
MODELLING PHYSICS-BASED DYNAMIC SYSTEM USING MACHINE LEARNING

By

Tianshu Bao

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

August 11, 2023

Nashville, Tennessee

Approved:

Taylor Thomas Johnson, Ph.D.

Janos Sztipanovits, Ph.D.

Tyler Derr, Ph.D.

 Xiaowei Jia, Ph.D.

Yuankai Huo, Ph.D.

ACKNOWLEDGMENTS

Time flies. I can’t believe I have already spent 6 years in Nashville from my late 20s to early 30s. There are
many people I would like to thank. Firstly, I would like to express my sincere gratitude to my adviser Prof.
Taylor Johnson for the continuous support of my PhD study and related research, and for his patience and
immense knowledge. Besides my advisor, I would like to thank Prof. Xiaowei Jia. His guidance helped me
in all the time of research and writing of this dissertation. Because of his assistance and mentoring, I have had
a chance to publish my work at top conferences and step into the physics-guided machine learning research
field. I also thank my thesis committee: Prof. Janos Sztipanovits, Prof. Tyler Derr and Prof. Yuankai Huo, for
taking the time to serve on my dissertation committee and providing insightful comments and suggestions,
which incented me to widen my research from various perspectives. In particular, I am thankful to Prof.
Weiming Xiang, and Prof. Hoang Dung Tran, who gave me suggestions for verification research work. I also
would like to thank my colleague, Shengyu Chen, who is a graduate student from the University of Pittsburgh
and worked closely with me on the projects, and my lab mates, for the cherished time spent together over the
last six years. I would also thank Dr Louise Hanson from Student Health Center, for her kindness and help
during my PhD study. Finally, I want to take this opportunity to express my profound gratitude to my parents,
Weimin Chen and Lei Bao, my cousin, Yingying Cao, and her husband for their encouragement and endless
love.
Acknowledgement of Support

The material presented is based upon work supported by the National Science Foundation (NSF) through
Grant 2028001, Grant OAC-2203581, awards 1910017, 1918450, and 2028001, the Defense Advanced Re-
search Projects Agency (DARPA) under contract number FA8750-18-C-0089, the Air Force Office of Scien-
tific Research (AFOSR) under contract number FA9550-22-1-0019, the USGS Award G21AC10207, and Pitt
Momentum Award. Any opinions, findings, and conclusions or recommendations expressed in this work are
those of the authors and do not necessarily reflect the views of AFOSR, DARPA, or NSF.

ii

TABLE OF CONTENTS

Page

1 Introduction . 2

1.1 Motivation . 2
1.2 Research Challenges . 3
1.3 Contributions . 4

1.3.1 Chapter 3 . 5
1.3.2 Chapter 4 . 5
1.3.3 Chapter 5 . 5
1.3.4 Chapter 6 . 6
1.3.5 Chapter 7 . 6

1.4 Copyright Acknowledgements . 6

2 Related Work . 8

2.1 Safety Assurance in Cyber-physical Systems . 8
2.1.1 Hybrid Automaton . 8
2.1.2 Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control 8

2.2 Partial Differential Equations . 10
2.3 Reachability Analysis . 10

2.3.1 Reachability Analysis for One Dimensional Linear Parabolic Equations 11
2.3.2 Reachability Analysis for High-Index Linear Differential Algebraic Equations . . . 12
2.3.3 Star-Based Reachability Analysis for Deep Neural Networks 13

2.4 Physics-Based Machine Learning . 14
2.4.1 Integrating Physics-Based Modeling With Machine Learning: A Survey 16
2.4.2 Physics Informed Deep Learning . 19

2.5 Physics-Guided Recurrent Neural Networks . 22
2.5.1 Hydronets: Leveraging River Structure for Hydrologic Modeling 23
2.5.2 Graph-based Reinforcement Learning for Active Learning in Real Time 23
2.5.3 Physics-Guided Recurrent Graph Networks . 26
2.5.4 Physics-Guided Machine Learning from Simulation Data 27

2.6 Turbulent Flows Reconstruction . 28
2.6.1 Reconstructing High-Resolution Turbulent Flows using Physics-Guided Neural Net-

works . 29
2.6.2 Deep Learning Methods for Super-Resolution Reconstruction of Turbulent Flows . 30
2.6.3 Learning a Deep Convolutional Network for Image Super-Resolution 31
2.6.4 tempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid

Flow . 33

3 A New Hybrid Automaton Framework with Partial Differential Equation Dynamics 35

3.1 Cyber-Physical Systems and Hybrid Automata . 35
3.2 Partial Differential Equations . 35

3.2.1 Differential Equations . 35
3.2.2 Partial Derivative . 36

3.3 Running Examples . 37
3.3.1 Heater Model . 38
3.3.2 Traffic Flow Model . 39

3.4 Partial Differential Hybrid Automata . 39
3.4.1 Transitions, Trajectories and Executions . 39

iii

3.4.2 Partial Differential Hybrid Automaton (PDHA) 43
3.5 Discrete Space Partial Differential Hybrid Automata . 45

3.5.1 Discretization Scheme and Discretization Relation 45
3.5.2 Discrete Space Partial Differential Hybrid Automaton 46
3.5.3 Relation to Classical Hybrid Automaton . 51

3.6 Experiments . 53
3.7 Conclusion . 55

4 Numerical Reachability Analysis for Partial Differential Equations 56

4.1 Reachability Analysis . 56
4.2 Numerical Reachability Analysis for Hyperbolic Equations 56

4.2.1 Problem Formulation . 56
4.2.2 Linear System . 58
4.2.3 Nonlinear System . 58

4.3 Numerical Reachability Analysis for Parabolic Equations with Dense Spatial Discretization 59
4.3.1 One Dimension Problem . 59
4.3.2 Two Dimension Problem . 61

5 PDE-Driven Neural Networks for Modeling Dynamic Spatial Dependencies 63

5.1 Modelling Water Temperature using Graph Convolutional Networks 63
5.2 Modelling Water Temperature using PDE Driven Networks 65

5.2.1 Problem Definition . 65
5.2.2 Recurrent Neural Networks and Long-Short Term Memory 65

5.3 Method . 66
5.3.1 Dynamic Recurrent Graph Network . 66
5.3.2 PDE-Driven Dynamic Graph Structure . 68

5.3.2.1 PDE over Irregular Points . 69
5.3.2.2 Dealing with Special Conditions . 71

5.4 Experimental Results . 73
5.4.1 Dataset and Baselines . 74
5.4.2 Predictive Performance using Sparse Data . 75
5.4.3 Assessing Performance on Unobserved Segments 76
5.4.4 Generalization Test . 77

5.5 Conclusion . 78

6 PDE-Driven Neural Networks for Modeling Temporal Dependencies 79

6.1 Turbulent Flows Modelling and Reconstruction . 79
6.2 Problem Definition . 80
6.3 Method . 81

6.3.1 Physics-Guided Recurrent Unit (PRU) . 81
6.3.1.1 Spatial Derivative Approximation . 83
6.3.1.2 Boundary Condition and Augmentation 84
6.3.1.3 Stability . 85

6.3.2 Physics Guided Super Resolution (PGSR) . 85
6.4 Experiment . 86

6.4.1 Dataset . 86
6.4.2 Experimental Design . 87

6.5 Results . 89
6.5.1 DNS Generation using PRU . 89
6.5.2 DNS Reconstruction using PGSR-PRU . 90
6.5.3 DNS Reconstruction using PGSR . 91

6.6 Conclusion . 92

iv

7 Transfer Learning using Residual Correction for Inaccurate Physics Laws 93

7.1 Streamflow Prediction for Multiple Basins . 93
7.2 Related Work . 94
7.3 Problem Definition . 95
7.4 Methods . 96

7.4.1 Preliminaries . 96
7.4.2 LSTM + Regularization on Pseudo Label . 97
7.4.3 Residual Correction . 98
7.4.4 Training between the Source Domain (Corrected Pseudo Labels) and the Target Do-

main (Real Labels) . 99
7.5 Experiments . 99

7.5.1 Baselines . 100
7.5.1.1 Pretrain + Fine-tuning . 100
7.5.1.2 Training between Source Domain (Pseudo Labels) and Target Domain

(Real Labels) . 101
7.5.1.3 Perturbation to the Proposed Methods 101
7.5.1.4 LSTM + Tradaboost . 101

7.5.2 Results . 101
7.5.2.1 Pretrain with Early Stop Fine-tuning . 101
7.5.2.2 General Performance for All Methods 102
7.5.2.3 Regularization Based Methods . 102
7.5.2.4 Domain Switch Based Methods . 102
7.5.2.5 Switch Method Robustness . 103
7.5.2.6 Ablation Study . 103

7.6 Conclusion . 105

8 List of Publications . 106

8.1 Published . 106
8.2 Submitted . 106

9 Appendix . 107

9.1 Reachability Analysis for Partial Differential Equations 107

References . 113

1

CHAPTER 1

Introduction

1.1 Motivation

Cyber-Physical Systems (CPS) have the potential to revolutionize the development of technology worldwide,

and in recent years, numerous researchers and companies have invested significant time and money into

ensuring that these systems will realize their economic and societal potential [114]. However since CPS

fundamentally integrate computational and physical processes, there are unique challenges in designing and

analyzing these systems. In fact, the functional correctness of CPS relies deeply on the dynamics of their

physical environment and the discrete control decisions of their computational units [104]. Within hybrid

systems, the framework of Hybrid Automata (HA) has demonstrated considerable utility in capturing the

complex interaction between the discrete and continuous parts of a CPS. Additionally, it allows for a formal

analysis about the safety and reliability of CPS [104] where safety and reliability are two key properties

of CPS. Safety is aimed at protecting the systems from accidental failures in order to avoid hazards, while

reliability is focused on performing consistently well. Safety verification of CPS is the act of proving or

disproving the correctness of safety properties and reachability analysis is one of the fundamental problems

of it. Reachability analysis computes the set of possible solutions of dynamical systems subject to uncertain

initial states and inputs. Classically, this modeling framework has catered to systems with dynamics that can

be described by ordinary differential equations (ODEs), and hardly any attention has been paid to systems

with dynamics described by partial differential equations (PDEs) [189].

PDEs have been widely used to describe a wide range of phenomena such as fluid dynamics and quantum

mechanics that cannot be adequately described by ODEs [58]. As an example, a typical application for

PDEs is the modeling of congestion in highway networks [19], and one popular model for highway control

is the Lighthill-Whitham-Richards (LWR) model [118, 132]. Finite different methods (FDMs) have been

widely used to solve PDEs [175]. They convert PDE into a system of linear equations that can be solved by

matrix algebra techniques and are one of the most common approaches to the numerical solution of PDE.

The truncation error of FDMs is defined as the difference between the approximation and the exact analytical

solution and is represented in the form of Big-O notation. However, these constants before the notation are

always unobtainable which forces us to seek a better way to solve PDEs more accurately.

Since classical numerical methods express their limitation dealing with PDEs, we could utilize the promis-

ing machine learning (ML) methods as a powerful tool towards our problem. There is no surprise that ma-

2

chine learning methods are increasingly used in CPSs to perform different difficult tasks. Machine learning

models, which have found immense success in commercial applications, are beginning to play an important

role in advancing scientific discovery [76, 165, 167]. Given their power in automatically learning from ob-

servation data, ML models are particularly promising in scientific problems involving complex processes that

are not completely understood by our current body of knowledge. However, scientific problems often involve

non-stationary relationships among physical variables which can change over space and time. In the absence

of adequate information about the physical mechanisms of real-world processes, traditional ML approaches

are prone to false discoveries because it is difficult to capture these complex relationships solely from data.

Therefore, it is necessary to combine physical based approaches with ML that can be used to simulate and

verify PDE driven systems.

1.2 Research Challenges

Since many CPSs involve sensing and controlling PDE-modeled physical phenomena, reachability analysis

of PDEs should provide novel methods for safety verification and falsification. However, due to the fact

that the solutions of most PDEs are not obtainable, it forces us to seek an estimated reachability analysis

for the original problem. In our work, reachability analysis for PDEs are done through FDM, interpolation,

optimization and parallelization. And the construction of reachable sets are based on the properties of PDEs

and these approaches. However, since FDM can only provide an estimated solution, it would be better to

look at other more accurate methods. For the optimization step appearing at nonlinear problem, the accuracy

of the output relies heavily on the choice of the optimizer. Thus this remains to be a topic needing further

discussion.

Instead of using classical methods, a promising way is to use ML approach. In scientific domains, physics-

based models are often used to study engineering and environmental systems. Even though these models are

based on known physical laws that govern relationships between input and output variables, most physics

based models are necessarily approximations of reality due to incomplete knowledge of certain processes

or omission of processes to maintain computational efficiency. In fact, there are numerous sophisticated

PDEs developed to describe nature phenomena. They are foundational in the modern scientific understanding

of sound, heat, diffusion, electrodynamics, fluid dynamics and quantum mechanics. In particular, existing

physics-based approaches for predicting river networks simulate the internal distribution of target variables

(e.g. temperature) based on general physical relationships such as energy and mass conservation. These

conservation laws are critical parts constructing the fluid dynamic and are always expressed as PDEs since

PDEs give the spatial and temporal relations between different physical variables such as density, velocity,

mass and etc. However, the model predictions still rely on qualitative parameterization (approximations)

3

based on soil and surficial geologic classification along with topography, land cover and climate input. Hence,

such models can only provide sub-optimal prediction performance.

A classical application of PDE is fluid dynamics. Traditional fluid models have used the Navier–Stokes

equation [18] for simulating fluid dynamics in many applications including aquatic science, hydraulic mod-

eling, weather and climate modeling, ocean currents, and aerodynamics. When modeling temperature dy-

namics in river networks, these PDEs capture not only the temporal thermodynamics but also the spatial heat

diffusion and convection from connected river segments [54]. Furthermore, these PDEs, along with other

known physical relationships, have been used to build more complex physics-based models [124] to simulate

multiple interacting processes on different variables in a system. However, these equations and physics-

based models have limits in their predictions due to approximations and parameterization used to represent

underlying processes.

Recent advances in ML, given their great success in commercial applications, have provided unrealized

potential for modeling complex data patterns in scientific problems. The power of these models come from

their capacity to extract complex nonlinear patterns from observation data and naturally incorporate spa-

tial and temporal data dependencies. For example, recurrent neural networks (RNN)-based models, which

take account of temporal dependencies, have shown extensive applicability in speech recognition and ma-

chine translation. Convolutional neural network (CNN)-based approaches have shown tremendous success in

learning spatial patterns in many computer vision applications. Recently, graph neural network models, e.g.,

graph convolutional networks (GCN), have shown a great promise for modeling interactions and similarities

amongst multiple objects and also have shown encouraging results for studying river networks.

However, there still exist several challenges that can not be handled properly by traditional ML model.

Accuracy of neural network methods can be a problem when simulating physical process. Physical behavior

may change suddenly under certain conditions, and traditional neural network may not be able to capture the

subtle change due to the large time step. We need a physics-based ML model can simulate the real physical

relation according to its underline physical laws. Meanwhile, we show that our model performs much better

than existing models, but it remains limited in precisely predicting special segments due to unobserved areas.

Models are always specific and restricted to particular systems. Extending the current model to a general

framework could also be an interesting topic. The general framework can serve as pre-trained model to any

specific river network.

1.3 Contributions

In this section, we present the contributions towards addressing the outlined challenges of modelling real-

world scientific problems. The main contributions are listed below.

4

1.3.1 Chapter 3

This chapter presents the syntax, semantics, and decidability results of a new type of HA with partial dif-

ferential equation dynamic, partial differential hybrid automata (PDHA), whose continuous dynamics are

described by partial differential equations. While classically the dynamics of HA are described by ODEs and

differential inclusions, PDHA are capable of describing the behavior of CPS with continuous dynamics that

cannot be modelled using the canonical hybrid system framework. For the purposes of analyzing PDHA,

we propose another model called the discrete space partial differential hybrid automata (DSPDHA) which

handles discrete spatial domains. Additionally, we formally outline concepts such as time trajectories, PDHA

and DSPDHA execution, Zeno behavior, among others to make thorough analysis convenient. We conclude

with two illustrative examples in order to exhibit the nature of PDHA and DSPDHA.

1.3.2 Chapter 4

In this chapter, we consider the numerical reachability analysis for the linear/nonlinear hyperbolic equations

with initial sets. The approaches proposed combine the flux splitting method, the Lax-Friedrich method, and

the Lax-Wendroff method with optimization techniques for estimating reachable sets. Linear and nonlinear

systems are analyzed based on our proposed methods. Interpolations are used to construct and bloat the

reachable sets for the safety verification purpose. We show that our approaches indeed provide an asymptotic

estimation of the real reachable sets with dense discretization.

Meanwhile, instead of hyperbolic equations, the numerical reachability analysis for one/two-dimension

parabolic equations under dense spatial discretization is also analyzed. We propose new approaches that com-

bine Krylov subspace method with numerical PDEs methods including Alternative direction implicit (ADI)

method, Crank-Nicolson (C-N) method, and Alternative Segment Crank-Nicolson (ASC-N) method. We

also harness the interpolations to construct and bloat the numerical reachable sets for the safety verification

purpose. Several examples show that our approaches indeed provide an asymptotic estimation of the real

reachable sets.

1.3.3 Chapter 5

In this chapter, we present a physics-guided machine learning approach that incorporates PDEs in a graph

neural network model to improve the prediction of water temperature in river networks. The standard graph

neural network model often uses pre-defined edge weights based on distance or similarity measures. Such

static graph structure can be limited in capturing multiple processes in a physical system that interact and

evolve over time. The limitation to represent underlying physical processes can severely impact the perfor-

mance of the predictive model especially when we have access to limited training data. To better capture the

5

dynamic interactions among multiple segments in a river network, we built a dynamic graph model, where

the graph structure is driven by the PDE that describes underlying physical processes. We further combine

the dynamic graph structure and the recurrent layers to model temporal dependencies and improve the pre-

diction. We demonstrate the effectiveness of the proposed method in a sub-network of the Delaware River

Basin. In particular, we show that the proposed method outperforms existing physics-based and machine

learning models in temperature prediction using sparse observation data for training. The proposed method

has also been shown to produce better performance when generalized to different seasons.

1.3.4 Chapter 6

In this chapter, we propose a physics-guided neural network for reconstructing frequent DNS from sparse

LES data by enhancing its spatial resolution and temporal frequency. Our proposed method consists of a

PDE-based recurrent unit for capturing underlying temporal processes and a physics-guided super-resolution

model that incorporates additional physical constraints. We demonstrate the effectiveness of both components

in reconstructing the data generated by simulating the Taylor-Green Vortex sparse LES data. Moreover, we

show that the proposed recurrent unit can preserve the physical characteristics of turbulent flows by leveraging

the physical relationships in the Navier-Stokes equation.

1.3.5 Chapter 7

In this chapter, we propose a transfer learning approach under inaccurate physical rules, which can achieve

robust regionalization performance under a gauged prediction scenario. We corrected the uncertain physical

descriptors obtained through the physics rule by residual approximation and let these corrected descriptors

rejoin the model training process. Our results show that the transfer learning model using our proposed resid-

ual approximation achieves a predictive performance comparable to that of the model using actual physical

descriptors.

1.4 Copyright Acknowledgements

The required copyright statements for permission to reprint portions of [15, 17] are included in the following.

• For portions of [17] reproduced in this dissertation, we acknowledge the IEEE copyright: © 2021

IEEE. Reprinted, with permission, from Tianshu Bao, Xiaowei Jia, Jacob Zwart, Jeffrey Sadler, Alison

Appling, Samantha Oliver and Taylor T. Johnson, “Partial Differential Equation Driven Dynamic Graph

Networks for Predicting Stream Water Temperature,” IEEE International Conference on Data Mining

(ICDM), Dec 2021

6

• For portions of [15] reproduced in this dissertation, we acknowledge the AUAI Press copyright: © 2022

the AUAI Press. Reprinted, with permission, from Tianshu Bao, Shengyu Chen, Taylor T Johnson, Pey-

man Givi, Shervin Sammak and Xiaowei Jia, “Physics Guided Neural Networks for Spatio-temporal

Super-resolution of Turbulent Flows,” The Conference on Uncertainty in Artificial Intelligence (UAI),

Jun 2022.

7

CHAPTER 2

Related Work

2.1 Safety Assurance in Cyber-physical Systems

Safety of certain CPS relies on reachable set/state estimation results that are based on Lyapunov functions

analogous to stability [202, 203, 204, 205, 208, 211, 218] and reachability analysis of dynamical systems

[206, 207], certainly have potentials to be further extended to safety verification. One can study the stability

of switched systems, a switched system is composed of a family of continuous or discrete-time subsystems

along with a switching rule governing the switching between the subsystems, with the help of the given the

switching rule described by a prescribed state space partitioning [93, 123, 143] or some known constraints on

switching sequence such as dwell time [6, 130] or average dwell time [86, 217] restrictions.

2.1.1 Hybrid Automaton

A hybrid system is a dynamical system with both discrete and continuous components. For example, an

automobile engine whose fuel injection (continuous) is regulated by a microprocessor (discrete) is a hybrid

system. As embedded computing becomes ubiquitous, hybrid systems are increasingly employed in safety-

critical applications, thus making reliability a prime concern. Rigorous reliability analysis requires formal

modeling. For this purpose, the hybrid automaton has been proposed as a formal model for hybrid systems.

In automata theory, a hybrid automaton is a mathematical model for precisely describing systems in which

digital computational processes interact with analog physical processes. A hybrid automaton is a finite state

machine with a finite set of continuous variables whose values are described by a set of ordinary differential

equations. This combined specification of discrete and continuous behaviors enables dynamic systems that

comprise both digital and analog components to be modeled and analyzed.

2.1.2 Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control

Safety verification of neural network control systems (NNCS) is a challenging problem because the behaviors

of the systems are difficult to estimate or characterize. To explicitly analyze the safety of NNCS, the authors

calculate the exact and overapproximate reachable set containing all possible trajectories of the plant that

takes the control set from the neural network controller as inputs. The output set of the plant is feedback

to the controller to compute the control set for the next control step. Therefore, if the error in the reachable

set computation is large, it quickly becomes larger and larger over time which results in too conservative

reachable sets that cannot be used for safety verification. In addition, the scalability and efficiency of the

8

reachable set computation are crucial for safety verification of control systems with DNN controllers. It is

required methods that can compute the reachable set of NNCS with large neural network controllers with a

reasonable computation time and a small over-approximation error. However, calculating an exact or tight,

overapproximate reachable set of a neural network quickly is fundamentally difficult due to the non-linearity

of the network. This challenging problem has not addressed well in the existing literature.

In this paper [184], the authors propose a new reachability analysis approach for safety verification of

CPS with neural network controllers using the concept of star set. The authors particularly focus on the

safety verification of the Advanced Emergency Braking System (AEBS) in an autonomous car to illustrate

and evaluate the approach. The AEBS is controlled by a neural network controller which is trained to stop

the vehicle appropriately if it discovers an obstacle on the road. To guarantee safety, it is required that the

time-to-collision (TTC) of the car, which is a nonlinear function of the car’s velocity, acceleration and the

distance between the vehicle to the obstacle, is always larger than a safe threshold defined by the physical

characteristics of the vehicle. The safety verification approach for AEBS works as follows. First, using

CARLA, the authors perform system identification to obtain a discrete, linear state-space model of the car.

The car model is then validated via systematic testing. Second, the authors train a deep neural network

controller to perform the emergency braking action using reinforcement learning. Third, the authors compose

the neural network controller with the state-space model to construct a closed-loop Simulink model of the

AEBS which is then validated with CARLA results. Fourth, the authors perform the reachability analysis of

the closed-loop model to obtain the reachable set of the AEBS. Finally, the authors compute the reachable set

of the TTC and use it for safety verification.

The proposed reachability analysis approach is to feed forward neural network controllers with ReLU/Sat-

uration activation functions. The reachability algorithms can compute both exact and over-approximate

reachable sets of the AEBS. Exact reachable set computation is expensive since the number of the reach-

able sets increases over time steps. In contrast, the over-approximate reachability scheme is much cheaper,

as it produces a single reachable set at each time step. Importantly, by using star sets, the reachability anal-

ysis approach can eliminate or reduce significantly the overapproximation errors which is the main reason

that makes the obtained reachable sets more and more conservative over time as shown in the polyhedron

approach [186, 206] (and maybe in some existing methods). The approach successfully verifies the safety

of the AEBS and, notably, determines the entire region of the initial conditions of the AEBS where safety is

guaranteed. This demonstrates the promising applicability of the approach in verifying the safety properties

of neural network-based autonomous systems at design time. The polyhedron approach fails to prove the

safety property of the system due to its over-approximation errors exploding quickly over time. In summary,

the main contributions of this study are as follows. (1) the provision of star-based reachability schemes de-

9

signed to efficiently compute the reachable set of a discrete, linear neural network control systems with ReLU

activation function, (2) an end-to-end design and implementation of these schemes in a MATLAB®toolbox

called NNV [186] which is publicly available for evaluation and comparison, (3) and a thorough evaluation

on the safety verification of the practical automatic emergency braking system.

In conclusion, the authors have proposed two efficient, exact and over-approximate reachability schemes

and an optimization-based approach for safety verification of CPS with RL controller where the safety spec-

ification is defined based on a nonlinear transformation of the system states. From thorough experiments on

the practical AEBS, the proposed method is computationally cheaper and less conservative than the existing

polyhedron approach. More important, it is applicable to real-world applications.

2.2 Partial Differential Equations

PDEs have been widely used to describe a wide range of phenomena such as fluid dynamics and quantum

mechanics that cannot be adequately described by ODEs [58]. As an example, a typical application for PDEs

is the modeling of congestion in highway networks [19], and one popular model for highway control is the

LWR model [118, 132]. Finite different methods have been widely used to solve PDEs [175].

2.3 Reachability Analysis

Reachability analysis is a solution to the reachability problem in the context of dynamical systems and is

the fundamental problem in safety verification of CPS. It computes the set of possible solutions of dynamical

systems subject to uncertain initial states and inputs. The problem of systems of linear ODEs has been studied

extensively. Set representations include but are not limited to: zonotopes [8], support functions [73], and level

sets [129]. Reachability analysis tools like SpaceEx [64] and Flow* [40], which utilize Taylor models, have

proven to be powerful. Order reduction abstraction also plays a significant role in evaluating models. The first

work combining reachability analysis with order reduction techniques is [81], and a more recent approach is

discussed in [188].

Although there is significant work developing reachability analysis and verification methods for dynam-

ical systems of ODEs and switched/hybrid extensions thereof, dynamical systems that utilize PDEs have

not been widely investigated. PDEs are capable of describing phenomena such as fluid dynamics, quantum

mechanics and digital signal processing [62] that ODEs do not adequately model. Reachability analysis for

one-dimensional heat equations with ranged input and initial condition, known as linear parabolic equations,

has previously been studied in [189]. In this context, the PDEs evolve in an infinite dimensional space and

must be discretized for computational purposes [183].

10

2.3.1 Reachability Analysis for One Dimensional Linear Parabolic Equations

As many CPS involve sensing and control of physical phenomena modeled as PDEs, reachability analysis

of PDEs provides novel methods for safety verification and falsification. As a first step to address this chal-

lenging problem, this paper proposes a reachability analysis approach leveraging the well-known Galerkin

Finite Element Method (FEM) for a class of one-dimensional linear parabolic PDEs with fixed but uncer-

tain inputs and initial conditions, which is a subclass of PDEs that is useful for modeling, for instance, heat

flows. In particular, a continuous approximate reachable set of the parabolic PDE is computed using linear

interpolation. Since a complete conservativeness is hardly achieved by using the approximate reachable set,

to enhance the conservativeness, the authors investigate the error bound between the numerical solution and

the exact analytically unsolvable solution to bloat the continuous approximate reachable set. This bloated

reachable set is then used for safety verification and falsification. In the case that the safety specification is

violated, the approach produces a numerical trace to prove that there exists an initial condition and input that

lead the system to an unsafe state.

Although the heat equation has been demonstrated to be a good benchmark for accessing the scalability

of verification techniques, a deeper study should be done for two reasons. Firstly, it is reasonable to have

a safety specification concerned with a region in space and not only concentrated at specific mesh points.

In other words, the authors are interested in continuous-space and not discrete-space reachability analysis.

Second, it is crucial to have an approach that works for more general types of inputs and initial conditions,

i.e., an input described by a nonlinear function in both time and space, and an initial condition defined by a

nonlinear spatial function.

This work [189] proposes a continuous reachability analysis approach for linear parabolic equations with

time invariant uncertain nonlinear inputs and initial conditions. By "continuous", it means that the continuity

in both space and time are investigated. The main contributions are : 1) an extension of the well-known

space-time Galerkin method and linear interpolation into a continuous reachability analysis approach for one

dimensional parabolic equation; 2) enhancing the conservativeness of the proposed method by investigating

and utilizing the error between the numerical solution and the exact analytically unsolvable solution; 3)

providing an implementation the proposed method in a prototype called pdev, which is available online for

further experimentation and evaluation.

In conclusion, a reachability analysis approach for linear parabolic equation is proposed based on the

well-known Galerkin FEM. The conservativeness of the method is enhanced by utilizing the error caused

by the Galerkin FEM to obtain a bloated continuous reachable set before using it to check the safety of a

system. The evaluation section has shown that the method is practically applicable where the safety verifica-

11

tion/falsification problem can be solved efficiently with an appropriate computation cost. Moreover, the time

complexity of the method is smaller than the traditional reachability analysis methods because the approach

is simulation-equivalent.

2.3.2 Reachability Analysis for High-Index Linear Differential Algebraic Equations

Although many methods have been developed for reachability analysis of CPS, most of them mentioned

above focus on CPS with ODE dynamics. There is a lack of methodology in analyzing systems with high-

index DAE dynamics. It is because the reachability analysis for DAE systems is more complex than ODE

systems, especially for high-index DAEs because they contain both a differential part (i.e., ODE) and al-

gebraic constraints (AC). It should be emphasized that there are efficient reachability analysis approaches

for DAE systems with index1 [9, 45, 48]. Dealing with index-1 DAE is slightly different from coping with

pure ODE because, with a consistent initial condition, a semi-explicit index-1 DAE can be converted to an

ODE. As CPS involving high-index DAE dynamics appear extensively in engineering and science such as

multi-body mechanics, electrical circuit design, heat and gas transfer, chemical process, atmospheric physics,

thermodynamic systems, and water distribution network [34, 57], there is an urgent need for novel reachabil-

ity analysis methods and tools that can either verify or falsify the safety properties of such CPS. Solving this

challenging problem is the main contribution of this research.

The novelty of the approach [187] comes from its objective in dealing with high index DAE which is a

popular class of dynamics that has not been addressed in the existing literature. In this paper, the authors

investigate the reachability analysis for large linear DAE systems with the index up to 3, which appear widely

in practice. There are a variety of definitions for the index of a linear DAE. However, throughout the paper,

the authors use the concept of tractability index proposed in [125] to determine the index of a linear DAE

system. The approach consists of three main steps (a) decoupling and consistency checking, (b) reachable set

computation, and (c) safety verification or falsification; that can be summarized as follows.

The first step is to use the Marz decoupling method [14, 125] to decouple a high index DAE into one

ODE subsystem and one or several algebraic constraint (AC) subsystems. The core step in decoupling is

constructing a set of admissible projectors which has not previously been discussed deeply in the existing

literature. In this paper, the authors propose a novel algorithm that can construct such admissible projectors

for a linear DAE system with the index up to 3 (most of DAE systems in practice have index from 1 to 3).

Additionally, the authors define a consistent space for the DAE because, unlike ODE reachability analysis

where the initial set of states can be freely defined by a user, to guarantee a numerical solution for the DAE

system, the initial state and inputs of such DAE system must be consistent and satisfy certain constraints. It

is important to emphasize that the decoupling and consistency checking methods used in the approach can

12

be combined with existing over-approximation reachability analysis methods [7, 64][2,19] to compute the

over-approximated reachable sets for high-index, linear DAE systems with small to medium dimensions.

The second step in the approach is reachable set computation. Since the main objective is to verify

or falsify large linear DAEs, the authors extend ODE simulation based reachability analysis to DAEs. In

particular, the authors modify the generalized star-set proposed in [13] to enhance the efficiency in checking

the initial condition consistency and safety for DAEs. From a consistent initial set of states and inputs, the

reachable set of a DAE system can be constructed by combining the reachable sets of its subsystems. It is

also worth pointing out that the piecewise constant inputs assumption for ODE with inputs used in [13] may

lead a DAE system to impulsive behavior. Therefore, in this paper, the authors assume the inputs applied to

the system are smooth functions. Such the inputs can be obtained by smoothing piecewise constant inputs

with filters.

The last step in the approach is to verify or falsify the safety properties of the DAE system using the

constructed reachable set computed in the second step. In this paper, the authors consider linear safety speci-

fications. the authors are interested in checking the safety of the system in a specific direction defined using

a directional matrix. Using the modified star-set and the directional matrix, checking the safety property can

be solved efficiently as a low-dimensional feasibility linear programming problem. In the case of violation,

the approach generates a counterexample trace that falsifies the system safety. The main contributions of the

paper are as follows. 1. A novel reachability analysis approach for high-index linear DAE systems developed

based on the effective combination of a decoupling method and a reachable set computation using star-set.

To the best of the knowledge, this problem has not been addressed in the existing literature. 2. An end-to-end

design and implementation of the approach in a Python toolbox, called Daev, which is publicly available for

verifying high-index linear DAE systems. 3. An extensive evaluation that demonstrates the capability of the

approach in verifying/falsifying a wide range of practical, high-index linear DAE systems where the number

of state variables varies from several to thousands

2.3.3 Star-Based Reachability Analysis for Deep Neural Networks

In this paper [185], the authors propose a fast and scalable approach for the exact and over-approximate

reachability analysis of DNN with ReLU activation functions using the concept of star sets [13], or shortly

“star”. Star fits perfectly for the reachability analysis of DNNs due to its following essential characteris-

tics: 1) an efficient (exact) representation of large input sets; 2) fast and cheap affine mapping operations;

3) inexpensive intersections with half-spaces and checking empty. By utilizing star, the authors avoid the

expensive affine mapping operation in polyhedron-based approach [23] and thus, reduce the verification time

significantly. The approach performs reachability analysis for feedforward DNNs layer-by-layer. In the case

13

of exact analysis, the output reachable set of each layer is a union of a set of stars. Based on this observa-

tion, the star-based exact reachability algorithm naturally can be designed for efficient execution on multicore

platforms where each layer can handle multiple input sets at the same time. In the case of over-approximate

analysis, the output reachable set of each layer is a single star which can be constructed by doing point-wise

over-approximation of the reachable set at all neurons of the layer.

The authors evaluate the proposed algorithms in comparison with the polyhedron approach [186], Relu-

plex [98], zonotope [171] and abstract domain [172] approaches on safety verification of the ACAS Xu neural

networks [94] and robust certification of image classification DNN. The experimental results show that the

exact reachability algorithm can achieve 19 times faster than Reluplex when running on multi-core platform

and > 70 times faster than the polyhedron approach. Notably, the exact algorithm can visualize the precise

behavior of the ACAS Xu networks and can construct the complete set of counter example inputs in the case

that a safety property is violated. The over-approximate reachability algorithm is averagely 118 times faster

than Reluplex. It successfully verifies many safety properties of ACAS Xu networks while the zonotope and

abstract domain approaches fail due to their large over-approximation errors. the overapproximate reachabil-

ity algorithm also provides a better robustness certification for image classification DNN in comparison with

the zonotope and abstract domain approaches. In summary, the main contributions of this paper are: 1)pro-

pose novel, fast and scalable methods for the exact and over-approximate reachability analysis of DNNs; 2)

implement the proposed methods in NNV toolbox that is available online for evaluation and comparison; 3)

provide a thorough evaluation of the new methods via real-world case studies.

In conclusion, the authors proposed two reachability analysis algorithms for DNNs using star sets, one

that is exact (sound and complete) but has scalability challenges and one that over-approximates (sound)

with better scalability. The exact algorithm can compute and visualize the exact behaviors of DNNs. The

exact method is more efficient than standard polyhedra approaches, and faster than SMT-based approaches

when running on multi-core platforms. The over-approximate algorithm is much faster than the exact one,

and notably, it is much less conservative than recent zonotope and abstract-domain based approaches. The

algorithms are applicable for real world applications as shown in the safety verification of ACAS Xu DNNs

and robustness certification of image classification DNNs.

2.4 Physics-Based Machine Learning

Physics-based models of dynamical systems are often used to study engineering and environmental systems.

Despite their extensive use, these models have several well-known limitations due to incomplete or inaccu-

rate representations of the physical processes being modeled. Given rapid data growth due to advances in

sensor technologies, there is a tremendous opportunity to systematically advance modeling in these domains

14

by using machine learning (ML) methods. However, direct application of black-box ML models to a scien-

tific problem encounters several major challenges. First, in the absence of adequate information about the

physical mechanisms of real-world processes, ML approaches are prone to false discoveries and can also ex-

hibit serious inconsistencies with known physics. This is because scientific problems often involve complex

spaces of hypotheses with non-stationary relationships among the variables that are difficult to capture solely

from the data. Second, black-box ML models suffer from poor interpretability since they are not explicitly

designed for representing physical relationships and providing mechanistic insights. Third, the data available

for several scientific problems are far smaller than what is needed to effectively train advanced ML mod-

els. Leveraging physics will be key to constrain hypothesis spaces to do ML in such small sample regimes.

Hence, neither an ML-only nor a physics-only approach can be considered sufficient for knowledge discovery

in complex scientific and engineering applications. Instead, there is a need to explore the continuum between

physics-based and ML models, where both physics and data are integrated in a synergistic manner. Next

the authorsoutline issues involved in building such a hybrid model that is already beginning to show great

promise [50].

In science and engineering applications, a physical model often predicts values of many variables. Ma-

chine learning models can also generate predictions for many variables (e.g., by having multiple nodes in

the output layer of a neural network). Most ML algorithms make use of a loss function that captures the

difference between predicted and actual (i.e., observed values) to guide the search for parameter values that

attempts to minimize this loss function. Although, such empirical models are often used in many scientific

communities as alternatives to physical models, they fail to take into account many physical aspects of mod-

eling. In the following, the authorslist some of these. In science and engineering applications, all errors (i.e.,

difference between predicted and observed values) may not be equally important. For example, for the lake

temperature monitoring application, accuracy at surface and at high depth can be more important than error

at the middle levels of the lake.

Instead of minimizing the difference between predicted and observed values, it may be more important to

optimize the prediction of a different physical quantity, which can be computed from the observed or predicted

values. For example, for certain lake temperature monitoring applications, the ability to correctly predict the

depth of thermocline (i.e., the depth at which temperature gradient is maximum) can be more important than

correctly predicting the temperature profile at all depths. Values of different variables predicted by a science

and engineering model may have certain relationships (guided by physical laws) across space and time. For

example, in the lake temperature monitoring application, predicted values of the temperature at different

depths should be such that denser water is at lower depth (note that water is heaviest at 4 degree centigrade).

As another example, changes in temperature profile across time involves transfer of energy and mass across

15

different layers of a lake that must be conserved according to physical laws.

Meanwhile, physics-based numerical simulations have become indispensable in civil engineering appli-

cations, such as seismic risk mitigation, irrigation management, structural design and analysis, and structural

health monitoring. Civil engineers and scientists may now utilize sophisticated models for real-world appli-

cations, with ultra-realistic simulations involving millions of degrees of freedom, thanks to the advancement

of high-performance computers. However, in the civil engineering sector, such simulations are too time-

consuming to be incorporated fully into an iterative design process. They are often restricted to the final

validation and certification stages, while most design processes rely on simpler models. Accelerating com-

plex simulations is an important problem to address since it would make it easier to apply numerical tools

throughout the design process. The development of numerical methods for rapid simulations would also en-

able novel model applications such as improving construction productivity, which has yet to be fully utilized

due to model complexity. Uncertainty quantification is another critical example of analysis that might be

feasible if simulation costs were lowered substantially. Indeed, the physical system environment, which is

generally unknown, affects the values of interest monitored in numerical simulations. In some situations,

these uncertainties significantly impact simulation results, necessitating estimating probability distributions

for the quantities of interest to assure the product’s dependability. Neither an ML-only nor a scientific

knowledge-only method can be considered sufficient for complicated scientific and technical applications.

Researchers are beginning to investigate the continuum between mechanistic and ML models, synergizing

scientific knowledge and data.

There have been several reviews on ML civil engineering. However, limited studies have been conducted

on physics-based ML and synthesizing a road map for guiding subsequent research to advance the proper

use of physics-based ML in civil engineering applications. Furthermore, there are few works focused on

the fundamental physics-based ML models in civil engineering. This study investigates a more profound

connection of ML methods with physics models. Even though the notion of combining scientific principles

with ML models has only recently gained traction [95], there has already been a significant amount of research

done on the subject. Researchers focus on physics models, ML models, and application scenarios to solve

their problems in civil engineering.

2.4.1 Integrating Physics-Based Modeling With Machine Learning: A Survey

The goal of this survey is to bring these exciting developments to the ML community, to make them aware

of the progress that has been made, and the gaps and opportunities that exist for advancing research in this

promising direction. the authorshope that this survey will also be valuable for scientists who are interested

in exploring the use of ML to enhance modeling in their respective disciplines. Please note that work on

16

this topic has been referred to by other names, such as "physics-guided ML," "physics-informed ML," or

"physics-aware AI," although it covers many scientific disciplines. In this survey, the authorsalso use the

terms "physics-guided" or "physics," which should be more generally or interpreted as science or scientific

knowledge.

The focus of this survey is on approaches that integrate mechanistic modeling with ML, using primarily

ideas from physics and other scientific disciplines. This distinguishes the survey from other works that focus

on more general knowledge integration into machine learning [2, 193] and other works covering physics

integration into ML in specific domains (e.g., cyber-physical systems [147], chemistry [136]). This survey

creates a novel taxonomy specific to science-based knowledge and covers a wide array of both methodologies

and categories.

First-principles models are used extensively in a wide range of engineering and environmental applica-

tions. Even though these models are based on known physical laws, in most cases, they are necessarily

approximations of reality due to incomplete knowledge of certain processes, which introduces bias. In ad-

dition, they often contain a large number of parameters whose values must be estimated with the help of

limited observed data, degrading their performance further, especially due to heterogeneity in the underlying

processes in both space and time. The limitations of physics-based models cut across discipline boundaries

and are well known in the scientific community (e.g., see Gupta et al. [127] in the context of hydrology).

ML models have been shown to outperform physics-based models in many disciplines (e.g., materials

science [99, 159, 198], applied physics [15, 116], aquatic sciences, atmospheric science, biomedical science,

computational biology). A major reason for this success is that ML models (e.g., neural networks), given

enough data, can find structure and patterns in problems where complexity prohibits the explicit program-

ming of a system’s exact physical nature. Given this ability to automatically extract complex relationships

from data, ML models appear promising for scientific problems with physical processes that are not fully

understood by researchers, but for which data of adequate quality and quantity is available. However, the

black-box application of ML has met with limited success in scientific domains due to a number of reasons

[92, 95]: (i) while state-of-the-art ML models are capable of capturing complex spatio-temporal relation-

ships, they require far too much labeled data for training, which is rarely available in real application settings,

(ii) ML models often produce scientifically inconsistent results; and (iii) ML models can only capture rela-

tionships in the available training data, and thus cannot generalize to out-of-sample scenarios (i.e., those not

represented in the training data).

The key objective here is to combine elements of physics-based modeling with state-of-the-art ML mod-

els to leverage their complementary strengths. Such integrated physics-ML models are expected to better

capture the dynamics of scientific systems and advance the understanding of underlying physical processes.

17

Early attempts for combining ML with physics-based modeling in several applications (e.g., modeling the

lake phosphorus concentration [82] and lake temperature dynamics) have already demonstrated its potential

for providing better prediction accuracy with a much smaller number of samples as well as generalizability in

out-of-sample scenarios. In many physical systems, governing equations are known, but direct numerical so-

lutions of PDEs using common methods, such as the Finite Elements Method or the Finite Difference Method

[63], are prohibitively expensive. In such cases, traditional methods are not ideal or sometimes even possible.

A common technique is to use an ML model as a surrogate for the solution to reduce computation time [52].

In particular, NN solvers can reduce the high computational demands of traditional numerical methods into a

single forward-pass of a NN. Notably, solutions obtained via NNs are also naturally differentiable and have

a closed analytic form that can be transferred to any subsequent calculations, a feature not found in more

traditional solving methods [106]. Especially with the recent advancement of computational power, neu-

ral networks models have shown success in approximating solutions across different kinds of physics-based

PDEs [100], including the difficult quantum many-body problem and many-electron Schrödinger equation

[80]. As a step further, deep neural networks models have shown success in approximating solutions across

high dimensional physics-based PDEs previously considered unsuitable for approximation by ML [79, 173].

However, slow convergence in training, limited applicability to many complex systems, and reduced accuracy

due to unawareness of physical laws can prove problematic.

In many physical systems, governing equations are known, but direct numerical solutions of PDEs us-

ing common methods, such as the Finite Elements Method or the Finite Difference Method [63], are pro-

hibitively expensive. In such cases, traditional methods are not ideal or sometimes even possible. A common

technique is to use an ML model as a surrogate for the solution to reduce computation time [52]. In partic-

ular, NN solvers can reduce the high computational demands of traditional numerical methods into a single

forward-pass of a NN. Notably, solutions obtained via NNs are also naturally differentiable and have a closed

analytic form that can be transferred to any subsequent calculations, a feature not found in more traditional

solving methods [106]. Especially with the recent advancement of computational power, neural networks

models have shown success in approximating solutions across different kinds of physics-based PDEs [12],

including the difficult quantum many-body problem and many-electron Schrodinger equation. As a step fur-

ther, deep neural networks models have shown success in approximating solutions across high dimensional

physics-based PDEs previously considered unsuitable for approximation by ML. However, slow convergence

in training, limited applicability to many complex systems, and reduced accuracy due to unawareness of

physical laws can prove problematic.

When the governing equations of a dynamical system are known explicitly, they allow for more robust

forecasting, control, and the opportunity for analysis of system stability and bifurcations through increased

18

interpretability [158]. Furthermore, if the learned mathematical model accurately describes the processes

governing the observed data, it therefore can generalize to data outside of the training domain. However, in

many disciplines (e.g., neuroscience, cell biology, finance, epidemiology) dynamical systems have no formal

analytic descriptions. Often in these cases, data is abundant, but the underlying governing equations remain

elusive. In this section, the authorsdiscuss equation discovery systems that do not assume the structure of the

desired equation , but rather explore a space a large space of possibly nonlinear mathematical terms.

Advances in ML for the discovery of these governing equations has become an active research area with

rich potential to integrate principles from applied mathematics and physics with modern ML methods. Early

works on the data-driven discovery of physical laws relied on heuristics and expert guidance and were focused

on rediscovering known, non-differential, laws in different scientific disciplines from artificial data [72, 109].

This was later expanded to include real-world data and differential equations in ecological applications [56].

Recently, general and robust data-driven discovery of potentially unknown governing equations has been

pioneered by [27], where they apply symbolic regression to differences between computed derivatives and

analytic derivatives to determine underlying dynamical systems. More recently, works have used sparse

regression built on a dictionary of functions and partial derivatives to construct governing equations [32].

Lagergren et al. [107] expand on this by using ANNs to construct the dictionary of functions. These sparse

identification techniques are based on the principle of Occam’s Razor, where the goal is that only a few

equation terms be used to describe any given nonlinear system.

This survey focuses primarily on improving the modeling of engineering and environmental systems that

are traditionally solved using physics-based modeling. However, the general ideas of physics-informed ML

have wider applicability, and such research is already being pursued in many other contexts. For example,

there are several interesting works in system control which often involves reinforcement learning techniques

(e.g., combining model predictive control with Gaussian processes in robotics [11], informed priors for neu-

roscience modeling, physics-based reward functions in computational chemistry, and fluidic feedback control

from a cylinder). Other examples include identifying features of interest in the output of computational simu-

lations of physics-based models (e.g., high-impact weather predictions, segmentation of climate models, and

tracking phenomena from climate model data).

2.4.2 Physics Informed Deep Learning

With the explosive growth of available data and computing resources, recent advances in machine learning

and data analytics have yielded transformative results across diverse scientific disciplines, including image

recognition [105], natural language processing [111], cognitive science [108], and genomics [5]. However,

more often than not, in the course of analyzing complex physical, biological or engineering systems, the

19

cost of data acquisition is prohibitive, and the authorsare inevitably faced with the challenge of drawing

conclusions and making decisions under partial information. In this small data regime, the vast majority of

state-of-the art machine learning techniques (e.g., deep/convolutional/recurrent neural networks) are lacking

robustness and fail to provide any guarantees of convergence.

At first sight, the task of training a deep learning algorithm to accurately identify a nonlinear map from a

few - potentially very high-dimensional input and output data pairs seems at best naive. Coming to the rescue,

for many cases pertaining to the modeling of physical and biological systems, there an exist a vast amount

of prior knowledge that is currently not being utilized in modern machine learning practice. Let it be the

principled physical laws that govern the time-dependent dynamics of a system, or some empirical validated

rules or other domain expertise, this prior information can act as a regularization agent that constrains the

space of admissible solutions to a manageable size (for e.g., in incompressible fluid dynamics problems by

discarding any non-realistic low solutions that violate the conservation of mass principle). In return, encoding

such structured information into a learning algorithm results in amplifying the information content of the data

that the algorithm sees, enabling it to quickly steer itself towards the right solution and generalize well even

when only a few training examples are available.

The first glimpses of promise for exploiting structured prior information to construct data-efficient and

physics-informed learning machines have already been showcased in the recent studies of [139, 148, 149].

There, the authors employed Gaussian process regression [8] to devise functional representations that are tai-

lored to a given linear operator, and were able to accurately infer solutions and provide uncertainty estimates

for several prototype problems in mathematical physics. Extensions to nonlinear problems were proposed in

subsequent studies by Raissi et. al. [151, 152] in the context of both inference and systems identification.

Despite the flexibility and mathematical elegance of Gaussian processes in encoding prior information, the

treatment of nonlinear problems introduces two important limitations. First, in [151, 152] the authors had

to locally linearize any nonlinear terms in time, thus limiting the applicability of the proposed methods to

discrete-time domains and compromising the accuracy of their predictions in strongly nonlinear regimes.

Secondly, the Bayesian nature of Gaussian process regression requires certain prior assumptions that

may limit the representation capacity of the model and give rise to robustness/brittleness issues, especially

for nonlinear problems[140]. The authors have introduced physics informed neural networks, a new class

of universal function approximators that is capable of encoding any underlying physical laws that govern a

given data-set, and can be described by partial differential equations.

In this work, the authors design data-driven algorithms for inferring solutions to general nonlinear partial

differential equations, and constructing computationally efficient physics-informed surrogate models. The

resulting methods showcase a series of promising results for a diverse collection of problems in computational

20

science, and open the path for endowing deep learning with the powerful capacity of mathematical physics

to model the world around us. As deep learning technology is continuing to grow rapidly both in terms of

methodological and algorithmic developments, the authorsbelieve that this is a timely contribution that can

benefit practitioners across a wide range of scientific domains. Specific applications that can readily enjoy

these benefits include, but are not limited to, data-driven forecasting of physical processes, model predictive

control, multi-physics/multiscale modeling and simulation.

The proposed methods should not be viewed as replacements of classical numerical methods for solving

partial differential equations (e.g., finite elements, spectral methods, etc.). Such methods have matured over

the last 50 years and, in many cases, meet the robustness and computational efficiency standards required

in practice. The message here is that classical methods such as the Runge-Kutta time-stepping schemes

can coexist in harmony with deep neural networks, and offer invaluable intuition in constructing structured

predictive algorithms. Moreover, the implementation simplicity of the latter greatly favors rapid development

and testing of new ideas, potentially opening the path for a new era in data-driven scientific computing. This

will be further highlighted in the second part of this paper, in which physics informed neural networks are

put to the test of data-driven discovery of partial differential equations.

In terms of future work, one pressing question involves addressing the problem of quantifying the un-

certainty associated with the neural network predictions. Although this important element was naturally

addressed in previous work employing Gaussian processes [151], it is not captured by the proposed method-

ology in its present form and requires further investigation.

In the second part [150], the authors have introduced physics informed neural networks, a new class of

universal function approximators that is capable of encoding any underlying physical laws that govern a given

data-set, and can be described by partial differential equations. In this work, the authorsdesign data-driven al-

gorithms for discovering dynamic models described by parametrized nonlinear partial differential equations.

The inferred models allow us to construct computationally efficient and fully differentiable surrogates that can

be subsequently used for different applications including predictive forecasting, control, and optimization.

Although a series of promising results were presented, the reader may agree that this two-part treatise cre-

ates more questions than it answers. In a broader context, and along the way of seeking further understanding

of such tools, the authorsbelieve that this work advocates a fruitful synergy between machine learning and

classical computational physics that has the potential to enrich both fields and lead to high-impact develop-

ments.

21

2.5 Physics-Guided Recurrent Neural Networks

The Physics-Guided Recurrent Neural Network models (PGRNN) is a general framework for modeling phys-

ical phenomena with potential applications for many disciplines. The PGRNN model has a number of novel

aspects:

1. Many temporal processes in environmental/engineering systems involve complex long-term temporal

dependencies that cannot be captured by a plain neural network or a simple temporal model such as a standard

RNN. In contrast, in PGRNN the authors use advanced ML models such as LSTM, which use the internal

memory structure to preserve long-term temporal dependencies and thus has the potential to capture complex

physical pattern that last over several months or years.

2. The PGRNN can incorporate explicit physical laws such as energy conservation or mass conservation.

This is done by introducing additional variables in the recurrent structure to keep track of physical states that

can be used to check for consistency with physical laws. In addition, the authorsgeneralize the loss function

to include a physics-based penalty. Thus, the overall training loss is L = Supervised loss (Ypred ,Ytrue) +

Physics-based Penalty, where the first term on the right hand side represents the supervised training loss

between the predicted outputs Ypred and the observed outputs Ytrue (e.g., RMSE in regression or cross-entropy

in classification), and the second term represents the physical consistency-based penalty. In addition, to

favoring physically consistent solutions, another major side benefit of including physics-based penalty in the

loss function is that it can be applied even to instances for which output (observed) data is not available since

the physics-based penalty can be computed as long as input (driver) data is available. Note that in absence

of physics based penalty, training loss can be computed only on those time steps where observed output is

available. Inclusion of physics based loss term allows a much more robust training, especially in situations,

where observed output is available on only a small number of time steps.

3. Physics based/mechanistic models contain a lot of domain knowledge that goes well beyond what can

be captured as constraints such conservation laws. To leverage this knowledge, the authors generate a large

amount of “synthetic” observation data by executing physics based models for a variety input drivers (that are

easily available) and use the synthetic observation to pre-train the ML model. The idea here is that training

from synthetic data generated by imperfect physical models may allow the ML model to get close enough to

the target solution, so only a small amount of observed data (ground truth labels) is needed to further refine

the model. In addition, the synthetic data is guaranteed to be physically consistent due to the nature of the

process model being founded on physical principles.

The PGRNN is developed for the purpose of predicting lake water temperatures at various depths at the

daily scale. The temperature of water in a lake is known to be an ecological “master factor” that controls the

22

growth, survival, and reproduction of fish (Roberts et al. 2013). Warming water temperatures can increase

the occurrence of aquatic invasive species, which may displace fish and native aquatic organisms, result in

more harmful algal blooms. Understanding temperature change and the resulting biotic “winners and losers”

is timely science that can also be directly applied to inform priority action for natural resources. Given

the importance of this problem, the aquatic science community has developed numerous models for the

simulation of temperature, including the General Lake Model (GLM), which simulates the physical processes

(e.g., vertical mixing, and the warming or cooling of water via energy lost or gained from fluxes such as solar

radiation and evaporation, etc.). As is typical for any such model, GLM is only an approximation of the

physical reality, and has a number of parameters (e.g., water clarity, mixing efficiency, and wind sheltering)

that often need to be calibrated using observations.

2.5.1 Hydronets: Leveraging River Structure for Hydrologic Modeling

HydroNets [131] is a family of deep neural network models designed for hydrologic forecasting. HydroNets

leverages the prior knowledge of the sub-basins’ structure of a hydrologic region. HydroNets also enforce

some weight sharing between sub-basins, resulting in a shared model and basin-specific models that cor-

respond to the general-physical hydrologic modeling which is shared among basins vs. the basin-specific

modeling that account for basin properties. The proposed architecture is modular, thus making it convenient

to understand and improve. the authorspresent experimental results over two regions in India which convinc-

ingly show that the proposed model utilizes learning examples from the whole region, avoids overfitting, and

performs better when training data is scarce.

2.5.2 Graph-based Reinforcement Learning for Active Learning in Real Time

The last few years have witnessed a surge of interest in building ML methods for scientific applications

in diverse disciplines, e.g., hydrology [91], biological sciences [214], and climate science [6]. Given the

promising results from previous research, expectations are rising for using ML to accelerate scientific discov-

ery and help address some of the biggest challenges that are facing humanity such as water quality, climate,

and healthcare. However, ML models focus on mining the statistical relationships from data and thus often

require large amount of labeled observation data to tune their model parameters.

Collecting labeled data is often expensive in scientific applications due to the substantial manual labor

and material cost required to deploy sensors or other measuring instruments. For example, collecting water

temperature data commonly requires highly trained scientists to travel to sampling locations and deploy

sensors within a lake or stream, incurring personnel and equipment costs for data that may not improve model

predictions. To make the data collection more efficient, the authorsaim to develop a data-driven method that

23

assists domain experts in determining when and where to deploy measuring instruments in real time so that

data collection can be optimized for training ML models.

Active learning has shown great promise for selecting representative samples [61, 164]. In particular, it

aims to find a query strategy based on which the authorscan annotate samples that optimize the training of a

predictive ML model. Traditional pool-based active learning methods are focused on selecting query samples

from a fixed set of data points. These techniques have been widely explored in image recognition [68, 116]

and natural language processing [169, 221]. These approaches mostly select samples based on their uncer-

tainty level, which can be measured by Bayesian inference [13] and Monte Carlo drop-out approximation

[67]. The samples with higher uncertainty tend to stay closer to the current decision boundary and thus can

bring higher information gain to refine the boundary. Some other approaches also explore the diversity of

samples so that they can annotate samples different with those that have already been labeled [35, 168, 201].

However, the pool-based active learning approaches cannot be used in scientific problems as they assume

all the data points are available in a fixed set while scientific data have to be annotated in real time. When

monitoring scientific systems, new labels can only be collected by deploying sensors or other measuring

instruments. Such labeling decisions have to be made immediately after the authorsobserve the data at the

current time, which requires balancing the information gain against the budget cost. Hence, these labeling

decisions are made without access to future data and also cannot be changed afterwards.

Moreover, existing approaches do not take into account the representativeness of the selected samples

given their spatial and temporal context. Scientific systems commonly involve multiple physical processes

that evolve over time and also interact with each other. For example, in a river network, different river

segments can have different thermodynamic patterns due to different catchment characteristics as well as

climate conditions. Connected river segments can also interact with each other through the water advected

from upstream to downstream segments. In this case, new annotated samples can be less helpful if they

are selected from river segments that have similar spatio-temporal patterns with previously labeled samples.

Instead, the model should take samples that cover different time periods and river segments with distinct

properties.

To address these challenges, the authors propose a new framework Graph-based Reinforcement Learning

for Real-Time Labeling (GR-REAL), in which the authors formulate real-time active learning problem as a

Markov decision process. This proposed framework is developed in the context of modeling streamflow and

water temperature in river networks but the framework can be generally applied to many complex physical

systems with interacting processes. The method makes labeling decisions based on the spatial and temporal

context of each river segment as well as the uncertainty level at the current time. Once the authors determine

the actions of whether to label each segment at the current time step, the collected labels can be used to refine

24

the way the authors represent the spatio-temporal context and estimate uncertainty for the observed samples

at the next time step (i.e., the next state).

In particular, the proposed framework consists of a predictive model and a decision model. The predictive

model extracts spatial and temporal dependencies from data and embeds such contextual information in a

state vector. The predictive model also generates final predictions and estimates uncertainty based on the

obtained embeddings. At the same time, the decision model is responsible for determining whether the

authors will take labeling actions at the current time step based on the embeddings and outputs obtained from

the predictive model. The collected labels are then used to refine the predictive model. the authors train

the decision model via reinforcement learning using past observation data. During the training phase, the

reward of labeling each river segment at each time step can be estimated as the expectation of accumulated

performance improvement via dynamic programming over training sequential data.

Since this proposed data-driven method requires separate training data from the past history, which can

be scarce in many scientific systems, the authors also propose a way to transfer knowledge from existing

physics-based models which are commonly used by domain scientists to study environmental and engineering

problems. The transferred knowledge can be used to initialize the decision model and thus less training data

is required to fine-tune it to a quality model. the authors evaluate the proposed framework in predicting

streamflow and water temperature in the Delaware River Basin. The proposed method produces superior

prediction performance given limited budget for labeling. the authors also show that the distribution of

collected samples is consistent with the dynamic patterns in river networks.

The authors evaluate the proposed framework in predicting streamflow and water temperature in the

Delaware River Basin. The proposed method produces superior prediction performance given limited budget

for labeling. the authors also show that the distribution of collected samples is consistent with the dynamic

patterns in river networks.

In this paper, the authors propose the GR-REAL framework which uses the spatial and temporal contex-

tual information to select query samples in real time. the authors demonstrate the effectiveness of GR-REAL

in selecting informative samples for modeling streamflow and water temperature in the Delaware River Basin.

the authors also show that policy transfer can further improve the performance when the authors have less

training data. The proposed method may also be used to measure other water quality parameters for which

sensors are costly or too difficult to maintain (e.g., metal, nutrients, or algal biomass).

While GR-REAL achieves better predictive performance, it estimates potential reward based on accu-

racy improvement and thus remains limited in selecting samples that indeed help understand an ecosystem.

For example, the GR-REAL ignores low-flow segments as they contribute less to the overall accuracy loss.

Studying this element of GR-REAL has promise for future work.

25

2.5.3 Physics-Guided Recurrent Graph Networks

Recent works have shown the promise of integrating physics into ML models in improving the predictive

performance and generalizability in scientific problems. This is commonly conducted in several ways, in-

cluding physics-guided model architectures [10, 134], physics-guided loss functions [91, 156], and other

hybrid approaches [194].

There are several ways to incorporate known physics into ML models. For example, one can embed

known physical principles into neural networks by ascribing physical meaning for certain neurons in the

NN. For example, [133] build a new architecture to insert physics-constrained variables as the intermediate

variables in the convolutional neural networks. This method has been tested for predicting drag force on

particle suspensions in moving fluids and has achieved improved performance. Another direction is to use

machine learning architecture to encode invariance and symmetries that are inherent of a physical system. In

turbulence modeling and fluid dynamics [119] defines a tensor basis neural network to embed the fundamental

principle of rotational invariance into neural networks for improved prediction accuracy.

When applied to systems with interacting processes, e.g., a river network, the authors need to build ML

models that can handle such interactions. The Graph Convolutional Networks (GCN) model has proven to be

effective in automatically modeling node interactions in a graph. The use of GCN has also shown improved

prediction accuracy in several scientific problems [146, 209, 222]. In a previous work, Jia et al. [92] has

leveraged physics to guide the extraction of hidden variables that are propagated in the GCN model. This

method has been shown to produce better prediction accuracy as well as improved generalizability.

The architecture of Physics-Guided Recurrent Graph Networks (PGRGrN) is based on RNN and GCN,

which explicitly captures the spatial interactions among different river segments as well as their temporal

dynamics. Modeling of the spatial and temporal context is critical for the global ML model as it enables

learning of different behavior patterns for different river segments even when they have similar input features

on certain dates.

This architecture proposes to utilize the intermediate variables simulated by the physics-based model to

guide the learning process of the graph neural networks. This approach aims to enforce a physical interpre-

tation to latent variables learned from each river segment by transferring the prior knowledge encoded by

the physics-based model to the proposed ML model. This architecture design a new loss function to ensure

that the global ML model can simultaneously capture the local patterns of all the different segments. The

local patterns of each segment can be extracted using an individual ML model trained only for this segment

using simulation data (which is plentiful). Then during the training of the global ML model, the authors use a

distance-based loss function, the contrastive loss function, to enforce its consistency with the extracted local

26

patterns.

Data assimilation has been widely used in physics-based modeling approaches with the aim to optimally

adjust the model state of a system with recent observations. There are many data assimilation approaches used

for physics-based models and they differ in their assumptions about the distributions of the model and data

predictions and speed of computation. The Kalman filter, which iteratively estimates the next state through a

forward process and then updates the state using new observations, is a popular data assimilation technique

for physics-based models. Many variations of the Kalman filter have also been implemented [59]. Despite

their extensive use, these approaches can be computationally expensive to implement when the authors have

a large state space and/or non-linear system dynamics. Recently, researchers have started to use neural

networks as an alternative way for implementing data assimilation [30, 60]. Note that this is different from

online incremental learning in that model parameters remain the same but only states are changed. The

intuition of data assimilation is to adjust the model state when they are disturbed by external factors that

are not captured by input features. For example, Brajard et al. [30] propose a two-stage process: (1) in the

training phase, model parameters (i.e., network weights) are trained using observations, and (2) in the data

assimilation phase, model parameters are fixed and the model state is optimized to match observations using

back-propagation.

Neural network models require an initial choice of model parameters before training. Poor initialization

can cause models to anchor in local minima, which is especially true for complex models. Transfer learning

has been widely used in computer vision [180], where the pretrained models from a related large-scale dataset

are fine-tuned with limited training data to fit the target task. In scientific problems, the authors can use a

physics-based model’s simulated data to pre-train the ML model. This approach can also alleviate data

paucity issues. Read et al. [156] show that recurrent neural networks after being pre-trained using simulation

outputs are able to generalize better to unseen scenarios than pure physics-based models or machine learning

models. Jia et al. also extensively discuss this strategy [92]. They pre-train their Physics-Guided Recurrent

Neural Network models for lake temperature modeling on simulated data generated from a physics-based

model and fine-tune it with little observed data. They show that pretraining can significantly reduce the

training data needed for a quality model. Moreover, they show that machine learning models can still benefit

from such pre-training process by learning general, physically consistent patterns (e.g., seasonal cycles) even

when physical simulations are biased.

2.5.4 Physics-Guided Machine Learning from Simulation Data

In [92], the authors propose a new framework, simulation-guided learning (SIMLR), which extracts the gen-

eral physical knowledge jointly from multiple sets of physical simulations with imperfect parameterizations.

27

The authors also explore the relationship between observation data and simulation data and identify parame-

ter settings that produce the most accurate predictions over different locations and time periods. In particular,

the authors first build a spatial-temporal network (STN) architecture to represent the spatial and temporal re-

lationships in the dynamical system. Given that most physical parameters determine specific conditions that

control how the system states react to external changes, the authors represent such conditioning factors using

a set of gating variables in the ML architecture. The gating variables are used to filter the information from

the current time step, previous time steps, and the spatial neighborhood. The filtered information is combined

to update the state of the ML model. Then the authors propose a new pre-training strategy that leverages

general physical patterns from different sets of simulation data to inform the initialization of the STN model.

The idea is that this initialized model can be easily adjusted to fit each set of simulation data by slightly

altering gating variables. After the initialization, the authors further refine the model using true observations

via a contrastive learning process. The contrastive learning process aims to explore the similarity of relations

between observations and different sets of simulation data and further transfer the knowledge from specific

simulations that are closer to the observed reality.

The authors evaluate the performance in two societally relevant applications, modeling water tempera-

ture in a lake system and water temperature in river networks. Although predicting the same variable, these

two applications have distinct spatio-temporal drivers of water temperature and focal parameters for physics-

based calibration. The authors demonstrate the effectiveness of model initialization using general physical

knowledge and show that the method can achieve good predictive performance even with very sparse ob-

servation data. The authors also analyze the similarity relationships learned from the contrastive loss and

provide scientific interpretability. The method has shown promise in discovering variations of physical pa-

rameters across space and time while traditional physics-based model can often take fixed parameter values.

Moreover, the method under the guidance of general physical relationships can better generalize to different

scenarios.

2.6 Turbulent Flows Reconstruction

Computational fluid dynamics (CFD) has proven to be a very effective research tool in a very wide variety of

disciplines, including engineering, science, medicine and more [199]. For its applications in turbulent flows,

however, the range of the temporal & spatial scales is too broad to be captured by brute force direct numerical

simulations (DNS) [49]. Large eddy simulation (LES) provides an alternative, by filtering the small-scale

scales of transport and concentrating on the larger scale energy containing eddies [161]. By this filtering, LES

can be conducted on coarser grids as compared to those required by DNS. The penalty, understandably, is that

LES generated data are of lower accuracy compared to DNS. Appraisal of LES predictions and assessments

28

of its fidelity as compared to DNS, have been of interest in the turbulence research community for the past

several decades [74, 144].

Machine learning, including super-Resolution methods [141], have shown great success in reconstructing

high-resolution data in a variety of commercial applications. For example, convolutional neural networks

(CNNs) and their extensions, e.g., SRCNN [53], RCAN [219], and SRGAN [113], have proven very effective

in directly mapping low-resolution images to high-resolution images. The effectiveness of these methods

mainly come from the power of CNNs in automatically extracting representative spatial features through

deep layers. An alternative solution is to consider super-resolution as an inverse modeling problem [71, 126]

with the constraints that the down-sampled version of the underlying high-resolution data should be consistent

to the observed low-resolution data.

2.6.1 Reconstructing High-Resolution Turbulent Flows using Physics-Guided Neural Networks

Super-resolution techniques are starting to be used in turbulence research [65, 120, 210]. However, there

are several major challenges that must be overcome, before they can be employed for routine applications.

First, turbulent flow data often exhibit significant variability. In the absence of underlying physical processes,

machine learning models are prone to learning spurious patterns that fit statistical characteristics of available

training data collected from a specific time period, but cannot generalize to other time intervals. This can be

further exacerbated by limited training data. Second, existing super-resolution algorithms can have degraded

performance in CFD because of the huge information loss caused by the large resolution gap. For exam-

ple, LES data can be of more than 8 times lower resolution compared to DNS data along each axis. Hence,

standard statistical interpolation methods may fail to capture fine-level flow dynamics resulting from under-

lying physical relationships and constraints. Third, existing machine learning models are not designed to

deal with the discrepancy between different simulation strategies (i.e. LES, DNS and/or others). In general,

the available simulations at a coarser resolution are not simply a down-sampled version of high-resolution

simulations.

In this paper, the authors develop a new method, termed Physics-Guided Super-Resolution Network

(PGSRN), to improve the reconstruction of high-resolution turbulent flow data. This development is by

leveraging known physical constraints and explicitly exploring the discrepancy & the consistency between

different simulations. First, the authors generalize the loss function of the super-resolution model by incorpo-

rating the divergence-free velocity-field constraint as required in incompressible flows. Second, the authors

introduce a hierarchical generative architecture by decomposing the data reconstruction into two steps: (i)

transform low-resolution flow data into a down-sampled version of high-resolution data, and (ii) reconstruct

high-resolution flow data from the down-sampled version. Step (i) allows explicitly modeling the data dis-

29

crepancy due to different simulation methods used to generate low-resolution and high-resolution data. Step

(ii) is to recover the fine-level details of flow data. Finally, the authors introduce a degradation process to

further regularize reconstructed data by imposing the consistency between different simulations. Here the

authors represent the degradation process by a forward model (by framing super-resolution as an inverse

problem) that maps high-resolution data to low-resolution data. The forward model output of reconstructed

data can then be compared against low-resolution simulations for consistency assessment. the authors fur-

ther extend the degradation process as a feature extractor and introduce an adversarial loss on the extracted

features from high-resolution data, which helps improve the modeling of fine-level fluid dynamics.

For the purpose of demonstration, the authors consider a variant of the Taylor-Green vortex (TGV) [29].

This is a three-dimensional incompressible flow and is simulated within a box with periodic boundary con-

ditions. The TGV provides a suitable setting for the demonstration as it exhibits several salient features

of turbulent transport. In this flow, the original vortex collapses into turbulent worm-like structures which

become progressively more turbulent until viscosity eventually dissipates the large scale vortical structures.

The authors compare the proposed method against several existing super-resolution algorithms to reconstruct

DNS data of TGV. The authors also demonstrate the effectiveness of each component in the proposed method

by showing the improvement both qualitatively and quantitatively.

Although the method has been developed in the context of simulating fluid dynamics, the involved tech-

niques can be widely used for other important scientific problems. For example, simulations of cloud-

resolving models (CRM) at sub-kilometre horizontal resolution are critical for effectively representing boundary-

layer eddies and low clouds. However, it is not feasible to generate simulations at such fine resolution even

with the most powerful commuters expected to be available in the near future. Hence, the method developed

in this paper can provide great potential for reconstructing high-resolution simulations.

Additionally, as shown in the cross-time experiment, the method remains limited in reconstructing long-

term data. This requires new mechanisms to enforce underlying physical processes on fluid dynamics (e.g.,

Navier-Stokes equation). Furthermore, the authors plan to introduce other related parameters besides velocity

(e.g., mass and pressure) to supplement and further optimize the model. Last, the authors also will introduce

other domain’s metrics (e.g., Reynolds Stress and Kinetic Energy [190]) as the training loss to enhance the

trustworthiness of the model when it is deployed for long-term and large-scale simulations.

2.6.2 Deep Learning Methods for Super-Resolution Reconstruction of Turbulent Flows

In [120], two deep learning models, i.e., the SCNN and MTPC, are developed for the super-resolution recon-

struction of turbulent flows. They all take low-resolution flow information as an input. However, the SCNN

takes one instantaneous snapshot as an input, while the MTPC takes a temporal sequence of snapshots as an

30

input. Therefore, the MTPC has the advantage of drawing extra temporal information from adjacent frames.

To see whether the deep learning methods are able to reproduce turbulence, two canonical turbulent

problems were tested. For the isotropic turbulence, the reproduced energy spectra and predicted PDF of the

normalized velocity gradients by the MTPC are close to those of the DNS result. For the turbulent channel

flow, the deep-learning-based approaches greatly enhanced the spatial resolution in different wall regions

and layers. The correlation coefficients between reconstructed data and the reference data are high in the

outer layer and log-law region where turbulence dominates. However, the coefficients are not so high in the

viscosity-dominated region where there are the most vigorous turbulent activities. All assessments in both

cases show that the MTPC greatly improved the quality of the LR input and outperformed the SCNN and

bicubic interpolation method, especially at small scales. The extra temporal information from consecutive

snapshots helps the MTPC to generate more physically reasonable results. On the other hand, because there

are more input snapshots to handle, the MTPC spends more time on prediction compared with static models.

All the experiments were performed with 2D snapshots, but the networks used in this study can be easily

extended to 3D cases by using 3D convolution kernels.

Although deep-learning methods achieve great progress, there are still some challenges. First, the DL

models are not able to exactly reproduce the kinetic energy several orders of magnitude smaller than the total

energy, i.e., the very small spatial structures. Second, the DL methods show performance diversity in different

directions in the anisotropic turbulence case even though a special normalization method is used to convert

data in the three directions into the same order of magnitude. These problems may be eliminated by intro-

ducing novel machine learning methods like unsupervised learning or including prior physical knowledge in

the training process. That may be part of the future work.

The success of the DL models in reconstructing subgrid flow variables probably inspires the development

of subgrid models in the CFD. The SR technology can also serve as the post-processing tool to denoise,

correct, or enrich data from experiments and numerical simulations. the authors believe that the super-

resolution technology would have a board practical application in the fluid dynamics with the increasing

volumes of data accessible.

2.6.3 Learning a Deep Convolutional Network for Image Super-Resolution

The sparse-coding-based method [212, 213] is one of the representative methods for external example-based

image super-resolution. This method involves several steps in its pipeline. First, overlapping patches are

densely extracted from the image and pre-processed (e.g., subtracting mean). These patches are then encoded

by a low-resolution dictionary. The sparse coefficients are passed into a high-resolution dictionary for re-

constructing high-resolution patches. The overlapping reconstructed patches are aggregated (or averaged) to

31

produce the output. Previous SR methods pay particular attention to learning and optimizing the dictionaries

[212, 213] or alternative ways of modeling them [24, 37]. However, the rest of the steps in the pipeline have

been rarely optimized or considered in an united optimization framework.

In this paper, the authors show the aforementioned pipeline is equivalent to a deep convolutional neural

network [112]. Motivated by this fact, the authors directly consider a convolutional neural network which is

an end-to-end mapping between low- and high-resolution images. The proposed method differs fundamen-

tally from existing external example-based approaches, in that the proposed method does not explicitly learn

the dictionaries [212, 213] or manifolds [24, 37] for modeling the patch space. These are implicitly achieved

via hidden layers. Furthermore, the patch extraction and aggregation are also formulated as convolutional

layers, so are involved in the optimization. In the method, the entire SR pipeline is fully obtained through

learning, with little pre/post-processing.

The authors name the proposed model Super-Resolution Convolutional Neural Network (SRCNN). The

proposed SRCNN has several appealing properties. First, its structure is intentionally designed with sim-

plicity in mind, and yet provides superior accuracy comparing with state-of-the-art example-based methods.

Second, with moderate numbers of filters and layers, the method achieves fast speed for practical on-line

usage even on a CPU. The method is faster than a series of example-based methods, because it is fully feed-

forward and does not need to solve any optimization problem on usage. Third, experiments show that the

restoration quality of the network can be further improved when (i) larger datasets are available, and/or (ii)

a larger model is used. On the contrary, larger datasets/models can present challenges for existing example-

based methods. Overall, the contributions of this work are mainly in three aspects: 1) The authors present a

convolutional neural network for image super-resolution. The network directly learns an end-to-end mapping

between low- and high-resolution. 2) The authors establish a relationship between the deep-learning-based

SR method and the traditional sparse-coding-based SR methods. This relationship provides a guidance for

the design of the network structure. 3) The authors demonstrate that deep learning is useful in the classical

computer vision problem of super-resolution, and can achieve good quality and speed.

In conclusion. the authors have presented a novel deep learning approach for single image super-resolution

(SR). Conventional sparse-coding-based image super-resolution methods can be reformulated into a deep

convolutional neural network. The proposed approach, SRCNN, learns an end-to-end mapping between low-

and high-resolution images, with little extra pre/post-processing beyond the optimization. With a lightweight

structure, the SRCNN has achieved superior performance than the state-of-the-art methods. Additional per-

formance can be further gained by exploring more hidden layers/filters in the network, and different training

strategies. Besides, the proposed structure, with its advantages of simplicity and robustness, could be applied

to other low-level vision problems, such as image deblurring or simultaneous SR + denoising. One could also

32

investigate a network to cope with different upscaling factors.

2.6.4 tempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow

Generative models were highly successful in the last years to represent and synthesize complex natural images

[75]. These works demonstrated that deep CNNs are able to capture the distribution of, e.g., photos of human

faces, and generate novel, previously unseen versions that are virtually indistinguishable from the original

inputs. Likewise, similar algorithms were shown to be extremely successful at generating natural high-

resolution images from a coarse input [97]. However, in their original form, these generative models do not

take into account the temporal evolution of the data, which is crucial for realistic physical systems. In the

following, the authors will extend these methods to generate high-resolution volumetric data sets of passively

advected flow quantities, and ensuring temporal coherence is one of the core aspects that the authors will

focus on below. The authors will demonstrate that it is especially important to make the training process

aware of the underlying transport phenomena, such that the network can learn to generate stable and highly

detailed solutions.

Capturing the intricate details of turbulent flows has been a longstanding challenge for numerical simu-

lations. Resolving such details with discretized models induces enormous computational costs and quickly

becomes infeasible for flows on human space and time scales. While algorithms to increase the apparent

resolution of simulations can alleviate this problem [101], they are typically based on procedural models

that are only loosely inspired by the underlying physics. In contrast to all previous methods, the algorithm

represents a physically-based interpolation, that does not require any form of additional temporal data or

quantities tracked over time. The super-resolution process is instantaneous, based on volumetric data from a

single frame of a fluid simulation. The authors found that inference of high-resolution data in a fluid flow set-

ting benefits from the availability of information about the flow. In the case, this takes the shape of additional

physical variables such as velocity and vorticity as inputs, which in turn yield means for artistic control. A

particular challenge in the field of super-resolution flow is how to evaluate the quality of the generated output.

As the authors are typically targeting turbulent motions, a single coarse approximation can be associated with

a large variety of significantly different high-resolution versions. As long as the output matches the corre-

lated spatial and temporal distributions of the reference data, it represents a correct solution. To encode this

requirement in the training process of a neural network, the authors employ so-called generative adversarial

networks (GANs). These methods train a generator, as well as a second network, the discriminator that learns

to judge how closely the generated output matches the ground truth data. In this way, the authors train a

specialized, data-driven loss function alongside the generative network, while making sure it is differentiable

and compatible with the training process. the authors not only employ this adversarial approach for the smoke

33

density outputs, but the authors also train a specialized and novel adversarial loss function that learns to judge

the temporal coherence of the outputs.

The authors additionally present practices to set up a training pipeline for physics-based GANs. E.g., the

authors found it particularly useful to have physics-aware data augmentation functionality in place. The large

amounts of space-time data that arise in the context of many physics problems quickly bring typical hardware

environments to their limits. As such, the authors found data augmentation crucial to avoid overfitting. They

also explored a variety of different variants for setting up the networks as well as training them, and the

authors will evaluate them in terms of their capabilities to learn high-resolution physics functions below. To

summarize, the main contributions of the work are: 1) a novel temporal discriminator, to generate consistent

and highly detailed results over time, 2) artistic control of the outputs, in the form of additional loss terms

and an intentional entangling of the physical quantities used as inputs, 3) a physics aware data augmentation

method, 4) and a thorough evaluation of adversarial training processes for physics functions.

A first conditional GAN approach for four-dimensional data sets, and it is possible to train generators that

preserve temporal coherence using the novel time discriminator. The network architecture of this temporal

discriminator, which ensures that the generator receives gradient information even for complex transport

processes, makes it possible to robustly train networks for temporal evolutions. This discriminator improves

the generation of stable details as well as the learning process itself. At the same time, the fully convolutional

networks can be applied to inputs of arbitrary size, and the approach provides basic means for art direction

of the generated outputs. It is very promising to see that the CNNs are able to benefit from coherent, physical

information even in complex 3D settings, which led to reduced network sizes. Overall, the authors believe

that the contributions yield a robust and very general method for generative models of physics problems, and

for super-resolution flows in particular.

34

CHAPTER 3

A New Hybrid Automaton Framework with Partial Differential Equation Dynamics

3.1 Cyber-Physical Systems and Hybrid Automata

CPSs have the potential to revolutionize the development of technology worldwide, and in recent years, nu-

merous researchers and companies have invested significant time and money into ensuring that these systems

will realize their economic and societal potential [114]. However, since CPS fundamentally integrate com-

putational and physical processes, there are unique challenges in designing and analyzing these systems. In

fact, the functional correctness of CPS relies deeply on the dynamics of their physical environment and the

discrete control decisions of their computational units [104]. Within hybrid systems, the framework of HA

has demonstrated considerable utility in capturing the complex interaction between the discrete and contin-

uous parts of a CPS. Additionally, it allows for a formal analysis of the safety and reliability of CPS [104].

However, classically, this modeling framework has catered to systems with dynamics that can be described

by ODEs, and hardly any attention has been paid to systems with dynamics described by PDEs [189].

This chapter presents the syntax, semantics, and decidability results of a new type of HA with partial

differential equation dynamic, PDHA, whose continuous dynamics are described by partial differential equa-

tions. While classically the dynamics of HA are described by ODEs and differential inclusions, PDHA

are capable of describing the behaviour of CPS with continuous dynamics that cannot be modelled using

the canonical hybrid systems framework. For the purposes of analysing PDHA, we propose another model

called the DSPDHA which handles discrete spatial domains. Additionally, we formally outline concepts

such as time trajectories, PDHA and DSPDHA execution, zeno behaviour, among others to make thorough

analysis convenient. We conclude with two illustrative examples in order to exhibit the nature of PDHA and

DSPDHA.

3.2 Partial Differential Equations

A PDE is an equation involving partial derivatives. This is not so informative so let’s break it down.

3.2.1 Differential Equations

An ODE is an equation for a function that depends on one independent variable, involves the independent

variable, the function, and derivatives of the function:

35

F(t,u(t),u(1)(t),u(2)(t),u(3)(t), ...,u(m)(t)) = 0. (3.1)

Equation (3.1) is an example of an ODE of degree m, where m is the highest order of the derivative in the

equation. Solving an equation like this on an interval t ∈ [0,T] equates to finding a function t → u(t)∈R with

the property that u and its derivatives couple in such a way that this equation is true for all values of t ∈ [0,T].

The problem can be expanded to vector-valued functions by replacing the real-valued u by a vector-valued

one u(t) = (u1(t),u2(t), ...,uN(t)). In such a case we usually talk about systems of ODEs.

3.2.2 Partial Derivative

When you have function that depends upon several variables, you can differentiate with respect to each

variable while holding the other variables constant. This is the basic idea behind partial derivatives. As an

example, consider a function that depends on two real variables:

u : Rn → R. (3.2)

For n = 2, we sometimes visualize such a function by considering its graph as a surface in R3 given by the

collection of points:

(x,y,z) ∈ R3 : z = u(x,y). (3.3)

We can compute the derivative with respect to x while holding y fixed. This yields ux which can also be

expressed as ∂xu, ∂u
∂x , and ∂

∂x . Similarly, we can hold x fixed and differentiate with respect to y. A partial dif-

ferential equation is an equation for a function that depends on more than one independent variable, involves

the independent variables, the function, and the partial derivatives of the function:

F(x,y,u(x,y),ux(x,y),uy(x,y),uxx(x,y),uxy(x,y),uyx(x,y),

uyy(x,y)) = 0.
(3.4)

Equation (3.4) is an example of a second degree PDE. Solving an equation such as this corresponds to finding

36

Types of PDEs Coefficient condition Examples

parabolic equation B2 −AC = 0
heat equation:
ut −α∆u = f

hyperbolic equation B2 −AC > 0
wave equation:
utt − c2uxx = 0

elliptic equation B2 −AC < 0
Poisson’s equation:
∆u = f

Table 3.1: The definition of the types of PDEs, their coefficient conditions, and examples.

a function (x,y)→ u(x,y) with the property that u and its partial derivatives satisfy equation (3.4). In a similar

fashion to the case of ODEs, we can expand equation (3.4) to describe vector valued functions by replacing

the real-valued function u with a vector-valued one u(t) = (u1(t),u2(t), ...,uN(t)). In this framework, we

usually talk about a system of PDEs.We can also write (3.4) in its explicit form:

Auxx +Buxy +Cuyy +Dux +Euy +Fu+G = 0,

uxx =
∂ 2u
∂x2 ,uxy =

∂ 2u
∂x∂y

,uyy =
∂ 2u
∂y2 ,ux =

∂u
∂x

,uy =
∂u
∂y

,

(3.5)

where A,B,C,D,E,F,G are constants.

As is common in the PDE literature, we write ut to represent first order derivative of time, and ux and uxx

to represent the first and second order derivative with respect to space. We refer to ∇u as the gradient of u

and ∆u as the Laplacian of u. Additionally, some linear, second-order PDEs, can be classified as parabolic,

hyperbolic, or elliptic. Table 3.1 captures the relation between the coefficients in equation (3.5) and the

equation type, providing a guide to specify appropriate initial and boundary conditions and the smoothness

of the solutions.

It is worth noting that in PDE modeling, there is a domain of discourse over which the PDE is valid for

capturing physical phenomena. From physical intuition, it is necessary to specify boundary conditions in

order for the solution to be determined. Table 3.2 summarizes several useful classes of boundary conditions

(BCs). For the Dirichlet boundary condition, the value is specified on Γ. The Neumann boundary condition

specifies the derivative on Γ and the Robin boundary condition provides mixed condition.

3.3 Running Examples

To illustrate the main notions of our framework, we use two running examples throughout the chapter. The

components of these running examples are depicted in Figures 3.1 and 3.2. The heater model consists of

three devices: (i) a rod that can be heated using a gas burners from anywhere, (ii) a long gas burner that can

be turned on or off partially in any region, and (iii) a thermometer that monitors the temperature of the rod

37

Types of BCs Values on boundary Γ Examples

Dirichlet u(x) = g(x)
fixed temperature is given

on Γ for heat equation

Neumann ∂u
∂n = g(x)

wave is reflected on Γ

for wave equation

Robin ∂u
∂x +β (x)u = g(x)

heat exchange is valid

on Γ for heat equation

Table 3.2: Types of Boundary Conditions, their values on boundary and examples.

Temperature Sensor

Heater with Controller

Figure 3.1: Diagram for heater model.

at every location and periodically issues signals when the temperature of the rod is above or below certain a

threshold. The goal is to design a control policy that maintains ensures that the temperature of the rod remains

within a given range.

The second model we consider is a traffic model that was originally proposed in [44]. The system consists

of a highway segment in which vehicles flow in an out. Vehicles maintain a high speed when the traffic flow

density is below a given critical density and when the density exceeds the the critical threshold, the speed of

the traffic wave and the overall flow capacity decrease.

3.3.1 Heater Model

We first describe the behavior of the temperature of the rod. When the gas burner is OFF, the temperature

of the rod, denoted by the variable u, decreases according to the following differential equation: u(x, t)t −

αu(x, t)xx = 0 where α is the thermal diffusivity. The thermal diffusivity measures the rate of heat transfer

of a material from the hot side to the cold side. The boundary conditions are u(0, t) = 0 and u(L, t) = 0,

which denote that at location x = 0 and x = L the temperature is fixed to be 0, and heat is absorbed. X

denotes the space coordinate and t denotes time. This law however, is only true when the temperature of

the corresponding position on the rod is greater than 0.7. When the heater is OFF, and the temperature of a

position on the rod is below 0.4, the heater at that position will be turned on. The heater function is defined

38

Figure 3.2: Diagram for traffic model.

as f (x) =− x
L +1. The maximum of the heater function appears at x = 0 and the heating effect is 0 at x = L.

During the the heater ON mode, the temperature is governed by the equation u(x, t)t −αu(x, t)xx = f (x) where

f (x) is is the function defined above. As one can see from the description of the evolution of the temperature,

the system is not purely continuous. The system can switch from one mode to another by turning the heater

on and off at a specific location on the rod.

3.3.2 Traffic Flow Model

The traffic model describes how traffic conditions may behave on a given highway. In free flow mode, which

means the density is less than a specified critical density ρc, the density function is given by the following

equation u(x, t)t +v1u(x, t)x = 0, where v1 is always a positive number and denotes that the density propagates

forward. However, if the traffic density achieves ρc, the system transitions into a high density congestion

mode. In this mode, the governing equation is described by u(x, t)t + v2u(x, t)x = 0, where v2 is always a

negative number and denotes that traffic congestion always move backwards and propagates upstream. As an

example, one of the causes of congestion may be a result of merging slow and fast moving traffic resulting

in a high density traffic flow. In this model, we can frequently switch between a free flowing mode and a

congestion mode, and as a result, a more powerful hybrid framework is needed to formalize these kinds of

system behavior.

Additionally, the two models we have outlined present a mixture of space and time variables and are

therefore quite complicated. In the following sections we present a framework that is able to capture such a

mixture of discrete and continuous behaviors, where PDEs describe the continuous dynamics.

3.4 Partial Differential Hybrid Automata

3.4.1 Transitions, Trajectories and Executions

Due to the properties of PDEs, the switching structure is more involved than in the case of ODEs [44].

One highway congestion alleviation model in [19] considers N connected segments where each segment is

governed by an independent LWR PDE [118] with one side boundary condition. Each segment will affect

the boundary condition of the proceeding segment and serves as a input function to the PDE. Additionally,

the system is allowed to switch into another mode that incorporates a speed limit. One control approach for

transport systems [83] proposes rules for switching based on a criteria of minimizing a cost function. We

outline two specific structures that are of interest to our framework:

39

PDE 1

PDE 2

PDE 3

BC 1

BC 2

BC 3

BC 1’

BC 2’

BC 3’

IC

PDE 1

PDE 2

PDE 3

BC 1

BC 2

BC 3

BC 1’

PDE 1

IC 2 IC 1x x

t t

Figure 3.3: Switching cases for two scenarios, full domain switching on left and partial domain switching on
right.

• Switching PDEs in time on the full spatial domain. This situation is portrayed in Figure 3.3 (left)

and is the PDE counterpart of hybrid systems as defined in [183], where a game theory approach is

used to determine when mode switching occurs. Boundary condition switching has was investigated in

highway traffic applications in [160]. PDE switching in time appears in [83] and in [19] and the latter

one contains switching between modes in each highway segments.

• Switching PDEs on subsets of the time-space domain. This is illustrated in Figure 3.3 (right). Examples

include the LWR PDE, in [19] where each highway segment is coupled with a boundary condition at

the starting point of itself. This also appears in [118], where the LWR with triangular flux function can

be decomposed into two modes (two one-dimensional wave equations) resulting in a partition of the

(x, t) space in regions with forward traveling waves, and regions with backward travelling waves.

In order to describe the partial domain switching case in Figure 3.3 (right), it is useful to partition the

whole domain into several parts and assign each one a corresponding mode. One possible solution is to use

the union of disjoint domains to represent the region governed by specific modes. For example, the heat

equation ut −uxx = 0 with α = 1 (mode 1) and without heat source can cover [0,0.3)∪ (0.7,1]. The equation

ut −uxx = f (x) with external source (mode 2) occupies [0.3,0.7].

Based on this idea, the main challenge is how to formalize the particular structure of the domain occupying

behavior. One approach is to associate the union operator with the modes of the system. Thus the system

mode q can be described as a composition of multiple modes ∪qi, where each mode specifies the domain it

occupies. Like in q1, ut −uxx = 0 when x ∈D1 and in q2, ut −uxx = f (x) when x ∈D2, where Di is the region

occupied by qi. Thus, the space domain X is composed of D1 and D2.

This embodies our approach to represent the multiple mode occupation phenomenon and we refer to the

multiple mode occupation as the changing behavior of ∪Di. The remaining challenge is to how to describe

the moving behavior of the modes. This can be realized by changing Di, together with its boundary condition.

As the system evolves, points satisfying a given condition will be moved from one mode to another and cause

40

Di to grow or shrink. We call this point’s moving behavior a trajectory. The evolution of Di is not easily

depicted. It can be a function of time, or a function of several other complicated variables. Additionally, it

might be impossible to predict switching behavior due to the complexity exhibited by the PDE’s solution.

Based on the ideas discussed above, the concept of space control mode is given below.

Definition 1 (Space Control Mode). Let X be a space domain and X ⊆ Rn. Let Q be a finite set of m

control modes where each mode is denoted as qi. A space control mode consists of a union of k (k ≤ m)

control modes where each mode covers part of the space domain X. The state control mode is denoted by

q̃ where q̃ = ∪qi∈Q{qi} ⊆ Q and the region mode qi covers is denoted by Dom(qi) and Dom(·) is a set map

Dom(·) : Q → 2X . Additionally, ∪k
i=1Di = X, where Di = Dom(qi).

Now, according to our definition, q̃ is a subset of Q and not just an element in Q. We want to emphasize

that the system could occupy several control modes simultaneously rather than stay at a single mode as defined

in classical hybrid automata. In order to accommodate q̃ and Dom(qi) and for the purposes of formalizing

domain division, we rely on partition defined in Definition A.1. One can see that ∪{Di} is a partition of

domain X since each Di is nonempty,
⋃
{Di} = X and Di ∩D j = /0 for i ̸= j. For convenience, we denote

p = ∪{Di} a specific partition of X consisting of Dis and denote P = ∪{p} a set containing all possible

partitions of domain X .

It is worth noting that the new PDE dynamic hybrid automaton needs a function to describe its state value.

The additional spatial variable requires us to specify the values at different space locations while, in classical

hybrid automata, the system only has finite values since the system only considers finite continuous state

variables. The values of these state variables and discrete modes can be determined as long as the time is

fixed and the system is deterministic. In our model, we denote u(x) the value at current location x of the PDE

dynamic automaton and u(x) is a real function defined on X . Also u(x) ∈ RX where RX is the real function

space defined on domain X and is an extension to Rn which is used in classical hybrid automatoa. We denote

this by U = RX . In our framework, we only consider one PDE dynamic equation but we allow for unlimited

spatial dimensions. In the real world, 3 dimensions are sufficient for simulation.

After we obtain q̃, p and u(x), the state can be defined now.

Definition 2 (State). A state s is a collection of variables that describes the current condition of a PDE

dynamic system. It consists of a space control mode q̃, a partition p of a domain X and a real function u(x)

defined on X.

s = q̃× p×u(x) ∈ 2Q ×P×U (3.6)

41

In Figure 3.3 (left), each mode occupies the whole space domain X and the system stays in only one mode.

We have q = {qi},Di = X , i = 1,2,3. In Figure 3.3 (right), PDE 1 (mode 1) and PDE 2 (modes 2) occupy

the whole domain X , q = {q1 ∪q2} and D1 ∪D2 = X at t = 0. It is worth stressing the differences between

representing a state in PDE dynamic hybrid automata and classical hybrid automata. For discrete modes, the

combination of q̃ and p replaces the single q and describes the space occupation behavior. For continuous

variables, a function u(x) is utilized to specify the value at location x instead of a vector.

Bearing the above in mind, the next step is to formalize the flow function.

Definition 3 (Flow). A flow for a PDE dynamic hybrid automaton is of the form 2Q×P×U →U which maps

from one state to another as time evolves.

Similar to classical hybrid automata, PDE equations simulate the dynamics of the system. The flow

consists of a piecewise PDE equation and the corresponding domain partition. A simple flow function for the

heater example can be formally represented as

ut −uxx = 0, 0 ≤ x < c,

ut −uxx = f (x), c ≤ x ≤ L,

u(0, t) = 0,

u(L, t) = 0,

where c is a constant.

Definition 4 (Transition). A transition in a PDE dynamic hybrid automaton is of the form 2Q×P×U ×E →

2Q ×P which maps current mode and partition to another.

In order to illustrate the idea of transition, we make a simple modification to the previous example:

ut −uxx = 0, 0 ≤ x < ct,

ut −uxx = f (x), ct ≤ x ≤ L,

u(0, t) = 0,

u(L, t) = 0.

Here, we note that the boundary of the mode OFF ut −uxx = 0 moves right at a rate ct that is proportional

to time and the left boundary of the mode ON moves left at the same speed. The space control modes q̃

remain the same and p keeps changing as time advances. Additionally, 0 and L denote the left and right

boundary of the heater respectively.

42

Other types of transitions that may involve event or guard conditions are also included:

ut −uxx = 0, 0 ≤ x < L/2,

ut −uxx = f (x), L/2 ≤ x ≤ L,

u(0, t) = 0,

u(L, t) = 0.

e−→

ut −uxx = f (x), 0 ≤ x < L,

u(0, t) = 0,

u(L, t) = 0.

As long as the event e is enabled, the heater on the left half side will switch from OFF to ON. The event

condition can be replaced by a guard condition which guarantees the transition as well.

Definition 5 (Reset). A reset function for a PDE dynamic hybrid automaton is of the form 2Q×P×U ×E →

U which specifies how the value of u(x) changes when a transition takes place.

3.4.2 Partial Differential Hybrid Automaton (PDHA)

With the above discussion in mind, we can now provide a formal definition of a partial differential hybrid

automaton.

Definition 6 (Partial Differential Hybrid Automaton (PDHA)). A partial differential hybrid automaton is a

tuple ⟨Q,E,P,X ,U, Init, Inv, f ,φ ,G,R⟩ where:

• Q is a set of finite qis that represents control modes.

• E is a finite set of events.

• X is a space domain and X ⊆ Rn.

• P is a set of all partitions defined on domain X.

• U is a function space defined on domain X and U = RX .

• Init is a set of initial states and Init ⊆ 2Q ×P×U.

• Inv is a set of invariants defined for each mode qi.

• f : 2Q ×P×U →U is a flow function and f has the form :

ut = f1(∆u,∇u,x, t), x ∈ D1,

ut = f2(∆u,∇u,x, t), x ∈ D2,

...

ut = fk(∆u,∇u,x, t), x ∈ Dk.

43

𝜕𝑢

𝜕𝑡
−
𝜕2𝑢

𝜕𝑥2
= 𝑓 𝑥 ,

𝑢(0, t) =𝑢(L, t) = 0,

𝜕𝑢

𝜕𝑡
−
𝜕2𝑢

𝜕𝑥2
= 0,

𝑢(0, t) =𝑢(L, t) = 0

𝑢 ≥ 𝑟1

𝑢 ≤ 𝑟2𝑢(x, 0) =ψ(x)

Figure 3.4: Heater PDHA corresponding to the system in Figure 3.1.

𝜕𝑢

𝜕𝑡
+ 𝑣1

𝜕𝑢

𝜕𝑥
= 0,

𝑢(0, t) =𝑢(L, t) = 0,

free flow

𝜕𝑢

𝜕𝑡
− 𝑣2

𝜕𝑢

𝜕𝑥
= 0,

congestion

𝑢 ≥ 𝑢𝑐

𝑢 ≤ 𝑢𝑐𝑢(x, 0) =ψ(x)

Figure 3.5: Traffic PDHA corresponding to the system in Figure 3.2.

where fi, i ∈ {1,2, ...,k}, is the continuous segment in f , ∆ is the Laplacian, ∇ is the gradient, and

Di, i ∈ {1,2, ...,k} is the domain covered by qi.

• φ : 2Q ×P×U ×E → 2Q ×P is a transition map.

• G is a set defining guard condition, G ⊆ 2Q ×P×2Q ×P×U.

• R : 2Q ×P×U ×E →U is a reset function.

In our framework, each mode contains only one PDE instead of a system of equations as in classical

hybrid automata. Boundary conditions must not be violated and can be treated as a kind of invariant. They

are imposed on the boundary of X and act like constraints within the mode. Additionally they are forced to

be satisfied even during mode discrete transitions.

Revisiting the examples outlined at the very beginning, we construct two models to illustrate the idea

of PDHA in Figures 3.1 and 3.2. In each model, the system is composed of two modes and each mode is

governed by a PDE, the given boundary conditions, and the initial condition. In the heater model, we extract

the term ∆u from fi(∆u,∇u,x, t) and use fi(x) to represent the input function.

The continuous trajectory is realized by moving a point satisfying a guard condition G to another mode. In

the heater model, a point in the mode ON where the temperature exceeds the threshold will be transferred to

the mode OFF, meaning the heater located at this point is turned off while the other areas remain unchanged.

At the same time, as the temperature at some points drops below some given bound, the heater at that location

is turned on and the point at mode OFF will be moved to mode ON.

The same rule applies to the traffic model as well. The points in the free flow mode satisfying the guard

condition G1 will be moved to a congestion mode and points in the congestion mode satisfying G2 will be

44

moved to the free flow mode.

3.5 Discrete Space Partial Differential Hybrid Automata

In this section we describe some core steps in deriving DSPDHA. First, we define a discretization scheme

and use it to discretize a PDHA to construct its “discrete” model for analysis. Second, using this discretiza-

tion scheme, we define a discrete PDHA that is related to the original PDHA via a “discretization relation”

corresponding to the scheme R.

3.5.1 Discretization Scheme and Discretization Relation

A discrete treatment of PDEs requires the use of new tools to realize the functions we need. One of the most

widely used set of methods are called finite difference methods (FDMs). Generally speaking, FDMs are a

family of numerical approaches for solving differential equations by replacing them with an approximation

using difference equations. Combining FDMs and PDHA, produces the following definition:

Definition 7 (Discretization Scheme). A discretization scheme is a numerical scheme to discretize a contin-

uous partial differential equation into a set of algebraic equations (full-discretization scheme) or ordinary

differential equations (semi-discretization scheme).

We present several schemes below to demonstrate how this technique approximates spatial derivatives.

Example 3.5.1 (Finite Difference Method Discretization Scheme). A common example is shown for the heat

equation using the central difference scheme:

u(i×h, t)xx =
u((i−1)×h, t)−2u(i×h, t)+u((i+1)×h, t)

h2

+O(h2),

(3.7)

where the scheme is based on uniform mesh, h is the grid size, h = xi+1 − xi, {x1,x2,x3, ...,xn} is a list of

locations where the mesh points sit, and these points are the same ones defined in pd . Additionally, u(i×h, t)

denotes the value at the ith position given time t and the respective derivative is approximated using itself and

the two adjacent values. The proof is based on using Taylor’s expansion with error O(h2).

After applying (3.7) and dropping the redundant part O(h2), the heat equation becomes

u̇i(t)≈
1
h2 (ui−1(t)−2ui(t)+ui+1(t))+ f (i×h, t). (3.8)

We replace u(i×h, t) by ui(t) since the derivative with respect to space has been removed. Thus, u̇i(t) is

used to represent the time derivative at grid point i×h, and f (i×h, t) represents input function valued at the

45

0 2 4 6 8 x

y

1

2

3

4

Figure 3.6: Regular mesh on domain X(0 ≤ x ≤ 8∧0 ≤ y ≤ 4), black dots represent the points chosen in Xd .

Figure 3.7: Irregular mesh on domain X , black dots represent the points chosen in Xd .

same location.

Once the scheme has beeb chosen, the relation between our models can be described by the following

definition.

Definition 8 (Discretization Relation). If model A is obtained from model B via discretization scheme R, we

say that the model A relates to model B via discretization scheme R, which is denoted by: A ⪯R B.

3.5.2 Discrete Space Partial Differential Hybrid Automaton

Using a discretization scheme, we obtain discrete models of the state, transition, flow and reset function of

the original PHDA. These discrete models are defined below.

Definition 9 (Discrete Domain). Let X be a domain and X ⊆Rn, a discrete domain Xd of X is a set of distinct

points obtained from X by a discretization scheme R: Xd =
⋃m

i=1{xi}, xi ∈ X and m is the number of points.

We say Xd ⪯R X.

46

Example 3.5.2 (Discrete Domain of Heater Model). Consider the heat equation defined on domain X =

[0,10]. One possible corresponding discrete domain Xd is {0,1,2,3,4,5,6,7,8,9,10}.

Definition 10 (Discrete Partition). Let Q be a set of modes, P is the set of all partitions on X and Xd ⪯R X.

A discrete partition pd ∈ Qm is a set of values and each value is associated with a point xi ∈ Xd . The set of

all possible pds is denoted by Pd = Qm and Pd ⪯R P.

In contrast to the continuous domain hybrid automaton which uses q̃× p to describe the current mode that

the system occupies, a discrete partition combines the two notations and simplifies the expression.

Example 3.5.3 (Discrete Partition of Heater Model). Consider the model with q1 = OFF, q2 = ON and Xd =

{0,1,2,3,4,5}. Then q̃ = {q1,q2}, D1 = [0,3] and D2 = (3,5] can be expressed as {q1,q1,q1,q1,q2,q2}.

Definition 11 (Discrete State). A discrete state sd is a ordered pair (pd ,ud) where pd ∈ Pd ⪯R P is a discrete

partition on Xd ⪯R X and ud ∈ Rm is a list of real values. We denote the set of all possible sds by Sd and say

Sd ⪯R S where S is the set of states defined in PDHA.

A discrete state gives the whole picture of the system by combining a discrete partition and state values.

Example 3.5.4 (Discrete State of Heater Model). One discrete state can be in the form {{q1,q1,q1,q1,q2,q2}

, {0.6,0.6,0.5,0.6,0.7,0.8}}, where q1,q2 are the modes and the succeeding numbers are the temperatures

at each node.

Everything listed above leads us to discrete flow.

Definition 12 (Discrete Flow). Let f be a flow function , fd is the set of discrete flow functions such that the

spatial derivative of f are approximated using R. We say fd ⪯R f .

Example 3.5.5 (Discrete Flow of Heater Model). Consider the heater example again,

ut −uxx = 0, 0 ≤ x < c,

ut −uxx = f (x), c ≤ x ≤ L,

u(0, t) = 0,

u(L, t) = 0.

The spatial derivative uxx is approximated by a FDM centered difference scheme based on a uniform mesh.

We obtain a system of ODEs:

47

u̇1 =
−2u1+u2

∆x2 , x = x1,

u̇2 =
u1−2u2+u3

∆x2 , x = x2,

...

˙uc−1 =
uc−2−2uc−1+uc+1

∆x2 , x = xc−1,

˙uc+1 =
uc−1−2uc+1+uc+2

∆x2 + f (xc+1), x = xc+1,

...

u̇m =
um−1−2um

∆x2 + f (xm), x = xm.

where xc−1 and xc+1 are the nearest two mesh points to c. The boundary conditions are merged into the first

and last equations.

The flow function can assume a complicated form, making the semi-discretization of the PDE difficult.

This represents an interesting arena for further investigation that we will consider in the future.

Definition 13 (Discrete Transition). A discrete transition φd of a DSPDHA is of the form Pd ×Ud ×E → Pd

which maps current discrete partition to another. We say φd ⪯R φ where φ is the transition defined in the

original PDHA and R is the discretization scheme.

Example 3.5.6 (Discrete Transition of heater model). In order to illustrate the idea of a discrete transition,

we make a simple modification of the previous example:

u̇1 = 0, x = x1,

u̇2 = 0, x = x2,

...

u̇m = fm(u1,u2, ...,um, t), x = xm.

e
′

−→

u̇1 = f1(u1,u2, ...,um, t), x = x1,

u̇2 = f2(u1,u2, ...,um, t), x = x2,

...

u̇m = fm(u1,u2, ...,um, t), x = xm.

A transition to the mode ON at location x1 and x2 occurs because event e takes place. Thus, we can write

48

the transition function

φd(pd,1;ud ;e) =

pd,2, e = e

′
,

pd,1, otherwise.
(3.9)

where pd,1 = {q1,q1,q2, ...,q2}, pd,2 = {q2,q2,q2, ...,q2}, q1 represents mode OFF and q2 represents mode

ON.

Definition 14 (Discrete Reset). A discrete reset function Rd of a DSPDHA is of the form Pd ×Ud ×E →Ud

which specifies how a value of ud changes to a new value when a transition takes place. We say Rd ⪯R R

where R on the right is the reset function in original PDHA.

Definition 15 (Discrete Space Partial Differential Hybrid Automaton (DSPDHA)). A discrete space partial

differential hybrid automaton is a tuple ⟨Q,E,Pd ,Xd ,U, Init,

Inv, fd ,φd ,G,Rd⟩ where:

• Q is a set of finite modes;

• E is a set of finite events;

• Xd is a set of m points;

• Pd is a set of values defined on domain Xd , Pd ∈ Qm;

• Ud is a set of discrete values defined on Xd , Ud = Rm;

• Init is a set of initial states, Init ⊆ Pd ×Ud;

• Inv is a set of invariants defined for each mode qi ∈ Q;

• fd : Pd ×Ud →Ud is a set of discrete flow functions and fd have the form :

u̇1 = f1(u1,u2, ...,um, t), x = x1,

u̇2 = f2(u1,u2, ...,um, t), x = x2,

...

u̇m = fm(u1,u2, ...,um, t), x = xm.

(3.10)

where u̇i denotes time derivative of ui;

• φd : Pd ×Ud ×E → Pd is a transition function;

• G is a set defining guard condition, G ⊆ Pd ×Pd ×Ud;

49

• Rd : Pd ×Ud ×E →Ud is a reset function.

A key observation is DPH ⪯R PH if the discrete space partial differential hybrid automaton DPH is

obtained from a partial differential hybrid automaton PH through R.

The DSPHDA provides us with a set of properties that can easily be formalized and stated. Additionally,

similar concepts that appear in HA are outlined below.

Definition 16 (Hybrid Time Trajectory). A hybrid time trajectory τ = {Ii}N
i=0 is a finite or infinite sequence

of intervals of the real line, such that

• Ii = [τi,τ
′
i] for i < N;

• if N < ∞, then either IN = [τN ,τ
′
N], or IN = [τN ,τ

′
N);

• for all i, τi ≤ τ
′
i = τi+1.

where τ
′
i are the time when discrete transition takes place.

Now that we have defined the syntax of DSPDHA, we define the semantics in terms of executions.

Definition 17 (Execution). An execution of a DSPDHA is a collection χ = (τ, pd ,ud) satisfying

• Initial Condition: (pd(τ0),ud(τ0)) ∈ Init;

• Continuous Evolution: for all i with τi < τ
′
i , pd is a constant, ud is a solution to the ODEs (3.10) over

[τi,τ
′
i] and for all t ∈ [τi,τ

′
i), ud(t) ∈ I;

• Discrete Evolution: for all i, (pd(τi+1),ud(τi+1)) ∈ R(pd(τ
′
i),ud(τ

′
i)).

An execution χ = (τ, pd ,ud) is called finite if χ is a finite sequence ending with a closed interval, infinite

if τ is either an infinite sequence, or if ∑
∞
i=0(τ

′
i − τi) = ∞, and Zeno if it is infinite but ∑

∞
i=0(τ

′
i − τi)< ∞.

Definition 18 (Zeno Execution). An execution χ is Zeno if

lim
i→∞

τi − τ0 =
∞

∑
i=0

(τ
′
i − τi) = τ∞ < ∞ (3.11)

Here τ∞ is called the Zeno time.

We use EDPH(pd,0,ud,0) to denote the set of all executions of DSPDHA with initial condition (pd,0,ud,0)∈

Init, E ∗
DPH(pd,0,ud,0) to denote the set of all finite executions, E ∞

DPH(pd,0,ud,0) to denote the set of all infinite

executions, and EDPH to denote the union of EDPH(pd,0,ud,0) over all (pd,0,ud,0) ∈ Init.

50

Definition 19 (Zeno Discrete Space Partial Differential Hybrid Automaton). A discrete space partial differen-

tial hybrid automaton DPH is Zeno if there exists (pd,0,ud,0)∈ Init such that all executions in E ∞
DPH(pd,0,ud,0)

are Zeno.

lim
i→∞

τi − τ0 =
∞

∑
i=0

(τ
′
i − τi) = τ∞ < ∞ (3.12)

Here τ∞ is called the Zeno time.

The set of states reachable by a DSPDHA, ReachDPH , is defined as

ReachDPH = {(p̂d , ûd) ∈ Pd ×Ud : ∃(τ, pd ,ud) ∈ E ∗
DPH ,

(pd(N),ud(τ
′
N)) = (p̂d , ûd)}.

(3.13)

where τ = {[τi,τ
′
i]}N

i=0.

Definition 20 (Nonblocking). A DSPDHA is called nonblocking if

E ∞
DPH(pd,0,ud,0) is nonempty for all (pd,0,ud,0) ∈ Init.

Definition 21 (Deterministic). A DSPDHA is called deterministic if

E ∗
DPH(pd,0,ud,0) contains at most one element for all (pd,0,ud,0) ∈ Init.

3.5.3 Relation to Classical Hybrid Automaton

In this section we explore the relations between classical hybrid automata, DSPDHA and PDHA. The central

basis of introducing PDHA is extending HA with ODE dynamics to use PDE dynamic. To achieve this goal,

some adjustments need to be made to accommodate the new framework within the classical hybrid automata

scheme. It is our hope, that after these changes, the properties that hold for HA will hold for PDHA as

well. This is the basis for the motivation to add an intermediate level (DSPDHA) lying between PDHA and

HA which captures the idea of PDHA and also stays close to classical HA. Using this framework, we make

comparisons and illustrate useful results in the form of theorems.

In PDHA, we use space control modes and partitions q̃× p to replace a discrete mode q, a state function

ϕ(x) to replace state variables X . The weakness of this scheme is determining executions and transitions

because q̃× p evolve continuously. DSPDHA overcomes these shortcomings by introducing a discrete state

partition pd which functions similar to q in HA. Along the same lines, a discrete flow function obtained from

PDHA by FDM is essentially the same as a HA flow function. This allow us to assert some PDE system

properties where we cannot otherwise reason with certainty due to a lack of information. The results below

shows how these connections are built.

51

PDHA DSPDHA HA
discretization single mode

Figure 3.8: PDHA, DSPDHA and HA relations.

Lemma 3.5.1. A DSPHDA is equivalent to a HA if the DSPDHA stays at a single mode at any time.

Proof. Based on Definition 15, the given DSPDHA is a HA.

Lemma 3.5.1 leads us to a more impressive conclusion.

Theorem 3.5.2. Any DSPDHA is a HA if pd has identical elements.

Proof. Based on the knowledge that elements in pd representing the modes where each location resides,

identical elements indicate all the locations are assigned to the same modes and the system stays at a single

mode. According to Lemma 3.5.1, the given DSPDHA is a HA.

Next, the relation between flow functions is explored.

Lemma 3.5.3. If the order of the time derivative of the PDE considered in a PDHA is 1, the number of points

m, in a discrete domain Xd is equivalent to the size of flow functions in the corresponding DSPDHA .

Proof. According to Definition 12, the discretization is made on each mesh point in Xd . As a result, we have

m equations eventually.

Lemma 3.5.4. If the order of the highest time derivative of a PDE is n, then the PDE can be reduced to a

system of n PDEs with a 1st order time derivative.

Proof. We begin the proof by a change of variables. Let us replace the kst order time derivative of u by vk and

add a new equation to the system once the replacement is done. In the end, we obtain a system of equations

in the form below.

u̇ = v1,

v̇1 = v2,

v̇2 = v3,

...,

v̇n−2 = vn−1,

v̇n−1 = f (u,ux,uxx, ..., t).

(3.14)

where the original equation is u(n) = f (u,ux,uxx, ..., t) and u(n) is its nth time derivative.

52

𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑥𝑥𝑥𝑥 = −0.1𝑥𝑥 + 1,
𝑢𝑢(0, t) =𝑢𝑢(10, t) = 0,

𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑥𝑥𝑥𝑥 = 0,
𝑢𝑢(0, t) =𝑢𝑢(10, t) = 0

𝑢𝑢 ≥ 0.7

𝑢𝑢 ≤ 0.4𝑢𝑢(x, 0) =0.2

Figure 3.9: PDHA diagram for the heater model analyzed.

Using Lemma 3.5.3 and 3.5.4, a more general argument is given.

Theorem 3.5.5. If the order of time derivative of the PDE considered in a PDHA is n and the number of

points in discrete domain Xd is m, the size of flow functions in the corresponding DSPDHA is n ·m.

Proof. Since m determines the number of mesh points and each point is associated with a ODE (1st order PDE

after spatial discretization), m equals the dimension of the system of ODEs which is the flow function.

Besides investigating the relation and distinction between models above, an interesting observation which

occurs in classical hybrid automata are discontinuity issues, especially under PDE dynamics. [83] discusses

the propagation of discontinuities when the system switches mode. The are numerous reasons why dis-

continuities occur. For the transport equation with a nonlinear flux function, there does not always exist a

smooth solution, and a weak solution has to be constructed to handle a shock or rarefaction wave [182]. Jump

discontinuities for hyperbolic system are discussed in [153].

The situation discussed in [83] is likely to happen if the discrete transition take places in our framework.

Consider a segment of road governed by a transport equation and the model is ut + ux = 0. Supposing the

switching is triggered and a new model ut +2ux = 0 is introduced, the latter model which involves fast wave

speed will push the front flow to move fast and the traffic will start to accumulate at the boundary of the road

which directly leads to a discontinuity.

3.6 Experiments

The heater and traffic examples are formalized as DSPDHA and analyzed in this section.

Heater Model.

As illustrated above, the first example is the bronze rod with two isolated ends. The heater provides heat to

the rod and can be partially turned on and off at any time once the temperature reaches the given thresholds.

For the input function, a linear increment function is considered with a maximum value appearing on the left

and minimum value appearing value on the right. The diagram of the model is in Figure 3.9.

The idea of discrete partitions is illustrated in this the example and 9 points are chosen to describe the

temperature along the rod. A point whose value is greater than 0.7 will be moved to mode OFF and be

53

𝑢𝑢𝑡𝑡 + 3𝑢𝑢𝑥𝑥 = 0,
𝑢𝑢(0, t) =𝑢𝑢(10, t) = 0,

free flow

𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑥𝑥 = 0,
𝑢𝑢(0, t) =𝑢𝑢(10, t) = 0

congestion

𝑢𝑢 ≥ 1

𝑢𝑢 ≤ 1𝑢𝑢(x, 0) =ψ(x)

Figure 3.10: PDHA diagram for the traffic model analyzed.

moved back to ON as the value drops below 0.4. The initial temperature is 0.2 everywhere on the rod and

the input function for mode ON is f1(x) = −0.1x+ 1 and 0 for mode OFF. Since we have the boundary

condition u(0, t) = 0 and u(L, t) = 0, the two values, u(x1, t) and u(xn−1, t), will decrease rapidly due to the

heat diffusion effect [58]. Additionally, the input function decreases as x increases, therefore the heating

effect near the boundary x = L will be trivial and the heater remains on. We discretize the domain and assign

each mesh point a heater. The center difference scheme is used to approximate the space derivative and the

forward scheme is used to approximate time derivative.

At t = 2, heater at x = 1 is OFF and pd = {0,1,1,1,1,1,1,1,1} where 0 represents OFF and 1 represents

ON.

Traffic Flow Model.

We consider the model appearing in [44]. The switched PDE problem is a LWR PDE [118] with the triangular

flux function. The flux function and two PDE modes are:

φ(u) =

v1u, x < uc

v2(ω −u). x ≥ uc

mode =

ut + v1ux = 0, x < uc

ut − v2ux = 0. x ≥ uc

(3.15)

We chose v1 = 3, v2 = 1, ω = 4 and uc = 1. The forward traffic flow maintains a speed equal to 3 and

the backward wave maintains a speed equal to 1. Moreover, uc equals 1 which is the guard condition for

switching. Lastly, ω is the parameter specified in backward wave. The diagram of the model is in Figure

3.10.

Initially, the regions, {0,0.1, ...,0.8,0.9}∪{1.3,1.4, ...,3.3,3.4}∪

{3.8,3.9, ...,9.9,10.0}, are assigned value 0 for free flow mode. The other remaining areas, {1.0,1,1,1.2}∪

{3.5,3.6,3.7}, are assigned value 1 for congestion mode. The Equation 3.15 shows the free flow mode

carries the traffic forward and congestion pushes the traffic backward. Once the forward and backward waves

meet each other, the forward wave merges into backward wave and starts to move back. The traffic leaves

the system and no longer enters again when it reaches the boundary. For simplicity, no incoming traffic is

considered.

54

We can facilitate simulation if we harness the theoretical aspects of linear hyperbolic equations. To sim-

ulate the first order wave equation, only one-side scheme is feasible and the low accuracy of the scheme

requires a very dense discretization [182] which makes the computation task a nightmare. Thus, the simula-

tion is just done by moving the waves alone the axis.

At t = 1, backward wave appearing at boundary x = 0 is about to leave. Wave originating from [3.5,3.7]

moves to the place around 2.4. The Forward wave starting at [3.9,4.0] propagates to region [6,9,7.0]. The

discrete partition pd changes to 0 for points {0.3,0.4, ...,2.3,2.4} ∪ {2.8,2.9, ...,9.9,10} and 1 for points

{0,0.1,

0.2}∪{2.5,2.6,2.7}. At t = 3, only one single backward wave remains. pd = 0 for {0,0.1, ...,0.7,0.8}∪

[1.1,1.2, ...,9.9,10] and pd = 1 for {0.9,1.0}.

Simulations show that the traffic merges around t = 0.5 and eventually all flows leave the system. Around

the merging location, the area that used to be in the free mode switches to the congestion mode.

3.7 Conclusion

In this chapter, we propose a theoretical model called PDHA for modelling PDE dynamic systems. PDHA

involves novel features such as the notion of domain X , which is used to define the spatial location, and

domain partition P, which is used to describe the mode occupation situation. After building the theory for

PDHA, we present another model called discrete space PDHA that we constructed for the purpose of anal-

ysis. In discrete space PDHA, the discretization relation and scheme are proposed to formalize the discrete

model. Additionally, the partition and space mode are replaced by a discrete partition, making the analysis

easier. Moreover, we formally defined concepts such as time trajectory, model execution, Zeno behaviour,

reachability analysis, and determinism. The chapter also displays explorations towards the relations of the

three models.

55

CHAPTER 4

Numerical Reachability Analysis for Partial Differential Equations

4.1 Reachability Analysis

Reachability analysis is a solution to the reachability problem in the context of dynamical systems and is

the fundamental problem in safety verification of CPS. It computes the set of possible solutions of dynamical

systems subject to uncertain initial states and inputs. The problem of systems of linear ODEs has been studied

extensively. Set representations include but are not limited to: zonotopes [8], support functions [73], and level

sets [129]. Reachability analysis tools like SpaceEx [64] and Flow* [40], which utilize Taylor models, have

proven to be powerful. Order reduction abstraction also plays a significant role in evaluating models. The first

work combining reachability analysis with order reduction techniques is [81], and a more recent approach is

discussed in [188].

4.2 Numerical Reachability Analysis for Hyperbolic Equations

The main contributions of this chapter are novel numerical reachability analysis methods for hyperbolic equa-

tions, a particular class of PDEs. We develop numerical reachability analysis for linear/nonlinear hyperbolic

equations by combining the flux splitting method, the Lax-Friedrich method, and the Lax-Wendroff method

with optimization and interpolation. These methods provide ways of approximating mesh values and estimat-

ing reachable sets on the points. In linear systems, the estimated reachable sets are constructed by computing

the trajectories using extreme values from the initial sets. While, in nonlinear systems, an optimization prob-

lem is proposed at each time step to calculate the bounds of the values for the next time step. Eventually, the

sets are built through interpolation with respect to both time and space, when the values at the current and

subsequent time steps are known. In the example section, the estimated reachable sets are compared with

real reachable sets. Through dense spatial discretization, the estimated reachable sets can provide a good

approximation of the real ones.

4.2.1 Problem Formulation

The following class of systems is considered:

ut + f (u)x = 0, t ≥ 0, x ∈ D ⊆ R

u(x,0) = ϕ(x)
, (4.1)

56

where u = (u1,u2,u3, ...,uk)
T , ut = (∂u1

∂ t ,
∂u1
∂ t , ...,

∂uk
∂ t)

T , f (u) = (f1(u), f2(u), ..., fk(u))T is the flux function,

f (u)x = (∂ f1(u)
∂x , ∂ f2(u)

∂x , ..., ∂ fk(u)
∂x)T , ϕ(x) = (ϕ1(x),ϕ2(x), ...,ϕk(x))T is the initial condition, D ⊆ R is the

domain of interest and u : D × (R+∪0)→ Rk.

The initial condition is represented by ϕ(x), ϕ : D 7→ Rk, and is constrained by a range [ϕ l(x),ϕu(x)],

where ϕ l(x) is the lower bound of ϕ(x) for x ∈ D and ϕu(x) is the upper bound of ϕ(x) for x ∈ D . The

lower and upper bounds compose the initial set of the problem described in (4.1). The definition, used in this

chapter, for initial sets is:

Definition 22 (Initial Set). Let ϕ(x) be the initial condition of (4.1) and ϕ l(x) and ϕu(x) are the corre-

sponding lower bound and upper bound of ϕ(x) defined on domain D . The initial set of (4.1) is defined as

Ω ≜

{⋃
x
[ϕ l(x),ϕu(x)] | for x ∈ D

}
. (4.2)

Reachable sets are shown to start from Ω and evolve accordingly.

Definition 23 (Reachable Set). The reachable set of (4.1) is

Ru(T)≜

{⋃
x,t

u(x, t) |u(x, t) satisfy (4.1) for x ∈ D , t ∈ [0,T]

}
. (4.3)

Since PDEs are often nonlinear and unsolvable [177], it is almost impossible to compute the exact reach-

able set Ru(T) for a system of PDEs. Rather than directly computing the reachable set, a more practical and

feasible way is to derive an approximation of Ru(T), which is called reachable set estimation. In this chapter,

the estimation is based on the finite difference methods.

Finite difference methods (FDMs) are a group of approaches used for approximating real values or vari-

able derivatives of a function on predefined mesh points. The error between the discrete solution and the

exact solution is measured through a Taylor expansion. We show how to construct estimated reachable sets

R̃u(T) after discussing FDMs and pick the most accurate estimation for Ru(T).

The main focus of this work is on safety verification for hyperbolic systems. The safety specification is

expressed by a set S, defined on domain D , and describes the safety requirement.

Definition 24. Consider a hyperbolic PDE system in the form of (4.1), reachable sets Ru(T) and a safety

specification S, the hyperbolic PDE system is safe if the following condition is satisfied

Ru(T)∩¬S = /0. (4.4)

Definition 24 uses reachable sets for safety verification of a system of PDEs although Ru(T) is not obtain-

57

able due to the unsolvable property mentioned above. One way to circumvent these difficulties is to utilize

FDMs since it produces an explicit error estimation. As the number of mesh points increases, the estimated

solution will become more accurate. In the next section, the analysis of linear and nonlinear systems is

discussed.

4.2.2 Linear System

The flux function f (u) in (4.1) can be decomposed if its Jacobian matrix is not dependent on the unknown

variable u. Then, we obtain the system below.

ut +Aux = 0, t ∈ R+, x ∈ D ⊆ R

u(x,0) = ϕ(x)
(4.5)

where A is the Jacobian matrix of f (u) and is a constant matrix.

Transforming the matrix A into a diagonal matrix Λ allows each u ∈ u to be treated separately. Next, S is

multiplied on both sides of ut +Aux = 0.

Sut +SAux = 0,

(Su)t +SAS−1Sux = 0,

(Su)t +Λ(Su)x = 0.

(4.6)

Replacing (Su)t by vt and (Su)x by vx , we have

vt +Λvx = 0. (4.7)

In order to perform reachability analysis, we define monotone to simplify the computing. If our iteration

procedure is monotone, we only need to simulate 2 trajectories to construct the reachable sets. An additional

CFL condition is required for the monotone property.

4.2.3 Nonlinear System

In the general form shown in system 4.1, if the Jacobian matrix A is a function of u and f (u)x = A(u)ux, then

it is a nonlinear system.

A commonly used approach for simulating a system is the Lax-Wendroff method [182] pages 213–216.

It is second-order accurate with respect to both space and time. The main issue with numerical reachability

analysis using the Lax-Wendroff method is that it is not monotone and does not preserve the property. That

58

fact has been proved by Harten [84]. In order to handle the non-monotone issue, an optimization problem is

constructed and solved at each time step. The maximum and minimum values at each mesh point are found

and used as the starting values for the next time step.

The goal is to find un+1
min,i and un+1

max,i . To find the optimal solution at time tn, start with the mesh point

i at time tn and set up the optimizations described below generally using the optimization operator opt ∈

{min,max}:

opt un+1
i

s.t. Lax-Wendroff scheme,

un
i−1 ∈ [un

min,i−1, un
max,i−1],

un
i ∈ [un

min,i, un
max,i],

un
i+1 ∈ [un

min,i+1, un
max,i+1].

(4.8)

4.3 Numerical Reachability Analysis for Parabolic Equations with Dense Spatial Discretization

In this chapter, we focus on the numerical reachability analysis for parabolic equations. We extend the state

of art in numerical reachability analysis of one/two dimension parabolic equations by combining Krylov sub-

space method/tridiagonal method with numerical PDEs methods including implicit method, Crank-Nicolson

(C-N) method, and Alternative Segment Crank-Nicolson (ASC-N) method. These methods are used to com-

pute approximate values on large number of mesh points by solving a high-dimension sparse matrix problem.

In particular, for one dimension heat equation model, we propose a serial approach based on Krylov subspace

method. For two dimension problem, we propose an novel approaches combining C-N and Krylov subspace

method to estimate the reachable sets. Additionally, for one dimension problem, we utilize a more efficient

parallel version C-N method, ASC-N, to construct the estimated reachable sets. Finally, we conduct inter-

polation in both time and space to build the sets once obtaining values at the current and subsequent time

step.

4.3.1 One Dimension Problem

The one dimension problem can be described as follows:

ut = αuxx +λu, t ∈ R+, x ∈ D ⊆ R

u(x,0) = ϕ(x),

u(0, t) = 0,

ux(L, t) = 0,

(4.9)

59

m = 1800 m = 3600 m = 7200
direct subspace method 39.75s 193.24s 694.17s
ASC-N(3 threads) 57.28s 210.97s 813.79s
ASC-N(5 threads) 40.45s 99.35s 392.12s

Table 4.1: Comparison of using different numbers of mesh points and threads for model 4.9. 3 threads ASC-
N is slower than direct subspace method due to communication overhead. 5 threads ASC-N is significantly
faster than serial approach.

where ut =
∂u
∂ t , ux =

∂u
∂x , uxx =

∂ 2u
∂x2 , α is the heat diffusion parameter, λu is the input function, ϕ(x) is the

initial condition, and D ⊆ R is the domain of interest.

We can use either Crank-Nicolson(C-N) or Alternating Segment Crank–Nicolson(ASC-N) scheme to

solve the target problem. ASC-N is a parallel version of C-N approach and is faster when a large number

of cores are used. After spatial discretization, we use Generalized Minimal Residual (GMRES) to solve the

resulting algebraic equations. GMRES output an estimated solution to the original problem and thus can be

used to bloat the reachable sets. Also, both C-N and ASC-N are monotone.

The first segment The second segment The third segment

The first segment The second segment The third segment

n + 2

n + 1

𝑢𝑢1𝑛𝑛+2 …. 𝑢𝑢𝑚𝑚𝑛𝑛+2

Figure 4.1: The diagram for Alternating Segment Crank-Nicolson(ASC-N). Black squares and diamonds rep-
resent the right and left interior boundary points for each segment respectively. White squares and diamonds
represent non-boundary points which use to be on boundary.

The numerical reachable analysis of one-dimension system is shown in algorithm 1.

Algorithm 1 Numerical Safety Verification for One Dimension Parabolic Equation
Input: D ,∆t,∆x,λmin,λmax,α,ϕ(x)l ,ϕ(x)u
Output: Safe/Uncertain

1: procedure CHECK SAFETY
2: Apply C-N or ASC-N to ϕ(x)l ,ϕ(x)u.
3: Solve the equations and bloat the results using GMRES.
4: Construct R̃u(T) using interpolation.
5: if R̃u(T)∩¬S ̸= /0 then
6: return Uncertain
7: return Safe

60

4.3.2 Two Dimension Problem

The two dimension problem is a two dimension heat equation, which can be expressed as follows:

ut = α(uxx +uyy)+λu, t ∈ R+, x ∈ D ⊆ R

u(x,y,0) = ϕ(x,y),

uy(x,0, t) = 0.5, lower boundary

uy(x,L, t) = 1−u, upper boundary

ux(0,y, t) = 0, left boundary

u(L,y, t) = 0.8. right boundary

(4.10)

We use 2 dimension C-N scheme to discretize the original problem and then apply GMRES to the discrete

problem. 2 dimension problem gives us a block tridiagonal matrix which is much larger than one dimension

problem matrix.

Figure 4.2: 3 dimension estimated reachable sets of two dimension heat equation at t = 9 using Crank-
Nicolson method scheme with Krylov subspace method. ∆t = 0.1, ∆x = 0.4 and ∆y = 0.4 (left). ∆t = 0.1,
∆x = 0.2 and ∆y = 0.2 (right).

The numerical reachable analysis of two-dimension system is shown in algorithm 2. For the schemes

mentioned in above algorithm, see them in Appendix.

61

Algorithm 2 Numerical Safety Verification for Two Dimension Parabolic Equation
Input: D ,∆t,∆x,∆y,λmin,λmax,α,ϕ(x,y)l ,ϕ(x,y)u
Output: Safe/Uncertain

1: procedure CHECK SAFETY
2: Apply C-N to ϕ(x)l ,ϕ(x)u
3: Solve the equations and bloat the results using GMRES.
4: Construct R̃u(T) using interpolation.
5: if R̃u(T)∩¬S ̸= /0 then
6: return Uncertain
7: return Safe

62

CHAPTER 5

PDE-Driven Neural Networks for Modeling Dynamic Spatial Dependencies

5.1 Modelling Water Temperature using Graph Convolutional Networks

Water temperature prediction in river networks is critical for monitoring aquatic ecosystems by providing

important information regarding the habitat for aquatic life and aquatic biogeochemical cycling [31, 122].

Effective temperature predictions are also essential for water management decisions. For example, accu-

rate prediction of water temperature can help water managers optimize the water release from reservoirs to

maintain the flow and temperature regimes required for quality downstream habitat.

A river network can be considered as a physical system that has multiple interacting processes. In this

problem, multiple river segments are connected to each other, and they can show different thermodynamic

patterns driven by differences in catchment characteristics (e.g. slope, soil characteristics) and meteorological

drivers (e.g. temperature, precipitation). These segments also frequently interact with each other through

the water advected from upstream to downstream segments. Rivers are essentially fluid from a physical

perspective, with their spatial and temporal patterns described by PDEs that govern fluid dynamics. For

example, traditional fluid models have used the Navier–Stokes equation [18] for simulating fluid dynamics

in many applications including aquatic science, hydraulic modeling, weather and climate modeling, ocean

currents, and aerodynamics. When modeling temperature dynamics in river networks, these PDEs capture

not only the temporal thermodynamics but also the spatial heat diffusion and convection from connected river

segments [54]. Furthermore, these PDEs, along with other known physical relationships, have been used to

build more complex physics-based models [124, 181] to simulate multiple interacting processes on different

variables in a system. However, these equations and physics-based models have limits in their predictions

due to approximations and parameterizations used to represent underlying processes.

Recent advances in ML, given their great success in commercial applications, have provided unrealized

potential for modeling complex data patterns in scientific problems. The power of these models come from

their capacity to extract complex nonlinear patterns from observation data and naturally incorporate spatial

and temporal data dependencies. For example, RNN models, which take account of temporal dependencies,

have shown extensive applicability in speech recognition and machine translation [77, 128]. CNN-based

approaches have shown tremendous success in learning spatial patterns in many computer vision applica-

tions [69, 105, 170]. Recently, graph neural network models, e.g., GCNs, have shown a great promise for

modeling interactions and similarities amongst multiple objects [115, 121, 215, 216] and also have shown

63

encouraging results for studying river networks [90, 92, 131].

However, there are several major challenges faced by these existing ML methods when they are directly

applied to scientific problems. First, the data available for many scientific problems is far smaller than

what is needed for effectively training advanced ML models. In a river network, there are often only a

handful of river segments in a network that are monitored due to the high cost associated with data collection.

Moreover, despite the promise of existing deep learning techniques, they are not originally designed to exploit

the unique characteristics of complex scientific systems. Scientific systems are commonly driven by physical

processes and variables that evolve and interact at different spatial and temporal scales. While existing GCN-

based methods have shown some success in modeling interactions amongst river segments, they commonly

create static graphs based on standard distance metrics (e.g., geographic or stream distances) without fully

exploiting the physical characteristics of river segments and also do not capture dynamic interactions over

time. In stream networks, the flow of water from one stream segment takes a certain amount of time to

reach to another stream segment and this time depends on multiple factors such as the stream morphology,

catchment characteristics, and weather patterns. Additionally, the connection strength between two stream

segments depends on the velocity and volume of the water flowing through individual streams, which can

also vary over time. Hence, the weight of different upstream segments on a downstream segment can vary

across time depending on the variation of these physical variables. Additionally, existing GCN-based models

extract abstract hidden variables that are propagated over the network, but these hidden variables may fail to

represent true underlying physical relationships that govern the interactions, especially given limited training

data.

In this chapter, we propose a PDE-guided Dynamic Graph Networks (PDE-DGN) to predict water tem-

perature for all the river segments over a long period. The PDE-DGN captures temporal dependencies with

a recurrent layer while also modeling the spatial interactions amongst river segments using dynamic graph

structures. Moreover, it incorporates the governing PDE that describes the heat transfer process in the river

networks. The PDE represents known physical relationships about dynamic interactions amongst river seg-

ments, and thus can be used to guide the design of evolving graph structures. In particular, we use finite

difference methods to derive the graph structure from the PDE. The representation of PDEs is also limited

in that some physical parameters (e.g., coefficients in PDEs) are unknown and commonly require expensive

calibration. In our proposed method, these unknown physical parameters can be estimated together with other

neural network parameters efficiently using back propagation.

We implement our proposed method for water temperature prediction using collected data from the

Delaware River Basin over 36 years. We demonstrate the superior predictive performance of our proposed

method over existing ML methods. Our methods have also been shown to produce better performance when

64

using limited training data that are sparsely distributed over space (i.e., data are only available from cer-

tain stream segments) and time (i.e., data are only available from certain seasons). Moreover, the proposed

method has better generalizability when tested in data of different distributions. Our contributions can be

summarized as follows:

• We introduce a new dynamic recurrent graph network architecture to model a river network with inter-

acting river segments.

• We leverage the knowledge from the underlying PDE to guide the design of evolving graph structure.

• We evaluate the utility in the context of an ecologically and societally relevant problem of monitoring

river networks.

5.2 Modelling Water Temperature using PDE Driven Networks

5.2.1 Problem Definition

Our objective is to model the dynamics of temperature in a set of connected river segments that together form

a river network. The connections amongst these river segments can be represented in a graph structure G =

{V ,E ,A}, where V represents the set of N river segments and E represents the set of connections amongst

river segments. Specifically, we create an edge (i, j) ∈ E if the segment i is connected to segment j. Because

we consider the dynamic interactions amongst river segments, the adjacency matrices A = {A1,A2, ...,AT}

represent the adjacency levels amongst all the segments at each time step from t = 1 to T . Here a higher

value of At
i j indicates that the segment i has a stronger influence on the segment j at time t. At

i j = 0 means

there is no edge from the segment i to the segment j at this time. In this chapter, we only consider the

evolution of adjacency matrix over time while keeping a static set of river segments (i.e., node set V) and

stream connections (i.e., edge set E).

5.2.2 Recurrent Neural Networks and Long-Short Term Memory

The RNN model has been widely used to model the temporal patterns in sequential data. The RNN model

defines transition relationships for the extracted hidden representation through a recurrent cell structure. In

this work, we adopt the LSTM to build the recurrent layer for capturing long-term dependencies. Each

LSTM cell has a cell state ct , which serves as a memory and allows preserving information from the past.

Specifically, the LSTM first generates a candidate cell state c̄t by combining xt and the hidden representation

at previous time step ht−1, as follows:

c̄t = tanh(Wh
cht−1 +Wx

cxt +bc). (5.1)

65

where W and b are matrices and vectors, respectively, of learnable model parameters. Then the LSTM

generates a forget gate f t , an input gate gt , and an output gate ot via sigmoid function σ(·), as follows:

ft = σ(Wh
f ht−1 +Wx

f xt +b f),

gt = σ(Wh
ght−1 +Wx

gxt +bg),

ot = σ(Wh
oht−1 +Wx

oxt +bo).

(5.2)

The forget gate is used to filter the information inherited from ct−1, and the input gate is used to filter the

candidate cell state at t. Then we compute the new cell state as follows:

ct = ft ⊗ ct−1 +gt ⊗ c̄t , (5.3)

where ⊗ denotes the entry-wise product.

Once obtaining the cell state, we can compute the hidden representation by filtering the cell state using

the output gate, as follows:

ht = ot ⊗ tanh(ct). (5.4)

According to the above equations, we can observe that the computation of ht combines the information at

current time step (xt) and previous time step (ht−1 and ct−1), and thus encodes the temporal patterns learned

from data.

5.3 Method

In this section, we describe the details of the PDE-DGN method. We start with introducing the dynamic graph

model architecture for capturing stream water dynamics and interactions amongst river segments. Then we

discuss a new strategy to enforce physical relationships to the dynamic graph structure by leveraging the

physical knowledge embedded in known governing PDEs.

5.3.1 Dynamic Recurrent Graph Network

In this section, we describe the details of the PDE-DGN method. We start with introducing the dynamic graph

model architecture for capturing stream water dynamics and interactions amongst river segments. Then we

discuss a new strategy to enforce physical relationships to the dynamic graph structure by leveraging the

physical knowledge embedded in known governing PDEs.

Water temperature in rivers has strong spatial and temporal patterns as a result of heat transfer with climate

(e.g., solar radiation) and neighboring river segments [54]. The ML model for river networks also needs to

66

General PDE
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑁𝑁(

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2)

Climate Drivers
(air temperature, precip)

Dynamic Recurrent Graph Networks

Observation

Update
unknown
physical
variables
(PDE coefficient)

𝟏𝟏
𝟑𝟑

𝟐𝟐

𝟓𝟓

𝟒𝟒

Stream Structure

Dynamic graph structure

t - 1 t t + 1

1
2

3

5

4

1
2

3

5

4

1
2

3

5

4

. . .

𝐱𝐱𝟑𝟑𝒕𝒕

𝐡𝐡𝟑𝟑𝒕𝒕

𝐲𝐲𝟑𝟑𝒕𝒕

LSTM
cell

𝐱𝐱𝟑𝟑𝒕𝒕+𝟏𝟏

𝐡𝐡𝟑𝟑𝒕𝒕+𝟏𝟏

𝐲𝐲𝟑𝟑𝒕𝒕+𝟏𝟏

LSTM
cell

𝐱𝐱𝟏𝟏𝒕𝒕

𝐡𝐡𝟏𝟏𝒕𝒕
𝒚𝒚𝟏𝟏𝒕𝒕

LSTM
cell

𝐱𝐱𝟐𝟐𝒕𝒕

𝐡𝐡𝟐𝟐𝒕𝒕

𝐲𝐲𝟐𝟐𝒕𝒕

LSTM
cell

LSTM
cell

𝐡𝐡𝟑𝟑𝒕𝒕−𝟏𝟏

𝐲𝐲𝟑𝟑𝒕𝒕−𝟏𝟏

𝐱𝐱𝟑𝟑𝒕𝒕−𝟏𝟏

𝐱𝐱𝟏𝟏𝒕𝒕−𝟏𝟏

𝐡𝐡𝟏𝟏𝒕𝒕−𝟏𝟏

𝒚𝒚𝟏𝟏𝒕𝒕−𝟏𝟏

LSTM
cell

𝐱𝐱𝟐𝟐𝒕𝒕−𝟏𝟏

𝐡𝐡𝟐𝟐𝒕𝒕−𝟏𝟏

𝐲𝐲𝟐𝟐𝒕𝒕−𝟏𝟏

LSTM
cell

𝐀𝐀𝟑𝟑𝟑𝟑𝒕𝒕−𝟏𝟏

adjacency matrices 𝐀𝐀1,…, 𝐀𝐀𝑇𝑇

Figure 5.1: The overall flow of the proposed method. The dynamic recurrent graphs take the input of climate
drivers and dynamic graph structures derived from the stream network and the underlying PDE. The thickness
of edges in dynamic graph structures represents different edge weights. The training of the model updates
both network parameters and coefficients in the PDE to refine graph structures.

capture such spatial and temporal dependencies in order to model the temperature dynamics. In particular, we

build a dynamic recurrent graph network, which incorporate the information from both previous time steps

and neighbors (i.e., upstream segments) when modeling each river segment (Fig. 5.1).

The proposed model aims to embed the input data and the spatio-temporal context of each river segments

into a hidden representation ht at each time step. Our model structure is inspired by the Recurrent Graph

Model [92] but we extend it to take account of changes in the graph structure. We now describe the recurrent

process of generating the hidden representation ht from ht−1.

First, for each river segment i, the model needs to aggregate the influence from its neighboring segments

j such that (i, j) ∈ E . Specifically, assuming we have gathered the embeddings ht−1
j from all the upstream

segments at previous time step, we first transform these embeddings through a function f (·), which extracts

the information that is most relevant to the downstream segment i. For example, the amount of water ad-

vected from this segment and its water temperature can directly affect the change of water temperature for

its downstream segments. This function can be implemented using fully connected layers. Then we develop

a new recurrent cell structure for each segment i by extending the standard LSTM structure (Eq. 5.3) that

integrates both the historical information from the same river segment (i.e., the previous state ct−1
i) and the

67

spatial context from its upstreams (i.e., f (ht−1
j) for (j, i) ∈ E). This can be expressed as follows:

ct
i = ft

i ⊗ (ct−1
i + ∑

(i, j)∈E

At
i j f (ht−1

j))+gt
i ⊗ c̄t

i (5.5)

The forget gate not only filters the previous information from the segment i itself but also from its neigh-

bors (i.e., upstream segments). The information from each upstream segment j is weighted by the adjacency

level At
i j between i and j at time t. The matrix At varies over time due to the change of influence amongst

river segments.When a river segment has no upstream segments (i.e., headwater stream segment), the com-

putation of ct
i is the same as with the standard LSTM. Also, we use the f (ht−1

j) from the previous time step

because of the time delay in transferring the influence from upstream to downstream segments.

After obtaining the cell state, we can compute the hidden representation ht
i by following Eq. 5.4. Finally,

we generate the predicted output from the hidden representation as follows:

ŷt
i = Wyht

i +by, (5.6)

where Wy and by are model parameters.

After applying this recurrent process to all the time steps, we define a loss, LDGN, using true observations

Y = {yt
i} that are available at certain time steps and certain segments, as follows:

LDGN =
1
|Y| ∑

{(i,t)|yt
i∈Y}

(yt
i − ŷt

i)
2. (5.7)

5.3.2 PDE-Driven Dynamic Graph Structure

Water temperature changes in rivers as a result of the heat transfer process. The heat transfer process has

been widely studied and also used to build process-based models to simulate water temperature change along

stream networks and through time [54]. Here we introduce a new strategy that leverages such underlying

physical process to estimate the graph structure used in our proposed method. By enforcing such general

physical relationships, the model stands a better chance at learning generalizable patterns even with small

amounts of training data.

In particular, we consider the temperature change resulted from the net gain of energy fluxes by following

the heat transfer formula described in [54]. This formula is expressed as follows:

∂y
∂ t

=−U
∂y
∂ s

+D
∂ 2y
∂ s2 +

Htotal

ρ · cp ·d
, (5.8)

where y = y(s, t) is the water temperature (°C) at time t and location s, U is mean channel velocity (m s−1),

68

D is a longitudinal dispersion coefficient (m s−2), ρ is the density of water (1000 kg m−3), cp is the specific

heat of water (41.8× 103 J kg-1 °C−1), and d is the mean channel depth (m). Here ∂y
∂ t denotes the water

temperature change over time (s) while ∂y
∂ s denotes the water temperature change over stream distance (m).

Htotal represents the total energy available for transfer to or from the river channel. Eq. 5.8 describes the

dynamics of river temperature from a temporal perspective; its rearrangement in the form ∂y
∂ s also permits

the calculation of river temperature in a spatial framework [70]. When using Eq. 5.8, we assume that the

channel is well mixed and does not contain notable lateral temperature gradients. In order to derive the

spatial relationships from Eq. 5.8, we use the finite difference method. Finite difference methods (FDMs) are

a group of approaches used for approximating real values or variable derivatives of a function on predefined

mesh points by solving algebraic equations containing finite differences and values from nearby points. The

error between the discrete solutions and the exact solutions is measured through Taylor expansions.

Our objective is to construct matrix At from the PDE (Eq. 5.8). Real-world river systems are complex.

Multiple river segments in a network may interact with each other and these interactions are non-uniform in

space and time. Moreover, river segments are usually non-uniformly distributed in space which makes the

equal distance FDMs fail. Hence, there is a need to develop a new numerical scheme to handle irregular

distributed points. In the following, we will discuss how we use the PDE to contruct the graph structure in

two parts: (1) How to numerically approximate the solution of the PDE using irregularly distributed points.

(2) How to use use the PDE under special conditions (e.g., intersections and boundaries).

5.3.2.1 PDE over Irregular Points

A feasible way towards the first problem is to use a step variational FDM which is often referred to as

generalized finite difference methods (GFDMs). GFDMs are meshless methods and have been used in a wide

variety of applications [85]. For the ease of presenting PDEs and GFDMs, we explicitly represent the set of

time steps as {t1, t2, ..., tT}, where the time interval between consecutive time steps is ∆t. We also assume

the spatial locations of N segments as {s1,s2, ...sN}. During our presentation, we consider si−1 and si+1 to

be the closest upstream and downstream segments to si, respectively. Using GFDM, the first order temporal

derivative can be approximated as follows:

yt(si, tn) =
∂y(si, tn)

∂ t
≈ yi(si, tn+1)− yi(si, tn)

∆t
. (5.9)

Consider one river segment with the left distance ∆s1 to the left observation point and right distance ∆s2

to the right observation point (see Fig. 5.2). The first order spatial derivative are calculated as follows:

69

ys(si−1/2, tn) =
∂y(si−1/2, tn)

∂ s
≈ y(si, tn)− y(si−1, tn)

∆s1
, (5.10)

ys(si+1/2, tn) =
∂y(si+1/2, tn)

∂ s
≈ y(si+1, tn)− y(si, tn)

∆s2
, (5.11)

Here, si+1/2 represents the middle points of si and si+1. si−1/2 represents the middle points of si and si−1.

We use these two approximated first order spatial derivatives to approximate a second order spatial derivative

which can be estimated as follows:

yss(si, tn) =
∂ys(si, tn)

∂ s
≈

ys(si+1/2, tn)− ys(si−1/2, tn)
(∆s1 +∆s2)/2

. (5.12)

The truncation error for Eqs. 5.9, 5.10, 5.11 and 5.12 are O(∆t), O(∆s1), O(∆s2) and O(((∆s1+∆s2)/2)2),

respectively.

∆s1
∆𝑠𝑠2

s𝑖𝑖−1

s𝑖𝑖+1

s𝑖𝑖

Figure 5.2: The river segment diagram for estimating first-order and second-order spatial derivatives (Eqs.
5.10, 5.11 and 5.12).

Now we can use Eqs. 5.9-5.12 to approximate the derivatives in Eq. 5.8. By substituting the approximated

derivatives into Eq. 5.8, we can rewrite the original PDE as follows:

y(si, tn+1)− y(si, tn)
∆t

=−U
y(si+1, tn)− y(si, tn)

∆s2
+D

ys(si+1/2, tn)− ys(si−1/2, tn)
(∆s1 +∆s2)/2

+
Htotal

ρ · cp ·d
.

(5.13)

Here we use Eq. 5.11 to approximate ys(si, tn). Then by rearranging the terms in Eq. 5.13, we get the

70

following representation for y(si, tn+1), as follows:

y(si, tn+1)

=(
2∆tD

∆s1(∆s1 +∆s2)
)y(si−1, tn)

+(
U∆t
∆s2

− 2∆tD
∆s1(∆s1 +∆s2)

− 2∆tD
∆s2(∆s1 +∆s2)

)y(si, tn)

+(
2∆tD

∆s2(∆s1 +∆s2)
− U∆t

∆s2
)y(si+1, tn)+

Htotal

ρ · cp ·d
∆t.

(5.14)

Because we have multiple rivers in a river graph, we use a vector Y (tn) = {y(s1, tn),y(s2, tn), ...,y(sN , tn)}

to represent the temperatures on all the river segments at a specific time step tn. Note that in Eq. 5.13, i− 1

and i+1 represent two segments that are connected to the segment i, i.e., (i−1, i)∪ (i, i+1) ⊂ E , and they

are the closest upstream and downstream segments to the segment i, respectively. Then we can derive the

update formula at each time step by converting Eq. 5.14 into the following form:

Y (tn+1) = Atn+1Y (tn)+Constant, (5.15)

where each row of Atn+1 can be determined by Eq. 5.14. We ignore the constant term when we build the

graph structure. For other variables, the channel velocity U is calculated as the quotient of streamflowt
i/cai,

where cai represents the cross-sectional area of each stream segment i, and we use the streamflow values that

are simulated by a physics-based model PRMS [124]. Because we do not have the measured value of cai and

D, we estimate these values from observations of water temperature.

5.3.2.2 Dealing with Special Conditions

Now we discuss the estimation of spatial derivatives under two special conditions; intersections and bound-

aries. First, we consider the intersections in river networks where the target river segment can have multiple

upstream segments and one downstream segment (Note that in real-world river networks, it is very rare for

naturally flowing river segments to have more than one downstream segment). We show one such example in

Fig. 5.3. The calculation of the first-order derivative ys requires data points from both the target segment and

the neighboring segments (Eqs. 5.10 and 5.11). Additional complexity arises if we want to estimate the first-

order gradients using multiple upstream segments. Hence, we use the data point from the single downstream

segment to estimate the first-order derivative by following Eq. 5.11.

The estimation of second-order derivative yss (i.e., heat diffusion effect) requires data points from both

sides of the target segment. To adapt Eq. 5.12 to handle multiple upstream segments, a straightforward

method is to only focus on the closest upstream segment and neglect all the other points, termed as 2-points

71

approximation. Although this method results in a simplified solution, it may degrade the performance due

to the ignorance of the influence from other upstream segments. This issue can be further exacerbated if no

observations of water temperature are available for the closest upstream.

Another method is to aggregate the diffusion effect from all the upstream segments. Because more up-

stream segments lead to more heat exchange, we sum the second-order derivative yss over all the upstream

segments.

∆𝑠𝑠1

∆𝑠𝑠2

∆𝑠𝑠3

s𝑖𝑖

s𝑖𝑖+1

s𝑖𝑖−1
s𝑖𝑖−2

Figure 5.3: River intersection diagram. The center point has two upstream points and one downstream point.
In this scenario, we consider Dyss = D1yss,1 +D2yss,2.

In particular, in the heat transfer PDE (Eq. 5.8), we convert Dyss into ∑
k
i=1 Di yss,i where k is the total

number of upstream segments at the current river segment, and yss,i represents the second-order derivative

estimated using the upstream segment i and the downstream segment following Eq. 5.12. As a result, each

row of At contains k values from upstream segments, one value from the downstream segment and one value

from itself.

Second, we consider segments that are located at the boundary (i.e., when they have no upstream or

downstream segments). It is challenging for estimating spatial derivatives (especially second-order deriva-

tives) for these segments due to the missing neighbors on one side. To this end, we assume the values outside

the boundary are always identical to the temperatures on the boundary, i.e., we have the Neumann boundary

condition ys(sb, t) = 0 where sb denotes a boundary point. Here we show the computation of the second-order

derivative for headwater segments (i.e., segments with no upstream segments) as follows:

72

yss(sb, tn)≈
ys(sb+1/2, tn)
(∆s1 +∆s2)/2

, (5.16)

where ∆s1 is a virtual distance measure and is pre-defined in our implementation.

Algorithm 3 Calculation of dynamic graph structures at a specific time step t.
for i = 1 : number of river segments do

U = streamflowt
i/cai

for k = 1 : number of upstreams of i do
coe fup,k =

2∆tcrossareai
∆s1,k(∆s1,k+∆s2)

coe fi,k =
U∆t
∆s2

− 2∆tDL
∆s1,k(∆s1,k+∆s2)

− 2∆tDL
∆s2(∆s1,k+∆s2)

coe fdn,k =
2∆tDL

∆s2(∆si,k+∆s2)
− U∆t

∆s2

coe fi = ∑k coe fi,k
coe fdn = ∑k coe fdn,k
for k = 1 : number of upstreams of i do

At
i,up(k) = coe fup,k, where up(k) is the index of kth upstream segment

At
i,i = coe fi

At
i,dn = coe fdn

Algorithm 4 The flow of the proposed PDE-DGN model.
initialize the network model and the physical parameters {Di} and {cai}
for epoch = 1 : number of training iterations do

for t = 1 : number of time steps do
Estimate adjacency matrix At using the current values of {Di} and {cai} following Algorithm 1
Make predictions using the recurrent graph network following Eqs. 5.5-5.6
Add the accumulated errors to the loss function (Eq. 5.7)

update model parameters (i.e., networks weights) and physical parameters (i.e., {Di} and cai)

We show the detailed process of computing the dynamic graph structures in Algorithm 1 and then sum-

marize our proposed method in Algorithm 2. In each iteration, we first estimate the graph structure using the

PDE and the current value of cai and {Di}. Then we update cai and {Di} as well as other model parameters

using available training observations.

5.4 Experimental Results

We evaluate the proposed method for predicting stream temperature using real-world data collected from the

Delaware River Basin, which is an ecologically diverse region and a societally important watershed along the

east coast of the United States as it provides drinking water to over 15 million people. We first describe our

dataset and baselines. Then we discuss the results about the predictive performance using sparse data, the

spatial distribution of errors, and model generalization. All experiments are conducted using Tensorflow on

73

a computer with the following configuration: Intel Core i7-8750H CPU @2.20GHz × 6 Processor, 16 GiB

Memory, 64-bit Win10 OS.

5.4.1 Dataset and Baselines

The dataset is pulled from U.S. Geological Survey’s National Water Information System [178] and the Water

Quality Portal [155], the largest standardized water quality dataset for inland and coastal waterbodies [155].

Observations at a specific latitude and longitude were matched to river segments that vary in length from 48

to 23,120 meters. The river segments were defined by the national geospatial fabric used for the National

Hydrologic Model as described by Regan et al. [157], and the river segments are split up to have roughly a

one day water travel time. We match observations to river segments by snapping observations to the nearest

stream segment within a tolerance of 250 m.

We study a subset of the Delaware River Basin (Christina River Watershed) with 42 river segments that

feed into the mainstem Delaware River at Wilmington, Delaware. We use input features at the daily scale

from Oct 01, 1980, to Sep 30, 2016 (13,149 dates). The input features have 10 dimensions which include

daily total precipitation, daily mean air temperature, day of the year, solar radiation, shade fraction, potential

evapotranspiration and the geometric features of each segment (e.g., elevation, length, slope and width).

Water temperature observations were available for 32 segments but the temperature was observed only on

certain dates. The number of temperature observations available for each segment ranges from 1 to 9,810

with a total of 51,103 observations across all dates and segments. We compare model performance to multiple

baselines, which are described as follows:

• Artificial neural networks (ANN): We train an ANN model using data collected from all the segments

on all the dates. The model is applied to predict water temperature on each date separately.

• Recurrent neural networks (RNN): We train an RNN model with the LSTM cell for modeling temper-

ature dynamics across consecutive dates. The RNN model takes the daily input drivers but the loss is

only defined on those dates with observations.

• HydroNets [131]: This method also takes into account both the temporal dependencies and spatial

river structures using customized model architecture. It has poor performance on our dataset because

its river-specific model parameters cannot be effectively trained for segments without observations.

• Recurrent Graph Neural Networks (RGrN) [92]: This baseline combines the graph convolutional net-

works and LSTM, and has shown promising results in predicting water temperature in streams.

74

• 2-points DGN: This is a variant of the proposed method, which only utilizes one closest upstream

segment when estimating the second-order derivatives (as discussed in Section 5.3.2).

All the models are trained and applied to all the river segments. In the following experiments, we train

each ML model using data from the first 24 years (Oct 01, 1980, to Sep 30, 2004) and then test in the next 12

years (Oct 01, 2004, to Sep 30, 2016). The hidden representation in these ML models is in 20 dimensions.

We set the learning rate to be 0.0005 and update the model for 100 epochs for modeling water temperature.

5.4.2 Predictive Performance using Sparse Data

We report the testing performance of different methods for temperature prediction and streamflow prediction

in Table 5.1. We also test the capacity of each model to learn using less training data by randomly selecting

5% and 10% labeled data from first 24 years for training the model. We repeat each experiment five times

with random model initialization and random selection of sparser data (5%, 10%) and report the mean and

standard deviation of the root mean square error (RMSE).

We observe that all the methods have larger RMSE values when we reduce the amount of training data.

Our proposed method PDE-DGN outperforms baselines using different amounts of training data. In partic-

ular, RGrN and HydroNets perform worse than PDE-DGN because these models use a static graph based

on the river network structure and thus they are limited in fully capturing dynamic interactions amongst

streams. Although the standard graph convolutional structure can also extract different hidden representation

for different segments (given their individual input features) and propagate the extracted information to the

neighbors, such extraction process is conducted using a set of parameters shared over all the segments and

over time. Hence, they cannot model how segment-specific physical variables (e.g., cross-sectional areas)

and time-varying variables (e.g., streamflow) affect the segment interactions. Moreover, by leveraging the

knowledge encoded by the PDE, the proposed method stands a higher chance at extracting more generaliz-

able patterns. Our method also outperforms the 2-points DGN method, which confirms the effectiveness of

incorporating multiple upstream segments in estimating the second-order derivatives for representing the heat

diffusion process.

Also, the improvement from RNN to RGrN shows that the incorporation of upstream-downstream depen-

dencies in river networks is helpful to improve the accuracy for predictions. Such improvement is especially

obvious as we use less training data. In terms of speed, the overall running time for a complete PDE-DGN

model is around 45 minutes which is slightly higher than RGrN method since the only extra overhead during

training stage is updating the adjacent matrix.

75

Table 5.1: Average RMSE (± standard deviation) from five runs for temperature prediction using 5%, 10%,
and 100% training labels. Here our method is compared with Artificial Neural Networks (ANN), Recurrent
Neural Networks (RNN), HydroNets, RGrN, and PDE-DGN. Bolded values indicate the best performing
model for each of the percent training labels used.

Method 5% 10% 100%
ANN 3.706±0.114 2.159±0.059 1.529±0.017
RNN 1.841±0.107 1.731±0.119 1.484±0.051
HydroNets 1.768±0.120 1.666±0.021 1.474±0.016
RGrN 1.744±0.073 1.654±0.077 1.443±0.017
2 points DGN 1.756±0.088 1.633±0.021 1.459±0.046
PDE-DGN 1.740±0.081 1.574±0.063 1.428±0.024

5.4.3 Assessing Performance on Unobserved Segments

One important task for modeling river networks is to make predictions on unobserved river segments, which

commonly exist in real-world basins. In this test, we evaluate different models for predicting river segments

with no observation data. We report the results in Table 5.2. Here Seg A to Seg E are five river segments

that have sufficient observation data for stream temperatures. Each row shows the results for an individual

experiment where we intentionally remove the temperature observations for a specific segment during the

training period (Oct 01, 1980, to Sep 30, 2004). Then we report the prediction performance of RNN, RGrN,

and PDE-DGN only on this segment during the testing period (Oct 01, 2004, to Sep 30, 2016) before and

after we remove the training data.

We can observe larger errors produced by all these models after we remove training data for a segment.

This is expected because different segments may exhibit different patterns and observations when the target

segment is not used for training the model. However, we observe that the drop in performance of PDE-DGN

is consistently smaller than that of the RNN model and the RGrN model. This confirms that the incorporation

of the governing PDE helps the ML model to learn more generalizable patterns. We can also observe that

RGrN generally performs better than the RNN model, which demonstrates the effectiveness of the graph

structure in propagating relevant information to unobserved segments.

In Fig. 5.4, we show the predictions made by different models on segments A-E after we intentionally

hide the training data from each of these segments. PDE-DGN better matches true observations compared

with other methods when the model does not have access to the training data from these segments. RNN

generally predicts a smoother trajectory but does not capture temperature changes very well.

The 2-points DGN method does not work as well as the complete PDE-DGN because the DGN model

only consider one closest upstream. However, if a river segment has a single upstream and downstream

segment, the two approaches may perform similarly (e.g., Segment B shown in Fig. 5.4 (g)). In contrast,

the segment E has two upstream segments, and that is why PDE-DGN performs better than 2-points DGN.

76

The segment C also has two upstream segments but the PDE-DGN has similar performance with the 2-points

DGN. This is because its two upstreams observation points are far away from the current segment thus making

very little contribution (i.e., having much lower weights in the adjacency matrix) to the segment C.

Table 5.2: RMSE of temperature prediction on individual segments after removing training observation data.
Here we compare the performance of RNN, RGrN, and PDE-DGN models. Bolded values indicate the best
performing model for each segment and training scenario.

Segment Method With Obs Without Obs
RNN 2.297±0.082 4.104±0.921

Seg A RGrN 2.176±0.070 3.724±0.637
PDE-DGN 2.151±0.020 3.127±0.366
RNN 1.116±0.064 1.440±0.068

Seg B RGrN 1.014±0.016 1.387±0.068
PDE-DGN 0.994±0.062 1.289±0.055
RNN 1.082±0.083 2.302±0.124

Seg C RGrN 1.007±0.032 2.021±0.217
PDE-DGN 0.992±0.027 1.936±0.219
RNN 0.955±0.053 2.527±0.161

Seg D RGrN 0.943±0.020 2.278±0.391
PDE-DGN 0.917±0.063 1.971±0.122
RNN 1.067±0.045 1.461±0.097

Seg E RGrN 0.979±0.018 1.277±0.063
PDE-DGN 0.980±0.051 1.243±0.046

05/30/200702/20/2007 04/10/2007

(a) Segment A

03/30/200812/20/2007 02/10/2008

(b) Segment B

03/30/200812/20/2007 02/10/2008

(c) Segment C

05/30/200702/20/2007 04/10/2007

(d) Segment D

05/30/200702/20/2007 04/10/2007

(e) Segment E

05/30/200702/20/2007 04/10/2007

(f) Segment A

03/30/200812/20/2007 02/10/2008

(g) Segment B

10/20/200807/10/2008 09/10/2008

(h) Segment C

05/30/200702/20/2007 04/10/2007

(i) Segment D

02/20/2007 04/10/2007 05/30/2007 05/30/200702/20/2007 04/10/2007

(j) Segment E

Figure 5.4: Predictions made by (a-e) RNN, RGrN, PDE-DGN and (f-j) 2-points DGN and the complete
PDE-DGN in Segments A-E after we intentionally hide the training data for each segment.

5.4.4 Generalization Test

It is known that traditional ML models are limited in generalizing to a new scenario that is very different from

training data. We hypothesize that the proposed PDE-DGN has better generalizability because it follows

77

general physical relationships that govern underlying processes. Here we test model generalizability for

stream temperature prediction across different seasons.

In particular, we train each model using data only from colder seasons (spring, fall and winter) in the first

24 years and then test in summers in the next 12 years, as shown in Table 5.3 (first column). We also show a

baseline in which each model is trained using all the data from the first 24 years and then tested in summers

in the last 12 years (Table 5.3 second column).

We can observe that PDE-DGN performs better than other methods because of its awareness of the un-

derlying physical relationships. Because the adjacency matrices are created based on the governing PDE,

the model has a higher chance to learn physically consistent patterns. Compared to the static graph model

of the RGrN, the dynamic graph model of the PDE-DGN is advantageous because the connection strength

between stream segments can change substantially in one season compared to another. The HydroNets model

performs poorly because it is more likely to overfit the training data due to the higher model complexity.

Table 5.3: Temperature RMSE in summers from 2005 to 2016. Each model is trained using observation data
from spring, fall, and winter seasons (Column 1) or the observations data from all the seasons (Column 2)
from Oct 1980 to Sep 2004. Here our method is compared against ANN, RNN, HydroNets, RGrN, 2-points
DGN, and PDE-DGN). Bolded values indicate the best performing model for each training scenario.

Method Train on cold seasons Train on all the data
ANN 2.138±0.093 1.529±0.017
RNN 2.104±0.080 1.484±0.051
HydroNets 2.792±0.018 1.474±0.016
RGrN 2.085±0.046 1.443±0.017
2 points DGN 2.106±0.064 1.459±0.046
PDE-DGN 2.055±0.051 1.428±0.024

5.5 Conclusion

In this chapter, we propose a novel method called PDE-DGN for modeling interacting segments and pre-

dicting temperatures in river networks. We leverage the prior physical knowledge about segment-to-segment

interactions embedded in PDE-based models to enhance the learning of latent representation in the proposed

ML model. Moreover, we approximate the physical meaning by applying FDMs on the river segments guided

by PDEs. Although there were marginal improvements in model performance when trained on all the data,

our proposed method demonstrated superiority when handling data-sparse conditions and in generalizing to

unseen scenarios. The proposed method also estimates physically meaningful parameters (e.g., PDE coeffi-

cients) that could inform other modeling or resource management activities and increase trust in deep learning

models. In addition to modeling variables in river networks, the proposed method can be adjusted to model

other complex systems which involve dynamic interacting processes.

78

CHAPTER 6

PDE-Driven Neural Networks for Modeling Temporal Dependencies

6.1 Turbulent Flows Modelling and Reconstruction

Understanding turbulence is the key to our comprehension of many natural and technological processes in en-

gineering, science, and medicine research. Since the pioneering work of Orszag and Patterson ([138]), direct

numerical simulation (DNS) of the Navier-Stokes equations have been widely regarded as the computational

method with the highest fidelity in capturing the dynamics of turbulent flows. DNS is essentially a brute force

numerical solution of the unsteady governing equations of fluid flow, and thus can be very computationally

expensive. Straightforward estimates indicate that simulation of an incompressible flow with Reynolds num-

ber Re = O(105) within a domain of size of O
[
(100ℓ)3

]
would require about a century of CPU time on a 1

teraflop computer! A practical alternative, the large eddy simulation (LES) concentrates on the larger scale

eddies and models the subgrid-scale transport. By this filtering, LES can be conducted on coarser grids as

compared to those required by DNS. The penalty, understandably, is that LES-generated data are of lower

accuracy compared to DNS.

Machine learning, especially SR methods ([141]), has shown great success in reconstructing high-resolution

data in a variety of commercial applications. The power of these models comes mainly from the use of convo-

lutional network layers ([4]), which can extract the spatial texture features and transform them through com-

plex non-linear mappings to recover high-resolution data. From the earliest end-to-end convolution-based SR

model ([53]), many investigators have added skip-connections in SR models ([3, 46, 55, 179, 219, 220]) to

bypass redundant low-resolution information and promote the stability of optimizing deep networks. More-

over, advances in adversarial learning allow preservation of high-level features extracted from target high-

resolution images through a separate discriminator network ([41, 43, 97, 113, 191, 195, 196, 200]). Given

their success in computer vision, SR models have also been applied to reconstruct turbulence data ([51, 65,

66, 120, 137, 176, 192, 210]). However, existing SR methods face several challenges when they are applied

for reconstructing turbulent flows. Turbulent flows involve multiple physical variables and often exhibit com-

plex dynamic patterns, i.e., multiple physical variables evolve and interact at different scales. In the absence

of underlying physical processes, pure data-driven SR models require a large number of training samples to

capture the correct physics. Due to the substantial computational cost in simulating turbulent flows, high-

fidelity DNS data are rarely available, and even the generation of high-quality LES at a lower resolution can

be expensive. Hence, low-resolution LES data cannot be frequently generated for a variety of simulation

79

scenarios. When trained with limited data at discrete time steps (i.e., when both LES and DNS are avail-

able), these models can have degraded performance because they may learn spurious patterns between sparse

observations, and such patterns are often not generalizable.

In this chapter, we propose a new physics-guided neural network framework for spatial and temporal

super-resolution. The idea is to leverage underlying physical relationships to guide the learning of generaliz-

able spatial and temporal patterns in the reconstruction process. In particular, our framework consists of two

components, physics-guided recurrent unit (PRU) and physics-guided super resolution model (PGSR). The

PRU structure is designed based on the underlying PDE, and is responsible for capturing the temporal dy-

namics of turbulent flows from sparse data. The PGSR model incorporates additional physical constraints to

improve the reconstruction from the available LES data. Our evaluation of the Taylor-Green Vortex data ([29])

has demonstrated the superiority of PRU and PGSR in modeling the turbulent flows. We also verify that the

proposed method can preserve the physical properties of turbulent flows.

Our contributions can be summarized as:

• We propose innovative physics-guided PRU and PGSR architectures to capture the temporal and spatial

patterns of the turbulent flows, respectively.

• We design a unified neural network framework combining PGSR and PRU to effectively simulate and

reconstruct high-resolution frequent turbulent flows.

• We evaluate our model in a series of experiments. The experimental results demonstrate that our

approaches have significant superiority compared with existing methods in both DNS simulation from

historical data and DNS reconstruction from sparse LES data.

6.2 Problem Definition

Our objective is to reconstruct frequent high-resolution flow data from low-resolution and sparse LES data.

In particular, we consider a general three-dimensional vortex flow over space and time Q(x,y,z, t), where

(x,y,z) denotes the spatial coordinates, t represents the time step (in seconds), and Q(x,y,z, t) consists of

multiple variables that describe turbulent transport, such as the velocity along with different directions and

the thermodynamic pressure. We represent low-resolution LES data as QLR(x,y,z, t), which are available at

sparse time steps, e.g., starting from a time step t0, the LES is generated with a time interval of d at {t0, t0 +

d, t0 + 2d, ...}. The flow variables in Q(x,y,z, t) also follow the Navier-Stokes equation, which governs the

transport of these variables in space (x,y,z) and time (t). Boundary conditions are specified near the boundary

of the domain to describe the interaction of the flow with the external environment. More details about the

flow dataset will be provided in Section 6.4.1.

80

6.3 Method

…
DNS

(high resolution)

PRU

𝑸𝑸𝐿𝐿𝐿𝐿(𝑡𝑡0)

𝑸𝑸(𝑡𝑡0)

PGSR

PRU …

Naiver-
Stokes PDE

Physical
constraints

Underlying
Physics

PGSR

LES
(low resolution)

𝑸𝑸(𝑡𝑡0+d)

𝑸𝑸𝐿𝐿𝐿𝐿(𝑡𝑡0+d)

d

the internal

𝑸𝑸(𝑡𝑡0+1)

Figure 6.1: The proposed physics-guided neural networks framework combining PRU and PGSR for recon-
structing turbulent flows Q.

Our proposed framework consists of two structural components, PGSR and PRU, which are illustrated

in Fig. 6.1. Starting from an initial time step t0, the proposed method will follow a two-step process: (i) the

PGSR model is used to reconstruct high-resolution Q(x,y,z, t) when low-resolution LES data are available.

(ii) Then PRU is used to estimate Q(x,y,z, t + 1) from Q(x,y,z, t) until the next LES sample is available. In

the following, we will describe the two components, PRU and PGSR.

6.3.1 Physics-Guided Recurrent Unit (PRU)

Physical variables Q in turbulent flows interact with each other and evolve at different speeds for different

locations. Temporal neural network models, e.g., LSTM ([87]), have sophisticated structures and thus heavily

rely on large representative training data that are sampled at the high temporal frequency to capture the

underlying continuous patterns over time.

Given sparse and limited LES data, we develop the PRU structure as a more accurate and reliable way

to predict the future flow variables by leveraging the continuous physical relationship described by the un-

derlying PDE. This helps bridge the gap between discrete data samples and continuous flow dynamics. The

proposed PRU structure is also generally applicable to many dynamical systems with governing PDEs.

Most PDEs can be represented in the form of Qt = f (t,Q;θ), where Qt is the temporal derivative of Q,

and f (t,Q;θ) is a non-linear function (parameterized by coefficient θ) that summarizes the current value of

Q and its spatial context. For example, the incompressible Navier-Stokes equation for the velocity field can

81

be expressed as:

f (Q) =
−1
ρ

∇p+ν∆Q− (Q.∇)Q, (6.1)

where ρ , p, and ν denote the fluid density, the thermodynamic pressure, and the viscosity, respectively. Since

the function f (Q) in the Navier-Stokes equation is independent of time t, we omit the independent variable t

in the function f (·). Here p is treated as a known variable, and θ = {ρ,ν}.

…

…

Intermediate
virtual points

Network layers to
compute virtual points

𝑸𝑸(𝑡𝑡+1)

𝑸𝑸𝑡𝑡,2

𝑸𝑸(𝑡𝑡,2)

𝑸𝑸𝑡𝑡,𝑁𝑁

𝑸𝑸(𝑡𝑡,1)

𝑸𝑸𝑡𝑡,1

𝑸𝑸(𝑡𝑡)

Figure 6.2: Diagram for the physical recurrent unit.

The PRU structure is inspired by the classical numerical Runge–Kutta (RK) methods ([33]), which have

been used in temporal discretization for the approximate solutions of differential equations. As shown in

Fig. 6.2, the central idea of PRU is to interpolate virtual intermediate variables and create smaller intervals

between two time steps which facilitate refining the gradient of flow variables over time. Starting from a time

step t, PRU estimates N −1 intermediate state variables Q(t,1), ..., Q(t,N −1) and N intermediate temporal

derivatives Qt,1, ..., Qt,N before reaching the next step t +1.

In particular, PRU interpolates intermediate state variables by iteratively following a two-step process: for

n from 1 to N, (i) PRU first estimates the temporal derivative Qt,n = f (Q(t,n−1)) at the previous intermediate

flow state Q(t,n−1), and Q(t,0) = Q(t). We will discuss more details about how to compute the function

f (·) later. (ii) Then PRU computes the next intermediate state variable Q(t,n) by moving the flow data Q(t)

along the direction of obtained temporal derivatives. In our tests, we follow the most popular 4th order RK

82

method for computing the three intermediate state variables, as follows:

Q(t,1) = Q(t)+∆t
Qt,1

2
,

Q(t,2) = Q(t)+∆t
Qt,2

2
,

Q(t,3) = Q(t)+∆tQt,3,

(6.2)

The temporal derivative Qt,4 is then computed from the last intermediate point, as f (Q(t,3)). The 4th

order RK method has the total accumulated error of O(∆t4), where ∆t represents the time interval between

consecutive time steps.

Finally, PRU combines all the intermediate temporal derivatives as a composite gradient to predict the

flow variables at the next time step Q(t +1), as follows:

PRU(Q̂(t +1)|Q(t)) = Q(t)+
N

∑
n=1

wnQt,n, (6.3)

where {wn}N
n=1 are the trainable model parameters. Given a series of high-fidelity DNS training data of

T time steps, the PRU structure can be trained by minimizing the mean squared error (MSE) between the

predicted flow variables and true DNS values, as ∑t ||PRU(Q̂(t +1)|Q(t))−Q(t +1)||2/T .

In the following, we will describe two major issues in computing the function f (·): (i) estimating spatial

derivatives in the function f (·), and (ii) preserving boundary conditions. We will also investigate the stability

of this method for long-term prediction with a simple case.

6.3.1.1 Spatial Derivative Approximation

The proposed PRU evaluates the function f (·) explicitly for estimating the temporal derivatives of intermedi-

ate state variables. In many general PDEs (e.g., the Navier-Stokes equation), f (Q) contain spatial derivatives

of Q. One popular approach for evaluating the spatial derivatives is through the finite difference methods

(FDMs), which approximate variable derivatives of a function on predefined mesh points by solving alge-

braic equations containing finite differences and values from nearby points. In particular, the first and second

order spatial derivatives (along x dimension) in Eq. 6.1 can be estimated by FDMs as follows:

Qx(xi,y j,zk, tn)≈
Q(xi+1,y j,zk, tn)−Q(xi−1,y j,zk, tn)

2∆x
,

Qxx(xi,y j,zk, tn)≈
Q(xi+1,y j,zk, tn)−2Q(xi,y j,zk, tn)

2∆x

+
Q(xi−1,y j,zk, tn)

2∆x
.

(6.4)

The approximation used in FDMs results in an error compared to the exact solution, which can be esti-

83

mated through Taylor expansions. Instead of using FDMs for every mesh point, we propose to build a spatial

difference (SD) layer using CNN layers. The CNN layers have the expressive power to capture the relation-

ships defined in FDMs (Eq. 6.4) while also being more flexible in learning other non-linear relationships from

data.

6.3.1.2 Boundary Condition and Augmentation

Boundary conditions are critical in turbulent flow simulation as they describe how the turbulent flows interact

with the external environment. Here we consider the periodic boundary condition in our flow data. It is

defined in a specified periodic domain indicating that it repeats its own values in all directions. The formal

definition of a cubic periodic boundary condition is given below:

Q(Lx,y,z, t) = Q(Rx,y,z, t),

Q(x,Ly,z, t) = Q(x,Ry,z, t),

Q(x,y,Rz, t) = Q(x,y,Rz, t),

(6.5)

where Lx,Ly,Lz are the three left boundaries with respect with x,y,z coordinates and Rx,Ry,Rz are the three

right boundaries with respect with x,y,z coordinates. Standard padding strategies for CNN (e.g., same

padding) do not satisfy the periodic value requirement. In order to handle this issue, we make a data aug-

mentation for each of the 6 faces (of the 3D cubic data) with an additional 2 layers of data during the training

stage and adopt a 5×5 CNN filter size. The augmented locations will be removed from reconstructed data.

2

2
1

1

22 1 1

1 2

3 4

4 3

2 1

Real values on the boundary Augmented values

Figure 6.3: Illustration of data augmentation on a 2-D example. The left diagram represents the up and low
boundary augmentation. The middle diagram represents the left and right boundary augmentation. The right
diagram represents the corner boundary augmentation. Rectangles carrying identical numbers have the same
value.

84

6.3.1.3 Stability

The classical 4th order RK suffers from the stability issue if the step size is not properly chosen. Consider a

simple scalar example Qt = λQ. The 4th order RK for this equation can be written as

Q((n+1)∆t)≈ (1+λ∆t +
λ∆t2

2
+

λ∆t3

6
+

λ∆t4

24
)Q(n∆t). (6.6)

Let’s denote R(∆t)=1+∆t + ∆t2

2 + ∆t3

6 + ∆t4

24 , and we have Q((n+1)∆t) = R(∆t)Q(n∆t). The analytical

solution is Q((n+1)∆t) = exp(λ∆t)Q(n∆t), and thus the accumulated error is

errn+1 = (exp(λ∆t)−R(∆t))errn. (6.7)

This indicates that errn+1 = O(∆t5)errn according to Taylor expansion. When the interval d of LES data

is large, the accumulated error may get amplified at every time step and then lead to an explosion. Additional

complexity arises when f consists of multiple evaluations of spatial derivatives. This requires the access to

LES data at a reasonably frequent time interval to avoid significantly large reconstruction errors.

Algorithm 5 The flow of the proposed PRU.

Create and initialize 5×5 filters for 1st and 2nd order spatial derivatives
for epoch = 1 : number of training iterations do

for t = 1 : number of time steps do
Make data augmentation for Q(t) (Section 6.3.1.2).
Calculate Qt,1,Qt,2,Qt,3,Qt,4 following Eq. 6.2 and evaluate f accordingly.
Calculate Q̂(t +1) following Eq. 6.3 and remove augmented data over boundaries.
Use the predicted Q̂(t +1) as the input flow data for time t +1.

Update trainable filters and weights.

6.3.2 Physics Guided Super Resolution (PGSR)

The PGSR model aims to incorporate additional physical constraints to regularize the standard super-resolution

model. In particular, we consider two important physical constraints, the divergence-free property for the in-

compressible flow and the zero-mean property for the Taylor-Green Vortex ([29]).

First, the incompressible flow follows the divergence-free property in the velocity field. Thus, we can

represent the inherent physical relationship of the velocity field as:

∇ ·V =
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (6.8)

where we represent the velocity vector V(x, t) along 3-D dimensions (x ≡ x,y,z) by u, v, and w, respectively.

Then we use a second-order central finite difference approximation to estimate the partial derivatives and

85

employ this divergent free property as a physical loss in the training process, as follows:

LPhy = ∑
(x,y,z)

[
∇ · V̂(x, t)

]2
/M, (6.9)

where M is the number of spatial locations in the high-resolution data, and V̂ represents the reconstructed

velocity field at high resolution. Such physical constraint can help reduce the search space for model param-

eters such that the reconstructed high-resolution data follow the divergence-free property which is enforced

in incompressible flows.

Second, to preserve the zero-mean property of the in a compressible flow, we also implement an extra

network layer by reducing the mean value of reconstructed flows in the generative process Q̂0 = g(Q̂). We do

not include the zero-mean constraint directly in the loss function because the obtained model cannot preserve

the zero-mean property for the long-term testing phase. On the other hand, direct MSE minimization using

Q̂0 as output leads to an unstable training process because the original output Q̂ can have arbitrarily large

values. Hence, we iteratively train the PGSR model to reduce (i) the gap between Q̂ and the true DNS and

(ii) the gap between Q̂ and its resulted Q̂0, and finally use Q̂0 as the output.

Additionally, we also introduce a degradation process to enforce the consistency between the recon-

structed data and the input LES data, similar to [38]. We create the PGSR model based on the popular SR

model SRGAN ([113]). The methods we used to include physical constraints can also be used to enhance

other SR models.

6.4 Experiment

In this section, we evaluate the performance of our method on a Taylor-Green vortex (TGV) ([29]) dataset

and compare the results with existing well-used methods. We first introduce the dataset used in our tests and

discuss the experimental design and evaluation targets. Then we will provide experimental results and our

analysis.

6.4.1 Dataset

We consider a variant of the TGV. This is a three-dimensional incompressible flow and is simulated within

a box with periodic boundary conditions. The TGV provides a suitable setting for our demonstration as it

exhibits several salient features of turbulent transport. In this flow, the original vortex collapses into turbulent

worm-like structures which become progressively more turbulent until viscosity eventually dissipates the

large scale vortical structures. We compare our proposed method against several existing super-resolution

algorithms to reconstruct the DNS data of TGV.

86

The TGV is produced by a solution of the constant density Navier-Stokes equation:

∂V
∂ t

+(V.∇)V =
−1
ρ

∇p+ν∆V. (6.10)

The evolution of the TGV includes enhancement of vorticity stretching and the consequent production

of small-scale eddies. Initially, large vortices are placed in a cubic periodic domain of [−π,π] (in all three-

directions), with initial conditions:

u(x,y,z,0) = sin(x)cos(y)cos(z) (6.11)

v(x,y,z, t) = −cos(x)sin(y)cos(z) (6.12)

w(x,y,z, t) = 0. (6.13)

Then the value of the Reynolds number is set to Re = 1600. We have LES and DNS results of TGV at several

times steps. For each time step, we consider the three components of the velocity along the x, y, and z axis,

denoted by u, v, and w, respectively. Our objective is to reconstruct the DNS results of the velocity field

(u,v,w) using LES data. In particular, QLR represents the LES values of the velocity field while the target Q

represents the high-fidelity DNS of the velocity field. Here both LES and DNS data are generated along 65

grid points along the z axis under equal intervals. The LES and DNS are conducted on 32-by-32 and 128-by-

128 grid points, respectively, along the xy directions. Hence, the DNS data is of 16 times higher resolution

compared to LES data.

6.4.2 Experimental Design

We train the proposed method using the TGV data from a consecutive 20-seconds period (with 20 time

steps) and then apply the trained model to the next 50 seconds’ testing data and measure the performance. 1

We evaluate the performance of DNS prediction using two different evaluation metrics, root mean squared

error (RMSE) and structural similarity index measure (SSIM) ([197]). We use RMSE to measure the dif-

ference (error) between reconstructed data and target DNS data. The lower value of RMSE indicates better

reconstruction performance at the pixel level. SSIM is used to appraise the structural similarity between

reconstructed data and target DNS on three aspects: luminance, contrast, and overall structure.

Our evaluations aim to answer several questions as listed below:

E1: Whether PRU alone can effectively predict the next high-resolution DNS using the previous DNS

data? We will compare PRU with two pure data-driven baseline models, transition model (TM) and recurrent

1Code for the experiment is available at drive.google.com/drive/folders/11PTaEjsBkgd6PAAYmWH_KDzTg90IvrJn?usp=sharing

87

(a) RMSE in u Channel. (b) RMSE in v Channel. (c) RMSE in w Channel.

(d) SSIM in u Channel. (e) SSIM in v Channel. (f) SSIM in w Channel.

Figure 6.4: Change of RMSE/SSIM values produced by different DNS prediction models from the 1st to 50th
time steps in a testing period with true DNS data for 5 time steps. (a)-(c) show the changes of RMSE values,
and (d)-(f) show the changes of SSIM values for (u,v,w) three different channels.

(a) RMSE in u Channel. (b) RMSE in v Channel. (c) RMSE in w Channel.

(d) SSIM in u Channel. (e) SSIM in v Channel. (f) SSIM in w Channel.

Figure 6.5: Change of RMSE/SSIM values produced by different DNS prediction models from the 1st to
50th time steps in a testing period with true DNS data for 10 time steps. (a)-(c) show the changes of RMSE
values, and (d)-(f) show the changes of SSIM values for (u,v,w) three different channels.

transition model (rTM). The TM method predicts the flow variables Q(t +1) at next step using an UNet-style

encoder-decoder convolutional structure from the flow variables Q(t) at the previous time. The rTM method

further extends TM with a recurrent layer.

E2: Whether the predictions made by PRU can preserve physical properties of DNS? Besides RMSE and

88

SSIM, we will measure the turbulent kinetic energy of the predicted flows and compare it with that of the true

DNS.

E3: How is the reconstruction performance combining PRU and PGSR using sparse low-resolution LES

data? We will combine PRU and PGSR (PGSR-PRU) for reconstructing DNS from sparse LES samples.

Since we have already compared PRU with other temporal transition models in E1, here we compare to a

baseline SRGAN-TM, which uses our base SR model SRGAN for reconstructing DNS from LES and use

TM to predict DNS when LES is not available. We also compare to another two baselines PGSR (LES) and

its extension rPGSR (LES). rPGSR(LES) has another recurrent layer over time. Different from PGSR-PRU

and SRGAN-TM, these two methods apply the SR model using LES data at all the time steps, thus can be

considered as the upper bound for this test. Our goal is to verify that PGSR-PRU can produce comparable

performance with PGSR (LES) and rPGSR (LES).

E4: How is the reconstruction performance of PGSR compared to other SR methods? We compare

PGSR with two well-used SR methods: RCAN ([219]) and SRGAN ([113]). We also compare it with DC-

S/MS ([65]), which is a popular SR approach for turbulent flows reconstruction. Additionally, we compare

to a variant of PGSR, termed PGSR-D, which only adds the degradation loss to the SRGAN model without

using any physical constraints.

Table 6.1: DNS prediction performance by RMSE and SSIM. The performance is measured on (u,v,w)
channels with DNS interval d as 5 or 10.

Method RMSE SSIM
TM (0.019,0.019,0.019) (0.972,0.973,0.967)

d rTM (0.013,0.012,0.015) (0.983,0.984,0.980)
=5 PRU (0.005,0.005,0.005) (0.996,0.996,0.997)

TM (0.038,0.038,0.036) (0.930,0.930,0.917)
d rTM (0.022,0.022,0.025) (0.964,0.966,0.954)
=10 PRU (0.012,0.012,0.009) (0.988,0.988,0.991)

6.5 Results

6.5.1 DNS Generation using PRU

Here we assume that we have true DNS data with an interval of d time steps (d = 5 or 10) and we implement

PRU and other baselines to predict DNS for the missing time steps. We summarize the performance of

PRU and baselines in Table 6.1 and show their performance change on each channel over time in Figs. 6.4

and 6.5. For both cases (with the true DNS interval d set to a larger value 10 or a smaller value 5), PRU

produces better performance than baselines over all the time steps. It confirms the effectiveness of PRU in

the long-term prediction of DNS from historical flow data (E1).

Besides, we compute the kinetic energy of the flow data predicted by PRU and baselines and measure the

89

(a) RMSE in u Channel. (b) RMSE in v Channel. (c) RMSE in w Channel.

(d) SSIM in u Channel. (e) SSIM in v Channel. (f) SSIM in w Channel.

Figure 6.6: Change of RMSE/SSIM for different models over time using sparse LES data with the interval
of 5 time steps. (a)-(c) show the changes of RMSE values, and (d)-(f) show the changes of SSIM values for
(u,v,w) three different channels.

gap with the kinetic energy of the true DNS data. The proposed PRU reduces the kinetic energy gap with the

true DNS by 30% and 67% compared to TM and rTM, respectively. It confirms that PRU can better preserve

underlying physical characteristics of turbulent flows (E2).

Table 6.2: Reconstruction performance on (u,v,w) using LES channels by RMSE and SSIM. SRGAN-TM
and PGSR-PRU (proposed) are evaluated using sparse LES data with the interval of 5 steps, the upper half is
the average results of a total of 50 time steps, the bottom half is the average results of the first 15 time steps.

Method RMSE SSIM
PGSR (LES) (0.112, 0.114, 0.133) (0.771, 0.774, 0.667)
rPGSR (LES) (0.114, 0.114, 0.129) (0.772, 0.773, 0.669)
SRGAN-TM (0.118,0.115, 0.147) (0.769, 0.767, 0.647)
PGSR-PRU (0.111,0.113, 0.128) (0.782, 0.781, 0.681)
PGSR (LES) (0.088, 0.088, 0.101) (0.846, 0.849, 0.801)
rPGSR (LES) (0.091, 0.086, 0.099) (0.848, 0.855, 0.811)
SRGAN-TM (0.091,0.088, 0.105) (0.848, 0.849, 0.794)
PGSR-PRU (0.081,0.081, 0.091) (0.864, 0.866, 0.833)

6.5.2 DNS Reconstruction using PGSR-PRU

We implement the DNS reconstruction using PGSR-PRU and SRGAN-TM using the LES data for every five

time steps (E3). As shown in Table 6.2 and Fig. 6.6, PGSR-PRU produces better performance than SRGAN-

TM. Particularly in the first 15 time steps, it is more clear to see PGSRN-PRU can obtain lower RMSE

and higher SSIM values. Fig. 6.6 also shows that the reconstruction performance gets degraded over time

90

(a) SRGAN-TM (b) PGSR(LES) (c) rPGSR(LES) (d) PGSR-PRU (e) Target DNS

(f) SRGAN-TM (g) PGSR(LES) (h) rPGSR(LES) (i) PGSR-PRU (j) Target DNS.

(k) SRGAN-TM (l) PGSR(LES) (m) rPGSR(LES) (n) PGSR-PRU (o) Target DNS

Figure 6.7: Three example slides of reconstructed w channel (in three rows) along the z dimension with the
LES interval of 5 time steps.

Table 6.3: Evaluation of SR models in terms of the reconstruction RMSE and SSIM on (u,v,w) channels
using LES data. The performance is measured on the testing data of the first 5 time steps.

Method RMSE SSIM
RCAN (0.061, 0.061, 0.075) (0.891, 0.891, 0.863)
DCS/MS (0.085, 0.086, 0.115) (0.896, 0.897, 0.845)
SRGAN (0.065, 0.062, 0.067) (0.901, 0.913, 0.875)
PGSR-D (0.057, 0.052, 0.053) (0.914, 0.923, 0.900)
PGSR (0.053, 0.050, 0.051)) (0.924, 0.935, 0.911)

because the LES data have a significant difference with the training period. More interestingly, we notice that

PGSR-PRU even outperforms PGSR (LES) and rPGSR (LES). This is because LES data often miss many

important physical components compared to the true DNS, which makes SR models difficult to recover flow

data directly from LES data. We also show three sets of examples of reconstructed slides of flow data in

Fig. 6.7. It is clear to observe that PGSR-PRU can better capture the detailed flow patterns compared to other

methods as it incorporates the underlying Navier-Stokes equation through PRU.

6.5.3 DNS Reconstruction using PGSR

As shown in Table 6.3, PGSR achieves better performance than other baselines in terms of both RMSE and

SSIM. In particular, we can observe the improvement from SRGAN to PGSR-D and from PGSR-D to PGSR.

91

This confirms the effectiveness of the degradation process and the physical constraints used in PGSR (E4).

6.6 Conclusion

In this chapter, we develop a physics-guided neural network framework for predicting high-resolution flow

data at high temporal frequency. The PRU structure leverages the physical knowledge embodied in the

Navier-Stokes equation to capture the flow dynamics over time, while the PGSR model incorporates ad-

ditional physical constraints to improve the reconstruction from the LES data. We have demonstrated the

superiority of PRU in predicting future DNS data from historical DNS data. We also show that PGSR-PRU

can effectively reconstruct DNS from sparse LES series.

More importantly, the proposed method is generally applicable to many scientific problems with similar

properties, e.g., complex temporal dynamics, and the availability of low-resolution simulations with reduced

accuracy. The PRU structure can also be used as a building block to enhance existing deep learning models

for modeling of complex dynamics with the guidance of known governing PDEs.

92

CHAPTER 7

Transfer Learning using Residual Correction for Inaccurate Physics Laws

7.1 Streamflow Prediction for Multiple Basins

A key problem in Earth science is to build models for simulating heterogeneous processes across large re-

gions, which is also called the regional modelling problem. The central challenge is about how to extrapolate

to out-of-sample scenarios, e.g., predicting hydrological flows in ungauged watersheds, from instrumented to

non-instrumented hillslopes, from areas with flux towers to areas without, etc. [25]. Often this is done using

ancillary data (e.g. soil maps, remote sensing, digital elevation maps, etc.) to help understand similarities and

differences between different areas. The regional modelling problem is thus closely related to the problem of

prediction in ungauged basins [26, 174]. This problem is well-documented in several review papers, therefore

we point the interested reader to the comprehensive reviews by [88, 154], and to the more recent review in

the introduction by [145].

This work is focused on predicting streamflow in river basins, which is an important problem in hydrology

as it helps ensure water supply, provides early warnings for flooding and droughts, and aids in a better

understanding and management of aquatic ecosystems. Traditionally, process-based models have been built

for streamflow prediction, and they are often calibrated separately for each river basin.

Currently, the most successful hydrological models are calibrated to one specific basin. These models aim

to derive hydrologic parameters that can be used to run simulation models from available data (i.e., observ-

able catchment characteristics). Additional complexity arises due to strong interaction between individual

model parameters (e.g., between soil porosity and soil depth, or between saturated conductivity and an infil-

tration rate parameter), such that any meaningful joint probability distribution over model parameters will be

complex and multi-modal. This is closely related to the problem of equifinality [23].

Model-dependent regionalization has enjoyed major attention from the hydrological community, so today

a large variety of approaches exist. To give a few selective examples, [166] calibrated a conceptual model for

11 catchments and regressed them against the available catchment characteristics. [163] proposed a multiscale

parameter regionalization (MPR) method, which simultaneously sets up the model and a regionalization

scheme by regressing the global parameters of a set of a-priori defined transfer functions that map from

ancillary data like soil properties to hydrological model parameters. [20] calibrated a conceptual model for

1,787 catchments around the globe and used these as a catalog of ‘donor catchments’, and then extended this

library to new catchments by identifying the ten most similar catchments from the library in terms of climatic

93

and physiographic characteristics to parameterize a simulation ensemble. [145] first regionalized hydrologic

signatures [78] using a regression model (random forests), and then calibrated a rainfall-runoff model to the

regionalized hydrologic signatures.

With a recent growing interest in data-driven/machine learning-based streamflow modelling, researchers

have found that ML models benefit from learning jointly from a collection of different basins [103]. This

requires the ML model to learn and encode the difference in hydrologic behaviors across different basins.

In this work, we propose a physics-guided meta-transfer learning approach that integrates the behaviors of

multiple basins. The main contribution of this work can be summarized as: 1) We utilize a physical equation,

which reduces the size of parameters searching space, to help us build the machine learning model. The ML

model parameters can converge to the optimal values more quickly with the assistance of the physical model.

2) Even though existing approaches using physics in ML are based on known physical laws that govern

relationships between input and output variables (e.g., mass and energy conservation laws), most physics-

based models are necessarily approximations of reality due to incomplete knowledge of certain processes

or omission of processes to maintain computational efficiency. In order to handle the issue, we use a lasso

regression to approximate the residual caused by the inaccuracy of the physical law. In unlabeled datasets, we

use a forward neural network to approximate the lasso regression coefficients with the static feature of basins

as its input. 3) We make corrections for both labelled and unlabeled datasets using approximated residual

and let the corrected labels rejoin the training process as an extra feature of the original LSTM model. In the

other approach, we iteratively update the corrected results based on the new predicted output. The training

process switches between the labelled and unlabeled datasets.

7.2 Related Work

Data-driven methods learn how to predict streamflow from weather drivers and catchment physical descrip-

tors directly without involving any hydrological process descriptions. Depending on either one or multiple

catchments of data used, the data driven model will learn localized or regionalized hydrologic behaviors,

respectively. A local model is referred to as the model using hydrologic data from only one catchment. By

contrast, when the hydrology data from multiple catchments are used and those catchments cover a wide

range of all available hydrologic behaviors, the model is called a global model.

For data-driven methods, one family is the neural network [22, 89]. In recent years, the Long short-term

memory networks [87], one subfamily of neural networks, have shown burgeoning applicability in streamflow

prediction tasks [102]. LSTM-based methods predict streamflow from antecedent weather drivers. [103]

have shown that using physical descriptors will train a universal global LSTM-based model that outperforms

process-based individual models given the same forcing data.

94

Physics-based models of dynamical systems are often used to study engineering [16] and environmental

systems [17]. Despite their extensive use, these models have several well-known limitations due to incomplete

or inaccurate representations of the physical processes being modelled. Given rapid data growth due to

advances in sensor technologies, there is a tremendous opportunity to systematically advance modelling in

these domains by using machine learning methods.

In science and engineering applications, a physical model often predicts the values of many variables.

Machine learning models can also generate predictions for many variables (e.g., by having multiple nodes in

the output layer of a neural network). Most ML algorithms make use of a loss function from an equation that

captures the difference between predicted and actual (i.e., observed values) to guide the search for parameter

values that attempts to minimize this loss function. For example, for the lake temperature monitoring appli-

cation, accuracy at the surface and at high depth can be more important than error at the middle levels of the

lake.

Residuals are differences between the one-step-predicted output from the model and the measured output

from the validation data set. Thus, residuals represent the portion of the validation data not explained by the

model. In order to discover the hidden information inside the residual, a few approaches are given below.

Symbolic regression [142] and discovery equations from datasets [28, 36, 162] provide alternative ways to

find hidden equations from datasets. Symbolic regression outputs the combination of multiplication, division,

addition and subtraction of variables which turns out to be very similar to lasso regression in our experiment.

Multiplication and division of two features are not easily interpretable. Discovery equations from datasets is

not directly related to our problem, since we do not find an underline differential equation that can build a

coherent physical relation between features and labels. [28] talks about finding the coefficients of a partial

differential equation given the basic form but, in our case, the dataset does not preserve a spatial relation

between features and labels which do not guarantee the discovery of a partial differential equation containing

both temporal and spatial derivatives.

7.3 Problem Definition

We consider N observed basins and M unobserved basins in a region. For each basin i, we are provided with

input features over T daily time step Xi = {x1
i ,x2

i , ...,xT
i }. Here input features xt

i form a Dx- dimensional

vector, which includes weather drivers (e.g., air temperature, precipitation, evapotranspiration) and static

features of the basin. Additionally, we have observed water property (e.g., the amount of streamflow) Y =

{yt
i} for certain basins and on certain dates. Our objective is to predict streamflow over all the N basins in the

region at a daily scale by leveraging spatial and temporal contextual information.

95

7.4 Methods

In this section, we formally describe our proposed method, as outlined in Fig.7.1 and 7.2. We first introduce

the LSTM as a classical method towards this type of problem. Then we discuss the regularization with

residual correction and input augmentation strategy to refine the LSTM model to different basins based on

their physical characteristics. Later, we develop another switch training method to reduce the residual and let

the residual rejoin the training process.

7.4.1 Preliminaries

The RNN model has been widely used to model temporal patterns in sequential data. The RNN model defines

transition relationships for the extracted hidden representation through a recurrent cell structure. In this work,

we adopt LSTM to build the recurrent layer for capturing long-term dependencies. LSTM is a special type

of recurrent neural network, well suited for the task of rainfall-runoff, basin modelling and most popular and

widely used in hydrology for predicting streamflow [39, 117]. The LSTM cell combines the input features xt

at each time step and the inherited information from previous time steps. Here we omit the subscript i as we

do not target a specific river segment.

Each LSTM cell has a cell state ct , which serves as a memory and allows for preserving information

from the past. Specifically, the LSTM first generates a candidate cell state c̄t by combining xt and the hidden

representation at the previous time step ht−1, as follows:

c̄t = tanh(Wh
cht−1 +Wx

cxt +bc). (7.1)

where W and b are matrices and vectors, respectively, of learnable model parameters. Then the LSTM

generates a forget gate f t , an input gate gt , and an output gate ot via sigmoid function σ(·), as follows:

ft = σ(Wh
f ht−1 +Wx

f xt +b f),

gt = σ(Wh
ght−1 +Wx

gxt +bg),

ot = σ(Wh
oht−1 +Wx

oxt +bo).

(7.2)

The forget gate is used to filter the information inherited from ct−1, and the input gate is used to filter the

candidate cell state at t. Then we compute the new cell state as follows:

ct = ft ⊗ ct−1 +gt ⊗ c̄t , (7.3)

where ⊗ denotes the entry-wise product.

96

Once obtaining the cell state, we can compute the hidden representation by filtering the cell state using

the output gate, as follows:

ht = ot ⊗ tanh(ct). (7.4)

According to the above equations, we can observe that the computation of ht combines the information at

the current time step (xt) and the previous time step (ht−1 and ct−1), and thus encodes the temporal patterns

learned from the data.

The final output y is a linear transformation of h. The regular loss function is defined as

loss =
1

N ·T

N

∑
i=1

T

∑
t=1

(yt
i − ŷt

i)
2 (7.5)

where ŷt
i represents the output of the neural networks at ith basin and tth day.

In section 7.4.3, we use the lasso linear regression to approximate the residual generated by a rough

physical law. The basic form of a lasso is given below.

Consider a sample consisting of T cases, each consisting of p input features and a single outcome. Let

rest
i be the output for the i basin at time t and st

i = (xt
i,y

t
i) be the input which contains the feature vector and

label. The objective of lasso is to solve

min
T

∑
t=1

(rest
i −βi,0 − st

i ·β i)
2

subject to
p

∑
l=1

|βi,l | ≤ k.

(7.6)

Here β i is the constant coefficient for basin i, β i = (βi,1,βi,2, ...,βi,p) is the coefficient vector, and k is a

prespecified free parameter that determines the degree of regularization.

7.4.2 LSTM + Regularization on Pseudo Label

We estimate the pseudo labels of streamflow via the following physical equation.

max(0,rain f allt
i − ett

i − (swt
i − swt−1

i)) = qt
i (7.7)

where rain f allt
i represents daily average precipitation for basin i at time t, ett

i represents evapotranspiration,

swt
i represents the soil water for basin i at time t. qt

i represents the estimated streamflow and is not an

accurate prediction. The absolute value on the left-hand side forces the qt
i to be a positive number. This is

because evapotranspiration and soil water condition at each time are estimated by an uncalibrated process-

based model, SWAT [135], and are not directly measured through experiments.

97

It is noteworthy that the pseudo labels can be generated for basins and time periods without streamflow

observations. We can modify the training objective (Eq. 7.5) by enforcing the consistency with physical laws

via an additional physics-based regularization term. By adding a regularization term, we can avoid model

overfitting to the noisy measurement and stay consistent with any physical law. We can control the strength

of regularization by the value of the coefficient.

loss =
1

N ·T

N

∑
i=1

T

∑
t=1

(yt
i − ŷt

i)
2 +

λ

N ·T

N

∑
i=1

T

∑
t=1

(qt
i − ŷt

i)
2 (7.8)

where λ is a predefined regularization coefficient.

Eq. 7.8 takes account of qt
i associated with yt

i . An additional benefit of the physics-based regularization

term in Eq. 7.8 is that the computation of the regularization does not require true labels. Hence, instead

of using the pseudo label in the labelled dataset only, we also incorporate the pseudo label in the unlabeled

dataset. M is the number of unobserved basins.

loss =
1

N ·T

N

∑
i=1

T

∑
t=1

(yt
i − ŷt

i)
2 +

λ

(N +M) ·T

N+M

∑
j=1

T

∑
t=1

(qt
j − ŷt

j)
2 (7.9)

7.4.3 Residual Correction

One limitation of the regularization method is that the pseudo labels qt
i obtained through Eq. 7.7 may not

always be accurate because of the bias of process-based models in estimating evapotranspiration and soil

moisture. As a result, the regularization mechanism in Eq. 7.8 can negatively affect the model performance.

Hence, we propose to separately model the residual yt
i −qt

i with the aim to refine the physics-based regular-

ization.

We need to emphasize in Eq. 7.6 that st
i contains the target label yt

i , which is not accessible in unlabeled

datasets. So an initial guess for yt
i in unlabeled datasets is required. A straightforward way is to use the

output of a basic LSTM as an approximation of yt
i and treat it as a start value. Meanwhile, in our methods, we

run lasso regression individually over different basins and each basin i has its own unique β i. For ungaged

(unlabeled) basins, we build a forward neural network (FNN) with dropout to approximate the unknown β i.

The input of the FNN is the static feature of basins, and the output is the β i associated with the basin.

Inspired by prior work [96], we also augment the input feature and treat the pseudo label as an extra

feature. Hence, the basic goal of the hybrid data model is to combine the physics and neural network input to

overcome their complementary deficiencies and leverage information in both physics and data. Meanwhile,

if there are systematic discrepancies (biases) in the physics input, then the hybrid data model can learn to

complement them by extracting complex features from the space of neural network input and thus reducing

98

our knowledge gaps. The new input feature vector for LSTM is xt
aug,i = (xt

i,q
t
i). In labelled datasets, we

denote

ˆrest
i = βi,0 + st

i ·β i (7.10)

and the new corrected pseudo label is

q̂t
i = qt

i − ˆrest
i (7.11)

and we can update xt
aug,i = (xt

i, q̂
t
i).

In unlabeled basins, we have approximated β i obtained from the FNN because we cannot run lasso

regression in unlabeled datasets. Meanwhile, st
i = (xt

i,y
t
i) and yt

i is missing, we use ŷt
i from basic LSTM as an

initial guess (Fig. 7.1). Therefore, we get st
i = (xt

i, ŷ
t
i) in unlabeled datasets, and then we use the same way to

calculate q̂t
i and update xt

aug,i according to Eq. 7.10 and 7.11.

7.4.4 Training between the Source Domain (Corrected Pseudo Labels) and the Target Domain (Real

Labels)

An alternative way of using simulated data in ML training is to pre-train the ML with simulated labels

and then fine-tune it with observed labels [91]. The main drawback of pretraining is domain shifting [21]

indicating that too much fine-tuning done in the target domain can break the smooth pattern existing in the

pre-trained model and thus cause over-fitting. To address this issue, we propose a new method to train the

model on pseudo labels and real labels back and forth. We can train the model on the source domain for a

few iterations, move to the target domain and then move back.

Inspired by the above approach, we start training from corrected pseudo labels q̂t
i obtained through Eq.

7.11, and then train the model on real labels. After that, we correct pseudo labels q̂t
i using new predictions ŷt

i

and repeat the process again and again (Fig. 7.2).

7.5 Experiments

We evaluate the proposed method for predicting streamflow using the continental hydrology data set, CAMELS [1].

The CAMELS data set contains continuous meteorologic input, observed streamflow data, and catchment

dependent spatially varying but temporally physical descriptors. CAMELS encompasses a total of 671 wa-

tersheds across the contiguous US. In our experiments, we use 480 basins for evaluation. One half of basins

are for training and the other half for testing.

Then we describe baselines and discuss the results about the predictive performance using the effec-

99

Algorithm 6 The flow of the proposed iterative training switch model.
initialize the LSTM network model
for epoch = 1 : number of iterations do

for k = 1 : number of training iterations on q do
for t = 1 : T, i = 1 : M do

calculate qt
i through (Eq. 7.7)

make residual correction through (Eq. 7.10)
train the model using q̂t

i through (Eq. 7.11)
for l = 1 : number of training iterations on y do

for t = 1 : T, i = 1 : N do
train the model using yt

i
get ŷt

i and prepare for (Eq. 7.10)

LSTM

dynamic
features

static
characteristics

�𝑦𝑦

𝑦𝑦

Physics-based
equation/model

𝑞𝑞

linear
lasso

Meta learning
Ungauged entity

�𝑟𝑟𝑟𝑟𝑟𝑟

�𝑞𝑞

Input

Entity-specific

physics-based loss

- Entity-specific - Global

+

Observations

supervised loss

prediction

Figure 7.1: Diagram for physics input + residual correction method.

tiveness of pre-training, residual correction and model generalization. All experiments are conducted using

TensorFlow on a computer with the following configuration: Intel Core i7-8750H CPU @2.20GHz × 6

Processor, 16 GiB Memory, GeForce GTX 1060, 64-bit Win10 OS.

7.5.1 Baselines

7.5.1.1 Pretrain + Fine-tuning

We pretrain our LSTM model on all pseudo labels and then train it on real labels. The pretrain process takes

50 epochs. In order to find the optimal fine-tuning epochs, we early stop the fine-tuning process and plot the

testing error step by step in Table 7.1.

100

LSTMX �𝑦𝑦

𝑦𝑦

Physics-based
equation/model

𝑞𝑞

linear
lasso

�𝑟𝑟𝑟𝑟𝑟𝑟

�𝑞𝑞

switch between
① and ②

+

Observations

②

①

Figure 7.2: Diagram for iteration on source domain and target domain + residual correction.

7.5.1.2 Training between Source Domain (Pseudo Labels) and Target Domain (Real Labels)

We train the model on source domain for a few iterations, move to target domain and then move back. It

takes some effort to decide how many epochs of training needed on both domains in order to achieve the best

performance.

7.5.1.3 Perturbation to the Proposed Methods

To test the robustness of our approaches, we perturb the evaporation and soil water data in Eq. 7.6 and test

the model’s performance and robustness.

7.5.1.4 LSTM + Tradaboost

[42] This is a transfer learning baseline with the aim to transfer the knowledge from simulated data to real

data. It integrates LSTM with instance-based transfer learning through tradaboost [47].

Tradaboost extends boosting-based learning algorithms and allows users to utilize a small amount of

newly labelled data to leverage the old data to construct a high-quality model for the new data.

7.5.2 Results

7.5.2.1 Pretrain with Early Stop Fine-tuning

In table 7.1, we can achieve the best performance of the model using a few fine-tuning epochs. For fine-

tuning with fewer data (60 basins), we can adopt the pretrain model directly to avoid overfitting to this small

dataset. While, given more data (120, 240 basins), we can let the model learn some real patterns through more

101

fine-tuning epochs. For 120 basins, 10 epochs fine-tuning is the best. For 240 basins, 30 epochs fine-tuning

achieves the best performance.

7.5.2.2 General Performance for All Methods

Table 7.2 summarizes the general performance of all methods mentioned in this chapter. For regularization

methods, the performance can be quite similar with switch iteration methods, but far worse with fewer data.

It is because the regularization methods do not utilize the whole set of pseudo labels, making the training

dataset very small. However, with large datasets, regularization methods can even outperform some switch

iteration methods due to the augmented input data. The physics variable and feature variable can overcome

their complementary deficiencies and leverage information in both physics and data. The fine-tuning based

methods are more stable with fewer data, but it can suffer from domain shifting.

7.5.2.3 Regularization Based Methods

Table 7.3 summarizes the performance of all regularization methods. The basic LSTM performs the worst,

except regularization on all pseudo labels. The basic form of regularization can help LSTM stay consistent

with the pseudo label so that it improves the prediction accuracy.

Meanwhile, we use regularization on all pseudo label to further handle the data insufficiency problem,

and the outcome is straight forward. With 60 basins data, the result is quite similar to pretrain methods

and provide a more stable prediction than basic model. On the contrary, as we increase the size of training

datasets, the predictions get worse. It is because the effect of regularization is so strong, such that it breaks

the true pattern that the model should learn from the real labels.

In order to improve the efficiency of regularization, we add the residual correction to our model. The

RMSE reduced in all aspect with various training size. Furthermore, we add the corrected pseudo label to

the model input instead of using them in the regularization term solely, and thus further improve our results.

Regularization + physics input + residual correction model provides the best results we can obtain at the

current stage.

7.5.2.4 Domain Switch Based Methods

Beside the regularization methods, we also utilize the domain switch iteration methods to prevent overfitting.

In table 7.4, we compare 3 methods mentioned in this chapter. The plain pretrain + fine-tuning model ob-

viously overfits in small datasets, but achieves an average performance as the basic LSTM model in a full

dataset. The iteration methods can prohibit the overfitting by switching training domains and preserve the

pattern existing in pseudo label domain. It can achieve better results in all aspects. Finally, our proposed

102

Table 7.1: RMSE of streamflow prediction using different fine-tuning epochs in pretrain and fine-tuning
model. We compare the performance by using real labels from 60, 120 and 240 basins.

basins 0 shot 10 epochs 20 epochs 30 epochs 40 epochs
60 2.316 2.535 2.751 3.234 2.878

120 2.357 2.105 2.206 2.651 2.562
240 2.245 2.013 2.020 1.945 2.137

Table 7.2: RMSE using different numbers of training basins for 50 training epochs. Reg denotes regulariza-
tion. Phy denotes physics input. Corr and correction denote residual correction.

Method 60 basins 120 basins 240 basins
basic LSTM 11.871 9.384 2.082

LSTM + regularization 10.923 9.036 2.005
pretrain + fine-tuning 4.164 3.037 2.092
LSTM + tradaboost 2.688 2.587 2.302

LSTM + reg + phy + corr 13.791 9.951 1.937
iteration on domains 2.138 2.168 1.933
iteration + correction 2.098 2.133 1.976

Table 7.3: Performance of regularization-based methods using different numbers of training basins
Method 60 basins 120 basins 240 basins

basic LSTM 11.871 9.384 2.082
LSTM + regularization 10.923 9.036 2.005
LSTM + reg (all data) 3.011 3.130 3.236

LSTM + reg + corr 9.527 5.703 1.962
LSTM + reg + phy + corr 13.791 9.951 1.937

iteration + residual correction methods can make an even better prediction in small datasets (60, 120 basins)

which are the best performance we can obtain. And a comparable good prediction using full dataset because

the corrected pseudo labels do not play a significant role in the training given sufficient real labels.

7.5.2.5 Switch Method Robustness

This table 7.5 summarizes the model robustness and performance under noise perturbation. We add 0.02

standard deviation to evapotranspiration data to test the robustness of the proposed method. The traditional

domain switch iteration method does not show strong robustness to perturbation, since there are an obvious

RMSE rising up in 60 and 240 basins. However, in our proposed iteration + residual correction method, it

shows strong stability handling noisy data in large training datasets.

7.5.2.6 Ablation Study

Fig. 7.3(a), 7.3(b), 7.4(a) and 7.4(b) shows the ablation study between different methods. Each dot represents

a test basin and the value in x-y axis denotes RMSE.

103

Table 7.4: Performance of pre-training-based methods using different numbers of training basins
Method 60 basins 120 basins 240 basins

pretrain + fine-tuning 4.164 3.037 2.092
iteration on domains 2.138 2.168 1.933
iteration + correction 2.098 2.133 1.976

Table 7.5: Model robustness to noise using different numbers of training basins
Method 60 basins 120 basins 240 basins

iteration on domains 2.138 2.168 1.933
iteration + noise(0.02 std) 2.361 2.192 2.018

iteration + corr + noise(0.02 std) 2.588 2.144 1.949

(a) 1. LSTM 2. LSTM + regularization (b) 1. LSTM + regularization 2. LSTM + regularization
+ residual correction

Figure 7.3:

(a) 1. pretrain + fine-tuning 2.iteration on domains (b) 1. iteration on domains 2. iteration + residual cor-
rection

Figure 7.4:

104

(a) 1. LSTM 2. LSTM + regular-
ization

(b) 1. LSTM + regularization 2.
LSTM + regularization + residual
correction

(c) 1. LSTM + regularization +
residual correction 2. LSTM + reg-
ularization + residual correction +
physics input

(d) 1. pretrain + fine tuning 2. iter-
ation on source & target domains

(e) 1. iteration on source and tar-
get domains 2. iteration on source
& target domains + residual correc-
tion

(f) 1. iteration on source and target
domains + residual correction 2. it-
eration on source & target domains
+ residual correction + noisy data

Figure 7.5: Streamflow predictions using different methods. Figure 7.5(a) is in basin 462. Figure 7.5(b) is in
basin 214. Figure 7.5(c) is in basin 472. Figure 7.5(d) is in basin 462. Figure 7.5(e) is in basin 492. Figure
7.5(f) is in basin 462.

7.6 Conclusion

In this chapter, we propose two methods to handle transfer learning under inaccurate physics laws. To deal

with the inaccuracy caused by the physics law, we use a lasso regression to correct the pseudo label and let

them rejoin the training process. Our methods show strong resistance to data absence and noise interference

and a predictive performance comparable to that of the model using actual physical descriptors.

Future results can include how to more precisely approximate the residue, since we are only using a

regression method with regularization. We may try transformer or other types of temporal neural network

models to further improve our results.

105

CHAPTER 8

List of Publications

8.1 Published

• Tianshu Bao, Shengyu Chen, Taylor T Johnson, Peyman Givi, Shervin Sammak, Xiaowei Jia, "Physics

Guided Neural Networks for Spatio-temporal Super-resolution of Turbulent Flows", the 38th Confer-

ence on Uncertainty in Artificial Intelligence (UAI), 2022, August.

• Tianshu Bao, Xiaowei Jia, Jacob Zwart, Jeffrey Sadler, Alison Appling, Samantha Oliver, Taylor T.

Johnson, "Partial Differential Equation Driven Dynamic Graph Networks for Predicting Stream Water

Temperature", In 2021 IEEE International Conference on Data Mining (ICDM), pp. 11-20, 2021,

December.

• Shengyu Chen, Tianshu Bao, Peyman Givi, Can Zheng, Xiaowei Jia, "Reconstructing Turbulent Flows

Using Physics-Aware Spatio-Temporal Dynamics and Test-Time Refinement", ACM Transactions on

Intelligent Systems and Technology (TIST), accepted, arXiv preprint arXiv:2304.12130

• Hoang-Dung Tran, Tianshu Bao, Taylor T. Johnson, "Discrete-Space Analysis of Partial Differential

Equations (PDEs) (Benchmark Proposal)", In 5th Applied Verification for Continuous and Hybrid

Systems Workshop (ARCH), Oxford, UK, 2018, July

8.2 Submitted

• Tianshu Bao, Weiming Xiang and Taylor T. Johnson, "Partial Differential Hybrid Automaton", sub-

mitted to Hybrid System Control and Computing

106

CHAPTER 9

Appendix

9.1 Reachability Analysis for Partial Differential Equations

𝑢𝑢𝑖𝑖−1𝑛𝑛 𝑢𝑢𝑖𝑖𝑛𝑛 𝑢𝑢𝑖𝑖+1𝑛𝑛

𝑢𝑢𝑖𝑖− ⁄1 2
𝑛𝑛+ ⁄1 2 𝑢𝑢𝑖𝑖+ ⁄1 2

𝑛𝑛+ ⁄1 2

Figure 9.1: Computational stencils of the predictor of the Richtmyer two-step method . Predicted solutions
are shown in light blue.

𝑢𝑢𝑖𝑖𝑛𝑛

𝑢𝑢𝑖𝑖− ⁄1 2
𝑛𝑛+ ⁄1 2 𝑢𝑢𝑖𝑖+ ⁄1 2

𝑛𝑛+ ⁄1 2

𝑢𝑢𝑖𝑖𝑛𝑛+1

Figure 9.2: Computational stencils of the corrector of the Richtmyer two-step method . Predicted solutions
are shown in light blue.

𝑢𝑢𝑖𝑖−1𝑛𝑛 𝑢𝑢𝑖𝑖𝑛𝑛 𝑢𝑢𝑖𝑖+1𝑛𝑛

𝑢𝑢𝑖𝑖𝑛𝑛+1

Figure 9.3: In the scalar case of (4.8), the target function is un+1
i and the variables are un

i−1,u
n
i and un

i+1.

The method is stable only if the Courant-Friedrichs-Lewy condition (CFL) is satisfied [182] pages 232–

238 which has the form below.

∣∣∣∣λ j∆t
∆x

∣∣∣∣≤ 1. (9.1)

107

x𝑖𝑖−1 x𝑖𝑖 x𝑖𝑖+1

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3

𝑢𝑢4

𝑢𝑢5

𝑢𝑢6

𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

Figure 9.4: The diagram shows the points appearing on umax and umin layer. u1,u2,u5 and u6 are obtained
through interpolation .

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

x𝑚𝑚−1 x𝑚𝑚 x𝑚𝑚+1

t𝑚𝑚−1

t𝑚𝑚

tn+1

𝑢𝑢3 𝑢𝑢4

𝑢𝑢1

𝑢𝑢2

𝑢𝑢5

Figure 9.5: Diagram for u1,u2, ...u5 on umin lay. u1,u2,u3 and u4 are obtained through interpolation

108

The general form of the one-sided method is of the form:

vn+1
i = vn

i −
∆t
∆x

λ j(vn
i − vn

i−1), λ j > 0, (9.2)

vn+1
i = vn

i −
∆t
∆x

λ j(vn
i+1 − vn

i), λ j < 0. (9.3)

Theorem 9.1.1. The iteration procedure of (9.2) and (9.3) is monotone if the CFL condition is satisfied.

Proof. Assume there are two lists of values:

un
max = (un

max,1,u
n
max,2,u

n
max,3, ...,u

n
max,m),

un
min = (un

min,1,u
n
min,2,u

n
min,3, ...,u

n
min,m).

For every i (1 ≤ i ≤ m), un
max,i > un

min,i. We want to show that un+1
max,i > un+1

min,i for every i,1 ≤ i ≤ m, holds

as well.

Assuming λ j > 0, the following two equations are constructed from (9.2).

un+1
max,i = un

max,i −
∆t
∆x

λi(un
max,i −un

max,i−1), (9.4)

un+1
min,i = un

min,i −
∆t
∆x

λi(un
min,i −un

min,i−1). (9.5)

Use (9.4) - (9.5), resulting in (9.6)

Kn+1
i = Kn

i − r(Kn
i −Kn

i−1), (9.6)

where Kn
i denotes (un

max,i −un
min,i) and r denotes λi∆t

∆x . The following is the result of reordering (9.6).

Kn+1
i = (1− r)Kn

i + rKn
i−1, (9.7)

where (1− r)≥ 0, according to the CFL condition (9.1). Also r > 0 since λi > 0. Therefore, (1− r)Kn
i ≥ 0

and rKn
i−1 > 0. Concluding that

Kn+1
i > 0,

un+1
max,i > un+1

min,i.

(9.8)

The same proof can be done for λ j < 0.

Theorem 9.1.2. The iteration procedure of (9.13) is monotone if A is a scalar and CFL condition is satisfied.

109

Proof. We create two lists as above. The equation with maximum value list is:

un+1
max,i =

1
2
(un

max,i+1 +un
max,i−1)

− ∆t
2∆x

A(un
max,i+1 −un

max,i−1).

(9.9)

Correspondingly, the equation with minimum value list is:

un+1
min,i =

1
2
(un

min,i+1 +un
min,i−1)

− ∆t
2∆x

A(un
min,i+1 −un

min,i−1).

(9.10)

Using (9.9) - (9.10), we obtain the equation

Kn+1
i =

1
2
(Kn

i+1 +Kn
i−1)−

∆t
2∆x

A(Kn
i+1 −Kn

i−1). (9.11)

Simplifying (9.11) results in

Kn+1
i =

1
2
(Kn

i+1 +Kn
i−1)−

∆t
2∆x

A(Kn
i+1 −Kn

i−1),

= (
1
2
− r

2
)Kn

i+1 +(
1
2
+

r
2
)Kn

i−1,

=
1− r

2
Kn

i+1 +
1+ r

2
Kn

i−1,

(9.12)

where r = A∆t
∆x .

The stability requirement for the Lax-Friedrich method is also the CFL condition (9.1) [182]. This leads

to the conclusion that Kn+1
i > 0. Therefore, the scalar form of (9.13) is monotone.

The Lax-Friedrichs scheme [110] is given below.

un+1
i =

1
2
(un

i+1 +un
i−1)−

∆t
2∆x

A(un
i+1 −un

i−1) (9.13)

where ut , ux are approximated and un
i is an approximate value of u(xi, tn).

Theorem 9.1.3. The iteration procedure of (9.13) is monotone if A is a decoupled system and CFL condition

is satisfied.

Proof.

Kn+1
i =

1
2
(Kn

i+1 +Kn
i−1)−

∆t
2∆x

A(Kn
i+1 −Kn

i−1) (9.14)

Matrix A is the k× k decoupled system and Kn
i is k×1 vector representing umax −umin at x = xi, t = tn.

110

After simplification, the similar form is obtained using maximum and minimum lists.

Kn+1
i =

I −R
2

Kn
i+1 +

I +R
2

Kn
i−1 (9.15)

where R = A∆t
∆x .

The CFL condition for system of equations is

max1≤ j≤n
∣∣λ j

∣∣∆t
∆x

< 1 (9.16)

where λ j is the jth eigenvalue of A.

All eigenvalues of I +R and I+R
2 are greater than 0 and these eigenvalues are the diagonal entries of I+R

2 .

Therefore, all values of vector I+R
2 Kn

i−1 are positive.

A similar proof towards I −R can be done in the same way. Thus, all of the elements of Kn+1
i are greater

than 0 and (9.13) is monotone.

𝑢𝑢 0, 𝑡𝑡 = 0 𝑢𝑢𝑥𝑥 𝐿𝐿, 𝑡𝑡 = 0

heating effect 𝑓𝑓 = λ𝑢𝑢

Isolated
boundary

Fixed
temperature
boundary

Figure 9.6: One dimension heat equation model.

𝑢𝑢𝑦𝑦 𝑥𝑥, 0, 𝑡𝑡 = 0.5

Low temperature area

𝑢𝑢𝑥𝑥 0,𝑦𝑦, 𝑡𝑡 = 0

Isolated
boundary

𝑢𝑢 𝐿𝐿,𝑦𝑦, 𝑡𝑡 = 0.8
Fixed
temperature
boundary

𝑢𝑢𝑦𝑦 𝑥𝑥, 𝐿𝐿, 𝑡𝑡 = 1 − 𝑢𝑢
Exchanging heat with outside region

heating effect 𝑓𝑓 = λ𝑢𝑢

Figure 9.7: Two dimension heat equation model.

111

Algorithm 7 Arnoldi Iteration
1: given random nonzero b, let q1 = b/∥b∥
2: for k = 1,2,3, ... do
3: v = Aqk
4: for j = 1 to k do
5: h jk = qT

j v
6: v = v−h jkq j

7: hk+1,k = ∥v∥
8: qk+1 = v/hk+1,k

112

References

[1] N. Addor, A. J. Newman, N. Mizukami, and M. P. Clark. The camels data set: catchment attributes
and meteorology for large-sample studies. Hydrology and Earth System Sciences, 21(10):5293–5313,
2017.

[2] S. Aditya, Y. Yang, and C. Baral. Integrating knowledge and reasoning in image understanding. arXiv
preprint arXiv:1906.09954, 2019.

[3] N. Ahn, B. Kang, and K.-A. Sohn. Fast, accurate, and lightweight super-resolution with cascading
residual network, 2018.

[4] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural network. In
2017 international conference on engineering and technology (ICET), pages 1–6. Ieee, 2017.

[5] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities of
dna-and rna-binding proteins by deep learning. Nature biotechnology, 33(8):831–838, 2015.

[6] L. I. Allerhand and U. Shaked. Robust stability and stabilization of linear switched systems with dwell
time. IEEE Transactions on Automatic Control, 56(2):381–386, 2010.

[7] M. Althoff. An introduction to cora 2015. In Proc. of the workshop on applied verification for contin-
uous and hybrid systems, pages 120–151, 2015.

[8] M. Althoff and B. H. Krogh. Zonotope bundles for the efficient computation of reachable sets. In 2011
50th IEEE Conference on Decision and Control and European Control Conference, pages 6814–6821.
IEEE, 2011.

[9] M. Althoff and B. H. Krogh. Reachability analysis of nonlinear differential-algebraic systems. IEEE
Transactions on Automatic Control, 59(2):371–383, 2013.

[10] B. Anderson, T. S. Hy, and R. Kondor. Cormorant: Covariant molecular neural networks. In Advances
in Neural Information Processing Systems, pages 14510–14519, 2019.

[11] O. Andersson, F. Heintz, and P. Doherty. Model-based reinforcement learning in continuous envi-
ronments using real-time constrained optimization. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[12] L. Arsenault, A. Lopez-Bezanilla, O. von Lilienfeld, and A. Millis. Machine learning for many-body
physics: The case of the anderson impurity model. Phys. Rev. B, 2014.

[13] S. Bak and P. S. Duggirala. Simulation-equivalent reachability of large linear systems with inputs. In
International Conference on Computer Aided Verification, pages 401–420. Springer, 2017.

[14] N. Banagaaya, G. Alı, and W. Schilders. Index-aware model order reduction methods. Springer, 2016.

[15] T. Bao, S. Chen, T. T. Johnson, P. Givi, S. Sammak, and X. Jia. physics guided neural networks for spatio-
temporal super-resolution of turbulent flows. In 38th Conference on Uncertainty in Artificial
Intelligence (UAI), Aug. 2022.

[16] T. Bao, S. Chen, T. T. Johnson, P. Givi, S. Sammak, and X. Jia. Physics guided neural networks for
spatio-temporal super-resolution of turbulent flows. In Uncertainty in Artificial Intelligence, pages
118–128. PMLR, 2022.

[17] T. Bao, X. Jia, J. Zwart, J. Sadler, A. Appling, S. Oliver, and T. T. Johnson. Partial differential equation
driven dynamic graph networks for predicting stream water temperature. In 2021 IEEE International
Conference on Data Mining (ICDM), pages 11–20. IEEE, 2021.

113

[18] C. K. Batchelor and G. Batchelor. An introduction to fluid dynamics. Cambridge university press,
2000.

[19] A. M. Bayen, R. L. Raffard, and C. J. Tomlin. Network congestion alleviation using adjoint hybrid
control: Application to highways. In International Workshop on Hybrid Systems: Computation and
Control, pages 95–110. Springer, 2004.

[20] H. E. Beck, A. I. van Dijk, A. De Roo, D. G. Miralles, T. R. McVicar, J. Schellekens, and L. A.
Bruijnzeel. Global-scale regionalization of hydrologic model parameters. Water Resources Research,
52(5):3599–3622, 2016.

[21] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning
from different domains. Machine learning, 79:151–175, 2010.

[22] L. E. Besaw, D. M. Rizzo, P. R. Bierman, and W. R. Hackett. Advances in ungauged streamflow
prediction using artificial neural networks. Journal of Hydrology, 386(1-4):27–37, 2010.

[23] K. Beven and J. Freer. Equifinality, data assimilation, and uncertainty estimation in mechanistic mod-
elling of complex environmental systems using the glue methodology. Journal of hydrology, 249(1-
4):11–29, 2001.

[24] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding. BMVA press, 2012.

[25] G. Blöschl and M. Sivapalan. Scale issues in hydrological modelling: a review. Hydrological pro-
cesses, 9(3-4):251–290, 1995.

[26] G. Blöschl, M. Sivapalan, T. Wagener, A. Viglione, and H. Savenije. Runoff prediction in ungauged
basins: synthesis across processes, places and scales. Cambridge University Press, 2013.

[27] J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems. PNAS,
2007.

[28] G.-J. Both, S. Choudhury, P. Sens, and R. Kusters. Deepmod: Deep learning for model discovery in
noisy data. Journal of Computational Physics, 428:109985, 2021.

[29] M. E. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, and U. Frisch. The taylor-green vortex and
fully developed turbulence. Journal of Statistical Physics, 34(5):1049–1063, 1984.

[30] J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino. Combining data assimilation and machine learning
to emulate a dynamical model from sparse and noisy observations: A case study with the lorenz 96
model. Journal of Computational Science, 44:101171, 2020.

[31] J. R. Brett. Energetic responses of salmon to temperature. a study of some thermal relations in the
physiology and freshwater ecology of sockeye salmon (oncorhynchus nerkd). American zoologist,
11(1):99–113, 1971.

[32] S. Brunton, J. Proctor, and J. Kutz. Discovering governing equations from data by sparse identification
of nonlinear dynamical systems. PNAS, 2016.

[33] J. Butcher. Runge-kutta methods. Scholarpedia, 2(9):3147, 2007.

[34] G. Byrne and P. Ponzi. Differential-algebraic systems, their applications and solutions. Computers &
chemical engineering, 12(5):377–382, 1988.

[35] H. Cai, V. W. Zheng, and K. C.-C. Chang. Active learning for graph embedding. arXiv preprint
arXiv:1705.05085, 2017.

[36] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discovery of coordinates and
governing equations. Proceedings of the National Academy of Sciences, 116(45):22445–22451, 2019.

114

[37] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
CVPR 2004., volume 1, pages I–I. IEEE, 2004.

[38] S. Chen, S. Sammak, P. Givi, J. P. Yurko, and X. Jia. Reconstructing high-resolution turbulent flows
using physics-guided neural networks. arXiv preprint arXiv:2109.03327, 2021.

[39] S. Chen, J. A. Zwart, and X. Jia. Physics-guided graph meta learning for predicting water temper-
ature and streamflow in stream networks. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 2752–2761, 2022.

[40] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid systems.
In International Conference on Computer Aided Verification, pages 258–263. Springer, 2013.

[41] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang. Fsrnet: End-to-end learning face super-resolution with
facial priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2492–2501, 2018.

[42] Z. Chen, H. Xu, P. Jiang, S. Yu, G. Lin, I. Bychkov, A. Hmelnov, G. Ruzhnikov, N. Zhu, and Z. Liu.
A transfer learning-based lstm strategy for imputing large-scale consecutive missing data and its ap-
plication in a water quality prediction system. Journal of Hydrology, 602:126573, 2021.

[43] W. Cheng, M. Zhao, Z. Ye, and S. Gu. Mfagan: A compression framework for memory-efficient
on-device super-resolution gan, 2021.

[44] C. G. Claudel and A. M. Bayen. Solutions to switched hamilton-jacobi equations and conservation
laws using hybrid components. In International Workshop on Hybrid Systems: Computation and
Control, pages 101–115. Springer, 2008.

[45] E. A. Cross and I. M. Mitchell. Level set methods for computing reachable sets of systems with
differential algebraic equation dynamics. In 2008 American Control Conference, pages 2260–2265.
IEEE, 2008.

[46] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang. Second-order attention network for single image
super-resolution. In CVPR, 2019.

[47] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning.(2007), 193–200. In Proceedings
of the 24th international conference on Machine learning, 2007.

[48] T. Dang, A. Donzé, and O. Maler. Verification of analog and mixed-signal circuits using hybrid system
techniques. In International Conference on Formal Methods in Computer-Aided Design, pages 21–36.
Springer, 2004.

[49] P. A. Davidson. Turbulence: an introduction for scientists and engineers. Oxford university press,
2015.

[50] A. Daw, A. Karpatne, W. Watkins, J. Read, and V. Kumar. Physics-guided neural networks (pgnn): An
application in lake temperature modeling. arXiv preprint arXiv:1710.11431, 2017.

[51] Z. Deng, C. He, Y. Liu, and K. C. Kim. Super-resolution reconstruction of turbulent velocity fields
using a generative adversarial network-based artificial intelligence framework. Physics of Fluids,
31(12):125111, 2019.

[52] M. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving partial differ-
ential equations. communications in Numerical Methods in Engineering, 10(3):195–201, 1994.

[53] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-
resolution. In European conference on computer vision, pages 184–199. Springer, 2014.

115

[54] S. J. Dugdale, D. M. Hannah, and I. A. Malcolm. River temperature modelling: A review of process-
based approaches and future directions. Earth-Science Reviews, 175:97–113, 2017.

[55] V. V. Duong, T. N. Huu, J. Yim, and B. Jeon. A fast and efficient super-resolution network using
hierarchical dense residual learning. In 2021 IEEE International Conference on Image Processing
(ICIP), pages 1809–1813, 2021.

[56] S. Džeroski, L. Todorovski, I. Bratko, B. Kompare, and V. Križman. Equation discovery with ecolog-
ical applications. In Machine learning methods for ecological applications, pages 185–207. Springer,
1999.

[57] E. Eich-Soellner and C. Führer. Numerical methods in multibody dynamics, volume 45. Springer,
1998.

[58] L. C. Evans. Partial differential equations. American Mathematical Society, 2010.

[59] G. Evensen et al. Data assimilation: the ensemble Kalman filter, volume 2. Springer, 2009.

[60] K. Fang and C. Shen. Near-real-time forecast of satellite-based soil moisture using long short-term
memory with an adaptive data integration kernel. Journal of Hydrometeorology, 21(3):399–413, 2020.

[61] R. M. Felder and R. Brent. Active learning: An introduction. ASQ higher education brief, 2(4):1–5,
2009.

[62] A. Fettweis. Robust numerical integration using wave-digital concepts. Multidimensional Systems and
Signal Processing, 17(1):7–25, 2006.

[63] J. Fish and T. Belytschko. A first course in finite elements. Wiley, 2007.

[64] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. Spaceex: Scalable verification of hybrid systems. In Computer Aided Verification, pages
379–395. Springer, 2011.

[65] K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of turbulent flows with machine
learning. Journal of Fluid Mechanics, 870:106–120, 2019.

[66] K. Fukami, K. Fukagata, and K. Taira. Machine-learning-based spatio-temporal super resolution re-
construction of turbulent flows. Journal of Fluid Mechanics, 909, Dec 2020.

[67] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In ICML, 2016.

[68] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with image data. In International
Conference on Machine Learning, pages 1183–1192. PMLR, 2017.

[69] H. Gao, Z. Wang, L. Cai, and S. Ji. Channelnets: Compact and efficient convolutional neural networks
via channel-wise convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

[70] G. Garner, I. A. Malcolm, J. P. Sadler, and D. M. Hannah. What causes cooling water temperature
gradients in a forested stream reach? Hydrology and Earth System Sciences, 18(12):5361, 2014.

[71] A. Geiss and J. C. Hardin. Invertible cnn-based super resolution with downsampling awareness. arXiv
preprint arXiv:2011.05586, 2020.

[72] D. Gerwin. Information processing, data inferences, and scientific generalization. Behavioral Science,
19(5):314–325, 1974.

[73] A. Girard and C. Le Guernic. Efficient reachability analysis for linear systems using support functions.
IFAC Proceedings Volumes, 41(2):8966–8971, 2008.

116

[74] P. Givi. Model-free simulations of turbulent reactive flows. Progress in Energy and Combustion
Science, 15(1):1–107, 1989.

[75] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.

[76] D. Graham-Rowe, D. Goldston, C. Doctorow, M. Waldrop, C. Lynch, F. Frankel, R. Reid, S. Nelson,
D. Howe, S. Rhee, et al. Big data: science in the petabyte era. Nature, 455(7209):8–9, 2008.

[77] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks.
In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pages
6645–6649. IEEE, 2013.

[78] H. V. Gupta, T. Wagener, and Y. Liu. Reconciling theory with observations: elements of a diagnostic
approach to model evaluation. Hydrological Processes: An International Journal, 22(18):3802–3813,
2008.

[79] J. Han, A. Jentzen, and E. Weinan. Solving high-dimensional partial differential equations using deep
learning. PNAS, 2018.

[80] J. Han, L. Zhang, and E. Weinan. Solving many-electron schrödinger equation using deep neural
networks. Journal of Computational Physics, 399:108929, 2019.

[81] Z. Han and B. Krogh. Reachability analysis of hybrid control systems using reduced-order models. In
Proceedings of the 2004 American Control Conference, volume 2, pages 1183–1189. IEEE, 2004.

[82] P. C. Hanson, A. B. Stillman, X. Jia, A. Karpatne, H. A. Dugan, C. C. Carey, J. Stachelek, N. K. Ward,
Y. Zhang, J. S. Read, et al. Predicting lake surface water phosphorus dynamics using process-guided
machine learning. Ecological Modelling, 430:109136, 2020.

[83] F. M. Hante, G. Leugering, and T. I. Seidman. Modeling and analysis of modal switching in networked
transport systems. Applied Mathematics and Optimization, 59(2):275–292, 2009.

[84] A. Harten, J. M. Hyman, P. D. Lax, and B. Keyfitz. On finite-difference approximations and entropy
conditions for shocks. Communications on pure and applied mathematics, 29(3):297–322, 1976.

[85] B. Heinrich. Finite difference methods on irregular networks: a generalized approach to second order
elliptic problems. Springer, 1987.

[86] J. P. Hespanha and A. S. Morse. Stability of switched systems with average dwell-time. In Proceedings
of the 38th IEEE conference on decision and control (Cat. No. 99CH36304), volume 3, pages 2655–
2660. IEEE, 1999.

[87] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

[88] M. Hrachowitz, H. Savenije, G. Blöschl, J. McDonnell, M. Sivapalan, J. Pomeroy, B. Arheimer,
T. Blume, M. Clark, U. Ehret, et al. A decade of predictions in ungauged basins (pub)—a review.
Hydrological sciences journal, 58(6):1198–1255, 2013.

[89] K.-l. Hsu, H. V. Gupta, and S. Sorooshian. Artificial neural network modeling of the rainfall-runoff
process. Water resources research, 31(10):2517–2530, 1995.

[90] X. Jia, B. Lin, J. Zwart, J. Sadler, A. Appling, S. Oliver, and J. Read. Graph-based reinforcement
learning for active learning in real time: An application in modeling river networks. In Proceedings of
the 2021 SIAM International Conference on Data Mining (SDM), pages 621–629. SIAM, 2021.

[91] X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart, M. Steinbach, and V. Kumar. Physics guided rnns for
modeling dynamical systems: A case study in simulating lake temperature profiles. In Proceedings of
SIAM International Conference on Data Mining, 2019.

117

[92] X. Jia, J. Zwart, J. Sadler, A. Appling, S. Oliver, S. Markstrom, J. Willard, S. Xu, M. Steinbach,
J. Read, and V. Kumar. Physics-guided recurrent graph model for predicting flow and temperature in
river networks. In SIAM International Conference on Data Mining. SIAM, 2021.

[93] M. Johansson and A. Rantzer. Computation of piecewise quadratic lyapunov functions for hybrid
systems. In 1997 European Control Conference (ECC), pages 2005–2010. IEEE, 1997.

[94] K. D. Julian, M. J. Kochenderfer, and M. P. Owen. Deep neural network compression for aircraft
collision avoidance systems. Journal of Guidance, Control, and Dynamics, 42(3):598–608, 2019.

[95] A. Karpatne, G. Atluri, J. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S. Shekhar, N. Samatova,
and V. Kumar. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE
TKDE, 2017.

[96] A. Karpatne, W. Watkins, J. Read, and V. Kumar. Physics-guided neural networks (pgnn): An appli-
cation in lake temperature modeling. arXiv preprint arXiv:1710.11431, 2017.

[97] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[98] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In International conference on computer aided verification, pages
97–117. Springer, 2017.

[99] S. K. Kauwe, J. Graser, A. Vazquez, and T. D. Sparks. Machine learning prediction of heat capacity
for solid inorganics. Integrating Materials and Manufacturing Innovation, 7(2):43–51, 2018.

[100] Y. Khoo, J. Lu, and L. Ying. Solving for high-dimensional committor functions using artificial neural
networks. Research in the Mathematical Sciences, 6(1):1, 2019.

[101] D.-Y. Kim, J. Park, and A. M. Morrison. A model of traveller acceptance of mobile technology.
International Journal of Tourism Research, 10(5):393–407, 2008.

[102] F. Kratzert, D. Klotz, C. Brenner, K. Schulz, and M. Herrnegger. Rainfall–runoff modelling using long
short-term memory (lstm) networks. Hydrology and Earth System Sciences, 22(11):6005–6022, 2018.

[103] F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing. Towards learning
universal, regional, and local hydrological behaviors via machine learning applied to large-sample
datasets. Hydrology and Earth System Sciences, 23(12):5089–5110, 2019.

[104] S. N. Krishna and A. Trivedi. Hybrid automata for formal modeling and verification of cyber-physical
systems. arXiv preprint arXiv:1503.04928, 2015.

[105] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[106] I. Lagaris, A. Likas, and D. Fotiadis. Artificial neural networks for solving ordinary and partial differ-
ential equations. IEEE Trans. Neural Netw. Learn, 1998.

[107] J. H. Lagergren, J. T. Nardini, G. Michael Lavigne, E. M. Rutter, and K. B. Flores. Learning partial
differential equations for biological transport models from noisy spatio-temporal data. Proceedings of
the Royal Society A, 476(2234):20190800, 2020.

[108] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338, 2015.

[109] P. Langley. Data-driven discovery of physical laws. Cognitive Science, 5(1):31–54, 1981.

[110] P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Com-
munications on pure and applied mathematics, 7(1):159–193, 1954.

118

[111] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[112] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Back-
propagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[113] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network.
In CVPR, 2017.

[114] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC), pages 363–369. IEEE,
2008.

[115] D. Li and H. Ji. Syntax-aware multi-task graph convolutional networks for biomedical relation ex-
traction. In Proceedings of the Tenth International Workshop on Health Text Mining and Information
Analysis (LOUHI 2019), pages 28–33, 2019.

[116] X. Li and Y. Guo. Adaptive active learning for image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 859–866, 2013.

[117] X. Li, A. Khandelwal, X. Jia, K. Cutler, R. Ghosh, A. Renganathan, S. Xu, K. Tayal, J. Nieber,
C. Duffy, et al. Regionalization in a global hydrologic deep learning model: from physical descriptors
to random vectors. Water Resources Research, 58(8):e2021WR031794, 2022.

[118] M. J. Lighthill and G. B. Whitham. On kinematic waves ii. a theory of traffic flow on long crowded
roads. Proc. R. Soc. Lond. A, 229(1178):317–345, 1955.

[119] J. Ling, A. Kurzawski, and J. Templeton. Reynolds averaged turbulence modelling using deep neural
networks with embedded invariance. J. Fluid Mech, 2016.

[120] B. Liu, J. Tang, H. Huang, and X.-Y. Lu. Deep learning methods for super-resolution reconstruction
of turbulent flows. Physics of Fluids, 2020.

[121] N. Ma, S. Mazumder, H. Wang, and B. Liu. Entity-aware dependency-based deep graph attention
network for comparative preference classification. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 5782–5788, 2020.

[122] J. J. Magnuson, L. B. Crowder, and P. A. Medvick. Temperature as an ecological resource. American
Zoologist, 19(1):331–343, 1979.

[123] M. Margaliot and G. Langholz. Necessary and sufficient conditions for absolute stability: the case
of second-order systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 50(2):227–234, 2003.

[124] S. L. Markstrom, R. S. Regan, L. E. Hay, R. J. Viger, R. M. Webb, R. A. Payn, and J. H. LaFontaine.
Prms-iv, the precipitation-runoff modeling system, version 4. US Geological Survey Techniques and
Methods, 2015.

[125] R. März. Canonical projectors for linear differential algebraic equations. Computers & Mathematics
with Applications, 31(4-5):121–135, 1996.

[126] M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural networks for inverse problems in
imaging: A review. IEEE Signal Processing Magazine, 34(6):85–95, 2017.

[127] J. J. McDonnell and K. Beven. Debates—the future of hydrological sciences: A (common) path
forward? a call to action aimed at understanding velocities, celerities and residence time distributions
of the headwater hydrograph. Water Resources Research, 2014.

[128] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent neural network based
language model. In Eleventh Annual Conference of the International Speech Communication Associ-
ation, 2010.

119

[129] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent hamilton-jacobi formulation of
reachable sets for continuous dynamic games. IEEE Transactions on Automatic control, 50(7):947–
957, 2005.

[130] A. S. Morse. Supervisory control of families of linear set-point controllers-part i. exact matching.
IEEE transactions on Automatic Control, 41(10):1413–1431, 1996.

[131] Z. Moshe, A. Metzger, G. Elidan, F. Kratzert, S. Nevo, and R. El-Yaniv. Hydronets: Leveraging river
structure for hydrologic modeling. arXiv preprint arXiv:2007.00595, 2020.

[132] L. Muñoz, X. Sun, R. Horowitz, and L. Alvarez. Traffic density estimation with the cell transmission
model. In American Control Conference, 2003. Proceedings of the 2003, volume 5, pages 3750–3755.
IEEE, 2003.

[133] N. Muralidhar, J. Bu, Z. Cao, L. He, N. Ramakrishnan, D. Tafti, and A. Karpatne. Phynet: Physics
guided neural networks for particle drag force prediction in assembly. In Proceedings of the 2020
SIAM International Conference on Data Mining, pages 559–567. SIAM, 2020.

[134] N. Muralidhar, M. Islam, M. Marwah, A. Karpatne, and N. Ramakrishnan. Incorporating prior domain
knowledge into deep neural networks. In IEEE Big Data. IEEE, 2018.

[135] S. L. Neitsch, J. G. Arnold, J. R. Kiniry, and J. R. Williams. Soil and water assessment tool theoretical
documentation version 2009. Technical report, Texas Water Resources Institute, 2011.

[136] F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi. Machine learning for molecular simulation.
Annual review of physical chemistry, 71:361–390, 2020.

[137] O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowlishwaran. Surfnet: Super-resolution of
turbulent flows with transfer learning using small datasets. arXiv preprint arXiv:2108.07667, 2021.

[138] S. A. Orszag and G. S. Patterson. Numerical simulation of turbulence. In Statistical Models and
Turbulence, pages 127–147, New York, NY, 1986. Springer-Verlag.

[139] H. Owhadi. Bayesian numerical homogenization. Multiscale Modeling & Simulation, 13(3):812–828,
2015.

[140] H. Owhadi, C. Scovel, and T. Sullivan. Brittleness of bayesian inference under finite information in a
continuous world. Electronic Journal of Statistics, 9(1):1–79, 2015.

[141] S. C. Park, M. K. Park, and M. G. Kang. Super-resolution image reconstruction: a technical overview.
IEEE Signal Processing Magazine, pages 21–36, 2003.

[142] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T. Kim. Deep symbolic
regression: Recovering mathematical expressions from data via risk-seeking policy gradients. arXiv
preprint arXiv:1912.04871, 2019.

[143] S. Pettersson and B. Lennartson. Stabilization of hybrid systems using a min-projection strategy. In
Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), volume 1, pages 223–
228. IEEE, 2001.

[144] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[145] C. Prieto, N. Le Vine, D. Kavetski, E. García, and R. Medina. Flow prediction in ungauged catchments
using probabilistic random forests regionalization and new statistical adequacy tests. Water Resources
Research, 55(5):4364–4392, 2019.

[146] Y. Qi, Q. Li, H. Karimian, and D. Liu. A hybrid model for spatiotemporal forecasting of pm2. 5 based
on graph convolutional neural network and long short-term memory. Science of the Total Environment,
2019.

120

[147] R. Rai and C. K. Sahu. Driven by data or derived through physics? a review of hybrid physics guided
machine learning techniques with cyber-physical system (cps) focus. IEEE Access, 8:71050–71073,
2020.

[148] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Inferring solutions of differential equations using
noisy multi-fidelity data. Journal of Computational Physics, 335:736–746, 2017.

[149] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Machine learning of linear differential equations using
gaussian processes. Journal of Computational Physics, 348:683–693, 2017.

[150] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

[151] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Numerical gaussian processes for time-dependent and
nonlinear partial differential equations. SIAM Journal on Scientific Computing, 40(1):A172–A198,
2018.

[152] M. Raissi, A. Yazdani, and G. Karniadakis. Hidden fluid mechanics: A navier-stokes informed deep
learning framework for assimilating flow visualization data. arXiv:1808.04327, 2018.

[153] J. Rauch and M. Reed. Jump discontinuities of semilinear, strictly hyperbolic systems in two variables:
Creation and propagation. Communications in Mathematical Physics, 81(2):203–227, 1981.

[154] T. Razavi and P. Coulibaly. Streamflow prediction in ungauged basins: review of regionalization
methods. Journal of hydrologic engineering, 18(8):958–975, 2013.

[155] E. K. Read, L. Carr, L. De Cicco, H. A. Dugan, P. C. Hanson, J. A. Hart, J. Kreft, J. S. Read, and
L. A. Winslow. Water quality data for national-scale aquatic research: The water quality portal. Water
Resources Research, 53(2):1735–1745, 2017.

[156] J. S. Read, X. Jia, J. Willard, A. P. Appling, J. A. Zwart, S. K. Oliver, A. Karpatne, G. J. Hansen, P. C.
Hanson, W. Watkins, et al. Process-guided deep learning predictions of lake water temperature. Water
Resources Research, 55(11):9173–9190, 2019.

[157] R. S. Regan, S. L. Markstrom, L. E. Hay, R. J. Viger, P. A. Norton, J. M. Driscoll, and J. H. LaFontaine.
Description of the national hydrologic model for use with the precipitation-runoff modeling system
(prms). Technical report, US Geological Survey, 2018.

[158] S. H. Rudy, J. N. Kutz, and S. L. Brunton. Deep learning of dynamics and signal-noise decomposition
with time-stepping constraints. Journal of Computational Physics, 396:483–506, 2019.

[159] K. Ryan, J. Lengyel, and M. Shatruk. Crystal structure prediction via deep learning. Journal of the
American Chemical Society, 140(32):10158–10168, 2018.

[160] I. S. Strub and A. M. Bayen. Weak formulation of boundary conditions for scalar conservation laws:
An application to highway traffic modelling. International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, 16(16):733–748, 2006.

[161] P. Sagaut. Large eddy simulation for incompressible flows: an introduction. Springer Science &
Business Media, 2006.

[162] S. Sahoo, C. Lampert, and G. Martius. Learning equations for extrapolation and control. In Interna-
tional Conference on Machine Learning, pages 4442–4450. PMLR, 2018.

[163] L. Samaniego, R. Kumar, and S. Attinger. Multiscale parameter regionalization of a grid-based hydro-
logic model at the mesoscale. Water Resources Research, 46(5), 2010.

[164] M. J. Sanders, S. L. Markstrom, R. S. Regan, and R. D. Atkinson. Documentation of a daily mean
stream temperature module—an enhancement to the precipitation-runoff modeling system. Technical
report, US Geological Survey, 2017.

121

[165] Science. Special online collection: dealing with data. Science, 331(6018), 2011.

[166] J. Seibert. Regionalisation of parameters for a conceptual rainfall-runoff model. Agricultural and
forest meteorology, 98:279–293, 1999.

[167] T. J. Sejnowski, P. S. Churchland, and J. A. Movshon. Putting big data to good use in neuroscience.
Nature neuroscience, 17(11):1440, 2014.

[168] O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set approach.
arXiv preprint arXiv:1708.00489, 2017.

[169] Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar. Deep active learning for named entity
recognition. arXiv preprint arXiv:1707.05928, 2017.

[170] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[171] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev. Fast and effective robustness certification.
Advances in neural information processing systems, 31, 2018.

[172] G. Singh, T. Gehr, M. Püschel, and M. Vechev. An abstract domain for certifying neural networks.
Proceedings of the ACM on Programming Languages, 3(POPL):1–30, 2019.

[173] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339–1364, 2018.

[174] M. Sivapalan, K. Takeuchi, S. Franks, V. Gupta, H. Karambiri, V. Lakshmi, X. Liang, J. McDonnell,
E. Mendiondo, P. O’connell, et al. Iahs decade on predictions in ungauged basins (pub), 2003–2012:
Shaping an exciting future for the hydrological sciences. Hydrological sciences journal, 48(6):857–
880, 2003.

[175] G. D. Smith, G. D. Smith, and G. D. S. Smith. Numerical solution of partial differential equations:
finite difference methods. Oxford university press, 1985.

[176] K. Stengel, A. Glaws, D. Hettinger, and R. N. King. Adversarial super-resolution of climatological
wind and solar data. Proceedings of the National Academy of Sciences, 117(29):16805–16815, 2020.

[177] W. A. Strauss. Partial differential equations: An introduction. Wiley, 2007.

[178] U. G. Survey. National water information system data available on the world wide web (usgs water
data for the nation). http://waterdata.usgs.gov/nwis/ , 2016.

[179] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual network. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2790–2798, 2017.

[180] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep transfer learning. In
International conference on artificial neural networks, pages 270–279. Springer, 2018.

[181] F. Theurer, K. Voos, and W. Miller. Instream water temperature model. instream flow information
paper 16. us fish wildl serv. Div. Biol. Serv., Tech. Rep. FWS OBS, 84(15):11–42, 1984.

[182] J. W. Thomas. Numerical partial differential equations: finite difference methods, volume 22. Springer
Science & Business Media, 2013.

[183] C. J. Tomlin, J. Lygeros, and S. S. Sastry. A game theoretic approach to controller design for hybrid
systems. Proceedings of the IEEE, 88(7):949–970, 2000.

[184] H.-D. Tran, F. Cai, M. L. Diego, P. Musau, T. T. Johnson, and X. Koutsoukos. Safety verification of
cyber-physical systems with reinforcement learning control. ACM Transactions on Embedded Com-
puting Systems (TECS), 18(5s):1–22, 2019.

122

http://waterdata.usgs.gov/nwis/

[185] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. V. Nguyen, W. Xiang, and T. T. Johnson. Star-
based reachability analysis of deep neural networks. In International symposium on formal methods,
pages 670–686. Springer, 2019.

[186] H.-D. Tran, P. Musau, D. M. Lopez, X. Yang, L. V. Nguyen, W. Xiang, and T. T. Johnson. Par-
allelizable reachability analysis algorithms for feed-forward neural networks. In 2019 IEEE/ACM
7th International Conference on Formal Methods in Software Engineering (FormaliSE), pages 51–60.
IEEE, 2019.

[187] H.-D. Tran, L. V. Nguyen, N. Hamilton, W. Xiang, and T. T. Johnson. Reachability analysis for high-
index linear differential algebraic equations. In International Conference on Formal Modeling and
Analysis of Timed Systems, pages 160–177. Springer, 2019.

[188] H.-D. Tran, L. V. Nguyen, W. Xiang, and T. T. Johnson. Order-reduction abstractions for safety
verification of high-dimensional linear systems. Discrete Event Dynamic Systems, 27(2):443–461,
2017.

[189] H.-D. Tran, W. Xiang, T. T. Johnson, and S. Bak. Reachability analysis for one dimensional linear
parabolic equations. 6th IFAC Conference on Analysis and Design of Hybrid Systems, 2018.

[190] Reynolds Stress Field and Turbulent Kinetic Energy Budget in a Repeating Compressor Stage, volume
Volume 2E: Turbomachinery of Turbo Expo: Power for Land, Sea, and Air, 09 2020. V02ET41A017.

[191] U. Upadhyay and S. P. Awate. Robust super-resolution gan, with manifold-based and perception loss.
In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pages 1372–1376,
2019.

[192] T. Venkatesh, R. Srivastava, P. Bhatt, P. Tyagi, and R. K. Singh. A comparative study of various deep
learning techniques for spatio-temporal super-resolution reconstruction of forced isotropic turbulent
flows. arXiv preprint arXiv:2107.03361, 2021.

[193] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer,
A. Pick, R. Ramamurthy, et al. Informed machine learning–a taxonomy and survey of integrating
knowledge into learning systems. arXiv preprint arXiv:1903.12394, 2019.

[194] J.-X. Wang, J.-L. Wu, and H. Xiao. Physics-informed machine learning approach for reconstructing
reynolds stress modeling discrepancies based on dns data. Physical Review Fluids, 2(3):034603, 2017.

[195] X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic texture in image super-resolution by
deep spatial feature transform, 2018.

[196] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy. Esrgan: Enhanced
super-resolution generative adversarial networks. In ECCV Workshops, 2018.

[197] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

[198] H. Wei, S. Zhao, Q. Rong, and H. Bao. Predicting the effective thermal conductivities of composite
materials and porous media by machine learning methods. International Journal of Heat and Mass
Transfer, 127:908–916, 2018.

[199] J. F. Wendt. Computational Fluid Dynamics. Springer, Berlin, Heidelberg, 3rd edition, 1995.

[200] Z. Wenlong, L. Yihao, C. Dong, and Y. Qiao. Ranksrgan: Generative adversarial networks with ranker
for image super-resolution. TPMAI, 2021.

[201] Y. Wu, Y. Xu, A. Singh, Y. Yang, and A. Dubrawski. Active learning for graph neural networks via
node feature propagation. arXiv preprint arXiv:1910.07567, 2019.

123

[202] W. Xiang. On equivalence of two stability criteria for continuous-time switched systems with dwell
time constraint. Automatica, 54:36–40, 2015.

[203] W. Xiang. Necessary and sufficient condition for stability of switched uncertain linear systems under
dwell-time constraint. IEEE Transactions on Automatic Control, 61(11):3619–3624, 2016.

[204] W. Xiang. Parameter-memorized lyapunov functions for discrete-time systems with time-varying para-
metric uncertainties. Automatica, 87:450–454, 2018.

[205] W. Xiang, J. Lam, and J. Shen. Stability analysis and l1-gain characterization for switched positive
systems under dwell-time constraint. Automatica, 85:1–8, 2017.

[206] W. Xiang, H.-D. Tran, and T. T. Johnson. On reachable set estimation for discrete-time switched linear
systems under arbitrary switching. In 2017 American Control Conference (ACC), pages 4534–4539.
IEEE, 2017.

[207] W. Xiang, H.-D. Tran, and T. T. Johnson. Output reachable set estimation for switched linear systems
and its application in safety verification. IEEE Transactions on Automatic Control, 62(10):5380–5387,
2017.

[208] W. Xiang, H.-D. Tran, and T. T. Johnson. Robust exponential stability and disturbance attenuation for
discrete-time switched systems under arbitrary switching. IEEE Transactions on Automatic Control,
63(5):1450–1456, 2017.

[209] T. Xie and J. C. Grossman. Crystal graph convolutional neural networks for an accurate and inter-
pretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

[210] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempogan: A temporally coherent, volumetric gan for
super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):1–15, 2018.

[211] Z. Xu, H. Su, P. Shi, R. Lu, and Z.-G. Wu. Reachable set estimation for markovian jump neural
networks with time-varying delays. IEEE transactions on cybernetics, 47(10):3208–3217, 2016.

[212] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution as sparse representation of raw image
patches. In 2008 IEEE conference on computer vision and pattern recognition, pages 1–8. IEEE, 2008.

[213] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. IEEE
transactions on image processing, 19(11):2861–2873, 2010.

[214] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis. Systems biology informed deep learning for
inferring parameters and hidden dynamics. PLoS computational biology, 16(11):e1007575, 2020.

[215] Y. Ye, S. Hou, L. Chen, J. Lei, W. Wan, J. Wang, Q. Xiong, and F. Shao. Out-of-sample node rep-
resentation learning for heterogeneous graph in real-time android malware detection. In IJCAI, pages
4150–4156, 2019.

[216] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolutional
neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 974–983, 2018.

[217] L. Zhang and H. Gao. Asynchronously switched control of switched linear systems with average dwell
time. Automatica, 46(5):953–958, 2010.

[218] L. Zhang and W. Xiang. Mode-identifying time estimation and switching-delay tolerant control for
switched systems: An elementary time unit approach. Automatica, 64:174–181, 2016.

[219] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image super-resolution using very deep residual
channel attention networks. In ECCV, 2018.

[220] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual dense network for image super-resolution,
2018.

124

[221] S. Zhou, Q. Chen, and X. Wang. Active deep learning method for semi-supervised sentiment classifi-
cation. Neurocomputing, 120:536–546, 2013.

[222] D. Zhu et al. Understanding place characteristics in geographic contexts through graph convolutional
neural networks. Annals of the American Association of Geographers, 2020.

125

	1 Introduction
	1.1 Motivation
	1.2 Research Challenges
	1.3 Contributions
	1.3.1 Chapter 3
	1.3.2 Chapter 4
	1.3.3 Chapter 5
	1.3.4 Chapter 6
	1.3.5 Chapter 7

	1.4 Copyright Acknowledgements

	2 Related Work
	2.1 Safety Assurance in Cyber-physical Systems
	2.1.1 Hybrid Automaton
	2.1.2 Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control

	2.2 Partial Differential Equations
	2.3 Reachability Analysis
	2.3.1 Reachability Analysis for One Dimensional Linear Parabolic Equations
	2.3.2 Reachability Analysis for High-Index Linear Differential Algebraic Equations
	2.3.3 Star-Based Reachability Analysis for Deep Neural Networks

	2.4 Physics-Based Machine Learning
	2.4.1 Integrating Physics-Based Modeling With Machine Learning: A Survey
	2.4.2 Physics Informed Deep Learning

	2.5 Physics-Guided Recurrent Neural Networks
	2.5.1 Hydronets: Leveraging River Structure for Hydrologic Modeling
	2.5.2 Graph-based Reinforcement Learning for Active Learning in Real Time
	2.5.3 Physics-Guided Recurrent Graph Networks
	2.5.4 Physics-Guided Machine Learning from Simulation Data

	2.6 Turbulent Flows Reconstruction
	2.6.1 Reconstructing High-Resolution Turbulent Flows using Physics-Guided Neural Networks
	2.6.2 Deep Learning Methods for Super-Resolution Reconstruction of Turbulent Flows
	2.6.3 Learning a Deep Convolutional Network for Image Super-Resolution
	2.6.4 tempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow

	3 A New Hybrid Automaton Framework with Partial Differential Equation Dynamics
	3.1 Cyber-Physical Systems and Hybrid Automata
	3.2 Partial Differential Equations
	3.2.1 Differential Equations
	3.2.2 Partial Derivative

	3.3 Running Examples
	3.3.1 Heater Model
	3.3.2 Traffic Flow Model

	3.4 Partial Differential Hybrid Automata
	3.4.1 Transitions, Trajectories and Executions
	3.4.2 Partial Differential Hybrid Automaton (PDHA)

	3.5 Discrete Space Partial Differential Hybrid Automata
	3.5.1 Discretization Scheme and Discretization Relation
	3.5.2 Discrete Space Partial Differential Hybrid Automaton
	3.5.3 Relation to Classical Hybrid Automaton

	3.6 Experiments
	3.7 Conclusion

	4 Numerical Reachability Analysis for Partial Differential Equations
	4.1 Reachability Analysis
	4.2 Numerical Reachability Analysis for Hyperbolic Equations
	4.2.1 Problem Formulation
	4.2.2 Linear System
	4.2.3 Nonlinear System

	4.3 Numerical Reachability Analysis for Parabolic Equations with Dense Spatial Discretization
	4.3.1 One Dimension Problem
	4.3.2 Two Dimension Problem

	5 PDE-Driven Neural Networks for Modeling Dynamic Spatial Dependencies
	5.1 Modelling Water Temperature using Graph Convolutional Networks
	5.2 Modelling Water Temperature using PDE Driven Networks
	5.2.1 Problem Definition
	5.2.2 Recurrent Neural Networks and Long-Short Term Memory

	5.3 Method
	5.3.1 Dynamic Recurrent Graph Network
	5.3.2 PDE-Driven Dynamic Graph Structure
	5.3.2.1 PDE over Irregular Points
	5.3.2.2 Dealing with Special Conditions

	5.4 Experimental Results
	5.4.1 Dataset and Baselines
	5.4.2 Predictive Performance using Sparse Data
	5.4.3 Assessing Performance on Unobserved Segments
	5.4.4 Generalization Test

	5.5 Conclusion

	6 PDE-Driven Neural Networks for Modeling Temporal Dependencies
	6.1 Turbulent Flows Modelling and Reconstruction
	6.2 Problem Definition
	6.3 Method
	6.3.1 Physics-Guided Recurrent Unit (PRU)
	6.3.1.1 Spatial Derivative Approximation
	6.3.1.2 Boundary Condition and Augmentation
	6.3.1.3 Stability

	6.3.2 Physics Guided Super Resolution (PGSR)

	6.4 Experiment
	6.4.1 Dataset
	6.4.2 Experimental Design

	6.5 Results
	6.5.1 DNS Generation using PRU
	6.5.2 DNS Reconstruction using PGSR-PRU
	6.5.3 DNS Reconstruction using PGSR

	6.6 Conclusion

	7 Transfer Learning using Residual Correction for Inaccurate Physics Laws
	7.1 Streamflow Prediction for Multiple Basins
	7.2 Related Work
	7.3 Problem Definition
	7.4 Methods
	7.4.1 Preliminaries
	7.4.2 LSTM + Regularization on Pseudo Label
	7.4.3 Residual Correction
	7.4.4 Training between the Source Domain (Corrected Pseudo Labels) and the Target Domain (Real Labels)

	7.5 Experiments
	7.5.1 Baselines
	7.5.1.1 Pretrain + Fine-tuning
	7.5.1.2 Training between Source Domain (Pseudo Labels) and Target Domain (Real Labels)
	7.5.1.3 Perturbation to the Proposed Methods
	7.5.1.4 LSTM + Tradaboost

	7.5.2 Results
	7.5.2.1 Pretrain with Early Stop Fine-tuning
	7.5.2.2 General Performance for All Methods
	7.5.2.3 Regularization Based Methods
	7.5.2.4 Domain Switch Based Methods
	7.5.2.5 Switch Method Robustness
	7.5.2.6 Ablation Study

	7.6 Conclusion

	8 List of Publications
	8.1 Published
	8.2 Submitted

	9 Appendix
	9.1 Reachability Analysis for Partial Differential Equations

	 References

