows from Assumption 2.5, qτ = F−1
Ys|R=1(τ), and the fact that the Hadamard derivative of the

quantile functional is ν ′τ(φ) =−
φ

fYs|R=1
◦F−1

Ys|R=1(τ), which is linear in φ . �

Proof of Theorem 2.2: First, we fix Us ∈Us and φt ∈Φ∗, for t ≤ t0. By construction, there exists Ũs,t ∈ Ũs,t such that

(Ũs,t |Z1,R = 1) d
= (Us|Z1,R = 1). Now we rewrite FỸs,t |R=1 ∈FỸs,t |R=1 in terms of Us and Z1. Let x0 = −∞, and we

have that

FỸs,t |R=1(qτ)

=
∫

P(gs(X̃s,t , Z̃1,t , ε̃s,t)≤ qτ |X̃t = x, Z̃1,t = z1, R̃t = 1)dFX̃s,t Z̃1,t |R̃t
(x,z1|1)

=
l

∑
j=1

∫
P(gs(X̃s,t , Z̃1,t , ε̃s,t)≤ qτ |X̃s,t = x j, Z̃1,t = z1, R̃t = 1)

·P(Ũs,t ∈ (Gt,p(x j−1),Gt,p(x j)]|Z̃1,t = z1, R̃t = 1)dFZ̃1,t |R̃t
(z1|1)

=
l

∑
j=1

∫
P(gs(Xs,Z1,εs)≤ qτ |X = x j,Z1 = z1,R = 1)

·P(Us ∈ (Gt,p(x j−1),Gt,p(x j)]|Z1 = z1,R = 1)dFZ1|R(z1|1)
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=
l

∑
j=1

∫
FYs|XsZ1R(qτ |x j,z1,1) · (P(Us ∈ (FXs|R(x

j−1|1),FXs|R(x
j|1)]|Z1 = z1,R = 1)

+P(Us ∈ (Gt,p(x j−1),Gt,p(x j)]|Z1 = z1,R = 1)

−P(Us ∈ (FXs|R(x
j−1|1),FXs|R(x

j|1)]|Z1 = z1,R = 1))dFZ1|R(z1|1)

=FYs|R(qτ |1)−
l

∑
j=1

∫
Λ(x j,z1)(P(Us ∈ (Gt,p(x j−1),Gt,p(x j)]|Z1 = z1,R = 1)

−P(Us ∈ (FXs|R(x
j−1|1),FXs|R(x

j|1)]|Z1 = z1,R = 1))dFZ1|R(z1|1). (2.7.1)

For the second term on the right hand side of the last equality, we have

P(Us ∈ (Gt,p(x j−1),Gt,p(x j)] | Z1 = z1,R = 1)

−P(Us ∈ (FXs|R(x
j−1|1),FXs|R(x

j|1)] | Z1 = z1,R = 1))

=(FUs|Z1R(Gt,p(x j) | z1,1)−FUs|Z1R(FXs|R(x
j|1) | z1,1)

− (FUs|Z1R(Gt,p(x j−1) | z1,1))−FUs|Z1R(FXs|R(x
j−1|1) | z1,1))

=(Gt,p(x j)−FXs|R(x
j|1)) · fUs|Z1R(ũ j,t | z1,1)

− (Gt,p(x j−1)−FXs|R(x
j−1|1)) · fUs|Z1R(ũ j−1,t | z1,1)

=t · (G(x j)−FXs|R(x
j|1)) · fUs|Z1R(ũ j,t | z1,1)

− t · (G(x j−1)−FXs|R(x
j−1|1)) · fUs|Z1R(ũ j−1,t | z1,1),

where ũ j,t is some value between Gt,p(x j) and FXs|R(x
j|1), and is potentially dependent on z1. The last equality is due

to MVT. Using the above result, (2.7.1) becomes

FYs|R(qτ |1)−
l

∑
j=1

t ·
∫

Λ(x j,z1) · ((G(x j)−FXs|R(x
j|1)) · fUs|Z1R(ũ j,t | z1,1)

− (G(x j−1)−FXs|R(x
j−1|1)) · fUs|Z1R(ũ j−1,t | z1,1))dFZ1|R(z1|1)

= FYs|R(qτ |1)−
l

∑
j=2

t ·
∫
(Λ(x j−1,z1)−Λ(x j,z1))

· (G(x j−1)−FXs|R(x
j−1|1)) · fUs|Z1R(ũ j−1,t | z1,1)dFZ1|R(z1|1),

where the equality follows by rearranging terms, the fact that G(x0) =FXs|R(x
0|1) = 0, and that G(xl) =FXs|R(x

l |1) = 1.
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The pathwise derivative can thus be calculated as

lim
t↓0

FỸs,t |R=1(qτ)−FYs|R(qτ |1)
t

=
l

∑
j=2

∫
(Λ(x j−1,z1)−Λ(x j,z1))

· (G(x j−1)−FXs|R(x
j−1|1))dFZ1|UsR(z1 | FXs|R(x

j−1|1),1),

where the second line is due to the dominated convergence theorem, Bayes’s Law, and the fact that Us|R = 1 follows

the standard uniform distribution. Therefore, by Lemma 2.1 and the linearity of ν ′τ(·),

UQEp(τ,G) ∈

[
inf

Us∈Us

l

∑
j=2

∫
hqτ

(x j,x j−1,z1)dFZ1|UsR(z1 | FXs|R(x
j−1|1),1),

sup
Us∈Us

l

∑
j=2

∫
hqτ

(x j,x j−1,z1)dFZ1|UsR(z1 | FXs|R(x
j−1|1),1)

]
.

Using a similar argument as in the proof of Theorem 5 in Rothe (2012), we can show that for j = 1, . . . , l,

{FZ1|UsR(z1|Us = FXs|R(x
j|1),R = 1) : Us ∈Us} is the set of all multivariate distribution functions with support equal to

Supp(FZ1|R=1). To see this, note that for j = 1, . . . , l, FZ1|UsR(·|Us = FXs|R(x
j|1),R = 1) =CUs

1 (FXs|R(x
j|1),FZ1|R(·|1)),

where the conditional copula, CUs , is defined by CUs(FUs|R(u|1),FZ1|R(z1|1)) ≡ FUsZ1|R(u,z1|1), and CUs
1 is the partial

derivative of CUs with respect to the first argument. By the construction of Φ, the set of CUs(·, ·) for Us ∈Us is equiva-

lent to the identified set of the conditional copula of Xs and Z1 given R = 1, CXs(·, ·), where CXs(FXs|R(x|1),FZ1|R(z1|1))

≡ FXsZ1|R(x,z|1), for all x ∈ {x1, . . . ,xl}. Then, the desired result follows by applying an extension of Theorem 2.2.7

in Nelsen (2007).

Without loss of generality, we focus on the upper bound for now. By appropriately choosing Dirac measures with

unit masses on {z∗j} j∈J+ and {z†
j} j∈J− , It is straightforward to show that,

sup
Us∈Us

l

∑
j=2

∫
hqτ

(x j,x j−1,z1)dFZ1|UsR(z1 | FXs|R(x
j−1|1),1)

= ∑
j∈J+

hqτ
(x j,x j−1,z∗1, j)+ ∑

j∈J−
hqτ

(x j,x j−1,z†
1, j). (2.7.2)

The right hand side of (2.7.2) is identified under the support condition in Assumption 2.1(a). The proof for the lower

bound follows by an analogous argument. �
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2.7.2 Asymptotic Linear Representation of UQE Estimators

We specify additional regularity conditions in Theorem 2.3 and provide linear expansions for ÛQE p and ÛQEq in this

section, the proofs of which are contained in Section 2.8.

Assumption 2.9

(a) fX |ZR=0 is uniformly bounded, twice continuously differentiable with uniformly bounded first and second order

derivatives on X ×Z .

(b) (i) Kx(·) is a second order symmetric kernel function; (ii) the support of Kx is continuous, bounded, with compact

support, Kx(·), and such that
∫

Kx(x)dx = 1,
∫

xKx(x)dx = 0,
∫

x2Kx(x)dx > 0, and
∫

K2
x (x)dx < ∞.

(c) (i) nbx/log(n)→ ∞ and (ii) nb4
x → 0.

For j = p,q, the asymptotic linear representation of ÛQE j is given as follows:

ÛQE j(τ,G)−UQE j(τ,G)−B j(τ,d,by)

=
1
n

n

∑
i=1

{
ψ fy, j(Ai;θ0,qτ ,G)− 1

fY |R(qτ |1)
ψd, j(Ai;θ0,qτ ,G)

}
+op(n−1/2b−1/2

y +b2
y),

=
1
n

n

∑
i=1

ψ j(Ai;θ0,qτ ,by)+op(n−1/2b−1/2
y +b2

y), (2.7.3)

where

ψ fy, j(a;θ0,qτ ,G)≡
d j(θ0,G)

f 2
Y |R(qτ |1)

r
Q0

(
Kby(y−qτ)

−E[Kby(Y −qτ)|R = 1]−
(1(y≤ qτ)− τ) f ′Y |R(qτ |1)

fY |R(qτ |1)

)
, (2.7.4)

ψd, j(a;θ0,qτ ,G)≡
(
Mθ , j(θ0)

′
ψθ (a;θ0,qτ)

+ψg, j(a;θ0,G)+
(1− r)`(z)Λx(w;β0)g j(x)

1−Q0
−

rd j(θ0,G)

Q0

)
. (2.7.5)

In the above equation, ψθ (a;θ0,qτ) is given in (2.8.6),

Mθ , j(θ0)≡E

1−R
Q0

Λx(W ;β0)
(
∇L,θ0(Z) ·g j(X)+G j,θ0(X)

)
L0(Z)

1−L0(Z)
Λx,β (W ;β0)g j(X)


 , (2.7.6)
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∇L,θ (z)≡


L′s(z)(1−La(z))+Ls(z)L′a(z)

(1−La(z))2 · k(z)
L′s(Z)

1−La(Z)
· t(Z)

Ls(Z)L′a(Z)
(1−La(Z))2 · t(Z)

 , (2.7.7)

for L j(z)≡ L(k(z)′γ + t(z)′λ j), and L′j(z)≡ L′(k(z)′γ + t(z)′λ j), j = s,a. In addition,

Gq,θ0(x)≡G
′
(G−1(FX |R(x|1)))−1 ·E

[
1−R

Q0
·∇L,θ0(Z)1(X ≤ x)

]
, (2.7.8)

Gp,θ0(x)≡ E
[

1−R
Q0

∇L,θ0(Z)1(X ≤ x)
]/

fX |R(x|1)

+(G(x)−FX |R=1(x)) E
[

1−R
Q0

∇L,θ0(Z)Ibx Kbx(X− x)
]/

fX |R(x|1)2,

ψg,q(a;θ0,G)≡E

[
1−R

1−Q0
· `(Z)Λx(W ;β0)

G′
(
G−1(FX |R(X |1))

)
·
(
(1− r)`(z)1(x≤ X)

1−Q0
−

rFX |R(X |1)
Q0

)]
, (2.7.9)

ψg,p(a;θ0,G)≡E
[
(1−R)`(Z)Λx(W ;β0)

(1−Q0) fX |R(X |1)
·
(
(1− r)`(z)1(x≤ X)

1−Q0
−FX |R(X |1)

)]
+

(1− r)`(z)
1−Q0

π(x)−E
[
(1−R)`(Z)

1−Q0
π(X)

]
− r−Q0

Q0
·E
[
(1−R)`(Z)Λx(W ;β0)

1−Q0
· G(X)

fX |R(X |1)

]
, (2.7.10)

π(x)≡E [Λx(W ;β0)|X = x,R = 1]
G(x)−FX |R(x|1)

fX |R(x|1)
. (2.7.11)

2.8 Supplementary Appendix

This supplemental appendix contains (i) proofs of the results in Section 2.4 of the main text, (ii) auxiliary lemmas

along with their proofs, and (iii) additional details of the variance estimators.

Notation: We write ‖ f‖
∞

to denote the sup norm of f . Let N(ε,F ,Lr(Q)) denote the covering number of F rela-

tive to the Lr(Q)-norm. Given an envelop function F of F , the uniform entropy numbers and uniform entropy integral,

relative to Lr(Q)-norm are then defined as supQ logN(ε ‖F‖Q,r ,F ,Lr(Q)) and
∫

δ

0 supQ logN(ε ‖F‖Q,r ,F ,Lr(Q)),

respectively. We say that the class F has bounded uniform entropy integral (BUEI) with envelop F if the uniform

entropy integral is finite. K j, j ∈ {1,2, ...} are finite positive constants. Let CLT, CMT, DCT, LLN, and MVT refer

to the central limit theorem, the continuous mapping theorem, the dominated convergence theorem, the law of large

numbers, and the mean value theorem, respectively.
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2.8.1 Proofs of Lemmas and Theorems from Main Text

Proof of Lemma 2.2: The proof is divided into two steps. In the fisrt step, we show that β̂
p→ β0.

Observe that the three-stage estimation procedure is equivalent to a GMM estimator with (dγ +2dλ +dβ ) moment

conditions. We collect the moment conditions by

m(a;θ ,qτ)≡



m1(a;γ,qτ)

m2(a;γ,λs,qτ)

m3(a;γ,λa,qτ)

m4(a;γ,λs,λa,β ,qτ)


,

where

m1(a;γ,qτ)≡
r−L(k(z)′γ)

L(k(z)′γ)(1−L(k(z)′γ))
L′(k(z)′γ)k(z),

m2(a;γ,λs,qτ)≡
(

r
L(k(z)′γ + t(z)′λs)

−1
)

L(k(z)′γ)t(z),

m3(a;γ,λa,qτ)≡
(

1− r
1−L(k(z)′γ + t(z)′λa)

−1
)

L(k(z)′γ)t(z),

m4(a;θ ,qτ)≡
(

rL(k(z)′γ)e(z)
L(k(z)′γ + t(z)′λs)

1(y≤ qτ)−
(1− r)L(k(z)′γ)e(z)

1−L(k(z)′γ + t(z)′λa)
Λ(w;β )

)
.

In addition, let

L̂n(θ) ≡ ‖En[m(A;θ , q̂τ)]‖2
Ω̃n

, L̃n(θ) ≡ ‖En[m(A;θ , q̂τ)]‖2
Ω̃
,

Ln(θ) ≡ ‖En[m(A;θ ,qτ)]‖2
Ω̃
, L ∗(θ) ≡ ‖E[m(A;θ ,qτ)]‖2

Ω̃
,

where Ω̃n ≡ diag(Idγ+2dλ
,Ωn) and Ω̃≡ diag(Idγ+2dλ

,Ω).

First, by Assumptions 2.7(c)(iii), (d), (e)(iii), (f), Lemma 2.5, and the uniform LLN,

∥∥∥L̂n(θ)− L̃n(θ)
∥∥∥≤ ‖Ωn−Ω‖ · (‖En[m(A;θ , q̂τ)]−E[m(A;θ ,qτ)]‖2 +‖E[m(A;θ ,qτ)]‖2)

= Op(δω,n)(op(1)+Op(1)) = op(1). (2.8.1)

Next, by the definition of L̃n(θ) and Ln(θ),

∥∥∥L̃n(θ)−Ln(θ)
∥∥∥
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≤ ‖En[m4(A;θ , q̂τ)−m4(A;θ ,qτ)]‖2
Ω
+Op(1)λmax(Ω)‖En[m4(A;θ , q̂τ)−m4(A;θ ,qτ)]‖

= op(1), (2.8.2)

where the last line follows by Assumption 2.7(d) and Lemma 2.5.

Again, by the definition of Ln(θ) and L ∗(θ),

‖Ln(θ)−L ∗(θ)‖ ≤λmax(Ω)(‖En[m(A;θ ,qτ)]−E[m(A;θ ,qτ)]‖2

+Op(1)‖En[m(A;θ ,qτ)]−E[m(A;θ ,qτ)]‖) = op(1), (2.8.3)

where the last equality follows by Assumption 2.7(d) and Lemma 2.5.

Let θ̂ ≡ argminθ∈Θ L̂n(θ). To show the consistency of θ̂ , we note that

P
(∥∥∥θ̂ −θ0

∥∥∥≥ ε

)
≤ P

(
inf

θ∈Θ:‖θ−θ0‖≥ε

L̂n(θ)≤ L̂n(θ0)

)
≤ P

(
inf

θ∈Θ:‖θ−θ0‖≥ε

L̃n(θ)≤ L̃n(θ0)+2 sup
θ∈Θ

|L̂n(θ)− L̃n(θ)|
)

≤ P
(

inf
θ∈Θ:‖θ−θ0‖≥ε

Ln(θ)≤Ln(θ0)+2 sup
θ∈Θ

|L̃n(θ)−Ln(θ)|+op(1)
)

≤ P
(

inf
θ∈Θ:‖θ−θ0‖≥ε

L ∗(θ)≤L ∗(θ0)+2 sup
θ∈Θ

|Ln(θ)−L ∗(θ)|+op(1)
)

≤ P
(

inf
θ∈Θ:‖θ−θ0‖≥ε

‖E[m(A;θ ,qτ)]‖2 ≤
op(1)

λmin(Ω)

)
= o(1),

where the first inequality is obtained by the definition of θ̂ , and the third to fifth line follow by (2.8.1)–(2.8.3), respec-

tively. By Assumptions 2.3, 2.7(a)(ii), (c)(i), and (e)(ii), θ = θ0 is the unique solution to ‖E[m(A;θ ,qτ)]‖= 0. Using

this fact, the last line is obtained by Exercise 5.27 in Van der Vaart (1998).

In the second step, we prove that
√

n(β̂ −β0)
d→ N(0,Σβ ).

A first-order Taylor expansion yields that

op(1) = M′nΩ̃n
1√
n

n

∑
i=1

m(Ai; θ̂ , q̂τ)

= M′nΩ̃n

(
1√
n

n

∑
i=1

(m(Ai;θ0, q̂τ)−m(Ai;θ0,qτ)+m(Ai;θ0,qτ))+ M̃n
√

n(θ̂ −θ0)

)
,

where Mn ≡ En[∇θ m(A; q̂τ , θ̂)], and M̃n ≡ En[∇θ m(A; q̂τ , θ̃)], for some θ̃ lying between θ̂ and θ0. Using θ̂
p→ θ0, it
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can be shown that both Mn and M̃n converge in probability to M ≡ E[∇θ m(A;θ0,qτ)]. The proof is similar to that of

Lemma 2.5, we omit the details to avoid repetition. Thus,

√
n(θ̂ −θ0)

=−M−1
Ω

M′Ω̃

(
1√
n

n

∑
i=1

m(Ai;θ0, q̂τ)−m(Ai;θ0,qτ)+m(Ai;θ0,qτ)

)
+op(1)

=−M−1
Ω

M′Ω̃

(
1√
n

n

∑
i=1

E[m(A;θ0, q̂τ)−m(A;θ0,qτ)|Yn]+m(Ai;θ0,qτ)

)
+op(1)

=
1√
n

n

∑
i=1

ψθ (Ai;θ0,qτ)+op(1), (2.8.4)

where

MΩ ≡M′Ω̃M, (2.8.5)

ψθ (a;θ0,qτ)≡−M−1
Ω

M′Ω̃
(

m(a;θ0,qτ)−Mqτ

r · (1(y≤ qτ)− τ)

Q0 fY |R(qτ |1)

)
, (2.8.6)

and Mqτ
= (0′,0′,0′,E[e(Z)R fY |ZR(qτ |Z,1)]′)′. The second equality follows from Lemma 2.4. The third one is due to

a first-order Taylor expansion, the uniform LLN, and the following fact,

q̂τ −qτ =−En

[
R(1(Y ≤ qτ)− τ)

Q0 fY |R(qτ |1)

]
+op(n−1/2). (2.8.7)

See, e.g. Firpo (2007).

The asymptotic linear representation of β̂ corresponds to the last dβ -elements of (2.8.6). Let Mk,s denote the

Jacobian matrix of the k-th subvector of E[m(A;qτ ,θ)] with respect to the s-th subvector of θ evaluated at θ0. It is

straightforward to show that,

√
n(β̂ −β0) =

1√
n

n

∑
i=1

ψβ (Ai;θ0,qτ),

where

ψβ (a;θ0,qτ)≡−
1√
n
(M′44ΩM44)

−1

M′44ΩM4,−4S−1M′−4,−4


m1(a;γ0)

m2(a;γ0,λs,0)

m3(a;γ0,λa,0)


−M′44Ω

1/2(I−Ω
1/2M4,−4S−1M′4,−4Ω

1/2M
Ω1/2M4,4

)Ω1/2m̃4(a;θ0,qτ)
}
, (2.8.8)
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for M4,−4 ≡ (M41,M42,M43), S≡M′−4,−4M−4,−4−M′4,−4Ω1/2M
Ω1/2M4,4

Ω1/2M4,−4, MH ≡ I−H(H ′H)−1H ′, and

m̃4(a;θ0,qτ)≡ m4(a;θ0,qτ)−E[R fY |ZR(qτ |Z,1)e(Z)] ·
r · (1(y≤ qτ)− τ)

Q0 fY |R(qτ |1)
.

This concludes the proof of Lemma 2.2. �

Proof of Theorem 2.3: Part I: Asymptotic result for ÛQEq.

Decomposing the difference, we have

ÛQEq(τ,G)−UQEq(τ,G)≤−

(
1

f̂Y |R(q̂τ |1)
− 1

fY |R(qτ |1)

)
d̂q,n(θ̂ ,G)

− 1
fY |R(qτ |1)

(d̂q,n(θ̂ ,G)− d̂q,n(θ0,G))

− 1
fY |R(qτ |1)

d̂q,n(θ0,G)−UQE(τ,G)

≡ ∆q,1 +∆q,2 +∆q,3, (2.8.9)

where

d̂q,n(θ̂ ,G)≡ Ena [
̂̀(Z)Λx(W ; β̂ )ĝq(X)], (2.8.10)

d̂q,n(θ0,G)≡ 1
1−Q0

En[(1−R)`(Z)Λx(W ;β0)ĝq(X ;θ0)],

and ĝq(x;θ0)≡ G−1
(

1
1−Q0

En[(1−R)`(Z)1(X ≤ x)]
)
− x.

We proceed by deriving the asymptotic linear representation of each term.

For ∆q,1, we focus on the inverse of the density estimate first,

1

f̂Y |R(q̂τ |1)
− 1

fY |R(qτ |1)
=−

f̂Y |R(q̂τ |1)− fY |R(qτ |1)
fY |R(qτ |1)2 +ξ1, (2.8.11)

where

ξ1 ≡
( f̂Y |R(q̂τ |1)− fY |R(qτ |1))2

fY |R(qτ |1)2 f̂Y |R(q̂τ |1)
.
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Next, we establish the rate for f̂Y |R(q̂τ |1)− fY |R(qτ |1). Decomposing the difference,

f̂Y |R(q̂τ |1)− fY |R(qτ |1) =( f̂Y |R(q̂τ |1)− f̃Y |R(q̂τ |1))+( f̃Y |R(q̂τ |1)−E[ f̃Y |R(q̂τ |1)])

+(E[ f̃Y |R(q̂τ |1)]− fY |R(q̂τ |1))+( fY |R(q̂τ |1)− fY |R(qτ |1))

≡∆ f ,1 +∆ f ,2 +∆ f ,3 +∆ f ,4,

where f̃Y |R(qτ |1)≡ En
[
RKby(Y −qτ)

]
/Q0.

We analyze each term in turn. For ∆ f ,1, a first-order approximation and applying the uniform LLN yield,

f̂Y |R(q̂τ |1)− f̃Y |R(q̂τ |1) =−
En[R−Q0]

Q0
·
En[RKby(Y − q̂τ)]

En[R]

=−En[R−Q0]

Q0
·
(E[RKby(Y −qτ)]

Q0
+

En[RKby(Y − q̂τ)]

En[R]
−

E[RKby(Y −qτ)]

Q0

)
=−En[R−Q0]

Q0
·
E[RKby(Y −qτ)]

Q0
+op(n−1/2),

where the third line follows along a similar line of argument as in Section B.3.2 of Sasaki et al. (2022).

Likewise, we have that

∆ f ,2 =
1
n

n

∑
i=1

1
Q0

{
RiKby(Yi−qτ)−E[RKby(Y −qτ)]

}
+op(n−1/2).

Lastly, we bound the bias,

∆ f ,3 = E
[

RKby(Y − q̂τ)

Q0

]
− fY |R(q̂τ |1)

=
b2

y( f
′′
Y |R(qτ |1)+( f

′′
Y |R(q̃τ |1)− f

′′
Y |R(qτ |1)))

2

∫
y2Ky(y)dy

= Bs,y(qτ ,by)+op(b2
y), (2.8.12)

where Bs,y(qτ ,by)≡ 0.5b2
y f
′′
Y |R(qτ |1)

∫
y2Ky(y)dy and q̃ lies between q̂τ and q̂τ +cyby, for some |cy|< ȳ, where ȳ is the

maximum absolute value of Supp(Ky). The second line follows by changing variables and a second-order expansion

of fY |R(·|1) about q̂τ . The rate of remainder is op(b2
y) because | f ′′Y |R(q̃τ |1)− f

′′
Y |R(qτ |1)| ≤ | f

′′
Y |R(q̃τ |1)− f

′′
Y |R(q̂τ |1)|+

| f ′′Y |R(q̂τ |1)− f
′′
Y |R(qτ |1)|= Op(by +n−1/2), and by Assumption 2.8(c).
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In view of (2.8.7), it follows that

∆ f ,4 =
1
n

n

∑
i=1

Ri f ′Y |R(qτ |1)(1(Yi ≤ qτ)− τ)

Q0 fY |R(qτ |1)
+op(n−1/2).

Collecting the linear expansions of ∆ f ,1–∆ f ,4, we get

f̂ Y |R(q̂τ |1)− fY |R(qτ |1)

=En

[
R

Q0

{
Kby(Y −qτ)−

E[RKby(Y −qτ)]

Q0
−

(1(Y ≤ qτ)− τ) f ′Y |R(qτ |1)
fY |R(qτ |1)

}]

+Bs,y(qτ ,by)+ξ2, (2.8.13)

where ξ2 collects the remainder terms from each ∆ f , j, for j = 1, ...,4, and ξ2 = op(n−1/2b−1/2
y +b2

y).

By Lemma 2.6, we have

d̂q,n(θ̂ ,G)
p→ dq(θ0,G). (2.8.14)

Collecting the results in (2.8.11), (2.8.13), and (2.8.14), we deduce that

∆q,1 =
1
n

n

∑
i=1

ψq1(Ai,θ0,qτ ,by)+
Bs,y(qτ ,by)dq(θ0,G)

f 2
Y |R(qτ |1)

+op(n
−1/2
s b−1/2

y +b2
y),

where

ψq1(a,θ0,qτ ,by)≡
{

r
Q0

(
Kby(y−qτ)−E[Kby(Y −qτ)|R = 1]

−
(1(y≤ qτ)− τ) f ′Y |R(qτ |1)

fY |R(qτ |1)

)
·dq(θ0,G)

}/
f 2
Y |R(qτ |1). (2.8.15)

Next, we derive the asymptotically linear representation of ∆q,2. Decomposing the difference, we get

d̂q,n(θ̂ ,G)− d̂q,n(θ0,G) =
(

d̂q,n(θ̂ ,G)− d̃q,n(θ̂ ,G)
)
+
(

d̃q,n(θ̂ ,G)− d̂q,n(θ0,G)
)

≡ ∆q,4 +∆q,5,

where d̃q,n(θ̂ ,G) ≡ En

[
(1−R)L(k(Z)′ γ̂+t(Z)′λ̂s)

Q0(1−L(k(Z)′ γ̂+t(Z)′λ̂a))
Λx(W ; β̂ )ĝq(X)

]
. By a second-order Taylor expansion with respect to

En[R] around Q0,

∆q,4 =−
En[R−Q0]

Q0
· (dq(θ0,G)+ d̃q,n(θ̂ ,G)−dq(θ0,G))+Op(n−1)
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=−En[R−Q0]

Q0
·dq(θ0,G)+op(n−1/2),

where the second line follows by Lemma 2.2, Assumptions 2.7(c)(ii), (e)(ii), Assumption 2.8(d), and the uniform

LLN.

Again, by expanding d̃q,n(θ̂ ,G) around θ0, we have that

∆q,5 = Mθ ,q,n(θ̃)
′(θ̂ −θ0)+op

(∥∥∥θ̂ −θ0

∥∥∥) ,
where θ̃ is some value between θ̂ and θ0,

Mθ ,q,n(θ)≡ En

1−R
Q0

Λx(W ;β )
(
∇L,θ (Z) · ĝq(X ;θ)+Gq,θ (X)

)
Ls(Z)

1−La(Z)
Λx,β (W ;β )ĝq(X ;θ)


 ,

and

Gq,θ (x)≡ G
′
(G−1(F̂X |R(x|1)))−1 ·Ena

[
∇L,θ (Z)1(X ≤ x)

]
.

Slightly modifying Theorem 8.2 in Newey and McFadden (1994) and applying it to Mθ ,q,n, we can deduce that

Mθ ,q,n(θ̃)
p→Mθ ,q(θ0), where Mθ ,q(θ0) is defined in (2.7.6). Therefore, ∆q,5 = Mθ ,q(θ0)

′(θ̂ −θ0)+op(n−1/2).

In view of (2.8.4) and (2.8.6), ∆q,5 =
1
n ∑

n
i=1 Mθ ,q(θ0)

′ψθ (Ai;θ0,qτ)+op(n−1/2). Hence, ∆q,2 =
1
n ∑

n
i=1 ψq2(Ai;θ0,

qτ)+op(n−1/2), where

ψq2(a;θ0,qτ)≡−
1

fY |R(qτ |1)

(
Mθ ,q(θ0)

′
ψθ (a;θ0,qτ)−

r−Q0

Q0
dq(θ0,G)

)
. (2.8.16)

Next, we derive the asymptotic linear expansion of ∆q,3. By definition,

d̂q,n(θ0,G)−dq(θ0,G) =En[∆φq(A;θ0,G)]

+

(
1

1−Q0
En[(1−R)`(Z)Λx(W ;β0)gq(X)]−dq(θ0,G)

)
,

where

∆φq(a;θ0,G)≡ 1− r
1−Q0

`(z)Λx(w;β0)(ĝq(x;θ0)−gq(x;θ0)). (2.8.17)

By Lemma 2.7, we deduce that En[∆φq(A;θ0,G)] = 1
n ∑

n
i=1 ψg,q(Ai;θ0,G)+op(n−1/2), where ψg,q is given in (2.7.9).
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Using this result, by the definition of d̂q,n(θ0,G), and by Theorem 2.1, it follows that ∆q,3 =
1
n ∑

n
i=1 ψq3(Ai;θ0,qτ),

where

ψq3(a;θ0,qτ)≡−
1

fY |R(qτ |1)

(
ψg,q(a;θ0,G)+

1− r
1−Q0

`(z)Λx(w;β0)gq(x)

−dq(θ0,G)) . (2.8.18)

Collecting the linear expansions associated with ∆q, j, j = 1,2,3, and by the Lyapunov CLT, we deduce that, with

ψq given in (2.7.3),

√
nby(ÛQEq(τ,G)−UQEq(τ,G))

d→ N(0, lim
by→0

byE[ψq(A;θ0,qτ ,by)ψq(A;θ0,qτ ,by)
′]).

To finish the proof, we need to verify the asymptotic variance of ÛQEq(τ,G),

lim
by→0

byE[ψq(A;θ0,qτ ,by)ψq(A;θ0,qτ ,by)
′]

=
D2(θ0,G)

f 4
Y |R(qτ |1)

· lim
by→0

{
E
[

by

Q0
K2

by
(Y −qτ)|R = 1

]
−

by

Q0

(
E[Kby(Y −qτ)|R = 1]

)2
}

=
D2(θ0,G)

f 4
Y |R(qτ |1)Q0

· lim
by→0

{∫ 1
by

K2
y

(
y−qτ

by

)
fY |R(y|1)dy−by

(
fY |R(qτ)+o(b2

y)
)2
}

=
D2(θ0,G)

f 4
Y |R(qτ |1)Q0

· lim
by→0

{∫
K2

y (u) fY |R(qτ |1)du+O(by)

}
=

D2(θ0,G)

f 3
Y |R(qτ |1)Q0

·
∫

K2
y (u)du,

where the third line is due to (2.8.12), and the fourth one is obtained by changing variable, a first-order expansion of

Ky, and by Assumption 2.8(b).

Part II: Asymptotic results for ÛQE p.

Let d̂p,n(θ0,G)≡ 1
1−Q0

En[(1−R)`(Z)Λx(W ;β0)ĝp(X ;θ0)], we perform a decomposition analogous to (2.8.9),

ÛQE p(τ,G)−UQEp(τ,G)≤−

(
1

f̂Y |R(q̂τ |1)
− 1

fY |R(qτ |1)

)
d̂p,n(θ̂ ,G)

− 1
fY |R(qτ |1)

(d̂p,n(θ̂ ,G)− d̂p,n(θ0,G))

− 1
fY |R(qτ |1)

d̂p,n(θ0,G)−UQE(τ,G)

≡∆p,1 +∆p,2 +∆p,3, (2.8.19)
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with influence functions associated with ∆p, j denoted by ψp j, j = 1,2,3, respectively. The first term represents the

estimation error of fYs|R=1, the second term corresponds to the estimation effect of θ , and the last term accounts for

the contribution of ĝp.

The first term can be treated in a similar fashion as in the previous part, and therefore, we give the linear expansion

directly without a proof,

ψp1(a;θ0,qτ)≡
{

r
Q0

(
Kby(y−qτ)−E[Kby(Y −qτ)|R = 1]

−
(1(y≤ qτ)− τ) f ′Y |R(qτ |1)

fY |R(qτ |1)

)
·dp(θ0,G)

}/
f 2
Y |R(qτ |1). (2.8.20)

The linear expansion of ∆p,2 also takes a similar form as in (2.8.16), with

ψp2(a;θ0,qτ)≡−
1

fY |R(qτ |1)

(
Mθ ,p(θ0)

′
ψθ (a;θ0,qτ)−

r−Q0

Q0
·dp(θ0,G)

)
, (2.8.21)

where Mθ ,p(θ0) is defined in (2.7.6). Assumption 2.9(c) allows us to ignore the bias in the approximation of Gp,θ0(x)

and in turn, Mθ ,p(θ0).

Next, we apply Lemma 5.1 in Newey (1994) to derive the linear expansion of ∆p,3. Define ρ(·) = (ρ1(·),ρ2(·),

ρ3),

φp(a;ρ)≡− (1− r)`(z)Λx(w;β0)

1−Q0
· (G(x)−ρ1(x)/ρ3)

ρ2(x)/ρ3
−dp(θ0,G),

Φp,1(a;ρ1)≡
(1− r)`(z)Λx(w;β0)

1−Q0
· ρ1(x)

fX |R(x|1)
,

Φp,2(a;ρ2)≡
(1− r)`(z)Λx(w;β0)

1−Q0
·
(G(x)−FX |R(x|1))ρ2(x)

f 2
X |R(x|1)

,

Φp,3(a;ρ3)≡−
(1− r)`(z)Λx(w;β0)

1−Q0
· G(x)ρ3

fX |R(x|1)
,

and Φp(a;ρ)≡ ∑
3
j=1 Φp, j(a;ρ j). With these notations in hand, we can rewrite ∆p,3 as follows,

∆p,3 =−
1

fY |R(qτ |1)
(En[φp(A; ρ̂n)]−E[φp(A;ρ0)]),

where ρ̂n(·) ≡
(
En

[
(1−R)`(Z)1(X≤·)

1−Q0

]
,En

[
(1−R)`(Z)Ibx Kbx (X−·)

1−Q0

]
, En[R]

Q0

)′
, and ρ0(·) ≡ (FX |R(·|1), fX |R(·|1),1)′. We pro-

ceed to verify the conditions of Lemma 5.1 in Newey (1994).
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The first set of conditions controls the linearization error. By directly bounding the difference, we can show that

∥∥φp(a;ρ)−φp(a;ρ0)−Φp(a;ρ−ρ0)
∥∥≤ ∑

j=1,2
K j sup

x∈X
|ρ j(x)−ρ j,0(x)|2 +K3|ρ3−ρ3,0|2, (2.8.22)

where the inequality holds under Assumption 2.1(d)(i), Assumptions 2.7(c), (e), Assumption 2.8(d), and Assumption

2.9(a). By (2.8.22), Assumption 5.1(ii) in Newey (1994) is satisfied if
√

n‖ρ̂−ρ0‖∞

p→ 0. In what follows, we provide

the proof of this convergence result.

First, by Theorem B in Section 2.1.4 in Serfling (2009), we have
√

n‖ρ̂1−ρ1,0‖2
∞
= Op(n−1/2 log(log(n))) =

op(1).

Next, we let

ρ̃2(x)≡ E
[
(1−R)`(Z)Ibx Kbx(X− x)

1−Q0

]
.

By the triangular inequality, ‖ρ̂2−ρ2,0‖∞
≤ ‖ρ̂2− ρ̃2‖∞

+ ‖ρ̃2−ρ2,0‖∞
. Under the rate condition in Assumption

2.9(c), Lemma 8.10 in Newey and McFadden (1994) yields that ‖ρ̂2− ρ̃2‖∞
= Op(log(n)1/2n−1/2b−1/2

x ).

Next, we bound the bias, ρ̃2−ρ2,0,

ρ̃2(x) =
∫ x̄

x
Ibx Kbx(v− x) fX |R(v|1)dv

=
∫

Ix
Kx(u) fX |R(x+ubx|1)du

= fX |R(x|1)
∫

Ix
Kx(u)du+bx f ′X |R(x|1)

∫
Ix

uKx(u)du

+
b2

x f ′′X |R(x̃|1)
2

∫
Ix

u2Kx(u)du

= fX |R(x|1)+
b2

x f ′′X |R(x|1)
2

∫
∞

−∞

u2Kx(u)du+op(b2
x).

where Ix ≡ [(x−x)/bx+ρx/2,(x̄−x)/bx−ρx/2] and x̃ is some value between x and x+cxbx, with |cx| ≤max{|x|, |x̄|}.

The first line is due to Assumptions 2.1(c) and (e), the second line follows by changing variable, and the last line is

due to Assumptions 2.9(a) and (b). Using this fact, we deduce that
√

n‖ρ̂2−ρ2,0‖2
∞
= Op(log(n)n−1/2b−1

x +
√

nb4
x),

which is op(1) under Assumption 2.9(c).

Lastly,
√

n‖ρ̂3−ρ3,0‖2 = Op(n−1/2). In view of the above three results, the desired condition is verified.

In the next step, we verify Assumption 5.2. Using Lemma 8.4 in Newey and McFadden (1994), the condition

is satisfied so long as E[‖Φ(a; ρ̂−ρ0)‖2]
p→ 0. The latter condition follows by ‖Φ(a;ρ)‖ ≤ K4 ‖ρ‖∞

and DCT. The

constant K4 is finite under Assumption 2.1(d)(i), Assumptions 2.7(c), (e), Assumption 2.8(d), and Assumption 2.9(a).
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Finally, we need to show the mean-square continuity (Assumption 5.3 in Newey (1994)). Towards this end, we

derive the asymptotic linear representation of
∫

Φp(a, ρ̂−ρ)dFA(a). We focus on ρ2 first. Let

ψp,x,2(a;θ0,G)≡ (1− r)`(z)
1−Q0

π(x)−E
[
(1−R)`(Z)

1−Q0
π(X)

]
, (2.8.23)

where π(x) is defined in (2.7.11). Now we proceed to verify that ψp,x,2 is indeed the influence function of
∫

Φp(a;ρ2−

ρ2,0)dFA(a). It amounts to show that

∥∥∥∥∥
∫

Φp,2(a; ρ̂2−ρ2,0)dFA(a)−
1
n

n

∑
i=1

ψp,x,2(Ai;θ0,G)

∥∥∥∥∥= op(n−1/2).

For this purpose, we bound the first two moments and apply Chebyshev’s inequality. For the first moment, we have

∥∥∥∥∥√nE

[∫
Φp,2(a; ρ̂2−ρ2,0)dFA(a)−

1
n

n

∑
i=1

ψp,x,2(Ai;θ0,G)

]∥∥∥∥∥
=
√

n
∥∥∥∥E[∫ Φp,2(a; ρ̂2−ρ2,0)dFA(a)

]∥∥∥∥
=
√

n
∥∥∥∥∫ ∫Ibx

π(x) fX |R(v|1)Kbx(v− x)dxdv−
∫ ∫

π(x) fX |R(x|1)Kx(u)dudx
∥∥∥∥

≤
√

n
∥∥∥∥∫ ∫Ix

π(x+bxu) fX |R(x|1)Kx(u)dudx−
∫ ∫

Ix
π(x) fX |R(x|1)Kx(u)dudx

∥∥∥∥
+
√

n
∥∥∥∥∫ ∫Ic

x

π(x) fX |R(x|1)Kx(u)dudx
∥∥∥∥

≤
√

n
∥∥∥∥∫ fX |R(x|1)

∫
Ic
x

(π ′(x)bxu+π
′′(x̃)b2

xu2/2)Kx(u)dudx
∥∥∥∥

+
∥∥π(x) fX |R(x|1)

∥∥
∞
·
√

n
∥∥∥∥∫Ic

x

Kx(u)du
∥∥∥∥

=O(n1/2b2
x)+o(1) = o(1), (2.8.24)

where Ic
x is the complement of Ix relative to X , and x̃ is some value between x and x+ cxbx. The second equality

follows because

∫
Φp,2(a;ρ2)dFA(a)

=
∫ ∫

`(z)Λx(w;β0)
(G(x)−FX |R(x|1))ρ2(x)

f 2
X |R(x|1)

fX |ZR(x|z,0) fZ|R(z|0)dzdx

=
∫ ∫

Λx(w;β0)
(G(x)−FX |R(x|1))ρ2(x)

f 2
X |R(x|1)

fX |ZR(x|z,1) fZ|R(z|1)dzdx
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=
∫ (∫

Λx(w;β0) fZ|XR(z|x,1)dz
)
(G(x)−FX |R(x|1))ρ2(x)

fX |R(x|1)
dx

=
∫

E[Λx(W ;β0)|X = x,R = 1]
(G(x)−FX |R(x|1))ρ2(x)

fX |R(x|1)
dx

=
∫

π(x)ρ2(x)dx.

Therefore,

E
[∫

Φp,2(a; ρ̂2)dFA(a)
]
= E

[
(1−R)`(Z)

1−Q

∫
π(x)Ibx Kbx(X− x)dx

]
=
∫ ∫

π(x)Ibx Kbx(v− x) fX |R(v|1)dxdv,

E
[∫

Φp,2(a;ρ2,0)dFA(a)
]
=
∫

π(x) fX |R(x|1)dx ·
∫

Kx(u)du

=
∫ ∫

π(x)Kx(u) fX |R(x|1)dudx.

The second inequality of (2.8.24) follows from a second-order Taylor expansion with respect to π(·), which is valid

under Assumption 2.7(e) and Assumption 2.9(a). The second-to-last equality of (2.8.24) is due to Assumptions 2.9(a)

and (b).

Next, since π(·) is continuous and bounded, and Kx has a compact support, we have that, by DCT,
∫

Ix π(x−

bxu)Kx(u)du→ π(x). As a consequence, for the second moment,

E

∥∥∥∥∥√n
∫

Φp,2(a; ρ̂2−ρ2,0)dFA(a)−
1√
n

n

∑
i=1

ψp,x,2(Ai;θ0,G)

∥∥∥∥∥
2


≤ E

[∥∥∥∥ (1−R)`(Z)
1−Q0

(∫
π(x)Ibx Kbx(X− x)dx−π(X)

)∥∥∥∥2
]

≤ E

[∥∥∥∥ (1−R)`(Z)
1−Q0

∥∥∥∥4
]1/2

·E

[∥∥∥∥(∫Ix
π(X−bxu)Kx(u)du−π(X)

)∥∥∥∥4
]1/2

= O(1)o(1) = o(1),

where the second to last equality follows by Assumption 2.1(d), Assumption 2.7(e)(iii), and by DCT. This concludes

the derivation of the linear expansion for the second term.

Linear expansions for terms involving ρ1 and ρ3 follow by standard (functional) delta method. Hence, we provide
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the influence functions directly. Let

ψp,x,1(a;θ0,G)≡ E
[
(1−R)`(Z)Λx(W ;β0)

(1−Q0) fX |R(X |1)
·
(
(1− r)`(z)1(x≤ X)

1−Q0
−FX |R(X |1)

)]
, (2.8.25)

ψp,x,3(a;θ0,G)≡− r−Q0

Q0
·E
[
(1−R)`(Z)Λx(W ;β0)

1−Q0
· G(X)

fX |R(X |1)

]
. (2.8.26)

Combining (2.8.25), (2.8.23), and (2.8.26), we deduce that

∆p,3 =
1
n

n

∑
i=1

ψp3,i =−
1
n

n

∑
i=1

1
fY |R(qτ |1)

(
ψg,p,i +

(1−Ri)`(Zi)Λx(Wi;β0)gp(Xi)

1−Q0

−dp(θ0,G))+op(n−1/2). (2.8.27)

where ψg,p is defined in (2.7.10). Collecting the results in (2.8.20), (2.8.21), and (2.8.27), it follows that the asymptotic

linear representation for ÛQE p is given as in (2.7.3). This completes our proof. �

2.8.2 Auxiliary Lemmas and Proofs

In this section, we present and prove some auxiliary lemmas that facilitate the proofs in the previous section.

Lemma 2.4 Under the assumptions of Lemma 2.2, we have

sup
θ∈Θ

‖En[m4(A;θ , q̂τ)−m4(A;θ ,qτ)]‖= Op(n
−1/2
s ).

Proof of Lemma 2.4: To establish the claim, we will first show that

sup
θ∈Θ

|En[∆m4(A;θ , q̂τ ,qτ)]|= op(n
−1/2
s ), (2.8.28)

where ∆m4(a;θ , q̂τ ,qτ)≡m4(a;θ , q̂τ)−m4(a;θ ,qτ)−E[m4(A;θ , q̂τ)−m4(A;θ ,qτ)|Yn], and E[·|Yn] is the expecta-

tion conditional on Yn = {Yi}n
i=1. Define

F ≡
{
(r,y,z) ∈ {0,1}×Y Z 7→ ẽ(z)rL(k(z)′γ)

L(k(z)′γ + t(z)′λs)
(1(y≤ q)−1(y≤ qτ)) :

ẽ(z) ∈ {e1(z), ...,edβ
(z)},(γ,λs) ∈Θγ,λs ,q ∈ Y

}
,

where e j(z) is the j-th element of e(z). Both m4(a;θ , q̂τ) and m4(a;θ ,qτ) belong to F .

The result is obtained by Theorem 2.1 in Wellner and van der Vaart (2007). To invoke the theorem, we need to
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verify two conditions: (i) the class F is Donsker, and (ii) the variance of ∆m4(A;θ , q̂τ ,qτ) tends to zero.

To show (i), we let

F1 ≡ {y ∈ Y 7→ 1(y≤ q)−1(y≤ qτ) : q ∈ Y } ,

F2 ≡ {z ∈Z 7→ L(k(z)′γ)/L(k(z)′γ + t(z)′λs) : (γ,λs) ∈Θγ,λs},

F3 ≡ {(r,z) ∈ {0,1}×Z 7→ re j(z) : j = 1, ...,dβ}.

Hence, F ⊆F1 ·F2 ·F3.

Here, F1 is a collection of indicator functions over R. Under Assumptions 2.7(a)(ii) and (e)(i) , F2 is pointwise

compact; for definition, see Example 19.8 of Van der Vaart (1998). It is well-known that the pointwise compact class

of functions and collections of indicators of cells in Euclidean space are pointwise measurable; see the discussion

in Section 2.3 of Van Der Vaart and Wellner (1996) for definition. The pointwise measurability of F3 follows by

definition. Then, by Lemma 8.10 in Kosorok (2008), F is pointwise measurable. F1 is a VC-subgraph class with

VC-index equal to 2. In addition, F1 is uniformly bounded by F1 ≡ 2. Theorem 2.6.7 in Van Der Vaart and Wellner

(1996) implies that

sup
Q

N(ε ‖F1‖Q,2 ,F1,L2(Q))≤ K1ε
−2. (2.8.29)

Due to Assumption 2.7(e)(ii),
∣∣∣ L(k(z)′γ1)

L(k(z)′γ1+t(z)′λs1)
− L(k(z)′γ2)

L(k(z)′γ2+t(z)′λs2)

∣∣∣ ≤ K2 · ‖k(z)‖‖γ1− γ2‖+K3 · ‖t(z)‖‖λs1−λs2‖.

Combining this fact and Assumption 2.7(f), F2 admits an integrable envelop function, F2≡K2γ̄ ‖k(z)‖+K3λ̄s ‖t(z)‖+

K4, where γ̄ ≡ supγ∈Θγ
‖γ‖ and λ̄s ≡ supλs∈Θλs

‖λs‖ are finite under Assumption 2.7(a)(ii). It then follows from

Theorem 2.10.20 of Van Der Vaart and Wellner (1996) that for all δ > 0,

∫
δ

0
sup

Q

√
logN(ε ‖F2‖Q,2 ,F2,L2(Q))dε ≤ ∑

j∈{γ,λs}

∫
δ

0

√
logN(ε j̄,Θ j,‖·‖)dε

≤ ∑
j∈{γ,λs}

√
d j

∫
δ

0

√
log
(

1+
4diam(Θ j)

ε j̄

)
dε < ∞, (2.8.30)

where diam(Θ) is the diameter of Θ, and Q is any finite discrete measure. By Assumption 2.7(f), E[F2
2 ] < ∞, and

therefore, F2 is Donsker. Another application of Theorem 2.10.20 of Van Der Vaart and Wellner (1996) to F yields

that

∫
δ

0
sup

Q

√
logN(4ε ‖F‖Q,2 ,F ,L2(Q))dε
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≤
3

∑
j=1

∫
δ

0
sup

Q

√
logN(ε

∥∥Fj
∥∥

Q,2 ,F j,L2(Q))dε < ∞, (2.8.31)

where F3(z)≡ ‖e(z)‖, is an envelop function for F3. The last inequality follows from (2.8.29), (2.8.30), and the fact

that F3 is a finite set, and therefore, BUEI.

To show that F is square integrable, note

E[|F1F2F3|2]≤ 4E[‖e(Z)‖2 (K2γ̄ ‖k(Z)‖+K3λ̄s ‖t(Z)‖+K4)
2]< ∞,

where the second inequality follows by the Cauchy–Schwartz inequality and Assumption 2.7(f). By Theorem 2.10.20

and Theorem 2.10.1 in Van Der Vaart and Wellner (1996), F is Donsker.

In the next step, we show (ii). That is,
∫
‖∆m4(a;θ , q̂τ ,qτ)‖2 dFA(a) converges in probability to 0. Towards this

end,

∫
||∆m4(a;θ , q̂τ ,qτ)||2dF(a)≤

c2
5

2c2
4
·

(
sup

y∈Y ,z∈Z
| fY |ZR(y|z,1)|

)2

E[‖e(Z)‖2](q̂τ −qτ)
2

≤ K5(q̂τ −qτ)
2 = Op(n−1

s ), (2.8.32)

where the second inequality is by MVT and Assumption 2.7(b). The last equality follows by (2.8.7).

Combining (i) and (ii), Theorem 2.1 in Wellner and van der Vaart (2007) yields (2.8.28). To complete the proof, it

suffices to show that E[m4(A;θ , q̂τ)−m4(A;θ ,qτ)|Yn] = Op(n−1/2). By a first-order expansion,

E[‖m4(A;θ , q̂τ)−m4(A;θ ,qτ)‖ |Yn] = E[
∥∥R fY |ZR(q̃τ |Z,1)e(Z)

∥∥ |Yn] · |q̂τ −qτ |

≤ K6 sup
y∈Y ,z∈Z

| fY |ZR(y|Z,1)|E[‖e(Z)‖] ·Op(n−1/2) = Op(1) ·Op(n−1/2) = Op(n−1/2),

where the second line follows by MVT, Assumptions 2.7(b), and (f). �

Lemma 2.5 Under the assumptions of Lemma 2.2,

H1 ≡

{
(r,z) ∈ {0,1}×Z 7→ (r−L(k(z)′γ))L′(k(z)′γ)k̃(z)

L(k(z)′γ)(1−L(k(z)′γ))
: k̃(z) ∈ {k1(z), ...,kdγ

(z)},γ ∈Θγ

}
,

H2 ≡
{
(r,z) ∈ {0,1}×Z 7→

(
r

L(k(z)′γ + t(z)′λs)
−1
)

L(k(z)′γ )̃t(z) :

t̃(z) ∈ {t1(z), ..., tdλ
(z)},(γ,λs) ∈Θγ,λs

}
,
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H3 ≡
{
(r,z) ∈ {0,1}×Z 7→

(
1− r

1−L(k(z)′γ + t(z)′λa)
−1
)

L(k(z)′γ )̃t(z) :

t̃(z) ∈ {t1(z), ..., tdλ
(z)},(γ,λa) ∈Θγ,λa

}
,

H4 ≡
{
(r,z,x,y) ∈ {0,1}×Z X Y 7→

(
r ·1(y≤ q)

L(k(z)′γ + t(z)′λs)
− (1− r) ·Λ(w,β )

1−L(k(z)′γ + t(z)′λa)

)
·L(k(z)′γ)ẽ(z) :

ẽ(z) ∈ {e1(z), ...,edβ
(z)},q ∈ Y0,θ ∈Θ

}
,

are Glivenko-Cantelli (GC).

Proof of Lemma 2.5: Under Assumptions 2.7(e)(iii) and (f), H1,H2, and H3, admit integrable envelop functions,

H1,H2, and H3, respectively, where H1(r,z) ≡ K1 ‖k(z)‖, H2(r,z) ≡ K2 ‖t(z)‖, and H3(r,z) ≡ K3 ‖t(z)‖. Hence, by

Example 19.8 in Van der Vaart (1998), H j, j = 1,2,3, are GC. To show that H4 is also GC, we define

H5 ≡{y ∈ {0,1}×Y 7→ 1(y≤ q),q ∈ Y0} ,

H6 ≡
{
(r,z,x) ∈ {0,1}×Z X Y 7→ (1− r)Λ(w,β )L(k(z)′γ)ẽ(z)

1−L(k(z)′γ + t(z)′λa)
,

ẽ(z) ∈ {e1(z), ...,edβ
(z)},q ∈ Y0,θ ∈Θ

}
.

Notice that H4 = F2F3H5−H6. Under Assumptions 2.7(c)(iii), (e)(iii), and (f), H6 admits an integrable envelop,

H6 ≡ K4 ‖e(z)‖. By Example 19.8 in Van der Vaart (1998), H4 is GC. It is straightforward to check F2F3H5 admits

an integrable envelop function. From the proof of Lemma 2.4, we know that F2 and F3 are Donsker. Then, by the

Donskerness of H5 and H6, and Corollary 9.26 in Kosorok (2008), H4 is also GC. �

Lemma 2.6 Under the assumptions of Theorem 2.3,

d̂q,n(θ̂ ,G)−dq(θ0,G) = op(1).

Proof of Lemma 2.6: Let η(θ) = (η1(·,θ),η2)
′, f (a;θ ,η(θ)) ≡ f1(a;θ ,η(θ)) ·G−1(η1(x,θ)/η2)+ f2(a;θ ,η(θ)),

where

f1(a;θ ,η(θ))≡ 1− r
Q0η2

· L(k(z)′γ + t(z)′λs)

1−L(k(z)′γ + t(z)′λa)
·Λx(w;β ),

and f2(a;η(θ))≡−x · f1(a;θ ,η(θ)). With these quantities, we can write

d̂q,n(θ̂ ,G)−dq(θ0,G) = En[ f (A;θ0, η̂n(θ))]−E[ f (A;η0(θ0))],
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where

η̂n(θ)≡

(
En

[
(1−R)

Q0

L(k(z)′γ̂ + t(z)′λ̂s)

1−L(k(z)′γ̂ + t(z)′λ̂a)
1(X ≤ ·)

]
,
En[R]

Q0

)′
,

η0(θ)≡
(
E
[
(1−R)

Q0

L(k(z)′γ + t(z)′λs)

1−L(k(z)′γ + t(z)′λa)
1(X ≤ x)

]
,1
)′

.

Let Nθ0 denote a neighborhood of θ0. We proceed by showing, (i) when η̂n(θ) is sufficiently close to η0(θ), we

have supθ∈Nθ0
‖ f (a;θ ,η(θ))− f (a;θ ,η0(θ))‖ ≤ c(a) · supx∈X ,θ∈Nθ0

‖η(θ)−η0(θ)‖, for some c(·) satisfying, (ii)

E[c(A)] sup
x∈X ,θ∈Nθ0

‖η̂n(θ)−η0(θ)‖
p→ 0,

and (iii) E[supθ∈Nθ0 ,‖η−η0‖≤ε ‖ f (A;θ ,η(θ))‖]< ∞.

By Assumptions 2.7(c) and (e), L(·) and Λx(·) are uniformly bounded. Under Assumption 2.8(d), G−1 is Lipschitz

with a bounded Lipschitz constant. Then, (i) follows immediately by

‖ f (a;θ ,η(θ))− f (a;θ ,η0(θ))‖ ≤ K1 sup
x∈X
‖η1(x,θ)−η1,0(x,θ)‖+K2 ‖η2−η2,0‖ ,

and letting c(·) = max{K1,K2}.

Next, we shall verify (ii). To this end, it suffices to show that η̂1,n converges to η1,0 uniformly. This follows from

Gη being GC, where Gη ≡ Gη ,1 ·Gη ,2, and

Gη ,1 ≡
{
(r,z) ∈ {0,1}×Z 7→ (1− r)L(k(z)′γ + t(z)′λs)

Q0(1−L(k(z)′γ + t(z)′λa))
: θ ∈Θ

}
,

Gη ,2 ≡ {x ∈X 7→ 1(x≤ q) : q ∈X }.

Since Gη ,1 is uniformly bounded, it follows from Example 19.2 in Van der Vaart (1998) that it is GC. Gη ,2 is VC

subgraph with VC index equal to 2, and therefore, it is GC. Then, by Corollary 9.27 in Kosorok (2008), Gη is also

uniformly bounded GC.

Lastly, (iii) holds under Assumption 2.1(d) and Assumption 2.7(e).

By (i), (ii), and the Markov inequality, supθ∈Nθ0
‖ f (A;θ , η̂(θ))− f (A;θ ,η0(θ))‖

p→ 0. Then the desired result is

obtained by (iii) and Lemma 4.3 in Newey and McFadden (1994). �

Lemma 2.7 Under the assumptions of Theorem 2.3, we have that En[∆φq(A;θ0,G)] = n−1
∑

n
i=1 ψg,q(Ai;θ0,G)+ op

(n−1/2), where ∆φg and ψg,q are defined in (2.8.17) and (2.7.9), respectively.
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Proof of Lemma 2.7: Let f0(a;η)≡ 1−r
1−Q0

`(z)Λx(w;β0)G−1(η1/η2), and hence, ∆φq(a;θ0,G) = f0(a; η̂n)− f0(a;η0),

where η̂n(·)≡
(
En

[
(1−R)`(Z)

1−Q0
1(X ≤ ·)

]
,En[R]/Q0

)′
, and η0(·)≡ (FX |R(·|1), 1)′. The first step of our proof is to show

that
√

n(En−E)( f0(a; η̂n)− f0(a;η0)) = op(1), (2.8.33)

by invoking Theorem 2.1 in Wellner and van der Vaart (2007).

Towards this end, we need to (i) define the functional space Hη such that P(η̂n ∈ Hη)→ 1, (ii) verify that

Fη ≡ { f0(·;η) : η ∈Hη} is Donsker, and (iii) show that

∫
( f0(a; η̂)− f0(a;η0))

2dFA(a)
p→ 0. (2.8.34)

For (i), let Hη ≡ (Hη ,1,Hη ,2), where

Hη ,1 ≡ {x ∈X 7→ f (x) : f non-decreasing, bounded between 0 and 1},

and Hη ,2 ≡ [1−δη ,1+δη ], for some δη ∈ (0,1/2). Given H , Condition (i) is implied by η̂
p→ η0 uniformly, which

is shown in Lemma 2.6.

Next, we establish the Donsker property of Fη . Note that Fη = 1−r
1−Q0

`(z)Λx(w;β0) ·G−1(Hη1/Hη2). By Lemma

9.11 in Kosorok (2008), Hη ,1 is BUEI, relative to the envelop Hη ,1 ≡ 1. H2 is a bounded convex set in the Euclidean

space, and hence, trivially BUEI. Pointwise measurability is immediate from the definitions of the two sets. By

Assumption 2.8(d), G−1 is a Lipschitz continuous function with a bounded Lipschitz constant. Given that H2 is

bounded away from 0, we conclude from Lemma 9.14 and Theorem 9.15 in Kosorok (2008) that G−1(Hη1/Hη2) is

also BUEI and pointwise measurable relative to the envelop Hη ,3 ≡ sup{x∈X }. By Theorem 2.10.1 in Van Der Vaart

and Wellner (1996), G−1(Hη1/Hη2) is uniformly bounded Donsker. Finally, under Assumptions 2.7(c)(iii) and (e),

Corollary 9.32 then implies that Fη is uniformly bounded Donsker.

Now, to show (2.8.34), note that

∫
( f0(a; η̂)− f0(a;η0))

2dFA(a)≤ K1 sup
x∈X
|η̂1,n(x)−η1,0(x)|2 +K2|η̂2,n−η2,0|2 = op(1),

where the first inequality follows by carefully bounding the coefficients associated with each term and by the fact

that fourth moments of ‖k(z)‖ and ‖t(z)‖ exist under Assumption 2.7(f). The last one follows because η̂n converges

uniformly to η0.
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Next, we prove that

√
n


η̂1,n(·)

η̂2,n

−
η1,0(·)

η2,0


 Gη1,η2(·),

where Gη1,η2(·) is a tight, two-dimensional mean zero Gaussian process with covariance function Σ(x1,x2) = E[(ψη ,1

(x1),ψη ,2)(ψη ,1(x2),ψη ,2)
′], ψη ,1(·)=ψη ,1(a,γ0; ·)≡ hη(r,z;γ0)1(x≤ ·)−FX |R(x|1), ψη ,2≡ (r−Q0)/Q0, and hη(r,z;

γ0)≡ (1−r)`(z)
1−Q0

.

The weak convergence follows from G0,η being Donsker, where

G0,η ≡ {(r,x,z) ∈ {0,1}×X ×Z 7→ hη(r,z;γ0) ·1(x≤ q) : q ∈X }.

Under Assumption 2.7(e), hη is uniformly bounded. Since the class of indicator functions is uniformly bounded

Donsker, by Corollary 9.32 in Kosorok (2008), we conclude that Gη is also uniformly bounded Donsker.

In view of (2.8.33), we deduce that

En[∆φq(A;θ0,G)] = E[ f0(A; η̂n)− f0(A;η0)]+op(n−1/2). (2.8.35)

In the next step, we derive the asymptotic linear representation of the first term on the right hand side of (2.8.35)

. The proof continues by showing that the map, φG(η) ≡
∫

f (a;η)dFA(a), is Hadamard differentiable in η at η0.

Observe that we can decompose φG as follows

(η1,η2) 7→
η1

η2
7→ G−1 ◦ (η1/η2) 7→ hG ◦ (G−1 ◦ (η1/η2)),

where hG(g) ≡
∫ 1−r

1−Q0
`(z)Λx(w;β0)gdFA(a). The first map is continuous and uniformly bounded on Hη ,2, and thus,

Hadamard differentiable. The second and third maps are both composition maps. Since G−1(·) is continuously differ-

entiable with bounded first-order derivative under Assumption 2.8(d), by Lemma 3.9.25 in Van Der Vaart and Wellner

(1996), it is Hadamard differentiable. Since integration is a linear functional, hG is also Hadamard differentiable. Now

we invoke the chain rule, e.g. Theorem 20.9 in Van der Vaart (1998), and conclude that φG is Hadamard differentiable,

with the functional derivative of φG at η0 in the direction of (ψη ,1,ψη ,2) given as follows

(ψη ,1,ψη ,2) 7→ hg ◦

((
1
G′
◦G−1 ◦

(
η1,0

η2,0

))
·

(
ψη ,1

η2,0
−

η1ψη ,2

η2
2,0

))
.

Given the Hadamard differentiability, we then apply the delta method (as in Theorem 3.9.4 in Van Der Vaart and
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Wellner (1996)) to get the linear expansion, ψg,q,

ψg,q(a;θ0) =
∫ 1− r

1−Q0
· `(z)Λx(w;β0)

G′ (G−1(η1,0/η2,0))
·

(
ψη ,1

η2,0
−

η1,0ψη ,2

η2
2,0

)
dFA(a)

= E

[
1−R

1−Q0
· `(Z)Λx(W ;β0)

G′
(
G−1(FX |R(X |1))

) ·( (1− r)`(z)1(x≤ X)

1−Q0
−

rFX |R(X |1)
Q0

)]
.

This concludes our proof. �

2.8.3 Asymptotic Variance Estimators

In this section, we provide an estimator for the improved asymptotic variance Σ̂ j,imp via plug-in estimators of the

influence functions ψ̂ j, j = p,q. In view of (2.7.3)–(2.7.5) , we define, for j = p,q,

ψ̂ j(a; θ̂ , q̂τ ,by)≡ ψ̂ fy, j(a; θ̂ , q̂τ ,by)−
1

f̂Y |R(q̂τ |1)
ψ̂d, j(a; θ̂ , q̂τ ,by), (2.8.36)

where

ψ̂ fy, j(a; θ̂ , q̂τ ,by)≡
d̂ j,n(θ̂ ,G)

f̂ 2
Y |R(q̂τ |1)

r
En[R]

(
Kby(y− q̂τ)−Ens [Kby(y− q̂τ)]−

(1(y≤ q̂τ)− τ) f̂ ′Y |R(q̂τ |1)

f̂Y |R(q̂τ |1)

)
,

and

ψ̂d, j(a; θ̂ , q̂τ)≡ M̂θ , j,n(θ̂)
′
ψ̂θ (a; θ̂ , q̂τ)+ ψ̂g, j(a; θ̂ ,G)+

1− r
En[1−R]

̂̀(z)Λx(w; β̂ )ĝ j(x)−
rd j,n(β̂ ,G)

En[R]
.

First, we focus on ψ̂ fy . The only term that requires some explanation here is f̂ ′Y |R(q̂τ |1). We can estimate f̂ ′Y |R

(q̂τ |1) by Ens [K
′
by
(y− q̂τ)], where K′by

(·)≡ b−1
y ∂Ky(u)/∂u, is the first-order derivative of the rescaled kernel function.

Second, we turn to the influence functions involving the estimation of θ . We let

ψ̂θ (a; θ̂ , q̂τ)≡−
(

M̂′Ω̃nM̂
)−1

M̂′Ω̃n

(
m(a; θ̂ , q̂τ)− M̂qτ

r · (1(y≤ q̂τ)− τ)

En[R] f̂Y |R(q̂τ |1)

)
,

where M̂ ≡ En[∂m(A; θ̂ , q̂τ)/∂θ ], M̂qτ
≡
(

0′,0′,0′,En[Re(Z) f̂Y |R,Z(q̂τ |1,Z)]′
)′
, and

f̂Y |R,Z(q̂τ |1,z)≡
Ens [Kbz(Z− z)Kby(Y − q̂τ)]

Ens [Kbz(Z− z)]
,

for Kbz(Z− z)≡∏
dz
k=1

1
bzk

Kz

(
Zk−zk

bzk

)
.
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Lastly, we provide estimators for influence functions relating to the estimation of nonparametric first steps. The

estimation of ψg,q(a; θ̂ ,G) is straightforward. We let ψ̂g,p(a; θ̂ ,G) ≡ ∑
3
j=1 ψ̂p,x, j(a; θ̂ ,G). The estimation of ψp,x,2

calls for some explanation. Note that the plug-in estimator,

ψ̂p,x,2(a; θ̂ ,G)≡ (1− r)̂̀(z)
En[1−R]

π̂(x)−Ena

[̂̀(z)π̂(x)] ,
depends on an estimator for π(·). To estimate π(·), we rewrite it as follows

π(x) = E
[
`(Z)Λx(W )(G(X)−FX |R(X |1))

fX |R(X |1)

∣∣∣∣X = x,R = 0
]
.

Let φπ(·) denote the term inside the conditional expectation operator, and φ̂π(·) be its sample analog. Here we propose

a simple series least square estimator for π(·). Let Pk(x) = (p1(x), ..., pk(x))′ be a k-dimensional vector of known

basis functions with k→ ∞ and nk→ 0. Then, we can estimate π(x) by letting π̂(x) ≡ Pk(x)′Ena [Pk(X)Pk(X)′]−1

·Ena [Pk(X)φ̂π(X)].
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CHAPTER 3

Difference-in-Differences with Compositional Changes

This chapter is adapted from the working paper “Difference-in-Differences with Compositional Changes” and has

been reproduced with the permission of my co-author Pedro H. C. Sant’Anna.

3.1 Introduction

Difference-in-differences (DiD) designs have been used widely for identifying and estimating causal effects with

observational data. Identification in this research design typically relies on a conditional parallel trends assumption

stipulating that conditional on a set of covariates, the average untreated outcomes among treated and comparison

groups would have evolved “in parallel”. When one pairs this assumption with common support and no-anticipation

assumptions, it is easy to establish that the average treatment effect on the treated (ATT) is nonparametrically identified

when panel data is available. When one only observes repeated cross-sectional data, it is common to impose further a

no-compositional change assumption, also known as the stationarity assumption. This is the case in the widely cited

DiD procedures of Heckman et al. (1997), Abadie (2005), Sant’Anna and Zhao (2020), and Callaway and Sant’Anna

(2021), for example.

Although we have seen a lot of recent developments in DiD methods (see Roth et al., 2023 for an overview of

recent DiD developments), little attention has been paid to understanding the importance and limitations of the no-

compositional changes assumption. This paper aims to fill this gap by providing researchers with new tools that can

be used when they are in doubt about such an assumption and/or to test its plausibility.

Before discussing the paper’s contributions, it is worth stressing why ruling out compositional changes across

time periods can be restrictive in real empirical applications. Essentially, the no-compositional changes assumption

requires one to sample observations from the same population across time periods, which can be unrealistic in some

scenarios. For example, Hong (2013) studies the effect of Napster on recorded music sales. He uses data from the

1996–2002 Interview Surveys of the Consumer Expenditure Survey. Over this period, the composition of internet

users has changed substantially. The early adopters tend to be younger, richer, more educated, and technically savvy,

whereas later adopters exhibit a higher diversity level in demographics. If one ignores such imbalances of group

composition across time, the (negative) effect of Napster on music sales can be overestimated, as the decrease in the

average music expenditure may be attributed to a post-Napster group with more households having low reservation

prices for recorded music. Other applications also share this concern, as discussed below and in more detail in Section
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3.6. Therefore, having causal inference tools that can assess if the findings are robust against compositional changes

in the sample is of practical interest.

We begin our analysis by showing that one can identify the ATT in DiD setups without invoking the no compo-

sitional changes assumption. We derive the efficient influence function and the semiparametric efficiency bound for

the ATT in this scenario. We then form generic nonparametric estimators built on the efficient influence function that

can achieve the semiparametric efficient bound under mild smoothness conditions, a rate doubly-robust (DR) prop-

erty (Smucler et al., 2019). These results are general and do not rely on a specific choice of estimators for nuisance

functions. Nonetheless, they do not help us with practical inference procedures. For that, we use a local polynomial

estimator for the outcome-regressions models and the local multinomial logit regression to estimate the generalized

propensity score, the latter of which is fairly new in the DiD literature. Importantly, our nonparametric estimators can

accommodate both discrete and continuous covariates, and all tuning parameters are selected in a data-driven way via

cross-validation.1 Finally, we show that the estimand proposed by Sant’Anna and Zhao (2020) is no longer DR in this

DiD setup with compositional changes. In fact, we show that even when all nuisance functions are correctly specified,

the Sant’Anna and Zhao (2020)’s DR DiD estimand does not identify the ATT in this general setup. Overall, this first

set of results highlights what is “the best” that one can do in DiD setups with compositional changes.

Next, we tackle the problem of how much efficiency one may lose by not exploring the no-compositional change

assumption when it is valid. To answer this question, we compare our derived semiparametric efficiency bound

that does not impose the no-compositional changes assumption with the semiparametric efficiency bound derived by

Sant’Anna and Zhao (2020) that fully exploits it. As expected, the extra layer of robustness comes at the cost of loss of

efficiency. Heuristically speaking, the no-compositional change assumption allows one to pool the covariate data from

all time periods, substantially increasing the effective sample size and the precision of the DiD estimator compared to

the one that does not impose the no-compositional change assumption.

In practice, determining whether compositional changes are a significant concern for a given empirical application

is not always obvious. Specifically, it is unclear whether imposing a no-compositional change assumption will lead

to biased ATT estimates. Using our previous results, we propose a nonparametric Hausman (1978)-type test for no-

compositional changes. The test compares our nonparametric DiD estimator of the ATT, which is robust against

compositional changes, with the nonparametric extension of Sant’Anna and Zhao (2020)’s DR DiD estimator, which

assumes no compositional changes. We derive the large sample properties of the proposed test, which shows that it

controls size asymptotically and is consistent against a broad set of alternatives.

We demonstrate the practical appeal of our proposed DiD tools through Monte Carlo simulations and an empirical

1As a side contribution of this paper, we provide a new result on the uniform expansion of the local (multinomial) logit estimators, which
accommodates both continuous and discrete variables. This result may be of independent interest.
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application that revisits Sequeira (2016). She leverages a quasi-experimental variation created by a large reduction

in the average nominal tariff rate between South Africa and Mozambique in 2008 to study the causal effect of tariff

rate reduction on trade costs and corruption behavior using a two-way fixed effects specification with covariates that

implicitly imposes a no-compositional changes assumption, among other arguably unnecessary homogeneity assump-

tions. We use our nonparametric tests to assess the plausibility of the no-compositional changes assumption and fail to

reject it at the usual significance levels. Our results support the conclusions by Sequeira (2016) that tariff liberalization

decreases corruption, and our DR DiD estimates are similar to those in the original paper.

Related literature: This article belongs to the extensive literature on semiparametric DiD methods. We refer the

reader to Roth et al. (2023) for a synthesis of recent advances in the econometrics of DiD. Within this broad literature,

the paper closest to ours is Sant’Anna and Zhao (2020), which proposes DR DiD estimators for the ATT and derives

semiparametric efficiency bound for such estimators, too. In sharp contrast to us, though, all the results in Sant’Anna

and Zhao (2020) rely on a no-compositional change assumption. Thus, our results complement theirs. Furthermore,

Sant’Anna and Zhao (2020)’s theoretical results rely on parametric first-step estimators, while we accommodate non-

parametric estimators. A perhaps side and minor contribution of our paper is establishing the statistical properties

of Sant’Anna and Zhao (2020)’s DR DiD estimator with nonparametric estimates of the nuisance functions; see also

Chang (2020).

Our paper also relates to the causal inference literature on compositional changes over time. Hong (2013) devel-

ops a matching-based estimator under a “selection-on-observable”-type assumption, which is different and arguably

stronger than our conditional parallel trends assumption. Hong (2013) also does not discuss efficiency issues as we do.

Stuart et al. (2014) propose inverse probability weighted estimators for the ATT in DiD setups under compositional

changes. In contrast to us, their estimator does not enjoy any DR property and may not attain the semiparametric

efficiency bound. Nie et al. (2019) is also interested in DiD estimators under compositional changes. Their estima-

tor substantially differs from ours: they use meta-learners and cross-fitting to estimate nuisance functions, while our

estimator is based on the efficient influence function for the ATT. When treatment effects are heterogeneous, their

estimators do not target the ATT but the ATE, which, in our context, is not identified. They do not consider tests for

the no-compositional changes assumption as we do.

Finally, we contribute to the semiparametric two-stage estimation that depends on nonparametrically estimated

functions. See, e.g., Newey (1994), Chen et al. (2003), Chen et al. (2008), Ackerberg et al. (2014), Rothe and Firpo

(2019), among many others. Our results on local multinomial logit regression builds on Fan et al. (1995), Claeskens

and Van Keilegom (2003), Li and Ouyang (2005), and Kong et al. (2010). The novel result on the uniform expansion

of the local multinomial logit estimator may be of independent interest.

132



Organization of the paper: Section 3.2 introduces the identification framework of the DiD parameter under

compositional changes, presents the semiparametric efficiency results, and discusses the bias-variance trade-off of

ruling out compositional changes. In Section 3.3, we present our nonparametric DR DiD estimators, discuss their

large sample properties, and how to pick tuning parameters. Section 3.4 discusses a test for no-compositional changes.

Monte Carlo simulations are provided in Section 3.5, and an empirical illustration is considered in Section 3.6. Section

3.7 concludes. Proofs and additional results are reported in Section 3.8.

3.2 Difference-in-Differences

3.2.1 Framework

This section describes our setup. We focus on the canonical two-period and two-group setup for conciseness and

transparency. We have two time periods, t = 0, where no unit is exposed to the treatment, and time t = 1, where units

in the group with D = 1 are exposed to treatment; here, D is a binary treatment indicator. We adopt the potential

outcome notation where Yit (0) and Yit (1) denote the untreated and treated potential outcome for unit i at time t,

respectively. Observed outcomes are given by Yit = DitYit(1)+ (1−Dit)Yit(0). We also assume that a k-dimensional

vector of pre-treatment characteristics Xi ∈X ⊆ Rk is available.

This paper considers the case where one has access to repeated cross-sectional data. To formalize this idea, let Ti

be a dummy variable that takes value one if the observation i is observed only in the post-treatment period t = 1, and

zero if observation i is only observed in the pre-treatment period t = 0. Define Yi = TiYi1 +(1−Ti)Yi0, and let n1 and

n0 be the sample sizes of the post-treatment and pre-treatment periods such that n = n1 +n0.

Assumption 3.1 (Sampling) The pooled data {Yi,Di,Xi,Ti}n
i=1 consists of independent and identically distributed

draws from the mixture distribution

P(Y ≤ y,D = d,X ≤ x,T = t) = t ·P(T = 1) ·P(Y1 ≤ y,D = d,X ≤ x|T = 1)

+(1− t) ·P(T = 0)P(Y0 ≤ y,D = d,X ≤ x|T = 0) ,

where (y,d,x, t) ∈ Y ×{0,1}×X ×{0,1} .

Assumption 3.1 allows for different sampling schemes. For instance, it accommodates the binomial sampling

scheme where an observation i is randomly drawn from either (Y1,D,X) or (Y0,D,X) with a fixed probability. It also

accommodates the “conditional” sampling scheme where n1 observations are sampled from (Y1,D,X), n0 observations

are sampled from (Y0,D,X) and P(T = 1) = n1/n (here, T is treated as fixed). Importantly, Assumption 3.1 does not

impose that we are sampling from the same underlying distribution across time periods, implying that it is fully
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compatible with compositional changes (Hong, 2013). This is in contrast to most of the DiD literature. For example,

Assumption 1(b) in Sant’Anna and Zhao (2020) explicitly imposes that (D,X) ⊥⊥ T ; see also Heckman et al. (1997),

and Abadie (2005) for other DiD procedures that rely on this stationarity condition.

As is typical in DiD setups, we are interested in the average treatment effect in time period t = 1 among the treated

units,

AT T = τ = E [Y1 (1) |D = 1,T = 1]−E [Y1 (0) |D = 1,T = 1] . (3.2.1)

Given that the untreated potential outcome Yi1(0) is never observed for the treated units, we need to impose as-

sumptions to uncover E [Y1 (0) |D = 1,T = 1] from the data. We make conditional parallel trends, no-anticipation, and

strong overlap assumptions toward this goal. Let S ≡ {0,1}2 and S− ≡ {(1,0),(0,1),(0,0)}.

Assumption 3.2 (Conditional Parallel Trends, No-Anticipation, and Overlap)

For some ε > 0, (d, t) ∈S−, and for all x ∈X

(i) E[Y1(0)|D = 1,T = 1,X = x]−E[Y0(0)|D = 1,T = 0,X = x]

= E[Y1(0)|D = 0,T = 1,X = x]−E[Y0(0)|D = 0,T = 0,X = x].

(ii) E[Y0(0)|D = 1,T = 0,X = x] = E[Y0(1)|D = 1,T = 0,X = x].

(iii) P(D = 1,T = 1)> ε and P(D = d,T = t|X = x)≥ ε.

Assumption 3.2(i) is the conditional parallel trends assumption (CPT) stating that conditioning on X , the average

evolution of the untreated potential outcome is the same among the treated and untreated groups. This assumption

allows for covariate-specific trends and does not restrict the trends among different covariate strata. Assumption

3.2(ii) is a no-anticipation assumption (NAA) stating that, on average, treated units do not act on the future treatment

prior to its implementation (Abbring and van den Berg, 2003; Malani and Reif, 2015). Assumption 3.2(iii) is an

overlap condition that guarantees that there are some treated units in the post-treatment period and that the covariates

do not fully determine treatment status. This condition is crucial for guaranteeing nonparametric regular inference

procedures (Khan and Tamer, 2010).
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3.2.2 Identification and Semiparametric Efficiency Bound

Under Assumptions 3.1 and 3.2, it is straightforward to show that the ATT is nonparametrically identified by the

outcome regression estimand2

τ = τor ≡ E [Y |D = 1,T = 1]−E [m1,0(X)+m0,1(X)−m0,0(X)|D = 1,T = 1] , (3.2.2)

where md,t(x) = E[Y |D = d,T = t,X = x]. Alternatively, it is also easy to show that one can identify the ATT using an

inverse probability weighted estimand

τ = τipw ≡ E [(w1,1(D,T )−w1,0(D,T,X)−w0,1(D,T,X)+w0,0(D,T,X))Y ] , (3.2.3)

where, for (d, t) ∈S−

w1,1(D,T ) =
DT

E[DT ]
,

wd,t(D,T,X) =
Id,t · p(1,1,X)

p(d, t,X)

/
E
[

Id,t · p(1,1,X)

p(d, t,X)

]
, (3.2.4)

Id,t = 1{D = d,T = t}, and p(d, t,x) = P(D = d,T = t|X = x) is a so-called generalized propensity score. Notice that

the weights in (3.2.4) are of the Hájek (1971)-type. This guarantees that all the weights sum up to one and typically

results in more stable finite sample behavior; see, e.g., Millimet and Tchernis (2009); Busso et al. (2014); Sant’Anna

and Zhao (2020).

From (3.2.2) and (3.2.3), it is clear that any linear combination of τor and τipw also identifies the ATT under our

assumptions. There are also many other potential estimands that make use of nonlinear combinations of the different

terms in τor and τipw and identify the ATT. From this simple observation, a natural question that arises is: How

can we combine these two strategies to obtain an efficient estimator for the ATT? The next theorem addresses this

question through the lens of semiparametric efficiency theory. Specifically, we derive the efficient influence function

for the ATT under Assumptions 3.1 and 3.2, as well as its semiparametric efficiency bound. This bound represents

the maximum precision achievable in this context under the given assumptions. As so, it provides a benchmark that

researchers can use to assess whether any given (regular) semiparametric DiD estimator for the ATT fully exploits

the empirical content of Assumptions 3.1 and 3.2.3 Hereafter, let τ(Y,X) = Y − (m1,0(X)+(m0,1(X)−m0,0(X))) and

W = (Y,D,X ,T ). We also denote the ATT by τ .

2See Lemma 3.2 in Section 3.8.1 for the formalization of these results.
3To simplify exposition, we abstract from additional technical discussions related to the conditions to guarantee quadratic mean differentiability

and their implications for the precise definition of efficient influence function; see, e.g., Chapter 3 of Bickel et al. (1998) for more details.
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Theorem 3.1 (Semiparametric Efficiency Bound) Suppose Assumptions 3.1 and 3.2 hold. Then, the efficient influ-

ence function for τ is given by

ηeff(W ) = w1,1(D,T )(τ(Y,X)− τ)+ ∑
(d,t)∈S−

(−1)(d+t)wd,t(D,T,X)(Y −md,t(X)), (3.2.5)

where the weights are defined in (3.2.4). Furthermore, the semiparametric efficiency bound for the set of all regular

estimators of τ is

E[ηeff(W )2] =
1

E [DT ]2
E

[
DT (τ(Y,X)− τ)2 + ∑

(d,t)∈S−

Id,t · p(1,1,X)2

p(d, t,X)2 (Y −md,t(X))2

]
.

Apart from providing an efficiency benchmark, Theorem 3.1 also provides us a template to construct efficient

estimators for τ . That is, given that any influence function has a mean of zero, we can take the expected value of

ηeff(W ) and isolate τ to get the following estimand for the ATT

τ = τdr ≡ E

[
w1,1(D,T )τ(Y,X)+ ∑

(d,t)∈S−
(−1)(d+t)wd,t(D,T,X)(Y −md,t(X))

]
. (3.2.6)

Note that we can rewrite τdr as the τor estimand augmented with IPW terms that weight the errors of the regression

of Y on X among subgroups defined by (d, t) ∈S−, that is,

τdr = τor + ∑
(d,t)∈S−

(−1)(d+t)E
[
wd,t(D,T,X)(Y −md,t(X))

]
.

Alternatively, one can rewrite τdr as the τipw estimand augmented with re-weighted outcome regression terms.

τdr = τipw + ∑
(d,t)∈S−

(−1)(d+t)E
[
(w1,1(D,T )−wd,t(D,T,X))md,t(X)

]
.

These alternative representations of the ATT estimand based on the efficient influence function highlight that

combining IPW and OR approaches can lead to efficiency gains. In addition, these representations suggest that τdr

possesses the so-called “doubly robust” property, which allows for recovering the ATT, as long as one correctly spec-

ifies a model for the generalized propensity score or a model for the outcome regressions. In a nonparametric world,

these DR properties can be interpreted as “rate doubly robustness” as shown in Section 3.3.1; see also Smucler et al.

(2019).
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3.2.3 Bias-Variance Trade-Off With Respect To Stationarity

All the estimands described in Section 3.2.2 account for compositional changes over time, and the τdr estimand (3.2.6),

based on the efficient influence function, inherit efficiency properties under our assumptions. As mentioned in the

introduction, most DiD estimators typically assume no compositional changes a priori. A natural question then arises:

How biased would these estimators be when they erroneously rule out compositional changes?

To tackle this question, we examine the bias of the semiparametrically efficient DiD estimator for the ATT proposed

by Sant’Anna and Zhao (2020) that excludes compositional changes. Before diving into this analysis, we need to

introduce some additional notation and clarify the assumptions, estimands, and other aspects of Sant’Anna and Zhao

(2020)’s approach.

First, Sant’Anna and Zhao (2020) explicitly rules out compositional changes by relying on the following station-

arity assumption.

Assumption 3.3 (Stationarity) (D,X)⊥⊥ T.

Intuitively, Assumption 3.3 enables researchers to pool covariates and treatment variables from both time periods.

As a result, under Assumption 3.3, it follows that E [D|X ,T = 1] = E [D|X ] ≡ p̃(X), which also affects the definition

of the “relevant” propensity score. Sant’Anna and Zhao (2020) fully exploit these features and show that, under

Assumptions 3.1, 3.2, and 3.3, the efficient influence function for the ATT is given by

ηsz(W ) =
D

E[D]

(
τ(X)− τ

)
+ ∑

(d,t)∈S
(−1)(d+t)wsz

d,t(D,T,X)(Y −md,t(X)), (3.2.7)

where τ(x) = (m1,1(x)−m1,0(x))− (m0,1(x)−m0,0(x)) is the conditional ATT, and for t = 0,1,

wsz
1,t (D,T,X) =

D ·1{T = t}
E [D ·1{T = t}]

,

wsz
0,t (D,T,X) =

p̃(X)(1−D) ·1{T = t}
1− p̃(X)

/
E
[

p̃(X)(1−D) ·1{T = t}
1− p̃(X)

]
. (3.2.8)

Based on (3.2.7), Sant’Anna and Zhao (2020) propose the following DR estimand for the ATT:

τsz ≡ E

[
D

E[D]
τ(X)+ ∑

(d,t)∈S
(−1)(d+t)wsz

d,t(D,T,X)(Y −md,t(X))

]
. (3.2.9)

The next proposition shows that τsz does not recover the ATT when Assumption 3.3 is potentially violated, i.e.,

under compositional changes. It also precisely quantifies the bias relative to τsz.
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Proposition 3.1 Under Assumptions 3.1 and 3.2, we have that

τsz− τdr = ∑
(d,t)∈S

(−1)(d+t)E
[(

D
E[D]

− DT
E[DT ]

)
md,t(X)

]
+ ∑

(d,t)∈S−
(−1)(d+t)E

[(
wsz

d,t(D,T,X)−wd,t(D,T,X)
)
(Y −md,t(X))

]
=E[τ(X)|D = 1]−E[τ(X)|D = 1,T = 1]

=E[τ(X)|D = 1]− τ.

Proposition 3.1 provides bias decomposition for τsz when the stationarity assumption is not imposed. The first

equality in Proposition 3.1 follows from a direct comparison between our proposed estimand for the ATT and the

one proposed by Sant’Anna and Zhao (2020), while the second equality is a consequence of the law of iterated

expectations.4 The third equality is due to the definition of ATT and Assumptions 3.1 and 3.2. These calculations

show that Sant’Anna and Zhao (2020)’s DR DiD estimand for the ATT can be biased when Assumption 3.3 is violated.

In contrast, our proposed estimand τdr is fully robust against compositional changes.

Proposition 3.1 also highlights that not all violations of Assumption 3.3 result in biases in ATT when using

Sant’Anna and Zhao (2020)’s estimand. Although intuitive and simple, this insight seems to be new in the litera-

ture. Based on this observation, one can determine if violations of Assumption 3.3 lead to empirically relevant biases

in the ATT by comparing nonparametric estimates based on τsz with those based on our proposed estimand τdr. This

would detect only the “relevant” violations of Assumption 3.3 that affect the target parameter of interest. That is, it

would concentrate power in the directions that one cares about in this context. We discuss this testing procedure in

greater detail in Section 3.4.

At this point, one may also wonder what the price one pays for such robustness in terms of semiparametric effi-

ciency. Specifically, how much efficiency one loses by using τdr when Assumption 3.3 holds but is not fully exploited.

The next proposition compares the semiparametric efficiency bound derived in Theorem 3.1 with the one derived by

Sant’Anna and Zhao (2020).

Proposition 3.2 (Efficiency Loss under Stationarity) Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then

ρsz ≡ E[ηeff(W )2]−E[ηsz(W )2] =
1−E[T ]
E[D]E[T ]

Var [τ(X)|D = 1] . (3.2.10)

4Here, we are implicitly considering the case where there are no (global) model misspecifications, which aligns with the fully nonparametric
approach we adopt. One can compute a similar bias decomposition when one adopts parametric working models for the nuisance functions, though
the notation becomes much more cumbersome.
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It is evident from Proposition 3.2 that our proposed estimator is asymptotically less efficient than the one proposed

by Sant’Anna and Zhao (2020) when there are no compositional changes over time. The efficiency loss is greater if

any of the following three quantities is larger: 1) the population ratio of the pre-treatment period vs. the post-treatment

period, 2) the population proportion of the comparison group vs. the treated group, and 3) the expected variability

of treatment effect heterogeneity among the treated. In the extreme case where the treatment effect on the treated is

homogeneous, our ATT estimator would achieve the same efficiency level as the one that imposes stationarity a priori.

However, we imagine this case is not very realistic.

Propositions 3.1 and 3.2 characterize a bias-variance trade-off. Although our proposed estimand for the ATT is

robust against Assumption 3.3, there is an asymptotic efficiency loss of not exploiting Assumption 3.3 when it does

hold. We revisit this trade-off in Section 3.4.

3.3 Estimation and Inference

The results from Section 3.2.2 suggest one can estimate the ATT by building on the efficient influence function derived

in Theorem 3.1, as emphasized by (3.2.6). The results from Propositions 3.1 and 3.2 also suggest a testing procedure

to assess whether compositional changes translate to biased ATT estimates. However, all the discussions so far has

involved estimands that depend on unknown nuisance functions, and we have not yet discussed how one can estimate

these to form feasible two-step estimators. This section discusses how to proceed when adopting a fully nonparametric

approach, therefore avoiding additional functional form assumptions.

We first present a generic result that emphasizes that estimators based on (3.2.6) have a rate DR property, regard-

less of how you choose to (nonparametrically) estimate the nuisance functions. Although interesting and useful, this

generic result does not help us with practical inference procedures. Towards that end, we discuss how one can con-

cretely estimate the generalized propensity score (PS) and outcome regression (OR) nuisance functions using local

polynomials, even in the presence of discrete covariates. We then establish the large sample properties of our DR DiD

two-step estimator for the ATT based on local polynomials. We provide a data-driven bandwidth selection method in

Subsection 3.3.4. We defer the construction of the Hausman-type test for compositional changes to Section 3.4.

3.3.1 Rate Doubly Robust

Let p̂, and m̂d,t be generic estimators of p, and md,t , for (d, t) ∈S−. Given these first-step estimators, our proposed

two-step estimator for the ATT based on (3.2.6) is given by

τ̂dr = En

[
ŵ1,1(D,T )τ̂(Y,X)+ ∑

(d,t)∈S−
(−1)(d+t)ŵd,t(D,T,X)(Y − m̂d,t(X))

]
, (3.3.1)
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where τ̂(Y,X) = Y − (m̂1,0(X)+(m̂0,1(X)− m̂0,0(X))), and, for (d, t) ∈S−,

ŵ1,1(D,T ) =
DT

En[DT ]
, (3.3.2)

ŵd,t(D,T,X) =
Id,t · p̂(1,1,X)

p̂(d, t,X)

/
En

[
Id,t · p̂(1,1,X)

p̂(d, t,X)

]
. (3.3.3)

We impose the following assumptions on the quality of nuisance function estimators. We let ‖ f‖L2
≡
(∫

f 2dµ
)1/2

and ‖ f‖
∞
≡ supx∈X | f (x)| denote the L2- and sup-norm of a function f , respectively, and let Gn(·) denote the empirical

process
√

n(En−E)(·).

Assumption 3.4 (Estimation of Nuisance Parameters)

1. The estimators p̂ and m̂ are uniformly convergent in the sense that

‖ p̂(·, ·, ·)− p(·, ·, ·)‖
∞
= op(1), max

(d,t)∈S−

∥∥m̂d,t(·)−md,t(·)
∥∥

∞
= op(1).

2. For (d, t) ∈S−,

(i) En[(Y −md,t(X)) ·
(
ŵd,t −wd,t

)
(W )] = op(n−1/2).

(ii) En[(w1,1−wd,t)(W ) ·
(
m̂d,t −md,t

)
(X)] = op(n−1/2).

(iii) Gn

{
Id,t ·

(
p̂(1,1,X)

p̂(d, t,X)
− p(1,1,X)

p(d, t,X)

)
·
(
m̂d,t −md,t

)
(X)

}
= op(1).

(iv) Gn
[
wd,t(W ) ·

(
m̂d,t −md,t

)
(X)
]
= op(1).

(v) Gn

[
Id,t ·

(
p̂(1,1,X)

p̂(d, t,X)
− p(1,1,X)

p(d, t,X)

)]
= op(1).

One can verify these high-level conditions using empirical process arguments. These typically involve ensuring

that the functional space in which the first-stage estimation error resides is not overly complex; see, e.g., Kennedy

et al. (2017).

Let (rn)n≥1 and (sn)n≥1 be positive sequences converging to zero such that

max
(d,t)∈S−

‖ p̂(d, t, ·)− p(d, t, ·)‖e = Op(rn),

max
(d,t)∈S−

∥∥m̂d,t(·)−md,t(·)
∥∥

e = Op(sn),

where e = L2 or ∞.
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Lemma 3.1 (Doubly-Robust Error Rate with Generic First Step Estimators) Suppose that e = ∞, and that As-

sumptions 3.1, 3.2, 3.4.1 and 3.4.2 (i, ii) are satisfied. Then,

τ̂dr− τ =
1
n

n

∑
i=1

ηeff(Wi)+Op (rnsn)+op

(
n−1/2

)
. (3.3.4)

Furthermore, if Assumptions 3.4.2 (iii)–(v) are also fulfilled, the equation (3.3.4) remains valid when e = L2.

The lemma demonstrates that our estimator is doubly robust in terms of its convergence rate. The remaining term

is the product of the error rates of the first-stage estimators. Due to the product structure, each estimator typically

needs only to converge to its true value at a rate of o(n−1/4) for the ATT estimator to converge at the parametric rate.

This property also allows for a trade-off between precision in the two nuisance estimators.

In the following subsection, we present lower-level conditions for cases in which the nuisance functions are esti-

mated nonparametrically using “leave-one-out” local polynomial estimators. The ‘leave-one-out’ technique enables us

to directly establish the conditions in Assumption 3.4.2 without relying on empirical process theory. This is desirable,

as verifying the complexity of the space where local polynomial (logistic) estimators reside is not a trivial task.

3.3.2 Local Polynomial Estimation of Nuisance Functions

We first introduce the estimator for the PS functions. Conditional probability functions are naturally bounded within

the unit interval. However, these bounds may not be respected when using linear probability models. As a nonparamet-

ric generalization of parametric multinomial logit regression, local multinomial logit regression enforces such bounds

by design. Through extensive Monte Carlo simulations, Frölich (2006) demonstrates that the local multinomial logit

estimator consistently outperforms local least squares, Klein–Spady, and Nadaraya–Watson estimators. Hence, we

prefer this estimator over other nonparametric methods.

Let us assume that there are functions {gd,t(·)}(d,t)∈S− , such that

p(d, t,x) =
exp(gd,t(x))

1+∑(d′,t ′)∈S− exp(gd′,t ′(x))
,

for (d, t) ∈ S−, and p(1,1,x) =
(
1+∑(d′,t ′)∈S− exp(gd′,t ′(x))

)−1. That is, we suppose that the generalized PS can

be represented by a multinomial logistic transformation of unknown functions {gd,t(·)}(d,t)∈S . Instead of impos-

ing specific functional forms on {gd,t(·)}(d,t)∈S− , the local multinomial logit estimator approximates these unknown

functions locally using polynomials, which we will describe in detail below.

In line with the conventions of local polynomial estimation, we employ the following notations as shorthand for
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common operators on vectors,

k = (k1, ...,kv), |k|=
v

∑
`=1

k`, k! =
v

∏
`=1

k`!, xk =
v

∏
`=1

xk`
` ,

f (k)(x) =
∂ k f (x)

∂xk1
1 ·∂xk2

2 · · ·∂xkv
v
, ∑

0≤|k|≤p
f (k) =

p

∑
`=0

`

∑
k1=0

...
`

∑
kv=0

k1+...+kv=`

f (k1, ...,kv).

Furthermore, we define nk =
(k+`−1

`−1

)
as the number of distinct `-tuples k with |k|= k. We arrange these nk `-tuples

in a lexicographically-ordered sequence, prioritizing the last position, and denote the mapping from the rank in the

ordered sequence to the corresponding `-tuple as πk(·).

Our method accommodates discrete and continuous covariates, so we must differentiate between these variables.

We assume that x = (xc,xd), where xc is a υc-vector of continuous covariates, and xd is the subvector of discrete

variables. We also distinguish between ordered and unordered discrete variables. That is, xd = (xu,xo), where xu is a

υu-vector of unordered covariates and xo is a υo-vector of ordered covariates.

Now, for a generic function, g : X → R, and a point, x∗ ∈X , g(·) can be approximated in a neighborhood of x∗

by a p-th order Taylor series with respect to the continuous variables, as

g(x)≈ ∑
0≤|k|≤p

1
k!

g(k)(x∗)(xc− x∗c)
k =

¯
X(x∗c)

′
γg(x∗),

where
¯
Xp(xc) = (

¯
X(0)′(xc), ..., ¯

X(p)′(xc))
′ is a Np× 1 vector that contains the sorted (Xc− xc)

k, with Np ≡ ∑
p
k=0 nk.

The l-th entry of
¯
X(k)(xc), denoted as

¯
X(k,l)(xc), is equal to (Xc−xc)

πk(l). The vector γg(x) = (γ
(0)′
g (x), . . . ,γ(p)′

g (x))′ is

defined as the vector of lexicographically-ordered g(k)(x)/k!.

The local approximation is achieved through kernel smoothing. For continuous variables, we let the kernel function

be denoted by K j(u), j = ps,or. It is a nonnegative function supported on [−1,1]υc . Suppose h > 0 is a generic

bandwidth parameter. We denote the scaled kernel function by Kh(u) = K (u/h)/hυc . We use the kernel function

proposed by Li and Racine (2007) for discrete variables. This kernel function is defined as

Lλ (xd ,zd) =
υu

∏
s=1

λ
1{xu,s−zu,s}
u

υo

∏
s=1

λ
|xo,s−zo,s|
o , (3.3.5)

where λ = (λu,λo) ∈ [0,1]2 is a generic smoothing parameter. When λ = 0, the estimator reduces to the frequency

estimator.

For the j-th observation of covariates, X j, our local polynomial (multinomial) logit estimator of γ , denoted by γ̂ ,
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satisfies

γ̂(X j)≡ (γ̂ ′1,0(X j), γ̂
′
0,1(X j), γ̂

′
0,0(X j))

′ = argmax
γ∈R3Np

1
n−1

n

∑
i 6= j

`(Wi,X j;γ)K̃ps(Xi;X j,h,λ ), (3.3.6)

where K̃ps(Xi;X j,h,λ ) = K ps
h (Xc,i−Xc, j)Lλ (Xd ,Xd, j) and the local likelihood function `(w,x;γ) is defined as

`(w,x;γ) = ∑
(d′,t ′)∈S−

Id,t ¯
Xp(xc)

′
γd,t − log

(
1+ ∑

(d′,t ′)∈S−
exp
(

¯
Xp(xc)

′
γd′,t ′

))
.

Note that we have used a “leave-one-out” version of the local regression estimator for the construction of γ̂ , i.e., γ(X j)

are estimated using every observation except the j-th. This technique, standard in the literature (Powell and Stoker,

1996; Powell et al., 1989; Rothe and Firpo, 2019), serves to avoid a “leave-in” bias that is of first-order importance

when estimating the ATT.

Let e`,k denote an `-dimensional vector in which the k-th element is set to one, while all remaining elements are

zero. Then, for a given γ̂ , the generalized PS can be approximated by5

p̂(d, t,x) =
exp(e′Np,1γ̂d,t(x))

1+∑(d′,t ′)∈S− exp(e′Np,1γ̂d′,t ′(x))
, (3.3.7)

for (d, t) ∈S−, and p̂(1,1,x) = 1−∑(d,t)∈S− p̂(d, t,x).

For OR models, we employ leave-one-out q-th order local polynomial least squares estimators. First, the local

polynomial regression coefficients are estimated by solving the following equation:

β̂d,t(X j) = argmin
β∈RNp

1
n−1

n

∑
i 6= j

(
Yi− ¯

Xq,i(Xc, j)
′
β
)2 Id,t,iK̃or(Xi;X j,bd,t ,ϑd,t), (3.3.8)

where K̃or(Xi;X j,bd,t ,ϑd,t) = Kor
bd,t

(Xc,i−Xc, j)Lϑd,t (Xd ,Xd, j), and Id,t,i = 1{Di = d,Ti = t}. Then, we estimate the OR

functions by

m̂d,t(X j) = e′Nq,1β̂d,t(X j), (3.3.9)

for (d, t) ∈S−.

We analyze the asymptotic behaviors of these local polynomial estimators in Section 3.8.2. We provide results on

the uniform convergence rate for the approximation error. In particular, we establish a uniform stochastic expansion

for the local multinomial logit regression that is of independent interest.

Remark 3.1 The choice of polynomial order depends on considerations such as computational tractability and the

5We abuse notation and denote the local polynomial estimators for the generalized propensity score as p̂ and for the outcome regression as m̂,
which are the same as the generic estimators introduced in Section 3.3.1.
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trade-off between bias and variance properties. We adhere to the recommendation made by Fan et al. (1995) to

employ odd-degree polynomial fits, as they simplify the analysis for the boundary bias when using symmetric kernel

functions. We allow varying local polynomial orders for the PS and OR estimators and, in the case of the latter, for

distinct treatment groups. This flexibility is desirable as the propensity score and conditional mean functions might

display varying degrees of smoothness.

3.3.3 Asymptotic Normality

With {m̂d,t}(d,t)∈S− given in (3.3.9), and p̂ defined in (3.3.7), we can construct an estimator for τdr as shown in (3.3.1).

In the following, we derive the large sample properties of the estimator τ̂dr by applying Lemma 3.1. To achieve this

objective, we begin by presenting a set of regularity assumptions. Henceforth, we use B (x,δ ) to denote a ball centered

at x with radius δ , and λmin(A) to represent the smallest eigenvalue of a square matrix A.

Assumption 3.5 (Support, Smoothness, Integrability, Kernel, and Bandwidth conditions)

1. (i) X = Xc⊗Xd , where Xc is a compact subset of Rυc and Xd is finite; (ii) For all xd ∈Xd , P(Xd = xd)> 0,

and the conditional probability density of Xc, fXc|Xd
(·|xd), is continuously differentiable and bounded away from

zero on Xc; (iii) There are positive constants κ0 and κ1 in (0,1] such that for any x ∈X and all ε ∈ (0,κ0],

there exists a x′ ∈X satisfying, x′d = xd , and

B
(
x′,κ1ε

)
⊂B (x,ε)∩X .

2. For all x∈X , (i) p(d, t,x) is (p+1)-times continuously differentiable in xc, with uniformly bounded derivatives,

for (d, t)∈S ; (ii) md,t(x) is (q+1)-times continuously differentiable in xc, with uniformly bounded derivatives,

for (d, t) ∈S−.

3. E[|Y |ζ |X ,D,T ]< ∞ a.s. for some constant ζ > 2.

4. For j = ps,or, (i) K j : [−1,1]υc → R+; (ii) K j(·) satisfies the Lipschitz condition, i.e.
∣∣K j(u)−K j(u′)

∣∣ ≤
L‖u−u′‖ for some L > 0 and any u,u′ ∈ Rd .

5. (i) h = o(1); (ii) logn/
(
nhvc+2p

)
= o(1) and λ/hp = o(1); (iii) hp+1 = o

(
n−1/4

)
and logn/(nhυc) = o

(
n−1/2

)
.

For (d, t) ∈ S−, (iv) bd,t = o(1); (v) logn/
(

n1−2/ζ bυc
d,t

)
= o(1); (vi) bq+1

d,t = o
(
n−1/4

)
and logn/

(
nbυc

d,t

)
=

o
(
n−1/2

)
; (vii) λ ,ϑd,t = o(n−1/4).

6. With Q j(xc) defined in (3.8.30), infxc∈Xc λmin (Q j(xc))> 0, for j = p,q.
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A few remarks on the assumptions are in order. Assumption 3.5.1 indicates that our local polynomial estimator

can handle discrete, categorical data. The final part of the condition, proposed by Fan and Guerre (2016), requires that

the boundary of X is sufficiently dense for the first-stage estimators to exhibit good bias and variance properties near

the boundary. Assumption 3.5.2 describes the standard smoothness condition for the nuisance functions. Assumption

3.5.3 is a regularity condition that controls the conditional moments of Y . Assumption 3.5.4 collects the regularity

conditions on the kernel functions. We note that different kernels can be used for the propensity score and conditional

mean models. In practice, the kernel K(·) usually takes a product form, i.e., K(u) = ∏
υc
i=1 K (ui), where K (·) can be

selected from several options, such as triangular, biweight, triweight, or Epanechnikov kernels. However, the Gaussian

kernel is ruled out due to the restriction on compact support. Assumption 3.5 compiles the rate condition on the

bandwidths. Assumptions 3.5.5 (ii) and (v) are imposed to ensure linear expansions of the local polynomial estimators

hold uniformly over X . When Y has finite moments of any order, such as when it has bounded support, Assumption

3.5.5 (v) is implied by Assumption 3.5.5 (vi). Assumptions 3.5.5 (iii), (vi), and (vii) specify rate conditions on the bias

and stochastic part of the first step estimation error. The usual op(n−1/4) rate of convergence for the error applies here.

It is important to note that our estimator builds on the efficient influence function and therefore inherits a doubly

robust (DR) property. Without such a DR property, it would typically require more stringent rate conditions on the

bias part, which can only be satisfied with higher-order kernel functions. See, for example, Newey (1994) and Lee

(2018) for detailed discussion. However, this usually results in estimators being more sensitive to tuning parameters,

such as bandwidths.

Remark 3.2 Rothe and Firpo (2019) provides a result that can be applied to weaken the rate conditions on the nuisance

functions. They present higher-order expansions of semiparametric two-step DR estimators, demonstrating that if the

first-step error’s bias and the stochastic components are of order op(n−1/6), and their product is of order op(n−1/2),

the resulting DR estimator achieves root-n consistency. We will not delve into an in-depth discussion on this topic to

maintain focus.

Theorem 3.2 (Asymptotic Normality Doubly Robust Estimator) Under Assumptions 3.1, 3.2, and 3.5, we have

√
n(τ̂dr− τ) =

1√
n

n

∑
i=1

ηeff(Wi)+op(1)
d→N (0, Ωdr) , (3.3.10)

where Ωdr = E[ηeff(W )2].

Theorem 3.2 states that τ̂dr is root-n consistent, and asymptotically normal. It also shows that the estimation error

of the nuisance functions does not affect the asymptotic distribution of τ̂dr. Furthermore, the asymptotic variance of

τ̂dr is equal to the semiparametric efficiency bound.
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The theorem can be applied to calculate confidence intervals for the ATT. To achieve this, we need an estimator

of the asymptotic variance, Ωdr. One approach to constructing such an estimator is by using empirical analogs of the

influence function or through bootstrapping. Here, we focus on the first method, while a weighted bootstrap procedure

that accommodates clustered inference is provided in Section 3.8.3.4. Let

η̂eff(W ) = ∑
(d,t)∈S−

(−1)d+t ŵd,t(D,T,X)(Y − m̂d,t(X))+ ŵ1,1(D,T,X)(τ̂(Y,X)− τ̂dr), (3.3.11)

and Ω̂dr = En[η̂eff(W )2]. Under mild regularity conditions, the consistency of Ω̂dr can be established, with its proof

included in that of Theorem 3.3 presented in the following section.

3.3.4 Bandwidth Selection

This subsection addresses the practical selection of bandwidth for the first-step local polynomial estimators. It is well-

documented that smoothing parameters have a significant impact on balancing the trade-off between bias and variance.

Although robustness checks employing multiple bandwidths can be useful, a reliable data-driven selection rule is often

preferred. In the following, we outline two cross-validation procedures for choosing these tuning parameters.

Define the following two criterion functions

Cls
n (h,λ ,{bd,t ,ϑd,t}(d,t)∈S−)

=
1
n

n

∑
i=1

{
∑

(d,t)∈S
(Id,t,i− p̂(d, t,Xi))

2 + ∑
(d,t)∈S−

Id,t,i(Yi− m̂d,t(Xi))
2

}
, (3.3.12)

Cml
n (h,λ ,{bd,t ,ϑd,t}(d,t)∈S−)

=
1
n

n

∑
i=1

{
− ∑

(d,t)∈S
Id,t,i log(p̂(d, t,Xi))+ ∑

(d,t)∈S−
Id,t,i(Yi− m̂d,t(Xi))

2

}
. (3.3.13)

The least-squares criterion, Cls
n , is a standard choice in the kernel estimation literature. It is based on the sum of

the least squares distance between the observed and leave-one-out fitted values for both PS and OR estimators, The

second criterion, Cml
n , replaces the PS estimator’s least squares sum with that of observed likelihood. This idea of

using a likelihood-based criterion in local logistic estimation can be traced back to Staniswalis (1989).

The cross-validated bandwidths, (ĥ j, λ̂ j,{b̂ j
d,t , ϑ̂

j
d,t}(d,t)∈S ), minimizes C j

n for j = ls,ml. In Section 3.8.3.2, we

investigate the mean integrated squared error (MISE) properties of the first-step estimators and derive the convergence

rates of the optimal bandwidths. For local linear estimation (i.e. p = q = 1), optimal bandwidths guarantee that the

rate conditions in Assumption 3.5.5 are fulfilled if υc < 4. However, this result does not impose any restrictions on the
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number of discrete variables.

Remark 3.3 When combined with local multinomial logit estimation, cross-validation can be computationally de-

manding. This is partly due to the absence of a closed-form solution for local multinomial logit regression, unlike the

local least squares regression. Evaluating the criterion function requires solving n minimization problems, which can

be time-consuming, particularly for large datasets. To address this issue, we propose a plug-in method for frequency-

based local polynomial estimators, detailed in Algorithm 3.8.1 in Section 3.8.3.3. This algorithm leverages analytical

expressions for the MISE, circumventing the computational burden of the cross-validation method. We recommend

using this procedure when υd is small, and the size of the dataset is substantial.

3.4 Testing for Compositional Changes

Propositions 3.1 and 3.2 reveal that our proposed estimator for the ATT is robust against compositional changes;

however, it is less efficient than the DR DiD estimator proposed by Sant’Anna and Zhao (2020) when the covariate-

stationarity assumption is correctly imposed. This trade-off suggests a nonparametric Hausman (1978)-type test for

the absence of compositional changes can be constructed by comparing our proposed estimator with that of Sant’Anna

and Zhao (2020). Although Sant’Anna and Zhao (2020) focus on parametric first-step estimators for the nuisance

parameters, we modestly extend their analysis by considering nonparametric first-step estimators in this section.

Before detailing the test construction, we define the null and alternative hypotheses, H0 and H1, respectively. Let

τdr and τsz be as defined in (3.2.6) and (3.2.9), respectively. Here, we aim to test

H0 : τsz = τdr against H1 : τsz 6= τdr.

Under the null, Sant’Anna and Zhao (2020)’s DR DiD estimand is equal to our proposed estimand, while the alternative

is the negation of the null hypothesis. Note that we are not interested in directly testing the stationarity assumption,

(D,X)⊥⊥ T , per se, but rather testing how this assumption affects the construction of our target parameter of interest,

the ATT in period t = 1. This allows our test procedure to concentrate power in directions that are arguably more

relevant to our context.

To operationalize this testing procedure without invoking additional parametric assumptions, we need a nonpara-

metric estimator for τsz, which in turn requires nonparametric estimators for the PS p̃(·) and the OR functions md,t(·),

(d, t) ∈S . For the PS, we can use the local polynomial estimators from Section 3.3.2 to construct an estimator for

p̃(·) as ̂̃p(X) = p̂(1,1,X)+ p̂(1,0,X),
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where p̂(1, t,X) is given by (3.3.7). We can estimate the OR md,t(·) as in (3.3.9), though here we note that now we

need to estimate all four conditional mean functions and not just three as in Section 3.3. Based on these, we can then

nonparametrically estimate τsz by

τ̂sz ≡ En

[
D

En[D]
τ̂(X)+ ∑

(d,t)∈S
(−1)(d+t)ŵsz

d,t(D,T,X)(Y − m̂d,t(X))

]
. (3.4.1)

where τ̂(x) = (m̂1,1(x)− m̂1,0(x))− (m̂0,1(x)− m̂0,0(x)), and, for t = 0,1,

ŵsz
1,t (D,T,X) =

D ·1{T = t}
En [D ·1{T = t}]

,

ŵsz
0,t (D,T,X) =

̂̃p(X)(1−D) ·1{T = t}
1− ̂̃p(X)

/
En

[ ̂̃p(X)(1−D) ·1{T = t}
1− ̂̃p(X)

]
.

Given this nonparametric estimator for τsz and our nonparametric estimator for τdr in (3.3.1), our test statistic is

defined as

Tn = nV̂−1
n (τ̂dr− τ̂sz)

2 , (3.4.2)

where

V̂n ≡ En

[
(η̂eff(W )− η̂sz(W ))

2
]
,

with η̂eff(W ) defined in (3.3.11) and

η̂sz(W )≡ D
En[D]

(τ̂(X)− τ̂sz)+ ∑
(d,t)∈S

(−1)(d+t)ŵsz
d,t(D,T,X)(Y − m̂d,t(X)). (3.4.3)

V̂n is an estimator for the variance of the difference between the two DiD estimators for the ATT. We note that an

alternative estimator for this difference under the null could be constructed based solely on the variances of each DiD

estimator, i.e., Ṽn = Ω̂dr−Ω̂sz, with Ω̂dr =En[η̂eff(W )2] and Ω̂sz =En[η̂sz(W )2]. However, such as estimator may lead

to a negative variance estimate in finite samples, which is obviously not plausible. Using V̂n bypasses this drawback.

In the following theorem, we characterize the asymptotic behavior of this statistic. Let c∗1−α
denote the (1−α)-th

quantile of the chi-squared distribution with one degree of freedom (i.e. χ2
1 ).

Theorem 3.3 (Test of Stationarity) Suppose Assumptions 3.1, 3.2, and 3.5 hold. The following additional conditions

are satisfied: (i) Assumptions 3.5.2 (ii) and 3.5.5 (iv)–(vii) are fulfilled for (d, t) = (1,1); (ii)Var [τ(X)|D = 1] > 0.

Then,
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(a) under the null space H0, V̂n
p→ ρsz > 0, and

lim
n→∞

P
(
Tn ≥ c∗1−α

)
= α; (3.4.4)

(b) under the alternative space H1,

lim
n→∞

P
(
Tn ≥ c∗1−α

)
= 1. (3.4.5)

The theorem states that the test controls size and is consistent. Although not discussed in detail here, it is easy to

show that our test also has power against sequences of Pitman-type local alternatives that converge to the null at the

parametric rate.

Remark 3.4 It is crucial to recognize that our test should be viewed as a “model validation” instead of a “model

selection” procedure. For researchers concerned about the validity of Assumption 3.3, it may be tempting to perform

a two-stage test. In the first stage, a Hausman specification test is used to “pretest” for the presence of compositional

changes, and then, in the second stage, the usual t-test is conducted based on either τ̂dr or τ̂sz, depending on the outcome

of the Hausman-test. However, as demonstrated by Guggenberger (2010a), Guggenberger (2010b) and Roth (2022),

such a model-selection procedure can lead to substantial size distortions when using standard inference methods.

3.5 Monte Carlo Simulation Study

In this section, we examine the finite sample properties of our proposed estimators and testing procedure. We conduct

two Monte Carlo experiments in this section. In the first experiment, there are compositional changes over time, so

Assumption 3.3 is violated. In contrast, the second experiment adheres to this assumption as the joint distribution

of covariates and treatment is independent of treatment timing. For each design, we compare our nonparametric DR

DiD estimator τ̂dr defined in (3.3.1), which is robust against compositional changes and semiparametrically efficient,

with the nonparametric extension of Sant’Anna and Zhao (2020)’s estimator τ̂sz defined in (3.4.1), which assumes no

compositional change, and with the estimates of the regression coefficients, τ f e, associated with two-way fixed effect

(TWFE) regression specifications of the type

Y = α1 +α2T +α3D+ τ f e(T ·D)+θ
′X + ε.

We consider two TWFE specifications: 1) a linear specification, where all the covariates X enter linearly, and 2) a

saturated specification, where, in addition to the linear terms, quadratic terms of the continuous covariates and all the

interactive terms of the covariates are also included. We include the TWFE specifications in our comparison set as
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they are prominent in empirical work.

We employ local linear (p,q = 1) kernel estimators for both the PS and OR functions. As described in Section

3.3.2, the PS is estimated using the local likelihood method with the (multinomial) logistic link function, whereas

the OR is estimated using the local least squares estimator. We use the second-order Epanechnikov kernel for the

continuous covariates, and for the discrete variables, we use the kernel given in (3.3.5). Bandwidth selections are

based on the log-likelihood and least squares distance criteria discussed in Section 3.3.4.

Our experiments involve a sample size of n = 1000, with each design undergoing 5,000 Monte Carlo replications.

We evaluate the DiD estimators for the ATT using various metrics: average bias, median bias, root mean square error

(RMSE), empirical 95% coverage probability, the average length of a 95% confidence interval, and the average of the

plug-in estimator for the asymptotic variance. Confidence intervals are calculated using a normal approximation, with

asymptotic variances estimated by their sample analogues. We also compute the semiparametric efficiency bound for

each design to gauge the potential loss of efficiency/accuracy associated with using inefficient DiD estimators for the

ATT. Lastly, we perform a Hausman-type test as described in Section 3.4 under each design and report the empirical

rejection rates.

3.5.1 Simulation 1: Non-Stationary Covariate Distribution

We first consider a scenario in which the stationarity condition is not satisfied. Let X = (X1,X2, ...,X6), where X1 and

X2 are drawn from Uniform [−1, 1], X3 and X4 are binary variables, following Bernoulli(0.5), and the remaining two,

X5 and X6, are distributed as Binomial(3, 0.5). The six variables are mutually independent.

Define

f ps
1,0(X) =0.4

2

∑
s=1

(Xs−X2
s )+0.2

6

∑
k=3

Xk +0.1

(
∑

j∈{3,5}
(−1) j+1X jX j+1

+
2

∑
l=1

6

∑
l′=3

(−1)l+1XlXl′ +
4

∑
`=3

6

∑
`′=5

(−1)`+`′X`X`′

)
,

f ps
0,1(X) =0.4(2X1 +X2 +X2

1 −X2
2 +X1X2)

+0.2
6

∑
k=3

(−1)k+1Xk +0.1

(
6

∑
l=3

X2Xl +
4

∑
`=3

X`X6

)
,

f ps
0,0(X) =0.4(X1 +2X2−X2

1 +X2
2 −X1X2)

+0.2
6

∑
k=3

(−1)kXk +0.1

(
6

∑
l=3

X1Xl +
4

∑
`=3

X`X5

)
,
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and for the OR models,

f or
base(X) = f or

het(X) = 27.4X1 +27.4X2 +13.7X2
1 +13.7X2

2 +13.7X1X2,

f or
att(X) = 27.4X1 +13.7X2 +6.85

6

∑
k=3

Xk−15.

We consider the following data generating process

ps1(d, t,X) =


exp( f ps

d,t(X))

1+∑(d,t)∈S− exp( f ps
d,t(X))

, if (d, t) ∈S−

1
1+∑(d,t)∈S− exp( f ps

d,t(X))
, if (d, t) = (1,1).

Let U ∼ Uniform [0, 1]. The treatment groups are assigned as follows

(D,T ) =



(1,0), if U ≤ ps1(1,0,X),

(0,1), if ps1(1,0,X)<U ≤ ps1(1,0,X)+ ps1(0,1,X),

(0,0), if ps1(1,0,X)+ ps1(0,1,X)<U ≤ 1− ps1(1,1,X),

(1,1), if 1− ps1(1,1,X)<U.

Next, building on Kang and Schafer (2007), we consider the following potential outcomes

Y0( j) = 210+ f or
base(X)+ εhet + ε j,0, for j = 0,1, (3.5.1)

Y1(0) = 210+2 f or
base(X)+ εhet + ε0,1, (3.5.2)

Y1(1) = 210+2 f or
base(X)+ f or

att(X)+ εhet + ε1,1, (3.5.3)

where εhet ∼ N(D · f or
het ,1) and εd,t , (d, t) ∈S are independent standard normal random variables.

Under this design, the covariate distribution does not exhibit time variation. However, the PS function is different

in the two cross-sections. The mean absolute difference between ps1(1,1,X) and ps1(1,0,X), as well as between

ps1(0,1,X) and ps1(0,0,X), are both approximately 0.125, with the maximum difference reaching up to 0.63. Conse-

quently, we expect all of the estimators except for τ̂dr will produce biased results. In addition, the stationarity test is

likely to reject the null hypothesis with high probability. The results in Table 3.1 support these claims.

First, results in Table 3.1 suggest that both τ̂ f e and τ̂sz are severely biased under this DGP, while τ̂dr exhibits

negligible bias on average. Moreover, among the three sets of estimators considered, only our proposed estimator

attains the correct coverage rate. This result is robust to the bandwidth selection method. Notably, the performance of
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Table 3.1: Monte Carlo results under compositional changes. Sample size: n = 1,000.

True value of ATT: 4.31. Semiparametric Efficiency Bound: 1753.6

Two-way Fixed Effect Estimators

Spec. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

τ̂ f e Linear -10.437 -10.445 10.933 10425.033 0.121 12.633
τ̂ f e Saturated -11.176 -11.206 11.579 8797.289 0.045 11.612

Nonparametric Doubly Robust DiD Estimators for the ATT

CV Crit. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

τ̂dr ML -0.009 -0.010 1.374 1838.495 0.949 5.304
τ̂dr LS -0.013 -0.010 1.379 1848.848 0.949 5.314
τ̂sz ML 4.427 4.436 4.543 983.436 0.009 3.884
τ̂sz LS 4.427 4.435 4.543 983.746 0.009 3.884

Hausman-type test

CV Crit. Avg. Test Stats. Emp. Pow. (0.10) Emp. Pow. (0.05) Emp. Pow. (0.01)

ML 21.250 0.998 0.996 0.978
LS 21.199 0.998 0.995 0.976

Notes: Simulations based on 5,000 Monte Carlo experiments. τ̂ f e the TWFE regression estimator, τ̂dr is our proposed nonparametric DR DiD esti-
mator (3.3.1), and τ̂sz is the nonparametric DR DiD estimator (3.4.1) based on Sant’Anna and Zhao (2020). For TWFE regression, we use a linear
specification, “Linear”, and a saturated specification, “Saturated”. For DR DiD estimators, the PS and the OR models are estimated using a local lin-
ear least squares and a local linear logistic regression, respectively. Bandwidth for the PS function is selected with the log-likelihood criterion, “ML”,
and the least squares criterion, “LS”, respectively. Lastly, “Spec.”, “CV Crit.”, “Avg. Bias”, “Med. Bias”, “RMSE”, “Asy. Var.”, “Cover.”, and “CIL”,
stand for the specification, cross-validation criterion, average simulated bias, median simulated bias, simulated root-mean-squared errors, average of
the plug-in estimator for the asymptotic variance, 95% coverage probability, and 95% confidence interval length, respectively. The Hausman-type test
statistic is calculated based on (3.4.2). “Avg. Test Stats.”, and “Emp. Pow. (α)” stand for the average test statistic, and empirical power of the test
with a nominal size α , respectively. See the main text for further details.

the TWFE does not improve with a fully-saturated specification, indicating that incorporating nonlinear terms into a

TWFE regression does not generally help in identifying heterogeneous treatment effects. In terms of efficiency, it is

worth noting that the asymptotic variance of τ̂dr is close to the semiparametric efficiency bound, which corroborates

the findings of Theorem 3.2. Regarding the testing performance, our Hausman-type test can effectively distinguish

between the two nonparametric DiD estimators with a high degree of certainty, which is in line with our theoretical

finding.

3.5.2 Simulation 2: Stationary Covariate Distribution

We now slightly adjust the first design by taking the average of propensity scores over time while keeping all other

aspects of the DGP constant. Specifically, we define

ps2(d, t,X) = Ps1 (T = t)(ps1(d,1,X)+ ps1(d,0,X)),

where Ps1 (T = t) = E[ps1(1, t,X)+ ps1(0, t,X)]. The treatment groups are then assigned based on the realization of a

standard uniform random variable on the unit interval partitioned by {ps2(d, t,X)}(d,t)∈S . Furthermore, the potential

outcomes are determined by (3.5.1)–(3.5.3). Unlike the first DGP, both the covariate distribution and the propensity
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score function are stationary in this case. As a result, we anticipate that both τ̂dr and τ̂sz will be consistent for the true

ATT. Furthermore, the empirical rejection rate of the Hausman-type test is expected to converge to the nominal sizes.

The Monte Carlo results under this DGP are summarized in Table 3.2.

Table 3.2: Monte Carlo results under no compositional changes. Sample size: n = 1,000.

True value of ATT: 9.13. Semiparametric Efficiency Bound: 796.8

Two-way Fixed Effect Estimators

Spec. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

τ̂ f e Linear -10.649 -10.672 11.106 9907.607 0.087 12.325
τ̂ f e Saturated -10.563 -10.617 10.946 7924.684 0.048 11.026

Nonparametric Doubly Robust DiD Estimators for the ATT

CV Crit. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

τ̂dr ML -0.007 -0.020 1.323 1721.037 0.946 5.133
τ̂dr LS -0.010 -0.027 1.328 1732.416 0.946 5.139
τ̂sz ML -0.015 -0.024 0.958 926.689 0.953 3.771
τ̂sz LS -0.016 -0.024 0.958 926.821 0.953 3.771

Hausman-type test

CV Crit. Avg. Test Stats. Emp. Size (0.10) Emp. Size (0.05) Emp. Size (0.01)

ML 1.045 0.108 0.055 0.009
LS 1.045 0.107 0.056 0.009

Notes: Simulations based on 5,000 Monte Carlo experiments. τ̂ f e the TWFE regression estimator, τ̂dr is our proposed nonparametric DR DiD esti-
mator (3.3.1), and τ̂sz is the nonparametric DR DiD estimator (3.4.1) based on Sant’Anna and Zhao (2020). For TWFE regression, we use a linear
specification, “Linear”, and a saturated specification, “Saturated”. For DR DiD estimators, the PS and the OR models are estimated using a local
linear least squares and a local linear logistic regression, respectively. Bandwidth for the PS function is selected with the log-likelihood criterion,
“ML”, and the least squares criterion, “LS”, respectively. Lastly, “Spec.”, “CV Crit.”, “Avg. Bias”, “Med. Bias”, “RMSE”, “Asy. Var.”, “Cover.”,
and “CIL”, stand for the specification, cross-validation criterion, average simulated bias, median simulated bias, simulated root-mean-squared er-
rors, average of the plug-in estimator for the asymptotic variance, 95% coverage probability, and 95% confidence interval length, respectively. The
Hausman-type test statistic is calculated based on (3.4.2). “Avg. Test Stats.”, and “Emp. Size (α)” stand for the average test statistic, and empirical
size of the test with a nominal size α , respectively. See the main text for further details.

In contrast to the results presented in Table 3.1, both τ̂dr and τ̂sz exhibit minimal bias, and their confidence intervals

achieve nominal coverage. Their performance is consistently good across different bandwidth selection methods.

The TWFE estimators, however, continue to show substantial bias and achieve nearly negligible coverage, despite

having much wider confidence intervals compared to the DR DiD estimators. This occurs because the true treatment

effects are heterogeneous, but TWFE specifications do not account for that (i.e., the models are misspecified). In

terms of efficiency, the asymptotic variance of τ̂sz is reasonably close to the semiparametric efficiency bound. The

asymptotic variance of τ̂dr is, on average, 2.2 times larger than the semiparametric efficiency bound (that imposes no-

compositional changes), which is still significantly lower than that of the TWFE estimators. Given that Assumption

3.3 holds for this DGP, the null hypothesis H0 is true. The empirical rejection frequency of our Hausman-type test is

nearly identical to its nominal value, highlighting the desirable properties of this testing procedure.
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3.6 Empirical Illustration: the Effect of Tariff Reduction on Corruption

In this section, we revisit a study from Sequeira (2016) on the effect of import tariff liberalization on corruption

patterns. Prior to the phaseout of high tariffs between South Africa and Mozambique, bribery payment was pervasive,

often used to dodge tariff taxes. According to Sequeira and Djankov (2014), bribery payments can be found in

approximately 80% of all shipment records in a random sample of tracked shipments before a tariff rate reduction in

2008.

This tariff change is the result of a long-standing trade agreement between South Africa and Mozambique. The

agreement, the Southern African Development Community Trade Protocol, was signed in 1996. The protocol estab-

lished a timeline for import tariff reductions between 2001 and 2015. The most significant reduction occurred in 2008,

with the average nominal rate decreasing by 5%. The effect of such a tariff liberalization scheme is considerable, as

both the likelihood and the amount of bribe payments experienced a significant decline following the phaseout.

To investigate the causal relationship between tariff rate reduction and changes in bribery patterns, Sequeira (2016)

leverages a quasi-experimental variation induced by trade protocol: Not all products were subject to the change in tariff

rate during the analysis period, enabling products unaffected by the tariff changes to serve as a control group. It is thus

possible to utilize the DiD design to analyze how tariff rate changes affect bribe patterns along trade routes.

Sequeira (2016) collects data on the bribe payment along the trade routes between the two countries from 2007 to

2013. This data set has a repeated cross-section structure. Sequeira (2016) mainly considers the following two TWFE

regressions:

(Linear) yit = γ1TCCi×Post +µPost + γ2TCCi+β2BTi +Γi + pi +wt +δi + εit ,

(Interactive) yit = γ1TCCi×Post +µPost + γ2TCCi+β2BTi +Γi +Γi×Post

+ pi +wt +δi + εit ,

where TCCi and BTi denote Tariff Change Category and Baseline Tariff, respectively, and yit is one of the measure-

ments of bribery payments for shipment i in period t. TCC is the treatment indicator, which takes value one if the

product shipped experienced a tariff reduction in 2008, and zero otherwise. The post-treatment period indicator, Post,

is equal to one for the years following 2008. BT refers to the tariff rates before 2008. A vector of covariates, Γ, in-

dustry, year, and clearing agent fixed effects, p,ω,δ , are also included in the regressions. The interactive specification

differs from the linear one by an interaction of Post and the covariates, Γ.

Sequeira (2016) focuses on interpreting γ1 in both specifications as an estimate of the ATT. However, this inter-

pretation might not be valid when treatment effects are heterogeneous (Meyer, 1995; Abadie, 2005). Our proposed
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DR DiD estimator, τdr, and the one based on Sant’Anna and Zhao (2020), τ̂sz, could be better suited for the task of

identifying and consistently estimating the ATT in the present context. In what follows, we estimate the ATT using

our proposed DR DiD estimator and compare the results to those obtained by Sequeira (2016).

To achieve this, we first estimate the PS and OR functions based on local linear logistic regression and local

linear OLS, respectively. Following Sequeira (2016), we consider four different outcome measures: a binary variable

denoting if a bribe is paid, the logarithmic form, log(x+1), of the amount of bribe payment, the logarithmic form of the

amount of bribe paid as a share of the value of the shipment, and as a share of the weight of the shipment, respectively.

Across all four specifications, we include the following common covariates: baseline tariff rate, dummy variables for

whether the shipper is a large firm, whether the product is perishable, differentiated, an agricultural good, whether the

shipments are pre-inspected at origin, monitored, and originates from South Africa. Additionally, we include the day

of arrival during the week and the terminal where the cargo was cleared. Our procedures allow for these covariate-

specific trends, so the CPT Assumption 3.2(i) holds only after accounting for these observed characteristics. To avoid

weak-overlap problems, we truncate PS estimates below 0.01.

Table 3.3 summarizes our results. For each estimator, we report both the unclustered standard errors based on

asymptotic approximation (in parentheses) and the cluster-robust standard errors based on the bootstrap procedure in

Algorithm 3.8.2 (in brackets), where we cluster at the four-digit HS code level as in Sequeira (2016). Likewise, we

conduct two sets of Hausman-type tests – one using unclustered influence functions based on (3.4.2) and the other that

accounts for clustering using a bootstrap procedure given in Algorithm 3.8.3.

We first observe that the point estimates are negative for all measures of bribery payment, consistent with the

findings of Sequeira (2016). The results based on the two DR DiD methods are generally close to the TWFE estimates

with the interactive specification. For instance, we find that a tariff reduction reduces the probability of paying a bribe

by 28 to 43 percentage points, depending on the specific estimator used. The result is statistically and economically

significant at the usual levels. Tariff reduction also seems to lead to a decrease in bribery.6 The magnitude of the causal

effects based on the weighted results, on the other hand, is more mixed.7 Results based on the TWFE and DR DiD

with no-compositional changes estimators suggest that tariff reduction leads to a statistically significant reduction in

the average log of the ratio between bribery payment and shipment values of similar magnitude, while our proposed

DR DiD estimator that is robust to compositional changes suggests a twice-as-large effect. When the log of the

ratio between bribery payment and tonnage is considered, both nonparametric DR DiD estimators report large yet

insignificant (at 95% level) ATT estimates. The results of the Hausman-type test displayed at the bottom of Table

6Some of local linear OR estimates were a bit sensitive to bandwidth choice. This is arguably due to the limited number of observations
within certain strata. To improve the stability of cross-validation, we impose a common bandwidth across all four treatment groups for each type of
covariates.

7We avoid attaching a precise interpretation of these log transformations due to the issues raised by Chen and Roth (2023).
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Table 3.3: Difference-in-differences estimation results for Sequeira (2016)

Estimator/Outcome Prob(bribe) Log(1 + bribe) Log(1 + bribe/shpt.val.) Log(1 + bribe/shpt.tonn.)

TWFE - Linear Spec. -0.429 -3.748 -0.011 -1.914
(0.083) (0.724) (0.003) (0.341)
[0.131] [1.064] [0.003] [0.496]

TWFE - Interactive Spec. -0.296 -2.928 -0.010 -1.597
(0.082) (0.746) (0.004) (0.402)
[0.124] [0.917] [0.004] [0.457]

DR DiD τ̂sz -0.275 -2.542 -0.014 -0.918
(no-compositional changes) (0.067) (0.636) (0.005) (0.451)

[0.096] [0.773] [0.006] [0.492]

DR DiD τ̂dr -0.307 -2.888 -0.027 -1.131
(robust to compositional changes) (0.084) (0.798) (0.010) (0.602)

[0.109] [0.915] [0.014] [0.635]

Hausman-tests for no-compositional changes

Unclustered p-value 0.270 0.199 0.084 0.601

Clustered p-value 0.338 0.238 0.175 0.643

Notes: Same data used by Sequeira (2016). The results represent the estimated ATT of tariff rate reduction on bribery payment behavior. Columns 2 through
5 denote estimates for dependent variables representing whether a bribe is paid, the logarithmic form, log(x+1), of the amount of bribe paid, the logarith-
mic form of the amount of bribe paid as a share of the value of the shipment, and as a share of the weight of the shipment, respectively. We compare four
different DiD estimators for the ATT: 1. the two-way fixed effect estimator based on specifications in Column (1) of Tables 8-11 in Sequeira (2016); 2. the
two-way fixed effect estimator based on Column (2) from Tables 8-11 in Sequeira (2016); 3. DR DiD estimator based on (3.4.1), and 4. DR DiD estimator
based on (3.3.1). The same set of covariates is used for the last two estimators. See the main text for further details on the covariates. Continuous variables
are re-scaled between 0 and 1, and then added in with binary variables. For DR DiD estimators, the PS and the OR models are estimated nonparametrically,
using a local linear least squares and a local linear logistic regression, respectively. Bandwidth for the local linear logistic regression is selected with the
log-likelihood criterion. Numbers in the parentheses are unclustered standard errors based on asymptotic approximation. Numbers in brackets refer to stan-
dard errors clustered at the level of four-digit HS code. Cluster-robust standard errors are calculated following Algorithm 3.8.2 with 9999 bootstrap draws.
Hausman-tests are calculated based on (3.4.2). The clustered p-values are calculated following the bootstrap procedure in Algorithm 3.8.3 with 9999 boot-
strap draws. To avoid weak-overlap problems, we truncate PS estimates below 0.01.

3.3 suggest that we lack statistical evidence against the assumption of no-compositional changes, especially when one

clusters the standard errors.

In sum, our results support the conclusion of Sequeira (2016) that tariff liberalization decreases corruption. Our

DR DiD estimates suggest the size of the effects is approximately the same as that of the original paper, indicating

that ruling out treatment effect heterogeneity and compositional changes are not of primary concern in this particular

application.

3.7 Concluding Remarks

In this paper, we developed a doubly robust estimator for the ATT within the difference-in-differences framework,

allowing for time-varying covariates. We established large sample properties for the proposed estimator when the

nuisance functions are estimated nonparametrically. In particular, we derived novel results on the uniform linear

expansion of the local multinomial logit estimator with mixed data. We provided extensive discussions compar-

ing our proposed DR estimator with those developed by Sant’Anna and Zhao (2020). Additionally, we proposed a

Hausman-type test for assessing the validity of the ATT estimators under consideration. We assessed the finite sample

performance of our estimation methods and tests using Monte Carlo simulations. All the finite sample findings are
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consistent with the asymptotic results. Furthermore, we demonstrated the practical utility of our approach with an

empirical application concerning the impact of tariff liberalization on corruption.

An intriguing extension of our work is to the case when the number of time periods is greater than two and when

the treatment adoption is staggered, as discussed in Callaway and Sant’Anna (2021). In such contexts, they demon-

strate that a family of group-time average treatment effects and their aggregates can be identified under a general

no-compositional-change assumption. Allowing for compositional changes in that setup appears promising, partic-

ularly since multiple time periods suggest that a no-compositional change assumption may be even more restrictive

than in the simple two-period case.

3.8 Supplementary Appendix

This supplemental appendix contains auxiliary lemmas, proofs of the main theorems, and additional results presented

in the main text.

Notation: Hereafter, we use the abbreviations CLT, CMT, LIE, and LLN to represent the central limit theorem,

continuous mapping theorem, law of iterated expectations, and law of large numbers, respectively. Let fX (x) =

fXc|Xd
(xc|xd) ·P(Xd = xd), Nn = {1,2, ...,n}, and ι(d, t) = 1{d = 1, t = 0}+2 ·1{d = 0, t = 1}+3 ·1{d = 0, t = 0}.

The notation an . bn implies that an ≤ cbn for some positive constant c when n is sufficiently large. The symbol

an ∼ bn denotes that an/bn→ 1 as n→ ∞. We define f ∈ L2(U ) to indicate that
∫
U f 2dµ is finite, and let the L2- and

sup-norm of f to denote ‖ f‖L2
and ‖ f‖

∞
, respectively. Denote the ATT by τ , i.e.,

AT T = τ = E [Y1 (1) |D = 1,T = 1]−E [Y1 (0) |D = 1,T = 1] .

3.8.1 Proofs for Results from Main Text

Let

τor = E [Y |D = 1,T = 1]−E [m1,0(X)+m0,1(X)−m0,0(X)|D = 1,T = 1] ,

where md,t(x) = E[Y |D = d,T = t,X = x], and

τipw = E [(w1,1(D,T )−w1,0(D,T,X)−w0,1(D,T,X)+w0,0(D,T,X))Y ] ,

where, for (d, t) ∈S−,

w1,1(D,T ) =
DT

E[DT ]
,
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wd,t(D,T,X) =
1{D = d,T = t}p(1,1,X)

p(d, t,X)

/
E
[
1{D = d,T = t}p(1,1,X)

p(d, t,X)

]
,

and p(d, t,x) = P(D = d,T = t|X = x) is a so-called generalized propensity score.

Lemma 3.2 Under Assumptions 3.1 and 3.2, it follows that τor = τipw = τ .

Proof of Lemma 3.2:

Outcome regression estimand: Using md,t(·) = E[Yt(d)|D = d,T = t,X = ·], (d, t) ∈S−, we get

τor =E[Y1(1)|D = 1,T = 1]−E[E[Y0(1)|D = 1,T = 0,X = x]|D = 1,T = 1]

+ ∑
t∈{0,1}

(−1)t E[E[Yt(0)|D = 0,T = t,X = x]|D = 1,T = 1]

=E[Y1(1)|D = 1,T = 1]−E[E[Y0(0)|D = 1,T = 0,X = x]|D = 1,T = 1]

+ ∑
t∈{0,1}

(−1)t E[E[Yt(0)|D = 0,T = t,X = x]|D = 1,T = 1]

=E[Y1(1)−Y1(0)|D = 1,T = 1] = τ,

where the second equality follows from Assumptions 3.2 (ii) and the third holds under Assumptions 3.2 (i).

Propensity score estimand: Let p(1,1) = P(D = 1,T = 1). Under the overlapping conditions in Assumption

3.2(iii), wd,t(d′, t ′,x) are well defined for (d, t) ∈S−, (d′, t ′) ∈ {0,1}2, and x ∈X almost everywhere. Additionally,

E[wd,t(D,T,X)Y ] = E
[

p(1,1,X)Y Id,t

p(d, t,X)

/
E
[
1{D = d,T = t}p(1,1,X)

p(d, t,X)

]]
= E

[
E
[
E[Y |D = d,T = t,X ] ·

Id,t

p(d, t,X)

∣∣∣∣X] · p(1,1,X)

p(1,1)

]
= E

[
E[Y |D = d,T = t,X ] · p(1,1,X)

p(1,1)

]
= E [E[Y |D = d,T = t,X ]|D = 1,T = 1]

= E
[
md,t(X)|D = 1,T = 1

]
,

for (d, t) ∈S−. The second line follows by the LIE, the third equality is by the definition of propensity scores, and

the next to last line is by Bayes’ Law. Next, from E[w1,1(D,T )Y ] = E[Y |D = 1,T = 1] and the same arguments for the

OR estimand, we conclude that τipw = τ . �

Proof of Theorem 3.1:

We follow the steps in Hahn (1998) for the derivation of the efficient influence function. Let f (y|d, t,x) = f (y|D =
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d,T = t,X = x).

Step 1: characterize the tangent space of the statistical model. The observed likelihood is given as

f (y,d, t,x) = f (y|1,1,x)dt f (y|1,0,x)d(1−t) f (y|0,1,x)(1−d)t f (y|0,0,x)(1−d)(1−t)

· p(1,1,x)dt p(1,0,x)d(1−t)p(0,1,x)(1−d)t p(0,0,x)(1−d)(1−t) · f (x).

Consider the regular sub-model parameterized by θ ≥ 0, with the true model indexed by θ0 = 0,

fθ (y,d, t,x) = fθ (y|1,1,x)dt fθ (y|1,0,x)d(1−t) fθ (y|0,1,x)(1−d)t fθ (y|0,0,x)(1−d)(1−t)

· pθ (1,1,x)dt pθ (1,0,x)d(1−t)pθ (0,1,x)(1−d)t pθ (0,0,x)(1−d)(1−t)

· fθ (x).

The score function of this sub-model is given by

sθ (y,d, t,x) =dtsθ (y|1,1,x)+d(1− t)sθ (y|1,0,x)+(1−d)tsθ (y|0,1,x)+(1−d)(1− t)sθ (y|0,0,x)

+dt
ṗθ (1,1,x)
pθ (1,1,x)

+d(1− t)
ṗθ (1,0,x)
pθ (1,0,x)

+(1−d)t
ṗθ (0,1,x)
pθ (0,1,x)

+(1−d)(1− t)
ṗθ (0,0,x)
pθ (0,0,x)

+ tθ (x),

where sθ (y|d, t,x) = ∂ log fθ (y|d, t,x)/∂θ , ṗθ (d, t,x) = ∂ pθ (d, t,x)/∂θ , and tθ (x) = ∂ log fθ (x)/∂θ for (d, t) ∈ S .

For notational simplicity, we suppress subscripts when θ = θ0.

Now, the tangent space of this model is characterized by

T ={dts11(y,x)+d(1− t)s10(y,x)+(1−d)ts01(y,x)+(1−d)(1− t)s00(y,x)

+dt p11(x)+d(1− t)p10(x)+(1−d)t p01(x)+(1−d)(1− t)p00(x)+ s(x)},

for any functions {sdt(·, ·), pdt(·)}(d,t)∈S , and s(·) such that, for (d, t) ∈S

sdt(·, ·) ∈ L2(Y ⊗X ), with
∫

sdt(y,x) f (y|d, t,x)dy = 0, ∀x ∈X , (3.8.1)

pdt(·) ∈ L2(X ), with ∑
(d,t)∈S

∫
pdt(x) f (x)dx = 0, (3.8.2)
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and

s(·) ∈ L2(X ), with
∫

s(x) f (x)dx = 0. (3.8.3)

In Step 2, we show that the target parameter associated with the parametric sub-model is path-wise differentiable,

as defined in Newey (1990).

From Lemma 3.2, we know the ATT can be identified by ∑(d,t)∈S (−1)d+t E [E[Y |D = d,T = t,X ]|D = 1,T = 1]

under Assumptions 3.1 and 3.2. For the parameterized sub-model, we define

τ(θ) =
(
∫ ∫

pθ (1,1,x)y fθ (y|1,1,x) fθ (x)dydx−
∫ ∫

pθ (1,1,x)y fθ (y|1,0,x) fθ (x)dydx)∫
pθ (1,1,x) fθ (x)dx

− (
∫ ∫

pθ (1,1,x)y fθ (y|0,1,x) fθ (x)dydx−
∫ ∫

pθ (1,1,x)y fθ (y|0,0,x) fθ (x)dydx)∫
pθ (1,1,x) fθ (x)dx

. (3.8.4)

Note that the derivative of τ(θ) with respect to θ , evaluated at θ = 0, is given by

dτ(θ)

dθ

∣∣∣∣
θ=0

= ∑
(d,t)∈S

(−1)d+t
∫ ∫

yp(1,1,x)s(y|d, t,x) f (y|d, t,x) f (x)dydx
p(1,1)

+

∫
(τ(x)− τ)ṗ(1,1,x) f (x)dx

p(1,1)

+

∫
(τ(x)− τ)p(1,1,x)t(x) f (x)dx

p(1,1)
.

For any w = (y,d, t,x) ∈W , define

Fτ(w) =
dt(y−m1,1(x))

p(1,1)
+

p(1,1,x)
p(1,1)

{
−

d(1− t)(y−m1,0(x))
p(1,0,x)

−
(1−d)t(y−m0,1(x))

p(0,1,x)
+

(1−d)(1− t)(y−m0,0(x))
p(0,0,x)

}
+

dt
p(1,1) ∑

(d,t)∈S
(−1)d+t

(
md,t(x)−

∫
X

md,t(x) f (x)dx
)
.

It can be readily verified that dτ(θ)
dθ

∣∣∣
θ=0

= E[Fτ(W )s0(Y,D,T,X)], thereby showing τ(θ) is path-wise differentiable.

In Step 3, we show that Fτ(W ) is the efficient influence function for τ , which we will accomplish by invoking

Theorem 3.1 in Newey (1990). To apply this theorem, we need to verify that Fτ(·) ∈T . By setting

s11(y,x) =
y−m1,1(x)

p(1,1)
,

p11(x) = p(1,1)−1
∑

(d,t)∈S
(−1)d+t

(
md,t(x)−

∫
X

md,t(x) f (x)dx
)
,

160



sdt(y,x) = (−1)d+t p(1,1,x)(y−md,t(x))
p(d, t,x)p(1,1)

,

pdt(x),s(x) = 0,

for (d, t) ∈S−, it is straightforward to show that (3.8.1)–(3.8.3) hold, which leads to the desired result.

Finally, since p(1,1) = E
[
Id,t p(1,1,X)p(d, t,X)−1

]
, for (d, t) ∈ S , direct manipulation yields that Fτ(W ) =

ηeff(W ). Now, we take the expectation of η2
eff(W ) and the semi-parametric efficiency bound follows by standard

manipulation. This completes the proof. �

Proof of Proposition 3.1: The proof follows directly from the LIE as displayed in the main text. �

Proof of Proposition 3.2:

It follows by Theorem 3.1 that

E[ηeff(W )2] =
1

E[DT ]2
E

[
DT (τ(Y,X)− τ)2 + ∑

(d,t)∈S−

Id,t p(1,1,X)2

p(d, t,X)2 (Y −md,t(X))2

]

=
1

E[DT ]2
E[DT (τ(X)− τ)2]

+E

[
w1,1(D,T )2(Y −m1,1(X))2 + ∑

(d,t)∈S−
wd,t(D,T,X , p)2(Y −md,t(X))2

]

≡V1,dr +V2,dr,

where the second equality follows from direct manipulations and the fact that

E[DT · (Y −m1,1(X)) · (md,t(X)−E[md,t(X)|D = 1,T = 1])]

= E[E[p(1,1,X) · (m1,1(X)−m1,1(X)) · (md,t(X)−E[md,t(X)|D = 1,T = 1])|X ]] = 0,

for (d, t) ∈S .

Meanwhile, from Part (b) of Proposition 1 in Sant’Anna and Zhao (2020), we have the following decomposition,

E[ηsz(W )2] =V1,sz +V2,sz,

where V1,sz ≡ E
[
D(τ(X)− τ)2

]
/p2, and

V2,sz ≡
1
p2 E

[
DT
λ 2 (Y −m1,1(X))2 +

D(1−T )
(1−λ )2 (Y −m1,0(X))2
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+
(1−D)T p(X)2

(1− p(X))2λ 2 (Y −m0,1(X))2 +
(1−D)(1−T )p(X)2

(1− p(X))2(1−λ )2 (Y −m0,0(X))2
]
. (3.8.5)

Under Assumption 3.3, we have that E[1{T = t}g(X)] = P(T = t)E[g(X)], E[Id,tY g(X)] = P(T = t)E[1{D =

d}Ytg(X)], and p(d, t,x) = (1{t = 1}λ +1{t = 0}(1−λ ))p(d,x). It then follows that

V1,dr =
1

λ p2 E[D(τ(X)− τ)2], (3.8.6)

and therefore,

V1,dr−V1,sz =
1−λ

p2λ
E[D(τ(X)− τ)2]. (3.8.7)

We now focus on V2,dr. Observe that

V2,dr =
1

λ 2 p2

{
E[DT (Y1−m1,1(X))2]+E

[
D(1−T )λ 2 p(X)2

(1−λ )2 p(X)2 (Y0−m1,0(X))2
]

+E
[
(1−D)T λ 2 p(X)2

λ 2(1− p(X))2 (Y1−m0,1(X))2
]
+E

[
(1−D)(1−T )λ 2 p(X)2

(1−λ )2(1− p(X))2 (Y0−m0,0(X))2
]}

=
1
p2 E

[
DT
λ 2 (Y −m1,1(X))2 +

D(1−T )
(1−λ )2 (Y −m1,0(X))2

+
(1−D)T p(X)2

(1− p(X))2λ 2 (Y −m0,1(X))2 +
(1−D)(1−T )p(X)2

(1− p(X))2(1−λ )2 (Y −m0,0(X))2
]
=V2,sz, (3.8.8)

where the first equality follows because p(d, t,x) = P(D = d,X = x) ·P(T = t) under Assumption 3.3. The desired

result then follows from (3.8.7) and (3.8.8). �

Proof of Lemma 3.1:

Let ψd,t(W ;w,m) = 1{dt = 1}w1,1(D,T )Y +1{dt 6= 1}
{

wd,t(D,T,X)(Y −md,t(X))+w1,1(D,T )md,t(X)
}

, and τ̃dr =

∑(d,t)∈S (−1)d+tψd,t(W ;w,m). Using τ̃dr, we decompose τ̂dr as

τ̂dr− τ = (τ̂dr− τ̃dr)+(τ̃dr− τ) . (3.8.9)

Note first that the second term, τ̃dr−τ , has i.i.d. centered summands with bounded variance; thus, it is Op(n−1/2).

Now we investigate the behavior of τ̂dr− τ̃dr, for which we make the following decomposition

ψd,t(W ; ŵ, m̂)−ψd,t(W ;w,m) =(Y −md,t(X))
(
ŵd,t −wd,t

)
(W )+md,t(X)(ŵ1,1−w1,1)(W )

+
(
w1,1−wd,t

)
(W )

(
m̂d,t −md,t

)
(X)

+
{
(ŵ1,1−w1,1)(W )−

(
ŵd,t −wd,t

)
(W )

}(
m̂d,t −md,t

)
(X)
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≡∆
ψ,1
d,t (W )+∆

ψ,2
d,t (W )+∆

ψ,3
d,t (W ),

for (d, t) ∈S . Here, we use the unifying notation wd,t(W ) to denote wd,t(D,T,X) when (d, t) ∈S− and w1,1(D,T )

otherwise. We proceed by establishing convergence rates for each component in the above decomposition.

We first analyze ∆
ψ,1
d,t . A second-order Taylor expansion of ψ1,1(W ; ŵ, m̂) around E[DT ] yields that

En

[
∆

ψ,1
1,1 (W )

]
= En

[
Y
(

DT
En[DT ]

− DT
E[DT ]

)]
=−En [DTY ]

E[DT ]2
· (En[DT ]−E[DT ])+Op(|En[DT ]−E[DT ]|2)

=−E [DTY ]
E[DT ]2

· (En[DT ]−E[DT ])+op(n−1/2). (3.8.10)

When (d, t) ∈S−, similar analysis reveals that

En

[
∆

ψ,1
d,t (W )

]
=En

[
(Y −md,t(X))

(
ŵd,t −wd,t

)
(W )+md,t(X)(ŵ1,1−w1,1)(W )

]
=En

[
(Y −md,t(X))

(
ŵd,t −wd,t

)
(W )

]
−

En
[
DT md,t(X)

]
E[DT ]2

(En[DT ]−E[DT ])+Op(|En[DT ]−E[DT ]|2)

=−
E
[
DT md,t(X)

]
E[DT ]2

(En[DT ]−E[DT ])+op(n−1/2), (3.8.11)

where the last equation holds under Assumption 3.4.2(i).

Next, note that ∆
ψ,2
1,1 (·) = 0, and when (d, t) ∈S−, we deduce from Assumption 3.4.2(ii) that

En

[
∆

ψ,2
d,t (W )

]
= En

[
(w1,1−wd,t)(W )

(
m̂d,t −md,t

)
(X)
]
= op(n−1/2). (3.8.12)

Analogously, ∆
ψ,3
1,1 (·) is identically zero, and therefore, we only need to focus the other three cases, for which we

have

En

[
∆

ψ,3
d,t (W )

]
=En

[(
(ŵ1,1−w1,1)(W )−

(
ŵd,t −wd,t

)
(W )

)(
m̂d,t −md,t

)
(X)
]

=En

[
DT

E[DT ]2
(
m̂d,t −md,t

)
(X)

]
· (En[DT ]−E[DT ])+Op(|En[DT ]−E[DT ]|2) (3.8.13)

−En
[(

ŵd,t −wd,t
)
(W ) ·

(
m̂d,t −md,t

)
(X)
]
, (3.8.14)
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where the second equality follows from a second-order Taylor expansion of En[DT ] around E[DT ].

Taking the fact that E[DT ]> 0 under Assumption 3.2 (iii) and that m̂d,t is uniformly convergent to md,t , we obtain

∣∣∣∣En

[
DT

E[DT ]2
(
m̂d,t −md,t

)
(X)

]∣∣∣∣≤ En

[∣∣∣∣ DT
E[DT ]2

∣∣∣∣ · ∣∣(m̂d,t −md,t
)
(X)
∣∣]. ∥∥m̂d,t −md,t

∥∥
∞
= op(1).

Combining this result with En[DT ]−E[DT ] = Op
(
n−1/2

)
, we conclude that (3.8.13) is op

(
n−1/2

)
.

Next, we study En
[(

ŵd,t −wd,t
)
(W ) ·

(
m̂d,t −md,t

)
(X)
]
. Let

w†
d,t(W ) =

Id,t p̂(1,1,X)

p(1,1)p̂(d, t,X)
, (3.8.15)

based on which, we have the following decomposition

En

[(
w†

d,t −wd,t

)
(W ) ·

(
m̂d,t −md,t

)
(X)
]
+En

[(
ŵd,t −w†

d,t

)
(W ) ·

(
m̂d,t −md,t

)
(X)
]
= ∆

1,n
w,m +∆

2,n
w,m. (3.8.16)

We consider the L2-norm first. Under Assumption 3.4.2(iii),

∆
1,n
w,m = E

[(
w†

d,t −wd,t

)
(W ) ·

(
m̂d,t −md,t

)
(X)
]

︸ ︷︷ ︸
≡∆1

w,m

+op

(
n−1/2

)
.

Since â/b̂−a/b = (â−a)/b−a(b̂−b)/b2− (â−a)(b̂−b)/(b̂b)+a(b̂−b)2/(b̂b2), we have

∆
1
w,m =E

[
δd,t(W )

p(d, t,X)
(p̂(1,1,X)− p(1,1,X))

]
−E

[
δd,t(W )p(1,1,X)

p2(d, t,X)
(p̂(d, t,X)− p(d, t,X))

]
−E

[
δd,t(W )

p̂(d, t,X)p(d, t,X)
(p̂(1,1,X)− p(1,1,X))(p̂(d, t,X)− p(d, t,X))

]
+E

[
δd,t(W )p(1,1,X)

p̂(d, t,X)p(d, t,X)2 (p̂(d, t,X)− p(d, t,X))2
]

≡∆
1,1
w,m +∆

1,2
w,m +∆

1,3
w,m +∆

1,4
w,m,

where δd,t(W ) = p(1,1)−1Id,t
(
m̂d,t −md,t

)
(X).
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For ∆
1,1
w,m,

∣∣∆1,1
w,m
∣∣≤p(1,1)−1 (pmin

d,t
)−1E

[∣∣(p̂(1,1,X)− p(1,1,X))(m̂d,t −md,t)(X)
∣∣]

≤O(1) · ‖ p̂(1,1, ·)− p(1,1, ·)‖L2
·
∥∥m̂d,t −md,t

∥∥
L2

=Op (rnsn) ,

where pmin
d,t = infx∈X |p(d, t,x)|. The first inequality holds under Assumption 3.2(iii), and the second one is due to the

Cauchy-Schwarz inequality.

Likewise,

∣∣∆1,2
w,m
∣∣≤p(1,1)−1 sup

x∈X
|p(1,1,x)|

{
inf

x∈X
|p(d, t,x)|

}−2

E
[∣∣(p̂(d, t,X)− p(d, t,X))(m̂d,t −md,t)(X)

∣∣]
≤O(1) · ‖ p̂(d, t, ·)− p(d, t, ·)‖L2

·
∥∥m̂d,t −md,t

∥∥
L2

=Op (rnsn) .

To analyze the convergence of the remaining two terms, we can use a similar approach to the one used for the

previous two terms. However, to complete the analysis, we need to show that p̂(d, t,x) is uniformly bounded away

from 0 across X , with high probability. Due to the uniform convergence, for any given ε ∈ (0,1/2), there is Nε > 0

such that supx∈X |p̂(d, t,x)− p(d, t,x)| ≤ pmin
d,t /2 with probability at least 1− ε , whenever n ≥ Nε . Thus, when n is

sufficiently large, we have

inf
x∈X
|p̂(d, t,x)| ≥ inf

x∈X
|p(d, t,x)|− sup

x∈X
|p̂(d, t,x)− p(d, t,x)| ≥ pmin

d,t /2 > 0,

with probability 1− ε , leading to our desired claim.

The sup-norm case can be handled analogously. Different from the L2-norm, it is now possible to work directly

with the empirical measure, leading to the conclusion that ∆
1,n
w,m = Op (rnsn), without the necessity of imposing As-

sumption 3.4.2 (iii).

Next,we examine the estimation effect of the normalizing weight as given in ∆
2,n
w,m. Let p̂(1,1) = En

[
Id,t

p̂(1,1,X)
p̂(d,t,X)

]
.

Again, we focus on L2-norm first. By definition,

∆
2,n
w,m =−p̂(1,1)−1 ·En

[
w†

d,t(W ) ·
(
m̂d,t −md,t

)
(X)
]

︸ ︷︷ ︸
∆

2,1,n
w,m

·(p̂(1,1)− p(1,1)) .
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We can further decompose ∆
2,1,n
w,m into

∆
2,1,n
w,m =∆

1,n
w,m (3.8.17)

+(En−E)
[
wd,t(W ) ·

(
m̂d,t −md,t

)
(X)
]

(3.8.18)

+E
[
wd,t(W ) ·

(
m̂d,t −md,t

)
(X)
]
. (3.8.19)

=Op (rn)+Op (rnsn)+op

(
n−1/2

)

Under Assumptions 3.4.2 (iii, iv), (3.8.17) and (3.8.18) are Op (rnsn) and op
(
n−1/2

)
, respectively. Since pd,t(·) is

uniformly bounded over X , (3.8.19) is Op (rn) by the Cauchy-Schwartz inequality.

Analogously, we have

p̂(1,1)− p(1,1) =(En−E)
[

Id,t

(
p̂(1,1,X)

p̂(d, t,X)
− p(1,1,X)

p(d, t,X)

)]
(3.8.20)

+(En−E)
[

Id,t
p(1,1,X)

p(d, t,X)

]
(3.8.21)

+E
[

Id,t

(
p̂(1,1,X)

p̂(d, t,X)
− p(1,1,X)

p(d, t,X)

)]
(3.8.22)

=Op (sn)+Op

(
n−1/2

)
+op

(
n−1/2

)
.

Under Assumption 3.4.2 (v), (3.8.20) is op
(
n−1/2

)
. Since (3.8.21) is a centered i.i.d. summand, it is Op

(
n−1/2

)
.

Arguing along the same line as for ∆1
w,m, we get (3.8.22) is Op(sn). Collecting these results, we conclude that both

∆
1,n
w,m and ∆

2,n
w,m are Op(rnsn).

Once again, analysis under the sup-norm rely directly on empirical measure, thus eliminating the need for condi-

tions on the empirical process. Further details are not provided here for brevity.

To finish the proof of this lemma, we gather the results in (3.8.9), (3.8.10), (3.8.11), (3.8.12), (3.8.14), and (3.8.16),

which leads to

τ̂dr− τ =En

[
∑

(d,t)∈S
(−1)d+t

ψd,t(W ;w,m)− τ

]
+ τ

(
1− En[DT ]

E[DT ]

)
+Op(rnsn)+op

(
n−1/2

)
=En[ηeff(W )]+Op(rnsn)+op

(
n−1/2

)
.

�

Proof of Theorem 3.2:
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We proceed by applying Lemma 3.1. As we are working with the sup-norm, we need to verify the first two conditions

in Assumption 3.4.2. Lemmas 3.7 and 3.8 provide the required verification for these conditions. With the bandwidth

rate conditions in Assumption 3.5.5 guaranteeing that the leading remainder term is Op(rnsn) = op
(
n−1/2

)
, we can

then derive the asymptotic normality directly from the CLT. �

Proof of Theorem 3.3:

Proof of Part (a): We have already shown in Theorem 3.2 that τ̂dr − τ = En[ηeff(W )] + op
(
n−1/2

)
. Following a

similar line of reasoning, one can easily demonstrate that τ̂sz− τ = En[ηsz(W )]+op
(
n−1/2

)
, under Assumptions 3.1,

3.2, 3.5, Condition (i), and the null hypothesis, H0. Now, by the CLT, we have

√
n(τ̂dr− τ̂sz)

d→N
(

0, E
[
(ηeff(W )−ηsz(W ))2

])
.

It remains to show that

V̂n
p→V, (3.8.23)

and

V = ρsz > 0. (3.8.24)

First, it is implied from the proof of Theorem 3.2 that η̂e f f (w)
p→ ηeff(w), uniformly in w ∈W . In a similar vein,

η̂sz(w)
p→ ηsz(w) uniformly over W , under H0. Combining these two results, (3.8.23) then follows by the CMT and

the weak LLN.

From Proposition 1 in Sant’Anna and Zhao (2020), we know that ηsz(·) is the efficient influence function for all reg-

ular estimators of τsz, which is equal to τ under H0. Moreover, since both τ̂dr and τ̂sz are consistent for τsz under H0, it

follows from Lemma 2.1 in Hausman (1978) that E[ηeff(W )ηsz(W )] = E[ηsz(W )2]. Hence, E
[
(ηeff(W )−ηsz(W ))2

]
= E

[
ηeff(W )2

]
−E

[
ηsz(W )2

]
. Given this result, (3.8.24) now follows by Proposition 3.2 and the condition that

Var [τ(X)|D = 1]> 0.

Proof of Part (b): We proceed by establishing: (i) τ̂sz− τ̂dr
p→ τsz− τdr 6= 0; (ii) V̂n

p→V < ∞, under H1.

Under Assumption 3.5, and Condition (i) of the theorem, p̂(d, t,x)
p→ p(d, t,x) and m̂d,t(x)

p→md,t(x), uniformly in

x, for (d, t)∈S . Now, applying the LLN, we get τ̂dr
p→ τdr and τ̂sz

p→ τsz. Result (i) then follows from the CMT. Next,

we deduce from the uniform consistency of p̂ and m̂, the CMT, and LLN, that (3.8.23) holds under H1. Furthermore,

Assumptions 3.2(iii) and 3.5.3 ensure that both η̂sz and η̂dr are uniformly bounded, which leads to V < ∞. This

concludes the proof of part (b). �
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3.8.2 Results on Asymptotic Linear Expansion of Local Polynomial Estimators

In the next subsection, we provide some well-known results about the U-statistics, based on which, we derive uniform

stochastic expansions of local polynomial estimators in Section 3.8.2.2.

3.8.2.1 Rates of Convergence: U-Statistics

Let {Xi}n
i=1 be a random sample from an unknown distribution. Given a real-valued function h(x1, ...,xr) that possibly

depends on the sample size, define

Un =
(n− r)!

n! ∑
s∈S(n,r)

h(Xs1 , ...,Xr),

as a r-th order U-statistic with kernel h, where the summation is over S(n,r), the set of permutation (s1, ...,sr) of size

r of the set {1, ...,n}. Since a given function h can always be replaced by a symmetric one, we restrict attention to

symmetric kernels in what follows. That is, Un can be equivalently represented as

Un =

n

r


−1

∑
s∈C (n,r)

h(Xs1 , ...,Xsr),

where C (n,r) is the set of combinations (s1, ...,sr) of size r of the set {1, ...,n}.

For 1≤ s≤ r, define the quantities hs and σs by

hs(x1, ...,xs) = E[h(x1, ...,xs,Xs+1, ...,Xr)] and σs = Var [hs(X1, ...,Xs)]
1/2 .

We call Un with kernel h is s∗’th order degenerate if σs = 0 for all s≤ s∗.

Lemma 3.3 Let h : X r → R be a permutation-symmetric, measurable function of r arguments such that E[h(X1, ...,

Xr)] = 0, and σr < ∞, then Un = Op

(
∑

r
s=1

σs
ns/2

)
.

Note that if the U-statistic is s∗-th order degenerate, its convergence rate is ∑
r
s=s∗+1

σs
ns/2 . The lemma follows directly

from Markov’s inequality, and therefore, we omit the proof.

3.8.2.2 Asymptotic Linear Expansion of Local Polynomial Estimators

In this section, we provide some results on the asymptotic expansion of the local polynomial estimators.

For (d, t) ∈S−, we define the summand of the (local) score function as

Ãd,t(W,x,γ) =

(
Id,t −

exp(
¯
X(xc)

′γd,t)

1+∑(d′,t ′)∈S− exp(
¯
X(xc)′γd′,t ′)

)
H(h)

¯
X(xc)K̃ps(X ;x,h,λ ),
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where H(h) is a diagonal matrix with the main diagonal entries being h−|k|, for lexicographic-ordered k, with 0≤ |k| ≤

p. Here, we have dropped the subscript of
¯
X to ease notational burden. We let ιιι−({Sd,t}(d,t)∈S−) = (S′1,0,S

′
0,1,S

′
0,0)
′.

The local Fisher information matrix evaluated at x can be approximated as

I (x) = diag(p−(x))−p−(x)p′−(x), (3.8.25)

where p−(x) = (p(1,0,x), p(0,1,x), p(0,0,x)). In addition, we define the local hessian as

Σ
ps(x) = E[I (X)⊗H(h)

¯
X(xc) ¯

X(xc)
′H(h)K̃ps(X ;x,h,λ )].

With these notations in hand, we can introduce several quantities associated with the linear expansion of the PS

estimator. For each (d, t) ∈S−,

Ad,t(W,x) = (e3,ι(d,t)⊗ eNp,1)
′
Σ

ps(x)−1ÃAA−(W,x,γ∗(x)),

G(ps)
d,t (W,x) = e′3,ι(d,t)I (x)A−(W,x),

where ÃAA−(W,x,γ) = ιιι−({Ãd,t(W,x,γ)}(d,t)∈S−), and A−(W,x) = ιιι−({Ad,t(W,x)}(d,t)∈S−). For the treated group in

t = 1, let G(ps)
1,1 (x) =−∑(d,t)∈S−G(ps)

d,t (x). Additionally, we define, for a given observation X j

B(ps)
n,d,t(X j) = E[G(ps)

d,t (Wi,X j)|X j], (3.8.26)

S(ps)
n,d,t(X j) =

1
n−1 ∑

i6= j
G(ps)

d,t (Wi,X j)−E[G(ps)
d,t (Wi,X j)|X j],

R(ps)
n,d,t(X j) = p̂(d, t,X j)− p(d, t,X j)−B(ps)

n,d,t(X j)−S(ps)
n,d,t(X j).

The three quantities represent the bias, the first-order stochastic part, and the remaining terms derived from the de-

composition of the PS estimator, respectively.

Focusing on the OR model, for (d, t)∈S , the leave-one-out local polynomial estimator has a closed-form solution

given by

m̂d,t(X j) =
1

n−1 ∑
i6= j

e′Nq,1Σ̂
or −1
d,t (X j) ¯

Xi(X j)H(bd,t)Id,t,iYiK̃or(Xi;X j,bd,t ,ϑd,t),

where Σ̂or
d,t(X j) =

1
n−1 ∑i6= j Id,t,iH(bd,t) ¯

Xi(xc) ¯
Xi(xc)

′H(bd,t)K̃or(Xi;X j,bd,t ,ϑd,t).

Analogous to the PS case, we use B(or)
n,d,t , S(or)

n,d,t , and R(or)
n,d,t to represent the bias, the first-order stochastic and the
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remainder terms, respectively. For a given observation X j, these quantities are specified as

B(or)
n,d,t(X j) = E[G(or)

d,t (Wi,X j)|X j],

S(or)
n,d,t(X j) =

1
n−1 ∑

i 6= j
G(or)

n,d,t(Wi,X j)−E[G(or)
d,t (Wi,X j)|X j],

R(or)
n,d,t(X j) = m̂d,t(X j)−md,t(X j)−B(or)

n,d,t(X j)−S(or)
n,d,t(X j),

where

G(or)
d,t (Wi,X j) = e′Nq,1Σ

or
d,t(X j)

−1H(bd,t) ¯
Xi(X j)Id,t,iξ

or
d,t,i(X j)K̃or(Xi;X j,bd,t ,ϑd,t),

Σ
or
d,t(x) = E[Id,t,iH(bd,t) ¯

Xi(xc) ¯
Xi(xc)

′H(bd,t)K̃or(X ;X j,bd,t ,ϑd,t)],

ξ
or
d,t(x) = Id,t(Y − ¯

X(x)′β ∗d,t).

Lemma 3.4 Suppose Assumptions 3.1, 3.2, and 3.5 are satisfied. In addition, Assumptions 3.5.2 (ii) and 3.5.5 (iv)–

(vii) hold for (d, t) = (1,1). Then, for (d, t) ∈S ,

sup
j∈Nn

∣∣∣B(ps)
n,d,t(X j)

∣∣∣= Op(hp+1 +λo +λu), (3.8.27)

sup
j∈Nn

∣∣∣S(ps)
n,d,t(X j)

∣∣∣= Op

(√
logn/(nhυc)

)
, (3.8.28)

sup
j∈Nn

∣∣∣R(ps)
n,d,t(X j)

∣∣∣= Op

((
hp+1 +λo +λu +

√
logn/(nhυc)

)2
)
, (3.8.29)

sup
j∈Nn

∣∣∣B(or)
n,d,t(X j)

∣∣∣= Op(b
q+1
d,t +ϑd,t,o +ϑd,t,u),

sup
j∈Nn

∣∣∣S(or)
n,d,t(X j)

∣∣∣= Op

(√
logn/

(
nbd,t

υc
))

,

sup
j∈Nn

∣∣∣R(or)
n,d,t(X j)

∣∣∣= Op

((
bp+1

d,t +ϑd,t,o +ϑd,t,u +
√

logn/
(
nbd,t

υc
))2

)
.

Before stating the proof, we need to introduce some additional notations. Since kernel functions K and L are

supported on [−1,1]υc , the effective support of K((·− xc)/h) is Sxc,h = {z : xc +hz ∈X }∩ [−1,1]υc . When Sxc,h =

[−1,1]υc , x is an interior point, otherwise x lies close to the boundary. For any measurable set S ⊂ [−1,1]υc , let

νk(S ) =
∫
S ukK(u)du and κk(S ) =

∫
S ukK2(u)du. Now we let the N`×N` matrices Q`(xc) and T`(xc), and the
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N`×nk matrix M`,k(xc) be defined as

Q`(xc) =


Q(0,0)(Sxc,h) ... Q(0,`)(Sxc,h)

...
. . .

...

Q(`,0)(Sxc,h) . . . Q(`,`)(Sxc,h)

 , (3.8.30)

T`(xc) =


T(0,0)(Sxc,h) ... T(0,`)(Sxc,h)

...
. . .

...

T(`,0)(Sxc,h) . . . T(`,`)(Sxc,h)

 ,

M`,k(xc) =


Q(0,k)(Sxc,h)

...

Q(`,k)(Sxc,h)

 ,

where Q(i, j)
` (S ) and T(i, j)

` (S ) are ni× n j matrices with their respective (l,m)-th element given by νπi(l)+π j(m)(S )

and κπi(l)+π j(m)(S ). When x is a boundary point, these quantities are not invariant to x, and thus, capture the boundary

effects.

Proof of Lemma 3.4:

Given that our data is a random sample, it is straightforward to show the “leave-one-out” estimators considered in

the lemma is asymptotically equivalent to the usual “leave-in” estimators. See Rothe and Firpo (2019) for a detailed

exposition. We therefore focus on the “leave-in” versions in what follows.

We prove the results for PS only. The case for OR follows by generalizing Proposition 7 of Fan and Guerre

(2016) to the case where discrete covariates are accommodated. This generalization can be achieved by employing the

techniques similar to those presented here.

For (3.8.27), we have

sup
x∈X

∥∥∥B(ps)
n,d,t(x)

∥∥∥= sup
x∈X

∥∥∥e′3,ι(d,t)I (x)(I3⊗ e′Np,1)Σ
ps(x)−1E[ÃAA−(W,x,γ∗(x))]

∥∥∥
≤ sup

x∈X

∥∥∥e′3,ι(d,t)I (x)
∥∥∥ · sup

x∈X

∥∥∥(I3⊗ e′Np,1)Σ
ps(x)−1

∥∥∥ · sup
x∈X

∥∥∥E[ÃAA−(W,x,γ∗(x))]
∥∥∥ .

By definition, supx∈X ‖I (x)‖= O(1). Standard change of variable gives

Σ
ps(x) = I (x)⊗Qp(xc) fX (x)+O(h+λo +λu) . (3.8.31)
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Since infx∈X λmin(I (x)⊗Qp(xc)) = infx∈X λmin(I (x)) · infxc∈Xc λmin(Qp(xc))> 0 and infx∈X fX (x)> 0 under As-

sumptions 3.2(iii), 3.5.6, and 3.5.1, we get

sup
x∈X

∥∥I (x)−1⊗Qp(xc)
−1 · fX (x)−1∥∥= O(1), (3.8.32)

and thus, supx∈X
∥∥Σps(x)−1

∥∥= O(1). Now, from Lemma 3.5, we conclude that supx∈X

∥∥∥B(ps)
n,d,t(x)

∥∥∥= O(hp+1 +λo+

λu).

Having just demonstrated that Σps(x)−1 is uniformly bounded over X , we can now apply Lemma 3.5 and the

CMT to deduce (3.8.28).

To establish (3.8.29), the proof proceed through three steps. First, we demonstrate the existence of a global

maximizer for the local log-likelihood function defined in (3.3.6). Subsequently, we obtain the uniform asymptotic

linear expansion for the local maximum likelihood estimator. Finally, we apply the delta method to verify that the

remainder term exhibits the required rate.

Step 1: Define γ̄ = (I3⊗H(h)−1)γ and γ̄∗(·) = (I3⊗H(h)−1)γ∗(·). Using the scaled parameters, we rewrite the

likelihood as

L ps
n (γ̄;x) =

1
n

n

∑
i=1

∑
(d′,t ′)∈S−

Id,tH(h)
¯
X(xc)

′
γ̄d,t

− log

(
1+ ∑

(d′,t ′)∈S−
exp
(
H(h)

¯
X(xc)

′
γ̄d′,t ′

))
K̃ps(Xi;x,h,λ ). (3.8.33)

The gradient and hessian of L ps
n (γ̄;x) with respect to γ̄ are given by

∇γ̄L
ps

n (γ̄;x) =
1
n

n

∑
i=1

ÃAA−(Wi,x,γ), ∇
2
γ̄ γ̄ ′L

ps
n (γ̄;x) =

1
n

n

∑
i=1

H(Wi,x,γ),

where

H(X ,x,γ) = I (Xc,xc,γ)⊗ H̃(X ,x,h,λ ),

H̃(X ,x,h,λ ) = H(h)
¯
X(xc) ¯

X(xc)
′H(h)K̃ps(X ;x,h,λ ),

I (Xc,xc,γ) = diag(ΨΨΨ−(Xc,xc,γ))−ΨΨΨ−(Xc,xc,γ)ΨΨΨ−(Xc,xc,γ)
′,

ΨΨΨ−(X ,x,γ) = ιιι−({Ψd,t( ¯
X(x),γ)}(d,t)∈S−),

Ψd,t(x,γ) =
exp
(
x′γd,t

)
1+∑(d′,t ′)∈S− exp

(
x′γd′,t ′

) .
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Next, we define the following two events

E1n(c) =

{
sup
x∈X

∥∥∥∥∥1
n

n

∑
i=1

ÃAA−(Wi,x,γ∗(x))

∥∥∥∥∥< cκn

}
,

E2n(c) =

{
inf

x∈X
λmin

(
1
n

n

∑
i=1

H̃(X ;x,h,λ )

)
> c

}
,

for c > 0 and κn =
√

logn/(nhυc)+hp+1 +λu +λo.

By Lemma 3.5, we deduce that P(E1n(c1))→ 1, for any fixed c1 > 0.

Now, standard change-of-variable analysis gives

E[H̃(X ;x,h,λ )] = Qp(xc) fX (x)+O(h+λo +λu) .

Under Assumptions 3.5.1 and 3.5.6, infx∈X fX (x)> 0 and infxc∈Xc λmin (Qp(xc))> 0. As a result, there exists c2 > 0

such that infx∈X λmin(E[H̃(X ;x,h,λ )])≥ c2, when n is sufficiently large. Coupled with the fact that

sup
x∈X

∥∥∥∥∥1
n

n

∑
i=1

H̃(Xi;x,h,λ )−E[H̃(X ;x,h,λ )]

∥∥∥∥∥= Op

(√
logn/(nhυc)

)
.

which is a consequence of Lemma 5 from Fan and Guerre (2016), we deduce that P(E2n(c))→ 1, for c≤ c2.

Next, we define a neighborhood of γ̄∗(·),

Γ(δ ) = {γ(·) : ‖γ̄(·)− γ̄
∗(·)‖

∞
≤ δκn} .

Theorem 1 in Tanabe and Sagae (1992) implies that

inf
x,y∈X

I (x,y,γ(y))> inf
x,y∈X

{
∏

(d,t)∈S−
Ψd,t({¯

x(y)′γd,t(y)}(d,t)∈S−)

}
· I3, (3.8.34)

in the sense that their difference is positive definite. For any δ > 0, if γ ∈ Γ(δ ), Assumption 3.5.5(ii) implies that

‖γ(·)− γ∗(·)‖
∞
= o(1). This further suggests that, when n is sufficiently large, the right-hand side of (3.8.34) is

bounded from below by c3I3, for some positive constant c3.

The analysis leading up to this point demonstrates that for for a given c1 > 0, it is possible to select n large enough

such that P(E1n(c1))> 1− ε/2, P(E2n(c2))> 1− ε/2, and (3.8.34) is satisfied. Now, set δ0 > 2c1c−1
2 c−1

3 . Then, for

any γ(·) ∈ ∂Γ(δ0), i.e., ‖γ̄(x)− γ̄∗(x)‖ = δ0κn, for all x ∈X , we have supx∈X
{
L ps

n (γ̄(x);x)−L ps
n (γ̄∗(x);x)

}
< 0,

173



with a probability of at least 1− ε . This is because

sup
x∈X
{L ps

n (γ̄(x);x)−L ps
n (γ̄∗(x);x)}

= sup
x∈X

{
∇γ̄L

ps
n (γ̄∗(x);x)(γ̄− γ̄

∗(x))− (γ̄(x)− γ̄
∗(x))′

(
−∇

2
γ̄ γ̄ ′L

ps
n (γ̄†;x)

)
(γ̄(x)− γ̄

∗(x))/2
}

≤

(
sup
x∈X

∥∥∥∥∥1
n

n

∑
i=1

ÃAA−(Wi,x,γ∗(x))

∥∥∥∥∥− c1κn

)
·δ0κn

<0,

where γ̄†, dependent on x, lies between γ̄(x) and γ̄∗(x). Since L ps
n (γ̄;x) is continuous, a local maximum, denoted by

ˆ̄γ(x), exists within the compact set {γ̄ : ‖γ̄− γ̄∗(x)‖ ≤ δ0κn}, for any x ∈X . Furthermore, due to the concavity of

L ps
n (·;x), ˆ̄γ(x) maximizes L ps

n (·;x) over R3Np for any x ∈X . Hence, ˆ̄γ(·) is the global maximizer of L ps
n (γ̄(·); ·)

with a probability exceeding 1−ε . As ε is arbitrary and δ0 is independent of x, it can be inferred that
∥∥ ˆ̄γ(·)− γ̄∗(·)

∥∥
∞
=

Op(κn).

Step 2: We proceed to derive the uniform asymptotic linear expansion of ˆ̄γ(·)− γ̄∗(·). Expanding L ps
n (γ̄;x) using

a third-order Taylor series and rearranging the terms lead to

ˆ̄γ(x)− γ̄
∗(x) =

1
n

n

∑
i=1

Σ
ps(x)−1ÃAA−(Wi,x,γ∗(x))+Rγ(X j),

where

Rγ(x) =−
(
Σ

ps
n (x)−1−Σ

ps(x)−1) · 1
n

n

∑
i=1

ÃAA−(Wi,x,γ∗(x))−Σ
ps
n (x)−1Cn(x),

Cn(x) =
1

2n

n

∑
i=1

∑
(d,t)∈S−

∑
(d′,t ′)∈S−

( ˆ̄γd,t(x)− γ̄
∗
d,t(x))

′H(h)
¯
Xi(xc) ¯

Xi(xc)
′H(h)( ˆ̄γd′,t ′(x)− γ̄

∗
d′,t ′(x))

· İι(d,t),ι(d′,t ′)(Xc,i,xc, γ̃)⊗ ¯
Xi(xc)H(h)K̃ps(Xi;x,h,λ ),

for an intermediate point γ̃ lying between γ̂(x) and γ∗(x), Σ
ps
n (·) = 1

n ∑
n
i=1 H(Wi, ·,γ∗(·)), and

İι(d1,t1),ι(d2,t2) = ιιι−

({
İ

(d3,t3)
ι(d1,t1),ι(d2,t2)

}
(d3,t3)∈S−

)
,

İ
(d3,t3)

ι(d1,t1),ι(d2,t2)
(Xc,xc,γ) = 1{(d1, t1) = (d2, t2)}Ψd1,t1( ¯

X(xc),γ)(1{(d1, t1) = (d3, t3)}−Ψd3,t3( ¯
X(xc),γ))

+ ∑
`1,`2∈{1,2},`1 6=`2

Ψd`1 ,t`1
(

¯
X(xc),γ)Ψd`2 ,t`2

(
¯
X(xc),γ)(1{(d`2 , t`2) = (d3, t3)}−Ψd3,t3( ¯

X(xc),γ)).
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In view of (3.8.31) and (3.8.32),
∥∥Σps(·)−1

∥∥= O(1). Taking this into account, along with Lemma 3.5, we obtain

sup
x∈X

∥∥∥∥∥1
n

n

∑
i=1

A−(Wi,x,γ∗)−E[A−(W,x,γ∗)]

∥∥∥∥∥= Op

(√
logn/(nhυc)

)
,

sup
x∈X
‖E[A−(W,x,γ∗)]‖= Op

(
hp+1 +λo +λu

)
.

Furthermore,

sup
x∈X

∥∥Σ
ps
n (x)−1−Σ

ps(x)−1∥∥
≤ sup

x∈X
‖Σps

n (x)‖−1 · sup
x∈X
‖Σps

n (x)−Σ
ps(x)‖ · sup

x∈X
‖Σps(x)‖−1

= Op(1) ·Op

(√
logn/(nhυc)

)
·O(1)

= Op

(√
logn/(nhυc)

)
.

where the first inequality is a result of the relationship A−1−B−1 = −A−1(A−B)B−1 and the Cauchy-Schwarz in-

equality. The next line is derived from (3.8.31) and (3.8.32), and arguments similar to those employed in the proof of

Lemma 5 in Fan and Guerre (2016).

By the triangular inequality and the Cauchy-Schwarz inequality,

sup
x∈X
‖Cn(x)‖ ≤

1
2n

n

∑
i=1

∑
(d,t)∈S−

∑
(d′,t ′)∈S−

∥∥İι(d,t),ι(d′,t ′)(Xc,i,xc, γ̃(x))
∥∥

·
∥∥ ˆ̄γd,t(x)− γ̄

∗
d,t(x)

∥∥ ·∥∥∥ ˆ̄γd′,t ′(x)− γ̄
∗
d′,t ′(x)

∥∥∥ · ‖H(h)
¯
Xi(xc)‖3 ·

∣∣∣K̃ps(Xi;x,h,λ )
∣∣∣

. max
(d,t),(d′,t ′)∈{0,1}

sup
x,z∈X

{∥∥İι(d,t),ι(d′,t ′)(zc,xc, γ̃(x))
∥∥ ·∥∥ ˆ̄γd,t(x)− γ̄

∗
d,t(x)

∥∥ ·∥∥∥ ˆ̄γd′,t ′(x)− γ̄
∗
d′,t ′(x)

∥∥∥}
(3.8.35)

· 1
n

n

∑
i=1

sup
x∈X

{∣∣∣K ps
h (

¯
X(1)

i (xc))
∣∣∣ · ‖H(h)

¯
Xi(xc)‖3

}
. (3.8.36)

When γ̃ converges uniformly to γ∗, as established in the first step,
∥∥İι(d,t),ι(d′,t ′)(zc,xc, γ̃(x))

∥∥ in (3.8.35) is asymptot-

ically bounded, uniformly in x,z ∈X , and for each (d, t),(d′, t ′) ∈S−. In addition, we can deduce from a standard

change of variable argument that (3.8.36) is Op(1). Hence, it can be concluded that supx∈X ‖Cn(x)‖= Op
(
κ2

n
)
. As a

result, we obtain supx∈X ‖Rγ(x)‖= Op
(
κ2

n
)
.

Step 3: We note that p̂(d, t,x)− p(d, t,x) = Ψd,t(eNp,1, γ̂(x))−Ψd,t(eNp,1,γ
∗(x)) and ∇γd,t Ψd,t(eNp,1,γ

∗(x)) =

e′3,ι(d,t)I (x). Utilizing the delta method in conjunction with the uniform expansion obtained in Step 2 then estab-
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lishes (3.8.29). This completes the proof of the lemma. �

Lemma 3.5 Suppose that the conditions of Lemma 3.4 hold. Then

sup
x∈X

∥∥∥∥∥1
n

n

∑
i=1

ÃAA−(Wi,x,γ∗(x))−E[ÃAA−(W,x,γ∗(x))]

∥∥∥∥∥= Op

(
(logn/(nhυc))

1/2
)
, (3.8.37)

sup
x∈X

∥∥∥E[ÃAA−(W,x,γ∗(x))]
∥∥∥= O

(
hp+1 +λo +λu

)
. (3.8.38)

Proof of Lemma 3.5:

The proof of (3.8.37) proceeds along similar lines as in Lemma 5 of Fan and Guerre (2016). For any given vector k

with 0≤ |k| ≤ p, define

Ã(k)
d,t (W,x,γ) =

(
Id,t −Ψd,t( ¯

X(xc),γ)
)

h−|k|(Xc− xc)
kK̃ (X ;x,h,λ ) ,

Ã†,(k)
d,t (W,xc,γ) =

(
Id,t −Ψd,t( ¯

X(xc),γ)
)

h−|k|(Xc− xc)
kK
(

Xc− xc

h

)
,

for (d, t) ∈S−, and let κn = (logn/(nhυc))1/2 . Assumption 3.5.5 implies that κn→ 0. Moreover, under Assumptions

3.5.1, 3.5.2, and 3.5.4, we have that, for any ε > 0, there exists δn = n−κa such that (i)

max
i∈Nn

∣∣∣Ã†,(k)
d,t (Wi,xc,γ

∗(x))− Ã†,(k)
d,t (Wi,x′c,γ

∗(x′))
∣∣∣≤ hυcκnε/3, (3.8.39)∣∣∣E[Ã†,(k)

d,t (W,xc,γ
∗(x))

]
−E

[
Ã†,(k)

d,t (W,x′c,γ
∗(x′))

]∣∣∣≤ hυcκnε/3, (3.8.40)

for (d, t) ∈S− and for all x,x′ ∈X such that xd = x′d and ‖xc− x′c‖ ≤ δn; (ii) there is a positive integer Jn = O(nκb),

κb > 0, and a set {x j}Jn
j=1 ⊂X , such that for all x ∈X , there exists a j satisfying x ∈B (x j,δn)∩X , and for all

x′ ∈B (x j,δn), x′d = xd, j. As a result, X =
⋃Jn

j=1 (B (x j,δn)∩X ) .

Now, observe that, for (d, t) ∈S−

sup
x∈X

∣∣∣∣∣1n n

∑
i=1

Ã(k)
d,t (Wi,x,γ∗(x))−E[Ã(k)

d,t (W,x,γ∗(x))]

∣∣∣∣∣
≤ max

j∈NJn

∣∣∣∣∣1n n

∑
i=1

Ã(k)
d,t (Wi,x j,γ

∗(x j))−E[Ã(k)
d,t (W,x j,γ

∗(x j))]

∣∣∣∣∣ (3.8.41)

+ max
j∈NJn

sup
x∈B(x j ,δn)∩X

∣∣∣∣∣1n n

∑
i=1

(
Ã(k)

d,t (Wi,x,γ∗(x))− Ã(k)
d,t (Wi,x j,γ

∗(x j))
)∣∣∣∣∣ (3.8.42)

+ max
j∈NJn

sup
x∈B(x j ,δn)∩X

∣∣∣E[Ã(k)
d,t (W,x,γ∗(x))]−E[Ã(k)

d,t (W,x j,γ
∗(x j))]

∣∣∣ . (3.8.43)
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In view of (3.8.39), (3.8.42) is bounded from above by

max
i∈Nn, j∈NJn

sup
x∈B(x j ,δn)∩X

h−υc
∣∣∣Ã†,(k)

d,t (Wi,xc,γ
∗(x))− Ã†,(k)

d,t (Wi,xc, j,γ
∗(x j))

∣∣∣≤ κnε/3.

Meanwhile, since xd = xd, j, whenever x ∈B (x j,δn), (3.8.40) then implies that (3.8.43)≤ κnε/3.

To bound (3.8.41), we apply Bernstein’s inequality.8 Since the support of K is bounded, we have that |Ã(k)
d,t (W,x,

γ∗(x))| ≤C‖K‖
∞

, for a sufficiently large positive constant C. Additionally, standard calculation gives

Var
[
Ãd,t(W,x,γ∗(x))

]
=E[(Id,t − p(d, t,(Xc,xd)))

2H(h)
¯
X(xc) ¯

X(xc)
′H(h)Kh( ¯

Xi(xc))
2
1{Xd = xd}]

+o
(
h−υc

)
=h−υcI (x)ι(d,t),ι(d,t)Tp(xc) fX (x)+o

(
h−υc

)
.

Hence, Var
[
Ã(k)

d,t (W,x,γ∗(x))
]
≤Ch−υc under Assumption 3.5.4.

With these two results in hand, we have

P

(
max
j∈NJn

∣∣∣∣∣1n n

∑
i=1

Ã(k)
d,t (Wi,x j,γ

∗(x j))−E[Ã(k)
d,t (W,x j,γ

∗(x j))]

∣∣∣∣∣≥ κnε/3

)

≤
Jn

∑
j=1

P

(∣∣∣∣∣1n n

∑
i=1

Ã(k)
d,t (Wi,x j,γ

∗(x j))−E[Ã(k)
d,t (W,x j,γ

∗(x j))]

∣∣∣∣∣≥ κnε/3

)

≤2Jn exp
(
− ε2 logn

C+C(ε logn ·n−1h−υc)1/2

)
≤ exp

(
− (ε2−κb) logn

C

)
,

where the first inequality is due to the Bonferoni inequality and the second is by Bernstein’s inequality. The far right

side goes to 0 when ε2 > κb. Hence, (3.8.41)≤ κnε/3.

Combining (3.8.41)–(3.8.43) gives

P

(
sup
x∈X

∣∣∣∣∣1n n

∑
i=1

Ã(k)
d,t (Wi,x,γ∗(x))−E[Ã(k)

d,t (W,x,γ∗(x))]

∣∣∣∣∣≥ κnε

)
→ 0. (3.8.44)

This complete the proof for (3.8.37).

Next, we establish (3.8.38). Define Io(xd ,zd) = ∑
υo
s=11{|xo,s− zo,s| = 1}∏l 6=s1{xo,l = zo,l}, and Iu(xd ,zd) =

8Let {Xi}n
i=1 be independent zero-mean random variables. Suppose |Xi| ≤M almost surely, for i ∈ Nn. Then, Bernstein’s inequality states that

for all t ≥ 0,

P

(
n

∑
i=1

Xi ≥ t

)
≤ exp

(
− t2/2

∑
n
i=1 E[X2

i ]+Mt/3

)
.

177



∑
υu
s=11{xu,s 6= zu,s}∏l 6=s1{xu,l = zu,l}. From a Taylor expansion of order p+1, we deduce that, uniformly in x ∈X ,

E[Ãd,t(W,x,γ∗(x))]

=
1

(p+1)! ∑
(d′,t ′)∈S−

E
[
I (Xc,xd)ι(d,t),ι(d′,t ′)g

(p+1)
d′,t ′ (Xc,xd)

′
¯
X(p+1)(xc)H(h)

¯
X(xc)Kh( ¯

X(1)(xc))1{Xd = xd}
]

+ ∑
zd∈Xd\xd

∑
j=o,u

λ jI j(xd ,zd)(p(d, t,x)− p(d, t,(xc,zd)))E
[
H(h)

¯
X(xc)Kh( ¯

X(1)(xc))1{Xd = zd}
]

+(s.o.)

=
hp+1

(p+1)! ∑
(d′,t ′)∈S−

I (x)ι(d,t),ι(d′,t ′)Mp,p+1(xc)g
(p+1)
d′,t ′ (x) fX (x)

+ ∑
zd∈Xd\xd

∑
j=o,u

λ jI j(xd ,zd)(p(d, t,x)− p(d, t,(xc,zd)))Mp,0(xc) fX (xc,zd)

+o(hp+1 +λo +λu)

=O(hp+1 +λo +λu),

where (s.o.) stands for smaller order terms. The last equality is due to Assumptions 3.5.2 and 3.5.4. �

3.8.3 Auxiliary Lemmas and Results

3.8.3.1 Auxiliary Lemmas

Lemma 3.6 Under Assumptions 3.1 and 3.2, for d, t ∈ {0,1} and any measurable function h : X → R,

(i) E
[
Id,t(Y −md,t(X))h(X)

]
= 0, (3.8.45)

(ii) E
[(

w1,1−wd,t
)
(W )h(X)

]
= 0. (3.8.46)

Proof of Lemma 3.6: This lemma follows immediately from the LIE. �

Lemma 3.7 Suppose the conditions of Theorem 3.2 hold. Then, for ŵ defined in (3.3.1) with p̂ given by (3.3.7), we

have

En[(Y −md,t(X))
(
ŵd,t −wd,t

)
(W )] = op(n−1/2),

for (d, t) ∈S−.

Proof of Lemma 3.7:
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Recall the definition of w† as given in (3.8.15), and decompose the difference between ŵd,t and wd,t as

En[(Y −md,t(X))
(
ŵd,t −wd,t

)
(W )]

= En

[
(Y −md,t(X))

(
w†

d,t −wd,t

)
(W )

]
+En

[
(Y −md,t(X))

(
ŵd,t −w†

d,t

)
(W )

]
≡ ∆

1
w +∆

2
w.

We bound the two terms in turn. By a third-order Taylor expansion of ∆1
w around p(d, t,x), we get

∆
1
w =En

[
Id,t(Y −md,t(X))

p(d, t,X)p(1,1)
(p̂(1,1,X)− p(1,1,X))

]
−En

[
Id,t p(1,1,X)(Y −md,t(X))

p2(d, t,X)p(1,1)
(p̂(d, t,X)− p(d, t,X))

]
+Rn,d,t

≡∆
11
w +∆

12
w +Rn,d,t ,

where the remainder term, Rn,d,t , collects the second-order terms. Specifically,

Rn,d,t =En

[
(Y −md,t(X))

Id,t

p(1,1)

(
− (p̂(1,1,X)− p(1,1,X))(p̂(d, t,X)− p(d, t,X))

p2(d, t,X)

)]
+En

[
(Y −md,t(X))

Id,t

p(1,1)

(
p(1,1,X)(p̂(d, t,X)− p(d, t,X))2

p̃3(d, t,X)

)]
,

where the intermediate point p̃(d, t,x) lying between p̂(d, t,x) and p(d, t,x). Under Assumptions 3.2 (iii) and 3.5.1,

both p̂(d, t,x) and p(d, t,x) are (asymptotically) bounded away from zero, uniformly over X and for (d, t) ∈ S .

Moreover, E[|Y −md,t(X)|] = O(1) under Assumption 3.5.3. We deduce that Rn,d,t = Op

(
‖ p̂(1,1, ·)− p(1,1, ·)‖2

∞

)
+

Op

(
‖p̂(d, t, ·)− p(d, t, ·)‖2

∞

)
, which is op

(
n−1/2

)
by Lemma 3.4 and Assumption 3.5.5.

The first two terms in the decomposition of ∆1
w share a similar structure. We only derive the stochastic limit for

∆11
w .

Using the asymptotic expansion of local polynomial estimators in Lemma 3.4, we obtain

∆
11
w =

1
n

n

∑
i=1

{
Id,t,i(Yi−md,t(Xi))

p(d, t,Xi)p(1,1)

(
B(ps)

n,1,1(Xi)+S(ps)
n,1,1(Xi)+R(ps)

n,1,1(Xi)
)}

.

We proceed by establishing bounds for the convergence rate of the terms involving the bias, the first-order stochas-

tic and the remainder, respectively.

179



To analyze the bias, we first apply Chebyshev’s inequality and obtain

1
n

n

∑
i=1

Id,t,i(Yi−md,t(Xi))

p(d, t,Xi)p(1,1)
B(ps)

n,1,1(Xi) =E
[

Id,t(Y −md,t(X))

p(d, t,X)p(1,1)
B(ps)

n,1,1(X)

]
+Op

(
n−1/2(hp+1 +λo +λu)

)
,

where the rate of the remainder comes from standard variance calculation. Owning to Lemma 3.6(i), the mean on the

right-hand side is zero, which leads to

1
n

n

∑
i=1

Id,t,i(Yi−md,t(Xi))

p(d, t,Xi)p(1,1)
B(ps)

n,1,1(Xi) = Op

(
n−1/2(hp+1 +λo +λu)

)
. (3.8.47)

Under the bandwidth restrictions in Assumption 3.5.5, this term is op
(
n−1/2

)
.

We now introduce the term ψw1,d,t(Wi,Wj), which represents the summand of the first-order stochastic term as

follows

ψw1,d,t(Wi,Wj) =
Id,t,i(Yi−md,t(Xi))

p(d, t,Xi)p(1,1)

(
G(ps)

1,1 (Wj,Xi)−E[G(ps)
1,1 (Wj,Xi)|Xi]

)
. (3.8.48)

By its definition, we have

1
n

n

∑
i=1

Id,t,i(Yi−md,t(Xi))

p(d, t,Xi)p(1,1)
S(ps)

n,1,1(Xi) =
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

ψw1,d,t(Wi,Wj). (3.8.49)

Given the construction, we have E
[
ψw,d,t(Wi,Wj)|Wi

]
= 0. Moreover, by Lemma 3.6 (i), we also have that E[ψw,d,t

(Wi,Wj)|Wj] = 0. Hence, (3.8.49) represents a second-order U-statistic with first-order degenerate kernel. Lemma 3.3

and standard variance calculation then gives that

1
n(n−1)

n

∑
i=1

n

∑
j 6=i

ψw1,d,t(Wi,Wj) = Op

(
n−1h−υc/2

)
, (3.8.50)

Under our bandwidth assumptions, this term is op
(
n−1/2

)
.

Under Assumption 3.2(iii), p(d, t,x) is uniformly bounded away from zero for all x ∈X and for all (d, t) ∈S−.

Also, under Assumption 3.5.3, we have E[|Y −md,t(X)|] = O(1). Consequently, we can deduce that

1
n

n

∑
i=1

Id,t,i(Yi−md,t(Xi))

p(d, t,Xi)p(1,1)
R(ps)

n,1,1(Xi) =Op

(
sup
i∈Nn

∣∣∣R(ps)
n,1,1(Xi)

∣∣∣)

=Op

((
hp+1 +λo +λu +

√
logn/(nhυc)

)2
)

(3.8.51)
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which is op
(
n−1/2

)
under Assumption 3.5.5.

Combining (3.8.47), (3.8.50), and (3.8.51), we can conclude that ∆11
w = op

(
n−1/2

)
.

By the same reasoning, we can demonstrate that ∆12
w is dominated by the first-order stochastic term. Define

ψw2,d,t(Wi,Wj) =−
Id,t p(1,1,Xi)(Yi−md,t(Xi))

p2(d, t,Xi)p(1,1)

(
G(ps)

d,t (Wj,Xi)−E[G(ps)
d,t (Wj,Xi)|Xi]

)
, (3.8.52)

As a result, the leading term is given by n−1(n−1)−1
∑

n
i=1 ∑

n
j 6=i ψw2,d,t(Wi,Wj), which has an order of Op

(
n−1h−υc/2

)
= op

(
n−1/2

)
. The detailed proof is omitted for brevity.

Now, let’s consider ∆2
w. Define p̂(1,1) = En

[
Id,t p̂(1,1,X)

p̂(d, t,X)

]
.

∆
2
w = En

[
Id,t p̂(1,1,X)(Y −md,t(X))

p̂(d, t,X)

(
1

p̂(1,1)
− 1

p(1,1)

)]
= En

[
Id,t p̂(1,1,X)(Y −md,t(X))

p̂(d, t,X)

]
·Op (|p̂(1,1)− p(1,1)|) ,

where the second line follows by a first-order Taylor expansion of the right-hand side of the first equality in p̂(1,1)

around p(1,1). In the proof of Lemma 3.1, it is established that when p̂ is uniformly convergent to p, |p̂(1,1)−

p(1,1)|= op(1). The uniform convergence follows by Lemma 3.4 under the rate conditions specified in Assumption

3.5.5.

To study the first term, we can use an approach similar to the proof of ∆1
w, and show that

En

[
Id,t p̂(1,1,X)(Y −md,t(X))

p̂(d, t,X)

]
= En

[
Id,t p(1,1,X)(Y −md,t(X))

p(d, t,X)

]
+op

(
n−1/2

)
.

Due to Lemma 3.6(i), the first term on the right-hand side of the preceding equation has a mean of zero. Consequently,

this term is of order Op
(
n−1/2

)
. This completes our proof. �

Lemma 3.8 Suppose the conditions of Theorem 3.2 hold, then with m̂ given by (3.3.9),

En[(w1,1−wd,t)(W ) ·
(
m̂d,t −md,t

)
] = op(n−1/2),

for (d, t) ∈S−.

Proof of Lemma 3.8:

The proof closely resembles the first part of Lemma 3.7. We first decompose the estimation error for the OR functions
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as

En[(w1,1−wd,t)(W )
(
m̂d,t −md,t

)
(X)] =

1
n

n

∑
i=1

{
(w1,1−wd,t)(Wi)

(
B(or)

n,d,t(Xi)+S(or)
n,d,t(Xi)+R(or)

n,d,t(Xi)
)}

.

We address the three terms individually. For the bias term

1
n

n

∑
i=1

{
(w1,1−wd,t)(Wi)B

(or)
n,d,t(Xi)

}
= E

[
(w1,1−wd,t)(W )B(or)

n,d,t(X)
]
+Op

(
n−1/2(bq+1

d,t +ϑo,d,t +ϑu,d,t)
)

= Op

(
n−1/2(bq+1

d,t +ϑo,d,t +ϑu,d,t)
)
= op

(
n−1/2

)
,

where the first equality follows from Chebyshev’s inequality, and the second is derived from Lemma 3.6(ii).

Next, for the first-order stochastic term, we define

ψm,d,t(Wi,Wj) = (w1,1−wd,t)(Wi)
(

G(or)
d,t (Wj,Xi)−E[G(or)

d,t (Wj,Xi)|Xi]
)
, (3.8.53)

By definition,
1
n

n

∑
i=1

{
(w1,1−wd,t)(Wi)S

(or)
n,d,t(Xi)

}
=

1
n(n−1)

n

∑
i=1

n

∑
j 6=i

ψm,d,t(Wi,Wj).

In view of Lemma 3.6(ii), the right-hand side of the above equation is a second-order U-statistic with a degenerate

first-order kernel. A standard variance calculation shows that it is of the order Op

(
n−1bυc/2

d,t

)
, which is op

(
n−1/2

)
due

to our bandwidth restrictions.

Finally, as p(d, t,x) is uniformly bounded away from zero under Assumption 3.2(iii), we have

1
n

n

∑
i=1

{
(w1,1−wd,t)(Wi)R

(or)
n,d,t(Xi)

}
= Op

(
sup
i∈Nn

∣∣∣R(or)
n,d,t(Xi)

∣∣∣)

= Op

((bq+1
d,t +ϑo,d,t +ϑu,d,t)+

√
logn/

(
nbυc

d,t

))2
 ,

which is op
(
n−1/2

)
under Assumption 3.5.5. This completes our proof. �
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3.8.3.2 Mean Integrated Squared Error

Cross-validated bandwidth asymptotically minimizes the mean integrated squared errors (MISE). Given user-specified

weight functions ω ps(·),ωor
d,t(·) : X → R+, MISE is defined as

χ(h,λ ,{bd,t ,ϑd,t}(d,t)∈S−) =
∫

X
E
[
‖p̂−(x)−p−(x)‖2

]
ω

ps(x)dx

+ ∑
(d,t)∈S−

∫
X

E
[∣∣m̂d,t(x)−md,t(x)

∣∣2]ω
or
d,t(x)dx.

Let (h∗,λ ∗,{b∗d,t ,ϑ ∗d,t}(d,t)∈S−) denote the minimizer of the MISE. In the subsequent analysis, we investigate the

properties of these optimal smoothing parameters.

For (d, t) ∈S−, we represent the nk× 1 vector of k-th derivatives p(d, t,x) as p(k)
d,t (x), ordered lexicographically

according to the method discussed earlier in the paper. Define g(k)− (x) =
(

g(k)1,0(x),g
(k)
0,1(x),g

(k)
0,0(x)

)
. For j = p,q, let

ρb
j,1(xc) = e′N j ,1Q j(xc)

−1M j, j+1(xc), ρb
j,2(xc) = e′N j ,1Q j(xc)

−1M j,0(xc), and ρv
j (xc) = e′N j ,1Q j(xc)

−1T j(xc)Q j(xc)
−1·

eN j ,1. Additionally, we define terms associated with the asymptotic bias and variance of p̂−(x)−p−(x) as follows

Bps(x,h,λ ) =
hp+1

(p+1)!
ρ

b
p,1(xc)g

(p+1)
− (x)I (x)

+ ∑
zd∈Xd\xd

∑
j=o,u

fX (xc,zd)

fX (x)
λ jI j(xd ,zd)ρ

b
p,2(xc)(p−(x)−p−(xc,zd)) ,

V ps(x,h,λ ) =
I (x)ρv

p(xc)

hυc fX (x)
.

For the OR functions, we define

Bor
d,t(x,b,ϑ) =

bq+1

(q+1)!

(
ρ

b
q,1(xc)m

(q+1)
d,t (x)

)
+ ∑

zd∈Xd\xd

∑
j=o,u

fX (xc,zd)

fX (x)
ϑ jI j(xd ,zd)ρ

b
q,2(xc)

(
md,t(x)−md,t(xc,zd)

)
,

V or
d,t (x,b,ϑ) =

σ2
d,t(x)ρ

v
q(xc)

bυc fX (x)
,

where σ2
d,t(x) = E[Id,t(Y −md,t(X))2|X = x].

Finally, we define a first-order approximation of the MISE as

χ
∗(h,λ ,{bd,t ,ϑd,t}(d,t)∈S−) =

∫
X

{
‖Bps(x,h,λ )‖2 + tr(V ps(x,h,λ ))

}
ω

ps(x)dx

+ ∑
(d,t)∈S−

∫
X

{
Bor

d,t(x,bd,t ,ϑd,t)
2 +V or

d,t (x,bd,t ,ϑd,t)
}

ω
or
d,t(x)dx. (3.8.54)
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We denote the constrained minimizer of χ∗ as (ho,λ o,bo
d,t ,ϑ

o
d,t (d,t)∈S−

), where each argument of the function is

constrained to be non-negative.

Assumption 3.6 1. The constrained minimizer of χ∗, denoted as (ho,λ o,{bo
d,t ,ϑ

o
d,t}(d,t)∈S−), is uniquely deter-

mined and finite.

2. The constrained minimizer resides in [0,δn]
12, where nε δn→ ∞ for any ε > 0.

Theorem 3.4 Assuming that Assumptions 3.1, 3.5, and 3.6 hold and both p and q are odd, the optimal bandwidths

(h∗,λ ∗,{b∗d,t ,ϑ ∗d,t}(d,t)∈S−) satisfy

h∗ ∼ hon−1/(2p+υc+2), λ ∗ ∼ λ
on−2/(2p+υc+2),

b∗d,t ∼ bo
d,tn
−1/(2q+υc+2), ϑ ∗d,t ∼ ϑ

o
d,tn
−2/(2q+υc+2), for (d, t) ∈S−.

Proof of Theorem 3.4:

From the uniform linear expansions of Lemma 3.4, we know that

E
[
‖p̂−(x)−p−(x)‖2

]
= ‖E[I (x)A−(W,x)]‖2 +n−1 tr(Var [I (x)A−(W,x)])+(s.o.),

where

E[I (x)A−(W,x)] = I (x)(I3⊗ eNp,1)
′
Σ

ps(x)−1E[ÃAA−(W,x,γ∗(x))]

=
hp+1

(p+1)!
I (x)(I3⊗ eNp,1)

′(I (x)⊗Qp(xc) fX (x))−1
{
(I (x)⊗Mp,p+1(xc))vec

(
g(p+1)
− (x)

)
fX (x)

+ ∑
zd∈Xd\xd

∑
j=o,u

λ jI j(xd ,zd)(p−(x)−p−(xc,zd))⊗Mp,0(xc) fX (xc,zd)

}
+o
(
hp+1 +λo +λu

)
=

hp+1

(p+1)!
e′Np,1Qp(xc)

−1Mp,p+1(xc)g
(p+1)
− (x)I (x)

+ ∑
zd∈Xd\xd

∑
j=o,u

fX (xc,zd)

fX (x)
λ jI j(xd ,zd)e′Np,1Qp(xc)

−1Mp,0(xc)(p−(x)−p−(xc,zd))

+o
(
hp+1 +λo +λu

)
=Bps(x,h,λ )+o

(
hp+1 +λo +λu

)
, (3.8.55)

and

Var [I (x)A−(W,x)] =h−υcI (x)(I3⊗ eNp,1)
′
Σ

ps(x)−1 (I (x)⊗Tp(xc) fX (x))Σ
ps(x)−1(I3⊗ eNp,1)I (x)
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=h−υcI (x)(I3⊗ eNp,1)
′(I (x)⊗Qp(xc) fX (x))−1 (I (x)⊗Tp(xc) fX (x))

· (I (x)⊗Qp(xc) fX (x))−1(I3⊗ eNp,1)I (x)+o
(
h−υc

)
=h−υc fX (x)−1I (x)e′Np,1Qp(xc)

−1Tp(xc)Qp(xc)
−1eNp,1 +o

(
h−υc

)
=V ps(x,h,λ )+o

(
h−υc

)
. (3.8.56)

Analogously, for (d, t) ∈S−

E
[∣∣m̂d,t(x)−md,t(x)

∣∣2]= ∣∣∣E[G(or)
d,t (W,x)]

∣∣∣2 +n−1Var
[
G(or)

d,t (W,x)
]
+(s.o.),

where

E[G(or)
d,t (W,x)] = e′Nq,1Σ

or
d,t(x)

−1E[H(bd,t) ¯
X(X j)Id,tξ

or
d,t(x)K̃or(X ;x,bd,t ,ϑd,t)]

=
bq+1

d,t

(q+1)!
e′Nq,1(Qq(xc) fX (x))−1

{
Mq,q+1(xc)m

(q+1)
d,t (x) fX (x)

+ ∑
zd∈Xd\xd

∑
j=o,u

ϑd,t, jI j(xd ,zd)
(
md,t(x)−md,t(xc,zd)

)
Mq,0(xc) fX (xc,zd)

}

+o
(

bq+1
d,t +ϑd,t,o +ϑd,t,u

)
=

bq+1
d,t

(q+1)!

(
e′Nq,1Qq(xc)

−1Mq,q+1(xc)m
(q+1)
d,t (x)

)
+ ∑

zd∈Xd\xd

∑
j=o,u

fX (xc,zd)

fX (x)
ϑ jI j(xd ,zd)e′Nq,1Qq(xc)

−1Mq,0(xc)
(
md,t(x)−md,t(xc,zd)

)
+o
(

bq+1
d,t +ϑd,t,o +ϑd,t,u

)
,

=Bor
d,t(x,bd,t ,ϑd,t)+o

(
bq+1

d,t +ϑd,t,o +ϑd,t,u

)
, (3.8.57)

and

Var
[
G(or)

d,t (W,x)
]
=b−υc

d,t e′Nq,1Σ
or
d,t(x)

−1E[H(bd,t) ¯
X(X j)Id,t(Y −md,t(X))2

+H(bd,t) ¯
X(X j)

′K̃or(X ;x,bd,t ,ϑd,t)
2]Σor

d,t(x)
−1eNq,1 +o

(
b−υc

)
=b−υc

d,t e′Nq,1(Qq(xc) fX (x))−1 (
σ

2
d,t(x)Tq(xc) fX (x)

)
(Qq(xc) fX (x))−1 +o

(
b−υc

)
=b−υc

d,t fX (x)−1
σ

2
d,t(x)e

′
Nq,1Qq(xc)

−1Tq(xc)Qq(xc)
−1eNq,1 +o

(
b−υc

)
=V or

d,t (x,bd,t ,ϑd,t)+o
(
b−υc

)
. (3.8.58)
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Now, we define

(h†,λ †,{b†
d,t ,ϑ

†
d,t}(d,t)∈S−) = (n1/(2p+υc+2)h,n2/(2p+υc+2)

λ ,{n1/(2q+υc+2)bd,t ,n2/(2q+υc+2)
ϑd,t}(d,t)∈S−).

It follows from (3.8.55)–(3.8.58) and standard analysis that

χ(h,λ ,{bd,t ,ϑd,t}(d,t)∈S−)

=n−2(p+1)/(2p+υc+2)
∫

X

{∥∥Bps(x,h†,λ †)
∥∥2

+ tr(V ps(x,h†,λ †))
}

ω
ps(x)dx

+o
(
hp+1 +λo +λu +h−υc

)
+n−2(q+1)/(2q+υc+2)

∑
(d,t)∈S−

∫
X

{
Bor

d,t(x,b
†
d,t ,ϑ

†
d,t)

2 +V or
d,t (x,b

†
d,t ,ϑ

†
d,t)
}

ω
or
d,t(x)dx

+o

(
∑

(d,t)∈S−

{
bq+1

d,t +ϑd,t,o +ϑd,t,u +b−υc
d,t

})
,

uniformly over [0,δn]
12. Since χ∗ is separable in (h,λ ) and (

{
bd,t ,ϑd,t

}
(d,t)∈S−), and its constrained minimizer

is well-defined, unique, and finite under Assumption 3.6, the proof is completed by minimizing χ with respect to

(h†,λ †,{b†
d,t ,ϑ

†
d,t}(d,t)∈S−) and recalling the definition of (ho,λ o,{bo

d,t ,ϑ
o
d,t}(d,t)∈S−). �

3.8.3.3 Plug-In Estimators

When employing the frequency method (i.e., λ = ϑd,t = 0), a straightforward plug-in rule can be used to determine

the bandwidths (h,{bd,t}(d,t)∈S−). Notably, local polynomial estimators with an odd degree of fit are adaptive to

boundaries, implying that the convergence rate of bias and variance remains constant regardless of the location of x.

By solving Equation (3.8.54) and applying Theorem 3.4, the following results are obtained

h∗ =


∫ ∥∥∥ρb

p,1(xc)g
(p+1)
− (x)I (x)

∥∥∥2
ω ps(x)dx∫

tr
(
I (x)ρv

p(xc)
)
/ fX (x) ·ω ps(x)dx

2(p+1)n

υc {(p+1)!}2


−1/(2p+υc+2)

,

b∗d,t =


∫ ∥∥∥ρb

q,1(xc)m
(q+1)
d,t (x)

∥∥∥2
ωor

d,t(x)dx∫
ρv

q(xc)/ fX (x) ·ωor
d,t(x)dx

2(q+1)n

υc {(q+1)!}2


−1/(2q+υc+2)

, for (d, t) ∈S−.

These bandwidths, however, are infeasible due to the presence of unknown quantities related to the derivatives of the

nuisance functions and local Fisher information. To estimate the optimal bandwidths, preliminary approximations

of these quantities are necessary. An additional challenge arises from the complicated dependence of the plug-in
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bandwidths on the location of x (through ρb and ρv). One possible solution is to substitute the values evaluated at a

boundary point with those associated with interior points. This replacement has a negligible impact on the consistency

of the optimal bandwidth in general. The bandwidth selection process can be outlined in the following algorithm:

Algorithm 3.8.1 1. Let Xo collect all the unique values of {Xi}n
i=1. Construct standard kernel estimates of covari-

ate density with mixed data, f̂X (x), for x ∈Xo, following, e.g., Racine and Li (2004).

2. Use a polynomial multinomial logit regression of order `= p+2 to get preliminary estimates Ĭ (x), ğ(p+1)
− (x),

ğ(p+2)
− (x), for x ∈Xo. Run polynomial regressions of order ` = q+ 2 to obtain m̆(q+1)

d,t (x) and m̆(q+2)
d,t (x), for

x ∈Xo.

3. Compute preliminary bandwidths

h̆ =

En

[∥∥∥ρb
p,1ğ(p+1)

− (X)Ĭ (X)
∥∥∥2
]

ρv
pEn

[
f̂−1
X (X) tr

(
Ĭ (X)

)] 2(p+1)n

υ {(p+1)!}2


−1/(2p+υ+2)

,

b̆d,t =

En

[∥∥∥ρb
q,1m̆(q+1)

d,t (X)
∥∥∥2
]

ρv
q En

[
f̂−1
X (X)

] 2(q+1)n

υ {(q+1)!}2


−1/(2q+υ+2)

,

h̃ =

 En

[∥∥∥ρρρb
p+1ğ(p+2)

− (X)
∥∥∥2
]

En

[
f̂−1
X (X) tr

(
Ĭ (X)−1⊗ρρρv

p+1

)] 2n
υ(2p+3)[(p+2)!]


−1/(2p+υ+4)

,

b̃d,t =

En

[∥∥∥ρρρb
q+1m̆(q+2)

d,t (X)
∥∥∥2
]

En

[∥∥∥ f̂−1
X (X)ρρρv

q+1

∥∥∥] 2n
υ(2q+3)[(q+2)!]


−1/(2q+υ+4)

,

where we omitted the dependence of ρb and ρv on xc to signify that the boundary effect is disregarded. Further-

more, in the preceding equations, ρρρb
j = I′N j ,jQ

−1
j M j, j+1, ρρρv

j = I′N j ,jQ
−1
j T jQ−1

j IN j ,j, and IN j ,j is a N j×n j matrix

consisting of the last n j columns of the N j×N j identity matrix.

4. Run a local polynomial logistic regression of order ` = p+1, with bandwidth h̃, to obtain ĝ(p+1)
− (x). For each

(d, t) ∈S−, run a local polynomial regression of order ` = q+ 1, using bandwidth b̂d,t , to get m̂(q+1)
d,t (x), for

x ∈Xo.

5. Run a local polynomial logistic regression of order `= p, with bandwidth h̆, to obtain Î (x), for x ∈Xo.
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6. Compute the optimal bandwidth ĥ and b̂d,t , following

ĥ =

En

[∥∥∥ρb
p,1ĝ(p+1)

− (X)Î (X)
∥∥∥2
]

ρv
pEn

[
f̂−1
X (X) tr

(
Î (X)

)] 2(p+1)n

υ {(p+1)!}2


−1/(2p+υ+2)

,

b̂d,t =

En

[∥∥∥ρb
q,1m̂(q+1)

d,t (X)
∥∥∥2
]

ρv
q En

[
f̂−1
X (X)

] 2(q+1)n

υ {(q+1)!}2


−1/(2q+υ+2)

.

3.8.3.4 Cluster-Robust Inference: Bootstrap Procedures

In this section, we introduce two bootstrap procedures that are suitable for cluster-robust inference. The first algorithm

uses a multiplier-bootstrap method to compute studentized and cluster-robust standard errors. This method has been

previously described in Kline and Santos (2012) and Callaway et al. (2018). The second procedure is a bootstrap

Hausman-type test, which provides bootstrapped p-values.

Let V n
i=1 be a sequence of i.i.d. random variables with zero mean and unit variance, which is independent of the

original sample. One example is i.i.d. Bernoulli random variables with P(V = v0) = 1− v0/
√

5 and P(V = 1− v0) =

v0/
√

5, where v0 = (
√

5+ 1)/2, as suggested by Mammen (1993). Now, given a generic AT T estimator, τ̂ , and an

estimator of its influence function, η̂(·), we compute the clustered standard errors as follows:

Algorithm 3.8.2 1. In iteration b, draw a realization of Vb for each cluster. All observations within the same

cluster share the same value of Vb.

2. Calculate a bootstrap estimate for AT T as

τ̂
∗
b = τ̂ +En[Vb · η̂(W )].

Form a bootstrap draw of the limiting distribution as

R̂∗b =
√

n(τ̂∗b − τ̂) .

3. Repeat Steps 1-2 B times.

4. Calculate the bootstrapped standard error, σ̂∗, as the bootstrap interquartile range normalized by the interquartile

range of the standard normal distribution: σ̂∗ = (q0.75(R̂)− q0.25(R̂))/(z0.75− z0.25), where qp(R̂) is the p-th
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sample quantile of the R̂b in the B draws, and zp is the p-th quantile of the standard normal distribution.

Given the two DR DID estimators, τ̂dr based on (3.3.1), τ̂sz based on (3.4.1), and their respective linear expansions,

η̂dr(·) given in (3.3.11) and η̂sz(·) given in (3.4.3), we conduct a cluster-robust Hausman-type test as follows

Algorithm 3.8.3 1. Calculate the Hausman test statistic, Tn, following (3.4.2).

2. In iteration b, generate a realization of Vb for each cluster. Observations within the same cluster share the same

value of Vb.

3. Calculate bootstrap estimates of the AT T as

τ̂
∗
j,b = τ̂ j +En[Vb · η̂ j(W )],

V̂ ∗b = En[Vb · (η̂e f f (W )− η̂sz(W ))2].

Form a bootstrap test statistic, T ∗
b , as

T ∗
b = n

(
τ̂
∗
dr,b− τ̂

∗
sz,b
)2
/V̂ ∗b .

4. Repeat Steps 1-2 B times.

5. Calculate the bootstrapped p-value, p∗, as the proportion of the bootstrap test statistics,
{
T ∗

b

}B
b=1, that are

greater than or equal to Tn.
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