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CHAPTER I

Introduction

I.1 Motivation for this Dissertation Research

An important goal of computer-based learning environments (CBLEs) is to help students develop self-

regulated learning (SRL) behaviors and strategies to help them become effective life-long learners (Bransford

et al., 2000; Zimmerman and Martinez-Pons, 1990). Self-regulated learning (SRL) focuses on learners’ abil-

itiesy to understand and control their learning behaviors, which helps them to accomplish their learning and

problem-solving goals in an effective manner (Panadero, 2017). This process emphasizes students’ autonomy,

self-monitoring, strategy use, and self-reflection during problem-solving.

Open-ended learning environments (OELEs) are constructivist learning environments that are designed

to support SRL development by providing students with (1) targeted learning goals in the form of problem-

solving tasks (e.g., to construct a model of a scientific process); (2) a set of tools to facilitate the learning

and problem-solving processes; and (3) an open-ended approach that supports student agency i.e., provides

choice in how students combine these tools to achieve their learning goals (Biswas et al., 2016). OELEs

developed in our lab use model-building tasks to help students improve their strategic thinking skills when

building process models in scientific domains (Kinnebrew et al., 2017; Basu et al., 2017; Hutchins et al.,

2020).

More advanced learners who typically have well-organized domain knowledge structures are able to uti-

lize the agency and exploration opportunities provided by OELEs to their advantage, engaging in strategic

SRL behaviors at different phases of their learning process. These self-regulated learners develop the ability

to set their own goals and sub-goals, devise a plan towards achieving their goals, execute the plan by invok-

ing relevant cognitive strategies, engage in metacognitive monitoring behaviors to assess the effectiveness of

their approach, and self-reflect to decide whether they need to change their plans or apply a different set of

strategies to achieve their learning goals (Winne and Hadwin, 2008; Panadero, 2017).

Novice learners, on the other hand, often face more challenges in these open-ended problem-solving

spaces (Segedy et al., 2013; Metcalfe and Finn, 2013; Basu et al., 2017). These students may find it difficult

to use the learning tools in the OELE in an efficient manner, and may also lack the experience, prior knowl-

edge, and understanding necessary for effective self-regulation (Zimmerman, 2002b). When they encounter

obstacles during their learning process, these students often struggle to engage in successful monitoring

and self-reflection behaviors to think critically about the problem. As a result, they continue to engage in
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sub-optimal behaviors (Devolder et al., 2012; Schwartz et al., 2009; Winne, 2010), and fail to resolve their

difficulties. In turn, their lack of success leads them to become frustrated, and then bored and disengaged

from their learning tasks (D'Mello and Graesser, 2012). These students require timely guidance via targeted

adaptive scaffolds to help them develop more effective problem-solving behaviors and adopt strategies that

address their learning difficulties and improve learning outcomes.

Adaptive scaffolding, which detects and responds to learners’ difficulties as they work in OELEs, can be

an effective way to support these students to develop their self-regulated learning (SRL) process, so they can

overcome their current obstacles and also become more independent and strategic in preparation for future

learning (Lajoie and Derry, 1993; Bransford and Schwartz, 1999).

However, designing adaptive scaffolds to support students’ SRL skills and strategies in an OELE comes

with its own set of challenges. First, the scaffold design process requires an in-depth understanding of the fac-

tors involved in students’ self-regulated learning processes. Current frameworks for studying SRL recognize

it to be a dynamic process made up of interacting cognitive, affective, metacognitive and motivational compo-

nents, often abbreviated as ’CAMM’ processes (Azevedo et al., 2012). An OELE that scaffolds one or more

of these CAMM processes during learning can empower students to become more strategic in their learning

and problem-solving process and ultimately help them to successfully complete their learning tasks (Azevedo

et al., 2017; Taub et al., 2020).

Implementing this form of scaffolding in an OELE requires online adaptation, where the system can

track and model students’ behaviors and performance as they learn, and use this information to adapt and

generate appropriate feedback (Dabbagh and Kitsantas, 2012; Moreno and Mayer, 2000). Therefore, to

design and implement such adaptive scaffolds for SRL processes in an OELE, we need to understand (a)

what constitutes an effective versus ineffective SRL (CAMM) strategy in the context of the specific problem-

solving tasks and goals in a learning environment, (b) how to track and model the use of such strategies

from learners’ online activities, (c) how to use this information to identify key moments which signal that

a learner is having difficulties in invoking appropriate cognitive or metacognitive strategies or in regulating

their motivation or affect, and is therefore in need of external guidance, and, last, (d) how to design scaffolds

that respond to the learner’s needs at such moments via strategic guidance. For an adaptive scaffold to be

meaningful and beneficial to the learner, it needs to be contextualized to the learner’s current task, learning

artifacts, and activities (Segedy et al., 2013). As Vygotsky (1978) suggestsed, the scaffold should attempt

to bridge the gap between the student’s current (what they can do by themselves) and potential (what they

can do with the help of others) planes of development, by helping them recognize and fix ineffective learning

behaviors through cognitive-metacognitive or emotion regulation.

To this end, this dissertation presents an adaptive scaffolding framework to support some of the CAMM
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components of K-12 students’ SRL process in Betty’s Brain (Leelawong and Biswas, 2008; Biswas et al.,

2016), an agent-based open-ended learning environment (OELE). The framework is designed to primarily

model students’ cognitive and metacognitive strategy use and effectiveness as they interact with the learning

environment, and to detect moments that suggest students are having difficulties with their self-regulation be-

haviors. System scaffolds are provided at such moments, in the form of conversational feedback initiated by

a mentor agent, Mr Davis, present in the Betty’s Brain environment, e.g., (Segedy et al., 2013; Munshi et al.,

2022b). The conversational mode of the feedback aims to engage students in the type of authentic social inter-

actions that support learning and critical thinking (Vygotsky, 1978). The scaffolding framework ensures that

the feedback is contextualized to a student’s current task and recent activities, and targets the development of

task-oriented SRL strategies needed at that point to resolve their learning difficulties and bring them closer to

their learning goals in the environment. These scaffolds primarily take the form of strategic hints (often with

varying levels of contextualization) intended to fill in knowledge gaps and provide actionable information to

help students develop more effective cognitive strategies and engage in the associated metacognitive moni-

toring and self-reflection behaviors. Depending on the triggering condition and the interconnected nature of

CAMM processes, the feedback may also target improving affect or motivational components of students’

SRL process.

The adaptivity framework developed for this dissertation also advances prior research on learner mod-

eling and adaptive scaffolding in OELEs. Students’ activities and temporal behaviors in Betty’s Brain are

interpreted using a modified version of Kinnebrew et al. (2017)’s OELE task model to determine the use

of cognitive and metacognitive strategies. A strategy detection approach, which builds upon Basu et al.

(2017)’s learner modeling scheme for the CTSiM environment, facilitates the diagnosis of deficiencies in

learners’ cognitive strategy use and the inference of underlying sub-optimal metacognitive monitoring and

self-reflection behaviors. The scaffold triggering conditions and the feedback content are informed by find-

ings from prior scaffold design and evaluation cycles (Munshi et al., 2022b,a). In the current version of the

adaptive scaffolding framework discussed in this dissertation, scaffolds are adapted to an understanding of

students’ cognitive-metacognitive or cognitive-affective self-regulation deficiencies in different task contexts

within the learning environment, and are offered to support the development of more effective cognitive and

metacognitive, (and in few cases, affect) regulation strategies for their knowledge construction, scientific

model-building and model-debugging tasks in Betty’s Brain.

I.2 Approach for the Development and Evaluation of Adaptive Scaffolds

There are two primary components to this dissertation research: (1) Building a framework for the design

and implementation of adaptive learner scaffolds in Betty’s Brain; (2) Conducting a classroom study and
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doing data analysis to evaluate the impact of the delivered adaptive scaffolds on helping students to develop

cognitive and metacognitive strategies or improve their emotions while engaged with model-building tasks in

the learning environment.

For the scaffold design and implementation component of this work, six major theoretical models of

SRL were first reviewed to understand the connections between cognitive, affective, and metacognitive pro-

cesses during learning (Chapter II). Empirical evidence from prior research on learner behaviors in Betty’s

Brain (Chapter III) was used to further interpret students’ cognitive-metacognitive strategy use and cognitive-

affective behaviors in the context of their causal model-building tasks and activities within the learning en-

vironment. This formed the conceptual framework for scaffold design. The design was then operationalized

in Betty’s Brain using (a) a strategy detection framework that identified patterns of ineffective strategy use

by keeping track of changes in learner activities and performance, and (b) a set of conversational scaffold

trees that delivered in-the-moment actionable feedback to the learner, first to foster an awareness and under-

standing of the current state of their models, and then to support the development of more effective cognitive

strategies, metacognitive behaviors, and positive emotions as they learn (Chapter IV).

For scaffold evaluation (Chapter V), we ran a classroom study with 55 middle school students who

worked on Betty’s Brain equipped with the adaptive scaffolding framework, to build causal models of a

climate change process. The data collected from this study was first explored to find clusters among students

based on differences in their learning and model-building behaviors. This exploratory analysis facilitated the

formulation of more targeted research questions for scaffold evaluation. The impact of adaptive scaffolds

on students in each cluster/group was then assessed by tracking the temporal changes in their cognitive-

metacognitive behaviors, model-building performance, (and their affective states, based on data availability)

after scaffolding. Results from this analysis (Chapter VI) show how learners in the four groups differed in

their responsiveness and strategic use of different scaffolds provided to support their self-regulation behaviors

for tasks like knowledge refinement, model debugging, or model assessment in Betty’s Brain.

I.3 Primary Contributions

The primary contributions of this dissertation can again be summarized in two directions.

1. Design and Development Contributions: This dissertation presents a novel framework for the design

and development of adaptive scaffolds to support the use of SRL strategies in an OELE. As outlined in

Section I.2, this design builds on and extends the prior research in this field, is driven by a conceptual

framework, and is operationalized by strategy pattern detectors and timely agent-based conversational

feedback. Additionally, a number of design decisions for the current adaptive scaffolding framework,

including the optimal scaffold triggering conditions and the content of scaffolds delivered at these
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conditions, have been based on the results of a design-based research (DBR) process that spanned

five years of research and included iterative cycles of scaffold design and evaluation (Sections III.2

and IV.4.3).

2. Research Contributions: The findings in Chapter VI of this dissertation demonstrate the effectiveness

of the current iteration of adaptive scaffolding in Betty’s Brain. These results show the differences

in responsiveness and strategic use of scaffolds by four different groups of learners derived using a

clustering approach (disengaged students, inefficient information generators, strategic map builders,

and experimenters or tinkerers), suggesting how the different adaptive scaffolds may have helped some

of these groups of students invoke and apply the intended self-regulation strategies while having less

impact on others. We also discuss how these results present an opportunity to further improve scaffold

adaptivity and contextualization to address the nuanced behavioral differences observed among these

groups.

Additionally, the path towards developing this dissertation research has involved multiple phases of

generative and evaluative research, with each phase resulting in significant contributions to the state-

of-the-art, in the form of peer-reviewed publications that expand our understanding of the SRL pro-

cesses in OELEs and how adaptive scaffolds should be developed to support these processes. Some of

the more specific topics explored in these research papers include: understanding learners’ cognitive-

affective interactions in OELEs (Munshi et al., 2018c,b), modeling their temporal behaviors and perfor-

mance (Rajendran et al., 2018b; Munshi et al., 2022b), mapping their achievement and basic emotion

states during learning (Munshi et al., 2020), as well as a gradually improved understanding of the

impact of adaptive scaffolds on cognitive and metacognitive behaviors (Munshi et al., 2022b,a). (A

more complete list of co-authored publications relevant to the content of this dissertation is provided in

Appendix A).

I.4 Organization of the Dissertation

The rest of this dissertation document is organized as follows. Chapter II presents a literature review on

SRL, OELEs, learner modeling, and adaptive scaffolding; all major aspects of our theoretical framework to

inform scaffold design and development. Chapter III presents an overview of the Betty’s Brain OELE and

discusses the research studies using Betty’s Brain that have contributed to the current scaffold design. Chap-

ter IV presents the design and implementation procedure for adaptive scaffolding in Betty’s Brain, including

the theoretical framework, and scaffold triggering and delivery approaches. Chapter V outlines the approach

for scaffold evaluation, including the study design, data collection, data analysis methodology, and research
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questions. Chapter VI reports and discusses the findings from the data analysis for scaffold evaluation, and

Chapter VII summarizes the contributions of this research. Appendix A contains a list of relevant publica-

tions, while Appendix B and Appendix C contain supplementary tables, figures and other material used in

this dissertation.
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CHAPTER II

Literature Review

This chapter reviews the major components of the theoretical framework that have informed the design and

development of the adaptive scaffolding framework to help students develop self-regulated learning (SRL)

behaviors and strategies in Betty’s Brain. The first step to detecting and modeling students’ SRL behaviors is

to understand the SRL process. Section II.1 reviews (a) how the understanding of SRL as a learning construct

has evolved with time, (b) the contributions of major theoretical models towards identifying the CAMM

components of SRL, and (c) the relationships of CAMM components and their implications on modeling and

scaffolding SRL. Next, Section II.2 studies open-ended learning environments (OELEs) to better understand

the problem-solving space where we detect, model, and provide scaffolds for SRL processes. Section II.3

reviews the learner modeling literature to frame the design of our learner modeling approach in the Betty’s

Brain OELE. This section also discusses methods to diagnose learners’ CAMM processes to construct a

learner model that supports SRL. Finally, the scaffolding literature is reviewed in Section II.4 to (a) identify

the factors involved in the design of successful learner scaffolds and (b) study how adaptive scaffolds can be

delivered to support SRL processes in OELEs. The literature reviewed in this chapter informs the design of

our adaptive scaffolding approach in Betty’s Brain, while also establishing the scope and contributions of our

approach beyond the current state-of-the-art.

II.1 Self-Regulated Learning

Self-Regulated Learning (SRL) refers to learners’ ability to understand and control their learning behaviors

and their environment to accomplish their learning and problem-solving goals. Panadero describes SRL

as a conceptual framework, which forms “an extraordinary umbrella under which a considerable number

of variables that influence learning (e.g., self-efficacy, volition, cognitive strategies) are studied within a

comprehensive and holistic approach” (Panadero, 2017). This view succinctly explains the importance of

SRL in students’ learning process.

SRL emphasizes autonomy, self-monitoring, control, reflection, and intrinsic motivation (Panadero, 2017).

Zimmerman’s 1994 model of SRL defined the term as involving “goal-directed activities that students insti-

gate, modify, and sustain” (Zimmerman, 1994). In 2000, Borkowski et al. defined self-regulated learn-

ers as the students who are “metacognitively, motivationally, and behaviorally active in their own learn-

ing” (Borkowski et al., 2000). More recently, the importance of SRL as an important construct for effective

learning has been emphasized by multiple researchers (Dinsmore et al., 2008; Plass et al., 2015; Verpoorten
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et al., 2009) as well as by education policy-makers who have asserted it as ”a critical skill for staying relevant

and advancing in a rapidly changing world” (U.S. Department of Education, 2016).

II.1.1 SRL: From trait to process

Early models of SRL defined the construct as a static “trait” that can be assessed using self-report instruments

such as the Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich et al., 1993). Panadero’s

review of SRL models describes this as the first wave in SRL measurement Panadero (2017).

But the end of the 1990s and the publication of the SRL handbook in 2000 (Boekaerts et al., 2000)

saw the beginning of a second wave, with the research consensus on SRL shifting from a static trait to a

dynamic “process”, or a sequence of events that interact and evolve as students learn (Panadero et al., 2016).

This switch in the conceptualization of the term implied that self-report measures could no longer suffice

as an approach for measuring SRL. Prominent SRL researchers updated their earlier models to reflect this

newer understanding of self-regulated learning as an entity that changes with time, as students progressively

complete their tasks and approach their learning goals by planning, monitoring, and reflecting upon their

learning process (Zimmerman, 2001; Winne, 2001; Winne and Hadwin, 2008). Measuring SRL in learning

environments now required the development of ’online’ measures that can track this temporal evolution of

student activities during their learning process.

II.1.2 Primary Models of SRL

Panadero (2017) discusses six major models of SRL, which have been developed by Zimmerman; Boekaerts;

Winne and Hadwin; Pintrich; Efklides; Hadwin et al.. This section reviews these prominent SRL models to

derive a better understanding of the major factors involved in this complex learning process.

In 1989, Zimmerman, one of the pioneers in the field of SRL measurement, proposed his earliest model

of SRL (Zimmerman, 1989). Known as the Triadic Analysis model, it explored SRL from a socio-cognitive

perspective (where knowledge acquisition is governed by social interactions), and described three forms of

SRL - at the self (person), behavior and environment levels. Later in 2002, Zimmerman proposed his Cyclical

Phases model (Zimmerman, 2002a), which delved into the interaction of metacognitive and motivational

processes at the individual level. The Cyclical Phases model is the most prominent and well-validated model

proposed by Zimmerman, and characterizes SRL as a repetitive cyclical process composed of three phases:

(1) forethought - analyzing a task, setting goals, and generating plans to solve the task, (2) performance -

executing the task by applying strategies and monitoring their progress, and then (3) self-reflection - assessing

and reflecting on the outcomes (Zimmerman, 2002a). Zimmerman asserted that self-regulated learners who

adopt this dynamic, cyclical learning process are self-aware, knowledgeable, decisive about their learning,
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intrinsically motivated, and capable of monitoring and controlling their learning behaviors and environment.

The more recent version of Zimmerman’s Cyclical Phases model (Zimmerman and Moylan, 2009) includes

metacognitive strategies in the performance phase.

Another early SRL researcher, Boekaerts, proposed two major models of SRL. Her six-component model

(Boekaerts, 1996) considered cognitive and affective/motivational self-regulation to be the two basic mech-

anisms of SRL. The Dual Processing model (Boekaerts and Corno, 2005; Boekaerts, 2011) emphasized the

important role played by positive and negative emotions in SRL, and described strategies for affect regulation

during learning.

Winne and Hadwin’s Information Processing Theory (IPT)-based SRL model (Winne and Hadwin,

1998) explores SRL from a metacognitive perspective, by recognizing that self-regulated learners are active

participants in their learning process; they exercise agency and manage their learning by the use of cognitive

and metacognitive strategies. This model is especially relevant in the context of open-ended learning envi-

ronments (OELE) that offer learners a greater possibility to exercise their agency during learning. Winne

and Hadwin’s model asserts the goal-driven nature of SRL and posits that learning occurs in four linked and

recursive phases: (1) task definition, (2) goal setting and planning, (3) applying study tactics and strate-

gies, and (4) adaptations to metacognition. Each phase is described in terms of the interactions among five

”COPES” facets of tasks : (1) Conditions - available resources and task/environment constraints; Operations

- cognitive processes and strategies applied to complete the task; Products - new knowledge generated by

these operations; Evaluations - generated internally by the student or provided externally through feedback,

by comparing the products with respect to (5) specified Standards or criteria.

A strategy in the COPES model is defined as a collection of if-then rules (also known as tactics) that

form larger if-then-else rule patterns over time (Winne and Hadwin, 2008). Strategies are more complex

than tactics in their structure, and they also have a larger scope that yields more information that can be

used as feedback during learning. In the recursive loop defined in the COPES model, a learner first activates

the memory of previous strategy use in the task definition phase, and then the strategy is linked to specific

learning goals in the goal setting and planning phase. Following that, in the enactment phase, the learner

uses linked strategies to address the learning goals. Finally, in the adaptations to metacognition phase, the

learner evaluates the effect of the strategy used, and then tunes or restructures the strategy to make it more

effective for the goals and plans of the learning task (Winne and Hadwin, 2008).

Winne and Hadwin’s COPES framework explains the cognitive processing of information during different

phases of learning, viz., planning, strategizing, metacognitive monitoring, and reflection. While Winne’s

earlier models do not allude to emotions during self-regulation, later versions of Winne’s model (Winne and

Hadwin, 2008), as well as a review by Greene and Azevedo (2007) recognize affect regulation as an important
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component of SRL processes.

Pintrich’s SRL model (Pintrich, 2000) considers four areas for regulation of learning: (1) Cognition; (2)

Motivation/Affect; (3) Behavior; (4) Context. An important focus for this model is the regulation of cog-

nition, which can be achieved by setting target goals, activating prior knowledge, metacognitive awareness,

and monitoring of cognition (through judgment of learning (JOL) and feeling of knowing (FOK)) and the

selection and adaptation of cognitive strategies for learning. Motivation or affect regulation is dependent on

the activation of task value, the selection and adaptation of strategies for managing affect, and the affective

reactions and attributions during self-reflection.

Efklides’ Metacognitive and Affective Model of Self-Regulated Learning (Efklides, 2011), similar to

Winne’s model, is also backed by metacognition research and explores how emotion and motivation interact

with metacognition in SRL. This model describes (1) a ”Person” level of self-regulation that is composed

of cognition, motivation, self-concept, affect, volition, and metacognition (as metacognitive knowledge and

metacognitive skills). The “interactions of the person’s competencies, self-concept in the task domain, moti-

vation, and affect, vis-à-vis the perception of the task and its demands” determine the effort they invest in their

cognitive processing. While the Person level represents the general trait-oriented features of SRL, similar to

Zimmerman’s model, the Task × Person level in Efklides’ model describes more person-oriented and less

conscious actions that are more similar to Winne’s model (Panadero, 2017; Winne, 2011). Efklides identifies

four functions at the Task x Person level: (a) cognition, (b) metacognition, (c) affect, and (d) regulation of

affect and effort.

The sixth major model of SRL, proposed by Hadwin, Järvelä, and Miller, explores the social aspects of

the regulation of learning (Hadwin et al., 2011), for example, in computer-supported collaborative learning

situations. This model contrasts self-regulation (SRL) to other regulation modes that exist in collaborative

settings, viz., co-regulation (CoRL) and socially shared regulation (SSRL).

A critical analysis the SRL models discussed above suggests that most of these models allude to four

primary areas for self-regulation of learning:

1. Cognition: The use of prior knowledge, skills, and strategies to develop solutions for the learning

task (Entwistle and Ramsden, 2015; Pressley et al., 1992). The role of cognition in the SRL process is

discussed in the SRL models of Zimmerman; Winne and Hadwin; Boekaerts; Pintrich; Efklides;

2. Affect: The ability to identify and regulate one’s emotional reactions and become an effective learner.

Affect as a component of SRL is discussed in the SRL models of Boekaerts; Pintrich; Efklides and later

models of Winne and Hadwin;

3. Metacognition: The ability to decompose a complex task into sub-tasks (i.e., sub-goals), apply strate-

gies to develop solutions, monitor progress toward completing the sub-tasks, and periodically reflect on
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how to improve one’s performance (Pintrich, 2002; Schraw et al., 2006). This is an important aspect of

Winne and Hadwin’s model and also discussed by Pintrich; Efklides; Zimmerman and Moylan;

4. Motivation: The perceived value of the learning task and the subject matter being learned (task value), as

well as the self-perceived ability to accomplish the task (self-efficacy) and one’s personal goals (intrinsic

versus extrinsic) for doing the task (Pintrich, 1999; Schunk and Zimmerman, 2012). This is discussed

in the SRL models of Zimmerman; Boekaerts; Winne and Hadwin; Pintrich; Efklides.

Other researchers (Aleven and Koedinger, 2002) also consider the regulation of cognition, affect, metacog-

nition, and motivation (collectively referred to as “CAMM” processes) to be integral to the process of self-

regulated learning. Azevedo et al. (2015) discuss emerging empirical evidence that also suggests links be-

tween CAMM processes and SRL, especially when learning using advanced learning technologies (viz.,

intelligent tutoring systems, hypermedia environments, etc). This helps us characterize SRL as a learning

process made up of a dynamic sequence of interacting CAMM events (Azevedo et al., 2015, 2017; Bannert

et al., 2017).

II.1.3 CAMM Relationships in SRL and their Implications

SRL models suggest that learners’ CAMM regulation processes are interrelated and these relations may

influence their overall learning regulation and performance. Therefore, we study CAMM relationships and

their implications on modeling and supporting CAMM processes in learning environments.

For instance, when we look at cognition and metacognition, it is clear that these two CAMM processes

are intertwined. Winne (1995) characterizes cognition as dealing with the knowledge of ”objects” or skills

and operations of objects, whereas metacognition is the corresponding meta-level that monitors and evaluates

the use of cognitive processes and modifies them if necessary. Since cognitive processes are more situation-

specific, they are easier to detect from observable information in a learning environment. Metacognitive

monitoring processes are more internal and reflected by learners’ changes to their cognitive processes and

strategies. Therefore, to model and support learners’ cognitive-metacognitive processes in our framework,

we will have to track the changes in their cognitive processes during learning and infer underlying internal

metacognitive monitoring and self-reflection processes.

Learners’ motivation and affect regulation processes are also strongly related to their cognitive and

metacognitive processes during learning. Pintrich (2000)’s SRL model suggests that learners’ regulation of

motivation or affect is dependent on their perceived value of the learning task, the selection, and adaptation

of strategies to manage affect, and the affective reactions and attributions during metacognitive self-reflection

processes. Therefore, to help students manage a sudden decrease in motivation or the onset of a possibly

harmful emotion such as frustration or boredom (D'Mello and Graesser, 2012), we need to track changes
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in their motivational/affect states and also monitor the (cognitive-metacognitive) attributions for a change in

motivation or an affect appraisal. For example, D'Mello and Graesser (2012) suggest that the affect state of

confusion signals the detection of an impasse by the learner, which may be attributed to an external cause

such as a difficulty encountered while interacting with the learning material, or an internal cause such as the

lack of sufficient prior knowledge and effort. These attributions are likely to impact how a confused learner

regulates their confusion. Sometimes, learners are unable to resolve the learning difficulties that cause an

emotion like confusion. This unresolved confusion can then transition into a state of frustration which may

be more difficult for the student to regulate. Therefore, a learner modeling framework to support the affective

component of self-regulated learning should (1) detect potentially harmful affect appraisals such as frustration

(signifying an impasse or obstacle in learning) or boredom (signaling disengagement with the task), and (2)

evaluate these emotions in the context of their (cognitive-metacognitive) behaviors and task performance to

determine the affective attributions and thereby trigger appropriate scaffolds that can help resolve deficiencies

in strategy use.

Motivation, much like metacognition, is an internal process that is difficult to detect from observable in-

formation in a learning environment. But learners’ affect states may provide insights into motivational factors

such as their perceived value of the learning task. The observation of an affective state like boredom often

suggests hopelessness and disengagement from the task (D'Mello and Graesser, 2012), further suggesting

that the learner is demotivated and maybe attaching a low value to the task. Therefore, feedback to help

such students regulate their affect can also improve the motivational aspect of their SRL process, for instance

if the feedback includes positive reinforcement or encouragement that specifically intends to improve task

motivation.

The relations between learners’ CAMM regulation processes (viz., cognition and metacognition, affect

and cognition/metacognition, affect and motivation) strengthen our understanding of these processes, and

how they can be modeled and supported by our adaptivity framework to support students’ overall self-

regulated learning processes in the learning environment. The next section studies open-ended learning

environments or OELEs, which form the setting where we design and develop our learner modeling and

adaptive scaffolding approach to support SRL.

II.2 Open-ended Learning Environments

Open-ended learning environments (OELEs) are a class of computer-based learning environments (CBLEs)

that use the constructivist theory of learning to support the acquisition of knowledge and skills (Land,

2000). OELEs provide learners with opportunities to practice their problem-solving skills in real-world

contexts (Wang and Hannafin, 2005). A learning environment is termed to be “open-ended” if the learner
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has the freedom to choose “the learning goal, the means to support learning, or both” (Hannafin et al., 2014).

Therefore, OELEs are specifically designed to facilitate student agency. Furthermore, OELEs may pro-

vide tools and resources that engage learners in activities like generating hypotheses by knowledge acquisi-

tion, constructing solutions, using tests to verify the hypotheses, and revising hypotheses in different phases

of learning (Land, 2000). Some prominent OELEs have been reviewed below, including Ecolab (Luckin

and du Boulay, 2016), MetaTutor (Azevedo et al., 2010), nStudy (Winne and Hadwin, 2013) and Betty’s

Brain (Leelawong and Biswas, 2008; Biswas et al., 2016).

Ecolab is a family of constructivist learning environments for learning ecology, that focus on middle

school science topics like food chains and food webs (Luckin and du Boulay, 2016). Learners using Ecolab

are provided with a simulated environment where they are free to select different organisms on the food

chain and explore relationships between these organisms without having to deal with the complexity of the

entire food web. A variation of the environment named M-Ecolab adapts to the learner’s goal orientation to

determine the form of scaffolding provided to the student (Zhang et al., 2021a)). The Ecolab environment

includes scaffolds that support metacognitive monitoring and task selection processes in learners with low

prior knowledge or metacognitive skills (Luckin and Hammerton, 2002). Some versions of Ecolab attempt to

operationalize Vygotsky (1978)’s zone of proximal development (ZPD) framework by providing flexivle and

tailored assistance (Luckin and du Boulay, 2016). MetaTutor is an OELE where students can learn about

complex topics in biology such as the human circulatory system. Learners have access to resource pages to

acquire information on the topic and are given a fixed period of time to generate a summary based on the

acquired information. The OELE supports help-seeking behaviors from pedagogical agents present in the

system. There are four types of agents in MetaTutor: Gavin the guide, Pam the planner, Mary the monitor,

Sam the strategizer. Each agent is assigned to scaffold the development and use of a specific SRL process,

such as planning, monitoring, and active strategy use (summarizing, note-taking, inferring). (Azevedo et al.,

2010). MetaTutor provides opportunities to the student to explicitly state their learning task, and uses this

choice of task as the context to adapt the feedback given to the student. nStudy is a web-based application that

leverages Winne and Hadwin’s COPES framework of SRL (Winne and Hadwin, 2008) and offers a toolkit

for learners to practice their self-regulated learning skills while studying in a digital environment (Winne and

Hadwin, 2013). Learners are provided the agency to define their own learning strategies and link them to

their learning artifacts, such as bookmarks and notes. They can also evaluate their strategies (Zhang et al.,

2021a). Learner behaviors during reading or annotating in different phases of learning reflect cognitive and

metacognitive events during learning (Beaudoin and Winne, 2009).

The Betty’s Brain OELE adopts a learning-by-teaching paradigm to help middle school students learn

science by building causal models of scientific processes to teach a virtual pedagogical agent, generically
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named Betty (Biswas et al., 2005; Leelawong and Biswas, 2008). The system provides students with a

number of resources and tools to learn, build, and check their models. Students are free to combine these

tools in different ways and form their own learning strategies to teach a causal model to Betty. (Since our

adaptivity framework is built in Betty’s Brain, we discuss the learning tools and problem-solving process in

this learning environment in more detail later in Chapter III).

The review of learning tools and features of these OELEs illustrate how open-ended learning environ-

ments provide an exploratory problem-solving space, where learners can accomplish their learning tasks

using their own learning strategies. In the next section, we study how learner modeling can help us diagnose

and model learner proficiency in the use of their learning skills and strategies, and thereby detect deficiencies

in strategy use in OELEs.

II.3 Learner Modeling

Learner modeling is a component of computer-based learning environments (Brusilovski et al., 2007; Basu

et al., 2017; Mitrovic, 2012; Azevedo et al., 2005) that allow researchers and educators to capture learners’

domain knowledge, cognitive skills, strategies, and interests in a systematic manner to tailor their experience

in the learning environment. Learner modeling approaches were initially conceived for intelligent tutoring

systems (ITS). Self (1998) discuss a tripartite architecture for an ITS that is composed of: (1) a domain

knowledge module that contains knowledge of the domain under consideration (e.g., ecology in case of Ecolab

or climate change in Betty’s Brain); (2) a student model that contains knowledge about the student who is

interacting with the system; and (3) a tutoring strategy or pedagogical module that contains knowledge about

how the system should interact with the student. Self emphasizes the importance of learner modeling by

suggesting that learning environments “which care about what the student knows, misunderstands, wants to

do, etc.” need to incorporate a student modeling structure (Self, 1998).

However, despite the emphasis on learner modeling to understand and support students in learning envi-

ronments, building learner models that capture students’ misconceptions or flaws, also known as perturbation

based models (Chrysafiadi and Virvou, 2013), is a challenging task. This type of learner modeling requires

an ongoing diagnosis of students’ activities, behaviors, and performance to build and update structures of

student knowledge and proficiency in their tasks. Elsom-Cook (1993) discuss ’learner-based methods’ of

learner modeling that do not intend to simply turn a learner into a copy of an expert but instead place an em-

phasis on why and how the learner acquires a piece of knowledge, how the relationship between their pieces

of knowledge evolves over time, and how they may benefit from receiving an intervention. Such a nuanced

approach to student modeling is necessary to model learner behaviors in open-ended problem-solving spaces

such as OELEs.

14



II.3.1 Learner Modeling Approach in OELEs

Learner modeling schemes have been developed in OELEs such as CTSiM (Basu et al., 2017). The learner

model in CTSiM adopts a task-oriented approach combined with a strategy modeling framework to capture

students’ cognitive and metacognitive processes during learning. Basu et al. (2017) show how this learner

modeling scheme facilitates the development of adaptive scaffolds to support learner behaviors in CTSiM.

To construct an efficient learner modeling framework to support SRL (CAMM) processes in Betty’s

Brain, we build on Basu et al. (2017)’s learner modeling scheme to detect students’ cognitive-metacognitive

strategies during learning and adapt this scheme to account for task contexts specific to the Betty’s Brain

learning environment. We also use affect detector models trained on Betty’s Brain data (Jiang et al., 2018) to

predict states like frustration or boredom during learning, and diagnose the potential cognitive attributions of

these emotion appraisals, considering the type of affective-cognitive/metacognitive relationships discussed in

Section II.1.3.

The major objective of this process is to diagnose difficulties in students’ cognitive-metacognitive strategy

use and affect regulation processes and respond with appropriate scaffolds to improve their SRL process.

However, this requires the online diagnosis of CAMM regulation difficulties during learning, which comes

with its own set of challenges. In the next section, we explore these challenges and methods that have been

developed to address them.

II.3.2 Online Detection of CAMM Processes for Learner Modeling

The online detection of CAMM processes as students learn to support a learner modeling framework in

computer-based learning environments is often a difficult task (Azevedo et al., 2017; Taub et al., 2014),

and measuring each type of CAMM process in an OELE comes with its own unique challenges. Tracking

students’ internal processes in an online setting is difficult. Wittgenstein (1968) said, “An inner process

stands in need of outward criteria”.

Affect states exhibited by a learner, such as boredom, can sometimes help us determine their (lack of)

internal motivation in the task and support the provision of scaffolds to improve affect and engage learners,

as discussed in Section II.1.3. But while affect states are externally observable through students’ emotional

reactions, the online detection of affect states in learning environments is still a difficult task. This is because:

(1) retrospective self-report measures of affect rely heavily on the accuracy of student memory (Boekaerts and

Corno, 2005); (2) reflection methods, such as learning diaries may annoy students by interfering with their

learning activities; and (3) logged activity traces, which capture students’ cognitive and strategic behaviors,

do not directly reveal the learner’s affective processes.

To address this problem, Jiang et al. (2018) developed fine-grained detectors of learners’ achievement

15



emotion states, like frustration, confusion, engagement, delight or boredom, from their interactions with

the Betty’s Brain OELE. We use these affect detectors to predict students’ emotions and inform the affect

modeling component of our learner model. However, we concede that developing these affect detector models

requires features that are specific to a learning environment, so the models are not easily transferable to other

systems. Additionally, these models predict emotion likelihood based on learner activities, so they may not

always be as accurate as human-coded affect labels and may need to be validated against other affect sources

or a detection of associated cognitive states.

Facial affect detection approaches have also been developed, which use features built from a person’s

facial action units to build more robust affect detector models; however, since most commercially available

and well-trained facial affect detection models predict universally applicable basic emotions (Ekman and

Friesen, 1978), viz., joy, sadness, anger, etc., instead of academically relevant achievement emotions, the use

of such models in academic settings is limited. In Munshi et al. (2020), we mapped achievement emotions

predicted by Jiang et al. (2018)’s affect detectors to basic emotions predicted by commercial face detection

software (McDuff et al., 2016), to support the use of robust face detection models for predicting achieve-

ment emotions; however, employing face detection mechanisms in online settings still remains a challenge.

Therefore, we use the affect detector models by Jiang et al. (2018) to predict learners’ emotions in our design

framework. We track the temporal sequences of emotions during learning in Betty’s Brain to identify shifts

towards the more negative emotion states like frustration or boredom (D'Mello and Graesser, 2012) and de-

tect associated cognitive behaviors and task performance (Sections II.1.3;II.3.1) to develop a more complete

understanding of the student’s current cognitive-affective state while working on the learning task.

The detection of cognitive and metacognitive strategies and processes is facilitated by the availability of

activity logs in learning environments. Researchers have developed model-driven (Kinnebrew et al., 2017)

and data-driven (e.g., differential sequence mining Kinnebrew et al. (2013a)) approaches to derive and inter-

pret patterns of students’ strategic behaviors by distilling contextualized information from raw activity traces

in OELEs. These methods have been used in a number of experimental studies to analyze learners’ produc-

tive and unproductive strategy use in OELEs like Betty’s Brain and CTSiM (Biswas et al., 2016; Munshi

et al., 2018b; Zhang et al., 2021a). EEG/HR bio-sensor devices (Yun et al., 2019) and eye-gaze tracking

devices (Rajendran et al., 2018a) can be used to derive further measures that augment our understanding of

students’ cognitive and metacognitive processes in learning environments. In the learner modeling framework

presented in this dissertation, we adopt a strategy detection approach to detect sequences of students’ logged

activity traces and analyze these activity sequences using Kinnebrew et al. (2017)’s task model to infer the

use of task-oriented cognitive and metacognitive strategies.

As discussed earlier in this section, our objective of modeling learners’ CAMM processes during learning
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is to detect self-regulation difficulties and trigger appropriate scaffolds to respond to these difficulties. Scaf-

folding can be an effective way to respond to learners’ SRL difficulties in an OELE. In the next section, we

study the parameters for designing successful learner scaffolds.

II.4 Parameters for Successful Scaffold Design

Scaffolds have been described as “tools, strategies, and guides used during learning to enable the develop-

ment of understanding(s) beyond one’s immediate grasp”. These include pedagogical support that is cal-

ibrated to a learner’s current level of understanding and helps them accomplish tasks that they could not

accomplish alone (Wood et al., 1976). This difference between what a learner can accomplish by themselves

versus with assistance from external sources is typically characterized by the ’zone of proximal development’

(ZPD) (Vygotsky, 1978). The ZPD informs how students’ range of understanding and problem-solving can

be extended in a way that provides sufficient challenge, while preventing frustration or boredom. So, learn-

ers should ideally be scaffolded in their ZPD, to close the gap between their current and potential planes of

development (Vygotsky, 1978).

Researchers like Elsom-Cook (1993); Puntambekar and Hubscher (2005) further point out certain key

features of effective learner scaffolds. These include inter-subjectivity (i.e., a shared understanding of the

activity and goals), ongoing diagnosis (i.e., knowledge of the task, and subtask routines, as well as the

student’s current level of understanding), tailored assistance (i.e., providing help when needed), and fading

(i.e., gradually removing the assistance).

Self (1988) breaks down the primary applications of student scaffolds into six categories: (1) corrective

- helping students correct their learning/problem-solving errors (2) elaborative - helping students gain the

knowledge that they lack, (3) strategic - helping students invoke a known procedure or piece of knowledge

that they are unable to apply appropriately, (4) diagnostic - using inference procedures to understand where

students may lack abilities, (5) predictive - predicting how a student is likely to respond in a specific learn-

ing situation, and using this prediction to inform the hints/feedback given, and (6) evaluative - providing a

comprehensive assessment of the level of knowledge and achievement of the student.

In view of the above considerations for effective scaffold design, we further frame the current scaffolding

approach in Betty’s Brain, to design scaffolds that can use an online diagnosis of students’ learning process

(via modeling their use of cognitive-metacognitive strategies and affective experiences) to provide tailored

assistance, as suggested by Elsom-Cook (1993); Puntambekar and Hubscher (2005)). The scaffolds need to

be flexible, meaning that the level of adaptivity may be varied based on the learner’s proficiency in their tasks,

to support the learner in their zone of proximal development (Vygotsky, 1978). The content of the scaffolds

in our case are primarily strategic, but depending on the triggering condition may also include one or more
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of the diagnostic, predictive or elaborative features suggested by Self (1988).

II.5 Adaptive Scaffolds to Support SRL in OELEs

There is evidence of the positive effect of SRL strategies on students’ academic achievement (Wolters and

Hussain, 2015; Zimmerman and Pons, 1986), especially when learning complex topics in OELEs (Azevedo

et al., 2017; Winne, 2017). So, researchers have developed methods to support learners’ SRL process in

OELEs (Aleven et al., 2003; Azevedo et al., 2010; Biswas et al., 2016; Narciss et al., 2007; Sabourin et al.,

2013; Winne et al., 2010). Adaptive scaffolds have been found to be an especially effective method for

supporting SRL processes in OELEs (Belland et al., 2011; Segedy et al., 2013; Basu et al., 2017; Taub et al.,

2014; Munshi et al., 2022b).

While the study of successful scaffolding practices in Section II.4 helped us to frame the major char-

acteristics of our adaptive scaffolding approach to improve SRL processes in Betty’s Brain, we needed to

determine a method to deliver these scaffolds in a way that is meaningful and engaging to the learner receiv-

ing the feedback.

Biswas et al. (2016) discuss how a multi-agent architecture in Betty’s Brain equipped with a listener inter-

face can allow explicit communication between multiple actors, viz., the student, the teachable agent (Betty),

and the mentor agent (Mr Davis) in the learning environment. Segedy et al. (2013) use this communication

framework to deliver conversational student scaffolds that are embedded as agent-initiated dialog using a con-

versation tree representation (Adams, 2010). Furthermore, the feedback is contextualized to Betty’s current

causal map and the student’s recent interactions with the system (Biswas et al., 2016), making it particularly

useful and relevant for the student. Munshi et al. (2022b) and Munshi et al. (2022a) also use the conversation

tree representation to deliver contextualized conversational scaffolds in Betty’s Brain (Figures ??; B.2), and

the evaluation of these scaffolds further support the scaffold design approach presented in this dissertation,

as outlined later in Section IV.4.3.

In this dissertation, we are extending Segedy et al. (2013)’s previous work on conversation trees by

mapping scaffold triggering conditions detected by our learner modeling and strategy detection framework to

generate conversations with the learner. The content of the trees would reflect our understanding of the most

appropriate and task-specific guidance that can be provided to help the learner overcome deficiencies in their

cognitive-metacognitive strategies or affect regulation processes at specific moments during learning.

II.6 Critical Summary and Motivation for this Dissertation

To summarize, the literature reviewed in this chapter helped us understand self- regulated learning (SRL) as a

dynamic process composed of interacting cognitive, affective, metacognitive, and motivational events during
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learning. To support the different dimensions of SRL as learners build and debug their causal models in an

open-ended problem-solving environment like Betty’s Brain, we need to build a learner modeling approach

that can store (and update) the evolving self-regulation profiles of students by performing an online detection

of the cognitive processes and strategies that students apply to their tasks, infer underlying metacognitive

conditions, and also attempt to detect their emotional states. Students’ self-regulation difficulties, diagnosed

from their learner model as ineffective cognitive-metacognitive strategy use (that lead to a drop in task per-

formance) or potentially harmful cognitive-affective states, would then trigger scaffolds that respond to the

difficulties by adapting to the student’s current level of understanding, and by delivering conversational feed-

back that is strategic, flexible and engaging to the learner. We present a complete description of our adaptive

scaffolding design framework in Chapter IV. Prior to that, Chapter III discusses the Betty’s Brain OELE

where this design is implemented, and prior research studies with Betty’s Brain that have led to the current

design framework.
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CHAPTER III

The Betty’s Brain Open-Ended Learning Environment

III.1 System Overview and Features

Betty’s Brain (Biswas et al., 2005, 2016) is an open-ended learning environment (OELE) that helps students

acquire knowledge and understanding of scientific phenomena, such as climate change and human body

thermoregulation. To learn about a science topic in Betty’s Brain, students construct causal models that

depict the cause-and-effect relationships between different concepts involved in the topic.

As discussed briefly in Chapter II, the system adopts a learning-by-teaching paradigm (Leelawong and

Biswas, 2008), where students construct the causal map to teach a virtual teachable agent, generically named

Betty. As she is being taught a particular topic, for example, the causes and effects of climate change, Betty

can answer queries from the student, such as, ”If deforestation increases, what will happen to the amount of

heat trapped by the earth?”. To answer the question, Betty uses the current causal map she has been taught

(by the student) to follow a succession of causal links and derive her answer to the question.

A series of experimental studies in middle-school classrooms with the Betty’s Brain software have demon-

strated that (a) students achieved significant pre- to post-test learning gains on the science content (Leelawong

and Biswas, 2008; Segedy et al., 2015; Munshi et al., 2018c, 2022b), and (b) students with higher learning

gains and model scores (i.e., who had more correct links in their model) used more effective learning strate-

gies (Kinnebrew et al., 2014; Munshi et al., 2018b, 2022b).

The primary learning tools in the Betty’s Brain system are described below, and the user interfaces to

these tools are illustrated in Figure III.1.

A science book, which is a set of hypermedia resource pages embedded within the system, helps students

access the knowledge they need to learn and build causal models in the science domain. Students have to

identify the required concepts and the causal (i.e., cause-and-effect) relations among these concepts to teach

Betty by reading relevant sections of the science book. An accompanying teacher’s guide provides students

with information on procedures and strategies that they can apply to construct and check the correctness of

their evolving causal maps.

A causal map building tool includes a visual interface with a drag-and-drop menu to help the student build

and edit the causal maps they are developing to teach Betty. The interface provides students with a visual

representation of the current state of their causal map, and tools that they can use to add, delete, and modify

the concepts and links that make up the causal map.
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(a) The ‘science book’ view

(b) The ‘causal map’ view

(c) The ‘quiz results’ view

Figure III.1: System interface for the Betty’s Brain thermoregulation unit
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The query and quiz tools allow students to probe Betty’s knowledge of the domain. The quiz tool requests

Betty to take a quiz. Betty answers the quiz questions dynamically generated and scored by the mentor

agent, Mr. Davis. The quiz results help students evaluate the correctness of the current causal map and they

can use this information to make corrections to their map or go back to the resources to read further and

gain more knowledge of the science topic. After the quiz results are displayed, students can also click on

individual questions, and get Betty to explain her answer to the question. She does this by highlighting the

links used to answer that question. This provides students with more details on the set of links used to answer

that question, and ways in which they may further assess these links. Overall, the quizzes help students track

Betty’s progress in learning the domain, and by implication their own knowledge of the science concepts and

relations needed to build the domain model. In addition to administering and grading the quizzes, Mr. Davis

provides strategic feedback in the form of adaptive conversational scaffolds. Betty and Mr Davis also provide

encouragement feedback intended to help the students regulate their affect and engagement during learning.

Overall, Betty’s Brain is a socio-constructivist learning-by-modeling environment (Hickey, 1997). It

offers tools to facilitate exploration, strategic thinking, and developing monitoring skills, as learners seek

information using the “science book”, build their cause-and-effect models in the ”causal map”, and check

their models using ”quiz” or ”query” tools (Biswas et al., 2016) to help Betty to learn the science content.

The mentor agent, Mr. Davis, is present to provide relevant timely feedback when students have difficulties

in building and checking their maps. But due to the complex and differential nature of student learning in

this open-ended and exploration-friendly environment, the system needs to have a very good understanding

of learners’ task progression for any scaffold from the mentor agent to be successful.

III.2 Betty’s Brain Research Studies Leading to the Current Design of the Adaptive Scaffolding

Framework

A set of classroom studies with Betty’s Brain have been conducted over the last five years following a design-

based research (DBR) approach. This research has culminated in the current design of the adaptive scaffold-

ing framework presented in Chapter IV. Therefore, the findings from these studies are discussed briefly in

this section and the implications of this DBR process on specific aspects of the scaffold design are further

elaborated in Section IV.4.3.

The March 2017 Study: In March 2017, an experimental study was conducted with 93 students from

two sixth-grade science classrooms of a public middle school in Nashville, TN. The objectives of this study

were two-fold: (a) To collect Betty’s Brain log data that could help us derive better measures of learn-

ers’ cognitive and metacognitive behaviors, and (b) To collect labels of learners’ affective states (viz., de-

light, engaged concentration, confusion, frustration, boredom) using ’BROMP’ (Ocumpaugh et al., 2015),
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a momentary time-sampling technique for trained observers to record affect labels of learners working on a

computer-based learning environment in a classroom. The BROMP affect labels collected from the March

2017 study were aligned post-hoc to learners’ activity sequences extracted from Betty’s Brain logs. This data

was then used for a number of research and development purposes, also outlined in this section. We first

briefly discuss some of the main data analyses and research findings below.

Learners showed significant pre-to-post learning gains during the study. We determined behavioral pat-

terns by analyzing frequent activity sequences using a differential sequence mining approach (Kinnebrew

et al., 2013a) and studied these patterns and their relation to task performance to infer the use of cognitive

strategies during learning. We also found that learners’ affective states in Betty’s Brain were linked to their

cognitive strategies and causal modeling performance in the system. This provided empirical evidence from

student interactions with Betty’s Brain on the relations between cognitive and affective states discussed in

Chapter II. The different findings from this study are reported in detail in Munshi et al. (2018b) and Munshi

et al. (2018c).

While the sequence mining method helped us derive fine-grained measures of learners’ behaviors, a

more broader picture of their temporal cognitive-metacognitive processes was obtained by applying a process

mining approach, reported in Rajendran et al. (2018b). Another major finding from our analyses using this

data set was that learners’ cognitive-affective behaviors in Betty’s Brain were mediated by the feedback

they received from the mentor agent and their causal modeling performance in the system. The findings,

reported in Munshi et al. (2018c), helped us derive a better understanding of how to design more strategic

agent-initiated feedback.

Beyond the research findings from data analysis, the data collected in the March 2017 study was also

used for developing tools to better track and understand students’ SRL processes in Betty’s Brain. The

first of these was the development of a set of affect detector models (Jiang et al., 2018) - binary classifiers

trained on BROMP affect labels aligned to learners’ activity sequences, which were then embedded into the

Betty’s Brain system. These activity-based BROMP-trained affect detector models, for use in future studies,

generated likelihood values of five achievement emotion states (delight, engaged concentration, confusion,

frustration, boredom) at a 20-second interval, using a sliding window of students’ cognitive activity sequences

within the Betty’s Brain environment.

A cognitive-metacognitive pattern detection module was also developed in Betty’s Brain using the

data from the March 2017 study. This module used regex-pattern matching to detect online, the type frequent

behavioral patterns identified from differential sequence mining in Munshi et al. (2018b)). The pattern de-

tection module looked for online inflection points, or changes in learners’ cognitive-metacognitive strategic

behaviors, as they interacted with the Betty’s Brain system.
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The affective and cognitive-metacognitive detectors described above were built to students’ affect states

and changes or inflections in their cognitive-metacognitive processes in real time as they worked in Betty’s

Brain. We further developed a message communication framework to communicate key inflection points

detected from student laptops to a Betty’s Brain Ruby-on-Rails server. This server then processed and passed

this information to a Quick Red Fox (QRF), a mobile app (Baker et al., 2021), which was used by a classroom

researcher in the next study (Dec 2018, discussed below) to interview students in-the-moment and gain more

insights on their metacognitive processes and strategy use at different key inflection points during learning.

An initial design of a framework to scaffold SRL CAMM processes in Betty’s Brain was formalized first in

Munshi and Biswas (2019).

The Dec 2018 & Feb 2019 studies: Next, the newly developed detectors and the Betty’s Brain-QRF

communication framework were deployed in two successive classroom studies, conducted in Dec 2018 and

Feb 2019, with 99 sixth-grade students from a Nashville public school. The same students participated in

both of these studies. In the Dec 2018 study, students worked on the “climate change” unit of Betty’s Brain.

In the Feb 2019 study, they worked on the “human thermoregulation” unit of the system. Additionally, the

version of Betty’s Brain used in the Feb 2019 study also included the first design iteration of our adaptive

scaffolding framework (which included a set of strategic hints and encouragements, listed in Table B.1)

that targeted an addressal of students’ SRL difficulties at some key cognitive-metacognitive inflection points.

Results from evaluating this design iteration prompted the next refined design of our scaffolding framework.

Some of the primary research findings from the Dec 2018 and Feb 2019 studies are discussed below

In both studies, we collected Betty’s Brain activity logs, affect likelihoods from the newly developed

affect detector models), student responses to in-the-moment interviews conducted at inflection points using

the QRF app, facial expression videos using laptop webcams, responses to pre-post and science anxiety

surveys, and (for some students) eye-gaze coordinates using eye-tracker devices.

Learners showed significant pre-to-post learning gains in both studies. We tried to gain a better under-

standing of learners’ affect states by mapping basic emotions extracted from the webcam facial expression

videos (in the Dec 2018 study) to the achievement emotions detected by the Betty’s Brain affect detector mod-

els in the same study. This helped us map the complex emotional states observed in ’achievement scenarios’

like open-ended learning environments to the fundamental or ’basic’ human emotions observable across dif-

ferent settings. The complete findings from this analysis are reported in Munshi et al. (2020) and discussed

further, in the context of the analyses for this dissertation, in Section VI.1.2. The in-the-moment QRF-

triggered interviews from this study which were conducted at affective inflection points were hand coded

after the study and analyzed to better understand students’ affective experiences like frustration, as reported
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in Baker et al. (2021). This analysis showed that students who went from experiencing engaged concentra-

tion→frustration often reported both experiencing difficulty and using strategic behavior to resolve it. This

paper suggests that ”if a student goes from engaged to frustrated when encountering difficulty, but does not

adopt a strategic behavior, it may be an appropriate time for the learning system to offer recommendations of

learning strategies” (Baker et al., 2021).

In a further analysis (Hutt et al., 2021), students’ activities were studied in the context of Winne & Had-

win’s COPES framework (Winne and Hadwin, 2008) to derive SRL constructs and understand how science

anxiety (determined from survey responses) related to these constructs, e.g., science anxiety is positively

associated with searching behaviors but negatively associated with monitoring behaviors, suggesting that

anxious students may avoid solution-evaluation and instead opt for information-seeking. In Munshi et al.

(2022b), we presented the design and evaluation of the first iteration of our adaptivity framework which

was deployed in the Feb 2019 study. The scaffold design proposed in this dissertation has been influenced by

the findings from Munshi et al. (2022b), as discussed in more detail in Section IV.4.3.

The Sept 2021 study: A second iteration of scaffold design was performed after studying the findings

from the Feb 2019 study, and this design iteration was evaluated in a small pilot study with six undergraduate

students (median age: 20 years; 2 male, 4 female) from Vanderbilt University. A classroom study with

middle schoolers could not be conducted since schools were closed due to COVID-19 restrictions, so we

wanted to assess the scaffolds with a more mature group in this pilot study and then use the insights to further

refine the scaffold triggers and contents for K-12 students. At the beginning of the pilot study, participants

were provided an overview of the system. Then they worked on an introductory Betty’s Brain unit for 15

minutes, to get hands-on experience on using the learning tools available in the system. The participants then

switched to building causal models in the Climate Change unit. An experimenter observed each student as

they completed their tasks.

Students’ interactions with the system were logged as activities with timestamps. The system interface

visible on students’ laptop screens was recorded as video files using Open Broadcaster Software (OBS)

Studio. Experimenters conducted interviews with students at different points in their learning session, in

particular after they received adaptive scaffolds from Mr Davis, to learn students’ perspectives about the

feedback they just received and how they now planned to use it. Interviews were recorded using OBS and

were transcribed post hoc in two phases, first using Otter.ai, an automated transcription software, and then

manually correcting for errors in transcribed files by verifying against the raw audio. We performed a qual-

itative analysis of the collected multimodal data to evaluate scaffolds delivered to students. Results from

scaffold assessment in the pilot study are reported in Munshi et al. (2022a), and the implications of these

findings on the current scaffold design framework is discussed in more detail in Section IV.4.3.
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The implications of adaptive scaffolds deployed in both Feb 2019 and Sept 2021 studies on the current design

approach is outlined in more detail in the next chapter, in Section IV.4.3. Overall, the (Chapter IV) presents

different components of our current approach to designing and implementing adaptive scaffolds to support

SRL strategies in Betty’s Brain.
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CHAPTER IV

Design and Implementation of the Adaptive Scaffolding Framework in Betty’s Brain

This chapter presents our approach towards designing and implementing the adaptive scaffolding framework

for self-regulated learning (SRL) in the Betty’s Brain OELE. This includes (1) a learner modeling frame-

work that used a strategy detection approach to determine the optimal trigger conditions for scaffolding, by

performing an online diagnosis of students’ self-regulation deficiencies from their cognitive-metacognitive

strategy use and predictions of certain affect states during model-building and debugging tasks in Betty’s

Brain; (2) a set of triggering conditions, determined by the learner modeling approach that would drive the

adaptive scaffolding process; and (3) a set of conversational scaffolds that were adapted to students’ learn-

ing difficulties at the trigger conditions and help them to improve the deficient aspects of their self-regulated

learning strategies.

IV.1 Theoretical Framework

The learner modeling and adaptive scaffolding approach developed in this dissertation builds on the study

of major SRL models (Winne and Hadwin, 2008; Zimmerman, 2002a; Boekaerts, 1996; Efklides, 2011;

Pintrich, 2000) (Chapter II) and empirical evidence (Azevedo et al., 2015; Munshi et al., 2018c), which sug-

gest that SRL is a dynamic process made up of related cognitive, affective, metacognitive and motivational

(CAMM) components. To scaffold for learners’ deficiencies in CAMM regulation in an OELE, the learner

modeling aspect of our framework first needed to detect and interpret (1) their cognitive-metacognitive be-

haviors and strategy use, and (2) their affect regulation behaviors, in different task contexts (Segedy et al.,

2013) within the Betty’s Brain learning environment.

Cognitive and metacognitive strategies are closely related to each other and are associated with orches-

trating cognitive resources and skills. Cognitive strategies are goal-directed, situation-specific, and not uni-

versally applicable (Weinstein and Meyer, 1994). Metacognitive strategies involve more generally applicable

processes like planning, monitoring, and reflecting (Donker et al., 2014; Zhang et al., 2021a). While cognitive

strategies operate on the knowledge of ”objects” or skills (Winne, 1995), metacognition is concerned with de-

liberating on the use of particular cognitive processes and combining them to accomplish larger tasks (Winne

and Hadwin, 2008). Metacognitive monitoring bridges the gap between cognition and metacognition, since it

involves observing and evaluating one’s own execution of cognitive processes to exercise control and improve

cognition (Kinnebrew et al., 2017). Overall, the use of these complex monitoring processes lead to the ex-

plicit development of learning strategies - “conscious and controllable sequences of actions students perform
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to facilitate and enhance their task performance” (Zhang et al., 2021a) - that can help learners achieve their

learning objectives. Since novice learners often have difficulties in applying, monitoring, and reflecting on

their use of learning strategies, we would model their abilities, in terms of their cognitive and metacognitive

strategy use, in the context of their current learning tasks. This would help us infer the effectiveness of their

strategy use and determine moments of ineffective strategy application. Diagnosis of a pattern of ineffective

strategy use by the system, suggestive of self-regulation deficiencies, would trigger an appropriate scaffold to

make the student aware of more effective strategies that could potentially improve their process of acquisition,

construction, and reasoning with knowledge.

A secondary goal of our learner modeling framework was to build pedagogical scaffolds that help stu-

dents regulate affect states like frustration or boredom that are known to be detrimental to learning (D'Mello

and Graesser, 2012). Since affective appraisals during learning may be attributed to the use of effective or

ineffective cognitive processes and cognitive-metacognitive strategies (Pintrich, 2000), scaffolding for in-

effective affect regulation process in an OELE also needs to consider such attributions to be meaningful.

To accomplish this, our design framework would obtain a measure of the change in learners’ affect states

during learning (for instance, a transition from a positive or neutral state to a negative state of frustration

or boredom) and interpret such states as indicators of ineffective affect regulation. D'Mello and Graesser

suggests the cognitive/metacognitive significance of specific affective states. For example, unresolved and

persistent confusion, which D'Mello and Graesser calls ”hopeless confusion” can lead to a state like frustra-

tion. And while confusion may be productive or unproductive depending on the learner’s ability to resolve

the confusion, frustration is generally considered to be unproductive and harmful for learning, and there-

fore, providing scaffolding may help the student overcome the problems they may have with their blocked

goals and plans. Providing strategic scaffolds for regulation of frustration is further supported by the findings

from Baker et al. (2021), as discussed earlier in Section III.2. The forced-effort theories of boredom (Larson

and Richards, 1991) and empirical research by D'Mello and Graesser (2012) also suggest links between the

affective state of boredom and disengagement with the task.

Therefore, to scaffold for students’ frustration or boredom appraisals during learning, our framework

needed to determine the learners’ activities and behaviors when they started showing the frustration or bore-

dom, to determine the root of the problem they are stuck in, and use this understanding to respond with an

appropriate scaffold that would teach them learning strategies for resolution of this problem.

IV.2 Overview of the Learner Modeling and Adaptive Scaffolding Approach

In Figure IV.1, we present an overview of the approach we took for designing a learner modeling and adaptive

scaffolding framework in Betty’s Brain, that uses the theoretical framework discussed in the previous section.
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Figure IV.1: The Learner Modeling and Adaptive Scaffolding Framework
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There are several components to this design framework.

The learner modeling aspect of the framework tracks observable information from learner-OELE inter-

actions (viz., logged activities, affect predictions generated by affect detector models (Jiang et al., 2018),

and the current state of the causal map) and uses a strategy detection approach to detect temporal activity

sequences and interpret them as cognitive-metacognitive strategies using the task model (Kinnebrew et al.,

2017). A coherence checker module infers whether the learner has been coherent in their strategy use so far

(by using Segedy et al. (2015)’s coherence analysis approach) and a performance checker tracks the change

in the learner’s causal modeling performance after applying the strategy to determine strategy effectiveness.

An affect likelihood checker tracks temporal changes in learner affect, looking for transition into states where

emotions like frustration or boredom are likely to be present. Such states are then evaluated in the context of

cognitive information obtained from recent activities and performance to determine the optimal scaffolds to

deliver to the learner.

Both strategy use and affect regulation form important components of the learner modeling framework,

which generates an understanding of the learner’s proficiency in their cognitive processes while engaging in

information acquisition (IA), solution construction (SC) and solution assessment (SA) tasks in Betty’s Brain.

The learner modeling approach is used to trigger scaffolds that respond to patterns of ineffective strategy use

or a cognitive-affective state that is likely to suggest ineffective affect regulation. The model also tracks how

the learner has responded to scaffolds already received about a strategy or affect transition, to determine the

’level’ (cf., Section IV.4.2) to be used for similar scaffolding in future.

When the learner model determines that a student is ready to receive a specific type of scaffold to help with

applying their learning strategies or regulating their affect, the trigger condition for that scaffold is inserted

into a priority queue. The queue uses a priority assignment algorithm (see Appendix C) to assign priorities

to detected trigger conditions based on an understanding of the current state of the student’s causal map

(e.g., whether the map is sparse, dense, contains relatively high number of correct versus incorrect links, or

vice-versa) to determine which type of strategic scaffold is most likely to be beneficial to the student’s model-

building and debugging tasks at that point in their learning process. The learner scaffolding module in Betty’s

Brain (1) listens to the priority queue and keeps track of the triggering condition with the highest priority in

the queue, (2) determines the level of contextualization at which the student should receive feedback for this

trigger, (3) finds the conversation tree for this trigger condition (and at the appropriate level, as applicable)

(4) adds additional context information as required in the tree, and (5) uses the virtual mentor agent to deliver

the feedback to the learner.

In the next section, we outline the tasks completed to design, develop and evaluate this adaptivity frame-

work to achieve the goals of this dissertation.
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IV.3 Scaffold Design and Evaluation Tasks Completed in this Dissertation

This dissertation presents a principled approach to designing and implementing an adaptive scaffolding

framework in the Betty’s Brain OELE (Section IV.4) by accomplishing the following set of tasks:

1. Designing a learner modeling architecture (Figure IV.3) to capture learners’ task proficiency and self-

regulated learning behaviors to achieve their learning goals in Betty’s Brain;

2. Designing an approach to monitor changes in the learner model and detect patterns that suggest diffi-

culties in cognitive, metacognitive or emotional regulation processes, to identify trigger conditions for

scaffolding.

3. Designing and implementing scaffolds that adapt to learner difficulties at the trigger conditions and

provide contextualized meaningful feedback in an interactive conversational manner.

Upon completion of the design and implementation phase described in the current chapter, this disserta-

tion also presents an approach to evaluate the designed adaptivity framework (Chapter V) by completing the

following tasks:

1. Conducting an experimental study to collect data as K-12 learners interact with the Betty’s Brain envi-

ronment;

2. Analyzing the collected data to assess the impact of different adaptive scaffolds delivered by our frame-

work on the self-regulated learning strategies of learners in Betty’s Brain. (Findings from the evaluation

study are reported in Chapter VI.)

IV.4 Design and Implementation of the Adaptivity Framework in Betty’s Brain

There are two primary components to the design and implementation of our adaptive scaffolding framework

( see Figure IV.1) in Betty’s Brain: (1) A learner modeling architecture to determine and monitor the

trigger conditions for scaffolding; and (2) A Conversation tree format to deliver adaptive feedback when

a trigger condition is satisfied. We discuss these two components in more detail in Sections IV.4.1 and IV.4.2

respectively.

IV.4.1 A Learner Modeling and Strategy Detection Approach to Trigger Scaffolds

In this section, we discuss the primary design components of the learner modeling architecture and outline

the procedure for their implementation in Betty’s Brain.
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Figure IV.2: The Task Hierarchy Model in Betty’s Brain; Modified from Kinnebrew et al. (2017)

IV.4.1.1 Detection of Task-Oriented Cognitive-Metacognitive Strategies

To be successful in an OELE like Betty’s Brain, learners must be able to efficiently decompose their overall

goal (of building a correct causal map to teach Betty) into specific sub-goals or tasks, and be strategic in

the activities they perform, while monitoring their progress towards completing their tasks (Winne, 2014).

Adopting effective SRL strategies should help students identify, interpret, and resolve any difficulties they

may encounter while operating in different task contexts within the learning environment. Therefore, any

scaffolding framework that intends to help learners engage successfully in such environments should incor-

porate a learner model, which captures an understanding of:

1. the learner’s current task context. This can be derived from the subtask(s) a learner is currently working

on. This can include acquiring information needed to build the causal map, constructing and refining the

causal map, and assessing the correctness of the causal map;

2. the context and effectiveness of their recent activities. Context can be derived from their recent activities,

such as observing whether students read a number of resource pages sequentially, or how they combine

their reading, map building, and map assessment activities. Causal-modeling effectiveness or perfor-

mance is measured by comparing their recent map-building activities with a correct or ’expert’ map (cf.,

Figure B.3) of the scientific process;

3. the specific difficulties learners have in relation to their current task and activities. Examples may

include the inability to find the science book pages that provide information they need to construct

causal links, the inability to convert the information read into correct causal links, and the inability to

analyze quiz results to infer correct versus incorrect links in their map.

Grounding scaffolds in the explicit context of the students’ current tasks and the effectiveness of their

model-building efforts provides concrete reference points on which to base any strategic feedback (Segedy
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et al., 2013). To understand and track learners’ strategic cognitive and metacognitive behaviors in context, we

adopt the hierarchical OELE task model developed by Kinnebrew et al. (2017). The task model helps us map

learners’ higher-level cognitive processes to their activities within the learning environment, thereby support-

ing our focus on helping students to develop task-oriented cognitive-metacognitive strategies in the Betty’s

Brain environment. The task model uses cognitive task analysis methods (Schraagen et al., 2000) to break

up the overall task into sub-tasks, linking students’ activities (such as reading resource pages, taking notes,

editing and annotating their causal maps, asking Betty to take a quiz to evaluate the state of the current map,

asking Mr Davis for explanations to specific causal links on their map) to more generic goal-oriented task

structures that represent cognitive processes at the top levels of the task model: (1) Information Acquisition

(IA), (2) Solution Construction (SC), and (3) Solution Assessment (SA) (Kinnebrew et al., 2017). Students

working in Betty’s Brain need to employ these three types of cognitive processes to build and analyze their

causal models to teach Betty.

Figure IV.2 presents our task model in Betty’s Brain, adapted from Kinnebrew et al. (2017). (This fig-

ure includes note-taking to organize information as an additional component of the information acquisition

process in Betty’s Brain, that is not present in Kinnebrew et al. (2017)’s task model.) Figure IV.2 shows the

three sub tasks mapped on to cognitive processes expressed at different levels of detail. At the lowest level,

students operationalize the information acquisition (IA) process by reading the hypertext resource pages, and

by taking and organizing notes. Solution construction (SC) involves map building and map refinement tasks

that students perform in the causal map interface. Solution assessment (SA) involves quiz-taking activities,

analyzing the quiz results (checking the correct and incorrect answers to the quiz), and seeking explanations

by clicking on specific questions.

The combination of multiple tasks and sub-tasks in the task model relates to Winne and Hadwin’s (2008)

SRL model, and illustrates the coordination and enactment of different learning and problem-solving activi-

ties in the form of cognitive processes and strategies that are a vital component of metacognitive regulation

in conjunction with monitoring processes (Schwartz et al., 2009). Therefore, the task model can be used

as a reference framework to track students’ frequently occurring action sequences, and interpret them as

cognitive-metacognitive strategy constructs (Kinnebrew et al., 2017). As discussed in Section IV.1, strategies

in this context represent learners’ conscious and controllable sequences of actions that facilitate and enhance

task performance (Zhang et al., 2021a). While cognitive processes primarily relate to activities that suggest

the use of IA, SC and SA processes, cognitive strategies result from observing meaningful combinations

of the IA, SC and SA activities. As students work on their learning and problem-solving tasks, they may

switch between IA, SC, and SA sub-tasks and combine them in different ways to accomplish their goals.

Basu et al. (2017) express learners’ temporal activity sequences as binary relations - for example, IA (Read)
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→ SC (Build) or SA (Quiz) →SC (Build). Segedy et al. (2015)’s coherence analysis approach helps us

further interpret relations involving Build actions as “effective” and ”coherent”. An effective Build implies

the addition, deletion or modification of causal links that lead to an improvement in causal modeling perfor-

mance, observed from an increase in map scores (discussed in Section V.2.1). So, reading a Science Book

page and then adding a correct causal link from this page on the map would be characterized as the use of

a Read→Build-Effective strategy (e.g., Read → Adding a Correct Causal Link). A coherent Build is a link

edit which supports prior Read or Quiz actions (e.g., reading a page → Adding a link that is relevant to

the page just read). An incoherent Read→Build, where a student adds or modifies causal links that are not

supported by their prior information acquisition or solution assessment, would suggest a less strategic and

possibly more experimental approach to model building.

This dissertation presents a strategy detection approach that tracks key binary relations from sequences

of students’ observable activity traces in Betty’s Brain, and uses the task model as a reference framework to

interpret such relations as as temporal a sequence of cognitive processes (IA, SC and SA tasks). Observing

the (lack of) effectiveness or coherence of model-building actions allows us to further characterize these

activity sequences as deficiencies in cognitive strategy use by the learner. The successful use of cognitive

strategies also reflects the use of deeper metacognitive monitoring and self-reflection behaviors by the student.

For example, a Read→LinkDelete-Effective-Coherent cognitive strategy, which involves a transition from

information acquisition (Read) to an effective and coherent Build (where the student deletes an incorrect link

from their causal map) suggests that the learner is able to search within the Science Book and identify the

section containing potentially important causal information given the current state of their map, and is then

also able to extract the correct causal relation from this section, compare it with the already added incorrect

link on the map, and determine that the incorrect link needs to be removed to improve the quality of the causal

map. The evidence of such a strategy use suggests efficient metacognitive monitoring and self-reflection

behaviors by the learner. Similarly, the detection of a Read→LinkDelete-Inffective strategy would suggest

deficiencies in cognitive processing and the associated metacognitive behaviors, which may be supported by

appropriate adaptive scaffolding.

The different types of binary relations detected by our current strategy detection framework (each of

which suggest a deficiency in the use of specific cognitive-metacognitive strategies while completing the

causal modeling task in Betty’s Brain) is discussed in Section ??, along with the adaptive scaffolds provided

to support the development of more effective strategies in each case. This list is determined based on findings

from previous classroom studies (Section III.2) and scaffold design/ evaluation cycles (Section IV.3).

The strategy detection framework looks for ’patterns’ (multiple occurrences) of an ineffective strategy

use, by keeping a count of each type of binary relations that suggest strategy deficiency. If this count exceeds
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Figure IV.3: The Learner Modeling and Adaptive Scaffolding Architecture in Betty’s Brain

a certain preset threshold (say, 2), it is considered to be a pattern exhibited by the student. Our objective with

such patetrn detection is further clarified in the ”Strategy pattern detection” subsection later in this section.

Changes in the effectiveness and coherence of cognitive-metacognitive strategy patterns employed by a

student are reflected as updates to their learner model (Figure IV.1), which uses this information to build an

understanding of how strategic and proficient the student has been in the application of different strategies

related to information acquisition, solution construction and solution assessment processes while learning in

Betty’s Brain. This understanding of student proficiency helps to trigger appropriate scaffolds to support the

student to develop the effective cognitive-metacognitive behaviors and strategies they currently lack.

Figure IV.3 shows the architecture that operationalizes this learner modeling and scaffold triggering

approach by interpreting online learner data in Betty’s Brain. We discuss the detection of the cognitive-

metacognitive conditions for triggering scaffolds using this architecture below. (The affective conditions for

triggering scaffolds are discussed in Section IV.4.1.2.)

Strategy pattern detection: Students’ mouse clicks are interpreted as events by the system, and further

processed by a ’Coherence Graph Controller’ module into an < action,view > representation that records

their current action (e.g., addition of a “deforestation increases carbon dioxide” link on their map) and the

current visible system interface or ’view’ (e.g., the “causal map” view). The ’Learner Model Controller’ in

Betty’s Brain extracts the most recent event, the recently dominant view (say, in the last 3 minutes) and the

actions performed in this view. This information is then used to construct the binary relations (illustrated

35



in blue in figure IV.3) that are suggestive of student’s strategic behaviors. Since we want to intervene using

scaffolds only when a student has difficulties in applying suitable learning strategies, the learner modeling

framework specifically looks for behaviors that suggest unproductive or inefficient strategy use by the student

(e.g., reading a science book page→ adding an incorrect link from that page onto the causal map). A ’Pattern

Counter’ keeps track of the number of times a student exhibits a certain type of strategy, and a ’Threshold

Comparator’ informs the learner model when the count exceeds a set threshold, thereby signaling that a

strategy pattern has been detected.

Priority assignment: In the case that multiple types of strategy patterns are detected from a students’ recent

activities within a time interval, a pattern prioritization approach helps to identify the pattern reflective of

the student’s most crucial strategic difficulty at the current time. This is achieved by applying a priority

assignment algorithm (Appendix C) to insert detected patterns into a priority queue. The priority assignment

process studies each pattern in the context of their impact on the student’s causal modeling progress in Betty’s

Brain. To illustrate this process, let us take the example of a student for whom three types of strategy patterns

have been detected: IA(Read)→SC(Build); SA(Quiz)→SC(Build); and SA(Quiz)→IA(Read). Here, the

algorithm has to decide whether the student has been having more difficulties in applying strategies related

to IA (Read), SC (Build) or SA (Quiz). Based on an assessment of the students’ recent model-building

progress, if it is found that the student has been adding a disproportionately high number of incorrect links

to their map, this suggests difficulties in applying model-building strategies. So, the algorithm assigns a

higher priority to patterns related to model-building activities (Build), such as Read→AddIncorrectink or

Quiz→AddIncorrectLink) versus non-Build patterns like Quiz→Read. The pattern prioritization process

ensures that the next feedback the student receives (triggered based on the highest priority pattern) is the one

they need the most, in this case to help them debug their causal model by engaging in strategic reading or

quizzing behaviors.

Additional checks to trigger relevant scaffolds: Beyond the detection of strategy patterns and prioritization

of the patterns reflective of the most pressing learning difficulties, two additional factors considered in our

scaffolding framework ensure that the students receive scaffolds that are timely, relevant and meaningful:

1. Each pattern inserted into the priority queue is associated with a ’time-to-live’ (TTL) paramater. If the

time-to-live for a pattern exceeds a set time interval (say, 5 minutes), this suggests that the pattern is no

longer a ’recent’ or relevant one, and is dropped from the queue. This process ensures that students only

receive scaffolds on their recent behaviors and not on behaviors they exhibited in the not-so-recent past.

2. To trigger a scaffold on a detected strategy pattern, the mentor agent in Betty’s Brain, Mr Davis, has to

request the priority queue for the highest-priority pattern. An ’inter-feedback interval’ is included as a
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component of the ’Agent Behavior’ module (Figure IV.3), which tracks the time that has passed since

a student received their last feedback and only requests the priority queue for another pattern when the

time has exceeded a certain interval (say, 5 minutes). This inter-feedback interval checking ensures that

the student does not feel interrupted by too frequent interventions from the agents.

IV.4.1.2 Detection of Affect Likelihood Scores

As discussed earlier in this chapter, a secondary component of our learner modeling and adaptive scaffolding

process to support SRL is to detect and interpret learners’ affective states during learning and respond to

unproductive emotion-cognition regulation using appropriate feedback.

D'Mello and Graesser (2012) discuss a model of affect dynamics that illustrate how learners’ affect states

dynamically arise and evolve as they interact with their tasks in the learning environment. D'Mello and

Graesser’s model considers achievement emotion states such as engagement/flow, confusion, frustration and

boredom and shows how learners transition between these tasks and what the emotion transitions signify. For

example, one of the major emotion transitions involves a shift from Engagement (an equilibrium state) →

Confusion (suggestive of cognitive disequilibrium) → Frustration (when the confusion has not been resolved

and the student has got stuck) → Boredom (persistent failure leading to disengagement from the task). The set

of affect transitions above suggest an ineffective emotion regulation process. But while D'Mello and Graesser

some of the specific affect transitions observed by the D'Mello and Graesser (2012) model explains cognitive

attributions to specific affect states like frustration or boredom, some of the affect transitions observed in

this model were not replicated in other empirical studies, as investigated by Karumbaiah et al. (2018), the

appraisals of affect states like frustration and boredom during learning, and the potential of addressing such

states by providing strategic scaffolding to learners, is explored by further research, including for the Betty’s

Brain environment by Baker et al. (2021) .

In view of these findings, the goal of the affect regulation component of our learner modeling framework

is to detect affect transitions (using the BROMP-based detector models discussed earlier) that lead from a

positive or neutral affective state to a state of dominant negative affect (frustration or boredom), as students

work in Betty’s Brain. These affect appraisals would then be evaluated in the context of students’ recent

activities and behaviors. For example, if the affect detector starts predicting dominant frustration for a student

and the recent activities suggest that the student has been reading a Science Book page for some time, with the

strategic component of the learner model further suggesting an ineffective Read→Build strategy use, we can

combine this affective and strategic information to infer that the student may be struggling with the extraction

of correct causal links from the page they are reading, and this continued struggle over a period of time has

led to their shift towards frustration. This would trigger appropriate feedback from the mentor agent to ensure
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more effective cognitive processing and strategy use and possibly a decrease in frustration (see the Scaffold

9 case in Section IV.4.4).

To operationalize the detection of affect states in Betty’s Brain (see Figure IV.3), our framework uses the

affect detector models developed by Jiang et al. (2018) that predict learners’ emotions from their activities in

Betty’s Brain. These detectors are trained and validated on affect labels hand-coded by classroom researchers

using BROMP (Ocumpaugh et al., 2015) in an experimental Betty’s Brain study (Munshi et al., 2018c), as

discussed earlier in Section III.2.

The affect detector models are embedded within Betty’s Brain, and use a traditional feature engineering

approach to distill features from a sliding window of learners’ recent activity traces. The features are used

as input to a subsequent classification algorithm that generates the likelihood of five types of achievement

emotions: engaged concentration, boredom, delight, confusion, and frustration (Jiang et al., 2018). The

detectors execute every 20sec to generate updated likelihood values of each emotion state. The emotion state

with the highest likelihood value for a 20-sec interval is considered the affect prediction for that interval.

Our learner modeling approach tracks the changes in learners’ affect predictions determined using the af-

fect detector models. For this purpose, we construct binary relations (similar to the approach for strategy de-

tection in Section IV.4.1.1) from successive affect predictions generated by the affect detector models. These

relations infer affect transitions to interpret transitions towards frustration or boredom that, if not regulated,

may be detrimental to the learning process. Keeping in mind the relations between cognitive-metacognitive

and affective processes during learning (Section II.1.3), the detected affect transitions are analyzed in con-

junction to detected cognitive-metacognitive learning difficulties (possible attributions of affect) to trigger the

agent scaffolds.

In prior attempts at scaffolding learners in Betty’s Brain (Munshi et al., 2022b), we have observed that a

non-uniform triggering criteria across different types of scaffolds leads to some scaffolds being triggered too

frequently and some others being triggered very infrequently. Therefore, we include the concept of priority

assignment to affect-based trigger conditions, so that they are inserted into the same priority queue as the

strategy patterns (cf., Section IV.4.1.1). Additionally, affect-based triggers are checked for their relevance

using the ’time to live’ and ’inter-feedback interval’ parameters discussed in the case of the strategy-based

triggers in Section IV.4.1.1.

Upon the determination of trigger conditions for scaffolding and the insertion of the triggers to priority

queue, the next step is to monitor the trigger conditions to deliver appropriate scaffold for the learner’s

most pressing self-regulation difficulty at the current moment, as determined from the highest-priority trigger

condition in the priority queue. For this purpose, the learner scaffolding module in Betty’s Brain (Figure IV.1)

requests the priority queue for trigger conditions in a periodic manner, pull the trigger condition with the
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highest priority at the time of request, and deliver the appropriate scaffold for the trigger using conversation

trees. We discuss this process of scaffold delivery in the next section in more detail.

IV.4.2 Delivering Adaptive Scaffolds for different Trigger Conditions

Adaptive scaffolds from our framework are delivered by the virtual mentor agent Mr Davis present in the

Betty’s Brain environment. One aspect of the agent behaviors defined in the learner scaffolding module in our

framework is to query the priority queue for the highest priority trigger (strategy pattern or affect transition).

When the agent gets the highest priority element from the queue, this element forms the triggering condition

for scaffolding. The agent then looks into a <triggering condition, conversation tree> map to extract the

conversation tree corresponding to the triggering condition.

IV.4.2.1 Conversation Tree Representation for Scaffold Delivery

Conversation trees have been used to deliver contextualized and conversational learner scaffolds in past ex-

perimental research using Betty’s Brain (Segedy et al., 2013; Munshi et al., 2022b). They facilitate back-

and-forth conversation between the learner and the student that seeks to engage learners in authentic social

interactions (Vygotsky, 1978). The set of 9 conversation trees (3 Read→Build, 3 Quiz→Build, 1 Quiz→Read

and 2 affective/strategic) developed in the final design of the adaptive scaffolding framework for this disser-

tation are presented in Figure IV.4. Conversation trees developed for previous iterations of the scaffolding

framework are present in Appendix B: this includes Figure B.1, used for Munshi et al. (2022b)), and Fig-

ure B.2, used for Munshi et al. (2022a)). In all of these figures, we note that the conversation tree nodes

contain the skeleton of the feedback to be offered to the learner for a particular trigger condition and at a

specific scaffolding level (discussed later in this section). However, the content of the tree nodes contain

places where additional task information, as determined from the learner’s current task and recent activities,

is filled in to offer more relevant and contextualized feedback. This is illustrated in Figure B.1 where we can

compare actual contextualized scaffolds received by a student to the conversation tree structure that facilitated

the delivery of the scaffold.

Conversations following the tree structure are initiated by one of the virtual agents. At the end of each

piece of feedback within a tree node, the agent asks the learner if they require further guidance. The student

can indicate their answer to this question by selecting the appropriate choice from a drop-down list. If they

select the option to continue the conversation further, the agent delivers the next piece of conversation, which

includes more detailed feedback on the issue at hand; else, the agent stops the conversation and lets the student

continue working, while monitoring their strategic and affective processes in the background (for providing

future scaffolds). This process allows the learner to have some decision-making agency with respect to the
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(b)

Figure IV.4: Conversation trees for different Quiz→Build strategic scaffolds
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(c)

Figure IV.4: Conversation trees for different Quiz→Read strategic scaffolds
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(d)

Figure IV.4: Conversation trees for affective-cognitive scaffolds
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amount of feedback they receive at a time and consider to be sufficient to meed their current needs.

IV.4.2.2 Scaffold Level

Our scaffolding framework includes an additional scaffold level feature to further increase the adaptivity of

student support through the conversation trees.

1. Learners are initially offered a Level-0 feedback, especially the first time they receive a scaffold related

to a particular ineffective strategy, e.g., an ineffective Read→Build pattern. The Level-0 feedback offers

general hints to help the learners become more strategic in their work. For example, in the earlier

Read→Build scenario, depending on the specific Build issue, the learner would be told how they can

read their resource pages more strategically to extract the correct causal links and fix their errors.

2. If the same strategy pattern is observed again during the student’s learning process, suggesting that they

have been unable to develop an effective strategy to counter their errors, the next time the student would

be scaffolded with a Level-1 feedback. The Level-1 feedback includes more specific hints, contextual-

ized to the student’s current learning difficulty, to help them better understand and apply the suggested

feedback. In the ineffective Read→Build scenario, this may be informing the student about concepts

related to erroneous causal links on their map and then helping the student locate specific pages in their

science book (or specific sections within pages) that they can review to fix the errors.

Table B.2 illustrates the concept of ’scaffold level’ with examples from a prior version of adaptive scaf-

folding (Munshi et al., 2022a), where we can observe how the scaffold level determines the level of contex-

tualization of conversational feedback for the same type of triggering conditions. The inclusion of scaffold

levels in the scaffolding framework helps to further tailor the level of support to learners’ needs, by allowing

them to develop their strategic processes more independently in initial stages and providing more corrective

hints if they are unable to develop and apply effective strategies even after the initial support. However, even

in the higher-level (more contextualized scaffolds), our design of conversations ensures that the learner only

receives supportive hints and not bottom-out hints e.g., by being told the exact causal links they should build

to get a particular quiz answer graded as correct. This is done to discourage ineffective behaviors like gaming

the system (Baker et al., 2004, 2008).

IV.4.3 Findings from Design-Based Research Studies that Informed the Current Scaffold Design

We applied a design-based research (DBR) approach (Wang and Hannafin, 2005) to gradually refine the de-

sign of the triggering conditions and the conversation trees. Lessons from evaluating the scaffolds developed

in each design cycle led to the next design. Our purpose was to use empirical evidence from the evaluation

stage of each DBR cycle to improve the adaptive scaffolding efficiency. (More details on specific studies in
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this DBR process are provided in Section III.2.)

1. Findings from DBR Cycle 1: The first scaffold design iteration leading to this dissertation included

a set of conversational scaffolds provided at task-specific cognitive-metacognitive trigger conditions in

Betty’s Brain that were termed as ’inflection points’. A complete list of the inflection points and scaffold

content from this design iteration is provided in Table B.1 in Appendix B. Examples of conversation trees

from this study are presented in Figure B.1, also in Appendix B. We performed quantitative analyses

from data collected in a classroom study with 98 students to evaluate these scaffolds. The findings from

evaluating this set of scaffolds are reported in Munshi et al. (2022b).

These results suggest that some of the scaffolds developed in this design iteration were effective and

some others were not. Specifically, since we used only cognitive-metacognitive triggers to direct scaf-

folds that targeted both strategic and affective regulation, most scaffolds targeting affect were largely

ineffective, at least in terms of the emotion predictions obtained from BROMP-based detectors. This

has led us to include affective trigger conditions in the current design framework.

In addition, the scaffolds to regulate affect in Munshi et al. (2022b) only provided encouragement or

reassurance prompts and did not target the resolution of the cognitive-metacognitive attributions of the

observed emotions. Therefore, in the final design, we not only track learners’ affect likelihood scores in

Betty’s Brain but we also track their cognitive behaviors to determine the potential cognitive attribution

of these emotions, and use this information to direct scaffolds for affective-cognitive regulation. As

discussed in earlier sections in this chapter, this decision also stems from theoretical and empirical

cognitive-affective relations and the potential for adaptive scaffolding to use this relations and help

affect regulation through strategy feedback (Baker et al., 2021).

Other relevant lessons from this design iteration included the fact that certain scaffolds were triggered

very infrequently with respect to others. We inferred that this was due to assigning non-uniform trigger-

ing thresholds to different types of strategy patterns. Therefore, we use a uniform triggering threshold

for the detection of different types of patterns so as not to include any additional bias towards specific

adaptive scaffolds in our scaffold triggering process.

2. Findings from DBR Cycle 2: The second scaffold design iteration was motivated by findings from

Munshi et al. (2022b). We redesigned the scaffolds that were ineffective or less effective, and evaluated

them in a lab (pilot) study in Sept 2021. While this design iteration included only strategic scaffolds,

the specific scaffolds included in this design were significantly more complex and formalized compared

to the prior design iteration. This can be realized from looking at the conversation trees from this study,

presented in Figure B.2. This design of scaffolds also included the ’scaffold level’ construct discussed

in Section IV.4.2.2. Table B.2 (Appendix B) shows excerpts from the conversation trees for different
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scaffold levels and targeting different types of task-oriented learning strategies in Betty’s Brain. Since

there were only six participants in the pilot study, we took a qualitative approach to track learners’

temporal progress during learning in Betty’s Brain and evaluate the impact of scaffolds they received

throughout this process. Results from this analysis are reported in Munshi et al. (2022a).

These findings helped us further refine our scaffold design framework. For example, one of our observa-

tions from this analysis was that, some students ignored the mentor agent’s suggestions in case of certain

scaffolds repeatedly and engaged in their own learning strategies. One of these students was strategic in

using quizzes to debug errors in their causal map but was not effective in using reading as a map debug-

ging strategy. So, whenever they were suggested to perform strategic reading, the student ignored the

feedback and proceeded with a quiz-based debugging strategy. This finding helped us provide further

elaboration in the conversation tree of the specific trigger condition to emphasize to the learner how a a

Read→Build scaffold would be more useful to address the current errors in their map for that specific

task context.

Such lessons learnt from evaluating the prior iterations at scaffold design have helped us decide on the

final set of triggering conditions and also allowed us to build more meaningful conversation trees and to

provide more agency to the learner, with the conversation tree first explaining the purpose and context of the

feedback (the strategy deficiency detected by the mentor), then asking whether they need any help with their

strategy use (diagnostic), and only then delivering more elaborative feedback to fill in knowledge gaps (as

applicable), and more strategic feedback to provide actionable recommendations on effective strategy use for

problem resolution (e.g., note the conversation tree for Scaffold 1, described in the next section).

IV.4.4 Final Set of Triggering Conditions and Conversation Trees

The complete list of the adaptive scaffolds we have implemented in the most recent iteration of our scaffold

design process, along with their triggering conditions, are presented in Figure IV.5 and discussed below:

1. Read→Build scaffolds (count = 3) for conceptual construction. Two of these are correctness scaffolds,

with an objective to increase the students’ awareness of map errors (viz., the presence of shortcut

links), the reasons why such errors may have occurred (e.g., why a link may be wrong), and to suggest

more effective Read→Build strategies to debug and fix errors. The third Read→Build scaffold is a a

coherence feedback to help students perform Build (map edit) actions that are connected to the sections

of the Science Book that they recently viewed.

(a) Read→Build Shortcut Link Feedback (Scaffold 1): This scaffold is triggered by a pattern, i.e.,

multiple occurrences of a Read→Add Shortcut Link behavior. (In Betty’s Brain, a “shortcut link”
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Figure IV.5: The Types of Adaptive Scaffolds Included in the Current Design and Implementation Framework

implies that the student has added a direct link between two concepts, e.g., A→C which should

actually be related as A→B→C. In other words, the student has not added the complete chain

of causal relations that explain a phenomena, i.e., the student is missing certain causal link(s) in

their model.)

In the feedback provided to the student, the mentor agent Mr Davis first asks (diagnostic) if the

student is aware of the notion of shortcut links. Depending on the student’s response, the mentor

explains the idea of shortcut links, i.e., a chain of links that provides the right answer to a query,

but is missing links that fully explain the phenomena being modeled (filling in knowledge gaps).

To explain further, the mentor provides illustrative examples (elaborative), and discusses why it

is important to know and debug shortcut links in the causal model (to increase task value and

stimulate metacognitive monitoring and self-reflection behaviors). He confirms that the student’s

current causal map has one or more shortcut links, which have not yet been fixed (increasing

awareness). At the end, the mentor provides the student with actionable information (strategic)

about pages or sections of the science book they can now read, and why this is a useful strategy

to adopt (to emphasize its value and encourage future strategy use).

(b) Read→Build Incorrect Link Feedback (Scaffold 2): This scaffold is triggered by a Read→Incorrect

Link pattern, where the student adds incorrect links to their map after reading the Science Book.

This scaffold considers any case of incorrect link addition which is not a shortcut link, since the

shortcut link scenario is handled by the previous scaffold.
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In the feedback provided to the student, the mentor agent explains to the student the different

reasons for a link to be incorrect (to fill in potential knowledge gaps). These reasons include

adding links between concepts that are not actually related, adding an incorrectly directed link

(B→A instead of A→B), or adding the incorrect sign (”A decreases B” instead of ”A increases

B”) for a link. He confirms that the student’s current causal map has one or more incorrect

links (from a specific section or starting from a specific source concept) which need to be fixed

(increasing awareness) and provides actionable (strategic) information about pages or sections

of the science book they should review. He also tells the learner to think through the reasons for

incorrectness as they are reading the page and consider if any of them may apply in the current

case (encouraging metacognitive monitoring and self-reflection behaviors).

(c) Read→Build Coherence Feedback (Scaffold 3): This scaffold is triggered by a Read→Add

Incoherent Link pattern. Here, Betty (the teachable agent) initiates the conversation (to engage the

student in more social interactions) and mentions that she has trouble understanding the recently

added links because they do not appear to be related to the Science Book pages they (the student

and Betty) were recently reading. Mr Davis then responds to Betty and tells the student that the

reason for Betty’s confusion is that the incoherent Read→Build behavior. He explains to the

student (strategic) that they should add concepts and links related to what they recently read, and

how such organized read-build behavior can help avoid Betty’s confusion when teaching her new

information.

The content of the feedback provided for each of the Read→Build scaffolds is further contextualized

using the scaffold level (IV.4.2.2, as illustrated in Figure IV.4.

2. Quiz→Build scaffolds (count = 3) for model debugging. Again, two of these are correctness scaffolds,

while the third one is a coherence scaffold. The correctness scaffolds aid in model debugging by

teaching link-annotation practices that can help the student understand and use their recent quiz results

more strategically to debug and correct the errors in their causal model. The coherence scaffold helps

the student become more coherent in their model edits after a quiz.

(a) Quiz→Build Correct Link Annotation Feedback (Scaffold 4): This scaffold is triggered by

a pattern that involves the student taking a quiz (with at least one quiz answer graded correct,

implying the presence of correct links on the map) and then not annotating (marking) the correct

links on the map using the ”Mark as correct” feature available in Betty’s Brain. In this feedback,

Mr. Davis takes the student through a short guided training session on marking links, by making
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them click on one of the correct answers from the recent quiz, highlighting the links associated

with this answer, and explaining how to mark these correct links on their map, and why such

annotation can be useful to confirm links that are correct and thereby make it easier to spot the

links that may be incorrect. He then asks the student to mark the correct links currently present

on their causal map.

(b) Quiz→Build Incorrect Link Annotation Feedback (Scaffold 5): This feedback is similar to

the previous one but it is triggered when the student has at least one wrong answer in their map,

and they have used the ”Mark as correct” feature to confirm the correct links but not yet used

the ”Mark as maybe wrong” feature to check the links that are possibly wrong and need to be

reviewed. Mr. Davis teaches how to use the “Mark as maybe wrong” feature to further zone in

on links that need to be reviewed. At the end, Mr Davis asks the student to ”Start conversation”

if they need help with understanding very specific quiz grades (like the ”?” grade), since previous

studies (Munshi et al., 2022a) have shown that students often get stuck with debugging model

errors related to this specific quiz grade. (By starting a conversation with the mentor anytime, the

student can get cognitive skill-level information to interpret the quiz grades which can be helpful

to better understand and use the suggested cognitive-metacognitive strategy).

(c) Quiz→Build Coherence Feedback (Scaffold 6): This feedback is triggered when the student

takes a quiz, looks at quiz results, but then edits links that are not related to the quiz answers. Mr

Davis explains that after taking a quiz, it would be helpful to first teach Betty the concepts she

did not answer correctly. In this scaffold (like the last one), he suggests that the student start a

conversation with him if they need help about understanding quiz grades.

3. Quiz→Read Coherence Feedback (Scaffold 7) (count = 1) for knowledge refinement: This scaffold is

triggered when the student follows their Quiz views with viewing different Science Book pages that are

incoherent (not the ones relevant to) the quiz answers they viewed. The idea behind this scaffold is that

a student may be struggling to identify the sections of the Science Book relevant to their recent quiz

views, so Mr Davis verifies this by first asking (diagnostic/validational) the student if they are trying to

find something from the science book. If the student says yes, he then suggests them (strategic) to use

the ”search box” feature in the Science Book to look for keywords related to the quiz answers, which

would lead them to all sections of the book where these keywords were discussed.

4. Affective/strategic scaffolds (count = 2) to help the students regulate the impact of potentially negative

affect states. These scaffolds are triggered by tracking students’ affect likelihood scores from the affect

detector models in Betty’s Brain (Jiang et al., 2018) and upon identification of an affect transition that
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ends in frustration or boredom (negative affect states). To provide actionable and useful feedback at

these states (and also account for the possibility of incorrect affect detection by the detector models),

the feedback provided at these moments does not include any mention of the detected emotion but

includes cognitive strategies designed to improve current students’ cognitive-affective states.

(a) Negative affect + Quiz Feedback (Scaffold 8): This feedback is triggered when (a) the student

shows the high likelihood of frustration or boredom in the Quiz Results view , (b) this view

is dominant in the last 5 minutes, and (c) the student also shows a low (¡30%) Quiz→Build

proficiency in the last 5 minutes. The premise is that the negative affect, if actually present, is due

to the student having trouble understanding or using the quiz results. Mr. Davis explains that the

first step for effective Quiz→Build is to understand what the grades mean. So, if the student does

not know that, they should “Start conversation” with Mr Davis or ask an instructor present in the

classroom. He further explains that once the student is able to differentiate between the grades, it

would be easier for them to identify map errors. If the student is confident that they understand

the quiz grades, Mr Davis suggests that they take some more time to read through the Science

Book pages that discuss information related to the wrong answers and try to detect any errors.

(b) Negative affect + Read Feedback (Scaffold 9): This feedback is triggered when (a) the student

shows the high likelihood of frustration or boredom in the Read (Science book) view , (b) this

view is dominant in the last 5 minutes, and (c) the student also shows a low (¡30%) Read→Build

proficiency in the last 5 minutes. The premise is that the negative affect here is due to the student

having trouble using their science book reading in an effective manner. Previous studies (Munshi

et al., 2022b) have shown that low performers in Betty’s Brain often get ”stuck” in a reading loop

and get disengaged. Mr. Davis therefore tries to break any possible Read→Read or Read→Build-

Ineffective loop by reminding the student to take a quiz from time to time, and explaining why

that can be helpful to check their progress and better understand which parts of the map need more

work. He also assures the student that he is there to help so the student can ask him questions

anytime or also go through the ”Teacher’s guide” in Betty’s Brain for some tips on how to teach

Betty.

In the following chapter, we discuss our approach for evaluating the current design of the adaptive scaf-

folding framework in Betty’s Brain.
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CHAPTER V

Evaluation of the Adaptive Scaffolding Framework

Our scaffold evaluation framework, to assess the impact of the adaptive scaffolds presented in Chapter IV,

consisted of: (1) an experimental study to collect data from middle school students using Betty’s Brain, and

(2) data analysis to evaluate students’ responsiveness and strategic usage of adaptive scaffolds they received

during the study. The classroom study design and data collection procedure are described in Section V.1, and

the data analysis methodology is discussed in Section V.2.

V.1 Classroom Study for Data Collection

We conducted an exploratory study with middle school students in late March-early April of 2022. The

students were participants in a Day of Discovery program run by the School for Science and Math at Van-

derbilt University. A total of n = 55 students participated for the duration of the study and consented to

data collection. (This number accounts for factors like student absence on one or more days of the study,

technical issues leading to data loss, and the subset of students who did not provide written consent for data

collection). The 55 participants included 26 female students, 28 male students, and 1 non-binary student (46

white, 3 black, 1 Hispanic, 4 mixed race, and 1 with no race information). They were students from seventh

(n = 29) and eighth (n = 26) grades came from three urban public schools in Nashville, TN. The study was

conducted in the students’ DoD classroom in the presence of their two instructors. No significant difference

in prior knowledge (as determined from pre-test scores) was observed between the participants of the two

grades. Similarly, there were no differences by gender or the students’ schools. During this study, all stu-

dents worked on the climate change unit of Betty’s Brain, which involved learning (and teaching Betty) about

the human causes and environmental effects of climate change by constructing a causal (cause-and-effect)

model of this scientific process in the causal map in Betty’s Brain.

V.1.1 Study Design

The study was conducted over a period of three days.

On Day 1, students worked on a paper pre-test (see Appendix C) for 30 minutes. The pre-test consisted

of two parts:

(a) A test on climate change, which included a combination of multiple-choice (MC) and short-

answer (SA) questions to evaluate students’ domain knowledge and causal reasoning skills prior

to interacting with Betty’s Brain.
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(b) A five-point Likert-scale questionnaire to assess student motivation (self-efficacy and task value),

adapted from Tuan et al. (2005).

After completing the pre-test on Day 1, students worked on an introductory training unit of Betty’s

Brain for the remaining time (15 minutes). In this training session, Mr Davis, the mentor agent in

Betty’s Brain, provided students with a guided introduction to the resources and tools available in the

learning environment.

On Day 2, students began working on the Climate Change unit of Betty’s Brain. Each learner worked

individually on their own laptop to build a causal model of climate change.

On Day 3, students continued building their climate change models in Betty’s Brain for about 30

minutes. Then they were asked to respond to a post-test (Appendix C), which again included two

sections: one on climate change (identical to the pre-test) and a second one on motivation. The post-

test also contained an additional questionnaire on science anxiety.

V.1.2 Data Collection

The following data was collected from all 55 students during their interactions with the Betty’s Brain system:

1. Responses to the pre- and post-tests;

2. Logged trace data in Betty’s Brain on student activities in the Climate Change unit. This log data con-

sisted of a sequence of timestamped activities that reflected students’ interactions with the system. The

log data was processed into an < action,view > representation (Figure IV.3) to facilitate the interpreta-

tion of student behaviors in context (Kinnebrew et al., 2017). Map scores (discussed in Section V.2.1)

derived from the logs helped us track students’ performance in their causal modeling task in Betty’s

Brain;

3. Timestamped affective state predictions provided by the BROMP-based detector models embedded in

Betty’s Brain, which generated likelihood values of engaged concentration, boredom, delight, confusion

and frustration at 20-sec intervals

4. Information on adaptive scaffolding provided by the system in terms of the timestamp at which the

scaffolding was initiated, the type of scaffold that was provided, the trigger condition, the scaffold level,

and the number of times this scaffold was provided.

Additionally, facial webcam videos were also collected using OBS Studio during Days 2 and 3 for a

subset of students (n = 18). (Due to technical issues with certain laptops, webcam data could not be collected

for all 55 participants.) The purpose of collecting face videos was to obtain learners’ facial emotions by

processing these videos offline using the iMotions AffDex API (McDuff et al., 2016). This was intended
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to serve the dual purpose of (a) providing a secondary emotion source to validate the emotion likelihoods

generated by the affect detector models, and (b) being the primary source of affect data in case the reliability

of predictions from the BROMP-based affect detector outputs could not be determined. (Being trained on a

larger set of data points, the facial affect detector models are generally considered to be more robust than the

BROMP-based action-driven affect detectors.)

Also, at the end of Day 3, audio interviews were conducted with some randomly selected students (n =

13), where they were asked about their experience working with the Betty’s Brain system, and especially

their thoughts on the usefulness of the adaptive feedback they received from the mentor agent while learning.

V.2 Data Analysis Procedure

Our overarching research question for scaffold evaluation was: RQ What is the impact of adaptive scaffolds

triggered by the framework on learners’ self-regulated learning (SRL) processes?

We started the data analysis towards answering this question by first defining our learning outcome metrics

in Betty’s Brain (Section V.2.1) and conducting an exploratory data analysis (Section V.2.2) by studying

students’ overall learning outcomes, behavioral and affect indicators from the classroom intervention. The

data-driven insights obtained from this exploratory analysis allowed us to formulate a more targeted research

question (Section V.2.3) and a corresponding set of targeted analyses for scaffold evaluation (Section V.2.4).

V.2.1 Learning Outcome Metrics

We developed two metrics, one summative and one formative, to measure students’ learning outcomes from

the Betty’s Brain intervention study.

1. Summative Assesment: Normalized Pre-to-post test learning gains, calculated as Post score−Pre score
Max score−Pre score : This

measure, derived from grading students’ pre- and post-test responses using a pre-defined rubric, helps

us to evaluate how well the intervention helps students learn their science content;

2. Formative: Map scores, calculated as # number of correct minus incorrect causal links in a student’s

causal map at any point in time during the intervention. This measure helps us track the correctness of

students’ causal models built in Betty’s Brain over time, and provides us with a more direct measure of

their causal modeling abilities in the system. We compute the final map scores achieved by each student

at the end of the intervention as a second summative measure of their overall performance during the

intervention.
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V.2.2 Exploratory Data Analysis

An exploration into students’ overall learning outcomes from the Betty’s Brain intervention was performed

using the metrics outlined in Section V.2.1. The findings, reported in Section VI.1, revealed that the study par-

ticipants (n = 55) as a whole did not exhibit significant pre-to-post learning gains. However, large variances

in both pre-to-post gains and final map scores were observed, which prompted us to apply an unsupervised

learning approach to determine if students clustered into groups based on their behavioral differences and

if this explained the wide variations in performance. In addition, behavior differences could also help us

determine if the adaptive feedback provided were differentially used by the different groups. The results,

reported in Section VI.1, revealed four clusters: Cluster 1 (n = 6) consisting of disengaged learners, Clus-

ter 2 (n = 19) consisting of inefficient information appliers, Cluster 3 (n = 22) consisting of strategizers,

and Cluster 4 (n = 8) consisting of experimenters or tinkerers who exhibited trial-and-error behaviors while

working on Betty’s Brain. We discuss the clustering approach and the labeling of each of these clusters in the

next chapter.

V.2.3 Research Questions for Scaffold Evaluation

The clusters observed from the exploratory data analysis were used to frame a more targeted research question

to study and compare the impact of adaptive scaffolds from our scaffolding framework on the four groups

(clusters) of students.

RQ: How did students from the four different clusters respond to receiving the different types of adaptive

scaffolds (listed in Section IV.4.4? More specifically,

(a) Were students in each cluster responsive to the scaffold? In other words, did they appear to follow

the actionable recommendation provided in the scaffold by then performing the activities suggested by

the mentor?

(b) Additionally, did the subsequent behaviors of students in each cluster convey a strategic use of the

scaffolds? For instance, if the objective of a scaffold was to teach a specific cognitive-metacognitive

regulation strategy, did the students show a change in their relevant model-building activities, behaviors

and performance after they received the scaffold? If the scaffold also included an affective component,

was it also possible to detect a change in learner emotions?

V.2.4 Temporal Analysis for Scaffold Evaluation

To answer the above research questions, we performed temporal analysis for student clusters (findings re-

ported in Section VI.3) that tracked the change in their use of suggested strategies, their causal modeling

performance, (and emotions, as applicable) as they received conversational feedback in the form of adaptive
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scaffolds from the agents. For this purpose, we created sequences of scaffold-triggered ’before’ and ’after’

intervals across a student’s learning timeline in Betty’s Brain, so that we could compare student behaviors

before receiving scaffolds to their behaviors after receiving scaffolds.

Here, the after-interval for an adaptive scaffold started when the scaffold was given to the student and

continued up to the time the student received their next scaffold from the system. Similarly, the before-

interval for an adaptive scaffold considered the time starting from when the last (previous) scaffold was given

to the time when they received the current scaffold (Munshi et al., 2022b). For example, consider a student

who received two adaptive scaffolds during the course of their learning session - Scaffold 1 at time ti and

Scaffold 2 at time t j. For Scaffold 1, the student’s before interval would be [0, ti] and after interval will be

[ti, t j], where the time 0 represents the start of the current session. Similarly, for the second delivery of a

Scaffold 2, the before interval would be [ti, t j] and after interval will be [t j,end], where end represents the end

time of the session.

To determine the responsiveness and strategic use of the adaptive scaffolds received by students in each

cluster, we studied the change in their cognitive activities (as relevant to the triggering context and conversa-

tion content of the delivered scaffold), their map scores (performance), and the likelihood of their prevailing

affect states (when relevant and accurately available) in the before and after intervals for each feedback they

received. The specific activities and strategy use to be assessed depended on the type of cognitive or metacog-

nitive strategy (and as relevant, affect state) that was supported by the agent’s feedback. For example, in the

case of the Read→Build Incorrect Link scaffold, we first checked whether the learner followed the mentor

agent’s suggestion in the scaffold by reading the suggested page(s). Then we also assessed strategic usage

by checking if their causal modeling performance improved in the following interval, suggesting that they

were able to use the strategic reading to develop more effective model construction behaviors that fixed prior

errors in their causal model. We also studied the impact of scaffolds after the first, second, ..., nth time it was

received by students in a cluster.

Chapter VI presents the findings from data analysis conducted following the methodology outlined in

this chapter. The results from an exploratory analysis of students’ learning outcomes are reported in Sec-

tion VI.1.1, followed by a study of the affect indicators available from the study data, especially focusing on

data reliability and its implications on further analysis. This is followed by feature construction for cluster

analysis using causal modeling behaviors in Betty’s Brain (Section VI.1.3). The clustering procedure and its

results are reported in Section VI.1.4, which shows four behavioral profiles or groups among students. Then

Section VI.2 presents the statistics on adaptive scaffolds received by these groups, and discusses the implica-

tions of these numbers on future refinement of the scaffold design framework. Section VI.3 goes deeper into

the temporal analysis of the impact of scaffolds received by students in each group, with discussions on group
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and student responsiveness / strategic use of each scaffold. Section VI.4 presents case studies exploring the

behavioral evolution and scaffold use of two students from the classroom study. Finally, while Sections VI.3,

VI.3, and VI.3 discuss our inferences on the effectiveness of scaffolds and the implications on future scaffold

designs in Betty’s Brain, Section VI.4 discusses some of the major future research directions that can extend

the findings from this dissertation, while also outlining the limitations from the current evaluation study that

can be explored further in future work.
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CHAPTER VI

Results and Discussion

Exploratory analysis of the data collected from the classroom study was conducted to investigate students’

overall learning outcomes, study their behavior and affect indicators, and then study the impact of adaptive

scaffolds provided in the system.

VI.1 Exploring Learner Outcomes, Affect and Behavioral Indicators

As a first step, we analyzed students’ learning outcomes and their behavioral and affect indicators.

VI.1.1 Pre to Post Learning Gains and Causal Modeling Outcomes (Map scores)

The metrics discussed earlier in Section V.2.1: normalized pre-to-post test learning gains and final map

scores, were used as measures of students’ learning outcomes. The pre-post scores are reported in Table VI.1

and the distribution of final map scores is presented in Figure VI.1.

A Shapiro-Wilk test showed that the distribution of the pre-post learning gains was close to normal,

with W (55) = 0.97, p = 0.24 indicating a non-significant departure from normality. This justified the use of

parametric statistical tests that are presented in Table VI.1. One-way ANOVA tests of the students’ summative

pre-test and post-test scores show that the overall pre-to-post learning gains of all students (n = 55) were not

statistically significant (i.e., F = 2.7, p= 0.105) and the overall effect size was small (i.e., Cohen’s d == 0.18).

Additionally, Table VI.1 also suggests a high variance (mean = 0.2, sd = 0.4) in students’ pre-to-post learning

gain scores, which were normalized between 0 and 1.

The distribution of students’ final map scores in Figure VI.1 also suggests a high variance among students.

The median map score obtained at the end of the Betty’s Brain intervention was 7 (out of a maximum score of

25), with mean(sd) = 8.76(9.1). A moderate correlation Pearson’s r = 0.6(p < 0.05) between students’ pre-

post learning gains and final map scores suggests that there was a relationship between students’ performance

in the Betty’s Brain intervention and their pre-post learning gains in science content.

Due to the variation in learning outcomes across students, we decided to further explore their learning be-

haviors and affect states with the objective to uncover representative behaviors among groups of students and

study how they may relate to their performance. A similar variance in learning outcomes had been observed

among the participants of the prior study that evaluated a previous iteration of the adaptive scaffolding frame-

work (Munshi et al., 2022b) as well as in other studies conducted using Betty’s Brain, Munshi et al. (2018b).

In a more recent study Munshi et al. (2022b), we divided students into ”high performer” and ”low performer”
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Figure VI.1: Learning outcomes from the Betty’s Brain causal modeling task (final map scores) for all stu-
dents (n=55)

Table VI.1: Pre-post learning outcomes of all students (n=55)

Pre-post learning scores

Pre-post question type Pre-test score Post-test score Normalized learning gains Pre to post 1-way ANOVA Effect size
mean (sd) mean (sd) mean (sd) F-ratio (p-value) Cohen’s f

MC (Max=7) 5.2 (1.3) 5.7 (1.5) 0.23 (0.65) 3.8 (0.055) 0.18
SA (Max=16) 3.56 (1.5) 4.02 (2.7) 0.04 (0.17) 1.2 (0.28) 0.105

Overall (Max=23) 8.8 (2.3) 9.7 (3.7) 0.2 (0.4) 2.7 (0.1) 0.15

categories and assessed the impact of scaffolding on learner behaviors in these two groups, we took a more

nuanced approach by deriving and analyzing students’ behaviors and relate them to their performance and

ability to use the feedback provided by the agents in the system.

In more detail, differences in self-regulation behaviors, including the regulation of cognitive-metacognitive

as well as affective states, may have contributed to the difference in outcomes across students, therefore we

studied both behavioral and affect indicators available from the log data collected in the study.

VI.1.2 Affect Indicators

The primary source of affect data collected during the Betty’s Brain study, as discussed earlier in Sec-

tion V.1.2, included likelihood scores of achievement emotions (engaged concentration, delight, confusion,

frustration, and boredom) predicted by the BROMP-trained activity-based affect detector models (Jiang et al.,

2018). This data was available as a set of affect likelihood scores every 20 seconds a student spent on Betty’s

Brain. A secondary source of affect data was collected from webcam videos recorded using OBS Studio for

a random subset (n = 18) of the 55 total participants. (This data could not be collected for all 55 students due

to memory issues with many of the student laptops, which slowed down and disrupted Betty’s Brain activities

when OBS Studio was turned on.), The facial affect data was detected by the iMotions AffDex API (Mc-

Duff et al., 2016) using action units derived from students’ face videos as they worked in the Betty’s Brain
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environment, and included likelihood scores of basic emotions (joy, anger, contempt, disgust, sadness, fear,

surprise), as well as scores of confusion and emotional valence.

In previous work, we (Munshi et al., 2020) collected these two types of affect predictions (i.e., achieve-

ment emotion likelihood scores from the BROMP-based detectors and basic emotion likelihood scores from

the AffDex-based detectors) during a Betty’s Brain classroom study, synchronized the data by time, and used

random forest classifiers to obtain a mapping of the affect data available from the two types of detectors.

The results showed that predictions of confusion were mapped most closely to a likelihood of high anger and

high disgust, while predictions of frustration mapped more closely to that of high disgust and low fear, or low

disgust, the presence of sadness, and low contempt. Our objective with the Munshi et al. (2020) analysis was

to use this mapping in future to explore the possibility of using commercial software like AffDex as a less

context-sensitive and more development-friendly alternative to the BROMP-based affect detector models for

predicting affect in academic situations. However, since using the AffDex models online to trigger adaptive

scaffolds posed higher challenges, we used the BROMP-based detectors in our learner modeling approach,

while collecting facial AffDex data as a secondary source of emotions.

In the current study, we performed a correlational analysis to check for mapping between the two emotion

sources. The results, reported in Table VI.2, do not provide any evidence of the type of mapping observed

before from Munshi et al. (2020). Additionally, the emotional valence scores obtained from the facial emotion

detectors did not seem to match the expected valence for co-occurring affect state predicted by the BROMP-

based detectors. In the absence of more accurate human coded emotion labels (such as ones used in Munshi

et al. (2018c), it was difficult to further validate the affect predictions from the BROMP-based affect detectors.

Therefore, to avoid biasing our subsequent analyses with potentially incorrect affect prediction data, we chose

to focus more on behavioral (i.e., cognitive) features only to perform the cluster analysis and derive students’

behavior profiles. (Even in the scaffold evaluation analysis reported in Section VI.3, we have avoided making

claims about the affective implications of scaffolds like Scaffold 8 or 9, due to this lack of validated affect

data. We will explore this further in future work.)

VI.1.3 Causal Modeling Behaviors

To construct features for cluster analysis that would provide an accurate insight into students’ causal modeling

behaviors in Betty’s Brain, we first divided the total system time spent by a student in the Betty’s Brain system

into: (a) the time spent in the Read view, acquiring new information by reading Science Book pages, (b) the

time spent in the Map Edit view, building the causal map by adding or modifying concepts and links, (c)

the time spent in the Quiz Results view, assessing the state of the map by looking at quiz grades and Betty’s

causal explanations to quiz answers, and (d) the time intervals of at least 5 minutes where the student did
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Table VI.2: Correlation matrix of the two types of affect data for 5 randomly selected students

From BROMP-trained activity-based affect detectors From facial video processed through AffDex
Boredom Frustration Confusion Engaged conc. Delight Valence Joy Anger Confusion Engagement Fear Surprise Disgust Contempt Sadness

Boredom 1
Frustration 0.45 1
Confusion 0.36 0.71 1

Engaged conc -0.08 -0.38 -0.18 1
Delight 0.01 0.14 0.22 0.06 1
Valence 0.29 0.04 0.07 0.04 0.08 1

Joy 0.22 0.1 0.08 0 0.01 0.86 1
Anger -0.09 0.12 0.2 0.02 -0.02 -0.23 -0.02 1

Confusion -0.09 -0.03 0.04 -0.05 0.01 -0.28 -0.06 0.51 1
Engagement -0.02 0.11 0.05 0.03 -0.01 0.17 0.4 0.4 0.5 1

Fear -0.09 -0.04 -0.09 0.07 0 -0.12 -0.08 0.23 0.6 0.47 1
Surprise -0.07 -0.05 -0.1 0.07 0.01 0.09 0.16 0.17 0.5 0.51 0.87 1
Disgust -0.07 0.11 0.11 0.09 0.01 0.02 0.17 0.17 0.13 0.36 -0.01 0.25 1

Contempt -0.05 -0.02 -0.13 0.02 -0.08 -0.28 -0.05 0.01 0.03 0.22 -0.04 -0.05 0.23 1
Sadness -0.05 0.18 -0.06 -0.13 -0.16 -0.4 -0.06 0.14 0.07 0.25 0.04 0 0.11 0.77 1

not engage in any reading, quizzing or map editing activity and was likely to be in a disengaged or off-task

state. We then looked into the time and effort spent by students on the cognitive activities within each view

to derive more fine-grained behavioral indicators.

Reading the Science Book helped students acquire new knowledge about causal relations in the climate

change domain, while viewing the Quiz Results allowed them to assess their progress and identify errors in

their current causal model. Together, both these Read and Quiz Results views served as the sources of impor-

tant information that could motivate map edits. Therefore, we denoted the time spent by a student in the Read

or Quiz Results views as the information viewing time. Within the information viewing time, the periods of

time, when a student read a Science Book page or looked at a quiz answer that contained potentially important

information to support causal map edits and improve their map score, was further labeled as the potential

generation time. This indicated how well a student was able to identify potentially useful information while

reading or checking quiz results. But beyond looking at the sources of potentially important information,

a further indication of the quality of students’ read or quiz activities was their ability to then extract causal

relations from these resources and translate them to link edits on the causal map. Therefore, we labeled the

subset of potential generation time, which was actually used by the student to support future link edits, as the

potential usage time. Within the Map Edits view, only the link edit activities had the potential to increase or

decrease students’ map scores. So, the link edit frequency was calculated to gain an insight into the number

of link edits performed by a student over the time they spent in Betty’s Brain. To further understand the qual-

ity of these link edits, we used the notion of coherence from Segedy et al. (2013) to label each link edit or link

annotation activity as supported or unsupported compared to prior actions in Betty’s Brain, thereby helping

us to calculate the unsupported edits percentage and evaluate the quality of the link edit activities. The

percentage of total system time when the student was off-task was calculated as the disengaged percentage.

The final set of six behavioral features developed for our cluster analysis, some of them adapted from Segedy

et al. (2013), are further described below.
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1. Information viewing percentage: The percentage of total system time that formed the information

viewing time (i.e., which was used for information viewing purposes by reading Science Book pages for

>= 10 seconds or by looking at a quiz result for >= 2 seconds) was determined to be the information

viewing percentage, and indicated the quantity of Read/Quiz activities performed by a student.

2. Potential generation (from info viewing) percentage: The percentage of the information viewing

time that formed potential generation time, i.e., could support subsequent causal map edits to improve

the map score, was determined to be the potential generation percentage, and suggested the quality of

Read/Quiz activities.

3. Potential usage percentage: The percentage of potential generation time that formed potential usage

time i.e., was actually used to support future map edits, was considered to be potential usage percent-

age. This helped further determine the quality of Read/Quiz actions.

4. Link edit frequency: The number of causal link edits performed by a student out of their total system

time was determined to be the link edit frequency, and denoted the quantity of Build actions that could

influence the map score.

5. Unsupported edits percentage: The percentage of link edits or annotations that were not supported by

previous actions formed the unsupported edits percentage. This denoted the quality of Build actions.

6. Disengagement percentage: The percentage of total system time classified as disengaged time (i.e.,

no actions performed by the student for at least 5 minutes) was determined to be the disengagement

percentage.

After feature construction, a set of three pre-processing steps were applied on the computed feature values

to prepare them for clustering: (1) Feature correlations were used to assess feature independence. Results

showed Pearson′s r in a range of −0.4,+0.3. (2) Min-max normalization was applied for data scaling, and

removed variable bias while still preserving the variance in the data. (3) Finally, coefficient of variation

(CV = S.D./mean) was used as a feature selection criterion to ensure that the features were informative. All

6 features had CV > 25% and were therefore used for clustering.

VI.1.4 Clustering Results Based on Behavioral Features

A hierarchical clustering approach (agglomerative, Euclidean distance metric, Ward’s minimum variance

method) was applied for clustering students. The code was implemented in the R programming language.

To determine the optimal number of clusters “k”, the dendrogram generated was cut at several levels,

to produce a number of groupings of the student data, starting from k = 2 to k = 7. For each value of k,
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Figure VI.2: Demographic information for the four groups obtained from cluster analysis

two metrics were computed: (a) average silhouette coefficient (Rousseeuw, 1987), (b) Calinski-Harabasz

(CH) index (Calinski and Harabasz, 1974). To maximize the value of these two metrics (see Figure VI.3

and Figure VI.4) and obtain stable and interpretable clusters, the optimal number of clusters was selected as

k = 4. The four clusters: C1 (n=6), C2 (n=19), C3 (n=22), and C4 (n=8) are shown in the dendrogram in

Figure VI.5.

The demographic information for these groups obtained from cluster analysis is presented in Figure VI.2.

The C1 group (n=6) included 5 female students (4 white, 1 Hispanic) and 1 male student (white). The C2

group (n=19) included 9 female students (7 white, 2 black) and 10 male students (8 white, 1 Hispanic, 1

black). The C3 group (n=22) included 11 female students (white), 10 male students (9 white, 1 with no race

information), and 1 non-binary student (white). The C4 group (n=8) included 1 female student (white) and

7 male students (5 white, 1 Hispanic, 1 black). Table VI.3 further reports the demographic classification

of students in the four groups, with the percentages suggesting between-group and overall differences in

demographic distribution.

We analyzed the statistical differences in feature values between the four groups obtained from clustering

(see Table VI.4). A 1-way ANOVA and Tukey-HSD test showed that the differences in information viewing

percentage were statistically significant (p < 0.05) between C1 and C3, C2 and C4, and between C3 and C4.

The differences in potential generation percentage were significant between C1 and C3, C2 and C3, and C3
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Table VI.3: Number of students (percentage of group) in each demographic profile

Group Female Male Non-binary Total
in group

White Black Hispanic White Black Hispanic
No race

information White

C1 4 (67%) 0 1 (17%) 1 (17%) 0 0 0 0 6 (100%)
C2 7 (37%) 2 (10.5%) 0 8 (42%) 1 (5%) 1 (5%) 0 0 19 (100%)
C3 11 (50%) 0 0 9 (41%) 0 0 1 (4.5%) 1 (4.5%) 22 (100%)
C4 1 (12.5%) 0 0 5 (62.5%) 1 (12.5%) 1 (12.5%) 0 0 8 (100%)

All students 23 (42%) 2 (3.6%) 1 (2%) 22 (40%) 2 (3.6%) 2 (3.6%) 1 (2%) 1 (2%) 55 (100%)

Figure VI.3: Average silhouette scores with number of clusters k

Figure VI.4: CH-Index plot with k cuts of dendrogram
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Figure VI.5: Dendrogram with k = 4 clusters

and C4. (C3 generated higher potential from reading and quizzing activities compared to all other groups.)

The differences in potential usage percentage was significant only between C2 and C3, with C3 students

using 72% of their generated potential, on average, to support map edits compared to 48% for C2 students.

The differences in link edit frequency were significant (p < 0.05) between C1 and C4, C2 and C4, and C3

and C4, suggesting that C4 showed higher link edit frequency compared to all other groups. The differences

in unsupported edits percentage were significant between C1 and C3, C2 and C3, and C3 and C4, with C3

showing a lower percentage of unsupported edits (i.e., higher model-building coherence) compared to all

other groups. In terms of disengagement percentage, the differences were significant between C1 and C2, C1

and C3, and C1 and C4, with C1 showing high disengagement (28% of the time, on average) compared to the

other groups (< 0.06% on average).

The above findings and the results from Table VI.4 allowed us to interpret and label the behavioral profiles

of students in each cluster/group, as discussed below:

1. C1 (Disengaged Group): The students in this group showed higher disengagement than students in the

other groups, and the differences were statistically significant. In addition, students in this group spent

only 38% of the time viewing information (lower than groups C2 and C3 but about the same as group

C4, the tinkerers), with potential-generating information viewed for a net 17% of the total time spent in

the system. This group also showed a low edit frequency, with high proportion (64%) of unsupported

edits. In terms of learning outcomes, the C1 group showed the lowest average final map scores (3.16)

and pre-to-post gains (0.04), although a high variance suggested some outliers in terms of performance.
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Overall, students in this group were presumably off-task for a large portion of the intervention with the

Betty’s Brain Climate Change unit.

2. C2 (Inefficient Information Generators): This group of students spent a relatively large amount (52%)

of their time viewing information (only Group 3 − the strategic map builders were higher) but despite

that, they converted what they viewed into a relatively small number of causal links (link edit frequency

0.28 − only the disengaged group was lower with 0.24; Groups 3 and 4 were relatively higher). Sim-

ilarly, they spent 29% (56% of 52%) time viewing potentially important information. They converted

almost half (48%) of this information to map edits. 52% of the map edits for C2 were unsupported

compared to prior Read or Quiz activities. This group also showed generally low final map scores

and pre-post learning gains (higher than C1 but lower than C3 and C4). While these students spent

more time viewing information than C4, they were not as efficient in finding relevant information or

translating the information into link edits on their causal model. This was further observable from the

low pre-post gains and final map scores.

3. C3 (Strategic Map Builders): This group of students spent 59% of time on the average viewing in-

formation (similar to C2) but were significantly better than all the other groups at generating useful

information to building or debugging their causal maps (75% compared to 56%, 54%, and 46% for

the other three groups). This group was also very successful in translating potential generated into

correct link edits on their causal map and had fewer unsupported edits than all other groups, sug-

gesting that they were careful and strategic map builders. This group showed the highest pre-to-post

learning gains and final map scores among all four groups in Betty’s Brain. This was also the only

group with a statistically significant increase (p<0.05) in learning outcomes from pre- to post-test,

with F = 4.1, p = 0.032.

4. C4 (Experimenters and Tinkerers): This group spent less time looking up the Science Book to learn

causal information or checking quiz answers for building and debugging their maps (information view-

ing time = 37%; the disengaged group had a similar viewing time, but the time spent by the Strategic

Map Builders and Inefficient Information Generators on Read and Quiz views was higher). The C4

students also showed a high edit frequency, with a high proportion (51%) of unsupported edits. But

their Unsupported Edits were much larger than the Strategic Map Builders (51% to 28%). This group

was not as good as C3 at identifying information from the Science Book or Quiz Results, but made

frequent map edits (higher than all other groups), and while 51% of edits were unsupported, they were

sometimes able to translate information to supported map edits, which may explain the final map scores

(second highest average map scores among the four groups after C3). The pre-to-post learning gains
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Table VI.4: Behavioral profiles of the four groups obtained from clustering

Log-based behavioral features used for clustering
Learning outcomes

(task performance / pre-post)
Label Information

Viewing %
Potential

Generation %
Potential
Usage %

Link Edit
frequency

Unsupported
Edits % Disengaged %

Final Map
Score

Normalized
Pre to post gains

C1: (n=6)
Disengaged

Group
0.38 (0.11) 0.46 (0.23) 0.58 (0.18) 0.24 (0.16) 0.64 (0.37) 0.28 (0.06) 3.16 (11.17) 0.04 (0.42)

C2: (n=19)
Inefficient Info

Generators
0.52 (0.12) 0.56 (0.18) 0.48 (0.21) 0.28 (0.13) 0.52 (0.2) 0.05 (0.05) 4.35 (8.28) 0.11 (0.39)

C3: (n=22)
Strategic Map

Builders
0.59 (0.14) 0.75 (0.07) 0.72 (0.06) 0.37 (0.08) 0.28 (0.13) 0.04 (0.04) 13.52 (8.28) 0.31 (0.27)

C4: (n=8)
Experimenters

/ Tinkerers
0.37 (0.12) 0.54 (0.19) 0.69 (0.08) 0.63 (0.05) 0.51 (0.26) 0.04 (0.05) 12.83 (5.74) 0.27 (0.38)

showed a trend (0.1 < p < 0.05) with p = 0.08. Overall, this group showed behavioral characteristics

that are suggestive of experimenters or tinkerers.

Beyond the significant between-group differences for metrics from Table VI.4, we also performed 1-

way ANOVA with Tukey-HSD on the between-group prior knowledge (from pre-test scores), science anxiety

(from post-study questionnaire responses), and motivation (from pre- and post-study questionnaire responses)

scores, but found no significant differences (p > 0.05) between the four groups for any of these metrics.

We also note here that some of the groups obtained from this clustering analysis are similar to clusters

observed from prior studies with Betty’s Brain (Segedy, 2014). The following analysis now extends such

prior work by going deeper into the impact of adaptive scaffolding on students in each group.

VI.2 Scaffolding Statistics: Across All Students, and Within Groups Obtained from Cluster Analysis

The number of adaptive scaffolds of each type received by students during the study is reported in Table VI.5.

The 3rd column of this table reports the number of scaffolds received across all 55 students, while column 5

reports on the number of scaffolds (with the scaffold level specified, where applicable) received by students

within each group. The table also reports the range, mean, and standard deviation of the number of times each

group received a particular type of adaptive scaffold (columns 6-7), and the percentage of each group who

received a scaffold ’n’ number of times (columns 8-11), with n ranging from 0 (never) to 3 or more times.

From Table VI.5, we note that the highest number of a specific type of adaptive scaffold that students

received during the study was the Strategic: Quiz→Build, with a total of 178 scaffolds delivered across the

55 students. This suggests that students had more difficulties in using their quiz results to debug their causal

models, thereby satisfying the trigger conditions for Quiz→Build scaffolding. Additionally, the priority

assignment algorithm (Appendix C), which was a component of the scaffold triggering framework, assigned

high priorities to the Quiz→Build scaffolds when students had a high number of links (both correct and
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incorrect) on their map, to help students use the link annotation strategies like Scaffold 4 and Scaffold 5 to

debug their models. This prioritization implied that students with many links on their causal maps received

high numbers of Quiz→Build scaffolds, especially towards the end of their learning sessions when they

usually had a more dense map.

The Quiz→Build model-debugging scaffolds included Scaffold 4 (delivered 62 times), Scaffold 5 (deliv-

ered 64 times), and Scaffold 6 (delivered 52 times). Of these, Scaffold 4 was received by a relatively higher

proportion (> 40%) of C3, C2, and C4 groups compared to (17% of) the disengaged group C1. The highest

counts of Scaffold 4 were delivered to the C3 group, followed by C4 (see Figure VI.5). Since this scaffold

taught a ”correct link annotation” strategy, its trigger condition required students to have correct answers in

their recent quiz results (therefore, correct causal links on their maps). This may be the reason that the two

high scoring groups C3 and C4 received this feedback more than the two low scoring groups C1 and C2.

However, results from the temporal analyses in Section VI.3 suggest that the strategic map builders in C3

were more effective in using this feedback compared to the tinkerers in C4 (who did not apply the link an-

notation strategy to review incorrect annotations they had made before receiving the scaffold). We discuss in

Section VI.3 how such findings provide an opportunity to further improve the content of Scaffold 4 to account

for behavioral characteristics shown by the tinkerers (e.g., by using ineffective ”correct marks” on the stu-

dent’s map as a component of the scaffold triggering condition. Also, since Scaffold 4 was generally useful

for responsive students, we may want to ensure that more students from the disengaged group C1 also receive

this scaffold and learn this useful link annotation strategy. To this end, future design of Scaffold 4 triggers may

include a more dynamic ’Threshold Comparator’ (see Figure IV.3), where a diagnosis of disengagement from

student activities would lower the threshold value for triggering this scaffold, enabling disengaged learners to

receive the feedback at the next earliest opportunity. Scaffold 5 and Scaffold 6 were received at least once by

similar proportions (50%−67% for Scaffold 5 and 41%−50% for Scaffold 6) of each group. But with time,

the C1 group gradually received higher counts of Scaffold 5 (eventually leading to significantly higher total

counts compared to C3). However, with each receipt of Scaffold 5, C1 students also started doing activities

like moving around map elements (indicative of disengagement) after scaffolding, which suggests that they

did not find this scaffold very useful. So, in contrast to Scaffold 4, this is a situation where the scaffold may

need to be gradually faded away with time, especially upon any diagnosis of disengagement after scaffolding.

For Scaffold 6, there was not a lot of between-group differences in the count of the feedback delivered to

students, but students were also not very responsive to this scaffold, so its inclusion in our design framework

for the next iteration may need to be reconsidered.

With 116 scaffolds triggered across 55 students, high counts of the Affective+Strategic scaffolds are also

observed in Table VI.5 and Figure VI.5. This may be attributed to the fact that these scaffolds (Scaffold 8 and
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Scaffold 9), which had both affective and strategic trigger components, were assigned higher priorities in the

design framework compared to their purely strategic counterparts (viz., the Read→Build and Quiz→Build

triggers), with the reason being to prioritize the resolution of frustration or boredom when such affect states

were predicted alongside deficiencies in cognitive strategy use. Scaffold 8 was received most by C3 and

C1 but had generally low responsiveness while Scaffold 9, received the most by C3 and C4, had high re-

sponsiveness. Students’ cognitive activities after scaffolding (Section VI.3) suggest that the scaffolds were

generally useful for the responsive students (with some exceptions, viz., C2 for Scaffold 9). In terms of

affect, since the validity of the affect predictions from the BROMP-based detectors in our study could not

be clearly established (Section VI.1.2), we refrain from making any inferences from the current data either

on the affective implications of these scaffolds or relating the trigger counts to affective differences between

groups. Future studies will use validated affect labels to rebuild these scaffolds and then perform further

tests to decide whether to apply more group-specific trigger conditions based on any differences in emotion

regulation observed between groups. (For instance, we may expect to see higher boredom predictions for

the disengaged group using accurate affect data, given the type of cognitive-affective relations observed in

boredom scenarios in D'Mello and Graesser (2012).)

The Read→Build type of scaffolds (Scaffold 1, Scaffold 2 and Scaffold 3) had a total trigger count of

103 (26 + 42 + 35), and were the only types of scaffolds delivered at two distinct levels of contextualization.

Scaffold 1 (Shortcut Link Feedback) was triggered for a high percentage of C3, with higher overall counts

across time compared to the other groups. C3 also showed evidence of strategically using this scaffold to

eliminate shortcut links from their map. One of the reasons for Scaffold 1 to be triggered more frequently

in C3 may be the fact that Scaffold 3 (coherence feedback) was assigned higher priority in our algorithm

compared to Scaffold 1 (correctness feedback), since we wanted to first teach students to be coherent in

their Read→Build process and then provide correctness feedback to students who do coherent but ineffective

Read→Build. This also explains why Scaffold 3 was triggered so frequently for C4 (the experimenters who

performed a lot of unsupported i.e., incoherent edits) compared to other groups. While Scaffold 3 helped C4

to improve their coherence and likely contributed to their potential usage times (Table VI.4), future design of

the Read→Build type scaffolds should also ensure that the prioritization order between these three scaffold is

more dynamic, so that all other groups can also receive and use feedback like Scaffold 1 that was very useful

for the strategic map builders. Scaffold 2 was frequently received by both C3 and C4 (see Figure VI.5) but

the difference in C3’s strategic map building and C4’s characteristic tinkering behavior was observed in their

use of this scaffold.

The disproportionately low trigger count of the Quiz→Read scaffold (Scaffold 7) compared to all the

other scaffold types suggests that students generally showed more Read→Build and Quiz→Build behavior
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patterns (i.e., where they tried to use the information from Science Book pages or Quiz Results to build their

maps) compared to Quiz→Read. Moreover, the priority assignment algorithm (see Appendix C) assigned

a lower priority to the Quiz→Read trigger condition in the situations when students were performing less

Build actions on their maps, in order to prioritize other types of scaffolding (like Read→Build) that would

encourage them to develop more strategic map-building behaviors. The results from Section VI.3 suggest

that C2 students responded to Scaffold 7 more than the other groups and the scaffold led them to find sections

of the Science Book that were important for debugging their quiz results, although they still had trouble

extracting causal relations from this section. This suggests that in future, the trigger condition for Scaffold 7

may be assigned a higher priority when students show behavioral characteristics of C2 (inefficient information

generators) and the feedback should also be followed up with additional Read→Build scaffolding that then

helps the student to extract the correct causal relations from the text they are reading.

Overall, when we look at the number of scaffolds of different types received by each group from Ta-

ble VI.5 and Figure VI.5, we observe that C1 received a high number of Scaffold 5, followed by Scaf-

fold 8, Scaffold 3, Scaffold 9, and very low or negligible numbers of other scaffolds. This includes a mix

of Quiz→Build-correctness and Read→Build-coherence scaffolds. C2 received relatively higher counts of

Scaffold 5, Scaffold 6, Scaffold 4 (the three Quiz→Build scaffolds) and Scaffold 9 (affective + Read→Build),

followed by lower counts of the other scaffolds. C3 received high counts of Scaffold 9, Scaffold 1, Scaffold

4, Scaffold 8, and Scaffold 3. This includes both Quiz→Build-correctness and Read→Build-correctness scaf-

folds. C4 received high counts of Scaffold 3 and Scaffold 9 (both having Read→Build-correctness triggers),

followed by Scaffold 2 and Scaffold 4 (Read→Build and Quiz→Build correctness scaffolds).

However, between-group differences in the number of scaffolds received were statistically significant

over the duration of the study in two cases: higher numbers of Scaffold 3: Read→Build Coherence Feedback

received by C4 compared to C2 and C3, and higher numbers of Scaffold 5: Quiz→Build Incorrect Link

Annotation Feedback received by C1 compared to C3. Both of these cases have been discussed above, and

in more detail in the next section. (Detailed descriptions of each of the adaptive scaffolds discussed above is

available in Section IV.4.4, and their conversation trees have been presented in Figure IV.4.)

3 out of the total 55 participants in the study did not receive any adaptive scaffold from the mentor

agent during their time in Betty’s Brain. This included 2 students from C2 and 1 student from C4. For

the remaining students, the mean inter-scaffold time, i.e., the average time interval between two consecutive

scaffolds received by a student, was 6.1 minutes (s.d 7.2). The mean (sd) of inter-scaffold times per cluster,

in minutes, were: 5.9 (7.4) for C1, 5.8 (6.9) for C2, 6.4 (7.7) for C3, and 5.9 (5.9) for C4. The difference

in inter-scaffold time between clusters was not significant, with ANOVA (0.7) = 0.5. This suggests that the

inter-feedback interval included in the current design allowed for a more uniformly triggered scaffolds across
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time, providing students in each group with similar (and sufficient) amount of time to understand and apply

each received feedback.

VI.3 Temporal Analysis on the Impact of Adaptive Scaffolds Received by Students in Each Group

To further address the research questions for scaffold evaluation outlined in Section V.2.3, the temporal

analysis procedure discussed earlier in Section V.2.4 was applied to students’ Betty’s Brain log data to divide

each learner’s timeline into a set of ”before” and ”after” phases separated by the adaptive scaffolds they

received from the mentor agent. The facilitated data analysis on the temporal changes in students’ cognitive-

metacognitive behaviors and model-building performance in Betty’s Brain before versus after receiving an

adaptive scaffold from our framework (see Section IV.4.4 for scaffold descriptions and Figure IV.4 for the

conversation trees used to deliver scaffolds).

As outlined earlier in Section V.2.4, we evaluated the impact of the adaptive scaffolding along two primary

directions. First, we checked for students’ responsiveness to an adaptive scaffold they received, i.e., whether

their activities and behaviors after scaffolding suggest that they followed the actionable recommendation

provided by the mentor agent. Next, if a student was responsive to the scaffold, we assessed their strategic use

of the scaffolding, by considering whether their behaviors and causal modeling performance suggested that

the scaffold served its intended purpose by helping them adopt a more effective strategy for regulating their

learning and model-building process. For instance, in case of a scaffold related to Build-correctness (e.g.,

Scaffolds 1-4 from Table VI.5) the strategic use of adaptive scaffolding would be determined by assessing

the quality of students’ link edits and annotations (whether such actions were effective, i.e., led to an increase

in map score) after scaffolding. For a scaffold intended to promote Build-coherence (viz., Scaffolds 3 or 6),

strategic use would be determined by the coherence of relevant Read→Build or Quiz→Build behaviors after

scaffolding. For a scaffold intended to support cognitive-affective states, usefulness was determined from

affect likelihood scores and cognitive activities relevant to the context of the delivered scaffold.

1. Scaffold 1 (Read→Build Shortcut Link Feedback): Table VI.5 reports that the Shortcut Link Feed-

back was received by 16 students (29% of the 55 participants) a total of 26 times (16 Level-0 scaffolds

and 10 Level-1 scaffolds). This scaffold was not received by any student in C4: the experimenters

group, whereas 17% of C1 (n=1), 26% of C2 (n=5), and 46% of C3 (n=10) received this scaffold at

least once during their time in Betty’s Brain. Our inferences from these between-group differences in

scaffold counts have already been discussed in Section VI.2.

The objectives of Scaffold 1, as outlined in Section IV.4.4, were to: (a) help students understand

shortcut links (fill in knowledge gaps) and explain why it is important to find and remove such links, (b)

increase awareness of shortcut links present in the student’s current causal model, and (c) explain how

70



Table VI.5: Number of adaptive scaffolds received by the study participants, all students (n=55) and within
in each group (C1, C2, C3 and C4)

Within each group
Adaptive Scaffold No. of times a student

got the scaffold

No. of students (% of group)

who got the scaffold

Type Trigger

Total count

received by all

students (n=55)

Cluster/

Group
Count received

by group Range Mean (SD) never 1 time 2 times 3+ times

C1 (n=6)
1

(Level-0)
0-1 0.17 (0.4) 5 (83%) 1 (16.7%) 0 0

C2 (n=19)
7

(5 Level-0,

2 Level-1)

0-2 0.4 (0.7) 14 (74%) 3 (16%) 2 (10%) 0

C3 (n=22)
18

(10 Level-0,

8 Level-1)

0-3 0.8 (0.98) 12 (54.5%) 3 (13%) 6 (27%) 1 (4.5%)
Read→ Shortcut Link

Scaffold 1

26

(16 level-0,

10 level-1)
C4 (n=8) 0 0 0 8 (100%) 0 0 0

C1 (n=6)
2

(Level-0)
0-1 0.3 (0.45) 4 (67%) 2 (33%) 0 0

C2 (n=19)
12

(7 Level-0,

5 Level-1)

0-6 0.7 (1.4) 12 (63%) 6 (31%) 0 1 (6%)

C3 (n=22)
21

(15 Level-0,

6 Level-1)

0-2 0.95 (0.8) 7 (32%) 9 (41%) 6 (27%) 0Read → Incorrect Link

(Non-shortcut)

Scaffold 2

42

(28 level-0,

14 level-1)
C4 (n=8)

7

(4 Level-0,

3 Level-1)

0-2 1 (0.9) 4 (50%) 1 (12.5%) 3 (37.5%) 0

C1 (n=6)
3

(Level-0)
0-1 0.5 (0.5) 3 (50%) 3 (50%) 0 0

C2 (n=19)
8

(5 Level-0,

3 Level-1)

0-2 0.5 (0.8) 14 (74%) 2 (10%) 3 (16%) 0

C3 (n=22)
13

(10 Level-0,

3 Level-1)

0-2 0.6 (0.7) 12 (54%) 7 (32%) 3 (14%) 0

Strategic: R→ B

Read → Incoherent Link

Scaffold 3

35

(23 level-0,

12 level-1)
C4 (n=8)

11

(5 Level-0,

6 Level-1)

0-3 1.6 (1.2) 3 (37.5%) 1 (12.5%) 2 (25%) 2 (25%)

C1 (n=6) 1 0-1 0.2 (0.1) 5 (83%) 1 (17%) 0 0

C2 (n=19) 18 0-6 1.1 (1.5) 11 (58%) 3 (16%) 3 (16%) 2 (10%)

C3 (n=22) 32 0-5 1.4 (1.6) 10 (45%) 2 (9%) 4 (18%) 6 (27%)

Quiz → Correct Link

Annotation

Scaffold 4

62

C4 (n=8) 11 0-5 1.6 (1.6) 3 (37.5%) 2 (25%) 2 (25%) 1 (12.5%)

C1 (n=6) 18 0-10 3 (3.5) 2 (33%) 1 (17%) 0 3 (50%)

C2 (n=19) 24 0-6 1.4 (1.7) 8 (42%) 6 (32%) 2 (10%) 3 (16%)

C3 (n=22) 16 0-3 0.7 (0.9) 11 (50%) 7 (32%) 3 (17%) 1 (4%)

Quiz → Incorrect Link

Annotation

Scaffold 5

64

C4 (n=8) 6 0-2 0.9 (0.8) 4 (50%) 2 (25%) 2 (25%) 0

C1 (n=6) 6 0-4 1 (1.4) 3 (50%) 2 (33%) 0 1 (17%)

C2 (n=19) 22 0-7 1.3 (2) 11 (58%) 3 (16%) 3 (16%) 2 (10%)

C3 (n=22) 9 0-1 0.4 (0.5) 13 (59%) 9 (41%) 0 0

Strategic: Q→ B

Quiz → Incoherent

Link Edits

Scaffold 6

52

C4 (n=8) 15 0-12 2 (4) 4 (50%) 3 (37.5%) 0 1 (12.5%)

C1 (n=6) 1 0-1 0.2 (0.4) 5 (83%) 1 (17%) 0 0

C2 (n=19) 4 0-2 0.2 (0.5) 16 (84%) 2 (10%) 1 (6%) 0

C3 (n=22) 2 0-1 0.09 (0.3) 20 (91%) 2 (9%) 0 0
Strategic: Q→ R

Quiz results →

Incoherent Reads

Scaffold 7

7

C4 (n=8) 0 0 0 8 (100%) 0 0 0

C1 (n=6) 6 0-3 1 (1.1) 3 (50%) 1 (17%) 1 (17%) 1 (17%)

C2 (n=19) 11 0-3 0.65 (0.9) 12 (63%) 4 (21%) 2 (10%) 1 (6%)

C3 (n=22) 28 0-6 1.3 (1.5) 8 (26%) 7 (32%) 4 (18%) 3 (14%)

Negative affect in Quiz View

+ Low Q→B proficiency

Scaffold 8

48

C4 (n=8) 3 0-2 0.4 (0.7) 6 (75%) 1 (12.5) 1 (12.5) 0

C1 (n=6) 5 0-2 0.8 (0.7) 2 (33%) 3 (50%) 1 (17%) 0

C2 (n=19) 20 0-2 1.2 (0.8) 6 (31%) 6 (31%) 7 (37%) 0

C3 (n=22) 34 0-4 1.5 (1.3) 6 (27%) 6 (27%) 4 (18%) 6 (27%)

Affective + Strategic
Negative affect in Read View

+ Low R→B proficiency

Scaffold 9

68

C4 (n=8) 9 0-3 1.3 (1.2) 4 (50%) 0 3 (37.5%) 1 (12.5%)
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(e)

Figure VI.5: Box plots showing the distribution of number of adaptive scaffolds received by students in the
four groups (x-axis: Cluster/group, y-axis: Number of scaffolds received)
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(f)

Figure VI.5: (Contd...) Box plots showing the distribution of number of adaptive scaffolds received by
students in the four groups (x-axis: Cluster/group, y-axis: Number of scaffolds received)
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strategic reading can help to debug these shortcut links, and (d) provide actionable recommendation on

which section of the science book to review next to identify and debug the shortcut links. At the more

contextualized level, i.e. Level-1, the mentor agent provided additional information to help students

identify a shortcut link located on their map, such as by specifying the source concept of a shortcut link

(see Figure IV.4).

To assess students’ responsiveness to Scaffold 1, we analyzed whether they reviewed the Science

Book pages suggested by the agent after receiving the scaffold. Additionally, since the purpose of

this scaffold was to encourage the use of a more effective Read→Build strategy, we further evaluated

strategic usage of the scaffolding by analyzing whether the student followed the review (Read) of the

Science Book by then performing effective Build (causal link edit actions) to fix the shortcut links and

improve their map scores.

(a) In C1: Disengaged group (n=6), only one student received Scaffold 1, at t=16 minutes into

their learning session on their first day with Betty’s Brain. In the interval before scaffolding, this

student spent 38% of the time reading the Science Book and 62% of the time editing the causal

map. During this time, the student added 9 total links (7 correct and 2 incorrect) on their map

which were supported by their prior reading. While the student appeared to be working mostly in

a coherent and effective manner, the addition of two incorrect shortcut links (which triggered the

adaptive scaffolding) suggested that they needed to review the Science Book more carefully to

identify the more complete causal relations between concepts on their map. In the interval after

receiving Scaffold 1, no marked change in disengagement percentage (periods of time with no

task-related activity) was observed for this student, who still spent a majority of time (67%) on

their causal map, performing 10 correct link edits and 2 incorrect link edits. A deeper analysis

into the temporal sequence of activities after receiving the scaffold provides a better assessment

of scaffold responsiveness. After scaffolding, the student did not review the suggested Science

Book page but instead deleted only the most recently added causal link (one of the two incorrect

shortcut links that had triggered the feedback). Then, without spending further time on strategic

reading to debug the other shortcut link present on their map, they proceeded to add new links

associated with other concepts on their map. So while they deleted the more recent shortcut link,

the other one still remained on the map.

This suggests a heavy reliance on intuition versus a careful inspection of the mentor’s feed-

back. Similar behavior after Read→Build-correctness scaffolds was reported in Munshi et al.

(2022a), where a student had treated such scaffolds as purely corrective hints instead of strategic
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feedback, by assuming that the feedback was triggered due to the most recent link addition, and

thereby deleting this link and missing other shortcut link(s) on their map which also informed the

trigger condition for the scaffold. Based on the results from Munshi et al. (2022a), the conversa-

tion of the mentor agent in the current design of Read→Build-correctness scaffolds was refined

to emphasize to the learner the strategic aspect of the feedback and how this strategy should be

used to debug the multiple shortcut links in the map. However, as reported above, it appears that

this modification was still not sufficient to encourage scaffold responsiveness in the student from

C1.

(b) In C2: Inefficient Information Generators group (n=18), 5 students received Scaffold 1. This

includes 3 students who received the feedback one time each (only Level-0) and 2 students who

received it two times each (both Level-0 and Level-1). First, responsiveness checks showed that

this group also mostly did not respond to Scaffold 1 by reading. After the first time receiving

the feedback, only 2 of the 5 students from C2 reviewed the Science Book page suggested by

the mentor agent, and none of these two students were then able to translate their Reading into

Build activities that fixed the shortcut links present on their maps. We note that all 5 students

took a quiz shortly after, but were also ineffective in the use of quiz results to fix the shortcut

links. (They could have used the quiz grades and Betty’s causal explanation to an incorrect grade

to identify an erroneous part of their map, and then query Mr Davis about this part of the map,

in which case he would have helped them understand and identify that these errors were due to

the presence of shortcut links.) For the 2 students who received Scaffold 1 a second time, both

followed the feedback this time by reading the suggested pages, but then they added other links

from these pages while still not deleting the shortcut link, suggesting that they had not understood

the concept of shortcut links explained by the scaffold. We note that this Inefficient information

generators group generally had trouble extracting information for effective model-building, as

seen in Table VI.4.

(c) In C3: Strategic Map Builders group (n=22), 10 students received Scaffold 1, the highest

number among all four groups. In the interval before scaffolding, this group spent, on average,

49% of time editing their maps, 37% time reading the Science Book, and 14% time checking quiz

results. While there was no significant change in view durations after scaffolding, a deeper look

into learners’ action sequences provide more insights on their scaffold responsiveness.

After receiving Scaffold 1 the first time, 7 students (70%) reviewed the suggested Science

Book page (spending >= 10 seconds on a page), suggesting that they were responsive to the
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feedback. In terms of strategic use, all of these 7 students followed the Read action by delet-

ing the shortcut links on their map, further demonstrating an strategic and effective use of the

Read→Build strategy discussed by the mentor. For the remaining three students who did not

respond to the scaffold, their shortcut links were not removed from their maps in the ”after” in-

terval. (We note that one of these students changed the label of a shortcut link on their map to

include the word ”indirectly”, i.e., A ’indirectly’ increases B, suggesting that they understood the

concept of a shortcut link. However, they did not perform Build actions that would have fixed

the link, viz., deleting it and replacing it with the more complete causal relations, so the error

remained on their map.)

All 7 students who received Scaffold 1 a second time responded to the feedback by reading

the suggested Science Book page and successfully fixing their recent shortcut link, however this

time a majority of the students spent less time viewing the Science Book. This may be related

to the fact that the scaffold they received this time was a Level-1 feedback (more contextualized

hint, which clearly specified the source concept of the shortcut link), so they were able to identify

the shortcut link more easily and may not have needed to spend as much time reading. The

one student who received Scaffold 1 a third time (again, level-1) also demonstrated an effective

Read→Build behavior that fixed the erroneous link.

(d) No student from C4: Experimenters group received Scaffold 1. Our inferences from this result

are outlined in more detail towards the end of the discussion below.

Discussion: The above findings suggest that the Read→Build Shortcut Link Feedback was

effective for students who were responsive to the scaffold interpreted the strategy feedback cor-

rectly. While the student in C1 who received this scaffold treated it as a corrective hint and was

unsuccessful in fixing the shortcut links on their map, the students from C2 also were primarily

not very responsive to the mentor’s suggestion, in terms of reading the suggested Science Book

page, especially the first time they received the scaffold. Even when they read the pages identified

by the mentor agent, these students had trouble translating the information to correct causal link

edits. (Students from C2 generally not responding to Scaffold 1 with follow-up reading the first

time when they received Level-0 feedback versus more responsive the second time when they

received more contextualized Level-1 feedback may be related to the finding from Munshi et al.

(2018c) which showed that low performers in Betty’s Brain generally prefer more direct hints

compared to indirect or general ones.) In contrast, a majority of C3 (”Strategic Map Builders”)

responded to the scaffold and successfully debugged their shortcut links. These findings sug-
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gest that the difference in how students from C3 took advantage of the feedback provided by the

mentor in Scaffold 1 may have been a possible contributor to their higher final map scores. We

also note that no students from C4 (the tinkerers) received this feedback. In Section VI.2, we

noted the higher priority assigned to Scaffold 3 compared to Scaffold 1 in our priority assignment

algorithm, which led to C4 receiving Scaffold 3 when the trigger conditions for both Scaffolds

1 and 3 were satisfied at the same time. Since C4 had a high percentage of unsupported edits,

such a scenario was frequent, leading them to receive higher counts of Scaffold 3 and miss out

on Scaffold 1 feedback. As discussed in Section VI.2, in future we will consider using a more

dynamic prioritization order so that students who have received sufficient number of a particular

type of scaffold are allowed to receive other types of scaffold (e.g., Scaffold 1 here), even if the

highest priority trigger (like Scaffold 3) is active at the same time.

2. Scaffold 2 (Read→Build Incorrect Link Feedback): From Table VI.5, the Incorrect Link Feedback

was received by 28 students (out of 55 study participants) a total of 42 times (28 Level-0 scaffolds and

14 Level-1 scaffolds). 33% of C1 (n=2), 37% of C2 (n=7), 68% of C3 (n=15), and 50% of C4 (n=4)

received this scaffold at least once during their time in Betty’s Brain.

This scaffold was delivered to support Read→Build-correctness behaviors except the Read→Add

Shortcut Link case which was handled separately by Scaffold 1. While delivering Scaffold 2, the men-

tor agent first listed to the student the reasons for a link between two concepts to be incorrect (viz.,

adding incorrect sign for a link, directing a link incorrectly, or adding links between unrelated con-

cepts). The agent then suggested that the student read a specific section of the Science Book while

critically thinking whether these reasons may apply to links on their map from that section, in which

case these should be debugged by appropriate Build actions on the map. Similar to Scaffold 1, we

assessed students’ responsiveness for Scaffold 2 by analyzed whether they reviewed the suggested Sci-

ence Book pages after scaffolding. Strategic usage was assessed by checking whether their subsequent

link edits on the causal map were effective, i.e., led to an increase in the map score.

(a) In the C1: Disengaged group (n=6), 2 students (33%) received Scaffold 2. In terms of respon-

siveness, one of these students actually read the suggested Science Book page after scaffolding

whereas the other did not. The responsive student reviewed the page for > 1 minute and fol-

lowed this Read action by effective Build actions, deleting both incorrect links that had triggered

the feedback, thereby suggesting strategic scaffold use. A comparison of the general quality of

this student’s Build actions before versus after scaffolding showed a shift from 100% ineffective

link edits in the before interval to 100% effective link edits in the after interval, suggesting an
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improved Build-correctness after following the suggestion in the scaffold. Disengagement also

decreased from 32% before scaffolding to 17% in the interval after scaffolding.

The other student, who was not responsive to the suggested Read→Build strategy, reviewed

their quiz results after scaffolding, suggesting a Quiz→Build behavior, but ineffective Build ac-

tions after Quiz suggest they were also unable to apply an effective Quiz→Build strategy. Overall,

this student went from 55% effective links before scaffolding to 40% effective links after scaf-

folding.

(b) In the C2: Inefficient Information Generators group (n=19), 7 students (37%) received Scaf-

fold 2, with 6 of these students receiving the feedback one time each and 1 student receiving it a

total of 6 times. Tracking the log data for scaffold responsiveness showed that, after the first time

receiving Scaffold 2, only 2 out of 7 students from this group reviewed the suggested Science

Book page for >= 10 seconds - one of these two students then deleted both incorrect links from

their map, denoting strategic use of the feedback, while the other student still did not fix the links

after reading, suggesting an inability to apply the information acquired from the page to the causal

model. (This aligns with the general ”Inefficient Information Generator” profile of this group.)

We note that students who did not read the Science Book page after Scaffold 2 did check their

progress after the scaffold by reviewing recent quiz results or querying Betty about recently added

links. So while these students did not follow the mentor’s suggestion to develop a Read→Build

strategy, they exhibited a Quiz→Build behavior. This may correspond to a low ability to read and

interpret the Science Book leading to a preference for the use of the Quiz Results. However, the

ineffectiveness of their Build actions after Quiz show that they were unable to fix the incorrect

links that had prompted the scaffold, thereby also suggesting a Quiz→Build-ineffective behavior.

Only one student from C2 received Scaffold 2 more than once, getting it a total of 6 times

- this student did not read but deleted the most recent link every time they got the feedback,

thereby not fully eliminating the two incorrect links that triggered the scaffold, and then moved

on to other parts of the map, suggesting that they had treated the scaffold as a corrective hint

instead of developing an effective model-debugging strategy as intended by our scaffold design.

(Again, this result is similar to findings from Scaffold 1 evaluation.)

(c) In C3: Strategic Map Builders group (n=22), 15 students (68%) received Scaffold 2, including

9 students who received the feedback once and 6 students who received it two times. The first

time these students received Scaffold 2, 11 students (73% of those who received the scaffold) were

responsive to Mr Davis’ suggestion by reading the relevant Science Book pages (that contained
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incorrect links) for >= 9 seconds in the ”after scaffold” interval. All of these 11 students then

showed a similar pattern where they went back to the causal map and deleted the incorrect link,

demonstrating correct use of the strategy scaffold. The 4 less responsive students reviewed quiz

results (75%) or queried Betty on her causal relations after scaffolding, and although they did not

fix the specific incorrect links that had triggered the scaffolding, this self-monitoring behavior

still led to the addition of other effective links on their map. For the 6 students in this group

who received Scaffold 2 a second time (Level-1), 5 students (83%) were both responsive and

demonstrated effective scaffold use through their Read→Correct Link Edit behavior. The sixth

student responded to the feedback by reviewing the suggested page but added a link different to

the one scaffolded for.

(d) In C4: Experimenters group (n=8), 4 students (50%) received Scaffold 2, one of them getting

the feedback only once while the other three received it 2 times each. After the first time receiving

Scaffold 2, 3 students (75%) responded to the scaffold by reading, and 2 of the responsive students

fixed then used the Read→Build strategically to fix incorrect links on their map, while the third

student just changed the sign of a link that should have been deleted for the edit to be effective.

(From Figure IV.4, this scaffold taught the student the three different reasons for a link to be

incorrect, and how to read strategically to figure out which reason is applicable in a specific case.

The third responsive student here was unable to apply the right reason to their Read→Build, and

therefore changed the sign instead of deleting the link.) The fourth student, who did not respond

to the scaffold (i.e., did not read after) instead changed the sign of the link they had added and

took a quiz to verify. Changing the sign of a link without being guided by information acquired

from the Science Book shows the ”tinkerer” / ”trial-and-error behavior” associated with C4 earlier

in our findings.

For the three students in C4 who received this scaffold a second time (level-1 feedback), none

of them read the suggested Science Book page but directly started editing their maps, again show-

ing a more tinkering approach compared to the more strategic Read→Build behavior exhibited

by C3 after this scaffold. For 2 of the 3 students, the edits were effective in removing the error,

whereas for the third student they were not effective.

Discussion: Scaffold 2 was generally useful for the responsive students. In C1, the response

for the strategic feedback was 50%, with the responsive student then being able to successfully

debug their map. In C2, scaffold responsiveness was low (28%). Even in the case of Scaffold 1,

we had observed a low response rate for C2 which may again correspond to their low ability to
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read resource pages and generate new information for model-building. Even for responsive C2

students, the scaffold use was 50% effective. C3 demonstrated both high (73%) responsiveness

and a strategic use of the behavior suggested by the mentor agent in the scaffold. C4 was generally

more responsive to the Level-0 (more general) feedback (75%) by reading suggested pages but

did not apply a Read→Build strategy for the Level-1 feedback.In future, we plan to build more

aggregated models of students’ learning behaviors in Betty’s Brain, which would use a learner’s

behavioral profile (e.g., inefficient information generator) at the point of scaffolding to deliver

additional feedback or lead a more guided training session to help the student develop the criti-

cal monitoring and self-reflection behaviors they lack at that point, for instance, to successfully

extract the correct causal relations from Science Book text.

3. Scaffold 3 (Read→Build Coherence Feedback): From Table VI.5, the Scaffold 3 was received by 23

students a total of 35 times (23 Level-0 scaffolds and 12 Level-1 scaffolds). 50% of C1 (n=3), 26% of

C2 (n=5), 46% of C3 (n=10), and 62.5% of C4 (n=5) received this scaffold at least once during their

time in Betty’s Brain. It is noted here that unlike the Scaffold 1 and Scaffold 2 cases where there was no

statistically significant difference between the number of scaffolds received by students in one group

versus another, some significant differences (1-way ANOVA p < 0.05) were observed for Scaffold 3,

with C4 receiving significantly higher counts of this feedback compared to both C2 and C3.

The only purpose of Scaffold 3 was to help students be more coherent in their Read→Build behav-

ior, so both responsiveness and strategic use of this scaffold were tested by computing the same metric:

coherence or support (Segedy et al., 2015), and comparing the values in before versus after scaffolding

intervals. Read→Build coherence was computed as supported edits percentage, i.e., the percentage of

total Build (link edit) actions after Reading that were supported by (in other words, relevant to) the

recent Read actions.

For C1 and C2, no significant difference was observed in the supported edits percentage of scaf-

folded students after receiving the feedback, therefore no impact of the scaffold can be claimed. But

for C3, there was a significant increase in the supported edits percentage in the intervals before ver-

sus after scaffolding, with average supported link edits percentage being 69% across before-feedback

intervals, 89% after receiving Scaffold 3 the first time, and 92% the second time. C4 showed signif-

icant improvements in supported edits percentage after receiving Scaffold 3 for the second and third

times, with average unsupported edits moving from 50% before scaffolding to a range of 74-77% in

the intervals after the conversation with Betty and Mr Davis.

Discussion: The above results suggest that the Read→Build coherence scaffold was somewhat
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useful for both C3 and C4. While the significant difference in the coherence metric was observed

when C3 was scaffolded the first time, the difference was significant the second and third times for C4,

suggesting that C3 paid closer attention to the feedback the first time while C4 placed higher value on

the feedback later in their learning session. Earlier, Table VI.4 had suggested that C4, despite having

generally high percentage of unsupported edits and annotations on their map, also had a high (69%)

potential usage, implying that this group also spent a large amount of time on coherent link edits after

reading or checking quiz results. This, combined with the above result from evaluation of Scaffold 3

(and the fact that students in C4 received significantly higher counts of this feedback even compared

to C3), makes it likely that the increased coherence after scaffolding contributed to the potential usage

times reported in Table VI.4.

4. Scaffold 4 (Quiz→Build Correct Link Annotation Feedback): Table VI.5 reports that this Quiz→Build

correctness was received by 26 students a total of 62 times. 17% of C1 (n=1), 42% of C2 (n=8), 54%

of C3 (n=12), and 62.5% of C4 (n=5) received this scaffold at least once during their time in Betty’s

Brain.

As discussed in Section IV.4.4, this guided scaffold was delivered to help learners adopt a link

annotation behavior where they would annotate or mark links (using the ”Mark as correct” feature

in the causal map in Betty’s Brain) that were graded as correct in recent quiz results. The scaffold

was triggered by a Quiz→Build-incorrect pattern that suggested an inability to debug the map from

quiz assessments. The scaffold was only provided if the learner’s most recent quiz results included

correct answers whose links had not yet been marked on the map. This was intended to serve as a

memory aid which could help students spot incorrect links on their map and debug them more easily.

A similar hint was delivered in a previous iteration of the adaptive scaffolding framework analyzed in

Munshi et al. (2022b) and findings from this design iteration informed the current trigger conditions

and feedback content with a view to increase learner engagement with the scaffold and responsiveness

after scaffolding.

We assessed the responsiveness for this scaffold by tracking students’ correct link annotation be-

haviors before and after scaffolding, i.e., how many links they marked and what percentage of these

links were marked correctly.

(a) In C1: Disengaged group (n=6), only one student (17%) received Scaffold 4. In the interval

before scaffolding, this student had already marked two links on their map correctly. After the

scaffolding, the student correctly marked one more link from their recent quiz result. So, while

this student was responsive to the scaffold, their link annotations before scaffolding were already
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100% effective, which continued after receiving the feedback. So, we cannot claim any change

in their link annotation strategy use due to Scaffold 4. The effectiveness of link edits (which con-

tributed to map score) for this student stayed in a 50-56% range both before and after scaffolding.

(b) In C2: Inefficient Information Generators group (n=19), 8 students (42%) received Scaffold

4, 3 of them one time each, 3 other students two times each, and 1 student received it three times.

Before receiving Scaffold 2, only 5 of these 8 students had marked the correct links from quiz

results on their maps, with net effectiveness of their link annotations being 63%. (An effective

link annotation here means marking a correct link as ”correct” on the map and an ineffective link

annotation implies marking an incorrect link as correct on the map). After receiving Scaffold 4

the first time, only one student showed scaffold responsiveness by adopting the link annotation

behavior suggested by the mentor agent. This student had not marked any links in the interval

before scaffolding, but after receiving the scaffold marked 23 total links on their map, with 87%

effective annotations. So, while there was low responsiveness for Scaffold 4 in C2, the only

responsive student appeared to have used the scaffold to their advantage. This was further proven

by the fact that 43% of the causal link edits of this student were effective before scaffolding

while 64% was effective in the interval after scaffolding. So, responding to the link annotation

strategy was also associated with an improvement in map score. 2 more students responded to

the scaffold over the second and third rounds of scaffolding, with net effective annotations across

students being 83% after both the second and third time the scaffold was delivered. One student

from C2 received this scaffold 6 times, with 100% of their link annotations being effective after

the last (sixth) scaffold.

(c) In C3: Strategic Map Builders group (n=22), 12 students (54%) received this scaffold, with

2 students receiving it once, 4 receiving it two times each, and 6 receiving it three times each

(Table VI.5). 5 of these students had marked a total of 63 links before scaffolding, with 98%

link annotations being effective. (Therefore, the C3 was already aware of this strategy and had

demonstrated successful use even prior to being scaffolded.) After receiving Scaffold 4 the first

time, 7 students (58% of the 12 who were scaffolded) responded by marking their links, with

100% effective annotation of 28 links across respondents. This included 2 students who had not

marked any links prior to scaffolding, and therefore started using the strategy after receiving the

feedback. The net effectiveness of link annotations over the different rounds of scaffolding for

this group was 96%. The effectiveness of link edits did not show any substantial change after

scaffolding, which may be attributed to the fact that these students were already aware of the link
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annotation strategy and showed effective use of this strategy even before being scaffolded.

(d) In C4: Experimenters group (n=8), 5 students (62.5%) received this scaffold, with 2 students

receiving it once, 2 receiving it two times each, and 1 student receiving it three times. Before

scaffolding, 3 of these students annotated a total of 50 links with 56% effectiveness. This suggests

that this group was aware of the link annotation strategy but was not as successful as C3 in their

link marking efforts prior to scaffolding. After receiving the scaffold the first time, 4 students

marked a total of 12 links (83% effective): this included the 3 students who had marked links

prior to scaffolding and a fourth student who adopted the behavior after scaffolding and marked

2 links (100% effective). Over the next few rounds of scaffolding, these 4 students marked a total

of 27 links (85% effective), with the one student who received this scaffold five times marking all

links effectively from the fourth time onward. However, there was no substantial change in map

scores, with link edit effectiveness remaining in a 55-59% range before and after scaffolding.

To explore this further, we tracked whether students from C4 revisited the 44% incorrectly

annotated links and cleared the ”correct” marks from them after being scaffolded on the correct

usage of this strategy by the mentor agent. We found that none of the already marked links were

cleared after scaffolding. So while the above numbers show that this group effectively annotated

their links after being scaffolded, they still did not revisit the links that were already incorrectly

annotated on their map, which possibly led to confusion in debugging their map in future, and the

observed lack of improvement in map scores.

Discussion: There was low responsiveness for Scaffold 4 in general, but there were also

students who were using the link annotation strategy prior to being scaffolded, especially in C3

and C4, although C3 had a higher success rate with the links they annotated in their map prior to

scaffolding. After receiving the correct link annotation feedback from the mentor, the responsive

students in all groups showed strategic use of the link annotation feature. However, for students

(cf., C4) who already had several incorrectly marked links on their map, the scaffold did not

make them revisit those marked links and verify whether they were accurately annotated or not.

This point needs to be emphasized in a future iteration of this scaffold to further support the

learners who show a high number of incorrectly marked links on their map at the moment when

the feedback is delivered to them.

5. Scaffold 5 (Quiz→Build Incorrect Link Annotation Feedback): This scaffold was received by 30 stu-

dents a total of 64 times. 67% of C1 (n=4), 58% of C2 (n=11), 53% of C3 (n=11) and 50% of C4 (n=4)

received this scaffold at least once.

83



The Scaffold 5, similar to Scaffold 4, was delivered to encourage the student to adopt a type of link

annotation feature in Betty’s Brain (Incorrect Link Annotation or ”Mark as ’maybe wrong’”) into their

Quiz→Build behavior. This feedback was typically delivered to students who has marked some correct

links on their map using the ”Mark as correct” feature but were still exhibiting ineffective Quiz→Build

behaviors where they performed incorrect map edits after checking Betty’s quiz results. The scaffold

was designed to support the student to engage in more effective map assessment and debugging behav-

iors by teaching students how to use the ”Mark as maybe wrong” feature to annotate links that may be

wrong based on their understanding of the quiz results, and how using this feature after quiz assessment

could make it easier to spot potentially incorrect links that may need to be reviewed and modified and

, if needed, removed from the map.

(a) In C1: Disengaged group (n=6), 4 students received Scaffold 5, 1 of them getting the feedback

one time and the other 3 three times each. Only one of these students had marked potentially

incorrect links on their causal map before being scaffolded. After scaffolding, student activities

showed that 3 of the 4 students (75%) were responsive to the scaffold the first time and marked

links on their map as ”maybe wrong”. The responsiveness decreased as the scaffold count in-

creased, with only one student marking links on their map after receiving this feedback the tenth

time. To assess the strategic usage of scaffold, we checked whether the ”maybe wrong” anno-

tations were followed by more effective link edits on the map (i.e., edits that increased the map

score). Results do not show any significant difference in the intervals before versus after scaf-

folding, with the average proportion of students’ ineffective link edits remaining in a 60-75%

range both before and after receiving this scaffold. Instead, one of the dominant actions in the

after-Scaffold 5 interval for this group of students was map moves, i.e., moving elements of the

map from one position to the other. While sometimes students in Betty’s Brain may move map

elements to organize their map, it may also suggest that the learner is disengaged or bored. Over-

all, unlike the case of Scaffold 4, there was no evidence that the Scaffold 5 was used by learners

in C1 to strategically improve the quality of their maps.

(b) In C2: Inefficient Information Generators group (n=19), 11 students received this scaffold. 6

of these students received the scaffold once, 2 students got it twice each, and 3 students got it

three times each. Only 4 of these students (36%) responded to the scaffolding by performing the

suggested link annotations, and while these students reviewed their quiz results after scaffolding,

their subsequent link edits in the after feedback interval was 63% ineffective, suggesting that they

were unable to use Scaffold 5 effectively. No student responded to this scaffold a second or third
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time, possibly suggesting that they did not find it to be useful.

(c) In C3: Strategic Map Builders group (n=22), only one of the 11 students who received the

feedback demonstrated responsiveness by marking potentially incorrect links, but this student did

not edit any links in the interval after scaffolding, so was difficult to determine if the feedback

served its intended purpose in this case.

(d) A similar result was seen in C4: Experimenters group where only 1 of the 4 students who

received the feedback responded by making link annotations.

Discussion: Overall, there is no evidence to support that Scaffold 5 was useful to the learner.

On the contrary, there was low responsiveness with the response decreasing as the scaffold-count

increased, suggesting that many students did not find this feedback useful the first time. In future

scaffold design iterations, this scaffold may be removed or the low response rates may need to be

further explored by conducting in-the-moment interviews to better understand student perspec-

tives about the feedback. Also, this is the only scaffold for which there was a significant difference

in the counts received by C1 and C3, with students in C1 receiving higher counts of Scaffold 5.

Given that students in C1 showed activities like map moves after scaffolding, an inability to use

this scaffold effectively may have even had a negative effect on the engagement of C1, who have

generally reported high disengagement (Table VI.4).

6. Scaffold 6 (Quiz→Build Coherence Feedback): This scaffold was received by 24 students a total of

52 times. 3 students (50%) from C1, 8 students (42%) from C2, 9 students (41%) from C3, and 4

students (50%) from C4 received this scaffold at least once. This coherence scaffold was designed

to help students perform more coherent Quiz (Solution assessment)→Build (Solution construction).

In the feedback, Mr. Davis suggested to the student to teach Betty in a more coherent manner by first

teaching her about the concepts and links she did not answer correctly in the last quiz. Mr Davis further

suggested that the student start a conversation with him anytime they needed help, especially if they

wanted to better understand quiz grades and how they might use this understanding to improve their

maps.

There was no significant change in students’ Quiz→Build coherence in any group in the intervals

after receiving Scaffold 6. Also, none of the students started a conversation with Mr Davis to inquire

about their quiz grades. In fact, several students did not let the mentor agent complete the full conver-

sation tree, instead closing the conversation towards the beginning by selecting the option that they did

not need help at this time. The lack of responsiveness made it difficult to ascertain whether Scaffold 6

had any impact on learning, but it does make it appear that students generally were not very responsive
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to this specific coherence feedback. (The impact of Scaffold 6 is explored and discussed further in the

case study reported later in Section VI.4).

7. Scaffold 7 (Quiz→Read Coherence Feedback): This scaffold was received by 6 students a total of 7

times. 1 student (17%) from C1, 3 students (16%) from C2, and 2 students (9%) from C3 received this

scaffold at least once. This scaffold was designed to help students perform more strategic Quiz→Read

for knowledge refinement. It was triggered when a student showed incoherent Quiz→Read (e.g., after

viewing quiz results, the student skipped through multiple Science Book pages, some of which were

unrelated to concepts mentioned in the quiz results they viewed). The hypothesis for scaffold design

was that students showing this behavioral pattern were having trouble identifying information related

to quiz results from the Science Book. The mentor agent suggested that the student make use of the

”search box” feature on the Science Book to identify and review quiz-related information more easily

and use their refined knowledge to improve their maps.

Two students, both from C2, responded to the mentor’s suggestion by using the search box after

scaffolding to look up information about concepts in their quiz results. The first student searched for

information about one concept, then reviewed the science book page that came up in the search results

for > 1 minute and then added four links from this page on their map (50% effective). The other student

searched for information about two concepts, reviewed the results about one of them, compared this

information to the recent quiz results (thereby showing that they were trying to refine their knowledge

using evidence from both quiz results and science book) and then added two coherent but ineffective

links. This again shows that while the scaffold helped C2 identify relevant sections of the Science Book

for information acquisition, they still had difficulties updating their knowledge structure using evidence

from the science book, leading to an ineffective application of this knowledge in the subsequent causal

map edits.

8. Scaffold 8 (Negative Affect + Quizzing Proficiency Feedback): Scaffold 8 was received by 26 stu-

dents a total of 48 times. 3 students from C1 (51%), 7 students from C2 (37%), 14 students from

C3 (53%), and 2 students from C4 (25%) received this scaffold.

This was one of the two scaffolds designed to support students’ cognitive-affective regulation pro-

cess, at moments when their activities and causal modeling performance in Betty’s Brain and their

affect predictions from the BROMP-based affect detectors suggested (a) a high likelihood that the stu-

dent was frustrated or bored, (b) the student was currently in the Quiz Results view, and (c) the Betty’s

Brain learner model suggested a low Quiz→Build proficiency with < 30% effective Build actions in

the last 5 minutes. In the scaffold, Mr Davis gave suggestions that targeted the resolution of their cog-
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nitive difficulties that formed the basis of their appraisals of affect. To help the student utilize their quiz

results more effectively, Mr Davis suggested in the scaffold that the student start a conversation with

him about quiz grades if they wanted to better understand how to interpret certain grades, else they

should review the relevant section of the science book while reflecting on the links that needed to be

updated for a better grade.

Only one student from C4 was responsive to Mr Davis’ suggestion to start a conversation with him

about quiz grades. Before scaffolding, this student showed frustration as their dominant affect predic-

tion. In the interval after scaffolding, they requested a conversation with the mentor agent and asked

him how to interpret ’incorrect’ quiz grades. Following the mentor’s response, the student reviewed a

graded question in their quiz, then went back to the map and correctly changed the sign of a link related

to the reviewed quiz question. This suggests that the student was able to understand how to interpret an

incorrect grade, and apply this interpretation to identify and debug incorrect links associated with the

graded quiz answer. The student then took a quiz to verify the effectiveness of the update to their map.

The dominant affect prediction from the BROMP-based affect detectors at this stage was confusion,

followed closely (in order of the likelihood score from the corresponding binary affect detector model)

by frustration.

Prior studies with Betty’s Brain have shown interactions between cognitive and affective states (Mun-

shi et al., 2018c), so the resolution of the cognitive obstacles is also likely to support the learner’s affect

regulation. The predictions from the BROMP-based affect detectors also suggest a transition from a

negative affect state that signals an ”impasse” or blocked goals (D'Mello and Graesser, 2012) of frus-

tration before the scaffold to a relatively positive state of confusion after the scaffold. However, since

the reliability of these affect detectors could not be established very clearly (note the discussion in Sec-

tion VI.1.2), and in the absence of affect data validated by ground truth labels in our study, we refrain

from making claims on the affective implications of Scaffold 8.

9. Scaffold 9 (Negative Affect + Reading Proficiency Feedback): This final scaffold was similar to Scaf-

fold 8 but targeted the resolution of negative affect (frustration or boredom) during information acqui-

sition from reading the Science Book. Prior research has shown that low performers in Betty’s Brain

often get stuck in a reading loop (Munshi et al., 2022b), so this scaffold (triggered when a student

was in the Read view and exhibited low Read→Build proficiency and a likelihood of frustration or

boredom) was designed to break the ”reading loop”, by suggesting the student to take a quiz to check

their progress. Scaffold 9 was received by 37 students a total of 68 times. All students had frustration

predictions prior to receiving the scaffold.
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For the 4 students from C1 who received this scaffold, 2 students (50%) responded to the feedback

and took quizzes. The affect prediction scores from the BROMP-based detectors for these students

in the after scaffold interval showed a mix of confusion (40%) and engagement (37%) as the most

dominant emotions. In C2, 12 out of 13 students were responsive to the scaffold and took quizzes.

This group still showed dominant frustration in the after interval, which may be indicative of a difficulty

applying quiz results, as observed in the profile of this group (Table VI.4) and also in the discussion

on the Quiz→Build scaffolds. In C3, 13 out of 16 students responded to the mentor’s suggestion, with

dominant emotion likelihood scores after scaffolding being 42% confusion, followed by engagement

and frustration. In C4, all 4 students took quizzes after the mentor’s feedback, showing 46% confusion,

27% delight and 19% engagement. Again, as in the case of Scaffold 8, we do not make any claims on

the affective implications of Scaffold 9, given the lack of validated affect data from the detectors. (In

the case studies in SectionVI.4, we explored the change in student affect after Scaffold 9 in some more

detail, using emotion predictions obtained by AffDex models from facial video data.)

VI.4 Case Studies

To derive more fine-grained insights into the cognitive and affective implications of adaptive scaffolding, we

conducted case studies that tracked the cognitive activities/behaviors, affective states, and model-building

performance of two students from our study, as they worked on their causal modeling task in the Betty’s

Brain environment and received timely adaptive scaffolds from the mentor agent. Since one of the objectives

of this analysis was to explore the affective changes associated with adaptive scaffolding, we only considered

the subset of students (n=18) for whom facial video data was available (see Section V.1.2). We then filtered

out the students who received no scaffolds (n=1), and students whose faces were partially obstructed by face

masks (n=13) and prevented the AffDex model from predicting facial emotions. This resulted in 2 students

from C2, and 2 students from C3. One representative student from each group was then randomly selected

to conduct the case study. The model-building/scaffolding timeline of these two students is presented in

Figure VI.6 and discussed below.

Student 1, from the C2 (Inefficient Information Generators) group, received 5 scaffolds during her time in

Betty’s Brain, as shown in Figure VI.6 (a). This included 1 count of Scaffold 2 (Read→Build Incorrect Link

Feedback), 2 counts of Scaffold 6 (Quiz→Build Coherence Feedback), and 2 counts of Scaffold 9 (Negative

Affect + Reading Proficiency Feedback).

She received her first scaffold, a Scaffold 6 (Quiz→Build Coherence Feedback), after performing a series

of ineffective link edits that were not related to wrong answers in the quiz results she viewed prior to the

edits. In the feedback delivered to the student, Mr Davis suggested (a) that she first focus on teaching Betty

88



(a) Learning and Model-building Timeline of the Student from C2

(b) Learning and Model-building Timeline of the Student from C3

Figure VI.6: Case Study of Two Students Who Received Adaptive Scaffolds While Engaged With the Causal
Modeling Task in Betty’s Brain
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the links she answered incorrectly in her last quiz, and (b) that she start a conversation with him if she re-

quired information on understanding specific quiz grades. After receiving this scaffold, the student continued

editing her map without reviewing the quiz results as suggested by the mentor. (This behavior aligns with

the general lack of responsiveness to Scaffold 6 observed in Section VI.3.) Frequent head movements of the

student prevented affect predictions by the AffDex models at this time. (The BROMP-based affect detectors

suggested a shift in affect from confusion before and during scaffolding to frustration in the interval after

scaffolding.)

After some time, the student received her second scaffold, again a Scaffold 6, due to her continuation of

incoherent and ineffective link edits. This time, she did not even let Mr Davis complete the conversation,

informing him midway that she did not require help at this time (again following the general trend reported

in the previous section). However, this time the student took a quiz shortly after being scaffolded, and then

started exhibiting a coherent and effective Quiz→Build behavior. This suggests that Scaffold 6 may be more

useful and meaningful to the student if Mr Davis first asks them to take another quiz, before going into the

Quiz→Build coherence behavior. This would ensure that the recent incoherent and ineffective link edits

performed by the student since their last quiz is also reflected in the new quiz results, thereby giving them a

better understanding of the current state of their map and the next steps to debug errors in a more coherent

manner from the quiz results.

The third scaffold received by this student was a Scaffold 9 (Negative Affect + Reading Proficiency

Feedback), intended to break the ”inefficient reading” loop by suggesting that the student should take a

quiz from time to time or even ask him questions if needed. The student was responsive to the mentor’s

feedback after scaffolding. In addition to using the quiz results to check her progress, she also started a

conversation with the mentor agent asking him how to interpret the ”? (right so far)” quiz grade. Mr Davis

then explained how this grade was connected to missing links that she needed to identify and add to her causal

map. But after this conversation, instead of investigating the missing information further, the student started

deleting links from her map, leading to the deletion of both correct and incorrect links from the map. The

student only returned to a more strategic evidence-driven link editing behavior the next day (which can be

seen from edit number 17 onward, in Figure VI.6(a)). Again, continuous affect data was not available from

the facial videos in this period due to the student’s head movements, which limited a study of the affective

implications of Scaffold 9 at this point. However, the findings above still present an opportunity to improve

the adaptive scaffolding framework. We surmise that the system should monitor students’ use of the feedback

after scaffold delivery in a more fine-grained manner, and identify situations like the consecutive deletion of

multiple links (without obtaining evidence from the Science Book or Quiz Results). Such a situation should

trigger additional scaffolding, including diagnostic feedback to understand why the learner is not collecting
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evidence about link correctness before deleting them, followed by strategic feedback to teach them a more

evidence-driven solution construction approach.

On the second day of working in Betty’s Brain, this student exhibited a generally coherent and effective

model-building approach, but also added two incorrect links on their map due to which she received her

fourth scaffold - a Scaffold 2 (Read→Build Incorrect Link Feedback). After being scaffolded, the student

followed Mr Davis’ suggestion by reviewing the suggested page but was unsuccessful in extracting the infor-

mation needed to fix the incorrect links from this page, showing the inefficient Read→Build behavior that is

characteristic of C2. Now at this point, the student should have received a follow-up (i.e., Level-1) Scaffold

2. Instead, she received Scaffold 9 as her fifth scaffold from the mentor. This gives us another scope for

improving the feedback triggering conditions, especially the priority assignment algorithm, which accorded

a higher priority to Scaffold 9 compared to Scaffold 2: Level 1. In the next design iteration, the design

framework should ensure that, if the Level-0 version of a specific scaffold has already been delivered to a

student and if the Level-1 trigger for the same scaffold is currently active, then this Level-1 scaffold should

receive a higher priority than other different types of feedback, to ensure that the root cause of an obstacle is

sufficiently scaffolded before moving on to a different issue.

The fact that Scaffold 9 was not the best feedback at this stage is further validated by the changes observed

after scaffolding - a decrease in map score (three incorrect link additions) and an increase in confusion as

predicted from the facial indicators (average likelihood scores increasing from 5.5 to 10.4 in this period).

Student 2, from the C3 (Strategic Map Builders) group, received 5 scaffolds (Figure VI.6 (b)), including

1 count each of a Scaffold 1 (Read→Build Shortcut Link Feedback), a Scaffold 3 (Read→Build Coher-

ence Feedback), a Scaffold 5 (Quiz→Build Incorrect Link Annotation Feedback), a Scaffold 7 (Quiz→Read

Coherence Feedback), and a Scaffold 9 (Negative Affect + Reading Proficiency Feedback).

After the first scaffold, a Scaffold 3 (Read→Build Coherence Feedback), the student responded success-

fully to the mentor’s suggestion by seeking evidence from the Science Book and then using this evidence to

build their causal model in a coherent and mostly effective manner. The average emotional valence score, as

determined from the AffDex facial emotion detection model, also changed from −0.5 before scaffolding to

+2.6 after scaffolding, suggesting that receiving the mentor’s feedback and adopting the suggested cognitive

strategy was also associated with a net improvement in affect.

The student did not respond to the second scaffold, a Scaffold 9 (Negative Affect + Reading Proficiency

Feedback) by performing any of the suggested cognitive activities. Again, the lack of affect information from

the facial affect detectors in this interval prevented a fine-grained study of the affective component of this

scaffold on the student’s emotions. However, the BROMP-based detectors suggested a state of confusion
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both before and after scaffolding.

The third scaffold received by this student was a Scaffold 5 (Quiz→Build Incorrect Link Annotation

Feedback). The student was also not responsive to Scaffold 5, which aligns with the general response to this

scaffold for C3 that was observed in Section VI.3. Since she did not respond to this feedback by performing

suggested link annotation activities, no claims can be made regarding the impact of this scaffold on the

consequent effective link edits observed in Figure VI.6(b). Combined with the findings from the previous

section, the Scaffold 5 may need to be removed from the adaptive scaffolding framework or redesigned

completely to encourage responsiveness.

Next, the student received her fourth scaffold, a Scaffold 1 (Read→Build Shortcut Link Feedback). In the

interval following the receipt of Scaffold 1, she showed a clear pattern of effective and coherent Read→Build

behavior that fixed the shortcut link and led to the addition of other correct links. The highest average

affective valence score of 4.6 for this student was also observed in the period after receiving Scaffold 1,

providing circumstantial evidence that the adoption of the Read→Build strategy after scaffolding was also

associated with an effective emotion regulation process.

The fifth scaffold received by this student was a Scaffold 7 (Quiz→Read Coherence Feedback). She was

already in an effective model-building phase by the time of receiving this scaffold, and the map score kept

increasing after the scaffold was delivered. However, no discernible impact of this scaffold was observed,

and the student did not use the ”search box” behavior prescribed by the mentor agent but was still successful

in her model-building and debugging activities. The results in Section VI.3 showed that only students from

C2 responded to Scaffold 7, so this feedback may need to be targeted only to specific groups of students who

show clear evidence of being inefficient information generators.

VI.5 General Discussions

Section VI.2 discussed our inferences on the scaffold statistics, i.e., the number of adaptive conversational

scaffolds received by students with different behavioral profiles, as reported in Table VI.5. This section

discussed our plans about redesigning or improving certain trigger conditions in future research, to account

for between-group differences and to ensure even more meaningful and task-relevant adaptive scaffolding.

Section VI.3 reported on the responsiveness and strategic usage of scaffolds by tracking student and group

behaviors before and after scaffolding. The case studies in Section VI.4 provide further clues on how to refine

certain scaffolds to benefit students in future design iterations.

The general similarity observed in inter-scaffold intervals between the four groups, as observed in Sec-

tion VI.1.2, is an improvement on previous scaffold design iterations (Munshi et al., 2022b,a), and may be

attributed to more uniform triggering parameters and the inclusion of inter-scaffold interval as a separate pa-
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rameter within the current design framework, which ensured that students did not receive their next scaffold

unless a minimum set amount of time had passed since their previous scaffolding.

The results from the case studies (Section VI.4) also provide opportunities for improving scaffold trig-

gering factors like the priority assignment algorithm, for instance, with respect to Scaffold 2: Level-1 and

Scaffold 9 (see discussion in Section VI.4). The temporal analysis in Section VI.3, beyond helping us un-

derstand the between-group differences in the impact of scaffolding, also provided insights into temporal

changes in such impact, for instance, the case of C2 after receiving Scaffold 5 multiple times. Such results

present further scope to introduce fading for certain types of scaffolds based on student responses, to main-

tain engagement with the task and future responsiveness to scaffolding. We also found that the Read→Build

scaffolds (Scaffolds 1, 2 and 3) and the Quiz→Build Correct Link Annotation Feedback (Scaffold 5) were

generally followed by high response rates, with certain groups exhibiting more effective cognitive strategies

and metacognitive monitoring behaviors in the after intervals, eventually linking the strategic use of scaffolds

to improvements in their causal models.

We now summarize some of our future plans on revising the current adaptive scaffolding framework based

on the findings from this chapter. Scaffold 1 was used by C1 as a corrective hint. C2 showed low response

rates to this feedback, instead checking quiz results and being unsuccessful at using Quiz→Build to fix their

shortcut links. C3 used the scaffold strategically and effectively, with the case study even showing very high

affective valence alongside the strategy use for this group. But interestingly, C4 did not receive this scaffold

despite the presence of shortcut links at certain points on their maps. In future design iterations, we may

use out understanding of a student’s current behavioral profile, as discussed above, to provide more feedback

that is tailored to the characteristics of such behavioral groups. For instance, if a student is identified to be

an inefficient information generator (C2) and does not respond to Scaffold 1, they may receive additional

scaffolding that guides them through the Read→DebugShortcutLink process. If a student is detected as an

experimenter (C4), then their priority assignment algorithm may be modified dynamically (as discussed in

Section VI.2) if it is observed that they have shortcut links on their map but are not receiving any Shortcut Link

Feedback due to the higher priority assigned to Scaffold 3. Scaffold 2 was more effective for the disengaged

group, who used the feedback strategically and also showed a decrease in disengagement after scaffolding.

So, the trigger condition for Scaffold 2 may be placed at a higher priority order for a student who is identified

as disengaged in a future study. Tinkering behavior after scaffolding may also be monitored, so that students

can receive additional feedback (e.g., we noted that C4 students changed the sign of incorrect links instead

of deleting them in the current results). Scaffold 3 was useful for both C3 and C4 groups to develop a

more coherent Read→Build strategy. We discussed how this feedback may also have accounted for the high

potential usage durations in the experimenter group. In Section VI.2, we discussed how the trigger condition
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for Scaffold 4 may be improved to include an additional component which tracks incorrect link annotations

already present on the student’s map prior to scaffolding. This is based on the finding for C4, who used the

scaffold to correctly perform new link annotations but did not review previous incorrectly annotated links.

Otherwise, this scaffold was successful in helping C2 develop quiz→link annotation as a strategy to debug

and improve their maps. For Scaffold 5, which was received a large number of times by C1, we noted higher

disengagement after successive rounds of scaffolding. Therefore, this scaffold may be reduced to a one-time

feedback, or faded with time if disengagement is diagnosed, or may even be redesigned to provide additional

feedback on how to combine the two types of link annotations (Scaffolds 5 and 6) to isolate potentially

incorrect links. Scaffold 6 generally showed low response rates but the case study also suggested that this

feedback may be made more meaningful to the student if Mr Davis first asks them to take another quiz, before

going into the Quiz→Build coherence behavior, thereby ensuring that Build actions performed since their

last quiz is also reflected in the new quiz results, further giving them a better understanding of the current

state of their map and form a plan to debug errors in a more coherent manner from the quiz results. The

trigger condition for Scaffold 7 may be assigned a higher priority when students show inefficient information

generator characteristics, with a follow-up Read→Build scaffold after the Quiz→Read that then helps the

student to extract the correct causal relations from the text they are reading. For Scaffold 8 and Scaffold

9, an important component of our future plans is to perform a better evaluation of the affective components

of this feedback by further validating the detector predictions using ground truth labels, as discussed above.

Scaffold 8 had low response rates while Scaffold 9 had high response rates in the current study. The case

study suggested that the system should monitor students’ use of Scaffold 9 in a more fine-grained manner after

the feedback is delivered, to identify the type of situation observed in the case study (viz., the consecutive

deletion of multiple links without obtaining evidence from the Science Book or Quiz Results). As discussed

in Section VI.4, such situations should trigger additional diagnostic followed by strategic feedback to teach

students how to develop a more evidence-driven solution construction process.
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CHAPTER VII

Conclusions and Future Work

This dissertation contributes to the field in two primary directions: (1) Design & development, and (2) Re-

search. We discuss the specific contributions along these two directions in some more detail below.

VII.1 Design and Development Contributions

The dissertation has presented the design and development of an adaptive scaffolding framework to model

and support cognitive-metacognitive and cognitive-affective components of K-12 learners’ SRL processes in

an open-ended science learning environment.

The conceptual framework for scaffold design was informed by a theoretical review of SRL and scaffold-

ing literature (Chapter II) and by findings from an empirical design-based research process conducted in

the context of the Betty’s Brain learning environment (Chapter III). The literature review involved a crit-

ical analysis of prominent SRL models (Zimmerman; Boekaerts; Winne and Hadwin; Pintrich; Efklides;

Hadwin et al.) to understand that SRL is a dynamic learning process with interacting ’CAMM’ compo-

nents. Emerging evidence from empirical research on SRL in advanced learning technologies (Azevedo

et al., 2015, 2017; Bannert et al., 2017) further established that the regulation of CAMM processes was in-

tegral to students’ SRL process in OELEs. To understand how to detect CAMM processes from observable

information in OELEs, we studied cognitive-metacognitive (Winne, 1995) and cognitive-affective (Pintrich,

2000; D'Mello and Graesser, 2012) relations, and the procedures applied by researchers for the detection

of cognitive-metacognitive (Kinnebrew et al., 2013b; Biswas et al., 2016; Munshi et al., 2018a) and af-

fective states (Jiang et al., 2018; McDuff et al., 2016) in learning environments. We further reviewed the

features (Elsom-Cook, 1993; Puntambekar and Hubscher, 2005) and objectives (Self, 1988) of successful

scaffold design, to infer that our adaptive scaffolds needed to be flexible, be based on an online diagnosis of

students’ learning process (cognitive-metacognitive strategy use and affect appraisals), and provide tailored

assistance to achieve the strategic (and in some cases, diagnostic, and elaborative) objectives of scaffolding.

A set of design-based research (DBR) studies with Betty’s Brain (Section III.2), conducted over a five-year

period, helped to further understand students’ cognitive-metacognitive behaviors and strategy use and their

cognitive-affective processes in the context of this learning environment. This allowed us to situate the design

of the scaffolding environment in the context of students’ learning tasks, activities, and behavior in Betty’s

Brain. The DBR process involved cycles of Problem Analysis →Design →Evaluation phases. Reflecting on

the results from each phase of this process (Munshi et al., 2018c,b; Rajendran et al., 2018b; Jiang et al., 2018;
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Munshi and Biswas, 2019; Munshi et al., 2020, 2022b,a) led to step-by-step improvements in the design and

implementation approach of our adaptive scaffolding framework in Betty’s Brain.

The design framework presented in Chapter IV of this dissertation was informed by the findings from

this DBR process, and included a set of triggering conditions for online adaptive scaffolding of students as

they worked in the Betty’s Brain environment. The adaptive scaffolding was designed as conversational trees

that allowed for delivery of the feedback in a step-by-step manner to make it easier for students to assimilate

and apply the feedback provided. Our triggering conditions were linked to a strategy detection process,

which tracked key binary relations from students’ observable activity sequences modeled as cognitive pro-

cesses, that were derived from a modified version of the Kinnebrew et al. (2017) task model as a reference

framework. Measures of coherence adopted from (Segedy et al., 2015) provided the metrics for identifying

ineffective or sub-optimal strategy use. in mode-building behaviors in Betty’s Brain, and identified a pattern

of ineffective cognitive-metacognitive strategy use. Sensor-free affect detectors (Jiang et al., 2018) provided

the basis for measuring affect likelihood values, and were used to identify the moments during learning when

a student’s’ affect likelihood shifted to a state of dominant frustration or boredom. We interpreted these

signals to indicate obstacles or disengagement (D'Mello and Graesser, 2012) and we developed appropriate

strategy scaffolds to help students recover from these negative valence states (Baker et al., 2021). To de-

liver meaningful strategy scaffolds at these moments, the cognitive attributions of affect appraisal were also

inferred by checking students’ associated strategy use and their effectiveness.

Since students’ activity patterns could activate multiple scaffold triggering conditions at the same point

of time, each type of trigger condition included in our design framework was also assigned a priority value

by a prioritization algorithm (Appendix C). The priority order between trigger conditions was determined

primarily by checking the state of the student’s causal model, with higher priority assigned to Read→Build

patterns when the student had a sparse map (so they could receive feedback that encouraged information

acquisition and model construction) and higher priority assigned to Quiz→Build patterns when the student

had a denser map (so they received more adaptive feedback for model debugging purposes). Each trigger

condition was also assigned a time to live value, to ensure that students only received scaffolds relevant to

their current task and recent activities.

The learner scaffolding module in Betty’s Brain periodically checked for trigger conditions, pulled the

highest priority trigger condition, and used the conversation tree structure (Segedy et al., 2015) to deliver

conversational adaptive feedback through the mentor agent in Betty’s Brain. The conversations included

diagnostic, elaborative and strategic components, and provided actionable recommendations that students

could use to develop cognitive-metacognitive strategies for model construction or debugging tasks in Betty’s

Brain. An inter-feedback interval parameter in the learner scaffolding module checked that sufficient time
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had elapsed since the student received their last scaffold, thus ensuring that their learning process was not

interrupted by too frequent interventions. Some of the scaffolds were also offered at different levels, with

more contextualized (level-1) feedback provided to learners who were unable to use the generalized (level-0)

feedback in an effective manner. Nine types of adaptive scaffolds IV.5 were included in the latest design and

implementation of our adaptive scaffolding framework in Betty’s Brain.

VII.2 Research Contributions

Chapter V of this dissertation presented an approach for scaffold evaluation, that combined a study of the

relationship between students’ pre-post learning gains, their map building performance, their use of effective

strategies, and their ability to assimilate and use the strategy scaffolds provided by the system. The results

of our analyses are presented in Chapter VI, and show the nuanced differences in how groups of students

with differing learning behaviors/outcomes received, responded to and used the adaptive feedback received

from the mentor agent, for their subsequent learning tasks in Betty’s Brain. The results helped us derive

insights on the strengths and weaknesses of specific aspects of our scaffold design framework, which provide

opportunities for future research to further improve adaptive scaffolding in OELEs like Betty’s Brain.

Our study involved middle school students who worked on a model-building task in Betty’s Brain and re-

ceived feedback when they had difficulties or they performed sub-optimally. We explored students’ learning

outcomes, affect and behaviors from this study, and applied a cluster analysis algorithm that discovered four

groups of students with differences in behavior and learning outcomes and behaviors - (1) disengaged learn-

ers, (2) inefficient information generators, (3) strategic map builders, and (4) trial-and-error experimenters

and tinkerers. The findings from this exploratory analysis enabled us to formulate more targeted research

questions (Section V.2.3) and data analysis (Section V.2.4) for scaffold evaluation. In Sections VI.2, VI.3

and VI.4, we reported the findings from this analysis, with specific focus on (1) the count, i.e., number of

adaptive scaffolds of each type received by students in each of the four groups; (2) students’ responsiveness

to the scaffolds they received, as observed from comparing their subsequent activities with respect to the ac-

tionable suggestions given by the mentor agent in the feedback; and (3) their strategic use of these scaffolds,

as evidenced by subsequent changes in their learning behaviors and outcomes in Betty’s Brain. We focused

our discussions on between-group differences in scaffold counts, student response and usage, to (1) infer

how the behavioral profiles of these different groups may have been mediated by the receipt of in-time con-

versational scaffolding, and (2) decide how this improved understanding (of learner behaviors/outcomes, and

the impact of adaptive scaffolds on their behaviors/outcomes) may be used to improve adaptive scaffold de-

sign in such OELEs in future. Our conclusions in this regard have been presented in Section VI.5, with more

specific cases (where the findings point to opportunities for future research) discussed across Sections VI.2
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to VI.4. Our scaffold evaluation analysis also revealed the limitations of our current approach (viz., the lack

of validated and continuously available affect data) and prompted a discussion (Section VI.5) on the future

research directions to overcome these limitations.

To summarize, the findings from the scaffold evaluation analysis presented in this dissertation show

which scaffolds were useful, and for which groups of students, and how the strengths and weaknesses of our

current design can inform the design of an even more improved adaptive scaffolding framework in future,

to provide learners with differing behavioral profiles with more nuanced, contextualized and meaningful

guidance.

In addition to the results from assessing the current scaffold design, the DBR process (Section III.2)

culminating in this dissertation has also resulted in several research contributions to the field of SRL

and adaptive scaffolding in OELEs. This multi-year research process included multi-modal data collection

and analysis (using information from questionnaires, log traces, face videos, screen recordings, eye-trackers,

ML models, audio interviews, etc.) Some of the specific contributions from this set of research studies were

along the following directions: understanding cognitive-affective relations in OELEs (Munshi et al., 2018c,b),

modeling learners’ temporal behaviors and performance (Rajendran et al., 2018b), designing a learner model

based scaffolding framework for SRL (Munshi and Biswas, 2019), modeling the relationships between dif-

ferent types of affect states (Munshi et al., 2020), designing a learner-model-based scaffolding framework

for SRL (Munshi and Biswas, 2019), analyzing adaptive scaffolds to better understand their impact on self-

regulated learning (Munshi et al., 2022b,a). A more complete set of co-authored publications resulting from

the research towards this dissertation is reported in Appendix A, and provide evidence on the impact of this

work in extending the state-of-the-art.

VII.3 Future Work

Future work in this field can use the findings from this dissertation research to build learner models that

use a more aggregated understanding of a student’s behaviors (and the evolution of behaviors across time in

the OELE) to assign them into behavioral profiles (viz., a disengaged student, or an inefficient information

generator), which would then be used to offer a more guided support, to re-engage the student in their learning

task, or to train them on the use of monitoring and self-reflection processes for information generation and

successful application in their causal models. The current set of scaffolds included in our design framework

will also be refined based on our findings, for instance, by removing or redesigning scaffolds which incurred

low responsiveness (like Scaffold 5) or by refining the conversations to better communicate the purpose of

scaffolding (e.g., strategic versus corrective hint in the case of Scaffold 1 or 2). Our more specific plans in

relation to the refinement of different aspects of the adaptive scaffolding framework based on the findings
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from the latest evaluation study is discussed in more detail in Section VI.5.

More generally, the adaptive scaffolding framework developed for this dissertation can also be applied to

scaffold student learning in other open-ended STEM learning environments. In particular, this approach may

be especially useful to understand and support model-building and debugging behaviors in other learning-by-

modeling OELEs like C2STEM (Hutchins et al., 2020), which use problem-based scientific model construc-

tion to promote K-12 STEM learning.

Additionally, we note that our scaffold evaluation study was limited by a lack of validated and consis-

tently available affect data from the detector models, as discussed in Section VI.1.2. Also, since the evalua-

tion study was conducted in a real classroom versus a more controlled laboratory setting, factors like frequent

head movements or face masks led to data loss and an unavailability of continuous temporal face data for the

AffDex models. So, while the observed improvements in cognitive behaviors and performance after scaffold-

ing may also suggest more positive affect appraisals, given the type of cognitive-affective relationships found

from prior Betty’s Brain studies (Munshi et al., 2018c)), the unavailability of accurate ground truth labels

of student affect did not allow us to derive evidence on such cognitive-affective states and their relation to

the received scaffolds. Future work in this area may use affect detector mapping procedures such as Munshi

et al. (2020) in conjunction with human coded affect data for validation, to gain a more complete picture of

the affect regulation process of different groups of students who receive adaptive scaffolds in Betty’s Brain.

Moreover, keeping in mind the data collection and other practical constraints in classroom studies, multi-

modal data sources such as eye-tracking and in-the-moment interviews or in-system self-reports may also be

used to fill in the gaps in data availability from sources like log data and detector models.
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Appendix A

List of Relevant Publications (in reverse chronological order)

1. Munshi, A., Biswas, G., Davalos, E., Logan, O., Narasimham, G., and Rushdy, M. (2022a). Adaptive

scaffolding to support strategic learning in an OELE. In Proceedings of the 30th International

Conference on Computers in Education (ICCE 2022), Malaysia

Abstract: This paper discusses the effectiveness of adaptive conversational scaffolds implemented in

the Betty’s Brain open-ended learning-by-teaching environment. Our scaffolding framework utilizes

detectors based on student’s activity patterns to infer their suboptimal strategic cognitive-metacognitive

behaviors and a conversation tree structure to facilitate the delivery of in-the-moment contextualized

feedback. We conducted an experimental lab study to collect data (activity logs, screen recordings

and interviews) while students worked on the Betty’s Brain system. Our initial findings suggest that

some scaffolds helped learners develop strategic behaviors that helped them overcome their individual

learning difficulties. We also discuss improvements to some of the scaffolds in our framework to better

support learners as they build causal models to teach Betty.

2. Munshi, A., Biswas, G., Rushdy, M., Baker, R., Ocumpaugh, J., and Paquette, L. (2022b). Analyz-

ing Adaptive Scaffolds to Help Students Develop Self-Regulated Learning Behaviors. Journal of

Computer Assisted Learning

Abstract: Providing adaptive scaffolds to help learners develop self-regulated learning (SRL) pro-

cesses has been an important goal of intelligent learning environments. In this paper, we develop a

systematic framework for adaptive scaffolding in Betty’s Brain, an open-ended learning-by-teaching

environment that helps middle school students learn science by constructing a causal model to teach a

virtual agent, generically named Betty. Given the open-ended nature of the environment, novice learn-

ers often face difficulties in their learning and teaching tasks. We detect key cognitive/meta-cognitive

inflection points, i.e., instances where students’ behaviors and performance change as they work on

learning and teaching tasks. At such inflection points, Mr. Davis (a mentor agent), or Betty (the

teachable agent) provide conversational feedback on SRL strategies to help students become more pro-

ductive learners. We analyze data collected from a classroom study with 98 middle school students to

study the impact of the scaffolds on students’ SRL behaviors and learning performance. We discuss

how our findings will support the next iteration of our adaptive scaffolding framework to help students

develop their SRL behaviors when working in OELEs.
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3. Zhang, Y., Paquette, L., Baker, R., Ocumpaugh, J., Bosch, N., Biswas, G., and Munshi, A. (2021b).

Can strategic behavior facilitate confusion resolution? Journal of Learning Analytics

Abstract: Confusion may benefit learning when it is resolved or partially resolved. Metacognitive

strategies (MS) may help learners to resolve confusion when it occurs during learning and problem

solving. This study examined the relationship between confusion and MS that students invoked in

Betty’s Brain, a computer-based learning-by modeling environment where elementary and middle

school students learn science by building causal models. Participants were sixth graders. Emotion

data were collected from real-time observations by trained researchers. MS and task performance

information were determined by analyzing the action logs. Pre- and post-tests were used to assess

learning gain. The results revealed that the use of MS was a function of the students’ state of confu-

sion. However, confusion resolution was not related to MS behavior, and MS did not moderate the

effect of confusion on students’ task performance in Betty’s Brain and learning gain.

4. Baker, R., Nasiar, N., Ocumpaugh, J., Hutt, S., Andres, A., Slater, S., Schofield, M., Moore, A., Paque-

tte, L., Munshi, A., and Biswas, G. (2021). Affect-Targeted Interviews for Understanding Student

Frustration. In Proceedings of the 22nd International Conference on Artificial Intelligence in Educa-

tion. Springer, LNCS

Abstract: Frustration is a natural part of learning in AIED systems but remains relatively poorly un-

derstood. In particular, it remains unclear how students’ perceptions about the learning activity drive

their experience of frustration and their subsequent choices during learning. In this paper, we adopt a

mixed-methods approach, using automated detectors of affect to signal classroom researchers to inter-

view a specific student at a specific time. We hand-code the interviews using grounded theory, then

distill particularly common associations between interview codes and affective patterns. We find com-

mon patterns involving student perceptions of difficulty, system helpfulness, and strategic behavior, and

study them in greater depth. We find, for instance, that the experience of difficulty produces shifts from

engaged concentration to frustration that lead students to adopt a variety of problem-solving strategies.

We conclude with thoughts on both how this can influence the future design of AIED systems, and the

broader potential uses of data mining-driven interviews in AIED research and development.

5. Hutt, S., Ocumpaugh, J., Andres, A., Munshi, A., Bosch, N., Baker, R., Zhang, Y., Paquette, L., Slater,

S., and Biswas, G. (2021). Who’s Stopping You? – Using Microanalysis to Explore the Impact

of Science Anxiety on Self-Regulated Learning Operations. In Proceedings of the 43rd Annual

Meeting of the Cognitive Science Society (CogSci)
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Abstract: Research shows that anxiety can disrupt learning processes, but few studies have examined

anxiety’s relationships to online learning behaviors. This study considers the interplay between stu-

dents’ anxiety about science and behavior within an online system designed to support self-regulated

science inquiry. Using the searching, monitoring, assessing, rehearsing, and translating (SMART)

classification schema for self-regulated learning (SRL), we leverage microanalysis of self-regulated

behaviors to better understand how science anxiety inhibits (or supports) different learning operations.

Specifically, we show that while science anxiety is positively associated with searching behaviors, it

is negatively associated with monitoring behaviors, suggesting that anxious students may avoid eval-

uation, opting instead to compensate with information-seeking. These findings help us to better un-

derstand SRL processes and may also help us support anxious students in developing SRL strategies.

6. Munshi, A., Mishra, S., Zhang, N., Paquette, L., Ocumpaugh, J., Baker, R., and Biswas, G. (2020).

Modeling the Relationships Between Basic and Achievement Emotions in Computer-Based Learn-

ing Environments. In Bittencourt, I. I., Cukurova, M., Muldner, K., Luckin, R., and Millán, E., editors,

Artificial Intelligence in Education, pages 411–422. Springer

Abstract: Commercial facial affect detection software is typically trained on large databases and

achieves high accuracy in detecting basic emotions, but their use in educational settings is unclear.

The goal of this research is to determine how basic emotions relate to the achievement emotion states

that are more relevant in academic settings. Such relations, if accurate and consistent, may be leveraged

to make more effective use of the commercial affect-detection software. For this study, we collected

affect data over four days from a classroom study with 65 students using Betty’s Brain. Basic emotions

obtained from commercial software were aligned to achievement emotions obtained using sensor-free

models. Interpretable classifiers enabled the study of relationships between the two types of emotions.

Our findings show that certain basic emotions can help infer complex achievement emotions such as

confusion, frustration and engaged concentration. This suggests the possibility of using commercial

software as a less context-sensitive and more development-friendly alternative to the affect detector

models currently used in learning environments.

7. Zhang, Y., Paquette, L., Baker, R., Ocumpaugh, J., Bosch, N., Munshi, A., and Biswas, G. (2020). The

relationship between confusion and metacognitive strategies in Betty’s Brain. In Proceedings of

the 10th International Learning Analytics and Knowledge (LAK) Conference, Frankfurt
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Abstract: Confusion has been shown to be prevalent during complex learning and has mixed effects

on learning. Whether confusion facilitates or hampers learning may depend on whether it is resolved or

not. Confusion resolution, behind which is the resolution of cognitive disequilibrium, requires learners

to possess some skills, but it is unclear what these skills are. One possibility may be metacognitive

strategies (MS), strategies for regulating cognition. This study examined the relationship between

confusion and actions related to MS in Betty’s Brain, a computer-based learning environment. The

results revealed that MS behavior differed during and outside confusion. However, confusion resolution

was not related to MS behavior, and MS did not moderate the effect of confusion on learning.

8. Sharma, K., Mishra, S., Papamitsiou, Zacharoula, M. A. D. B., Biswas, G., and Giannakos, M. (2020).

Towards obtaining facial proxies for gaze behaviour in TEL. In Proceedings of the International

Conference of the Learning Sciences (ICLS), volume 5, pages 2621–2622, Nashville

Abstract: Current multimodal studies have a common limitation of not being able to scale up the

implications since the apparatus used is not scalable. In this paper, we propose a simple method to find

measurements from scalable data modes such as facial data and examine the measures in richer and

more granular data modes like eye-tracking that they correspond most closely to. In other words, we

find pervasive proxies to the measurements that have been reported to be obtrusive. We exemplify this

approach using eye-tracking and facial data from two different studies.

9. Munshi, A. and Biswas, G. (2019). Personalization in OELEs: Developing A Data-Driven Frame-

work to Model and Scaffold SRL Processes. In Artificial Intelligence in Education, pages 354–358,

Chicago. Springer, LNCS

Abstract: This research focuses on developing a data-driven framework for modeling and scaffolding

learners’ self-regulated learning (SRL) processes in open-ended learning environments (OELE). The

aim of this work is to offer a personalized and productive learning experience by adapting scaffolds

to help learners develop self-regulation skills and strategies. This research applies mining techniques

on data collected from multiple channels to track learners’ cognitive, affective, metacognitive and

motivational (CAMM) processes as they work in Betty’s Brain, a computer-based OELE. The CAMM

information is used to derive online models of learners’ SRL processes. These learner models inform

the design of personalized scaffolds that help students develop the required SRL process and become

more proficient learners. The significance of this research lies in developing and using data-driven

learner SRL models to personalize and contextualize the scaffolds provided to learners within the

OELE.

103



10. Andres, J. M. A. L., Ocumpaugh, J., Baker, R. S., Slater, S., Paquette, L., Jiang, Y., Karumbaiah, S.,

Bosch, N., Munshi, A., Moore, A., and Biswas, G. (2019). Affect sequences and learning in Betty’s

Brain. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge, pages

383–390, Arizona

Abstract: Education research has explored the role of students’ affective states in learning, but some

evidence suggests that existing models may not fully capture the meaning or frequency of how students

transition between different states. In this study we examine the patterns of educationally-relevant

affective states within the context of Betty’s Brain, an open-ended, computer-based learning system

used to teach complex scientific processes. We examine three types of affective transitions based on

similarity with the theorized D’Mello and Graesser model, transition between two affective states, and

the sustained instances of certain states. We correlate of the frequency of these patterns with learning

outcomes and our findings suggest that boredom is a powerful indicator of students’ knowledge, but

not necessarily indicative of learning. We discuss our findings within the context of both research and

theory on affect dynamics and the implications for pedagogical and system design.

11. Mishra, S., Munshi, A., Rushdy, M., and Biswas, G. (2019). LASAT: Learning Activity Sequence

Analysis Tool. In TEEL Workshop at the 9th International Learning Analytics and Knowledge (LAK)

Conference, Arizona

Abstract: Learning Activity Sequence Analysis Tool (LASAT) is a collection of sequence analysis

algorithms developed at Institute for Software Integrated Systems, Vanderbilt University, with the pur-

pose of extracting and interpreting students’ learning behaviors extracted as frequent patterns (sequence

of activities) from their activity traces logged in computer-based learning environments. LASAT in-

cludes several algorithms for analyzing temporal sequence data – such as, sequential pattern min-

ing (SPM), differential sequence mining (DSM) and Hidden Markov Model-based learner modeling.

LASAT also includes tools for pre-processing and organizing log data for analysis. In this paper, we

present the LASAT toolkit with an aim of making these algorithms accessible to the wider community

of researchers and practitioners. We review cases from the learning analytics literature, which have

employed LASAT algorithms to demonstrate the use of the tool in supporting evidence-based peda-

gogical decision making, specifically in the context of learner modeling in computer-based learning

environments (CBLE). This paper demonstrates the applicability of LASAT for a range of applications

that span from studying learners’ cognitive and strategic processes to affect transitions that together

form the basis for understanding self-regulated learning processes.
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12. Munshi, A., Rajendran, R., Ocumpaugh, J., Biswas, G., Baker, R. S., and Paquette, L. (2018c). Mod-

eling Learners’ Cognitive and Affective States to Scaffold SRL in Open-Ended Learning Envi-

ronments. In Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization,

pages 131–138, Singapore. ACM

Abstract: The relationship between learners’ cognitive and affective states has become a topic of

increased interest, especially because it is an important component of self-regulated learning (SRL)

processes. This paper studies sixth grade students’ SRL processes as they work in Betty’s Brain, an

agent-based open-ended learning environment (OELE). In this environment, students learn science top-

ics by building causal models. Our analyses combine observational data on student affect to log files of

students’ interactions within the OELE. Preliminary analyses show that two relatively infrequent affec-

tive states, boredom and delight, show especially marked differences among high and low performing

students. Further analysis shows that many of these differences occur after receiving feedback from the

virtual agents in the Betty’s Brain environment. We discuss the implications of these differences and

how they can be used to construct adaptive personalized scaffolds.

13. Munshi, A., Rajendran, R., Moore, A., Ocumpaugh, J., and Biswas, G. (2018b). Studying the Interac-

tions between Components of Self-Regulated Learning in Open Ended Learning Environments.

In Proceedings of the 13th International Conference of the Learning Sciences (ICLS), pages 1691–

1692, London, England

Abstract: This paper investigates the interactions between learners’ cognitive strategies and affective

states; both important components of self-regulated learning (SRL) processes that influence student

learning. We study cognitive-affective relationships in high versus low performing students as they

worked on a model building task to teach their agent in Betty’s Brain, an open-ended science learning

environment. Our initial results allow for some interesting discussions , but they also emphasize the

need for fine grained affective data to match up against cognitive states to determine how they influence

performance or vice versa.

14. Rajendran, R., Munshi, A., Emara, M., and Biswas, G. (2018b). A Temporal Model of Learner

Behaviors in OELEs using Process Mining. In Proceedings of the 26th International Conference on

Computers in Education (ICCE), Philippines

Abstract: Open-ended learning environments (OELEs) present learners with complex problems and

a set of tools for solving these problems. Developing logging mechanisms that capture learners’ in-

teractions with the system provide a wealth of trace data that can be employed for studying relations
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between their behaviors and performance. Such analyses provide a framework for making the OELE

intelligent in that it can adapt its feedback to meet the needs of individual learners. In our previous

research, we have developed learner modeling schemes that are based on sequential pattern mining

(SPM) and Hidden Markov models (HMMs) to represent and track the temporal sequence of learners’

interactions with the OELE. We briefly discuss the pros and cons of these models, and then propose a

process modeling approach to capture the temporal nature of learners’ behaviors. We apply the process

modeling method to data collected from students working with the Betty’ Brain OELE, where students

learn about scientific processes by building causal models.
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Appendix B

Supplementary Figures and Tables

Table B.1: From Munshi et al. (2022b): List of the inflection point triggers, and scaffolds provided at triggers,
in the first scaffold design iteration leading to this dissertation (From DBR Cycle 1, evaluated in the Feb 2019
study)

(a) When the trigger condition is related to unproductive/ineffective activities
Inflection Point Trigger Provided Scaffold

Task/Activity Context Scaffold Type Content Overview & Excerpts

Information acquisition (Read-Long) → Ineffective model
construction (Edit-Ineff)

Strategic hint:
Assess by Quiz

Hint2

Betty suggests taking a quiz, as a model
assessment strategy, to help debug
errors in the map.
”Hi, I think you just added a causal link on
your map after looking at the science book.
... Do you think I am ready for a quiz now?”

Ineffective model
construction (Edit-Ineff) →
Model assessment (Quiz)

Case 1:
AND The student has not
marked the recently edited
incorrect links.

Strategic hint:
Mark Wrong

Hint3

Mr Davis suggests marking the possibly
incorrect links on map as ”could be wrong”,
as an efficient map organization strategy.
”From the quiz results, looks like Betty may
have some incorrect links on her map. You can
mark those links as ’could be wrong’.
Do you want to know more? ...”

Case 2:
WHERE The Edit-Ineff was
a shortcut link addition
(e.g.: an A→C link instead
of an A→B→C link)

Strategic hint:
Shortcut Link

Hint4

Mr Davis explains how to identify & correct
shortcut links.
”From the quiz, it seems you may have an
incorrect shortcut link on your map. Do you
want to know more about shortcut links? ...”

Case 3
Strategic hint:

Debug from Map
Hint5

Mr Davis provides map debugging strategies
to fix model errors identified from quizzes,
progressing from high-level feedback to
more specific corrective hints.
”One of the links going out of ’hypothalamus
response’ is wrong. Try to find out which one it is.”

Case 4
Encouragement:

Reassure
Enc3

Betty provides an encouragement message
to ensure that the student is not demotivated
after seeing their errors in the quiz results.
”... Sometimes I find all of this a little tricky. But
with you to teach me, I’m sure we can do it.”

Information acquisition (Read-Long) → Model
assessment (Quiz)

Strategic hint:
Debug from Read

Hint6

Mr Davis provides progressive hints to support
reading the pages relevant to map errors,
as an efficient map debugging strategy.
”You are missing a link that comes out of ’heat
loss’. Try reading up on Page ’Response 1: Skin
Contraction’ and see if you can find the link.”
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(b) When the trigger condition is related to productive/effective activities
Inflection Point Trigger Provided Scaffold

Task/Activity Context Scaffold Type Content Overview & Excerpts

Information acquisition (Read-Long) →
Efficient model construction (Edit-Eff)

Encouragement:
Praise & Quiz

Enc2

Mr Davis praises the student for teaching her well,
and suggests taking a quiz to find evidence for
their teaching progress.
”Looks like you’re doing a good job teaching
correct causal links to Betty. ... Make sure you
check her progress ... by asking her to take a quiz”

Efficient model
construction (Edit-Eff) →
Model assessment (Quiz)

Case 1
Strategic hint:
Mark Correct

Hint1

Mr Davis suggests marking the possibly correct
links on the map as ”correct”, as an efficient
map organization strategy.
”If Betty got an answer graded correct, remember
to mark those links as ’correct’ in the map. This
can help you keep track of what you have
taught her correctly so far. Do you know how to ...”

Case 2
Encouragement:

Praise
Enc1

Betty praises the student for doing a good
job of teaching her an efficient causal model.
”Wow! I think I have some correct links on the
map. This is fun! Thanks, A.”

Table B.2: List of scaffolds provided in the second design iteration, evaluated in the Sept 2021 pilot study

Scaffold Type Excerpt from Conversation Tree

Read to Build Correctness:
Shortcut Link

Level 0: Mr Davis: “... Your map may have shortcut link(s) from this part of your
science book. Do you want me to tell you more about shortcut links? ...”
Level 1: Mr Davis: “Looks like you still have a shortcut link coming out of [Concept A].
.. Review pages [X, Y] to find out more about the missing link(s) to add to your map.”

Read to Build Correctness:
Incorrect Link

Level 0: Mr Davis: “You may have incorrect links on your map from this part. ... There are
three ways a causal link may be incorrect:
if (a) you are linking two unrelated concepts; (b) the sign of the link (increase/decrease) is wrong;
(c) the direction is wrong. ... Review Pages [X, Y] to figure out the incorrect links.”
Level 1: Mr Davis: [Review of Level 0] + “...You have an incorrect link coming out of
the [Concept A]. Review the relevant pages to figure it out.”

Read to Build Coherence

Level 0: Betty: “... teaching me concepts and links that are not related to what we just read.” Mr Davis:
“... A good learning strategy is to work on one topic at a time . . . read a page and add all
correct links from it to your map before moving on to a different one. This will help teach . . . ”
Level 1: Mr Davis: “... you just added a link [A→B] from Page [Y] but you were
reading Page [X]. Try to add all links from Page [X] first . . . ”

Quiz to Build Correctness:
Correct Link Annotation

Mr Davis: “... There are correct links from your recent quiz that you have not marked on
your map yet. Would you like me to teach you how to mark the ‘correct’ links?... Select
a quiz question graded correct (green checkmark). . . . ”

Quiz to Build Correctness:
Incorrect Link Annotation

Mr Davis: “... Select a quiz question graded incorrect (red X). . . . This means that at least
one of the links . . . is wrong. You can mark these links as ‘maybe wrong’ on the map...”

Quiz to Build Coherence
Mr Davis: “... After Betty takes a quiz, . . . first teach her the concepts she did not answer
correctly. This way, she can get these right the next time she takes a quiz. . . . ”

Quiz to Read Coherence
Mr Davis: “... I can help you find information from the science book to correct Betty’s
wrong answers. . . . you can type about a concept in the search bar of the page . . . ”
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(a) Example conversation tree for a map debugging hint initiated by the mentor agent Mr. Davis; Adapted from Munshi et al. (2022b)

(b) Example conversation tree for a map assessment hint, initiated by the teachable agent Betty; Adapted from Munshi et al. (2022b)

Figure B.1: Two example trees that illustrate the conversation tree representation in Betty’s Brain, developed
for the first iteration of adaptive scaffolding.
In each figure: (left) the triggering condition and tree structure; (right) example of a student-agent conversa-
tion from the tree
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Figure B.3: The expert map that learners attempt to build in the climate change unit of Betty’s Brain
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Appendix C

Other Supplementary Material

The Priority Assignment Algorithm (Scaffold Design Component)
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############################################# 

# FRAMEWORK FOR TRIGGERING FEEDBACK 

############################################# 

1. Within Learner Model Controller 

    a. Pattern (Trigger) Detection 

    b. Pattern Priority Assignment For Insertion Into Priority Queue 

2. Maintaining references to the priority queue 

    a. Maintain minimum_time_between_feedbacks 

    b. IF current_time - last_feedback_time >= minimum_time_between_feedbacks: 

         Request feedback (pattern_msg) at top of queue 

3. Deliver feedback  

    a. Deliver conversation_tree (pattern_msg, type, level) 

    b. Log <pattern_msg, type, level, conversation_tree> 

    c. Update last_feedback_time 

 

################################################ 

# Pattern (Trigger) Detection (In Controller) ## 

################################################ 

current_pattern_msg = Event sequences triggered by the student 

pattern_threshold = x                #threshold can be same for all patterns or different for different patterns 

IF current_pattern_msg.getCount > pattern_threshold:           # If pattern detection exceeds threshold  

    pattern_priority = getPriority(current_pattern_msg):    

    current_pattern_msg.setPriority(pattern_priority)                   # priority is assigned to the pattern  

    priorityQueue.append(current_pattern_msg)                 # the pattern is inserted into a priority queue 

 

 

#####################################################################################

# 

# Pattern Priority Assignment For Insertion Into Priority Queue (Also in Controller) # 

##################################################################################### 

 

mapOfReceivedFeedback = {R→B-Shortcut: 0,   # map {type, level} of feedbacks the student has received 

                         Q→B-Coh: 1,    .... }         

 

def getPriority(pattern_msg): 

    IF mapOfReceivedFeedback.get(pattern_msg.getType) == 0  # student has received level 0 of same 

feedback  

        return 0;  # currentPatternType is assigned the highest priority = 0 (supersedes others in queue) 

    ELSE 

        return priority_lookup (correct_links, incorrect_links)  # assigns priority based on lookup table 

 

 

def priority_lookup(correct_links, incorrect_links): 

    standard = 25                                                   # standard (of the no. of links) to compare against 



    IF correct_links <= standard:                                  

        IF incorrect_links <= standard:        # LOW correct_links & LOW incorrect_links (LOW NO. OF BUILDS) 

            Affect + R-->B: 1                         

            R-->B Coherence: 2 

            R-->B-Shortcut: 3                                                  

            R-->B-Incorrect: 4 

            Affect + Q-->B: 5 

            Q-->B-Correct Link Annotation: 6 

            Q-->B-Incorrect Link Annotation: 7 

            Q-->B-Coherence: 8 

            Q-->R-Coherence: 9 

        ELSE:                                    # LOW correct_links & HIGH incorrect_links (UNSUCCESFUL BUILDS) 

            Q→ B-Correct Link Annotation: 1            

            Q-->B-Incorrect Link Annotation: 2 

            Q-->B-Coherence 3  

            Q-->R-Coherence: 4            

            Afect + R-->B: 5 

            R-->B Coherence: 6 

            R-->B-Shortcut: 7                                                  

            R-->B-Incorrect: 8 

            Q-->R-Coherence: 9 

    ELSE: 

        IF  incorrect_links <= standard:  #HIGH correct_links & LOW incorrect_links (SUCCESSFUL BUILDS) 

            Affect Q-->B: 1 

            Q-->B-Incorrect Link Annotation: 2                    

            Q-->B-Correct Link Annotation: 3              

            Q-->B-Coherence: 4 

            Afect + R-->B: 5 

            R-->B Coherence: 6 

            R-->B-Incorrect: 7 

            R-->B-Shortcut: 8                                                                       

            Q→ R-Coherence: 9 

        ELSE:                                    # HIGH correct_links & HIGH incorrect_links (HIGH NUMBER OF BUILDS) 

            Affect Q-->B: 1                      

            Q-->B-Correct Link Annotation: 2 

            Q-->B-Incorrect Link Annotation: 3                                                  

            Q-->B-Coherence: 4 

            Q→ R-Coherence: 5 

            Afect + R-->B: 6 

            R-->B Coherence: 7 

            R-->B-Shortcut: 8                                                 

            R-->B-Incorrect: 9 
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Betty’s Brain PRE-SURVEY

Name ___________________________________________________

Date ______________

VU DoD – Mar 2022



Motivation

Instructions

This survey will help us to know your views on learning about climate change with Betty’s
Brain. Please circle the number corresponding to your response for each statement.

Serial
no.

Statement Response to statement
Strongly      Disagree        Neutral        Agree           Strongly
Disagree                                                                         Agree

(1)                  (2)                 (3)                (4)                (5)

1. I think that learning
about climate change
is important because I
can use it in my daily

life.

1                    2                    3                   4                   5

2.
In science, I think that
it is important to learn

to solve problems.

1                    2                    3                   4                   5

3.
It is important to be

curious when learning
science.

1                    2                    3                   4                   5

4. Whether the content
is difficult or easy, I
am sure that I can

understand it.

1                    2                    3                   4                   5



Serial
no.

Statement Response to statement
Strongly      Disagree        Neutral        Agree           Strongly
Disagree                                                                         Agree

(1)                  (2)                 (3)                (4)                (5)

5. I am not confident
about understanding

difficult science
concepts.

1                    2                    3                   4                   5

6. I am sure that I can do
well on science tests. 1                    2                    3                   4                   5

7. I am willing to
participate in this

course about climate
change because it is

challenging.

1                    2                    3                   4                   5

8. I am willing to
participate in this

course about climate
change because the
content is exciting.

1                    2                    3                   4                   5



Climate Change

Instructions

This survey will help us find out what you know about climate change. Please answer every
question as best as you can.

Multiple choice questions: Choose the Best Answer

1. What is the greenhouse effect?
a. The atmosphere of the earth traps some radiated heat energy and reflects it back to the

earth. This makes the earth warmer.
b. The atmosphere of the earth is reflective and keeps sunlight away from the earth’s

surface. This light reflection keeps the earth from getting too hot.
c. The atmosphere acts like a magnifying glass. This makes the light stronger and makes the

earth hotter.
d. The atmosphere traps pollution from cars and factories. Over time, the air will become

more polluted and the earth will get warmer.

2. Light from the sun comes to the earth and its energy is absorbed by the atmosphere.
What is the relation between this absorbed light energy and the heat energy absorbed by
the earth?

a. Absorbed light energy increases the amount of absorbed heat energy.
b. Absorbed light energy decreases the amount of absorbed heat energy.
c. Absorbed light energy does not change the amount of absorbed heat energy.
d. Absorbed light energy is not related to absorbed heat energy.

3. Clouds are made up of water vapor. How does condensation of water vapor in clouds
affect precipitation?

a. Condensation and precipitation are not related.
b. Condensation decreases precipitation.
c. Condensation increases precipitation.
d. An increase in condensation may increase or decrease precipitation.

4. What is the main greenhouse gas created in landfills?
a. Carbon dioxide
b. Methane
c. Oxygen
d. All of the above



5. How does vegetation affect the amount of carbon dioxide in the atmosphere?
a. Vegetation produces carbon dioxide through the process of photosynthesis, which

increases the amount of carbon dioxide in the atmosphere.
b. Vegetation releases water vapor through the process of photosynthesis. The vapor

bonds with carbon dioxide, which reduces the amount of carbon dioxide in the
atmosphere.

c. Vegetation absorbs carbon dioxide as part of the process of photosynthesis, which
reduces the amount of carbon dioxide in the atmosphere.

d. Vegetation produces oxygen because of photosynthesis, but it does not affect the
amount of carbon dioxide in the atmosphere.

6. How does an increase in carbon dioxide affect sea ice?
a. Carbon dioxide is absorbed by sea ice. This increases the melting point of sea ice and

more sea ice melts.
b. Carbon dioxide reflects heat radiated from the earth back to earth. This radiation

keeps the earth cool, and so it decreases the amount of sea ice that melts.
c. Carbon dioxide forms a shield around the earth. This protects solar energy from

heating the ice caps, so less sea ice melts.
d. Carbon dioxide reflects heat radiated from the earth back to earth. This radiation

increases the earth’s temperature, and more sea ice melts.

7. Which statement best explains how driving more cars affects global temperature?
a. Car engines run hot. This increases the surrounding temperatures. The more cars we

drive, the higher the global temperature.
b. Cars burn fossil fuels, and this produces carbon dioxide. The carbon dioxide prevents

solar energy from entering the earth’s atmosphere. This reduces global temperature.
c. Cars burn fossil fuels, and this produces carbon dioxide. The carbon dioxide prevents

radiated heat energy from leaving the earth’s atmosphere. This increases global
temperature.

d. Car engines run hot, and this produces carbon dioxide. But the carbon dioxide cools
quickly, and it does not affect the global temperature.



Short Answer Questions: Answer the following questions clearly, and use a complete
step-by-step approach as shown in the example below to answer your question. Start each
step on a separate line.  NOTE: You may not need as many steps as are available on the
answer lines.

EXAMPLE: Because of interdependence in an ecosystem, a change in the population of one
species can have effects through the ecosystem.  Explain, step-by-step, how wolves affect
the amount of grass in the ecosystem?

Step 1: Wolves eat deer, so more wolves would reduce the number of deer.

Step 2: Deer eat grass, so fewer deer would increase the amount of grass.

Step 3: <EXAMPLE PROBLEM – DO NOT FILL IN>

Step 4: <EXAMPLE PROBLEM – DO NOT FILL IN>

Therefore, when the wolf population increases the amount of grass will increase.

8. We know that deforestation (cutting down a large number of trees) increases the earth’s
absorbed heat energy.
Explain, step-by-step, how deforestation increases the earth’s absorbed heat energy.

Step 1: Deforestation reduces the number of trees on the earth, so more deforestation would

decrease vegetation.

Step 2: When vegetation decreases, …

Step 3:

Step 4:

Therefore, deforestation causes an increase in the earth’s absorbed heat energy.



9. Explain, step-by-step, how increases in global temperature would affect coastal flooding.

Step 1:

Step 2:

Step 3:

Step 4:

Therefore,



10. Explain, step-by-step, how carbon dioxide affects global temperature.

Step 1:

Step 2:

Step 3:

Step 4:

Therefore,



Betty’s Brain POST-SURVEY

Name ___________________________________________________

Date ______________

VU DoD - March 2022



Motivation

Instructions

This survey will help us to know your views on learning about climate change with Betty’s
Brain. Please circle the number corresponding to your response for each statement.

Serial
no.

Statement

Response to statement
Strongly      Disagree        Neutral        Agree           Strongly
Disagree                                                                         Agree

(1)                  (2)                 (3)                (4)                (5)

1. I think that learning
about climate change
is important because

it stimulates my
thinking.

1                    2                    3                   4                   5

2.
In science, I think it is

important to
participate in inquiry

activities.

1                    2                    3                   4                   5

3.
When science

activities are too
difficult, I give up or

only do the easy parts.

1                    2                    3                   4                   5

4. During science
activities, I prefer to
ask other people for

the answer rather than
think for myself.

1                    2                    3                   4                   5



Serial
no.

Statement

Response to statement
Strongly      Disagree        Neutral        Agree           Strongly
Disagree                                                                         Agree

(1)                  (2)                 (3)                (4)                (5)

5.
When I find the
science content

difficult, I do not try
to learn it.

1                    2                    3                   4                   5

6.
No matter how much

effort I put in, I
cannot learn science.

1                    2                    3                   4                   5

7.
I enjoyed teaching my

“student” about
climate change in

Betty’s Brain.

1                    2                    3                   4                   5

8.
It was challenging to

work on Betty’s
Brain.

1                    2                    3                   4                   5

9.
The hints given by

Mr. Davis were
helpful in teaching

my “student”.

1                    2                    3                   4                   5



Climate Change

Instructions

This survey will help us find out what you know about climate change. Please answer every
question as best as you can.

Multiple choice questions: Choose the Best Answer

1. What is the greenhouse effect?
a. The atmosphere of the earth traps some radiated heat energy and reflects it back to the

earth. This makes the earth warmer.
b. The atmosphere of the earth is reflective and keeps sunlight away from the earth’s

surface. This light reflection keeps the earth from getting too hot.
c. The atmosphere acts like a magnifying glass. This makes the light stronger and makes the

earth hotter.
d. The atmosphere traps pollution from cars and factories. Over time, the air will become

more polluted and the earth will get warmer.

2. Light from the sun comes to the earth and its energy is absorbed by the atmosphere.
What is the relation between this absorbed light energy and heat energy absorbed by the
earth?

a. Absorbed light energy increases the amount of absorbed heat energy.
b. Absorbed light energy decreases the amount of absorbed heat energy.
c. Absorbed light energy does not change the amount of absorbed heat energy.
d. Absorbed light energy is not related to absorbed heat energy.

3. Clouds are made up of water vapor. How does condensation of water vapor in clouds
affect precipitation?

a. Condensation and precipitation are not related.
b. Condensation decreases precipitation.
c. Condensation increases precipitation.
d. An increase in condensation may increase or decrease precipitation.

4. What is the main greenhouse gas created in landfills?
a. Carbon dioxide
b. Methane
c. Oxygen
d. All of the above



5. How does vegetation affect the amount of carbon dioxide in the atmosphere?
a. Vegetation produces carbon dioxide through the process of photosynthesis, which

increases the amount of carbon dioxide in the atmosphere.
b. Vegetation releases water vapor through the process of photosynthesis. The vapor

bonds with carbon dioxide, which reduces the amount of carbon dioxide in the
atmosphere.

c. Vegetation absorbs carbon dioxide as part of the process of photosynthesis, which
reduces the amount of carbon dioxide in the atmosphere.

d. Vegetation produces oxygen because of photosynthesis, but it does not affect the
amount of carbon dioxide in the atmosphere.

6. How does an increase in carbon dioxide affect sea ice?
a. Carbon dioxide is absorbed by sea ice. This increases the melting point of sea ice and

more sea ice melts.
b. Carbon dioxide reflects heat radiated from the earth back to earth. This radiation

keeps the earth cool, and so it decreases the amount of sea ice that melts.
c. Carbon dioxide forms a shield around the earth. This protects solar energy from

heating the ice caps, so less sea ice melts.
d. Carbon dioxide reflects heat radiated from the earth back to earth. This radiation

increases the earth’s temperature, and more sea ice melts.

7. Which statement best explains how driving more cars affects global temperature?
a. Car engines run hot. This increases the surrounding temperatures. The more cars we

drive, the higher the global temperature.
b. Cars burn fossil fuels, and this produces carbon dioxide. The carbon dioxide prevents

solar energy from entering the earth’s atmosphere. This reduces global temperature.
c. Cars burn fossil fuels, and this produces carbon dioxide. The carbon dioxide prevents

radiated heat energy from leaving the earth’s atmosphere. This increases global
temperature.

d. Car engines run hot, and this produces carbon dioxide. But the carbon dioxide cools
quickly, and it does not affect the global temperature.



Short Answer Questions: Answer the following questions clearly, and use a complete
step-by-step approach as shown in the example below to answer your question. Start each
step on a separate line.  NOTE: You may not need as many steps as are available on the
answer lines.

EXAMPLE: Because of interdependence in an ecosystem, a change in the population of one
species can have effects through the ecosystem.  Explain, step-by-step, how wolves affect
the amount of grass in the ecosystem?

Step 1: Wolves eat deer, so more wolves would reduce the number of deer.

Step 2: Deer eat grass, so fewer deer would increase the amount of grass.

Step 3: <EXAMPLE PROBLEM – DO NOT FILL IN>

Step 4: <EXAMPLE PROBLEM – DO NOT FILL IN>

Therefore, when the wolf population increases the amount of grass will increase.

8. We know that deforestation (cutting down a large number of trees) increases the earth’s
absorbed heat energy.
Explain, step-by-step, how deforestation increases the earth’s absorbed heat energy.

Step 1: Deforestation reduces the number of trees on the earth, so more deforestation would

decrease vegetation.

Step 2: When vegetation decreases, …

Step 3:

Step 4:

Therefore, deforestation causes an increase in the earth’s absorbed heat energy.



9. Explain, step-by-step, how increases in global temperature would affect coastal flooding.

Step 1:

Step 2:

Step 3:

Step 4:

Therefore,



10. Explain, step-by-step, how carbon dioxide affects global temperature.

Step 1:

Step 2:

Step 3:

Step 4:

Therefore,



Feedback

Instructions

Through this survey, we want to get some feedback from you about your experience with the
Betty’s Brain climate change unit and your feelings about science learning. This will help us
improve Betty’s Brain to better support your needs.

Please circle your choice for each question/statement.

Serial
no. Statement Choice

1. How hard was the
Betty’s Brain unit on
climate change?

Very Difficult     Difficult          Neither        Easy           Very Easy

2. How familiar were
you with the science

concepts in the
Climate Change unit?

Very Difficult     Difficult          Neither        Easy           Very Easy

3. Mr. Davis’s feedback
during the Climate
Change unit was

helpful.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

4. It wouldn't bother me
at all to take more
science classes.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

5. I have usually been at
ease during science

tests.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

6. I have usually been at
ease in science

courses.
Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

7. I usually don't worry
about my ability to

solve science
problems.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree



8. I almost never get
uptight while taking

science tests.
Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

9.
I get really uptight

during science tests.
Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

10. I get a sinking feeling
when I think of trying

hard science
problems.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

11. My mind goes blank
and I am unable to
think clearly when

working on science.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

12. Science makes me
feel uncomfortable

and nervous.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree

13.
Science makes me

feel uneasy and
confused.

Strongly Agree     Agree       Undecided    Disagree     Strongly Disagree
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