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CHAPTER 1

Introduction

1.1 Motivation

In the last few decades, structural health monitoring (SHM) has gained a lot of momentum as a means of

detecting and localizing damages Sohn et al. (2002). The introduction of machine learning (ML) into SHM

enabled further refinement as mature pattern recognition techniques provide higher accuracy in recognizing

structural damages compared to traditional methods (Farrar and Worden, 2012). Among many ML appli-

cations, supervised methods are particularly useful (Kiranyaz et al., 2019). Especially, when coupled with

artificial neural networks, supervised learning offers promising results for damage detection and localiza-

tion (Park et al., 2009; Dackermann et al., 2013; Nick et al., 2015).

A majority of supervised SHM applications assume that the data used for training the damage condition

classifier has the same distribution as the testing data. However, this assumption is problematic. It is un-

realistic that one can obtain data belonging to a particular damage condition without actually harming the

integrity of the structure before its service (Lu et al., 2016; Gardner et al., 2020). We can generate a labeled

data set using a representative physics-based finite-element model (FEM) where introducing damages is a

more cost-effective approach and we can train a black-box machine learning model using this data. On the

other hand, calibrating a large set of FEM parameters for complex systems to achieve accurate physical be-

havior is often computationally exhaustive and at times infeasible Zhang et al. (2020). As a result of this, the

analytical representation inherits some modeling error. In this case, it is expected that the ML algorithm will

fail to perform effectively during testing since the simulation training data and experimental testing data are

statistically divergent (Gardner et al., 2020). To address this drawback of data-driven black-box algorithms,

the inference should incorporate either a knowledge transfer from simulation data to experimental data or

domain-specific physical knowledge, or both.

In engineering, the performance of a design is usually validated through a comprehensive analysis. As

mentioned above, this analysis may involve complex computer simulations such as FEMs as they are known

to predict the behavior of physical systems to some fidelity and to provide valuable insight into the design

process. On the other hand, running high-fidelity simulations is computationally demanding. Especially, in an

iterative design process, where broad design space is explored, running simulations repeatedly is exhaustive

and extremely time consuming (Audet et al., 2000). Instead of this cost-prohibitive approach, it is necessary

to develop a surrogate model that is capable of approximating the simulation outputs. Naturally, we expect
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this surrogate model to evaluate given inputs relatively faster compared to a high-fidelity simulation making

the design process accelerated and more affordable where computational budget is limited.

1.2 Research Challenges

As discussed above, for typical damage identification and classification tasks, our access to labeled exper-

imental data is limited, yet we can create abundant simulation data. While the domain adaptation (DA)

approach is capable of transferring knowledge from the simulation domain to the experiment domain, this

process may suffer from negative transfer learning as well. In this context, negative learning refers to the

decline in classification performance due to poor knowledge transfer. As a result of this, we may observe a

performance degradation in predictions for some classes.

Another alternative for reducing the statistical differences between simulation and experiment domains

is infusing the machine learning algorithm with physics-based knowledge that can generalize well over both

domains and guiding the learning process. One important challenge for physics-guided learning (PGL) is

selecting the physical knowledge that is most significant for the task and the method to introduce this knowl-

edge into the training process. This work explores the use of modal parameters as intermediate layers for

damage localization tasks. However, our findings show that PGL architecture may suffer from a peculiar is-

sue called the choking effect resulting in a classification quality degradation when the number of intermediate

layer parameters is small. Accordingly, our objective should be to improve the prediction performance by

extending PGL’s learning capability and capacity. To achieve this aim, we should consider integrating DA

into PGL.

Another challenge attributed to machine learning, in particular, neural networks, is the lack of inter-

pretability. PGL uses human-recognizable physics-based knowledge during the training process. As a nat-

ural result of this property, PGL has the capability to relate the damage condition of the target structure to

the physical parameters. However, it is still a challenge how to establish a relationship between predicted

damage condition and the physics of the system that will reveal the most informative interpretation.

Another component of the work presented here is concerned with generating designs through surrogate

modeling. A majority of neural network based surrogate modeling methods usually applies a data-driven

black-box modeling. While the black-box techniques are very efficient and accurate as surrogates in predict-

ing the responses, they may often fail in generalizing over the less explored design areas. Moreover, they

may not be transparent enough to provide an explanation for the user exploring the design space. This re-

search seeks to address these challenges by integrating PGL into the surrogate model and improve the model

explainability.
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1.3 Contributions

In this proposal, our core work mainly focuses on the following problems: (i) domain adaptation problems

where target domain data is very limited, (ii) the integration of physics-based knowledge into the machine

learning process, (iii) interpretability of deep networks through physics-guided learning, and (iv) the develop-

ment of surrogate models using physics-guided learning to eliminate the high cost of complex computational

simulations.

The main contributions are listed below:

Chapter 3

In this chapter, we proposed an approach for detecting novelties in structures using their model properties

such as mode shapes and natural frequencies. The main contributions are:

• We proposed an end-to-end architecture to detect damage under environmental uncertainty using ma-

chine learning. The proposed approach streamlines (a) collection of structural response data, (b) modal

analysis using system identification, (c) auto-encoder, and (d) novelty detection. The proposed sys-

tem aims to extract latent features of accessible modal parameters such as natural frequencies and

mode shapes measured at undamaged target structure under temperature uncertainty and to reconstruct

a new representation of these features that is similar to the original using auto-encoders. The devia-

tion between measured and reconstructed parameters, also known as the novelty index, is the essential

information for detecting critical changes in the system.

• We evaluated our approach through simulations and experimental tests. The results demonstrate that the

effectiveness of the damage detection under temperature variability improves significantly compared

to the previous damage detection algorithms in the presence of environmental variability. Especially

for small damages, the proposed algorithm performs better in discriminating system changes.

Chapter 4

In this chapter, we developed a domain adaptation approach to localize and classify damages in structures

where the classifier has access to the labeled training (source) and unlabeled test (target) domain data, and

the source and target domains are statistically different. The main contributions are:

• We proposed a domain adaptation method to form a domain-agnostic feature space that is capable of

representing both source and target domains by implementing a domain-adversarial neural network.

This neural network uses H-divergence criteria to minimize the discrepancy between the source and
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target domain in a latent feature space. Compared to the popular methods such as Transfer Component

Analysis (TCA), the domain adversarial network provides a better generalization across both domains.

• We evaluated the performance of the proposed method using (1) gearbox system data, and (2) a three-

story experimental structure. We demonstrated the effectiveness of the domain adaptation by comput-

ing the damage classification accuracy for the unlabeled target data with and without domain adapta-

tion. Furthermore, the performance gain of the domain adaptation over TCA is also shown. Overall, the

results demonstrate that the domain adaption is a valid approach for SHM applications where access to

labeled experimental data is limited.

Chapter 5

In this chapter, we propose PGL by integrating physics knowledge into machine learning and constraining

the training process. In summary, the major contributions of this work are:

• We propose a PGL approach that combines the power of data-driven machine learning with physics-

based models. Specifically, the proposed architecture integrates physical parameters extracted from the

physics-based simulation into the neural network in the form of intermediate layers to constrain the

learning process. To accommodate the intermediate layers, the architecture introduces physics-based

loss into empirical loss function. PGL is especially useful for cases where it is challenging to develop a

reliable black-box learning model due to the lack of training data originating from the real system. We

can generate extensive training data using simulators. While this data may be statistically somewhat

different than the true system behavior, PGL is encoded with domain knowledge, and it is capable of

predicting the true system response using this encoding.

• We demonstrate the effectiveness of the proposed approach in two different use cases where the task is

localizing and classifying the damage for a given set of structural responses. Here, we assume that we

don’t have access to the experimental structural responses or the damage classes. But we can generate

responses and corresponding damage location labels using a numerical representation of the actual

system. Our architecture is trained using this numerical data. Additionally, the architecture is infused

with domain-specific physics knowledge by extracting modal properties such as natural frequencies

and mode shapes from the numerical model and using these features in intermediate variable layers.

Our results show that the accuracy for localizing the damage correctly improves significantly over

black-box models.

• The physics-based intermediate layers improve learning during training. Another benefit of the in-

termediate layer is that it provides additional feature information during testing that was previously
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not available for black-box models. In this way, our proposed architecture improves the explainability

of the results since the intermediate layers expose valuable information that is highly relevant to the

physics of the target structure. To demonstrate the effectiveness of this capability, we propose a method

for analysis and interpretation of the intermediate results and their relevance to predicted classes. We

show that our interpretability method can lay out the relationship between predicted modal properties

within the intermediate layers and the predicted damage class for testing data effectively. Our findings

indicate that the misclassified instances could be explained through the characterization of predicted

natural frequencies.

Chapter 6

In this chapter, we extend the capability of PGL and DANN by fusing the two architectures together to

improve generalization capability of deep networks. The main contributions are:

• We develop a multi-task deep learning architecture that ingests domain adaptation and physics-based

domain specific knowledge into the training procedure.

• We evaluate the performance of this proposed method by comparing the damage classification accuracy

to the black-box model, PGL architecture, DANN implementation, and the proposed PGL-DANN

method.

Chapter 7

In this chapter, we propose a method for improving interpretability and explainability of deep learning ar-

chitectures through physics-guided learning using layer-wise relevance propagation (LRP). In summary, the

major contributions of this work are:

• We propose a set of relevance rules for LRP that is most significant (or human-recognizable) for ex-

plaining the relationship between modal properties (intermediate layers) and damage.

• We evaluate LRP results by qualitatively analyzing the relevances and comparing our findings to tradi-

tional qualitative approaches.

Chapter 8

In this chapter, we propose a PGL-driven surrogate modeling approach to generalize the surrogate over the

design space The main contributions are:

• We propose a simple method to explore the design space for a domain specific application and to train

a physics-guided surrogate model.
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• We evaluate the surrogate model of various design using explainable AI through LRP.

1.4 Organization

The content of the proposal is organized as follows:

• Chapter 2 reviews the literature on novelty detection, domain adaptation, physics-guided learning, and

surrogate models.

• Chapter 3 discusses the problem of detecting damage in structures using auto-encoders.

• Chapter 4 discusses the problem of domain adaptation towards damage localization when limited target

data is available for training.

• Chapter 5 discusses the problem of physics-guided learning using intermediate value layers and the

integration of domain adaptation into the learning phase.

• Chapter 6 discusses the problem of integrating physics-guided learning with domain adaptation.

• Chapter 7 discusses the problem of the interpretability for neural network models through physics-

guided learning.

• Chapter 8 discusses the problem of physics-driven surrogate modeling.

• Chapter 9 concludes the dissertation and discusses the results in general.
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CHAPTER 2

Related Work

Within the last decade, the research on fault detection and isolation (FDI) has gained momentum with the

recent advancements in machine learning (ML). One of the grand challenges for FDI applications is access

to complete training dataset covering a wide range of conditions of the target system (Widodo and Yang,

2007; Farrar and Worden, 2012; Stetco et al., 2019; Zhang and Sun, 2021). This problem is a major road-

block in developing efficient data-driven algorithms for diagnosing dynamic systems properly (Sadoughi and

Hu, 2019). It is imperative to develop effective methodologies to mitigate the shortcomings of ML-based

FDI. In this chapter, we review the related work in the area of physics-guided learning, domain adaption,

and surrogate modeling. This chapter opens up with novelty detection which is the necessary first step for

detecting faults in dynamic systems, discussed in Section 2.1. Section 2.3 reviews the work on the integration

of physical knowledge into the data-driven ML to improve the overall performance and accuracy. Section 2.2

discusses the domain adaptation problems to treat the differences between source and target domains. Finally,

Section 2.4 discusses the literature on surrogate modeling. Figure 2.1 summarizes the taxonomy of the work

discussed in this chapter.

2.1 Novelty Detection

Within the context of FDI, novelty detection refers to the ML applications to automatically recognize the

health state and detect faults on dynamic systems such as machines or structures. In this section, we first

introduce the general process of novelty detection (see Figure 2.2) which involves prior steps such as data

collection, and feature extraction. Then, we discuss the traditional novelty detection methods which do

not utilize neural networks. finally, we review the work on neural network-based approaches. Conformal

detection techniques are omitted since it is out of scope.

2.1.1 Data Collection and Feature Extraction

The first step for novelty detection is collecting data from the target structure. Typically, a variety of sensors

are mounted on the target structure to gather measurements from the system continuously. Depending on the

application, the type of the sensor is customized. The mainstream practice towards fault detection utilizes

vibration data through accelerometers. For example, the health condition of gearbox systems (Phm Society,

2009) and civil structures (Caicedo et al., 2004) can be monitored using vibration data. Other novelty detec-

tion methods focusing on crack detection use acoustic emission data captured with piezo-like sensors. The
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Figure 2.1: Summary of related work

Figure 2.2: Novelty detection
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combustion faults in engines due to failure (Fuentes et al., 2020), dealignment in composite materials (Marec

et al., 2008), and internal cracks in concrete (Mason et al., 2016) are some examples that utilize acoustic

emission data.

The next important step is the feature extraction and selection process. The commonly used features

are sensor data in time, frequency, or time-frequency domain. Time-domain features can be composed of

unprocessed data, or statistical features such as mean, standard deviation, peak value, etc. (Lei et al., 2010).

Frequency domain features are obtained through frequency domain analysis techniques such as operation

modal analysis (Ozdagli and Koutsoukos, 2019). Lastly, time-frequency domain features are obtained through

wavelet transformations (Chen and Zhan, 2008).

2.1.2 Traditional methods

Before the introduction of neural networks, the traditional ML-based approaches were utilized frequently to

detect the damage in dynamic systems. These approaches can be categorized under two main classes: i)

SVM; ii) other methods encapsulating k-Nearest Neighbor (kNN); decision trees (DT); Bayesian classifier

(BC).

SVM (Cortes and Vapnik, 1995) is a supervised learning method mainly used to separate classes for a

given dataset. SVM is very suitable for novelty detection since the problem can be converted into a healthy

vs damaged classification problem according to the definition of SVM. There is a wide range of SVM appli-

cations that also integrate various optimization algorithms for better detection. Lei et al. (2020) summarize

some of the SVM-based novelty detection.

kNN (Cover and Hart, 1967) is another supervised learning method for classification. kNN transforms

the given data into a feature vector based on the Euclidean distance. Data that share similar features are

expected to be close to each other such that they can be categorized under the same label. Lei and Zuo (2009)

and Dong et al. (2017) studied the effectiveness of kNN approach in detecting damage for gear systems and

bearings. Lei et al. (2020) argue that kNN algorithms are not popular for damage detection as they require

heavy computational power for large datasets. Additionally, the performance is not very good since there is

no clear boundary between classes. On the other hand, Škvára et al. (2018) have shown that kNN is on bar

with modern ML tools both in terms of performance and computation times.

DT is a classification algorithm that uses a tree-like structure to establish a relationship between features

and the health of the system. Mariniello et al. (2020) developed a damage detection and localization algorithm

using DTs on vibration data. Sun et al. (2007) and Amarnath et al. (2013) exploited DTs for rotary machines

and bearings, respectively.

BC is a probabilistic classifier that uses conditional probability between features. BC is used by Yu
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et al. (2018) to detect the health state of a gearbox, by He et al. (2014) to detect the fault in steel plates,

by Muralidharan and Sugumaran (2012) to diagnose pumps, finally by Sharma et al. (2015) to analyze the

damage state of roller bearings.

2.1.3 Deep Networks

While traditional methods are mature and well-researched, they are susceptible to long training time, es-

pecially when the dataset is large. The advancement in sensing technology and internet-of-things devices

increased the volume of the data significantly such that traditional methods may be incompetent to be ef-

fective. Compared to traditional methods, deep networks are flexible for learning non-linear relationships

between the input (time, frequency, or time-frequency domain features) and output (health state of the struc-

ture). The optimization algorithms such as batch gradient descent allow fast convergence to minimize the

error between predicted and actual damage class. There are four different approaches for deep networks: i)

Auto-encoders (AE) ii) convolutional neural network (CNN) iii) deep belief networks (DBN), and iv) residual

networks (ResNET).

AE learns a reduced-order representation of the actual input through encode-decoder structure in a semi-

supervised manner (Rumelhart et al., 1985). AE is expected to learn the latent features of the undamaged

system such that it can recreate a given input. The error between the input and recreated output constitutes

the novelty. If a given input does come from a damaged system, the error will be high indicating the system

is damaged. Stacked AE architectures are studied to learn the latent features of frequency-domain data by

various researchers (Jia et al., 2016), (Lu et al., 2017), (Liu et al., 2016a) (Xia et al., 2017). Generative AE,

specifically, variational AE are also explored by (Ma et al., 2020).

CNN (LeCun et al., 1999) is a commonly-used architecture for damage classification applications. Com-

pared to other deep networks, CNNs allow learning latent features directly from raw time- (Lin et al., 2017),

frequency- (Jing et al., 2017), and time-frequency (Islam and Kim, 2019) domain without further process-

ing. Depending on the application, 1D (Avci et al., 2017, 2018) or 2D (Gulgec et al., 2019, 2017) CNN

architecture can be used to properly classify the damage.

DBN is also explored towards the detection of novelties. Xie et al. (2018) and Tang et al. (2018) utilized

DBN with Nesterov moment (NM) to extract features from rotating machinery and detect bearing damages.

Shao et al. (2017) used convolutional DBN (CDBN) with an exponential moving average applied to the

learning algorithm, to detect damage of rolling bearings. Guo et al. (2020) studied the applicability of DBN

for damage identification of bridges susceptible to noisy and incomplete data.

ResNET gained momentum in recent years since it provides a more versatile architecture through residual

blocks and promises better generalization for deep networks (He et al., 2016). ResNet is still a developing
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notion within the novelty detection area. Some notable applications focus on the use of time-frequency

domain data (Zhao et al., 2017, 2018; Ma et al., 2019).

2.2 Domain Adaptation

Machine learning algorithms, whether it is supervised or unsupervised, assume that the training and testing

data come from the same distribution. In time, the test distribution may change which renders the model

ineffective. Often, the ML algorithm needs to be retrained for optimal performance. In some situations,

obtaining new labeled data for retraining is very costly if not impossible. To remedy this main drawback of

ML, a novel approach known as transfer learning gained a lot of interest in the last few decades.

2.2.1 A Brief Discussion on Transfer Learning

Transfer learning covers a broad set of topics (see Figure 2.3). Pan and Yang (2009) categorized the type of

transfer learning based on what data is available during training. According to this setting, D is the domain

and it is defined by its components; the feature space (X), and the marginal probability distribution, P(X).

Given a domain, D = {X ,P(X)}, a task, T is described in terms of the label space, y, and a predictor function,

f (·). In this context, for a given task, T = {y, f (·)}. f (·) is trained on {xi,yi} where xi ∈ X and yi ∈ Y . For a

given xi in a test data set, f (·) predicts yi. This predictor function can be also described as P(Y |X).

Figure 2.3: An overview on transfer learning - slightly adopted from Pan and Yang (2009)

Pan and Yang (2009) simplifies the definitions further such that the source domain data and target domain

data can be represented as DS = {(xS1 ,yS1 , . . . ,xSnS
,ySnS

)} and DT = {(xT1 ,yT1 , . . . ,xTnT
,yTnT

)}, respectively.

Here, nS and nT correspond to the number of samples in source and target domains, respectively.

Transfer learning implies that DS ̸= DT or TS ̸= TT . When the source and target domains are not matching

(i.e. DS ̸= DT ), then XS ̸= XT or PS(X) ̸= PT (X). Likewise, when the tasks do not match across domains

(i.e. TS ̸= TT ), then YS ̸= YT or PS(Y |X) ̸= PT (Y |X). For any case, the aim of transfer learning improving the

prediction of target predictor, fT (·) over DT using the knowledge DS and TS.

For inductive transfer learning, tasks for source and target domains are different, whereas marginal distri-

butions of input features may be the same, though this requirement is not imperative. The main assumption

11



for inductive learning is that labeled data is available in the target domain. This data is used to induce a

predictive model, fT (·) without retraining (Soares, 2011).

In unsupervised transfer learning, no labeled data is available in source and target domains. The tasks are

different but somewhat related, in the sense that we are trying to achieve unsupervised learning. This type of

transfer learning usually focuses on clustering and dimension reduction problems.

Lastly, for transductive learning, the tasks for both domains are the same but marginal distributions do

not match. In this type of learning, we have access to labeled source data and the target data is not labeled. If

only a single domain and a single task are involved in the knowledge transfer, the problem can be reduced to

covariate shift (Sugiyama et al., 2007). This statement also implies that the conditional probability of source

and target domains does not change, (i.e. PS(Y |X) = PT (Y |X)) for covariate shift problems. According to

Pan and Yang (2009), domain adaptation problems are specific transductive learning cases, where the target

domain diverges from the source domain (DS ̸= DT ). Redko et al. (2020) generalize domain adaptation to

include covariate shift.

Figure 2.4: Picking the right transfer learning - slightly adopted from Redko et al. (2020)

2.2.2 Conventional Adaptation

Conventional domain adaptation methods simplify the definition of transfer learning by assuming the con-

ditional probability over the source and target domain remain the same (PS(Y |X) = PT (Y |X)), while the

marginal distributions over X are different (PS(X) ̸= PT (X))

According to the information criteria discussed by Shimodaira (2000), the optimal weights for the trans-

ferred model can be obtained by minimizing the expected learning loss by computing the ratio between PS(X)

and PT (X) as following:

θ̂ = argmin
θ

[
1
n

n

∑
i=1

(
PS(xi)

PT (xi)

)λ

l(xi,yi, f̂ (xi,θ))

]
(2.1)
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Here, θ is the weights for the model trained with source data; θ̂ is the weights for the transferred model;

f̂ (·) is the model to be transferred; l(·) is the loss function for the given samples; and λ is a parameter to

adjust the probability ratio. This approach is also known as importance reweighting since the empirical loss

is reweighted based on the probability of the given input data. Sugiyama et al. (2007) extended this approach

by integrating cross-validation error to remove classification bias.

Importance reweighting (see Equation 2.1) requires the estimation of distributions. Another way to match

the covariate distributions between source and target domains is obtaining the sample weights using a high-

dimensional feature space without computing the empirical distributions. Huang et al. (2006) and Gretton

et al. (2009) proposed the Kernel Mean Matching method (KMM) which reweights the source data to match

the means of source and target data after mapping them to a Reproducing Kernel Hilbert Space (RKHS).

Other methods Gretton et al. (2006) proposed a similar approach called Maximum Mean Discrepancy (MMD)

where the objective is finding an RKHS space that minimizes the discrepancy between means of source and

target data. This method is regarded as valuable since it is one the of early works that focus on discovering

a latent feature representation across both domains. Another well-known method called Transfer Component

Analysis (TCA) utilizes MMD to learn transfer components (as in principal components) to reduce the dif-

ferences in both source and target domains when projected using these components (Pan et al., 2010). MMD

specifically focuses on matching the marginal distributions. When there is a discrepancy in conditional distri-

butions, MMD does not ensure effective transfer. Long et al. (2013) proposed Joint Distribution Adaptation

(JDA) to improve the transfer quality further by introducing MMD over conditional distributions. Another

notable kernel matching method is investigated by Gong et al. (2012). The so-called Geodesic Flow Kernel

(GFK) derives a low-dimensional domain-invariant representation from an infinite-dimensional subspace. Si

et al. (2009) proposed transfer subspace learning (TSL) that uses Bregman divergence-based discrepancy as

an alternative to MMD. Long et al. (2013) noted that the low-dimensional representation may not be descrip-

tive enough for some domain adaptation problems. Likewise, TSL is remarked as computationally exhaustive,

compared to the other domain adaptation methods.

2.2.3 Adaptation for Deep Networks

Many of the conventional approaches discussed in the previous section are adopted for deep neural networks.

For example, Deep Domain Confusion by Tzeng et al. (2014) and Deep Adaptation Network by Long et al.

(2018) explored the use of MMD within the loss function to find and optimize domain-invariant RKHS.

Similarly, Lu et al. (2016) implemented MMD to reveal domain-invariant features towards detecting faults in

a gear system working in a variety of loads and speeds. Yan et al. (2017) proposed weighting MMD to treat

the class weight bias for deep networks. Other metrics such as Kullback-Leibler divergence (Zhuang et al.,
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2015; Lee et al., 2019b), Jensen-Shannon divergence (Zhao et al., 2019), and Wasserstein distance (Lee et al.,

2019a) also found their use in deep networks.

Particular domain adaptation applications exploit existing deep network designs to obtain domain-invariant

features that generalize well over both source and target domain. For example, autoencoders are known to be

an effective tool for dimension reduction and learning latent feature space for a given marginal distribution

Kramer (1991a). Zhuang et al. (2015) use autoencoders to learn the latent features that span over both source

and target domains and to minimize the distance between distributions. The encoded data is then used to

train a label predictor. Another approach is the integration of batch normalization (Ioffe and Szegedy, 2015).

Batch normalization is known to be effective in treating covariate shifts. This property is investigated by

various researchers to understand its use in domain adaptation problems. Li et al. (2016) proposed adaptive

batch normalization to improve the generalization of the network over source and target domain data. A sim-

ilar approach is pursued by Chang et al. (2019), where domain-specific batch normalization layers are used

during the training of the network.

2.2.3.1 Adversarial Training of Deep Networks for Domain Adaptation

In the last five years, with the introduction of adversarial networks, adversarial learning started to replace

metrics like MMD in minimizing the discrepancy between source and target domains. Zhang and Gao (2019)

categorizes the adversarial domain adaption into three categories: (i) gradient-reversal-based; (ii) minimax

optimization-based and; and (iii) generative adversarial net-based.

One of the earliest works that introduced gradient-reversal-based domain adaptation is by Ganin and

Lempitsky (2015). In this work, the so-called domain adversarial neural network (DANN) employs a multi-

task learning approach and is made of two main components. The first component is the class predictor that

extracts features during training and the loss associated with this part is LC. The second component acts

as a domain discriminator and predicts whether a sample is originating from the source or target domain.

The associated loss with this component is LD. A gradient reversal layer combines these two components.

During the forward propagation of the training phase, the network behaves likes a typical neural network.

On the other hand, during back propagation, the gradient reversal layer multiplies the gradients of LD with

a small negative value. This forces the network to maximize domain confusion and learn domain invariant

features. If a latent representation spanning across both domains is discovered, the domain discriminator

should not be able to predict the domain origin (as if all of the samples are coming from the source domain).

For some cases, gradient reversing may cause negative transfer since data may have complex multimode

structures. To alleviate the negative transfer, Pei et al. (2018) extended the DANN by introducing multiple

domain discriminators. In parallel, also Zhang et al. (2018b) proposed a very similar approach.
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In general, adversarial domain adaptation aims to minimize the class loss while maximizing the domain

loss. Tzeng et al. (2015) presented the domain adaptation as a minimax optimization problem where in

addition to domain discriminator and class losses, a domain confusion loss is introduced. Later, Tzeng et al.

(2017) proposed a new architecture called adversarial discriminative domain adaptation (ADDA). According

to this approach, where a neural network is initially trained on source data to predict the labels. This neural

network is composed of an encoder (a feature extractor) and a label classifier. The objective of this network

is to minimize class loss. In the next phase, the source encoder is coupled with a target encoder and a

discriminator. The objective of this network is to maximize domain loss. The weights of the source encoder

are fixed, whereas the target encoder is trained with unlabeled target data. The discriminator is expected

not to predict the correct domain label. Maximization of domain confusion should force the target encoder

to map features shared by the source encoder. During testing, the target encoder is coupled with a label

classifier which was initially trained with the source encoder. Lastly, Long et al. (2017) proposed a conditional

domain adversarial network (CDAN) which integrates domain-specific feature representation and classifier

via a multi-linear map.

There are a number of literature that exploits GAN for domain adaptation. For example, Hoffman et al.

(2018) introduced the Cycle-Consistent Adversarial Domain Adaptation model (CyCADA) which concep-

tualizes and minimizes semantic loss, image and feature level GAN losses, and task loss. Another popular

approach in this area is proposed by Bousmalis et al. (2017). In this work, the so-called PixelDA uses a

GAN to modify source domain images at pixel level as if they are drawn from the target domain. A domain

discriminator is trained with the modified source and real target data to maximize domain confusion such that

domain-invariant features can be learned by the GAN. In parallel, a task-specific classifier is trained on a real

and regenerated the source domain to predict the correct class for the given input. During testing, whether

the input is original source data or modified source data (altered to look like target data), or real target data,

the classifier is expected to label correctly. (Taigman et al., 2016) used a similar approach. However, the

emphasis is more on generating believable samples for the previously unseen (target) domain.

2.3 Physics-guided Learning

The ML tools for detecting novelties are well researched and mature. The majority of these applications

exercise a data-driven black-box approach that utilizes a large volume of experimental data obtained directly

from the actual dynamic system. One of the obstacles for such methods is often the availability of sufficient

training data Zhang and Sun (2021). More specifically, access to a complete a training dataset covering a wide

range of conditions is costly and in some instances impossible without actually damaging the system prior to

operation. This problem is a major roadblock in developing efficient data-driven algorithms for diagnostics
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of dynamic systems for many applications Sadoughi and Hu (2019).

For cases where training data captured from the field is limited, a data-driven black-box ML model could

be trained with simulation data. To compensate for the lack of experimental training data, a representative

analytical model can simulate the behavior of the system physics to some degree. While physics-based

analytical models are capable of generating extensive training datasets, the resulting ML algorithm should

still be evaluated with experimental testing data. Well-established analytical models are capable of simulating

the dynamic response of the target system Teughels and De Roeck (2005); Jaishi and Ren (2006). On the

other hand, calibrating a large set of parameters for complex systems to achieve accurate physical behavior

is often computationally exhaustive and at times infeasible Zhang et al. (2020). Eventually, the analytical

representation inherits modeling error to some degree. In this case, it is expected that the ML algorithm will

fail to perform efficiently during testing since the simulation training data and experimental testing data are

statistically divergent Gardner et al. (2020). To address this drawback of data-driven black-box algorithms,

the inference should incorporate domain-specific physical knowledge. The physics-guided learning (PGL)

which is essentially a hybrid approach aggregating data-driven inference with physical parameters has the

potential to leverage the performance of the condition monitoring further and to bridge the gap between

simulation and experimental domains.

In recent years, a number of PGL approaches have been proposed. The PGL literature can be categorized

into three mainstreams: (i) physics-guided loss function; (ii) residual modeling; and iii) hybrid ML. A more

extensive review of these approaches are surveyed by Willard et al. (2020)

2.3.1 Physics-guided loss function

One of the approaches to make ML physics-guided is incorporating physics constraints into the loss function.

The loss function for such systems can be simplified as:

Loss = Losstrn(Ytrue,Yprediction)+λLossphy(Y ′
true,Y

′
prediction) (2.2)

Here, Losstrn is the training loss, Lossphy is the physics constrained loss, and λ trade-off parameter to

weight between training and physics-guided loss. Depending on the problem definition, the training loss can

be localizing and quantifying the damage (class loss), or predicting the system response (regression loss). The

physics-guided loss often does not require new observations taken from the field. The data relating to this loss

can be derived through domain knowledge. The physics-guided loss aims to optimize the ML performance

by constraining the learning and regularizing the training.
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One of the early implementations for physics-guided learning is performed by Karpatne et al. (2017) for

estimating lake temperature for a given depth and time along with other parameters. Here, physics-guided

learning is achieved in two ways: (i) A hybrid-physics-data neural network model ( fHPD) is created where

the so-called drivers, D is a set of required parameters to make an observation and a physics-based model

generates an output, Yphy for the given D. This output (Yphy) is aggregated with D to form the feature vector,

X . The network is trained with an input-output pair, where the input is aggregated feature, X but the output is

the true observation, Y taken during the experiment. (ii) In addition to the hybrid neural network, a physics-

guided loss is added to the learning loss. To achieve the physics-guided loss, first, an auxiliary function

that computes the water density for a given time and depth is defined. According to the imposed physics,

the density should increase with increasing depth, but the relationship may be nonlinear. During training,

for each instance, the density is computed using the predicted Y for a given time. Then, the difference in

water density between a depth point and another subsequent (deeper) depth point is calculated. The density

differences that violate the imposed physics are averaged and added as a physics-guided loss.

As an extension to the previous approach, Jia et al. (2019) introduced recurrent neural network for pre-

dicting lake temperatures. In addition to density-based physics-guided loss, this network exploits another

domain-related loss. This loss is formulated as the absolute mean difference between the total lake energy

and the energy fluxes going into or out from the lake for a particular time frame. The total lake energy is com-

puted based on the lake temperature predicted by the architecture. The main advantage of both architectures

is that the method can generalize with a small amount of data. On the other hand, the architecture requires

real observations to achieve successful training.

Zhang et al. (2020) used a CNN to predict the response of a structure subjected to an earthquake. The

physics-based loss is defined as the summation of (i) L2 norm between the predicted velocity and the

derivative state output using graph-based tensor differentiator; and (ii) L2 norm of the equation of motion

(mẍ+ cẋ+ kx = 0) that needs to be satisfied. This method also requires experimental data for training.

Another set of architectures that employs physics-guided loss focuses on intermediate variables. The

concept of intermediate variable aims to create physics-informed connections among neurons by encoding

the physics-related auxiliary parameters into the neurons during the training. These auxiliary parameters are

usually not part of the input-output observation, but can be generated empirically or through analysis. The

training loss between expected and predicted intermediate physical parameters constitutes the physics-based

loss. For example, Daw et al. (2020) used this approach to predict lake temperatures. To predict drag force on

a particle suspension in moving fluids, Muralidhar et al. (2019) used intermediate variables such as pressure

and velocity fields, and shear and pressure components of drag force. However, this approach acts more like

a surrogate model since the observations are taken from a finite element model.
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The aforementioned methods focus specifically on regression problems. A damage classification problem

studied by Zhang and Sun (2021) couples a neural network with a finite element model updating method. This

network utilizes a physics-guided loss that is defined as the cross-entropy loss between the class predicted by

the neural network and the class that is estimated by FEM based on the modal properties extracted from the

observation. This method also assumes that the designer has access to some labeled experimental data.

2.3.2 Residual modeling

Another approach for incorporating physics knowledge into machine learning is the use of residual networks

(see Figure 2.5). This approach employs a model and a neural network in parallel. For a given input, X the

model makes a prediction, Yphy and we compute the modeling error, ε between the true value, Y and Yphy.

The neural network is trained with ε and X to make a prediction on the error, ε̂ . Here, ε̂ is used to minimize

the prediction error between Y and Ypred .

Figure 2.5: Neural network trained with model residuals

The residual models first were discussed by Thompson and Kramer (1994) in the context of modeling

chemical processes. The researchers aggregated a radial basis function network (RBFN) with a plant model

to estimate the state of penicillin fermentation reaction in time. Another early work by Forssell and Lindskog

(1997) focused on using ARX as the model and combine it with a neural network to predict residuals on a

water tank system. Xu and Valocchi (2015) used quantile regression forests and support vector regression

along with a physics-based model to provide a prediction interval for the flow of a groundwater system. The

regressor is trained with the residuals, and it is tasked to predict a bound on the flow based on the distribution

of prediction error. Lastly, Liu and Wang (2019) model residuals to train a set of neural networks to predict

the progression of heat (heat transfer problem), and temperature and phase for material phase transition.
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2.3.3 Hybrid Approaches

More general approaches combine physical models with neural networks that do not involve modeling of

residuals. Unlike residual modeling, these methods mostly focus on compensating the deficiencies of physics-

based models rather than proposing complete physics-guided learning. For instance, Parish and Duraisamy

(2016) used a neural network to augment models that have some deficient physics. They tested this hybrid

approach to correct the missing and deficient terms in a turbulent channel flow model. Zhang et al. (2018a)

combined a neural network with a problem-specific physics-based proxy-linear model to estimate voltage

magnitude and phase for IEEE 57-bus benchmark system. Yao et al. (2018) integrated a physics-based model

that is accurate in estimating energy and charge of long-range electrostatic physics with a neural network

trained on short-range observations. Similarly, Paolucci et al. (2018) proposed the use of neural networks

for short-period range prediction of ground motions whereas a physics-based model predicts the long-period

range. Chen et al. (2018) used a neural network to correct the air pollution estimations of a physics-based

model that is robust against major factors which evolve over time but not successful in accounting for minor

factors.

2.4 Surrogate Modeling

In engineering, the performance of a design is usually validated through a comprehensive analysis. This

analysis may involve complex computer simulations as they are known to predict the behavior of physical

systems in high-fidelity and to provide a valuable insight about the design process. On the other hand, running

high-fidelity simulations is computationally demanding. Especially, in an iterative design process, where

broad design space is explored, running simulations repeatedly is exhaustive and extremely time consuming

(see Figure 2.6).

Figure 2.6: Direct optimization using high-fidelity models - loosely adopted from Koziel and Leifsson (2013)

Instead of this cost-prohibitive approach, we can pursue constructing a surrogate model that is capable

of approximating the simulation outputs. Naturally, we expect this surrogate model to evaluate given in-

puts relatively faster compared to a high-fidelity simulation making the design process accelerated and more
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affordable.

2.4.1 Designing the experiment and Sampling the design space

A typical challenge associated with constructing accurate surrogate models is finding the best representation

that can generalize well across a wide design space. After all, the quality of the surrogate model heavily

depends on how the design space is sampled - or how the sampling void is filled (Bárkányi et al., 2021).

One naive method of sampling is called polling (Audet et al., 2000). In this mode, a grid space is created

across all dimensions for the available design parameters, and the design output space is created accordingly.

The vast collection of input and output space is then used for training the surrogate model in a supervised

learning way (see Figure 2.7). This type of training is also called one-shot modeling as all samples are

collected at once and sampling doesn’t involve optimization (Stephens et al., 2011). Instead, all samples

are assumed to have the same importance. The size of the grid may impact the overall performance of the

surrogate model (Davis et al., 2018). Additionally, the designer is often faced with computational limits

and cannot create a dense grid due to a budget. In the event of tight budget constraints, the samples can

be randomly drawn from the design space. McKay et al. (2000) proved that tracking the location of the

random sample and guiding the sampling process may yield more effective design space exploration. In

literature, this approach is known as the Latin hypercube sampling algorithm (LHSA). Owen (1992) studied

orthogonal arrays and Tang (1993) explored randomized orthogonal array-based LHSA and proposed some

optimizations. Loeppky et al. (2009) argue that by using the Gaussian process approach, one can have a

general idea about the design space. They proposed an informal rule where the number of runs for an effective

experiment design should be ten times the input dimension.

Figure 2.7: Polling from the sample space as in one-shot training

2.4.2 Sequential Design

In general, one-shot experiment design is easy to apply, as it is the most straight-forward way of filling the

void when there is no prior information is available regarding the design space. Whether design parameters

are sampled using a grid or randomly, the non-linear nature of the model response and the uncertainty of the

design space does not warrant a good representation. Furthermore, determining and selecting an optimal sur-
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rogate model often requires an exploration-exploitation mechanism depending on the expected outcome (Van

Der Herten et al., 2017).

To mitigate the drawbacks of blind polling, we can form our sample space iteratively. This so-called

sequential design approach first analyzes the previous and current sampled input-output pairs. Next, the

method decides on a new sample from the design space according to a criteria that describes how much

difficulty the surrogate model will have to represent the current space (see Figure 2.8). Crombecq (2011)

classified sequential design methods into four sections. Those are (i) input-based; (ii) output-based; and (iv)

model-based.

Figure 2.8: Conceptual illustration on sequential design - strongly adopted from Crombecq (2011)

2.4.2.1 Input-based Methods

The input-based methods mainly focus on the exploration of design space and use the information from

previous samples to decide on the next sample. One input-sample method is called the low-discrepancy

sequence (Hickernell, 1998). Instead of true random sampling, sequences can be generated artificially, where

samples are more evenly distributed. If a sequence has no discrepancy, it will be a simple grid. When there

is a low discrepancy, some randomization is observed. The convergence of discrepancy is usually defined

by the method used. Halton (Halton, 1964) and Sobol (Sobol’ et al., 2011) sequences are two of the most

popularly used low-discrepancy sequence methods.

According to the definition given above, Latin hypercubes have some sequential design properties, since

the randomization is guided to some degree based on previous samples. Qian (2009) proposed nesting subset

hypercubes into a Latin hypercube to make it more suitable for some sequential evaluations. Husslage et al.

(2005) and Rennen et al. (2010) investigated similar nested hypercube designs towards sequential designs.

Last but not least, other methods such as Voronoi-based design space exploration are studied by Crombecq

et al. (2009b). Additionally, Crombecq et al. (2009a) discussed Delaunay triangles as an alternative tessella-

tion for sampling. Finally, Crombecq et al. (2011b) studied a set of Global Monte Carlo methods that use the
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distances between samples as a convergence metric to cover most space.

2.4.2.2 Output-based Methods

These methods focus on a balance between exploration/search and exploitation/refinement of the design space

based on the sample input and full and/or surrogate model evaluation output values. Crombecq et al. (2011a)

proposed a sampling method called LOLA-Voronoi which combines a computationally slow gradient-based

local linear approximation (LOLA) algorithm for exploitation with the Voronoi sampling method designed

for exploration. They showed that LOLA-Voronoi can satisfy better space-filling properties than Latin hy-

percubes. Van Der Herten et al. (2014) and van der Herten et al. (2015) integrated fuzzy logic with LOLA-

Voronoi to make convergence faster while still having a performance comparable to LOLA-Voronoi.

Osio and Amon (1996) pursued an adaptive sequential sampling using Bayesian-based interpolation. In

some cases, Bayesian interpolation may give more weight to some design variables to the point that less

significant dimensions are ignored and they are not explored. To mitigate this problem, Farhang-Mehr and

Azarm (2005) extended Bayesian interpolation by identifying the irregular regions (i.e. regions where the

surrogate model may have issues) through a maximum entropy criterion. Kushner (1964) proposed a stable

search criterion for noisy outputs. Turner et al. (2007) proposed HyPerSample that provides multiple sam-

pling points per iteration. This approach can be advantageous compared to the methods that account only for

one dimension during sample generation. Another Bayesian entropy-based sample method called Sequential

Exploratory Experimental Design (SEED) is explored by Lin (2004).

2.4.2.3 Model-based Methods

The methods considered in this topic utilize previous samples, and full and surrogate model responses to

provide the next sample. Additionally, the model parameters may be tuned in parallel to make accurate

predictions and fewer sample selections. These methods are sometimes also referred to as adaptive sequential

sampling-based methods. One main drawback of these methods is that it is specific to the surrogate model

used for evaluating the samples.

For example, Gutmann (2001) and Jin et al. (2002) evaluated various sampling methods against RBF-

based surrogate models. Use of Kriging-based surrogate models for sample selection optimization based on

mean square error (MSE) and maximum entropy (ME) Kleijnen and Van Beers (2004). Liu et al. (2016b)

investigated Bayesian surrogate models for sample selection optimization. Busby et al. (2007) proposed an

adaptive sampling and model updating method based on local and global prediction errors. Gramacy and Lee

(2018) used a similar approach to sample the design space and to update parameters of the surrogate model

designed as Bayesian treed Gaussian process. Garbo and German (2017) proposed a method where various
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sampling methods are combined with an RBF-based surrogate model selection strategy. They showed that

adaptive tuning of the model along with the sample selection reduces the number of samples.

2.4.3 Surrogate modeling from physics-guided learning perspective

The previous section mainly focuses on how to design an experiment and how to sample the design space to

create an effective and representative surrogate model. In addition to the literature discussed above, surrogate

models based on extended RBF (Zhang et al., 2012), RBF networks (Bajer and Holeňa, 2010), Gaussian

process (Liu et al., 2013), smoothing spline (Ratto and Pagano, 2010), and SVM (Lal and Datta, 2018; Shi

et al., 2020) explored.

True engineering problems may have highly nonlinear system behavior. As a result, the aforementioned

surrogate models may not provide sufficiently high accuracy for high-dimensional problems. To address this

observation, new generation approaches started to adopt neural networks as surrogate models. For example,

aerodynamic shape optimization is a complex nonlinear problem that involves iterative geometry generation

and complicated computation fluid dynamics simulation. Zhang et al. (2021) proposed a neural network-

based surrogate model to optimize shapes faster. Another example focuses on predicting railroad bridge

displacements while a train is crossing. Understanding the interaction between the bridge and the train

usually involves sophisticated finite element models. Han et al. (2019) used a neural network as a surrogate

model to predict the bridge displacements. A notable work by Eason and Cremaschi (2014) generalizes the

use of neural networks as surrogate models for designing adaptive sequential design.

A set of physics-guided learning problems focus on creating reduced-order models using neural networks

to simulate the real system behavior. However, these approaches do not have a particular interest in reducing

the number of samples to create a representative design space. Nevertheless, they act as surrogate models.

For example, Kani and Elsheikh (2017) used residual recurrent neural networks to reduce the time complexity

of nonlinear ODE from O(n3) to O(n2) with minimal impact on prediction accuracy. San and Maulik (2018a)

and San and Maulik (2018b) used neural networks to predict closure terms in ODE which reduces the time

complexity for solving the equations. Lastly, Mohan and Gaitonde (2018) used LSTM to project the high-

dimensional dynamics of turbulent flows to a low-dimensional subspace.
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CHAPTER 3

Machine Learning based Novelty Detection using Modal Analysis

3.1 Introduction

In recent years, with the emphasis on reliability and sustainability, the interest in Structural Health Moni-

toring (SHM) has progressively grown. Operations of maintenance, repair, and replacement (MRR) is an

integral part of the structure’s life-cycle (Rytter, 1993). With the aid of SHM, MRR can be prioritized such

that the infrastructure requiring immediate attention can be serviced first. However, due to the presence of

environmental and operational variability, it is challenging to develop a reliable damage detection method

that informs the performance of the structure accurately (Farrar and Worden, 2007, 2012). Such variations, if

overlooked, may lead to incorrect assessment of the structure and cause unnecessary economic loss and social

impact. There is still much need for dependable health monitoring approaches that will ensure sustainable

civil infrastructure.

Damage detection, also known as novelty detection, is, in essence, a method for discriminating significant

deviations of a structure from its initial baseline conditions (S., 2007). While ideally the change in the

structure can be detected by inspecting features such as natural frequencies, the environmental or operational

variations often pollute the baseline and prevent an accurate assessment of the change. Over the last few

years, with the advancements in affordable sensor technologies, SHM entered the era of big data Matarazzo

et al. (2015); Liang et al. (2016); Wang et al. (2018). As a result of this, machine learning algorithms started

to gain traction as a promising damage detection tool for explaining and modeling the relationship between

structural responses and integrity under temporally changing conditions while harnessing the power of big

data (Worden and Manson, 2006; Farrar and Worden, 2012; Lin et al., 2018).

Damage detection methods employing machine learning can be grouped into two classes: (i) parametric

; and (ii) non-parametric. The parametric approaches often rely on characteristic parameters obtained from

structural responses. Such methods often fuse one type of learning algorithms with a preprocessing feature

extraction algorithm. For example, system identification can be regarded as a preprocessing algorithm capa-

ble of computing features such as natural frequencies, mode shapes, and damping ratios of a structure from

raw data. A drastic change of the natural frequency is usually relatable to structural damage. The underlying

learning algorithm is expected to capture this damage. Likewise, modal analysis methods, such as cross-

correlation functions and frequency response functions can extract other strong features of the structure that

provide broader information over time and space (Wirsching et al., 2006). Parametric methods are advan-

24



tageous over their non-parametric counterparts since they don’t need to rely on a numerical model of the

structure.

For example, Sohn et al. (2001) developed a parametric novelty detection method that is capable of taking

the variations caused by ambient conditions such as a change in loading, temperature, etc. into account to

minimize false positive indicators. The method employs AANN to discriminate critical system changes

from ambient induced temperature variations. The network is trained via supervised learning to learn the

correlation between the variability in the ambient conditions and inherent changes driven by these conditions.

The proposed system is tested for a hard-disk model described as a transfer function and it is hypothesized that

it could be applied to civil structures. Worden et al. (2003) used a very similar approach involving an auto-

associative neural networks (AANNs) and novelty index and evaluated the approach using a more realistic

structural system such as a plate supported by stringers similar to a bridge deck. In this study, frequency

response functions are used as the input to the network. Novelty detection through machine learning is also

investigated for detecting damages of wind turbine blades under fatigue loading. For example, Dervilis et al.

(2012a) and Dervilis et al. (2012b) developed a noise tolerant AANN to evaluate the condition of CX-100

wind turbine blade. The frequency response functions were used in this study which is a similar approach

to Worden et al. (2003). Zhou et al. (2011) developed two neural networks, one Back Propagation Neural

Networks (BPNNs) and one AANN to detect the damage for Ting Kau Bridge in Hong Kong. The BPNN is

used to create a correlation model between damage-sensitive modal frequencies and temperature and AANN

is employed to characterize the healthy state of the bridge. After the field data is analyzed, an FE model of the

bridge is created and simulated to generate new monitoring data where damage was induced in various regions

of the model. In addition, the environmental effects are superimposed to the data. Gu et al. (2017) used the

modal frequencies of the target structure and the measured temperatures as the input for AANN to improve

the generalization capability. In addition, variations in the temperatures causing a change in the frequencies

are considered as the input during the training of the network such that false positives can be eliminated. The

study looked at the Euclidian distance between measured and estimated frequencies to calculate a novelty

index. Their proposed network is tested on a numerical model and in the laboratory on a small-scale test

structure. Deraemaeker and Worden (2018) compared the performance of Mahalanobis squared-distance,

and Principal Component Analysis (PCA) using real experimental data from a wooden bridge. The features

consist of eigenfrequencies and mode shapes measured under changing environmental conditions. Lee et al.

(2005) and Mehrjoo et al. (2008) considered a hybrid approach where a finite element model is established as

a baseline and neural network is trained to detect the damage based on the expected output of finite element

model. These approaches also utilized natural frequencies and mode shapes.

The non-parametric approaches do not require a baseline to establish from structural parameters prior to
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deployment and do not depend on the uncertainty of system identification or other modal analysis tools. Non-

parametric techniques are advantageous, especially when obtaining a dense array of structural parameters

for complex and large systems are challenging. As an example to non-parametric approaches, Abdeljaber

et al. (2017) used decentralized 1D convolutional neural networks (CNNs) to eliminate the feature extraction

process of typical system identification methods and perform the damage detection directly on the sensor

data in real-time. However, sensor data from the healthy and damaged structure is used to train the network

for classification purposes which makes the approach supervised learning. Additionally, this study does not

consider operational and environmental variability. The algorithm is tested on a grandstand simulator in the

lab. In the study, since the trained neural network was not completely successful for classifying the structural

condition, specifically producing false negatives, an index reflecting the likelihood of the damage is proposed

by computing the ratio of true positives to the total number of test cases. Gulgec et al. (2017) and Yu et al.

(2019) used similar approach utilizing deep CNNS to detect damage from sensor data. They also ignore

ambient uncertainties. Multiple signal classification (MUSIC) algorithm is another non-parametric approach

based on fuzzy wavelet neural networks known to produce successful damage detection from limited sensor

data (Jiang and Adeli, 2007; Amezquita-Sanchez and Adeli, 2015; Amezquita-Sanchez et al., 2017).

This chapter introduces an effective damage detection architecture for structures under environmental

uncertainty using machine learning. This study utilizes well-established learning algorithms to extract latent

features from modal parameters such as natural frequencies and mode shapes under temperature variations

and to reconstruct a new representation of these features that is similar, if not identical, to the original. The

difference between original and reconstructed parameters constitutes the essential information for detecting

critical changes in the system. While modal parameters are known to be a well-researched damage indicator,

to authors’ best knowledge, this research is the first time that unsupervised machine learning components such

as PCA and auto-encoder are applied to utilize mode shapes in addition to natural frequencies for effective

damage detection under environmental variability.

As stated above, the approach proposed herein uses the natural frequencies and mode shapes resulting

from a well-recognized system identification tool, Natural Excitation Technique and Eigensystem Realization

Algorithm (NExT/ERA) as the input and produces a target output which is the expected natural frequencies

and/or mode shapes of the system (James et al., 1993, 1995; Caicedo et al., 2001; Brownjohn, 2003; Caicedo

et al., 2004). The damage detection relies on the concept of Novelty Index which calculates the mean squared

error between input and outputs, e.g. actual and expected natural frequencies, respectively(Deraemaeker and

Worden, 2018). To achieve this goal, two unsupervised learning approaches are investigated: (a) principal

component analysis (PCA) and (b) Auto-Encoder (AE).

To evaluate and validate the approach along with the learning approaches, a simply supported beam
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structure is modeled and simulated in OpenSees under ambient vibration conditions. To add uncertainty to

the simulation, temperature, which is known to affect material properties nonlinearly, is varied over a range.

The resulting response data constitutes the reference basis for the training data of the machine algorithms.

The modal properties of the structure are extracted from this data set, and the machine learning model (model

set A) is trained using the aforementioned approaches. In parallel, another set of models (model set B) is

developed using only natural frequencies as the input as it is prescribed in previous studies. To demonstrate

the advantages of fusing frequencies with mode shapes further, a third model (model set C) utilizing only

the mode shapes as the input. Finally, the proposed method is evaluated one more time using the same beam

exposed to gradient temperature distribution instead of uniform temperature.

Next, three damage cases are considered where stiffness loss is induced at the midspan at various levels.

The structure is again simulated under ambient vibrations, and the resulting modal parameters are fed to the

learning model. For the three model sets, novelty index is calculated and the reliability of the results are

examined to demonstrate the effectiveness of the proposed approach in detecting the damage.

In addition to the simulations, this study considers a dataset containing laboratory experiments of a scaled

three-story structure created by Los Alamos National Labs for further validation. The structure is tested under

various damage scenarios simulating section loss at single and multiple columns. An approach identical to

the analytical study is used for training the machine learning model and obtaining the novelty index for each

case. Lastly, a large-scale three dimensional three-story structure is identified and modeled under temperature

gradient. The detection performance of the proposed method is evaluated under multiple damage conditions.

The overall results of the simulations and lab experiments show that the proposed method has, in general,

better performance in detecting damage since it utilizes mode shapes as an input in addition to the natural

frequencies. In essence, this modal analysis based novel detection approach has the potential to serve as a

reliable and near real-time damage detection tool providing accurate data towards objective-driven decisions

for maintenance operations. In theory, the end-to-end pipeline considered in this study is capable of streaming

real-time data in the time domain from sensors, extract the modal features from the time domain data in

near real-time depending on the availability of the computational resources, and compute the novelty index.

This approach would indeed accelerate the decision-making process since the state of the target structure is

available immediately (Abdeljaber et al., 2017).

In summary, the major contributions of this chapter can be summarized as below:

• A new machine learning approach is proposed that relies on natural frequencies and mode shapes.

• This study streamlines the proposed approach into a pipeline aggregating data collection, system iden-

tification, and damage detection.

27



Figure 3.1: Proposed damage detection architecture

• For proof of concept, data from simulation and experimental tests are employed. The performance

of the proposed method is evaluated by comparing the detection results to those from prior machine

learning methods.

• Results demonstrate that the new approach improves the damage detection rate significantly at the

presence of environmental variability.

3.2 Methodology

In this section, the essential components of the proposed approach, illustrated in Figure 3.1, are explained

in detail. First, a general description of the target structure and the problems to be solved are described.

Secondly, the fundamentals of system identification and feature selection are introduced. The third part of

this section focuses on the general architecture of the learning components, and the two machine learning

models used in this architecture, PCA and AE. The next part which constitutes the final component discusses

the implementation of the novelty detection responsible for determining if the structure is damaged. Finally,

evaluation criteria to study the performance of the different learning components in detecting the damage are

discussed.

3.2.1 Structure

In this study, we assume the target structure is a system that can be excited with ambient vibration under

a variety of environmental conditions. To minimize errors in damage detection, this study omits the struc-

tural responses under service loads. As for environmental variations, it has been shown that temperature

plays a major role in affecting dynamic features of the system (Woon and Mitchell, 1996; Sohn et al., 1999;

Zhou et al., 2011; Abdeljaber et al., 2017). Hence, this study focus on the effect of temperature on material

properties.

This chapter investigates three structures. The first one is a finite element model of a simply supported

beam. For this beam, a nonlinear relationship between the temperature and the material properties is con-

sidered as prescribed by Gu et al. (2017). Additionally, the effect of temperature gradient is investigated to
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validate the capability of the proposed method further. The second one is a small-scale three-story struc-

ture tested by Figueiredo et al. (2009). Finally, the third one is a three dimensional three-story structure.

Section 3.3 presents analytical and experimental structures in detail.

3.2.2 System Identification and Feature Selection

System identification is the process of obtaining dynamic and static characteristics of the structure under

service, extreme loads or synthetic excitation. The parameters obtained from identification can be used as an

indicator to detect potential damage in the target structure (Doebling et al., 1996). In this study, it is assumed

that reliable modal parameters can be extracted from the structure under ambient vibration (Farrar et al.,

1996). To minimize the effect of mass change due to the service load and to minimize the errors in damage

detection due to the mass change, this study omits the structural responses under service loads. As a result of

this, a well-known modal identification method combination, natural excitation technique and eigensystem

realization algorithm (NExT-ERA) is used (James et al., 1993; Caicedo, 2011). This method does not require

the external excitation acting on the structure and relies on the ambient vibration measurement which is often

available on the field. NExT-ERA takes the structural responses to ambient vibration as the input, which are

often accelerations measured at specific locations of the structure with sensors. Then the method produces

natural frequencies and the mode shapes defining the dynamic characteristics of the structure for that specific

measurement instance. While this study focuses on one particular system identification method, any approach

that is practically applicable in the field can be adopted.

As mentioned above, this component combines NExT with ERA. Essentially, NExT calculates the free

response data from ambient data, whereas ERA extracts natural frequencies, mode shapes, and damping

rations from the free response data. Assuming the ambient excitation input is white noise, second order

equation of motion can be written as:

MMMR̈z̈zz,z̈i(τ)+CCCṘz̈zz,z̈i(τ)+KKKRz̈zz,z̈i(τ) = 0 (3.1)

where MMM, CCC, KKK are mass, damping, and stiffness matrices of the system, Rz̈zz,z̈i(τ) is the cross-correlation

function between the acceleration, z̈i measured at ith location and a reference acceleration z̈zz. Rz̈zz,z̈i(τ) has the

same form as the free vibration response of the structure to be identified. Here, reference signal, z̈zz can be

chosen as the acceleration of a node on the structure. By computing the cross-spectral density function with

respect to the reference acceleration and applying inverse Fourier transformation, the free vibration response
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can be obtained in the form of cross-correlation:

R̈z̈zz,z̈i =
1
N

N−1

∑
k=0

Sz̈zz,z̈i(k)exp
[

j
2πkn

N

]
(3.2)

where Sz̈zz,z̈i(k) is the cross-spectral density function of z̈zz and z̈i, k is the frequency index, and n is the time

index. More details on NExT are provided by Caicedo (2011) and Caicedo et al. (2004).

ERA utilizes this free vibration data to determine the modal parameters by first constructing the Hankel

matrix:

HHH(k−1) =



Y (k) Y (k+1) . . . Y (k+ p)

Y (k+1) Y (k+2) . . . Y (k+ p+1)
. . .

Y (k+ r) Y (k+ r+1) . . . Y (k+ p+ r)


(3.3)

where Y (k) is the m×n response matrix at kth time step. A singular value decomposition on Hankel matrix

at k = 1, H(0) yields:

HHH(0) = RRRΣΣΣSSST (3.4)

where RRR and SSS are orthonormal matrices, and where ΣΣΣ is a diagonal matrix containing the singular values. It

can be shown that the state-space matrices can be computed as given below:

ÂAA = ΣΣΣ
−1/2RRRT HHH(1)SSSΣΣΣ

−1/2 (3.5)

B̂BB = ΣΣΣ
−1/2SSST EEET

m (3.6)

ĈCC = EEET
n RRRΣΣΣ

−1/2 (3.7)

where ÂAA, B̂BB, ĈCC is the estimated state matrices AAA, BBB, CCC, respectively; D̂DD = 0; EEET
m = [I 0] and EEET

n = [I 0]. Juang

and Pappa (1985) discusses ERA method in details.

By applying eigenvalue problem on ÂAA, the modal parameters such as natural frequencies, f and mode

shapes, Φ can be calculated by

(ÂAA−λ I)Φ = 0 (3.8)

w =

∣∣∣∣ logλ

Ts

∣∣∣∣ (3.9)

where w = 2π fs and Ts is the sampling time.
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3.2.3 Machine Learning Model

Often the system identification methods are sensitive to the changes in the system induced by damage or

environmental and operational effects. However, it is also a challenging task to differentiate the damage from

such variations since the baseline is polluted (Sohn et al., 2001). For instance, studies conducted by Ni et al.

(2005), Liu and DeWolf (2007), Xu et al. (2009), Xia et al. (2012), Gonzalez (2014), and Li (2014) have

shown that the temperature can cause significant changes in dynamic properties of structures. With the aid

of the unsupervised learning approaches, a higher-fidelity baseline condition of the structure can be extracted

from the polluted data set. Here, the objective of the learning model component is to learn a representation

of the data set typically through dimension reduction and to reconstruct a new representation that is similar,

if not identical, to the original data. In essence, both principal component analysis (PCA) and Auto-Encoder

(AE), also known as auto-associative neural networks (AANNs) can be used to form this behavior. This

study uses those two models interchangeably to extract a latent features and evaluates the performance of

the architecture by how well the damage is detected. Here, both approaches (PCA and AE) assume that the

training data for the learning enabled component contains majorly normal data (from undamaged structure)

and very few anomalies (outliers due to instantaneous abnormal events, poor data processing, etc.) (Chalap-

athy and Chawla, 2019; Chandola et al., 2009). If there is statistically significant event (caused by damage

but not environmental effects) deviating from baseline, then unsupervised approaches are expected to capture

this event; thus, the error between actual data and the reconstructed/expected data increases. This process is

advantageous especially where human experts have difficulty detecting and observing the damage by looking

at the data if there is too much variability. The Novelty Index presented here is not a damage classification,

but rather a signal that something has changed in the system and owner of the structure may act on this signal

considering the risk, operation and maintenance cost.

The learning component is essentially a mapping process and it can be formalized as:

X̂ = G(X) (3.10)

subjected to:

min
∥∥X̂ −X ′∥∥ (3.11)

where X is the input, X ′ is the subset of X to be reconstructed, and X̂ is the output representing the recon-

structed X ′. G(·) is the mapping function and ∥·∥ is the normalization operator. To achieve this objective,

the mapping function G(·) should be trained with known input X . The input is defined as a set of n natural

frequencies where f = [ f1 f2 . . . fn] and n mode shape vectors, Φ = [Φ1 Φ2 . . .Φn]. Ambient temperature,
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T taken during the time of measurement can be also added, if available, to the input since it is considered as

a feature in damage detection (Zhou et al., 2011; Gu et al., 2017). A complete input from one measurement

instance can be defined as:

X (i) = vec([T (i) f (i) Φ
(i)]) (3.12)

where i is the index for ith measurement and vec(·) is the vectorization operator. f (i) and Φ (i) are obtained

through system identification and T (i) is the temperature taken during the system identification measurement.

Similarly, the input to be reconstructed and the output are defined as:

X ′(i) = vec( f (i)) (3.13)

X̂ (i) = vec( f̂ (i)) (3.14)

where f̂ (i) is the reconstructed representation of the input, f (i).

Compared to previous research relying only on natural frequencies (Zhou et al., 2011; Gu et al., 2017),

this study considers mode shapes also as a valid input. The modal parameters can be obtained from eigenvalue

analysis of K and M as follows:

[KKK − (2π fi)
2MMM]{Φi}= 0 (3.15)

When the Young’s modulus property of the material, E changes due to the temperature variations, the stiffness

matrix, KKK is affected linearly while MMM remains same. The relationship between the reference stiffness, KKK and

the temperature-affected stiffness, KKK′′′ can be simply described by:

KKK′′′ = cKKK (3.16)

where c is a factor defining the linear relationship. When another eigenvalue analysis is applied to K and M,

it is observed that the mode shapes stay the same while natural frequencies change as follows:

[KKK′′′− (2π f ′i )
2MMM]{Φi}= 0 (3.17)

As an illustration, a two-story shear frame structure with lumped masses and rigid beams studied by Kim
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et al. (2012) and Li et al. (2017) is considered as given in Eq. 3.18

MMM =

2.701 0

0 2.701

N/(mm/s2)

KKK =

 558.343 −279.171

−279.171 279.171

N/mm (3.18)

An eigenvalue decomposition on this system using Eq. 3.15 will yield the natural frequencies of f = [1.00,2.62]

Hz and mode shapes such that:

Φ =

−0.32 −0.52

−0.52 0.32

 (3.19)

Assuming c is 1.05, i.e. there is a 5 percent deviation in the stiffness due to temperature, the new stiffness

matrix will be:

KKK′′′ = cKKK =

 586.260 −293.129

−293.129 293.129

N/mm (3.20)

Using eigenvalue decomposition presented in Eq. 3.17, the natural frequencies of the shifted system will

be f ′ = [1.02,2.68] Hz. However, the mode shapes will remain unchanged and will be equal to Eq. 3.19.

This observation indicates that the mode shapes are independent of temperature variations and should always

remain the same as long as the structure is not damaged or the mass of the structure does not change. To sum

up, the training algorithm considers the persistence of mode shapes as a statistically important feature for

developing a proper mapping function, G(·). The significance of this observation will be discussed further in

section 3.2.4.

3.2.3.1 Reconstruction using Principal Component Analysis

Principal Component Analysis is a machine learning algorithm that reduces the dimensionality of a data

set leading to a simpler representation of it while preserving essential information that defines the data set

(Fukunaga and Koontz, 1970; Goodfellow et al., 2016a). This property of PCA is achieved by computing

a linear transformation matrix which can project the original data containing correlated variables to another

representation with uncorrelated variables. One main advantage of this decorrelation is exposing the so-called

principal components that explain the dominant patterns in the data (Zang and Imregun, 2001; Yu et al., 2010;

Tibaduiza et al., 2012). By selecting the prevailing components, one can compress the data, in other words,

reduce the dimension of the data, and expose the most important features that are still faithful to the original.
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The linear transformation of the PCA can be represented by:

Y = X ′WR (3.21)

where X ′ is the n× p input data matrix, and n rows and p columns correspond to data points (number of mea-

surement instances containing modal parameters) and features (number of modal parameters), respectively.

WR is the p×k transformation matrix where k is the number of PCA components to be used that explains the

majority of variance for the input data. Y is the PCA projection, i.e. a reduced representation of X ′ with the

dimension of n× k. A reconstructed representation of the original input, X̂ can be obtained by mapping Y

back to p dimensions using W T
R as following:

X̂ = YW T
R = X ′WRW T

R (3.22)

The transformation matrix, WR is the reduced form of W which is derived through a singular value decompo-

sition on X ′ such that X ′ =UΣW T . Here, W is p× p square matrix and WR contains the first k singular values

of W . Goodfellow et al. (2016a) discusses the derivation of PCA in details.

As an alternative to PCA, nonlinear PCA (NLPCA) proposed by Kramer (1991b) can be also adopted

within this architecture since the environmental variations are defined as nonlinear. While this study considers

a nonlinear relationship between temperature and structural dynamic parameters, the results from PCA were

satisfactory enough not to pursue this adoption.

3.2.3.2 Auto-Encoder

Auto-encoder is a special type of neural network that is trained to reproduce its input as its output (Goodfellow

et al., 2016a). Usually, auto-encoder consists of an encoder and decoder, see Figure 3.2. Both encoder and

decoder are a set of neural network layers.

Here, the encoder takes the input, X and translates it to H using the mapping function, F described with

a set of hidden neural network layers. This mapping can be described as following:

H = F(X) (3.23)

The encoder extracts the latent representation of the input that captures the most important features.The
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Figure 3.2: An example representation of auto-encoder

decoder function takes H and translates it to X̂ using the demapping function, G:

X̂ = G(H) (3.24)

The decoder reconstructs a copy of the input by using the latent representation generated by encoder. In

summary, the entire auto-encoder can be rewritten as:

X̂ = G(F(X)) (3.25)

The training process is performed with an objective function to minimize the error between X and X̂ given in

Eq. 3.11.

It should be noted that Figure 3.2 is an example representation. It is difficult to relate the depth of

the network and number of neurons at each layer to physical features such as the natural frequencies and

mode shapes (Shwartz-Ziv and Tishby, 2017). By rule of thumb, the network parameters are configured

such that the resulting model is generalizable and provides an accurate prediction for untrained data as well

(Goodfellow et al., 2016a). As a result of this, the number of layers and the number of neurons should be

tuned depending on the complexity of the system. In addition, the auto-encoder can be used to reconstruct the

entire input data set or parts of it. For problems where the relationship between the effects of environmental

variations is highly nonlinear, AE with nonlinear activation functions is expected to yield more accurate

predictions compared to PCA. However, for the examples presented in this study, both PCA and AE provide

comparable performance.
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3.2.4 Novelty Detection

The objective of the learning component is recovering an expected reconstruction of the original input while

eliminating environmental effects. To train the learning component and develop a proper mapping function,

the training set is expected to be sampled from the measurements while the structure is undamaged. After

training, when the approach is given data samples from the undamaged structure, the learning component

is expected to create a copy of the input as the output. When damage is present, the mapping will generate

faulty copies since the new data set is outside of the training data cloud. The novelty detection component

quantifies such differences by identifying the existence of new patterns. This component is well researched

and often used in past literature (Worden, 1997b,a; Sohn et al., 2001).

The novelty index (NI) that describes the similarity between input and the reconstructed copy can be

formulated as follows:

NI =
∥∥X̂ −X ′∥∥ (3.26)

This equation is similar to Eq. 3.11 in nature. Novelty index normalizes the difference between the input

(original data), X ′ and the output (reconstructed data), X̂ . Accordingly, assuming the training of the learning

component is performed successfully, NI is expected to be zero or close to zero since X̂ ≈ X ′. At the presence

of damage, NI increases since the learning algorithm produces inaccurate results for X̂ .

3.2.5 Evaluation Criteria

To quantify the performance of the approach, a modified version of Euclidean distance of novelty index

between damaged and undamaged structure is calculated. This criteria can be described as:

Dud,d =
∥NIud −NId∥

µNIud

(3.27)

where NIud and NId are the novelty indices for the undamaged and damaged structure, respectively, and µNIud

is the mean value of the novelty index for no damage case. Here, Euclidean distance is normalized such that

a more reliable comparison can be made between architectures and damage case. The larger this distance, the

easier it is to detect the damage based on the novelty index.

3.3 Evaluation of the Proposed Method

This study uses three sets of data to verify the proposed approach: (i) a finite element model of a simply

supported beam; (ii) experimental testing of a small-scale three-story structure; and (iii) testing and simulation

of a large-scale three-dimensional three-story structure. This section presents and evaluates the results of the

structural damage detection performance.
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3.3.1 Software Implementation

The structural responses are obtained from the finite element model or the experimental test setup in undam-

aged and damaged conditions as accelerations, ÿ. The accelerations are recorded for some amount of time and

saved in a file for each instance of simulation or experiment. Each of these instances containing accelerations

is analyzed using NExT/ERA implemented in MATLAB 2018b (MATLAB, 2018). After natural frequencies

and mode shapes are obtained from NExT/ERA, this information is vectorized. If the temperature is recorded

for an instance, it is also augmented to the vector. Before the training, the data is standardized using Stan-

dardScaler from scikit-learn toolbox 0.20.2 (Pedregosa et al., 2011) such that each feature has zero mean and

unit variance. All the scaled data are saved in their relevant files, based on the condition of the structure.

Next, the machine learning model is trained using the data from the undamaged condition. About half to

two-third of the data is used for training whereas the remaining data is utilized for testing and validation to

make sure overfitting is prevented. Both PCA and AE algorithms are implemented in Python 3.6.7 (Rossum,

1995). The PCA model is trained using scikit-learn toolbox 0.20.2 (Pedregosa et al., 2011). By trial and error,

an appropriate number of components are selected to explain the variance of the data. The reconstruction is

performed by first transforming the input data to reduced data and then applying an inverse transformation

which is explained in Equation 3.22. AE is trained using Keras 2.2.4 running on TensorFlow 1.12 (Abadi

et al., 2015; Chollet, 2015). By trial and error, a neural network with 4 layers (shown in Figure 3.2) is

developed to capture salient features of the data. The output of the AE model is the natural frequencies to

be reconstructed. The models that contain the natural frequencies and mode shapes are called model set A.

In parallel, another set of models (model set B) is developed using only natural frequencies as the input.

Additionally, a third model (model set C) is trained which uses only mode shapes.

Finally, the novelty index is obtained by comparing the input natural frequencies with the output for

model set A and Bor by comparing the input natural frequencies with the output for model set C. Effectively,

there is one novelty index for each vector. Data from different damage conditions are tested as well in this

last step. This step is also implemented in Python.

It is important to note that, specifically for model set A, while mode shapes could also be a part of

the output vector to be reconstructed, the scale of mode shapes is not the same as frequencies; thus, their

contributions to the novelty indices may not be as dramatic as natural frequencies. Moreover, the results

presented in the following sections demonstrate that the proposed architecture is capable of detecting damage

without reconstructing mode shapes. Reducing the dimension of the output not only accelerates the learning

but also reduces the risk of curse of dimensionality (Hughes, 1968).

37



3.3.2 Analytical Verification with Simply Supported Beams

A simply supported steel beam used by Gu et al. (2017) with a span length of L = 5.0 m is discretized into

equally long 40 member having a cross-sectional area of A = 1.624× 10−3 m2 and moment of inertia of

I = 1.971× 10−6 m4. The beam is modeled using finite element modeling (FEM) tool, Open System for

Earthquake Engineering Simulation - OpenSees (McKenna et al., 2010). The members are assumed to be

elastic-beam column elements. A nonlinear relationship between material stiffness of the elements, E and

temperature, T is described as given below:

E = [206.216−0.4884T +0.0044T 2]× 109N/m2 (3.28)

where T is in the unit of Fahrenheit. The mass is adjusted such that the structure has the first natural frequency

at nearly 0.49 Hz when the temperature is 15◦C (∼60◦F).

Following the architecture discussed in the previous section, the training and validation data set for the

undamaged structure is developed by applying ambient vibration made of white noise to the supports of the

beam vertically. The input white noise has a bandwidth of 1024 Hz and the peak displacement is about

0.1 g. The vertical acceleration responses to the ambient excitation at 39 nodes (excluding 2 support re-

sponses) are sampled at 200 Hz for 300 seconds. For each simulation, the ambient temperature governing

the material stiffness (see Eq. 3.28) is randomly varied between −15◦C and 50◦C bounded by a uniform

distribution. The temperature range is selected to lay out the nonlinear relationship between temperature,

material stiffness and natural frequencies fully (see Figures 3.3 and 3.4). Additionally, the distribution allows

the environmental effects to contaminate data over the entire temperature range. Figure 3.3 illustrates the

temperature vs. stiffness computed according to Eq. 3.28 for the undamaged case. The difference between

the minimum and maximum values of stiffness corresponds to nearly 10 percent of the minimum stiffness.

Figure 3.4 demonstrates the temperature vs. identified frequency distribution for the undamaged case. The

difference between the minimum and maximum values of natural frequencies corresponds to nearly 4 percent

of the first natural frequency of the undamaged structure. A set of damage conditions are defined for this

structure (see Table 3.1). In total, 4000 simulations are executed. NExT/ERA is performed on the resulting

data to extract the first six natural frequencies, f and mode shapes for each natural frequency, Φ . These first

six modes also constitute the features to be used for damage detection in accordance with Gu et al. (2017).

From each simulation, including the ambient temperature, six natural frequencies, and 234 mode shape points

(6 modes×39 mode shape points per mode), a vector of 241 data points is created which establishes the input

data for the learning enabled component. Out of 2000 vectors from undamaged case, randomly selected 1000

vectors are used for training the machine learning component. The remaining data is used for the validation.
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Figure 3.3: Distribution of stiffness with respect to temperature

Figure 3.4: Distribution of identified first natural frequency with respect to the temperature
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For the three damage cases considered here, the damage is emulated by reducing the stiffness of the 20th el-

Table 3.1: Analytical data matrix

State Condition Description No. of Data

No Damage Case Baseline condition 2000
Damage Case 1 5% stiffness reduction at midspan 1000
Damage Case 2 15% stiffness reduction at midspan 1000
Damage Case 3 50% stiffness reduction at midspan 1000

ement from the left support (corresponding to the midspan) by 5% (Damage Case 1), 15% (Damage Case 2)

and 50% (Damage Case 3). For each damage case, 1000 simulation are executed under uniformly distributed

random ambient vibrations varying between −15◦C and 50◦C. It should be noted that the temperature range

used in the simulations is rather wide and is not observed for most climate conditions. However, this range

also introduces relatively large variability to the natural frequencies. The proposed algorithm is expected to

robustly detect damage under large temperature variations.

Figure 3.5 presents the distribution of natural frequencies for the no damage and damage cases using sys-

tem identification. One can observe that the differences in the frequencies are visually not evident, especially

between No Damage Case and Damage Case 1. This can justify machine learning algorithms capable of

capturing latent features of the presented data.

Figure 3.5: Distribution of natural frequencies with varying ambient temperatures for each damage case in
analytical data

Regarding the machine learning component, as mentioned before, two architectures are considered: PCA
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and AE. For either architecture, the training input is the 1000 vectors each containing the following data

points: (i) For model set A, including temperature, 241 data points (1 temperature data + 6 natural frequencies

+ 234 mode shape data) are packed as a vector from each simulation. (ii) For model set B, only six natural

frequencies and temperature data is used. (iii) As for model set C, 234 mode shape points and temperature

data are utilized. The number of components used for PCA and network architecture for AE are tabulated in

Table 3.2 for each model set.

Table 3.2: Model set properties for analytical data

Model set A Model set B Model set C

1 temperature data 1 temperature data 1 temperature data
Input 6 natural frequencies 6 natural frequencies

234 mode shape data points 234 mode shape data points

Output 6 natural frequencies 6 natural frequencies 234 mode shape data points

PCA component size 100 3 100

AE network structure 241-12-12-6 7-3-3-6 235-50-50-234

The novelty index for both architectures is presented in Figure 3.6. The effect of mode shapes to the

performance of the approach is shown by comparing the novelty index of each architecture when mode shapes

are used and omitted (model set A, B and C). It is evident from the visual comparisons that including mode

shapes into the learning improves the performance of the detection. When mode shapes are not present, there

is an overlap between No Damage Case and Damage Case 1 for both architectures. This overlap may lead

to false positives or negatives degrading the performance of detection when the damage is small. However,

when the damage is larger, the overlap is not observable anymore. To summarize, the proposed approach

is successful in capturing the small damage compared to the primitive model which employs only natural

frequencies. For large enough damages, the utilization of mode shapes does not improve the outcome of

the detection further since the novelty indices are distinguishable enough for primitive models. The modified

Euclidean distances computed using Eq. 3.27 for each damage case and architecture are tabulated in Table 3.3.

Here, for each case, the novelty indices for the No Damage Case from the validation data set relevant to that

case are used as the reference, NIud . The mean of NIud establishes µNIud . For No Damage Case specifically,

the comparison is made between the validation and training data. To calculate Dud,d , the complete index

vector is used. When the mode shape is introduced to the training, distances become smaller for all cases.

For PCA, at the absence of mode shapes, the No Damage and Damage Case 1 values are similar for both

architectures. However, AE has a higher distance suggesting that it may be still possible to detect damage

with AE. At the presence of mode shapes, the distances are much larger which signifies improved damage

detection for the given structure. In summary, evaluation of the architecture performance demonstrates that
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the introduction of mode shapes enhances damage detection. When only mode shapes are considered for

reconstruction, it is observed that the relative distances increase. This is due to the fact that more features are

reconstructed compared to Model Set A and B at the expense of computational complexity. For AE network,

reconstructing only mode shapes (model set C) do not improve the detection, whereas for PCA, the sensitivity

of model set C is much higher. At this point, it is up to the designer how much sensitivity is desired and what

are the computational resources available to reach to the desired damage detection sensitivity. Ideally, an

ensemble combining PCA and AE ensures the best detection.

(a) (b)

(c) (d)

Figure 3.6: Comparison of novelty indices for analytical data: (a) PCA - model set B (mode shapes not
included); (b) AE - model set B (mode shapes not included); (c) PCA - model set A (mode shapes included);
(d) AE - model set A (mode shapes included); (e) PCA - model set C (only mode shapes included); (f) AE -
model set C (only mode shapes included)

3.3.3 Effect of gradient temperature distribution

While in this chapter we hypothesized that the mode shapes do not change under uniform temperature dis-

tribution, mode shapes will show slight variation if there is temperature gradient. Such variations may cause
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Table 3.3: Modified Euclidean distances for damage cases with and without the inclusion of mode shapes for
analytical data

PCA PCA PCA AE AE AE
model set A model set B model set C model set A model set B model set C

No Damage Case 21.90 23.30 16.28 22.74 22.89 14.59
Damage Case 0 22.78 38.74 174.30 40.57 24.45 29.32
Damage Case 1 29.50 146.43 637.90 158.40 38.31 129.40
Damage Case 2 168.59 820.53 3333.75 949.47 243.21 770.84

some degradation in the performance of the proposed method. This section focuses on the effectiveness of the

method under temperature gradient. Here, it is assumed that the temperature difference between each end of

beams is 10◦C and changes linearly across the beam. The same number of inputs are used for all the learning

components. In addition, to increase the sensitivity of the AE network for model set A, the system structure

is modified to 241-50-50-6. The novelty index for both architectures is presented in Figure 3.7. In general,

the proposed method can detect the damage under temperature gradient. The overall findings are consistent

with the results from the uniform distribution.

3.3.4 Experimental Verification

3.3.4.1 Structure 1

For further verification of the proposed approach, a small-scale three-story structure tested by Figueiredo

et al. (2009) at Los Alamos National Laboratory is studied. This structure is excited with an electromagnetic

shaker attached to its base. The shaker provided a band-limited white noise and the resulting acceleration

responses of the structure is recorded for about 25 seconds at a sampling rate of about 320 Hz (see Figure 3.8).

Figueiredo et al. (2009) indicated that the lab environment is not temperature controlled and some temperature

variations observed. However, they also did not record the ambient temperature during the experiments.

A set of damage conditions are defined for this structure, see Table 3.4. Including no damage condition,

Table 3.4: Experimental data matrix (Structure 1)

State Condition Description No. of Data

No Damage Case Baseline condition 50
Damage Case 1 87.5% stiffness reduction in one first-floor column 49
Damage Case 2 87.5% stiffness reduction in two first-floor columns 50
Damage Case 3 87.5% stiffness reduction in one third-floor columns 50
Damage Case 4 87.5% stiffness reduction in two third-floor columns 45

there are five damage cases for this structure. The damage is introduced by reducing the stiffness of one

or two columns at each floor by 87.5 percent. NExT/ERA is applied to all the listed experimental data.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Comparison of novelty indices for analytical data under temperature gradient: (a) PCA - model
set B (mode shapes not included); (b) AE - model set B (mode shapes not included); (c) PCA - model set A
(mode shapes included); (d) AE - model set A (mode shapes included); (e) PCA - model set C (only mode
shapes included); (f) AE - model set C (only mode shapes included)
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Figure 3.8: Three-story laboratory structure (Structure 1) (Figueiredo et al., 2009)

Since the sampling time is short, the system identification is not able to determine all the dominant modes

for all simulations. For the test data, where system identification yields complete natural frequencies and

mode shapes are packaged into a vector. Each vector contains three natural frequencies, and 9 mode shape

points (3 modes×3 mode shape points per mode), summing up to 12 data points. Since temperature was not

recorded, this information is excluded in the input. No. of Data in Table 3.4 corresponds to the number of

complete data vectors. The distribution of natural frequencies for the no damage and damage cases are shown

in Figure 3.9. Similar to the analytical investigation, both PCA and AE architectures are considered. For the

training of the machine learning model, the baseline condition is used. Out of 50 data, 40 is used for training

and 10 for validation. After the data is standardized, the PCA model is trained with 6 components. The output

of the AE model is the three natural frequencies to be reconstructed. A neural network with the dimensions

12-8-8-3 is developed to capture dominant features of the data. Rectified Linear Units (RELU) is used as the

activation function on all the layers.

Figure 3.10 presents the novelty index for the experimental data for both architectures with and without

the introduction of mode shapes. In general, for all architectures, the damages are distinguished from each

other, given the fact that the stiffness degradation was as high as 90 percent. For all figures, when two columns

are damaged (Damage Case 2 and 4) the index is higher compared to single column damages (Damage Case 1

and 3). The architectures not relying on mode shapes yield similar indices for Damage Case 2 and 4, whereas
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Figure 3.9: Distribution of natural frequencies with varying ambient temperatures for each damage case in
experimental data

the utilization of mode shapes as input return distinguishable indices. Considering PCA, some instances of

the novelty index for the Damage Case 1 at the absence of mode shapes leak to No Damage Case region. This

behavior is not observed when mode shapes are introduced. One can notice that with the use of mode shapes,

the novelty index of Damage Case 3 and 4 where third columns were damaged is higher for both architectures.

The damage at the third floor changes the mode shapes to the point that the novelty index is amplified even

though the induced damage is not larger than the first floor. From this observation, it can be concluded that

while the proposed approach is a successful damage detection tool, the results may not be definite regarding

the magnitude of the damage. To understand the results quantitatively, the modified Euclidean distances for

each damage case computed according to Eq. 3.27 are provided in Table 3.5. The validation data set from

the No Damage Case is used as the reference. Since the validation data is limited, the data is repeated to

match the size of the target. Figure 3.10 implies that when mode shapes are introduced novelty indices may

decrease slightly. In parallel, the baseline for no damage case approaches to zero resembling a flat line.

Although the novelty indices reduce, the modified Euclidian distance between the baseline and the damage

cases increases which implies that damage is quantitatively more distinguishable. Overall, the distances

indicate that the presence of mode shapes in the data improves the reliability of the damage detection for the

given test structure. The experimental investigation of the data shows that when mode shapes are used in the

machine learning models, the damage detection can be more reliable.
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(a) (b)

(c) (d)

Figure 3.10: Comparison of novelty indices for experimental data: (a) PCA - model set B (mode shapes not
included); (b) PCA - model set A (mode shapes included); (c) AE - model set B (mode shapes not included);
(d) AE - model set A (mode shapes included)

Table 3.5: Modified Euclidean distances for damage dases with and without the inclusion of mode shapes for
experimental data (Structure 1)

PCA
without Mode Shape

PCA
with Mode Shape

AE
without Mode Shape

AE
with Mode Shape

Damage Case 1 29.79 44.92 53.65 76.87
Damage Case 2 104.48 266.75 129.81 177.53
Damage Case 3 42.28 491.04 56.95 220.72
Damage Case 4 105.50 816.04 112.46 395.06
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3.3.4.2 Structure 2

This section utilizes a linear three-story three-dimensional frame located at Harbin Institute of Technology

(HIT), China (see Figure 3.11 (a)). The prototype structure has a base plan with dimensions 1.84 m by 2.04 m

and each story is 1.2 m tall. The structure is braced in one direction with inverted v-brace (see Figure 3.11

(b)). A concrete slab weighting approximately 250 kg is attached to each floor. Including the mass of bare

structure, total weight sums to 1066 kg. The columns, beams and girders are made of structural steel with an

elastic modulus estimated to be 220 GPa. More details about the system identification and material properties

of the structure are discussed in Ozdagli (2015) and Xi (2014).
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(b)

Figure 3.11: Three-story three-dimensional structure (Structure 2): (a) Experimental prototype; (b) idealiza-
tion

To evaluate the performance of the proposed method, temperature gradient in three dimensions over the

structure is modeled. To simulate the temperature gradient, first a finite element (FE) model is established

using OpenSees faithful to the experimental structure in terms of boundary conditions and material properties.

Each member of the model is criticized into 10 elements, resulting to 360 elements. Equation 3.28 is used

to constitute the relationship between the ambient temperature and the material. The model is calibrated to

match the experimental modal properties at 15◦C. The natural frequencies and mode shapes of the FE model
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are presented in Figure 3.12.

Figure 3.12: Modal properties of the FE model

Four different damage conditions are established for this model with damage state varying between 5 and

10 percent. The damage scenarios are summarized in Table 3.6 and illustrated in Figure 3.13. All damage

cases consider a reduction of stiffness only at the midspan element to localize the damage.

Table 3.6: Experimental data matrix (Structure 2)

State Condition Description No. of Data

No Damage Case Baseline condition 2000
Damage Case 0 5% stiffness reduction at midspan of first floor column 1000
Damage Case 1 10% stiffness reduction at midspan of second floor beam 1000
Damage Case 2 10% stiffness reduction at midspan of third floor brace 1000

As for data generation for the validation of the proposed method; it is assumed that temperature gradu-

ally increases from bottom node to the top node in the direction of the arrow shown in Figure 3.13. Here,

temperature difference at each node relative to the bottom corner of the structure are shown. The max-

imum temperature difference between upper and bottom part of the structure is 12.5◦C. Since it may be

challenging to obtain higher order modes in reality, only the first four modes are pursued. It is assumed
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Figure 3.13: Damage conditions and temperature distribution

that accelerometers at each joint (labeled in red color in Figure 3.13) can capture motion along x and y axis

which will result to about 24 mode shape points per mode. The method is assumed to have access only to the

median temperature. Including the median temperature, four natural frequencies and 96 mode shape point

(4 modes×24 mode shape points per mode), each input contains 101 data points. For each damage scenario,

1000 inputs are generated whereas for the undamaged case, 2000 inputs (1000 input for training + 1000 input

for validation). For all input, the median temperature is uniformly distributed between −15◦C and 50◦C.

Properties of the learning components are summarized in Table 3.7.

Table 3.7: Model set properties for experimental data (Structure 2)

Model set A Model set B Model set C

1 temperature data 1 temperature data 1 temperature data
Input 4 natural frequencies 4 natural frequencies

96 mode shape data points 96 mode shape data points

Output 4 natural frequencies 4 natural frequencies 96 mode shape data points

PCA component size 100 3 100

AE network structure 101-50-50-4 5-3-3-4 97-50-50-96

Figure 3.14 illustrates the novelty indices for all damage cases and model sets. Table 3.8 summarizes the

modified Euclidean distance. Accordingly, using both frequencies and mode shapes improves the detection.

The performance is more significant for PCA. For this case, reconstructing more features does not improve

the detection of PCA when model set A and C are considered. As for AE, combination of frequencies and

mode shapes improves the detection for all cases. Here reconstructing more features (model set C) indeed
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improve the detection compared to model set A. However, it should be again noted that model set C requires

more parameters to train the AE network and predict the detection; thus, computationally more expensive.

Table 3.8: Modified Euclidean distances for damage cases with and without the inclusion of mode shapes for
experimental data (Structure 2)

PCA PCA PCA AE AE AE
model set A model set B model set C model set A model set B model set C

No Damage Case 27.09 27.48 11.69 0.01 0.01 20.30
Damage Case 1 298919.03 7337.87 124477.62 73.25 30.62 1152.85
Damage Case 2 219040.14 12039.37 20180.22 44.31 32.80 237.35
Damage Case 3 33042.80 2251.73 2352.94 13.88 5.65 122.51

3.4 Conclusions

This chapter proposes a new machine learning architecture to detect damage in structures reliably by incor-

porating modal properties such as natural frequencies and mode shapes to the training data for the learning

components. While the use of natural frequencies in machine learning algorithms is studied thoroughly in

the past literature, it has been shown in this study that mode shapes are independent of temperature variations

and remain same when the structure is not damaged but material proprieties change due to temperature. As a

result of this, the learning algorithm considers the persistence of mode shapes as a statistically important fea-

ture. To evaluate and validate the proposed approach, this study uses data sets from a finite element model of

a simply supported beam and experimental testing of one small scale and one large scale three-story structure.

Both the analytical and experimental investigation presented herein demonstrate that the introduction of mode

shapes improves the detection quality significantly in the presence of environmental variability. Especially

for detecting a small amount of damages, the performance of the proposed approach is better compared to the

architecture which does not utilize mode shapes. Overall, the findings indicate that the proposed approach has

the potential to be used as a viable tool in the field. Regarding the practicality of the method discussed herein,

there are some considerations to be given. First, NExT/ERA based system identification requires long-time

data measurements to capture higher modes successfully. Such data may not be always available. However,

the pipeline is flexible enough to allow the use of alternative subspace system identification (SSI) methods

such as one proposed by Peeters and Roeck (1999) and known to perform well under noisy environments.

Secondly, the success of the method relies on the accuracy of the historical data. A significant change in the

system that cannot be identified as damage, such as adding a damper or adding mass will indeed alter the

features that were latent in the historical data. In this case, a new model should be trained. Thirdly, tem-

perature gradients along the structure are common during the field measurements. The training data should
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Figure 3.14: Comparison of novelty indices for experimental data (Structure 2): (a) PCA - model set B (mode
shapes not included); (b) AE - model set B (mode shapes not included); (c) PCA - model set A (mode shapes
included); (d) AE - model set A (mode shapes included); (e) PCA - model set C (only mode shapes included);
(f) AE - model set C (only mode shapes included)
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consider a wide range of measurements that capture the gradient pattern such that the changes in the mode

shapes will not cause novelty indices to increase. Lastly, deep networks inherently require big data for the

optimization of hyper-parameters. Extracting features from big data with a huge number of features using

PCA can be computationally expensive since the data set is processed as a whole. Either, incremental PCA

(Ross et al., 2008), or AE should be used for a system with large sensor arrays. Ideally, an ensemble of PCA

and AE architecture should be considered to maximize the detection sensitivity if computational resources are

allowing. Future work should include the investigation of the proposed approach in the presence of multiple

environmental and operational variability in the laboratory and in the field. Additionally, the data set should

be diversified to include not only responses to ambient noise but also forced vibrations due to service loads.

Finally, the proposed architecture should be extended to locate damage by relating mode shapes to the spatial

data of the bridge under environmental uncertainty.
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CHAPTER 4

Domain Adaptation for Structural Fault Detection under Model Uncertainty

4.1 Introduction

United States (US) has one of the most sophisticated infrastructures in the world (World Bank, 2019). How-

ever, according to a recent study conducted by the American Society of Civil Engineers (ASCE), the US

infrastructure is aging and failure on maintaining it may cost an economical loss in GDP as big as $3.1

trillion (American Society of Civil Engineers, 2013, 2017). The condition of infrastructure for other mod-

ern societies is also under stress (Zachariadis, 2018). Overall, it is economically not viable to replace all

deteriorating infrastructure due to limited resources, and the operations of maintenance, repair, and replace-

ment should be prioritized accordingly. Acting proactively when a critical infrastructure requires care and

preventing catastrophic damages call for novel and innovative approaches.

In the last few decades, structural health monitoring (SHM) has gained a lot of momentum as a means

of detecting and localizing damages (Sohn et al., 2002). The introduction of machine learning (ML) into

SHM enabled further refinement as mature pattern recognition techniques provide higher accuracy in recog-

nizing structural damages compared to traditional methods (Farrar and Worden, 2012). Among many ML

applications, supervised methods are particularly useful (Kiranyaz et al., 2019). Especially, when coupled

with artificial neural networks, supervised learning offers promising results for damage detection and local-

ization (Park et al., 2009; Dackermann et al., 2013; Nick et al., 2015).

A majority of supervised SHM applications assume that the data used for training the damage condition

classifier has the same distribution as the testing data. However, this assumption is problematic. First, it is

unrealistic that one can obtain data belonging to a particular damage condition without actually harming the

integrity of the structure before its service (Lu et al., 2016; Gardner et al., 2020). In other words, creating

labeled data based on the original state of the structure is not practical for supervised learning models. On

the other hand, we can generate a labeled data set using a representative finite-element model or a similar

scaled structure where introducing damages is a more cost-effective approach. The collection of labeled nor-

mal and damaged state data from this representative structure is called source domain and could be used for

training a robust damage condition classifier. The second problem with the supervised ML applications is

that a model trained with labeled source domain data may fail to predict the condition of the original struc-

ture during testing time. The features for the original structure establish the target domain. Both source and

target domains are distinct in a way that they have probability distributions that diverge from each other. To
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summarize, source domain is the model trained on labeled data derived from a representation of the original

structure. The model trained on the unlabeled data directly sought from the original structure is the target

domain. Both domains have different statistics, which is known as domain shift. The objective of domain

adaptation is to design a new learning architecture that generalizes the prediction over both domains (Good-

fellow et al., 2016b). This generalization is achieved by finding a mapping that can extract domain-invariant

features. Eventually, this mapping is expected to improve the prediction accuracy for the target domain com-

pared to an architecture that does not implement domain adaptation. In brief, transfer of knowledge gained

from source domain to target domain is conceptualized as domain adaptation (see Figure 4.1).

Figure 4.1: Concept of Domain Adaptation

First attempt for domain adaptation started by addressing the distribution shift between labeled training

and unlabeled test data. For example, Kernel Mean Matching (KMM) aims to minimize the covariate dis-

tribution between two datasets in a higher feature space called Reproducing Kernel Hilbert Space (RKHS)

by reweighing the sample data. As a result, KMM is capable of producing a mapping that can match the

test data distribution in RKHS (Gretton et al., 2009). While KMM outperforms ordinary classifiers and re-

gressors, the improvement is limited to covariate shift such that the conditional distribution remains same

(Ptrain(y|x) = Ptest(y|x)) but input distribution shifts (Ptrain(x) ̸= Ptest(x)) across both domains (Bouvier et al.,

2019).

Many domain adaptation problems are susceptible to dataset shift where P(Y |X) is not conserved be-

tween source and target domains to its highest degree (Wang and Deng, 2018; Wilson and Cook, 2020).

Thus, reweighting algorithms are not always effective in such cases. Modern domain adaptation techniques

focus on finding a common latent space (also known as domain-invariant feature space) that represents both

source and target domains. For example, as an improvement to KMM, maximum mean discrepancy (MMD)

metric is introduced to measure the divergence between distributions and to compute a function in RKHS to

maximize the difference in expectations between two probability distributions (Borgwardt et al., 2006). A

well-known transfer learning method, transfer component analysis (TCA) uses this MMD metric to minimize

the maximum expected distribution shift between source and target domain (Pan et al., 2010). Similarly, joint

distribution adaptation (JDA) utilizes MMD to measure the statistical difference in marginal and conditional
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distributions (Long et al., 2013). Within the SHM community, Lu et al. (2016), Li et al. (2018), and Li et al.

(2019) utilized MMD metric as a loss function for the training of neural networks to improve the prediction

over target data using both source and target data during training for gear fault diagnosis. Similarly, Xie et al.

(2016) and Gardner et al. (2020) applied TCA to classify the damage on gears and structures, respectively.

The new generation domain approaches exploit adversarial training to find domain-invariant features (Wil-

son and Cook, 2020). These approaches adopt the zero-sum game where a label classifier (the network that

predicts the correct label of input whether it is coming from source or target domain) is trained to deceive

a domain classifier (another network in parallel that predicts whether the input is source or target domain

data). For instance, Domain Adversarial Neural Network (DANN) uses gradient reversal layer during back-

propagation to reverse the domain classifier weight derivatives to maximize the domain confusion (Ganin

et al., 2016). Adversarial Discriminative Domain Adaptation (ADDA) uses a two-step approach where the

network is first pre-trained on source data and then a domain classifier is trained to learn target domain

features. As an alternative to DANN-type of domain adaptation, domain mapping approach uses GANs to

translate a sample data from target domain to source domain (Benaim and Wolf, 2017; Zhu et al., 2017).

However, these applications are limited to image-like domains.

This chapter introduces an effective domain adaptation approach to address the distribution shift between

source and target domain for supervised machine-learning-based SHM applications. More specifically, we

utilize a domain adversarial neural network (DANN) approach to predict the damage condition of a structure

operating under a target domain using both labeled source and unlabeled target domain data during training

time. The main purpose of the DANN architecture is learning features that represent both source and target

domains. To achieve this goal, DANN implements a multi-task topology that combines a regular feed-forward

neural network (NN) based damage classifier using source data with a domain discriminator NN which uti-

lizes source and target domain data. The domain discrimination component enables the feed-forward NN to

extract latent features underlying both domains by minimizing H-divergence between domains.

To demonstrate the suitability of the DANN for SHM applications, the chapter investigates two case

studies. The first case study focuses on a gearbox system with a set of damage conditions operating under

low- and high-load. A DANN model is trained with labeled low-load and unlabeled high-load data to predict

the damage condition for the high-load operation of the gearbox. Additionally, for this case, DANN is

compared to two well-known transfer knowledge methods, Transfer Component Analysis (TCA) and Joint

Distribution Adaptation (JDA) to show the performance gain. In the second case, the effectiveness of the

domain adaptation from the numerical model to experimental data is studied for a small-scale three-story

structure. The numerical model of the structure is used to simulate various damage conditions for the source

domain whereas the experimental data constitutes the target domain. Results from both case studies indicate
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that domain adaptation is a viable method for SHM applications, and it increases the accuracy of damage

condition prediction considerably. Additionally, the DANN can be considered as a potential ML architecture

enabling appropriate knowledge transfer across the source and target domains.

For many machine-learning-based SHM applications focusing on damage detection and localization, a

shift from source to the target domain is expected. Domain adaptation is a viable methodology for mini-

mizing the distribution shift between source and target domains. This chapter demonstrates that DANN is a

suitable approach for learning latent features that underline both source and target domains. The case studies

examined in this chapter show that DANN improves the prediction accuracy of supervised damage detection

and localization algorithms.

Overall, the major findings and contributions of this chapter can be summarized as below:

• For many machine learning-based SHM applications focusing on damage detection and localization,

a shift from source to the target domain is expected. Domain adaptation is a viable methodology for

minimizing the distribution shift between source and target domains.

• This chapter demonstrates that DANN (Ganin et al., 2016) is a suitable approach for learning latent

features that underline both source and target domains for SHM applications. The case studies exam-

ined in this chapter show that DANN improves the prediction accuracy of supervised damage detection

and localization algorithms.

• The effectiveness of DANN is compared to the black-box approach and traditional knowledge transfer

methods called TCA and JDA. Our results show that DANN outperforms all three architectures.

The rest of the chapter is outlined as follows. First, Section 2 discusses condition monitoring briefly and

formulates the domain shift problem. This section introduces the DANN model for SHM applications as

well. Section 3 presents case studies and the evaluation results. Lastly, Section 4 summarizes the paper and

draws conclusions.

The code to generate the results in this chapter can be accessed from https://github.com/aliirmak/DASHM.

4.2 Domain Adaptation in SHM

In traditional SHM applications, vibration data is captured from various locations of the structure in the form

of accelerations (Abdeljaber et al., 2017; Ozdagli and Koutsoukos, 2019). Meaningful features extracted from

these measurements through time or frequency domain analysis establish the input space for a supervised

learning model. Each data in the input space can be associated with a label describing the structural condition

in terms of the location of the damage and its intensity to form {X ,Y}. Supervised learning algorithms require

access to those labeled data for proper training. While the no-damage/normal data is often available when
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the structure is first erected, it is impractical to abuse the structure just to obtain the data relevant to various

damage conditions.

As a solution to the main fallback of the supervised learning methods, model-based SHM approaches

exploit numerical models to establish a baseline for damage detection and damage localization (Mirzaee

et al., 2015; Figueiredo et al., 2019). Numerical models can be useful for generating labeled source domain

data. However, an ML model trained with source domain data may suffer from the uncertainty gap between

the numerical model and the experimental structure (Catbas et al., 2013). Consequently, the learning model

may not yield correct labels for the unlabeled target domain and may diagnose the damage improperly for

the target structure. From the domain adaptation perspective, the distribution shift between source and target

domain should be addressed (Singh et al., 2020; Li et al., 2020). Accordingly, the problem for supervised

SHM applications is finding domain-invariant features that represent both labeled source and unlabeled target

domain.

In this chapter, the source domain DS consists of labeled data derived either from numerical simulations or

from a particular state of the structure (for example, low wind, low traffic load, low-load, etc. corresponding

to the normal operation). The target domain DT is either the data captured from the experimental structure or

an operational state of the structure that is not relevant to source domain (such as high wind, high traffic, high-

load, etc. corresponding to stressing operations) and it is unlabeled. Then, the typical domain adaptation task

for supervised SHM application is predicting the class for unlabeled target domain data using the knowledge

gained from both source and target data.

For SHM, it is natural to consider a classification task where X = {xi}N
i=1 is the input space of features and

Y = {yi}N
i=1 is the output space corresponding to the labels. Suppose that we have two different distributions

over the {X ,Y}: i) DS is the source domain which contains the labeled source samples with S= {(xi,yi)}n
i=1 ∼

DS; and ii) DT is the target domain which consists of the unlabeled target samples with T = {x j}n′
j=1 ∼ DT .

We assume that the distributions for both domains are different such that DS ̸= DT . This implies that the

distributions for the input space from S and T are not identical, namely p(XS) ̸= p(XT ). Similarly, the

conditional distributions that are used for inference may not match, that is p(YS|XS) ̸= p(YT |XT ). Given DS

and DT , the task for the domain adaptation is to build a classification model h(x) which can predict correct

labels for samples from DT using the knowledge learned from DS and DT .

4.2.1 Domain Adversarial Neural Network

A common domain adaptation approach is finding a mapping function that can minimize a probabilistic dis-

crepancy metric between the two domains. The majority of these metrics focus on computing the divergence,

i.e., the distance between two probability distributions. For example, the kernel mean matching (KMM)
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algorithm minimizes the mean distance in a kernel space by re-weighting the target domain with respect

to source domain(Huang et al., 2007). The approach in Sugiyama et al. (2008) proposes to minimize the

Kullback-Leibler (KL) divergence for minimizing domain shifts. A well-known transfer learning algorithm

called transfer component analysis (TCA) utilizes Maximum Mean Discrepancy (MMD) to minimize the

distance between two domains in Hilbert space (Sejdinovic et al., 2013; Pan et al., 2010). Lastly, Ben-David

et al. (2010) hypothesize that a classifier-induced divergence, namely H-divergence is sufficient for domain

adaptation.

H-divergence relies on distinguishing the examples of DS and DT and computing the domain divergence

from the data in both domains. Accordingly, we label the data from DS and DT as 0 and 1, respectively. Then,

we have a new dataset that can be described as:

U = {xi,0}n
i=1 ∪{x j,1}n′

j=1 (4.1)

Then, the objective is to develop a function that predicts the class of the sample input χ correctly, i.e.,

f : χ → [0,1]. Similarly, h′(x) is the learned model h′ : χ → [0,1]. Then, the generalized error is:

ε = E[|h′(x)− f (x)|] (4.2)

Given ε , the H-divergence is approximately:

d = 2(1− ε) (4.3)

One purpose of the domain adaptation is minimizing the H-divergence d. More details on the derivation of

the divergence can be found in Ben-David et al. (2010); Ganin et al. (2016).

There are inherently two tasks for implementing H-divergence based domain adaptation. First, we want to

train a domain classifier h′(x) that can discriminate between source and target domains. At the same time, we

want to design a class predictor h(x) to correctly predict the class for the source domain data during training.

It should be noted that the class predictor cannot be trained on target domain data as they are unlabeled. The

ultimate aim of the domain adaptation is finding features that underline both the source and the target domain.

Such a representation is expected to minimize the H-divergence and the domain predictor h′(x) should not be

able to distinguish between the source and target domains.

The domain-adversarial neural network (DANN) approach introduced in Ganin et al. (2016) exploits this

objective by proposing a multi-task learning approach. The DANN is composed of three components: feature

extractor, label predictor, and domain classifier). Figure 2 illustrates the training (forward and backward
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propagation) and testing phases. Here, the feature extractor (green colored) is a set of neural network layers

that extracts domain-invariant features for a given input. The label predictor (blue colored) layers predict

the label of a given input based on the domain-invariant features computed by feature extractor layers. The

domain classifier (red colored) is tasked with discriminating the domain of the input whether it is originating

from source or target domain. Finally, a gradient reversal layer denoted as GR connects feature extractor to

domain classifier. GR changes its behavior based on the type of propagation.

(a) Computation of loss - Forward propagation (b) Computation of gradients - Backward propagation

(c) Testing phase

Figure 4.2: Simplified DANN architecture

During the forward propagation (see Fig. 2 a), the class label loss is computed only over the labeled source

domain data, whereas the domain classifier loss is calculated using both labeled source and unlabeled target

domain data. In this phase, GR acts as a linear function and does not modify the propagation of loss. During

the backward propagation phase (see Fig. 2 b), the gradients of the losses are computed. In this phase, GR

reverses the gradient by multiplying the propagation with a negative small constant. This negative gradient

maximizes the domain confusion by enforcing latent features extracted from both source and target domain

to be indistinguishable. After training is complete, one can test the network only using feature extractor and

label predictor layers.

For a general DANN, the loss function can be formulated as following:

L =
1
ns

∑
xi∈Ds

Ly(yi, ŷi)−
λ

ns +nt
∑

xi∈Ds∪Dt

Ld(di, d̂i) (4.4)

where ns is the number of source domain sample; nt is the number of target domain samples; Ly and Ld are the

class label and domain label loss, respectively; λ is the trade-off parameter between class label and domain
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label loss; xi is the ith input; yi and ŷi are the corresponding true and predicted class labels, respectively; di

and d̂i are the corresponding true and predicted domain labels, respectively.

Next, we denote the feature extractor layers as G f , label predictor as Gy, and domain classifier as Gd . Ac-

cordingly, Ly and Ld can be formulated as:

Ly(yi, ŷi) = Ly(yi,Gy(G f (xi;θ f );θy)) (4.5)

Ld(di, d̂i) = Ld(di,Gd(R(G f (xi;θ f ));θd)) (4.6)

where θ f , θy, and θd are the weights for feature extractor, label predictor, and domain classifier, respectively.

Here, R(x) represents the gradient reversal layer as a function. The GR function has distinct behavior for

forward (see Eq. 6.4) and backward propagation (see Eq. 6.5) as prescribed below:

R(x) = x (4.7)

dR
dx

=−I (4.8)

The computed loss and gradients based on the GR function, are given in Figures 4.2a and 4.2b. Then, the

objective of the training is finding the weights, θ f , θy, and θd that optimize the joint loss, L given in Eq 5.3

by minimizing the label predictor loss and maximizing the domain classifier loss. Accordingly, the weights

are updated during gradient descent as given below:

θ f = θ f −µ

(
∂Ly

∂θ f
−λ

∂Ld

∂θ f

)
(4.9)

θy = θy −µ
∂Ly

∂θy
(4.10)

θd = θd −µλ
∂Ld

∂θd
(4.11)

where µ is the learning rate.

While the architecture explained here provides a generic prescription for the implementation of an arbi-

trary DANN architecture, the choice of hyperparameters such as number and types of layers, activations, and

loss functions per component (feature extraction, label prediction, domain discrimination) depends on the

task, experience, and expected performance.
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4.3 Evaluation, Results, and Analysis

For the evaluation of the proposed domain adaptation approach for SHM, two case studies are analyzed. The

first case study investigates the prediction performance for the damage condition of a gearbox system under

various torques. In the second case study, a three-story structure with several levels of damage conditions is

used.

4.3.1 Case Study 1: Gearbox Fault Detection

4.3.1.1 Dataset and Preprocessing

PHM Data Challenge 2009 introduced a dataset simulating various fault types for a generic gearbox sys-

tem Phm Society (2009). Acceleration data were collected at the input and output shaft of the gearbox at

different shaft speeds (30, 35, 40, 45, and 50 Hz) under two different loading conditions (low- and high-

load). For each shaft speed and loading conditions, 6 fault types are simulated (normal, chipped gear tooth,

broken gear tooth, bent shaft, imbalanced shaft, broken gear tooth with bent shaft). For each case which is the

combination of fault type, shaft speed, and load condition, about 4 seconds of data is collected at a sampling

rate of fs = 66.67 kHz twice. In this study, only the output shaft vibration data is considered.

According to the literature on gearbox fault detection (Chen et al., 2015; Jing et al., 2017), the frequency

domain provides a rich feature set for fault detection using vibration data. Thus, before training, all raw

data is converted to the frequency domain using sliding-window Fast Fourier Transformation (FFT) also

known as Short-Time Fourier Transform (STFT). The parameters for the transformations are selected as

prescribed by the length of each window segment which is 1000 samples. The segments overlap by 80

percent and the sample length of FFT is 1200. The frequency resolution is ∆ f = 111 Hz. After prepossessing,

each damage condition case has about 2700 data points with 601 features per loading condition. Here,

each feature represents a STFT value corresponding to a frequency point discretized with ∆ f (i.e. fs/∆ f =

(66.67kHz)/(111Hz) ≈ 601). The dataset is divided into source and target domains according to loading

conditions. The source domain corresponds to low loading conditions consisting of all shaft speeds and fault

types whereas the target domain is composed of the high-load operation. Since the task is detecting the type

of the fault regardless of shaft speed, the data belonging to the same fault type are stacked together. Finally,

both domain data are split into training and test data using a 4-to-1 ratio. All data is standardized with respect

to the source training data and all labels are one-hot encoded.

4.3.1.2 Implementation

Three different models are developed: Model 1: source-only model which is trained only with source domain

data; Model 2: the multi-tasking DANN model for training which uses both source and target domain data
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to discriminate the domain and predict the label; and Model 3: single-task DANN model for prediction and

used only for testing. The architectures are shown in Figure 4.3.

Here, each box corresponds to a layer of the neural network. Input is the input layer that utilizes the

features. N is number of neurons. In other words, 256 N within a box means 256 densely connected neurons

are used for the particular layer. RELU stands for Rectified Linear Unit, and it is the activation function for the

neurons defined within the layer. Dropout layers are represented along with the rate of dropout. For example,

Dropout 0.5 means a layer with a dropout rate of 0.5 is used. Finally, Softmax is the softmax activation layer

that provides the class membership probability for each class.

The source-only model is a shallow network consisting of feature extraction (FE, colored in green) and

class prediction (CP, colored in blue) layers. In addition to FE and CP layers, the multi-tasking DANN model

includes the domain discriminator (DD, colored in red) layers and the gradient reversal (GR) layer. The

single-task DANN model has the same structure as the source-only model but with updated weights where

the FE contains the latent features that represent both source and target domains after training. Model 1 and

Model 2 are trained using stochastic gradient descent. All the losses are chosen as categorical cross-entropy.

(a) Source-only model

(b) DANN model

Figure 4.3: Source-only and DANN architectures for numerical example

The low loading condition data represents the source domain whereas the high loading condition data

corresponds to the target domain. During training, the DANN utilizes 128 data points (64 from source and 64

from target) per batch. We assume we have access to the source data labels but not to the target domain labels.

The source (input, label) tuples are used explicitly for the class prediction task. For domain prediction, the

source data is labeled as 0 and target data as 1, and then the labels are one-hot encoded. The domain predictor

uses both domain data for training and creating domain invariant features. The source-only model is trained

with 75 epochs whereas the DANN is trained for 200 epochs.
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In addition to DANN, TCA and JDA are used for comparison. TCA utilizes training data from both source

and target domain to realize dimension reduction using radial basis function as the kernel. After dimension

reduction, a support vector machine (SVM) classifier is trained on the labeled source data as prescribed by Pan

et al. (2010). This classifier is also used to predict labels on unlabeled target data. Like TCA, dimensionality

reduction procedure is applied on the training data from both domains for JDA. After feature transformation,

a 1-Nearest Neighbor classifier (kNN classifier with k = 1) is trained on the labeled source data as prescribed

in Long et al. (2013). This classifier is tested on the unlabeled target data used for training. Due to the way

JDA is implemented, the algorithm cannot be tested on a new dataset other than the one it is trained with.

Testing JDA on labeled source data will result to 100% accuracy. Results for source data indicate the perfect

accuracy as N/A (not available).

Since TCA and JDA are essentially a set of matrix multiplications and eigenvalue decompositions, the

complete training dataset does not fit into the memory. Due to this limitation, only a quarter of training

samples are used from both domains. Both TCA and JDA methods are only applied to the first case study

and then discarded for the second case due to their low performance.

4.3.1.3 Results

Table 4.1 shows the accuracy for source and target domain test data on the source-only model and the DANN

model. The accuracy for predicting the source data is about 97 percent for both models. The accuracy for

both source-only and DANN models on the training data is above 99% (not reported in the table). However,

the generalization gap between training and testing is small which is an indicator for minimal overfitting.

Without domain adaptation, the accuracy of the target data for the source-only model is 64 percent. The

DANN improves the prediction on target data and increases the accuracy to 71 percent. TCA method produces

lower accuracy for source and target domain data ranging between 42 to 63 percent. Due to its limitation,

JDA is tested only on training source and target data. JDA produces 100% accuracy for source data, and it

is donated as N/A. JDA’s domain adaptation performance for target data is around 42% and it is marginally

lower than TCA.

The accuracy per class is visualized in Fig. 4.4. Accuracy plot shows that DANN performance improves

significantly for some classes over source-only model. For class 3, the performance of both models is similar.

A negative transfer learning is observed for class 4 and 5. As a result of this, the prediction performance

of DANN is decreased. For all most all classes, TCA and JDA do not exhibit a good domain adaptation.

Additionally, Table 4.2 illustrates the precision, recall, and F1 scores for all the models presented. Among

all the models, DANN has the highest precision, recall, and F1 scores despite the slight negative transfer

learning.
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Model Input Accuracy

Source-only Model
Source 97.46%
Target 64.43%

DANN Model
Source 97.55%
Target 71.79%

TCA Model
Source 61.57%
Target 45.25%

JDA Model
Source N/A
Target 42.08%

Table 4.1: Domain adaption performance for gearbox fault detection

Overall, results indicate that DANN outperforms TCA and JDA significantly and this finding implies that

TCA and JDA may not be used as a reliable domain adaptation method.

Figure 4.4: Accuracy per class

Model Precision Recall F1

Source-only 65.81 64.47 64.59

DANN 72.06 71.80 71.90

TCA 45.24 45.25 44.10

JDA 41.82 42.09 41.06

Table 4.2: Additional performance scores for gearbox fault detection

In addition to the domain adaptation performance, we examined the empirical computational cost of each

approach. Table 4.3 illustrates the average runtime for each model when they are trained 10 times. Among

all, source-only model takes about 75 seconds to train over the entire dataset. The training time for DANN

is longer (455 sec) as expected, since it utilizes a larger data set (source and target), and it is a multi-task
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learning environment. Despite TCA and JDA use only a quarter of the data for training, it takes considerably

a lot longer to train them. DANN employs stochastic gradient descent (SGD) for the optimization of the

model weights. Thus, there is no need to load all the training samples in the memory at once. However, TCA

and JDA require all the training data in the memory. In addition, the eigenvalue decomposition that TCA

and JDA rely on is a set of matrix multiplications that are known to be computationally expensive for large

dimensions.

Model Average Training Time (sec)

Source-only 75

DANN 455

TCA 6470

JDA 1520

Table 4.3: Empirical computational costs for domain adaptation methods

4.3.2 Case Study 2: Structural Damage Detection

4.3.2.1 Structure and Numerical Model

This case studies the performance of domain adaptation when the training data are generated using a numeri-

cal model but the testing data are from an experimental structure. A small-scale three-story structure is tested

by Figueiredo et al. (2009) at the Los Alamos National Laboratory (see Figure 4.5). The structure is excited

with an electromagnetic shaker attached to its base. The accelerations at each floor including the base are

recorded at a sampling rate of 320 Hz for about 25 seconds. Seven damage conditions are considered where

the stiffness of one or two out of four columns at different stories are reduced. Table 4.4 summarizes the

damage conditions.

Figure 4.5: Three-story laboratory structure (Figueiredo et al., 2009)
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Label Damage Type

State #1 Baseline condition - Undamaged
State #2 87.5% stiff. red. in one column at first floor
State #3 87.5% stiff. red. in two columns at first floor
State #4 87.5% stiff. red. in one column at second floor
State #5 87.5% stiff. red. in two columns at second floor
State #6 87.5% stiff. red. in one column at third floor
State #7 87.5% stiff. red. in two columns at third floor

Table 4.4: Damage types for three-story structure

Our purpose for this case is developing a domain adaptation architecture that can transfer knowledge

from the numerical model to experimental structure and predict the correct damage case. For this reason, we

considered two sets of lumped-mass numerical models of the structure (see Table 4.6). First set is named

as low-fidelity model, and it consists of two sub-model. The first sub-model, also called as Simple, estab-

lishes a 3-DOF system with the structural and geometric parameters provided by Figueiredo et al. (2009).

A comparison of natural frequencies identified by Sun and Betti (2015) and extracted from Simple model is

given in Table 4.5. The average error of the natural frequencies for the given model is about 33 percent, and

the largest error is 50 percent occurring for the first mode. The differences in the parameters imply that the

Simple model does not represent the actual structure.

The second low-fidelity model is named Updated. The model updating procedure prescribed by Giraldo

et al. (2004) is performed on the Simple model to obtain this model. The method imposes a new stiffness

matrix by utilizing the identified natural frequencies while the mass matrix remains the same. The Updated

model has the same natural frequencies as the experimental structure, however, it is still 3-DOF. Thus, in this

research, this model is still considered low-fidelity.

Identified (Hz) Simple (Hz) Error (%)

1st Mode 31.09 14.32 53.94
2nd Mode 55.05 40.12 27.11
3rd Mode 72.23 57.98 19.73

Average Error (%): 33.59

Table 4.5: A comparison of identified natural frequencies and Simple Model

The second model category is called high-fidelity. This model is 4-DOF and its design parameters such

as mass and stiffness values are taken from Sun and Betti (2015) such that the natural frequencies and mode

shapes of the model match closely to the experimental structure. To evaluate the sensitivity of modeling

errors on the quality of damage prediction, two additional high-fidelity models are considered. The stiffness

matrix of these models is perturbed by 5% and 10%, respectively, to simulate modeling errors.

All numerical models are simulated at 320 Hz in MATLAB. For these simulations, the base of the numer-
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ical model is excited with acceleration that matches the dynamic characteristics of the data captured at the

base level from the experimental structure. For each damage case, the numerical model is damaged by the

values given in Table 4.4. The three floor acceleration responses from both numerical and experimental data

are sliced into 1-second bins. The numerical and experimental data have a dimension of [42350× 320× 3]

and [8750×320×3] (# of data instances×# of samples×# of channel), respectively. After the data is split

into training and testing, it is standardized, and the associated labels are one-hot encoded.

4.3.2.2 Implementation

For this case study, a slightly modified version of convolutional neural network architecture proposed by the

Lin et al. (2017) for structural damage detection is used as the source-only model. In addition to 1D con-

volutional and max-pooling layers, this network utilizes batch normalization for stable learning and dropout

for regularization. For DANN implementation, the domain classifier is added just before the label predictor,

which is a set of densely connected layers (see Figure 4.6). The output shape of each layer set is provided at

the corner of those layers. The gradient reversal layer is not shown to keep the illustration simple.

For each numerical model, both architectures are trained from scratch. Source-only architecture is trained

with the labeled numerical model data (source), and DANN utilizes both labeled model data (source) and un-

labeled experimental data (target). For each case, the architectures are trained three times, and the average

performance is computed. The source-only and DANN models are trained for 200 and 50 epochs, respec-

tively. It is observed that more epochs do not improve the performance of the DANN model.

Figure 4.6: DANN architecture for experimental example
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4.3.2.3 Results

Table 4.6 presents the damage classification performance of source-only and DANN architectures for the five

numerical models. Additionally, for each model, the improvement in accuracy from source-only to DANN

architecture is given as the difference between their target prediction performance.

First, we look at the performance of low-fidelity models. The accuracy of both architectures is high

(> 90%) for the Simple Model against source data. However, the accuracy drops to 14% when tested against

target data.For Simple Model, the domain adaptation is ineffective when the modeling error is significant and

the numerical model is semantically very different than the experimental structure. As for the Updated Model,

the accuracy of source-only model marginally increases against target data (17%). The improvement is more

prominent for DANN (40%) which is above 100% increase in the performance compared to source-only

architecture.

For the high-fidelity model category, three models are considered with various modeling errors: 0%, 5%,

and 10%. Both source-only and DANN architectures perform excellently against source data independent of

the model (> 98% accuracy). The overall results for source-only architecture and no modeling error show

that while the high-fidelity model is not perfect, it can predict the correct classes for the experimental data

with an accuracy reaching up to 90%. When tested against target data, the classification performance of

source-only architecture decreases progressively with respect to the modeling error. The largest performance

degradation is observed (81% accuracy) when the modeling error is 10%. When there is no modeling error,

domain adaptation improves the damage detection marginally compared to source-only model (88% vs 89%).

For small modeling error (5%), the classification accuracy increases slightly (86% vs ∼ 90%). Lastly, the

most dramatic increase in performance is observed for large modeling error where the improvement is higher

than 10%.

Low-Fidelity Model High-Fidelity Model

Architecture Data Simple Updated 0% Error 5% Error 10% Error

Source-only
Source 96.33 94.01 98.99 99.22 99.21
Target 14.40 17.08 88.35 86.49 80.88

DANN Source 92.60 99.62 99.98 99.98 99.81
Target 14.37 41.27 89.70 89.96 92.18

Improvement -0.02 24.19 1.36 3.47 11.30

Table 4.6: Accuracy for domain adaption from numerical to experimental data (all values in percentage)
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4.3.3 Discussion

To demonstrate the applicability of DANN, we consider two case studies. In the first case study, we predict

the condition of a gearbox system running under high-load using the knowledge gained from low-load and

high-load operation data. The second study focuses on transferring inference from labeled simulation data to

unlabeled experimental data for a three-story structure. For the first case, the improvement DANN provides

is around 7%. Here, TCA produced low accuracy both for source and target domain data. Similarly, JDA did

not exhibit a successful domain adaptation performance either. This could be attributed to the fact that only

a quarter of the total data set (generated with stratified random sampling) is used for the training. Similar to

Principal Component Analysis, TCA and JDA are taxing on the memory for large number of samples. Due to

this limitation, the generalization over both source and target data set may not be well defined. Additionally,

TCA and JDA use SVM and k-NN on dimension-reduced source domain datasets, respectively. SVM and

k-NN may not be the most suitable classifier for this application.

For the second case, we observe an increase in the target accuracy varying between 1% and 24%. The

results show that if there is a significant divergence between source and target domains (Simple Model),

domain adaptation is not very successful. For semantically similar systems (Updated Model), the learning

model produced with the numerical data fails to predict correct labels for the target data without proper

domain adaptation. On the other hand, the DANN is able to improve the accuracy of the target data by 24%.

For high-fidelity models, the performance of source-only model decrease with increasing modeling error.

DANN improves the target prediction performance compared to the source-only model, especially when the

modeling error is more prominent. Due to the poor performance of TCA and JDA in Case 1, we dismissed

them for Case 2.

4.4 Conclusion

For many SHM methods based on supervised learning, experimental target data is often not available. For

such cases, a classification model trained with simulation data may not generate correct predictions for real

data. Without addressing the data shift between the source and target domain, it is challenging to learn a

model that can be used for SHM. This chapter shows that domain adaptation is a viable approach to damage

classification problems. Specifically, we show the applicability of adversarial domain adaptation using two

case studies. In the first case, we study the fault detection performance for a gearbox system between low-load

(source) and high-load (target) domains and we observed that the prediction accuracy improves using domain

adaptation. Additionally, we compared DANN to TCA and JDA to demonstrate the performance gain from

DANN over the traditional domain adaptation methods. The second case focuses on detecting and locating

damage for a three-story structure. Here, we utilized a numerical model of the structure for generating labeled
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source domain data and the experimental data for unlabeled target domain data. The results show that DANN

increases classification performance.

The current approach processes source and target data separately during training. In reality, for the ma-

jority of structural health monitoring applications, the structure is expected to be in healthy condition right

after the construction. Thus, target domain data labeled as normal/undamaged is accessible for training to

some extent. For future research, novel domain adaptation methods should exploit this limited target domain

data during training to extract more generalized latent features and to improve the adaptation. Lastly, other

domain adaptation strategies such as GAN-based discriminate approaches Tzeng et al. (2017) should be also

explored.
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CHAPTER 5

Model-based Damage Detection through Physics-guided Learning for Dynamic Systems

5.1 Introduction

In the last decade, the use of machine learning (ML) algorithms gained a lot of interest within the community

of condition monitoring for dynamic systems (Widodo and Yang, 2007; Farrar and Worden, 2012; Stetco

et al., 2019). A majority of ML applications in this area exercise a data-driven black-box approach that

utilizes a large volume of experimental data obtained directly from the actual dynamic system. Black-box

methods are proven to be successful in diagnosing the system through characterization and localization of the

damage (Bakhary et al., 2007). One of the obstacles for such methods is often the availability of sufficient

training data (Zhang and Sun, 2021). More specifically, access to a complete training dataset covering a wide

range of conditions is costly and in some instances impossible without actually damaging the system prior to

operation. This problem is a major roadblock in developing efficient data-driven algorithms for diagnostics

of dynamic systems (Sadoughi and Hu, 2019).

For cases where training data captured from the field is limited, a data-driven black-box ML model could

be trained with simulation data. In other words, to compensate for the lack of experimental training data,

a representative analytical model can simulate the behavior of the system physics to some degree. While

physics-based analytical models are capable of generating extensive training dataset, the resulting ML algo-

rithm should still be evaluated with experimental testing data. Well-established analytical models are capable

of simulating the dynamic response of the target system (Teughels and De Roeck, 2005; Jaishi and Ren,

2006). On the other hand, calibrating a large set of parameters for complex systems to achieve accurate phys-

ical behavior is often computationally exhaustive and at times infeasible (Zhang et al., 2020). Eventually, the

analytical representation inherits modeling error. In this case, it is expected that the ML algorithm will fail

to perform efficiently during testing since the simulation training data and experimental testing data are sta-

tistically divergent (Gardner et al., 2020). To address this drawback of data-driven black-box algorithms, the

inference should incorporate domain-specific physical knowledge. The physics-guided learning (PGL) which

is essentially a hybrid approach aggregating data-driven inference with physical parameters has the potential

to leverage the performance of the condition monitoring further and to bridge the gap between simulation and

experimental domains.

In recent years, a number of PGL approaches have been proposed (Karpatne et al., 2017; Jia et al., 2018;

Sadoughi and Hu, 2019; Zhang et al., 2020; Zhang and Sun, 2021; Yao et al., 2020). However, the variety of
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applications implies that the implementation of a proper PGL with domain-specific knowledge is non-trivial.

Moreover, most of the existing work focuses on the prediction of system responses using PGL. In the area of

diagnostics, little research effort has been devoted to incorporating of physical knowledge into the data-driven

ML and exploiting deep learning architectures for damage classification.

In this chapter, we propose a damage detection and localization architecture for dynamic systems, namely,

physics-guided learning for structural health monitoring (PGL4SHM) that combines the power of neural

networks with domain specific physics knowledge. In particular, PGL4SHM is a multi-task deep learning

architecture which (i) utilizes the synthetic data simulated by a numerical physics-based representation of

the target structure for training and (ii) incorporates domain-specific physical parameters derived from this

representation into the loss function. The multi-tasking PGL4SHM is trained with simulated structural re-

sponses in time-series form which serve as the input to the deep network. Additionally, during the learning

phase, the physical parameters such as natural frequencies and mode shapes that are known to be structural

damage indicators (Kim et al., 2003) are used for training the intermediate layers of PGL4SHM (Muralidhar

et al., 2019). The modal features (natural frequencies and mode shapes) can be extracted directly from the

numerical model. Since the organic relationship between the physics-based model representation, structural

responses, and damage state is embedded into the PGL4SHM, the architecture is capable of generalizing dam-

age detection compared to black-box approaches. As PGL4SHM uses modal features derived from numerical

model, this embedding is physics-based rather empirical.

To validate the PGL4SHM architecture, two case studies are considered. The first study is purely an-

alytical and investigates the performance and efficiency of the proposed approach under ideal conditions

since every aspect of the system is simulated. The second case study considers the experimental setup of a

small-scale three-story structure tested at Los Alamos National Lab. The results from both the analytical and

experiential case studies show that the proposed architecture has better generalization capability in localizing

the damage compared to black-box models in the presence of modeling errors. The performance gain is more

evident when the numerical representation deviates from the actual structure further. Lastly, we evaluated the

explainability of the results by analyzing the relationship between structural responses, damage state, and the

integrated physical parameters.

Overall, PGL4SHM combines data-driven machine learning with knowledge of physics. As a result of

this, PGL4SHM has the potential to improve damage detection and localization for SHM applications and

promises more accurate decisions and prioritization for maintenance operations.

In summary, the major contributions of this study are:

• A physics-guided learning architecture, PGL4SHM is proposed to generalize damage detection and
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location prediction for dynamic systems.

• The proposed architecture uses physics-constrained intermediate variable layers that rely on physical

parameters known to be statistically important features for damage detection such as natural frequen-

cies and mode shapes.

• For proof of concept, the proposed method is evaluated by comparing damage localization perfor-

mance to black-box models for numerical and experimental cases.Results show that the new approach

improves prediction accuracy in the presence of modeling error.

• PGL4SHM improves the explainability of the results since the intermediate layers expose valuable

information that is highly relevant to the physics of the target structure.

5.2 Problem Formulation

Structural systems can experience damage throughout their life-cycle. It is essential to detect and locate the

damage earl-on before it progresses to a bigger failure. In this context, damage localization is a supervised

classification problem.

In this study, we consider black-box deep neural networks that label raw input data in the form of ac-

celeration time-series measurements according to the damage condition the structure is experiencing. The

implicit assumption for the black-box model is that the training data is available for every expected damage

condition. In reality, the training data is only available for no damage condition. To obtain training data for

other damage conditions, the structure should be deliberately tarnished which is not practical. We can create

a physics-based model of the structure and generate simulated data for various damage scenarios of interest.

Accordingly, the black-box model can be trained with the simulated data and tested with experimental data

after deployment. However, this approach is often not feasible since the physics-based simulation often has

intrinsic modeling error. Due to the deviation between simulated training and experimental testing data, the

black-box model will become ineffective in labeling the input correctly.

The problem considered in this chapter is locating the damage accurately in the presence of modeling

errors. To address this problem, three challenges should be resolved. First, we need to create a physics-

based representation of the target system based on the available data. This model should be used to generate

simulated data. Secondly, we should design a deep learning architecture that is trained with simulated data

but can generalize well for experimental data compared to the black-box model. Thirdly, we need to establish

the physical parameters most relevant to the damage condition of the structure to integrated into intermediate

layers of the architecture during inference. Ultimately, successful implementation of PGL4SHM should
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generalize the prediction well for the cases where field data is limited and physics-based simulation has some

modeling error.

5.3 Physics-guided Learning

For a given set of structural response measurements in the time domain, we are interested in predicting the

damage condition of the structure. Such a predictor can be trained with a supervised learning approach since

for each input, x there is a label, y corresponding to the damage state. One way to learn the mapping from x to

y is by training a black-box feed-forward neural network. By utilizing nonlinear activation functions within

neurons, this network allows us to expose the complex relationship between the structural responses and the

damage conditions. While the black-box networks are capable of learning the latent feature space, they can

fail to generalize the predictions for unseen observations.

For many dynamic systems, the data labeled as normal is often available when they are deployed. How-

ever, access to data relevant to damage conditions is limited without harming the system. The absence of

experimental data can be compensated by simulating damage on a finite element model of the system and

obtaining new input/output pairs. However, due to the poor generalization of black-box models, the predic-

tor will suffer from the presence of modeling errors and label the given inputs incorrectly. To address the

limitation of the black-box models, this chapter presents the physics-guided learning for structural health

monitoring (PGL4SHM) which integrates the physical knowledge regarding the dynamic characteristics of

the target structure into the deep learning architecture.

5.3.1 Overview of PGL4SHM Architecture

Damage occurring in a load-carrying member changes the dynamic characteristics of the structure (Balageas

et al., 2010). Fundamental dynamic characteristics of a system can be described in terms of its modal param-

eters such as natural frequencies, f , and mode shapes, φ . These parameters can be obtained from time series

data using frequency domain analysis techniques (Brincker et al., 2000). Prior research has shown that super-

vised black-box algorithms utilizing modal parameters in the input layer can predict damage detection and

localization with success (Wang et al., 1997; Hakim and Razak, 2014). A number of literature specifically

focused on the use modal parameters such as natural frequencies and mode shapes to predict damages in a

more refined manner (Kim et al., 2003; Wang and Li, 2012). On the other hand, majority of the aforemen-

tioned approaches depends on the existence of full-range experimental data. In this study, to overcome the

limitations of black-box models, we propose PGL4SHM where the domain-specific knowledge is embedded

into the deep learning architecture through intermediate layers inspired from Muralidhar et al. (2019).

Here, we assume that the input is structural response measurements in the time domain obtained from
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a physics-based simulated model, the output is the damage condition associated with the input data. The

intermediate layers utilize physical variables to improve supervised learning to enable a rich and generalized

representation of the target system and to improve supervised learning. The physics-based model is developed

as a representative finite element model (FEM) based on the available experimental data obtained from the

undamaged structure. The simulated training data is generated using this FEM for various damage conditions

of interest, including no damage case. The modal parameters f and φ can be extracted directly from the

FEM. A simplified layout of the architecture for training is given in Figure 5.1. In this architecture, the input

Figure 5.1: Simplified layout for training PGL4SHM

later takes the simulated time-series data obtained from FEM. Each piece of simulated data is associated

with a label designating the damage condition. The feature extraction layers are a set of layers designed as

convolutional neural networks (CNN). Additionally, there are two individual intermediate variable layers in

parallel. The output of each intermediate layer corresponds to a modal parameter ( f and φ ). While the modal

parameters are simply extracted from the FEM using eigenvalue problem (Craig Jr and Kurdila, 2006), it

can be also derived from time series using domain-specific frequency-domain analysis processes (Ghanem

and Shinozuka, 1995). The intermediate layers are physics-guided and are directly associated with physically

meaningful modal parameters which are known to be good damage indicators. In this regard, this architecture

exploits the feature extraction as a modal analysis step to compute intermediate variables which essentially

blends domain-specific knowledge with the learning process. For this study, we assumed the intermediate

variable layers are densely connected following a flattening layer after CNN based feature extraction layers.

Next, the label prediction layers are tasked to extract features from modal properties to determine the damage

condition for the given input. For training, PGL4SHM requires simulated time-series data, associated modal

parameters, and labels. During testing, the architecture needs only experimental data to the input layer and

predicts the relevant damage condition accordingly.
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A black-box architecture is very similar to the PGL in nature with a main difference. Since black-box

does not utilize intermediate layers and physical parameters associated with it, these layers are simply not

implemented.

5.3.1.1 Physics-based Modeling

A physics-based presentation of the structure can be often achieved by modeling the target structure using a

finite element model. In FEMs, the structural systems are modeled as a set of discrete elements (known as

finite elements) that are related to the physical properties of the structure such as stiffness, area of the member

section, etc. A finite element model can be idealized as a set of mass (M), stiffness (K), and damping matrix

(C) which can be written in terms of equations-of-motions (EOMs).

Mẍ+Cẋ+Kx = F (5.1)

where F is the input excitation such as ground motion, x, ẋ, and x are the acceleration, velocity, and displace-

ment obtained from the system, respectively. A finite element model can be generated either manually by

representing each structural element faithful to its physical properties or by extracting the EOM matrices from

the experimental data (Fritzen, 1986; Chen et al., 1996). Complex FEMs involve large dimensional matrices

which complicate the modeling and make the calibration process cumbersome. As a result, the modeling

errors are inevitable but often acceptable for many engineering applications.

Once the matrices are obtained, the training data can be simulated using Eq 5.1. By modifying M or

K depending on the damage type, various damage conditions can be simulated. For every damage type, an

eigenvalue problem can be applied to extract modal parameters as follows:

λMφ = Kφ (5.2)

where λ is the diagonal eigenvalue matrix and can be written also as λ = diag(2π f 2). It should be noted that

for every combination of K and M pair, a unique pair of f and φ can be generated.

In addition to eigenvalue analysis, the modal parameters can be obtained from structural responses using

sophisticated time and frequency analysis techniques (Ghanem and Shinozuka, 1995). A clear relationship

between physics-based EOM matrices, structural responses, and modal features is obvious as all of them

are related to the dynamic characteristics of the structure. Integration of modal parameters into the learning

process as domain-specific knowledge is a promising tool for generalizing damage detection compared to

black-box approaches.
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5.3.1.2 Learning Process

This network is typically trained with structural response data obtained from a representative FEM. Addi-

tionally, the architecture utilizes physics-based modal parameters also obtained from FEM. Accordingly, the

empirical loss function that needs to be minimized during learning can be formalized as follows:

Loss = LossDMG +λPGLLossPGL (5.3)

Eq. 5.3 implies that the network utilizes a multi-task learning scheme, where LossDMG corresponds to the cat-

egorical cross-entropy loss between the actual damage condition, y and predicted label, ŷ; LossPGL represents

mean square error (MSE) for the physics-guided learning parameters; and λPGL is the trade-off parameter.

Please note that a black-box model will only use LossDMG for the training and disregard the physics related

loss, LossPGL.

The physics-guided loss, LossPGL given in Eq. 5.3 can be described as:

LossPGL = LossPGL( f , f̂ )+LossPGL(φ , φ̂) (5.4)

Here, LossPGL( f , f̂ ) is the MSE between the actual natural frequencies, f and predicted frequencies, f̂ ; and

LossPGL(φ , φ̂) is the MSE between the actual mode shapes, φ and predicted ones, φ̂ . Since LossPGL is a

regression loss, we assume the neurons of the intermediate layers are linearly activated.

5.4 Evaluation

For this study, we evaluated the PGL4SHM architecture by comparing it to the black-box model performance.

We have considered two case studies. The first case study focuses on a finite element model of a simply

supported beam, and the second case investigates experimental testing of a three-story structure.

5.4.1 Implementation

The FEM (simply supported beam) and experimental structure (three-story structure) are excited with white

noise under various damage conditions and the resulting dynamic responses are collected from all available

sensors in terms of accelerations for some amount of time. Then, the accelerations are divided into 1-second

chunks and each of these chunks are categorized according to the relevant damage state. The data obtained

from this process is the reference data and used for testing.

In parallel, for each case, another FEM model is developed to replicate the original structure. This model

is intentionally misrepresented to some degree in order to introduce modeling errors that occasionally occur

during the design process. Using this FEM, the structural responses and corresponding damage labels are
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Figure 5.2: Black-box architecture adopted from Lin, Nie, & Ma, 2017

generated. In addition, the modal parameters are extracted from this FEM and vectorized. This data is then

divided into training, validation, and testing with a ratio of 0.6 : 0.2 : 0.2, respectively. The training and

validation data is used during the training phase of PGL4SHM. The testing data and the reference data are

used for performance evaluation. Before training, all available data is standardized by removing the mean

and scaling to unit variance with respect to training data. All FEM and experimental data is standardized with

scikit-learn toolbox.

Next, two neural network models are trained for each case. The first neural network is a black-box model

that learns end-to-end relationship between the time series input and the damage condition (see Figure 5.2).

The network is structured as prescribed in Lin et al. (2017). This model does not utilize physics-guded vari-

ables, mode shapes and frequencies at all. The dimension of the input depends on the number of the sensors

and the sampling number. The feature extractor and label prediction layers are CNN and DNN, respectively.

All neurons have leaky RELU activation functions. The size of the output layer changes with respect to the

number of damage conditions considered for the case study. The neurons of this layer are activated with

softmax. To generalize the predictions and mitigate the internal covariate shift, batch normalization layers

are also inserted to the black-box model. Lastly, to reduce the number of trainable parameters, every batch

normalization layer is followed by a max pool layer. The second model, PGL4SHM architecture is trained

with the training data to minimize the loss function given in Eq. 5.3 (see Figure 5.3). This network struc-
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Figure 5.3: PGL4SHM architecture

ture follows an arrangement similar to the black-box model with the addition of intermediate value layers

which employs the physics-guided modal parameters. The intermediate layers are densely connected and the

neurons are linearly activated. Both black-box model and PGL4SHM architectures are trained using Keras

running on TensorFlow 2.0 in Python 3.7. The performance of both architectures is evaluated by computing

the classification accuracy.

5.4.2 Case 1: Analytical Example

This case focuses on the effectiveness of the proposed model where modeling errors relevant to environ-

mental, operational, and material uncertainties are controlled more precisely. Here, we consider a simply

supported beam studied by Lin et al. (2017). The beam has a span length of L = 10.0 m and a rectangular

section with 0.1m width and 0.25m (see Figure 5.4). The beam is assumed to be made of steel with the

elastic modulus of 206 GPa and density of 7,900 kg/m3. The damping is simulated with classic Rayleigh

damping where mass matrix (M) proportional factor, α is 1.0 s−1 and stiffness matrix (K) proportional fac-

tor, β is 1.15× 10−6 s. The beam is modeled using FEM tool, Open System for Earthquake Engineering

Simulation - OpenSees (McKenna et al., 2010). The beam is discretized into ten equally long members that

have linear elastic-beam column element properties. Excluding support nodes, the beam has 9 nodes. To

generate acceleration responses, the beam is excited at each of the nine nodes vertically with a random noise.
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This excitation has a Gaussian distribution with a mean of 200 N and standard deviation. To simulate finite

features of the environmental noise, the random excitation is filtered with an eighth-order Butterworth filter

that has a cutoff of 512 Hz. The sampling rate for the simulation is selected 8192 Hz. To reduce the volume

of the data, the simulation data is down-sampled to 1024 Hz and only vertical accelerations at nine nodes are

considered. For each loading case, the size of one simulation instance is (9 nodes× 1024 Hz). To simulate

damage conditions, each of the ten members is damaged individually by reducing the member stiffness by

10% to 50% with 10% increments. Including no damage state, 11 damage conditions are simulated at nine

loading positions across ten members. In addition to time-series data, for each data simulation, first 5 natural

frequencies and 27 three modes shape points (3 modes× 9 nodes) are extracted from the FEM analytically

using OpenSees. The resulting data is categorized according to the damage location independent of the mag-

nitude of the damage and the location of the excitation. All the data generated so far constitutes the reference

data for testing. In parallel, another set of simulation data are generated with an inaccurate FEM model. To

Figure 5.4: Simply supported beam model used for analytical case

account for environmental, operational, and material uncertainties, for each data instance, the stiffness of the

inaccurate model is perturbed with a log-normal distribution. Four inaccurate models are developed where

the maximum error of all sampled elastic modulus varies between 5% and 20% with 5% increments. This

data is used for training, validation, and testing of PGL4SHM. In addition to time-series data, for each data

simulation, the first 5 natural frequencies and 3 modes shapes are extracted from the FEM analytically using

OpenSees.

Following the deep-learning architecture provided by Lin et al. (2017), the black-box model and PGL4SHM

counterpart are developed, yielding about 1,072,267 and 621,739 trainable parameters to optimize, respec-

tively. The PGL4SHM has intermediate layers between feature extraction and label prediction layers. These

intermediate layers act as a choke point, decreasing the number of trainable parameters. To make up for the

capacity of the PGL4SHM, two more convolutional layers (a regular convolutional layer and one with batch

normalization and max pooling) are added before the flattening. This model, namely PGL4SHM - Extended,

has 1,097,387 trainable parameters.

Two versions of PGL4SHM (regular and extended) are compared to the black-box architecture. Table 5.1
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summarizes the classification accuracy and the improvement over black-box architecture with respect to the

maximum modeling error in percentage. In addition, Figure 5.5 visualized the accuracy of all architectures.

For no modeling error (ME 0%), while black-box outperforms the regular PGL4SHM, the performance of

extended PGL4SHM surpasses all of them. When there is a small modeling error (ME 5%), black-box is

the best among the three, resulting in to 94 percent accuracy. On the other hand, the difference between

black-box and extended PGL4SHM (84.98 vs 84.55 percent) is negligible. The power of PGL4SHM shines

when the modeling error is above 5 percent. For the cases ME 10%, ME 15%, and ME 20%, the performance

of both PGL4SHM architectures succeeds black-box significantly. Overall, the improvement of prediction

accuracy increases progressively with the modeling error.

In general, the black-box model is a good choice when the modeling fidelity is ensured. Both black-box

and extended PGL4SHM have about the same amount of trainable parameters, and their prediction accuracies

are similar. The extended PGL4SHM is successful for almost every case except the case ME 5%, however,

compared to black-box, the performance loss is negligible. When the modeling error is small, compared

to the extended PGL4SHM, the regular PGL4SHM is, in general, less effective due to the small number of

trainable parameters. The results clearly show that especially when the numerical model does not represent

the actual system properly, blending physical parameters with data-driven machine learning has a positive

impact in improving the damage localization.

Black-box PGL4SHM PGL4SHM - Extended

Modeling Error Accuracy (%) Accuracy (%) Improvement (%) Accuracy (%) Improvement (%)

ME 0% 93.75 91.90 -1.97 93.89 0.15
ME 5% 84.98 83.88 -1.29 84.55 -0.50
ME 10% 67.71 70.78 4.55 70.52 4.15
ME 15% 52.98 56.67 6.96 56.29 6.24
ME 20% 42.75 47.18 10.35 48.60 13.68

Table 5.1: Classification accuracy of black-box and PGL4SHM for analytical case

5.4.3 Case 2: Experimental Example

The performance of the PGL4SHM approach is also evaluated on a small-scale three-story structure tested by

Figueiredo et al. (2009). An electromagnetic shaker is attached to the base of the structure (see Figure 5.6).

The structure was excited with a band-limited white noise and the resulting horizontal acceleration responses

and the excitation force were measured at a sampling rate of 320 Hz for about 25 s. For this study, including

undamaged state, four damage conditions are considered. The damage states are established by reducing the

stiffness of one or two columns at each floor by 87.5 percent. Each response data instance is categorized

according to its respective damage condition. After the input force is removed from the measurements, time
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Figure 5.5: Visualization of classification accuracy for analytical case

series data are divided into 1-second chunks. Each chunk is categorized according to its respective dam-

age condition. The data collected in this phase is the reference data for testing. In addition, a high-fidelity

lumped-mass model is generated in the form of mass-stiffness-damping matrices using the parameters pro-

vided by Hernandez-Garcia et al. (2010) and Sun and Betti (2015). A 10 percent error is introduced into the

stiffness matrix to simulate the modeling uncertainties. Using this imperfect model, data for all damage con-

ditions are produced. In addition, three natural frequencies and 9 mode shapes points (3 modes× 3 stories)

are obtained using this model. The data from the imperfect FEM model is used for training and validation of

PGL4SHM. Black-box and PGL4SHM architectures have 707,844 and 557,459 trainable parameters, respec-

tively. No further layers are added to PGL4SHM to extend the capacity of PGL4SHM. We also ensured there

is no overfitting by validating the models against their respective numerical datasets. The performance of

trained architectures and the improvement of PGL4SHM over black-box architecture for the corresponding

modeling error are provided in Table 5.2. The classification performance of the black-box for no modeling

error (96.18%) is greater than that of PGL4SHM (90.74%) and the performance loss reaches up to 6 percent.

For a moderate level of modeling error (ME 10%), the black-box model yields a poor performance (38.06%)

compared to PGL4SHM (70.82%).

Additionally, Table 5.2 presents the averaged F1-scores for the experimental case. The results and im-

provements are in parallel with the classification accuracies.
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Figure 5.6: Three-story structure used for experimental case

Black-box PGL4SHM

Modeling Error Acc. (%) Acc. (%) Impr. (%)

ME 0% 96.18 90.74 -5.66
ME 10% 38.06 70.82 86.07

Table 5.2: Classification accuracy of black-box and PGL4SHM for experimental case

Black-box PGL4SHM

Modeling Error F1 (%) F1 (%) Impr. (%)

ME 0% 96.21 90.48 -5.96
ME 10% 31.09 67.36 116.66

Table 5.3: Averaged F1-score of black-box and PGL4SHM for experimental case
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Lastly, Fig. 5.7 illustrates averaged ROC for the experimental case. Blackbox and PGL4SHM have similar

ROC performance when there is no modeling error. Under moderate level of modeling error, PGL4SHM has

a better classification performance compared to the blackbox model.

Figure 5.7: Averaged ROC curves for experimental case

From the results, it is evident that the black-box overfits the numerical data such that the latent features

of the experimental data cannot be perceived. As a result, without the integration of the physical parameters,

the data-driven black-box architecture fails to predict the damage classes correctly. The results indicate that

in the presence of modeling error, the generalization of PGL4SHM is much more successful.

5.4.4 Effect of Hyper-parameters

Here, we investigated the effect of the trade-off parameter, λPGL on the prediction accuracy to understand the

generalization of PGL4SHM under no modeling error. Table 5.4 summarizes the performance of both models

and the weights for classification loss and physics-based loss for no modeling error. Trade-off parameter, in

general, does not affect the performance of PGL4SHM, except for the case (λPGL = 2.0) where the weight

for physical parameter loss is larger than the one for the classification loss. PGL4SHM with no weights to

the physical parameters (λPGL = 0.0) is similar to the black-box model, but it still contains the intermediate

layers. It is clear from the results that the introduction of intermediate layers degrades the performance of

PGL4SHM when there is no modeling error. The small dimension of intermediate layers after the label

prediction layer (see Figure 5.1) causes the learning to be under-complete leading to decrease in accuracy.
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For larger models, the number of physical parameters can be increased and the label prediction layer will

have a more complete basis for learning. For general purposes, weighting the losses equally (λPGL = 1.0) is

a good starting point in training the PGL4SHM.

λPGL Accuracy (%)

0.0 86.26
0.5 89.24
1.0 87.48
2.0 68.32

Table 5.4: Effect of hyper-parameters on the classification accuracy under no modeling error (ME 0%)

5.4.5 Interpretability of Intermediate Layer Outputs

We evaluated the explainability of the PGL4SHM by analyzing the relationship between the damage condition

and intermediate layer outputs. Specifically, we focused on the interpretability of natural frequency, as it is

more human-comprehensible and easier to visualize. Figure 5.8 illustrates predicted natural frequencies

from intermediate layers, along with the experimental (true) and simulated (training) counterparts for four

damage cases, where the modeling error is %10. Here, PGL4SHM is evaluated with experimental data.

For each damage case, the intermediate layers in PGL4SHM predict three natural frequencies around 30,

Figure 5.8: Interpretability of intermediate layer outputs
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55, and 70 Hz with some variance. Compared to the experimental true frequencies of the structure (square

markers), simulated values extracted from FEM (cross markers) always undershoot. This is expected since

the modeling error is introduced to the FEM by reducing the stiffness matrix by 10 percent which causes the

simulated frequencies to decrease. In general, the predicted frequencies range from simulated to experimental

values.

During training, the simulated modal parameters are used for physics-based loss function. On the other

hand, integration of physics-based parameters into the training also constrains the inference such that PGL4SHM

favors to predict the modal parameters towards the experimental true counterparts. There are some cases

where the predicted values do not distribute uniformly between experimental and simulated values. The dis-

tortion is substantial especially for the second modes ( 50 Hz) of damage class 1 and 2. This error causes

some of the intermediate value outputs from class 1 and 2 to overlap with the damage class 0 (no damage

class) leading to mislabeling. Due to the explainability of results, such problematic instances can be in theory

captured algorithmically and corrected at testing time.

5.5 Conclusion

In this chapter, we have presented a physics-based deep learning architecture, PGL4SHM to detect and lo-

calize the damage in mechanical systems. The proposed approach incorporates physical parameters such as

natural frequencies and mode shapes, which are known to be statistically meaningful features for damage

detection, into the intermediate layers of deep neural networks. To accommodate the intermediate layers, the

architecture introduced physics-based loss into empirical loss function. To evaluate the proposed approach,

we considered analytical and experimental cases. Both examples show that physics-guided learning improves

the accuracy of the damage localization compared to black-box models in the presence of modeling errors.

Our empirical study shows that weighting the classification and physical loss equally is an effective starting

point for training. Lastly, we discussed the interpretability of intermediate layer output by analyzing the rela-

tionship between predicted modal parameters and classification performance. Our findings indicate that the

misclassified instances could be explained through the characterization of predicted natural frequencies.
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CHAPTER 6

Physics-guided Deep Learning with Domain Adaptation for Structural Health Monitoring

6.1 Introduction

Recent advances in machine learning (ML) have transformed significantly the facade for research on struc-

tural health monitoring (SHM) (Farrar and Worden, 2012). The majority of contemporary SHM applications

employ a supervised black-box ML to infer upon large volume of experimental data. While black-box meth-

ods are quite successful in diagnosing the structural health through characterization and localization of the

damage (Bakhary et al., 2007), they are often limited by the availability of sufficient training data (Zhang

and Sun, 2021). Availability of data is a major obstacle for the development of effective ML algorithms for

diagnostic SHM applications and impedes the advancement and transformation of SHM (Sadoughi and Hu,

2019).

A significant portion of ML-based SHM applications focus on damage localization and formulate this task

as a supervised classification problem (Avci et al., 2021). The majority of supervised damage localization

approaches require substantial data for each class for proper training (Yu et al., 2019; Avci et al., 2018; Lin

et al., 2017). In reality, a complete set of experimental data is often inaccessible outside the laboratory, which

renders supervised methods impractical for real world applications. To address the lack of experimental data

for training, research efforts have been directed to explore model-based damage localization methods (Kop-

saftopoulos and Fassois, 2013). These approaches usually aim to develop a high-fidelity numerical model of

the structure based on the data captured on the field and to generate a complete set of simulated data for train-

ing the ML (Moughty and Casas, 2017). However, issues commonly occurring in practice such the impact of

implicit modeling errors due to model idealization on the generalization and the upkeep of the ML algorithm

to address the changes in the structure are usually not acknowledged in the current literature (Gardner et al.,

2021). It is clear that the research for state-of-the-art model-based supervised SHM applications should take

a step towards improving robustness and generalization of damage localization tasks in such events.

A fundamental assumption for supervised learning is that the joint distribution of input-output is in-

dependent and identically distributed (i.i.d.) for training and testing data. In contrast, the phenomena of

changing environments is a known problem within the ML community due to its frequent appearance and

it violates the i.i.d. assumption (Alaiz-Rodrı́guez and Japkowicz, 2008; Moreno-Torres et al., 2012). More

specifically, the so-called dataset shift implies that machine learning algorithms are susceptible to the sta-

tistical shifts in the probability distributions between training and testing datasets leading to poor prediction
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performance (Quiñonero-Candela et al., 2009). In the last decade, transfer learning has emerged as a new

research topic to remedy the generalization problems due to dataset shift. In essence, transfer learning targets

to improve the learning and inference by transferring the knowledge obtained from a labeled dataset, task,

and model, namely, source domain to a new target domain with unlabeled dataset (Pan and Yang, 2009).

Among many transfer learning approaches, domain adaptation has gained a particular interest within the

SHM community as an effective method. Mainly, domain adaptation aims to capture a latent feature space

that generalizes well over both source and target domains (Patel et al., 2015; Wang and Deng, 2018). As

stated previously, a majority of ML-based SHM approaches rely on training labeled data generated using

simulations and but need to be tested on realistic unlabeled experimental data. Statistical difference between

source and target dataset, i.e. dataset shift due to modeling errors or unaccounted changes in the structure

can harm the performance of such ML applications. Under dataset shift, domain adaptation presents itself

as a viable tool for ML-based SHM to improve the generalization over both domains (Gardner et al., 2020;

Ozdagli and Koutsoukos, 2020, 2021a; Lin et al., 2022). A recent addition to the literature in the area of dam-

age detection by Lin et al. (2022) introduced the minimization of the maximum mean discrepancy (MMD)

between source and target datasets as a loss function.

In the last few years, physics-guided machine learning started to exploit deep learning architectures as it

provides a versatile platform for integrating the underlying physics knowledge specific to the problem into

the learning process and improving the generalization capability under modeling uncertainty Karpatne et al.

(2017); Jia et al. (2019); Sadoughi and Hu (2019); Yao et al. (2020). In general, physics-guided learning

(PGL) incorporates the knowledge in the form of a physics-guided loss function. PGL is especially useful

for model-based damage identification problems as the model used for training the architecture often has

inherent modeling errors due to modeling idealization and simplifications Zhang and Sun (2021).

Some other early representative publications also look at the damage detection problem through model

or physics-based parameter update (Sarma and Adeli, 2001; Ni et al., 2008; Amezquita-Sanchez et al., 2017;

Oh et al., 2017; Perez-Ramirez et al., 2019; Pereira et al., 2020). However, the majority of these works

assume that the algorithm developer has access to the labeled data to some degree. As mentioned previously,

this study assumes that the availability of labeled data is often limited, i.e., the baseline for a data-driven

numerical model is non-existent.

This chapter proposes a deep learning framework that combines the power of domain adaptation with the

physics knowledge to constrain the learning process. More specifically, this architecture utilizes the so-called

intermediate variable layers which store problem-specific physics-related latent information as well as the

adversarial domain adaptation to learn a physics-informed domain-agnostic feature space representing both

source and target domains. To achieve generalization over both domains, the proposed framework employs a
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novel physics-based domain adversarial multi-task learning objective.

To validate the framework, this study considers a classification problem within the area of structural

health monitoring for locating the damage on a small-scale three-story structure using its vibration response

data. For this problem, it is assumed that the access to the labeled experimental data is limited. Therefore, a

simulation model is developed to generate labeled training dataset which serves as the source domain data.

Further, the framework utilizes modal parameters extracted from this simulation model which are known to be

important structural damage indicators for training the intermediate layers. As a result, the relation between

the simulation model, structural responses, modal properties, and damage location is captured into the inter-

mediate variable layers. Combined with adversarial domain adaptation, the physics-constrained intermediate

layers improve generalization of damage localization since it enables a physics-informed domain-agnostic

feature space. The performance gain for the proposed framework over it alternatives is more evident in the

presence of modeling errors.

While the proposed framework mainly focuses on one type of SHM problem, the architecture discussed

in this chapter can be customized to explore other SHM applications where dataset shift is observed between

source and target domains and learning can be constrained through the ingestion of physics-based knowledge.

The major contributions of this study are summarized as below:

• A new deep learning framework that combines the physics-guided learning with domain-adversarial

training is proposed to leverage generalization.

• The proposed framework exploits physics-constrained intermediate variable layers based on parameters

and features specific to the problem. In addition, adversarial training using domain adaptation ensures

the formation of latent representations of both the source and target domains.

• Integration of intermediate layers and domain adaptation into the training procedure enables a physics-

informed domain-agnostic latent feature space that generalizes well over both domains.

• To evaluate the proposed framework, an SHM problem focusing on damage localization is considered.

Results demonstrate that the proposed approach improves the generalizability significantly even in the

presence of modeling error.

6.2 Background

6.2.1 Motivating Example

Success of an informed maintenance and repair decision on a structure of interest depends on tracking the

up-to-date health state of the structure. In typical structural health monitoring applications, the change of
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a feature in structural responses such as the magnitude in time domain or the power density in frequency

domain is accepted as a good indicator for detecting structural damages. To capture such anomalies, one can

deploy sensors, i.e. accelerometers and measure vibration responses of the structure under its operational

loads and compare this data with our prior knowledge.

In recent years, SHM community started to invest significant amount of research for improving damage

detection method by utilizing modern deep learning tools (Sohn et al., 2002; Farrar and Worden, 2012).

While damage detection in structures is a well-established problem that can be solved with traditional ML

approaches (Gres et al., 2017), damage localization and quantification is still a critical problem.

In this chapter, the damage localization is posed as a classification task where the input is a set of structural

response measurements collected from various sensors on the structure in the time domain and the output is

the location of the damaged member. One approach to reveal a mapping function from input to output is

training a black-box neural network. While the black-box networks can learn the latent feature space for

the training dataset, they may have difficulty in generalizing over previously unseen test data. The overar-

ching problem for the decline in performance can be attributed to the fact that the training dataset from the

source domain DS and the test dataset from the target domain DT may be statistically different such that their

probabilities are not equal, i.e. P(DS) ̸= P(DT ). This probabilistic divergence between the domains can be

explained through the following two phenomenon:

i. Lack of available experimental data:

Suppose that we want to train a supervised ML-based damage localization algorithm, Gy that takes an input

sample xi as the time series data and predicts a label for yi which is the location of the damaged member.

When a structure is deployed for service, it is assumed to be intact and in healthy condition. Therefore, the

experimental data necessary for training the algorithm often lacks information about the damaged state of the

structure. In addition, it is also not feasible to damage the structure at various locations just to generate the

necessary dataset.

To counterbalance the lack of data, the algorithm designer can develop a numerical model of the target

structure and simulate the responses for the damaged states of interest cost-effectively. After an ML algo-

rithm is trained using this simulation data, it should still be evaluated with experimental testing data to ensure

generalization. A main challenge for achieving accurate physical behavior is often hindered by the calibration

of complex simulation models which can be time-consuming and exhaustive process due to modeling uncer-

tainties (Zhang et al., 2020). As a result of this, the simulation data may have some modeling errors and may

not be able to represent the actual physical behavior in high-fidelity. The statistical divergence between the

simulation data (source domain) used for training the ML and the experimental test data (target domain) for
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testing leads to a decrease in performance for predicting the correct damage location (Gardner et al., 2020)

ii. Shift in the dataset:

Structures are often repaired or rehabilitated during their life-cycle, even when they are not damaged. On

the other hand, a change in non-structural elements such as resurfacing the road of a bridge may still alter

the behavior of the structure (Devin and Fanning, 2012). Even if the algorithm designer has the capacity

to generate training datasets from high-fidelity simulation models that represent the structure with minimal

modeling error, due to the aforementioned fact that structures experience changes in time, there will be a shift

in the dataset between source and target domains (Quiñonero-Candela et al., 2009).

6.2.2 Problem Definition

This chapter presents a deep learning framework that combines physics-guided learning with domain adap-

tation for structural health monitoring applications. In particular, this study considers a damage localization

problem where a civil structure in service may experience some damage during its life-time. Here, the local-

ization problem is posed as a classification task. In this task, X represents the input space which constitutes

the time-series data collected from various sensors positioned on the structure. Similarly, Y denotes the out-

put space which consists of possible labels corresponding to the damage location. It is assumed that the given

labeled training dataset originates from source domain DS, whereas the unlabeled test dataset is derived from

target domain DT . The source and target domains is defined as follows:

DS ∼ XS = {xi,yi}ns
i=0 (6.1)

DT ∼ XT = {x j}nt
j=0 (6.2)

where ns are nt are the number of samples drawn from source and target domains, respectively. Our goal is

to train a classifier on the source domain data that can generalize well for the target domain.

6.3 Proposed Deep Learning Architecture for Damage Localization

Before tackling the aforementioned problem, this section first introduces a general background knowledge on

domain adaptation and physics-guided learning. Then, it discusses the proposed architecture that integrates

both notions into deep learning.

6.3.1 Adversarial Domain Adaptation

One way to train a classifier that will generalize well on both domains is domain adaptation approach. For

typical domain adaptation methods, our aim is to find a latent representation to minimize the probabilistic
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divergence among the source and target. Domain adversarial neural network (DANN) attempts to reduce this

statistical distance between two domains by augmenting a discriminator to a traditional deep learning based

classifier (Ganin et al., 2016). Figure 6.1 illustrates a typical DANN implementation. Here, G f represents the

set of neural network layers that extract latent features. The label predictor Gy generates class label using the

extracted features. Lastly, the discriminator Gd acts as a domain classifier and predicts the origin of domain

for a given input. The parameters of feature extractor, label predictor, and domain classifier are denoted as

θ f , θy, and θd , respectively.

Figure 6.1: Concept of Domain Adaptation

The goal of DANN is to determine a domain-invariant feature space capable of confusing the discrimina-

tor such that it will not be able to tell the origin of domain. Accordingly, the training strategy of DANN has

two tasks: (i) minimizing the class label loss Ly; and (ii) maximizing the domain classifier loss Ld . Then,

this multitask learning loss to minimize can be formulated as following:

L =
1
ns

∑
xi∈Ds

Ly(yi, ŷi)−
λd

ns +nt
∑

xi∈Ds∪Dt

Ld(di, d̂i) (6.3)

where λd is the trade-off parameter between the class label and the domain label loss, xi is the ith input; yi

and ŷi are the true and predicted class labels, and di and d̂i are the true and predicted domain labels.

In order to determine the weights θ f , θy, and θd that minimizes the given loss, a forward- and backward-

propagation procedure is implemented. During forward-propagation, the class label loss Ly is calculated

using the dataset from source domain, while the domain classification loss Ld utilizes both the source and

target domain datasets. During the backward-propagation, the gradients are computed first. Then, a pseudo

function called Gradient Reversal (GR) layer (shown in Figure 6.1) is used to reverse the gradient by multi-

plying it with a small factor. In other words, the GR layer has distinct and different behavior for forward and
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backward propagation (see Eq. 6.4 and Eq. 6.5) as given below:

GR(x) = x (6.4)

dGR
dx

=−I (6.5)

Eq. 6.4 implies that during the forward propagation, the GR layer acts as a throughput where the output

of the feature extractor layer is the input to the domain classifier. During the backpropagation, GR acts as a

co-factor in its partial derivative form as prescribed in Eq. 6.5 and multiples the gradient from coming from

the domain classifier and passes to the next layer. Please note that GR affects only the gradients originating

from the domain classifier and it does not alter the gradients from label prediction. The bi-modal behavior

of GR function during forward and backward propagation ensures the goals of DANN, i.e. minimization of

class label loss and maximization of the domain classifier loss.

Once the gradients are computed, the weights are updated using gradient descent as prescribed below:

θ f = θ f −µ

(
∂Ly

∂θ f
−λDA

∂Ld

∂θ f

)
(6.6)

θy = θy −µ
∂Ly

∂θy
(6.7)

θd = θd −µλDA
∂Ld

∂θd
(6.8)

where µ is the learning rate. Here, θ f is the weights for latent feature space that can generalize well over

both source and target domain.

6.3.2 Physics-guided Learning

As an alternative to domain adaptation method, physics-guided learning has gained a lot of interest in treating

dataset shift-like problems occurring in SHM. In essence, a typical physics-guided framework constrains the

learning process by ingesting the physics-based knowledge into the neural network. In this chapter, the

ingestion of knowledge is presented in terms of physics-based loss in addition to the classification loss as

given below:

L =
1
ns

∑
xi∈Ds

Ly(yi, ŷi)+
λpgl

ns
∑

xi∈Ds

Lpgl(zi, ẑi) (6.9)

where Ly is the classification loss; Lpgl is the physics-based loss, λpgl captures the trade-off between the class

label and physics-based loss; zi and ẑi are the physics-related true and predicted parameters. Accordingly,

similar to adversarial domain adaptation, the physics-guided learning is also a multi-tasking learning process.
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Figure 6.2: Concept of Physics-guided Learning

This chapter implements the physics-based loss by introducing intermediate physics-informed parameters

(see Figure 6.2). More specifically, we select domain specific variables that can be obtained during data

collection directly or indirectly and associate them with neurons within a layer. The intermediate layers use

physical variables to allow a generalized representation (Muralidhar et al., 2019). In order to obtain the loss

Lpgl , the intermediate layers are tasked with making predictions upon the physical variables such that:

L i
pgl(θ f ,θpgl) = Lpgl(zi, ẑi) (6.10)

= Lpgl(Gpgl(G f (xi;θ f );θpgl), ẑi) (6.11)

Here, natural frequencies and mode shapes are chosen as the intermediate variables since they are known

physical features that can be related to the location and the quantity of the damage observed (Yuen, 1985;

Pandey et al., 1991; Kim et al., 2003; Ozdagli and Koutsoukos, 2019). These features can be extracted from a

simulation model or eigenvalue analysis (Juang and Pappa, 1985). The physics-guided loss can be described

as:

Lpgl = λpgl,1Lpgl,1( fi, f̂i)+λpgl,2Lpgl,2(φi, φ̂i) (6.12)

where Lpgl,1( fi, f̂i) is the MSE between the set of true natural frequencies, f and predicted ones, f̂ ; Lpgl,2

is the MSE between the set of true mode shapes φ and the predicted ones φ̂ ; and λpgl,1 and λpgl,2 are the

trade-off parameters for the physics-guided losses such that λpgl,1 +λpgl,2 = 1. Since LPGL is a regression

loss, the intermediate layers use neurons with linearly activations. It should be noted that for the given PGL

setting, the input to the label predictor is the output of the intermediate layers that form the input to the label

predictor. The label predictor layers do not utilize the output values from feature extractor layers directly.

Accordingly, the loss on the class label can be described as:

Ly(yi, ŷi) = Lpgl(Gy(Gpgl(G f (xi;θ f );θpgl);θy), ŷi) (6.13)

A powerful and unique advantage of intermediate layers is improved interpretability. During testing time, the

intermediate layers are capable of generating new information in the form of physics-related parameters (ẑ)

which were previously inaccessible by the black-box model for unlabeled data. Since the intermediate layers
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serve as a physics-based knowledge container, they can be used to extract new explanations to describe the

input data. For this chapter, interpretability and explainability is out of scope and are not discussed further.

6.3.3 Integration of Domain Adaptation into Physics-guided Learning

In this chapter, we hypothesize that combining physics-guided learning with domain adaptation generates a

physics-informed feature space embedded in the weight θ f that can generalize well on both source and target

domains. In particular, this study focuses on damage localization problems for SHM applications under

model uncertainty or dataset shift caused by changes in the structure during its lifetime.

To support this hypothesis, this chapter proposes a deep learning framework that integrates domain adap-

tation into physics-guided learning. A conceptual illustration for this framework (or DAPGL for short) is

provided in Figure 6.3. This architecture uses intermediate physics-related parameters as well as the adver-

sarial domain adaptation to learn domain-agnostic feature space. The loss function for this framework can be

formalized as following:

L =
1
ns

∑
xi∈Ds

Ly(yi, ŷi)

− λd

ns +nt
∑

xi∈Ds∪Dt

Ld(di, d̂i)

+
λpgl

ns
∑

xi∈Ds

Lpgl(zi, ẑi)

(6.14)

Figure 6.3: Concept of Physics-guided Learning

6.4 Implementation Details

6.4.1 Structure and Experimental Data

This chapter considers a small-scale three-story structure tested by Figueiredo et al. (2009) at the Los Alamos

National Laboratory (see Figure 6.4b). Each floor made of aluminum plate is idealized as lumped mass and

supported by four aluminum columns. The dimensions for the floor plates and columns are 17.7×2.5×0.6
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cm and 30.5×30.5×2.5 cm, respectively. Columns are attached to the plates using bolted joints representing

rigid connections. An electro-magnetic shaker attached to a baseplate excites the structure with white noise to

generate structural responses. The vibration responses are captured by accelerometers at each floor including

the base with a sampling rate of 320 Hz for a duration of 25.6 sec while the structure is excited with the white

noise by the shaker. The excitation is band-limited within the range of 20-150 Hz to avoid rigid body modes.

Sun and Betti (2015) identified three natural frequencies of the structure as [31.09,55.05,72.23] Hz and a

body rigid body motion mode.

(a) Experimental Setup (Figueiredo et al., 2009) (b) Lumped model (Sun and Betti, 2015)

Figure 6.4: Three-story Los Alamos Laboratory structure

Various damage conditions are simulated by replacing the original column members with weaker mem-

bers. In the original dataset, seven damage conditions (including the undamaged condition) are considered

where the section of one or two columns at each floor is reduced to simulate damage (see Table 6.1). For

each damage condition, 50 experimental trials are conducted. The duration of each trial is 25.6 seconds.

This research focuses on localizing the cumulative column damage for each floor rather than by individual

columns. This dataset is designated as the modified dataset. Any damage occurring at a particular floor is

considered as one damage condition. As a result of this, the labels are condensed into four damage conditions

including the undamaged condition.

After this preprocessing, all data are split into 1 second data segments and each segment has 320 samples

per channel. In typical SHM applications, base vibrations are usually used only for modal analysis. We

followed this practice and discarded acceleration measurements taken from the base sensor. The data chunks

from the remaining three floors are stacked and paired with a label corresponding a damage location to form
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Table 6.1: Damage conditions for original and modified dataset

Original Dataset Modified Dataset

Label State Condition Label State Condition

0 No Damage 0

1
First Floor Single Column

50% stiffness reduction each 1 First Floor
Column Damage

2
First Floor Two Columns

50% stiffness reduction each

3
Second Floor Single Column
50% stiffness reduction each 2 Second Floor

Column Damage
4

Second Floor Two Columns
50% stiffness reduction each

5
Third Floor Single Column

50% stiffness reduction each 3
Third Floor

Column Damage
6

Third Floor Two Columns
50% stiffness reduction each

an input-output pair.

Next, the data is split into a training and testing set with a proportion of 3:1, respectively. Furthermore,

the data is standardized by removing the mean and scaling to unit variance. The resulting data constitutes the

training and testing target domain data.

6.4.2 Simulation Model and Analytical Data

A high fidelity lumped mass model of the structure is generated based on the prescription provided by Sun

and Betti (2015) in the form of mass-damping-stiffness matrices (see Figure 6.4a). This model is formed as

4-DOF lumped mass system where the base is regarded as the first floor. In addition, a copy of this model

is created with intentional misrepresentation to incorporate modeling error that is typically introduced in the

design process. In particular, the modeling is introduced into the stiffness matrix by reducing the cumulative

stiffness of each floor by 10 percent. It should be noted that even the high-fidelity model with no modeling

error has some inaccurate representation due to inherent modeling uncertainty such as geometric and material

nonlinearities. For this study, inherent uncertainty is ignored.

The quality of the model used for the source data generation is illustrated in Figure 6.5. Here, the ex-

perimental and analytical top floor accelerations are compared for the no damage condition of the structure

under 0 and 10 percent modeling error. For both plots, the same input excitation is used. When no modeling

error is present, the discrepancy between analytical and experimental data is minimal (see Figure 6.5a). The

response comparisons are consistent with the coefficients of variation reported by Sun and Betti (2015) which

vary between 0.4% to 1.0% for the lumped mass and floor stiffness values. As for the 10 percent modeling
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error case, the difference between responses shown in Figure 6.5b) demonstrates the dataset shift is prominent

between experimental and analytical data.

(a) No modeling error (b) 10 percent modeling error

Figure 6.5: Comparison of experimental and analytical top floor acceleration responses

For each model (perfect and misrepresented models), we generate the response and the damage labels

using simulation according to the damage conditions prescribed for the modified dataset in Table 6.1. After

the data is segmented into 1-second segments, it is partitioned into datasets for training, validation, and

testing with a proportion of (3 : 1 : 1.33), respectively. The ratio of training to validation is 3 : 1 and the ratio

of training+validation to testing is 3 : 1. Next, the data is standardized with respect to training data. All the

data generated by the simulation model constitutes the source domain data.

6.4.3 Further processing DA, PGL, and DAPGL

A typical DANN require a domain classifier to discriminate the input data based on the origin of domain. To

accommodate this classifier, a new label indicating the domain origin (0 for source; 1 for target) is generated

for both domains.

Our PGL and DAPGL approaches discussed in this chapter require intermediate physics-based param-

eters. The intermediate variables selected for this study are the modal parameters (natural frequencies and

mode shapes). These parameters are directly derived from the mass and stiffness matrices forming the simu-

lation model through Eigensystem Analysis. Each damage condition has a unique mass and stiffness matrix

pair. Thus, the modal parameters are specific to the damage condition. In addition, the modal parameters are

identical for all samples within the damage condition class as all samples are generated with same stiffness
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and mass matrix pair.

Only the first three natural frequencies and mode shapes are considered and modes relevant to rigid body

motions are omitted. Higher order modes have lower energy content, thus, they do not contain high-quality

features and are ignored. Based on the setup provided in Figure 6.4a, the structure is assumed to have 4 floors,

i.e. the model shape will have 4 modal points per natural frequency. Since only three natural frequencies are

reported, there are in total 3 modes x 4 DOF = 12 mode shape points. To sum up, three natural frequencies

and 12 mode shape points [3 modes × 4 floors] are extracted from the simulation model for each damage

condition and vectorized.

6.4.4 Implementation

i. Black-box Model: A black-box neural network serves as the baseline and learns a function that relates the

time series input with the damage location without the ingestion of physics-based intermediate variables or

adversarial domain adaptation. The subsequent architectures listed below is based on this reference model.

The architecture for this network is prescribed Lin et al. (2017). The input for the black-box architecture

is time-series data from top three floor sensors. The feature extractor component is composed of a set of

1D convolutional layers. Each CNN layer is followed by a batch normalization layer in order to mitigate

the internal covariate shift. Lastly, to help over-fitting and reduce the number of trainable parameters to

learn, a max pool layer is added after every batch normalization layer. The subsequent component is a set

of densely-connected layers for predicting the labels. All neurons within these two components have leaky

RELU activation functions. Lastly, the output layer is the damage location to be predicted and uses a softmax

activation function. The blackbox architecture is illustrated in Figure 6.6a. The number of output filters and

the length of the convolution window, as well as the number of neurons in densely-connected NN layers are

provided in the figure.

This model is trained only with labeled source domain data. Unlabeled target domain data is utilized

during the testing time.

ii. DANN Model: To understand the effect of domain adaptation on the performance, this research considers

a deep learning architecture where a domain classifier is integrated into the black-box model. The DANN

architecture used for evaluation is illustrated in Figure 6.6b. This model utilizes the loss function given in

Equation 6.3. It should be noted that this model is trained both with labeled source domain and unlabeled

target domain data.

iii. PGL Model: To understand the effect of physics-guided learning on the performance, a deep learning

architecture is considered where the physics-based parameters are integrated into the black-box model as part

of the learning process. The PGL architecture used for evaluation is illustrated in Figure 6.6c. This model
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(a) Black-box architecture adopted from Lin et al. (2017) (b) DANN architecture

(c) PGL architecture (d) DAPGL architecture

Figure 6.6: Architectures used for evaluation

101



utilizes the loss function given in Equation 6.9. The intermediate variables selected for this model are natural

frequencies and mode shapes. This model is trained only with labeled source domain data. Unlabeled target

domain data is utilized during the testing time.

iv. DAPGL Model: Our proposed framework combines domain adaptation with physics-guided learning.

The DAPGL architecture used for evaluation is illustrated in Figure 6.6d. This model utilizes the loss function

provided in Equation 6.14 and it is trained both with labeled source domain and unlabeled target domain data.

Based on the previous studies (Ganin et al., 2016; Ozdagli and Koutsoukos, 2021b), the trade-off pa-

rameters for all the models are chosen such that losses are balanced equally. For all of the models, in total,

labeled 5000 samples from the source dataset are available. The number of samples is divided equally among

4 classes. The samples are portioned across training, validation, and testing data as [2812, 938, 1250], re-

spectively. Additionally, for DANN and DAPGL, unlabeled 3750 data points are available from the target

dataset. The samples are portioned across training, and testing data as [2812, 938], respectively. All models

use the testing data from the target domain dataset for evaluation.

6.5 Results

Before evaluating the DAPGL, we first generated the training source domain dataset using two simulation

models with different modeling errors (ME). For each architectures discussed in the previous section, 10

models are trained with source domain dataset and tested against the experimental target test dataset. The

classification performance box-plots of all models for different modeling errors are illustrated in Figure 6.7.

(a) ME 0% (b) ME 10%

Figure 6.7: Classification performance under model uncertainty

When the modeling error is zero, the blackbox model has a mean performance of around 96% with

small spread. DANN model has a small improvement over blackbox model. This small improvement can

be attributed to the fact that even the perfect simulation model has some modeling uncertainty. Compared to

blackbox and DANN, PGL model has the worse accuracy and largest spread despite its good performance
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over source test data (99.46 percent - not shown in figures). The intermediate variable layers have in total

15 neurons and the flattening layer prior has 640 neurons. The decrease in performance could be attributed

to the severe depression in number of neurons due to the implementation approach of the PGL model. This

layer layout could hinder generalization capability to some extend. Among all of the architectures, DAPGL

has a very minimal improvement over DANN. The results so far demonstrate that our framework generalize

well for the training data when the modeling uncertainty is negligible.

When the modeling error is 10 percent, the blackbox model experiences a severe decrease in classification

performance. On the other hand, DANN generalizes over the experimental data reaching to an average

performance of 71%. Similarly, PGL has also a classification performance of 71%. This implies that the

physics based intermediate parameters generalize the learning experience over experimental data well under

the learning under modeling error despite the depression in neuron numbers at the intermediate layers. Among

all of the architectures, DAPGL has the best classification performance by far. Results demonstrate that

combining domain adaptation with physics-guided learning improve the generalization.

Table 6.2: Improvement of DAPGL over reference architectures (All values in percentage)

Modeling Error Blackbox DANN PGL DAPGL Improvement

ME 0% 96.12 98.73 77.91 98.74 0.0
ME 10% 41.60 70.95 71.19 92.07 22.68

Table 6.2 presents the improvement of DAPGL over reference architectures. The improvement is com-

puted by comparing DAPGL against the best performing model among the remaining three for a given mod-

eling error case. While the improvement for ME 0% is negligible, the performance gain under modeling

uncertainty/error reaches up to 22%. The significant increase in accuracy shows that intermediate layers

combined with adversarial domain adaptation is capable of extracting a latent feature space that can general-

ize well over experiential data.

The classification performance for each damage condition under 0% and 10% modeling error is illustrated

in Figure 6.8a. The confusion matrices are generated using a representative run from each model.

The blackbox model performs fairly at the class-level prediction for ME 0%. Its performance is slightly

affected by inherent modeling error. The performance decrease for the blackbox model is very evident for

ME10% case. The majority of wrong labels are concentrated in no damage condition. The natural frequen-

cies of the misinformed numerical model are smaller than the experimental values since the modeling error

introduces a 10% reduction of the stiffness on all floors. A network trained with such source data underesti-

mates the damage condition since the target data used for testing has higher frequency content. As a result of

that, the blackbox network regards the source domain data as healthy, even for higher damage conditions.
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DANN has a very good performance for the ME 0% case since the domain adaptation from source to

target can minimize the small probabilistic divergence between numerical and experimental data efficiently.

However, its effectiveness diminishes under modeling error, mainly due to misclassification of the first floor

damages. This observation implies that the domain knowledge transfer for the second and third-floor damage

conditions is effective whereas DANN’s capability in discriminating first-floor damages is unreliable.

As for PGL, the baseline model (ME 0%) is mislabeling mainly the no damage condition. While the

bottleneck effect discussed previously affects the network performance for ME 0% case negatively, the gen-

eralization gained through PGL benefits the classification for the ME10% case greatly.

Among all networks, DAPGL has the best classification performance at the class level. DAPGL is as good

as DANN for ME0%, whereas, under modeling uncertainty, DAPGL still has a successful prediction perfor-

mance. Results show that ingestion of physics-based knowledge into the learning and domain adaptation

improves the generalization capability of DAPGL.

(a) Black-box - ME0% (b) DANN - ME0% (c) PGL - ME0% (d) DAPGL - ME0%

(e) Black-box - ME10% (f) DANN - ME10% (g) PGL - ME10% (h) DAPGL - ME10%

Figure 6.8: Classification performance for each damage condition under model uncertainty

6.6 Conclusion

This chapter presented a deep learning framework for damage localization by combining physics-guided

learning with domain adaptation. The performance of common ML-based SHM applications is often hindered

by the lack of high quality training data or a shift in the structure behavior due to the changes it experiences

during the life-cycle. By ingesting domain adaptation and physics-based domain specific knowledge into the
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training procedure, our proposed framework can generalize the damage localization over target domain.

While the problem formulation considered in this chapter focuses on damage localization applications,

the framework can be tailored to any SHM problem where dataset shift is observed between source and target

domains and learning can be constrained through the ingestion of physics-based knowledge. In addition, our

method promises a novel platform explainable through intermediate physics-related parameters. We believe

that the improved interpretability and explainability can have a meaningful impact as the data produced by

this framework is recognizable by humans.

6.7 Future Work

The current approach assumes that target domain data is completely unlabeled. In reality, a newly deployed

structure is expected to be health as it has not experienced damage yet. As a result, data belonging to this

state of the structure is in fact labeled as undamaged. In other words, labeled target domain data is partially

accessible for training. This data contains valuable latent feature space information which can be used for

improving generalization over both domains more effectively. For future research, approaches such as multi-

adversarial domain adaptation by Pei et al. (2018) should exploit this labeled target domain data by enabling

stronger alignment between target and source domains through multiple domain discriminators.

The classical adversarial domain adaptation assumes that task-relevant target domain data is available

during training. In reality, for some cases, neither data sample nor label in the target domain may be accessi-

ble. For a damage classification task, adversarial training only with the readily available no damage condition

data from the intact structure, i.e. single class from the target domain is not appropriate, as the task is often

a multi-class problem. Domain adaptation is still a maturing area, and the community is well aware of this

observation. To remedy the aforementioned limitation, a new branch of transfer learning method called Zero-

Shot Domain Adaptation has gained interest which does not require target data for training (Kodirov et al.,

2015; Peng et al., 2018; Wang and Jiang, 2019). The future research should investigate the applicability of

zero-shot training along with physics-guided learning toward SHM problems.

Another future research direction is the exploitation of explainability through DAPGL. In addition to

intermediate layers, methods such as Layer-wise Relevance Propagation (Bach et al., 2015) will enable the

verification of reasoning. Lastly, future research should address the performance degradation in PGL due

to bottleneck for the cases where a small-capacity physics-guided intermediate layer is followed by a large

layer. The preliminary results imply that augmentation of the intermediate layer into a previous or subsequent

layer may improve the prediction quality.

This research uses a relatively traditional architecture for damage classification. The use of new classifi-

cation approaches such as Neural Dynamic Classification Algorithm (Rafiei and Adeli, 2017) and Dynamic
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Ensemble Learning Algorithm (Alam et al., 2020) should be explored in conjunction with DAPGL for further

prediction accuracy improvement.
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CHAPTER 7

Interpretability of Neural Network Models through PGL

7.1 Introduction

While an appropriately trained black-box machine learning algorithm is capable of generalizing well over

the testing data, model’s inference process and its predictions are often difficult to interpret especially for

deep-learning architectures employing datasets with high nonlinearities. The black-box model can learn

the nonlinearities within the dataset with a high accuracy. However, the underlying reasons suggesting the

decision made by the model is often obscure to the end user due to the transparent nature of the architecture

(Bhatt et al., 2020). The gap in the knowledge caused by the lack of interpretation may hinder stakeholders

in analyzing the results in depth and debugging the model.

To facilitate an interaction between the user and the model, one could map the high-dimensional model

behavior to the real-world phenomena surrounding the task and create glass-box approaches (Holzinger,

2018). Roscher et al. (2020) states incorporating domain knowledge into machine learning could provide

and enhance the transparency, interpretability, and explainability. Through domain knowledge, experts such

as data scientists, business owners, risk analysts, regulators, as well as consumers could greatly benefit from

trustable and consistent decisions and add further value to the decisions made by the machine learning (Belle

and Papantonis, 2021).

The first attempts in the development of explainable AI methods started in 2015 with layer-wise rele-

vance propagation (LRP) technique (Bach et al., 2015). LRP is an approach developed for explaining neural

networks whose inputs are images, videos, or text. It computes the back-propagation of gradients from the

prediction to the input using a specific set of propagation rules and highlights the input feature that is most

relevant to the output. Another method called local interpretable model-agnostic explanations (LIME) pro-

posed by Ribeiro et al. (2016) focuses on a more model-agnostic approach by approximating the underlying

model through an interpretable linear model which is trained on the perturbations of the input. The majority

of the subsequent explainable AI methods has followed the main two categories posed by LRP and LIME,

neural-network based and model-agnostic approaches, receptively.

In general, the neural-network based approaches follow LRP-like approach and adopts backpropagation

of gradients to explain results (Selvaraju et al., 2017; Kim et al., 2018; Sundararajan et al., 2017). Those appli-

cations are mostly focusing on visual and textual tasks. On the other hand, the model agnostic approaches are

more flexible in terms of applications. A prominent method called SHapley Additive exPlanations (SHAP)
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presents a unified framework for interpreting predictions (Lundberg and Lee, 2017). Since SHAP built a well

understood foundation for explaining models, a series of literature adopted this method (Frye et al., 2020;

Antwarg et al., 2019). Ribeiro et al. (2018) proposed Anchors to explain the behavior of complex models

with high-precision rules, There are also novel model-agnostic approaches for explaining graph-like struc-

tures such as LIME based GraphLIME (Huang et al., 2022), SHAP based Shapley Flow (Wang et al., 2021),

and GNNExplainer (Ying et al., 2019).

To the author’s best knowledge, the majority of the literature mentioned above do not directly incorporate

the domain knowledge into the explanation. The aforementioned methods are mainly focused on creating a

glass-box transparent environment that relates the prediction to the input by highlighting the feature impor-

tance. While these explanation methods significantly help the end user to establish an interpretation of the

results, the knowledge obtained is limited to the input dataset and expertise of the user. In this section, we

propose an interpretable physics-guided learning approach that utilizes intermediate domain-specific knowl-

edge with two goals in mind: (i) The existing methods do not consider time series data in explaining the

results. This work demonstrates the explainability is applicable for time-series data. (ii) The domain knowl-

edge incorporated into the explainable AI is mostly limited by the input features. This work seeks to extend

the domain knowledge through intermediate physics-related parameters.

This chapter first introduces a brief discussion on layer-wise relevance propagation (LRP), prorogation

rules typically used in deep networks, and some details towards effective implementation. Then, the section

briefly discusses the PGL architecture used for this study, and how LRP is used in conjunction with this

architecture. Following the methodology setup, a case study considered to understand the effectiveness of

LRP in interpreting the PGL network and the details are discussed. Finally, conclusions are summarized.

7.2 Methodology

7.2.1 Layer-Wise Relevance Propagation

This work adopts layer-wise relevance propagation (LRP) work proposed by Bach et al. (2015). The propa-

gation procedure of LRP employs propagating relevance score (Rk) for a given layer to a lower layer as given

below:

R j = ∑
k

z jk

∑ j z jk
Rk (7.1)

where j and k denotes the neurons at two subsequent layers; z jk is the contribution of relevance for the neuron

j towards neuron k. Eq. 7.1 implies summation of relevance scores within a layer for all neurons is conserved

throughout the network, i.e. ∑ j R j = ∑k Rk.
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7.2.2 LRP Rules

Assuming LRP is applied to deep networks with rectifiers, the rectified neuron behavior can be defined as:

ak = max(0,∑
0, j

a jw jk) (7.2)

Accordingly, the basic LRP rule, also known as LRP-0 can be defined as:

R j = ∑
k

a jw jk

∑0, j a jw jk
Rk (7.3)

LRP-0 tends to pick local artifacts frequently. Thus, as an extension to this rule, to create more sparser

explanations, a small term ε can be added (see Eq. 7.4). As ε becomes larger, the contribution of weak and

contradictory neurons can be absorbed. This rule is also known as LRP-ε .

R j = ∑
k

a jw jk

ε +∑0, j a jw jk
Rk (7.4)

Finally, LRP-γ rule introduces the parameter, γ to favor the effect of positive contributions over negative

ones as given below:

R j = ∑
k

a j(w jk + γw+
jk)

∑0, j a j(w jk + γw+
jk)

Rk (7.5)

Here, when the term γ increases, negative contributions to the relevance start to disappear. Montavon et al.

(2019) states that LRP-γ limits the growth of positive and negative relevance by prevailing the positive con-

tributions which leads to more stable and understandable explanations.

Since the first layer of the architecture are often formed as real values, a special LRP rule called LRP-w2

is used as given below:

Ri = ∑
j

w2
i j

∑i w2
i j

Rk (7.6)

7.2.3 General Implementation

The three rules, LRP-0, LRP-ε , and LRP-γ can be implemented through a generic rule such that:

R j = ∑
k

a jρ(w jk)

ε +∑0, j a jρ(w jk)
Rk (7.7)
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where the function, ρ determines which LRP rule to follow. The generic propagation rule can be decomposed

into four steps as given below:

zk = ε +∑
0, j

a jρ(w jk) (7.8)

zk = Rk/zk (7.9)

c j = ∑
k

ρ(w jk)sk (7.10)

R j = a jc j (7.11)

7.2.4 Rule Selection based on Layer Depth

In general, different LRP rules are imposed for various depth of layers. Here, we describe the depth of the

layer as upper, middle, and lower based on its distance to the input; upper layer being furthest. In typical

applications, LRP is computed starting from the output and backprogates towards the input. Commonly,

upper layers contain large amount of neurons per class which leads to a entanglement of information. For

these layers, LRP-0 is used since it is known to be insensitive to the entanglement. For middle layers, while

the representations start to disentangle, the weight sharing among the convoluted layers can cause noise

in the explanation. Thus, LRP-ε is a more suitable fit as it filters the noise and prevails the most salient

explanations. Lastly, for lower layers, LRP-γ is used to deliver a more human understandable explanation.

More specifically, LRP-γ delivers a more stable and uniform explanation instead of spreading the minor

contributions spuriously among features.

7.3 PGL Architecture

In the previous two sections, PGL architecture is thoroughly discussed. This section follows the architecture

prescribed in Figure 5.1. In this study, the input for this architecture is the time domain data, output is the

location of the damage, and the intermediate layer values are selected as modal paramaters such as natural

frequencies and mode shapes. Here, the purpose of LRP for this architecture is attributing the predicted

damage classes to the modal parameters and observe which parameters are most dominant for the decision

the PGL came up with.

The list of layers and the LRP rules used are tabulated in Table 7.1. For the upper layers which consist of

linear layers (layer count 24-30), the LRP-0 is selected. LRP-γ rule governs the propagation for the mid layers

(layer count 9-22) which are composed of stacked convolutions. Finally, for the lower layer (layer count 2-8),

the architecture utilizes the LRP-ε rule. For this application, parameters are ε = 0.25 and γ = 0.25. The

softmax layer is excluded from LRP propagation since the top layer may not be always selective towards
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class explanation especially for small amounts of damage. Since the input layer consists real time-domain

values, the special rule, LRP-w2 is applied. For propagation purposes, LeakyReLU activations are considered

as regular ReLU. Since they are absorbed by their preceding layer through the propagation, no special LRP

rule is applied. Special layers such as MaxPool follow the LRP rules prescribed in Table 7.1. The batch

normalization layer acts merely as a centering and scaling operation during the testing time, thus LRP rule

does not apply. Likewise, the dropout layer is also ignored during testing time and no special rules are applied.

Table 7.1: LRP layer rules

Layer Count Layer Type LRP Rule

1 Input LRP-w2

2 Conv1d LRP-γ
3 LeakyReLU -
4 Conv1d LRP-γ
5 BatchNorm1d -
6 LeakyReLU LRP-γ
7 Dropout -
8 MaxPool1d LRP-γ
9 Conv1d LRP-ε

10 LeakyReLU -
11 Conv1d LRP-ε
12 BatchNorm1d -
13 LeakyReLU -
14 Dropout -
15 MaxPool1d LRP-ε
16 Conv1d LRP-ε
17 LeakyReLU -
18 Conv1d LRP-ε
19 BatchNorm1d -
20 LeakyReLU -
21 Dropout -
22 MaxPool1d LRP-ε
23 Flatten -
24 Linear - Intermediate Layer LRP-0
25 LeakyReLU -
26 Linear LRP-0
27 LeakyReLU -
28 Linear LRP-0
29 LeakyReLU -
30 Linear LRP-0
31 Softmax -

7.4 Implementation

For this case study, the simply supported beam discussed in Section 3.3.2 is used as the template to generate

the training data. The parameters selected for the beam model is listed in Table 7.2. Using the section and ma-

terial properties, a FE model is constructed in OpenSees, where the beam is discretized into 10 beam elements.
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In addition to the weight of the beam, the nodal mass is added to each node such that the first natural frequency

matches 2 Hz. OpenSees reported the first five natural frequencies as f = [2.00,8.01,18.01,31.97,49.71] Hz.

The beam is excited vertically at the support level with a band limited white noise to simulate the ambient

vibrations. The length of a typical simulation is 10 seconds and its sampling frequency is 200 Hz. Vertical

structural responses to the given excitation are collected at 9 nodes as time domain data, excluding the support

nodes. In addition to the healthy condition of the beam, a damage class is designated for each discretized

element. The damage is introduced to the element by reducing the elastic modulus by 20%. Including the

no damage case, there are 11 damage cases. In total, 1100 samples are generated through OpenSees where

each damage class has 100 samples. Each sample has a dimension of [9 nodes × 2000 time data point].

Additionally, for every sample, corresponding modal parameters composed of five natural frequencies and

mode shapes for the first three modes are obtained analytically. This data poses as intermediate physics-

guided parameters and its dimension is [5 natural frequencies + 3 modes × 9 modal points per mode = 32

data point].

Table 7.2: Beam model properties

Property Acronym Value

beam length L 5 m
Section width b 0.1 m
Section height h 0.25 m
Elastic Modulus E 206 GPa
Material Density ρ 7900 kg/m3

No of elements e 10
Nodal mass per node m 13000 kg

Both time domain data, physics-guided parameters, and the corresponding damage classes are divided

into training and testing data in the ratio of 4:1. The loss functions associated with class and physics-guided

parameters have equal weights for training. The network is trained with PyTorch using gradient decent

in 3000 epochs and the testing accuracy yields 100% correct class prediction. After the network training

finalized, LRP rules shown in Table 7.1 are applied.

7.5 Results

Figure 7.1 presents the LRP intensities in time domain for various damage cases. There are 9 time series for

each plot. Each time series corresponds to a structural response captured at a node as labeled in the plot. The

color illustrates the relevancy of the predicted class to the responses. Here, red and blue colors describe high

and low relevancy, respectively, whereas gray color indicated no relevancy. While LRP provides a detailed

relevancy map in terms of time series, the explainability is still very limited to the human understanding.
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Therefore, we looked into the intermediate physics-guided parameters that are relatively easier humans to

understand.

(a) (b)

(c) (d)

Figure 7.1: Interpretability in time domain for various damage cases: (a) no damage; (b) damage @ member
1 - left side of the beam; (c) damage @ member 5 - midspan; (d) damage @ member 10 - right side of the
beam

Figure 7.2 illustrates the modal parameters for the first three modes for various damage cases. The results

present both true and predicted mode shapes for each mode and their natural frequencies. Here, to the naked

eye, the natural frequencies are the only dominant discriminatory intermediate parameters. For example,

the first natural frequency of the undamaged system is 2.0028 Hz, whereas the case where the member 5 is

damaged has a natural frequency of 1.9560 Hz. As for the mode shapes, beam shapes are visually identical

for the first three modes. Accordingly, without further statistical analysis, the intermediate physics-related

parameters are by themselves qualitatively not valuable.

Figure 7.3 displays the LRP properties of intermediate physics-based parameters, more specifically the

first mode shape values. Here, the progression of LRP relevances clearly demonstrates that the LRP score

highlights the members that are most likely have the damage for the given structural responses captured from
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(a) (b)

(c) (d)

Figure 7.2: Comparison of physics-based parameters for various damage cases: (a) no damage; (b) damage
@ member 1 - left side of the beam; (c) damage @ member 5 - midspan; (d) damage @ member 10 - right
side of the beam

114



the beam. For instance, according to the Figure 7.3(a), the LRP of the mode shape indicates that there is a

damage concentrated around the first beam element for a case predicted as damage @ member 1. Similarly,

for damaged midspan elements (see Figure 7.3(e and d)), LRP emphasizes on the mode shape values at

midspan and points out the most relevant region for the prediction. As observed here, small changes in actual

mode shape values are not recognizable by a human as a discriminatory feature for explaining the prediction.

However, LRP explanation on the first mode shape significantly improves the human interpretability and

understanding in rationalizing the model prediction.

7.6 Conclusion

This chapter presented a method to explain deep learning architectures with embedded physics-guided pa-

rameters through layer-wise relevance propagation. The interpretability of a machine learning algorithms is

often limited due to its black-box nature. Through explainable AI, one can improve the interpretability of the

ML and can have a better understanding of its reasoning. In this study, we focused on improving the logic

behind a prediction by relating the explanations to the intermediate physics related parameters specific to the

domain application.

The method used in this study, LRP allows us to construct a relevancy map from the predicted output to

the given input as well as the intermediate physics-based layers. As discussed in the chapter, LRP does not

add additional value to the interpretation of the input which was recorded in time series data. While the archi-

tecture can detect and learn the small changes in physics-guided parameters to predict an accurate outcome,

the parameters predicted by the algorithm may not be very discriminatory to human recognition without fur-

ther analysis. We demonstrated that by using LRP, the predicted damage condition can be attributed to the

damaged element through intermediate parameters such as the first mode shape.

In essence, the work presented here also show that a very accurate deep learning architecture that acts

like a digital twin of the actual system could explain the complex system behavior through intermediate

physical quantities. We believe that this property of explainable AI not only impacts the interpretability and

explainability of the ML algorithm, but also it may aid humans to understand and construct new relationships

between physical quantities through explainable AI.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7.3: LRP for physics-based parameters for all damage cases: (a) damage @ member 1 - left side of the
beam; (b) damage @ member 2; (c) damage @ member 3; (d) damage @ member 4; (e) damage @ member
5 - midspan; (f) damage @ member 6 - midspan; (g) damage @ member 7; (h) damage @ member 8; (i)
damage @ member 9; (i) damage @ member 10 - right side of the beam
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CHAPTER 8

Surrogate Modeling through PGL

8.1 Introduction

In the last few decades, computer simulation models gained an extremely high interest in scientific and en-

gineering community as they are known to accelerate complex tasks and decision processes reliably. While

through model calibration and parametric sensitivity analysis, one can design realistic and complicated simu-

lations procedures with very high fidelity, such simulations are also known to be computationally exhaustive.

Especially for modern model-integrated design environments involving multiple inter-disciplinary domain

knowledge, challenging engineering problems require running long lasting simulations repeatedly which cost

time and money to the stakeholders (Queipo et al., 2005).

Surrogate modeling, also known as metamodeling (Emerson and Sztipanovits, 2006) and sometimes dig-

ital twin (Jones et al., 2020), focuses on employing computationally less exhaustive surrogates of the actual

model. In essence, the main motivation for surrogates is effective utilization of limited computational re-

sources. The surrogate models often use a data-driven approach to approximate the behavior of the actual

model. In recent year, neural network based surrogate models got accepted as a viable method since neureal

networks are capable of learning complex nonlinear intrinsic relationship between given input and model re-

sponse at a relatively low computation cost (Shrestha et al., 2009; Sreekanth and Datta, 2010; Papadopoulos

et al., 2018).

A majority of NN-based surrogate modeling methods usually applies a data-driven black-box modeling

where the inference procedure is often non-transparent to the designer. While the black-box techniques are

very efficient and accurate as surrogates in predicting the responses, they may often fail in generalizing over

the less explored design areas. Some novel applications (Daw et al., 2017; Zhang et al., 2020) implemented

physics-guided learning into the training by customizing the loss function with the aim to improve gener-

alization. However, these applications are still not transparent enough to give an explanation for the user

exploring the design space.

This aim of this chapter is twofold. Firstly, this study proposes a physics-guided learning (PGL) approach

where the deep learning architecture is infused with intermediate physics-related parameters as explained

in Chapter 5. The purpose of this architecture is generalizing the surrogate model over the less explored

design space compared to black-box networks. Secondly, this study seeks to introduce and improve the

explainability of the PGL through intermediate physics-related using layer-wise propagation (LRP). The goal
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of this approach is aiding the designer to determine the dominant features in the given design and decide on

new designs effectively based on the interpretation of the relevance.

This chapter first introduces a brief discussion on the problem definition and the goals of the surrogate

model studied here. Then, the chapter briefly discusses the PGL architecture used for the training of the

surrogate model and the LRP approach used for the explanation of the architecture in terms of design and

intermediate simulation parameters. Next, the surrogate model is evaluated in terms of generalization and ex-

plainability of the model is explored through a variety of designs. Finally, a summary of results are provided.

8.2 Problem Definition

In the last decades, autonomous vehicles have become a key research area and the growing body of liter-

ature suggests the autonomous systems are going to drastically change the future of transportation Mora

et al. (2020), cyber-physical systems (Chen et al., 2017), and cyber-security (Chattopadhyay and Lam, 2017;

Yağdereli et al., 2015) and warfare (Bruzzone et al., 2013; Hallaq et al., 2017). Another aspect of autonomous

vehicles is the design of its cyber-physical components (Wilding, 2019). However, the complex interaction

between different subsystems involving multi-disciplinary domain knowledge makes the design procedure

extremely meticulous. Such designs often require repeated runs of high-fidelity computational simulations to

optimize the final product (Cobb et al., 2022).

This study seeks to develop a surrogate model for simulating and analyzing the structural integrity of an

unmanned underwater vehicles (UUV) hull (see Figure 8.1).

Figure 8.1: Hull example - adopted from Singh and Chowdhury (2011)

For a typical design, the shape of the hull depends on the placement and the size of systems like motor,
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battery, and sensors. Each of these components should be optimized iteratively to improve the flight time of

the UUV. Accordingly, at each iteration, the geometric properties of the hull needs to be redesigned to accom-

modate the component placements. Each redesign imposes a new hull configuration that should be verified

through finite element simulations. For large problems, this patters implicates repeated runs of computation-

ally exhaustive simulations which can slow down the optimization process. A neural network based surrogate

model could reduce this process load significantly. Moreover, integration of physics guided knowledge into

the training of the surrogate model and the introduction of the explainability through LRP could improve the

generalization and interpretability of the model, respectively.

8.2.1 Research Objective

The ultimate aim is designing a physics-based learning - surrogate model architecture that generalizes the

prediction and providing explainability based on the physical parameters relevant to the domain knowledge.

To realize this goal, we need to come up with a design and data generation scheme and a design space

exploration procedure. Figure 8.2 illustrates a typical surrogate modeling approach. Here, X is the set of

design parameters that is drawn from the design space for the UUV. This set is used to design an experiment

and generate data using the simulator. The output, Y is the desired result that is generated by the simulator.

This data indicates how feasible a design is, based on the design parameters and the design requirements. For

this study, the feasibility of a design is measured in terms of the internal stresses a UUV design is experiencing

for a given depth. If the internal stress is close to the allowable stress limit imposed by material propoerty,

this design has low feasibility.

After sufficient (X ,Y ) data pair is generated, the PGL can be trained with the following objective:

min(Y − Ŷ ) given X (8.1)

Figure 8.2: Typical approach for surrogate modeling
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8.2.2 PGL-based Surrogate Model

In this study, we follow a PGL architecture discussed in the previous chapters for the surrogate model training

(see Figure 8.3). Here, the input is the design parameters generated by oracle and the output is the feasibility

ratio, which is the ratio between the allowable stress and maximum Von Mises stress the UUV design is

experiencing. G f (green) is the set of neural network layers that extract latent features from the given input

and Gy (blue) is the set of neural network layers that generates feasibility regression. Without incorporating

any physics-based parameters into the learning, i.e. treating the model as a black-box composition of G f and

Gy, the loss function to minimize would be the regression error between predicted and actual values:

L =
1
n ∑Ly(yi, ŷi) (8.2)

Figure 8.3: PGL-based Surrogate Model

As for physics guided learning, a new component called intermediate variable layer, Gpgl (yellow) is

added to the architecture which is associated with physics-based parameter, z. This physics-based parameter

can be also obtained through simulator. The loss function for the physics-based loss is described as:

L =
λpgl

n ∑Lpgl(zi, ẑi) (8.3)

The final loss function for PGL is the aggregation of both loss functions discussed above.

L =
1
n ∑Ly(yi, ŷi)+

λpgl

n ∑Lpgl(zi, ẑi) (8.4)

8.2.3 Automatic Shape Generation

The first step for data generation is designing series of experiments. In this study, we follow a typical work-

flow illustrated in Figure 8.4. Suppose that, the oracle comes up with a design and the domain expert needs

to establish if the design will remain structurally intact under water, i.e. domain expert needs to verify the de-

sign requirement. Based on the structural design parameters oracle produces, we can purpose a finite element

model such as Ansys (ANSYS, 2022) to generate design shapes and simulate their response. Moreover, by

120



using a Python wrapper called PyAnsys (Kaszynski, 2020), one can automate the design generation and sim-

ulation. Eventually, any result obtained through simulations are backed up to oracle catalog towards building

a constraint solver.

Figure 8.4: Automatic hull generation

However, running FEM simulations repeatably are usually costly. The oracle may have time budget and

may not want to wait for the FEM simulator to finalize simulation and to get the results. Of course, the

designer can come up with a blackbox surrogate model to predict responses fast and within a reasonable

accuracy. On the other hand, the generalization can be sometimes problematic especially for the design space

areas where there is not enough training data. Additionally, blackbox models don’t provide any interpretabil-

ity for explaining results. For such settings, PGL based surrogate models provide additional value.

8.2.4 Design Parameters

The UUV design we consider here is a simple cylindrical capsule model with spherical end caps (see Fig-

ure 8.5). The parameters relevant to the design are tabulated in Table 8.1 under two categories, oracle inputs,

and simulator outputs.

The first four oracle inputs (grayed) are fixed by design, and they are related to the material properties.

The following three parameters are geometric and governs the design of the hull shape. The next one, σhyd

is related how much pressure will act on the vessel. This parameter acts also as a design requirement, such

that the design is expected to sustain this pressure. The simulator generates multiple inputs. The last four

parameters are special to capsule designs that maintain stiffener shape, number, and location. Examples for
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(a) (b)

Figure 8.5: A representative capsule model generated with PyAnsys - 1/8 cut: (a) inside view; (b) outside
view

inner and outside stiffened designs are illustrated in Figure 8.4.

For typical capacity-based design applications, the magnitude of maximum Von Mises stresses determines

the feasibility of the design. This value is simplified into feasibility ratio where we only focus on the ratio

between maximum Von Mises stress and the nominal material strength. There are also 9 additional internal

stresses the simulator is capable of producing. We identified these parameters as the intermediate variables,

z discussed in the previous section. The motivation comes from the fact that in order to compute the Von

Mises stresses analytically from design inputs, one should be able to compute the other types of stresses

first. In other words, there is an already established organic relationship between design inputs, intermediate

variables, and stress. So this knowledge is introduced into the loss function using the intermediate variable

stresses (see Eq. 8.5). Curious readers should consult Mises (1913) for more details.

σv =

√
1
2
[(σx −σy)2 +(σy −σz)2 +(σz −σx)2]+3

(
σ2

xy +σ2
yz +σ2

zx
)

(8.5)

It should be noted that using the intermediate physics-related parameters, the loss function for PGL given

in Eq. 8.4 can be redefined as given below:

Lpgl(zi, ẑi) = λpgl,1Lpgl,1(σx, σ̂x)+λpgl,2Lpgl,2(σy, σ̂y)+ · · · (8.6)
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Table 8.1: Parameters used for design exploration

Oracle Inputs

Property Description

E Material Elasticity
σ Material Strength
υ Poisson Ratio
ρ Material Density
ri Inner Diameter
t Thickness
l Cylinder Length
σhyd External Hydraulic Pressure

n Number of Stiffeners
ts Thickness of Stiffener
hs Height of Stiffener
ls Location of Stiffener

Simulator Output

Property Description Notes:

fr feasibility ratio σmax/σ

σx,y,z Maximum Directional Stresses 6 internal stress
for intermediate PGL variablesσxy,yz,xz Maximum Plane Stresses

8.2.5 Implementation Details

For this study, we consider three capsule design, plain hull, hull with inner stiffeners, and hull with outer

stiffeners. We assumed that the oracle is a simple design space explorer that uses Latin hypercube sampling

approach (McKay et al., 2000). In total, 10,000 samples are obtained for each hull design from the design

space with the lower and upper bounds tabulated in Table 8.2. The parameters related to stiffeners are also The

material picked for the design is the structural steel with the following properties, σ = 36ksi, E = 29,000ksi,

υ = 0.32, ρ = 0.284lb/in3. To reduce the simulation time and improve the computational efficiency, only 1/8

of the model is designed and simulated (see Figure 8.5). Symmetric boundary conditions are applied at the

cross-section of the reduced capsule model to emulate full model behavior.

Table 8.2: Upper and lower bounds for parameters

Property Lower Bound Upper Bound unit

ri 7.5 20 in
t 0.125 1.125 in
l 20 50 in
σhyd 50 1500 psi

n 5 16
ts 0.125 1.125 in
hs 0.125 1.125 in
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After the data generation phase, the data is divided into training and testing data with a ratio of 4:1

and all of the features are standardized with respect to the training. Using the training dataset, a PGL-based

surrogate model for each hull design is trained in PyTorch with the architectural layout described in Table 8.3.

In parallel, a black-box model without the physics-gudied components is trained for the In addition, LRP rules

defined in Table 8.3 are applied towards explainability.

Table 8.3: LRP layer rules

Layer Count Layer Type Notes LRP Rule

1 Input LRP-w2

2 Linear LRP-γ
3 ReLU -
4 Linear LRP-γ
5 ReLU -
6 Linear Intermediate LRP-ε
7 ReLU -
8 Linear LRP-ε
9 ReLU -

10 Linear LRP-0
11 ReLU -
12 Linear -

8.3 Evaluation

8.4 A Brief Discussion on Generalization

To evaluate the generalization of the PGL model, a new set of data are drawn from outside of the explored

design space. More specifically, we generated 100 samples from the space 10% above the upper bound

and 100 samples from the space 10% below the lower bound tabulated in Table 8.2 using Latin hypercube

sampling. The trained black-box and the PGL architectures are tested with the testing data from the design

space as well as the data drawn outside the design space. We looked at a variety of metrics that evaluates the

prediction performance of the design feasibility such as mean square error (MSE - see Eq 8.7), mean relative

absolute error in percentage (MAE - see Eq 8.8), and maximum relative absolute error in percentage (AEmax

- see Eq 8.9).

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (8.7)

MAE =
1
n

n

∑
i=1

|Yi − Ŷi| (8.8)

AEmax = max(Y − Ŷ ) (8.9)

The Table 8.4 summarizes the performance of both black-box and PGL surrogate model for plain hull
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design based on the aforementioned metrics. Here, Original and Less Explored designate the testing data

within design space and the data outside the space, respectively. For all the metrics, PGL provides lower

prediction error and better generalization over black-box. The results imply that PGL-based surrogate models

could be used for computing simulation results cheaply outside of the explored design space to some extend.

Table 8.4: Generalization capability of black-box and PGL-based surrogate models

Black-box PGL

Design Space MSE MAE AEmax MSE MAE AEmax

Original 0.0001395 2.21 9.43 0.0000967 2.18 8.96
Less Explored 0.0005468 8.66 16.12 0.0000684 3.01 6.32

8.5 Explainability of the Designs

As discussed before, three hull designs are considered. First, we look at the plain hull design. As an example,

we pick a design from the design space with the following parameters: ri = 15.0 in, t = 0.375 in, l = 30.0

in. Here, we examine the LRP scores for the intermediate physical values, i.e. the internal stresses (see

Figure 8.6). To generate the LRP scores, we sweep the external hydraulic pressure from lower bound to

upper bound (50-1500 psi). Furthermore, the external hydraulic pressure that causes the feasibility ratio to

exceed 0.5 is marked with a blue vertical line.

The results for the given design parameters imply that for low levels of external hydraulic pressure,

the directional stresses govern the feasibility. As the external hydraulic pressure increases, the effect of

plane stresses (xz,xy,yz) become more dominant in the feasibility prediction. The relevancy scores for the

design parameters indicate that the feasibility is driven mainly by the thickness parameter of the hull. The

inner diameter has a secondary effect on the prediction, whereas the cylinder length does not affect the

prediction drastically. The LRP results suggests that the designer should focus on calibrating thickness and

inner diameter to fine-tune the feasibility for the given design parameters.

Figure 8.7 presents the relevancy scores for the hull designs with the stiffeners. The LRP results for

intermediate stresses follow a pattern similar to plain hull design with more emphasis on the plane stresses

at higher external hydraulic pressure. The relevancy scores for the design parameters imply that the hull

thickness and the inner diamater are the most relevant to the feasibilty. Properties such as thickness, height,

and number of stiffeners have a secondary relevance to the results. Compared to the plain hull design, the

cylinder length has a weak effect on the feasibility for the designs with stiffeners.
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(a) (b)

Figure 8.6: The progression of relevance for plain hull design: (a) intermediate physical parameters; (b)
design parameters

8.6 Conclusion

This chapter presented a surrogate modeling method with physics-guided learning component. Additionally,

this chapter discussed the explainability of surrogate models through layer-wise propagation. To evaluate the

proposed method and the explainability of the surrogate model, we considered three hull designs, plain, hull

body with inner stiffeners, and outer stiffeners. To reach to this aim, we first developed an automatic shape

generation and simulation scheme to explore design space and develop a dataset. For each simulation, we

collected geometric properties of the design as the input, and the feasibility, i.e. the ratio between maximum

observed Von Mises stress and the material strength as the output. For each hull design, we generated a

physics-guided surrogate model where the directional and plane stresses are selected as the intermediate

physics-related variables. The results demonstrated that the PGL-based surrogate model promises a better

generalization for less explored design space compared to a black-box approach. As for interpretability, an

analysis of LRP scores points out that the proposed method allows the designer to explain which design

parameters are most dominant in fine-tuning of the feasibility.

8.7 Future Work

As a future research, a single surrogate model for the three hull designs should be trained to explain the rele-

vancy of all design parameters in a more complete scheme. In addition, the effect of intermediate parameters

such as displacements and strains should be introduced into the PGL and the relevancy of such parameters on

the output should be investigated.

While LRP provides an explanation on how physical parameters affect the prediction qualitatively, its
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(c) (d)

Figure 8.7: The progression of relevance for hull design with stiffeners: (a) intermediate physical parameters
- inside stiffener; (b) design parameters - inside stiffener; (c) intermediate physical parameters - outside
stiffener; (d) design parameters - outside stiffener
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ability in explaining sensitivity of individual inputs on the output quantitatively is limited. This limitation may

hinder the symbiotic design processes involving multiple domain expertise where human feedback towards

design optimization is crucial. Future work should look into methods where LRP scores are attributed to

sensitivity of input parameters for more informed design decisions.
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CHAPTER 9

Conclusion

In the last few decades, with the introduction of machine learning, the research on design and monitoring of

civil structures and mechanical systems has evolved into a new era. A majority of such ML-based engineering

applications adopts a black-box approach with the assumption that the training and testing data share the same

probabilistic distributions. However, this expectation is often unrealistic for many cases, since the access

to the complete labeled training data can be very limited, especially when the system is newly deployed.

One can employ computer simulations to generate simulated training data to compensate for the absence

of experimental data. However, there is no guarantee that the simulations will yield high-fidelity results.

Furthermore, structural and mechanical systems are dynamic by nature and usually experience change during

their life time. As result of this, the divergence between training and testing data is imminent and may lead

to prediction errors and compromise the safety of the system.

This dissertation proposes a set of methods to reduce the probabilistic divergence between training and

testing data and to improve the overall generalization of the machine learning algorithms. More specifically,

this work seeks to apply the domain adaptation methods into the damage detection and localization problems

to transfer the knowledge from a well explored source domain to the unlabeled target domain. Another

approach considered for improving generalization of damage detection algorithms susceptible to source-

target divergence is the integration of physics-based domain knowledge into the learning, which is known as

physics-guided learning.

Another issue with ML-based applications is that black-box models are by nature non-transparent to the

end user. Thus, it is often hard to interpret the reasoning of the algorithm. This work proposes an interpretable

physics-guided learning approach that utilizes domain-specific physics knowledge to create glass-box models

and to extend the explainability through intermediate physics-related parameters. Lastly, this work looks

into the explainable neural network based surrogate models with physics guided learning components. The

proposed method allows the designers to have a better understanding and explainability over the design

process.

129



References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
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