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Chapter 1 
 
 

Introduction 

 
 

1.1 The eukaryotic cell cycle 
Cells are the basic units of life. In order to support and propagate life, cells must 

divide to produce more cells. This propagation requires organized phases of growth and 

division. The cell cycle organizes these phases into chronological processes. The 

prototypical cell cycle contains two phases of growth, G1 and G2, which are separated 

by S phase during which the genetic material is replicated. Successful replication of the 

genetic material allows cells to proceed to G2 before entering mitosis. During mitosis 

the genetic material is segregated between the two poles of the dividing cell. Successful 

segregation of the genetic material is followed by cytokinesis, during which the dividing 

cell halves are physically separated to produce two independent daughter cells. 

Components and processes that regulate the cell cycle have been identified and 

characterized in the fission yeast Schizosaccharomyces pombe (Nurse et al., 1976). 

This single-celled rod-shaped fungus has served as an excellent model organism to 

study the cell cycle because S. pombe cells grow by elongating from their cell ends and 

divide by medial fission (Figure 1.1) (Mitchison, 1957). Thus, the longer the S. pombe 

cell the farther the cell has progressed through the cell cycle. When components that 

are essential for the passage from one stage of the cell cycle to the next are disrupted 

S. pombe cells arrest in the stage of the cell cycle immediately prior to the transition 

(Nurse et al., 1976). S. pombe’s growth pattern and genetics were leveraged to 

generate conditional temperature-sensitive cell division cycle alleles that identified 

several conserved essential proteins that regulate cell cycle progression including the 

cyclin-dependent kinase, Cdk1 (Simanis and Nurse, 1986). While S. pombe has been 

instrumental in elucidating the molecular mechanisms that regulate cell cycle 

progression, it has also been key in identifying the components and molecular 
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mechanisms that underly other cellular processes such as polarity establishment and 

cytokinesis (Balasubramanian et al., 1998; Snell and Nurse, 1994). 

 
Figure 1.1. The S. pombe cell cycle. S. pombe cells grow by elongation at their cell 
ends in G2. Growth initially occurs from the old end, defined as the end of the cell that 
served as the end of the mother cell in the previous cell cycle, before growth initiates at 
the new end, defined as the end of the cell generated from septum digestion. This 
transition is referred to as NETO (new end take off). Growth ceases as the cells enter 
the M phase of the cell cycle. During M phase, the genetic material is segregated and 
the two daughter cells are physically separated by a septum. The septated daughter 
cells remain joined through G1 and S phase.  At the end of S phase, the septum is 
digested and the daughter cells become independent. 

 

1.2 Growth polarity establishment in Schizosaccharomyces pombe 
The fission yeast S. pombe is an exceptional model to study growth polarity 

establishment. During G2, S. pombe cells elongate through growth at their cell ends 

while maintaining a constant width (Figure 1.1). S. pombe initially exhibit monopolar 

growth from the old end, the end of the cell that served as a cell tip of the mother cell in 

the previous division (Figure 1.1) (Mitchison and Nurse, 1985). Because S. pombe have 

a cell wall, they must simultaneously remodel their cell wall and expand their plasma 

membrane to prevent cell lysis during elongation. Cell wall machinery and plasma 
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membrane are delivered to the growing end by vesicular trafficking directed by actin 

cables polymerized from the growing end (Win et al., 2001). 

The polymerization of actin cables requires a formin to be recruited to and 

activated at the growing end. This process begins with the delivery of microtubule 

associated polarity factors to the cell end. During G2, microtubules extend parallel to the 

long axis of the cell until the plus end of the microtubules encounter the cell end. 

Contact with the microtubules to the cell end delivers the polarity factor Tea1 and its 

binding partner Tea4 to the cell end (Martin et al., 2005; Mata and Nurse, 1997). The 

PP1 phosphatase is recruited to the cell end by Tea4 where it activates Gef1, a Cdc42 

guanine nucleotide exchange factor (GEF), by removing phosphorylation from 

the NDR/LATS-family kinase Orb6 (Alvarez-Tabares et al., 2007; Das et al., 2015; Das 

et al., 2009; Kokkoris et al., 2014). Dephosphorylated Gef1 associates with the cell 

cortex at the cell end where it promotes local activation of the Rho family GTPase 

Cdc42 by promoting the exchange of GDP-Cdc42 to GTP-Cdc42 (Das et al., 2015; Das 

et al., 2009). This local activation of Cdc42 is enhanced by a positive feedback loop 

through interactions with the p21-activated kinase (PAK), Shk1 (Marcus et al., 1995; 

Ottilie et al., 1995). Shk1 simultaneously binds GTP-Cdc42 and the scaffolding protein 

Scd2 (Endo et al., 2003). Scd2 directly binds Scd1, another Cdc42 GEF, which also 

promotes the exchange of GDP-Cdc42 to GTP-Cdc42 (Endo et al., 2003). GTP-Cdc42 

can continue to associate with PAK-Scd2-Scd1 complexes to further increase GTP-

Cdc42 levels at the cell end (Endo et al., 2003). Increased GTP-Cdc42 at the cell end 

promotes activation of Cdc42 effectors, namely the formin, For3 (Rincon et al., 2009). 

Upon localization and activation by Tea4 and Cdc42, For3 polymerizes F-actin from the 

cell end (Feierbach and Chang, 2001; Martin et al., 2005). These actin filaments form 

actin cables and facilitate the delivery of vesicles by the type-V myosin Myo52 to the cell 

end (Feierbach and Chang, 2001). This process first occurs at the old end before also 

occurring at the new end. 

Cells undergo monopolar growth until a point in G2 where the new end, the cell 

end created from primary septum digestion after cytokinesis (Figure 1.1) (Mitchison and 

Nurse, 1985), begins to grow. The onset of bipolar growth is referred to as new end take 

off (NETO) and marks a rate change point during which growth increases by 35% 
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(Figure 1.1) (Mitchison and Nurse, 1985). NETO has previously been thought to be 

governed by cell size and completion of S phase (Mitchison and Nurse, 1985). 

However, we now understand that the activation of the calcineurin phosphatase Ppb1 

by the DNA replication checkpoint kinase Cds1 during S phase is partially involved in 

the delay of NETO (Kume et al., 2011). Mutating Ppb1 to prevent its phosphorylation by 

Cds1 promotes early NETO (Kume et al., 2011). Additionally, transiently depolymerizing 

the F-actin in cells arrested in G1 or S phase with a pulse of Latrunculin A (Lat A) or 

Latrunculin B promotes bipolar actin polymerization resulting in early NETO (Kume et 

al., 2011; Rupes et al., 1999).    

Preference for initiating growth at the old end before the new end may be 

partially explained by cytokinesis. Mutants with cytokinetic defects can delay or prevent 

NETO (Figure 1.2) (Bohnert and Gould, 2012). Inefficient cytokinesis can result in the 

prolonged persistence of cytokinetic components at the new of the cell (Figure 1.2) 

(Bohnert and Gould, 2012). These cytokinetic remnants delay NETO (Figure 1.2) 

(Bohnert and Gould, 2012). It is likely that wild-type cells also require time to clear the 

cytokinetic components from the new cell ends before actin polymerization can occur to 

promote NETO. These findings provide an explanation as to why new end growth 

occurs at a later point in G2 and links cytokinesis to polar growth establishment. These 

cytokinetic constraints on polarized growth were first identified by analyzing phenotypes 

resulting from the loss of the cytokinetic component Fic1. 

Fic1 is a component of the cytokinetic ring (CR), a filamentous actin and non-

muscle type-II myosin-based structure required for cytokinesis. Fic1 was identified from 

a yeast two-hybrid (Y2H) cDNA library screen using the C-terminus of the F-BAR 

protein Cdc15 as bait (Roberts-Galbraith et al., 2009). Fic1 is comprised of an N-

terminal C2 domain and a proline-rich C-terminus (Roberts-Galbraith et al., 2009). A 

fragment from Fic1’s C-terminus containing four PxxP motifs was found to interact with 

the C-terminal fragment of Cdc15 which included an SH3 domain (Roberts-Galbraith et 

al., 2009).  
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Figure 1.2. Prolonged persistence of cytokinetic components at the new ends 
impairs growth polarity establishment. In wild-type cells cytokinesis occurs efficiently 
which allows cells to undergo NETO during G2 in the subsequent cell cycle. In fic1∆ 
cells cytokinesis is inefficient which causes cytokinetic components to persist at the new 
ends and delays NETO during G2 in the subsequent cell cycle. 

 

Fic1 localizes to the CR, septum, and growing interphase cell tips (Bohnert and 

Gould, 2012; Roberts-Galbraith et al., 2009). Fic1’s C-terminus is required for its 

localization to the CR while the N-terminal C2 domain is required for its localization to 

growing interphase cell tips (Bohnert and Gould, 2012). Deletion of fic1 causes NETO 

defects (Bohnert and Gould, 2012). These defects are ameliorated by expressing Fic1’s 

C-terminus but not its C2 domain (Bohnert and Gould, 2012). Thus, Fic1’s roles in 

polarity are not due to its activity at cell tips but rather its cytokinetic roles which ensure 

efficient CR constriction and disassembly (Bohnert and Gould, 2012). Defects in 

cytokinesis from the fic1 deletion also influence S. pombe’s growth states by promoting 

the transition into invasive pseudohyphal growth (Bohnert and Gould, 2012). 

The transition into invasive pseudohyphal growth upon the deletion of fic1 

demonstrates that disruptions to cytokinesis can influence S. pombe’s growth states. 

The exact mechanisms underlying the dimorphic switch from single cell growth to 
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invasive pseudophyphal growth in fic1∆ cells are not understood, but they are likely 

driven from cytokinetic defects that influence growth polarity establishment. To this 

point, other late cytokinetic mutants, such as imp2∆, cyk3∆, and spn1∆ cells, also 

exhibit invasive pseudohyphal growth (Bohnert and Gould, 2012). Like fic1∆ cells, these 

mutants exhibit NETO defects, which suggests that growth polarity establishment 

influences the transition into invasive pseudophyphal growth (Bohnert and Gould, 

2012). Late cytokinetic mutants predominantly grow from their old end because they fail 

to establish growth at their new ends, likely due CR remnants occluding polarity factors 

from the new end. The result of this monopolar growth pattern is outward directional 

growth, a common feature of S. pombe pseudohyphal growth (Amoah-Buahin et al., 

2005; Dodgson et al., 2010; Sipiczki et al., 1998). Thus, the invasive growth phenotype 

of late cytokinetic mutants with NETO defects aligns with what is known about 

pseudohyphal growth in S. pombe. Identifying Fic1’s cytokinetic functions has been 

pivotal in advancing our understanding of Fic1’s influence on growth polarity 

establishment and invasive pseudohyphal growth. 

Fic1 displays multiple electrophoretic mobilities upon SDS-PAGE, which likely 

indicates the presence of post-translational modifications (Bohnert and Gould, 2012). It 

is unclear if these post-translational modifications alter Fic1’s cytokinetic functions. If 

they do, they may also influence growth polarity establishment and the transition into 

invasive pseudohyphal growth. Identifying the enzymes responsible for Fic1’s post-

translational modifications could provide insight into a pathway that signals through 

Fic1. Identifying this pathway may provide additional insight into Fic1’s roles in growth 

polarity establishment and its influence on invasive pseudohyphal growth. Identifying 

the specific residues these modifications target may also provide further insight as the 

regions and/or domains Fic1 utilizes for its cytokinetic roles. Lastly, if Fic1’s post-

translational modifications are cell cycle regulated we may be able to determine how 

Fic1’s protein-protein interactions or localization are regulated. 

 

1.3 Schizosaccharomyces pombe as a model organism for studying cytokinesis 
Upon completing the G1, S, and G2 interphase stages of the cell cycle, cells 

enter mitosis during which the duplicated genetic material is segregated, and the 
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daughter cells are abscised. The spatial and temporal regulation of nuclear division and 

cytokinesis are coordinated to ensure the genetic material and the cytoplasm are 

properly partitioned between the dividing cell halves. Failure to regulate cytokinesis can 

result in aneuploidy, which can lead to cancer or even cell death (Fujiwara et al., 2005; 

Ganem et al., 2009; Krajcovic et al., 2011). In animal cells the plane of cellular division 

is selected through positive signaling from the centralspindlin complex (Alsop and 

Zhang, 2003; Bringmann and Hyman, 2005; Dechant and Glotzer, 2003; Werner et al., 

2007). These signals ensure the plane of cell division occurs between the segregated 

genetic material. After the division plane is selected, a CR is assembled along cell 

cortex within this plane (Uehara et al., 2010; Yumura et al., 2008; Zhou and Wang, 

2008). Following assembly, the CR constricts, causing the plasma membrane to ingress 

and the two daughter cells to be physically separated. Homology between many of the 

CR components is observed between a variety of eukaryotic organisms, suggesting that 

the underlying mechanisms of regulation are similar between these organisms (Glotzer, 

2017; Gu and Oliferenko, 2015; Mangione and Gould, 2019). 

S. pombe is an excellent model to study cytokinesis because both S. pombe and 

animal cells utilize a CR to achieve symmetric medial cell division (Glotzer, 2017; Gu 

and Oliferenko, 2015; Mangione and Gould, 2019); the pathways and proteins that 

regulate the S. pombe cell cycle are well studied; and S. pombe is amenable to genetic 

manipulation, biochemical techniques, and live-cell imaging. As S. pombe enter mitosis, 

growth ceases and the duplicated spindle pole bodies (SPB), the centrosome ortholog, 

separate (Ding et al., 1997; Mitchison, 1957). In contrast to the open mitosis observed 

in some other eukaryotic cells, S. pombe undergo a closed mitosis, where the nuclear 

envelope is maintained throughout mitosis (Sazer et al., 2014; Tanaka and Kanbe, 

1986). The SPBs then embed themselves in the nuclear envelope before polymerizing 

intranuclear microtubules, or mitotic spindle, which segregate each SPB to opposite 

sides of the nuclear envelope (Ding et al., 1997). Sister chromatids adhere to 

microtubules polymerized from opposing SPBs through their kinetochore in metaphase 

and are separated from each other during anaphase A, as a result of microtubule 

depolymerization (Ding et al., 1997; Nabeshima et al., 1998). Anaphase B is marked by 

the increase in the length of the mitotic spindle, which propels the SPBs with their 
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associated genetic material to their respective poles (Ding et al., 1997; Nabeshima et 

al., 1998). The mitotic spindle is disassembled and the nuclei are abscised during 

telophase (Lucena et al., 2015). 

 
Figure 1.3. S. pombe utilize a cytokinetic ring to promote medial cell division. 
Upon mitotic commitment Mid1 is phosphorylated by Plo1 which causes Mid1 to form 
cytokinetic nodes on the medial cortex of the cell. These nodes recruit additional 
cytokinetic components that assist in assembling these nodes into a cytokinetic ring. 
After the genetic material is segregated the cytokinetic ring constricts and as the 
cytokinetic ring constricts cell wall machinery within the membrane that encompasses 
the cytokinetic ring initiates septum formation. Cytokinetic ring constriction and septum 
formation remain coordinated until the daughter cells are physically separated. The 
septated daughter cells remain joined until the septum is digested and the two daughter 
cells become independent. 
 

S. pombe begin CR assembly upon entering mitosis. This process is guided by 

the position of the nucleus, which is maintained at the cell center by cytoplasmic 

microtubules (Figure 1.3) (Tran et al., 2001). Extensive genetic experimentation has 

elucidated many of the proteins involved in CR assembly. The polo kinase, Plo1, 

initiates CR assembly by phosphorylating the anillin-like protein Mid1 at the onset of 

mitosis (Almonacid et al., 2011; Bahler et al., 1998a). This phosphorylation causes Mid1 
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to be shuttled out of the nucleus where it then binds the medial cortex of the cell 

(Almonacid et al., 2011; Bahler et al., 1998a). Mid1 is relegated to the medial cortex of 

the cell through negative signaling by the DYRK family kinase Pom1 radiating from 

either cell tip (Bahler and Pringle, 1998; Celton-Morizur et al., 2006; Padte et al., 2006). 

Mid1 is phosphorylated on its N-terminus by the protein kinase Shk1, which promotes 

its association with the protein kinase Cdr2 to form cytokinetic nodes (Figure 1.3) 

(Magliozzi et al., 2020). After node formation, Mid1 associates with the non-muscle 

type-II myosin Myo2, the myosin light chain Rlc1, the IQGAP protein Rng2, the F-BAR 

protein Cdc15, and the formin Cdc12 (Almonacid et al., 2011; Celton-Morizur et al., 

2004; Coffman et al., 2009; Laporte et al., 2011; Motegi et al., 2004; Padmanabhan et 

al., 2011; Wu et al., 2003; Wu et al., 2006). Recruitment of these proteins into 

cytokinetic nodes facilitates CR assembly through a process known as the search, 

capture, pull, and release (SCPR) (Figure 1.3) (Vavylonis et al., 2008; Wu et al., 2006). 

During CR assembly by SCPR, Cdc12 polymerizes actin filaments that span the 

distance between cytokinetic nodes (search). These filaments are bound by Myo2 on 

neighboring nodes (capture). Myo2 begins to pull on these filaments to pull the nodes 

closer to one another (pull), and then the actin filament is severed (release) (Vavylonis 

et al., 2008; Wu et al., 2006). This process continues until the nodes coalesce into a 

ring. This is the canonical pathway for CR assembly, but in mid1∆ cells CR assembly is 

achieved through an alternative pathway. 

Assembly of the CR in mid1∆ cells utilizes the spot-leading cable pathway. 

Because cytokinetic nodes do not form in mid1∆ cells, this pathway relies on the 

formation of a single Cdc12 focus at the medial cortex of the cell, which polymerizes 

long actin filaments that line the circumference of the medial cortex at the site of cell 

division (Arai and Mabuchi, 2002; Carnahan and Gould, 2003; Kamasaki et al., 2007). 

Cytokinetic components, such as Myo2 and Cdc15, associate with this actin ring to 

assemble the CR. Assembling the CR through this pathway often results in off-center 

placement of the CR because CR placement is normally regulated by Mid1’s medial 

cortex localization and inhibitory Pom1 signaling from either cell tip (Bahler and Pringle, 

1998; Celton-Morizur et al., 2006; Padte et al., 2006; Sohrmann et al., 1996). Thus, in 

cells lacking Mid1, CR assembly can become misplaced due to the loss the Mid1 CR 
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placement cue. Improper regulation of CR placement can lead to cytokinesis occurring 

over the genetic material, leading to a “cut” phenotype during which chromosomes can 

be damaged by CR constriction (Hirano et al., 1986; Saka et al., 1994; Samejima et al., 

1993). 

The composition of the CR during assembly, maturation, and constriction is 

dynamic. Most notably, CR maturation requires the addition and loss of various proteins 

to ensure the CR is ready for constriction (Ge and Balasubramanian, 2008; Pinar et al., 

2008; Ren et al., 2015; Roberts-Galbraith et al., 2009; Willet et al., 2019). The motor 

activity of Myo2 is required for CR constriction (Kitayama et al., 1997; May et al., 1997; 

Motegi et al., 1997). During constriction, Myo2 clusters pull on actin filaments causing 

the diameter of the CR to decrease. As the diameter decreases, excess actin is 

removed from the CR while the number of Myo2 molecules remains constant (Cheffings 

et al., 2019; Chen and Pollard, 2011; Malla et al., 2022; McDargh et al., 2023). Because 

of this turnover of actin, the formin Cdc12 continues to polymerize actin filaments 

throughout the constriction of the CR (Pelham and Chang, 2002). Unlike animal cells, 

CR constriction in S. pombe is performed in coordination with cell wall deposition to 

form a septum between daughter cells. 

 

1.4 Septum formation in Schizosaccharomyces pombe 
Organisms with a cell wall, such as S. pombe, utilize a structure known as a 

septum to partition dividing cells. S. pombe septa are composed of a primary septum 

flanked by two secondary septa (Humbel et al., 2001; Johnson et al., 1973). Septum 

deposition concentrically follows the constricting CR (Humbel et al., 2001; JC et al., 

2018; Johnson et al., 1973; Liu et al., 2002; Ramos et al., 2019). Formation of the 

primary septum precedes the secondary septa. During primary septum formation the 

polymerization of linear-β(1,3)glucan molecules by the glucan synthase Bgs1 provides 

the force necessary to overcome the high internal turgor pressure and drive membrane 

ingression (Cortes et al., 2007; JC et al., 2018; Liu et al., 1999; Proctor et al., 2012; 

Ramos et al., 2019). Because primary septum formation provides the force necessary to 

drive membrane ingression, the rate of CR constriction is linked to the rate of septum 

deposition (Ramos et al., 2019). In addition to the linear-β(1,3)glucans formed by Bgs1, 
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the primary septum contains α(1,3)glucans synthesized by the glucan synthase Ags1 

(Cortes et al., 2012; Hochstenbach et al., 1998; Katayama et al., 1999). The secondary 

septum consist of the two glucans synthesized by Bgs1 and Ags1 in addition to 

branched-β(1,3)glucans synthesized by Bgs3 and Bgs4 and branched-β(1,6)glucans 

presumably synthesized by Bgs4 (Cortes et al., 2005; Martin et al., 2003; Munoz et al., 

2013; Ribas et al., 1991). If septum formation fails to produce a trilaminar structure or if 

the cell wall machinery and their regulatory components are disrupted, cells may fail 

cytokinesis (Arellano et al., 1999a; Arellano et al., 1996; Balasubramanian et al., 1998; 

Cortes et al., 2005; Davidson et al., 2016; Liu et al., 1999; Longo et al., 2022; Martin et 

al., 2003; Palani et al., 2017; Palani et al., 2018; Ramos et al., 2019; Ribas et al., 1991; 

Sethi et al., 2016; Tajadura et al., 2004). 

The septation initiation network (SIN) is one pathway that regulates CR assembly 

and septum formation to prevent premature cell abscission, which could damage the 

genetic material. Insufficient SIN signal produces cells that progress through mitosis but 

fail to perform cytokinesis, resulting in multi-nucleated cells (Mitchison and Nurse, 

1985). Conversely, excessive SIN signal causes cells to form multiple septa during 

cytokinesis (Fankhauser and Simanis, 1994; Minet et al., 1979; Ohkura et al., 1995; 

Schmidt et al., 1997). However, the SIN’s influence on cytokinesis is best demonstrated 

by the ability of ectopic SIN signals to drive CR assembly and septum formation at any 

point in the cell cycle (Ohkura et al., 1995; Schmidt et al., 1997). 

SIN signaling originates from the cytoplasmic face of the SPB. The SPB protein 

Ppc89 binds and localizes the SIN component scaffold protein Sid4 to the SPB 

(Rosenberg et al., 2006). Sid4 binds and localizes the centriolin ortholog Cdc11 to the 

SPB (Krapp et al., 2001; Morrell et al., 2004). Cdc11 binds the GTPase Spg1, which is 

maintained in its inactive GDP bound state throughout interphase by its associations 

with the two component GTPase-activating protein (GAP) of Spg1, Byr4-Cdc16 (Furge 

et al., 1998; Krapp et al., 2008). During mitosis, Spg1 binds GTP and becomes 

activated. The impetus for this activation is not known since no GEFs for Spg1 have 

been identified (Schmidt et al., 1997). GTP-Spg1 binds the STE-20 family protein kinase 

Cdc7 (Fankhauser and Simanis, 1994; Mehta and Gould, 2006; Schmidt et al., 1997). 

The formation of the Spg1-Cdc7 complex promotes the interaction between the PAK-
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GC kinase Sid1 and its activator Cdc14, which is followed by the interaction between 

the NDR-family kinase Sid2 and its activator Mob1 (Guertin et al., 2000; Guertin and 

McCollum, 2001; Hou et al., 2004; Hou et al., 2000; Salimova et al., 2000). While all 

three kinase complex localize to the SPB, only Sid2-Mob1 also localizes to the CR in 

mid-late anaphase (Guertin et al., 2000; Guertin and McCollum, 2001; Hou et al., 2004; 

Hou et al., 2000; Mehta and Gould, 2006; Salimova et al., 2000). This allows Sid2-Mob1 

to propagate the SIN signal from the SPB to downstream effectors at the site of cell 

division. 

Sid2 targets the consensus sequence RxxS, which creates binding sites for the 

14-3-3 protein Rad24 (Chen et al., 2008a; Feoktistova et al., 2012; Gupta et al., 2013; 

Mah et al., 2005; Yaffe et al., 1997). These interactions with Rad24 can modulate a 

protein’s interactions and/or localization to assist in cell division. Sid2 phosphorylation 

promotes the association of Cdr2 and Clp1 with Rad24, which removes Cdr2 from 

cytokinetic nodes and promotes Clp1’s cytoplasmic localization (Chen et al., 2008a; 

Rincon et al., 2017). Sid2 phosphorylation also evokes effects independent of Rad24. 

Sid2 phosphorylation of Cdc12 promotes Cdc12’s ability to bundle actin filaments, which 

promotes CR assembly (Bohnert et al., 2013). In addition to these downstream 

effectors, Sid2 phosphorylated Cdc11 promotes its association with Cdc7 during 

anaphase (Feoktistova et al., 2012). This creates a positive-feedback loop that ensures 

maximum SIN activity during anaphase (Feoktistova et al., 2012). These examples 

highlight some of Sid2’s downstream effectors that assist in promoting the SIN’s 

function. In addition to the SIN positive-feedback loop, the SIN responds to feedback 

from the cell wall machinery during septum formation. 

The cps1-191 temperature-sensitive allele of the Bgs1 glucan synthase produces 

binucleate cells that arrest during cytokinesis because cells are unable to form a 

primary septum (Liu et al., 1999). CR assembly is not perturbed in cps1-191 cells, but 

CR constriction cannot occur in the absence of primary septum formation by Bgs1, 

which normally drives drive membrane ingression (Liu et al., 1999; Proctor et al., 2012; 

Ramos et al., 2019). The CR persists at the medial cortex even as the cell progresses 

into the subsequent cell cycle because the SIN remains active (Mishra et al., 2004). 

This demonstrates that the SIN can alter its activation pattern in response to feedback 
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from the cell wall machinery. Despite these clear connections between the SIN and the 

cell wall machinery, the mechanisms that the SIN utilizes to regulate the cell wall 

machinery are uncharacterized. However, several proteins have been described to play 

a role in cell wall synthesis by regulating the cell wall machinery.  

The essential Rho GTPase Rho1 acts as the regulatory subunit of Bgs1, Bgs3, 

and Bgs4 (Cortes et al., 2005; Cortes et al., 2002; Liu et al., 1999; Martin et al., 2003). 

GTP-Rho1 stimulates β-glucan synthase activity to promote cell wall formation and 

influences actin remodeling through unidentified effectors (Arellano et al., 1996; 

Arellano et al., 1997; Garcia et al., 2006; Nakano et al., 1997). Cells lacking Rho1 

activity lyse during cytokinesis (Arellano et al., 1997). Interestingly, this phenotype is not 

rescued by osmotic stabilizers, which typically prevent cell lysis due to damaged or 

weakened cell walls (Arellano et al., 1997). This suggests Rho1’s roles in cell wall 

formation only partially explain its cytokinetic roles and that Rho1’s enigmatic roles in 

actin remodeling are also required for successful cell division.  

Rho1 is converted to its GTP bound state by three RhoGEFs: Rgf1, Rgf2, and 

Rgf3 (Garcia et al., 2009; Garcia et al., 2006; Morrell-Falvey et al., 2005; Mutoh et al., 

2005; Tajadura et al., 2004). Each of these RhoGEFs act on Rho1 at different locations 

and times during the cell cycle (Mutoh et al., 2005). While Rgf1, Rgf2, and Rgf3 localize 

to the site of cell division during cytokinesis, Rgf3 exclusively localizes to the site of cell 

division and is the only essential RhoGEF (Mutoh et al., 2005; Tajadura et al., 2004). 

Similar to the loss of Rho1 activity, depletion of Rgf3 causes cell lysis during cytokinesis 

(Tajadura et al., 2004). Conversely, overexpression of Rgf3 increases β-glucan 

synthase activity, resulting in an increase of β-glucans in the cell wall (Tajadura et al., 

2004). Rho1 is inactivated when GTP-Rho1 is hydrolyzed to GDP-Rho1. Rho1 

inactivation can be mediated by three RhoGAPs, Rga1, Rga5, and Rga8 (Calonge et 

al., 2003; Nakano et al., 2001). Deletion of Rga1 increases the number of actin patches 

and the thickness of the cell wall (Nakano et al., 2001). Thus, the regulatory subunit of 

the β-glucan synthases, Rho1, is an important signaling molecule that ensures proper 

formation of the cell wall and the septum. 

While Rho1 regulates the β-glucan synthases, the Rho GTPase Rho2 regulates 

the a-glucan synthase Ags1 (Calonge et al., 2000). Rho2’s regulation of Ags1 is not 
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fully understood, but it involves Pck2, a protein kinase C (Calonge et al., 2000). The 

RhoGEFs that convert Rho2 to its GTP bound state are unidentified, but the RhoGAPs 

Rga2, Rga4, Rga6, and Rga7 promote the conversion of GTP-Rho2 to GDP-Rho2 

(Revilla-Guarinos et al., 2016; Soto et al., 2010; Villar-Tajadura et al., 2008). Rho2 

localizes to the septum during cytokinesis and overexpression of Rho2 increases the 

septation index of asynchronous cells and causes a multi-septation phenotype (Hirata et 

al., 1998). These observations suggest that Rho2’s roles in septum formation are due to 

its relationship with Ags1. More importantly, Rho2 and Rho1 are components of the cell 

integrity pathway (CIP) which regulates cell wall synthesis. 

The CIP promotes cell wall synthesis in response to cell wall damage and 

environmental stress through a mitogen activated protein kinase (MAPK) pathway 

(Loewith et al., 2000; Madrid et al., 2006; Toda et al., 1996; Zaitsevskaya-Carter and 

Cooper, 1997). Cell wall damage is sensed by the cell wall sensors Wsc1 and Mlt2, 

which in turn promote Rgf1’s activation of Rho1 (Cruz et al., 2013). GTP-Rho1 directly 

stimulates the β-glucan synthases to initiate cell wall synthesis and binds both protein 

kinase C homologs, Pck1 and Pck2 (Arellano et al., 1999a; Arellano et al., 1996; Sayers 

et al., 2000; Tajadura et al., 2004). These interactions with Pck1 and Pck2 promote the 

phosphorylation of Mkh1, a MAPKKK, which signals through Pek1, a MAPKK, and 

Pmk1, a MAPK, to effect change through Rnc1 and Nrd1, two RNA-binding proteins, 

Atf1, a transcription factor, Clp1, a Cdc14-like phosphatase, and Cch1–Yam8 calcium 

channels (Broadus and Gould, 2012; Kobayashi et al., 2013; Ma et al., 2011; Satoh et 

al., 2009; Sugiura et al., 2003; Takada et al., 2007). Rho2 activates Pck2 in response to 

environmental stressors, such as osmolarity shocks and high levels of chloride ions 

(Barba et al., 2008; Sanchez-Mir et al., 2014). The upstream activation of Rho2 is 

uncharacterized largely because Rho2’s RhoGEF(s) are unknown. Pck1 and Pck2’s 

interactions with these Rho GTPases regulate the activity of the a- and b-glucan 

synthases independent of the MAPK signaling cascade (Calonge et al., 2000). While 

Pck1 and Pck2 both regulate the CIP, Pck2 is the main regulator of CIP signaling, and 

Pck2’s interaction with Rho2 elicits a stronger downstream response than Pck2’s 

interaction with Rho1 (Barba et al., 2008; Sanchez-Mir et al., 2014). In addition to its 
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roles in regulating cell wall synthesis in response to cell wall damage and environmental 

stressors, the CIP plays a role in septum formation. 

Cells depleted of Pck1 and Pck2 lyse during cytokinesis similar to Rho1 depleted 

cells, demonstrating the importance of Pck1 and Pck2’s influence on cell wall synthesis 

during septum formation (Arellano et al., 1999b). Cells exhibit separation defects when 

CIP signaling is disrupted by hyperactive Pmk1 or by deleting mek1 or pmk1 (Madrid et 

al., 2017; Sugiura et al., 1999). Deleting mkh1 does not cause cell separation defects at 

normal growing conditions, but high temperatures or hyperosmotic environments cause 

separation defects in mkh1∆ cells (Sengar et al., 1997). The separation defects 

observed from these genetic perturbations suggest that CIP signaling ensures proper 

septum formation and efficient cell separation. Lastly, the CIP has been shown to delay 

septum formation upon the presence of cell wall stress. Wild-type cells treated with 

blankofluor, a reagent that binds linear-β(1,3)glucans and inhibits their synthesis, delay 

the initiation of septum formation (Edreira et al., 2020). This delay is attributed to CIP 

signaling because it was not observed in rgf1∆ or pmk1∆ cells (Edreira et al., 2020). 

These data suggest that the CIP modulates glucan synthase activity during septum 

formation in response to environmental factors to ensure successful cytokinesis.  

Rho1, Rho2, and the CIP broadly regulate cell wall synthesis, but additional 

regulatory mechanisms ensure proper function and localization of each specific β-

glucan synthase. Bgs1’s stability and localization are regulated by sbg1, an essential 

gene first identified as a multi-copy suppressor of cps1-191 (Davidson et al., 2016; Sethi 

et al., 2016). Cell division fails in sbg1∆ spores because these cells lyse during 

cytokinesis due to improper septum formation (Davidson et al., 2016; Sethi et al., 2016). 

Furthermore, downregulating expression of sbg1 in vegetative cells produces multi-

septate cells with increased cell wall and septa thickness (Davidson et al., 2016). 

Despite these thicker septa, these cells have gaps in their primary septa (Davidson et 

al., 2016). These studies show that proper septum formation cannot occur in the 

absence of Sbg1 due to dysregulation of Bgs1’s localization and function. 

 Much like Sbg1’s interactions with Bgs1, the essential b-glucan adapter protein 

Smi1 assists in localizing Bgs4 to the site of cell division (Longo et al., 2022). Cells with 

the temperature-sensitive allele of smi1, smi1-1, have an increased septation index and 



 
 

16 

lyse at the restrictive temperature (Longo et al., 2022). These phenotypes are attributed 

to cell wall defects such as thin primary septa and thin lateral cell walls at the division 

site (Longo et al., 2022). Smi1 colocalizes with Bgs1, Bgs4, and Ags1 in cytoplasmic 

vesicles but only co-immunoprecipitates with Bgs4 (Longo et al., 2022). Furthermore, 

mislocalizing either Bgs4 or Smi1 to the mitochondria causes mislocalization of the 

other protein as well (Longo et al., 2022). The exact mechanisms underlying the 

interaction between Smi1 and Bgs4 are unknown, but it is clear that Smi1 regulates 

Bgs4’s localization and stability, which ensures proper septum morphology. 

The localization of Bgs4 and Ags1 is dependent on Bgs1. Repressed expression 

of bgs1 causes Bgs4 and Ags1 to diffusely localize to the site of cell division (Ramos et 

al., 2019). This is in contrast to the compact ring Bgs4 and Ags1 form behind the CR in 

wild-type cells (Ramos et al., 2019). Reducing the amount of Bgs1 at the site of cell 

division alters the localization of Ags1 and Bgs4, which results in the formation of 

thickened septa (Ramos et al., 2019). This highlights the importance that Bgs1 and 

primary septum formation have on the other glucan synthases. 

While Bgs4 and Ags1 are dependent on Bgs1 for proper localization, Bgs1 is not 

dependent on either Ags1 or Bgs4 (Ramos et al., 2019). Because of this, 

downregulation of Ags1 or Bgs4 activity only produces abnormalities in the morphology 

of the secondary septum (Cortes et al., 2012; Munoz et al., 2013). Downregulation of 

Ags1 or Bgs4 activity can lead to the production of thin, missing, or unanchored 

secondary septa (Cortes et al., 2012; Munoz et al., 2013). These disruptions to 

secondary septum formation can result in cell lysis during cytokinesis or cell separation 

(Cortes et al., 2012; Munoz et al., 2013). Proper secondary septum morphology is 

crucial because the secondary septa become the cell wall for each daughter cell’s new 

ends. Disruptions to septum morphology are expected from disruptions to the glucan 

synthases, but cytokinetic mutants with defects in CR constriction also exhibit septation 

defects (Balasubramanian et al., 1998; Kovar et al., 2005; May et al., 1997; Pollard et 

al., 2012; Willet et al., 2018). 

CR constriction and septum formation are likely linked through an unidentified 

protein network. Tension generated from the constriction of Myo2 regulates Bgs1’s 

localization and activation for proper primary septum formation (Ramos et al., 2019). A 
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temperature-sensitive allele of Myo2, myo2-E1, produces cells that can assemble CRs 

but, due to steric hinderance in the motor domain of the mutant Myo2 protein, are 

unable to constrict the CRs (Balasubramanian et al., 1998; Palani et al., 2017; Palani et 

al., 2018). These cells become multinucleate and lyse because they cannot form a 

septum to complete cytokinesis (Balasubramanian et al., 1998). Bgs1 is diffusely 

localized to the site of cell division in myo2-E1 cells at a semi-restrictive temperature, 

which leads to aberrant cell wall deposition along the cortex instead of proper septum 

formation (Ramos et al., 2019). Interestingly, if myo2-E1 cells are permitted to complete 

at least 50% of the septum at the permissive temperature before being shifted to the 

restrictive temperature, they will proceed to complete proper septum formation (Proctor 

et al., 2012). Additionally, if wild-type cells are permitted to complete at least 50% of the 

septum before being treated with Lat A, which depolymerizes the F-actin of the CR, they 

will proceed to complete proper septum formation (Proctor et al., 2012; Ramos et al., 

2019). In either case, disrupting the CR prior to completing at least 50% of the septum 

results in cells with septation defects. The ability for septum formation to persist upon 

loss of CR constriction combined with the failure to initiate in the absence of CR 

constriction highlights the role of CR constriction on cell wall machinery regulation. 

The primary septum is important for driving membrane ingression during 

cytokinesis, and it is important for the separation of daughter cells. Once septum 

formation is complete, the two daughter cells are partitioned and will remain joined until 

the primary septum is digested during S phase. Primary septum digestion is performed 

by the Agn1 and Eng1 glucanases (Dekker et al., 2004; Martin-Cuadrado et al., 2003). 

Individual cells produced from this digestion proceed through G2 phase during which 

cell wall remodeling and cell growth occur at the cell ends. Thick and misshapen 

septum morphologies can prevent the Eng1 and Agn1 glucanases from accessing and 

digesting the primary septum, which leads to the formation of multi-septated cells 

(Cortes et al., 2007; Cortes et al., 2015; Dekker et al., 2004; Garcia et al., 2005; Martin-

Cuadrado et al., 2003). Thus, it is imperative that the glucan synthases, signaling 

pathways, and cell wall machinery are all properly regulated to form a trilaminar 

structure with a digestible primary septum that allows for cell separation and robust 

secondary septa which prevents cell lysis. 
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1.5 Fic1’s roles in septum formation in Schizosaccharomyces pombe 
The Saccharomyces cerevisiae ingression protein one, Inn1, is an essential 

protein that is required for primary septum deposition (Sanchez-Diaz et al., 2008). Inn1 

directly interacts with two other proteins, the F-BAR protein Hof1 and the cytokinetic 

protein Cyk3 (Nishihama et al., 2009). Together these three proteins form a complex 

named the ingression progression complex (IPC) (Devrekanli et al., 2012; Meitinger et 

al., 2010; Nishihama et al., 2009; Sanchez-Diaz et al., 2008). The IPC promotes 

membrane ingression by stimulating primary septum formation during cytokinesis 

(Devrekanli et al., 2012; Meitinger et al., 2010; Nishihama et al., 2009; Sanchez-Diaz et 

al., 2008). In S. cerevisiae the primary septum is composed of N-acetylglucosamine 

polymers, also known as chitin, which are generated by the chitin synthase, Chs2 

(Sburlati and Cabib, 1986; Shaw et al., 1991; Silverman et al., 1988). Chs2 is stimulated 

by Inn1’s C2 domain and Cyk3 conserved C-terminal region (Devrekanli et al., 2012; 

Meitinger et al., 2010; Nishihama et al., 2009). The presence of an IPC has not been 

established in S. pombe, but all of the IPC constituents have S. pombe orthologs. 

S. pombe has two Hof1 orthologs, Cdc15, and another pombe Cdc15 homology 

(PCH) family protein, Imp2 (Demeter and Sazer, 1998; Fankhauser et al., 1995). Fic1 

directly interacts with the SH3 domains of both Cdc15 and Imp2 through the canonical 

SH3-PxxP motif interface (Roberts-Galbraith et al., 2009). Both Cdc15 and Imp2 bind 

the same PxxP motif on Fic1, P254,257 (Bohnert and Gould, 2012). Disrupting this 

interaction by removing the SH3 domain from either Cdc15 or Imp2 or by introducing 

the Fic1-P257A substitution mutation evokes growth polarity establishment defects 

similar to those observed in fic1∆ cells (Bohnert and Gould, 2012). These findings 

suggest that the Fic1-Cdc15 and Fic1-Imp2 interactions are required for Fic1’s 

cytokinetic functions that promote proper cell growth polarity establishment. 

The S. pombe Cyk3 ortholog has the same namesake as its S. cerevisiae 

counterpart (Pollard et al., 2012). Cyk3 in S. pombe is largely uncharacterized, but like 

the S. cerevisiae ortholog, it contains an N-terminal SH3 domain linked to a 

transglutaminase-like domain through an intrinsically disordered region (IDR) (Pollard et 

al., 2012). The C-terminus of Cyk3 is conserved among fungi and is predicted to be 
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structured, but the structure has not been described. Fic1 and Cyk3 co-

immunoprecipitate from the lysates of mitotically arrested cells, but a direct interaction 

between Fic1 and Cyk3 has not been reported (Bohnert and Gould, 2012). Deletion of 

cyk3 leads to defects in growth polarity establishment and promotes the transition into 

invasive pseudohyphal growth, similarly to fic1∆ cells (Bohnert and Gould, 2012). 

Because cyk3∆ and fic1∆ cells exhibit similar phenotypes, it is possible that these two 

proteins work together in the same pathway similarly to Inn1 and Cyk3 in S. cerevisiae. 

Determining if Fic1 and Cyk3 directly interact would demonstrate that an IPC-like 

protein network is conserved in S. pombe. 

The IPC stimulates Chs2 to promote primary septum in S. cerevisiae, but S. 

pombe’s primary septum is not thought to contain N-acetylglucosamine polymers 

(Horisberger et al., 1978; Sietsma and Wessels, 1990). Instead, the S. pombe primary 

septum is largely composed of linear-β(1,3)glucans polymerized by the Bgs1 glucan 

synthase (Cortes et al., 2005; Cortes et al., 2002; Cortes et al., 2007). Despite the lack 

of N-acetylglucosamine polymers in S. pombe’s primary septum and overall cell wall, S. 

pombe does have a Chs2 ortholog with the same namesake (Martin-Garcia et al., 2003; 

Matsuo et al., 2004). Conservation of an IPC-like protein network in S. pombe would 

lead to two questions: is the function for stimulating primary septum deposition 

conserved or is the interaction between the IPC-like protein network and Chs2 

conserved? If the IPC-like protein network in S. pombe stimulates primary septum 

formation it would likely do so through Bgs1, not Chs2, due to S. pombe’s primary 

septum composition (Cortes et al., 2005; Cortes et al., 2002; Cortes et al., 2007). If the 

IPC-like protein network does promote primary septum deposition, there are likely other 

proteins involved in this process because fic1∆ cyk3∆ cells are viable, suggesting there 

are alternative pathways for promoting primary septum deposition (Ren et al., 2015). As 

for the possibility that components of the IPC-like protein network interact with Chs2 in 

S. pombe, deletion of chs2 results in an increase in CR constriction time, similarly to 

fic1∆ and cyk3∆ cells, but phenotypes specific to fic1∆ and cyk3∆ such as growth 

polarity establishment defects or invasive pseudohyphal growth have not been reported 

in chs2∆ cells (Martin-Garcia et al., 2003; Matsuo et al., 2004). Determining the 

presence of an IPC in S. pombe and its cytokinetic function would elucidate Fic1’s 
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cytokinetic roles and would allow us to determine which protein-protein interactions and 

functions are conserved between S. pombe and S. cerevisiae. 
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Chapter 2 
 

 

Phosphoregulation of the Cytokinetic Protein Fic1 Contributes to Fission Yeast Growth 

Polarity Establishment 

 

 

This chapter is adapted from “Phosphoregulation of the Cytokinetic Protein Fic1 

Contributes to Fission Yeast Growth Polarity Establishment” published in the Journal of 

Cell Science doi: 10.1242/jcs.244392 and has been reproduced with the permission of 

my publisher and co-authors: K. Adam Bohnert, Quan-wen Jin, Jun-Song Chen, and 

Kathleen L. Gould 

 

 

2.1 Introduction 
 Polarization is a common feature of eukaryotic and prokaryotic cells (Hu and 

Lutkenhaus, 1999; Miller and Johnson, 1994). Multicellular organisms couple 

polarization events in neighboring cells to drive key developmental processes 

(Moorhouse et al., 2015). In a single cell, polarization governs such processes as 

growth, motility, and fate specification (Mortimer et al., 2008; Pham et al., 2015; Ueda 

and Masahiro, 2018).  

The fission yeast Schizosaccharomyces pombe is a powerful model organism for 

studying mechanisms by which polarization is established, maintained, and modified 

(Arellano et al., 1999a; Miller and Johnson, 1994; Ottilie et al., 1995). S. pombe is a rod-

shaped organism, with growth limited to its cell tips (Streiblova and Wolf, 1972). After 

cell division, elongation occurs first only at old ends inherited from mother cells. Then, at 

a later point known as new end take off (NETO), cells transition to bipolar growth by 

also extending at new ends established by the most recent cell division (Mitchison and 

Nurse, 1985).  
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 Historically, NETO was thought to be triggered when cells reached a minimal cell 

size and completed S-phase (Mitchison and Nurse, 1985). However, NETO also 

requires proper completion of cytokinesis (Bohnert and Gould, 2012). Specifically, loss 

of the cytokinetic ring (CR) protein Fic1 (Roberts-Galbraith et al., 2009) leads to 

abnormal persistence of CR components at new ends and curbs NETO even if factors 

responsible for growth are properly positioned at new cell ends (Bohnert and Gould, 

2012). Barriers to NETO, caused by loss of Fic1 or other late cytokinetic factors, in turn 

promote growth orientations that favor a dimorphic switch from a unicellular state to a 

more invasive, pseudohyphal form (Bohnert and Gould, 2012). 

Our growing knowledge of NETO highlights the role of protein kinases at cell tips 

(Arellano et al., 2002; Fujita and Misumi, 2009; Grallert et al., 2013; Kettenbach et al., 

2015; Kim et al., 2003; Kume et al., 2017; Kume et al., 2011; Martin et al., 2005). Cell 

tip kinases also target CR proteins and influence their localization and cytokinesis 

function (Bhattacharjee et al., 2020; Lee et al., 2018; Magliozzi et al., 2020). The 

interplay between the fidelity of cytokinesis and proper polarity establishment in the next 

cell cycle, demonstrated by the role of Fic1, may therefore be phosphoregulated. 

 Here, we show that Fic1 is phosphorylated at two C-terminal residues. Though 

Cdk1 and casein kinase II Orb5 each phosphorylate one of the sites in vitro, we found 

that none of the 111 S. pombe protein kinases are solely responsible for 

phosphorylation of either site. Fic1 phospho-mimetic and phospho-ablating mutations 

impaired S. pombe NETO and produced an invasive pseudohyphal phenotype, 

indicating phosphorylation controls its role in polarity. Our findings predict complex 

regulation of cytokinesis-based polarity determinants and suggest at least two different 

groups of kinases influence polarity by modulating Fic1 phosphostate.  

 

2.2 Fic1 phosphorylation is invariant through the cell cycle 
 As shown previously (Bohnert and Gould, 2012), immunoblotting of Fic1-FLAG3 

immunoprecipitates revealed four distinct bands collapsible to one band by 

phosphatase treatment (Fig. 2.1A). Thus, Fic1 is a phosphoprotein, and, given the 
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multiple Fic1-FLAG3 species, we conclude that Fic1 is phosphorylated at multiple 

residues.   

Figure 2.1. Fic1 is phosphorylated in vivo. A-B) Anti-FLAG immunoprecipitates from 
cells of indicated genotypes or from cdc25-22 fic1-FLAG3 cells following release from a 
G2 arrest (C) were treated with lambda phosphatase or vehicle and subsequently 
blotted with an anti-FLAG antibody. Lysate samples were blotted with anti-CDK 
(PSTAIRE) as a control for input into the immunoprecipitation. 
 

To assess whether Fic1 phosphostatus is cell cycle regulated, we analyzed Fic1-

FLAG3 gel mobility in different cell cycle arrests, either through temperature-sensitive 
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alleles (cdc10-V50 G1 arrest, cdc25-22 G2 arrest, nda3-KM311 prometaphase arrest, 

or cps1-191 cytokinesis arrest) or by addition of hydroxyurea (S-phase arrest). In all 

cases, Fic1-FLAG3 gel mobilities were identical (Fig. 2.1B). We corroborated this result 

using a cdc25-22 block-and-release experiment, in which samples were taken following 

release from a G2 arrest. Fic1-FLAG3 gel mobility shifts were identical at each time 

point (Fig. 2.1C), verifying that multiple phospho-species of Fic1 exist throughout the 

cell cycle. 

 

2.3 Fic1 phosphorylation is independent of cell tip localization 
 Fic1’s C-terminus (amino acids 127-end, “Fic1C” (Fig. 2.2A)) localizes to the CR 

but not to cell tips, and this fragment is necessary and sufficient for NETO (Bohnert and 

Gould, 2012). In contrast, the N-terminal C2 domain (amino acids 1-126, “Fic1N” (Fig. 

2.2A)) neither localizes to the CR nor contributes to bipolar growth establishment, but is 

required for anchoring Fic1 to cell tips (Bohnert and Gould, 2012). Whereas Fic1N-GFP 

did not migrate as multiple species on SDS-PAGE (Fig. 2.2B), Fic1C-GFP showed a 

phosphoshift that was collapsed by phosphatase treatment (Fig. 2.2C). These results 

suggested that Fic1 phosphorylation might affect its function at the CR and therefore, in 

NETO. 

If this were the case, we expected that Fic1 phosphorylation would occur even if 

Fic1 lost its ability to anchor at cell tips. Based on homology to S. cerevisiae Inn1 

(Devrekanli et al., 2012; Sanchez-Diaz et al., 2008), we predicted that two lysines within 

the C2 domain (Fig. 2.2A) mediated cell-tip localization and we mutated them to 

alanines. Cell tip localization of Fic1-K22A,K27A-GFP was greatly reduced compared to 

Fic1-GFP (Fig. 2.2D and E). Additionally, whereas wild-type Fic1-GFP localized broadly 

across cell tips, Fic1-K22A,K27A-GFP localization at cell tips was restricted to puncta 

that also contained Cdc15-mCherry, a tip protein and Fic1 interactor (Roberts-Galbraith 

et al., 2009) (Fig. 2.2D and E). However, Fic1-K22A,K27A promoted proper bipolar 

growth (Fig. 2.2F-H), targeted to the CR (Fig. 2.2I), and was phosphorylated to the 

same extent as wildtype (Fig. 2.2J), consistent with the idea that Fic1 phosphorylation 

influences its function at the CR to modulate polarity.  
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Figure 2.2. Phosphorylation occurs on the region and subpopulation of Fic1 
relevant to growth polarity. A) Schematic of Fic1, drawn to scale, with residues of 
interest, fragments, and PxxP motifs (*) indicated. B and C) Anti-GFP 
immunoprecipitates from fic1N-GFP (B) and fic1C-GFP cells (C) were either treated 
with lambda phosphatase or vehicle and subsequently blotted with an anti-GFP 
antibody. Lysate samples were blotted with anti-CDK (PSTAIRE) as a control for input 
into the immunoprecipitation. An asterisk (*) indicates degradation products. D and E) 
Live-cell bright field (BF), GFP, mCherry (mCh), and merged GFP/mCh images of fic1-
GFP cdc15-mCh (D) and fic1-K22A,K27A-GFP cdc15-mCh (E) cells. Regions of interest 
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are enlarged on the right. Scale bars in (D) and (E), 5 μm.  F) Live-cell image of 
calcofluor-stained fic1-K22A,K27A cells. Arrowhead indicates a monopolar cell. Scale 
bar, 5 µm. G) Quantification of growth polarity phenotypes for cells of the indicated 
genotypes. Data from three trials per genotype with n>200 for each trial are presented 
as mean ± SEM. H) Quantification of growth polarity phenotypes for septated cells of 
the indicated genotypes. Data from three trials per genotype with n>200 for each trial 
are presented as mean ± SEM. I) Live-cell BF, GFP, mCh, and merged GFP/mCh 
images of a fic1-K22A,K27A-GFP sid4-GFP cdc15-mCh cell during cytokinesis. Scale 
bar, 10 μm. J) Anti-FLAG immunoprecipitates from fic1-FLAG3 and fic1-K22A,K27A-
FLAG3 cells as in Fig. 2.1. 
 

2.4 Fic1 is phosphorylated on two C-terminal residues 
 Fic1 phosphorylation sites have not been identified in proteome-wide screens 

(Lock et al., 2019). Thus, we used mass spectrometry of tandem affinity-purified (TAP) 

Fic1-TAP to identify phosphorylation sites in a targeted manner. Phosphorylation of two 

C-terminal residues, T178 and S241, was identified (Figs 2.3A and 2.4A and B). T178 

and S241 were each mutated to alanine to abolish phosphorylation, or to aspartate to 

potentially mimic constitutive phosphorylation. These phosphomutants were then 

integrated at the endogenous fic1 locus, tagged with FLAG3, and tested for alteration in 

SDS-PAGE mobility. Alanine mutations of T178 or S241 individually eliminated two of 

the four bands, indicating that one band, the upper band, represented dually 

phosphorylated protein and each intermediate band represented singly phosphorylated 

Fic1 (Fig. 2.4C), also confirming that these two residues are the major Fic1 

phosphosites. Consistent with this interpretation, Fic1-T178A,S241A (Fic1-2A) migrated 

as a single band (Fig. 2.4C). In Fic1 aspartate mutants, similar gel mobility patterns 

were observed, except that all bands were slightly retarded in mobility (Fig. 2.4C). Thus, 

phosphorylation occurs individually and in combination at T178 and S241 in vivo. 
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Figure 2.3. Fic1 residues T178 and S241 are phosphorylated in vivo. A) 
Representative MS2 spectra of peptides with phosphorylated T178 or S241, 
respectively, identified from Fic1-TAP affinity purifications. The peptide sequence ladder 
depicts y (colored blue) and b (colored red) ions of the peptide. Green peaks indicate 
either neutral loss of phosphate from the parent ions or loss of water from the 
fragmented product ions. Black peaks represent unidentified ions. 
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Figure 2.4. Identification of Fic1 phosphorylation sites and potential kinases. A) 
Schematic of Fic1. PxxP motifs (*), and phosphosites (labeled above) are indicated. B) 
Schematic of Fic1 phosphosites. The phosphorylated residues are in bold text and 
marked by an arrow. C) Anti-FLAG immunoprecipitates from asynchronous cells 
producing the indicated Fic1 proteins were either treated with lambda phosphatase or 
vehicle and subsequently blotted with an anti-FLAG antibody. Lysate samples were 
blotted with anti-CDK (PSTAIRE) as a control for input into the immunoprecipitation. D) 
CDK in vitro kinase assay using His6-Fic1 and His6-Fic1-T178A. E) CK2 in vitro kinase 
assay using His6-Fic1 and His6-Fic1-S241A. D and E) Protein labeled by ATP-γ-32P was 
detected by autoradiography, and the gel was stained with Coomassie blue as a loading 
control. F) Lysates from cells of the indicated genotypes were immunoblotted with anti-
FLAG antibody to assess Fic1-FLAG3 gel mobilities. For orb5-19 strains, cells were 
shifted to 36°C for 4 hours prior to lysis. For cdc2-as1 strains, cells were treated with 1 
µM of 1-NM-PP1 for 30 min prior to lysis. G) Lysates from cells of the indicated 

Figure 3
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genotypes were immunoblotted with anti-FLAG antibody to assess Fic1-FLAG3 gel 
mobilities after 60 minutes in 1 M KCl, 1 mg/mL calcofluor white, or 0.005% SDS or 15 
minutes in 40 mM H2O2. Lysates were immunoblotted with anti-CDK (PSTAIRE) as a 
loading control. H) Anti-FLAG immunoprecipitates from cells of indicated genotypes 
were treated with 50 µM of 1-NM-PP1 for 30 minutes before treatment with lambda 
phosphatase or vehicle and subsequently blotted with an anti-FLAG antibody. Lysate 
samples were blotted with anti-CDK (PSTAIRE) as a control for input into the 
immunoprecipitation. 
 

2.5 Multiple kinases modulate polarity-relevant Fic1 phosphorylation 
 Because phosphorylation occurs in Fic1C that is important for polarity 

establishment, we set out to identify the kinase(s) responsible. T178 and S241 fit the 

consensus sequences for cyclin-dependent kinase (CDK) (S/T-P) and casein kinase II 

(CK2) (S-X-X-E/D), respectively (Fig. 2.4B) (Meggio et al., 1994; Nigg, 1993), and these 

kinases are important for polarized growth (Adams et al., 1990; McCusker et al., 2007; 

Rethinaswamy et al., 1998; Shimada et al., 2000; Snell and Nurse, 1994). In vitro 

kinase assays using Cdk1-cyclinB, S. pombe CK2 (Orb5), or human CK2 with His6-Fic1, 

His6-Fic1-T178A, and/or His6-Fic1-S241A revealed that they can phosphorylate the 

sites that fit their consensus sequence (Fig. 2.4D and E). His6-Fic1-T178A 

phosphorylation by Cdk1 was significantly reduced compared to His6-Fic1, 

demonstrating that in vitro Cdk1 primarily targets T178 (Fig. 2.4D). To test if Cdk1 and 

Orb5 phosphorylate Fic1 in vivo, we assayed Fic1 phosphostatus in analog-sensitive 

and temperature-sensitive mutants of these kinases. Fic1’s phosphostate was unaltered 

in these single and double mutants (Fig. 2.4F). Thus, Cdk1 and Orb5 are not solely 

responsible for Fic1 phosphorylation in vivo. 

 We next took an unbiased approach to try to identify the kinase(s) responsible for 

Fic1 phosphorylation. Starting with polarity kinases, then extending to all kinases, we 

screened gene deletions of individual non-essential kinases, temperature or analogue-

sensitive mutants of essential protein kinase genes, and combination mutants of 

paralogs (e.g. pck1-as pck2-as) for changes to Fic1’s phosphostate (Bimbo et al., 2005; 

Chen et al., 2014; Cipak et al., 2011; Gregan et al., 2007; Kim et al., 2010). In the 

course of this screening, we determined that several kinase deletion strains in Bioneer 

V3 (Kim et al., 2010) contained not only a targeted deletion allele but also the wild-type 

kinase gene. Thus, we constructed new deletion mutants of atg1, hal4, lsk1, mak2, 
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mek1, sty1, ppk24, ppk34, and wis1. By immunoblotting, we did not detect loss of either 

Fic1 phosphorylation event in any of the 111 single or 11 combination kinase mutants 

tested (Figs. 2.5 and 2.6), indicating that multiple kinases can phosphorylate Fic1. 

 
Figure 2.5. No single kinase associated with cell growth polarity regulates Fic1’s 
phosphorylation state. Lysates from asynchronous cells of the indicated strains 
producing Fic1-FLAG3 were immunoblotted for FLAG. In each panel, an untagged 
strain, a tagged strain with no kinase deletions, and Fic1-2A-FLAG3 served as controls. 
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Figure 2.6. Fic1 phosphorylation is regulated by multiple kinases. Lysates from 
asynchronous cells of the indicated strains producing Fic1-FLAG3 were immunoblotted 
for FLAG. In each panel, an untagged strain, a tagged strain with no kinase deletions, 
and Fic1-2A-FLAG3 served as controls. For temperature-sensitive kinase strains, cells 
were shifted to 36˚C from 2 to 4 hours prior to lysis. For analog-sensitive strains, cells 
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were treated with either 1-NM-PP1 (1 µM cdc2-as1, 25 µM hhp1-as, 25µM hhp2-as), 3-
BrB-PP1 (30 µM pck1-as2, 30 µM pck2-as2, 30 µM mcs6-as), or 3-MB-PP1 (40 µM 
cdk9-as, 30 µM ksg1-as, 15 µM kin1-as, 15 µM pom1-as) for 30 min prior to lysis. Four 
asterisks (*) indicate where 4 lanes were cropped out of gel images. 
 

We next tried to identify pathways regulating Fic1 phosphostate. To this end, we 

treated cells with osmotic, oxidative, cell wall integrity, and plasma membrane stressors 

(Cadou et al., 2010; Chen et al., 2008b; Madrid et al., 2006; Robertson and Hagan, 

2008). None of the stressors tested evoked a change in Fic1’s phosphostate (Fig. 

2.4G). However, phosphorylation at S241 but not T178 was lost after treatment with a 

high dose of 1-NM-PP1 (Fig. 2.4H). 1-NM-PP1 is an inhibitor designed to preferentially 

target kinases with space-creating mutations in their ATP-binding pocket. However, 

some kinase families such as Src, CDK, and CAMKII, are sensitive to high levels of 1-

NM-PP1 (Bishop et al., 2000). Loss of phosphorylation at S241 but not T178 suggests 

that distinct groups of kinases phosphorylate each site, one of which can be inhibited by 

high levels of 1-NM-PP1. Collectively, these data establish that Fic1 phosphoregulation 

involves multiple kinases that are apparently coordinated to keep the ratios of Fic1 

phosphorylation events similar throughout the cell cycle and under different 

physiological conditions. 

 

2.6 Fic1 phosphorylation does not affect CR localization or interaction with 
known CR binding partners 
  To assess whether disrupting Fic1’s phosphorylation state altered its 

localization, we analyzed the fluorescence intensities of mNeonGreen tagged Fic1 

variants at the CR and cell tips. We observed no differences between Fic1 and the Fic1 

phosphomutants (Fig. 2.7A and B). Next, we performed time-lapse imaging to 

determine if Fic1 CR recruitment timing relative to spindle pole body (SPB) separation 

differed for either phosphomutant. Fic1, Fic1-2A, and Fic1-2D were recruited to the CR 

with similar timing (Fig. 2.7C).  
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Figure 2.7. Deregulation of Fic1 phosphorylation at T178 an S241 impairs new end 
growth. A) BF, GFP, mCh, and merged GFP/mCh images of cells of indicated 
genotypes during cytokinesis and interphase. Scale bars, 5 µm. B) Quantification of 
fluorescence intensities of CR and cell tips for cells of indicated genotypes. Data from 
three trials per genotype with n=15 for each trial are presented as mean ± SEM. C) 
Quantification from time-lapse imaging for cells of indicated genotypes. Data from two 
trials n=25 are presented as mean ± SEM. B) and C) Analyzed by ANOVA. D) Live-cell 
images of calcofluor-stained cells of the indicated genotypes. Arrowheads indicate 
monopolar cells. E) and F) Quantification of growth polarity phenotypes for cells (E) and 
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septated cells (F) of the indicated genotypes. Data from three trials per genotype with 
n>200 for each trial are presented as mean ± SEM. E) and F) The percent of monopolar 
cells between fic1∆ and each other genotype was analyzed by ANOVA Dunnett’s 
multiple-comparisons test. ****P<0.0001, n.s., not significant.  G) Quantification of 
growth patterns for cells of the indicated genotypes. H) Invasive growth assays for 
strains of the indicated genotypes on 2% agar. Cells were spotted on rich medium and 
incubated for 20 days at 29°C (top panel). Colonies were then rinsed under a stream of 
water and rubbed off (bottom panel). I) Quantification of pseudohyphae for cells of the 
indicated genotypes, with n≥3 spots counted for each genotype. 
 

Fic1 localizes to the CR via its interaction with the SH3 domains of the F-BAR 

proteins, Cdc15 and Imp2 (Roberts-Galbraith et al., 2009; Ren et al., 2015). Because 

one Fic1 phosphosite (S241) is proximal to the P254-P257 PxxP motif required for 

these SH3 domain interactions (Bohnert and Gould, 2012), we tested if phosphorylation 

interferes with Cdc15 and Imp2 binding. Consistent with normal CR recruitment, both 

Fic1 phosphomutants co-immunoprecipitated with Cdc15 and Imp2 (Fig. 2.8A), 

indicating that deregulation of Fic1 phosphorylation does not grossly alter these known 

interactions. 

 

2.7 Disruption of Fic1 phosphorylation impacts bipolar cell growth and promotes 
pseudohyphal growth  
 To assess the relevance of Fic1 phosphorylation to NETO, we analyzed the 

growth polarity of the phosphomutants (Fig. 2.7D). fic1-2A and fic1-2D had similar levels 

of monopolar cells as fic1∆, while each individual phosphomutant displayed levels 

intermediate between wildtype and fic1∆ (Fig. 2.7D-F). Also, as expected given that 

wild-type cells commonly initiate NETO by late interphase, nearly all fic1+ cells arrested 

in late G2 exhibited bipolar growth (Fig. 2.8B and C). In contrast, a high percentage of 

cdc25-22 fic1-2A and cdc25-22 fic1-2D were still monopolar like cdc25-22 fic1∆ (Fig. 

2.8B and C). Using time-lapse DIC imaging, we confirmed that the polarized growth 

defects in fic1∆, fic1-2A, and fic1-2D were specific to new ends (Figs 2.7G and 2.8D). 

Although the phosphomutants did not support proper NETO, they retain some function 

because they are not synthetically lethal with pxl1∆, ppb1∆, or sid2-250 like fic1∆ 

(Bohnert and Gould, 2012) (Fig. 2.8E), possibly because they can still associate with 

Cdc15 and Imp2 (Fig. 2.8A). Considering our results together, we hypothesize that 
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phosphorylation affects Fic1’s interaction with an unknown factor(s) at the CR that 

influences its CR function.  

Inability to support proper NETO is exhibited by S. pombe and S. japonicus cells 

that have undergone the dimorphic switch from single-celled to pseudohyphal growth 

(Dodgson et al., 2010; Sipiczki et al., 1998), and fic1∆ cells show increased invasive 

pseudoyhyphal growth compared to wild-type (Figs 2.7H and I, and 2.8F) (Bohnert and 

Gould, 2012). Consistent with fic1 phosphomutants possessing growth polarity defects 

akin to fic1∆, fic1-2A and fic1-2D formed pseudohyphal structures invading the agar 

(Figs 2.7H and 2.8F and G). Also, each individual Fic1 aspartate mutant was more 

invasive than wild-type (Fig. 2.8F). Thus, the dimorphic switch from single-celled to 

pseudohyphal form may involve Fic1 phosphoregulation.  
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Figure 2.8. Fic1 phospho-mutants do not alter Fic1’s interactions with Cdc15 or 
Imp2 A) Anti-Cdc15 or anti-Imp2 immunoprecipitates from cells of indicated genotypes 
were blotted with an anti-FLAG, anti-Cdc15, or anti-Imp2 antibody. Lysate samples 
were blotted with anti-CDK (PSTAIRE) as a control for input into the 
immunoprecipitations. B) Live-cell images of G2-arrested, calcofluor-stained cells of the 
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indicated genotypes. Arrowheads indicate monopolar cells. Scale bar, 5 µm. C) 
Quantification of growth polarity phenotypes for G2-arrested cells of the indicated 
genotypes. Data from three trials per genotypes and n>200 for each trial are presented 
as mean ± SEM. D) Live-cell DIC movies of cells of the indicated genotypes. Solid 
arrows denote old end growth, whereas dashed arrows indicate new end growth. Birth 
scars are marked by asterisks. Time points are noted. Scale bar, 2 µm. E) Serial 1:10 
dilutions of the indicated genotypes were spotted onto rich medium and incubated at the 
indicated temperatures. F) Invasive growth assays for strains of the indicated genotypes 
on 2% agar. Cells were spotted on rich medium and incubated for 20 days at 29°C (left 
panel). Colonies were then rinsed under a stream of water and rubbed off (right panel). 
G) Images of pseudohyphae for the genotypes indicated. 
 
 In conclusion, though phosphorylation serves diverse roles during eukaryotic 

cytokinesis (Bohnert and Gould, 2011), it has been unclear whether CR protein 

phosphorylation impacts cellular processes other than cell division. In this study, we 

found that Fic1 phosphorylation influences polarity and the transition to hyphal growth. 

Our findings support the ideas that (1) regulating CR function can directly impact the 

dimorphic switch; and (2) modulation of kinase and/or phosphatase signaling may be 

sufficient for this switch. As extensive phosphosignaling occurs during hyphal growth 

(Sudbery, 2011), integration of multiple cues likely guarantees the robustness of this 

transition. 

 

2.8 Materials and Methods 
Yeast methods  

S. pombe strains (Table S1) were grown in yeast extract (YE) media or 

Edinburgh minimal media with relevant supplements. Genes were tagged at the 3′ end 

of their ORFs with sequences encoding GFP:kanR, HA3:hygR, FLAG3:kanR, or 

FLAG3:hygR using pFA6 cassettes as previously described (Bahler et al., 1998b; Wach 

et al., 1994). A lithium acetate method (Keeney and Boeke, 1994) was used in 

S. pombe tagging transformations, and integration of tags was verified using whole-cell 

PCR and/or microscopy. Introduction of tagged loci into other genetic backgrounds was 

accomplished using standard S. pombe mating, sporulation, and tetrad dissection 

techniques. For arresting cdc25-22 and cps1-191, cells were grown at 25°C and then 

shifted to 36°C for 3 h. nda3-KM311 arrest was achieved by growing cells at 32°C and 
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then shifting to 18°C for 6.5 h. For blocking of cdc10-V50, cells were grown at 25°C and 

then shifted to 36°C for 4 h. S-phase arrest was achieved by treating cells with 12 mM 

hydroxyurea for 4 h at 32°C. 

 Mutants and truncations of fic1 were expressed from the endogenous fic1+ locus.  

To make these strains, a pIRT2 vector was used in which fic1+ gDNA with 5’ and 3’ 

flanks was inserted between BamHI and PstI sites of pIRT2 (Bohnert and Gould, 2012). 

Mutations were then introduced via site-directed mutagenesis and confirmed by DNA 

sequencing. fic1∆ was transformed with these pIRT2-fic1 constructs, and stable 

integrants resistant to 1.5 g/L 5-fluoroorotic acid (5-FOA) were isolated and confirmed 

by whole-cell PCR, DNA sequencing, and immunoblotting. 

 To construct analog-sensitive protein kinase strains, the coding sequences with 

5’ and 3’ flanks of pck1+, pck2+ and nnk1+ were PCR amplified from S. pombe genomic 

DNA using PrimeSTAR GXL DNA polymerase (Takara) and ligated into the pCR-Blunt 

II-TOPO® vector (Invitrogen). The resulting inserts were verified by sequencing. The 

gate-keeper residues in Pck1 and Pck2 kinases were identified as M744 and M763, 

respectively, and in Nnk1 kinase as M537 (Gregan et al., 2007). These residues were 

mutated to glycine or alanine using mutagenic oligonucleotide primers and QuikChange 

II site-directed mutagenesis kit (Stratagene). The desired mutations were verified by 

sequencing. Next the pck1- and pck2-containing plasmids were linearized and 

transformed into pck1::ura4+ and pck1::ura4+ cells, respectively, and the plasmids 

containing nnk1-as mutations were transformed into nnk1::ura4+-HA3-TAP:kanR Pnmt41-

GBP-mCherry-nnk1-leu1+, using a lithium acetate method (Keeney and Boeke, 1994). 

Transformants were selected based on resistance to 5-FOA and then confirmed first by 

colony PCR and then by DNA sequencing. Next, the allele Pnmt41-GBP-mCherry-nnk1-

leu1+ was crossed out to obtain nnk1(M537G)-HA3-TAP:kanR and nnk1(M537A)-HA3-

TAP:kanR.  

 For serial-dilution growth assays, cells were grown in liquid YE at 32°C, three 

serial 1:10 dilutions starting at 4 x 106 were created, 2 µL of each dilution was spotted 

on YE agar and cells were grown at the indicated temperatures for 3-5 d. 

Protein methods 
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 Cells were lysed by bead disruption in NP40 lysis buffer in denaturing conditions 

as previously described (Gould et al., 1991), except with the addition of 0.5 mM 

diisopropyl fluorophosphate (Sigma-Aldrich). Immunoblot analysis of cell lysates and 

immunoprecipitates was performed using anti-FLAG (M2; Sigma-Aldrich) or anti-

PSTAIRE Cdc2 (Sigma-Aldrich) antibodies or serums raised against GST-Cdc15 

(VU326) (Roberts-Galbraith et al., 2009) or His6-Imp2 (VU483) (McDonald et al., 2016) 

as previously described (Bohnert et al., 2009). For gel shifts, denatured samples were 

treated with lambda-phosphatase (New England Biolabs) in 25 mM HEPES-NaOH (pH 

7.4), 150 mM NaCl, and 1 mM MnCl2 and incubated for 30 min at 30°C with shaking.  

 In vitro kinase assays with kinase-active Cdk1 were performed as described by 

(Yoon et al., 2006) using a kinase buffer consisting of 50 mM Tris-HCl, pH 7.4, 10 mM 

MgCl2, and 2 mM DTT supplemented with 10 µM cold ATP and 5 µCi γ-[32P]ATP. 

Reactions contained 100 ng of kinase-active Cdk1 and 1 µg of recombinant His6-Fic1, 

His6-Fic1-T178A, or His6-Fic1-S241A. The addition of sample buffer and boiling 

terminated the reactions. Samples of each reaction were separated by SDS-PAGE and 

visualized by Coomassie blue staining and autoradiography. 

Microscopy 

Live-cell images of S. pombe were acquired using one of the following: (1) a 

spinning disc confocal microscope (Ultraview LCI, PerkinElmer) equipped with a 100× 

NA 1.40 PlanApo oil immersion objective, a 488-nm argon ion laser (GFP), a 594-nm 

helium neon laser (mCherry), a charge-coupled device camera (Orca-ER, Hamamatsu 

Phototonics), and Metamorph 7.1 software (MDS Analytical Technologies and 

Molecular Devices) or (2) a personal DeltaVision microscope system (Applied Precision) 

that includes an Olympus IX71 microscope, 60× NA 1.42 PlanApo and 100× NA 1.40 

UPlanSApo objectives, a Photometrics CoolSnap HQ2 camera, and softWoRx imaging 

software. All cells were in log phase growth before temperature-sensitive shifts and/or 

live imaging. 

For calcofluor staining, cells were washed in PBS and then resuspended in PBS 

containing 5 µg/mL calcofluor. After incubation on ice for 30 min, cells were washed 

three times in PBS and images were acquired. Using the proximity of birth scars to cell 

ends, growth/morphology was scored as one of the following: monopolar (i.e., growth on 
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one end), bipolar (i.e., growth on both ends), monopolar and septated, bipolar and 

septated, or multiseptated. For cells just completing division, daughter cells were scored 

as monopolar as long as ingression of the mother cell had progressed to such a degree 

that birth scars could be easily identified at new ends. All cells stained with calcofluor 

were grown to log phase at 25°C, except that cdc25-22 mutants were grown overnight 

at 25°C and then shifted to 36°C for 3 h before staining. 

Intensity measurements were made with ImageJ software (Schindelin et al., 

2012) using non-deconvolved summed Z projections of the images. For all intensity 

measurements, the background was subtracted by creating a region of interest (ROI) in 

the same image in an area clear of cells. The background raw intensity was divided by 

the area of the background, which was multiplied by the area of the ROI. This number 

was subtracted from the raw integrated intensity of that ROI. To account for 

autofluorescence, cells lacking fluorescent tags but otherwise of isogenic backgrounds, 

were imaged and fluorescence intensity per pixel was quantified from summed Z 

projections of the images by subtracting the background intensity from the measured 

raw integrated intensity of the ROI before dividing the raw integrated intensity of the ROI 

by the area of that ROI. This autofluorescence per pixel measurement was multiplied by 

the area of the ROI from fluorescent cells before subtracting this value from the from the 

raw integrated intensity of that ROI. Representative images are max intensity Z 

projections. 

Time-lapse imaging was performed using an ONIX microfluidics perfusion 

system (CellASIC ONIX; EMD Millipore). A suspension of 50 µl of 40 × 10^6 cells/ml YE 

was loaded into Y04C plates for 5 s at 8 psi. YE media was flowed through the chamber 

at 5 psi throughout imaging.  

Images of yeast cells and pseudohyphae on YE agar plates were acquired by 

focusing a camera (PowerShot SD750; Canon) through a microscope (Universal; Carl 

Zeiss) equipped with a 20X NA 0.32 objective. 

Invasive growth assays 

 To assay pseudohyphal invasion into 2% agar, 5 μl containing a total of 105 cells 

were spotted on 2% YE agar and incubated at 29°C for 20 days. Colonies were 

subsequently placed under a steady stream of water and surface growth was wiped off 
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using a paper towel, as described previously (Pohlmann and Fleig, 2010; Prevorovsky 

et al., 2009). 
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Chapter 3 
 

 

The fission yeast cytokinetic ring component Fic1 promotes septum formation 

 

 

This chapter is adapted from “The fission yeast cytokinetic ring component Fic1 

promotes septum formation” published in Biology Open doi: 10.1242/bio.059957 and 

has been reproduced with the permission of my publisher and co-authors: K. Adam 

Bohnert and Kathleen L. Gould 

 

 

3.1 Introduction 
Cytokinesis is the final process in the cell cycle which creates two independent 

daughter cells. Many eukaryotic organisms use an actin-myosin structure known as the 

cytokinetic ring (CR) to mark the plane of cell division and to drive membrane ingression 

(reviewed in (Cheffings et al., 2016; Mangione and Gould, 2019)). In organisms with cell 

walls, such as Schizosaccharomyces pombe and Saccharomyces cerevisiae, the CR 

alone is insufficient for cytokinesis (Jochova et al., 1991; Munoz et al., 2013; Proctor et 

al., 2012; Ramos et al., 2019; Schmidt et al., 2002). These organisms require the 

formation of a septum coupled to CR constriction to drive cell abscission (Cortes et al., 

2007; Cortes et al., 2015; Jochova et al., 1991; Proctor et al., 2012; Schmidt et al., 

2002).  

Yeast septa are trilaminar structures composed of a primary septum flanked by 

secondary septa (Humbel et al., 2001; Wloka and Bi, 2012). In S. pombe and S. 

cerevisiae, CR constriction promotes septation perpendicular to the cell cortex (Cortes 

et al., 2002; Cortes et al., 2007; Johnson et al., 1973; Roncero et al., 2016; Schmidt et 

al., 2002). In S. cerevisiae the chitin synthase Chs2 polymerizes N-acetylglucosamine 

to form the primary septum (Sburlati and Cabib, 1986; Shaw et al., 1991; Silverman et 

al., 1988). In contrast, in S. pombe it is the glucan synthases Bgs1 and Ags1 that 



 
 

43 

polymerize linear-β(1,3)glucans and α(1,3)glucans, respectively, to form the primary 

septum (Cortes et al., 2002; Cortes et al., 2007; Cortes et al., 2015; Cortes et al., 2012). 

S. cerevisiae Chs2 and septum formation are stimulated by a protein complex 

within the CR named the ingression progression complex (IPC), comprised of the 

ingression protein Inn1, the F-BAR protein Hof1, and Cyk3 (Devrekanli et al., 2012; 

Nishihama et al., 2009; Sanchez-Diaz et al., 2008). Analogous proteins exist in S. 

pombe. Specifically, S. pombe Fic1, Cdc15/Imp2, and Cyk3 are the orthologs of Inn1, 

Hof1, and Cyk3, respectively (Demeter and Sazer, 1998; Fankhauser et al., 1995; 

Pollard et al., 2012; Roberts-Galbraith et al., 2009). Fic1 was identified in a yeast-two 

hybrid screen using the SH3 domains of Cdc15 as bait and directly interacts with Cdc15 

and Imp2 (Ren et al., 2015; Roberts-Galbraith et al., 2009). S. pombe Cyk3 was 

identified based on sequence similarity to S. cerevisiae Cyk3 and has been found to co-

immunoprecipitate with Fic1 (Bohnert and Gould, 2012; Roberts-Galbraith et al., 2009). 

However, it is unknown if these S. pombe proteins cooperate to promote primary 

septum formation similarly to the IPC.  

We previously found that Fic1 is phosphorylated on two sites by multiple kinases 

(Bohnert et al., 2020). Preventing phosphorylation at these sites produces defects in the 

establishment of normal cell polarity. Here, we pursued the observation that the fic1 

phospho-ablating mutant, fic1-2A, also suppressed the myo2-E1 temperature-sensitive 

allele of the essential type-II myosin Myo2 (Balasubramanian et al., 1998; Kitayama et 

al., 1997). The inability of myo2-E1 cells to form a functional CR to guide septum 

formation prevents cytokinesis and leads to cell death (Balasubramanian et al., 1998). 

Time-lapse microscopy showed that fic1-2A suppressed myo2-E1 by promoting septum 

formation and daughter cell abscission and that cells lacking fic1 exhibited significant 

delays in septation. We determined that the ability of fic1-2A to suppress myo2-E1 

required its interactions with Cyk3, Cdc15, and/or Imp2 but not Chs2. This work 

revealed that S. pombe’s IPC analogs interact to promote septum formation through a 

mechanism that is functionally divergent from the IPC in S. cerevisiae 
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3.2 Fic1 phospho-ablating mutant suppresses myo2-E1 
To determine if Fic1’s phosphorylation state impacts cytokinesis, we took a 

genetic approach and probed interactions between fic1 phosphomutants and deletions 

or temperature-sensitive alleles of genes involved in actin dynamics (cdc12), septum 

formation (sid2, bgs1, and bgs4), and CR constriction (cdc4 and myo2) (Fig. 3.1A). 
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Figure 3.1. Individual or single fic1 phosphomutants are not temperature-
sensitive. A-C) Ten-fold serial dilutions of the indicated strains were spotted on YE 
agar media and incubated at the indicated temperatures for 3-5 days. 
 

From this screen we observed one significant interaction: fic1’s phospho-ablating 

mutant, fic1-2A, suppressed myo2-E1 (Fig. 3.2A and B and 3.1A). myo2-E1 is a 

temperature-sensitive allele of the essential type-II myosin, myo2, that inhibits Myo2’s 

activity and produces non-constricting CRs at the restrictive temperature 

(Balasubramanian et al., 1998; Palani et al., 2017; Palani et al., 2018).  
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Figure 3.2. fic1-2A suppresses myo2-E1. A) Schematic of Fic1 with domain 
boundaries and phosphorylation sites indicated. Drawn to scale. B and C) Ten-fold 
serial dilutions of the indicated strains were spotted on YE agar media and incubated at 
the indicated temperatures for 3-5 days. D-G) Quantification of timing of anaphase B (D 
and F) and CR assembly, maturation, and constriction (E and G) for each strain at the 
indicated temperatures. n=number of cells analyzed. Data presented as mean ± S.E.M. 
****p≤0.0001, **p≤0.01, n.s., not significant, one-way ANOVA. 
 

Without CR constriction, cell wall accumulates at the division site but does not 

form a septum (Balasubramanian et al., 1998; Palani et al., 2017; Palani et al., 2018; 

Ramos et al., 2019). Interestingly, fic1∆ did not suppress myo2-E1 and no genetic 

interaction was observed between fic1-2D and myo2-E1 (Fig. 3.2B and C), which 

suggests fic1-2A is a gain-of-function allele but whether this gain in function is due to 

alterations to Fic1’s phosphorylation state is unclear. The individual phospho-ablating 

fic1 mutants only partially suppressed myo2-E1 and none of the fic1 phosphomutants 

were temperature sensitive (Fig. 3.1B and C). We then pursued the underlying 

mechanisms behind myo2-E1’s suppression to gain insight into the cytokinetic roles of 

Fic1, a CR protein of enigmatic function. 

 
3.3 fic1-2A cells exhibit similar CR dynamics compared to wild-type cells 

We postulated that myo2-E1 suppression by fic1-2A could be achieved by 

altering CR dynamics. fic1-2A could provide additional time for proper glucan synthase 

localization by prolonging CR maturation and/or constriction. Glucan synthases are 

trafficked to the site of cell division and localize diffusely on the cortex (Cortes et al., 

2002; Hoya et al., 2017; Katayama et al., 1999; Mulvihill et al., 2006; Ramos et al., 

2019). As the CR constricts the glucan synthases coalesce into a ring concentric with 

the CR, Bgs1 is activated, and primary septum formation begins (Ramos et al., 2019). 

By providing additional time for glucan synthase ring formation by prolonging CR 

maturation and/or constriction fic1-2A could effectively promote septum formation. 

Alternatively, fic1-2A could increase the rate of CR constriction which could allow fic1-

2A to suppress myo2-E1 by restoring the contractile function of the CR and septum 

formation.  

 To test these possibilities, we performed live-cell time-lapse imaging at 25°C and 

36°C of wild-type, fic1∆, fic1-2A, and fic1-2D cells containing a CR marker, rlc1-mNG, to 
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monitor CR dynamics and a spindle pole body (SPB) marker, sid4-GFP, to monitor 

mitotic progression (Chang and Gould, 2000; Naqvi et al., 2000). The timing of 

anaphase B onset was similar between all strains at both temperatures (Fig. 3.2D,F), as 

was the timing of CR assembly and CR maturation (Fig. 3.2E,G). The timing of CR 

constriction was similar between wild-type, fic1-2A, and fic1-2D cells at both 

temperatures indicating that Fic1 phosphostate does not appreciably affect CR 

dynamics (Fig. 3.2E,G). However, fic1∆ took longer, an average of 25.1±0.6 and 

44.2±2.1 minutes at 25°C and 36°C, respectively whereas wild-type cells took 22.2±0.5 

and 19.3±0.6 minutes at 25°C and 36°C, respectively (Fig. 3.2E,G). Delayed CR 

constriction in fic1∆ but not fic1-2A suggests that prolonging CR constriction is not how 

fic1-2A suppresses myo2-E1. Rather, because the rate of CR constriction is linked to 

the rate of septum deposition (Proctor et al., 2012; Ramos et al., 2019), the delay in CR 

constriction of fic1∆ suggests that Fic1 promotes septation and that the fic1-2A allele 

may enhance this function.  

 

3.4 fic1-2A myo2-E1 cells can complete cytokinesis 
 We next probed this possibility for Fic1 function that would be analogous to Inn1 

in S. cerevisiae (Sanchez-Diaz et al., 2008). We performed time-lapse imaging at 36°C 

with wild-type, fic1-2A, myo2-E1, and fic1-2A myo2-E1 cells expressing the membrane 

marker LactC2-GFP, to monitor membrane ingression, and the SPB marker Sad1-GFP, 

to monitor mitotic progression (Curto et al., 2014; Hagan and Yanagida, 1995). The 

kinetics of septation were measured by timing membrane ingression and daughter cell 

abscission beginning from SPB separation at the onset of mitosis. The timing of 

anaphase B onset was similar between all genotypes (Fig. 3.3A and B). The initiation of 

membrane ingression was similar between wild-type and fic1-2A cells, averaging 

14.9±0.4 and 16.2±0.3 minutes, respectively (Fig. 3.3A,C). However, both myo2-E1 and 

fic1-2A myo2-E1 cells exhibited delays in the initiation of membrane ingression 

compared to wild-type, averaging 28.4±1.0 and 28.8±1.9 minutes, respectively (Fig. 

3.3A,C). Daughter cell separation was completed at similar times in the wild-type and 

fic1-2A cells, averaging 40.6±0.6 and 43.1±0.6 minutes, respectively (Fig. 3.3A,D). 

None of the myo2-E1 daughter cells separated but 7 out of the 22 imaged fic1-2A 
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myo2-E1 daughter cells took an average time of 117.9±20.2 minutes to separate (Fig. 

3.3A,D). The ability of some fic1-2A myo2-E1 cells to complete membrane ingression 

and abscission is consistent with idea that Fic1-2A enhances septum formation. 
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Figure 3.3. fic1-2A myo2-E1 cells can achieve membrane ingression and cell 
separation at myo2-E1’s restrictive temperature. A) Representative images of live-
cell time-lapse movies from the indicated strains at 36°C. Images were acquired every 3 
minutes. Scale bar = 5 µm. B-D) Quantification of timing of anaphase B (B), initiation of 
membrane ingression (C), and completion of daughter cell separation (D) for each 
strain. Anaphase B onset was defined as the period from the separation of the SPBs to 
the initiation of SPB segregation towards opposite cell poles. CR assembly was defined 
as the period from the separation of the SPBs to the coalescence of cytokinetic nodes 
into a ring. CR maturation was defined as the period from the completion CR assembly 
to the initiation of CR contraction. CR constriction was defined as the period from CR 
contraction to the disappearance of the rlc1-mNG from the site of division. n, number of 
cells analyzed. Data presented as mean ± S.E.M. ****p≤0.0001, n.s., not significant, 
one-way ANOVA. 
 
3.5 Fic1 directly interacts with Cyk3’s SH3 domain 

Because the involvement of Fic1 in promoting septation was reminiscent of the 

role of S. cerevisiae’s IPC (Devrekanli et al., 2012; Nishihama et al., 2009; Sanchez-

Diaz et al., 2008), we asked whether Fic1’s interactions with Cdc15 and Imp2 were 

required for myo2-E1 suppression. Fic1 binds the SH3 domains of the F-BAR proteins 

Cdc15 and Imp2 (Roberts-Galbraith et al., 2009) through the P254,257 PxxP motif and 

the fic1-P257A mutation, which disrupts Fic1’s interactions with Cdc15 and Imp2 

(Bohnert and Gould, 2012), prevented fic1-2A’s suppression of myo2-E1 (Fig. 3.4A and 

B). These data suggest that Fic1’s interaction with Cdc15 and Imp2 are required for 

fic1-2A’s suppression of myo2-E1 and thus, Fic1’s role in promoting septum formation. 

We next asked if S. pombe Cyk3 was required for fic1-2A’s suppression of myo2-

E1. Indeed, cyk3∆ prevented fic1-2A from suppressing myo2-E1 (Fig. 3.4C). We then 

aimed to determine if Cyk3 bound Fic1 through an SH3-PxxP interface, similarly to 

Cyk3 and Inn1 in S. cerevisiae (Nishihama et al., 2009) (Fig. 3.4D). To test this, we 

generated recombinant Cyk3-SH3-GST and as a negative control, Cyk3-SH3-W43S-

GST. Based on SH3 domain homology, the W43S substitution is predicted to disrupt 

Cyk3-SH3’s ability to bind PxxP motifs (Saksela and Permi, 2012). Immobilized Cyk3-

SH3-GST purified Fic1-FLAG3 from lysates of S. pombe arrested by cps1-191, a 

temperature-sensitive allele of bgs1 which allows CRs to form but prevents primary 

septum deposition (Liu et al., 1999), but Cyk3-W43S-SH3-GST did not (Fig. 3.4E). 

Finally, we found that Fic1-MBP directly bound Cyk3-SH3-GST indicating that Cyk3-

SH3 directly binds Fic1 (Fig. 3.4F). 
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Figure 3.4. Cyk3-SH3 binds Fic1. A) Schematic of Fic1 with domain boundaries and 
phosphorylation sites indicated with amino acids numbers and PxxP motifs by asterisks. 
Drawn to scale. B and C) Ten-fold serial dilutions of the indicated strains were spotted 
on YE agar media and incubated at the indicated temperatures for 3-5 days. D) 
Schematic of Cyk3 drawn to scale. Domains and their boundaries and mutations within 
the domains indicated. E) A portion of protein lysates from cps1-191 fic1-FLAG3 cells 
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was subjected to immunoblotting with FLAG anti-CDK (PSTAIRE) antibodies. The 
remainder of the lysates was incubated with the indicated bead-bound GST 
recombinant proteins, of which a portion was detected by Coomassie blue (CB) 
staining. Fic1 bound to the beads after washing was detected with anti-FLAG 
immunoblotting. Cells were shifted to 36°C for 3 hours prior to lysis. F and G) 
Coomassie blue stained SDS–PAGE gel of in vitro binding assays using the indicated 
recombinant proteins. H) Quantification of the amount of soluble protein captured by 
bead-bound proteins, normalized to the amount of bead-bound protein. Data presented 
as mean ± S.E.M. ****p≤0.0001, one-way ANOVA. I) Molecular modeling predictions of 
interactions between Fic1 in cyan, Cyk3-SH3(aa1-66) in green, and Cdc15-SH3(aa867-
927) in orange. 
 

To verify that at least one of Fic1’s 11 PxxP motifs was necessary for interaction 

with Cyk3’s SH3 domain, we generated recombinant Fic1-MBP with every PxxP motif 

mutated to AxxA, referred to as Fic1-11AxxA-MBP. As predicted, Fic1-11AxxA-MBP did 

not bind Cyk3-SH3-GST or Cyk3-W43S-SH3-GST (Fig. 3.5A). To identify which PxxP 

motif was required for the interaction, we generated Fic1-MBP fusion proteins with each 

individual AxxA mutation. Fic1-P174,177A-MBP and Fic1-P176,179A-MBP exhibited 

reduced binding to Cyk3-SH3-GST compared to Fic1-MBP (Fig. 3.4G and H). Because 

these are distinct from the PxxP motif involved in binding Cdc15 and Imp2, Fic1 might 

be able to bind Cyk3 and Cdc15 or Imp2 simultaneously (Bohnert and Gould, 2012) to 

form an analog of the IPC. Indeed, molecular modeling using ColabFold predicted that 

Fic1 could simultaneously bind the SH3 domains of Cdc15 and Cyk3 (Fig. 3.4I and 

3.5B) (Jumper et al., 2021; Mirdita et al., 2022). 

Because the Fic1-2A mutant eliminates phosphorylation on T178, we wondered 

whether disrupting the prolines required for Cyk3 binding around T178 might alter Fic1’s 

phosphorylation status. We were especially cognizant of this possibility because T178 

can be phosphorylated in vitro by CDK, a proline-directed kinase (Bohnert et al., 2020). 

To examine whether these proline mutations affected Fic1 phosphorylation in vivo, we 

analyzed the gel mobilities of Fic1-P174,177A and Fic1-P176,179A. Fic1-FLAG3 

migrates as four bands. The top band represents dual phosphorylation at T178 and 

S241, the two intermediate bands are singly phosphorylated at T178 or S241, and the 

fastest migrating form is not phosphorylated (Bohnert et al., 2020). As predicted, Fic1-

P176,179A formed only two bands, consistent with a loss of T178 phosphorylation (Fig. 

3.5C) (Bohnert et al., 2020). Interestingly, Fic1-P174,177A displayed the wild-type 
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pattern of phosphorylation suggesting that it could be used to selectively test the role of 

Cyk3 binding to Fic1 in the suppression of myo2-E1 (Fig. 3.5C). We found that fic1-2A-

P174,177A did not suppress myo2-E1 (Fig. 3.5D) and similarly, inactivation of the Cyk3-

SH3 domain by the cyk3-W43S allele disrupted fic1-2A’s suppression of myo2-E1 (Fig. 

3.6A). Taken together, these results suggest Cyk3 is required for Fic1’s roles in septum 

formation. 
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Figure 3.5. P174,177 is required for fic1-2A’s suppression of myo2-E1. A) 
Coomassie-stained SDS–PAGE of in vitro binding assays using the indicated 
recombinant proteins. B) The predicted aligned error (PAE) map from the molecular 
modeling between Fic1, Cyk3-SH3, and Cdc15-SH3. C) Lysates from cells of the 
indicated genotypes were immunoblotted with anti-FLAG antibody to assess Fic1-
FLAG3 gel mobilities and anti-CDK (PSTAIRE) antibody as a loading control. D) Ten-
fold serial dilutions of the indicated strains were spotted on YE agar media and 
incubated at the indicated temperatures for 3-5 days. 
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3.6 Cyk3’s SH3 domain and TLD are required for Fic1’s roles in septum formation 

In addition to its SH3 domain, Cyk3 has a central transglutaminase-like domain 

(TLD) within a larger cysteine protease-like domain (CPD), which has been implicated in 

Cyk3 function but not thought to have enzymatic activity (Fig. 3.4D) (Pollard et al., 

2012). To determine if Cyk3’s TLD is required for fic1-2A’s suppression of myo2-E1, we 

inactivated the TLD through the previously established H577A mutation (Pollard et al., 

2012) and found that this mutation also disrupted fic1-2A’s suppression of myo2-E1 

(Fig. 3.6B). To ensure that cyk3-W43S and cyk3-H577A were not disrupting fic1-2A’s 

suppression by destabilizing Cyk3 or by preventing Cyk3’s localization to the CR, we 

measured the fluorescence intensity of GFP fusion proteins Cyk3-W43S and Cyk3-

H577A. We found that both alleles had similar CR and whole cell fluorescence as Cyk3-

GFP (Fig. 3.6C-E), demonstrating these alleles were stably expressed and localized 

normally. Additionally, we found that both Cyk3-W43S and Cyk3-H577A co-

immunoprecipitated with Cdc15 from prometaphase arrested cells as Cyk3 does (Fig. 

3.6F) (Bohnert and Gould, 2012; Roberts-Galbraith et al., 2010). 
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Figure 3.6. Cyk3’s SH3 and transglutaminase-like domain are required for fic1-
2A’s suppression of myo2-E1. A and B) Ten-fold serial dilutions of the indicated 
strains were spotted on YE agar media and incubated at the indicated temperatures for 
3-5 days. C) Live-cell bright field (BF), GFP, mCherry (mCh) and merged GFP/mCh 
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images of cells of indicated genotypes during cytokinesis. Scale bar: 5 µm. D and E) 
Quantification of CR (D) and whole cell (E) fluorescence intensities for cells of indicated 
genotypes. Data from three trials per genotype presented as mean ± S.E.M. n.s., not 
significant, one-way ANOVA. F) Anti-GFP or anti-Cdc15 immunoprecipitates from cells 
of indicated genotypes were blotted with an anti-GFP or anti-Cdc15 antibody. Lysate 
samples were blotted with anti-CDK (PSTAIRE) as an input control for the 
immunoprecipitations. Arrow indicates Cyk3-GFP protein band. 
 
3.7 Fic1 and Cyk3 function independently of Chs2 

S. cerevisiae Cyk3’s TLD stimulates Chs2 (Foltman et al., 2016; Nishihama et 

al., 2009). While S. pombe’s septum lacks chitin, S. pombe does have an orthologous 

protein to S. cerevisiae’s Chs2 with the same name but lacking catalytic activity 

(Horisberger et al., 1978; Martin-Garcia et al., 2003; Matsuo et al., 2004; Sietsma and 

Wessels, 1990). S. pombe Chs2 possibly influences septum formation indirectly 

because, like fic1∆ and cyk3∆ cells, chs2∆ cells display delays in CR constriction 

(Martin-Garcia and Valdivieso, 2006). In the cases of fic1∆ and cyk3∆, CR constriction 

delays correlate with a postponement in the onset of bipolar growth, also known as new 

end take off (NETO), and a transition to invasive pseudophyphal growth (Bohnert and 

Gould, 2012). If Chs2 acts downstream of Fic1 and Cyk3 we would expect that chs2∆ 

cells to also exhibit NETO defects and invasive pseudophyphal growth. We analyzed 

bipolar growth establishment in chs2∆, fic1∆, cyk3∆, and combination fic1∆ chs2∆, 

cyk3∆ chs2∆, and fic1∆ cyk3∆ chs2∆ mutants and found that interphase cells of each 

indicated genotype had an increase in cells growing from only one end (monopolar) 

compared to wild-type (Fig. 3.7A). However, chs2∆ cells did not exhibit polarity defects 

at the time of septation or invasive pseudohyphal growth (Fig. 3.7B and C). Further, 

deletion of chs2 did not disrupt fic1-2A’s suppression of myo2-E1 and surprisingly, 

chs2∆ independently suppressed myo2-E1 (Fig. 3.7D). These data together indicate 

that Chs2 does not act downstream of Fic1 and Cyk3 in septation. In accord, ColabFold 

did not predict an interaction between Cyk3’s CPD and Chs2 in S. pombe and even the 

predicted interaction between Cyk3’s CPD and Chs2 in S. cerevisiae was weak (Fig. 

3.7E-H) (Jumper et al., 2021; Mirdita et al., 2022). 
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Figure 3.7. Fic1 functions independently of Chs2. A and B) Quantification of growth 
polarity phenotypes for interphase (A) and septated cells (B) of the indicated genotypes. 
Data from three trials per genotype with n > 300 cells for each trial are presented as 
mean ± S.E.M. The percentage of monopolar cells between wild-type and other 
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genotypes was compared. ****P<0.0001, n.s., not significant, two-way ANOVA with 
Dunnett's multiple-comparisons test. C) Invasive growth assays of the indicated 
genotypes on 2% agar. Cells were spotted on YE agar media and incubated for 20 days 
at 29°C (top row, “pre-wash”). Colonies were then rinsed under a stream of water and 
rubbed off (bottom row, “washed”). D) Ten-fold serial dilutions of the indicated strains 
were spotted on YE agar media and incubated at the indicated temperatures for 3-5 
days. E and F) Molecular modeling predictions of the interaction between Cyk3-aa397-
650 in orange and Chs2 in grey in S. pombe (E) and Cyk3-aa382-640 in orange and 
Chs2 in grey in S. cerevisiae (F). G and H) The predicted aligned error (PAE) map from 
the molecular modeling of the indicated proteins in S. pombe (G) and S. cerevisiae (H). 
 

In conclusion, our results suggest that mutating the two Fic1 phosphorylation 

sites to alanine enhances Fic1’s normal role in septation to allow myo2-E1 suppression. 

Whether this is due to preventing Fic1 phosphorylation or changing Fic1 structure 

remains to be determined. However, Fic1’s interactions with Cyk3, Cdc15 and/or Imp2 

are required for this function and molecular modeling suggests Fic1 could 

simultaneously bind the SH3 domains of Cyk3 and Cdc15/Imp2 to form a complex 

similar to the S. cerevisiae IPC. Despite similar interactions to S. cerevisiae’s IPC, these 

proteins promote septum formation independent of Chs2 and it will be interesting to 

determine how they influence this critical aspect of fission yeast cell division. 

 

3.8 Materials and Methods 
Yeast methods 

Schizosaccharomyces pombe strains utilized in this study (Supplemental Table 

S1) were cultured in yeast extract (YE) media (Moreno et al., 1991). Glutamate media 

was used for crosses (Moreno et al., 1991). fic1, cyk3, sid4, rlc1, and sad1 were tagged 

endogenously at the 3′ end of their open reading frames (ORFs) with FLAG3:kanR, 

GFP:kanR, mNG:hygR, V53:hygR, and/or mCherry:natR using pFA6 cassettes as 

previously described (Bahler et al., 1998b). G418 (100 μg/ml; Sigma-Aldrich, St. Louis, 

MO), Hygromycin B (125 µg/mL; Invitrogen, Waltham, MA), and Nourseothricin (125 

µg/mL; Gold Biotechnology St. Louis, MO) in YE media was used for selecting kanR, 

hygR, and natR cells respectively. mNG, a YFP derivative from the lancelet 

Branchiostoma lanceolatum, was selected for imaging experiments because of its 

superior brightness (Shaner et al., 2013; Willet et al., 2015). A lithium acetate 

transformation method (Keeney and Boeke, 1994) was used for introducing tagging 
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sequences, and endogenous integration of tags were verified by whole-cell PCR and/or 

microscopy. Introduction of tagged loci into other genetic backgrounds was 

accomplished using standard S. pombe mating, sporulation, and tetrad-dissection 

techniques. Fusion proteins were expressed from their endogenous locus under control 

of their native promoter unless otherwise indicated. For serial-dilution growth assays, 

cells were cultured in liquid YE at 25°C in a shaking incubator, four 1:10 serial dilutions 

starting at 1.5 × 106 cells/mL were made, 2 µL of each dilution was spotted on YE agar, 

and cells were grown at the specified temperatures for 3-5 days. All spot assays were 

performed in triplicate and representative images are shown. 

 Mutants of fic1 were expressed from the endogenous loci. To make fic1 

mutations, fic1+ gDNA with 500 bp 5’ and 3’ flanks was inserted between BamHI and 

PstI sites of pIRT2 (Bohnert and Gould, 2012) and site-directed mutagenesis was used 

to introduced the desired mutations, which were confirmed by DNA sequencing. 

fic1::ura+ was transformed with these pIRT2-fic1 constructs, and stable integrants 

resistant to 1.5 g/L 5-fluoroorotic acid (5-FOA) (Fisher Scientific, Hampton, NH) were 

isolated. The correct insertion site and mutations were confirmed by whole-cell PCR 

and DNA sequencing. 

cyk3 strains were made in a similar manner but pIRT2-cyk3 (W43S, H577A, 

W43S,H577A) mutant plasmids were constructed from cyk3 cDNA with 500 bp 5’ and 3’ 

flanks to allow these cyk3 alleles to be verified by whole-cell PCR once integrated. 

Invasive growth assays 

To assay pseudohyphal invasive growth, 5 μL containing a total of 105 cells were 

spotted on 2% YE agar and incubated at 29°C for 20 days. Colonies were subsequently 

placed under a steady stream of water and surface growth was wiped off using a paper 

towel, as described previously (Pohlmann and Fleig, 2010; Prevorovsky et al., 2009). 

Microscopy 

Live-cell imaging of S. pombe cells were acquired using one of the following: (1) 

a personal DeltaVision microscope system (Leica Microsystems, Wetzlar, Germany) 

that includes an Olympus IX71 microscope, 60× NA 1.42 PlanApo and 100× NA 1.40 

UPlanSApo objectives, a pco.edge 4.2 sCMOS camera, and softWoRx imaging 

software or (2) a Zeiss Axio Observer inverted epifluorescence microscope with Zeiss 
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63X Oil (1.46 NA), a Axiocam 503 monochrome camera (Zeiss), and captured using 

Zeiss ZEN 3.0 (Blue edition) software. All cells were in log phase growth before 

temperature-sensitive shifts and/or live imaging. Time-lapse imaging was performed 

using an ONIX microfluidics perfusion system (CellASIC ONIX; EMD Millipore, 

Burlington, MA). A suspension of 50 µL of 40 × 106 cells/ml YE was loaded into Y04C 

plates for 5 s at 8 psi. YE media was flowed through the chamber at 5 psi throughout 

imaging. 

Anaphase B onset was defined as the period from the separation of the SPBs to 

the initiation of SPB segregation towards opposite cell poles. CR assembly was defined 

as the period from the separation of the SPBs to the coalescence of the cytokinetic 

nodes into a clearly defined ring. CR maturation was defined as the period from the 

completion CR assembly to the initiation of CR contraction. CR constriction was defined 

as the period from CR contraction to the disappearance of the rlc1-mNG from the site of 

division. 

Intensity measurements were made from non-deconvolved summed Z-

projections of the images processed through ImageJ software (Schneider et al., 2012). 

For all intensity measurements, the background was subtracted by selecting a region of 

interest (ROI) in the same image in an area free of cells. The background raw intensity 

was divided by the area of the background, which was multiplied by the area of the 

measured object. This number was then subtracted from the intensity measurement of 

that object. Max intensity Z projections are shown in representative images. 

To visualize birth scars by Calcofluor staining, cells were washed in PBS and 

then resuspended in PBS containing 5 µg/mL Calcofluor and allowed to incubate on ice 

for 30 minutes. Cells were then washed three times in PBS and images were acquired. 

Using the proximity of birth scars to cell ends, growth/morphology was categorized as 

one of the following: monopolar (i.e. growth on one end), bipolar (i.e. growth on both 

ends), monopolar and septated, or bipolar and septated. All cells stained with Calcofluor 

were grown to log phase at 25°C. 

Protein Methods 

Cells were lysed by bead disruption in NP-40 buffer in denaturing conditions as 

previously described (Gould et al., 1991). Immunoblot analysis of cell lysates and 
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immunoprecipitates was performed using anti-FLAG (M2; Sigma-Aldrich, St. Louis, 

MO), anti-PSTAIR Cdc2 (Sigma-Aldrich, St, Louis, MO), anti-GFP (Roche, Indianapolis, 

IN), or anti-GFP (VUIC9H4) antibodies or serums raised against GST-Cdc15 (amino 

acids 1–405; VU326; Cocalico Biologicals, Stevens, PA) as previously described 

(Bohnert et al., 2009). Cyk3-SH3-GST (aa1-66), Fic1-MBP, GST-Cdc15-SH3 (aa867-

927), and GST-Imp2-SH3 (aa608-670) recombinant proteins and their variants were 

purified from E. coli using standard biochemistry techniques. in vitro binding assays 

were performed in 20 mM Tris (pH 7.4) and 150 mM NaCl and allowed to incubated at 

4°C for 1 hour while nutating. The beads were washed 3 times with reaction buffer 

before performing SDS-PAGE and Coomassie staining. Affinity purifications using bead 

bound Cyk3-SH3-GST recombinant proteins and S. pombe lysate were performed by 

lysing cells in Cyk3 lysis buffer (50 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 50 

mM NaF, 0.5% NP-40, 0.1% SDS, 1 mM DTT, 1 mM PMSF, 1.3 mM Benzamidine, and 

cOmplete protease inhibitors (Roche, Indianapolis, IN). S. pombe lysates and Cyk3-

SH3-GST recombinant proteins were incubated at 4°C for 1 hour while nutating. The 

bead bound recombinant proteins were washed 3 times in the lysate buffer before SDS-

PAGE and immunoblotting or Coomassie staining. 
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Chapter 4 
 

 

Conclusions and future directions 
 

 

4.1 Conclusions 
The CR component Fic1 is required for proper CR constriction and growth 

polarity establishment. However, our mechanistic understanding of how Fic1 contributes 

to these processes is incomplete. The work described in this dissertation advances our 

understanding of Fic1 by revealing that Fic1 is a phospho-protein whose 

phosphorylation state influences growth polarity establishment and that Fic1 promotes 

septum formation through its interactions with Cdc15, Imp2, and Cyk3. 
 In Chapter 2, I discussed the evidence that Fic1 is a phospho-protein whose 

phosphorylation state is regulated by multiple kinases from at least two distinct groups. 

Additionally, I found that deregulating Fic1’s phosphorylation state disrupts growth 

polarity establishment and promotes the transition from single cell to invasive 

pseudohyphal growth (Bohnert et al., 2020). 

 In Chapter 3, I discussed insights into Fic1’s cytokinetic role by revealing that the 

Fic1 phospho-ablating mutating, fic1-2A, is a gain-of-function allele that suppresses 

myo2-E1 by promoting septum formation. Fic1’s role in septum formation was 

dependent on its interactions with Cdc15 and Imp2 as well as a newly characterized 

interaction with Cyk3. Molecular modeling suggested that Fic1 could simultaneously 

bind Cdc15 and Cyk3 similarly to Inn1’s interactions with Hof1 and Cyk3 in S. 

cerevisiae. While Fic1’s interactions were reminiscent of the IPC in S. cerevisiae, which 

promotes septum formation through Chs2, these analog proteins proved to be 

functionally divergent as they promoted septum formation independent of Chs2 in S. 

pombe. 
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4.2 Future directions 
In this work I have identified and characterized a direct interaction between PxxP 

motifs within Fic1’s C-terminus and Cyk3’s SH3 domain. Together, this interaction and 

Fic1’s interactions with the SH3 domains of Cdc15 and Imp2 ascribes a function to 

three of the eleven PxxP motifs within Fic1’s C-terminus. Because Fic1’s C-terminus is 

required for Fic1’s CR localization and Fic1’s CR localization is not perturbed when its 

interactions with Cdc15, Imp2, and Cyk3 are simultaneously disrupted, additional SH3 

domains may bind Fic1’s C-terminus and assist in localizing it to the CR (Bohnert and 

Gould, 2012). A search for protein coding genes containing SH3 domains through the S. 

pombe database, PomBase, reported 21 proteins containing at least one SH3 domain 

(Harris et al., 2022). After eliminating proteins that do not localize to the CR as well as 

the three known Fic1 interactors from this list, six proteins remain that would be good 

candidates to study as potential Fic1 interactors (Table 4.1).  

Table 4.1. Proteins with SH3 domains that localize to the CR. 
Protein name Description 

Mug137 BAR adaptor protein, human endophilin A3-like 
Pob1 Boi family protein 
Scd2 Cdc42 GTPase complex scaffold subunit Scd2 
Shd1 cytoskeletal protein binding protein Sla1 family, Shd1 
Bzz1 F-BAR domain protein Bzz1 
Myo1 myosin type I 

 

Each of the corresponding genes to these identified proteins could be deleted in 

the fic1-P257A-mNG cyk3∆ genetic background to determine if any one of these 

proteins are involved in Fic1’s CR localization. If a protein is found to assist in Fic1’s CR 

localization, then deleting the corresponding gene in the fic1-2A myo2-E1 genetic 

background would determine if this protein is also required for Fic1’s role in septum 

formation. Even if none of these proteins are involved in localizing Fic1 to the CR, they 

could interact with Fic1 and be required for Fic1’s role in septum formation. Deleting 

each of the six genes in the fic1-2A myo2-E1 genetic background may identify 

additional components required for Fic1’s role in septum formation. These proteins 

could be analyzed for physical associations with Fic1 through Y2H and co-

immunoprecipitations experiments. Direct interactions between Fic1 and the proteins of 
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interest could be determined through in vitro binding assays with purified recombinant 

proteins. Additional in vitro binding assays with the Fic1 AxxA mutant proteins could 

then be used to determine the specific PxxP motif that interaction utilized, as was done 

with Cyk3’s SH3 domain in this work. 

 The function of Fic1’s C2 domain is largely uncharacterized. Our lab has 

determined that the Fic1-C2-GFP fusion protein does not localize to the CR (Bohnert 

and Gould, 2012). Inn1’s C2 domain also does not localize to the CR without its C-

terminal tail, but fusing the C2 domain to Hof1 to localize it to the CR allows it to carry 

out Inn1’s essential function of promoting septum formation (Sanchez-Diaz et al., 2008). 

Inn1’s C2 domain promotes septum formation through an interaction with Chs2 

facilitated, in part, by two lysine residues within loops 1 and 3 the C2 domain (Sanchez-

Diaz et al., 2008). Disrupting homologous lysine residues, K22,27, within Fic1’s C2 

domain partially disrupts Fic1’s localization to growing cell tips (Bohnert et al., 2020). To 

determine if these residues within Fic1’s C2 domain are required for Fic1’s role in 

septum formation, I generated a fic1-K22,27A-2A myo2-E1 strain. The K22,27A 

substitution mutations disrupted fic1-2A’s suppression of myo2-E1 (Fig. 4.1). This 

finding suggests that Fic1’s C2 domain is required for Fic1’s role septum formation. 

 
Figure 4.1. The K22 and K27 residues within Fic1’s C2 domain are required for 
fic1-2A’s suppression of myo2-E1. Ten-fold serial dilutions of the indicated strains 
were spotted on YE agar media and incubated at the indicated temperatures for 3-5 
days. 
 

The ability of C2 domains to bind lipid membranes in a Ca2+ dependent manner 

is well characterized (Bazzi and Nelsestuen, 1987; Bazzi and Nelsestuen, 1990; Brose 

et al., 1995; Sutton et al., 1995; Sutton and Sprang, 1998). Despite this, Inn1’s C2 
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domain does not bind lipid membranes. Due to the homology between Fic1 and Inn1, it 

would be unexpected for Fic1’s C2 domain to bind lipid membranes (Sanchez-Diaz et 

al., 2008), however, as this work has shown, Fic1 and Inn1 appear to be functionally 

divergent proteins. To determine if Fic1 binds lipid membranes, I performed liposome 

co-pelleting assays with Folch fraction liposomes, Fic1, and Opy1 in the presence and 

absence of Ca2+. Opy1 is a protein that binds phosphatidylinositol (4,5)-bisphosphate 

and served as a control (Snider et al., 2020). Fic1 did not co-pellet with the Folch 

fraction liposomes in either condition, suggesting that Fic1 does not bind lipids (Fig. 

4.2). 

 
Figure 4.2. Fic1 does not bind liposomes. Co-pelleting assay with Folch fraction 
liposomes and 10 µg of full length Fic1 or Opy1 with and without Ca2+. Samples were 
visualized by Coomassie blue staining after SDS-PAGE. S, supernatant; P, pellet. 
 
 Because Fic1’s C2 domain is required for fic1-2A’s suppression of myo2-E1, but 

Fic1 does not bind lipid membranes, it is possible that Fic1’s C2 domain supports 

protein-protein interactions (Figs 4.1 and 4.2). Chs2 would be the logical candidate for 

an interacting partner for Fic1’s C2 domain, but, as this work shows, Fic1’s roles in 

septum formation do not require Chs2. Thus, Fic1’s C2 domain likely interacts with 

other proteins. Unlike the canonical SH3-PxxP interaction, the protein-protein 

interactions facilitated by C2 domains can utilize several different binding interfaces 

within the C2 domain (Benes et al., 2005; Fukuda et al., 2001; Irino et al., 2005; Lopez-

Lluch et al., 2001; Meuillet et al., 2004; Shao et al., 1997; Smallwood et al., 2005). 

Therefore, it is not possible to generate a potential list of Fic1 C2 domain interactors by 

searching S. pombe’s proteome for particular motifs. Because of this, an unbiased 

approach should be taken to identify proteins that interact with Fic1’s C2 domain. Our 

lab has previously analyzed tandem affinity-purifications of Fic1 in asynchronous cells, 

and in both, cps1-191 and nda3-KM311 arrested cells by mass spectrometry. These 

S P S P S P S P
+ + + +Liposomes

Fic1 Opy1

0 mM Ca2+

2 mM Ca2+
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experiments validated Fic1’s interactions with Cdc15 and Imp2, but proteins that interact 

with Fic1’s C2 domain may be obscured within this dataset because the entire Fic1 

protein was used as bait. To identify proteins that interact with Fic1’s C2 domain, this 

approach could be modified to use Fic1’s C2 domain as bait for the affinity purification. 

Because Fic1’s C2 domain does not localize to the CR by itself, the C2 domain could be 

produced recombinantly and bound to beads. This immobilized Fic1-C2 domain could 

be incubated with S. pombe lysates arrested in cytokinesis by cps1-191, and potential 

interactors would then be identified by mass spectrometry. This approach is similar to 

the one used in Chapter 3 

 

 to demonstrate an indirect interaction between Fic1 and Cyk3’s SH3 domain (Figure 

3.4), while having the advantage of being unbiased due analysis by mass spectrometry 

instead of Western blotting.  

Another unbiased approach that could be implemented to identify interactors with 

Fic1’s C2 domain is a Y2H cDNA library screen. This screen would best be performed 

with a membrane-based Y2H system, which adapts the split-ubiquitin protein 

complementation assay in the Y2H system (Lentze and Auerbach, 2008). The 

advantage of this approach is that it is amenable to detecting interactions between the 

bait and transmembrane or membrane associated proteins. Fic1’s interactions with 

transmembrane proteins are particularly interesting because several components of the 

cell wall machinery are transmembrane proteins, and it is possible that Fic1’s role in 

septum formation is achieved through direct interactions with these proteins.  

This work has determined that Fic1 has a role in promoting septum formation and 

this role requires Fic1’s interactions with the SH3 domains of Cdc15, Imp2, and Cyk3 at 

the CR. However, there may be additional interactions between Fic1’s C-terminus and 

unidentified SH3 domains because Fic1 remains at the CR when the interactions 

between Fic1 and all of its known SH3 domain interactions are simultaneously disrupted 

(Bohnert and Gould, 2012). Additionally, while Fic1’s C2 domain is required for Fic1’s 

role in septum formation, it is unclear how it contributes to this process because it does 

not bind membranes, and any protein-protein interactions it may support are undefined. 

The previously discussed experiments establish a framework that could be applied to 
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continue to identify proteins that interact with Fic1’s C-terminus or its C2 domain, 

providing additional insight into the downstream effectors Fic1 utilizes to promote 

septum formation. 

Cyk3’s TLD is required for Fic1’s role in septum formation, and experiments 

presented within Chapter 3 determined that Cyk3’s TLD does not utilize Chs2 to 

promote septum formation (Figure 3.7), which differs from the interaction between 

Cyk3’s TLD and Chs2 in S. cerevisiae (Foltman et al., 2016). Thus, Cyk3’s TLD must 

interact with other downstream effector(s) to promote septum formation. Affinity 

purifications analyzed by mass spectrometry or a membrane-based Y2H screen using 

Cyk3’s TLD (amino acids 397-650) as bait could be performed to identify these 

downstream effector(s) (Lentze and Auerbach, 2008). Because it was previously 

determined that the Cyk3-H577A mutation disrupts Fic1’s role in septum formation, 

Cyk3-TLD-H577A could be utilized as a control to remove non-specific interactions from 

the datasets generated from these proposed approaches. While Cyk3’s TLD is required 

for Fic1’s role in septum formation, other regions of Cyk3 are understudied and may be 

involved in promoting septum formation as well. 

Cyk3 is highly phosphorylated throughout its IDR (amino acids 67-396) (Carpy et 

al., 2014; Chen et al., 2013; Halova et al., 2021; Kettenbach et al., 2015; Koch et al., 

2011; Lee et al., 2018; Mak et al., 2021; Swaffer et al., 2016; Swaffer et al., 2018; Tay 

et al., 2019). Within this region, 38 phosphorylation sites have been identified from at 

least two independent studies (Table 4.2). In vitro kinase assays analyzed by mass 

spectrometry determined that Pom1 targets 18 of these sites and Kin1, another polarity 

kinase, targets a single site (Lee et al., 2018). Inactivating analog-sensitive alleles of 

pom1 and kin1 disrupted Cyk3’s recruitment to the CR during mitosis from the cell tips 

(Lee et al., 2018). However, this study did not determine if any of these 19 

phosphorylation sites were specifically responsible for disrupting Cyk3’s recruitment to 

the CR or if they are additive in their effects. In addition to the 19 of the sites that were 

identified from the Pom1 and Kin1 study, several of the sites were identified from 

studies of Cdk1 (Swaffer et al., 2016; Swaffer et al., 2018). While Cyk3’s 

phosphorylation by Cdk1 has not been validated by in vitro kinase assays, some of 

these sites are likely bona fide Cdk1 phosphorylation sites. 
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To further characterize the effects of Cyk3’s phosphorylation on its localization, 

phospho-peptide mapping could be performed to validate the Kin1, Pom1, and Cdk1 

phosphorylation sites which could then be used to generate cyk3 phospho-mutant 

alleles. Observing the localization of each Cyk3-mNeonGreen fusion of these phospho-

mutant alleles could determine which phosphorylation sites and their respective kinases 

regulate Cyk3’s localization. These phospho-mutant alleles could then be studied during 

cytokinesis to determine if Cyk3 phosphorylation regulates CR dynamics and septum 

formation. Cyk3’s phosphorylation may also be implicated in regulating its protein-

protein interactions. This could occur through conformational changes of the Cyk3 

protein by phosphorylation of its IDR, similarly to conformational changes that occur 

from phosphorylation of Cdc15’s IDR (Roberts-Galbraith et al., 2010). 

  



 
 

69 

Table 4.2. Phosphorylation sites within Cyk3’s IDR. 
Phosphorylation Sites Kinase Phosphorylation Sites Kinase 

T106 Pom1 S209 
 

S112 
 

S213 Kin1 

S125 
 

T260 
 

S131 
 

S261 
 

S137 Pom1 S267 Pom1 

S140 Pom1 S271 Pom1 

S141 Pom1 S280 Pom1 

S143 
 

S283 Pom1 

S147 
 

S284 Pom1 

S149 
 

S300 
 

S153 Pom1 S310 Pom1 

S154 Pom1 T311 Pom1 

S156 Pom1 T332 Pom1 

S163 
 

T333 
 

T169 
 

S337 Pom1 

S174 
 

T338 Pom1 

T185 
 

S341 
 

S187 Pom1 S390 
 

S207 
 

T393 
 

 

It is possible that Cyk3’s IDR allows Cyk3 to undergo phase separation and 

phosphorylation of the IDR modulates its phase separation properties. Phosphorylation 

of Cdc15’s IDR prevents its ability to phase separate which interferes with the ability of 

Cdc15 to form plasma membrane-bound condensates and assemble the CR 

(Bhattacharjee et al., 2023). Perhaps inactivating Kin1 and Pom1 prevents 

phosphorylation of Cyk3’s IDR that is necessary for allowing it to phase separate, 

resulting in its inability to properly localize to the CR (Lee et al., 2018). It would be 

interesting to determine if Cyk3’s IDR promotes phase separation and, if it does, if 
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phosphorylation of the IDR alters its ability to phase separate as this property may be 

required for Cyk3’s cytokinetic function. 

While phosphorylation of Cyk3’s IDR influences its ability to localize to the CR, 

Cyk3’s interactions with CR components that recruit Cyk3 to the CR are undefined. As 

data within Chapter 3 have shown, disrupting Cyk3’s interaction with Fic1 through the 

cyk3-W43S allele does not prevent its localization to the CR (Figure 3.6). Thus, Cyk3’s 

interaction with Fic1 is not solely responsible for Cyk3’s recruitment to the CR. Further, 

Cyk3-W43S-GFP and Cyk3-H577A-GFP both co-immunoprecipitate with Cdc15 

similarly to Cyk3-GFP. Thus, Cyk3’s SH3 domain and TLD are not required for its 

association with Cdc15.  

While we do not know if the association between Cyk3 and Cdc15 is direct, Cyk3 

contains three PxxP motifs within its IDR that could serve as ligands for Cdc15’s SH3 

domain, P232,235, P370,373, and P388,391. Constructing a cyk3-3AxxA allele in which 

all of these PxxP motifs are mutated to AxxA could be used to determine if these PxxP 

motifs are required for Cyk3’s localization to the CR. Individual AxxA mutations of each 

PxxP motif could then be used to identify the specific motif responsible for Cyk3’s CR 

localization. To determine if these PxxP motifs are involved in Cyk3’s CR localization, 

the AxxA mutations may need to be generated in the cyk3-W43S background to prevent 

Fic1 from localizing Cyk3 to the CR. Regardless of whether these motifs are required for 

Cyk3’s CR localization, in vitro binding assays with Cdc15’s SH3 domain and a Cyk3’s 

IDR could be performed to determine if these proteins directly interact. These 

experiments should also be conducted with Imp2’s SH3 domain as it has been shown to 

be functionally redundant with Cdc15’s SH3 domain (Roberts-Galbraith et al., 2009). 

Lastly, performing these binding assays with phosphorylated Cyk3 IDR could reveal if 

phosphorylation of Cyk3’s IDR modulates its interaction with Cdc15 and Imp2’s SH3 

domains.   
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Table 4.3. 14-3-3 RxxS binding sites within Cyk3’s IDR. 
Cyk3 IDR 14-3-3 RxxS Binding Sites 

R85 

R150 

R210 

R273 

R277 

R297 

R307 

R359 

R364 

R387 

If Cyk3 and Cdc15 do not directly interact, then additional protein(s) are 

mediating their physical association. As discussed in Chapter 1, the 14-3-3 protein 

Rad24 binds to RxxS ligands phosphorylated by Sid2, and this interaction with Rad24 

can alter a protein’s localization (Chen et al., 2008a; Rincon et al., 2017). Cyk3 contains 

ten RxxS motifs within its IDR which may serve as binding sites for the Rad24 and/or 

Rad25 paralogs (Table 4.3) (Ford et al., 1994). Indeed, mass spectrometry analysis of 

Cyk3-TAPs from prometaphase arrested cells identified that both Rad24 and Rad25 co-

purified with Cyk3 (Roberts-Galbraith et al., 2010). The role of Cyk3’s interactions with 

these proteins is undefined, but they could alter Cyk3’s association with Cdc15 and CR 

localization by modulating its protein-protein interactions. 14-3-3 protein dimers can 

simultaneously bind two different proteins (Braselmann and McCormick, 1995). This 

would allow Cyk3 to form a complex with another cytokinetic component through Rad24 

and/or Rad25. Cdc15 is a potential 14-3-3-mediated Cyk3 interactor as Cdc15 co-

immunoprecipitates with Rad24 (Roberts-Galbraith et al., 2010), and directly binds 

Rad24 in vitro (unpublished data). Thus, it would be interesting to first validate Cyk3’s 

interactions with Rad24 and/or Rad25 with in vitro binding assays and, if these 

interactions are substantiated, determine if Rad25 and/or Rad25 are required for Cyk3’s 

co-immunoprecipitation with Cdc15 and Cyk3’s localization to the CR. Additionally, 
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these RxxS sites may be phosphorylated by Sid2 which, if demonstrated by in vitro 

kinase assays, would identify Cyk3 as a downstream effector of the SIN.  

 Another uncharacterized region of Cyk3 is its C-terminus. Molecular modeling 

using AlphaFold2 revealed that Cyk3’s C-terminus (amino acids 651-886) contains two 

structured regions, amino acids 651-778 and amino acids 779-886 (Jumper et al., 2021; 

Varadi et al., 2022). Analyzing each of these predicted structured regions with the DALI 

distance matrix alignment server revealed that each region exhibited an 

immunoglobulin-like (IGL) domain fold (Holm, 2022). Because IGL domains can support 

a wide range of protein-protein interactions, these IGL domains may be required for 

Cyk3’s recruitment to the CR (de Vos et al., 1992; Holmgren et al., 1992; Samson et al., 

2018; Slonim et al., 1992). A GFP fusion protein containing both IGL domains could be 

exogenously expressed from a plasmid in S. pombe to determine if the IGL domains 

localize to the CR on their own. If they localized to the CR, the proteins they interact 

with could be identified using an unbiased experimental approach, such as affinity 

purification analyzed by mass spectrometry or a Y2H experiment. Hits from these 

experiments could be followed up on through an eisosome co-tethering experiment (Yu 

et al., 2021). This system would localize Cyk3’s IGL domains to furrows within the S. 

pombe membrane by fusing it to the eisosome BAR protein, Pil1, and a fluorescent 

protein which would generate a Pil1-mCh-Cyk3-IGL fusion protein (Yu et al., 2021). The 

hits identified from affinity purifications of Y2H would be fused to mNG and cells would 

be imaged. Proteins that colocalize with the Pil1-mCh-Cyk3-IGL fusion protein would be 

submitted to co-immunoprecipitation experiments with Cyk3 before performing in vitro 

binding assays with the IGL domains and the proteins of interest. Genes of the proteins 

that interact with Cyk3’s IGL domains could then be deleted in fic1-2A myo2-E1 cells if 

these proteins are involved in Fic1’s role in septum formation. 

 While this work has determined that Cyk3 interacts with Fic1 through its SH3 

domain, many questions about Cyk3 remain. These proposed studies are aimed at 

validating and characterizing Cyk3’s phosphorylation sites as well as determining the 

function of Cyk3’s TLD, IDR, and IGL domains. Results from these studies could 

provide additional insight into this enigmatic protein while advancing our understanding 

of the molecular mechanisms that promote septum formation. 
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 In this work I studied Chs2 as a potential downstream effector of Fic1 and Cyk3. 

While data suggests that Chs2 is not downstream of Fic1, we did determine that the 

deletion of chs2 suppressed myo2-E1. This observation was unexpected and generated 

many questions about Chs2’s function. To determine if Chs2 influenced septum 

formation through regulating or interacting with the glucan synthases, I generated chs2∆ 

cps1-191, chs2∆ cwg1-1, and chs2∆ mok1-664 strains. I observed no genetic 

interaction between these alleles (Fig. 4.3). These data suggest that Chs2’s role in 

septum formation does not directly involve the glucan synthases. 

 
Figure 4.3. There are no genetic interactions between chs2∆ and temperature-
sensitive glucan synthase alleles. Ten-fold serial dilutions of the indicated strains 
were spotted on YE agar media and incubated at the indicated temperatures for 3-5 
days. 
 
  Chs2 is a transmembrane protein that localizes to mature CRs and co-

immunoprecipitates with the non-essential type-II myosin Myp2 during cytokinesis 

(Martin-Garcia and Valdivieso, 2006). Deletion of both chs2 and myp2 produced cells 

with misshapen CRs as well as CRs that failed to constrict before disassembling 

(Martin-Garcia and Valdivieso, 2006). In chs2∆ cells the CR became detached from the 

membrane during CR constriction which led to asymmetrical closure (Martin-Garcia and 

Valdivieso, 2006). These data demonstrate that Chs2 ensures proper adhesion of the 

CR to the membrane during constriction and suggest that Chs2 may function as a CR-

membrane anchor. 

 To further understand how Chs2 anchors the CR, interactions between Chs2’s 

cytosolic face and CR components will need to be identified. It will also be helpful to 

characterize the binding interface between Chs2 and Myp2 to determine if that 

wild-type
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interaction is direct. Unbiased approaches as previously discussed, such as affinity 

purification analyzed by mass spectrometry or a membrane-based Y2H cDNA library 

screen, could be used to identify proteins that interact with Chs2. These approaches 

could be supported by additional screens for genetic interactions with chs2∆. Lastly, the 

use of solid state nuclear magnetic resonance (ssNMR) could be useful in determining if 

the S. pombe cell wall and septum is actually void of chitin. ssNMR is a suitable 

approach for characterizing the composition of the cell wall of S. pombe because it has 

previously identified chitin and α(1,3)glucan polymers within the cell wall of the of the 

pathogenic fungus Aspergillus fumigatus (Kang et al., 2018). Identifying chitin in the 

septum of S. pombe would suggest that Chs2 is enzymatically active which would force 

the field to reconsider Chs2’s role in septum formation.   

 The observation that chs2∆ suppressed myo2-E1 is interesting, but the molecular 

mechanisms underlying this interaction are undefined. Future studies aimed at 

characterizing the association between Chs2 and Myp2; identifying additional Chs2 

interactors; and analyzing the composition of the cell wall could provide insights into the 

function of Chs2 and better define the composition of S. pombe’s cell wall. 

 The CIP allows S. pombe to withstand damage to the cell wall and respond to 

environmental stressors such as osmotic shock and high levels of chloride ions (Barba 

et al., 2008; Sanchez-Mir et al., 2014). While it is clear that these functions are 

necessary for S. pombe’s viability, many of the components of the CIP are undefined. 

During this work, analog-sensitive alleles of pck1 and pck2, two CIP kinases, were 

generated to complete the kinase screen aimed at identifying the kinases responsible 

for Fic1 phosphorylation (Bohnert et al., 2020). Pck1 and Pck2 were not found to be 

responsible for phosphorylating Fic1, but the pck1 and pck2 analog-sensitive alleles 

could be useful in elucidating the molecular mechanisms of the CIP. 

 As discussed in Chapter 1, Pck1 and Pck2 both activate the CIP MAPK cascade, 

but Pck2 appears to elicit a stronger response than Pck1 (Barba et al., 2008; Sanchez-

Mir et al., 2014). The stronger response from Pck2 suggests that Pck1 and Pck2 have 

some unique downstream substrates. Despite the evidence that these two homologous 

kinases are not completely redundant, no studies have leveraged chemical genetics 
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and phospho-proteomics to attempt to unveil Pck1 and Pck2’s unique substrates that 

could explain why they evoke different CIP responses. 

 Inhibiting pck1-as, pck2-as, and pck1-as pck2-as strains with ATP-analog for a 

short interval of time will reduce the phosphorylation of substrates of the inhibited 

kinases. Phospho-proteomics by mass spectrometry could detect these changes in 

phosphorylation (Li et al., 2020). Substrates differentially targeted by Pck1 and Pck2 

could be further studied to confirm that the candidates are directly phosphorylated by 

Pck1 or Pck2 before generating phospho-mutants of the substrates for endogenous 

expression in S. pombe. Ideally the phosphorylation-state of some of these substrates 

will evoke changes in CIP signaling, which would further our understanding of the 

different roles of Pck1 and Pck2 in this process. Data from this experiment could also 

link the CIP to other cell wall synthesis pathways which would assist in generating a 

more comprehensive understanding of cell wall metabolism. 

 
Figure 4.4. Deletion of pck1 or pck2 partially disrupts fic1-2A’s suppression of 
myo2-E1. Ten-fold serial dilutions of the indicated strains were spotted on YE agar 
media and incubated at the indicated temperatures for 3-5 days. 
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 Pck1 and Pck2 did not appear to regulate Fic1’s phosphorylation-state, but 

because Pck1 and Pck2 are implicated in cell wall synthesis, I probed for genetic 

interactions between fic1-2A and pck1∆ or pck2∆. Deleting either pck1 or pck2 partially 

disrupted fic1-2A’s suppression of myo2-E1 (Fig. 4.4). These data highlight the 

importance of Pck1 and Pck2 on cell wall synthesis and suggest that Fic1, Pck1, and 

Pck2 may converge on common downstream effectors. 

 Further characterization of the CIP pathway by utilizing pck1-as and pck2-as 

alleles in a phospho-proteomics approach could generate a rich data set with several 

interesting substrates to study. Identifying these substrates and characterizing their role 

in cell wall synthesis may provide insight into how Pck1 and Pck2 differentially regulate 

the CIP. Additionally, because pck1∆ and pck2∆ genetically interact with fic1-2A, it is 

possible that some of these substrates may be involved in Fic1’s role in septum 

formation. This proposed approach would improve our understanding about the roles of 

Pck1 and Pck2 in the CIP and could identify additional CIP components. 
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