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CHAPTER 1

Introduction

1.1 Problem Overview

Over the past few decades, Artificial Intelligence (AI) has advanced significantly and has become a prevalent

technology that impacts various aspects of our daily lives. Deep learning (DL) models, which serve as the

cornerstone of AI, have found numerous applications in areas such as computer vision, natural language pro-

cessing, and speech. One key aspect of these application is voice quality service. Despite the various means

of communication available today, such as phone calls, emails, and social media posts, voice communication

remains an important and intuitive means of exchanging information. While research has focused on im-

proving the physical properties of voice service like noise suppression [2] (more clarity), de-reverberation [3]

(echo cancellation), and packet loss concealment [4] (stalling prevention), there has been less attention on

the content and intention of conversations. Previous research [5] has summarized the main tasks for speech

communities into four aspects: content, speaker, semantics, and paralinguistics. Content tasks include Au-

tomatic Speech Recognition (ASR), Keyword Spotting (KS), and Phoneme Recognition (PR) which aims to

answer what one says and ignores other properties of speech. Speaker tasks include Speaker Identification

(SID), Automatic Speaker Verification (ASV), and Speaker Diarization (SD) which focus solely on answer-

ing who is speaking and when. Semantics tasks include Slot Filling (SF) and Intent Classification (IC) and

tries to answer why one says this and if is it correct. Paralinguistics tasks are all about how one says it, e.g.,

Emotion Recognition (ER). In this paper, we choose three areas out of the four and aligned them with three

foundational elements of AI: Data, Algorithms, and Computing Power. We found that DL models excel in

each of the tasks (achieved state-of-the-art) and further discussed training on low-resource hardwares.

In this dissertation, we will investigate the use of low-resource deep learning models to improve the

quality of voice communication with data generation, efficient algorithm, training and inference hardware

utilization. We propose the creation of Voice Analysis as a Service (VAaaS), which offers spoof detection,

interruption detection, voice-to-command generation, low-resource training to enhance the quality of voice

communication. Specifically, we will investigate the following four challenges: 1. Protect conversation

participants from spoofing attacks to enhance security. 2. Classify speech overlaps to promote more inclusive

and engaging conversations for online meetings. 3. Use English speech for asking machines to perform

complex tasks intuitively. 4. Use CPU for training Deep Learning models.

Our research question is: How do we use low-resource deep learning to create voice analysis services
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that improve the quality of conversations? Through this research, we aim to provide a comprehensive

understanding of how to use low-resource deep learning to enhance the quality of voice communication and

facilitate more effective interactions between humans and machines.

Figure 1.1: Paper domain distribution

1.2 Challenge 1: Integrate traditional method with deep learning for faster training, a case study of

Spoof Speech Detection for communication security

The increasing popularity of smart appliances has streamlined our daily chores but also brought security con-

cerns. It is currently estimated that over 35% of the US adult population owns a smart speaker at home [6].

These voice assistants are becoming increasingly versatile and can automate various tasks, ranging from mak-

ing a phone call to placing an order. However, many of these tasks require different levels of privileges that

are tied to the identity of the person interacting with the voice assistant. Thus, identifying ”who is speaking”

has become a crucial aspect of personalized voice services. In comparison to Speaker Identification, which

focuses on personalization, Speaker Verification is a binary classification of the validity of user identity claims

for biometric security.

Spoofing attacks against speaker verification systems can be broadly categorized into three groups: Text-

To-Speech (TTS), Voice Conversion (VC), and Replay Attacks. Among these, replay attacks, which involve

the playback of a recorded sample of the victim’s speech to fool the identification system, are the most preva-

lent as they require the least technological sophistication. However, this type of attack can be mitigated by

incorporating random prompt words into the system. With the rapid advancement of deep learning tech-

niques, TTS and VC models have seen significant improvement in their ability to deceive speaker verification

systems. For instance, models such as Tacotron2 [7] are capable of generating high-quality synthetic speech

from text that is almost indistinguishable from human speech.

Audio files are typically stored as 1D vectors that are extremely large in size (1 second of audio recording

with a sampling rate of 16kHz contains 16000 data points). Due to their length, they are traditionally pre-

processed to create a compressed representation that is smaller in size, while attempting to preserve as many

2



important features as possible, prior to the application of spoof detection. The component responsible for

this preprocessing step is known as the front-end. Front-ends can be either handcrafted or learnable, and the

process of selecting appropriate handcrafted front-ends is commonly referred to as feature selection. Both

types of front-ends include filter layers and constraints can be applied to the filters.

Although handcrafted front-ends have been shown to be a strong baseline for a variety of tasks, the under-

lying concept behind the design of these features is based on the non-linearity of the human ear’s sensitivity

to frequency (Mel scale) and loudness (Log compression). Therefore, they may not always represent the

most salient features for audio classification across all domains. Empirical studies have shown that learnable

front-ends generally outperform handcrafted front-ends in 7 out of 8 audio classification tasks [8]. How-

ever, CNN-based front-ends often have large kernels that require extensive training and inference time. This

chapter discussed the possibility of integrating traditional methods with standard deep learning methods,

specifically proposing an algorithm that considers model size, inference time, and accuracy. This is particu-

larly relevant in the context of developing a front-end for audio, as they are often part of the model running

on smart speakers which have limited resources and require real-time response.

1.3 Challenge 2: Real-time Interruption Detection on mobile device with light-weight DL model in-

ference for communication inclusiveness

Meetings are an essential form of communication for all types of organizations, and remote collaboration

systems have become extremely common since the COVID-19 pandemic. One of the major challenges faced

during remote meetings is the difficulty for remote participants to interrupt and speak [9]. In fact, the inability

of virtual meeting participants to effectively interrupt and speak has been identified as the primary obstacle

to achieving more inclusive online meetings [9]. Remote participants may often try to join a discussion, but

are unable to do so as other speakers are talking. We refer to these attempts as failed interruptions.

Too many failed interruptions may alienate participants and lead to a less effective and inclusive meeting

environment, which can further impact the overall working environment and employee retention at organiza-

tions [10]. Our previous research [10] has explored the feasibility of mitigating this issue by creating a failed

interruption detection model that prompts the failed interrupter to raise their virtual hands and gain attention,

a feature that is beneficial for enhancing meeting inclusiveness but rarely used.

The WavLM-based Speech Interruption Detection model (WavLM SI) [10] was deployed in the Azure

cloud and has proven to be a useful feature. Through client integration, the reach of this model can be ex-

panded to a broader range of customers without incurring additional costs associated with cloud deployment,

as well as reducing the environmental impact by eliminating the need for a dedicated service. However, it

should be noted that the original model is based on a pre-trained speech model, which is computationally

3



intensive and therefore not suitable for deployment on client devices. To be deployed on clients, the model

must be optimized to meet the constraints of memory, computation, and energy efficiency. A demonstration

video of the WavLM SI model is available here.

We developed the first speech analysis model that detects failed speech interruptions, which exhibits very

promising performance and is being deployed in the cloud [10]. While it is economically desirable to run

this model on client devices, its large size and computational complexity present a challenge for deployment

on such devices. In the field of speech analysis, there is a prevalent emphasis on achieving high levels of

accuracy, without sufficient attention given to trade-offs such as model size, inference time, hosting costs and

environmental impact. Therefore, there is a pressing need for solutions that enable the deployment of speech

analysis models on client devices, in order to ensure privacy and low latency.

In this chapter, we present a methodology for improving the performance of a failed speech interruption

detection model. Specifically, we describe how we were able to enhance the True Positive Rate (TPR) from

50.93% to 68.63% by training on a larger dataset and fine-tuning the model. Furthermore, we demonstrate

how the model size was reduced from 232.4 MB to 9.8 MB with only a slight decrease in accuracy, and

the computational complexity was reduced from 31.2 GMACs to 4.3 GMACs. Additionally, we provide an

estimation of the environmental impact of moving the model from the cloud to client devices, which can serve

as a general guideline for large machine learning model deployment and make these models more accessible

with a reduced environmental footprint.

1.4 Challenge 3: How to generate high quality training data for more intuitive communication, a case

study with NL2Command

Automating the conversion of natural language to executable computer programs is a long-coveted goal that

has recently experienced a resurgence of interest amongst researchers and practitioners. In particular, convert-

ing natural language to Bash (which is a shell scripting language for UNIX systems) has emerged as an area

of interest, with the goal of automating repetitive tasks, such as file manipulation, search, and application-

specific scripting. In the near term, natural language to Bash Commands translation is unlikely to replace

discussion groups or help forums completely. They can, however, provide a quick reference mechanism that

may improve on-demand code suggestions and popups generated by integrated development environments

(IDEs). This type of AI-based approach complements other prior work, such as SOFix [11], which can fix

bugs in code by mining postings in Stack Overflow.

The NL2Bash problem can be described as a semantic parsing challenge, i.e., creating a mapping from

natural language to a formal, executable representation [12]. The NLC2CMD competition, held at the

NeurIPS 2020 conference, has been a driving force in the advancement of efforts to address this problem.
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Our recent participation in this competition resulted in the creation of an architecture that significantly im-

proved the state-of-the-art performance in the translation of natural language to Bash Commands, increasing

the accuracy from 13.8% to 53.2% [13]. Our transformer model, developed for the NLC2CMD competition,

has been acknowledged as the current leading architecture for this problem [14].

The task of natural language to Bash command translation, commonly referred to as the NL2Bash prob-

lem, has traditionally been reliant on the availability of a specific dataset, namely the NL2Bash corpus [15].

This corpus, which comprises of over 9000 English-command pairs, was created through the manual scraping

of frequently used Bash Commands from various sources such as forums, tutorials, tech blogs, and course

materials. The construction of the NL2Bash corpus was achieved through the hiring of freelance software

engineers, who were tasked with manually searching, browsing, and entering data through a web interface.

These freelancers were able to construct approximately 50 English-command pairs per hour, prior to the fil-

tering and cleaning of the dataset [15]. This manual approach, although effective in generating a dataset, is

resource-intensive, as it requires specialized labor from freelancers, which can be time-consuming and costly.

Additionally, this approach is not scalable as the marginal cost of labor does not significantly decrease as the

size of the dataset increases.

Data scarcity is a common issue in the field of machine translation, as it often necessitates a large volume

of parallel data, which can be difficult to obtain. While there are typically larger datasets available for single

language corpus, to the best of our knowledge, we did not find a Bash dataset that was sufficient for our task.

In light of this, we devised a pipeline for the synthesis of a Bash dataset.

The utilization of dataset synthesis and augmentation has been widely explored in various translation

tasks. Nguyen et al. [16] explored the use of combining augmented data with the original dataset to boost

the accuracy of neural machine translation between human languages. Zhao et al. [17] also explored data

augmentation in neural machine translation to improve dataset diversification. Notably, Agarwal et al. [18]

proposed using document similarity methods to create noisy parallel datasets of code, enabling the advance-

ment of machine translation with monolingual datasets.

In our work on Bash command generation, we adopted a two-step approach: (1) Scraping syntax and flag

structures from the Bash manual pages for efficient command generation, and (2) Training a back-translation

model for accurate command summarization. This methodology allowed us to construct a dataset of English-

command pairs that is over six times larger than the original NL2Bash dataset.

Bash manual pages provide an overview of Bash features and are considered as the authoritative reference

on shell behavior [19], offering comprehensive and accurate guidance for Bash usage. Recent research has

examined the utilization of manual page data for assistance in Bash to natural language translation [20] by

processing the page descriptions to aid the translation model. However, in our work, we discovered that the
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manual pages also offered additional insight and sufficient context into utility-flag relationships to generate a

new dataset from scratch.

1.5 Challenge 4: A methodology guide for efficient DL model training on CPU

Deep learning (DL) models have been extensively utilized in a variety of domains such as computer vision,

natural language processing, and speech-related tasks, as reported in literature [21; 22; 23; 24]. The DL mod-

els are implemented using popular frameworks such as PyTorch [25], TensorFlow [26], and OpenVINO [27].

The DL models are executed on a wide range of hardware platforms, including general-purpose processors

such as CPUs and GPUs, as well as customizable processors such as FPGA and ASICs, which are often

referred to as XPUs [28]. The diversity of hardware poses a challenge for proposing a universal methodology

for efficient training of DL models. While GPUs have been the dominant hardware for deep learning tasks,

comparatively little research has been conducted on optimizing DL models for execution on CPUs, partic-

ularly for training [29]. Previous research on DL models on CPUs have primarily focused on performance

comparisons between CPUs and GPUs [30; 31; 32; 33] or solely on CPU inference [34].

For organizations with limited resources or existing CPU servers, the training of deep learning models can

be a time-consuming and computationally intensive task. One important question to address when optimizing

training performance on CPUs is determining the appropriate metrics to guide the optimization process.

Several metrics and benchmarks have been proposed in literature to evaluate the performance of deep learning

workloads and training. For instance, Multiply-Accumulate (MAC) operations have been utilized as a proxy

for FLOPs to measure the computational complexity of Convolutional Neural Network (CNN) models [35].

Time-to-Train (TTT) is a widely adopted metric for measuring the training performance of deep learning

models, which is measured by the time taken for a model to reach a certain level of accuracy. NetScore [36]

is a universal metric proposed for deep learning models, which balances the trade-off between information

density and accuracy.

Until recently, a widely accepted benchmark for deep learning models that encompassed a broad range

of domain tasks, frameworks, and hardware had yet to be established. The MLPerf benchmarking suite [37]

was proposed as a comprehensive benchmark to cover a variety of tasks and hardware. This effort has been

supported by many major technology companies who have participated in the MLPerf challenge to improve

the training performance of deep learning models across various domains. Intel, in particular, has been

actively participating in the MLPerf challenge to improve the training performance of deep learning models

across multiple domains.

As the pursuit of model performance leads to the training of larger and more complex models using

larger datasets, the cost in terms of hardware requirements also increases. While deep learning models are
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becoming more powerful, they also require more resources. There is a growing concern about the potential

for AI monopolies by a few large companies (Nvidia has 80% share of AI processors in 2020), as they have

access to exclusive large datasets, the expertise to create cutting-edge algorithms, and the resources to utilize

high-end computing hardware at scale [38]. Additionally, the trend towards multi-modality models [39] and

foundational models [40], which enable a single model to perform a wide range of tasks across domains

and are trained on vast datasets, is exacerbating the gap between large companies and the general public.

Therefore, it is crucial to adapt deep learning to low-resource settings, in order to promote more research and

advancements in conversation improvement.
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CHAPTER 2

Faster training algorithm: Learnable Audio Front-End for Spoof Speech Detection

2.1 Problem Overview

Spoof speech can be used to attempt to deceive speaker verification systems that determine the identity of the

speaker based on voice characteristics. This chapter compares popular learnable front-ends on this task. We

categorize the front-ends by defining two generic architectures and then analyzing the filtering stages of both

types in terms of learning constraints. We propose replacing fixed filterbanks with a learnable one that can

better adapt to anti-spoofing tasks. The proposed FastAudio front-end is then tested with two popular back-

ends to measure its performance on the LA track of the ASVspoof 2019 dataset. The FastAudio front-end

demonstrated a relative improvement of 27% when compared with fixed front-ends, outperforming all other

learnable front-ends on this task. This chapter provides the following contributions to the study of defending

against audio spoofing attacks:

1. It proposes a light-weight1 learnable front-end called FastAudio that achieved the lowest min t-DCF in

spoof speech detection compared to other front-ends,

2. It provides a comparison of feature selections for spoofing countermeasures, with a special focus on

learnable audio front-ends, and demonstrates how incorporating shape constraints in the filterbank layer

improves performance while reducing the number of parameters, and

3. It describes the architecture that achieved top performance on the ASVspoof 2019 [41] dataset.

2.2 Related Work and Challenges

Previous research has explored the feasibility of learnable filterbanks. For example, the work presented

in nnAudio [42] implemented a set of unconstrained learnable filterbanks; however, T. Sainath et al. [43]

reported limited improvement from unconstrained filterbank learning. DNN-FBCC [44] explored some con-

straints over filters by adopting a mask matrix. Zhang and Wu [45] described a detailed study on the shape

and positiveness constraint’s effect on the filterbanks. Despite these efforts, to date, no comprehensive study

has been conducted on the impact of constraining filterbank shape in the context of STFT-based spoof speech

detection.

As shown in Table 2.1, all current FST based front-ends put shape constraints on the band-pass filters;

however, STFT based front-ends, like DNN-FBCC, do not constrain the filter shape. Instead, a mask is put
1Front-end trains faster and has the least computational complexity as estimated by multiply–accumulate operations (MACs) com-

pared to other learnable front-ends. See Table 2.4, https://pypi.org/project/ptflops/.
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Table 2.1: Filter Comparison of Learnable Front-end

Type Name Filter/BandWidth Center Frequency Gain
Shape Clamp Sorted Clamp

FST TD-FBanks Gabor - Yes Yes -
based SincNet Sinc Yes No Yes Fixed

LEAF Gabor Yes No Yes Fixed
STFT nnAudio - No No No -
based DNN-FBCC - Yes Yes Yes -

FastAudio Triang Yes No Yes Fixed

on the filters so that the bandwidth is clamped and the filters are sorted by center frequencies. Therefore, we

designed a learnable front-end, named FastAudio, which aims to address the following research questions:

1. Is a shape constraint necessary for spoof detection, if so, what specific shape constraint yields the

lowest minimum t-DCF?

2. Is the sorting of center frequencies necessary for spoof detection?

3. What do trained filterbanks learn about spoof detection in comparison to handcrafted FBanks?

2.3 Experiment and Dataset

The ASVspoof 2019 corpus is composed of two distinct components: Logical Access (LA) and Physical

Access. In this study, we focus specifically on the LA task. The LA dataset comprises of synthetic speech,

generated through various text-to-speech and voice conversion techniques, referred to as spoof speech and

true speech audio files referred to as Bona fide speech. As there are already established Automatic Speech

Verification (ASV) systems that provide some level of protection against spoofing attacks, the objective of

this research is to design a system, referred to as Countermeasures (CM), that can effectively complement

existing ASV systems. The performance of the proposed system is evaluated using the tandem detection cost

function (min t-DCF), which is considered to be a metric that best reflects the real-world protection effects.

2.3.1 Dataset

The performance of the FastAudio learnable front-end is evaluated on the ASVspoof 2019 LA dataset. As

shown in Table 3.2, the dataset was partitioned into three parts where the evaluation set is three times the

size of the training set. The training and development sets contain data generated from the same algorithms;

however, to ensure the spoof detection system can generalize well to audio of unseen types, the evaluation set

also contains attacks that are generated from different algorithms.
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Table 2.2: Description of ASVspoof 2019 dataset (LA)

Subset #Speaker #Utterances
Male Female Bona fide Spoofed

Training 8 12 2580 22800
Development 8 12 2548 22296

Evaluation 21 27 7355 63882

2.3.2 Metrics

The primary metric for evaluating the performance of spoof speech detection systems is the minimum nor-

malized tandem detection cost function (min t-DCF), as shown in Equation 2.1. The min t-DCF measures

the overall protection rate for combined CM and ASV systems, where β depends on application parameters

(priors, costs) and ASV performance (miss, false alarm, and spoof miss rates), while Pcm
miss(s) and Pcm

fa (s) are

the CM miss and false alarm rates at threshold s [41]. A secondary metric, Equal Error Rate (EER), is also

used to facilitate comparison with earlier datasets such as ASVSpoof 2017. EER is defined as the value at

which the False Acceptance Rate and False Rejection Rate are equal.

t−DCFmin
norm = min

s
{βPcm

miss(s)+Pcm
fa (s)} (2.1)

2.3.3 Back-end

Our FastAudio front-end consists of an STFT transform followed by a learnable filterbank layer, and finally

a log compression layer to mimic the non-linearity of human sensitivity to loudness. We integrated the

front-ends with two of the most popular back-ends for audio classification: X-vector [46] [47] and ECAPA-

TDNN [48] [47]. The back-end converts the filterbank variant into a 256-dimensional embedding vector,

which is then fed into a linear classifier.

Table 2.3: X-vector and ECAPA-TDNN

X-vector ECAPA-TDNN
Layer Output Layer Output
Input (N, T′) Input (N, T′)
TDNN X 5 (1500, T′) Conv1D + ReLU + BN (C, T′)
Stats Pool (3000, 1) SE-Res2Block X 3 (3, C, T′)
Linear (256, 1) Conv1D + ReLU (1536, T′)

Atten Stats Pool + BN (3072, 1)
FC + BN (256, 1)
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2.3.4 Experimental Setup

The model was trained on 2 Nvidia 2080 Ti GPUs for 100 epochs and the batch size was set to 12 (except for

TD-filterbank whose batch size was 4 to stay within memory limits). We also compared the performance of

our front-end with other STFT-based and FST-based front-ends, both under learnable and fixed settings. To

make the comparison fair, we keep the hyperparameters across all experiments the same so that the front-end

outputs have the same dimensions. The sampling rate was set to 16kHz, window length to 25ms, window

stride to 10ms, and the number of filters to 40. All learnable front-ends were initialized to mimic Mel-

FBanks, as previous research [49] has shown that random initialization has worse performance. Detailed

hyperparameters and data augmentation are available on our GitHub repository2

2.4 Results and Analysis

2.4.1 Learnable frontend performance

How do learnable front-ends perform on min t-DCF compared with handcrafted front-ends for spoof

speech detection? We conducted an updated comparison of front-ends for spoof detection, as the most recent

systematic comparison available was from 2015 [50]. Our experiments aimed to establish a new baseline that

incorporates learnable front-ends. We selected a combination of FST and STFT front-ends, with both fixed

and learnable settings, to provide a comprehensive examination. As demonstrated in Table 2.4, our findings

indicate that FST-based learnable front-ends require a longer training time compared to hand-crafted features

in the task of spoof speech detection and cannot beat the performance of CQT.

Figure 2.1: Heatmap of the magnitude of the frequency response for initialization filters (up) and learned
filters (down).

2https://github.com/magnumresearchgroup/Fastaudio
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Table 2.4: A stage-wise comparison of the different Front-ends’ performance on the ASVspoof 2019 LA
dataset

ECAPA-TDNN X-vector
Front-end #Params Constraint EER min t-DCF EER min t-DCF MACs Train Time/Epoch

CQT 0 Fixed 1.73 0.05077 3.40 0.09510 0 10:58 min
Fbanks 0 Fixed 2.11 0.06425 2.39 0.06875 0 10:53 min

FastAudio-Tri 80 Shape+Clamp 1.54 0.04514 1.73 0.04909 0.00GMac 13:02 min
FastAudio-Gauss 80 Shape+Clamp 1.63 0.04710 1.67 0.05158 0 12:51 min
FastAudio-Sort 80 Shape+Clamp+Order 1.89 0.05204 1.69 0.05235 0 12:59 min

LEAF 282 Shape+Clamp 2.49 0.06445 3.28 0.07319 0.01GMac 34.45 min
nnAudio 8.04k No 3.63 0.08929 5.56 0.14707 0 13:00 min

TD-filterbanks 31k Shape+Clamp 1.83 0.05284 3.18 0.08427 1.32GMac 22.48 min
Front-end Name Constraint EER min-tDCF Backend Baseline

SincNet RawNet2 Fixed 5.13 0.1175 - -

Figure 2.2: Visualization of Learnable Front-ends

2.4.2 Frontend design

Can we design an STFT-based front-end for spoof speech detection that is learnable and can it beat the

performance of CQT? As the FST-based learnable front-ends were unable to surpass the performance of

CQT, we developed a new front-end approach that adheres to the traditional STFT-based method and limits

the number of trainable parameters. This approach, which we refer to as FastAudio, is designed to train faster

than FST-based front-ends. We hypothesized that by making the filterbank layer learnable, we could improve

the performance of the fixed STFT-based approach without the need for a complete change in the front-end

architecture. Our experimentation with FastAudio under three different constraint settings revealed that the

best configuration achieved a 27% decrease in minimum t-DCF compared to FBanks, outperforming CQT

(see Table 2.4).

2.4.3 Optimal filterbank constraints

Which set of constraints for filterbank learning performs best in spoof speech detection? Our findings

indicate that the implementation of shape constraint plays a crucial role in enhancing spoof detection accu-

racy. However, we did not observe a significant difference in performance when constraining the shape of the

12



filters to be Gaussian or Triangular. We also found that sorting the filterbanks by center frequency does not

improve accuracy, which confirms the conclusion from a previous study in LEAF[8]. As illustrated in Figure

2.1, the learned filterbank distribution closely follows the hand-crafted filterbanks in both center frequency

and bandwidth. The similarity in cn and bn can help explain the superior performance of handcrafted features

compared to the learnable front-end, particularly in comparison to the FST-based front-ends.

The visualization of the front-end output is presented in Figure 2.2. All of the outputs exhibit ”horizontal

lines” that correspond to specific frequencies, indicating filter selectiveness. Our analysis revealed that the

front-end outputs of LEAF, TD-filterbanks, and nnAudio underwent significant changes after training due to

the number of trainable parameters. As depicted in nnAudio, when the shape of the filters is not constrained,

the trained front-end exhibits signs of overfitting (many randomly distributed dots) and demonstrates the worst

performance. Given that nnAudio has no constraint for filter shape, the learned filter shape is determined by

201 points, which can result in very sharp peaks and the selection of frequencies of very narrow ranges,

resulting in the irregular dots.

2.4.4 Learned feature interpretation

What does FastAudio learn about spoof speech detection and how can we interpret what it learns?

The formants, which are the result of the acoustic resonance of the human vocal tract, have been found to

be present in the spectral peaks of speech signals. Due to the fact that English vowels possess a higher

energy content than consonants, it is expected that the center frequencies of learned filters will converge

around the formants of typical English vowels, as stated in previous research [51]. In our study, we have

analyzed the cumulative frequency response of the FastAudio and have observed that there are two peaks in

the lower frequency range and one peak in the higher frequency range. These peaks, located around 320Hz

to 440Hz and 1120Hz, are believed to correspond to the first and second formants, as reported in [52]. This

adaptation to human speech suggests that the FastAudio has been able to effectively learn the characteristics

that are crucial for spoof speech detection tasks. Similar adaptation has also been observed in the FST-based

front-end for speech identification tasks [52].

Figure 2.3: Cumulative frequency response of the FastAudio filters
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An interesting observation in our study was the presence of peaks in the high pitch regions near the sam-

pling boundary. This suggests that spoof speech may differ from real speech in frequencies that are often

ignored by handcrafted front-ends such as the Mel-scale. Historically, high-frequency energy has been con-

sidered to be of less importance and has been underrepresented in Mel-scales. However, in the context of

spoof speech detection, we suspect that because these high frequencies are not crucial to human hearing, the

spoof speech generator may not generate realistic imitations in these high frequencies. Thus, the representa-

tion of high-frequency data may serve as an effective indicator for the detection of spoof speech.

Together, these findings indicated that:

1. The learned FastAudio filters exhibit greater selectivity compared to their initialization.

2. FastAudio places emphasis on frequencies around the first and second formants, which may be crucial

for distinguishing between spoof and authentic speech.

3. The learned FastAudio filters exhibit increased sensitivity to high-frequency energy, which may be a

distinctive feature in the detection of spoof speech.

4. Through the application of end-to-end training, FastAudio can adapt to spoof detection tasks. The

front-end has successfully adapted to the downstream task and has been able to learn the phonetics of

human speech.

2.4.5 FastAudio Usage

How can people use FastAudio for spoof detection and suggestion for model fusion People involved in

the design of back-end systems for spoof speech detection can utilize the FastAudio as a substitute for their

current front-end. Our experiments demonstrate that FastAudio is superior to the Constant-Q Transform

(CQT) in spoof detection, despite previous research reporting CQT as the best front-end [53]. From the

information theory’s perspective, the fusion of results from models whose front-end outputs are least similar

tend to result in improved performance. Therefore, the visualizations of the output of learnable front-ends

presented in this chapter can provide guidance for feature selection and can serve as a complementary tool to

handcrafted front-ends in spoof detection [50].

2.5 Conclusion

This chapter presents an examination of the performance of learnable front-ends in spoof detection, and

introduces a Short-Time Fourier Transform (STFT)-based audio front-end, named FastAudio. The proposed

front-end was evaluated under various constraint settings and demonstrated the ability to successfully adapt

to spoof detection tasks. The proposed front-end achieved outstanding results on the ASVspoof 2019 dataset,
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outperforming its fixed equivalent by 27%, and surpassing the performance of the Constant-Q Transform

(CQT), which has been previously reported as the best hand-crafted feature for spoof speech detection.
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CHAPTER 3

Light-weight model inference: Real-time Speech Interruption Analysis

3.1 Problem Overview

Improving meeting inclusiveness has significant financial incentive (such as higher employee retention rate)

for organizations [9], and speech interruption detection [10] can help address the top issue by empowering

participants to interrupt and speak in virtual meetings, promoting greater participation and engagement. By

deploying a speech interruption detection model on the client-side, the feature can be made more widely

accessible in a cost-effective and environmentally sustainable manner. However, it should be noted that

model size and complexity have been identified as key challenges in the implementation of this technology.

Previous research has investigated various techniques to reduce the size of models for improved inference

performance, including Structural Change [54; 55], Teacher-Student Knowledge Distillation [56; 57; 58; 59],

Parameter Sharing [60; 61], Layer Drop [62], Post Training Quantization (PTQ) [63; 64] and a combination

of the above [65; 66]. Recently, Microsoft open sourced a library called DeepSpeed [67] that supports

more efficient inference for transformer-based Pytorch models. The ONNX runtime [68] is another popular

inference accelerator that supports PTQ and cross-platform deployment, enabling the deployment of these

models in a variety of environments.

Inference is estimated to account for 90% of the cost compared to training (which are done only

once) [69], the energy associated with it therefore is of major concern, especially if the inference runs as

a background service and serves a large user base of over 100 million. To mitigate energy consumption,

Henderson [70] proposed a framework for tracking and assessing the environmental impact of deep learning

models. Additionally, specialized studies on the energy consumption of deep learning models for natural

language processing tasks have also been conducted [71].

This chapter presents two key contributions to the field of self-supervised learning (SSL) model deploy-

ment. The first contribution is an examination of the utility of pruning as a technique to decrease the size and

complexity of models while maintaining an acceptable level of performance. Specifically, we demonstrate

that pruning can be used to achieve a 23X reduction in model size and a 9X reduction in complexity with

good performance. Furthermore, we show that this size-complexity trade-off is smooth and can be adapted

to a wide range of client devices. The second contribution is an improvement in the true positive rate (TPR)

for speech interruption detection tasks, increasing it from 50.9% to 68.6%, which represents the current

state-of-the-art performance.
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3.2 Model and Method

Recent research has demonstrated the effectiveness of learnable audio frontends in audio tasks, as they are

gradually replacing traditional fixed frontends, such as spectrogram, in various applications [23]. Semi-

supervised learning (SSL) speech models, including Hubert [72], Wav2Vec [73], and WavLM [74], have

achieved state-of-the-art performance on a wide range of tasks [75] and have dominated the leaderboard of

the SUPERB benchmark [5]. The SUPERB benchmark is a comprehensive evaluation of the performance of

shared models across a wide range of speech processing tasks with minimal architecture changes and labeled

data. Among these SSL speech models, WavLM [74] currently holds the top position on the SUPERB

benchmark.

3.2.1 Baseline Model

In our previous work [10], we utilized the WavLM model as the embedding layer for the speech interruption

detection task and achieved a true positive rate (TPR) of 50.93% at a false positive rate (FPR) of 1%. The

model had a size of 1.2 GB and required an inference time of 2.5 seconds on an Intel Xeon E5-2673 CPU

(2.40GHz), corresponding to a Real-Time Factor (RTF) of 0.5. Our current goal is to significantly reduce the

model size to 10 MB while maintaining a TPR above 40% while also achieving an RTF of 0.1. This will

enable us to detect at least two failed interruptions per meeting on average, based on meeting statistics and

assuming 40 interruptions per half-hour meeting [10].

3.2.2 Model Structure

The architecture of our failed speech interruption model is illustrated in Figure 3.1. It consists of a WavLM-

based embedding module followed by an attention pooling classifier [76]. The WavLM model was pre-trained

on a large in-house dataset and acts as a feature extractor. To fine-tune the model for the downstream task, a

weight matrix was applied to the output of all layers and the model was trained on our dataset.

Figure 3.1: Failed speech interruption model (WavLM-SI) architecture and training pipeline
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3.2.3 Structural Exploration

The most intuitive and efficient approach for reducing the model size that we identified is structural explo-

ration. To determine the optimal starting model for achieving the goal of 10 MB, we compared different

WavLM models with varying widths (CNN channel from 512 to 64, transformer hidden size from 288 to

768) and applied weight sharing to the most promising models, as shown in Table 3.1. We kept the num-

ber of layers constant at 12 and found that the complexity and RTF decreased linearly with the number of

parameters when weight-sharing was not enabled, as demonstrated in Table 3.1.

Table 3.1: Complexity and RTF drop by various parameters

Base Small Tiny Tiny SW Nano Nano SW Pico
# Conv ch 512 386 256 128 128 128 64
# Trans hi 768 576 384 384 288 288 288
Param (M) 95.5 54.04 24.36 8.14 13.58 4.93 12.71
MACs (G) 55.36 31.18 13.9 12.19 7.87 7.55 6.36

RTF 0.51 0.32 0.16 0.12 0.09 0.08 0.07

To further reduce the model size, we applied reductions to both the width and depth of the transformer

layers and evaluated the resulting model size. As illustrated in Figure 3.2, when weight sharing and quan-

tization were applied, both the tiny and nano models were able to reach the target size of around 10 MB

when the number of transformer layers was less than four. The weight sharing technique effectively reduces

the number of parameters and thus the model size. We implemented weight sharing by allowing every three

neighboring transformer layers to share the same weights, which resulted in a step-like pattern in the size

versus number of layers as shown in Figure 3.2.

Figure 3.2: Number of layers vs model size

After analyzing the size of each component of our model, we found that the positional convolution layer

is 6 MB. Based on this observation, we hypothesized that simply removing this component might be suitable

for our specific task for the following two reasons: first, the transformer layers within the model are capable

of encoding positional information, and second, the nature of our data, which is clipped in such a way that

the start of any interruption is always at the beginning of the 5-second clip, renders positional information

18



unnecessary. These considerations are further discussed in Section 3.3.2.

3.2.4 Quantization

Quantization has been proven as an effective way to reduce model size. It can be broadly classified into two

categories: post-training quantization (PTQ) and quantization-aware training (QAT). The former approach

involves mapping the model weights from float32 to a lower-precision format, such as int8, after the training

process has been completed. This typically results in a higher degree of accuracy loss. On the other hand,

QAT employs pseudo-quantization/dequantization during the training process, which can help mitigate the

impact on accuracy. Additionally, the DeepSpeed framework has introduced a novel quantization method

called MoQ [77].

3.3 Experiments

3.3.1 Data statistics

Our dataset comprises 40,068 clips, each of which is 5 seconds in duration and contains two channels. The

right channel stores the speech of the potential interrupter, while the left channel contains a merger of speech

from all other speakers. As shown in Table 3.2, we randomly split the dataset into the train, validate and

holdout subset, each consisting of 75%, 19%, 6% of the total size, respectively. The holdout subset contains

only speakers that are never seen in other subsets, in order to simulate a real-world evaluation scenario. We

plan to make our dataset publicly available as part of a future challenge.

Table 3.2: Number of Clips and Labels

Backchannel Failed Interruption Interruption Laughter Total
Train 14591 3292 9622 2455 29960

Validate 3693 889 2478 623 7683
Holdout 1378 211 588 248 2425

All 19662 4392 12688 3326 40068

We used crowd-sourcing to label the majority of our dataset, which is divided into four categories:

backchannel (utterances that do not intend to interrupt, e.g. “uh-huh”, “yeah”), failed interruption, suc-

cessful interruption, and laughter [10]. Each sample in the dataset was labeled by 7 individuals, and a 70%

agreement level was adopted, which required a majority of at least 5 individuals to reach consensus. The

test set and holdout set were labeled by experts to ensure the highest quality labeling for evaluation pur-

poses. In order to increase the representation of the failed interruption class within our data set, we propose

incorporating a synthetic data augmentation strategy. Specifically, we suggest combining samples from the

failed interruption class with randomly selected samples from other channels within the same class. By

implementing this approach, we aim to effectively double the overall size of the failed interruption data set.
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3.3.2 Result and findings

We trained our models on eight NVIDIA V100 GPUs for a total of 70 epochs, with a batch size of 16. To

optimize performance, we utilized a polynomial loss function with an epsilon value of 4. Our experiments

were conducted multiple times, with an average reported. Additionally, we defined thinness as the number

of channels for convolution layers and hidden size for transformer layers. Our findings, as illustrated in

Figure 3.4, indicate that a model with a smaller width dimension tends to yield better accuracy, given a fixed

model size.

Figure 3.3: Layer Order vs True Positive Rate (TPR)

We found that reducing the number of layers and removing certain components can significantly decrease

the size of the model while only incurring a minimal decrease in accuracy. As demonstrated in Figure 3.3,

the position of the layers appears to have a greater impact than the order in which they are arranged, which

may be attributed to the presence of residual connections within transformer layers. Previous research [54]

has suggested that skip layers perform better than other combinations, however, we observed only a slight

improvement. This may be due to the fact that we applied fine-tuning after reducing the number of layers.

We also found that models that utilize shared weights exhibit similar performance to their non-shared coun-

terparts, while significantly reducing model size. Additionally, quantization proved to be an effective method

for reducing model size, with minimal or no impact on accuracy when implemented correctly. We also eval-

uated the use of teacher-student distillation, apply layer drop during pre-training as potential techniques for

improving speech interruption detection task, however, these methods did not yield significant improvements.

Figure 3.4: True Positive Rate (TPR) is higher for thinner models

20



3.3.3 Memory and Energy Analysis

In order to simulate the memory usage of our model, we utilized the ONNX runtime on an Intel Xeon E5-2673

CPU (2.40GHz) with 6GB of memory. Our results, illustrated in Figure 3.5, indicate that disabling certain

optimization options during runtime, such as arena mem, can significantly reduce the amortized memory

usage.

Figure 3.5: Memory usage of the model with different ONNX parameter settings

To analyze energy usage, we utilized inference time as a proxy for CPU usage. We employed a Voice

Activity Detector (VAD) [78] to detect 57,450 instances of human speech lasting longer than one second

within 272 hours of meeting audio. This resulted in an average inference trigger every 17 seconds. Compared

to a scenario in which inference is conducted every 5 seconds, which is less effective in capturing interruption

clips, utilizing a VAD to detect potential interruptions results in a 3.4x reduction in inference calls. Since VAD

is a widely available service that is already present on the client, the energy consumption for this component

can be assumed to be negligible. Furthermore, by reducing the model complexity, we were able to decrease

inference time from 1.6 seconds to 200 milliseconds, resulting in a 7.3x reduction in inference time. Overall,

this results in a combined energy reduction of 25 times.

3.3.4 Error Analysis

As illustrated in Figure 3.6, we utilized T-SNE to plot the output of the model’s pooling layer. Our analysis

revealed that the back-channel class is most frequently confused with the failed interruption class, which

is consistent with the observations made during the manual labeling process. Additionally, we observed

that the successful interruption class is similar to the failed interruption class, but can be relatively easily

distinguished. Furthermore, the laughter class is distinct from all other classes and can be easily separated.
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Figure 3.6: T-SNE

3.4 Conclusion

In this chapter, we examined various methods for reducing the size of SSL models. We were able to suc-

cessfully decrease the in-memory model size of a 234 MB model to 32 MB while maintaining an acceptable

level of accuracy. Additionally, we were able to reduce the real-time factor (RTF) from 0.32 to 0.04, which

is an important step towards deploying the SSL model to the client. As future work, we plan to enhance

the performance of the model by utilizing neural processing units (NPUs) and continue to improve the true

positive rate.
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CHAPTER 4

High quality data generation: Translating Natural Language to Bash Commands

4.1 Problem Overview

Translating natural language into source code for software or scripts can assist developers in finding ways to

accomplish tasks in languages they are not familiar with, similar to how help forums such as Stack Overflow

are used today. As early as 1966, Sammet [79] envisioned a future of automated code generation where

individuals can program in their native language. While generating software templates from configuration

files is now a common practice, research on translating natural language into code is still in a relatively nascent

stage. Past research mainly focused on scripting languages or small code snippets, and most efforts have

been directed towards developing more accurate translation models. Various datasets have been created to aid

research on generating code from natural languages, such as WikiSQL for SQL [80], CoNaLa for Python [81],

and NL2Bash for Bash [82]. Here we focus on the task of translating natural language into Commands in

the Bash scripting language. Translating natural language into Bash Commands is an example of semantic

parsing, which means natural language is translated into logical forms that can be executed [83]. For example,

the phrase “how do I compress a directory into a bz2 file” can be translated to the Bash command: tar

-cjf FILE NAME PATH. To the best of our knowledge, only two datasets are available for this task, with

one based on the other. Both datasets involve scraping through known data sources (through platforms like

stack overflow, crowdsourcing, etc.) and hiring experts to validate and correct either the English text or Bash

Commands.

This chapter presents two contributions to the research on synthesizing Bash commands from scratch.

Firstly, we describe a state-of-the-art translation model used to generate Bash commands from the corre-

sponding English text. Secondly, we introduce a new NL2CMD dataset that is automatically generated,

involves minimal human intervention, and is over six times larger than prior datasets. Since the generation

pipeline does not rely on existing Bash commands, the distribution and types of commands can be custom-

adjusted. Our empirical results show how the scale and diversity of our dataset can offer unique opportunities

for semantic parsing researchers. As commonly observed in this research domain, only marginal improve-

ments in the accuracy of solutions to the NL2Bash problem have occurred since progress has been impeded

due to the limited amount of annotated data. This chapter extends our prior published work [22] on translating

natural language to Bash commands and provides the following new contributions beyond our prior work:

1. A membership query synthesis technique is used to generate a large dataset of Bash commands, ex-
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panding the available data to solve this problem.

2. A back-translation technique is presented that takes the generated Bash commands and creates corre-

sponding natural language pairs.

3. A validation and verification technique for generated Bash commands is discussed by converting them

into an executable form and running them in an isolated environment, which doubles as a data quality

metric.

4. A new dataset called NLC2CMD is presented, which is the largest dataset for translating natural lan-

guage to Bash commands available to researchers and practitioners.

5. A post-processing addition to the original workflow is adopted, replacing placeholder values with actual

arguments and making many of the translated commands executable in the Linux environment.

Most importantly, our work suggests that the future of addressing this challenging problem lies in the

automation of Bash command synthesis and back-translation to natural language representations. We have

developed a workflow that can be improved upon and used to maximize model performance with minimal

labeling costs. Our approach has numerous advantages over prior work, including notable improvements in

time efficiency, labeling costs, diversity of the dataset, and practicality.

The remainder of this chapter is organized as follows: Section 4.2 introduces the NLC2CMD problem

and provides an overview of recent developments in semantic parsing; Section 4.3 summarizes the challenges

associated with translating natural language to Bash commands; Section 4.4 examines the performance of

different model structures and training techniques; Section 4.5 describes our data generation and validation

technique, as well as providing statistics on data quality and comparisons with existing datasets; Section 4.6

discusses different metrics and error analysis for the state-of-the-art model on our new dataset; and finally,

Section 4.7 presents concluding remarks and outlines our future work.

4.2 Background and Related Work

Our contributions focus on advancing machine translation through the use of dataset synthesis. This research

approach is novel in the domain of Bash command translation. Various architectures have been explored for

different tasks of program synthesis from natural language. For example, Lin et al. [84] achieved state-of-

the-art generation of shell scripts using Recurrent Neural Networks (RNNs) [85]. Similarly, Zeng et al. [86]

utilized the Bert [87]-based encoder and a pointer-generator [88] decoder to generate SQL code from text.

Additionally, ValueNet [89] (Transformer encoder + LSTM decoder with pointer networks [90]) was the

first Text-to-SQL system incorporating values. Furthermore, Xu et al. [91] improved upon the TranX [92]
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transition-based neural semantic parser to translate natural language into general programming languages,

such as Python.

The best results in prior work on the problem of translating natural language to Bash commands were

produced by Tellina [84]. Tellina used the Gated Recurrent Unit (GRU) network [93], which is an RNN,

and achieved 13.8% accuracy on the NLC2CMD metrics proposed by IBM [94]. The Tellina [84] paper

produced the NL2Bash [82] dataset and new semantic parsing methods that established the baseline for

mapping English sentences to Bash commands. Transformer models have been shown to generally have

better accuracy and parallelism [95] than RNNs [85] on machine translation tasks. Prior research on machine

translation has largely focused on the GRU architecture to translate natural language to Bash commands. This

paper enhances prior research by investigating the performance of several architectures on the NLC2CMD

dataset.

Our experiments with applying Transformer models to the natural language to Bash task show that they

outperform other approaches, such as (1) RNNs that show an 18.4% improvement and (2) Bidirectional

RNN (BRNN) that show up to 4.4% improvement [96]. Investigating how model structural choices and

prediction strategies affect model performance in the natural language to command translation task [94] is a

key contribution of this paper. Since the energy and accuracy metrics for model evaluation were specifically

designed for the NL2CMD competition, potential improvements for the metrics are also discussed. Bash

is a widely used command line scripting language, thus it offers a unique opportunity to generate diverse,

and more importantly, executable commands more easily due to its relatively short and simple nature. To

increase programmer productivity, the Bash Commands suggested by a tool should be both syntactically

and semantically correct. If suggestions are not syntactically correct and cannot execute, programmers may

simply ignore them as they distract from the task at hand. Moreover, if translations are not semantically

correct, programmers may execute Bash Commands that do not accomplish the goal they want to achieve, or

worse, have negative impacts on the system, such as deleting important files or directories.

Our approach differs from previous research in that we focus on dataset synthesis, utilizing transformer-

based models for parallel corpus mining in the domain of machine translation. While previous research

has employed classification techniques, such as document similarity [18], to identify translations from pre-

existing corpora, our approach emphasizes the generation of a new, high-quality dataset to improve perfor-

mance in the natural language to Bash Commands translation task.

4.3 Key Research Challenges

In this section, we will succinctly outline the significant research challenges encountered in the process of

translating natural language to Bash commands and highlight the general obstacles that the machine transla-
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tion community is currently facing in regards to this topic.

4.3.1 Ambiguity

Translating from an ambiguous language to precise Bash Commands is hard. Translating human language

into code is a challenging task, due in part to the inherent ambiguity of natural language. The Winograd

Schema Challenge, as exemplified by the sentence “The trophy would not fit in the brown suitcase because

it was too big”, it can either mean trophy or suitcase, illustrates the complexity of resolving pronoun refer-

ences, a task that requires both knowledge and commonsense reasoning [97].

In the context of Bash Commands, ambiguities can present in two forms [98]. Genuine ambiguities

occur when a sentence has multiple valid interpretations for an intelligent listener, as in the example “merge

file A with B in folder C”, which could be interpreted as “merge file A with B if B is in folder C” or “merge

file A with B and put the result in folder C”. Computer ambiguities, on the other hand, occur when a

sentence is clear to a listener but generates multiple parse trees for a computer, leading to undefined word

order for input. Both types of ambiguities can negatively impact the performance of natural language to Bash

Command translations.

4.3.2 Many-to-many mapping

Translation tasks are often characterized by many-to-many mappings, which indicate that there may be mul-

tiple correct translations for a given input sentence. Additionally, the input sentence itself may have various

possible expressions. As the size of the dictionary increases, the number of possible translations for a given

input will also increase. The process of creating target sentences requires a significant amount of human

effort.

Natural language is inherently flexible and Bash commands may have functional overlap between differ-

ent utilities. For example, when translating natural language to Bash, phrases such as find the word

"foo" in file "bar" and search in "bar" for "foo" have the same meaning. Similarly,

both grep -w foo bar and cat bar | grep -w foo are valid translations.

4.3.3 Scarce Paired data

Machine translation models require a substantial amount of training data in order to effectively generate trans-

lations. The collection of such a corpus can be challenging, particularly for supervised learning approaches

that require paired data, as it necessitates a thorough understanding of both the source and target languages.

Without a large number of training examples, the model’s ability to generalize beyond the small samples

present in the training set may be limited.

26



Translating natural language to Bash commands poses a unique challenge, as there are a vast number of

English sentences and Bash commands. However, obtaining paired data (i.e., English sentences with their

corresponding Bash commands) is not easily achievable. While sources such as coding help forums like

Stack Overflow may provide some paired data, the questions posed on such platforms are often detailed

descriptions of commands which are subsequently summarized succinctly by humans. Furthermore, writing

Bash commands requires a high level of coding expertise, making it difficult to crowd-source this task.

4.3.4 Environment dependent

Bash Commands change environments and are generally computer specific. Bash commands are commonly

executed on the command line and are utilized for tasks such as file manipulation, searching, and application-

specific scripting. When these commands are generated randomly in large quantities, they can lead to unin-

tended consequences such as deleted files, undefined behavior, and excessively large searches. These outputs

not only put a strain on the environment in which they are executed, but can also cause damage to the system

itself by deleting important files and directories.

In addition, the variability in file systems and the different methodologies used by humans for organizing

their file systems results in an infinite number of unique configurations. Each configuration has its own

distinct directory structure, permissions, and file names. Therefore, commands that are generated or scraped

from the internet may not be guaranteed to execute correctly on different machines. Furthermore, what may

achieve the desired result on one machine, may cause another to crash.

4.4 Research Questions

Which deep learning architectures perform best when translating between natural language and Bash

Commands?

As there is a limited amount of literature on the topic of translating natural language to Bash commands,

a crucial concern is determining which architectures, developed in other domains, perform optimally for

this task. Specifically, Sequence-to-Sequence [99] models have been extensively studied in the context of

translations, thus we investigated their performance on this specific task. These models consist of two primary

components: an encoder and a decoder. The encoder converts the inputs into vectors while the decoder

reverses this process. We evaluated various combinations of encoder-decoder layers, including RNN, BRNN,

and Transformer, to translate natural language to Bash commands.

According to the findings of Chen et al. in their study [100], it was determined that the Transformer

encoder was primarily responsible for the improvements in quality observed in Transformer models. Addi-

tionally, it was noted that Recurrent Neural Network (RNN) decoders often exhibit faster inference times.
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In light of these discoveries, we conducted an investigation in which various combinations of encoder and

decoder types were utilized and evaluated. The results of this study are summarized in Table 4.1, which

presents a comparison of the performance (measured in seconds) across the different model structures.

Table 4.1: Model Performance Comparison

Encoder Decoder Accuracy Train Inference
Transformer Transformer 0.522∗ 1625 0.126
Transformer RNN - - -
RNN Transformer 0.486 1490 0.116
RNN RNN 0.336 1151∗ 0.069
BRNN Transformer 0.495 1411 0.120
BRNN RNN 0.476 1218 0.065∗

Table 4.2: The NLC2CMD Leaderboard

Team Model Data Augment Accuracy Power Latency
Magnum Transformer No 0.532∗ 682.3 0.709
Hubris GPT-2 No 0.513 809.6 14.87
Jb Classifier+Transformer Yes 0.499 828.9 3.142
AICore Two-stage Transformer No 0.489 596.9∗ 0.423
Tellina [84] BRNN (GRU) No 0.138 916.1 3.242

The results presented in Table 4.1 indicate that in this specific case, utilizing the Transformer architecture

for both the encoder and decoder yields the highest accuracy. However, it is worth noting that the model

with an RNN decoder has the potential to significantly reduce inference time by approximately 50%. To

provide a comprehensive understanding of how model architecture can impact performance, we conducted an

analysis of the architectures of the top-performing teams in the NLC2CMD competition. Table 4.5 provides a

summary of the top 4 teams and the baseline model as listed on the NLC2CMD Challenge leaderboard [94].

The Transformer architecture discussed in Section 4.4.1 was derived from the analysis of the architecture

utilized by our team, Magnum, which was the winner of the accuracy competition.

The AICore system, as described in the study by Agarwal et al. (2021) [94], won the energy track of

the competition through the implementation of a two-stage prediction design, comprising of two 2-layer

Transformers. The first model in this system was responsible for predicting the template, while the second

model filled in the arguments. The relatively low energy consumption of the AICore system is thought to be

a result of its smaller model sizes, in comparison to the Magnum team’s model which consisted of six layers.

However, it should be noted that this reduction in energy consumption was accompanied by a decrease in

accuracy of 4.3%.

Team Hubris [94] adopted a fine-tuned ensemble of GPT-2 as the language model for their approach and

achieved second place in terms of accuracy. However, it should be noted that GPT-2 models are known to
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be large in size, with an average memory requirement of more than 5 GB, and are also known to be power-

intensive. This poses a significant challenge when it comes to their application as a background program,

running continuously in a terminal, to suggest translations of Bash commands. Furthermore, the inference

time of GPT-2 ensembles (774M params) is also a significant concern, as it is not feasible for real-world

deployment scenarios that require fast response time and low energy consumption to run continuously in the

background. Considerable effort is required to compress and deploy GPT-2 ensembles in order to compete

with other solutions.

Team Jb [94] augmented the training data using back-translation [101] and created 78,000 augmented

training samples. They also utilized the manual pages of Linux Bash Commands [102] to concatenate utilities

with corresponding flags, resulting in the generation of an additional 200,000 new samples. Similar to Team

AICore, they also employed a two-stage model, which consisted of a classifier for utility prediction and a

transformer for command generation. Interestingly, the large number of additional training samples generated

by Team Jb was not sufficient to overcome the architectural improvements implemented by other teams.

The results presented in Table 4.5 provide several noteworthy observations. Firstly, it is apparent that

Transformer models were the most commonly utilized architecture in this task. Additionally, it was ob-

served that two-stage models performed worse than single-stage-and-larger models. Secondly, GPT-2 based

approaches demonstrated near state-of-the-art accuracy, however, they resulted in much larger models in com-

parison to Transformers and exhibited longer inference times. Thirdly, data augmentation techniques were

found to improve accuracy, as evidenced by Team Jb’s 1% improvement in accuracy over Team AICore.

However, it is important to note that the impact of data augmentation was less pronounced than the impact

of model architecture in this task, with the caveat that the two teams had similar, but not identical, models.

In light of these findings, the experiments in the remainder of this paper employ Transformer models, as they

were determined to be the best-performing architecture in the NLC2CMD competition.

How do Bash Command parameters affect the performance of natural language to Bash transla-

tion?

As previously discussed in Section 4.3.4, obtaining a sufficient quantity of training data consisting of

paired English and Bash Commands is a challenging task. The lack of adequate training data may result

in the model being unable to fully learn the entire vocabulary that it must translate between. Therefore,

identifying methods to reduce the vocabulary size is crucial for the development of more accurate models.

Bash Commands are typically composed of three elements: (1) utilities, which specify the primary objec-

tives of the command (e.g., ls), (2) flags, which provide metadata concerning the execution of the command

(e.g., -verbose), and (3) parameters, which specify directories, strings, or other values that the command

should operate on (e.g., /usr/bin). Each utility is associated with a limited set of flags that can be passed
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to it. In contrast, parameters have a much broader range of values. Training examples for natural language to

Bash Command translation typically provide values for the parameters, which can vary significantly between

translated examples of the same command.

We hypothesized that including the actual parameter values, such as ls /usr/bin and ls /etc,

from the training examples would vastly increase the overall vocabulary size and decrease model accuracy.

The basis for this hypothesis is the limited availability of paired examples of natural language and Bash

commands, which can lead to a larger vocabulary size and limited training data, thus negatively impacting

the performance of translation models.

In order to investigate the validity of our hypothesis, we used the English and Bash tokenizers from the

Tellina model [84] with a modification to suit our needs. As depicted in Figure 4.1, Bash tokens can be

classified into three categories: utilities, flags, and parameters (i.e., arguments, such as a specific file path).

The English tokenizer was used to lowercase all letters and to replace specific parameter values with generic

forms. The Bash tokenizer, on the other hand, parsed the commands into syntax trees, with each element

labeled as a utility, flag or parameter.

Figure 4.1: Example of a Bash Command

In our assessment of the accuracy metric, we placed a primary emphasis on the structural and syntactical

correctness of Bash commands. To achieve this, we replaced all parameters in Bash with their corresponding

generic representations. For instance, a folder path such as /usr/bin was replaced with the token PATH.

This transformation resulted in a reduction of the Bash vocabulary size from 8,184 to 776 tokens, and a

subsequent increase in the accuracy of the Transformer models we evaluated by 1.3%. As demonstrated in

Table 4.3, we observed increases in accuracy and performance across all architectures, particularly for those

with lower accuracy.

Table 4.3: Parameter Replacement

Encoder Decoder Accuracy Accuracy (NP)
Transformer Transformer 0.509 0.522*
Transformer RNN - -
RNN Transformer 0.448 0.486*
RNN RNN 0.151 0.336*
BRNN Transformer 0.483 0.495*
BRNN RNN 0.301 0.476*
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How to expand the amount of available Bash Command English language pairs without the hiring

of external freelancers?

As previously discussed, further innovation and developments when attempting to solve the natural lan-

guage to Bash Command translation problem are severely restricted by the limited number of command-

natural language pairs provided in the original dataset. This issue not only pertains to the most efficient

means of incorporating new and valid Bash Commands, but also encompasses the creation of corresponding

natural language pairs.

Obtaining Bash commands by scraping online forums such as Stack Overflow is a viable method for ex-

panding the dataset, however, it presents several challenges including the identification of invalid commands,

the elimination of duplicate commands and the differentiation of commands written in different program-

ming languages. An alternative approach could be to enhance the existing training data by making slight

modifications to commands, such as the removal of a flag. However, this strategy also poses difficulties in

distinguishing between similar commands and provides minimal diversity in terms of function within the

dataset.

In order to address the aforementioned limitations and challenges, we chose to develop a Bash Command

generator and utilize manual page data to synthesize entirely new Bash Commands. This approach enabled

us to curate the synthesized dataset, preserving similarities to the existing dataset, while simultaneously

incorporating novel data points. To generate corresponding natural-language components, we employed a

back-translation model with a transformer architecture. Transformer models have been demonstrated to be

highly effective in summarization tasks, which our back-translation process resembled.

4.4.1 Summary of the Highest Performing Architecture

In this study, we evaluated a variety of data processing, architectural, and post-processing techniques as

previously outlined. We now present the best-performing model that we evaluated using the NLC2CMD

competition data. While this model will likely be refined through future work, it serves as a starting point

for researchers investigating natural language to Bash Command translation. Our results indicate that the

Transformer model is a strong foundation for continued research in this field.

Our Transformer model pipeline consisted of the following six stages, as depicted in Figure 4.5 and

described in detail below:

1. Parsers and filters – The raw paired data were first processed through various parsers to convert

English sentences and Bash Commands into syntax trees, with data that could not be parsed being

removed.
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Figure 4.2: Pipeline of the NLC2CMD Workflow

2. Flatten and pre-process – The syntax trees were flattened, and the parameters were replaced with

their generic representations.

3. Tokenization – The flattened sentence pairs were tokenized, and dictionaries were created for English

sentences and Bash Commands.

4. Transformer models – - The tokenized sentences were input into Transformer models, with Beam

Search enabled to produce multiple translations.

5. Ensemble – The best-performing models on the validation dataset were selected to create an ensemble.

6. Post-process – The translations produced by the ensemble model were post-processed by removing

the placeholder arguments and inserting the values that were originally removed by the parser.

4.4.2 Parsing and Tokenization

In our study, we utilized both the NLC2CMD dataset, which comprises 10,347 pairs of English sentences

and their corresponding Bash Commands, and our synthesized dataset, which consisted of 71,705 English

sentence-Bash Command pairs. Of the 10,347 pairs of data in the original dataset, 29 were excluded due to

grammar issues. The size of this public dataset is relatively small in the field of natural language processing, in

comparison to other datasets such as WMT-14 en-de, which comprises 4.5 million sentence pairs. Therefore,

our aim for data processing was to create a small vocabulary and make use of as much data as possible. With

our synthesized dataset being significantly larger, our focus shifted to achieving higher-quality commands,

rather than utilizing as many of the generated commands as possible.

Bash Commands can exhibit complex and nested structures, as illustrated in Figure 4.3. This complexity

can make it challenging for programmers to both create and understand Bash Commands, highlighting the

necessity for a customizable parser. Additionally, Bash Commands can be concatenated using pipes, which

allows commands to consist of multiple parts, with the output of one part serving as the input for the next.
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Figure 4.3: Visualization of the Tokenization Process

We constructed our parser using the Tellina parser [84], which was developed on top of the Bashlex

parser [103] in previous work. This parser is able to parse a Bash Command into an abstract syntax tree

(AST) composed of utility nodes, each of which may include multiple corresponding flags and parameters.

During the tokenization stage, utilities and flags are retained in their original form while parameters are

classified and replaced with tokens such as NUMBER, PATH, FILE, DIRECTORY, DATETIME,

PERMISSION, TIMESPAN, SIZE, with the default option being REGEX.

In the pre-processing of natural language sentences, stop words (e.g., “a”, “is”, “the”) which carry mini-

mal meaning, are filtered out. The remaining words are then converted to lowercase and lemmatized (trans-

formed to their base form) in order to create a relatively smaller dictionary mapping.

Our generator used a different parameter categorization strategy than the parser, with the objective of

aligning more closely with the interpretation of manual pages and the generation of high-quality commands.

While the categorizations were comparable, the generator’s categorization could easily be converted to the

parser’s representation for training and inference with the Transformer-based model.

4.4.3 Model Details

The model with the highest accuracy used a Transformer as both the encoder and the decoder, as illustrated

in Figure 4.4. The encoder and decoder were both composed of six layers. The model was trained for 2,500

steps and an ensemble of the four top-performing single models was employed.

The first positional weight was set to 1.0, and the remaining weights were set to the exponential of beam

scores, with a maximum value of 0.5. Our aim was to train an efficient and robust model that could be easily

deployed. As a result, the need for modifications to the network structure was relatively low. Instead of using

FairSeq [104], which allows users to alter the low-level network structure, we selected OpenNMT [105], an

open-source neural sequence learning framework, to implement our Transformer model.
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Figure 4.4: Model Structure

Our findings indicate that the Transformer model is sensitive to the learning rate, and that larger batch

sizes tend to yield superior results. The specific training hyperparameters can be found on our GitHub repos-

itory [106]. Our tuning strategy was guided by the principles outlined by Popel et al. [107].

We trained our model on 2 Nvidia 2080 Ti Graphic cards with 64GB memory. Our model achieved a

53.2% accuracy on the hidden test dataset for the NLC2CMD competition and demonstrated superior per-

formance in both inference time and energy consumption. To address the Challenge 4.3.1 of ambiguity, we

implemented a technique of masking specific parameters. Additionally, the dataset used in our study was

designed to limit ambiguity by restricting the natural language description to a single sentence and the Bash

Command to a single line [82]. Furthermore, to address the Challenge 4.3.4 of low resource, the dataset

was collected with the same Bash Command paired with multiple English descriptions, in order to increase

language diversity [82].

4.4.4 Post-processing

The initial results of our model translation incorporated placeholders as a means of reducing the size of the

dictionary mapping and improving the accuracy of the model. However, these results, while accurate, lacked

practicality and were often difficult for humans to understand and execute. For example, the inclusion of

placeholders such as REGEX in a command translated from English made the command vague and difficult

for users to utilize as a tool. To address this issue, we implemented a post-processing step in our workflow to

convert the translated commands into a more executable form. This approach ensures that both inexperienced

users and machines can easily utilize the commands by running them in a terminal, as opposed to commands

that are nested with vague placeholders which may be less useful.
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In the pre-processing stage of natural language processing, we utilized a parser to extract parameters

from the original corpus. These parameters were then utilized to populate placeholders in the generated

translations. In many cases, there was a direct one-to-one correspondence between the extracted parameters

and the placeholders in the translated commands, resulting in fully executable Bash commands. However,

in some instances, there were more placeholders than extracted parameters, resulting in partially populated

commands that were not executable but were not necessarily incorrect translations.

In the process of translating natural language descriptions of tasks into executable commands, it may be

necessary to utilize placeholders for certain values that are not explicitly provided in the original description.

For instance, the command find . -inum Quantity exec rm may be generated in response to

the instruction “remove all files in the current directory with a specific inode number”. In this example,

the specific inode number is represented by the placeholder Quantity as it is not specified in the original

description. This scenario illustrates that the use of partially filled-in commands can still be accurate trans-

lations, and that efforts towards partial replacement are valuable in terms of usability and practicality of the

translation pipeline. By converting Bash command templates into executable or nearly executable commands

that more closely align with the intended purpose described in the natural language, the pipeline is made

more user-friendly and useful.

4.5 Corpus Construction

We successfully constructed a corpus of “Bash Command and natural language” pairs that is six times larger

than the original dataset. This was achieved through the development of a generator for synthesizing a vast

number of Bash Commands, which were subsequently validated and scaled. These commands were then

processed through our back-translation model to generate the corresponding natural language pairs.

4.5.1 An Updated Pipeline

In our updated pipeline, we have integrated the most effective elements of our prior pipeline to generate a

novel dataset. Subsequently, we have trained and evaluated our top-performing model on this new dataset. To

achieve this, we have employed a state-of-the-art transformer-based model, which has been demonstrated to

be effective in machine translation tasks. This model has been incorporated into both our dataset generation

and training processes, as outlined in Figure 6. Our updated pipeline comprises the following steps:

1. Manual Page Scraping – We extracted data from manual pages to identify the syntax usage of 38

utilities. Additionally, we determined the flags associated with each utility and the categorization of

the parameter, if any, associated with each of those flags.
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Figure 4.5: Updated Pipeline of the Dataset Generation and Translation

2. Generation – Utilizing the syntactical structures, flags, and arguments for each utility, we generated

over 1 million Bash Commands from different combinations of flags and piped commands.

3. Validation – The generated commands were then replaced with actual arguments. For example,

[File] was replaced with temp.txt. These commands were executed on a virtual machine, and

we discarded all commands that did not execute successfully with exit statuses of zero within a given

time frame.

4. Scaling – The validated commands were then converted into a form comprehensible by the parser,

parsed, and scaled. This step involved maintaining a similar proportion of commands with the find

utility to the original dataset and ensuring a diversity of other utilities in the new dataset. Additionally,

we discarded commands of over-represented utilities and commands that were parsed incorrectly by

the parser.

5. Back-translation – The validated commands were then converted into a form comprehensible by the

parser and fed to the back-translation model. This model was the same transformer-based model uti-

lized on the original dataset, except trained in the reverse direction, using Bash Commands to predict

natural-language sentences. This step created the corresponding natural language pairs for the gener-

ated dataset.

6. Forward translation – The new dataset was then divided into training and testing sets, and used to

train and evaluate the model. For the validation, the best-performing models on the validation dataset

were chosen to create an ensemble.

4.5.2 Bash Command Synthesis

Our generation stage involved scraping manual page information and assembling together commands from

individual components. We used data gathered from the Linux manual pages to form syntax structures to
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help our generator understand the relationship between the different components from which commands are

formed. Commands in Bash typically consist of utilities, flags, and arguments, but may exhibit increased

complexity through the use of piped and nested commands. Our scraping methods involved sophisticated

techniques and manual oversight to create a comprehensive mapping of utilities to their corresponding flags

and arguments. Likewise, each flag had corresponding arguments, as the introduction of flags often increased

the number of arguments in a command.

In addition to mapping utilities to their corresponding flags and arguments, we also extracted the syntax

for each utility. This allowed us to create templates that provide insight into the context in which each utility

is utilized and the order in which flags and arguments are presented. Our data collection efforts focused on

the 38 most commonly used utilities in the original NL2Bash dataset. Through the utilization of this data, we

were able to generate thousands of commands that include combinations of zero to three flags. The potential

number of commands that our generator is capable of producing is in the billions. However, for the purposes

of our study, we exercised restraint and limited the number of commands generated for various reasons:

• Quality preservation. While the generation of commands with a large number of pipes and flags may

result in a significant number of valid and executable commands, such commands are relatively rare

and are therefore not commonly found in the original training dataset. To preserve the characteristics

of the original dataset, we aimed to maintain similar distributions of utilities and ratios of commands

with pipes to those without.

• Practicality. Both the validation and back-translation processes, as described in our methodology,

required a significant amount of time and resources to process the dataset. As the number of commands

increases, the amount of time and resources required also increases. Therefore, after generating several

hundred thousand commands, we deemed it infeasible to devote further resources towards additional

command generation.

In the scaling stage, we aimed to ensure that the distribution of utilities in the generated commands

closely resembled that of the original NL2Bash dataset. To achieve this, we scaled the number of generated

commands for each utility to match the proportion of that utility in the original dataset. For example, the

original dataset consisted of 63.44% commands that began with the utility find, so we scaled the number of

find commands generated to represent a similar percentage in our generated dataset.

We attempted to do this scaling for all generated utilities, although we achieved varying results. The

original dataset comprised 117 distinct utilities, whereas the generator only supported 38, as depicted in

Table 4.4. Furthermore, the manual pages for a significant number of these 38 utilities lacked comprehensive
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Table 4.4: Command Generation Process

Generation Validation Scaling
Utility Count 38 35 35
Non-piped Commands 570,436 60,926 38,557
Single-piped Commands 500,000 81,787 33,148

or consistent documentation, which made it challenging to accurately gather all relevant flags and arguments

and generate a sufficient number of commands to meet the desired distributions.

Another constraint in the distribution matching process was the challenge of generating valid commands

for certain utilities. As discussed in a subsequent section, each generated command was later evaluated

for validity to determine its inclusion in the dataset. The probability of commands for certain utilities be-

ing deemed invalid was substantial. Consequently, generating a substantial number of commands for these

utilities negatively impacted their representation in the dataset.

Certain utilities had a limited number of available flags and a high frequency of duplicate instances in the

original dataset. For instance, the command cd [Directory] was observed 13 times in the training data

as it originally appeared without placeholders. In the generated dataset, however, there were no duplicate

commands, hence the command only appeared once, which resulted in a limited representation of that utility

in the generated data.

The generated dataset included not only commands that utilized a single utility, but also piped commands.

These commands are composed of multiple utilities or commands that are concatenated, enabling the sharing

of information during execution. To support the generation of piped commands, an analysis of the training

data for common utility pairs was conducted, followed by the independent generation of commands for each

utility and their subsequent concatenation using the pipe symbol.

The utility pair that was found to be most prevalent in the training data was (find, xargs). Specifically,

it was observed that a command utilizing the find utility was frequently followed by an instruction utilizing

the xargs utility in a piped sequence. An analysis of the original training dataset revealed that 31.36% of

the commands contained one or more pipes, with an average of 1.45 per piped command.

In light of the added complexity involved in the support of piped commands, simplifications were made

in the generation of such commands. Specifically, it was observed that 70.33% of the piped commands in

the training data comprised of a single pipe. Therefore, the generation of piped commands was limited to

those containing a single pipe. Additionally, it was noted that the distribution of utilities in piped commands

was more limited in comparison to those without pipes. Specifically, 43.71% of the single pipe commands

in the training data consisted of a sequence of find commands followed by xargs, grep, and sort
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commands. Given this information, the decision was made to support these specific combinations of utilities

in the generation of piped commands.

The inclusion of piped commands into the generated dataset significantly expanded the number of avail-

able commands for generation. The introduction of pipes resulted in an exponential increase in the number

of potential commands, thereby adding pressure to the validation process which involved the sequential exe-

cution of all generated commands. As a result, the generation of piped commands was restricted to combina-

tions of 500 distinct find commands concatenated with 1,000 distinct xargs, grep, and sort commands,

resulting in a total of 500,000 commands synthesized in the initial stage.

4.5.3 Bash Command Validation

To ensure the validity of the generated commands, each command was replaced with valid placeholder argu-

ments and executed in an isolated environment. For instance, cd [Directory] would be converted to cd

abc, where the directory abc is available on the machine. To protect against undefined behavior, commands

were executed in a virtual machine environment.

The commands were executed in a sequential manner and the program recorded the exit status of each

command. The commands that completed execution and returned with exit statuses of zero were retained,

while those with non-zero exit statuses were discarded. The valid commands that were retained were then

converted back to their generic forms, this time utilizing the placeholders available in the original NL2Bash

dataset. To prevent the commands from hanging, a timeout of 0.5 seconds was implemented for each com-

mand during the validation process, after which the command was deemed invalid. However, it was observed

that the percentage of commands deemed invalid due to timeouts was negligible.

Figure 4.6: Valid Command Rates For Generated Commands

The rate of commands that completed execution and returned with exit statuses of zero varied signifi-

cantly among different utilities. Notably, commands such as grep and ls exhibited lower error rates, with

approximately 50% of them returning with exit statuses of zero. The most common utility in the training data,

find, had a validity rate of 30.4%. Two utilities, rev and rename, did not have any generated commands

that executed with exit statuses of zero and were thus removed from the generated dataset altogether. Overall,
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13.3% of the generated commands were deemed valid, with validity rates of 10.7% and 16.4% for non-piped

and piped commands, respectively.

An exit status of zero, indicating successful execution, does not necessarily indicate the effectiveness or

practicality of a command. For instance, a command such as cd ., which changes the working directory to

the current one, may execute without error, yet it serves no functional purpose as it does not result in a change

to the environment.

It is important to note that commands that fail validation are not necessarily incorrect. The generated

commands are generic in nature and arguments are replaced during the validation stage. Therefore, command

failure can occur as a result of the replacement of specific arguments. Additionally, the virtual environment

may not possess the same directories, libraries, and files that are manipulated in a given command, which

can lead to command failure. While execution can be an effective method for eliminating a large number of

incorrectly generated commands, it does not necessarily provide an accurate assessment of command validity

in all cases.

4.5.4 English Text Synthesis

In order to generate natural language for our generated Bash commands, we utilized the transformer-based

model that was previously employed in our initial translation task. This model architecture has demonstrated

exceptional performance in machine translation tasks, and therefore we decided to reuse it for the back-

translation process instead of opting for a less effective model. For this purpose, we trained the model using

data from the NL2Bash dataset, but in the reverse direction, specifically, by attempting to predict natural

language from Bash commands.

After training the model, we employed inference to predict the natural language equivalent for each

command in the generated dataset. This step completed the natural language component for every validated

Bash command and marked the end of the dataset generation process.

4.5.5 Corpus Description and Statistics

Our corpus consisted of a total of 71,705 validated Bash commands, each accompanied by its corresponding

English text. Of these commands, 69.9% utilized the find utility, while the remaining commands were

distributed among 34 other utilities, resulting in a total of 35 utilities represented. The most frequently used

utilities were find, tar, grep, diff, ls, file, du, and cp.

All our generated commands contained between zero and three flags for each utility within the command.

Typically, commands without a pipe included one utility, while commands with a pipe incorporated two util-

ities. However, for certain utilities such as xargs, nested commands allowed for the inclusion of additional
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utilities. As a result, the generated commands contained between one and four utilities, with the vast majority

containing just one or two. Out of the generated commands, 46.22% (33,148) included a single pipe, while

the remaining commands did not include any pipes. Every command generated was executed in a virtual

machine command-line environment and was able to complete execution with an exit status of zero within

0.5 seconds.

4.5.6 Data Quality

In order to enhance the quality of the generated commands, we made a deliberate decision to not utilize the

same argument-type placeholders as the parser during command generation. As previously discussed, the

parser typically defaulted to classifying parameters as REGEX, which a difficult placeholder for executable

command generation as it can have various forms.

In lieu of utilizing the same argument-type placeholders as the parser, we employed 15 argument-type

placeholders which, while similar to those of the parser, were specifically chosen to achieve the goal of

generating valid and executable commands. Our objective was to select argument-type placeholders that were

as specific as possible, yet still able to be automatically scraped and classified from manual pages. Rather

than relying on a single argument type, REGEX, we incorporated Pattern, FormattedString, and

Separator to differentiate between the various forms of regular expressions and enhance the specificity

of the generated commands. This approach was feasible as manual pages also differentiate between these

argument types, enabling us to classify these flags based on keywords in the manual pages with minimal

additional effort.

While our strategy for handling parameters and placeholders diverged during the command generation

stage, it was important to ensure that this inconsistency did not carry over to the translation process. The

parser and its associated placeholders had been demonstrated to be effective in preprocessing, thus, after

command generation, we converted the placeholders to align with those of the parser for inclusion in our syn-

thesized dataset. This conversion process was relatively straightforward as each of our chosen placeholders

was mapped to a single parser placeholder.

Moreover, our validation process, which involved injecting actual arguments into the placeholders and

executing the generated commands in a virtual machine environment, ensured a high level of quality for the

generated commands. Of the 570,476 no-pipe commands generated, 60,926 commands (10.7%) were able to

complete execution with a successful exit status of zero.

It is worth noting that such a level of validation was not applied to the initial dataset. Our analysis

revealed that a significant proportion of the commands present in the original NL2Bash dataset were unable

to complete execution with a successful exit status of zero in our testing environment. This finding suggests
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the potential for Bash Command generation to yield a higher percentage of valid commands compared to

those that have been manually verified by expert freelancers.

4.5.7 Comparison to Existing Dataset

As previously discussed in Section 4.5.2, efforts were made to align the distribution of generated commands

with that of the training dataset. Specifically, the majority of training commands utilized the find utility, and

this proportion was taken into consideration when determining the size of the generated dataset. However,

despite these measures, notable disparities were observed between the existing and generated datasets, as

illustrated in Table 4.5.

Table 4.5: New vs. Existing Dataset

Category Original Generated (Raw) Generated (Valid)
Total Commands 10,348 1,070,436 71,705
Piped Commands 3246 500,000 55,931
Distinct Utilities 117 36 36

The original dataset displayed a wide range of command variations, with 117 distinct utilities represented.

Given that our generator only supported 38 utilities, a higher proportion of certain utilities were included to

compensate for the absent utilities. In most cases, the quantity of generated commands for a given utility

significantly exceeded the number of corresponding commands in the original dataset. The distribution of

utilities in the generated and original datasets are illustrated in Figures 4.7 and 4.8, respectively, where the

most prevalent utilities in the generated dataset are compared to those in the original dataset.

Figure 4.7: Utility Distribution in the Generated Dataset

There are various factors that contribute to the dissimilarity in the composition of the two datasets. One

of the reasons is that the original dataset comprises of many duplicate commands or commands with sim-

ilar structures applied to different files, directories or other arguments. Conversely, this level of repetition

did not occur in the synthesized dataset, as each generated Bash Command is unique. This duplication also
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resulted in the underrepresentation of popular commands with specific use cases, such as the command cd

[Directory], in the generated dataset in comparison to the original dataset. More generally, the orig-

inal dataset comprised of a significant number of popular commands and underrepresented less common

commands or those with uncommon flags, as a result of the data collection strategy of sourcing from on-

line forums, as demonstrated in Figure 4.8. This approach yielded a heavily skewed dataset and inadequate

Figure 4.8: Utility Distribution in the Original NL2Bash Dataset

coverage of some powerful but infrequently used flags. In contrast, our generated dataset did not prioritize

popularity and treated all flags equitably, although those less likely to cause errors or prolonged execution

times were often screened during validation stages. Consequently, our dataset was significantly more diverse,

featuring a variety of unusual flag combinations not present in the original dataset.

Furthermore, our synthesized dataset incorporated up to three flags for each utility in the command, and

at most one pipe within the command. This configuration resulted in every generated command having

a maximum of two utilities and six flags, with the exception of a small proportion of nested commands.

While the majority of commands in the existing dataset conform to this demographic, many commands in

the training data had multiple pipes or more than three flags following a utility. This configuration implies

that while the generated dataset included a vast array of diverse commands, the commands were generally of

shorter length and relatively simple in nature.

Another significant difference pertains to the validity of the commands. Since the entire generated dataset

underwent validation and only valid commands were retained, the resulting dataset had 100% validity. In

contrast, when the original dataset was subjected to the same conditions, only 2,360 commands were able to

execute with exit statuses of zero within the 0.5-second time frame, resulting in a validity rate of 22.8%.

In summary, the analysis above illustrates that although the two datasets shared several similarities in

terms of utility composition, there were key differences in terms of utility and flag diversity, as well as

validity rates.
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4.6 Metrics and Error Analysis

This section presents an examination of various metrics and performances of the transformer-based Mag-

num model on both datasets. Section 4.6.1 explains the accuracy metric and introduces an enhanced energy

metric, Section 4.6.2 provides an overview of the accuracy performance of the Magnum model on the novel

NL2CMD dataset, and Section 4.6.3 examines the distribution of various error types on the original dataset.

4.6.1 Metrics

Below, we describe the accuracy metric and propose an improved energy metric.

Accuracy: The ideal evaluation metric would verify if the predicted Bash Command produces the same

outcome as the reference answer. However, this is not a practical approach since simulating 10K variant situ-

ations falls outside the scope of this study. Instead, our scoring mechanism specifically checks for structural

and syntactic correctness, which “incentivizes precision and recall of the correct utility and its flags, weighted

by the reported confidence” [94]. The metric defines two terms: Flag score Si
F and Utility score Si

U .

As shown in Equation 4.1 [94], the flag score is defined as twice the union of reference flags and predicted

flags number minus the intersection, scaled by the max number of either reference flags or predicted flags.

The range of flag scores is between -1 and 1.

Si
F(Fpred,Fref) =

1
N

(
2×|Fpred ∩Fref|− |Fpred ∪Fref|

)
(4.1)

As shown in Equation 4.2 [94], the utility score is defined as the number of correct reference utilities

scaled by capping flag score between 0 and 1, minus the number of wrong utilities, scaled by the maximum

number of either reference utilities or predicted utilities.

SU = ∑
i∈[1,T ]

1
T
×
(
|Upred =Uref|×

1
2

(
1+Si

F

)
−|Upred ̸=Uref|

)
(4.2)

By taking the sum of all the utility scores within a predicted command, the range of normalized utility scores

is between -1 and 1.

Energy: The assessment and documentation of energy consumption in natural language processing

(NLP) models is an emerging field of research [108] [109]. As highlighted by Henderson et al. [70] in

their systematic review, a significant contributing factor to this lack of attention is the complexity of data

collection. Specifically, according to Appendix B of Henderson et al. [70], out of 100 papers from the 2019

NeurIPS proceedings, only 1 paper included measurements of energy consumption, while 45 papers reported

on runtime performance.

In an effort to address the lack of attention towards energy consumption in NLP models, the NeurIPS 2020
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conference proposed the use of “energy” as a more direct metric for evaluating the environmental impact of

these models. However, upon examination of the current energy metric used in the NL2CMD competition, it

was determined that this metric, which relied on estimated attributable power draw in milliwatts to compute

scores, was not optimal. This approach disproportionately penalized models with shorter inference times.

One example of the limitations of the current energy metric used in the NL2CMD competition is the

discrepancy in energy consumption between the GPT-2 model and a smaller model such as a GRU. Despite

its larger model size and longer inference time of 14.87 seconds, the GPT-2 model’s score on the power metric

is lower than the baseline GRU model, which has a much shorter inference time of 3.24 seconds, as shown

in Table 4.5. Additionally, the energy consumption in milliwatt-hours (mWh) can be easily manipulated by

extending the inference time, for instance, by adding a delay of 3 seconds after each batch. This results in

an improvement of the test submission score from 682 to 88 on the leaderboard. To address these issues, an

alternative approach would be to measure the total energy consumed, rather than power, as this would take

into account both the model size and inference time in determining energy consumption.

Validity: Another metric that can be used to evaluate the quality of the commands in a dataset is a measure

of the validity rate. The validity rate metric was defined as the percentage of commands that were able to

execute to completion with exit statuses of zero within a 0.5-second time frame, when replaced with standard

replacement values. While this metric is not entirely reliable due to the complexities of different computer

systems and file systems, it does provide valuable insight into the general correctness of the commands in the

dataset.

Commands that passed the validity test indicate a baseline level of error aversion and demonstrate that

they do not result in undefined behavior under the specified conditions. However, it is important to note that

commands that do not pass the validity test are not necessarily incorrect. They may execute correctly on a

different machine or may require more time than the allotted 0.5 seconds to execute.

4.6.2 Synthesized Dataset Results

The generated dataset was partitioned in a 80:20 ratio for the training and testing sets, respectively. The

transformer-based model was trained on the training dataset. The results were subsequently evaluated, yield-

ing an accuracy score of 31.63%, as depicted in Table 4.6.

The relatively low accuracy score obtained serves as an indication of the complexity of the dataset. It is

hypothesized that this outcome was a result of the presence of utility-flag combinations that were not present

in the original dataset. This led to inaccuracies in the back-translations for the natural language components,

thereby rendering predictions for the model substantially challenging.

In addition, it is suspected that the model trained on the NL2Bash dataset may have exhibited overfitting,
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Table 4.6: Comparison of Model Performance Across Datasets

Training Dataset Test Dataset Accuracy
NL2Bash NL2Bash 52.3%

NLC2CMD NLC2CMD 31.6%
NLC2CMD NL2Bash -13%
NL2Bash NLC2CMD -6.67%

NLC2CMD+NL2Bash NL2Bash 48%
NLC2CMD+NL2Bash NLC2CMD 31.7%

due to its relatively small size. The results of cross-training the model on both datasets revealed satisfactory

performance on both test sets, whereas the model trained on a single dataset demonstrated inadequate perfor-

mance on the test set of the other dataset. This outcome further emphasizes the significance of utilizing large

and diverse datasets for enhancing the robustness of the model.

4.6.3 Error Analysis

Previous studies, such as Lin et al. [82], have identified sparse training data, utility errors, and flag errors as

the top three causes of inaccurate predictions in natural language-to-bash (NL2Bash) systems. However, as

the extent of training data sparsity is subjective, this study focuses specifically on the analysis of incorrect

utility and flag predictions. A separate, independently-created testing dataset consisting of 1,867 samples was

utilized for evaluation, as opposed to the manual analysis of 100 samples from the development dataset, as

previously employed. The results, depicted in Figure 4.9, indicate that a majority of errors, over two-thirds,

are attributed to utility errors, indicating that a sufficient quantity of data for each utility is more critical than

a diverse set of flags.

Figure 4.9: Percentage of Utility and Flag Errors on Original Dataset

The results of this study reveal the underlying cause of the lower accuracy score observed in our new

dataset. Specifically, utilities that are less prevalent in the original dataset exhibit a greater number of com-

mands. As depicted in Figure 4.10, among the top six incorrectly predicted utilities, the utilities ls, grep

and find were found to be the most frequently confused. This is not unexpected as the functionalities of
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these utilities overlap significantly, and they are also among the most commonly used Bash commands. A

manual examination of the incorrect predictions also revealed that these three utilities are frequently utilized

in piped commands, which can partially explain their high proportion among all incorrectly predicted utili-

ties. Our synthesized dataset contained both a larger absolute and relative number of piped commands, further

highlighting the challenges faced by the model in correctly predicting them.

Figure 4.10: (a) Distribution of Reference Utilities that are Wrongly Predicted. (b) Distribution of Wrongly
Predicted Utilities

4.7 Conclusion

The present study presents several significant contributions to the field of semantic parsing research. Firstly,

a refined workflow for a state-of-the-art machine translation model was proposed to generate accurate and

practical commands. Additionally, a post-processing technique was introduced to replace placeholders in

translated Bash commands with the original parameters provided in natural language. Lastly, a new dataset

was generated from scratch and an accompanying method for generating additional data was also presented.

These contributions provide valuable insights and tools for the semantic parsing community to improve the

accuracy and practicality of their models.

Our research has established crucial foundations for the development of an automated system for trans-

lating natural language to Bash commands. We were the first to create a comprehensive and valid dataset

for Bash commands from scratch, and also established a baseline accuracy of 31.6% for translating natural

language to Bash commands using this dataset. The code for this research project is available on the GitHub

repository [110]. The following is a summary of the key insights and findings that were gleaned from this

research project:

• It is feasible to synthesis a large dataset of Bash Commands and corresponding English pair

by adopting back-translation. Generation from scratch is a major milestone and provides significant
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advantages over prior augmentation strategies. Our approach provided new opportunities for generating

additional datasets of natural language to computer code translations and enhancing the performance

of machine translation for Bash command

• To make translated commands practical they must be executable, therefore validity testing is

important. The conversion from a Bash Command template to an executable (or nearly executable)

command shows both progress and promise of the usability and practicality of our translation pipeline.

A more complete and streamlined process of converting natural language to valid, executable com-

mands will become a larger focus as model accuracy continues to improve.

• It is necessary to establish a hold-out dataset1 to evaluate the generalizability of the model. De-

spite our dataset being six times larger and more diverse than the original dataset, the model performed

well on the test set but failed to generalize to the original dataset and vice versa. This highlights that

the current datasets of Natural Language to Bash Commands are still relatively small and insufficiently

diverse to create robust models that generalize well to hold-out sets. This outcome can inform fur-

ther developments and testing of different models to optimize performance on both our dataset and the

original dataset.

1A hold-out dataset is one that is sourced differently from the original data, making it more challenging in comparison to a test set,
which is sourced in the same manner as the training data and is likely to have a similar distribution.
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CHAPTER 5

Efficient training: A Methodology for Deep Learning Models on CPUs

5.1 Problem Overview

The utilization of GPUs for the training of deep learning models has become prevalent due to their highly

parallelized architecture. Consequently, research on optimization techniques for training primarily centers

on GPU-based systems. However, it is important to consider the trade-off between cost and efficiency when

determining the appropriate hardware for training. Utilizing CPU servers may be a viable option, as they

may result in greater efficiency and entail lower costs for hardware updates, while also effectively utilizing

existing infrastructure.

This chapter presents three contributions to the field of training deep learning models using CPUs. Firstly,

the chapter describes a method for optimizing the training of deep learning models on Intel CPUs, along with

the development of a toolkit called ProfileDNN, which is designed to enhance performance profiling. Sec-

ondly, the chapter introduces a generic training optimization method that guides the workflow and examines

various case studies in which performance issues were identified and resolved through the optimization of

the Intel® Extension for PyTorch, resulting in a 2x improvement in training performance for the RetinaNet-

ResNext50 model. Thirdly, the chapter demonstrates the utilization of the visualization capabilities of Pro-

fileDNN, which facilitated the identification of bottlenecks and the creation of a custom focal loss kernel that

was two times faster than the official reference PyTorch implementation.

To address the challenges of portability associated with the deployment of deep learning (DL) mod-

els across different hardware platforms, Intel has open-sourced the oneAPI Deep Neural Network Library

(oneDNN)[111]. OneDNN is a cross-platform performance library of basic deep learning primitive op-

erations and includes a benchmarking tool called benchDNN. Additionally, Intel has developed optimized

versions of popular frameworks, such as Intel® Optimizations for TensorFlow and Intel® Extensions for

PyTorch[112], utilizing oneDNN. Despite these efforts, few guidelines exist guidelines for profiling and op-

timizing DL model training on CPUs.

Several fundamental research challenges must be addressed when training DL models on CPUs, including

the following:

1. Identifying performance bottlenecks. Frameworks with CPU-optimized kernels, such as Intel® Ex-

tension for PyTorch, are relatively new, and generic model-level profilers [113] , such as the PyTorch

Profiler [25], are not oneDNN-aware. Furthermore, low-level profilers, such as benchDNN, can only
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benchmark performance at the operational level. Identifying the primitive operations that are most crit-

ical for a specific model/framework/hardware combination is essential so that low-level optimizations,

such as those provided by oneDNN, can significantly accelerate performance.

2. Addressing performance bottlenecks. While GPUs have well-established platforms, such as CUDA,

for kernel implementations, libraries for CPUs are less well-known. It is therefore crucial to understand

how to rectify performance bottlenecks, such as by locating and implementing custom operation kernels

for both forward and backward propagation and by adopting proper low-precision training to reduce

computing time without sacrificing accuracy for CPUs.

3. Establishing achievable goals. Projections for CPUs are often made in a crude way by dividing CPU

performance in FLOPs over FLOPs required for model training. In a computation-bounded scenario,

however, it is essential to create an experiment-based projection for DL models so that the goal is

realistically achievable, taking into account hardware limits and kernel optimizations.

In order to address the challenges present in training deep learning (DL) models on CPUs, we have developed

a structured, top-down method for prioritizing optimization options. Utilizing this approach, we have also

created a DL performance profiling toolkit, called ProfileDNN, which is specifically designed to be compati-

ble with oneDNN and supports both profiling and projection at the model level. This toolkit serves as a bridge

between oneDNN-specific model-level projection and the optimization process. An example of a model that

can be optimized using our method is RetinaNet [114].

The present study is organized as follows: In Section 5.2.1, we provide an overview of various profile tools

and their significance in identifying performance bottlenecks and inconsistencies. Section 5.2.2 elaborates on

this subject further. In Section 5.2.3, we describe the objectives and procedures of projection, as well as the

architecture and workflow of ProfileDNN. Section 5.2.4 to Section 5.2.8 discuss strategies and techniques for

achieving efficient training while maintaining accuracy. The impact of distributed training on efficiency and

convergence is analyzed in Section 5.3. Finally, in Section 5.4, we provide concluding remarks and outline

our future research. All the experiments reported in this paper were conducted on Intel Xeon Cooper Lake

processors.

5.2 Method Summary

In this section, we present the methodological component of our contribution for optimizing training of deep

learning (DL) models on CPUs. Our objective is to establish a structured framework for users to optimize

the training of DL models on CPUs. The method we propose adopts a top-down approach, similar to that

described in [115], which aims to efficiently and effectively identify critical performance bottlenecks.
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Figure 5.1: DL Workflow Method Decomposition

In our experience, DL workflows can be divided into three stages: profiling, projection, and optimization.

Figure 5.1 illustrates how each stage can be broken down into various sub-components. Users are advised

to follow the stages in the order presented, as each stage builds upon the results of the previous stage. Our

toolkit, ProfileDNN, can function as both a profiling tool and a projection tool. Framework-level profilers,

such as Tensorflow Profiler and Torch Profiler, are popular tools in part due to their hardware independence

(they work on any hardware that supports Pytorch or Tensorflow), however, they lack support for executing

low-level primitive kernel operations, which are crucial for performance projection. Low-level profiling/pro-

jection tools, on the other hand, can measure kernel execution time, and are traditionally hardware-specific.

For example, Deep Learning Profiler (DLProf) developed by Nvidia maps the correlation between profile

timing, kernel information and a Deep Learning model; ZenDNN developed by AMD support CPU profiling;

BenchDNN developed by Intel went one step further by supporting primitive operation benchmarking, and

thus can potentially be adapted into a projection tool. Our ProfileDNN, as shown in Table 5.1, has support for

both high-level profiling and low-level (kernel) projection, and thus can act as a bridge between framework

and kernel operations, thereby enabling execution-based DL model performance projection.

Table 5.1: Comparison of DL Profiling Tools

ProfileDNN BenchDNN TF Profiler DLProf ZenDNN
Developer Ours Intel Google Nvidia AMD

Devices Support OneDNN hardware CPU CPU / GPU / TPU GPU CPU
Result Format Chart / Log / Table Log / Table UI / Log UI / Log Log

Mode Observe / Execution Execution Observe Observe Observe
Kernel Level High / Low Low High Low Low

5.2.1 Profile and Tracing

During the profiling stage, it is important for users to examine the breakdown of operation kernel components

of the DL model and evaluate their relative significance. Particular attention should be paid to any discrep-

ancies between the user’s model and data versus the reference implementation and intended use case. For
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instance, it is important to verify if all the major kernel operations of the reference model are present in the

user’s model, and whether the percentage of kernel components remains roughly the same. If the answer to

either question is negative, it may indicate that the code may perform poorly due to inadequate adoption of

oneDNN kernel. ProfileDNN facilitates the comparison of kernel component distribution through the use of

intuitive visualizations. This approach is similar to the one adopted by vTune [116]. ProfileDNN supports all

primitive kernels, such as convolution, pooling, matrix multiplication, reordering, etc, from benchDNN.

Figure 5.2: Comparison of Primitive Operations Across Models

Convolutional Neural Networks (CNNs)[117], Recurrent Neural Networks (RNNs)[118], and Transform-

ers [119] are some of the most widely used Neural Network models today. ProfileDNN can provide a break-

down of primitive operations by type and direction, as illustrated in Figure 5.2a-c. We have found that

both CNN and RNN models spend a greater proportion of their time on back-propagation than forward-

propagation. Transformer models are primarily composed of inner product and matrix multiplication oper-

ations, which correspond to the softmax operation that is often a performance bottleneck for transformer-

based models [120]. Figure 5.2d also shows the breakdown of the RetinaNet-ResNext50 model, which is a

complex object detection model whose distribution is similar to that of the CNN in Figure 5.2a.

A breakdown of primitive operations is often sufficient for identifying performance bottlenecks in DL

training tasks as many of them are computation-bound. However, in scenarios where memory or cache

utilization is the limiting factor, trace analysis is required to examine the sequence in which operations are

executed. A trace is a ordered set of span sequences, where each span includes an operation name, start and

end timestamps, and relations to other spans (such as child processes, etc.). If a trace is highly fragmented,

it suggests a high degree of context switching, which can be addressed by using custom merged operators to
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improve performance.

Figure 5.3: The vTune Design

VTune is another powerful tool for profiling CPU performance based on a top-down approach [115].

vTune divides the CPU workflow pipeline into frontend and backend, with the former being constrained

by latency and bandwidth, and the latter being constrained by core (computation) and memory (cache), as

illustrated in Figure 5.3. The initial step in profiling should be a generic hotspot analysis on the model training

process to identify the most computationally expensive operations. The profiling process can then be followed

by micro-architecture exploration to measure CPU utilization rate (spinning time), memory bandwidth, and

cache (L1, L2, or L3) miss rate. Once the primitive operation with the heaviest computational footprint has

been identified, algorithm- or implementation-level optimizations can be applied. If memory utilization is

identified as the bottleneck, memory access and IO analysis can also be performed on individual operations.

5.2.2 Data Discrepancy

A commonly overlooked discrepancy is the difference between the reference dataset and the custom dataset

used. The data distribution can not only impact the performance of the same model but it can also affect

the structure of the model itself. For instance, RetinaNet-ResNext50 is a classification model that alters its

structure based on the number of classes in the dataset.

After we switched the dataset from COCO [121] to OpenImage [122], the training time increased sig-

nificantly. We observed that while the dataset size increased by a factor of 10, the training time per epoch

increased by a factor of 20, which is not proportional. This increase can be partly attributed to a larger fully-

connected (FC) layer in the backbone. Specifically, we found that the major contributor to the increased time

was the focal loss calculation caused by the threefold increase in the number of classes, as demonstrated in

the detailed breakdown in Figure 5.4. Our findings were further supported by trace analysis, which revealed

that approximately one-third of the backward calculation time was spent on the focal loss calculation. To

address this issue, we implemented a custom focal loss kernel as discussed in Section 6.4.

5.2.3 Projection and Toolkit structure

The projection of DL models is a process that aims to determine the theoretical performance ceiling of a

specific model/framework/hardware combination. Intel has an internal tool that can perform projection for

DL models, but it currently requires extensive manual configuration and tuning. BenchDNN can be used to
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Figure 5.4: Open Image vs COCO Training Time Ratio Breakdown

predict performance on specific hardware automatically, but it can only perform predictions for individual

operations at a time. In light of this, we designed ProfileDNN to combine the benefits of both existing tools

by allowing for predictions for the entire DL model with minimal manual effort.

As depicted in Figure 5.5, ProfileDNN accepts an arbitrary log file generated by running deep learning

models on a platform that supports oneDNN with DNNL VERBOSE set to 1. The stats.py script then pro-

cesses the raw log file by collecting and cleaning it into CSV format, generating a template parameter file,

calculating, and plotting the distribution of primitive operation components. The benchDNN.sh script runs

each primitive operation multiple times and calculates the average. The efficiency.py script subsequently

takes a weighted sum of the execution time of all operations based on the number of calls, and produces an

efficiency ratio number.

Figure 5.5: Toolkit Structure and Flow Pipeline

In order to ensure the accuracy of our toolkit in reproducing the behavior of the kernels from the original

model, we employ a method that involves controlling both the computation resources and problem descrip-

tions to ensure they are identical. To achieve this, we utilize the tool numactl to manage the number of CPU

cores and memory binding. Additionally, we set the mode to p (performance) in benchDNN to optimize

performance. These parameters are carefully monitored and documented in Table 5.2 for reference.
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Name Example
Driver conv, relu, matmul, rnn, bnorm
Configuration u8s8u8, s8f32
Directory FWD I, BWD D, BWD W
Post Ops sum+eltwise relu
Algorithm DIRECT
Problem batchsize mb1, mb32
Problem input id4ih32iw32
Problem output id16ih16iw16
Problem stride sd2sh4sw4
Problem kernel kd2kh3kw3
Problem padding pd1ph1pw1
Problem channel ic16oc32

Table 5.2: Summary of benchDNN Parameters

5.2.4 Dataloader and Memory Layout

By analyzing the DL training process from the same vTune top-down perspective shown in Fig 5.3, the

dataloader can be seen as a frontend bounded by bandwidth and latency. Through examination, we identified

three primary sources of bottlenecks for the data loader: input/output (I/O), decoding, and preprocessing. Our

analysis revealed that there was minimal difference in performance between data stored in NVMe or loaded

into RAM, indicating that I/O overhead is negligible. Additionally, we found that adopting Pillow-SIMD and

accimage as the backend in torchvision resulted in improved decoding performance.

A PyTorch dataloader parameter controls the number of worker processes, which are usually set to prevent

blocking the main process when training on GPUs. For training on CPUs, however, this number should not

be set to minimize memory overhead. This is because the RAM memory on CPUs, while generally larger

than that of GPUs, has a smaller bandwidth. As a result, training on CPUs has the advantage of allowing for

larger batch sizes and the ability to train larger models as reported in [30].

Here we define the variables n as the batch size, c as the number of channels, h as the height, and w

as the width. The recommended memory layout in the Intel® Extension for PyTorch is nhwc (channel last)

for more efficient training, though the default layout in benchDNN is nchw. To align with established best

practices, the default behavior of ProfileDNN is set to adopt the nchw layout. If the log input specifies a

different memory layout, ProfileDNN will automatically override the default setting.

5.2.5 Library Optimization

We observed significant performance improvements by replacing slow operation implementations with more

efficient libraries, as demonstrated by substituting the official PyTorch implementation with its counterpart

in the Intel® Extension for PyTorch. Through the use of ProfileDNN, we were able to identify a discrepancy
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in the number of backward convolution calls between the official PyTorch library and the Intel® Extension

for PyTorch. By conducting a detailed analysis of the computation graph and utilizing our ProfileDNN-

based visualization, we discovered that these calls originated from the frozen layers in the pre-trained model

(ResNext backbone).

Our analysis led to a significant improvement in the performance of the RetinaNet-ResNext50

model training with 2 fixed layers, resulting in a 16% increase. We also identified that the

primitive operation frozenbachnorm2d was missing in Figure 5.2d, and that the operation

torchvision.ops.misc.FrozenBatchNorm2d was being interpreted as separate mul and add op-

erations, which meant it was not a single oneDNN kernel operation. Our analysis revealed that bandwidth-

limited operations made the torchvision.ops.misc.FrozenBatchNorm2d operation inefficient

and unable to be fused with other operations to reduce memory accesses. Training performance was further

improved by 29.8% after we replaced the torchvision.ops.misc.FrozenBatchNorm2d operation

with IPEX.nn.FrozenBatchNorm2d.

5.2.6 Low-precision Training

Low-precision training has proven to be a highly effective method for high-performance computing and BF16

(Brain Floating Point) is widely supported by various DL hardware platforms. BF16 is unique in that it has

the same range as float32, but uses fewer bits to represent the fraction (7 bits). This characteristic of BF16

can be beneficial in situations where computation speed is a priority, but can also result in a loss of accuracy

when compared to float32 in the calculation of loss. As illustrated in Figure 5.6, the computation time is

nearly halved when using BF16 compared to float32. (Note that the improvements plotted are relative and

not absolute, in compliance with Intel’s data policy).

Our analysis revealed a substantial discrepancy between the forward/backward training time ratio in com-

parison to the bare-bone kernel time, which indicates highly inefficient non-kernel code in the forward pass.

Further examination revealed that the loss function does not scale well and comprises a significant portion of

computation time. By identifying the focal loss as having significant overhead, we implemented our version

of the focal loss kernel, as described in Section 5.2.8. However, we observed a difference in loss results

compared to the original implementation. Through further investigation, we identified that the loss of ac-

curacy occurred during low-precision casting to BF16 by the torch.cpu.amp.autocast. Therefore,

unless convergence can be guaranteed, it is advisable to avoid casting data into BF16 for loss calculation,

particularly when reduction operations are involved.
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5.2.7 Layer Fusion and Optimizer Fusion

In inference mode, certain layers can be fused for a forward pass in order to save cache copying operations, as

intermediate results are not needed. However, in training mode, the layers containing trainable weights must

save the intermediate results for backpropagation. When oneDNN is running in inference mode, it enables

the fusion of batchnorm+relu and conv+relu respectively, but not the fusion of frozenbatchnorm

(FBN)+relu. OneDNN already supports the use of eltwise (linear, relu) post-operations for

conv and chaining of post-operations. As a result, we treat FBN as a per-channel linear operation to en-

able the fusion of conv+FBN+relu. This fusion has the potential to increase performance by 30% and is

currently work-in-progress (WIP).

Modern deep learning frameworks typically support automatic differentiation and modularity of deep

learning building blocks, which simplify the creation of deep learning models by lowering the entry barrier.

However, it is common knowledge in software development that there exists a trade-off between modularity

and performance. As noted by Jiang et al. in 2021 [123], eager execution, which executes forward propaga-

tion, gradient calculation, and parameter updating in serialized stages, may negatively impact model perfor-

mance. In contrast, optimizer fusion aims to improve locality and parallelism by reordering these procedures.

The Intel® Extension for PyTorch currently supports the fusion of the SGD [124] and Lamb [125] optimizers,

in part by fusing operations and separating the gradients, parameters, and intermediates into small groups for

improved caching mechanism. We conducted an experiment comparing a fused and unfused Lamb optimizer

with RetinaNet and found a 5.5X reduction in parameter updating time when the optimizer was fused.

5.2.8 Custom Operation Kernel

Custom operation kernels play a crucial role in optimizing performance by eliminating computation over-

head, such as unnecessary copying and intermediates. It is essential that these kernel implementations are

mathematically equivalent to the reference code. Moreover, these custom kernels have the potential to show

significant performance gains in most or all circumstances, as discussed in the following section.

5.2.8.1 Theoretical deduction

Instead of utilizing the PyTorch implementation (Appendix 6.2) for the forward pass of the focal loss and

relying on the default generated backward pass, we implemented a custom kernel for both the forward and

backward pass (the backward kernel implementation is optional, as implicit autograd can be generated). The

focal loss can be represented mathematically as shown in Equation 5.1 and we adopt γ = 2 and α = 0.25 in

our implementation. The forward pass can be further simplified by assuming that x and y are real numbers in

Equation 5.2. Additionally, since y is a binary matrix, all terms that contain y(y-1) are equal to 0 and can
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be removed as shown in Equation 5.3. The backward equation is presented in Appendix 6.3.

FL(p) =

 −α(1− p)γ log(p), y = 1

−(1−α)pγ log(1− p), otherwise
(5.1)

FL = (a(2y−1)− y+1)
(
−exy+ ex + y

ex +1

)γ

(log(ex +1)− xy) (5.2)

FLsp =

(
−exy+ ex + y

ex +1

)γ

((α(2y−1)− y+1) log(ex +1)−αxy) (5.3)

5.2.8.2 Implementation and Assessment

The operators in ATEN of PyTorch can be broadly classified into two categories: in-place operations and

standard operations. In-place operations are denoted by a suffix of , such as in the case of add . Since

in-place operations modify the Tensor directly, the overhead of copying or creating new spaces in the cache

is eliminated. As observed in the implementation presented in Appendix 6.4, we have made extensive use of

in-place operations to enhance efficiency.

After verifying that our kernel implementation is mathematically equivalent to the reference implementa-

tion, we conducted an experimental evaluation of our kernel against the reference code using both float32 and

BF16 settings. As illustrated in Figure 5.6, the custom forward kernel demonstrated a 2.6-fold improvement

in performance over the default implementation under the BF16 setting.

Figure 5.6: Comparison of Custom Focal Loss Time vs Default

Although the PyTorch framework can generate implicit autograd for our custom kernel, its performance

is suboptimal. Our custom backward kernel demonstrated a 1.3-fold improvement in performance over the

reference implementation and a 1.45-fold improvement over the generated implicit autograd kernel. Addi-
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tionally, we observed that the custom backward kernel can enhance the performance of the forward kernel and

we suspect that the explicit backward kernel prevents the forward kernel from retaining unnecessary inter-

mediates. The overall improvement from the custom focal loss kernel is a two-fold increase in performance.

Our code has been integrated into the Intel® Extension for PyTorch and will be available in that library in the

near future.

5.3 Distributed Training

In contrast to inference, which can be scaled out among independent nodes, training deep learning models

often requires more powerful computing resources that work in synchronization. This requirement can be

met by scaling up nodes with additional CPU resources or by scaling out among multiple nodes. When

training a system at scale, whether it involves multiple nodes, multiple sockets, or even a single socket, it

is necessary to distribute the workload across multiple workers. Coordination among distributed workers

necessitates communication between them. The distribution of workloads on CPUs can be achieved through

various protocols and middleware, such as MPI (Message Passing Interface)[126] and Gloo [127]. In the

subsequent sections, we will use MPI terminology.

5.3.1 Distributed Training Performance

To achieve optimal training performance, a training workload should aim to utilize one thread per CPU core

of each system node. For instance, an 8-socket system with 28 cores per socket should target 224 total

threads. The total threads can be divided among several workers identified by their rank, such as 8 ranks of

28 threads, 16 ranks of 14 threads, or 32 ranks of 8 threads, etc. It is important to note that the selection of

ranks and threads should not result in any rank spanning multiple sockets.

In practice, it is observed that better performance can be achieved by using more ranks with fewer threads

each, as opposed to fewer ranks with more threads each, at the same global batch size. Table 5.3 illustrates

how throughput increases diagonally from the bottom-left to the top-right. However, the number of available

ranks is constrained by the available system memory, model size, and batch size. Since system memory is

divided among the ranks, each rank must have sufficient memory to support the model and host functions to

avoid workload failure.

Number of Workers
Threads/Worker 1 2 4 8 16
7 1.00 2.00 3.82 7.04 11.87
14 1.86 3.7 6.8 11.59 -
28 3.27 6.51 11.20 - -
56 5.11 10.18 - - -

Table 5.3: Scalability (Normalized Throughput)
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While high-end CPUs can already perform comparably with their GPU counterparts (e.g. Intel 4th Gen

Xeon processors were able to train a ResNet-50 model in under 90 minutes [128]), the real advantage lies in

the democratization of DL model training for individuals or companies without access to GPUs or those with

existing CPU clusters and limited budgets. The inefficiency of CPU training is largely attributed to limited

bandwidth, but this can be addressed by utilizing better software optimization (such as Intel® Extension for

PyTorch) and low-level kernel support (such as oneDNN) to break and group operations into more manage-

able chunks for improved caching. These optimizations can lead to significant performance improvements,

as we observed a 2X performance boost with Intel® Extension for PyTorch compared to the default PyTorch.

Another potential platform for training is AI accelerators, as the latest MLPerf benchmark suggests that the

Gaudi2 processor has 2X the throughput of the A100 on ResNet-50 and BERT [129].

5.3.2 Training Convergence

As a training system is scaled-out to more nodes, sockets, or ranks, two factors that have a negative impact

on the model’s convergence time are weak scaling efficiency and convergence point. Weak scaling efficiency

is defined as the ratio of the performance of a system to N systems doing N times as much work, and tends

to fall behind the linear rate at which resources are added. This phenomenon and its underlying causes have

been widely studied [130] across different hardware types and will not be further explored in this paper.

A model’s convergence point is the second factor that affects convergence time as a training system scales.

Specifically, as a distributed system scales out, the global batch size increases, even though the local batch

size per worker remains constant. For example, if a 2-socket system launches a combined 8 ranks with a

global batch size of 64 (BS=8 per rank), when scaled out to 8-sockets, the global batch size becomes 256,

despite the fact that each rank has the same local batch size.

As the number of epochs required to converge to a model’s target accuracy increases, the global batch size

of a training workload also increases, as shown in Fig 5.7. This increase in the number of epochs to reach

a convergence point can have a significant negative impact on the benefits of increased resources. When

planning a system scale-out, it is therefore crucial to take into account the resulting convergence point and

attempt to mitigate it by reducing the local batch size if possible [131].

5.4 Conclusion

In this chapter, we investigate various techniques for optimizing the training of deep learning (DL) models

on CPUs, along with a comprehensive method guide. We present a DL profiling and projection toolkit called

ProfileDNN that assisted in identifying several issues related to the training of RetinaNet-ResNext50. The

resolution of these issues led to a significant improvement in efficiency, increasing performance by a factor
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Figure 5.7: Convergence Ratio vs Global Batch Size (Normalized)

of two. Additionally, we developed a custom Focal Loss kernel that demonstrated a 1.5 times improvement

in performance over the PyTorch reference implementation when executed on CPUs.

The results of our study on the training of deep learning models using CPUs have yielded several key

insights. Specifically, the utilization of efficient deep learning frameworks optimized for CPUs, such as the

Intel extension for PyTorch, can significantly reduce training time with minimal additional cost. Additionally,

it is crucial to conduct model profiling on both reference code and custom implementations, particularly when

changes to the data set have been made. This analysis can aid in identifying discrepancies between different

implementations and the corresponding low-level operation distributions, which can serve as indicators of

potential bottlenecks. Furthermore, it has been found that implementing both the forward pass and backward

pass explicitly for custom kernels can lead to the most optimal training performance. Lastly, our research has

demonstrated that there is a strong correlation between local batch size and the convergence point, and thus

it is essential to properly reduce batch size when scaling out the system.

Ammar et al.[132] have demonstrated that software libraries have a greater impact on the performance of

deep learning (DL) model training compared to hardware architecture. As such, there is a need for further

research in the area of hardware-software co-design. Recently, DeepMind[133] introduced a novel algorithm

that utilizes reinforcement learning to optimize matrix multiplication through the simultaneous profiling and

fine-tuning of both hardware and software. This hardware-dependent algorithm resulted in a significant

increase in performance and could not have been discovered through traditional algorithm analysis. This

approach could also be applied to discover more hardware-specific efficient kernel implementations.
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As highlighted by Sparsh et al. [134], basing hardware comparisons for DL model training solely on

Time-to-Train (ToT) metrics may not provide a comprehensive understanding of the system. Other factors

such as energy efficiency, throughput, and latency must also be considered when selecting a system for DL

training.

In future work, our research will focus on testing our proposed method and ProfileDNN toolkit on other

popular models and conducting a more detailed study on optimizing the training of DL models with dis-

tributed CPU clusters. Additionally, we will work towards improving MLperf by incorporating more com-

prehensive metrics for DL model training.
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CHAPTER 6

Appendix

6.1 Summary of Publications

1. Quchen Fu, Szu-Wei Fu, Yaran Fan, Yu Wu, Zhuo Chen, Jayant Gupchup, Ross Cutler, Real-time

Speech Interruption Analysis: From Cloud to Client Deployment, ICASSP 2023

2. Quchen Fu, Zhongwei Teng, Jules White, Maria Powell, and Douglas Schmidt, FastAudio: A Learn-

able Audio Frontend for Spoof Speech Detection, ICASSP 2022

3. Quchen Fu, Zhongwei Teng, Marco Georgaklis, Jules White and Douglas Schmidt, NL2CMD: An

Updated Workflow for Natural Language to Bash Commands Translation, JMLTAP

4. Quchen Fu, Ramesh Chukka, Keith Achorn, Thomas Atta-fosu, Deepak R. Canchi, Zhongwei Teng,

Jules White, Douglas C. Schmidt, Deep Learning Models on CPUs: A Methodology for Efficient

Training

5. Quchen Fu, Zhongwei Teng, Jules White and Douglas Schmidt, A Transformer-based Approach for

Translating Natural Language to Bash Commands, ICMLA 2021

6. Zhongwei Teng, Quchen Fu, Jules White, Maria Powell, and Douglas C. Schmidt, SA-SASV: An

End-to-End Spoof-Aggregated Spoofing-Aware Speaker Verification System. INTERSPEECH 2022

7. Zhongwei Teng, Quchen Fu, Jules White, Maria Powell, and Douglas C. Schmidt, Complementing

Handcrafted Features with Raw Waveform Using a Light-weight Auxiliary Model. ICPR 2022

8. Zhongwei Teng, Quchen Fu, Jules White, and Douglas C. Schmidt, Sketch2Vis: Generating Data

Visualizations from Hand-drawn Sketches with Deep Learning. ICMLA 2021

9. Agarwal, Mayank, Tathagata Chakraborti, Quchen Fu, David Gros, Xi Victoria Lin, Jaron Maene, Kar-

tik Talamadupula, Zhongwei Teng, and Jules White. Neurips 2020 nlc2cmd competition: Translating

natural language to bash commands. In NeurIPS 2020 Competition and Demonstration Track, pp.

302-324. PMLR, 2021.

10. Yu Yao, Maria Powell, Jules White, Jian Feng, Quchen Fu, Peng Zhang, and Douglas C. Schmidt. An

Exploration of Rare Voice Disorder Diagnosis with Multi-stage Transfer Learning.
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6.2 Reference Focal Loss Code [1]

import torch

import torch.nn.functional as F

import time

def sigmoid_focal_loss(

inputs: torch.Tensor,

targets: torch.Tensor,

alpha: float = 0.25,

gamma: float = 2,

reduction: str = "none",

):

inputs = inputs.to(dtype=torch.float32)

targets = targets.to(dtype=torch.float32)

p = torch.sigmoid(inputs)

ce_loss = F.binary_cross_entropy_with_logits(

inputs, targets, reduction="none"

)

p_t = p * targets + (1 - p) * (1 - targets)

loss = ce_loss * ((1 - p_t) ** gamma)

if alpha >= 0:

alpha_t = alpha * targets + (1 - alpha) * (1 - targets)

loss = alpha_t * loss

if reduction == "mean":

loss = loss.mean()

elif reduction == "sum":

loss = loss.sum()

return loss

6.3 Focal Loss Derivative

Figure 6.1: Backward Kernel Equation

6.4 Custom Focal Loss Kernel Code
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Figure 6.2: Simplified Backward Kernel

at::Tensor _focal_loss_forward(const at::Tensor& input, const at::Tensor& target, const

float alpha, const float gamma, const int64_t reduction) {

at::Tensor loss;

loss=(((alpha*(-input).mul_(target)).add_(((2*alpha-1)*target+(1-alpha)).mul_(((input.

exp_() + 1).log_())))).mul_(((target -1).mul_(input).add_(-target)).pow_(gamma))).div_

((input + 1).pow_(gamma));

return apply_loss_reduction(loss, reduction);

}

at::Tensor _focal_loss_backward(const at::Tensor& grad, const at::Tensor& input, const at

::Tensor& target, const float alpha, const float gamma, const int64_t reduction) {

at::Tensor grad_input;

grad_input=-((input.exp() + 1).pow(-gamma-1)).mul((target.add((1-target).mul(input.exp

()))).pow(gamma - 1)).mul(((-alpha*gamma*input).mul(target).mul(input.exp())).add(

gamma*(target+alpha-1).mul(input.exp()).mul(((input.exp()+1).log()))).add(alpha*target

).add((alpha-1)*(1-target).mul((input.exp()).pow(2)))).mul(grad);

if (reduction == at::Reduction::Mean) {

return grad_input / input.numel();

}

return grad_input;

}

65



References
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