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CHAPTER I 

 

Introduction 

 

The relationship between language and thought has been one of the most intriguing 

questions in the fields of philosophy, neuroscience, and cognitive science and has long been of 

particular interest in exploring the nature and organizational principles of human cognition. 

Indeed, on a daily basis humans use language to label entities in the world and to communicate 

their thoughts and feelings to each other. Yet, the precise impact of linguistic reference on 

shaping mental representations of concepts, objects, and events remains underspecified. When 

referring to an object as an “enormous balloon”, what kinds of mental representations are being 

accessed? How does referring vs. not referring to an entity in the world impact the representation 

of that item or that class of item? And how do linguistic choices such as “enormous balloon” as 

opposed to “orange balloon” shape the ways in which individuals represent a particular object? 

This dissertation aims to further characterize the relationship between language and 

memory in the human mind. Using computational, experimental, and observational methods, 

I examine how language shapes mental representations of concepts, objects, and real-world 

experiences, as well as subsequent memories for them in three complementary lines of 

research. Study 1 examines the role of linguistic labels in accessing and evaluating semantic 

properties of lexically invoked concepts. Study 2 examines the effect of linguistic reference on 

shaping mental representations of objects and subsequent memories for them as well as the 

underlying cognitive mechanisms. Finally, Study 3 utilizes an ecologically valid approach to 
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examine the linguistic features of spontaneous speech that shape representations and later, 

memories of real-world experiences. 

 

The Role of Linguistic Labels in Accessing and Evaluating Semantic Properties of Lexically 

Invoked Concepts 

The nature of conceptual representations and their relationship with the corresponding 

linguistic labels has been a central question in the field of cognitive science for decades (Osgood, 

1952; Collins & Quillian, 1969; Tulving, 1972; Collins & Loftus, 1975; Saffran & Schwartz, 

1994; McRae et al., 1997; Fodor, 1998; Laurence & Margolis, 1999; Jackendoff, 2002; Cree & 

McRae, 2003; Barsalou, 2008; Lambon-Ralph & Patterson, 2007; Mahon & Caramazza, 2008; 

Binder et al., 2009). Technological advances in the late 1990s offered a new powerful 

computational method of quantifying the meaning of words through ample text corpus data, 

creating a new class of distributional semantic models. Distributional semantic models, or 

DSMs, such as latent semantic analysis (LSA; Landauer & Dumais, 1997), word2vec (Mikolov 

et al., 2013), and Global Vectors (GloVe; Pennington et al., 2014) conceptualize semantic 

representations as vectors residing in a high-dimensional vector space. These models are based in 

part on the assumption that the meaning of a word is reflected in the pattern of its usage, namely, 

that words with similar or related meanings tend to occur in similar contexts (Harris, 1954; Firth, 

1957). According to this idea, words like virus, mask, and vaccine tend to occur in proximity to 

each other (e.g., in the same sentence, paragraph, or document) because the meanings denoted by 

the words are semantically associated. In contrast, the words virus and flowers do not tend to 

occur in similar contexts, suggesting that the meanings associated with the words have little to no 

semantic association or similarity. 
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 Distributional semantic models have been incorporated into a variety of cognitive models 

of semantic memory, predicting human performance on a variety of tasks including the TOEFL 

synonym task (Landauer & Dumais, 1997), word analogies (Mikolov et al., 2013), concept 

naming (Pennington et al., 2014), free recall (Morton & Polyn, 2016), feature generation (Cutler 

et al., 2019), the remote associates test (Smith, Huber, & Vul, 2013), the preferential decision 

making task (Bhatia, 2019; Bhatia, Ritchie, & Zou, 2019), semantic fluency (Hills et al., 2012), 

and binary semantic classification (Grand et al., 2022). To model behavior in any one of these 

tasks, the semantic representational structure captured by the distributional semantic models 

must be integrated with cognitive mechanisms that make use of it. For example, on the TOEFL 

synonyms task, participants are presented with a target word and several choices. The 

participant's task is to identify the synonym among the alternatives. In this example, the model’s 

cognitive machinery is relatively simple -- the algorithm calculates the cosine similarity of the 

target word to each choice word and picks the word with the greatest similarity to the target 

among the alternatives. 

 Despite the success of distributional semantic models (DSMs), challenges arise in 

broadly incorporating them into the models of semantic tasks. While many of the tasks 

considered above involve evaluating words in terms of their similarity, problems arise with tasks 

involving the evaluation of specific properties of the words in question, since the dimensions of 

the semantic space are not necessarily meaningful. In other words, the proximity of the words 

within the representational space indicates semantic relatedness but not the nature of the relation. 

For example, such models would perform well on identifying the oddball among words “flower”, 

“garden”, and “vehicle”. However, it is unclear how they could identify which properties of a 

vehicle make it the oddball.  
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These limitations are not true of all models of semantic memory. For example, the graph 

theoretic semantic models of Collins, Quillian, and Loftus (Collins & Quillian, 1969; Collins & 

Loftus,1975) overcome this issue by incorporating labeled links that specify the relationship 

between the properties of concepts. For example, the node canary is linked to other nodes 

animal, yellow, beak, and fly by the respective links isa, is, hasa, and can. Similarly, Rumelhart, 

McClelland, Rogers, and the PDP group (1986) developed connectionist models of semantic 

knowledge that are explicitly trained to store and retrieve item properties, e.g., if bird and hasa 

are activated, beak is retrieved. Finally, Smith et al.’s (1974) featural model specifies that 

concepts have an associated list of features that can be queried to determine properties of the 

concept. While these classic models offer information about the properties of items, and the 

relationships between concepts, these relations have been experimenter coded, and we are 

unaware of any current technology that can generally automate this process. DSMs, on the other 

hand, offer a substantial advantage in terms of their scale (e.g., 3 million words in word2vec vs. 

541 concepts in a norming study by McRae et al., 2005), but lack specificity regarding the nature 

of the relations between concepts. 

 In a recent study, Grand et al. (2022) addressed this problem. Using a method similar to 

Osgood’s semantic differential technique (Osgood, 1952; Osgood et al., 1957), Grand and 

colleagues (2022) collected human ratings evaluating words in terms of a variety of semantic 

dimensions (e.g., size, danger, gender, intelligence). For example, to evaluate the target word 

elephant on the size dimension, the words small and large were linked to the extremes of a 5-

point scale, and the participant selected which number best went with the target word. They 

proposed a computational model which used distributional semantic representations to simulate 

these simple binary decisions about the characteristics of real-world objects on the semantic 
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dimensions examined with the human ratings. Their model proposes that the cognitive system 

uses the adjective labels assigned to the two extremes of the semantic dimension to construct a 

semantic axis in the representational space of the DSM. In other words, to make a size judgment, 

the vector representations of large and small are retrieved and are used to construct a semantic 

axis in this representational space. A judgment is made by projecting a given word vector onto 

the semantic axis and calculating which extreme it is closer to (Figure 1). We refer to this as an 

adjective-composite model of binary semantic classification. Grand et al. (2022) demonstrated 

the utility and flexibility of this semantic projection model, which was able to capture 

approximately 0.37 of variability in human ratings. 

 

Figure 1. Schematic representation of the semantic projection. The difference vector (red dotted 

line) for the dimension of “size” is constructed using the item-composite semantic evaluation 

method (word2vec embedding), i.e., the two extremes of the vector “big” and “small” are 

computed as averages of the words in the dataset unanimously judged as “big” or “small” by all 

participants. The position of a projected word on the difference vector is referred to as dot-

product score and is later used as evidence to generate each response probability. 
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Finally, the focus of the Grand and colleagues’ (2020) study was on the geometry of the 

representational space of the DSMs and its relevance to human semantic judgments, not on the 

cognitive or decision-making bases of the semantic projection per se, leaving open the question 

of how such mechanism would be instantiated in the mind. Additionally, Grand et al.’s (2020) 

approach (also Osgood’s semantic differential) is inconsistent with the dominant view of 

semantics (Jamieson et al., 2018), categorization (e.g., colors), and recognition (e.g., faces; 

Nosofsky & Palmeri, 2015), all of which favor instance-based theories. To that end, the memory 

retrieval mechanisms proposed in Hintzman’s seminal work with MINERVA 2 (Hintzman, 

1984, 1986, 1988), in which a memory store composed of many instance-based traces of past 

experience can be flexibly probed to reactivate composite representations are more aligned with 

the contemporary proposals. Furthermore, such machinery was used to great effect in the 

recently proposed instance theory of semantic memory (ITS; Jamieson et al., 2018), which treats 

multiple instances of a word’s usage in natural language as independent traces in memory. This 

allows ITS to, among other things, interpret homonyms correctly by flexibly constructing a 

representation of the word’s meaning on the basis of the word’s current context. Together, 

further research is needed to define the cognitive mechanisms of the semantic projection. 

 

The Role of Linguistic Reference in Shaping Mental Representations of Objects 

Linguistic labels are useful for accessing conceptual knowledge and performing semantic 

judgments about objects and classes of objects (e.g., Are balloons big or small?). But can 

linguistic reference simultaneously be used to shape online representations and subsequent 

memories of familiar objects? Studies with special populations (i.e., congenially blind 

individuals) have indeed shown that language, beyond its role in knowledge expression (Li & 
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Gleitman, 2002), can support semantic knowledge acquisition (Kim et al., 2019; Kim et al., 

2020; van Paridon et al., 2021). Therefore, it is possible that hearing or producing linguistic 

reference (e.g., enormous balloon) may shape the representations of familiar objects, akin to the 

process by which linguistic knowledge is continuously updated throughout lifespan (Ryskin et 

al., 2017). 

Studies exploring the effect of language on memory for events offer insight into the 

nature of the relationship between linguistic reference and object representation. According to 

some prominent theories, language can alter memories of events by reconstructing memories at 

retrieval and/or by shaping mental representations during encoding. For example, Loftus and 

Palmer (1974) and Loftus (1985) demonstrated that participants judged the speeds of moving 

cars to be significantly higher when the subsequent test question included the verb “smashed” 

compared to “contacted.” Another example of the influence of language on memory is the verbal 

overshadowing effect (Schooler & Engstler-Schooler, 1990) – a phenomenon where memory 

performance drops after individuals produce a verbal description of previously studied faces. 

Schooler & Engstler-Schooler (1990) hypothesized that verbalizing difficult-to-describe stimuli 

such as faces or colors can create a memory distortion, which interferes with the original 

memory trace. Together, these findings, among others, demonstrate that language production can 

shape memory for events and faces even after they are encoded in memory. We now turn focus 

to how language can shape memories at encoding. 

A complimentary line of research provides evidence consistent with the notion that 

producing language during encoding may enhance subsequent memory for objects and object 

conjunctions (Szewczuk, 1970; Freund, 1972; Urgolites et al., 2020). In one study (Urgolites et 

al., 2020), participants studied object-scene combinations and later, had to indicate their binding 
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memory for them (i.e., Did this object go together with this scene?) (Figure 2). The results 

suggested that when participants conducted a rhythmic shadowing or a verbal shadowing task 

during the study phase, their binding memory was worse compared to when they studied the 

items passively. Furthermore, the binding memory was significantly worse in the verbal 

shadowing condition compared to the rhythmic shadowing condition. The authors concluded that 

reducing access to verbal resources impairs binding memory for objects and speculated that the 

ability to label object-scene conjunctions (i.e., banana in the forest) might be critical for 

maintaining memory for them. While, consistent with previous work (Szewczuk, 1970; Freund, 

1972), these findings suggest that language might be beneficial for memory, an outstanding 

question remains: would providing access to language alleviate the observed memory deficit? 

Lastly, the cognitive mechanisms by which linguistic labeling could improve binding memory 

for objects remain to be explored. 

Figure 2. From Urgolites et al. (2020). Schematic of the experimental procedure. During the 

study phase, participants studied object-scene conjunctions on the screen one at a time. Then, 

participants completed individual and binding memory tests. In the binding memory test, 



 9 

participants had to identify object and scene occurred together or not together during the study 

phase in a 2-alternative choice paradigm. 

 

Studies that directly test the effect of language production on memory for objects show 

that generating a linguistic label out loud benefits memory above and beyond reading the label or 

thinking about it silently (Fawcett & Ozubko, 2016; Zormpa et al., 2018). A paradigm commonly 

used to target this question involves a task where participants view images of objects one at a 

time (Zormpa et al., 2018). Critically, some images simultaneously have an associated linguistic 

label displayed on the screen (e.g., a picture of broccoli with the word “broccoli” displayed in the 

middle). In both the picture+word and picture-only conditions, participants alternate between 

overtly naming the corresponding linguistic labels of the objects on the screen and thinking about 

them silently. Finally, participants complete a recognition memory test, where they have to 

indicate if the probe image is old or new. Zormpa et al. (2018) found a main effect of 

presentation such that participants were more likely to correctly recognize a probe image if it had 

been presented without the corresponding linguistic label compared to the picture+word 

condition. Further, participants were more likely to correctly recognize an image in the out loud 

vs. silent condition. In sum, these findings indicate that generating a linguistic label improves 

memory for objects and this effect is amplified when language production occurs out loud vs. 

silently. 

In turn, only few studies examined the effect of processing of linguistic reference on 

memory for objects. For instance, in Lord and Brown-Schmidt’s (2022) study, participants 

listened to auditory instructions and selected corresponding items on the screen. Importantly, 

Lord and Brown-Schmidt (2022) manipulated the referential form of the instructions such that 
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the modification of the noun was either pre-nominal (e.g., Click on the dotted bag) or post-

nominal (e.g., Click on the bag with dots). Later, the authors tested participants’ memory for the 

target (bag with dots), early competitor (dotted bowtie/bag with stripes), late competitor (bstriped 

bag/bowtie with dots), and non-competitor (ice-cream cone) in a 2-AFC paradigm. The authors 

found that targets were remembered better than competitors, and in turn, competitors were 

remembered better than non-competitors indicating that hearing a linguistic reference improves 

memory for the objects it describes. Importantly, Lord and Brown-Schmidt (2022) found an 

early > late competitor effect both for post-nominal and pre-nominal expressions, due to a 

natural and manipulated longer temporal ambiguity in post-nominal phrases and pre-nominal 

phrases at slow speech rate respectively. Overall, the authors concluded that referential 

expressions such as “the bag with dots” can create temporal ambiguity and activate the target 

along with the contextual competitors, all of which are encoded in memory. The significance of 

these findings is two-fold: it illustrates that referring to an object boosts memory for it, and it 

shows that the linguistic form of the referential expression matter in what is and what is not 

encoded in memory. 

Finally, we review work examining the effect of various types of linguistic reference on 

memory in children, which attempted to further illuminate the cognitive mechanisms underlying 

the mnemonic benefits for object conjunctions associated with language. More specifically, 

Dessalegn and Landau (2008) demonstrated that certain types of linguistic labels helped to 

maintain the conjunction of visual features in a delayed matching task in 4-year-olds. Across 

four experiments, children were able to correctly indicate the location and color of an item after 

it was no longer on the screen when the objects were studied along with auditory directional 

labels (i.e., Where is red? The red is on the left). In contrast, children’s performance dropped 
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when they viewed the items either without hearing directional labels (e.g., This is a dax/The red 

is touching the green), or along with nonlinguistic attentional cues (e.g., objects flashing). In a 

different study (Scott & Sera, 2018), children from 5 to 10 years of age completed a nonverbal 

spatial memory task, where they first encoded and later indicated their memory for the location 

of a dot inside a circle. Children's memory for the dot location improved when they practiced the 

relational labels (e.g., left, right, top, bottom) before the study. The authors concluded that 

practicing relational terms prior to study increased children’s access to language which was later 

used to unify different instantiations of objects (i.e., dot and circle) into a single representation. 

Both studies speculated that language and vision interact to create a unified “hybrid” 

representation to aid visual memory. However, neither of them specified what this hybrid 

representation is, or exactly how linguistic labeling contributes to this enhancement. 

While Lord and Brown-Schmidt (2022) propose an activation-time account according to 

which temporal ambiguity in language can activate multiple objects which are later represented 

in memory, Dessalegn and Landau’s (2008) idea of a “hybrid representation” lacks a mechanistic 

explanation of how it may improve memory for objects. Relatedly, linguistically oriented work 

probes a similar idea and suggests that certain types of language may evoke conceptual 

composites of individual objects during language processing. Specifically, in a study by Brown-

Schmidt et al. (2005), participants manipulated objects on the table as instructed by the 

experimenter. The instructions included two sentences with the first sentence indicating 

participants to place one object on top of the other (e.g., put the cup on the saucer). Critically, in 

the second sentence, the referent was manipulated (e.g., now put it/that over by the lamp). The 

findings revealed that when the experimenter used the pronoun “it”, participants interpreted it as 

referring to the theme noun (i.e., cup), while the pronoun “that” was interpreted as referring to 
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the composite (i.e., cup and saucer). Brown-Schmidt and colleagues (2005) concluded that the 

pronoun that is used to refer to conceptually complex items or sets of items, and when processed, 

evokes an interpretation of a composite entity similar to the idea of a “hybrid representation”. 

Though it is still unclear how such language would affect memory for objects. 

In conclusion, previous evidence suggests that both language production and 

comprehension can shape memory for objects and object conjunctions (Dessalegn & Landau, 

2008; Scott & Seta, 2016; Zormpa et al., 2018; Urgolites et al., 2020; Lord & Brown-Schmidt, 

2022). One of the two primary hypotheses elucidating how processing different types of 

referential expressions may shape memory for objects is the activation-time account (Lord & 

Brown-Schmidt, 2022), according to which in the course of language processing, temporal 

ambiguities may cause activation of multiple meaning candidates, which are encoded and later 

retrieved from memory. In contrast, the alternative proposal of a “hybrid representation” 

(Dessalegn & Landau, 2008; Scott & Sera, 2016) is underspecified, lacks a mechanistic 

explanation, and requires further investigation. 

 

The Role of Linguistic Features of Spontaneous Speech in Shaping Mental Representations 

of Real-World Experiences 

While computational and experimental approaches provide utility in targeting the 

cognitive underpinnings associated with the effect of language on memory through meticulously 

controlled experimental designs, they leave questions regarding the generalizability of the 

findings. In contrast, observational studies that utilize ecologically valid designs and explore 

natural language use offer insights into the linguistic features of spontaneous speech that might 

be difficult to manipulate or elicit in laboratory settings. For example, studies of conversational 
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memory often employ paradigms where participants engage in a conversation as the interaction 

is recorded. After a delay, participants are then asked to recall the conversation in detail, or to 

make judgments about utterances that did or did not appear in the original conversation. Findings 

from these paradigms offer important insights into the nature of conversational memory. First, 

conversational memory tends to be gist-like with participants recalling the thrust of what was 

said in the conversation but simultaneously, struggling to correctly distinguish verbatim 

statements from paraphrases as soon as 5 days after the interaction (Sachs, 1974; Kintsch & 

Bates, 1977). Second, many studies report a generation benefit, such that memory is much better 

for what a participant said themselves, compared to what their conversational partner said to 

them (Slamecka & Graf, 1978; Hjelmquist & Gidlund, 1985; Isaacs, 1990; Miller et al., 1996; 

Fischer et al. 2015; McKinley et al., 2017; Ross & Sicoly, 1979; Zormpa et al., 2019). Finally, 

conversational recall is quite limited, with estimates of the percent of idea units that can be 

accurately recalled after delays of minutes to days being between 5-20% of all ideas expressed in 

the original conversation (Benoit & Benoit, 1998; Ross & Sicoly, 1979; Samp & Humphreys, 

2007; Stafford & Daly, 1984; Stafford, Burggraf, & Sharkey, 1987). 

 What makes a portion of conversation more likely to be recalled? Studies examining the 

type of content that impacts the memorability of conversation show that participants remember 

emotionally charged content such as sexually explicit statements better than emotionally neutral 

content (Pezdek & Prull, 1993). For example, in one study, Pezdek and Prull (1993) presented 

participants with an audio recording of a conversation between a man and a woman during which 

the speakers made sexually explicit statements. The authors manipulated the perceived context in 

which the conversation occurred. In an “incongruent” context, participants were told that the two 

speakers were in an office. In a “congruent” context, participants were told that the two speakers 
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were at a singles bar. Finally, the authors tested participants’ gist and verbatim memory 5 weeks 

after hearing the conversation (Experiment 1) or 3 hours after hearing the conversation 

(Experiment 2). The results indicated that participants recognized and recalled the gist of 

sexually explicit statements significantly better than non-sexual ones. Further, the incongruent 

context increased the memorability of the sexually explicit statements, potentially because they 

violated the expectations of what is considered an appropriate conversation topic in a 

professional setting. 

Other findings suggest that spoken language that has high-interactional value is more 

likely to be recalled than language with low-interactional value. Keenan and colleagues (1977) 

recorded a meeting held between faculty members and graduate students. The experimenters 

then identified statements from the meeting that were either high-interactional value, i.e., 

conveyed humor or personal criticism (such as a joke), or low-interactional value (e.g., You put a 

little morpheme that says you're going to choose the Object as Subject). Thirty hours later, they 

tested the attendees’ recognition memory of the utterances from the meeting and found that 

participants were more successful at discriminating verbatim statements made in the 

conversation from paraphrases for high- than low-interactional content. The authors also 

recruited a separate sample of participants, played the same recording of the meeting to them, 

and immediately after, tested their recognition memory for the same statements. Group 

comparisons revealed that individuals who were physically present at the meeting demonstrated 

better memory than the individuals who listened to the recording. These results highlight the 

importance of inter-personal interaction for conversational memory. 

 

Linguistic Features of Conversation and Memory 
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Some evidence indicates that linguistic features inherent to spontaneous speech may 

similarly shape memory for language. Here we review several potentially relevant linguistic 

features of conversation. 

 

Disfluency 

An emerging body of research indicates that disfluencies, or hesitations in speech such as 

um/uh, boost memory for spoken language by orienting listener’s attention to the upcoming 

speech stream (Corley et al., 2007; MacGregor et al., 2010; Fraundorf & Watson, 2011; Diachek 

& Brown-Schmidt, 2022). For example, Fraundorf and Watson (2011) presented participants 

with audio recordings of passages from the Alice in Wonderland, and later tested participants’ 

memory for them. Critically, the recordings were either fluent or contained disfluencies. 

Participants were more likely to remember the gist of plot points when the passages were 

disfluent compared to fluent. This disfluency-memory benefit was observed even when 

disfluency occurred in unpredictable positions in the sentence, consistent with the hypothesis that 

disfluency orients listeners’ attention to speech regardless of its location. 

In a different study, Diachek and Brown-Schmidt (2022) observed a disfluency-related 

memory boost for individual words in pre-recorded sentences. Participants listened to sentences, 

some of which contained a penultimate disfluency (e.g., “Everyone’s got bad habits and mine is 

biting my um nails”). A subsequent recognition memory test revealed that the odds of correct 

recognition were 1.45 times higher for sentence-final probe words preceded by disfluency 

compared to probes from fluent sentences. Follow-up experiments determined that this 

disfluency-related memory boost occurred with different disfluency types (fillers, pauses, and 

repetitions), and was short-lived, fading rapidly after the disfluency onset. These findings 
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support an attentional orienting account of the disfluency-related memory boost, according to 

which disfluency orients attention to the upcoming linguistic material, improving encoding and 

subsequent memory for it (Collard et al., 2008; Fraundorf & Watson, 2011). 

An important caveat, however, is that Diachek and Brown-Schmidt (2022) found that the 

disfluency memory benefit was not observed when disfluency occurred earlier in the sentence, or 

when words at earlier sentence position were probed. Yet in unscripted language, naturally 

produced disfluency occurs in a variety of sentence positions (Butterworth, 1975; Bortfeld et al., 

2001; Clark & Fox Tree, 2002). This, then, raises the question as to whether the previously 

reported disfluency memory boost for individual pre-recorded sentences (Corley et al., 2007; 

MacGregor et al., 2010; Diachek & Brown-Schmidt, 2022), or pre-recorded stories (Fraundorf & 

Watson, 2011) would generalize to memory for what was said in natural and unscripted 

conversation. One reason to think the disfluency boost may be limited, are findings by Toftness 

and colleagues (2018) who examined the effect of a professors’ fluency in recorded instructional 

videos. While students rated disfluent professors as less effective at teaching compared to the 

fluent professors, learning outcomes did not differ between the two types of instruction, putting 

into question the ecological validity of the previously observed mnemonic benefit associated 

with disfluency (Corley et al., 2007; MacGregor et al., 2010; Fraundorf & Watson, 2011; 

Diachek & Brown-Schmidt, 2022). Another reason to believe the disfluency boost may be 

limited are findings by Donahue, Schoepfer, and Lickley (2017) which indicated that recall for 

passages that contained disfluencies was significantly worse compared to fluent passages2. In 

sum, the outstanding question is whether the disfluency-memory benefit generalizes to the 

unscripted forms of language use in which disfluency is likely to occur. 

 
2 However, in this study, the materials were manipulated in a way that resembled stuttering, which might be 

processed by listeners differently than disfluency. 
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Backchanneling 

Another feature of spontaneous speech that, like disfluency is related to attention, is 

backchanneling. Backchanneling refers to feedback that conversational partners give each other, 

including brief expressions or phrases (e.g., uh huh; mmm; right; so true), as well as facial and 

manual gestures, and actions in shared spaces (Bangerter & Clark, 2003; Fox Tree & Mayer, 

2008; Krauss et al., 1977). Backchanneling is prevalent in spontaneous speech with some studies 

estimating that 8 out of 10 spoken backchannels made in conversation are produced within 1-15 

seconds of each other (Oreström, 1983). Conversational partners use backchannels in a variety of 

ways, including offering evidence of understanding, or to seek clarification (e.g., A: I could 

really use a coffee; B: coffee?), among other speech acts (Clark & Schaefer, 1989; Healey et al., 

2018; Watzlawick, 1964). Backchannel responses can also help maintain the flow of a discourse 

(Dittman & Llewellyn, 1967; Oreström, 1983), and communicate emotions and approval 

(O’Keeffe & Adolphs, 2008). Critically, backchannel responses can also be used to signal 

continued attention (Fries, 1952; Kendon, 1967; O’Keeffe & Adolphs, 2008; but see Schegloff, 

1982 for an argument that backchanneling signals agreement, not attention), and as a result might 

be predictive of conversational recall. 

Yet little is known about the effect of backchannels on representations of conversation. 

Some initial work examining the cognitive implications of backchannel responses reports that 

when a speaker says something in conversation, and their partner produces a backchannel 

response, that this has little to no effect on the speaker’s belief that what they said was heard and 

understood (Brown-Schmidt, 2012; Brown-Schmidt & Fraundorf, 2015). This raises the 
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intriguing possibility that while people may regularly produce backchannels, that they have little 

impact on their partner’s representation of the conversation. 

 

Discourse Marker “like” 

The use of “like” as a discourse marker is prevalent in spontaneous speech with some 

studies estimating that its frequency exceeds the frequency of the conjunction “and”, “you 

know”, “I mean”, and “well” (Tagliamonte, 2005; Fox Tree, 2006; Beeching, 2016). While the 

role of “like” remains debated, some argue that “like” and disfluency are used interchangeably 

(Valentine, 1991). For example, Fox Tree (2006) found that “like” and disfluency systematically 

occurred in similar positions in stories, namely, before proper nouns and times. These findings 

tentatively suggest that, like disfluency, the discourse marker “like” may orient attention to the 

upcoming speech stream, improving memory for it. 

 

Disagreement 

Finally, recall that studies examining content memorability reveal a memory benefit for 

emotionally charged content such as sexually explicit statements (Pezdek & Prull, 1993). Other 

findings suggest that spoken language with high-interactional value (e.g., humor or personal 

criticism is more likely to be recalled than language with low-interactional value (e.g., linguistic 

definitions; Keenan et al., 1977). Given that disagreement might be considered both emotionally 

charged and of high interactional value, statements that contain disagreement might be recalled 

better. 

Overall, studies examining conversational recall have established that memory for 

conversation is limited (recalling less than half of what was said) and asymmetric (each party 
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recalling more of what they said themselves). What factors determine what will be remembered 

following conversation? We have identified three features of spontaneous speech, namely, 

disfluency, backchanneling, and the discourse marker “like”, that might improve memory for 

conversational speech due to the attentional processes (Fries, 1952; Kendon, 1967; Fraundorf & 

Watson, 2011; Diachek & Brown-Schmidt, 2022). Additionally, studies showing that utterances 

that have high interactional value tend to be remembered better, suggest that disagreement might 

be predictive of better recall (Keenan et al., 1977; Pezdek & Prull, 1993). Yet, the effect of these 

four features on memory for conversation remains to be explored. 
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CHAPTER II 

 

Study 1. The Role of Linguistic Labels in Accessing and Evaluating Semantic Properties of 

Lexically Invoked Concepts 

 

One question fundamental to understanding the relationship between language and 

memory concerns the role of language in the representation of conceptual knowledge. To date, 

distributional semantic models (DSMs), which construct vector spaces with embedded words, 

are a proposed framework for understanding the representational structure of human conceptual 

knowledge. However, unlike the classic semantic models (e.g., graph theory, Collins & Quillian, 

1969; Collins & Loftus,1975; connectionist theory, Rumelhart et al., 1986), because DSMs are 

constructed using the text co-occurrence information only, they lack a mechanism for specifying 

the properties of concepts, raising questions regarding their utility for a general theory of 

semantic knowledge. To address this issue, Grand et al. (2022) proposed a computational model 

of binary semantic classification that used the adjective labels assigned to the two extremes of a 

semantic dimension to construct a semantic axis in the representational space of the DSM. While 

Grand’s adjective-composite model reliably and accurately predicted human ratings across an 

array of semantic dimensions, they did not propose how the model would be employed by the 

cognitive system. The goal of Study 1 is to contrast the adjective-composite model with an 

alternative item-composite model in terms of their ability to predict human task performance. 

This novel computational mechanism proposes that while performing a binary semantic 

classification task, participants use each adjective label of the judgment (i.e., big and small) to 

retrieve a set of items representative of each extreme. Importantly, the item-composite model is 
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reminiscent of the highly impactful memory retrieval mechanisms MINERVA 2 (Hintzman, 

1984, 1986, 1988) and ITS (Jamieson et al., 2018). 

 

Methods 

 

Behavioral Data 

 The data used to create and evaluate the computational models were collected for a 

previously published study described in Polyn et al. (2009). Forty-two participants were 

presented with a series of target words one at a time along with a task cue on a computer screen 

(Figure 3). On size trials, participants indicated whether the referent was big or small (compared 

to a shoebox) with a keypress. On animacy trials, participants indicated whether the referent was 

living or nonliving with a keypress. Each target word was presented in the middle of the screen 

for 3 s. If the participant did not make a response within 3 s, a warning message was displayed 

and they advanced to the next trial automatically. Each set of 24 target words was followed by a 

free-recall period which is not examined here. The 24 target words were either all associated 

with the same task, or a mix of the two tasks. Target words were drawn from a word pool with 

1,650 unique words. Each participant completed 4 experimental sessions, each with 12 sets of 

target words, for a total of 1,152 trials. The final dataset contained 47,520 unique responses 

(after excluding missed trials). 
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Figure 2. Schematic representation of the binary semantic classification task. Target words were 

presented one at a time underneath a task cue, and participants indicated their response via 

keypress. See text for details. 

 

Modeling 

 We created a likelihood-based modeling framework to simulate and predict human 

performance on the binary semantic classification task. Each individual model, described in more 

detail below, was defined in terms of the following subcomponents: i) a distributional semantic 

model that was used to retrieve semantic vectors (GloVe or word2vec); ii) a semantic evaluation 

model that was used to produce an evidence estimate for each choice alternative (single-

adjective, adjective-composite, or item-composite); and iii) a decision model that was used to 

convert the evidence into a decision likelihood for each choice alternative, and for the second 
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decision model, calculate response latency likelihood (logistic or linear ballistic accumulator). 

This yielded a family of 12 models, which were evaluated against each other. 

Distributional Semantic Models. We used two different word embeddings for the 

semantic vectors for the target words and adjective labels. Specifically, we chose 400-

dimensional pretrained word2vec vectors (Mikolov et al., 2010) produced with local context 

methods, trained on the Google News dataset (approximately 100 billion words). Additionally, 

we used 300-dimensional pretrained GloVe vectors (Pennington et al., 2014) trained on a 

combination of Wikipedia 2014 and Giga-word 5 (6 billion tokens). 

Semantic Evaluation Algorithm. Three semantic evaluation algorithms were created to 

calculate evidence (referred to here as dot-product scores) for each choice alternative. Each 

evaluation algorithm constructs a decision axis in the semantic space for each judgment task 

(size or animacy). To do this, the algorithm selects one or more representational vectors for each 

extreme of the continuum. These vectors are used to construct the decision axis as described 

below. 

The single-adjective model used a difference vector that was constructed by subtracting 

the vector for the adjective label “small” from the vector for “big” for the size trials, and 

subtracting “inanimate” from “animate” for the animacy trials. Following the method of Grand 

and colleagues (2022), the adjective-composite model used a difference vector that was 

constructed by taking the difference between the two averages of three synonyms, i.e., the 

difference of {“huge”, “big”, “large”} and {“small”, “little”, “tiny”} for the size trials, and the 

difference of {“animate”, “living”} and {“inanimate”, “nonliving”} for the animacy trials. 

Finally, the item-composite model used a difference vector that was constructed by averaging the 

semantic vectors for a set of words that are representative of the extremes on each semantic 
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dimension. To determine the representative words, we identified the words that had been judged 

unanimously as big (n = 402, 24% of all unique words) or small (n = 222, 13%) and animate (n = 

203, 12%) or inanimate (n = 569, 34%) across all 42 participants (the list of unambiguous words 

used in the construction of the composite semantic axis can be found in the Appendix). 

To derive the evidence for each individual trial, we calculated the dot product between 

the semantic vector for the target word and the difference vector resulting in one value, which we 

refer to as a dot-product score. 

 It is important to note that the difference vector was only created when evaluating the 

logistic decision model, not the linear ballistic accumulator model (LBA). Because the LBA 

model implies two competing accumulators for each response alternative, on each trial, we 

derived two pieces of evidence by calculating two dot product scores between the semantic 

vector for the target word and the vectors for the two response extremes. For the single-adjective 

semantic evaluation model, we used vectors for individual words “big”, “small” for the 

respective accumulators on the size trials, and “animate”, “inanimate” for the animacy trials. The 

Grand model used the average of multiple synonyms, i.e., “huge”, “big”, “large” or “small”, 

“little”, “tiny” on the size trials, and “animate”, “living” or “inanimate”, “nonliving” on the 

animacy trials. The item-composite model used the average of the semantic vectors for all the 

words unanimously judged as big or small and animate or inanimate to create four respective 

accumulators. 

Decision Models. Two decision models -- logistic transformation and linear ballistic 

accumulator -- were used to convert the evidence into a decision likelihood for each choice 

alternative. Each decision model is described in more details below. 
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Logistic transformation. In the logistic version of the decision model, we generated the 

predicted responses for a given word using the logistic function. The probability for a given 

response was calculated using the logistic function using the following equation: 

𝑓(𝑥) =  
1

1 + 𝑒−𝑘(𝑥)
 Equation (1) 

 

 

where e = the natural logarithm base, x = dot product score value between the semantic vector 

for a given word and a difference vector, i.e., the distance between the difference vector and a 

given word (determined by the semantic model), k = free parameter indicating the steepness of 

the curve, and the denominator = the curve’s maximum value fixed at 1. 

Linear Ballistic Accumulator. In addition to the logistic decision model, we 

implemented a linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), which 

allowed us to evaluate model performance not only in terms of the predicted responses but also 

reaction times. LBA is a simple model of decision and response time that assumes multiple 

independent accumulators raising towards a certain decision threshold in a linear and 

deterministic manner (i.e., noise-free) until the decision is made. In the LBA model, each 

evidence accumulator begins with a certain amount of evidence reflected at the starting point k 

that increases at a speed determined by the drift rate d until it reaches the response threshold b 

(Figure 4). The first accumulator to reach the threshold determines the response and the time to 

reach the threshold, or RT, is calculated as (b-k)/d.   
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Figure 4. Adapted from Brown and Heathcote (2008). Two-choice version of the LBA. Panel on 

the left, shows the evidence for Response A, panel on the right - evidence for Response B. 

Starting values k are randomly drawn from a random distribution. The drift rate d determines the 

rate at which the decision process approaches the decision threshold, and is drawn independently 

for each response from normal distributions with standard deviations s. A response is made when 

the first accumulator reaches the threshold b. 

 

Model Evaluation 

 We evaluated the fitness of each model variant using the maximum likelihood estimation 

technique. As mentioned earlier, the item-composite model used the words that participants 

unanimously judged at each extreme in construction of the difference vector. To ensure that the 

results of the item-composite model were not driven by its performance on these items, we 

examined each model's performance on the rest of the words. 

Maximum Likelihood Estimation. For both the logistic decision model and linear 

ballistic accumulator, we calculated the likelihood of each model given the observed data by 

summing the log values for the model’s trial-level predictions after excluding the words used to 



 27 

construct the item-composite vector (this is equivalent to taking the product of the probability 

values associated with these trials). The probability of a given dataset is the product of the 

estimated probabilities of each of the experimental events (trials). This number was transformed 

into a log-probability for model comparison statistics. We used the log-likelihood value to 

calculate the weighted Aikake’s Information Criterion (wAIC) to evaluate the fitness of multiple 

models relative to each other.  

 Following Grand et al. (2022), we evaluated the results of the semantic projection using a 

linear correlation analysis and pairwise order consistency.  

Linear Correlation. For each word in the dataset not used in the construction of the 

item-composite vector, we first calculated the dot-product score and the mean judgment value 

separately for each task (with the mean of 0 indicating all participants judged the word as small 

or inanimate, and 1 indicating all participants judged it as big or animate) averaged across the 

participants. Second, we calculated the Pearson correlation coefficient and the associated p-value 

between the dot-product score and mean judgment value for the words in this restricted dataset. 

Pairwise Order Consistency. Following the method of Grand et al. (2022), we 

calculated the proportion of two-word combinations in the restricted dataset for which the 

difference between the human judgment and the dot-product scores was in the same direction, 

out of all possible two-word combinations. For example, if the words elephant was judged on 

average as larger than the word mouse and the dot-product score for elephant was larger than for 

mouse, then the elephant-mouse word pair would get a score of 1 and 0 otherwise. We repeated 

that procedure for each possible two-word combination, resulting in 1,6502  possible word 

combinations and scores (0 and 1). The final score is the proportion of 1s across all possible two-

word combinations. 
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Results 

 

Maximum Likelihood Estimation – Logistic 

Figure 5 reports the fitness of each model variant in terms of the likelihood of generating 

the observed data. The results indicated that the item-composite semantic evaluation model was 

most likely to generate the observed data (wAIC for item-composite: 1.0, for adjective-

composite and single-adjective: 0.0 each). The results additionally indicated that when summed 

across all models and tasks, the models that utilized GloVe outperformed the models that utilized 

word2vec (wAIC for GloVe: 1.0, word2vec: 0.0). The same analysis on the full set of items 

showed similar results and is reported as a supplemental analysis. 

 

 



 29 

Figure 5. Log likelihood values for the logistic decision model combined across the size and 

animacy tasks. Different colors represent two distributional semantic models. Values closer to 

zero correspond to a closer fit. 

  

Correlation Analysis 

 Using the logistic decision-making model, we carried out a correlation analysis to 

characterize the degree of correspondence between each model’s predicted responses and the 

observed responses (Figure 6). The item-composite model yielded numerically largest and 

consistently reliable (all ps < 0.05) correlations between the predicted and observed values across 

the two embedding spaces. The item-composite model had the highest correlation of 0.63, 

followed by the adjective-composite model with a correlation of 0.10, and the single-adjective 

model with a correlation of -0.02 (all differences between Fisher-transformed correlation 

coefficients zs > 13.71, all ps < 10-5). When averaged across all models and embeddings, the 

correlation coefficients for the size and animacy tasks were numerically different (means 0.35 

and 0.13 for size and animacy tasks respectively). When averaged across all models and tasks, 

the GloVe and word2vec embeddings produced numerically comparable results with the means 

of 0.28 and 0.20 respectively. The same analysis on the full set of items showed similar results 

and is reported as a supplemental analysis. 
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Figure 6. Pearson r coefficients between the predicted responses and the mean human judgments 

for the size task (upper panel) and animacy task (lower panel). Different colors represent two 

distributional semantic models. 

 

 One potential advantage of the item-composite model is that a larger number of word 

vectors are used to construct the semantic classification model as compared to the other two 

models. However, a follow-up analysis suggests that the item-composite model performs at a 

superior level even when the number of words used to make the composite is matched across the 

different model types. To do this, we carried out a specialized permutation analysis on the trials 

using the size task. For each permutation, we randomly selected 3 words each from the sets of 

unanimous big and small words used to construct the item-composite difference axis. We used 

these words to construct a new difference axis and re-ran the correlation analysis reported above. 

We repeated this procedure 100 times for both the GloVe and word2vec models to obtain a 

distribution of correlation values. The mean correlation coefficient across the hundred 
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permutations was 0.48 for GloVe and 0.52 for word2vec (Figure 7). While this value was 

numerically smaller than for the full item-composite model (means of 0.69 and 0.72 for GloVe 

and word2vec), it was significantly larger than the correlation values associated with adjective-

composite model (0.19 and 0.29 for GloVe and word2vec respectively). In other words, 99 and 

97 out of 100 permuted values for GloVe and word2vec respectively exceeded the adjective-

composite correlation score. This indicates that the predictive advantage of the item-composite 

model is due to the semantic identities of the words used to construct the semantic model, rather 

than the quantity of words. 

 

Figure 7. Pearson r coefficients between the predicted responses and the mean human judgments 

for the size task fit using GloVe (left panel) and word2vec (right panel) obtained through the 

permutation analysis. AC indicates the correlation coefficient calculated for the adjective-

composite model, and Full IC indicates the correlation coefficient calculated for the item-

composite model used in all prior simulation analyses (i.e., with all unanimously judged items 

included in the semantic composite). 
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Pairwise Order Consistency 

 Following the methods of Grand et al. (2022), we carried out a pairwise order consistency 

analysis to characterize the degree of correspondence between each model’s predicted responses 

and the observed responses (Figure 8). A pairwise order consistency score of 50% indicates 

chance-level performance. On average, the single-adjective model performed at chance (mean = 

49.78%). The adjective-composite model performed significantly above chance (mean = 

53.74%). The item-composite model performed substantially better than the other two models 

(mean = 72.41%). The GloVe and word2vec models performed similarly well with mean 

pairwise order consistency of 59.96% and 57.33% respectively. The same analysis on the full set 

of items showed similar results and is reported as a supplemental analysis.

 

Figure 5. Pairwise order consistency values for the size task (upper panel) and animacy task 

(lower panel). Different colors represent two distributional semantic models. 
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Maximum Likelihood Estimation – Linear Ballistic Accumulator 

To evaluate if the item-composite framework could be extended to response times, and if 

its advantage is retained when reaction times are predicted, we additionally implemented the 

LBA decision model. Figure 9 reports the fitness of each model variant in terms of the 

likelihood of generating the observed data. Consistent with the results of the logistic decision 

model, the item-composite semantic evaluation model was most likely to generate the observed 

data (wAIC for item-composite: 1.0, for adjective-composite and single-adjective: 0.0 each). One 

difference emerged with regard to the underlying DSM. Here, word2vec yielded the best fit to 

the data (wAIC for GloVe: 0.0, word2vec: 1.0). The same analysis on the full set of items 

showed similar results and is reported as a supplemental analysis. 

 

Figure 6. Log likelihood values for the LBA decision model combined across the size and 

animacy tasks. Different colors represent two distributional semantic models. Values closer to 

zero correspond to a closer fit. 
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 Our simulations with the linear ballistic accumulator model indicate that the item-

composite semantic model captures not only the binary responses on the semantic classification 

task but also the response times on individual trials. Figure 10 shows the response time 

histograms for the observed correct responses as well as the predictions for the item-composite 

LBA model. The distributions were plotted for the trials that included words with strong dot-

product scores (the top 50% of the scores) and weak dot-product scores (the bottom 50% of the 

scores). One weakness of the item-composite linear ballistic accumulator model is apparent from 

this analysis. The model successfully predicts that words with strong dot-product scores will 

have faster response times than the words with weak dot product scores but predicts the effect 

will be much larger than is actually observed. More specifically, a paired-samples t-test on the 

predicted values indicated that the mean difference between by-participant RTs for the words 

with the strong and weak dot-product scores for the axis extreme “big/animate” was 648.23 ms 

(t(41) = -58.65, p < 10-15) and 521.78 ms (t(41) = -58.66, p < 10-15) for the axis extreme 

“small/inanimate”, indicating a significantly slower response time for the words with weak dot-

product scores. In contrast, a paired-samples t-test on the observed values indicated that the mean 

difference between the RTs for the words with the strong and weak dot-product scores for the 

axis extreme “big/animate” was only 64 ms (t(41) = -21.73, p < 10-15) and 30.83 ms (t(41) = 8.51, p 

< 10-9) for the axis extreme “small/inanimate”. While the item-composite model predicts larger 

RT differences between the words with the strong dot-product scores and weak dot-product 

scores that observed, it performs better than the adjective-composite model. For comparison, the 

adjective-composite model estimated an even larger by-participant mean RT difference between 

the words with strong and weak dot-product scores of 1,110.70 ms (t(41) = -76.46, p < 10-15) for 
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the axis extreme “big/animate” and 1,084.58 (t(41) = -66.54, p < 10-15) for the axis extreme 

“small/inanimate”. 

Figure 7. Probability density function for the observed and predicted reaction times according to 

the LBA model for the item-composite semantic evaluation model fit with the word2vec (on the 

right) and GloVe (on the left) embeddings. The top panel corresponds to the RTs for the 

response “big” or “animate”, the bottom panel corresponds to the RTs for the response “small” 

or “inanimate”. Generally, the item-composite model predicts the RT difference between strong 

and weak words will be bigger than what is observed. 

 

Discussion 

 

Semantic memory -- a component of long-term memory -- stores information about the 

world and the things in it. This memory system has been a central component of theories of 

memory for decades, yet many open questions remain regarding how humans store and 
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manipulate these rich representations. Distributional semantic models (DSMs) have offered 

insight into the nature of human semantic memory, as they have been used both as a tool to 

understand behavioral data and as theories of representation of semantic knowledge (Landauer & 

Dumais, 1997; Lund and Burgess, 1996; Jones and Mewhort, 2007). These models offer a way to 

represent semantic spaces and can be combined with the cognitive mechanisms of decision-

making to characterize human semantic categorization behavior. 

 In the current study, we combined the principles of the multiple-trace theory of memory 

(MINERVA 2, Hintzman, 1986), the instance theory of semantic knowledge (ITS, Jamieson et 

al., 2018) and the methods from Grand and colleagues (2022) to build a computational model of 

binary semantic classification. ITS proposes that encounters with words are stored as individual 

traces in episodic memory, and that the semantic meaning of a word can be constructed on-the-

fly by retrieving a blend of many memory traces containing independent instances of usage of 

that word from episodic memory. In our simulation of the binary semantic classification task, we 

compared two instance-inspired scenarios. In one case, the semantic identity of a set of adjective 

labels is retrieved (as in Grand et al., 2022). In the other, the semantic identity of representative 

items is retrieved. In developing our novel semantic evaluation model, we additionally assessed 

two cognitive models of decision making. The first model used a logistic function to simulate the 

likelihood of each choice decision. The second model incorporated linear ballistic accumulators 

(Brown & Heathcote, 2008) to simulate both responses and response times as a race between the 

accumulators representing the two extremes of the decision axis. 

Our findings demonstrate that the item-composite semantic evaluation model provides a 

better account of human classification responses and response times on a binary semantic 

classification task, relative to two other models. Importantly, the improved performance of the 
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item-composite model was not driven by the words that were used to construct the semantic 

classification model, as the results on a restricted dataset are consistent with the results of the full 

dataset for each of the three analyses. Additionally, the improved performance of the item-

composite model cannot be explained by the fact that more items are used to construct the 

composite. Using a permutation analysis, we matched the number of words used to construct the 

difference axes for the adjective-composite model and the item-composite model. This suggests 

it is the quality of the words used to construct the difference axis, not the quantity, that drove the 

observed pattern of results. Finally, in a set of supplemental analyses, we reproduced these 

findings using an independent dataset, which further highlights the generalizability of our model. 

(For more information on the independent dataset, see Supplemental Materials). Together, these 

findings suggest that when performing a binary semantic classification task, participants retrieve 

and blend together items that are representative of the labels defining the two extremes on a 

given semantic dimension to make a decision. 

 While the primary goal of the study was to evaluate the different semantic judgment 

algorithms, we also compared our two distributional semantic models with one another. These 

comparisons suggested that the two DSMs performed similarly well and were not conclusive 

regarding the two DSMs relative cognitive utility. While GloVe outperformed word2vec using 

the logistic model, word2vec outperformed GloVe using the LBA model. It is not clear what 

aspects of the DSMs are responsible for these discrepancies. Word2vec is a predictive model 

with hidden layers that learn representations of words through prediction and self-correction, and 

GloVe is a latent semantic abstraction model which lacks this predictive component. How these 

architectural differences contribute to the differences in goodness of fit remains an open 

question. However, both GloVe and word2vec produced generally similar performance, and thus 
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both offer utility in modeling human semantic decision-making in future studies. This conclusion 

is consistent with previously reported findings. For example, Pereira et al. (2016) found that 

word2vec and GloVe produced comparable results in a large study comparing various 

distributional semantic models on word association, synonyms and analogy problems, and 

similarity and relatedness judgments. 

 Our assumption that semantic reasoning is based on an on-the-fly retrieval of individual 

word instances is broadly consistent with a variety of findings from the study of real-time lexical 

processing, which show that word meanings are flexible in context, drawing on multiple possible 

meanings in a context-dependent manner (Eberhard et al., 1995; Metzing & Brennan, 2003). For 

example, interpretation of referential expressions like “the girl” and “the peanut” is shaped by 

the properties of the overall discourse they are embedded in, including the referents and their 

properties. For example, in a context that illustrates the animacy of a cartoon peanut, a sentence 

like “The peanut was in love” is easily processed, but a locally coherent sentence like “The 

peanut was salted” results in confusion (Nieuwland & Van Berkum, 2006). Likewise, an 

instruction like “Put the cube inside the can” given a context with two differently sized cans 

causes momentary confusion if the cube is small enough to fit in either can, whereas this 

confusion is lifted if the cube is larger and only will fit in the larger of the two cans (Chambers et 

al., 2002; also see Chambers et al., 2004; Nieuwland et al., 2007). In addition to clear relevance 

to the language processing literature, the item-composite model can be conceptualized as an 

instance-based or an exemplar model consistent with dominant views of categorization (e.g., 

colors) and recognition (e.g., faces) (Nosofsky & Palmeri, 2015) (for an extended discussion of 

these connections, see Jamieson et al., 2018).  
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The extra step of comparing the target with other representative items also offers a 

potential mechanism for explaining how a relevant comparison class shapes semantic judgment. 

While we do not address this question in the present work, the set of extreme exemplars that are 

retrieved may itself be a contextually dependent process; if so, this may explain some of the 

contextual dependency in how certain linguistic expressions are interpreted in rich contexts. In 

our study, when making a size judgment, participants had a reference point as they were asked to 

judge a size of an object compared to a shoebox. However, the item-composite model allows for 

the reference point to shift in different contexts by selecting the representative examples for each 

semantic category. Consider that when judging the size of an amoeba, the set of extreme 

exemplars that are retrieved (e.g., virus, cell → cat, dog), should be different than exemplars 

retrieved when judging the size of Texas (e.g., Seattle, Denali → Spain, Africa). Indeed, it is 

well-established in the referential processing literature that the real-time interpretation of phrases 

like the small glass is driven by the relevant comparison set in the immediate context (Sedivy et 

al., 1999; Sedivy, 2003): The adjective “small” evokes a 4 cm tall glass when the context 

contains a 4 cm and an 8 cm glass, but “small” evokes the 8 cm glass when it is paired with a 12 

cm one. Further, these comparison classes are created on the fly, based on multiple cues in the 

local context. In a context where a listener views 3 drinking glasses (4 cm, 8 cm, 12 cm tall), and 

the speaker says “Pick up the small glass”, this sentence is typically interpreted as referring to 

the smallest glass that the speaker can see: if the 4 cm glass is obscured from the speaker’s view, 

the listener interprets “the small glass” to be the 8 cm tall one, rather than the “small” 4 cm glass 

that the speaker cannot see (Heller et al., 2008; Heller et al., 2016; Ryskin et al., 2015). If the 

retrieved set of extreme exemplars was shaped by properties of the local context when making a 

semantic judgment about a target, this could be a way to capture findings like these. 
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 The idea that semantic classification requires an extra step of comparing the target with 

other items is also supported by a variety of findings from studies of language production. For 

example, adjectives like "small" and "large" tend not to be produced by speakers unless the 

immediate context contains items that contrast along the size dimension and the speaker has 

noticed them (Brown-Schmidt & Tanenhaus, 2006; Brown-Schmidt & Konopka 2008; 

Pechmann, 1989). For example, when naming a butterfly, if the speaker fails to notice a larger 

one in the scene, they are likely to simply say "butterfly", and if they do notice the larger 

butterfly, the timing of when the adjective is produced is strongly predicted by the latency of the 

eye-fixation to the size-contrasting item, with early looks producing prenominal modifiers (e.g., 

"the small butterfly"), and later looks producing late modifiers (e.g., "the butterfly, uh small 

one"), unless the speaker is using a language that affords postnominal modification (e.g. "la 

mariposa pequeña”, Brown-Schmidt & Konopka, 2008).  

Our study raises a number of questions for future work. The item-composite model 

utilizes representations constructed from large linguistic corpora. However, these semantic 

vectors do not have easily interpretable semantic dimensions, which makes it unclear how the 

relevant words used to construct the axes are retrieved from memory. One possibility is that 

some perceptual features of concepts can be recovered through the co-occurrence statistics alone. 

Previous research has shown that individuals who lack certain sensory experiences – for 

example, congenitally blind individuals – possess detailed semantic knowledge about perceptual 

features of various objects. For example, van Paridon et al. (2021) demonstrated that 

congenitally blind people, despite the lack of visual perceptual experience, formed associations 

between colors and adjectives (e.g., blue is cold, red is hot) that were similar to the intuitions of 

sighted people. Similarly, Kim and colleagues (2019) compared blind and sighted people’s 
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knowledge of the appearance of common animals. The authors found that individuals who were 

blind inferred features of animal appearance from taxonomy and habitat properties (e.g., because 

sharks live in the water, they must have scaley skin like other fish). These results indicate that 

knowledge of animal appearance (even if incorrect) can be acquired through inference from 

language, rather than through memorization of facts directly specifying those properties. 

Together these findings indicate that in the absence of direct perceptual experience, distributional 

information obtained from linguistic input can serve as a source of semantic knowledge. An open 

question is how and when certain concepts might be tagged for various semantic features. 

 Finally, our study does not answer the question of whether the difference vectors used for 

the semantic projection are a part of the individual’s representational knowledge or if they get 

constructed on-the-fly to meet specific task demands. According to the instance-based theory 

(Jamieson et al., 2018), a representation of word meaning can be constructed on-the-fly in a 

highly parallel, probe-driven retrieval process. Following Jamieson et al. (2018), we speculate 

that composite representations used in our models might be constructed during performance and 

not necessarily constitute a part of the participant’s core semantic representation. This account 

would also explain the flexibility of human semantic knowledge. Previous studies indicate that 

humans are capable of rapidly and flexibly reconfiguring their semantic knowledge to meet 

various task demands. A good example of such conceptual flexibility is ad-hoc categories 

(Barsalou, 1983), such as “things to sell at a garage sale” or “things that can fall on one’s head”. 

While these features are unlikely to be part of a person’s core semantic knowledge, participants 

can nevertheless perform such a classification rapidly, suggesting that they can quickly construct 

a representation of a category they have never encountered before. 
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CHAPTER III 

 

Study 2. The Role of Linguistic Reference in Shaping Mental Representations of Objects 

 

Study 1 examined the type of conceptual information encoded through linguistic labels 

and the mechanisms by which humans can access and manipulate it. Study 2 probed how 

linguistic reference can shape mental representations of objects and subsequent memories for 

them. 

 

Study 2A. The Effect of Linguistic Form on Memory for Objects and Object Pairings 

 

Previous research exploring the relationship between language and object representation 

indicates that producing or processing linguistic reference at encoding benefits subsequent 

memory for objects (Dessalegn & Landau, 2008; Scott & Sera, 2016; Zormpa et al., 2018; Lord 

& Brown-Schmidt, 2022) while restricting access to language via verbal shadowing results in 

mnemonic deficits for object-scene conjunctions (Urgolites et al., 2020). Further, Lord and 

Brown-Schmidt (2022) demonstrated that the linguistic form of the referential expression matters 

in what is encoded in memory at the time that language is processed and proposed an activation-

time account of the observed effect. An alternative hypothesis exploring the effect of different 

types of linguistic reference on memory for objects is the idea of a “hybrid representation” which 

is adopted within developmental research (Dessalegn & Landau, 2008; Scott & Sera, 2016). A 

notable shortcoming of this proposal is the lack of a mechanistic explanation, namely, what 

constitutes a “hybrid representation”, how it is built, or why it would benefit memory for objects. 
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Simultaneously, linguistic work demonstrates that certain types of language, specifically, the 

demonstrative pronoun “that” evokes a composite interpretation (i.e., referring to conceptually 

complex entities) during language processing (Brown-Schmidt et al., 2005), reminiscent of the 

concept of a “hybrid representation”. The goal of Study 2A is to elucidate the effect of the 

demonstrative pronoun “that” on the representation and subsequent binding memory for object 

pairs as well as to characterize the cognitive mechanisms underlying any potential mnemonic 

benefits associated with such language. 

 

Methods 

 

Participants 

Following the method of Urgolites et al. (2020), we recruited 120 people on Prolific. The 

experiment took on average 30 minutes to complete. Participants were compensated $0.70 for 

each 5 minutes of their time. One person was excluded because their data was not recorded 

properly. Consistent with the pre-registered exclusion criteria, we excluded one additional 

participant because they provided response “new” on more than 98% of trials on the individual 

memory test, indicating either poor memory or failure to understand/perform the task, leaving 

118 people in the final analysis. All participants reported themselves as native or fluent speakers 

of English. 

 

Procedure 

The experiment included two phases. In Phase 1, participants completed 96 trials on 

which they saw 9 objects on the screen in a 3 x 3 layout (Figure 11). Importantly, participants 
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simultaneously heard an audio description of two objects on the screen. First, participants were 

instructed to place one object on top of the other (e.g., put the shirt on the sheep) because “on 

top” has previously been found to create a more intuitive composite (versus other expressions 

e.g., next to, see Brown-Schmidt et al., 2005). Then, participants were instructed to place the two 

objects in the box. Importantly, in the critical “that” condition, the two objects were referred to 

using the demonstrative pronoun “that” (e.g., now put that in the box). In the first comparison 

condition, the two objects were referred to using a conjoined NP with both referents (e.g., now 

put the shirt and the sheep in the box). Finally, in the second comparison condition, the two 

objects were referred to using the pronoun “them” (e.g., now put them in the box). Both 

comparison conditions utilized the language that highlights the individuality of the two objects – 

in contrast to the critical “that” reference, with the “them” condition additionally controlling for 

the length of the referential expression. In Phase 2, participants completed two blocked 

recognition memory tests, on which half of the studied items were tested for binding memory, 

and the other half – for individual memory. For the binding memory test, participants saw 24 old 

pairs of objects (manipulated together at study) and 24 new pairs (had appeared at study but not 

on the same trial) presented horizontally side-by-side. Participants were instructed to click 

“Together” if they thought the object pair went together during the study phase, and “Not 

together” if they didn’t. Finally, for the individual memory test, participants saw 48 old and 48 

new individual objects. Participants were instructed to click “old” if they recognized the object 

from the study phase, and “new” if not. The order of the test presentation was counterbalanced 

across participants. The order of the trial presentation was randomized. 
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Figure 8. Schematic of the experimental procedure. During the study phase, participants heard 

an audio recording instructing them to first, place one object on top of the other, and then, to 

place them both in the box. In the critical language condition, the two objects were referred to 

using the demonstrative pronoun “that”. In two control conditions, the audio recording 

referenced the objects either with the pronoun “them” or a conjoined noun phrase with both 

referents. 

 

Materials 

The materials included 912 photos of real-world objects in a white background (Figure 

11). The images were randomly selected from the Dinolab Database Website of 1000 unique 

objects (link: https://mariamh.shinyapps.io/dinolabobjects/). We created three experimental lists 

that counterbalanced the images across three experimental conditions using a modified Latin 

square design. Each list contained 192 critical objects at study, 64 in each of the three conditions, 

and 672 foils. An additional 48 new objects were drawn from the same database as the old 

objects and were presented at the individual memory test. Because of the large number of items, 

new items were not counterbalanced with all 48 new items occurring in each of the three 

experimental lists. Each participant was randomly assigned to a single experimental list. The 

auditory stimuli were recorded by a female research assistant with a North American accent of 

English at a natural speaking rate. 

 

Predictions 

If the language that is typically used to refer to conceptual composites (i.e., pronoun that; 

Brown-Schmidt et al., 2005) binds the referenced items into a composite, we predict that for the 

https://mariamh.shinyapps.io/dinolabobjects/
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binding memory test but not for the individual memory test, pronoun "that" will result in 

statistically better memory than both the pronoun "them" and a conjoined noun phrase (NP) with 

both referents (e.g., the shirt and the sheep). If, on the other hand, linguistic forms like "that" 

invoke a conceptual composite in the moment as language is being interpreted, without affecting 

how this information is encoded in memory, we predict that binding memory will be similar 

across the three language conditions i.e., the pronoun "that", pronoun "them", and a conjoined 

NP. 

 

Results 

 

We used a signal-detection theoretic mixed-effects analysis (Wright, Horry, & 

Skagerberg, 2009) for the response data. We fit two logistic mixed effect regression models to 

the participants' old-new responses; one on the individual item memory test, and the other -- on 

the binding memory test. The individual memory model included item status (whether the item 

was actually old vs. new) as a factor, and then for old items, the condition as a predictor. These 

fixed effects were coded using weighted Helmert contrasts (see Table 1) to test following 

comparisons: 

Old vs. new – actually old probes vs. new probes 

Noun vs. pronoun – a conjoined NP with both referents vs. pronouns 

That vs. them – pronoun “that” vs. pronoun “them” 

The binding memory model included item status (whether the pairing was old or new) as a 

factor, and then for old items, the condition as a predictor. Similar to the coding used for the 

individual memory test, these fixed effects were coded using weighted Helmert contrasts (see 
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above and Table 2). The models included random intercepts by participant and item. Random by-

participant and by-item slopes were included if determined so by the model specification 

package in R -- buildmer (Voeten, 2020), which performs a stepwise elimination based on the 

change in model’s log-likelihood until an optimal model is found and converges successfully. 

 

Individual memory 

The results of the individual memory test are reported in Table 1. A negative intercept 

was due to participants’ significant bias to say “new” (b = -0.50, z = -5.23, p <10-6). A significant 

effect of item type (actually old vs. new) indicated successful recognition of the old images (b = 

3.61, z = 20.89, p < 10-15). Non-significant effects of the noun phrase (b = 0.08, z = 1.20, p = 

0.23) and pronoun type (b = -0.02, z = -0.39, p = 0.70) indicated that different ways of referring 

to objects at study did not significantly modulate individual memory for them (Figure 12). 
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Figure 9. Individual memory results. Error bars represent by-subject SEM. Data points represent 

mean accuracies for each participant. Means per condition are 75%, 75%, 74%, 16% for the 

conjoined noun phrase, “them”, “that” conditions, and the new items respectively. 

 

Table 1. Individual memory results: Mixed effect model with a binary dependent measure - 

whether the image was recognized or not on the recognition memory test. Values in bold indicate 

significant results at an alpha level of .05. 

response (0/1) ~ 1 + new.vs.old + that.vs.them + noun.vs.pronoun + 

(1 + new.vs.old + that.vs.them | participant ID) + (1 + noun.vs.pronoun | item ID) 

Fixed effects Estimate SE z-value p-value 

Intercept -0.50 0.10 -5.23 < 10-6 

new.vs.old (new = 0.5 each, old = -0.5) 3.61 0.17 20.89 < 10-15 

that.vs.them (them = 0.5, that = -0.5, 

noun, new = 0 each) 

0.08 0.06 1.20 0.23 

noun.vs.pronoun (nouns = -

0.58333333, pronoun = 0.41666667 each,  

-0.02 0.06 -0.39 0.70 
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new = -0.08333333) 

 

Random effects Variance SD Correlations 

Item ID 0.52 0.72 
  

noun.vs.pronoun 0.04 0.19 -0.53 
 

Participant ID 0.71 0.84 
  

new.vs.old 1.91 1.38 -0.54 
 

that.vs.them 0.07 0.26 -0.68 0.67 

Number of observations: 22848; groups:  item ID: 192, participant ID: 118 

 

Binding memory 

The results of the binding memory test are reported in Table 2. A non-significant 

negative intercept was due to similar rates of “together” and “not together” responses (b = -0.01, 

z = -0.03, p = 0.98). A significant effect of item type (actually together vs. not together) 

indicated successful recognition of the old image pairs (b = 0.92, z = 7.08, p < 10-11). A 

significant effect of the noun phrase (b = -0.18, z = -2.09, p = 0.04) indicated that referring to 

objects using a conjoined noun phrase resulted in better binding memory compared to using 

either pronoun “that” or “them”. Finally, there was no significant difference in binding memory 

between the two pronoun types (b = -0.04, z = -0.36, p = 0.72) (Figure 13). 
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Figure 10. Binding memory results. Error bars represent by-subject SEM. Data points represent 

mean accuracies for each participant. Means per condition are 63%, 58%, 59%, 40% for the 

conjoined noun phrase, “them”, “that” conditions, and the new items respectively. 

 

Table 2. Binding memory results: Mixed effect model with a binary dependent measure - 

whether the image was recognized or not on the recognition memory test. Values in bold indicate 

significant results at an alpha level of .05. 

response (0/1) ~ 1 + new.vs.old + noun.vs.pronoun + that.vs.them + 

(1 + new.vs.old + noun.vs.pronoun + that.vs.them | participant ID) +  

(1 + noun.vs.pronoun | item ID) 

Fixed effects Estimate SE z-value p-value 

Intercept -0.01 0.09 -0.12 0.90 

new.vs.old (new = 0.5 each, old = -0.5) 0.96 0.16 6.16 < 10-9 

noun.vs.pronoun (nouns = -0.58333333, 

pronoun = 0.41666667 each,  

new = -0.08333333) 

-0.20 0.10 -2.02 0.04 
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that.vs.them (them = 0.5, that = -0.5, noun, 

new = 0 each) 

-0.04 0.10 -0.41 0.69 

 

Random effects Variance SD Correlations 

Participant ID 0.47 0.69    
new.vs.old 0.61 0.78 -0.19   

noun.vs.pronoun 0.04 0.19 -0.25 0.02  
that.vs.them 0.02 0.12 -0.54 0.27 -0.67 

Item ID 0.25 0.50    
noun.vs.pronoun 0.04 0.19 -0.87   

Number of observations: 5712, groups: item ID: 85, participant ID: 118 

 

Discussion 

 

The current experiment explored the effect of referential expression on individual and 

binding memory for distinct objects. More specifically, we tested if the language that is typically 

used to refer to conceptual composites (i.e., pronoun that; Brown-Schmidt et al., 2005) can alter 

the representation of two objects by binding them into a conceptual composite and subsequently, 

improving binding memory for them. The results indicated that while participants could 

successfully recognize old images, the individual memory for objects was not differentially 

modulated by the three types of linguistic reference. Critically, binding memory for objects was 

better when the items were labeled using a conjoined noun phrase (i.e., the shirt and the sheep) 

compared to either pronoun “them” or “that”. One possibility is that repetition (i.e., hearing the 

linguistic labels twice) could drive the observed mnemonic benefit. However, it is not clear why 

repetition would aid binding but not individual memory making it an unlikely explanation of the 

observed pattern of results. Another possible explanation is that the binding memory test was 

more difficult than the individual memory test, so the repetition of the referents was particularly 

helpful on a more challenging task. Even though we could not statistically compare the 
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performance on the individual and binding memory tests, the fact that the mean endorsement 

rates for actually old items were numerically higher for the individual memory test (74.6%) 

compared to the binding memory test (60%) generally supports this idea. Together, our findings 

do not support the hypothesis that the demonstrative pronoun “that” invokes a conceptual 

composite in the moment during language processing and by doing so, changes the 

representation of the objects it refers to. 
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Study 2B. The Effect of Linguistic Form on Memory for Distinct Object Features 

 

Another type of language that is routinely used to describe objects is modified noun 

phrases (e.g., enormous balloon). Language processing literature shows that noun phrases that 

are semantically rich (i.e., modified) confer processing benefits and subsequently, are more 

accessible in memory than unmodified noun phrases (Hofmeister, 2011; Karimi & Ferreira, 

2016; Troyer et al., 2016). Further, stimuli that contain more information such as modifiers are 

associated with better memory possibly due to the longer encoding times, the distinctiveness of 

the encoded representation, more effortful/elaborate encoding, or the existence of multiple 

retrieval cues (Craik & Tulving, 1975; Fisher & Craik, 1980; Bradshaw & Anderson, 1982; 

O'Brien & Myers, 1985; Marks, 1987; Gallo et al., 2008). Consistent with this idea, Yoon and 

colleagues (2016; 2021) found that using modification improves memory for objects compared 

to referring to them using nouns only. In particular, the authors recruited pairs of participants to 

complete a referential communication task, during which participants described objects on the 

screen, and later, completed a surprise memory test. Importantly, the critical manipulation was 

designed to elicit participants’ use of adjective modifiers when describing the objects on the 

screen. The results indicated that when participants used an adjective to describe the target image 

(e.g., dotted sock) their memory for that item was better compared to when described using only 

a noun (e.g., sock) or using a locative phrase (e.g., the top left one). Yoon et al. (2016) 

hypothesized that more elaborate encoding of the objects associated with the use of adjective 

modifiers might facilitate object recognition. While the mnemonic benefit associated with the 

use of adjective modifiers is well-established, if and how modification shapes various aspects of 

object representation remains poorly characterized in the literature. 
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This question is particularly relevant since previous research indicated that different 

object features are represented and forgotten independently from each other (Brady et al., 2013). 

In their study, Brady and colleagues (2013) instructed participants to study a list of items that 

varied on multiple dimensions, such as object’s state (e.g., full glass / half-empty glass) and 

exemplar (e.g., beer glass / brandy glass) (Figure 14). Later, they tested participants’ 

recognition memory in a short-delay and long-delay task in a 4-AFC paradigm. The authors 

found that the memory for object states and object exemplars decayed at different rates 

suggesting that various visual features of objects are not represented as bound units and are 

stored and forgotten independently from each other. If so, the independent representations of 

object features might be modulated independently by certain linguistic forms like modifiers 

which can be used to highlight individual features of an object. 

 

 

Figure 11. From Brady et al. (2013). Schematic of the experimental procedure. During the study 

phase, participants made size judgments for items presented on the screen one at a time. At test, 

participants had to identify an object that appeared during the study phase in a 4-alternative 

choice paradigm. Note that participants completed the test phase in the short-delay conditions 

(immediately after the study phase) or in the long-delay condition (three days after the study 

phase). 
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In the current study, we probe how adjective modifiers affect the representations of 

independent object features. We entertain three alternative hypotheses with respect to the 

underlying cognitive mechanisms at play. According to one hypothesis, lexicalizing one feature 

of an object (e.g., sleeve length, sleeveless shirt) may highlight it, strengthening its 

representation, and consequently, making it more memorable. In return, the representation of the 

other, unlexicalized feature (e.g., overall length, cropped top), becomes weaker and 

consequently, less memorable. According to another hypothesis, a more memorable lexicalized 

feature of an object might serve as a retrieval cue for the unlexicalized feature, boosting 

subsequent memory for it. Finally, it is possible that lexicalizing object features does not impact 

how these features are represented in the mind. 

One reason to believe that the use of adjective modifiers might reduce memory for the 

unmodified feature is findings by Lupyan (2008). Across six experiments, Lupyan (2008) probed 

if category label generation augments the representation of everyday objects. To investigate this 

question, Lupyan (2008) presented participants with images of chairs and lamps (Experiment 1, 

3-6) or chairs and tables (Experiment 2) and asked them to make preference judgments (e.g., like 

or dislike) or classification judgments (e.g., Is it a chair or a lamp/table?). Later, participants’ 

recognition memory was tested. In an old/new paradigm, the foil images of chairs and 

tables/lamps were selected from the same furniture catalog as the targets and differed from the 

target images on shape and/or color. The critical findings indicated worse recognition memory 

for the items that were classified compared to the items for which participants indicated their 

preference. The proposed mechanism is a representational shift account, according to which, 

overtly classifying objects using linguistic labels co-activates top-down category features 



 57 

simultaneously with the bottom-up features of an exemplar. Consequently, when presented with 

a probe, participants retrieve a representation that is a combination of the previously observed 

features and the top-down category features, ultimately, decreasing the familiarity of the old 

probe and resulting in lower recognition performance for the classified items. Following this 

logic, if labeling an object as “sleeveless shirt” results in a representational shift such that the 

feature “sleeveless” becomes more salient, we might observe worse recognition of the unnamed 

feature (i.e., overall dress length). 

 

Methods 

 

Participants 

We recruited 120 participants on Prolific. The experiment took on average 20 minutes to 

complete. Participants were compensated $0.70 for each 5 minutes of their time. Four people 

were excluded because their data was not recorded properly. Consistent with the pre-registered 

exclusion criteria, two additional people were excluded because they provided response “new” 

on more than 95% of test trials, indicating either poor memory or failure to understand/perform 

the task, leaving 114 people in the final analysis. All participants reported themselves as native 

or fluent speakers of English. 

 

Procedure 

The experiment included two phases (Figure 15). In the first phase, participants studied 

104 pictures of various pieces of clothing while listening to the audio descriptions of them. An 

additional 104 trials were included as foils, on which participants had to click on animals, half of 
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which were also described using one noun (e.g., click on the giraffe) and the other half -- a 

modifier and a noun (e.g., click on the left-facing giraffe). Immediately after completing Phase 1, 

participants started Phase 2, which was a surprise recognition memory test and during which 

they viewed 208 (104 old + 104 new) images of clothes presented in a random order one probe at 

a time. Before starting the second phase, participants were instructed to look for subtle 

differences between the clothing items and were given an example (Figure 16) which was not a 

part of the experimental stimuli. 
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Figure 12. Schematic of the experimental procedure. During study, participants were instructed 
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to click on the target image (a1b1/a1b2) which was presented in either a modified (e.g., click on 

the sleeveless dress) or unmodified condition (e.g., click on the dress). During test, participants 

completed a recognition memory test during which they saw one image that either matched the 

test image or mismatched it on one or both features (a1b1/ a1b2/ a2b1/ a2b2). 

 

Figure 13. Instructions presented to participations prior to beginning Phase 2 of the experiment -

- recognition memory test. Participants were instructed to pay attention to details and were 

provided with an example of two similar but not identical images. 
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Materials 

The materials included 104 unique images of clothing items. The images were selected 

from the online customizable clothing shop (link: https://www.eshakti.com/). The final set of 

items included 7 button-ups, 10 cardigans, 10 dresses, 5 dusters, 7 jackets, 10 jumpers, 5 shirts, 

10 sweaters, 20 tops, and 20 tunics. Each item varied on two features, A and B, (e.g., sleeve 

length and overall length), resulting in 4 versions for each item: a1b1 (e.g., sleeveless knee-long 

dress), a1b2 (e.g., sleeveless ankle-long dress), a2b1 (e.g., knee-long dress with long sleeves), or 

a2b2 (e.g., ankle-long dress with long sleeves), and 416 images total (Figure 15). For each 

unique item, we manipulated: a) which version of the target image was presented as study 

(a1b1/a1b2), b) if it was modified or unmodified, and c) which version of the target image was 

presented at test (a1b1/a2b1/a1b2/a2b2). If the item was presented in the unmodified (noun) 

condition, the image was described using only a noun (e.g., click on the dress), while in the 

modified condition, the image was described using an adjective and a noun (e.g., click on the 

sleeveless dress). Because of the large number of items and multiple manipulations, we did not 

manipulate which feature was named (i.e., A or B). In other words, for the items that were 

presented in the modifier condition, only Feature A was named. Which feature was considered A 

or B was selected at random ensuring that across all items, various clothing features were named 

roughly equally. At test, all 104 unique items were presented in one of the 4 test conditions 

(a1b1/a2b1/a1b2/a2b2). Only 25% of the test items were truly “old” (i.e., matched on both 

features) while the rest were “new”. The 416 items were distributed across 16 experimental lists. 

Each list contained 104 unique items at study, 52 in the noun condition and another 52 in the 

modifier condition. All items were counterbalanced across the conditions following a modified 

Latin square design such that each participant only saw a unique item once. The auditory stimuli 

https://www.eshakti.com/
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were recorded by a female research assistant with a North American accent of English at a 

natural speaking rate. 

 

Results 

 

Model 1 

We fit a logistic mixed effects model with participants' response on the recognition 

memory test as a binary dependent variable (0 - NEW/1 - OLD) and modifier condition 

(modified/unmodified), Feature A (same vs. different), Feature B (same vs. different), and their 

interactions as predictors. All predictors were effects coded. The model included random 

intercepts by-participant and item. Random by-participant and by-item slopes were included if 

determined so by the model specification package in R -- buildmer (Voeten, 2020), which 

performs a stepwise elimination based on the change in model’s log-likelihood until an optimal 

model is found and converges successfully. 

The results of this analysis are reported in Table 3. A negative intercept was due to 

participants’ significant bias to say “new” (b = -0.41, z = -4.9, p = < 10-6). A significant effect of 

the modifier condition (b = 0.16, z = 2.04, p = 0.04) indicated that overall, when the actual target 

for an item set had been modified, the associated image at test (regardless of whether it was old 

or new) was more likely to generate a response “old”. A significant Feature A effect (b = 0.19, z 

= 3.31, p = 0.0009) indicated that participants were more likely to say “old” when Feature A at 

test matched Feature A at study. Similarly, a significant Feature B effect (b = 0.11, z = 2.01, p = 

0.04) indicated that participants were more likely to say “old” when Feature B at test matched 

Feature B at study even though Feature B was never named. All interactions were non-
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significant indicating that naming Feature A did not boost memory for it significantly better than 

for Feature B. Additionally, the lack of the Feature A * Feature B interaction indicated that 

memory for these properties was independent of each other (Figure 17). 

 

Figure 14. Recognition memory results. Error bars represent by-participant SEMs. Data points 

represent mean proportions for each participant. 

 

Table 3. Memory results for Model 1: Mixed effect model with a binary dependent measure - 

whether the image was recognized or not on the recognition memory test. Values in bold indicate 

significant results at an alpha level of .05. 

response (0/1) ~ 1 + Condition * Feature A match *Feature B match + 

 (1 | participant ID) + (1 | item ID) 

Fixed effects Estimate SE z-value p-value 

Intercept -0.41 0.08 -4.91 <10-6 
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Condition (noun = -0.5, modifier = 0.5) 0.16 0.08 2.04 0.04 

Feature A match (Feature A match = 0.5, Feature B match = -

0.5) 

0.19 0.06 3.31 < 0.05 

Feature B match (Feature B match = 0.5, Feature A match = -

0.5) 

0.11 0.06 2.01 0.04 

Condition * Feature A match 0.03 0.11 0.26 0.79 

Condition * Feature B match 0.00 0.11 -0.03 0.98 

Feature A match * Feature B match -0.10 0.08 -1.24 0.21 

Condition * Feature A match * Feature B match -0.04 0.16 -0.25 0.80 

 

Random effects Variance SD 

Participant ID 0.40 0.63 

Item ID 0.20 0.45 

Number of observations:11856, groups: item ID: 104, participant ID: 114 

 

Model 2 

Model 1 indicated that both match on Feature A and Feature B independently increased 

the likelihood of an “old” response. Although the model parameter estimates for Feature A and B 

were numerically different (bA =0.19 vs. bB = 0.11), Model 1 did not allow us to statistically 

compare them. As a result, Model 2 aimed to test the difference in recognition memory between 

the items that were matched on Feature A vs. Feature B. The model selection procedure was 

identical to that used for Model 1. Modified condition was effects coded (unmodified = -0.5, 

modified = 0.5). Critically, we used weighted Helmert contrast coding scheme for a predictor 

indicating a match/mismatch between study and test with the following comparisons: 

1 – target vs. the rest (i.e., match on Feature A and B vs. the rest) 

2 – match on one feature vs. mismatch on both 

3 – match on Feature A vs. match on Feature B 

The results for Model 2 are reported in Table 4. The findings from Model 2 replicated 

the findings from Model 1 such that participants demonstrated a bias to say “new”, and the 
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modified imaged were more likely to generate an “old” response compared to unmodified 

targets. Importantly, participants were more likely to endorse the target vs. the rest of the images 

(Contrast 1: b = 0.15, z = 3.09, p = 0.00). Additionally, participants were more likely to say “old” 

if the image was matched on at least one feature vs. mismatched on both (Contrast 2: b = -0.13, z 

= -2.51, p = 0.01). Finally, there was no significant difference between the test images that were 

matched on Feature A or Feature B (Contrast 3: b = 0.07, z = 1.29, p = 0.20). Interactions of 

these Helmert contrasts with modifier condition were not significant. 

 

Table 4. Memory results for Model 2: Mixed effect model with a binary dependent measure - 

whether the image was recognized or not on the recognition memory test. Values in bold indicate 

significant results at an alpha level of .05. 

response (0/1) ~ 1 + Condition + Contrast 1 + Contrast 2 + Contrast 3 + Condition:Contrast 1 

+ Condition:Contrast 2 + Condition:Contrast 3 + (1 + Contrast 1 | participant ID) +  

(1 + Contrast 1 + Condition + Condition:Contrast 1 | item ID) 

Fixed effects Estimate SE z-value p-value 

Intercept -0.29 0.08 -3.74 0.00 

Condition (noun = -0.5, modifier = 0.5) 0.17 0.04 3.88 0.00 

Contrast 1 (target = -0.7490722, else = 0.2509278 each) 0.15 0.05 3.09 0.00 

Contrast 2 (Feature A match = 0.4992830634, Feature B 

match = -0.500716936, else = -0.0007169366 each) 

-0.13 0.05 -2.51 0.01 

Contrast 3 (A and B mismatch = -0.6247048, Feature A or B 

match = 0.3752952 each, target = -0.1247048) 

0.07 0.06 1.28 0.20 

Condition * Contrast 1 0.04 0.11 0.34 0.73 

Condition * Contrast 2 0.02 0.10 0.18 0.86 

Condition * Contrast 3 0.01 0.10 0.13 0.90 

 

Random effects Variance SD Correlation 

Participant ID 0.40 0.64 
   

Contrast 1 0.04 0.21 0.09 
  

Item ID 0.20 0.45 
   



 66 

Contrast 1 0.01 0.11 -0.06 
  

Condition 0.03 0.18 -0.15 -0.41 
 

Contrast 1 * Condition 0.18 0.42 -0.14 0.98 -0.56 

Number of observations: 11856; groups: item ID: 104, participant ID: 114 

 

Discussion 

 

The current study examined the effect of adjective modifiers on memory for distinct 

object features. Overall, we found that the use of adjective modifiers increased endorsement rates 

for all items consistent with previous reports (Hofmeister, 2011; Troyer et al., 2016; Yoon et al., 

2016; Yoon et al., 2021). Additionally, at test, participants were more likely to categorize an 

image as “old” if it matched the study image on both or at least one feature. Critically, we found 

that memory for two distinct object features was independent of one another (also Brady et al., 

2013). Finally, the use of adjective modifiers did not enhance (or reduce) endorsement rates for 

the named feature above and beyond the unnamed feature. These preliminary findings are 

partially consistent with the hypothesis that lexicalizing a feature of an object does not impact 

the representation of the non-lexicalized feature. However, a single null result only provides 

inconclusive evidence and further experimentation is required to either confirm or disconfirm the 

null hypothesis. The interpretation of the findings is further complicated by the noteworthy 

limitations of the current experiment. In particular, while participants were able to distinguish 

between targets and non-targets, overall discriminability was low. For the items that were 

actually old, participants said “old” 45.44 % of the time. Similarly, for the items that were 

actually new, participants said “old” 43.01% of the time, together indicating that participants 

failed to detect the subtle differences between the images unless they were unmatched on both 

features compared to the study target.   
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Study 2. General Discussion 

 

Study 2 aimed to evaluate how different types of linguistic reference can impact 

individual and binding memory for objects and distinct object features. The results of Study 2A 

indicated that the demonstrative pronoun “that” does not change the representation of individual 

objects by binding them into a composite above and beyond using a conjoined noun phrase or a 

personal pronoun “them”. Specifically, participants were more likely to recognize an object or 

object pair as “old” when the linguistic labels that referred to them were repeated twice as 

evidenced by the higher recognition rate for the 2-noun condition compared to the pronoun 

conditions (e.g., the sheep and the shirt vs. them/that). These findings are at odds with the idea of 

a “hybrid representation” – which argues for a composite of visual and linguistic information 

(Dessalegn & Landau, 2008; Scott & Sera, 2018) – at least, in the context of the demonstrative 

pronoun “that”. Why then did Dessalegn and Landau (2008) find a memory boost for the 

location and color of shapes in 4-year-olds, which Scott and Sera (2018) later replicated? Recall 

that the reported mnemonic benefit in both studies was specific to the directional labels (e.g., on 

the left/on the top) but not other relational labels (e.g., the green is next to the red), neutral labels 

(e.g., this is dax), or nonlinguistic attentional cues (e.g., objects flashing). On one hand, 

relational language may be special for memory, even more so that the language that is used to 

refer to conceptual entities, namely, the pronoun “that” (Brown-Schmidt et al., 2005). On the 

other hand, if the effect of relational language on memory is limited to children who develop 

relational knowledge and acquire relational terms around the age of 4 or 5 (Gentner et al., 2011), 

it is possible that learning new terms like “left” and “right” may involve larger attentional 

resources compared to learned words and flashing objects. 
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The findings of Study 2B further revealed that the use of adjective modifiers when 

referencing objects facilitates its recognition compared to when referred to using nouns only in 

line with previous work (Hofmeister, 2011; Troyer et al., 2016; Yoon et al., 2016; Yoon et al., 

2021). While we found evidence suggesting that distinct object features are indeed remembered 

independently from one another (see also Brady et al., 2013), lexicalizing one feature of an 

object did not impact recognition of the unlexicalized feature. However, further experimentation 

is needed to narrow down the effect of referential modification on memory for both the 

lexicalized and unlexicalized features. If any follow-up experiment should find evidence 

consistent with the hypothesis that memory for both object features is boosted following 

linguistic reference, such findings would be at odds with the previously reported mnemonic 

deficits following linguistic labeling (Schooler & Engstler-Schooler, 1990; Lupyan, 2008). This 

discrepancy then could be attributed to the differences in experimental designs. Specifically, both 

Lupyan (2008) and Schooler and Engstler-Schooler (1990) utilized generation (vs. processing) 

tasks with participants either categorizing a visual image as chair or table/lamp or verbally 

describing faces after they were encoded in memory. Yet, Zormpa and colleagues (2018) found 

better memory for objects when participants generated linguistic labels for them during study. 

Taking into consideration the differences between these paradigms, such a pattern of findings 

would raise an intriguing possibility that accessing language during encoding benefits memory, 

whereas using language at retrieval creates memory interference, weakening the original memory 

trace, and impairing subsequent memory. 

Finally, it is worth mentioning that both studies had notable limitations. In Study 2A, 

contrary to our predictions, we found that repeating linguistic labels resulted in better binding but 

not individual memory when compared to both pronoun conditions. While it was outside of the 
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scope of the current work to probe the reason why this was the case, we speculate that the 

differences might have stemmed from the variability in the difficulty levels of the two memory 

tests. More specifically, the mean endorsement rates were ~75% and 60% for the individual and 

bindings tests respectively. Further work needs to control for the difficulty levels to adequately 

compare participants’ performance on both tests. Similarly, in Study 2B, the mean hit rate across 

participants was only 0.45, indicating that the task was difficult. To address this concern, follow-

up experiments might consider utilizing a 2-AFC paradigm which might highlight the subtle 

differences between the clothing items. Additionally, Study 2B only had 35% power to detect the 

effect associated with Contrast 3 from Model 2 targeting the difference between the items that 

matched on Feature A vs. the items that matched on Feature B. 
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CHAPTER IV 

 

Study 3. The Role of Linguistic Features of Spontaneous Speech in Shaping Mental 

Representations of Real-World Experiences 

 

So far, Studies 1 and 2 have focused on the role of linguistic reference in accessing and 

retrieving representations of concepts and objects. However, human language is complex, 

encompassing multiple domains extending beyond the lexicon. Therefore, in Study 3, we probed 

the impact of various linguistic features inherent to spoken language on memory for real-world 

experiences, as well as the underlying cognitive mechanisms by which these features operate. 

Specifically, we focused on memory for conversation and employed an ecologically valid 

paradigm to explore the relationship between language and memory as it occurs in real life. 

Previous research on conversational recall shows that the amount of conversation that can 

be recalled after a delay is limited (Benoit & Benoit, 1998; Ross & Sicoly, 1979; Stafford & 

Daly, 1984) and biased in favor of one’s own contributions (Slamecka & Graf, 1978; McKinley 

et al., 2017; Ross & Sicoly, 1979). In targeting the aspects of conversational interaction that 

shape subsequent recall, we reviewed the literature predicting memory for pre-recorded 

materials. In particular, studies with pre-recorded sentences and stories indicated that disfluency 

(Diachek & Brown-Schmidt, 2022; Fraundorf & Watson, 2011) improves memory for linguistic 

input by orienting attention to speech. Yet, given the previous unsuccessful attempts to replicate 

the disfluency-driven memory benefit for stories (Donahue et al., 2017), and the narrow scope of 

the effect reported for sentences (Diachek & Brown-Schmidt, 2022), it remains possible that the 

disfluency memory benefit would not generalize onto unscripted speech. Further, similar to 



 71 

disfluency, backchanneling has been associated with heightened attention and might 

consequently, improve memory for language. Finally, studies examining the content that is more 

likely to be remembered indicated that statements that express disagreement might be more 

memorable due to their high interactional value (Keenan et al., 1977). Taken together, we 

examine how four features inherent to spontaneous speech, namely, disfluency, backchanneling, 

“like”, and disagreement shape memory for natural language. 

Note that originally, the study additionally aimed to investigate the effect of mood on 

recall and included a pre-registered mood manipulation (see Method). However, the mood 

manipulation did not last the duration of the experiment, did not significantly impact recall, and 

is not reported here. 

 

Methods 

 

Participants 

Following the methods from Stafford & Daly (1984) and Benoit & Benoit (1988) on 

conversational memory (i.e., 20 dyads per cell), and ensuring that we reach sufficient power, 

consistent with our pre-registration, we recruited 120 participants through the Vanderbilt 

University participant pool (i.e., 30 dyads per cell in a 2x2 design). 84 participants received 

partial course credit; the remaining 36 participants received a $20 Amazon gift card. The 

recording from one conversation was lost leaving 59 conversational dyads (118 participants) in 

the final analysis. 

 

Procedure 
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At the beginning of the experiment, participants watched a mood induction video. Each 

participant was seated at an individual computer in the same experimental room and was offered 

a separate set of headphones. The computers were situated back-to-back so that each person 

could not see the screen of the other participant. The experimenter remained in the room for the 

duration of the mood induction procedure. Each mood induction video lasted 1 minute and 33 

seconds and included 20 images from the International Affective Picture System (IAPS; Lang et 

al., 2008) accompanied by classical music. Previous research indicated that classical music 

enhances affective experiences and as a result, has been recommended to be presented along 

with the images to increase the effectiveness of the mood induction procedure (Zhang et al., 

2014). Participants were randomly assigned to one of four conditions created by the crossing of 

mood congruence (congruent and incongruent mood) and mood (happy or sad). In the happy 

condition a positive mood was induced by presenting a series of happy images (IAPS items: 

1440, 1441, 1460, 1710, 1750, 1811, 1920, 2080, 2154, 2209, 2340, 5210, 5760, 5825, 5830, 

5833, 5910, 7502, 8190, 8501) with a mean valence of 8 (SD = 0.20, min = 7.62, max = 8.34) as 

the participant listened to Beethoven, Symphony no.6 (3rd mvt) (Baumgartner et al., 2006). 

Participants in the sad mood condition watched a series of unhappy images (IAPS items: 2205, 

2691, 3550, 6300, 6563, 7380, 9163, 9220, 9280, 9295, 9332, 9560, 9600, 9623, 9800, 9810, 

9830, 9910, 9921, 9940), with a mean valence of 2.30 (SD = 0.39, min = 1.62, max = 3.04) while 

listening to Samuel Barber, Adagio for Strings (Baumgartner et al., 2006). 

 After the mood induction procedure, participants completed a Positive and Negative 

Affect Survey (PANAS; Watson et al., 1988) via Survey Monkey to assess their positive and 

negative affect as a manipulation check (Figure 18). Next, participants were asked to change 

their chairs to sit facing each other and to engage in an unscripted conversation for 15 minutes. 
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We offered participants 3 conversation prompts (“Living in Nashville”, “Favorite TV show”, and 

“Favorite artist”) to get the conversation going, but the conversation was unscripted and 

participants were free to talk about anything. All conversations were recorded on the computer 

using the PRAAT software. For the duration of the conversation, the experimenter left the room 

but returned for the next phase of the experiment. After 15 minutes of conversation, participants 

completed a distraction task which included watching a 20-minute informational video about 

outer space. The use of a video as a filled delay task is a common procedure in the 

conversational memory literature (e.g., Samp & Humphries, 2007; Stafford, Waldron, & Infield, 

1989; Stafford & Daly, 1984).  

 Next, participants returned to their computers and completed PANAS for the second time 

to assess affect at the time of completing the free recall task. The second responses from 2 

participants for PANAS were lost and thus, were not included in the analyses. Finally, 

participants completed a surprise written free recall task. They were instructed to type as much as 

they could recall about what was said in the conversation, word for word, including the source of 

each utterance (i.e., who said what), and using a separate line for each speaker. Participants saw 

a short example from a made-up conversation of how the recall should be typed. The 

experimenter instructed participants that they had 30 minutes to complete the task to ensure that 

they would write everything they remember without trying to leave early. However, if 

participants indicated to the experimenter that they could not remember any more details from 

the conversation before the 30-minute mark, they were allowed to leave. Additionally, the 

experimenter instructed participants not to consult each other about the past conversation and 

stayed in the room with the participants until they finished the task. Together, the entire 

experiment took approximately 90 minutes to complete. 
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Figure 15. Schematic of the experimental procedure. 

 

Conversation analysis 

Audio recordings of each conversation were transcribed word-by-word, with utterances 

numbered and labeled for who said what. Then, the utterances were broken down into idea units 

(Ross & Sicoly, 1979; Stafford & Daly, 1984; Stafford et al., 1987; 1989). An idea unit 

corresponds to "the smallest unit of meaning that has informational or affective value; it 

represents the gist of each thought expressed by the interactants" (Stafford et al., 1989, p.600) 

and typically, includes one subject and one verb (for more details on the coding scheme, see 

project’s associated OSF page). 

When transcribing the data, we also coded the serial position of each idea unit in the 

conversation as serial order effects in recall are well-documented in the literature (Deese & 

Kaufman, 1957; Murdock, 1962). While this literature primarily uses lists of words as stimuli 
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(which have a natural ordered structure), we hypothesized that serial order effects might 

generalize to conversational recall as well, with idea units at the beginning and end of the 

conversation recalled better than idea units in the middle. Lastly, we coded each idea unit in the 

conversation for a series of linguistic features (see Table 5 for examples), as follows: 

Disfluency. An idea unit was coded as disfluent if it contained fillers (um/uh), pauses, 

disfluent repetitions, rephrases, or restarts. Disfluent utterances were coded as a 1 if a disfluency 

was present regardless of its position within the idea unit, and a score of 0 if not. If a disfluency 

occurred in-between two idea units, we coded the second of the two idea units as disfluent since 

our hypothesis specified that disfluency orients attention towards what is about to be said. In 

addition, for disfluent idea units, we also coded whether there were multiple disfluencies present 

or only a single disfluency present in the idea unit.  

“like”. Each idea unit was assigned score of 1 if the discourse marker “like” was present, 

and 0 if not. “like” was not considered a disfluency as we were interested in whether “like” and 

disfluency shared functional similarities with respect to memory. 

Backchannel. We hypothesized that backchanneling is indicative of the listener’s 

heightened attention to spoken language. We coded an idea unit as backchanneled (1) if it was 

followed by a backchannel, and 0 – if not. Thus, if one participant said "I'm a huge fan of 

Beyoncé" and the other participant said "cool", the IU "I'm a huge fan of Beyoncé " would be 

coded as back-channeled (1). Backchannels included exclamations such as “yeah”, “okay”, 

“cool”, “that’s dope”, “right”, “really”, “wow”. We considered short responses like this to be a 

backchannel if: a) it contained no more than 3 words; b) indicated attention/following the 

conversation; and c) could be removed without any loss of information from the conversation 
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(i.e., there was no follow-up on it). If a backchannel interrupted an utterance, only the idea unit 

that directly preceded the backchannel was coded as backchanneled.  

Disagreement. Idea units that expressed disagreement with a previous statement were 

assigned a score of 1 for disagreement, and 0 – if no disagreement was expressed. In the 

following example, Speaker B’s utterance was coded as containing disagreement since it directly 

contradicted Speaker A’s statement: 

Speaker A: “I didn’t know it was gonna be that warm in Nashville.” 

Speaker B: “It wasn’t really that warm last year. 

Table 5. Example of conversation coding for idea units and four linguistic features. 

IU# PI

D 

Idea unit (IU) DISF

LUE

NCY 

MUL

TIPL

E 

DISF

LUE

NCIE

S 

BAC

KCH

ANN

EL 

DIS 

AGR

EEM

ENT 

LIKE 

167 9 Um one of the grad 1 0 0 0 0 

168 9 Well post-doctoral scholars um 1 0 0 0 0 

169 9 went to grad school  0 NA 0 0 0 

170 9 In Rochester 0 NA 1 0 0 

 10 Ah      

171 9 And she really liked it 0 NA 0 0 0 

172 10 they apparently have a really good 

linguistics program 

0 NA 0 0 0 

173 10 It makes sense 0 NA 0 0 0 

174 10 because there is a huge Deaf 

community  

0 NA 1 0 0 

 9 Oh 
    

 

175 10 Yeah, it's like one of the biggest Deaf 

communities  

0 NA 0 0 1 

176 10 in the country  0 NA 0 0 0 

177 10 is in Rochester  0 NA 0 0 0 

178 10 so they probably have some relation  0 NA 0 0 0 

179 10 to Linguistics  0 NA 0 0 0 
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180 9 Mhm, that's really cool 0 NA 0 0 0 

181 9 And that's not too far  0 NA 0 0 0 

182 9 from um New York City 1 0 0 0 0 

183 9 right? 0 NA 0 0 0 

184 10 Ehh, it's pretty far 0 NA 0 1 0 

 9 Really? 
    

 

185 10 6 hours 0 NA 1 0 0 

 9 Oh ok 
    

 

Note. IU# denotes the serial order of idea units within the conversation. PID is participant ID. 

 

Recall analysis 

Each written recall was broken down into idea units following the same guidelines used 

to code the conversations. To quantify memory for conversation, we matched the idea units in 

the recalls to the idea units in the conversation if they conveyed the same gist (Table 6). If 

participants recalled something that was not in the original conversation, that idea unit was 

assigned an “NA”. The accuracy of the recalls was not coded. After the initial coding was 

complete, a second coder independently coded 10% of randomly selected recalls (n=12) masked 

to the original coding. An inter-coder reliability coefficient was calculated as the proportion of 

recalled idea units for which both coders were in agreement as to which specific conversation 

idea unit it corresponded to. The ICC was equal to 0.79 (SD = 0.05) indicating substantial 

agreement. 

 Conversational recall data, PANAS data, along with the associated analyses scripts as 

well as the details on the conversation coding scheme are available on project’s associated OSF 

page. 

 

Table 6. Example of recall coding (participant’s spelling preserved). 

Recaller 

PID 

Recall IU Conversation IU IU# from the 

conversation 
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9 One of the postdocs [167: um one of the grad]  

well post-doctoral scholars 

168 

9 in the lab --- NA 

9 I work in --- NA 

9 down the hall --- NA 

9 went to grad school went to grad school um 169 

9 at University of Rochester in Rochester 170 

9 They have a really good 

linguistics program there 

They apparently have a really 

good linguistics program 

172 

9 That makes sense It makes sense 173 

9 Because there's a really big 

deaf population there 

Because there is a huge Deaf 

community 

174 

9 I'm guessing you aren't too 

far 

That's not too far 181 

9 from new york city? from New York City 182 

9 I am kind of far It's pretty far 184 

 

Results 

 

Descriptive statistics  

 Across 59 conversations, interlocutors produced 29,943 idea units. On average, there 

were 507 idea units (SD = 94.52, min = 325, max = 764) per conversation. The interlocutors 

contributed to the conversation roughly equally, with the participants who spoke more in each 

dyad producing on average 58.52% of all idea units in the conversation (SD = 6%, min = 50%, 

max = 74.02%). Each written recall included an average of 138.38 idea units (SD = 56.97, min = 

29, max = 267). On average, participants recalled 27.89% of the original conversations (SD = 

11.66%, min = 5.94%, max = 56%), including 29.80% (SD = 13.10%, min = 4.80%, max = 

59.86%) what they said, and 26.53% (SD = 11.51%, min = 5.94%, max = 57.98%) of what their 

conversational partner said to them (Figure 19). 

In terms of linguistic features, 4,870 (16.26%) of the idea units were disfluent, and 6,225 

(20.79%) contained the discourse marker “like”. Of the 4,870 idea units that contained 
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disfluency, 1,166 (24%) contained multiple disfluencies, and 4,231 (14.13%) idea units were 

backchanneled. Only 49 (0.16%) idea units contained disagreement. 

 

Memory predictors 

A logistic mixed effects regression model of whether (1) or not (0) each idea unit in the 

conversation was recalled by each participant included fixed effects of participant role (whether 

the current participant produced (1) or listened to (0) that idea unit), given well-documented 

generation benefits in conversational memory (Ross & Sicoly, 1979, inter alia). Each linguistic 

feature (fluency, backchanneling, disagreement, “like”) was coded as 1 when the feature was 

present and 0 when absent. The interaction between each feature with the production variable 

were included as predictors. In addition, conversation length as measured by the number of idea 

units in the conversation (centered and scaled), serial order of the idea unit (centered and scaled), 

and the quadratic function for idea unit serial order were included in the model as control 

variables. Random effects included by-subject and by-dyad intercepts, and random slopes were 

included in the model if the model converged with them (see details on model selection 

procedure above). Analyses were performed in R (R Core Team, 2021) through the RStudio 

interface (RStudio Team, 2020) using the “lme4” (Bates et al., 2015) package. 

The model (Table 7) contained a negative intercept (b = -1.43, z = -18.03, p = < 10-15) such that 

idea units were more likely to not be recalled than recalled. The linear term for idea unit serial 

order was negative (b = -0.57, z = -6.89, p = <10-11), indicating that idea units at the beginning of 

the conversation were more likely to be recalled than those at the end; the remaining control 

variables were not significant. 
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Participants were more likely to recall idea units they produced vs. heard (b = 0.18, z = 

4.04, p = <10-4), consistent with a generation effect. Consistent with our prediction, disfluent 

idea units were more likely to be recalled than fluent ones (b = 0.25, z = 6.74, p < 10-10). 

Notably, the interaction between fluency and production was not significant (b = 0.01, z = 1.12, 

p = 0.09) indicating that both listening to and producing disfluency boosted recall3. Similarly, 

backchanneled idea units were more likely to be recalled (b = 0.10, z = 2.34, p = 0.02), an effect 

that did not interact with production (b = -0.06, z = -1.07, p= 0.28). Finally, idea units that 

expressed disagreement (b = 0.36, z = 1.12, p = 0.26) or that contained “like” (b = 0.07, z = 1.93, 

p = 0.05) were not significantly more likely to be recalled (Figure 20). 

 

Table 7. Memory results for Model 1: Mixed effect model with a binary dependent measure - 

whether the idea unit was recalled or not on the free recall test. Values in bold indicate 

significant results at an alpha level of .05. 

recalled (0/1) ~ 1 + fluency * produced + produced * backchanneling + produced * 

disagreement + produced * like + IU number + IU number ^2 + conversation length + (1 + IU 

number + IU number ^2 + produced | conversation ID : participant ID) + (1 | conversation ID) 

Fixed Effects Estimate SE z-value p-value 

Intercept -1.43 0.08 -18.03 < 10-15 

IU number -0.57 0.08 -6.89 < 10-11 

IU number ^2 0.01 0.06 0.09 0.93 

Conversation length -0.10 0.06 -1.56 0.12 

Produced (produced = 1, listened = 0) 0.18 0.04 4.04 < 10-4 

Disfluency (disfluent = 1, fluent = 0) 0.25 0.04 6.74 < 10-10 

Backchanneling (backchanneled = 1, 

not backchanneled = 0) 

0.10 0.04 2.34 0.02 

 
3 A post-hoc analysis indicated that the disfluency effect was of a similar magnitude for listeners, b = 

0.24, and speakers, b = 0.28. 
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Like (“like” present = 1, “like” absent = 0) 0.07 0.04 1.93 0.05 

Disagree (disagree = 1, agree = 0) 0.36 0.32 1.12 0.26 

Produced*backchanneling -0.06 0.06 -1.07 0.28 

Produced*disfluency 0.01 0.05 0.12 0.90 

Produced*like 0.03 0.05 0.51 0.61 

Produced*disagree 0.02 0.45 0.05 0.96 

 

Random Effects Variance SD Correlations 

Conversation ID (intercept) 0.66 0.81 
   

IU Number ^2 0.44 0.66 -0.15 
  

IU Number 0.76 0.87 0.45 0.75 
 

Produced 0.14 0.38 0.03 -0.02 0.03 

Participant ID (intercept) 0.00 0.00 
   

Number of observations: 598864; groups: conversation_id: 59, participant_id: 118 

 

The beneficial effect of disfluency on conversational memory raised the question of 

whether disfluency has cumulative effects. Thus, an exploratory analysis including the number of 

the disfluencies in each idea unit (Table 8) revealed that the memory boost for disfluent 

utterances was similar regardless of the number of disfluencies (b = 0.02, z = 0.41, p = 0.69). 

 

Table 8. Memory results for Model 2: Mixed effect model with a binary dependent measure - 

whether the idea unit was recalled or not on the free recall test. Values in bold indicate 

significant results at an alpha level of .05. 

 recalled (0/1) ~ 1 + disfluency present + multiple disfluencies+ (1 | conversation ID) + (1 | 

conversation ID: participant ID) 

 

Fixed Effects Estimate SE z value p-value 

Intercept -1.04 0.07 -14.79 < 10-15 

 
4 Note that the number of observations is twice as many as the total number of IUs across the conversations 

because the dependent variable is an IU for each participant in the dyad. 
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Disfluency present 

(fluent = -0.1630097, one disfluency = 0.8369903, 

multiple disfluencies = 0.8369903) 

0.26 0.03 9.18 < 10-15 

Multiple disfluencies 

(fluent = 0.04233043, one disfluency = -0.45766957, 

multiple disfluencies = 0.54233043) 

0.02 0.05 0.41 0.69 

 

Random Effects Variance SD 

Conversation ID (intercept) 0.25 0.50 

Participant ID (intercept) 0.17 0.41 

Number of observations: 59886; groups: conversation_id: 59, participant_id: 118 

 

Figure 16. Proportion of idea units from the original conversation that were recalled as a 

function of whether participants said it or heard their interlocutor say it. 
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Figure 17. Proportion of idea units from the original conversation that were recalled as a 

function of fluency (Panel A), backchanneling (Panel B), and disagreement (Panel C). 

 

Discussion 

 

Conversations can be impactful, important parts of life, yet prior research indicates that 

our ability to recall the details of prior conversations is limited (Hjelmquist & Gidlund, 1985; 

Isaacs, 1990; Miller et al., 1996; Fischer et al., 2015; McKinley et al., 2017; Ross & Sicoly, 

1979; Zormpa et al., 2019). The aim of this study was to understand the factors that shape 

conversational memory. In addition to our pre-registered analyses of the effect of mood on 

conversational memory, we used detailed coding of the linguistic features of interactional talk to 

attempt to predict what was going to be recalled later. Overall, our findings replicate prior 

evidence that conversational memory is limited, and egocentrically biased. Dyads conversed for 

15 minutes, and then after a 20-minute filled delay, completed a surprise free recall task. 

Participants recalled on average 28% of the idea units expressed in the original conversation, 

including 29% of their own and 26% of their partner’s ideas. With these findings in hand, we can 

then turn to what predicts successful conversational recall. 

While analyses relating the linguistic features of conversation to memory were not a part 

of our pre-registration, new discoveries in the lab led us to code four linguistic features prior to 

conducting any statistical analyses. These findings indicated that disfluency orients listeners’ 

attention to the upcoming linguistic material, improving its encoding and subsequent recognition 

(Diachek & Brown-Schmidt, 2022; also Collard et al., 2008). The findings further revealed that 

the disfluency-related mnemonic benefit was short-lived and position dependent, only occurring 
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when the critical test word was sentence-final and immediately preceded by disfluency. While 

this and other work observes a disfluency-memory boost for scripted materials (Corley et al., 

2007; MacGregor et al., 2010; Fraundorf & Watson, 2011), it was not clear if the disfluency-

related memory boost would generalize to unscripted spontaneous speech. Further, consistent 

with this and prior work indicating that some linguistic features orient attention towards 

unfolding speech stream (Fraundorf & Watson, 2011), and improve subsequent memory for it, 

we hypothesized that backchanneling may serve as an indicator of listener’s heightened 

attention, and as a result, might be predictive of better memory for conversation. Consequently, 

we coded the unscripted conversations for disfluency, backchannels and two other linguistic 

features, the discourse marker “like” and disagreement. The results of this analysis indicated that 

both disfluency and backchanneling but not disagreement or the discourse marker “like” 

increased the likelihood of that idea unit being recalled later. 

Our finding that disfluent idea units were more likely to be recalled offers key new 

insights into the disfluency-memory boost in memory for spontaneous speech. Multiple prior 

findings suggest that the reason disfluency boosts the listener’s memory for speech is that the 

disfluency orients their attention (Corley & Hartsuiker, 2011; Fraundorf & Watson, 2011; 

Diachek & Brown-Schmidt, 2022). The fact that disfluency boosted memory for both speaker 

and listener speaker raises interesting questions about the nature of the effect.  

One explanation is that speakers produce disfluency in cases where they have focused 

attention on what will be said, and it is this focused attention on what they will say that both 

results in the disfluency and boosts their own memory. If this explanation is correct, it suggests 

that it should be possible to identify features of what is about to be said (either the message, 

meaning, phrasing, or word choices) that predict both the speaker’s use of disfluency, and their 
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tendency to later remember what was eventually said. This account points to the intriguing 

possibility that the reason disfluency orients a listener’s attention to the speech stream, thereby 

boosting memory, is this tendency for disfluency to be associated with to-be-uttered information 

that grabs the speaker’s attention. This line of argumentation is consistent with the argument that 

production constraints shape distributional patterns in language, thereby shaping comprehension 

processes (MacDonald, 2013). While testing this account will likely require experimental 

manipulations of what is (likely to be) said, and thus outside the scope of the present research, 

we see this as a fruitful line of future inquiry.  

Alternatively, it is possible that the cognitive mechanisms underlying the disfluency-

related memory boost are different for speakers and listeners. Prior research demonstrated that 

disfluencies often stem from difficulties in language production (Clark, 1996; Fraundorf & 

Watson, 2014) and consequently, might be linked to increased cognitive demand, rather than 

attentional focus per se. Since effortful material is more likely to be recalled later (Tyler et al., 

1979), the downstream consequence of producing disfluency might be better memory for what is 

about to be said. Lastly, we observed that the mnemonic benefit associated with disfluency was 

not additive, in that listening to multiple disfluencies in an utterance does not significantly 

improve memory over listening to just one. Given that attentional recourses are not limitless 

(Kahneman, 1973), there might be a cap on the amount of attention that can be allocated or 

oriented towards speech upon hearing a disfluency. 

In addition to disfluency, another common feature of interactive conversation is back-

channel responses (Clark & Schaefer, 1989; Clark & Krych, 2004; Roque & Traum, 2008). The 

present findings report for the first time that backchannels are associated with better memory for 

what was said, with the utterances that are backchanneled being more likely to be recalled later 
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compared to the utterances not followed by back-channels. Given that this effect was present for 

both the person who produced the backchannel and the person who heard it, we speculate that 

the mechanism, like disfluency, may be related to attentional orienting towards the speech 

stream. 

Finally, we also coded two further linguistic features, disagreement, and the use of “like”, 

neither of which significantly impacted memory for what was said. Given prior findings that 

utterances with high interactional value, such as jokes, tend to be remembered better (Keenan et 

al., 1977), we hypothesized that disagreements – which can also be highly interactive – may be 

particularly well remembered. The lack of an effect for disagreements might be due to 

insufficient power to detect this effect. Recall that roughly only 0.2% of utterances 

communicated disagreement compared to 16% of statements that were disfluent or 14% that 

were backchanneled. It is possible that because all participants were strangers, they felt reluctant 

to express their disagreement with their conversational partners. Another possibility is the 

conversational topics discusses were not polarizing enough. 

We hypothesized that the word “like” might also influence conversational memory as, 

like disfluent filler words (um, uh…), “like” can be used by speakers when collecting their 

thoughts and preparing articulation. The use of “like” as a discourse marker is prevalent in 

spontaneous speech with some studies estimating that its frequency exceeds the frequency of the 

conjunction “and” (Tagliamonte, 2005). "like" is also more common than other related forms, 

including “you know”, “I mean”, and “well” (Beeching, 2016). While “like” shares some 

functional similarities with disfluency, some consider it to be qualitatively different from other 

disfluency types in that “like” does not constitute a natural pause (Croucher, 2004a). In addition, 

Croucher (2004b) found gender differences in the use of “like” in spontaneous speech while no 
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such differences were observed for disfluencies “um” and “uh”, further pointing to functional 

differences between “like” and disfluencies. Finally, studies of deception in both laboratory and 

real-world settings show that “um” is less common with deceptive than non-deceptive speech, 

whereas no such differences are present for the use of “like” (Arciuli, Mallard, & Villar, 2010; 

Villar, Arciuli, Mallard, 2012), again pointing to functional differences between “like” and 

disfluency. While “like” was more common that disagreements (20.79% of all idea units 

included “like” vs. 16.26% -- disfluency), “like” was not associated with a significant memory 

boost, pointing to functional differences in the impact that “like” has on memory for 

conversation. 
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CHAPTER V 

 

General Discussion 

 

Summary 

 

Linguistic labels are considered a crucial part of a concept’s representation. Yet, how 

humans access and evaluate semantic properties of lexically invoked concepts remains debated. 

Distributional semantic models, which construct vector spaces with embedded words, offer 

valuable insight for understanding the representational structure of human semantic knowledge. 

Unlike some classic semantic models, distributional semantic models lack a mechanism for 

specifying the properties of concepts, which raises questions regarding their utility for a general 

theory of semantic knowledge. In Study 1, we developed a computational model of a binary 

semantic classification task, in which participants judged target words for the referent’s size or 

animacy. We created a family of models, evaluating multiple distributional semantic models and 

mechanisms for performing the classification. The most successful model constructed two 

composite representations for each extreme of the decision axis (e.g., one averaging together 

representations of characteristically big things, and another of characteristically small things). 

Next, the target item was compared to each composite representation, allowing the model to 

classify more than 1500 words with human-range performance and to predict response times. We 

proposed that when making a decision on a binary semantic classification task, humans use task 

prompts to retrieve instances representative of the extremes on that semantic dimension and 
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compare the probe to those instances. This proposal is consistent with the principles of the 

instance theory of semantic memory. 

In Study 2, we focused on the role of linguistic reference in shaping mental 

representations of objects and object pairs as well as their memories. Previous research points to 

the beneficial effect of processing of some linguistic referential expressions on memory for 

objects. To further elucidate the relationship between linguistic reference and object 

representation, in Study 2A, we explored the effect of the demonstrative pronoun “that” on 

binding memory for objects as it had been implicated to evoke conceptual composites potentially 

akin to the idea of a “hybrid representation” of visual and linguistic information (Dessalegn & 

Landau, 2008; Scott & Sera, 2016). To probe this question, in Study 2A, participants viewed and 

manipulated images of familiar objects. Critically, the instructions were presented via pre-

recorded audio in three linguistic conditions. In the first condition, the two critical objects were 

referred to using a conjoined noun phrase (e.g., the shirt and the sheep). In two other conditions, 

the objects were named either using the pronoun “them” or the pronoun “that”. Contrary to our 

predictions, the results of the binding memory test indicated that participants were more likely to 

recognize a pair of objects as “old” when they had been referred to using two nouns (e.g., the 

shirt and the sheep). Importantly, we did not observe any differences between the conditions for 

individual memory. In Study 2B, we further probed the effect of language on the representation 

of objects by shifting focus toward (modified) noun phrases. While previous research established 

that modification improves memory for objects compared to describing them using nouns only, 

how referential modification shapes different features of objects remains largely unknown. In our 

paradigm, participants studied images of clothing items that varied on two distinct features (e.g., 

sleeve length and overall length). Simultaneously, the images were labeled using pre-recoded 
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audio descriptions highlighting one feature of an item or neither (e.g., sleeveless dress vs. dress). 

Immediately after, participants completed a recognition memory test. We found that using an 

adjective modifier increased the proportion of response “old” for that clothing item compared to 

the noun only condition. Yet, the endorsement rates were not significantly different for the 

lexicalized compared to the unlexicalized feature suggesting that modification did not 

differentially modulate recognition of distinct object features. 

Language, as it occurs in real-world settings, is complex and various linguistic levels 

beyond the lexicon might shape subsequent memory. In Study 3, we examined the linguistic 

features of spontaneous speech that determine what is and is not recalled following an unscripted 

conversation. In an empirical study of 59 dyadic conversations (118 participants), we examined 

the effects of various features of the conversation - disfluency, backchannels, “like”, and 

disagreements, on memory for what was said. While we replicated prior findings that memory 

was better for what was said than what was heard, our pre-registered predictions regarding mood 

were not supported, a finding which may relate to changes in mood throughout the conversation. 

Critically, consistent with the previous findings of a disfluency-related memory boost for pre-

recorded sentences and passages, we identified two linguistic features that did promote recall. 

Extending prior findings with scripted and pre-recorded materials, disfluency (um/uh) promoted 

conversational recall, as did backchannelling (ok, yeah). Interestingly, the disfluency-related 

memory boost was similar for both the speaker and the listener and was observed regardless of 

the number of disfluencies in the utterance. These findings point to the intriguing possibility that 

the reason disfluency orients a listener’s attention to the speech stream, thereby boosting 

memory, is that the speaker, too, has focused attention on what will be said. In sum, we report 
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that linguistic features of spontaneous speech as they occur in unscripted conversation are 

predictive of what is and is not recalled. 

 

Conclusion 

 

To conclude, this dissertation contributes to the literature characterizing the relationship 

between language and memory. More specifically, the three studies examined the effect of 

language on memory and the associated cognitive mechanisms by focusing on the ways in which 

individuals access and manipulate the information encoded within linguistic labels for concepts 

(Study 1), the effect of different types of linguistic reference on binding memory for objects and 

distinct object features (Study 2), and finally, the effect of spoken language features such as 

disfluency and backchanneling on memory for real-world experiences (Study 3). Taken together, 

our findings point to an existence of a nuanced relationship between language and memory with 

many facets of language shaping representations and consequent memories of concepts, objects, 

and real-world experiences. We hope that this work will deepen our understanding of language 

and memory, and human cognition more broadly, and will inspire new lines of research. 
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APPENDICES 

List of unambiguous words used in the construction of the composite semantic evaluation model. 

Big Small Animate Inanimate 

acrobat 

actor 

actress 

adolescent 

adult 

africa 

agent 

aircraft 

airplane 

airport 

alley 

ambulance 

ancestor 

antelope 

antler 

apartment 

ape 

arena 

army 

artist 

asia 

assistant 

astronaut 

atmosphere 

attorney 

audience 

aunt 

author 

automobile 

baker 

ballerina 

bandit 

bank 

banker 

barn 

bartender 

bay 

beach 

bedroom 

beggar 

almond 

ant 

apple 

aspirin 

bacon 

bait 

bandage 

bead 

bean 

bee 

berry 

bible 

bluejay 

bracelet 

broccoli 

bruise 

bubble 

buckle 

bug 

butter 

butterfly 

button 

camera 

candle 

card 

cardinal 

carrot 

cashew 

caterpillar 

cent 

chalk 

charcoal 

checkers 

cheddar 

cheek 

chemical 

cherry 

chip 

chocolate 

cinnamon 

acrobat 

actress 

adolescent 

adult 

alligator 

antelope 

ape 

apple 

architect 

artist 

assistant 

astronaut 

athlete 

audience 

author 

ballerina 

bartender 

bear 

beaver 

beggar 

biologist 

bird 

boy 

boyfriend 

brother 

bull 

burglar 

butcher 

butler 

butterfly 

camel 

canary 

candidate 

captain 

carpenter 

cat 

cheerleader 

chef 

child 

chimpanzee 

acid 

aircraft 

airport 

album 

alley 

ambulance 

anchor 

antenna 

apartment 

application 

apron 

article 

ashtray 

atlas 

attic 

automobile 

award 

badge 

bag 

balcony 

ball 

balloon 

ballot 

bandage 

barn 

baseball 

basement 

basket 

basketball 

bassinet 

bath 

bathroom 

bathtub 

battery 

bay 

beach 

bedroom 

beer 

belt 

bench 
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bicycle 

bike 

biologist 

bison 

blackboard 

blockade 

boat 

body 

booth 

boss 

boy 

boyfriend 

bridge 

brother 

brunette 

buffalo 

building 

bull 

bully 

bureau 

bus 

camel 

canoe 

canvas 

canyon 

capital 

captive 

car 

caravan 

carnival 

carpenter 

carriage 

cashier 

castle 

cathedral 

cattle 

ceiling 

cellar 

champion 

chapel 

chauffeur 

cheerleader 

chef 

chemist 

chief 

church 

clove 

coal 

cocktail 

coin 

coleslaw 

collar 

compass 

cookie 

cork 

cotton 

cream 

crumb 

crystal 

cue 

cuff 

cup 

daisy 

dandruff 

diamond 

diaper 

dice 

dime 

dollar 

doorbell 

dough 

drug 

dust 

ear 

earring 

egg 

electron 

envelope 

eyelash 

feather 

fig 

finger 

fingernail 

fish 

fist 

flask 

flea 

flower 

fly 

foot 

fragrance 

freckle 

climber 

cobra 

colonel 

comedian 

companion 

consumer 

cousin 

cow 

cowboy 

creature 

cricket 

criminal 

crocodile 

crow 

customer 

dad 

dancer 

deer 

dentist 

dictator 

doctor 

driver 

eagle 

electrician 

elephant 

elk 

emperor 

employee 

employer 

farmer 

father 

fireman 

fish 

flower 

friend 

frog 

gentleman 

girl 

goose 

gorilla 

grasshopper 

guest 

gymnast 

hawk 

hen 

hornet 

beverage 

bicycle 

bill 

biscuit 

blackboard 

blanket 

blockade 

blueprint 

board 

boat 

bolt 

bomb 

book 

boot 

booth 

bottle 

bouillon 

boulder 

boulevard 

bowl 

box 

bracelet 

brake 

brandy 

brick 

bridge 

brook 

broom 

brush 

buckle 

buggy 

building 

bulb 

bulletin 

bun 

bureau 

bus 

button 

cabin 

cafe 

cafeteria 

cage 

cake 

calculator 

calendar 

camera 
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citizen 

clerk 

cliff 

climber 

closet 

coach 

college 

colonel 

comet 

commander 

community 

computer 

concert 

conductor 

consumer 

contractor 

convent 

cook 

cooler 

cop 

copier 

corporation 

couch 

country 

county 

cow 

cowboy 

criminal 

critic 

cupboard 

curtain 

cyclone 

dad 

dam 

daughter 

dentist 

department 

designer 

detective 

dictator 

dinosaur 

dishwasher 

diver 

doctor 

dolphin 

donkey 

fries 

frost 

garlic 

gem 

gene 

germ 

gin 

glasses 

grape 

gum 

hand 

heel 

honey 

jar 

jello 

jewel 

key 

kitten 

label 

lace 

leaf 

lemon 

lens 

lime 

lint 

lipstick 

lizard 

lock 

lollipop 

loop 

magnet 

mascara 

match 

mint 

mitten 

molecule 

money 

mosquito 

moss 

moth 

mouse 

mouth 

nail 

napkin 

necklace 

needle 

horse 

hostess 

hound 

husband 

infant 

instructor 

inventor 

kid 

lady 

leader 

lion 

lover 

mailman 

man 

manager 

mayor 

miner 

mob 

mongoose 

monk 

monkey 

moth 

mother 

mouse 

mule 

navigator 

nephew 

niece 

nun 

nurse 

octopus 

officer 

otter 

outlaw 

owl 

ox 

oyster 

parent 

parrot 

partner 

patient 

pedestrian 

pelican 

penguin 

person 

philosopher 

can 

canal 

candle 

cane 

cannon 

canoe 

canvas 

cap 

cape 

caravan 

card 

carpet 

cart 

carton 

cash 

casket 

castle 

cathedral 

cave 

cellar 

cello 

cemetery 

cent 

chain 

chalk 

chamber 

champagne 

charcoal 

check 

checkers 

chime 

chimney 

chisel 

church 

cigar 

cigarette 

cinnamon 

clay 

cliff 

clippers 

closet 

clothes 

coal 

cobweb 

coffin 

coin 
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door 

dorm 

dragon 

driver 

dryer 

dungeon 

earth 

editor 

egypt 

electrician 

elephant 

elk 

emperor 

empire 

employee 

employer 

engineer 

escalator 

europe 

factory 

family 

farm 

farmer 

father 

field 

fighter 

fleet 

florida 

forest 

fort 

fountain 

france 

freeway 

friend 

furniture 

galaxy 

gang 

gangster 

garage 

garden 

general 

gentleman 

giraffe 

girl 

gorilla 

governor 

nitrogen 

nose 

note 

novel 

nucleus 

nut 

ointment 

olive 

ornament 

peanut 

pear 

pearl 

pedal 

pen 

penny 

pill 

pimple 

pin 

plaque 

pocket 

poison 

popcorn 

proton 

prune 

puck 

quarter 

raisin 

rat 

razor 

ribbon 

ring 

salt 

sand 

sapphire 

saucer 

sausage 

screw 

seed 

shoe 

shoelace 

shrimp 

signature 

slime 

slug 

snack 

soap 

pig 

pirate 

plumber 

poet 

politician 

pony 

preacher 

president 

priest 

prince 

princess 

prisoner 

producer 

professional 

puppy 

quail 

queen 

rabbit 

raccoon 

referee 

reptile 

robber 

roommate 

rooster 

rose 

runner 

sailor 

salesman 

salmon 

scallop 

secretary 

sergeant 

serpent 

shark 

sheep 

shepherd 

sibling 

sister 

snake 

son 

spider 

spouse 

stewardess 

stranger 

student 

surgeon 

coleslaw 

cologne 

column 

compass 

computer 

cone 

contract 

convent 

cookbook 

cookie 

cooler 

copier 

cord 

cottage 

couch 

court 

cracker 

crater 

crayon 

crevice 

crown 

crutch 

cube 

cuff 

cup 

cupboard 

curb 

cushion 

custard 

cyclone 

cylinder 

dagger 

dam 

dart 

dashboard 

deck 

denim 

deodorant 

desk 

dessert 

detergent 

diagram 

dial 

diamond 

diary 

dice 
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graduate 

grave 

groom 

guard 

guardian 

gym 

gymnast 

haystack 

helicopter 

herd 

hero 

highway 

hiker 

horse 

hospital 

house 

human 

hurricane 

iceberg 

igloo 

inmate 

instructor 

inventor 

island 

jeep 

jet 

judge 

jungle 

jupiter 

kangaroo 

keeper 

king 

kitchen 

lady 

landscape 

lawn 

lawyer 

leader 

leopard 

lieutenant 

limousine 

lion 

lodge 

london 

lounge 

lover 

sock 

spice 

spider 

sponge 

spool 

staple 

straw 

strawberry 

string 

syringe 

tack 

tag 

tangerine 

tart 

tea 

thermometer 

thimble 

thorn 

thumb 

tick 

ticket 

toad 

toast 

toe 

tomato 

toothbrush 

toothpaste 

trigger 

tulip 

turnip 

tweezers 

twig 

virus 

vitamin 

wallet 

wasp 

wax 

wick 

wire 

worm 

wound 

wrench 

wrist 

yolk 

swan 

swimmer 

teacher 

teenager 

termite 

thief 

toad 

tortoise 

tourist 

traitor 

turtle 

typist 

uncle 

victor 

visitor 

waiter 

waitress 

walrus 

warrior 

whale 

winner 

witness 

wolf 

woman 

zebra 

dime 

diner 

dinner 

diploma 

disc 

dish 

dock 

doll 

dollar 

doorbell 

dough 

drawer 

dress 

drink 

driveway 

drug 

dryer 

dune 

dungeon 

dustpan 

earring 

elevator 

encyclopedia 

engine 

eraser 

escalator 

essay 

explosion 

factory 

feast 

feather 

fiddle 

fireplace 

flag 

flannel 

flashlight 

flask 

fleet 

floor 

flour 

fort 

fossil 

fragrance 

freeway 

fudge 

funeral 
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magician 

man 

manager 

mansion 

mars 

mattress 

meteor 

microwave 

military 

mister 

moat 

mob 

monster 

moon 

moose 

mother 

motorcycle 

mountain 

museum 

neptune 

newsstand 

nun 

ocean 

office 

officer 

opera 

orchestra 

outdoors 

owner 

painter 

palace 

parent 

paris 

partner 

party 

passenger 

path 

patient 

patriot 

pavement 

pedestrian 

people 

person 

philosopher 

piano 

picnic 

fur 

furniture 

gallon 

garage 

garbage 

gauze 

gavel 

gin 

glacier 

glass 

glasses 

glue 

gold 

gown 

grave 

gravel 

grease 

grill 

ground 

hail 

hammer 

hammock 

hamper 

handbag 

handcuffs 

hanger 

hatchet 

haystack 

heater 

helmet 

hoe 

hood 

hook 

hoop 

horizon 

hospital 

hurricane 

hut 

igloo 

incense 

inn 

iron 

item 

jacket 

jar 

jeans 
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pirate 

planet 

playground 

plumber 

pluto 

police 

politician 

pony 

pool 

pope 

prairie 

preacher 

predator 

president 

priest 

primate 

prince 

prison 

producer 

professor 

pub 

publisher 

queen 

radiator 

raft 

railroad 

ram 

rebel 

receptionist 

referee 

refrigerator 

reindeer 

resort 

restaurant 

river 

road 

robber 

robot 

roof 

room 

roommate 

runner 

sailor 

salesman 

saturn 

scientist 

jello 

jelly 

jewel 

journal 

jug 

keg 

kettle 

key 

keyboard 

kitchen 

kite 

kleenex 

knapsack 

knife 

knob 

knot 

labyrinth 

lace 

lamp 

lash 

letter 

lightning 

linen 

lint 

literature 

lock 

lodge 

lollipop 

lounge 

luggage 

lunch 

macaroni 

magazine 

magnet 

mailbox 

mall 

marble 

marker 

mask 

mat 

match 

mattress 

mayonnaise 

medal 

medication 

medicine 
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seashore 

senate 

senator 

servant 

shark 

shed 

sheep 

shelter 

shepherd 

sheriff 

ship 

shore 

shrine 

sibling 

sister 

skeleton 

slope 

society 

soldier 

spouse 

stable 

stairs 

stallion 

statue 

store 

stranger 

stream 

street 

student 

submarine 

suburb 

sun 

supermarket 

supervisor 

suspect 

sword 

tank 

tavern 

taxi 

teacher 

team 

technician 

temple 

territory 

tiger 

toilet 

meteor 

microphone 

microscope 

mirror 

missile 

mitten 

monument 

moon 

mop 

motel 

motor 

motorcycle 

mug 

nail 

napkin 

needle 

net 

newspaper 

newsstand 

nickel 

nicotine 

nightgown 

nitrogen 

notebook 

oboe 

office 

ointment 

ornament 

outfit 

oval 

oven 

pad 

paddle 

pail 

paint 

painting 

palace 

pan 

pants 

paper 

parcel 

passage 

pasta 

path 

patio 

pavement 
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tornado 

tower 

town 

tractor 

traitor 

tree 

tribe 

tricycle 

trombone 

tunnel 

umpire 

uncle 

unicorn 

universe 

university 

van 

vehicle 

venus 

villain 

visitor 

volcano 

volunteer 

waiter 

waitress 

wall 

walrus 

warehouse 

warrior 

waterfall 

well 

whale 

wife 

winner 

wolf 

woman 

worker 

world 

yacht 

yard 

zoo 

pedal 

pen 

pencil 

penny 

pepper 

perfume 

periscope 

phone 

pick 

pill 

pipe 

pistol 

pit 

pitchfork 

plaid 

plaster 

plate 

plaza 

pliers 

pocket 

pocketbook 

poison 

polyester 

pool 

port 

portrait 

pot 

pottery 

powder 

pub 

puck 

pudding 

pump 

puzzle 

quill 

racket 

radiator 

radio 

raft 

rag 

railroad 

rake 

razor 

receipt 

recipe 

record 
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refrigerator 

relish 

report 

restaurant 

rifle 

ring 

road 

robe 

rock 

rocket 

roof 

room 

roost 

ruby 

rum 

saddle 

saloon 

salt 

sand 

sandwich 

sapphire 

saturn 

saucer 

scale 

scalpel 

scissors 

scotch 

screen 

screw 

screwdriver 

scribble 

sculpture 

seat 

shack 

shampoo 

shears 

shed 

shelf 

ship 

shirt 

shoe 

shoelace 

shop 

shortcake 

shovel 

shutter 
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sickle 

sidewalk 

siding 

sign 

signature 

sink 

sketch 

ski 

skyscraper 

slacks 

sleeve 

slime 

sliver 

slope 

snack 

snorkel 

soap 

sock 

sofa 

spatula 

spit 

spoon 

stage 

stairs 

stake 

stamp 

stapler 

step 

stereo 

stethoscope 

sticker 

stocking 

stone 

stool 

stove 

straw 

street 

string 

submarine 

suit 

suite 

sunrise 

sunset 

supermarket 

supper 

survey 
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swing 

switch 

table 

tack 

tag 

tank 

tape 

taxi 

teapot 

telephone 

telescope 

temple 

thermometer 

thimble 

tie 

tile 

toilet 

tool 

toothbrush 

toothpaste 

torch 

towel 

toy 

tractor 

train 

trash 

tray 

tread 

treasure 

treat 

trench 

triangle 

tricycle 

trophy 

truck 

trumpet 

tub 

tunnel 

twine 

typewriter 

umbrella 

underwear 

uniform 

vacuum 

van 

vehicle 



 118 

velvet 

vent 

venus 

vinegar 

viola 

violin 

volleyball 

wagon 

wall 

wallet 

wand 

wardrobe 

wave 

wax 

well 

wheel 

whip 

whistle 

wick 

windshield 

xerox 

yacht 

yarn 
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