
Principled Algorithms for Real-time Sequential Decision Making for Large Scale

Cyber-Physical Systems

By

Geoffrey Pettet

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

December 17, 2022

Nashville, Tennessee

Approved:

Abhishek Dubey, Ph.D.

Janos Sztipanovits, Ph.D.

Gautam Biswas, Ph.D.

Jules White, Ph.D.

Dan Work, Ph.D.

Hiba Baroud, Ph.D.

Copyright © 2022 Geoffrey Pettet

All Rights Reserved

ii

Acknowledgements

This research was supported in part by the Tennessee Department of Transportation,

the Laboratory Directed Research and Development program at Pacific Northwest National

Laboratory, the U.S. Department of Energy under awards DE-AC05-76RL01830 and DE-

EE0009212, and the National Science Foundation under award numbers CNS-1640624,

IIS-1814958, IIS-1905558, and CNS-1952011.

I am grateful to my advisor Dr. Abhishek Dubey for his mentorship and support during

my graduate studies. He has helped me become a better academic without letting me forget

that I’m also a software engineer. I am also thankful to my committee members Dr. Janos

Sztipanovits, Dr. Gautam Biswas, Dr. Jules White, Dr. Dan Work and, Dr. Hiba Baroud

for their support, guidance, and insights into this work.

I am also grateful to Dr. Malini Ghosal, Dr. Shant Mahserejian, and Dr. Siddharth

Sridhar at Pacific Northwest National Laboratory for their mentorship and for aiding me in

applying my research to new and exciting domains.

I am also grateful to Colleen Herndon for her guidance and for facilitating our collab-

oration with the Metro Nashville Information Technology Services and Metro Nashville

Fire Department.

I would like to give a special thank you to Dr. Ayan Mukhopadhyay for his close

collaboration and guidance over the course of this work. Thank you to Dr. Douglas Schmidt

for his mentorship during my undergraduate studies and for helping me prepare for graduate

school. Thank you to Dr. Scott Eisele for his support over the past several years. And thank

you to all of my other collaborators and mentors through the years, including Dr. Yevgeniy

Vorobeychik, Dr. Aron Laszka, Dr. Mykel Kochenderfer, Dr. Sayyed Mohsen Vazirizade,

Dr. Kyle Wray, Chinmaya Samal, and all of my friends at the SCOPE-Lab.

Finally, I am especially grateful to my family: to my mother Lori Pettet, father Mark

Pettet, and brother John Pettet for their love and support over all these years.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . xi

1 Introduction . 1

1.1 Planning . 4

1.2 Forecasting . 7

1.3 Motivating Research Questions . 8

1.4 Outline . 11

2 Illustrative Domain: Emergency Resource Management 16

2.1 The Emergency Response Problem . 17

2.1.1 Problem Definition . 18

3 A Decision-Theoretic Framework for SCPS Planning 20

3.1 Overview . 20

3.2 Introduction . 21

3.3 Problem Description . 23

3.4 Our Solution . 26

3.4.1 Real Time Incident Prediction . 29

3.4.2 Dispatch Algorithm . 32

3.4.3 Predicting Environmental Factors 36

3.5 Performance . 38

3.5.1 Data and Methodology . 38

iv

3.5.2 Experimental Setup . 39

3.5.3 Results and Discussion . 42

3.5.3.1 Streaming Survival Analysis 42

3.5.3.2 Predicting Travel Times 44

3.5.3.3 Responder Dispatch . 46

3.6 Related Work . 48

3.7 Conclusion . 49

4 Hierarchical SCPS Planning . 50

4.1 Overview . 50

4.2 Introduction . 51

4.3 Problem Formulation . 56

4.4 Approach . 60

4.4.1 High-Level Planner . 63

4.4.1.1 Queuing Model . 65

4.4.1.2 Surrogate Model . 66

4.4.1.3 Optimization . 69

4.4.2 Low-Level Planner . 70

4.5 Integration Framework . 74

4.5.1 Travel Model . 75

4.5.2 Incident Prediction . 75

4.5.3 ERM System Model . 76

4.5.4 Simulation Framework . 76

4.6 Experiments . 77

4.7 Results . 82

4.8 Related work . 90

4.9 Conclusion . 91

v

5 Decentralized SCPS Planning . 94

5.1 Overview . 94

5.2 Introduction . 95

5.3 System Model . 98

5.3.1 Incident Arrival . 99

5.3.2 Decision-Making Process . 99

5.3.3 Problem Definition . 102

5.4 Rebalancing Approach to ERM . 103

5.4.1 Problem Complexity . 103

5.4.2 Multi-Server Queue Based Rebalancing 104

5.4.3 Decentralized MCTS Approach 107

5.5 Integration Framework . 110

5.5.1 Experimental Design . 112

5.6 Results and Discussion . 116

5.6.1 Queue Based Rebalancing Policy 116

5.6.2 MMCTS Rebalancing . 117

5.7 Conclusion . 118

6 Combining Learning and Planning for Adaptive Decision Making 122

6.1 Overview . 122

6.2 Introduction . 124

6.3 Related Work . 126

6.4 Markov Decision Processes in Non-Stationary Settings 127

6.5 Policy Augmented Monte Carlo Tree Search 129

6.5.1 Theoretical Analysis . 132

6.6 Experiments . 136

6.7 Conclusion . 140

vi

7 Scalable Heterogeneous Demand Prediction . 141

7.1 Overview . 141

7.2 Introduction . 142

7.3 Related Research . 144

7.4 Our Approach . 146

7.4.1 Data Specification . 146

7.4.2 Overview of the Approach . 146

7.4.3 Clustering Analysis . 148

7.4.4 Survival Analysis per Cluster . 155

7.4.5 Bayesian Network Analysis for Associating Clusters with Hex Cells 157

7.5 Discussion . 158

7.5.1 Using the Toolchain . 159

7.6 Conclusion . 164

8 Generalizability: Applying the Decision Framework to Other Applications 165

8.1 Overview . 165

8.2 Electric Fleet Charging . 166

8.2.1 Introduction . 166

8.2.2 Decision Support Framework . 167

8.2.2.1 Traffic Model . 168

8.2.2.2 Power Grid Model . 169

8.2.2.3 Decision Theoretic Planner 173

8.2.2.4 Markov Decision Process 174

8.2.2.5 Solution Approach . 175

8.2.3 Performance . 176

8.2.3.1 Experimental Design . 176

8.2.3.2 Results and Discussion 177

8.2.4 Conclusion . 179

vii

8.3 Dynamic Vehicle Routing Problem . 179

9 Conclusion . 182

9.1 Future Work . 186

Bibliography . 188

LIST OF ABBREVIATIONS . 212

viii

LIST OF TABLES

Table Page

1.1 Summary of the key research challenges, the innovations presented in this

dissertation to address them, and the related publications. 12

3.1 Notation Table . 23

3.2 Final Hyper-Parameter Choices . 38

3.3 Performance of System Compared to Base Policy 47

4.2 Experimental hyper-parameter choices. 80

4.1 Notation. 93

5.1 Notation lookup table . 120

5.2 Outline of the experimental runs performed and their corresponding hyper-

parameter choices. (∗When not indicated, parameters are set to values of

M-1, the MMCTS Baseline in the table.) 121

7.1 Incident Features Considered . 149

7.2 Toy Example for Similarity Calculation 150

7.3 Comparison of Cluster vs. Non-clustered Prediction 156

7.4 Comparison of Cluster vs. Non-clustered Prediction 158

ix

7.5 Prediction Ran with following Properties: Weather=’Clear-Day’, Day=’Thursday’,

Month=’March’, Date=’23rd’, StartTime=’15:00’, AnalysisTime=’2 hours’ 161

7.6 Prediction Ran with following Properties: Weather=’Rain’, Day=’Thursday’,

Month=’March’, Date=’23rd’, StartTime=’15:00’, AnalysisTime=’2 hours’ 162

7.7 Prediction Ran with following Properties: Weather=’Snow’, Day=’Thursday’,

Month=’January’, Date=’10th’, StartTime=’17:00’, AnalysisTime=’6 hours’ 163

8.1 Experimental Parameters . 177

x

LIST OF FIGURES

Figure Page

1.1 Overview of the proposed decision support framework for online planning

in SCPS. The decision-maker queries a simulation of the SCPS and its en-

vironment to estimate the impact of potential action trajectories on how

the environment might evolve, and the actions’ corresponding values using

a reward function. The simulation is built upon generative models of the

environment, which are updated as changes in the environment are observed. 3

1.2 The spectrum of divide and conquer approaches for decision-making in

multi-agent SCPS. A completely centralized approach uses a monolithic

state representation. In a completely decentralized approach, each agent

simulates what other agents do and performs its own action estimation. A

hierarchical approach segments the planning problem into sub-problems to

improve scalability without agents estimating other agents’ actions. 5

3.1 System Overview . 28

3.2 State-Action Tree . 37

3.3 Distribution of the actual stations overlaid on an incident occurrence heatmap

of Nashville, TN. 40

3.4 Distribution of the stations in the 13 station experiment overlaid on an in-

cident occurrence heatmap of Nashville, TN. 40

xi

3.5 Distribution of the stations in the 6 station experiment overlaid on an inci-

dent occurrence heatmap of Nashville, TN. 41

3.6 Distribution of the stations in the 3 station experiment overlaid on an inci-

dent occurrence heatmap of Nashville, TN. 41

3.7 Negative Log Likelihood comparison (lower is better) between Batch and

Streaming Survival Models. The Streaming model outperforms the batch

model by a significant margin . 42

3.8 Computational Time for Streaming Survival Analysis. 43

3.9 Batch Model (a) vs Streaming Model (b): These predicted heatmaps demon-

strate that the streaming model adjusts more quickly to new incident dis-

tributions. Starting with a survival model learned from the training set, we

fed the models synthetic incident data with incidents only occurring in the

yellow boxed area, which means that the model should learn that there is

now a higher incident likelihood in this area. The batch model picks up the

new pattern weakly, whereas the streaming model shows higher likelihood

in marked box. 44

3.10 Incident response time difference between the base policy and our solution.

This chart shows the distribution of response time decreases for positively

impacted incidents. The distribution of time difference in minutes (x axis)

is compared across each experiment involving the various station counts (y

axis). 45

xii

3.11 Incident response time difference between the base policy and our solution.

This chart shows the distribution of response time increases for negatively

impacted incidents. The distribution of time difference in minutes (x axis)

is compared across each experiment involving the various station counts (y

axis). 45

3.12 Response time distribution of the base policy. It is very similar to our so-

lution on average since most incidents have the same responder, demon-

strating that our solution is not worse than the base policy. The benefits of

our solution are clear when looking at the response times for incidents with

different dispatching decisions, as shown in figures 3.10 and 3.11 47

3.13 Response time distribution of our solution. It is very similar to the baseline

policy on average since most incidents have the same responder, demon-

strating that our solution is not worse than the base policy. The benefits of

our solution are clear when looking at the response times for incidents with

different dispatching decisions, as shown in figures 3.10 and 3.11 48

4.1 A spectrum of approaches for solving a dynamic resource allocation prob-

lem under uncertainty. A completely centralized approach uses a mono-

lithic state representation. In a completely decentralized approach, each

agent simulates what other agents do and performs its own action estima-

tion. Our hierarchical approach segments the planning problem into sub-

problems to improve scalability without agents estimating other agents’ ac-

tions. 53

xiii

4.2 An overview of the proposed planning approach. We use the observed data

to learn a generative model over when and where incidents occur. The

generative model lets us simulate agent behavior, which aids the creation of

a surrogate model for the high-level planner to segment the overall problem

into a set of smaller problems. The low-level planner tackles each sub-

problem independently. As we show, the surrogate reward model can also

be estimated based on closed-form expressions of waiting times based on a

queuing model. 61

4.3 Emergency response decision support framework. 74

4.4 System state and actions. 76

4.5 Subfigure (a) – The various spatial regions under consideration. Pins on

the map represent depot locations, and different colors represent different

spatial regions. Subfigure (b) – Nashville’s historic incident density from

January 2018 to May 2019 overlaid on the spatial grid environment. 78

4.6 Results when applying the baseline and low-level planners to incidents

sampled from a stationary rate distribution. This figure presents the full

response time distributions; the boxplot represents the data’s Inter-Quartile

Range (IQR = Q3−Q1), and the whiskers extend to the 9th and 91st per-

centiles. 82

4.7 Results when applying the baseline and low-level planners to incidents

sampled from a stationary rate distribution. This figure presents a zoomed

in view of the average response times. 82

xiv

4.8 Results when applying the baseline, low-level planner (LL Only), and com-

plete hierarchical planner (HL & LL) when applied to incidents sampled

from a non-stationary rate distribution. This figure presents the full re-

sponse time distributions; the boxplot represents the data’s Inter-Quartile

Range (IQR = Q3−Q1), and the whiskers extend to the 9th and 91st per-

centiles. 83

4.9 Results when applying the baseline, low-level planner (LL Only), and com-

plete hierarchical planner (HL & LL) when applied to incidents sampled

from a non-stationary rate distribution. This figure presents a zoomed in

view of the average response times. 83

4.10 Results when applying the baseline, complete hierarchical planner using the

MMC queuing high level planner (MMC HL), and complete planner using

the surrogate model high level planner (RF HL) when applied to incidents

sampled from a non-stationary rate distribution and using a data-driven

travel time router. This figure presents the full response time distributions;

the boxplot represents the data’s Inter-Quartile Range (IQR = Q3−Q1),

and the whiskers extend to the 9th and 91st percentiles. 84

4.11 Results when applying the baseline, complete hierarchical planner using

the MMC queuing high level planner (MMC HL), and complete planner

using the surrogate model high level planner (RF HL) when applied to in-

cidents sampled from a non-stationary rate distribution and using a data-

driven travel time router. This figure presents a zoomed in view of the

average response times. 84

xv

4.12 Results when applying the low-level planner only (LL Only), complete hi-

erarchical planner using the MMC queuing high level planner (MMC HL),

and complete planner using the surrogate model high level planner (RF HL)

when subjected to increasing numbers of simultaneous equipment failures.

This figure presents the full response time distributions; the boxplot repre-

sents the data’s Inter-Quartile Range (IQR = Q3−Q1), and the whiskers

extend to the 9th and 91st percentiles. 85

4.13 Results when applying the low-level planner only (LL Only), complete hi-

erarchical planner using the MMC queuing high level planner (MMC HL),

and complete planner using the surrogate model high level planner (RF HL)

when subjected to increasing numbers of simultaneous equipment failures.

This figure presents a zoomed in view of the average response times. 86

4.14 Example of the high-level planner resolving an equipment failure. In sub-

figure (left), the agent positioned at the depot marked by the red circle in

the green region fails, and the high-level planner determines there is an

imbalance across regions. In sub-figure (right), we see the planner move an

agent from the depot marked by the red dotted circle to the green region to

ensure that the upper left of the region can be serviced. 88

4.15 Mean Squared Error in logarithmic scale for the proposed estimators. The

random forest regression model performs significantly better in comparison

to the queuing based estimator. However, as the queuing based estimator

learns the proportion of wait times among the regions fairly well, it serves

as a meaningful heuristic to guide the high-level planner. 88

5.1 Extended Decentralized ERM Framework Overview 111

xvi

5.2 caption for img . 113

5.3 The response time distributions for each queue rebalancing policy experiment.113

5.4 Distribution of average miles traveled by each responder at each balancing

step in the queue rebalancing policy experiments. The baseline approach

has no rebalancing, so it is excluded. 114

5.5 The response time distributions for each MMCTS experiment using an oracle.114

5.6 Distributions of average miles traveled by each responder at each balancing

step of the MMCTS experiments using an oracle. 115

5.7 The response time distributions for each MMCTS parameter search exper-

iment. 115

5.8 Distributions of average miles traveled by each responder at each balancing

step of the MMCTS parameter search experiment. 116

6.1 PA-MCTS results when applied to the default CartPole environment. Columns

denote values for α . The individual plots’ horizontal axis is the number of

MCTS iterations per decision epoch. The vertical axis is the cumulative

reward. We show the mean cumulative reward over 50 samples with 95%

confidence intervals. The heatmap compactly presents the cumulative re-

ward w.r.t. various combinations of α and the number of iterations. 137

xvii

6.2 PA-MCTS results with gravity modified from its default value of 9.8 m/s2.

Rows represent different gravity values. Columns represent values for α .

The individual point plots’ horizontal axis is the number of MCTS itera-

tions per decision epoch. The vertical axis is the cumulative reward. We

show the mean cumulative reward over 50 samples with 95% confidence

intervals. The heatmap compactly presents the cumulative reward w.r.t.

various combinations of α and the number of iterations. 138

6.3 PA-MCTS results with the cart’s mass modified from its default value of

1.0 kg. Rows represent different cart masses. Columns represent values

for α . The individual point plots’ horizontal axis is the number of MCTS

iterations per decision epoch. The vertical axis is the cumulative reward.

We show the mean cumulative reward over 50 samples with 95% confi-

dence intervals. The heatmap compactly presents the cumulative reward

w.r.t. various combinations of α and the number of iterations. 139

6.4 PA-MCTS results with a modified reward function which incentivizes stay-

ing near the center of the track. The setting is the same as Fig. 6.2 and Fig. 6.3.139

7.1 Toolchain Block Diagram. P(I, HL) refers to the joint probability of an

incident occurring in a particular hex cell 147

7.2 Cluster Generation Model . 147

7.3 Prediction Toolchain Model . 148

7.4 Cluster 7 - Average Feature Dissimilarity 154

7.5 Cluster 7 - Weather Feature Values . 155

xviii

7.6 Error in Predicted Hex Incident Probabilities vs. Validation Data 160

8.1 Street map of Tri-Cities region; the inset screenshot shows buses arriving

and parked at the Knight Street Transit Center. 168

8.2 GIS overlay of the feeder model. 169

8.3 Simulated electric bus routes. Triangles represent the charger locations on

each route – black for the Knight Street station, yellow for the Three Rivers

station. 170

8.4 Grid-aware Decision Support Framework for public transit EV charge schedul-

ing. 171

8.5 Grid related input. (a) Individual and combined grid score of the chargers

in different hours of the day. (b) The Time of Use price of Electricity. . . . 173

8.6 Richland distribution substations diagram 173

8.7 Reward tradeoff parameter β ’s effect on the energy cost (a lower score is

better) to run the transit system per day. Red dashed line represents the

greedy approach for comparison. 177

8.8 Reward tradeoff parameter β ’s effect on the cumulative grid impact (a

higher score is better) to run the transit system per day. Red dashed line

represents the greedy approach for comparison. 178

8.9 The number of vehicle runs that were performed 181

8.10 distance . 181

xix

9.1 Results when the decision support framework is applied to emergency re-

sponder allocation in Nashville, TN. We compare the policy used by re-

sponders today (baseline), the hierarchical framework without the high-

level inter-region coordination (LL Only), and the complete complete hi-

erarchical planning framework described in Chapter 4 (HL & LL) when

applied to incidents sampled from a non-stationary rate distribution. This

figure presents a zoomed in view of the average response times. 185

9.2 Results when the decision support framework is applied to emergency re-

sponder allocation with vehicle failures in Nashville, TN. We compare the

policy used by responders today (baseline), the hierarchical framework

without the high-level inter-region coordination (LL Only), and the com-

plete complete hierarchical planning framework described in Chapter 4 us-

ing both an MMC queuing high level planner (MMC HL) and a surrogate

model high level planner (RF HL) when subjected to increasing numbers

of simultaneous equipment failures. This figure presents a zoomed in view

of the average response times. 186

xx

Chapter 1

Introduction

Cyber-Physical Systems (CPS) are composed of devices that integrate software, net-

working, and physical processes. Advances in embedded computing, networking, and

cloud architectures have allowed scalable data collection and processing, which has en-

abled the breath and scale of CPS applications to increase. As such, we are now at a point

where CPS are being scaled to applications that can effect entire cities and societies, which

we refer to as Societal-Scale Cyber-Physical Systems (SCPS), including energy distribu-

tion [1], transportation [2, 3, 4], and emergency response services [5, 6, 7]. These systems

leverage the staggering quantity of data that can be collected in urban environments to learn

how to better manage resources, services, and infrastructure. Managing such a system is a

complex decision-making problem that involves forecasting how the environment is likely

to evolve in the future and planning to make decisions that maximize the long-term utility

of the system.

Let us consider three important SCPS applications to contextualize the technical chal-

lenges in realizing such large scale CPS. First is the problem of emergency response man-

agement (ERM). Emergency incidents occur frequently throughout urban areas, and must

be serviced by emergency response vehicles such as ambulances and fire trucks. ERM is

the problem of managing the locations and optimizing the dispatch of these response ve-

hicles to incidents such that response times are minimized. Second, consider the problem

of managing the charging schedules of electrified fleets of vehicles – electrified vehicles

(such as public transit or delivery vehicles) must be charged throughout the day. Chargers

are spatially distributed around the city, so vehicle routes must be integrated with a charg-

ing schedule to balance cost and strain placed on the power grid while maintaining required

levels of service. Last, consider shared on-demand transit (i.e. ridepool). Recent research

1

has shown that on-demand transit services can be made more cost and time efficient by al-

lowing vehicles to service multiple requests simultaneously [4]. However, allowing shared

vehicles increases the combinatorial complexity of the request to vehicle matching problem

significantly; this complexity must be managed by ridepool applications.

Each of these applications are varients of the SpatioTemporal Resource Management

(STRM) problem, which often manifests in SCPS. Resources are physical or logical entities

that have some spatiotemporal properties. Often, these resources are mobile – ambulances

in ERM, electric vehicles, and rideshare taxis are all examples of mobile resources. These

resources often have to service some demand, which is application specific – ambulances

must respond to emergency incidents, electric vehicles must charge at spatially located

chargers when they run low on energy, and taxis must pickup and drop off customers. This

demand is often heterogeneously distributed around the city, and is not known in advance.

STRM is the problem of managing the spatial distribution of these resources, as well as

how they respond to demand such that some utility is optimized. We refer to optimizing

the spatial distribution of the resources when not servicing demand as allocation – this is

how the system prepares for demand. We refer to the actions taken in response to demand

as dispatching. Effective STRM is important – for some systems such as ridepooling,

inefficient deployments can result in increased costs and unhappy users. For others it is

safety critical, such as emergency response management. STRM is used throughout this

dissertation to illustrate the challenges associated with designing and deploying SCPS.

It is important to consider two key properties of the environments in which SCPS oper-

ate. First, they are spatially heterogeneous. No two communities are exactly alike in their

layouts, and within a city there is much variation in the distribution of road networks, popu-

lation density, and demographics. Second, large geographic areas are highly non-stationary

- in the short term, features such as traffic and weather change throughout a day, and im-

pactful events like football games can cause significant disruption in normal behavioural

patterns. Communities also evolve over long time scales; infrastructure such as roadways

2

C
ur

re
nt

 O
bs

er
va

tio
n

EnvironmentSCPS

(e.g., Emergency Response System)

D
ec

is
io

ns

Reward

Function

Samples

Generative

Models

Interactions

High Fidelity

Simulation

Decision Maker

(e.g., Monte-Carlo tree search)

Updates
Change

Detector

Transition and State

Update Queries

Figure 1.1: Overview of the proposed decision support framework for online planning
in SCPS. The decision-maker queries a simulation of the SCPS and its environment to
estimate the impact of potential action trajectories on how the environment might evolve,
and the actions’ corresponding values using a reward function. The simulation is built upon
generative models of the environment, which are updated as changes in the environment
are observed.

are constantly being built, population demographics shift, and governing bodies change.

These properties make SCPS applications difficult to manage, since they must adapt to

their diverse, heterogeneous environment as it evolves.

The objective of this dissertation is to study what is required for proactive SCPS ap-

proaches that foresee how the system will evolve, capture the long-term value of actions,

and make decisions that optimize the expected long-term utility of the SCPS. Proactive

management requires an integrated decision support framework that includes forecasting

and planning components, as shown in Fig. 1.1. In this proposed framework, a decision-

maker uses a simulation of the SCPS and its environment to query how the system is likely

to evolve given potential action trajectories, and the actions’ corresponding values using a

reward function. The simulation is built upon generative models of the environment, which

are updated as changes in the environment are observed.

Each of these components serve an important role in the operation of a resource man-

3

agement pipeline, and come with challenging technical problems when scaled to SCPS

and when applied to non-stationary environments. The next two sections will now give

an overview of these challenges and potential solution methods for the two components of

interest in this dissertation: (1) scalable and adaptive planning methods (section 1.1) and

high-resolution generative forecasting models (section 1.2).

1.1 Planning

A proactive SCPS pipeline must include a planning algorithm that makes decisions to

maximize the long-term utility of the system. STRM dispatching and allocation decision

making, for example, should incorporate the uncertain output of demand detection and

forecasting models to determine actions that will serve current demand while foreseeing

the decision’s effect on future states of the system.

A popular strategy used to plan under uncertainty is to learn a policy, which is a general

mapping from states of the environment to actions that should be taken. Reinforcement

Learning (RL) and Approximate Dynamic Programming both fall into this category, and

have recently been applied to STRM problems [6, 8, 9, 10]. To use these methods, prac-

titioners first create a detailed model of the environment, and then perform computation

offline to learn a policy. Unfortunately, these methods take a long time to converge to a pol-

icy when applied to large scale, practical problems. Since urban environments are highly

non-stationary, this means that a policy might be out of date by the time it has been learned.

They are also not resilient to failures, since they are dependent on the environment that was

defined during learning being a good approximation of the real environment – equipment

failures and large environmental shifts, such as those caused by disasters, invalidate the

policies.

Rather than aiming to find a policy for the entire state-space offline, an alternative ap-

proach is to perform online planning and focus on finding a good action for the current state

of the world. Given a generative model of the environment, heuristic search approaches

4

Centralized Hierarchical Decentralized

Scalability

Assumptions Required for Coordination

Figure 1.2: The spectrum of divide and conquer approaches for decision-making in multi-
agent SCPS. A completely centralized approach uses a monolithic state representation. In
a completely decentralized approach, each agent simulates what other agents do and per-
forms its own action estimation. A hierarchical approach segments the planning problem
into sub-problems to improve scalability without agents estimating other agents’ actions.

such as Monte-Carlo tree search (MCTS) can be used to find promising actions for the en-

vironment as it is at the time of decision-making. An advantage of using MCTS is that the

Markovian assumption can be relaxed, and high-fidelity simulators can be used to estimate

utilities from different actions. These simulators can be updated to reflect changes in the

environment, making MCTS adaptive to environmental shifts. Such an approach has been

applied to real-time control problems in domains such as the smart grid [11], game play-

ing [12, 13], and autonomous driving [14, 15]. However, state of the art MCTS approaches

have difficulty converging in a reasonable amount of time for practical SCPS problems with

large state-action spaces [16].

One approach to scale online planning approaches to complex environments is the es-

tablished “divide and conquer” strategy, which is to break down the large problem into

manageable sub-problems, and then combine these solutions. Such strategies exist on a

spectrum for multi-agent SCPS, as shown in figure 1.2. On one side of the spectrum is

fully centralized decision-making, which represents the entire environment using a mono-

lithic state-space. A centralized approach has the advantage of making no assumptions

5

regarding the interactions between agents, and most accurately represents the environment.

Unfortunately, such an approach quickly becomes intractable as the scale of the problem

increases and the interactions between agents explode the state-action space.

On the other side of the spectrum is a completely decentralized method, where each

agent performs local decision-making to determine its own course of action. A decen-

tralized approach is extremely scalable, since each agent can ignore any interactions that

are not directly relevant to its own decisions. The agents’ independence also makes this

approach robust to communication failures. However, there are several challenges to im-

plementing a decentralized decision-maker. As the agents cooperate to achieve a single

goal, they must estimate what other agents will do in the future as they optimize their ac-

tions. Note that high fidelity models for estimating agents’ actions limit scalability, but

inaccurate models can lead to sub-optimal decisions. It is important that agent’s find an

appropriate trade-off between these two competing issues.

Finally, there is the middle ground of hierarchical planning [17], which focuses on

learning local policies, known as macros, over manageable subsets of the state space by

leveraging the spatial structure in the environment. It is motivated by the concept of ju-

risdictions or action-areas, which create different zones to partition and better manage

infrastructure. These subproblems encompass multiple agents, allowing nearby agents that

are most likely to interact to coordinate. This facilitates high scalability while retaining the

coordination between the most relevant agents. Implementing such an approach requires

overcoming several challenges, including how to split the full environment into subprob-

lems that will lead to the best inter-agent coordination, and how these sub-problems should

evolve as the environment changes. A decision-maker must also define the coordination

procedure between the subproblems, as some actions will likely require agents to cross the

subset boundaries.

Each of these methods for scalable online planning require knowledge and assumptions

of the environment and its structure. A different method is to consider a hybrid decision-

6

making approach that combines the strengths of RL and online planning while mitigating

some of their weaknesses. Such an approach is used by the state-of-the-art AlphaZero

algorithm, which uses MCTS as a policy improvement procedure while learning an RL

policy for stationary environments [18]. The intuition behind using a hybrid approach in

non-stationary settings is that if the environment has not changed too much between when

an optimal policy was learned and when a decision needs to be made, the policy could still

provide useful information for decision-making. The policy’s estimates could be used to

guide the search, even if the estimates are stale. The challenges with this approach are to

determine precisely how to integrate the learned policy with the online search, and what (if

any) guarantees can be made about the optimality and robustness to non-stationarity of the

resulting algorithm.

This dissertation explores each of these approaches, and presents techniques to over-

come their unique challenges. The advantages and limitations of each are presented, such

that practitioners can evaluate which is most applicable to a given domain.

1.2 Forecasting

In order to proactively plan, one must have an understanding of how the SCPS and

it’s environment evolves over time. This encompasses several aspects of the environment.

In ERM, for example, the features of interest include traffic congestion and travel times,

weather features such as precipitation and visibility, large events such as sports games or

festivals, and demand such as traffic and medical incidents. Many of these are co-dependent

— for example, one must model where resources will likely be in the future using a travel

model, which is dependent on knowing how traffic will evolve throughout each vehicle’s

route. Accurately modeling such features is key to estimating the long-term value of actions

that are taken by the decision maker.

Modeling SCPS environments is difficult due to the challenges of heterogeneity and

non-stationarity. Take motor vehicle accidents (MVA), for example. These incidents are

7

known to be inherently random [19], and are dependant on many environmental factors

such as weather, traffic, and even other incidents (incidents can ‘cascade’, causing more

incidents). Techniques such as the negative binomial distribution [20], artificial neural

networks [21], and hierarchical analysis [22] have been used to great effect when attempt-

ing to predict incident frequency for specific areas, and have helped determine features of

roadways that affect incident occurrence. Prediction methods such as the negative bino-

mial regression [23] and random effect probit models [19] have also been used to analyze

feature effects on accident frequency, and generating predictive models for specific areas.

Unfortunately, these studies generally make assumptions about the locations that they are

analyzing. For example, they study a specific length of freeway, or look at only intersec-

tions and their features in a specific city. These approaches do not easily scale to the large,

heterogeneous environments of SCPS.

To be useful for proactive decision-making, these models must also have high spatio-

temporal resolution, so that a decision algorithm can have a precise understanding of the

locations and times where events are likely to occur. Unfortunately, increasing the reso-

lution of models introduces sparsity, meaning that there are significant class imbalances

between positive and negative samples in the data, since each spatiotemporal window is

less likely to see any significant demand. Therefore, adaptive forecasting frameworks are

needed that can model the high-dimensional feature spaces of SCPS environments at high

spatio-temporal resolutions.

1.3 Motivating Research Questions

To create a principled framework for decision-making in SCPS, this dissertation ad-

dresses the following research questions:

1. Online planning approaches require a foundation of high resolution generative

models and simulators. How can we construct an integrated decision support

framework that combines these models and procedures to update them with on-

8

line planners? SCPS environments are often highly non-stationary. Online planning

approaches can adapt to changes in the environment, as they perform their com-

putation at decision time using high-fidelity models and simulations to determine

promising action trajectories. These models can be updated as soon as environ-

mental changes are detected, and such changes can be immediately incorporated in

decision-making. However, an integrated decision support framework is needed to

efficiently integrate these models with the online planner and update them as changes

occur. This dissertation presents such a framework, and demonstrates that it facili-

tates adaptive decision-making procedures.

2. Centralized online planning approaches cannot scale to the complex state-action

spaces of SCPS. How can these problems be split into manageable subproblems?

As the number of agents increases in a SCPS, the complexity of the state-action space

explodes due to their interactions. Standard, centralized planning approaches such

as Monte-Carlo tree search take a significant amount of time to converge in these

large environments, as they must evaluate many different potential action trajectories

at decision time. One way to address this is a hierarchical approach that splits the

large SCPS into smaller subproblems that can be solved tractably using MCTS. This

dissertation presents a hierarchical online planning approach that includes a high-

level planner to split the problem into subproblems and coordinate between them,

and a low-level planner that performs planning for each subproblem.

3. Centralized and hierarchical planning rely on network infrastructure to coor-

dinate between agents. How can we create adaptive planning algorithms that

are robust to failures in communication networks? Many SCPS, such as emer-

gency response services, serve safety-critical functions for a society. Such systems

must be robust to failures in their communication networks, which centralized and

hierarchical planning approaches rely on to coordinate between agents. This dis-

9

sertation presents a decentralized planning approach that allows for each agent to

independently determine its own course of action with limited communication. We

investigate methods for agents to estimate the behavior of other agents during plan-

ning, and how to ensure system constraints are satisfied despite agents performing

local planning.

4. Policies that are learned offline likely encode useful information even if the envi-

ronment has changed since training time. How can these stale policies be used to

improve online planning algorithms? The policies learned by learning approaches

such as reinforcement learning (RL) become stale when the environment changes.

However, we hypothesize that if the changes are relatively minor, the policy still

encodes information that is relevant to the updated environment. How can we uti-

lize this knowledge to improve the convergence of online search approaches? In

this dissertation we present a hybrid approach that is more adaptive to environmental

changes than RL approaches while converging significantly faster than online plan-

ning in isolation.

5. Understanding the long-term impact of decisions requires environmental fore-

casting models with high spatiotemporal resolution that generalize to heteroge-

neous areas. How can we learn such models despite high data sparsity? The

foundation of online planning algorithms are the models they use to forecast how the

environment will evolve and estimate the long-term value of actions. SCPS often en-

compass large and heterogeneous geographic areas, and are dependent on a diverse

set of environmental features. These models must have a high spatial-temporal res-

olution to be useful for precise planning, which often results in high data sparsity.

This dissertation presents a method for clustering sparse events using heterogeneous

features across a region. We show that these groups have similar arrival distribu-

tions, which makes forecasting for each group more accurate. These groups are then

10

mapped to spatial locations to gain models with high spatial-temporal resolution.

1.4 Outline

The remainder of this dissertation describes the work performed to answer these re-

search questions posed to develop principled decision-making frameworks for SCPS. The

key challenges, the innovations presented to address them, and the related publications are

summarized in Table 1.1.

Chapter 2 details the Emergency Response Management (ERM) domain, which is used

to demonstrate the forecasting and planning approaches presented throughout this disser-

tation. ERM dispatch and allocation are safety critical problems faced by communities

across the globe, and have properties such as tight time constraints on decision making

and large state-action spaces that illustrate the challenges that often arise when managing

a SCPS. Focusing on one well defined SCPS problem allows us to discuss various techni-

cal approaches in greater detail; however, the approaches presented in this dissertation are

generalizable to other SCPS problems, which is demonstrated in Chapter 8.

Chapter 3 presents a framework for centralized online planning in SCPS. It breaks down

the problem into three atomic sub-components: generative environmental models, a simu-

lation of the environment, and the decision-making agent. It presents an online method for

updating the generative models. It then composes these components into an integrated deci-

sion support framework. The framework is applied to the problem of Emergency responder

dispatching in a simulation of Nashville, TN, and we find that the proposed approach can

decrease the response time for specific subsets of incidents by up to 39 seconds on average

in resource constrained situations when compared to existing responder dispatching strate-

gies. However, this approach is not scalable to more complex SCPS problems, such as

ERM responder allocation.

Chapter 4 presents a hierarchical planning framework which focuses on learning local

policies, known as macros, over subsets of an SCPS state space by leveraging the spatial

11

Table 1.1: Summary of the key research challenges, the innovations presented in this dis-
sertation to address them, and the related publications.

Research Question Outcomes Innovations Publications

(Q1) Constructing an
integrated framework for
SCPS decision-making.

A flexible template
for SCPS decision
support systems.

A novel template for software frameworks
that combines generative models of an
SCPS environment, procedures to update
these models, a high-fidelity simulation
of the SCPS, and a decision agent. This
template is generalizable to many SCPS
domains.

[24, 25]
[26, 27]

(Q2) Scalable online
planning for non-
stationary SCPS.

Hierarchical adaptive
planning procedures.

A hierarchical planning framework that uses
a high-level planner to (1) split up the system
into tractable sub-problems, and (2) coordinate
between the sub-problems.

Two novel coordination procedures are
developed: an algorithm based on queuing
theory, and an algorithm using random forests

A low-level planner uses Monte-Carlo tree
search to independently make decisions for
each sub-problem.

[28, 16]

(Q3) Planning that is
robust to communication
network failures.

Decentralized adaptive
planning procedures.

A decentralized planning framework where each
agent independently determines its own course of
action with limited communication.

Inexpensive models of agent behavior allow
an agent to forecast what other agents will do
to avoid conflicts. A filter ensures that system-
wide constraints are satisfied.

[29]

(Q4) Incorporating
learning-based models
with online planning.

Policy-augmented
Monte-Carlo tree search
(PA-MCTS).

A novel definition of non-stationary Markov
decision processes for SCPS.

A hybrid decision-making approach that uses
policies learned offline on out-of-date versions
of the environment to improve the convergence
speed of online planning in non-stationary
settings. Several properties of the algorithm
are proven, such as when it will choose a better
action than either of its constituent policies.

[30]

(Q5) Creating high
-resolution forecasting
models for sparse data.

Clustering based
spatial-temporal
forecasting framework

A forecasting framework that uses clustering to
aggregate similar events to address sparsity.
These clusters are mapped to spatial locations
to achieve high spatial-temporal resolution.

[31, 32]

12

structure in the problem. It incorporates a principled algorithmic approach that partitions

the spatial area under consideration into smaller areas, and then treats each sub-area as

individual planning problems which are smaller than the original problem by construction,

ensuring the scalabilty of the approach. To handle any situations that require coordination

across regions, a top-level planner detects states where this “interaction” is necessary and

finds actions such that the system’s overall utility can be maximized. The approach is

applied to ERM responder allocation in a simulated version of Nashville, and improves the

response times to all incidents by up to 23 seconds on average under normal conditions

when compared to procedures used in practice. The adaptability of the approach to non-

stationary conditions is also demonstrated by simulating simultaneous vehicle failures, and

the hierarchical framework reduces average response times by 82 seconds compared to

existing methods when there are 3 simultaneous failures.

Both of these centralized and hierarchical approaches require communication between

agents to coordinate within a sub-problem. Chapter 5 presents a decentralized planning

framework for multi-agent SCPS that enables each agent to independently determine its

own course of action, allowing the system to function with limited inter-agent communi-

cation. Techniques are presented to ensure that system-level constraints are satisfied. This

framework is applied to the ERM resource allocation problem and is shown to be extremely

scalable as the number of agents increases while improving the mean and variance of the

the response time distribution compared to classical optimization approaches.

Chapter 6 presents an alternative approach to decision-making in non-stationary envi-

ronments – a hybrid approach that combines a learning-based policy with online planning,

called Policy Augmented Monte Carlo tree search (PA-MCTS). The intuition behind this

approach is that if the environment has not changed too much between when an optimal

policy was learned and when a decision needs to be made, the policy can still provide use-

ful information for decision-making. Combining an old policy (i.e., a policy learned on

an environment that has changed since) with a current online search (i.e., search using the

13

current environmental parameters) results in a two-fold advantage. First, given a specific

computational budget, the framework converges to significantly better decisions than stan-

dard MCTS. Second, the online search makes the approach significantly more robust to

environmental changes than standard state-of-the-art learning-based approaches. To show

the potential of PA-MCTS for non-stationary systems, it is applied to the classical inverted

pendulum control problem under several environmental changes. PA-MCTS is found to

converge to the optimal return with less than 10% of the required computation compared

to pure MCTS under several environmental changes, while still being able to converge

when subjected to over twice the magnitude of change compared to a pure learning-based

method.

The decision-making approaches and frameworks described above rely on a foundation

of generative models to forecast how the environment will evolve. Chapter 7 presents a gen-

erative modeling approach that enables forecasting over large, heterogeneous geographic

areas using mixed-typed features (i.e., categorical and numeric features) using the Simi-

larity Based Agglomerative Clustering (SBAC) algorithm. The framework was applied to

the incident forecasting problem in Nashville, and the predicted distribtuion of incidents

was found to have a normalized root mean squared error of 1.656425 when compared to a

validation set, showing that the predicted results match the sparse real world data.

After demonstrating these approaches for decision-making in SCPS using the ERM

problem (as described in Chapter 2), Chapter 8 wraps up the dissertation by applying the

framework to two other SCPS domains – electric fleet charging and dynamic vehicle rout-

ing – to demonstrate the generalizability of the decision support framework. When used to

schedule electric bus charging in a simulation of Richland, WA’s bus network, the proposed

methods are shown to save over $100k per year in operating costs compared to a greedy

strategy. When the framework is applied to dynamically route paratransit vehicles in a sim-

ulation of Chattanooga, TN, it saves $145k per year in energy costs to operate the system,

and reduces CO2 emissions by 576 metric tons per year.

14

Finally, Chapter 9 concludes with a summary of the dissertation’s accomplishments and

proposes possible future work in decision-making for SCPS.

15

Chapter 2

Illustrative Domain: Emergency Resource Management

The challenges that arise when performing decision-making for SCPS are contextual-

ized throughout this dissertation using the domain of Emergency Response Management

(ERM), which is a challenge faced by communities across the globe. First responders need

to respond to a variety of incidents such as fires, traffic accidents, and medical emergencies.

They must respond quickly to incidents to minimize the risk to human life [33, 34]. Con-

sequently, considerable attention in the last several decades has been devoted to studying

emergency incidents and response. A category of incidents that is of particular concern

for communities are Motor Vehicle Accidents (MVA) due to their frequency and the extent

of their damage – Globally, about 3,200 people die every day from road accidents alone,

leading to a total of 1.25 million deaths annually [35]. In fact, it is noted that MVAs are on

the rise due to rapid urbanization and increasing traffic volume, and are set to be the fifth

largest cause of death worldwide by 2030 without appropriate measures [36].

This dissertation uses the specific problem of responding to MVAs as an illustrative

example, as there is a rich body of prior work on traffic accidents we can draw inferences

from [37, 20, 38, 39, 40, 8, 41] . Focusing on one well defined SCPS problem allows us

to discuss various technical approaches in greater detail, but the the core aspects of the

problem (forecasting and decision making) are generalizable – other emergency response

problems (e.g. wildfire management and medical incident response) and most SCPS appli-

cations in general must deal with the heterogenous, dynamic urban environments that make

incident prediction difficult, and many require the allocation and dispatch of resources sim-

ilar to ambulances. This is demonstrated in chapter 8, where the decision-support frame-

work that is presented by this dissertation is applied to other SCPS problems: electric fleet

charge scheduling and the dynamic vehicle routing problem.

16

2.1 The Emergency Response Problem

Traffic accident ERM is the problem of optimally responding to motor vehicle incidents

in urban areas. Incidents are reported to central emergency response agencies, which have

streamlined mechanisms for processing the request. For example, in the United States,

emergency helpline calls are placed by dialing 911. People in need of assistance or other

people who might have observed an incident can report it to the concerned authorities. Such

a report is typically referred to as a “call” for emergency services. After being reported to

911, the call is then transferred to the agency concerned with traffic incidents (such as the

fire department) by a computerized mechanism. The agency then uses its computer-aided

dispatch (CAD) system to dispatch a responder to the scene. This set of events defines

an ERM system, and it governs the pipeline of incident response, including detecting and

reporting incidents, monitoring and controlling a fleet of response vehicles, and finally dis-

patching responders when incidents occur. In many cases there are multiple organizations

governing this pipeline for an urban area; for example, ambulances and police cars might

be dispatched from different departments.

Agents1 that respond to traffic incidents include ambulances, police vehicles, and fire

trucks (among others) and are referred to as responders. Responders are typically equipped

with devices that facilitate communication to and from central control stations. In many

cases, especially in the United States, responders are also equipped with computational

devices like laptops as well. Once an incident is reported, responders are dispatched by

a human agent to the scene of the incident (guided by some algorithmic approach like a

CAD system). This process typically takes a few seconds,2 but can be longer if dispatchers

are busy. If no responder is available, the incident typically enters a waiting queue and

is attended once a responder becomes free. Each responder is located in a specific depot

(fire-station, for example), which are situated at various points in the spatial area under

1We use the term “agents” as is common in multi-agent systems community.
2This is based on our communication with fire departments in the United States [42]; time taken to dis-

patch responders presumably varies across the globe.

17

consideration. Once a responder has finished servicing an incident, it is directed back to

the depot and becomes available to be re-dispatched by the dispatcher while en-route. An

aspect that plays a key role in dispatch algorithms is that if there are any free responders

available when an incident is reported, one must be dispatched to attend to the incident.

This constraint is a direct consequence of the bounds within which emergency responders

operate, as well as the critical nature of the incidents.

2.1.1 Problem Definition

To provide common context, we define a broad mathematical formulation for incident

forecasting and planning problems. Given a spatial area of interest S the decision-maker ob-

serves a set of samples (possibly noisy) drawn from an incident arrival distribution. These

samples are denoted by {(s1, t1,k1,w1),(s2, t2,k2,w2), . . . ,(sn, tn,kn,wn)}, where si, ti and

ki denote the location, time of occurrence, and reported severity of the ith incident, respec-

tively, and wi ∈Rm represents a vector of features associated with the incident. We refer to

this tuple of vectors as D, which denotes the input data that the decision-maker has access

to. The vector w can contain spatial, temporal, or spatio-temporal features and it captures

covariates that potentially affect incident occurrence. For example, w can include features

such as weather, traffic volume, and time of day [39, 43, 44, 45].

The most general form of an incident prediction model can be defined as the following:

Definition 2.1.1. An incident forecasting model is defined as a function f (X | w,θ) where

X is a random variable representing a measure of incident occurrence, w represents a set

of feature vectors associated with each incident, and θ represents the models’ parameters.

The random variable X can represent various measures of incident occurrence, such

as a count of incidents (the number of incidents in S during a specific time period) or

time between successive incidents. The goal of a decision-maker is to find the optimal

parameters θ ∗ that best describe D. This can be formulated as a maximum likelihood

estimation (MLE) problem or an equivalent empirical risk minimization (ERM) problem.

18

Chapter 7 presents an approach to model the function f (X | w,θ) that enables fore-

casting over large, heterogeneous geographic areas using mixed-typed features such as

precipitation, roadway type, time and date, and the proximity to an intersection.

Another important step in an emergency response pipeline is planning in anticipation

of incidents. This involves stationing responders strategically and dispatching them as

incidents occur. This process can be broadly defined as the following optimization problem:

Definition 2.1.2. ERM planning can be represented by the optimization problem maxy G(y |

f), where y represents the decision variable (which typically denotes the location of emer-

gency responders in space), G is a reward function chosen by the decision-maker, and f is

the model of incident occurrence.

The specific reward used depends on what is being optimized; for example G might

measure the total coverage (spatial spread) of the responders, or the expected response

time to incidents. Therefore, given f , the decision-maker seeks to maximize the function

G.

Chapter 3 presents a decision support framework to support online planning for ERM,

and presents a centralized solution approach for the ambulance dispatching problem. Chap-

ters 4 and 5 instead tackle the more complex dynamic ambulance allocation problem, which

requires the more scalable hierarchical and decentralized planning approaches.

19

Chapter 3

A Decision-Theoretic Framework for SCPS Planning

3.1 Overview

A key challenge for decision making agents in SCPS are that the environments these

systems operate in are often non-stationary. For example, consider Emergency Response

Management (ERM) systems, which direct emergency vehicles such as ambulances to ser-

vice incidents that occur throughout an urban area. The decisions made by an ERM agent

depend on many factors of the environment, including traffic congestion, travel times,

weather, and the likely locations of future incidents. In the long term, new infrastructure,

demographic shifts, and climate change will shift these distributions steadily over time. In

the short term, events such as sporting games, inclement weather, and road closures can

create sudden, unexpected changes.

Popular learning-based decision-making approaches such as reinforcement learning

(RL) learn a policy offline. Unfortunately, such policies can become stale as the environ-

ment shifts and lead to sub-optimal decisions. An alternative approach is online planning,

which uses generative models of the environment to simulate into the future, evaluating

possible action trajectories to determine the best action at the current time. Since this com-

putation is done at decision time, as long as the generative models are kept up to date, these

approaches can adapt to the environment as it change.

Implementing online planning for SCPS requires an integrated framework of compo-

nents to learn generative models of the environment, update these models as the environ-

ment changes, and use the models to make decisions. This chapter presents a modular,

integrated decision support framework that combines these components and applies them

to the SCPS of Emergency Response Management (ERM) problem of ambulance dispatch

20

to emergency incidents. It uses Monte-Carlo tree search (MCTS) to perform centralized

planning. While this is applicable to the relatively small state-action space of vehicle dis-

patch, this centralized approach will not scale to more complex SCPS problem such as

resource allocation. However, the decision support framework presented in this chapter

forms the foundation for the scalable planning approaches discussed in later chapters.

The work comprising this chapter has been published in the Proceedings of the 10TH

IEEE International Conference on Cyber-Physical Systems (ICCPS) [46].

• A. Mukhopadhyay1, G. Pettet1, C. Samal, A. Dubey, and Y. Vorobeychik (2019).

“An Online Decision-Theoretic Pipeline for Responder Dispatch,” in Proceedings of

the 10th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS

2019, Montreal, QC, Canada, pp. 185-196.

3.2 Introduction

Emerging Trends and Challenges: Smart and connected communities are Human-in-

the-Loop Cyber-Physical systems (H-CPS), with interactions between humans, the outside

environment, and computational tools that assist in decision-making processes [47]. Anal-

ysis and optimization of H-CPS’s is challenging primarily due to the inherent complexity

and the sheer number of agents involved. Making accurate models is difficult, and simple

rule based strategies often fail to capture the dynamics of the problem space.

Consider the classical problem of emergency response. The goal of responders is to

minimize the variance in the operational delay between the time incidents are reported and

when responders arrive on the scene. However, solving this problem requires not just send-

ing the nearest emergency responder, but sometimes being proactive placing emergency

vehicles in regions with higher incident likelihood. Sending the nearest available respon-

der by euclidean distance ignores road networks and their congestion, as well as where the

1These authors have contributed equally

21

resources are stationed. Greedily assigning resources to incidents can lead to resources be-

ing pulled away from their stations, increasing response times if an incident occurs in the

future in the area where responder should be positioned.

Data-driven approaches have been shown to produce more informed solutions to such

problems [48] – examples include predicting crime and traffic accidents in urban areas

[49, 50], and building architectures for smart city ecosystems [51]. In this paper, we lever-

age the potential of data-driven approaches and utilize real-world incident data for making

informed decisions about effective stationing and dispatch of Emergency Medical Services

(EMS) resources in a large urban community (Nashville, TN).

Contributions: We break down the problem of responder dispatch into three atomic

sub-components: incident prediction, environment simulation, and the dispatching ap-

proach. Our contributions are as follows:

• Incident Prediction: Online Survival Analysis - We define a novel online approach

to incident prediction that predicts incidents in time and space. Previous work in

this domain has treated this as a batch learning problem [52, 50, 49], in which inci-

dent prediction models are learned once, and are subsequently used to aid response

decisions. This fails to capture the changing dynamics of urban systems in which

emergency responders operate, and we bridge this gap by creating an online incident

prediction algorithm.

• Dispatch Algorithm - We formulate the problem of dispatching responders to inci-

dents as a Semi Markov Decision Process (SMDP). Such an approach has recently

been shown to work exceptionally well in this domain [53]. However, such systems

have enormous computational load that limit their deployment in practice. We high-

light this issue through the course of the paper and design an efficient solution that is

fast, scalable and can work in a dynamic environment.

• Decision Theoretic Framework - We compose the Incident Prediction, Environment

22

Table 3.1: Notation Table

Symbol Meaning
G Set of equally sized grids
R Set of Responders
t Arrival-time between incidents
w Features that affect incident arrival
f A distribution over t, conditional on w

Ms Responder Dispatch SMDP
Md Responder Dispatch Discrete-Time MDP (DTMDP)
h Horizon of the Monte-Carlo Search Tree
D Historical Dataset of incidents
D
′

Stream Dataset of incidents
L Log-Likelihood of Incidents
Θ A Generative Model of the Urban Area

Simulation, and Dispatching components into a framework that makes real time dis-

patching decisions based on traffic congestion and predicted incident distributions.

Each component is modular, so improvements are easy to integrate into the frame-

work.

Outline: We present and evaluate each of the components separately, as well as the

entire system that combines them into an online pipeline and show that it results in better

performance, and a remarkable decrease in computational run-time. We begin by present-

ing a high-level system model and problem description in Section 3.3, and present our

solution in Section 3.4. We show our empirical evaluation in Section 3.5, go over a sum-

mary of prior work in the field in Section 3.6 and summarize the paper in Section 3.7. Table

3.1 describes the symbols used.

3.3 Problem Description

The problem deals with an urban area, in which incidents like traffic accidents, fires,

distress calls and crimes happen in space and time. Such incidents are reported to a central

emergency response system, which then dispatches responders like police vehicles and am-

bulances. This system governs the entire pipeline of incident response, including detecting

and reporting incidents, monitoring and placing a fleet of response vehicles, and finally dis-

23

patching responders when incidents occur. Such responders are equipped with devices that

facilitate communication to and from central control stations. They are then dispatched by

a human (guided by some algorithmic approach), a process which typically takes seconds,

but can be longer if dispatchers are busy [42].

For simplicity we discuss our approach with a single responder type and a single type

of incident, but such homogeneity is not required for this approach.

Formally, we consider that the entire urban area is divided into as set of grids G. Inci-

dents happen in these grids with an inter-arrival temporal distribution f , conditional on a

set of features w. Such incidents need to be responded to by a set of responders R. Each

responder is allocated to a specific depot, which are immobile stations located in a par-

ticular grid. Once a responder has finished servicing an incident, it is directed back to its

depot and becomes available to be re-dispatched while in route. We also assume that if

there are any free responders when an incident is reported, then some responder must be

dispatched to attend to the incident. This is a direct consequence of the legal bounds within

which emergency responders operate, as well as of the critical nature of the incidents. If

an incident happens and there are no free responders available, then the incident enters a

non-priority waiting queue and is attended to when responders become free.

Dispatch Systems in use today by major metropolitan areas such as Nashville work

as follows: when an incident is reported, the system dispatches the closest available re-

sponder using the euclidean distance (i.e. ”as the crow flies”) between the incident and the

responder’s current position [42]. This method has several disadvantages: 1) The euclidean

distance between two locations is not necessarily representative of the actual time to travel

between them since travel time depends on the road network and its current congestion.

2) By using the responder’s current location, it ignores where the responder should be sta-

tioned. Nashville‘s incident response data shows that this can lead to responders being

pulled away from their depots, causing future incidents around those depots to have longer

response times. 3) This method ignores the likely future incident distribution. Although

24

dispatching the closest responder is greedily optimal, it may not be the best choice given

the distribution of future incidents.

This motivates us to model responder dispatch formally. We begin by introducing the

problem formulation of the online dispatch system in this section. We denote by τ ∼ f , a

random variable that represents time between incidents in the urban area.

Given such a model of incident arrival, we now look at the model for responder dis-

patch. We formally model the problem of dynamic incident response as a semi-Markov

decision process (SMDP) [54, 53], and refer to this process as Ms. An SMDP is described

by the following tuple,

{S,A, pi j(a), t(i, j,a),ρ(i,a),α} (3.1)

where S is a finite state space, A is the set of actions, pi j(a) is the probability with which

the process transitions from state i to state j when action a is taken, t(i, j,a) is a distribution

over the time spent during the transition from state i to state j under action a, ρ(i,a) is the

reward received when action a is taken in state si, and α is the discount factor for future

rewards.

States: At any point in time t, the state of the problem consists of the a tuple {It ,Rt ,Et},

where It is a collection of grid indices that are waiting to be serviced, ordered according

their times of occurrence. Rt represents a collection of vectors, where rt
i ∈ Rt captures all

relevant information about the ith responder such as it’s current position and status. The

state variable Et captures relevant environmental factors that affect dynamic dispatch of

responders at time t. Such factors are problem specific, so we leave the choice of such

features to the designer of the responder system, but describe the specific features used in

our system later.

Actions: Actions in our world correspond to directing responders either to incidents or

back to their depots, when the process encounters a decision-making state. We denote the

set of all actions by A and refer to a generic action by a. We use A(si) to denote the set of

25

actions that are available in state si ∈ S, and impose a constraint that whenever at least one

responder is available and an incident occurs, we immediately dispatch some responder.

Since the entire process evolves in continuous time, one can consider the existence of a

single decision-making state at any instant, which leads to a single action being needed.

Transitions: The SMDP model evolves as a result of incidents that happen in space

and time, and actions that are taken. The state transition probabilities are represented by

the random variable pi j(a), which for any state si, represents the probability over the system

transitioning to state s j when action a is taken. Also, the time taken for the transition is

represented by the random variable t(i, j,a). We collectively refer to the state transition

probabilities and time transition probabilities as transition probabilities throughout the rest

of the paper.

Rewards: Since the broader goal of this problem is to minimize response times for

emergency responders, we choose to look at costs instead of rewards. For each action a

that is taken in state si, the system incurs a cost ρ(si,a), and we seek to find actions for

each state that minimizes the expected sum of costs.

Policy: A policy for a decision-making problem specifies an action for each state of

the system. The goal of solving the SMDP is to find a policy that maximizes the sum of

expected rewards that the decision process generates as a result of following the said policy.

Our goal is to approximate the optimal policy π∗ which, starting from for an arbitrary state

si, minimizes the sum of expected discounted costs.

3.4 Our Solution

Before introducing the technical details of our solution approach, we provide a broad

overview of the algorithmic approach we take and the associated technical challenges. We

point out that two characteristics are fundamental to the operation of an emergency re-

sponse system - first, it must be equipped with the ability to perform real-time computing

in order to process the continuous stream of data received from responders and calls, and

26

secondly, it must be equipped with principled algorithmic approaches to dispatch respon-

ders as and when incidents happen. We clarify that real-time computation essentially refers

to a soft real-time problem - once incidents happen, the entire pipeline can afford a short

latency to update existing models and calculate dispatch decisions. With these characteris-

tics in mind, we start by looking at incident prediction algorithms. The canonical way to

predict incidents in space and time is using historical data to learn a predictive model and

then simulate incidents [55, 56]. However, since accidents often cascade, it is imperative

that the model is updated as and when incidents happen. The primary technical challenge

here is that re-training the entire model each time an incident happens (or periodically after

some pre-defined number of incidents) is computationally slow and puts a heavy toll on the

responder-dispatch framework that can only afford a low latency. This calls for the need to

design an online mechanism to predict incidents that can be updated as incidents happen.

We introduce such a model and explain the algorithmic details involved in section 3.4.1.

Having looked at the problem of incident prediction, we now look at dispatching re-

sponders given an incident prediction model. The SMDP formulation introduced in section

3.3 is difficult to solve since the state transition probabilities are unknown and cannot be

computed in closed-form. One way to tackle this problem is to access a generative model

to learn the state-transition probabilities while learning a policy. This has recently been

shown to work well on the responder-dispatch problem [53]. However, we point out that

such an approach has two major limitations. First, for any urban system, the state space is

practically intractable even without environment variables. Even on fairly powerful com-

puting systems, it would take weeks to train the policy [53]. The inclusion of environment

variables would be computationally infeasible. Secondly, and partly as a consequence of

the first issue, prior approaches are simply not suited for dynamic environments: if a sin-

gle responder breaks down, traffic conditions change, or incident models evolve, existing

approaches [53, 57] prescribe re-learning from scratch, which takes time that is incompat-

ible with the latency constraints on the system. In order to alleviate this concern, we take

27

Online Prediction Model
(Sec 3.1)

Responder-Dispatch
Decision Process

(Sec 3.2)

Environment Model
(Sec 3.3)

Real-Time Router
(Sec 3.3)

Dispatch Decision

Generator
Incident Data

Speed Estimation

Routing
Requests

Figure 3.1: System Overview

the SMDP formulation and design an algorithmic approach that bypasses the need to learn

the transition probabilities. This saves vital computation time and lets us design an online

algorithm that is updated in real-time as the environment evolves (see Section 3.4.2).

In order to consider the effect of environmental factors on responder dispatch, it is es-

sential to understand how such factors evolve. This motivates us to create predictive models

for the environment. One factor of interest in the context of emergency responder-dispatch

is traffic conditions in urban areas, since they directly affect travel times of responders. We

take this into account by describing a model that enables us to learn the evolution of traffic

in an urban area from prior data, and predict traffic conditions on the fly while attempting

to solve the MDP (see section 3.4.3).

The high-level process flow that ties the three problems into one complete pipeline of

responder dispatch is shown in figure 3.1. The online prediction model consumes actual

incident data and at any point in time, provides a simulator that captures the latest trends in

incident arrival. Also, the model to learn the evolution of environmental variables is used to

find optimal vehicular routes between any two points in the urban area. These two atomic

pieces are fed into the decision process for responder-dispatch, that given any state of the

28

SMDP, outputs a decision that governs which responder should be sent to respond to an

incident.

3.4.1 Real Time Incident Prediction

We now present the technical details and formalize our methodology, and begin by

looking at a principled incident prediction algorithm. Formally, we want to learn a proba-

bility distribution over incident arrival in space and time. In order to do so, we leverage our

prior work in which we have shown how survival models prove to be extremely effective

in predicting incidents like crimes and traffic accidents [55, 50, 53]. Survival Analysis is

a class of methods used to analyze data comprising of time between incidents of interest

[58]. Survival models can be parametric or non-parametric in nature, with parametric mod-

els assuming that survival time follows a known distribution. Based on our prior work,

we choose a parametric model over incident arrival, and represent the survival model as

f (τ|γ(w)), where f is the probability distribution for a continuous random variable τ rep-

resenting the inter-arrival time, which typically depends on covariates w via the function γ .

The model parameters can be estimated by the principled procedure of Maximum Likeli-

hood Estimation (MLE). The spatial granularity at which such models are learned can be

specified exogenously - a system designer can choose to learn a separate f for each dis-

cretized spatial entity (grids in our case), learn one single model for all the grids or learn

the spatial granularity from data itself. This choice is orthogonal to the approach described

in this paper and we refer interested readers to our prior work [50] for a discussion about

such models.

We shift our focus directly to survival models that are used to learn f (τ|γ(w)). Intu-

itively, given an incident and a set of features, we want to predict when the next incident

might happen. Before proceeding, we introduce an added piece of notation - we assume the

availability of a dataset D = {(x1,w1),(x2,w2), ..,(xn,wn)}, where xi represents the time of

occurrence of the ith incident and wi represents a vector of arbitrary features associated with

29

the said incident. A realization of the random variable τ , used to measure the inter-arrival

time between incidents, can be represented as τi = xi+1−xi. The function γ is usually log-

arithmic and the relationship of the random variable τ with the covariates can be captured

by a log-linear model. Formally, for a time-interval τi and associated feature vector wi, this

relationship is represented as

log(τi) = β1wi1 +β2wi2 + ...+βmwim + y (3.2)

where, β ∈Rm represents the regression coefficients and y is the error term, distributed

according to the distribution h. The specific distribution of f is decided by how the er-

ror y is modeled. We choose to model τ by an exponential distribution (for the sake of

brevity, we refer interested readers to prior work [53] for more details on why an expo-

nential distribution is particularly useful in such models). It turns out that when y follows

the extreme value distribution, then τ is distributed exponentially. Thus, in our incident

prediction model, we assume that h takes the following form

hY (y) = ey−ey

Using equation 3.2, for a given set of incidents, the log-likelihood of the observed data

under the specific model can be expressed as

L =
n

∑
i=1

log h(τi−wT
i β) (3.3)

The standard way to estimate the parameters of the model is to use a gradient-based

iterative approach like the Newton-Raphson algorithm, yielding a set of coefficients β ∗ that

maximize the likelihood expression. Now, the model over inter-arrival times is generative,

it can be used to simulate chains of incidents, which is particularly helpful in building a

simulator, the purpose of which we explain in the next section.

As pointed out before, such an approach is offline. However, it is imperative to capture

30

the latest trends in incident arrival to accurately predict future incidents, which motivates

us to design an online approach for learning and predicting incidents. We introduce some

added notation before describing the algorithmic approach. First, we reiterate that β ∗ is

used to refer to coefficients already learned from dataset D. Further, we assume that a new

set of incidents D
′
= {(x′1,w1),(x

′
2,w2), ..,(x

′
k,wk)} is available that consists of incidents

that have happened after (in time) the original set of incidents. We aim to update the

regression coefficients β using D
′
, assuming that the model already has access to β ∗.

In order to address this problem, we use stochastic gradient descent to update the dis-

tribution f in an online fashion. Formally, we start with the known coefficients β ∗ and, at

any iteration p of the process, we use the following update rule

β
p+1 = β

p +α∇L(β p,D
′
)

where ∇(L(β ∗,D
′
) is the gradient of the log-likelihood function calculated using D

′
at

β p and α is the standard step-size parameter for gradient based algorithms. Using equation

3.3, likelihood of the incidents in the dataset D
′
can be represented by

L =
k

∑
i=1

log e(logτi−β ∗w)−e(logτi−β∗w)

and subsequently,

∂L
∂β j

=
k

∑
i=1
−wi j +wi j{e(logτi−β ∗wi)}

The update step is repeated until improvements in the likelihood of the available data.

Having already summarized the important steps in the algorithm in this section, we present

it formally in Algorithm 1.

This mechanism enables us to update the incident prediction model in an online man-

ner, saving vital computation time for the responder dispatch system. Also, this implicitly

betters the dispatch algorithm by generating incident chains that capture the latest trend in

31

Algorithm 1: Streaming Survival Analysis
1 INPUT: Regression Coefficients β ∗, Dataset D

′
, Tolerance α , Likelihood Function L,

Maximum Iterations MAX IT ER ;
2 for p = 1..MAX IT ER do
3 β p+1 = β p +α∇L(β p,D

′
) ;

4 if L(β p+1,D
′
)< L(β p,D

′
) then

5 Return β p;

6 Return β p

incident occurrence.

3.4.2 Dispatch Algorithm

We begin the discussion on our dispatch algorithm by first explaining how the SMDP

problem in formulation 3.1 can be solved by canonical policy iteration. A principled algo-

rithmic approach [53] to solve the responder-dispatch SMDP is to first convert the SMDP

to a discrete-time MDP Md , which can be represented as

{S,A, p̄i j,ρ,Vβ ,βα}

where p̄i j(a) = β−1
α βα(i,a, j)pi j(a) is the scaled probability state transition function

and βα is the updated discount factor. The transformed MDP is equivalent to the original

MDP according to the total rewards criterion [53, 54], and hence it suffices to learn a policy

for Md . Given such a conversion, the approach to solving the MDP involves accessing a

simulator to learn the state transition probabilities for Md [53]. The algorithm, SimTrans,

an acronym for Simulate and Transform, uses canonical Policy Iteration on the transformed

MDP Md , with an added computation. It tracks the states and actions encountered by the

simulator and gradually builds statistically confident estimates of the transition probabili-

ties.

This process, however, is extremely slow and fails to work in dynamic environments

since any change in the problem definition (the number of responders, or the position of a

32

depot) renders the learned policy stale. In order to tackle this problem, we first highlight

an important observation - one need not find an optimal action for each state as part of the

solution approach since at any point in time, only one decision-making state might arise

that requires an optimal action. This difference is crucial, as it lets us bypass the need

to learn an optimal policy for the entire MDP. Instead, we describe a principled approach

that evaluates different actions at a given state, and selects one that is sufficiently close to

the optimal action. We do this using sparse sampling, which creates a sub-MDP around

the neighborhood of the given state and then searches that neighborhood for an action. In

order to actualize this, we use Monte-Carlo Tree Search (MCTS).

Another important observation is that the incident prediction model discussed in section

3.4.1 is generative and independent of dispatch decisions, which lets us simulate incidents

independently. Note that since models of travel (discussed in section 3.4.3) as well as

service times for responders can also be learned from data, the entire urban area can there-

fore be simulated. We denote such a simulator by Θ, which can generate samples of how

the urban area evolves, even though the exact state-transition probabilities are unknown.

This observation lets us simulate future states from a given state, leading to the creation

of a state-action tree as shown in Fig. 3.2. We use this to design an algorithmic approach

called Real-Time SMDP Approximation, and explain it next. Through the course of this

discussion, we assume that the simulator can access a modular (and possibly exogenously

specified) model to predict the environment at any point in time.

Algorithms 2, 3, 4, and 5 describe the various functions of our MCTS approach. We

start our discussion with Algorithm 2, which is the highest level procedure that is invoked

when presented with a decision-making state. First, b incident chains are sampled using

the generative model Θ (refer to step 3 in Algorithm 2), where each chain is a time ordered

list of sampled incidents. We create multiple chains in order to limit the impact of variance

in the generative model. Next, the algorithm starts building the MCTS tree. We use the

function node(s,η ,d, t) to refer to the creation of a node in the tree, which tracks the

33

Algorithm 2: Real-Time SMDP Approximation Main Procedure
1 INPUT: State s, Current Environment E, Horizon h, Stochastic Horizon hs, Simulation

Budget b, Generative Model Θ ;
2 Set current depth d← 0;
3 C← b incident chains generated by Θ(E) ;
4 Set Scores U ←∅ ;
5 Ā = SelectCandidateActions (s,d,hs) ;
6 foreach incident chain c ∈C do
7 u← ChainEvaluation (c,s,d, Ā,hs,h) ;
8 foreach candidate action a ∈ Ā do
9 U [a]←U [a]+u[a] ;

10 Return argmina∈Ā(U [a]) ;

Algorithm 3: Select Candidate Actions for Given State
1 Function SelectCandidateActions (State s, Depth d, Stochastic Horizon hs)
2 As← set of available actions in state s ;
3 a∗ = argmina∈As(ρ(s,a)) ;
4 if depth d ≥ hs then
5 Return a∗ ;

6 else
7 Ās = {a|a ∈ As and ρ(s,a)≤ ε ∗ρ(s,a∗)} ;
8 Return Ās ;

current state of the system (s), the cost of the path from the root to the node (η), the depth

of the tree (d) and the total time elapsed (t). Also, we use UpdateState(s,a,c) to retrieve

the next state of the system, given the current state s, action a and chain c. For any state,

we start by finding a set of candidate actions for the given incident (refer to step 5 in

Algorithm 2), which takes the algorithmic flow to Algorithm 3. The candidate actions are

chosen according to the current depth of the MCTS tree - if the tree is within the stochastic

horizon hs, the candidate actions include all actions with a cost that is at most ε times the

cost of the myopically optimal action a∗. The parameter ε can be varied to control the

trade off between the computational load of the algorithm and performance. Once the tree

is deeper than hs, the algorithm picks the best myopic action as a heuristic to construct

the tree’s nodes until depth h, since rewards are sufficiently discounted. After candidate

34

Algorithm 4: Evaluate a Chain of Incidents
1 Function ChainEvaluation (Incident Chain c, State s, Depth d, Candidate Actions Ā,

Stochastic Horizon hs, Horizon h)
2 Set scores u←∅ ;
3 d← d +1 ;
4 foreach action a ∈ Ā do
5 Next state s′← UpdateState(s,a,c) ;
6 Utility util = s′.responseTime ;
7 Root← new Node(State = s‘, util = util) ;
8 Update u[a]← CreateStateTree(Root,c,d,hs,h) ;

9 Return u

actions are found for the sampled incidents of the chain, Algorithm 4 is used to evaluate

possible decision-making courses - each available action is tried and the MDP is simulated

to generate future decision-making states, from which the entire process is repeated. This

gradually builds a tree, where each edge is an action and each node is a decision-making

state. We explain this procedure in Algorithm 5.

The key steps of the procedure are as follows. First, costs are tracked for every branch

as the tree is built (refer to steps 10 and 14 in Algorithm 5), which is based on the response

time in seconds for the assigned responder to the current incident. A lower cost is better, as

it corresponds to lower response times. For any given node that was generated by action a

from parent node p, the cost is

cost = up +(γ t)((t−up)/(d +1)) (3.4)

where up is the parent node‘s cost, γ is the discount factor for future decisions, and t

is the time elapsed between taking action a at the parent node and the occurrence of the

current node. This is essentially an updated weighted average of the response times to

incidents given the dispatch actions.

Once the tree is completed, the cost for each candidate action for the dispatch incident

is determined by the cost of the best leaf node in it’s sub-tree, as this represents the result

35

Algorithm 5: Generate State Tree
1 Function CreateStateTree (Parent Node n, Incident Chain c, Depth d, Stochastic Horizon

hs, Horizon h)
2 if d ¿ horizon h then
3 Return n.util ;

4 else
5 A = SelectCandidateActions(n.state,d,hs) ;
6 d← d +1 ;
7 Let ChildUtils←∅ ;
8 foreach candidate action ai ∈ A do
9 Next state s′← UpdateState(n.state,a,c) ;

10 Let costi← UtilityUpdate(s′,n.cost,d) ;
11 Let x← Node(s′,costi,d, t) ;
12 ChildUtils← ChildUtils ∪ CreateStateTree(x,c,d,hs,h)

13 Return min (ChildUtils)

14 Function UtilityUpdate (State s, Parent Utility up, Depth d, time t)
15 Return up +(γ t)(t−up)/(d +1)) ;

of the best sequence of future actions that could be taken given the dispatch action. Finally,

the algorithm averages the costs for each dispatch action across the b generated incident

chains, and selects the candidate action with the minimum overall cost as the best action in

the current state (refer to step 10).

If all the responders are busy when an incident occurs, the incident is placed in a waiting

queue. As soon as a responder becomes available, it is assigned to the incident at the front

of the queue. This continues until the queue is emptied, after which the algorithm returns

to using the heuristic policy above.

3.4.3 Predicting Environmental Factors

We now look at the final component of the proposed pipeline - in order to capture the ef-

fect of environment, we must learn how the environment evolves. We specifically focus our

attention to traffic conditions, that directly affect the movement of responders. While infor-

mation about current traffic conditions can be collected while making decisions, it does not

36

St
oc

ha
st

i
c

H
or

iz
on

D
et

er
m

in
is

tic

H
or

iz
on

u(ai) � ✏u(a⇤)

u(a)

s0

s2 s3s1

s5 s6s4 s8s7

Figure 3.2: State-Action Tree

suffice for long-term planning. As the dispatch algorithm builds the state-action tree into

the future, estimates of environmental variables are needed ahead of time, thereby making

it imperative to learn predictive models for such variables. We therefore, design an algo-

rithmic approach to predict future traffic conditions, and highlight how it can be used with

an appropriate route-finding algorithm to predict travel times for emergency responders.

Traffic Prediction Model: We model the urban area as a set of road segments. For

each segment, we assume that the dataset contains an associated set of features, which

include data about the number of lanes, length of a segment, vehicular speed at different

times and so on. Using this data set and features we learn a function over vehicular speed

on a segment, conditional on the set of features using a Long Short-Term Memory Neural

Network (LSTM) [59] model. The primary capability of such a framework is to model

long-term dependencies and determine the optimal time lag for time series problems, which

is especially desirable for traffic prediction in the transportation domain.

Route Finding Algorithm: Armed with a model that can predict vehicular speed on

road segments, we now look for an approach to find the optimal route between two given

points in the urban area. Specifically, given a source, destination and departure time, we

seek to find the route with minimum expected travel time. To this end, we design a router

37

Table 3.2: Final Hyper-Parameter Choices

Number of Stations
(Fraction of Nashville Count)

26
(full)

13
(1/2)

6
(1/4)

3
(1/8)

Simulation Budget b 10 10 10 10
Candidate Action Factor ε 1.5 1.5 2.5 1.5
Stochastic Horizon hs 1 1 2 1
Discount Factor γ 0.9 0.9 0.99999 0.99999

based on A∗ search with landmarks (ALT) [60]. ALT improves upon euclidean-based A∗

search [61] by introducing landmarks to compute feasible potential functions using the tri-

angle inequality, thereby improving the computational cost involved with such a procedure.

3.5 Performance

3.5.1 Data and Methodology

Our evaluation uses traffic accident data obtained from the fire and police departments

of Nashville, TN, which has a population of approximately 700,000. We trained the gen-

erative survival model on 9345 incidents occurring between 1-1-2016 and 2-1-2017, and

evaluated the algorithm on 1386 incidents occurring between 2-1-2017 and 4-1-2017. We

gathered information about road segments and their geographical locations using real-time

traffic data collected from HERE Traffic API [62] for Nashville area. The granularity of

this dataset lets us access real-time vehicular speed for all segments in Nashville, which is

sampled every minute throughout the day.

Caching the Router Results: While we recommend using a router in real-time using

the exact locations of responders and incidents to make decisions, it is not feasible for our

experiments. Our preliminary analysis showed that each router request takes approximately

0.2 seconds on average. In order to reduce the query time needed to find vehicular speed

between arbitrary locations, we cached travel times between locations for different times of

the day, with time discretized every 30 minutes. Our experiments showed that travel times

in Nashville do not change significantly at this interval (ranging from 2-7 mph).In order to

38

actualize caching, we used the same grid system described in section 3.3 for locations, with

any location in the city discretized to the centroid of it’s grid.

3.5.2 Experimental Setup

We begin by evaluating the streaming survival model separately by comparing it to a

batch-learning approach [53]. Then, we evaluate the performance of the optimizers that are

used for the router, and finally evaluate the dispatch algorithm. There are two considera-

tions that need to be made during the evaluation -

1. Decreased Responder Availability: It is reasonable to assume that the base policy of

dispatching the closest responder is correct most of the time and it is only rarely that non-

greedy actions are needed. We hypothesize that such situations occur more frequently

in practice as the strain on the system is greater: i.e. the incident to responder ratio

is higher. This happens since responders attend not only to traffic accidents, but to a

variety of other incidents (crimes for example). To take this into account, we ran several

experiments with different number of responders: The full Nashville responder count of

26, and then cutting it by a factor of half three times to simulate test-beds with 13, 6,

and 3 responders. The locations of the stations in each of these test-beds compared to

Nashville’s incident density heatmap are shown in figures 3.3, 3.4, 3.5, and 3.6.

2. Hyper-Parameters: We performed a hyper-parameter search (refer to the appendix

for a concise summary of the hyper-parameters) for each of the test-beds based on the

number of stations. The parameters that gave the best response time savings were chosen

for each set, shown in table 3.2. We note that each hyper-parameter is important and

strongly prescribe that each should be tested and tuned carefully for a new environment

and hardware the system is deployed on, as these values may not be optimal for more

constrained hardware, different responder distributions, or different cities with other

incident arrival models.

39

Figure 3.3: Distribution of the actual stations overlaid on an incident occurrence heatmap
of Nashville, TN.

Figure 3.4: Distribution of the stations in the 13 station experiment overlaid on an incident
occurrence heatmap of Nashville, TN.

40

Figure 3.5: Distribution of the stations in the 6 station experiment overlaid on an incident
occurrence heatmap of Nashville, TN.

Figure 3.6: Distribution of the stations in the 3 station experiment overlaid on an incident
occurrence heatmap of Nashville, TN.

41

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Ne
ga
tiv
e	
Lo
g	
Lik

el
ih
oo
d

Stream	Batch

Streaming	vs	Batch	Survival	Models	:	Likelihood	Comparison

Batch	Survival	Model Streaming	Survival	Model

Figure 3.7: Negative Log Likelihood comparison (lower is better) between Batch and
Streaming Survival Models. The Streaming model outperforms the batch model by a sig-
nificant margin

3.5.3 Results and Discussion

3.5.3.1 Streaming Survival Analysis

We learned the batch model using the entire training data set and then, in the evaluation

set, we considered each week as a stream, and further split 80% of the stream into a training

set and 20% as the test set. We evaluated the batch model as well as the streaming model

on the test set of each of the streams. Note that the batch model has access to all the

data in the streams in the form of features; the stream model, on the other hand, gets

updated after each data stream is received according to Algorithm 1. We use the de-facto

standard of comparing likelihoods for evaluation, and present the results in in Figure 3.7.

The streaming model results in a significant increase in likelihood (we plot the negative log

likelihoods, hence lower is better) and convincingly outperforms the batch model. We point

out a minor caveat - the updates can be used in practice only if the time taken to update

42

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

Co
m
pu
ta
tio
n	
Ti
m
e	
(in
	s
ec
on
ds
)

Stream	Number

Streaming	Surival	Analysis	 - Computation	 Time

Figure 3.8: Computational Time for Streaming Survival Analysis.

the model is small as compared to the latency that emergency responders can afford. To

illustrate this, we present the computational run-times of the stream model (for each stream)

in Figure 3.8, and observe that it usually takes less than 2 seconds for an update to run,

which justifies the usage of such models in practice.

In order to visually illustrate the benefit of a streaming model, we look at a fabricated

example, where we feed the incident prediction models with data that is deviant from stan-

dard accident patterns. We show these results as heatmaps in Figure 3.9. Note that a

brighter color corresponds to higher density of incidents. We see that the batch model

weakly learns the pattern since it has access to the updated dataset only in the form of

features; the streaming model on the other hand, identifies the current trend and predicts

higher density of incidents in the concerned region, thereby highlighting the importance of

such models in dynamic environments.

43

(a) (b)

H
ig

he
r D

en
si

ty

Figure 3.9: Batch Model (a) vs Streaming Model (b): These predicted heatmaps demon-
strate that the streaming model adjusts more quickly to new incident distributions. Starting
with a survival model learned from the training set, we fed the models synthetic incident
data with incidents only occurring in the yellow boxed area, which means that the model
should learn that there is now a higher incident likelihood in this area. The batch model
picks up the new pattern weakly, whereas the streaming model shows higher likelihood in
marked box.

3.5.3.2 Predicting Travel Times

We briefly show results of our traffic router before moving to the dispatch algorithm.

We compared the LSTM using three different optimizers (Adam [63], SGD [64], and Ada-

grad [65]), and model performance was evaluated using five-fold shuffled cross validation.

Adam, SGD and Adagrad showed Mean Absolute Errors of 5.47, 4.27 and 6.16 miles/hours

respectively. Therefore, we chose SGD for our router described in Section 3.4.3. While

evaluating the router on unseen data, the model with SGD optimizer showed MAE of only

6.419 miles/hour.

44

−25 −20 −15 −10 −5 0

3

6

13

26 (all)

Response Time Decreases (Minutes)

N
u
m
b
er

o
f
S
ta
ti
o
n
s

Positively Impacted Incidents

Figure 3.10: Incident response time difference between the base policy and our solution.
This chart shows the distribution of response time decreases for positively impacted in-
cidents. The distribution of time difference in minutes (x axis) is compared across each
experiment involving the various station counts (y axis).

0 5 10 15 20

3

6

13

26 (all)

Response Time Increases (Minutes)

N
u
m
b
er

of
S
ta
ti
on

s

Negatively Impacted Incidents

Figure 3.11: Incident response time difference between the base policy and our solution.
This chart shows the distribution of response time increases for negatively impacted in-
cidents. The distribution of time difference in minutes (x axis) is compared across each
experiment involving the various station counts (y axis).

45

3.5.3.3 Responder Dispatch

In table 3.3 we present the results of comparing the tuned algorithms for each sta-

tions configuration. We compare our solution against the base policy (sending the nearest

responder) using the average response time reduction for incidents impacted by the algo-

rithm (i.e. incidents with different response times than the base policy), the number of

incidents impacted, and the average computation time. The first observation is that the

computation times are all well within acceptable limits, as they are near the human deci-

sion maker’s visual reaction times [66]. This demonstrates that the system overcomes the

technical challenge of running and updating in real-time, and can integrate into emergency

response systems described in section 3.2.

We observe that when there is high responder coverage, demonstrated by the experi-

ment with 26 stations, the baseline policy is nearly always used, with only 5 of the 1386 in-

cidents serviced being impacted by the policy. But as the number of responders decreases,

the baseline policy is sub-optimal for an increasing number of incidents, capping at 150

with 3 stations. This shows that the system can respond to changing responder availability,

and that it is most useful when the system is strained by high incident demand.

Last, the average time saved for impacted incidents is significant, particularly for the

experiments with 26 and 3 stations, as 30 seconds can be the difference between mor-

tality and survival in response situations [67]. However, these represent average savings,

and to dissect the performance of our approach, we plot the distributions of the response

time savings for incidents that benefited from our solution, and response time increases for

negatively impacted incidents in figures 3.10 and 3.11.

Comparing the box plots, the negatively impacted response times are more dense near

zero compared to the savings. This shows that in general, the algorithm is not making

large sacrifices for individual incidents in comparison to the savings generated, which is

reinforced by the overall distribution of response times shown in figures 3.12 and 3.13.

The response times for the positively impacted incidents are generally much improved; the

46

Table 3.3: Performance of System Compared to Base Policy

Number of Stations
(Fraction of Nashville Count)

26
(full)

13
(1/2)

6
(1/4)

3
(1/8)

Average Response Time Savings for In-
cidents Impacted by Policy (seconds)

38.705 2.231 15.917 34.871

Number of Incidents Impacted by Pol-
icy

5 14 99 150

Average Computation Time per Inci-
dent (seconds)

0.384 0.198 0.350 0.0343

0 50 100 150

3

6

13

26 (all)

Response times (Minutes)

N
u
m
b
er

of
S
ta
ti
on

s

Base Policy

Figure 3.12: Response time distribution of the base policy. It is very similar to our solution
on average since most incidents have the same responder, demonstrating that our solution
is not worse than the base policy. The benefits of our solution are clear when looking at the
response times for incidents with different dispatching decisions, as shown in figures 3.10
and 3.11

median improvement is over 200 seconds for the experiment with 13 stations, for example.

Unfortunately, however, there are some outliers with unacceptably large sacrifices. For ex-

ample, there is an incident in the experiment with 13 stations that took over 200 additional

seconds to respond to compared to the base policy, which significantly increases the poten-

tial mortality of that incident if it is severe. This raises the question of integrating severity

of incidents into the SMDP model, and we plan to consider the integration of prioritization

of incidents in future work.

47

0 50 100 150

3

6

13

26 (all)

Response times (Minutes)

N
u
m
b
er

of
S
ta
ti
on

s

Our Solution

Figure 3.13: Response time distribution of our solution. It is very similar to the baseline
policy on average since most incidents have the same responder, demonstrating that our
solution is not worse than the base policy. The benefits of our solution are clear when
looking at the response times for incidents with different dispatching decisions, as shown
in figures 3.10 and 3.11

3.6 Related Work

A Traffic Incident Management Decision Support System is an information system that

supports the process of preparing for, responding to, and managing the effects of traffic

incidents. It must support functions such as stationing emergency response resources, dis-

patching to incidents in real time, and routing resources [68]. Most of these sub-problems

have been studied in an orthogonal manner. We look at prior work for each of the sub-

problems. First, we look at the problem of dispatching responders given a model of inci-

dent arrival. Traditionally, problem has been looked at as a part of the responder allocation

problem [69, 50], in which an allocation of responders to depots naturally creates an al-

gorithm for dispatch. The problem has also been studied as part of a joint optimization

problem that balances distribution of resources and response times [70]. Finally, principled

decision-theoretic models have also been used to study the problem [53, 57], that look at

learning a policy of actions for all states the urban area can be in.

48

The second sub-problem is that of predicting incidents like traffic accidents, crimes,

fires and others, that need emergency response. The availability of such a mechanism is

crucial to the first sub-problem as decision-theoretic approaches can be aided by mecha-

nisms that can simulate the world in which such responders operate. This specific problem

has been widely studied in the past. One of the most widely studied types of incidents is

crime, and a variety of approaches [71, 72] have been taken to tackle this problem. The

problem of predicting traffic accidents has also received significant attention [73, 23]. Re-

cently, freeway accidents have been predicted using panel data analysis approach that pre-

dicts incidents based on both time-varying and site-specific factors [19]. A survey of the

literature on crash prediction models is presented in [74], which highlights the prevalence

of Poisson distribution based models, and multiple linear regression approaches. There are

also approaches that use clustering techniques to differentiate between incident types [75].

Finally, there are generic approaches that can work with multiple incident types [50, 49].

3.7 Conclusion

We designed a complete pipeline for the responder dispatch problem. We created an

online incident prediction model that can consume streaming data and efficiently update

existing incident arrival models. Then, we designed a framework for finding near-optimal

decisions of an SMDP by using Monte-Carlo Tree Search, that bridges an important gap

in literature by making such models computationally tractable. To aid the decision-making

algorithm, we designed a Recurrent Neural Network architecture to learn and predict traf-

fic conditions in urban areas. Our experiments showed significant improvements over prior

work and existing strategies in both incident prediction and responder dispatch. We would

like to highlight that while we treated incidents with equal severity, an interesting direc-

tion of future work involves designing the SMDP reward structure based on priorities, and

directing responders based on incident prediction models that take severity into effect.

49

Chapter 4

Hierarchical SCPS Planning

4.1 Overview

Chapter 3 presents an online, planning-based decision support framework for SCPS.

This enables a decision-maker to adapt to an environment as it evolves, since planning

occurs at decision time using generative models that are continually updated using obser-

vations from the environment. It used a centralized planning approach (MCTS) – i.e., there

is a monolithic state-action space that fully encapsulates the system and all its agents. The

advantage of this approach is that it fully captures all possible agent interactions, allowing

the decision-maker to converge to the optimal action trajectory in the limit.

However, such an approach has limited scalability, since all possible permutations of

the state-action space must be considered at each decision epoch. Consider the problem of

ERM resource allocation. In a problem with 20 resources and 30 possible waiting locations,

there are Permutations(30,20) = 30!
(30−20)! =

30!
10! = 7.31×1025 possible assignments at each

decision epoch that a centralized approach must consider. Instead, consider if the problem

could be broken into smaller sub-problems. If the above example is split into five evenly

sized sub-problems, each sub-problem will have 4 resources to assign to 6 depots. This

gives a total of P(6,4) = 360 possible allocations in each sub-problem, which comes to a

total of 360×5 = 1800 possible actions across all sub-problems. This example illustrates

the potential of a “divide and conquor” approach by reducing the problem’s complexity by

approximately 22 orders of magnitude.

This chapter presents a hierarchical planning approach that leverages the spatial struc-

ture of SCPS environments to create subsets of the problem’s state-action space. It incorpo-

rates a principled algorithmic approach that partitions the spatial area under consideration

50

into smaller areas, and then treats each sub-area as individual planning problems which are

smaller than the original problem by construction, ensuring the scalabilty of the approach.

It then focuses on learning local policies, known as macros, over these sub-problems with

a low-level planner using MCTS. To handle any situations that require coordination across

regions, a top-level planner detects states where this “interaction” is necessary and finds

actions such that the system’s overall utility can be maximized. The approach is applied to

ERM responder allocation, and is demonstrated to scale significantly better than centralized

planning approaches while being adaptive to non-stationary environments.

The work comprising this chapter has been published in Transactions on Cyber-Physical

Systems (TCPS) [28] and the Proceedings of the 12th IEEE International Conference on

Cyber-Physical Systems (ICCPS) [16].

• G. Pettet, A. Mukhopadhyay, M. Kochenderfer, and A. Dubey (2021). “Hierarchical

Planning for Dynamic Resource Allocation in Smart and Connected Communities,”

in ACM Trans. Cyber-Phys. Syst.

• G. Pettet, A. Mukhopadhyay, M. Kochenderfer, and A. Dubey (2021). “Hierarchical

Planning for Resource Allocation in Emergency Response Systems,” in Proceedings

of the 12th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS

2021, Nashville, TN, USA.

4.2 Introduction

Dynamic resource allocation (DRA) in anticipation of uncertain demand is a common

problem in city-scale cyber-physical systems (CPS) [46]. In such a scenario, the decision-

maker optimizes the spatial location of resources (typically called agents) to maximize util-

ity over time while satisfying constraints specific to the problem domain. This optimization

requires the design and development of procedures that can estimate how the system will

evolve and evaluate the long-term value of actions. DRA manifests in many problems at

51

the intersection of urban management, CPS, and multi-agent systems. These include emer-

gency response management (ERM) for ambulances and fire trucks [76], allocating helper

trucks [32], designing on-demand transit [77], and positioning electric scooters [78]. All

such use cases typically deal with particular incidents of interest which correspond to spe-

cific calls for service. For example, road accidents require calls for emergency responders.

In anticipation of such calls, planners proactively optimize the allocation of resources. The

allocation problem can be modeled as a sequential decision-making problem under uncer-

tainty, which can be solved to maximize a domain-specific utility function. For example,

maximizing the total demand that can be serviced or minimizing the expected response

time to incidents are commonly used objectives [76].

While we present a general approach for dynamic resource allocation in urban areas,

we focus mainly on the problem of emergency response as a case study since it is a critical

problem faced by communities across the globe. With road accidents accounting for 1.25

million deaths globally and 240 million emergency medical services (EMS) calls made

in the USA each year, there is a critical need for a proactive and effective response to

these emergencies [76, 79]. In addition to responding to frequent incidents each day, emer-

gency response management (ERM) addresses large-scale disasters due to natural hazards

(climate driven disasters caused more than $90 billion of losses in the US in 2018 [80])

and man made attacks. The lack of active and timely response to emergencies constitutes

a threat to human lives and has resulted in mounting costs. Minimizing the time to re-

spond to emergency incidents is critical in emergency response. Therefore, governments

and private agencies often try to proactively optimize ambulance locations while consid-

ering constraints on the number of available ambulances and locations where they can be

stationed. In addition, they address the problem of resource dispatch, in which agents1

must be selected and asked to spatially move from their location to the location of the de-

mand to address the task at hand. For example, ambulances must move to the scene of

1The actors of decision making are referred to as agents (e.g., ambulances)

52

Centralized Hierarchical Decentralized

Scalability

Assumptions Required for Coordination

Figure 4.1: A spectrum of approaches for solving a dynamic resource allocation problem
under uncertainty. A completely centralized approach uses a monolithic state representa-
tion. In a completely decentralized approach, each agent simulates what other agents do
and performs its own action estimation. Our hierarchical approach segments the planning
problem into sub-problems to improve scalability without agents estimating other agents’
actions.

the incidents to provide assistance to patients. Effectively, ERM pipelines are an important

example of human-in-the-loop CPS (H-CPS), which introduces problem specific structure

and constraints.

State of the art: DRA and dispatch problems are typically modeled as Markov deci-

sion processes (MDP) [81, 53, 76]. The decision maker’s goal is to find an optimal policy,

which is a mapping between system states and actions to be taken. There is a broad spec-

trum of approaches available to address resource allocation under uncertainty as shown in

figure 4.1. In our previous work, we applied the extremes of this continuum to ERM, with

each approach having strengths and weaknesses [53, 46, 82].

The most direct approach is to model the state of the MDP as a monolithic entity that

captures the entire system in consideration, as shown on the left in figure 4.1. When

real world problems are modeled as MDPs, state transitions are typically unknown. The

standard method to address this issue is to use a simulator (a model of the world) to estimate

an empirical distribution over the state transitions [53], and use the estimates to learn a

53

policy using dynamic programming [81]. Unfortunately, this offline approach does not

scale to realistic problem settings [46]. Another method is to use an online algorithm

like Monte Carlo tree search (MCTS) [46]. While adaptable to dynamic environments,

this approach still suffers from poor scalability, taking too long to converge for realistic

problem scenarios.

On the other side of the spectrum is an entirely decentralized methodology, as shown

in the extreme right in figure 4.1. In such an approach, each agent determines its course

of action. As the agents cooperate to achieve a single goal, they must estimate what other

agents will do in the future as they optimize their actions. For example, Claes et al. [83]

show how each agent can explore the efficacy of its actions locally by using MCTS. While

such approaches are significantly more scalable than their centralized counterparts, they

are sub-optimal as agents’ estimates of other agents’ actions can be inaccurate. Note that

high fidelity models for estimating agents’ actions limit scalability, and therefore decen-

tralized approaches rely on computationally inexpensive heuristics. While decentralized

approaches can be helpful in disaster scenarios where communication networks can break

down, agents in urban areas (ambulances) typically have access to reliable networks, and

communication is not a constraint. Therefore, approaches that ensure scalability but do not

fully use available information during planning are not suitable for emergency response in

urban areas, especially when fast and effective response is critical.

We explore hierarchical planning [17], which focuses on learning local policies, known

as macros, over subsets of the state space by leveraging the spatial structure in the problem.

Our idea is motivated by the concept of jurisdictions or action-areas used in public policy,

which create different zones to partition and better manage infrastructure. In particular, we

design a principled algorithmic approach that partitions the spatial area under consideration

into smaller areas. We then treat resource allocation in each resulting sub-area (called re-

gions) as individual planning problems which are smaller than the original problem by con-

struction. While this ensures scalability, it hurts performance because agents constrained

54

in one region might be needed in the other region. We show how hierarchical planning

can be used to facilitate the transfer of agents across regions. A top-level planner, called

the inter-region planner, identifies and detects states where “interaction” between regions is

necessary and finds actions such that the system’s overall utility can be maximized. A low-

level planner, called the intra-region planner, addresses allocation and dispatch within a

region. A challenge with hierarchical planning is that the high-level planner must estimate

rewards further along the planning pipeline to make decisions. However, such rewards

can only be computed after the low-level planner optimizes its objective function; this

constraint defeats the purpose of hierarchical planning because it does not segregate the

overall planning problem between two different levels. We leverage the structure of DRA

and dispatch problems to address this challenge.

Contributions: the specific contributions of this article include:

1. We propose a hierarchical planning approach for resource allocation under uncer-

tainty for smart and connected communities that scales significantly better than prior

approaches.

2. We show how exogenous constraints in real world resource allocation problems can

be used to naturally partition the overall decision problem into sub-problems. We cre-

ate a low-level planner that focuses on finding optimal policies for the sub-problems.

3. We show how a high-level planner can facilitate the exchange of resources between

the sub-problems (spatial areas in our case).

4. We propose two models, a data-driven surrogate model and a queue based approxi-

mation, that can estimate rewards to aid the high-level planner. In practice, respon-

ders can remain busy even after they leave the scene of the incident (e.g., ambu-

lances transport victims of accidents to hospitals). Unlike prior work [46, 84], the

data-driven approach we propose can accommodate such drop-off times.

55

5. We use real world emergency response data from Nashville, Tennessee, a major

metropolitan area in the United States, to evaluate our approach and show that it

performs better than state-of-the-art approaches both in terms of efficiency, scalabil-

ity, and robustness to agent failures.

The paper is organized as follows. We present a general decision-theoretic formula-

tion for spatial-temporal resource allocation under uncertainty in section 4.3. Section 4.4

describes the overall approach, the high-level, and the low-level planner. Section 4.5 de-

tails the implementation of our decision support system for ERM responder allocation. We

present our experimental design in section 4.6 and the results in section 4.7. We present

related work in section 4.8 and summarize the paper in section 4.9. Table 4.1 summarizes

the notation used throughout the paper.

4.3 Problem Formulation

Resource allocation in anticipation of spatial-temporal requests is a common problem

in urban areas. For example, ambulances respond to road accidents and emergency calls,

helper trucks respond to vehicle failures, taxis provide transit service to customers, and

fire trucks respond to urban fires. We refer to responders as agents to be consistent with

the terminology used in multi-agent systems [85]. Once an incident is reported, agents are

dispatched to the scene of the incident. The decision to select an agent to be dispatched can

either be performed by a human expert (e.g., dispatching towing trucks), human-algorithm

collaboration (e.g., dispatching ambulances), or completely by an algorithmic approach

(e.g., dial-a-ride services). If no agent is available, the incident typically enters a waiting

queue and is responded to when an agent becomes free. Each agent is typically housed at

specific locations distributed throughout the spatial area under consideration (these could

be fire stations or rented parking spots, for example). The number of such locations can

vary by the type of incident and agent in consideration. For example, while taxis can wait

at arbitrary locations or move around areas with high historical demand, ambulances are

56

typically housed at rented parking lots or designated stations. We refer to such locations

as depots. Once an agent finishes servicing an incident (which might involve transporting

the victim of an accident to a nearby hospital), it becomes available for service again. If

there are no pending incidents, it is directed back to a depot. Therefore, there are two broad

actions that the decision-maker can optimize: (1) which agent to dispatch once an incident

occurs (dispatching action) and (2) which depots to send the agents to in anticipation of

future demand (allocation action). Next, we introduce our assumptions and the notation we

use for problem formulation. While we present a formulation that is broadly applicable to

resource allocation problems under uncertainty in urban areas, we use emergency response

as a case study to provide concrete examples and use-cases.

We begin with several assumptions on the problem structure. First, we assume that we

are given a spatial map broken up into a finite collection of equally sized cells G, a set of

agents Λ that need to be allocated across these cells and dispatched to demand points, and

a travel model that describes how the agents move throughout G. We also assume that we

have access to a spatial-temporal model of demand over G, which is homogenous within

each spatial cell. Our third assumption is that agent allocation is restricted to depots D,

which are located in a fixed subset of cells. Each depot d ∈ D has a fixed capacity C (d),

which is the number of agents it can accommodate. While the state space in this resource

allocation problem evolves in continuous-time, it is convenient to view the dynamics as a

set of finite decision-making states that evolve in discrete time. For example, an agent mov-

ing through an area continuously changes the state of the world but presents no scope for

decision-making unless an event occurs that needs a response or the planner redistributes

the agents. As a result, the decision-maker only needs to find optimal actions for a subset

of the state space that provides the opportunity to take actions.

A key component of response problems is that agents physically move to the site of

the request, which makes temporal transitions between states non-memoryless. This com-

ponent causes the underlying stochastic process governing the system’s evolution to be

57

semi-Markovian. The dynamics of a set of agents working to achieve a common goal can

be modeled as a Multi-Agent Semi-Markov Decision Process (MSMDP) [86], which can be

represented as the tuple (S,Λ,A ,P,T,ρ(s,a),α,T), where S is a finite state space, ρ(s,a)

represents the instantaneous reward for taking action a in state s, P is a state transition func-

tion, T is the temporal distribution over transitions between states, α is a discount factor,

and Λ is a finite collection of agents where λ j ∈ Λ denotes the jth agent. The action space

of the jth agent is represented by A j, and A = ∏
m
i=1 A j represents the joint action space of

all agents. We assume that the agents are cooperative and work to maximize the system’s

overall utility. T represents a termination scheme. Since agents take different actions with

different times to completion, they may not all terminate at the same time [86]. We focus

on asynchronous termination, where actions for a particular agent are chosen as and when

the agent completes its last assigned action.2

States: A state at time t is represented by st and consists of a tuple (It ,Q(st)), where

It is a collection of cell indices that are waiting to be serviced, ordered according to the

relative times of incident occurrence. Q(st) corresponds to information about the set of

agents at time t with |Q(st)| = |Λr|. Each entry qt
j ∈ Q(st) is a set {pt

j,g
t
j,u

t
j,r

t
j,d

t
j},

where pt
j is the position of agent λ j, gt

j is the destination cell that it is traveling to (which

can be its current position), ut
j is used to encode its current status (busy or available), rt

j is

the agent’s assigned region, and dt
j is its assigned depot, all observed at time t. A diagram

of the state is shown in figure 4.4 and discussed in detail in section 4.5. We assume that

no two events occur simultaneously in our system model. In such a case, since the system

model evolves in continuous time, we can add an arbitrarily small time interval to create

two separate states. We overload the notation for states for convenience; an arbitrary state

is denoted by s when the time at which the state occurs is not required for discussion.

Actions: Actions correspond to directing agents to valid cells to respond to incidents

(demand) or wait at a depot. For a specific agent λi ∈ Λr, valid actions for a specific

2Different termination schemes are discussed by Rohanimanesh and Mahadevan [86].

58

state s are denoted by Ai(s) (some actions are naturally invalid, for example, if an agent

is at cell k in the current state, any action not originating from cell k is unavailable to the

agent). Actions can be broadly divided into two categories: dispatching actions which

direct agents to service an active demand point, and allocation actions which assign agents

to wait in particular depots in anticipation of future demand.

The manner in which agents are dispatched to the scene of the incidents varies with

the type of incident. For example, an essential aspect of emergency response is that if

any free agents are available when an incident is reported, then the nearest one must be

greedily dispatched to attend to the incident. This constraint is a direct consequence of

the bounds within which emergency responders operate and the critical nature of such in-

cidents [76, 87, 82]. On the other hand, taxis can optimize dispatch based on long-term

rewards. We focus on emergency response in our experiments and validate the approach

using data collected from ambulances. As a result, the problem we consider focuses on

proactively redistributing agents across a spatial area under future demand uncertainty.

Nonetheless, dispatch actions are still necessary to model since they are the foundation

of our reward function.

Transitions: The resource allocation system model evolves through several stochastic

processes. First, incidents occur at different points in time and space governed by some ar-

rival distribution. We assume that the number of incidents in a cell r j ∈ R per unit time can

be approximated by a Poisson distribution with mean rate γ j (per unit time), a commonly

used model for spatial-temporal incident occurrence [76]. Second, agents travel from their

locations to the scene of incidents governed by a model of travel times. We assume that

agents then take time to service the incident at some exogenously specified service rate.

Finally, the system itself takes time to plan and implement the allocation of agents. We re-

frain from discussing the mathematical model and expressions for the temporal transitions

and the state transition probabilities since our algorithmic framework only needs a genera-

tive model of the world (in the form of a black-box simulator) and not explicit estimates of

59

transitions themselves.

Rewards: Rewards in an SMDP can have two components: a lump sum immediate

reward for taking actions and/or a continuous-time reward as the process evolves. The

specific reward structure is highly domain-dependent. For example, taxi services might

prioritize maximizing revenue, while paratransit services might focus on maximizing the

total number of ride requests that can be served. The metric we are concerned with for

ERM is incident response time tr, which is the time between the system becoming aware

of an incident and when the first agent arrives on the scene. This is modeled using only an

immediate reward, which we denote by ρ(s,a), for taking action a in state s:

ρ(s,a) =


α

th(tr(s,a)) if dispatching

0 otherwise
(4.1)

where α is the discount factor for future rewards, th the time since the beginning of the

planning horizon t0, and tr(s,a) is the response time to the incident due to a dispatch action.

The benefits of allocation actions are inferred from improved future dispatching.

Problem Definition: Given a state s and a set of agents Λ, our goal is to find an action

recommendation set σ = {a1, ...,am} with ai ∈ Ai(s) that maximizes the expected reward.

The ith entry in σ contains a valid action for the ith agent. In our ERM case study, this cor-

responds to finding an allocation of agents to depots that minimizes the expected response

times to incidents.

4.4 Approach

Our approach to spatiotemporal resource allocation divides planning tasks into a two-

stage hierarchy: “high-level” and “low-level” planning. First, high-level planning divides

the overall decision-theoretic problem into smaller sub-problems. Our high-level planner

accomplishes this by creating meaningful spatial clusters (which we call regions) and op-

timizing the distribution of agents among these regions. In order to do so, the high-level

60

High Level Planner

Low Level Planner Surrogate Reward
Model

Generative System
Model

Observed Data

Optimized
Decisions

Figure 4.2: An overview of the proposed planning approach. We use the observed data
to learn a generative model over when and where incidents occur. The generative model
lets us simulate agent behavior, which aids the creation of a surrogate model for the high-
level planner to segment the overall problem into a set of smaller problems. The low-level
planner tackles each sub-problem independently. As we show, the surrogate reward model
can also be estimated based on closed-form expressions of waiting times based on a queuing
model.

planner must assess the quality of a specific distribution of agents, which requires the low-

level planner itself. Indeed, the actual reward generated from an allocation depends on how

the low-level planner optimizes the distribution of responders within each region. Clearly,

this dependency is detrimental to creating an approach that seeks to divide the overall plan-

ning problem into two stages to achieve scalability. In order to tackle this challenge, we

learn a surrogate model over waiting times that the high-level planner can use to estimate

rewards. The high-level planner can perform inference using the model to estimate re-

wards as it optimizes the distribution of agents among the regions. Then, an instance of

the low-level planner is instantiated for each of the regions. The low-level planner for a

specific region optimizes the spatial locations of agents within that region. We assume the

availability of an integrated simulation framework that models the dynamics of agents as

61

they travel throughout the environment and a probabilistic generative model of incident oc-

currence learned from historical incident data. Our simulation framework and the incident

model are described in section 4.5.

Segmenting allocation into smaller sub-problems significantly reduces complexity com-

pared to a centralized problem structure. Consider a city with |Λ|= 20 agents and |D|= 30

depots, each of which can hold one agent. With a centralized approach, any agent can go to

any depot, so there are Permutations(|D|, |Λ|) = |D|!
(|D|−|Λ|)! =

30!
10! = 7.31×1025 possible as-

signments at each decision epoch. Now consider a hierarchical structure where the problem

is split into 5 evenly sized sub-problems, |Λh|= 4 and |Dh|= 6 for each region. There are

now P(|Dh|, |Λh|) = 360 possible allocations in each region, so there are 360× 5 = 1800

possible actions across all regions. This reduction in complexity is about 22 orders of

magnitude compared to the centralized problem, at the cost of abstracting the interactions

between agents in different regions through the high-level planner. Alternatively, a decen-

tralized approach in which each responder plans only its actions reduces the complexity

further to only |D| = 30 possible allocations for each agent [82]. However, this reduction

in complexity comes at a cost as each agent must make assumptions regarding other agent

behavior, leading to sub-optimal planning. Hierarchical planning offers a balance between

decentralized and centralized planning.

An important consideration when designing approaches for resource allocation under

uncertainty in city-scale CPS problems is adapting to the dynamic environments in which

such systems evolve. In our decision support system, a decision coordinator (an automated

module) invokes the high-level planner at all states that allow the scope for making deci-

sions. For example, consider that an agent is unavailable due to maintenance. The coordi-

nator triggers the high-level planner and notifies it of the change. The high-level planner

then checks if the spatial distribution of the agents can be optimized to best adapt to the

situation at hand. We describe the exact optimization functions, metrics, and approaches

that we use to design the planners below.

62

4.4.1 High-Level Planner

We seek to decompose the overall MSMDP into a set of tractable sub-problems through

the high-level planner. A natural decomposition for spatiotemporal resource allocation is

to divide the overall problem’s spatial area into discrete regions and allocate separately for

each region. This decomposition allows the low-level allocation planner to evaluate poten-

tial interactions between nearby agents and, therefore, likely to interact. The first goal of

the high-level planner is to define these spatial regions. Consider that the high-level planner

seeks to divide the overall problem in to m regions, denoted by the set R = {r1,r2, . . . ,rm},

where r j ∈ R denotes the jth region. To achieve this goal, we use the locations of historical

incident data. Intuitively, we want to create regions based on hotspots of incident occur-

rence [88]. Recall that our goal is to identify spatial areas where planning (the allocation

and distribution of agents) can be performed independently. By identifying spatial inci-

dent clusters, we achieve the following: 1) areas close to each other with similar patterns

of incident occurrence are grouped together, and 2) areas of high incident occurrence that

are further apart get segregated from each other. While any standard spatial clustering ap-

proach can be used to achieve this goal, we use the well-known k-means algorithm in our

analysis [89]. The k-means algorithm partitions a given set of points in Rd into k clusters

such that each point belongs to its closest cluster (defined by distance to the center of the

cluster). While the problem is known to be NP-hard even when d = 2 (our case) [90],

heuristic-based iterative approaches can be used to achieve good solutions. Typically, the

solution process repeatedly performs two steps after initializing an initial set of clusters.

In the first step, each incident from the training set is assigned to the cluster whose center

is the closest to the incident’s location by Euclidean distance. Then, given an assignment,

the centers of the clusters are computed again. The process is repeated until convergence.

Clusters are then mapped to the cells G. Each cell in G is assigned to the cluster contain-

ing the most incidents that occurred within the cell. We use these clusters of cells in G as

separate sub-problems for low-level planning.

63

The high-level planner’s second task is to determine the distribution of agents across the

decomposed spatial regions. If the regions are homogeneous, agents could be split evenly

across them. In practice, however, regions will differ with respect to properties such as

size, incident rate, and depot distributions, all of which impact the number of responders

needed to cover each region. For example, the number of agents assigned to cover a dense

downtown area should likely be different from sparsely populated suburbs. Recall that

the overall goal of the parent MSMDP is to reduce the expected incident response times.

Response times to emergency incidents consist of two parts: a) the time taken by an agent to

travel to the scene of the incident, and b) the time taken to service the incident. Suppose we

assume that incidents are homogeneous, meaning that the time taken by agents to service

incidents follows the same distribution; in that case, the sole criterion that a planner needs

to optimize is the travel time of the agents to incidents, which we refer to as waiting times

(achieving zero waiting times is clearly infeasible in practice, so we seek to minimize

waiting times). Therefore, the high-level planner seeks to distribute agents to different

regions to minimize the expected incident waiting time. It is important to note that the real

world is more complex; features such as incident severity can impact service times as well

as the priority of responding to each incident. Incorprating such features and modeling

service time variations in the high-level planner is a topic for future work.

We denote the expected waiting time for incidents in region r j ∈ R by w j(p j,γ j), where

p j is the number of responders assigned to the region r j and γ j is the total incident rate

across r j. Since the arrival process is assumed to be Poisson distributed, γ j can be calculated

as ∑gi∈G⊮(gi ∈ r j)γi, where ⊮(gi ∈ r j) denotes an indicator function that checks if cell gi

belongs to region r j ∈ R. We consider two approaches to estimate w j(p j,γ j): a queuing

model that approximates the system using an m/m/c queuing formulation, and a surrogate

model that uses machine learning. We detail these models in sections 4.4.1.1 and 4.4.1.2,

and then describe our high-level agent distribution algorithm, which uses an iterative greedy

approach to assign agents across regions, in section 4.4.1.3.

64

4.4.1.1 Queuing Model

A multi-server queue model is one approach to model waiting times in a region. Recall

that incident arrivals are distributed according to a Poisson distribution, thereby making

inter-incident times exponentially distributed. We make the standard assumption that ser-

vice times are exponentially distributed as well [50]. One potential issue with using well-

known queuing models to estimate waiting times in emergency response is that travel times

are not memoryless. In this approach, we use an approximation from prior work to tackle

this problem [50]. Specifically, travel times to emergency incidents are typically much

shorter than service times. Thus, the sum of travel times and service times can be con-

sidered to be approximated by a memoryless distribution (provided that the service time

itself can be modeled by a memoryless distribution). The average waiting time for a re-

gion r j ∈ R can then be estimated by considering a m/m/c queuing model (using Kendall’s

notation [91]), where c = p j.

Let the average service time be Ts and let µ = 1/Ts denote the mean service rate. Then,

the mean waiting time w j(p j,γ j) is [92]:

w j(p j,γ j) =
P0(

γ j
µ
)p jγ j

c!(1−ρ)2c

where P0 denotes the probability that there are 0 incidents waiting for service and can be

represented as

P0 = 1/
[p j−1

∑
m=0

(p jρ)
m

m!
+

(cρ)c

c!(1−ρ)

]
While this approach is straightforward, computationally efficient, and works out of the

box with any city of interest, it abstracts away many environmental dynamics that can affect

response times. For example, the agents’ allocation within a region, travel times due to

traffic, and behaviors such as dropping off patients at the hospital can all affect the response

times observed in the real world. To capture such factors, we explore an alternative method

65

using machine learning to create a surrogate model over expected waiting times.

4.4.1.2 Surrogate Model

Another approach for estimating waiting times in a region is to use simulated data to

learn a model of waiting times conditioned on a set of relevant covariates. For example, we

simulate emergency response in a region under various conditions (namely, the number of

agents assigned to the region and the incident rate in the region) and record the simulated

incident response times. After generating many such samples, we use a supervised learning

approach to fit a parameterized function to maximize the likelihood of the simulated data.

The trained model can then be used to estimate waiting times for a region, given the num-

ber of responders. An advantage of this approach is that it captures subtle environmental

dynamics that are ignored by the queue model, such as the travel times of agents as they

respond to incidents and their location within the region due to factors such as depot loca-

tions and dropping off patients at hospitals. It is also adaptable to changes in the system

model (e.g. extending the model to consider severity or heterogeneous service times), as

these can be incorporated into the underlying simulation used to train the surrogate model.

The first step in creating the surrogate model is generating response time samples by

simulating emergency response in each region with different incident rates γ j and available

agents. We sample incidents using the model described in section 4.5, which uses historical

rates of incidents to create a sampling distribution. We refer to sampled incidents as chains.

For each such chain, region r j, and potential number of agents p j ∈ {1, . . . , |D j|} (where D j

is the set of depots in region r j), we simulate response to the incidents occurring within r j

using the simulation framework described in section 4.5. The simulation provides us with

labeled training data where each observation captures the response time (output) given the

number of responders and incident rate (inputs).

A crucial factor that affects simulated response times is the initial location of the agents

within each region. Recall that in our proposed framework, the location of the agents

66

is optimized by the low-level planner, which is naturally infeasible to use for every step

during sampling. As a result, we solve the standard p-median problem [93], which is often

applied to ambulance allocation, to determine the initial conditions of the simulation. The

objective of the p-median formulation is to locate p j agents (in the region r j) such that

the average demand-weighted distance between demand points and their nearest agent is

minimized. Formally, we solve the following optimization problem to allocate the agents

to depots:

min
|G j|
∑
i=1

|D j|
∑
k=1

aidikYik (4.2a)

s.t.
|D j|
∑
k=1

Yik = 1, ∀i ∈ {1, . . . , |G j|} (4.2b)

|D j|
∑
k=1

Xk = p (4.2c)

Yik ≤ Xk, ∀i ∈ {1, . . . , |G j|},∀k ∈ {1, . . . , |D j|} (4.2d)

Xk,Yik ∈ {0,1}, ∀i ∈ {1, . . . , |G j|},∀ j ∈ {1, . . . , |D j|} (4.2e)

where G j is the set of cells in region r j, D j is the set of depots in r j, p j is the number of

agents to be located in r j, ai is the likelihood of accident occurrence at cell gi ∈ G j, and

dik is the distance between cell gi ∈ G j and location dk ∈ D j. Yik and Xk are two sets of

decision variables; Xk = 1 if an agent is located at dk ∈ D j and 0 otherwise, and Yik = 1 if

cell gi ∈ G j is covered by an agent located at dk ∈ D j (i.e. the agent at dk is the nearest

placed agent to gi) and 0 otherwise.

The p-median problem is NP-hard [94]; therefore, heuristic methods are employed to

find approximate solutions in practice. We use the Greedy-Add algorithm [95] to optimize

the locations of agents. We show the algorithm in Algorithm 6. First, we initialize the

iteration counter z and the set of allocated agent locations Xz to the empty set (step 1).

Then, as long as there are responders awaiting allocation, we iterate through the following

67

Algorithm 6: Greedy-Add Algorithm
Input: Region cells G j, region depots D j, cell incident likelihoods

ai ∀i ∈ {1, . . . , |G j|}, cell to depot distances d(i,k) ∀i ∈ {1, . . . , |G j|} and
k ∈ {1, . . . , |D j|}, number of agents p j

Output: Agent depot assignments X
1 Initialize z := 0, Xz := /0 ;
2 while z < p j do
3 z := z+1;
4 for location dk′ ∈ D j, where k′ /∈ Xz−1 do
5 X ′z := Xz−1∪dk′;
6 Find nearest facilities yi ∀i ∈ {1, . . . , |G j|}, where yi ∈ X ′z;
7 Compute U z

k′ := ∑gi∈G j aid(gi,yi);
8 end
9 Best location d∗k := argmink U z

k ;
10 Xz := Xz−1∪ k∗;
11 Return Xz

12 end

loop: (1) update counter z to the current iteration (step 3), (2) for each potential location

not already in the allocation, compute the p-median score (equation 4.2a) of the allocation

which includes the potential location (steps 5 - 7), and (3) find the location that minimizes

the p-median score (step 9) and add it to the set of allocated agent locations (step 10).

After locating the agents to depots within the region, we simulate emergency response

using greedy dispatch and record the average response times w(r j, p j,λ j). The complexity

of this algorithm is O(p j|D j||G j|) because assigning each agent requires evaluating each

potential depot in D j, which requires summing over the weighted distances between each

cell in G j and its nearest populated depot.

Given a set of samples of waiting times (w), agent allocations (p), and incident rates

(γ), the second step in creating the surrogate model is to learn an estimator over w given

p and γ . We learn a different model for each region to capture any latent features that

can effect response times such as the region’s depot distribution and roadway network.

Specifically, we use random forest regression [96], which is an ensemble learning method

based on constructing several decision trees at training time. During inference, the average

68

Algorithm 7: High-Level Planner
Input: Sorted regions Rs, arrival rates {γ1,γ2, . . . ,γm}, service rate η

Output: Responder allocation P = {p1, p2, . . . , pm}
1 assigned := 0, i := 0,J := /0;
2 while assigned ≤ | Λ | and i≤ m do
3 pi := pi +1;
4 assigned := assigned+1;
5 if η× (pi)≥ ∑gi∈G⊮(gi ∈ r)γi then
6 i := i+1;
7 end
8 end
9 while assigned ≤ | Λ | do

10 for i ∈ {1, . . . ,m} do
11 J[i] := wi(pi,γi)−wi(pi +1,γi);
12 end
13 r∗ := argmaxi∈{1,...,m} J[i];
14 pr∗ := pr∗+1;
15 assigned := assigned+1;
16 end

prediction of the trained trees is used as the output (for regression problems).

4.4.1.3 Optimization

Given estimated waiting times for incidents in each region, the high-level planner seeks

to minimize the cumulative response times across all regions. The optimization problem

can be represented as:

min
p

m

∑
j=1

w j(p j) (4.3a)

s.t.
m

∑
i=1

pi = |Λ| (4.3b)

pi ∈ Z0+ ∀i ∈ {1, . . . ,m} (4.3c)

The objective function in mathematical program 4.3 is non-linear and non-convex. We use

an iterative greedy approach shown in algorithm 7. We begin by sorting regions according

to total arrival rates. Let this sorted list be Rs. Then, we assign agents iteratively to regions

69

in order of decreasing arrival rates (step 3). After assigning each agent to a region r j ∈ R,

we compare the overall service rate (p j times the mean service rate by one agent) and

the incident arrival rate for the region (step 5). Essentially, we try to ensure that given a

pre-specified service rate, the expected length of the queue is not arbitrarily large. Once

a region is assigned enough responders to sustain the arrival of incidents, we move on to

the next region in the sorted list Rs (step 6). Once all regions are assigned agents in this

manner, we check if there are surplus agents (step 9). The surplus agents are assigned

iteratively according to the incremental benefit of each assignment. Specifically, for each

region, we calculate the marginal benefit J of adding one agent to the existing allocation

(step 13). Then, we assign an agent to the region that gains the most (in terms of reducing

waiting times) by the assignment.

The complexity of the algorithm is O(|Λ|mξ), where ξ is the complexity of the wait

time estimation method, as the algorithm computes the potential wait times w j(r j, p j,λ j)

from adding an agent to each region when assigning said agent. The overall complexity

is O(|Λ|2m) using the queuing model, since equation P0 sums over all assigned agents to

estimate w j. When using the random forest surrogate model, the overall complexity is

O(|Λ|mεβ), where ε is the number of trees in the forest and β is the maximum tree depth.

An important note is that in our problem instances, we assume that there are enough agents

to process the incident demand generated in G. The proposed greedy approach may leave

some regions with no responders in environments where this assumption does not hold.

Future work can examine if the proposed approach or an alternative (such as proportional

assignment with respect to incident rate) performs better in such situations.

4.4.2 Low-Level Planner

The fine-grained allocation of agents to depots within each region is managed by the

low-level planner, which induces a decision process for each region that is smaller than

the original MSMDP problem described in section 4.3 by design. The MSMDP induced

70

by each region r j ∈ R contains only state information and actions that are relevant to r j,

i.e., the depots within r j, the agent’s assigned to r j by the inter-region planner, and inci-

dent demand generated within r j. Decomposing the overall problem makes each region’s

MSMDP tractable using many approaches, such as dynamic programming, reinforcement

learning (RL), and Monte Carlo Tree Search (MCTS). Each approach has advantages and

trade-offs that must be examined to determine which is best suited for the specific problem

domain under consideration.

Spatial-temporal resource allocation has a key property that informs the choice of the

solution method—a highly dynamic environment that is difficult to model in closed-form.

To illustrate, consider a travel model for the agents. While there are long-term trends for

travel times, precise predictions are difficult due to the complex interactions between fea-

tures such as traffic, weather, and events occurring in the city. Furthermore, a city’s traffic

distribution changes with changes in the road network and population shifts, so it needs to

be updated periodically with new data. This dynamism is true for many pieces of the do-

main’s environment, including the demand distribution of incidents. Importantly, it is also

true of the system itself: agents can enter and leave the system due to mechanical issues

or purchasing decisions, and depots can be closed or opened. Whenever underlying envi-

ronmental models change, the solution approach must consider the updates to make correct

recommendations. Approaches that require long training periods, such as reinforcement

learning and value iteration, are challenging to apply to such scenarios since they must be

re-trained each time the environment changes. This challenge motivates using Monte Carlo

Tree Search (MCTS), a probabilistic search algorithm, as our solution approach. Being an

anytime algorithm, MCTS can immediately incorporate any changes in the underlying gen-

erative environmental models when making decisions.

MCTS represents the planning problem as a “game tree”, where nodes in the tree rep-

resent states. The decision-maker is given a state of the world and is tasked with finding a

promising action. The current state is treated as the root node, and actions that are taken

71

from one state to another are represented as edges between corresponding nodes. The core

idea behind MCTS is that the tree can be explored asymmetrically, with the search being

biased toward actions that appear promising. To estimate the value of an action at a state

node, MCTS simulates a “playout” from that node to the end of the planning horizon us-

ing a computationally inexpensive default policy (our simulated system model is shown in

figure 4.4 and described in detail in section 4.5). This policy is not required to be very

accurate (indeed, a standard method is random action selection), but as the tree is explored

and nodes are revisited, the estimates are re-evaluated and converge toward the actual value

of the node. This asymmetric tree exploration allows MCTS to search large action spaces

quickly. When implementing MCTS, there are a few domain specific decisions to make—

the tree policy used to navigate the search tree and find promising nodes to expand, and the

default policy used to quickly simulate playouts and estimate the value of a node.

Tree Policy: When navigating the search tree to determine which nodes to expand, we

use the standard Upper Confidence bound for Trees (UCT) algorithm [97], which defines

the score of a node n as

UCB(n) = u(n)+ c

√
log(visits(n))

visits(n′)
(4.4)

where u(n) is the estimated utility of state at node n, visits(n) is the number of times n has

been visited, and n′ is node n’s parent node. When deciding which node to explore in the

tree, the child node with the maximum UCB score is chosen. The term u(n) corresponds to

the exploitation objective that favors nodes that have produced higher rewards in the past.

The second term on the right-hand side of the equation corresponds to the exploration ob-

jective, encouraging the exploration of nodes with low visit counts. The constant c controls

the tradeoff between these two opposing objectives and is domain-dependent.

Default Policy: When working outside the MCTS tree to estimate the value of an

action, i.e., rolling out a state, a fast heuristic default policy is used to estimate the score

72

Algorithm 8: Low-Level Planner
Input: Regions R, state s, generative demand model E, number of samples n
Output: Recommended allocation actions σr ∀r ∈ R

1 for region r j ∈ R do
2 Decompose s into region specific state s j;
3 Action score map Ã := /0;
4 eventChains := E.sample(s j,n);
5 Action scores A := MCTS(s j,eventChains);
6 for action a ∈ A do
7 Ã [a].append(score(a));
8 end
9 A := /0;

10 for potential action a ∈ A do
11 A [a] = mean(Ã [a]);
12 end
13 Recommended action σr := argmaxa A [a]
14 end

of a given action. Rather than using a random action selection policy, we exploit our

prior knowledge that agents generally stay at their current depot unless significant shifts in

incident distributions occur. Therefore, we use greedy dispatch without redistribution of

responders as our heuristic default policy.

It is important to note that performing MCTS on one sampled chain of events is in-

sufficient in practice, as traffic incidents are inherently sparse. Any particular sample is

too noisy to determine the value of an action accurately. To handle this uncertainty, we

use root parallelization. We sample many incident chains from the prediction model and

instantiate separate MCTS trees to process each. We then average the scores across trees

for each potential allocation action to determine the optimal one. Our low-level planning

approach is shown in algorithm 8. The inputs for low-level planning are the regions R, the

current overall system state s (which includes each agent’s region assignment), a genera-

tive demand model E, and the number of chains to sample and average over for each region

n. For each region r j ∈ R, we first extract the state s j in the region’s MSMDP from the

current overall system state s (step 2). Then we perform root parallelization by sampling

n incident chains from the demand model E and performing MCTS on each to score each

73

Environmental

Simulation

Potential

Allocation

Human Operator

Evaluate System

Recommendations

Safe
Allocation

Decision CoordinatorGenerative

Incident

Model High Level Planner

Region Allocation

Low Level Planner

Depot Allocation

Simulate

Actions

Real-Time
Traffic
Router

Real-World
Dispatching

SystemMCTS

Agents

Figure 4.3: Emergency response decision support framework.

potential allocation action (step 4). It is important to note that the sampled incident chains

are specific to the region under investigation, and demand is only generated from the cells

in that region. We then average the scores across samples for each action and choose the

allocation action with the maximum average score (step 13).

4.5 Integration Framework

Figure 4.3 shows a schematic representation of our decision support system. Realiz-

ing a such as system for online emergency responder allocation requires a framework of

interconnected processes, including:

• A traffic routing model to support routing requests (section 4.5.1).

• A probabilistic generative model of incident occurrence (section 4.5.2).

• A model of the ERM system and its environment, including the dynamics of respon-

ders, depot locations, and hospital locations (section 4.5.3).

• A simulation of the ERM system built on the above components (section 4.5.4).

• A hierarchical decision process that makes allocation and dispatching recommenda-

tions based on the current state of the environment, responder locations, and pro-

jected incident distributions (section 4.4).

74

• A human operator to access the planning mechanism and act as an interfaced with a

real-world computer-aided dispatch system.

4.5.1 Travel Model

We consider two travel time models in our implementation. The first model is based on

the Euclidean distance between two points of interest (the centers of the cells in the grid).

We also develop a more principled travel model that uses contraction hierarchies [98] and

an open-source routing machine engine [99] to look up travel times at different times of

the day from the center of each cell in the spatial grid to other cells. We collect such travel

times across a week. The final travel model considers the median of the accumulated travel

times and develops a lookup table which the overall planning process can use to query

the travel times. This approach is better than a Euclidean distance-based travel time as

it considers the average road congestion and the maximum travel speed across the road.

The pipeline we propose and our framework are flexible to accommodate other travel time

models; for example, a modular component that estimates travel times based on advanced

graphical neural networks can be used with a richer set of covariates to provide sensitive

estimates of time and weather.

4.5.2 Incident Prediction

Recall that we need samples of incidents for the low-level planner and learning the

surrogate model for the high-level planner. We assume that incidents are generated by

a Poisson distribution. A Poisson model has been widely used to model the occurrence

of accidents [76]. The Poisson distribution is a discrete probability distribution over the

number of events in a fixed time interval. We learn a separate Poisson model for each cell

gi ∈ G. The rate parameter of each model can be learned by maximizing the likelihood of

historical data in the cell. The learned Poisson model can then be used to sample incidents

in a given period of time.

75

Travel

Time

Requests
λ: {pj

t, gj
t, uj

t, rjt, dj
t }λ: {pj

t, gj
t, uj

t, rjt, dj
t }λj: {pj

t, gj
t, uj

t, rjt, dj
t }Agents Λ:

Active Incidents It
State st

Update(time)

AssignRegion

(λj, rj)

AssignDepot

(λj, dj)

Dispatch

(λj, incident)

Real
Time
Traffic
Router

Figure 4.4: System state and actions.

4.5.3 ERM System Model

As shown in figure 4.4, our system state at time t is captured by a queue of active

incidents It and agent states Λ. It is the queue of incidents that have been reported but not

yet serviced. The state of each agent λ j ∈ Λ consists of the agent’s current location pt
j,

status ut
j, destination gt

j, assigned region rt
j, and assigned depot dt

j. Each agent can be in

several different internal states (represented by ut
j), including waiting (waiting at a depot),

in transit (moving to a new depot and not in emergency response mode), responding (the

agent has been dispatched to an incident and is moving to its location), and servicing (the

agent is currently servicing an incident). These states dictate how the agent is updated

when moving the simulator forward in time.

4.5.4 Simulation Framework

Our simulator is designed as a discrete event simulator, meaning that the state is only

updated at discrete time steps when certain events occur. These events include incident

occurrence, re-allocation planning steps, and responders becoming available for dispatch.

Between these events, the system evolves based on prescribed rules. Using a discrete event

simulator saves valuable computation time compared to a continuous-time simulator. At

each time step when the simulator is invoked, the system’s state is updated to the current

76

time. First, if the current event of interest is an incident occurrence, it is added to the

active incidents queue It . Then, each agent’s state and locations are updated accordingly.

For example, agents that are in the waiting state stay at the same position, while agents

that are responding or in transit are updated according to the travel time model. If they

reach their intended destinations, their states are updated to servicing or waiting at their

respective locations. If such responders have not reached their destination at the time under

consideration, their locations are updated using the travel model. If an agent is in the

servicing state and finishes servicing an incident, its state is updated to the in transit state,

and its destination gt
j is set to the assigned depot.

After the state is updated, a planner has several actuations available to control the sys-

tem. The Dispatch(λ j, incident) function will dispatch the agent λ j to the given incident

which is in It . Assuming the responder is available, the system sets agent λ j’s destination

gt
j to the incident’s location, and its status ut

j is set to responding. The incident is also

removed from queue It since it is being serviced, and the response time is returned to the

planner for evaluation. The planner can also change the allocation of the agents. AssignRe-

gion(λ j,r j) assigns agent λ j to region r j by updating λ j’s rt
j. AssignDepot(λ j,d j) similarly

assigns agent λ j to depot d j by updating λ j’s dt
j and setting its destination gt

j to the depots

location. These functions allow a planner to try different allocations and simulate various

dispatching decisions.

4.6 Experiments

We evaluate the proposed hierarchical framework’s effectiveness on emergency re-

sponse data obtained from Nashville, Tennessee, a major metropolitan area in the United

States, with a population of approximately 700,000. We use historical incident data, depot

locations, and operational data provided by the Nashville Fire Department [42]. We con-

struct a grid representation of the city using 1× 1 mile square cells; this choice resulted

from the fact that local authorities follow a similar granularity of discretization. These

77

Figure 4.5: Subfigure (a) – The various spatial regions under consideration. Pins on the map
represent depot locations, and different colors represent different spatial regions. Subfigure
(b) – Nashville’s historic incident density from January 2018 to May 2019 overlaid on the
spatial grid environment.

cells, as well as the city’s 35 depot locations, can be seen in figure 4.5.

Configuration and hyper-parameters: We make a few important assumptions when

configuring our experiments. First, we limit the capacity of each depot C(d) to 1. This

constraint encourages responders to be geographically spread out to respond quickly to in-

cidents occurring in any region of the city, and it models the usage of ad-hoc stations by

responders, which are often temporary parking spots.3 We assume there are 26 available

responders to allocate, which is the actual number of responders in the urban area under

consideration [42]. Third, we assume that the mean rate to service an incident is 20 minutes

based on actual service times in practice in Nashville (we hold this constant in our exper-

iments to compare the planning approaches directly). Fourth, as mentioned in section 4.4,

we assume that incidents are homogeneous.

The number of MCTS iterations performed when evaluating potential actions on a sam-

pled incident chain is set to 1000, and the number of samples from the incident model that

are averaged together using root parallelization during each decision step is set to 50. We

run the hierarchical planner after each test incident to re-allocate responders. Further, if

the planner is not called after a pre-configured time interval, we call it to ensure that the

allocations are not stale. In our experiments, this maximum time between allocations is

set to 60 minutes. We ran experiments on an Intel i9-9980XE, with 38 logical processors

3In theory, we could always add dummy depots at the same location to extend our approach to a situation
where more than one responder per depot is needed.

78

running at a base clock of 3.00 GHz and 64 GB RAM. Our experimental hyper-parameter

choices are shown in table 4.2. In our experiments, we vary the number of spatial regions

to examine how their size and distribution effects performance of the hierarchical planner;

the resulting region configurations can be seen in figure 4.5.

Incident Model: Our incident model is learned from historical incident data. We learn

a Poisson distribution over incident arrival for each cell based on historical data. The

maximum likelihood estimate (MLE) of the rate of the Poisson distribution is simply the

empirical mean of the number of incidents in each unit of time. To simulate our system

model, we access the Poisson distribution of each cell and sample incidents from it. In

reality, emergency incidents might not be independently and identically distributed; how-

ever, the incident arrival model (and the black box simulator of the system in general) is

entirely exogenous to our model and does not affect the functioning of our approach. To

validate the robustness of our approach, we create three separate testbeds based on domain

knowledge and preliminary data analysis of historical incident data.

Region Segmentation: We use the k-means algorithm [100] implemented in scikit-

learn [101] on historical incident data provided by the Tennessee Department of Trans-

portation, which consists of 47862 incidents that occurred from January 2018 to May 2019

in Nashville. We vary the parameter k to divide the total area in consideration into 5, 6, and

7 regions. The cluster centers are initialized uniformly at random from the observed data,

and we use the classical expectation-minimization-based iterative approach to compute the

final clusters [101].

Surrogate Model: To learn the surrogate model over waiting times conditional on the

number of responders in a region and mean incident arrival rate, we use the random forest

regression model [96]. We use the mean squared error (MSE) to measure the quality of a

node split, use 150 estimators, and consider
√
|n| random features for each split, where n

is the number of features. The following hyper-parameters were tuned using a grid search:

the maximum depth of each tree, the minimum number of observations in a node required

79

to split it, and the minimum number of samples required to be at a leaf node to split its

parent.

Table 4.2: Experimental hyper-parameter choices.

Parameter Value(s)

Number of Regions {5, 6, 7}

Maximum Time Between Re-Allocations 60 Minutes

Incident Service Time 20 Minutes

Responder Speed 30 Mph

MCTS Iteration Limit 1000

Discount Factor 0.99995

UCT Tradeoff Parameter c 1.44

Number of Generated Incident Samples 50

Stationary incident rates: We start with a scenario where our forecasting model sam-

ples incidents from a Poisson distribution that is stationary (for each cell), meaning that

the rate of incident occurrence for each cell is the empirical mean of historical incident

occurrence per unit time in the cell. This means that the only utility of the high-level plan-

ner in such a case is to divide the overall spatial area into regions and optimize the initial

distribution of responders among them. Since the rates are stationary, the initial alloca-

tion is maintained throughout the test period under consideration. This scenario lets us test

the proposed low-level planning approach in isolation. The experiments were performed

on five chains of incidents sampled from the stationary distributions, which have incident

counts of {939,937,974,1003,955} respectively (for a total of 4808 incidents), and are

combined to reduce noise.

Non-stationary incident rates: We test how our model reacts to changes in incident

rates. We identify different types of scenarios that cause the dynamics of spatial temporal

incident occurrence and traffic to change in specific areas of Nashville. We look at rush-

80

hour traffic on weekdays (which affects the center of the county), football game days (which

affects the area around the football stadium, typically on Saturdays), and Friday evenings

(which affects the downtown area). Then, we synthetically simulate spikes in incident

rates in the specific areas at times when the areas are expected to see spikes. To further

test whether our approach can deal with sudden spikes, we randomly sample the spikes

from a Poisson distribution with a rate that varies between two to five times the historical

rates of the regions. We create five different trajectories of incidents with varying incident

rates, which have incident counts of {873,932,865,862,883} respectively (for a total of

4415 incidents). In these experiments we compare using the low-level planner with fixed

responder distributions across regions to a full deployment that incorporates the high-level

planner to dynamically balance responders across regions.

Responder failures: An important consideration in emergency response is to quickly

account for situations where some responders might be unavailable due to maintenance and

breakdowns. We randomly simulate failures of responders lasting 8 hours to understand

how our approach deals with such scenarios.

Dispatch Policy: As discussed in section 4.3, the critical nature of incidents necessi-

tates the use of a greedy dispatch policy—if there are any free agents available when an

incident is reported, the nearest agent (regardless of region assignment) is dispatched to the

incident. If no agents are available, then incidents enter a waiting queue. Once an agent

becomes available, if there are any incidents waiting in the queue, it is dispatched to the

incident at the front of the queue and that incident is removed from the queue.

Baseline Policy: We compare our approach with a baseline policy that has no responder

re-allocation. This baseline emulates current policies in use by cities in which responders

are statically assigned to depots and rarely move. The initial responder placement is de-

termined using our proposed high-level policy to ensure all the policies begin with similar

responder distributions. The baseline uses the same greedy dispatch policy as our approach.

81

4.7 Results

Baseline LL Only
0

200

400

Policy

Re
sp
on

se
Ti
m
es

(se
c)

5 regions
6 regions
7 regions

Figure 4.6: Results when applying the baseline and low-level planners to incidents sampled
from a stationary rate distribution. This figure presents the full response time distributions;
the boxplot represents the data’s Inter-Quartile Range (IQR = Q3−Q1), and the whiskers
extend to the 9th and 91st percentiles.

Baseline LL Only
155

160

165

Policy

Re
sp
on

se
Ti
m
e
(se

c)

5 regions
6 regions
7 regions

Figure 4.7: Results when applying the baseline and low-level planners to incidents sampled
from a stationary rate distribution. This figure presents a zoomed in view of the average
response times.

82

Baseline LL Only HL & LL
0

200

400

Policy

Re
sp
on

se
Ti
m
es

(se
c)

5 regions
6 regions
7 regions

Figure 4.8: Results when applying the baseline, low-level planner (LL Only), and complete
hierarchical planner (HL & LL) when applied to incidents sampled from a non-stationary
rate distribution. This figure presents the full response time distributions; the boxplot rep-
resents the data’s Inter-Quartile Range (IQR = Q3−Q1), and the whiskers extend to the
9th and 91st percentiles.

Baseline LL Only HL & LL

170

180

190

Policy

Re
sp
on

se
Ti
m
e
(se

c)

5 regions
6 regions
7 regions

Figure 4.9: Results when applying the baseline, low-level planner (LL Only), and complete
hierarchical planner (HL & LL) when applied to incidents sampled from a non-stationary
rate distribution. This figure presents a zoomed in view of the average response times.

83

Baseline MMC HL RF HL
0

200

400

600

800

Policy

Re
sp
on

se
Ti
m
es

(se
c)

5 regions
6 regions
7 regions

Figure 4.10: Results when applying the baseline, complete hierarchical planner using the
MMC queuing high level planner (MMC HL), and complete planner using the surrogate
model high level planner (RF HL) when applied to incidents sampled from a non-stationary
rate distribution and using a data-driven travel time router. This figure presents the full
response time distributions; the boxplot represents the data’s Inter-Quartile Range (IQR
= Q3−Q1), and the whiskers extend to the 9th and 91st percentiles.

Baseline MMC HL RF HL
290

300

310

320

Policy

Re
sp
on

se
Ti
m
e
(se

c)

5 regions
6 regions
7 regions

Figure 4.11: Results when applying the baseline, complete hierarchical planner using the
MMC queuing high level planner (MMC HL), and complete planner using the surrogate
model high level planner (RF HL) when applied to incidents sampled from a non-stationary
rate distribution and using a data-driven travel time router. This figure presents a zoomed
in view of the average response times.

84

0 1 2 30

200

400

600

800

1,000

Number of Equipment Failures

Re
sp
on

se
Ti
m
es

(se
c)

Baseline
LL Only
MMC HL
RL HL

Figure 4.12: Results when applying the low-level planner only (LL Only), complete hi-
erarchical planner using the MMC queuing high level planner (MMC HL), and complete
planner using the surrogate model high level planner (RF HL) when subjected to increas-
ing numbers of simultaneous equipment failures. This figure presents the full response time
distributions; the boxplot represents the data’s Inter-Quartile Range (IQR = Q3−Q1), and
the whiskers extend to the 9th and 91st percentiles.

85

0 1 2 3
300

350

Number of Equipment Failures

Re
sp
on

se
Ti
m
e
(se

c)

Baseline
LL Only
MMC HL
RL HL

Figure 4.13: Results when applying the low-level planner only (LL Only), complete hi-
erarchical planner using the MMC queuing high level planner (MMC HL), and complete
planner using the surrogate model high level planner (RF HL) when subjected to increasing
numbers of simultaneous equipment failures. This figure presents a zoomed in view of the
average response times.

Stationary Incident Rates: We begin by comparing the baseline policy with the pro-

posed low-level planner on incidents sampled from stationary incident rates. Instead of

using the data-driven surrogate and travel-time models, we test the low-level planner in

isolation, i.e., we use the simpler queue-based model for initial allocations and a travel-

time model based on Euclidean distance (we present results with the data-driven models

later). The results are shown in figures 4.6 and 4.7. Our first observation is that using the

low-level planner reduces response times for all region configurations, improving upon the

baseline by 7.5 seconds on average. This reduction is a significant improvement in the

context of emergency response since it is well-known that paramedic response time affects

short-term patient survival [102]. We also observe a significant shift in the distribution of

response times, with the upper quartile of the low-level results being reduced by approxi-

mately 71 seconds for each region configuration. This reduction in variance indicates that

the proposed approach is more consistent than the baseline. As a result, a lesser number of

86

incidents experience large response times.

Non-Stationary Incident Rates: We now examine the results of experiments using in-

cidents generated from non-stationary incident distributions, which are shown in figures 4.8

and 4.9. Again, we begin by using the simple queue-based allocation. Our first observation

is that response times generally increase relative to the stationary experiments for both the

baseline and the proposed approach. This result is expected since the response to incidents

sampled from a non-stationary distribution is more challenging to plan for. However, we

also observe that our approach can better adapt to the varying rates. The low-level plan-

ner in isolation improves upon the baseline’s response times by 18.6 seconds on average.

Introducing the complete hierarchical planner (i.e., both the high-level and low-level plan-

ners) improves the result further, reducing response times by 3 seconds compared to using

only the low-level planner, and 21.6 seconds compared to the baseline. We again observe

that the region configuration has a small effect on the efficiency of the proposed approach.

This result shows that our approach reduces lower response times irrespective of how the

original problem is divided into regions. Finally, we also observe that the variance of the

response time distributions achieved by the proposed method is not as low as compared to

the stationary experiments, which is likely due to the high strain placed on the system from

the non-stationary incident rates.

We now evaluate the surrogate model and its effect on the planner. First, we show how

the model performs while forecasting waiting times in unseen test data with respect to the

queuing model. We show the results in figure 4.15. We observe that the surrogate model

based on random forest regression significantly outperforms the queuing-based model; this

improvement is expected as the regression model considers travel times and the time taken

to drop victims to hospitals through the simulated data. Even though the queuing-based

model has large prediction errors, we show that using it as a heuristic to guide the high-

level planner outperforms the baseline approach, most likely because such an estimator

learns the proportion of waiting times among the regions fairly well.

87

Figure 4.14: Example of the high-level planner resolving an equipment failure. In sub-
figure (left), the agent positioned at the depot marked by the red circle in the green region
fails, and the high-level planner determines there is an imbalance across regions. In sub-
figure (right), we see the planner move an agent from the depot marked by the red dotted
circle to the green region to ensure that the upper left of the region can be serviced.

5 6 70

5

10

Number of Regions

M
ea
n
Sq
ua
re
d
Er
ro
r

(se
co
nd

s,
lo
g-
sc
al
e)

Random Forest Regression
MMC Estimator

Figure 4.15: Mean Squared Error in logarithmic scale for the proposed estimators. The
random forest regression model performs significantly better in comparison to the queuing
based estimator. However, as the queuing based estimator learns the proportion of wait
times among the regions fairly well, it serves as a meaningful heuristic to guide the high-
level planner.

Finally, we test the entire hierarchical planning pipeline (with both the surrogate model

and the queuing-based model for initial allocation) and compare it with the baseline ap-

proach. We also use the data-driven travel time router to replicate realistic travel times.

We present the results in figures 4.10 and 4.11. We see that the hierarchical planner with

88

the data-driven surrogate model usually outperforms the other approaches. On average, it

improves response times by about 23 seconds with respect to the baseline model and by

about 6 seconds with respect to a hierarchical planner that uses a queuing model for the

high-level planner when using each model’s best region segmentation. We note that the

high-level planner using the queuing model outperforms the surrogate model in one case (5

regions). A potential cause for this might be shifts in the underlying environmental distri-

butions, which have been shown to cause learning-based approaches to perform poorly in

other domains [103, 104, 105]. Future analyses are needed to examine the impact of such

shifts on the surrogate model and identify other potential causes for the queuing model to

perform better in some situations.

Responder Failures: Results on the non-stationary incident distribution demonstrate

the effectiveness of the hierarchical planner when there are shifts in the spatial distribution

of incidents. We now examine its response to equipment failures within the ERM system.

Figure 4.14 illustrates an example (from our experiments) of how the planner can adapt

to equipment failures. When a responder in the green region fails, the high-level planner

determines that imbalance in the spatial distribution of the responders. Intuitively, due to

the failure incidents occurring in the upper left cells of the green region could face long

response times. Therefore, the planner reallocates a responder from the orange region to

the green region. To examine how equipment failures impact the proposed approach, we

simulated several responder failures and compared system performance using the baseline

policy, the low-level planner in isolation, the full hierarchical approach using the MMC

queue high-level planner, and the full approach using the surrogate model. We show the

results in figures 4.12 and 4.13. Naturally, as the number of failures increases, response

times increase with fewer responders. However, we observe that the proposed hierarchical

approach intelligently allocates the remaining responders to outperform the baseline and

low-level planner in isolation. Indeed, when there are three simultaneous failures, using the

MMC queuing-based hierarchical planner improves response times by about 82 seconds

89

compared to the baseline policy and about 22 seconds compared to using only the low-

level planner.

Allocation Computation Times: Decisions using the proposed approach take 180.29

seconds on average. Note that this is the time that our system takes to optimize the al-

location of responders. Dispatch decisions are greedy and occur instantaneously. Hence,

our system can easily be used by first responders on the field without hampering existing

operational speed.

4.8 Related work

Markov decision processes can be directly solved using dynamic programming when

the transition dynamics of the system are known [81]. The transition dynamics are typ-

ically unknown for resource allocation problems in complex environments like urban ar-

eas, [76]. The Simulate-and-Transform (SimTrans) algorithm [53] can be used to address

this issue; it performs canonical policy iteration with an added computation. In order to

estimate values (utilities) of states, the algorithm simulates the entire system of incident

occurrence and responder dispatch and keeps track of all states, transitions, and actions,

and gradually builds statistically confident estimates of the transition probabilities.

While SimTrans finds a close approximation of the optimal policy (assuming that the

estimates of the transition probabilities are close to the true probabilities), the process is ex-

tremely slow and unsuited to dynamic environments. As an example, even if a single agent

(ambulance in this case) breaks down, the entire process of estimating transition proba-

bilities and learning a policy must be repeated. To better react to dynamic environmental

conditions, decentralized and online approaches have been explored [83, 46]. For example,

Claes et al. [83] entrust each agent to build its own decision tree and show how computa-

tionally cheap models can be used by agents to estimate the actions of other agents as the

trees are built.

An orthogonal approach to solve large-scale MDPs is using hierarchical planning [17].

90

Such an approach focuses on learning local policies, known as macros, over subsets of

the state space. The concept of macro-actions was introduced separately from hierarchical

planning as means to reuse a learned mapping from states to actions to solve multiple MDPs

when objectives change [106, 107]. Later, the macro-policies were used in hierarchical

models to address the issue of large state and action spaces [108, 17].

We also describe how allocation and dispatch are handled in emergency response. First,

note that the distinction between allocation and response problems can be hazy since any

solution to the allocation problem implicitly creates a policy for response (greedy re-

sponse based on the allocation) [76]. We use a similar approach in this paper because

greedy response satisfies the constraints under which first responders operate. A com-

mon metric for optimizing resource allocation is coverage [109, 40, 110]. Waiting time

constraints are often used as constraints in approaches that maximize coverage [111, 50].

Decision-theoretic models have also been widely used to design ERM systems. For exam-

ple, Keneally et al. [57] model the resource allocation and dispatch problem in ERM as

a continuous-time MDP, while we have previously used a semi-Markovian process [53].

Allocation in ERM can also be addressed by optimizing the distance between facilities and

demand locations [93, 46], and explicitly optimizing for patient survival [7, 112].

4.9 Conclusion

We present a hierarchical planning approach for dynamic resource allocation in city

scale cyber-physical system (CPS). We formulate a general decision-theoretic problem for

that can be used in a variety of resource allocation settings. We model the overall problem

as a Multi-Agent Semi-Markov Decision Process (MSMDP), and show how to leverage

the problem’s spatial structure to decompose the MSMDP into smaller and tractable sub-

problems. We then detail how a hierarchical planner can employ a low-level planner to

solve these sub-problems, while a high-level planner identifies situations in which resources

must be moved across region lines. We use emergency response as a case-study and validate

91

the proposed approach with data from a major metropolitan area in the USA. Our experi-

ments show that our proposed hierarchical approach offers significant improvements when

compared to the state-of-the-art in emergency response planning, as it maintains system

fairness while significantly decreasing average incident response times. We also find that

it is robust to equipment failure and is computationally efficient enough to be deployed in

the field without hampering existing operational speed. While this work demonstrates the

potential of hierarchical decision making, several non-trivial technical challenges remain,

including how to optimally divide a spatial area such that the solutions of the sub-problems

maximize the overall utility of the original problem. We will explore these challenges in

future work.

92

Table 4.1: Notation.

Symbol Definition
Λ Set of agents
D Set of depots
C (d) Capacity of depot d
G Set of cells
R Set of regions
S State space
A Action space
P State transition function
T Temporal transition distribution
α Discount factor
ρ(s,a) Reward function given action a taken in state s
A Joint agent action space
T Termination scheme
st Particular state at time t
It Set of cell indices waiting to be serviced
Q(Λ) Set of agent state information
pt

j Position of agent j
gt

j Destination of agent j
ut

j Current status of agent j
si,s j Individual states
σ Action recommendation set
η Service rate
γg Incident rate at cell g
th Time since beginning of planning horizon
tr(s,a) Response time to an incident given action a in state s
p j Number of agents assigned to region r j
γ j Total incident rate in region r j
w j(p j,γ j) Expected waiting time for incidents in region r j
D j Set of depots in region r j
G j Set of cells in region r j

93

Chapter 5

Decentralized SCPS Planning

5.1 Overview

Chapter 4 presents a hierarchical decision support framework that breaks up the SCPS

into smaller, more manageable sub-problems that are each optimized using standard Monte-

Carlo tree search. A high-level planner is used to create the sub-problems and coordinate

between them as the environment evolves. This approach is scalable to complex multi-

agent SCPS problems such as spatio-temporal resource allocation. However, a limita-

tion of this approach is that it requires both complete communication and coordination

between agents within a subproblem, and a framework for communication between the

sub-problems for the high-level planner. Many SCPS, such as emergency response ser-

vices, are safety critical systems that must be robust to failures in an area’s communication

infrastructure. To illustrate, consider the bombing that occurred in Nashville on December

25th, 2020 [113]. AT&T’s central office in the city’s downtown area was targeted, and the

attack disrupted 911 call centers for several days. Communication infrastructure could also

be disrupted by large scale events such as natural disasters; emergency services and other

critical SCPS must be robust to communication failure in such situations.

This chapter presents a decentralized decision-making framework for multi-agent SCPS

that enables each agent to independently determine its own course of action. The technique

can be thought of as an extreme version of hierarchical planning, where each agent is

considered its own sub-problem. This allows the system to function with access to lim-

ited inter-agent communication while being extremely scalable in terms of the number of

agents. However, due to the limited communication, the hierarchical framework’s high-

level planner that coordinates between the sub-problems is not feasible in this domain.

94

Instead, each agent must estimate the behavior of the other agents using a computation-

ally cheap model. This chapter describes techniques to model this behavior, ensure system

constraints are satisfied, and construct a decentralized MCTS framework.

The work comprising this chapter has been published in the Proceedings of the 19th

Conference on Autonomous Agents and MultiAgent Systems (AAMAS) [29].

• G. Pettet, A. Mukhopadhyay, M. Kochenderfer, Y. Vorobeychik, and A. Dubey (2020).

“On Algorithmic Decision Procedures in Emergency Response Systems in Smart and

Connected Communities,” in Proceedings of the 19th Conference on Autonomous

Agents and MultiAgent Systems, AAMAS 2020, Auckland, New Zealand.

5.2 Introduction

Emergency response management (ERM) is a critical problem faced by communities

across the globe. First responders must attend to many incidents dispersed across space and

time using limited resources. ERM can be decomposed into the following sub-problems —

forecasting, planning, and dispatching. Although these have been examined independently,

planning and dispatch decisions are dependent on accurate incident forecasting. Therefore,

it is imperative that principled approaches are designed to tackle all three sub-problems.

However, it is fairly common for ERM systems to follow myopic and straight-forward

decision policies. For decades, the most common dispatching approach was to send the

closest available responder to the incident (in time or space), after which the responder

would return to its base or be reassigned. Such methods do not necessarily minimize ex-

pected response times [50]. As cities grow, population density, traffic dynamics and the

sheer frequency of incidents make such methods stale and inaccurate. We systematically

investigate the nuances of algorithmic approaches to ERM and describe how principled

decision-making can aid emergency response.

Naturally, algorithmic approaches to emergency response typically combine a data-

driven forecasting model to predict incidents with a decision-making process that pro-

95

vides dispatch recommendations. Canonical approaches towards modeling the decision

process involve using a Continuous-Time Markov Decision Process (CT-MDP)[57] or a

Semi-Markovian Process (SMDP)[53], which are solved through dynamic programming.

While the SMDP model provides a more accurate representation of ERM dynamics, it

does not scale well for dynamic urban environments[114]. The trade-off between optimal-

ity and computational time has also been investigated by the use of Monte-Carlo based

methods[114].

Despite such algorithmic progress and attention in recent years from the AI community

[115, 53, 75, 114, 116, 117], there are still issues that impede the adoption of principled

algorithmic approaches. We argue that a major problem lies in the very focus of most

algorithmic approaches. Most ERM systems seek to perform decision-making after inci-

dents occur. While such approaches guarantee optimality in the long run (with respect to

response times), they de-prioritize response to some incidents. Our conversations with first-

responders[42] revealed two crucial insights about this problem: 1) it is almost impossible

to gauge the severity of an incident from a call for assistance and de-prioritize immediate

response in anticipation of higher future rewards, and 2) Computer-Aided Dispatch sys-

tems (CAD)[118] typically enable a human agent to dispatch a responder in the span of

5-10 seconds. These insights explain why the closest responder is usually dispatched to an

incident; it is too risky to de-prioritize incidents of unknown severity.

We raise an important conceptual question about algorithmic approaches to emergency

response - is it feasible to optimize over dispatch decisions once an incident has happened?

In this paper we argue that the crucial, practical period of principled decision-making is

between incidents. This avoids the potential consequences of explicitly choosing to de-

prioritize response to an incident to achieve future gain, but accommodates the scope of

principled decision-making. Most ERM systems do not exploit the scope of dynamically

rebalancing the spatial distribution of responders according to the need of the hour. This

problem is challenging since optimizing responder distribution and response as a multi-

96

objective optimization problem is usually computationally infeasible. Indeed, even Monte-

Carlo based methods have previously been used with a restricted action space (only re-

sponding to incidents) to achieve acceptable computational latency[114]. We address this

challenge by proposing two efficient algorithmic approaches to optimize over the spatial

distribution of responders dynamically.

The second set of problems that impedes the adoption of algorithmic decision-making

in ERM is related to resilience and efficiency. Data processing and decision-making for

algorithmic dispatching usually occur in a centralized manner (typically at a central data

processing center), which is then communicated to responders. ERM, however, clearly

evolves in a multi-agent setting, in which the agents have the capacity to perform indepen-

dent computation (most modern ambulances are equipped with laptops). In an extremely

time-critical setting, especially during communication breakdowns often caused by disas-

ters, it is crucial that such computing abilities are used, and distributed and parallelized

algorithmic frameworks are designed. Also, centralized decision-making systems treat all

agents as part of a monolithic object or state. This is redundant, as agents often operate in-

dependently (for example, an ambulance in one part of the city is usually not affected by an

incident in a completely different or distant part). In this paper, we argue that decentralized

planning could identify and utilize structure in the problem and save vital computational

time.

Contributions: We focus on two problems in this paper 1. designing an approach that

can accommodate rebalancing of resources to ensure efficient response, and 2. designing

the ability for an emergency response system to be equipped to deal with scenarios that

require decentralized planning with very limited communication. To this end, we start

by modeling the problem of optimal response as a Multi-Agent Semi-Markov Decision

Process (M-SMDP)[119, 120]. Then, we describe a novel algorithmic approach based on

Multi-Agent Monte-Carlo Tree Search (M-MCTS)[83] that facilitates parallelized planning

to dynamically rebalance the spatial distribution of responders. Our approach utilizes the

97

computation capacity of each individual agent to create a partially decentralized approach

to planning. Finally, we evaluate our framework using real-world data from Nashville, TN.

We find that these approaches maintain system fairness while decreasing the average and

variance of incident response times when compared to the standard procedure.

Outline: Through the rest of the paper, we describe the overall problem of emergency

response and explain the algorithmic framework. We begin by providing a brief background

regarding how ERM pipeline can be modeled technically, and how theoretical approaches

to solution work in such situations. Then, we describe our algorithmic framework in detail,

and finally, evaluate our framework using incident and response data from Nashville, TN.

Table 5.1 can be used as a reference for the symbols we use.

5.3 System Model

Our goal is to develop an approach for emergency responder placement and incident

response in a dynamic, continuous-time and stochastic environment. We begin with several

assumptions on the problem structure and information provided a-priori. First, we assume

that we are given a spatial map broken up into a finite collection of equally-sized cells G,

and that we are given an exogenous spatial-temporal model of incident arrival in continuous

time over this collection of cells (we describe one such model later). Second, we assume

that for each spatial cell, the temporal distribution of incidents is homogeneous. Our third

assumption is that emergency responders are allowed to be housed in a set of fixed and

exogenously specified collection of depots D. Depots are essentially a subset of cells that

responders can wait in, and are analogous to fire-stations in the real-world. Each depot

d ∈ D has a fixed capacity C (d) of responders it can accommodate at a time. We assume

that when an incident happens, a free responder (if available) is dispatched to the site of

the incident. Once dispatched, the time to service consists of two parts: 1) time taken to

travel to the scene of the incident, and 2) time taken to attend to the incident. If no free

responders are available, then the incident enters a waiting queue.

98

5.3.1 Incident Arrival

An important component of a decision-theoretic framework to aid emergency response

is the understanding of when and where incidents occur. While our algorithmic framework

can work with any forecasting model, we briefly describe the one that we choose to use: a

continuous-time forecasting model based on survival analysis. It has recently shown state-

of-the-art performance in prediction performance for a variety of spatial-temporal incidents

(crimes, traffic accidents etc.)[50, 49, 75]. Formally, the model represents a probability

distribution over inter-arrival times between incidents, conditional on a set of features, and

can be represented as

ft(T = t|γ(w))

where ft is a probability distribution for a continuous random variable T representing

the inter-arrival time, which typically depends on covariates w via the function γ . The

model parameters can be estimated by the principled procedure of Maximum Likelihood

Estimation (MLE) [121].

5.3.2 Decision-Making Process

The evolution of incident arrival and emergency response occur in continuous-time,

and can be cohesively represented as a Semi-Markov Decision Process (SMDP) [53]. An

SMDP system can be described by the tuple (S,A,P,T,ρ(i,a),α) where S is a finite state

space, A is the set of actions, P is the state transition function with pi j(a) being the prob-

ability with which the process transitions from state i to state j when action a is taken, T

denotes the temporal transition with t(i, j,a) representing a distribution over the time spent

during the transition from state i to state j under action a, ρ represents the reward function,

and α is the discount factor.

To adapt this formulation to a multiagent setting, we model the evolution of incidents

99

and responders together in a Multi-Agent SMDP (MSMDP)[86], which can be represented

as the tuple (Λ,S,A ,P,T,ρ(i,a),α,T), where Λ is a finite collection of agents and λ j ∈Λ

denotes the jth agent. The action space of the jth agent is represented by A j, and A =

∏
m
i=1 A j represents the joint action space. We assume that the agents are cooperative and

work to maximize the overall utility of the system. The components S, ρ and P are defined

as in a standard SMDP. T represents a termination scheme; note that since agents each take

different actions that could take different times to complete, they may not all terminate at

the same time. An overview of such schemes can be found in prior literature [86]. We focus

on asynchronous termination, where actions for a particular agent are chosen as and when

the agent completes it’s last assigned action. Next, we define the important components of

the decision process in detail.

States: A state at time t is represented by st which consists of a tuple (It ,Rt), where It is

a collection of cell indices that are waiting to be serviced, ordered according to the relative

times of incident occurrence. Rt corresponds to information about the set of agents at time t

with |Rt |= |Λ|. Each entry rt
j ∈ Rt is a set {pt

j,g
t
j,u

t
j}, where pt

j is the position of responder

λ j, gt
j is the destination cell that it is traveling to (which can be its current position), and

ut
j is used to encode its current status (busy or available), all observed at the state of our

world at time t. For the sake of convenience, we abuse notation slightly and refer to an

arbitrary state simply by s and use the notation si and s j to refer to multiple states. We

point out that our model revolves around states with specific events that provide the scope

of decision-making. Specifically, decisions need to be taken when incidents occur, when

responders finish servicing and while rebalancing the distribution of responders. We also

make the assumption that no two events can occur simultaneously in our world. In case

such a scenario arises, since the world evolves in continuous time, we can add an arbitrarily

small time interval to segregate the two events and create two separate states.

Actions: Actions in our world correspond to directing the responders to a valid cell to

either respond to an incident or wait. Valid locations include cells with pending incidents

100

or any depot that has capacity to accommodate additional responders. For a specific agent

λi, valid actions for a specific state si are denoted by Ai(si) (some actions are naturally

invalid, for example, if an agent is at cell k in the current state, any action not originating

from cell k is unavailable to the agent). Actions can be broadly divided into two categories

- responding and rebalancing. Responding actions refer to an agent actually going to the

scene of an incident to service it. But agents could also be directed to wait at certain depots

based on the likelihood of future incidents in the proximity of the said depot. We refer to

such actions as rebalancing. Finally, we reiterate that the joint valid action space of all the

agents and a particular instantiation of it are defined by A and a respectively, and that of a

specific agent λ j by A j and a j.

Transitions: Having described the evolution of our world, we now look at both the

transition time between states, as well as the probability of observing a state, given the

last state and action taken. We define the former first, denoting the time between two

states si and s j by the random variable ti j. There are four random variables of interest in

this context. We denote the time between incidents by the random variable ta, the time

to service an incident by ts, the time taken for a balancing step as tb and the time taken

for a responder to reach the scene of an incident by tr. We overload these notations for

convenience later. Specifically, we model ta using a survival model described in section

5.3.1. We model the service times (ts) by learning an exponential distribution from service

times using historical emergency response data, and we model rebalancing time (tb) simply

by the time taken by an agent to move to the directed cell.

We refrain from focusing on the transition function P, as our algorithmic framework

only needs a generative model of the world and not explicit estimates of state transition

probabilities.

Rewards: Rewards in SMDP usually have two components: a lump sum instantaneous

reward for taking actions, and a continuous time reward as the process evolves. Our system

only involves the former, which we denote by ρ(s,a), for taking action a in state s. We

101

define the exact reward function in section 5.4.3.

5.3.3 Problem Definition

Given state s and an agent set Λ, the problem is to determine an action recommendation

set σ = {a1, ...,am}, s.t. ai ∈ Ai(s), that maximizes the expected reward. The ith entry in

σ contains a valid action for the ith agent.

Sovling this problem directly is hard due to its intractable state space. Further, the state

transition functions are unknown and difficult to model in closed form, which is typical of

urban scenarios where incidents and responders are modeled cohesively [53]. Finally, we

have to consider the following practical constraints and limitations.

• Temporal constraints — emergency response systems can afford minimum latency (5-

10 seconds in practice).

• Capacity constraints — each depot has a fixed agent capacity.

• Uniform severity constraint — all incidents must be responded to ‘promptly’, without

making a judgement about its severity based on a report or a call.

• Wear and Tear — The overall distance agents travel should be controlled to limit vehicle

wear and tear.

• Limited Communication - ERM systems must be equipped to deal with disaster situa-

tions, where communication is limited.

The temporal and uniform severity constraints make it difficult to justify implementing

dispatch policies other than greedy; in order to improve upon greedy dispatch, some ‘good’

myopic rewards must be sacrificed for an increase in expected future rewards. Since it is

very hard to predict the severity of an incident pre-dispatch, the decision process cannot

determine if this sacrifice is acceptable. Therefore, in this work we focus on inter-incident

planning while maintaining greedy dispatch decisions when an incident is reported. This

approach gives the decision-maker more flexibility, as it can proactively position resources

102

rather than reacting to incidents. Our problem then becomes how to distribute responders

between incidents such that the greedy dispatching rewards are maximized.

5.4 Rebalancing Approach to ERM

5.4.1 Problem Complexity

Dynamic rebalancing’s flexibility comes with an increase in complexity. Consider an

example city with |Λ| responders (i.e. agents) and |D| locations where responders could

be stationed (called depots) that each can hold one responder. When making a dispatch

decision at the time of an incident, a decision maker has at most |Λ| possible choices:

which responder to dispatch. If instead it is re-assigning responders across depots, there

are significantly more choices. For example, with |Λ| = 20 and |D| = 30, there are 20

dispatching choices per incident, but P(|D|, |Λ|) = |D|!
(|D|−|Λ|)! =

30!
10! = 7.31× 1025 possible

assignments. This will only increase if depots have higher responder capacities.

Approaching the problem from this perspective requires solutions that can cope with

this large complexity. One possible approach is to directly solve the SMDP model. Al-

though the state transition probabilities are unknown, one can estimate the transition func-

tion by embedding learning into policy iteration[53]. This approach is unsuitable for re-

balancing, as it is too slow even for the dispatch problem. A centralized MCTS approach

suffers from the same shortcoming, barely satisfies the computational latency constraints

in case of the dispatch problem[24]. Instead, we seek to exploit meaningful heuristics to

propose computationally feasible rebalancing strategies. We begin by presenting our first

approach, which focuses on using historical frequencies of incident occurrence across cells

to assign responders.

103

5.4.2 Multi-Server Queue Based Rebalancing

One way to address the complexity of rebalancing is by considering an informed heuris-

tic. A natural heuristic for ERM rebalancing is incident rate — each depot can be assigned

responders based on the total rate of incidents it serves. Ultimately, our goal is to find a

rebalancing strategy that minimizes expected response times. As a result, we first estimate

the response time given a specific assignment of responders. Such a scenario can be mod-

eled as a multi-server M/M/c queue [122]. For a given cell and depot, the response time for

an M/M/c queue can be represented as

responseTime(cd,υ ,µ) =
ω(cd,υ/µ)

cdµ−υ
+

1
µ

where ω(cd,υ/µ) =
1

1+(1− υ

cd µ
)(cd!

(cdq)c)∑
cd−1
k=0

(cdq)k

k!

(5.1)

where µ = E(ts) is the mean service time of responders, cd is the number of responders

stationed at the depot, υ denotes the rate of incident occurrence at the concerned cell, and

q = υ

cµ
is server utilization. The standard M/M/c model above needs slight adjustment

to account for the fact that incidents at a cell g can potentially be serviced by any depot,

which are located at different distances from g. Therefore, we consider a multi-class queue

formulation in which a cell’s incident rate is split among each depot. Since depots closer

to a cell g are more likely to service its incidents, we split g’s incident arrival rate such that

the fraction of rate incurred by a depot is inversely proportional to the distance to g.

The following system of linear equations can be used to split the arrival rate of a cell g

among depots D.

∑
d∈D

υ
d
g = υg (5.2a)

dist(d̃,g)υ d̃
g = dist(di,g)υdi

g ∀di ∈ D\d̃ (5.2b)

104

where the variable υd
g is the fraction of arrival rate of cell g that is shared by depot d,

dist(d,g) denotes the distance between depot d and cell g, and d̃ is the depot closest to g.

Equation 5.2a ensures that the split rates for each cell g∈G sum to its actual arrival rate υg,

and equation 5.2b ensures that the weighted υ’s are inversely proportional to the relative

distances between the depots and the cell. For convenience, we refer to the entire set of

split rates by ϒ.

The split rates ϒ provide a foundation for a responder rebalancing approach, given a few

considerations. First, we might not have enough responders to meet the total demand based

on ϒ. Secondly, the problem of evaluating response times in the context of emergency

response is different than the standard M/M/c queue formulation, since travel times are not

memoryless, and must be modeled explicitly. To address these issues, we design a scoring

mechanism for evaluating a specific allocation of responders to depots for a given ϒ. We

denote this score by πϒ. Using ϒ, a responder allocation can be scored by summing each

depot d’s expected response time based on the queuing model (calculated using equation

5.1) and the overall time taken by responders to complete the rebalancing:

πϒ = ∑
d∈D

∑
g∈G

⊮(d,Λ){responseTime(cd,υ
d
g ,µ)+ travelTime(d,g)} (5.3)

where ⊮(d,Λ) is an indicator function which set to 1 only if depot d has at least one

responder, and the functions responseTime and travelTime are used to denote the expected

response time of a depot and travel times needed by agents to respond to incidents. The

goal of an assignment method is then to find a responder allocation that minimizes this

heuristic score. To minimize the total score we employ an iterative greedy approach, shown

in algorithm 9. Once the best depots are found, responders are assigned to them based on

their current distance from the depots.

The approach dramatically decreases the computational complexity of rebalancing com-

pared to a brute force search. The complexity for solving the system of linear equations

{5.2a, 5.2b} is O(|Λ|3), as there are at most |Λ| depots that could have a resource allo-

105

Algorithm 9: Iterative Greedy Action Selection
1 INPUT: number of agents |Λ|, depots D, depot capacities C, grid rates υg∀g ∈ G;
2 final depot occupancy := Hash {d : 0} ∀d ∈ D ;
3 do
4 candidate depots := Set /0;
5 candidate scores := Hash /0;
6 for d ∈ D do
7 if final depot occupancy[d] <C(d) then
8 temp occ := final depot occupancy;
9 temp occ[d] += 1;

10 find ϒd by solving system of linear equations {5.2a, 5.2b} given temp occ;
11 πϒd := ∑d∈D ∑g∈G⊮(d,Λ){responseTime(temp occ[d],υd

g ,µ)+ travelTime(d,g)};
12 candidate depots := candidate depots ∪d;
13 candidate scores := candidate scores ∪{d : πϒd}

14 best depot := argmin πϒd ∀d ∈ candidate depots;
15 final depot occupancy[best depot] += 1;
16 while sum(final depot occupancy)< |Λ|;
17 return chosenDepots;

cated. The rates are split for each cell g ∈ G and new depot under consideration d during

each iteration of the greedy search in algorithm 9, which is repeated |Λ| times to place

each responder. This gives the overall algorithm a complexity of O(|G||D||Λ|5). Taking

the same example given above with |Λ|= 20 and |D|= 30 and assuming |G|= 900 (based

on our geographic area of interest and patrol areas chosen by local emergency responders),

the complexity is 1×1015 times less than a brute force search.

While this approach is not inherently decentralized, each agent can perform these com-

putations and take actions themselves, requiring minimal coordination. While straightfor-

ward and tractable, there are a few potential downsides to this approach. First, this policy

does not take into account the internal state of the system. For example, a responder might

be on its way to respond to an incident, thereby rendering it unavailable for rebalancing.

Secondly, it assumes that historical rates of incident arrival can be used to optimize respon-

der placement for the future, thereby not considering how future states of the system affect

a particular rebalancing configuration. To address these issues, we propose a decentralized

Monte-Carlo Tree Search algorithm.

106

5.4.3 Decentralized MCTS Approach

Monte-Carlo Tree Search (MCTS) is a simulation-based search algorithm that has been

widely used in game playing scenarios.

MCTS based algorithms evaluate actions by sampling from a large number of possible

scenarios. The evaluations are stored in a search tree, which is used to explore promising

actions. Typically, exploration policy is dictated by a principled approach like UCT[97].

A standard MCTS-based approach is not suitable for our problem due to the sheer size

of the state-space in consideration coupled with the low latency that ERM systems can

afford. Instead, we focus on a decentralized multi-agent MCTS (MMCTS) approach ex-

plored by Claes et. al [83] for multi-robot task allocation during warehouse commissioning.

In MMCTS individual agents build separate trees focused on their own actions, rather than

having one monolithic, centralized tree. This dramatically reduces the search space: in

our case, at each evaluation step of a Monte-Carlo based approach, using a decentralized

multi-agent search reduces the total number of choices from the number of permutations

P(|D|, |Λ|) = |D|!
(|D|−|Λ|)! to only the number of depots |D|.

To realize MMCTS for an ERM domain, some extensions need to be made to standard

UCT [123]. While an agent is building its own tree, it must model other agents’ behavior.

Since this estimation is required at every step of every simulation by each agent, finding a

model that strikes a balance between computation time and accuracy of predicted actions

is vital.

There are also global constraints on the system which mandate agents maintain a min-

imal degree of coordination. For example, the number of resources assigned to a depot

cannot be higher than its capacity. We take this into account by adding a filtering step to

the decision process. Similar to Map-Reduce [124], each agent sends their evaluated ac-

tions to a central planner which makes the final decisions while satisfying global system

constraints.

Next, we describe the architecture of our decentralized MMCTS based algorithm.

107

• Reward Structure: At the core of an MCTS approach is an evaluation function that

measures the reward of taking an action in a given state. For a state s in the tree of agent

λ j, we design the reward ρ of taking an action a in s as

ρ(s,a) =


ρs−1−α th(tr(s,a)), if responding to an incident

ρs−1−α thψ
∑λk∈Λ(φk(s,a))

|Λ| , if balancing at s
(5.4a)

where ρs−1 refers to the total accumulated reward at the parent of state s in the tree, α is

the discount factor for future rewards, and th the time since the beginning of the planning

horizon t0. The evaluation function is split into cases reflecting the separate incident

dispatch and balancing steps in our solution approach. In a dispatch step, the reward is

updated with the discounted response time to the incident tr(s,a). In a balancing step, we

update the reward by the average distance traveled by the agents (we denote the distance

traveled by agent λk while balancing due to action a in s by φk(s,a)). ψ is an exogenous

parameter that balances the trade-off between response time and distance traveled for

balancing, and is set by the user depending on their priorities. Distance is not included

during dispatch actions, as we always send the closest agent.

• Evaluating other agents’ actions: Agents must have an accurate yet computationally

cheap model of other agents’ behavior; we explore two such possible policies — (1) a

naive policy that other agents will not rebalance, remaining at their current depot (referred

to as Static Agent Policy), and (2) an informed policy, which is in the form of the Queue

Rebalancing Policy described in the section 5.4.2. These are used to select actions for

the other agents Λ\{λi} when building agent λi’s search tree, and are represented by the

ActionSelection(available agents, state) function in line 5 of algorithm 12.

• Rollout: When working outside the MMCTS tree, i.e. rolling out a state, a fast heuristic

is used to estimate the score of a given action. We use greedy dispatch without balancing

as our heuristic.

108

Algorithm 10: Decision Process
1 INPUT: state s, time limit tlim;
2 I := Sample Incidents(s)
3 E := I + rebalancing events
4 ranked action set Ã := /0;
5 for Agent λ j ∈ Λ do
6 Ã [λ j] := MMCTS(s, λ j, E, tlim);

7 recommended actions σ := CentralizedActionFilter(s, Ã);
8 apply σ to s;
9 Return s;

Algorithm 11: MMCTS
1 INPUT: state s, agent λ j, sampled events E, time limit tlim;
2 create root of search tree at s;
3 do
4 select most promising node n from tree using UCB1;
5 childNode := Expand(n, λ j, next event e ∈ E after state(n));
6 rc := Rollout(childNode);
7 back-propagate(child, rc)
8 while within time limit tlim;
9 return actions λ j could take ranked by average reward

• Action Filtering: The dispatching domain has several global constraints to adhere to,

including ensuring that an incident is serviced if agents are available and that depots are

not filled over capacity. To meet these constraints, we propose a filtering step be added to

the MMCTS workflow, similar to Map-Reduce. Once each individual agent has scored

and ranked each possible action, these are sent to a centralized filter that chooses the final

actions for each agent to maximize utility without breaking any constraints.

Another way global constraints affect the workflow is that the set of valid actions for

an agent when they build their search tree may not be the same as the valid actions when

it comes time for them to make a decision. For example, consider two agents λ1 and λ2;

if agent λ1 moves to a station and fills it to capacity, then agent λ2 cannot move to that

station. To address this, we have agents evaluate every action they could possibly take

when expanding nodes in the tree, even if those actions would cause an invalid state. As

the filter assigns actions to other agents, some of these actions can become valid.

109

Algorithm 12: Expand
1 INPUT: Search Tree Node n, agent λ j, next important event e;
2 if e is balancing step then
3 select un-explored action a ∈ A j ;
4 λ j takes action a;
5 actions available to other agents are updated ActionSelection(Λ\{unavailable agents},

state(n));
6 else if e is an incident then
7 dispatch nearest agent to incident
8 create new child node nc from selected actions;
9 update the child’s reward based on the response times (if any) and agent balancing movement

10 update nc to the time of the next event e, fast forwarding the state;
11 return nc;

Algorithm 13: Centralized Action Filter
1 INPUT: state s, ranked actions Ã ;
2 Λavail := agents(s) do
3 candidate actions := /0;
4 for Agent λ j ∈ Λavail do
5 candidate actions[λ j] := valid action a j ∈ Ã [λ j] with highest reward ρ(s,a);

6 find agent λ j with highest scored action a j ∈ candidate actions;
7 λ j takes action a j;
8 update actions available to other agents accordingly;
9 remove λ j from Λavail ;

10 while there are unassigned agents;

5.5 Integration Framework

To realize an online ERM decision support system requires a framework of intercon-

nected processes. Our integration framework is built on our prior modular ERM pipeline

work[114]. It includes the following components:

• A traffic routing model to support routing requests.

• A model of the environment and how it changes over time, which is used by the incident

prediction model.

• A model of the spatio-temporal distribution of incidents.

• A decision process that makes dispatching recommendations based on the current state

of the environment, responder locations, and future incident distributions.

This framework is a natural choice as it decouples the decision process (our focus in this

work) from other components. As it was designed for the centralized, post-incident dis-

110

Figure 5.1: Extended Decentralized ERM Framework Overview

patching approach, we make necessary changes to adapt it to our needs. The underlying

discrete event simulation was generalized to accept events other than incident occurrence,

such as periodic balancing events. The decision process was also extended to handle dis-

tributed, multi-agent approaches. An overview of the extended framework can be seen in

figure 5.1.

In our experiments we use a Euclidean distance based router, and the incident prediction

model outlined in section 5.3. Due to the framework’s modularity, these components can

be replaced without affecting the decision process.

Incident Prediction Model: While the broader approach of rebalancing the spatial

distribution of responders is flexible enough to work with any modular incident forecasting

model, we provide a brief evaluation of forecasting using survival analysis. To this end, we

generate forecasts 4 hours into the future at intervals of every half an hour for the entire test

set, and then repeat the procedure 5 times to reduce variance and increase our confidence in

the forecasts. Finally, we create a heatmap (average of all forecasted rates in the test set) to

visualize the performance of the model in comparison to actual incidents (see figure 5.2).

The forecasting models captures the high and low density areas fairly accurately, as well as

the spatial spread of the incidents.

111

5.5.1 Experimental Design

We perform our evaluation on data from Nashville, TN, a major metropolitan area of

USA, with a population of approximately 700,000. The depot locations are based on actual

ambulance stations obtained from the city. Traffic accident data was obtained from the Ten-

nessee Department of Transportation, and includes the location and time of each incident.

The incident prediction model was trained on 35858 incidents occurring between 1-1-2018

and 1-1-2019, and we evaluated the decision processes on 2728 incidents occurring in the

month of January, 2019.

Experimental Configuration and Assumptions: We limit the capacity of each depot

to 1 in our experiments. This is motivated by two factors — first, it encourages responders

to be geographically spread out to respond quickly to incidents occurring in any region of

the city, and it models the usage of ad-hoc stations by responders, which are often tem-

porary parking spots. While the responder service times to incidents are assumed to be

exponential in the real world, we set them to a constant for these experiments. This ensures

that the experiments across different methods and parameters are directly comparable. If

deployed, however, proper service time distributions should be learned and sampled from

for each ERM system. We set the total number of responders to 26, which is the actual

number of responders in Nashville. We split the geographic area into 900, 1x1 mile square

cells. This choice was a consequence of the fact that a similar granularity of discretiza-

tion is followed by local authorities. To smooth out model noise, each agent evaluates 5

sampled incident chains from the generative model and averages the scores for each action

across the playouts. The standard UCB1 [125] algorithm is used to select the most promis-

ing node during MCTS iterations. Finally, we augment the queue based rebalancing policy

by adding a radius of influence (RoI) for each cell. Only depots within a cell’s RoI are con-

sidered when splitting its rate to encourage even agent distribution and reduce computation

time.

112

Figure 5.2: Heatmaps comparing average incident rates for the forecasting model (left)
with actual incidents in Nashville, TN (right)

.

0 2 4 6 8 10 12
Response times (Minutes)

BASE

Q-1

Q-2

Q-3

Q-4

Q-5

Figure 5.3: The response time distributions for each queue rebalancing policy experiment.

113

0.0 0.5 1.0 1.5 2.0 2.5
Distance Moved (Miles)

Q-1

Q-2

Q-3

Q-4

Q-5

Figure 5.4: Distribution of average miles traveled by each responder at each balancing step
in the queue rebalancing policy experiments. The baseline approach has no rebalancing, so
it is excluded.

0 2 4 6 8 10 12
Response times (Minutes)

BASE

MR-1

MR-2

Figure 5.5: The response time distributions for each MMCTS experiment using an oracle.

114

1 2 3 4 5
Distance Moved (Miles)

MR-1

MR-2

Figure 5.6: Distributions of average miles traveled by each responder at each balancing
step of the MMCTS experiments using an oracle.

0 2 4 6 8 10 12
Response times (Minutes)

BASE

M-1

M-2

M-3

M-4

M-5

M-6

Figure 5.7: The response time distributions for each MMCTS parameter search experiment.

115

2 4 6 8 10
Distance Moved (Miles)

M-1

M-2

M-3

M-4

M-5

M-6

Figure 5.8: Distributions of average miles traveled by each responder at each balancing
step of the MMCTS parameter search experiment.

5.6 Results and Discussion

We now discuss the results of the experiments for the two policies.

5.6.1 Queue Based Rebalancing Policy

We first compare the queue based rebalancing policy described in section 5.4.2 to the

baseline policy of no rebalancing. In these experiments rebalancing occurred every half

hour, and the incident rates υ were average historical rates from the training data. We tested

several values (in miles) for the depots’ RoI, and compared the distributions of response

times (figure 5.3) and the rebalancing distance traveled by each responder (figure 5.4).

Our first observation is that increasing the RoI does not necessarily increase perfor-

mance; there is an optimal zone around RoI=3, implying that encouraging responders to

spread out is beneficial. We also see that while Q-3’s median and 1st quartile response

times remained fairly consistent with the baseline, the upper quartiles are reduced. This

decreases the response time’s mean and variance, making the system more fair to all inci-

116

dents. We also observe that Q-2 and Q-3’s responders traveled less than 1 mile on average

each balancing step.

5.6.2 MMCTS Rebalancing

To determine the potential of the MMCTS rebalancing approach, we first compare the

two agent action models described in section 5.4.3 (Static Agent Policy and Queue Rebal-

ancing Policy) using an oracle, which has complete information regarding future incidents

(this assumption takes the errors of the prediction model out of comparison and enables us

to observe the best results that we can obtain) . We present the results for the response time

distributions in figure 5.5 and the average responder distance traveled per rebalancing step

in figure 5.6.

Our first observation is that the MMCTS approach has high potential. Using an oracle,

it is able to significantly decrease the response time distribution compared to the queue

based policy above. This is not surprising given that a standard MCTS algorithm given

perfect information should perform well given adequate time, but it demonstrates that the

MMCTS extensions of independent action evaluation for each agent and action filtering are

valid. Secondly, we see that MR-1 (using a static agent policy) outperforms MR-2 (using

the queue rebalancing policy). Last, we observe that responders traveled between 2 and 4

miles on average each during balancing step in these experiments, which is significantly

higher than the queuing approach.

Next, we examine a more the practical approach using the incident prediction model

based on survival analysis. Since the static agent policy performed better in the oracle ex-

periments, we use it for these experiments. There are several hyper-parameters that can

affect the performance of the algorithm, including 1. MCTS Iteration Limit 2. Rebalanc-

ing Period - the amount of time between rebalancing steps 3. Distance Weight in Reward

Function ψ - this represents the importance of distance traveled for rewards 4. Look-ahead

Horizon for MCTS.

117

We vary these parameters to see their effect on the system (see table 5.2). We present

the response time distributions of MMCTS using the incident model in figure 5.7, and the

average responder distance traveled per rebalancing step in figure 5.8. We observe that

different parameter choices lead to different performance characteristics. For example,

we see that changing the distance weight has a large impact on the distance responders

travel; users with tight budgets for responder movement and maintenance will want to pay

close attention to this parameter. Comparing the queue based policy with MMCTS, we see

that both improve the response time distributions compared to the baseline. MMCTS is

more configurable, but is also more sensitive to poor hyper-parameter choices. With proper

hyper-parameter choices, both fulfil the constraints discussed in section 5.3.3 by having

quick dispatching decisions, allowing for limited communication, and allowing users to

control for distance traveled (i.e. wear and tear).

5.7 Conclusion

Principled approaches to Emergency Response Management (ERM) decision making

have been explored, but have failed to be implemented into real systems. We have identified

that a key issue with these approaches is that they focus on post-incident decision making.

We argue that due to fairness constraints, planning should occur between incidents. We

define a decision theoretic model for such planning, and implement both a heuristic search

using queuing theory and a Multi Agent Monte Carlo Tree Search planner. We find that

these approaches maintain system fairness while decreasing the average response time to

incidents.

While the focus of this work is in the ERM domain, there are important takeaways

for general agent-based systems: (1) Planning performance is dependent on the quality of

the underlying event prediction models. (2) It is imperative to understand the needs and

constraints for a target domain when designing a planning approach for it to be accepted

in practice. (3) The computational capacity of “agents” has evolved in recent decades, and

118

should be used to create decentralized planning approaches. Given these takeaways, we

will explore the applicability of this framework to other domains where planning occurs

over a spatial-temporally evolving process.

119

Table 5.1: Notation lookup table

Symbol Definition
Λ Set of agents
D Set of depots
C (d) Capacity of depot d
G Set of cells
S State space
A Action space
P State transition function
T Temporal transition distribution
α Discount factor
ρ(s,a) Reward function given action a taken in state s
A Joint agent action space
T Termination scheme
st Particular state at time t
It Set of cell indices waiting to be serviced
Rt Set of agent states at time t
pt

j Position of agent j
gt

j Destination of agent j
ut

j Current status of agent j
si,s j Individual states
ti j Transition time between states si,s j
ta Time between incidents
ts Time to service an incident
tb Time to a balance step
r Reward

tr
Incident response time (the time between incident
awareness and first agent’s arrival on scene)

σ Action recommendation set
µ Mean agent service time
cd Number of agents at depot d
υg Incident rate at cell g
υd

g The fraction of cell g’s incident rate shared by depot d
ϒ Set of occupied depots and their split incident rates
πϒ Utility of ϒ

th Time since beginning of planning horizon
tr(s,a) Response time to an incident given action a in state s
φk(s,a) Distance traveled by agent k while balancing

ψ
Exogenous parameter balancing response time
and distance traveled

RoI Radius of Influence of a cell (used in queue based rebalancing policy).

120

Table 5.2: Outline of the experimental runs performed and their corresponding hyper-parameter
choices. (∗When not indicated, parameters are set to values of M-1, the MMCTS Baseline in the
table.)

Identifier Description Hyper-Parameter Choices
BASE Greedy Baseline Without Rebalancing N/A
Q-1 Queue Based Rebalancing Policy with RoI of 1 RoI = 1
Q-2 Queue Based Rebalancing Policy with RoI of 2 RoI = 2
Q-3 Queue Based Rebalancing Policy with RoI of 3 RoI = 3
Q-4 Queue Based Rebalancing Policy with RoI of 4 RoI = 4
Q-5 Queue Based Rebalancing Policy with RoI of 5 RoI = 5

MR-1
MMCTS - using an oracle for future incidents
and a Static Agent Policy Same as MMCTS Baseline M-1

MR-2
MMCTS - using an oracle for future incidents
and a Queue Rebalancing Policy Same as MMCTS Baseline M-1

M-1

MMCTS - Baseline
The foundation for the parameter search.
Each parameter varies independently while
other parameters retain these values.
(All M-* experiments use generated incident
chains and a Static Agent Policy)

MCTS Iteration Limit = 250
Lookahead Horizon = 120 min
Reward Distance Weight ψ = 10
Reward Discount Factor = 0.99995
Rebalance Period = 60 min

M-2 MMCTS - Iteration Limit of 100 MCTS Iteration Limit = 100*
M-3 MMCTS - Iteration Limit of 500 MCTS Iteration Limit = 500*
M-4 MMCTS - Reward Distance Weight ψ of 0 Reward Distance Weight ψ = 0*
M-5 MMCTS - Reward Distance Weight ψ of 100 Reward Distance Weight ψ = 100*

M-6
MMCTS - Rebalance Period of 30 minutes;
Lookahead Horizon of 30 minutes

Lookahead Horizon = 30 min
Rebalance Period = 30min*

121

Chapter 6

Combining Learning and Planning for Adaptive Decision Making

6.1 Overview

Chapters 3, 4, and 5 present a spectrum of online planning approaches for multi-agent

SCPS, each with advantages and limitations: Chapter 3’s centralized approach completely

captures the set of possible interactions between agents, but is not scalable to complex

environments. Chapter 4’s hierarchical approach can scale to much more complex environ-

ments by splitting the problem into tractable sub-problems, but requires domain specific

segmentation approaches and communication between agents within a sub-problem. Fi-

nally, Chapter 5’s decentralized approach is extremely scalable and resilient to communi-

cation disruptions, but requires a computationally cheap model of agent behavior to replace

coordination that can lead to sub-optimal decisions.

A limitation that is shared by all of these methods is that, being pure planning ap-

proaches, they must perform all of their computation at decision time. Even decentralized

algorithms can take too long to converge for time-sensitive domains such as emergency

response management in large cities.

As discussed in Chapter 1, learning-based decision-making algorithms such as rein-

forcement learning (RL) are an alternative to online planning. These algorithms interact

with the environment offline to learn a general mapping from states of the environment to

actions that should be taken (called a policy). The advantage of these methods is that once a

policy is learned, it can be invoked nearly instantaneously at decision time. Unfortunately,

non-stationary environments can cause a policy to become stale and result in sub-optimal

decisions.

This chapter presents a hybrid decision-making approach called Policy Augmented

122

Monte Carlo tree search (PA-MCTS) which combines learning-based RL with online plan-

ning. The intuition behind the approach is that if the environment has not changed too

much between when an optimal policy was learned and when a decision needs to be made,

the policy can still provide useful information for decision-making. Combining an old pol-

icy (i.e., a policy learned on an environment that has changed since) with a current online

search (i.e., search using the current environmental parameters) results in a two-fold advan-

tage. First, given a specific computational budget, the framework converges to significantly

better decisions than standard MCTS. Second, we show how the online search makes the

approach significantly more robust to environmental changes than standard state-of-the-art

RL approaches. Several properties of the approach are proven, including when PA-MCTS

will return the optimal action, when it will choose better actions than either pure MCTS or

greedy Q action selection, and the bound on the total deviation in cumulative rewards from

an optimal policy when used for sequential decision-making.

The work comprising this chapter has been submitted to the Thirty-sixth Conference on

Neural Information Processing Systems (2022), and is currently pending review. It builds

upon work published at the 5th Multidisciplinary Conference on Reinforcement Learning

and Decision Making (RLDM) [30].

• G. Pettet, A. Mukhopadhyay, K. Wray, A. Dubey (2022). “Decision Making in Non-

Stationary Environments with Policy-Augmented Monte Carlo Tree Search,” in Pro-

ceedings of the 36th Conference on Neural Information Processing Systems, NeurIPS

2022, New Orleans, LA, USA (Submitted, pending review).

• G. Pettet, A. Mukhopadhyay, A. Dubey (2022). “Decision Making in Non-Stationary

Environments with Policy-Augmented Monte Carlo Tree Search,” in Proceedings

of the 5th Multidisciplinary Conference on Reinforcement Learning and Decision

Making, RLDM 2022, Providence, RI, USA.

123

6.2 Introduction

Sequential decision-making is present in many important problem domains, such as au-

tonomous driving, emergency response, and medical diagnosis [126]. An open challenge

in such settings is non-stationary environments, where the dynamics of the environment

can change over time. A decision agent must adapt to these changes or take sub-optimal

actions. Two well known approaches for sequential decision-making are reinforcement

learning (RL) and online planning [126]. In RL approaches, an agent learns a policy π , i.e.,

a mapping from states to actions, through interacting with the environment. The learning

can also take place offline using environmental models. Once a policy is learned, it can be

invoked nearly instantaneously at decision time. Deep RL methods, which use a neural net-

work as a function approximator for the policy, have achieved state-of-the-art performance

in many applications [13, 126]. However, when faced with non-stationary environments, a

policy can become stale and result in sub-optimal decisions. Moreover, retraining the pol-

icy on the new environment takes time and considerable computational effort, particularly

in problems with complex state-action spaces. While RL algorithms have been designed to

operate in non-stationary environments [127, 128], there is a delay between when a change

is detected and when the learning framework converges to the updated policy. Depending

on the problem setting, such delays might be very expensive.

An alternative approach is to perform online planning using algorithms such as Monte

Carlo tree search (MCTS). Given the current environment, these approaches perform their

computation at decision time using high-fidelity models to determine promising action tra-

jectories. These models can be updated as soon as environmental changes are detected, and

such changes can be immediately incorporated in decision-making (assuming that the gen-

erative model used to build the search tree can be updated quickly). MCTS has been proven

to converge to optimal actions given enough computation time [97], but convergence can

be slow for domains with large state-action spaces. The slow convergence is a particular

issue for problem settings with tight constraints on the time allowed for decision-making;

124

e.g., in emergency response, when an incident occurs, any time used for decision-making

increases the time until a responder is dispatched [84]. While several approaches have been

designed to leverage problem structure to scale MCTS [129, 84], such approaches make as-

sumptions about the environment to prune the search space, which can lead to sub-optimal

decisions.

As we point out, both RL and MCTS have weaknesses when applied to complex

decision-making problems in non-stationary environments. In this paper, we present a

novel hybrid decision-making approach that combines the strengths of RL and online plan-

ning while mitigating some of these weaknesses. The intuition behind our approach is that

if the environment has not changed too much between when an optimal policy was learned

and when a decision needs to be made, the policy can still provide useful information for

decision-making. Our approach, called Policy Augmented Monte Carlo tree search (PA-

MCTS), is extremely simple—it combines a policy’s action-value estimates and the returns

generated from MCTS. We show that combining an old policy (i.e., a policy learned on

an environment that has changed since) with a current online search (i.e., search using the

current environmental parameters) results in a two-fold advantage. First, given a specific

computational budget, our framework converges to significantly better decisions than stan-

dard MCTS. Second, we show how the online search makes our approach significantly

more robust to environmental changes than standard state-of-the-art RL approaches.

In this paper, we first introduce the notion of Q-bounded non-stationary Markov de-

cision processes (Q-NSMDP), which is a general framework for quantifying how MDPs

evolve in non-stationary settings (Section 6.4). We describe prior work in this domain in

Section 6.3. Then, in Section 6.5, we explain how our approach, PA-MCTS, can combine

old action-value estimates with online search and present several theoretical results. Fi-

nally, we present experimental results in Section 6.6. We show that under non-stationary

settings, PA-MCTS outperforms baselines in terms of utility and robustness, and converges

faster than standard MCTS.

125

6.3 Related Work

Sequential decision-making in non-stationary and dynamic environments has been stud-

ied from several perspectives. Satia and Lave [130] and White and Eldeib [131] consider

transition matrices constrained within a pre-specified polytope. However, as pointed out

by Iyengar [132], they do not discuss how such polytopes can be constructed. Iyengar in-

troduced the idea of robust MDPs by using the concept of uncertain priors [132], where

the transition function can change within a set of functions due to uncertainty [133]. Choi

et al. [134] introduced hidden-mode MDPs, that considered a formal model for represent-

ing changes in the environment, confined with a set of modes. A broader notion of non-

stationarity was introduced by Lecarpentier and Rachelson [133], who considered that both

the reward function and the transition function can change over time and that the rate of

change is bounded through Lipschitz continuity.

Our formulation is inspired by that of Lecarpentier and Rachelson [133]; sequential

decision-making in real-world settings is a complex task and we also consider that both

the reward and the transition functions can change over time. The key difference in our

formulation is the representation of that change. Explicitly specifying the changes in the

transition function makes it imperative that we know the transition function explicitly in

the first place; as pointed out by Satia and Lave [130] and Mukhopadhyay et al. [114], this

is often not the case in practice. Therefore, we use the Q-function to specify how much the

decision-process has changed due to environmental changes. We also assume that while

the transition function might not be available explicitly, the environmental change can be

detected and that a black-box simulator of the system under consideration is available, as

in prior work [135]. We also point out that decision-making by an agent which is trained

on one task (or environmental conditions) and subsequently provided with another task has

also been explored in the domains of transfer learning [136] and lifelong reinforcement

learning [137]. However, we specifically look at settings where “learning” a new policy is

not feasible, or even when it is feasible, decisions must be taken while the updated policy

126

is being learned. Finally, we recognize that approaches combining model-based online

search with learning methods have been explored – for example, AlphaZero integrates

MCTS with a policy iteration framework [18], while the Search with Amortized Value

Estimates (SAVE) algorithm combines model-free Q-learning with MCTS [138]. To the

best of our knowledge, our approach is the first that applies such an approach to non-

stationary environments.

6.4 Markov Decision Processes in Non-Stationary Settings

Markov decision processes (MDP) provide a general framework for sequential decision-

making under uncertainty. An MDP can be defined by the tuple (S ,T ,A ,P(s,a),R(s,a)),

where S is a finite state space, A is a discrete action-space, P(s′ | s,a) is the probability

of reaching state s′ when taking action a in state s, and R(s,a) is the scalar reward when

action a is taken in state s. The goal of an agent is to learn a policy π that maps states

to actions (or, more generally, states to a distribution over actions) that can maximize a

specified utility function. Typically, the utility function is simply the expected reward, i.e.,

EP[∑
∞
t=0 γ tR(st ,π(s))], where γ denotes the discount factor that weighs immediate rewards

more than future rewards. We are interested in settings where the environment with which

the agent interacts changes over time. Specifically, we consider an agent that is trained on

a specific task given a particular setting, e.g., consider the problem of proactively allocating

ambulances in a city in anticipation of accidents modeled as an MDP [139]. Now, consider

that the city experiences unexpected congestion, changing the transition and reward func-

tions of the underlying MDP. We seek to analyze and understand how an agent trained to

operate in an environment before the change can adapt to the new environment.

We point out that our interest lies in problem settings where learning a new policy

immediately is infeasible in practice. In complex real-world tasks, learning a new policy

takes time, and decisions must be made as the policy is being updated based on the new

environmental conditions. We are interested in understanding how agents can optimize

127

decision-making during such delays, i.e., between when a change is detected in the envi-

ronment and when the agent learns a new (near-optimal) policy. One way to model such

a problem is a non-stationary Markov decision process (NSMDP) [133]. An NSMDP, as

defined by Lecarpentier and Rachelson [133], can be viewed as a stationary MDP where

the state space is enhanced with time. Depending on whether the task is episodic and the

agent is allowed to explore along the temporal axis, this enhancement can be trivial or diffi-

cult [133]. The rate of change in the transition and reward functions is typically bounded in

an NSMDP by assuming Lipschitz continuity [133]. However, changes to the transition and

reward functions are difficult to observe and analyze in practice, especially in real-world

applications where an agent is deployed to solve complex tasks [84].

We propose a new approach to bound the non-stationarity of an MDP by directly con-

sidering the action-value function Q. Let s0 ∈S and a0 ∈A denote the initial state and ac-

tion (respectively) at time step 0. The Q function, represented as Qπ(s,a) =EP{R(s0,a0)+

∑
∞
t=1 γ tR(st ,at = π(st))}, measures the value of a state s and an action a under policy π .

Our key hypothesis is that with small changes in the environment, the Q function under

an optimal policy does not change much, i.e., “good” actions remain valuable, and “bad”

actions do not suddenly become promising. It is trivial to see that there are exceptions to

our hypothesis and its rather simplified explanation; if the Q function stayed the same as

before, there would not be any need for the agent to adapt to changes in the environment.

In this paper, we study how agents can adapt to such changes, given that the change in the

optimal Q function is bounded.

In order to differentiate our definition from the one used by Lecarpentier and Rachel-

son [133], we refer to our setting as the Q-bounded non-stationary Markov decision process

(Q-NSMDP). We first introduce some notation before formally defining our problem set-

ting. Consider without loss of generality that the agent learns the optimal policy π∗0 for

the given environment at time step 0. We denote the Q function under this optimal policy

by Qπ∗0
0 , where the subscript denotes the time step in consideration. Now, consider that the

128

environment undergoes some change between time 0 and t. We assume that:

|Qπ∗0
0 (s,a)−Qπ∗t

t (s,a)|∞ ≤ ε ∀ t ∈T (6.1)

where Qπ∗0
0 is the Q-function under the optimal policy π∗0 at time step 0 (i.e., the last time

step or decision epoch where the optimal Q-function is known by the decision agent), Qπ∗t
t

is the Q-function under the optimal policy π∗t at time step t ∈ T , and ε ∈ R+ is a scalar

bound. In other words, the expected return after taking some action a in state s at time

step t (under the updated environmental conditions) will be off by no more than ε from

the expected return of taking action a in state s at time step 0 (under the old environmental

conditions). We also point out that while our problem definition is agnostic to whether the

change is continuous or discrete (we could define an analogous setting for continuous-time

MDPs), our algorithm only tackles discrete changes for now.

6.5 Policy Augmented Monte Carlo Tree Search

Our approach is based on Monte Carlo Tree Search (MCTS), an anytime search algo-

rithm that builds a search tree in an incremental and asymmetric manner [140, 141]. The

fundamental idea of MCTS is that the tree can be explored asymmetrically, with the search

being biased toward actions that appear promising. To estimate the value of an action at a

node in the tree (nodes denote states), MCTS uses a model of the environment at the current

decision epoch (Mt) to simulate a “playout” to the end of the planning horizon [141]. Us-

ing these estimates, a tree policy, such as the standard Upper Confidence bound for Trees

(UCT) algorithm [97], is used to determine which action trajectories to explore. As the

tree is explored and nodes are revisited, the estimates are re-evaluated and they converge

toward the actual value of the node, i.e., for a node that represents state s, the value con-

verges to argmaxa Qπ∗t
t (s,a). Once a computational budget is reached, the tree is used to

select which action to take in the current state based on a selection criteria. For example,

129

a common selection method is to choose the action with the highest expected return, i.e.,

a∗ = argmaxa∈As
Gt(s,a), where s is the current state at decision epoch t, As is the set of

valid actions that can be taken at s, and Gt(s,a) is MCTS’s estimate of the expected return

for taking each action a ∈As at state s.

MCTS is proven to converge to the optimal action given infinite time [97]. However, the

number of iterations required can become impractical as the state-action space of the envi-

ronment grows. The convergence also holds true for an environment that has changed—this

consideration is actually meaningless for a purely online approach such as MCTS, assum-

ing that the generative model that is used to build the tree has been updated based on envi-

ronmental changes.1 On the other hand, a trained policy has exactly the opposite advantage

(and disadvantage): while it can be invoked in constant time during decision-making, it

cannot accommodate environmental changes without re-training, which is computationally

expensive. We raise the following question: can the advantages of online search proce-

dures (e.g., MCTS) be combined with those of offline policy learning (e.g., reinforcement

learning) to tackle discrete changes in the environment?

Our approach presents a natural solution to the question we raised. Policy-Augmented

Monte Carlo Tree Search (PA-MCTS) addresses this challenge by integrating Q-values

learned on the environment at an earlier decision epoch with an online search, even if the

environment has changed. Rather than selecting an action based on the highest expected

return estimated by the online search, PA-MCTS instead chooses the action that maximizes

a convex combination of the previously learned Q-values and the MCTS estimates G:

argmax
a∈As

αQπ∗0
0 (s,a)+(1−α)Gt(s,a) (6.2)

where Qπ∗0
0 (s,a) is the previously learned optimal2 Q-function learned by the decision

1Environmental models can be updated in a purely online manner, as shown by Mukhopadhyay et al. [114]
2In principle, we do not require the optimal Q-function. As we show in the experiments, an approximation

also works well in practice.

130

Algorithm 14: Policy-Augmented Monte Carlo Tree Search

Input : Current state s, initial Q-values Qπ∗0
0 , weight hyperparameter α ,

environment model Mt at current decision epoch t ∈T
Output: Action to take at state s

1 As := Actions that can be taken in state s;
2 Run MCTS using Mt to obtain the average returns Gt(s,a) ∀ a ∈As;

3 Return argmaxa∈As
αQπ∗0

0 (s,a)+(1−α)Gt(s,a);

agent. The hyper-parameter α , chosen such that 0 ≤ α ≤ 1, controls the tradeoff be-

tween the learned Q-values and the returns generated through MCTS estimates: if α = 1,

PA-MCTS reduces to greedy action selection using Qπ∗0
0 ; whereas if α = 0, it reduces to

standard MCTS. We essentially seek to balance the dichotomy between using accurate

estimates generated using an older environment (through Qπ∗0
0) and inaccurate estimates

generated using the current environment (through Gt). If α ∈ (0,1), then both estimates

are considered (we refer to the action-value from the Q-function as “estimates” due to the

change in the environment). We hypothesize that when the error in Q-values is bounded

by ε (as described in Eq. (6.1)), Qπ∗0
0 likely embeds useful information about the updated

environment. By combining Qπ∗0
0 with the estimates from MCTS (which are sampled using

an updated model of the environment), PA-MCTS can utilize the knowledge from these

outdated Q-values in addition to updated information through the online search.

We present the PA-MCTS algorithm in Algorithm 14. The algorithm requires Qπ∗0
0 and

an updated model of the environment Mt at the current decision epoch t as inputs. Given

the inputs, MCTS is run using Mt to estimate the expected returns Gt(s,a) ∀ a∈As where

As is the set of actions that can be taken at state s (line 2). Then, these estimates are

combined with the initial Q-values for each action to determine each action’s score. This is

a convex combination, weighted by hyperparamter α , which controls the balance between

the initial Q-values and the updated return estimates from MCTS (line 3). The algorithm

returns the action that maximizes the combined score.

131

6.5.1 Theoretical Analysis

We prove three properties of PA-MCTS: (1) the conditions under which PA-MCTS will

return the optimal one-step action, (2) the conditions under which PA-MCTS will choose an

action with a higher estimated return than either MCTS or selection using Q-values Qπ∗0
0 ,

and (3) a bound on the total deviation of the expected return from an optimal (updated)

policy when following PA-MCTS. We present brief sketches for the proofs in the main

body of the paper. Detailed descriptions for each proof can be found in the appendix. We

begin by defining some additional notation.

Definition 6.5.1. Let a∗t := argmaxa∈As
Qπ∗t (s,a) be the optimal action at an arbitrary time

step t.

Definition 6.5.2. Let a′t := argmaxa∈As
Qπ∗t

t (s,a), a′t ̸= a∗t , denote the second best action3at

an arbitrary time step t.

Definition 6.5.3. Let ψt := Qπ∗t
t (s,a∗t)−Qπ∗t

t (s,a′t); for a state s, ψt denotes the difference

in Q values when taking actions a∗t and a′t at time t and following the optimal policy π∗t

thereafter.4

Finally, while MCTS is guaranteed to converge to the optimal expected returns for

a given state and action given infinite time, actions must be taken after limited time in

practice. Below, we define how “far” the estimates of MCTS are from the optimal values:

Definition 6.5.4. Let δ denote the bound on the error of the values estimated by MCTS

when it is stopped, i.e., |Qπ∗t
t (s,a)−Gt(s,a)|∞ ≤ δ ∀ t ∈T .

We first present Theorem 1, which describes the conditions with respect to ε , δ , and ψt

under which PA-MCTS returns the optimal one-step action.

3We assume that there are no ties in Q-values for any actions at a given state.
4Recall that the optimal policy is indexed with the time step as the environment might change in our

setting, i.e., π∗t denotes the optimal policy given the environmental conditions at time step t.

132

Theorem 1. If αε +(1−α)δ ≤ ψt
2 , PA-MCTS is guaranteed to select the optimal action

at time step t.

Proof. We know that PA-MCTS is guaranteed to select the optimal action when the fol-

lowing inequality holds:

αQπ∗0
0 (s,a′t)+(1−α)Gt(s,a′t)≤ αQπ∗0

0 (s,a∗t)+(1−α)Gt(s,a∗t) (6.3)

Given Eq. (6.1) and Definition 6.5.4, Qπ∗t
t (s,a) can be bounded with respect to the estimates

Qπ∗0
0 (s,a) and Gt(s,a):

Qπ∗0
0 (s,a)− ε ≤ Qπ∗t

t (s,a)≤ Qπ∗0
0 (s,a)+ ε

Gt(s,a)−δ ≤ Qπ∗t
t (s,a)≤ Gt(s,a)+δ

(6.4)

By substituting Qπ∗t
t (s,a) for Qπ∗0

0 and Gt in Eq. (6.3) by using inequalities in Eq. (6.4),

rearranging, and using Definition 6.5.3, we find that PA-MCTS chooses the optimal action

when

αε +(1−α)δ ≤ ψt

2

Theorem 1 essentially shows that PA-MCTS is guaranteed to choose the optimal action

if the sum of α-weighted errors is low enough that the decision agent can differentiate

between the best and next best action. While ψt is not observable at decision time, we can

use Eq. (6.4) to find the relationship between ψt and ψ0:

Corollary 1.1. ψt ≤ ψ0 +2ε

Using Corollary 1.1, we substitute ψt in terms of ψ0 (which can be computed at decision

time using known Qπ∗0
0 values) in Theorem 1. Then, we can determine when PA-MCTS will

select the optimal action using information that can be computed at decision time:

133

Corollary 1.2. If αε +(1−α)δ ≤ ψ0
2 + ε , PA-MCTS is guaranteed to select the optimal

action at decision epoch t.

Using 0≤ α ≤ 1, Corollary 1.2 can be rearranged to solve for α:

Corollary 1.3. PA-MCTS will choose the optimal one-step action if


−δ

ε−δ
≤ α ≤ ψ0

2(ε−δ) +1 if ε > δ

−δ

ε−δ
≥ α ≥ ψ0

2(ε−δ) +1 if ε < δ .

Therefore, given ε and δ , a decision agent can determine what values of the hyperpa-

rameter α (if any) would guarantee that PA-MCTS chooses the optimal action at decision

time.

Theorem 1 guarantees the conditions under which PA-MCTS will choose the optimal

action. We now seek to answer a more practical question: when does PA-MCTS choose

a one-step action with a higher Qπ∗t
t value than MCTS or the learned policy in isolation?

First, we list conditions under which PA-MCTS chooses a better action than pure MCTS:

Proposition 1. If PA-MCTS and MCTS choose different actions, PA-MCTS’s chosen ac-

tion will have a higher Qπ∗t
t value than MCTS if 2ε ≤ ζ m

t , where5 ζ m
t := (Qπ∗0

0 (s, ã) +

Gt(s, ã))− (Qπ∗0
0 (s,am)+Gt(s,am)), ã := argmaxa∈As

αQπ∗0
0 (s,a)+ (1−α)Gt(s,a), and

am := argmaxa∈As
Gt(s,a).

Proof. PA-MCTS’s chosen action ã has a higher Qπ∗t
t value than MCTS’s chosen action am

when

0≤ Qπ∗t
t (s, ã)−Qπ∗t

t (s,am) (6.5)

If PA-MCTS and MCTS choose different actions, then it must be that Gt(s,am)≥ Gt(s, ã)

and αQπ∗0
0 (s,am)+(1−α)Gt(s,am)≤αQπ∗0

0 (s, ã)+(1−α)Gt(s, ã). Then, by using Eq. (6.4),

5the superscript m in ζ m
t represents the bounds with respect to MCTS and is not an index.

134

we find that

ζ
m
t −2ε ≤ Qπ∗t

t (s, ã)−Qπ∗t
t (s,am)

Therefore, it follows from Eq. (6.5) that PA-MCTS chooses an action with higher Qπ∗t
t value

when 0 < ζ m
t −2ε , i.e., 2ε ≤ ζ m

t .

Since ζ m
t is constructed from terms that can be computed at decision time, Proposition

1 can be used by the decision agent to determine if it should use PA-MCTS or MCTS when

they choose different actions at decision time. A similar statement can be made regarding

action selection using Qπ∗0
0 values.

Proposition 2. If the action chosen by PA-MCTS is different than argmaxa Qπ∗0
0 (s,a) at

state s, then PA-MCTS’s chosen action will have a higher Qπ∗t
t value than selection through

Qπ∗0
0 -values if 2δ ≤ ζ

q
t where6 ζ

q
t := (Qπ∗0

0 (s, ã)+Gt(s, ã))− (Qπ∗0
0 (s,ag)+Gt(s,ag)), ã :=

argmaxa∈As
αQπ∗0

0 (s,a)+(1−α)Gt(s,a), and ag := argmaxa∈As
Qπ∗0

0 (s,a).

We present the proof in the appendix. Using Propositions 1 and 2, we can determine

the conditions under which PA-MCTS chooses an action that is better than either of its

constituent policies.

The above propositions consider only one decision epoch. However, typically, training

a new policy takes time, which might consist of several decision epochs. Therefore, we

compute the total error in the expected return when following PA-MCTS compared to an

optimal (updated) policy.

Theorem 2. When PA-MCTS is used for sequential decision making, the maximum differ-

ence between the return from an optimal policy and the return from following PA-MCTS is

at most 2(αε−αδ+δ)
1−γ

.

Proof. Let A ′
s denote the set of actions that can be taken by PA-MCTS in state s at any

decision epoch. Given ε , δ , and A ′
s , it must be that αQπ∗0

0 (s,a) + (1− α)Gt(s,a) ≥
6Again, the superscript q only denotes bounds with respect to the Q-values and is not an index.

135

αQπ∗0
0 (s,a∗t)+ (1−α)Gt(s,a∗t). Substituting Qπ∗t

t , we get 2(αε +(1−α)δ) ≥ V π∗t
t (s)−

Qπ∗t
t (s,a), where V π∗t

t (s) = argmaxa Qπ∗t
t (s,a) is the optimal value function. Therefore,

A ′
s = {a ∈As |V π∗t

t (s)−Qπ∗t
t (s,a)≤ 2(αε +(1−α)δ)}. Then, through proof by induction

by using the Bellman operator [142], we find that

V π∗
t (s)−V πPA-MCTS

t (s)≤ 2(αε−αδ +δ)/(1− γ) (6.6)

where V πPA-MCTS(s) denotes the expected rewards by following PA-MCTS as an action se-

lection policy from state s. The full proof is presented in the appendix.

6.6 Experiments

To evaluate the efficacy of PA-MCTS, we first learn a policy π for the open-source

OpenAI Gym CartPole-v1 environment [143], a version of the inverted pendulum control

problem, using a double deep Q algorithm [144]. We vary the maximum length of each

episode from 500 to 2500 time steps to evaluate all approaches. The environment param-

eters were set to default values for the stationary experiments, i.e., gravity g = 9.8m/s2,

the cart’s mass m = 1.0kg, and a reward function of R(s,a) = 1.0 for each time step before

reaching a terminal state. The double Q-learning agent’s learning rate was set to 0.001, and

a Boltzmann control policy was used. The agent learned for 300,000 steps. The details for

the neural network and its implementation are presented in the appendix. We implemented

PA-MCTS using UCT [97] as the tree policy. We use the following PA-MCTS hyper-

parameters in all experiments: the exploration-exploitation tradeoff parameter c = 50, the

planning horizon is 500 time steps, and the decay rate k = 0.0. We perform a hyper-

parameter search on the discount factor γ for both RL and MCTS; as a result, we present

undiscounted cumulative returns in the results. We implemented MCTS in the Python

programming language [145]. Our complete implementation is available online7. We ran

7See https://anonymous.4open.science/r/NeurIPS PA MCTS-5595/

136

https://anonymous.4open.science/r/NeurIPS_PA_MCTS-5595/

Figure 6.1: PA-MCTS results when applied to the default CartPole environment. Columns
denote values for α . The individual plots’ horizontal axis is the number of MCTS itera-
tions per decision epoch. The vertical axis is the cumulative reward. We show the mean
cumulative reward over 50 samples with 95% confidence intervals. The heatmap com-
pactly presents the cumulative reward w.r.t. various combinations of α and the number of
iterations.

experiments using the Chameleon testbed [146] on 4 Linux systems with 32–96 logical

processors. A full description of the hardware used is presented in the appendix.

Stationary Environment: We begin by comparing PA-MCTS with a policy π learned

through RL (α = 1.0) and MCTS (α = 0.0). We consider α ∈ {0.25,0.5,0.75} and vary

the MCTS iteration budget ({50, 100, 200, 300, 400, 500}) to evaluate the convergence

of each approach. The results are shown in Fig. 6.1. Our first observation is that the

policy π (α = 1.0) achieves the best possible return of 2500. This is expected, given

a fixed environmental condition, the RL policy outperforms both MCTS and PC-MCTS.

We also observe that PA-MCTS, by utilizing the learned policy, converges in far fewer

iterations than standard MCTS (i.e. with α = 0.0) for α ∈ {0.25,0.5,0.75}, with α = 0.75

converging to the optimal return at 300 iterations.

Non-Stationary Environments: We then introduce non-stationarity to the environ-

ment by modifying three environmental parameters: we change the gravitational constant

g from the default value of 9.8 m/s2 to the values {20.0, 30.0, 50.0, 500.0} m/s2, the cart’s

mass m from the default of 1.0 kg to the values {2.0, 5.0, 10.0, 25.0} kg, and shrink the

cart’s track Xt from the default length of 2.4m to {2.0, 1.5, 1.0}m. We present results for

the first two changes in Figs. 6.2 and 6.3 and for the last one in the appendix. Our first

observation is that the learned policy’s performance in isolation degrades significantly as

hypothesized: with g = 30 m/s2 and α = 1.0, the mean return does not reach the optimal

value, while for g ∈ {50.0, 500.0} m/s2, m ∈ {5.0, 10.0, 25.0 kg} kg, and Xt ∈ {1.5,1.0}

137

Figure 6.2: PA-MCTS results with gravity modified from its default value of 9.8 m/s2.
Rows represent different gravity values. Columns represent values for α . The individual
point plots’ horizontal axis is the number of MCTS iterations per decision epoch. The ver-
tical axis is the cumulative reward. We show the mean cumulative reward over 50 samples
with 95% confidence intervals. The heatmap compactly presents the cumulative reward
w.r.t. various combinations of α and the number of iterations.

the policy obtains returns close to 0. We also observe that PA-MCTS again converges in

significantly fewer iterations than standard MCTS in most cases, notably achieving the op-

timal return within 50 iterations for g ∈ {30.0 m/s2, 50.0 m/s2} and α = 0.75 in Fig. 6.2.

There are a few exceptions, such as m = 25.0 kg in Fig. 6.3, where PA-MCTS does not

significantly improve upon standard MCTS with any tested α . There are several possible

explanations for this: we may not have chosen the optimal value for α , the environment

may have shifted too much for the policy to be useful, or it may be that balancing the pole

with an extremely heavy cart is too challenging given the default action space.

Modified Reward Function: Finally, we evaluate PA-MCTS with a modified reward

function. In the standard cartpole environment, the agent receives a reward of 1 for each

time-step before the episode is terminated. We modify the reward function to return 1−

(|xp|/Xt), where xp is the cart’s x coordinate and Xt is the track’s boundary. In the cartpole

environment, the center of the track is at x = 0 and the boundaries are at x = −Xt and

138

Figure 6.3: PA-MCTS results with the cart’s mass modified from its default value of 1.0 kg.
Rows represent different cart masses. Columns represent values for α . The individual point
plots’ horizontal axis is the number of MCTS iterations per decision epoch. The vertical
axis is the cumulative reward. We show the mean cumulative reward over 50 samples with
95% confidence intervals. The heatmap compactly presents the cumulative reward w.r.t.
various combinations of α and the number of iterations.

Figure 6.4: PA-MCTS results with a modified reward function which incentivizes staying
near the center of the track. The setting is the same as Fig. 6.2 and Fig. 6.3.

139

x = Xt . Therefore, this new reward function provides higher rewards the closer the cart is

to the center of the track. The results with this reward function are shown in Fig. 6.4. We

again observe that PA-MCTS obtains higher returns than the policy while converging in

fewer iterations than standard MCTS.

Limitations: We point out that our approach focuses on settings where the environ-

mental changes can be detected. While this is the case in practice for many problem set-

tings [84], there might be problems where this is not the case. Also, we need to design

practical “detectors” to gauge the values of ε and δ at decision time. We plan to explore

these problems in future work.

6.7 Conclusion

We explore sequential decision-making in non-stationary environments, where the deci-

sion-maker faces the dilemma of choosing between accurate but obsolete state-action val-

ues that are available from learning approaches and inaccurate state-action values (given

limited computation time) from an online search algorithm. We present a novel approach,

Policy Augmented MCTS (PA-MCTS), that combines the strengths of reinforcement learn-

ing and online planning in non-stationary environments. We present theoretical results

characterizing the hyper-parameter values that are better than the baselines (i.e., pure learn-

ing or MCTS), demonstrating that there is a range of values that will work well in practice.

We also present bounds on the error accrued by following PA-MCTS as a policy for se-

quential decision-making. Through extensive experiments using the classical cart-pole en-

vironment, we show that PA-MCTS results in higher cumulative rewards than an RL agent

in isolation under environmental shifts while converging to better solutions in significantly

fewer iterations than pure MCTS. Our complete implementation is available online.

140

Chapter 7

Scalable Heterogeneous Demand Prediction

7.1 Overview

The previous chapters present scalable decision-making approaches that use online

planning algorithms. The foundation of these planning algorithms are the models they

use to forecast how the environment will evolve and estimate the long-term value of ac-

tions. Modeling SCPS environments is difficult due to the challenges of heterogeneity and

non-stationarity. To be useful for proactive decision-making, these models must also have

high spatio-temporal resolution, so that a decision algorithm can have a precise understand-

ing of the locations and times where events are likely to occur. Unfortunately, increasing

the resolution of models introduces sparsity, meaning that there are significant class imbal-

ances between positive and negative samples in the data, since each spatiotemporal window

is less likely to see any significant samples.

This chapter presents a generative modeling approach that enables event forecasting

over large, heterogeneous geographic areas using mixed-typed features (i.e., categorical

and numeric features). It uses the Similarity Based Agglomerative Clustering (SBAC)

algorithm to find groups of similar events spread across the spatial area. These groups of

similar events also tend to have similar arrival distributions, which makes forecasting for

each group more accurate. These groups are then mapped to spatial locations to achieve

models with high spatial-temporal resolution.

The work comprising this chapter has been published in the Proceedings of the 3rd

IEEE International Conference on Smart City Innovations [31].

• G. Pettet, S. Nannapaneni, B. Stadnick, A. Dubey, and G. Biswas (2017). “Incident

analysis and prediction using clustering and Bayesian network,” in Proceedings of

141

the 3rd IEEE International Conference on Smart City Innovations, SCI 2017, San

Francisco, CA, USA, pp. 1-8.

7.2 Introduction

Emerging Trends: The advancement in sensors and information transfer technologies

provide opportunities to collect large amounts of data on complex operations and processes

that govern various aspects of city life. In such situations, where it is an almost intractable

task to build complex models, data driven approaches can produce more informed solutions

to problems than using heuristics and ad-hoc approaches. Such data driven approaches have

been successfully applied in a number of areas, ranging from monitoring industrial pro-

cesses [147] to identifying students at risk of emotional disorders [148]. Today, advances

in data collection (such as wireless sensor networks [149]) and storage infrastructure (such

as distributed hash rings [150]) have allowed information to be collected and analyzed for

applications not possible before, such as urban analytics [151] and emergency response

services.

In this paper, we describe a toolchain that will enable fire departments to analyze mul-

tiple, distributed incident occurrences that they must respond to. Our goal is to analyze his-

torical incident data and develop predictive models that can help the department efficiently

allocate and route emergency vehicles to incidents as they occur over a large, distributed

area. Minimizing response times increases victim survival rates [67] and frees vehicles

to respond to other incidents more quickly. Any such optimal dispatch algorithm is typi-

cally based on a sequential optimization that requires prediction of the likelihood of future

incidents occurring in a given area, so it can plan ahead.

Incident prediction using the negative binomial distribution [20], artificial neural net-

works [21], and hierarchical analysis [22] have been used to great effect when attempt-

ing to predict incident frequency for specific areas, and have helped determine features of

roadways that affect incident occurrence. Prediction methods such as the negative bino-

142

mial regression [23] and random effect probit models [19] have also been used to analyze

feature effects on accident frequency, and generating predictive models for specific areas.

Unfortunately, these studies generally make assumptions about the locations that they are

analyzing. For example, they study a specific length of freeway, or look at only intersec-

tions and their features in a specific city. To create a predictive model for an entire metro

area however, location agnostic features such as weather and time must be considered for

the incidents.

Contributions: This paper describes a toolchain to forecast the likelihood of incidents,

specially motor vehicle incidents, occurring in a large, geographical area. This paper de-

scribes major components of our prediction and analysis toolchain:

1. An unsupervised clustering approach for grouping incidents with similar characteristics.

We hypothesize that incidents within each group will have similar arrival times, making

forecasting for each group more accurate. This is validated by our results described in

Table 7.4: the average log-likelihood of cluster survival model accuracy is significantly

higher (-16,100.8) than models built from the entire dataset (-180,243.8).

2. Predictive models for each cluster using survival analysis.

3. A mapping of these cluster predictive models to spacial locations using a Bayesian net-

work.

4. Compose all of the data preprocessing, analysis, and prediction routines in the form of a

toolchain to facilitate analysis of data received from the Nashville fire department from

February 2014 to February 2016, and then validate our toolchain on data from February

2016 to December 2016. This toolchain will facilitate future emergency vehicle dispatch

optimization analysis.

Paper Outline Section 7.3 presents prior work on incident prediction. Section 7.4.1

describes the data used in our case study for Nashville Motor Vehicle Accident (MVA)

response dispatching. In section 7.4.2 we formally describe the problem specification and

then detail each step in the prediction toolchain, and simultaneously present the results of

143

the case study. Section 7.5 presents a discussion, and Section 7.6 presents the conclusions

of the paper.

7.3 Related Research

Vehicle accident analysis has been an important area of research due to their large safety

and monetary costs and their impact on human life. Miaou and Lum found that due to over

dispersion often present in accident data, the more general Negative Binomial distribution

is often superior to the Poisson regression in this area [20]. Abdel-Aty and Radwan applied

the negative binomial technique to model accident frequency for a principal arterial in

Central Florida [152]. Using data from 1606 accidents over three years, they found eight

features to be significant in determining the frequency of accidents, including segment

length, shoulder width, and annual average daily traffic (AADT). Ackaah and Salifu used

negative binomial regression to model 76 rural highways in Ghana [23]. They found that the

negative binomial distribution fit their data reasonably well, and that five features (including

traffic flow and road segment length) were significant in determining accident frequency.

Chin and Quddus built on the research by suggesting that the random effect negative

binomial (RENB) model is superior to the negative binomial model [153]. They reasoned

that the negative binomial’s assumption that accident data is uncorrelated in time is in-

appropriate for accidents, due to serial correlation in the accident data. The RENB model

accounts for temporal effects by treating the data in a time-series cross-section panel. Their

model, based on signalized intersections in Singapore, found that eleven features had a sig-

nificant impact on accident frequency, and improved on the model found with the negative

binomial model.

Chang explored artificial neural networks (ANN) as another alternative to the negative

binomial regression model [21]. The negative binomial model assumes a predefined un-

derlying relationship between the dependent and independent variables. If this assumption

is violated, it will lead to erroneous accident estimations. ANN avoids this by making

144

no assumptions regarding the variable’s relationship. Raut and Karmore have combined

an Artificial Neural Network to analysis a large amount of input data with a fuzzy logic

system that uses this data to predict accident severity [154]. Unfortunately this technique

requires large amounts of external traffic information that may not be available to dispatch

services.

Researchers have also explored applying various classification methods to traffic prob-

lems. For example, Moreira-Matias [155] uses boosted decision trees to classify traffic jam

events. Unfortunately these methods do not apply to our problem, since we are looking for

the probability that an accident will occur in each location, not to classify accidents to a

location.

Survival analysis has also been widely used and is the one of the core components of

our toolchain. This analysis has been applied by researchers to predict accident duration.

Chung applied the log-logistic accelerated failure time model to 2 years of Korean freeway

accident duration data [156]. Using eight features to characterize accidents, they found that

the model provided reasonable duration prediction based on the mean absolute percentage

error scale. Kang and Fang (2011) similarly applied the Weibull prediction model to 3 years

of Jiaxing city’s freeway incident data to find predictive factors affecting incident duration,

and found the model to be reasonable.

The research presented thus far makes strong assumptions about the location and/or

type of accident during analysis. For example, they might only look at accidents occurring

at intersections or along a single stretch of highway. While these assumptions are help-

ful for small scale or specific analysis, they make generalizing the results difficult. In the

past, our group has studied the accident prediction problem, focusing on spatial grids [157].

However, in this paper we explore a generalized, yet unsupervised approach to categoriz-

ing incidents. Therefore, the method presented in this paper clusters on individual incidents

rather than grid sections. This leads to tighter, more meaningful clusters for dispatch al-

location, which is shown by our improved likelihood results shown in the Table 7.4. This

145

is helpful since an important aspect of emergency response is ensuring that appropriate

equipment is dispatched based on the incident type.

7.4 Our Approach

7.4.1 Data Specification

The majority of the data used in this study was provided by the Metro Nashville Fire De-

partment in the form of a relational database scrubbed to eliminate personally identifiable

information. The database contained approximately two years of incidents occurring from

February 2014 to February 2016. In total, there were 477,837 unique incidents recorded in

the database, the majority of which occurred in Davidson County, Nashville, Tennessee.

Motor vehicle accidents were extracted from the database according to the following

criteria: the location of the incident was fully specified by GPS coordinates, the incident

occurrence time was known, the first unit arrival time that occurred after the incident occur-

rence time was also known, and the incident was classified by emergency medical dispatch

card numbers starting with ‘29’ to ensure it was a motor vehicle accident. Using these

criteria 19,910 motor vehicle accidents were extracted for the clustering algorithm.

In addition to the information obtained from the database, weather condition infor-

mation and information regarding the type of road on which the accident occurred was

obtained from DarkSky and OpenStreetMaps, respectively. Using these three sources of in-

formation, the features described in the clustering analysis subsection 7.4.3 were extracted

for clustering.

7.4.2 Overview of the Approach

The toolchain described in this paper consists of 4 major components as shown in fig-

ure 7.1: data preprocessing, clustering incidents (modeled in figure 7.2), learning survival

models for each incident cluster, and mapping these predictive models to locations (Both

146

Figure 7.1: Toolchain Block Diagram. P(I, HL) refers to the joint probability of an incident
occurring in a particular hex cell

Figure 7.2: Cluster Generation Model

shown in figure 7.3). Each step is explained in detail in the following sections.

For prediction, we assume that the city is divided into a grid of regularly sized half mile

hexagonal sections, which are referred to as hex cells in the remainder of the paper. For

each hex cell, we have data regarding incidents that took place in that grid in the given

period. We also assume that the incidents in each cell are independent of incidents in other

cells. This information enables us to train the Bayesian network that we describe later in

the paper.

147

Figure 7.3: Prediction Toolchain Model

7.4.3 Clustering Analysis

The first step of the toolchain is clustering the incidents into similar groups. There

are three primary steps to this process: (1) choosing incident features to cluster on, (2)

calculating the similarity values between each pair of incidents and (3) running a hierar-

chical clustering algorithm, SBAC [158] to generate a dendrogram, and then establishing a

minimum distance criterion as separation among clustering, and therefore, establishing the

number of clusters that make up the dataset. forming a dendrogram from these values, and

cutting that dendrogram to form the optimal number of clusters.

Incident Feature Selection: Table 7.1 describes the features we chose to categorize

the incidents. We discretized the continuous values of time and the distance to the nearest

intersection to reflect trends in the data.

Similarity Calculation: Once features of interest are chosen for the incidents, they

are used to calculate a similarity measure between incident pairs. Traditional clustering

methodologies generally focus on either numeric valued data [159] (k-means clustering

[160], for example) or nominal valued data (known as conceptual clustering [161]), but are

not designed for mixed numeric and nominal data. While the features in our case study are

148

Table 7.1: Incident Features Considered

Feature Description Source
Road type Type of road incident took place on, such as

freeway or primary
Obtained from OpenStreetMaps based
on the GPS coordinates and street
address

Weather Weather conditions at the time of the incident Obtained from DarkSky based off GPS
coordinates and time of incident

Severity Severity measure based off Fire Department
codes, with ’A’ as least severe to ’D’ being most
severe

Obtained from the incident’s associated
emergency medical dispatch card
number

Nature of
Accident

Description of incident Obtained from emergency medical
dispatch card number

Time of
Day

time in which incident occurred: early morning,
late morning, afternoon, or night

Obtained from Nashville fire
department data

Day The day of the week the incident occurred on Obtained from Nashville fire
department data

Month The month in which the incident occurred Obtained from Nashville fire
department data

Intersec-
tion
Proximity

How close the incident occurred to an
intersection: On, near, or far from the
intersection

Obtained from OpenStreetMaps based
on the GPS coordinates of the incident

all nominal, other applications of this toolchain may require some numeric features to be

considered. For this reason, we use a similarity measure that works well with mixed typed

data.

Specifically, we use a similarity measure created by Li and Biswas that has been shown

to work well for mixed data types [158]. Their method, which is a generalized version of a

measure proposed by Goodall for biological taxonomy [162], uses unusual characteristics

shared by data objects to determine their similarity. Specifically, “a pair of objects (i,j) is

considered more similar than a second pair of objects (l,m) if i and j exhibit a greater match

in feature values that are less common in the population. In other words, similarity among

objects is decided by the uncommonality of their feature value matches” [158]. This helps

create tight clusters likely to share unique feature values.

To demonstrate how to calculate the similarity of a pair of objects using this method, it

is helpful to use a toy example. Consider the objects described in Table 7.2: there are 6 ball

objects, each of which have a color (a nominal feature) and a weight (a numerical feature).

To calculate the similarity of a pair of objects, the first step is to determine the individual

feature similarities - the color and weight, in this case. The technique used to calculate this

149

Table 7.2: Toy Example for Similarity Calculation

Ball ID Color
(Nominal)

Weight
(Numeric)

Ball 1 Red 15.0 kg
Ball 2 Red 10.0 kg
Ball 3 Red 10.0 kg
Ball 4 Yellow 10.0 kg
Ball 5 Yellow 7.5 kg
Ball 6 Blue 5.0 kg

depends on if the feature is nominal or numeric. These individual feature similarities are

then combined into a total similarity for the pair of objects. The techniques for each of

these steps are described below.

Nominal Feature Similarity: Let us first consider nominal feature similarity. There

are two cases for nominal features: the two objects have either the same feature value, or

different feature values. If the two objects’ feature values are not equivalent their similarity

score is 0 (i.e. they are not similar at all), but if the values are the same then the similarity

score is somewhere between 0 and 1. Applied to our toy example, Balls 1 and 4 have 0

similarity for the Color feature since red and yellow are different colors, and there is no

way to relate the two. Balls 1 and 2, on the other hand, have some non-zero similarity for

Color since they are both red.

The exact feature similarity score when the two feature values are equivalent is a func-

tion of that value’s uncommonality in the population: the more common a feature value,

the less similar any pairs with that value are considered to be. For example, yellow balls

are considered more similar than red balls in our toy dataset, since there are more red balls.

This information is used to create the object pair’s More Similar Feature Value Set

(MSFVS((vi)k), which is the set of all values for nominal feature k that are equally or more

similar than the object pair’s feature value. For example, the MSFVS for balls 1 and 2 would

be {Red, Yellow} since yellow is rarer than red (blue is omitted, as there are no pairs with

that color). The MSFVS for balls 4 and 5, however, would only be {yellow}, since yellow

is the rarest color represented by a pair of ball objects.

150

Equation 7.1 shows how the MSFVS is used to calculate the similarity score between

the two objects:

(Sii)k = 1− (Dii)k = 1− ∑
l∈MSFV S((Vi)k)

(pl)
2
k (7.1)

where (pl)
2
k) is the probability of picking a pair ((Vi)k,(Vi)k) ∈MSFV S((Vi)k) for fea-

ture k at random, and (Dii)k is the dissimilarity of the objects.

Let’s apply this to balls 1 and 2 in our example. As discussed earlier, the balls both

have the Color red, and their MSFVS is {Red, Yellow}. Given this set, the similarity for the

Color value of red is S(ball1,ball2))Red = 1−(D(ball1,ball2))Red = 1−(p2
red + p2

yellow) = 0.733.

This means that the color red contributes 0.733 to the similarity score between balls 1 and

2.

Numeric Feature Similarity: The method for calculating the similarity for numeric

features is slightly different from nominal features. When feature values are not equivalent,

their similarity is determined in the traditional manner: one pair of objects is more similar

than another if their feature values are closer together. The weights of balls 5 and 6 are

considered more similar than 4 and 6, for example, since the difference in their weights is

smaller. It is only when two pairs of values have equivalent differences that the uniqueness

of the values is considered.

This information is used to create a pair of value’s More Similar Feature Segment Set

(MSFSS((Vi)k,(Vj)k)), which includes all pairs of values that are more similar due to the

criteria described above.

Similar to nominal features, this is used to calculate the feature value similarity as

follows: the probability of picking two objects from the population having values (Vl)k and

(Vm)k for feature k where ((Vl)k,(Vm)k) ∈MSFSS((Vi)k,(Vj)k) is

αlm =

 2(pl)k(pm)k =
2(fl)k(fm)k

n(n−1) ,(pl)k ̸= (pm)k

(pl)k(pm)k =
(fl)k((fl)k−1)

n(n−1) ,(pl)k = (pm)k

(7.2)

151

where fl and fm are the frequency of values (Vl)k and (Vm)k and n is the total number

of objects in the population. The similarity is then computed as in equation 7.3:

(Si j)k = 1− (Di j)k = 1− ∑
l,m∈MSFSS((Vi)k,(V j)k)

σlm (7.3)

where σlm is the appropriate probability distribution from equation 7.2 and (Di j)k is

the dissimilarities of the two objects. For example, take balls 1 and 2 again. The MSFSS

for their value segment (10.0, 15.0) is {(5.0, 7.5), (7.5, 10.0), (10.0, 10.0), (10.0, 15.0)}.

Notice that even though balls 6 and 4’s values (5.0, 10.0) are as close together as (10.0,

15.0), they are not included in the set. This is because there are more balls with weights

in the range [5.0, 10.0] then [10.0, 15.0], making the weights of balls 5 and 6 more unique

(and therefore more similar).

This makes the ball’s similarity

(S(b1,b2))w = 1− (D(b1,b2))w = 1− (2p5.0 p7.5 + 2p7.5 p10.0 + p10.0 p10.0 + 2p10.0 p15.0) =

0.333.

This means that the weight feature contributes 0.333 to balls 1 and 2’s similarity.

Total Object Similarity Aggregation: To aggregate these individual feature similar-

ities for a pair of objects into the total similarities, we apply Fisher’s χ2 transformation

[163] to numeric features, assuming that individual results are expressed as the square of a

standard normal deviate. Continuing our simple example with balls 1 and 2, their aggregate

numeric similarity would be (χc)
2
(Ball1,Ball2) =−2(ln(0.667) = 0.8109.

For nominal features, Lancaster’s mean value χ2 transformation [164] is applied, as

the traditional Fisher’s transformation has been shown to cause deviations in the mean

and standard deviation when applied to features with a small number of possible obser-

vations [164]. The nominal aggregate for balls 1 and 2 is therefore (χd)
2
(Ball1,Ball2) =

2(1− (0.267∗ln(0.267))−0
0.267−0) = 4.641

These two χ2 distributions can be added to determine the aggregate χ2
agg distribution.

The significance value of this distribution gives the aggregate dissimilarity of the two ob-

152

jects, which can be looked up in standard tables. This makes the final dissimilarity for our

example balls 1 and 2 approximately 0.1, giving them a similarity of 0.9 in this population.

The result of performing this analysis on each pair of objects is a Dissimilarity Matrix

defining the similarity relation between each pair. We then use these dissimilarities to per-

form agglomerative hierarchical clustering. Hierarchical clustering algorithms construct a

dendrogram, which is a hierarchy of possible clusters. In agglomerative clustering, these

groups are built from the bottom up: each data point starts in its own leaf group. During

each iteration of the algorithm, the most similar pair of groups are merged into one group

at the next level. This constructs a tree from the bottom up, and continues until there is

only one root group containing all incidents [165]. We now determine the optimal level to

cut this dendrogram.

Establishing the number of Clusters: To determine the optimal level to cut the den-

drogram we score each possible clustering with a weighted silhouette value. Silhouette

analysis compares each incident’s similarity with its assigned cluster to its similarity to the

next most similar cluster [166]. Formally, for each object i, let a(i) be the average dissimi-

larity of i with all data within the same cluster, and b(i) the lowest average dissimilarity of

i to any cluster of which i isn’t a member. The silhouette value of i is:

s(i) =
b(i)−a(i)

max{a(i),b(i)} (7.4)

which produces silhouette values in the range −1≤ s(i)≤ 1, where a high value indicates

that the incident is well matched with its assigned cluster, while a low value indicates it

is more similar to objects in its neighboring cluster. Finding the average silhouette score

across all objects shows how well the objects are clustered in general:

1
n ∑

i∈dataOb jects
s(i), (7.5)

where n is the total number of objects being clustered. To lower the complexity of our

153

Figure 7.4: Cluster 7 - Average Feature Dissimilarity

groupings, we augment traditional silhouette analysis with a complexity weight, favoring

cuts with fewer clusters:

w ·m+(
1
n ∑

i∈dataOb jects
s(i)), (7.6)

where the weight w is multiplied by the number of clusters in the current cut m.

Applying this complexity-weighted silhouette scoring to groupings produced by the

dendrogram helps us find the optimal number of clusters. By applying this to our data, we

found the optimal number of clusters to be 13.

Individual Cluster Analysis: Each of the clusters can be analyzed to determine the

characteristics found to be unique to that cluster by the Similarity Based Agglomerative

Clustering (SBAC) algorithm described earlier. For some clusters, this characterization

is simple to visualize using feature dissimilarity - the more dissimilar a feature, the more

unique it is.

Take our 7th cluster, for example. When examining the average feature dissimilarities

for the cluster in figure 7.4, we see that the weather values are most unique. The weather

represented in figure 7.5 shows this cluster is dominated by incidents that occurred in snowy

154

Figure 7.5: Cluster 7 - Weather Feature Values

conditions. This coincides with our goal, as it makes sense that incidents occur at a different

rate in snowy weather.

7.4.4 Survival Analysis per Cluster

The next step of the toolchain is to create predictive models for each group. A group of

statistical methods that are particularly well suited to this is survival analysis, which analyze

if and when an event of interest is likely to take place [167]. More precisely, “the analysis

of data that correspond to the time from a well-defined time origin until the occurrence of

some particular event or end-point” [168]. In this case, the time origin is the current time,

and the event whose occurrence we are interested in is an incident. In particular, we use an

accelerated failure time model, which regresses the logarithm of the survival time over the

covariates [169].

Formally, the survival function is defined as S(t) = 1−Ft(t) where Ft(t) is the cumu-

lative distribution function of the arrival time variable T . To model our survival function,

we use an exponential distribution for our regression due to its memoryless property: the

predicted time to the next event does not depend on the elapsed time since the last event

[170]. We hypothesize that an incident’s arrival time does not generally depend on any past

155

Table 7.3: Comparison of Cluster vs. Non-clustered Prediction

Cluster Log-Likelihood
1 -89,780.2
2 -52,030.0
3 -5,041.5
4 -15,694.4
5 -11,912.6
6 -22,706.9
7 -1,788.1
8 -719.7
9 -957.5
10 -763.5
11 -164.4
12 -316.9
13 -7,434.8

incidents, making this property desirable and used in other motor incident studies [171].

We applied this regression analysis to each cluster’s incident data to learn their predic-

tive models. For comparison, we also applied predictive models to the entire dataset: the

same survival analysis as well as the popular negative binomial analysis discussed earlier

in the paper. We compare the model’s accuracy using the log-likelihood scale: the like-

lihood of a model is the probability of some observed values (the past data, in this case)

occurring given said model and its parameters. The natural logarithm of this likelihood is

known as log likelihood, and easier to handle mathematically. By comparing two model’s

log likelihoods, we can determine which model better fits the historical data (as it will have

a high log-likelihood value).

The Log likelihoods of each cluster’s survival models are shown in table 7.3, while the

comparisons are shown in table 7.4. The average log likelihood for the 13 clusters was

-16,100.8, compared to the values of -180,243.8 and -178,488.9 of the survival model and

negative binomial model applied to the entire dataset, respectively. As we are attempting

to maximize log likelihood, our clusters’ models showed to be an order of magnitude more

accurate than models applied to the entire dataset. This reinforces our hypothesis that

similar incidents have similar arrival rates.

156

7.4.5 Bayesian Network Analysis for Associating Clusters with Hex Cells

The last step to the prediction toolchain is using the newly created survival models for

each cluster to determine the likelihood of an incident occurring in a particular hex cell. To

be able to predict the most likely hex cell, we first learn the distribution of incidents per-

taining to each cluster across the cells conditioned on the features shown in Fig. 7.3 (Time

interval, Day, Weather and Month). As these features are categorical in nature, we learn

the conditional probability distribution of hex cells, represented as P(HL|T,D,W,M,C) for

every combination of the incident features. Here, HL,T,D,W,M,C refer to Hex Location,

Time Interval, Day, Weather, Month and Cluster respectively. In the Nashville Fire Incident

dataset, the number of levels (distinct possible values) for these incident features are 4, 7,

10 and 12 respectively, totaling to 3360 distinct combinations. After learning the condi-

tional relationships in the Bayesian network (Fig. 7.3), we use it to find the probabilities of

incidents in each location. The systematic procedure for incident procedure is given below.

1. Cluster Identification: The probability of choosing a particular cluster P(C|T,D,W,M)

is based on current time and environment parameters: for example, cluster 7 described in

section 7.4.3 would become much more likely in snowy weather than clear conditions.

2. Survival probability: We then determine the probability of an incident occurring of this

type via the cluster’s survival model P(I|C, t). If the probability is below a threshold,

we ignore the cluster.

3. Region Identification: We then calculate the likelihood that the incident occurs in a hex

cell P(I,HC|T,D,W,M,C, t) (Eq. 7.7) using the learned conditional distributions of

cells and the cluster-specific survival models.

P(I,HL|T,D,W,M,C, t) = P(HL|T,D,W,M,C, t, I)

×P(I|T,D,W,M,C, t)
(7.7)

Eq. 7.7 can be further simplified to Eq. 7.8 since we know which incident features

157

Table 7.4: Comparison of Cluster vs. Non-clustered Prediction

Method Log-Likelihood
Average of Cluster Survival Models -16,100.8

Entire Dataset - Survival Model -180,243.8
Entire Dataset - Neg. Binomial -178,488.9

affect the hex cells and incident probability.

P(I,HL|T,D,W,M,C, t) = P(HL|T,D,W,M,C)

×P(I|C, t)
(7.8)

Since we are predicting incidents at a future time, the weather at a future time may not

be known precisely. In such cases, we predict the incident probabilities by summing over

all possible weather conditions as given in Eq. 7.9.

P(I,HL|T,D,M,C, t) = ∑
W

P(I,HL|T,D,W,M,C, t)

×P(W |T,D,M,C, t)

(7.9)

In Eq. 7.9, P(W |T,D,M,C, t) represents the prior probability of the weather condi-

tioned on Time, Day, Month, Cluster and prediction time. Since weather is indepen-

dent of cluster type and prediction time, P(W |T,D,M,C, t) can further be simplified to

P(W |T,D,M). The prior probability of weather can be obtained from historical weather

data sets or any available weather prediction models. We used the same DarkSky database

that provided incident weather data.

7.5 Discussion

The final prediction toolchain consists of two major components: the survival models

for each cluster and the Bayesian network mapping cluster probabilities to the hex cells.

We can validate each of these separately to show the correctness of the toolchain. We have

already demonstrated the accuracy of the survival models: the likelihood analysis displayed

in tables 7.3 and 7.4 shows that the survival models for each cluster match the incident data

158

better than the popular negative binomial method [152]. This establishes that the survival

models accurately represent the arrival times of accidents for each cluster.

To determine the accuracy of the Bayesian network analysis at predicting the distribu-

tion of incidents we compared its results to a validation set. This validation set consists

of approximately 10 months of recent Nashville incident data, ranging from February 6th

to December 23rd 2016. We ran the Bayesian analysis over this range of dates, and then

compared its predicted accident distribution across hex locations against the actual distri-

bution of the validation data. The results are presented in the figure 7.6. The bars represent

the difference between the predicted probability and the actual probability for incidents in

each hex cell. With a few exceptions, most cell’s predicted incident probability is within

2% of the actual probability. There are a few cells that have slightly worse prediction per-

formance, with the difference generally being less than 10%. These inaccuracies could be

due to properties changing in the hex cells (increasing population density, for example), or

may be due to having only two years of training data: future data should increase this accu-

racy. The normalized root mean squared error of the predicted distribution was 1.656425,

which shows that overall the predicted results match the validation data well.

7.5.1 Using the Toolchain

Now that we have demonstrated the accuracy of the toolchain components, we will

discuss the toolchain’s use. Since the toolchain is split into two major components, its use

is also split into these two functions.

The first step for a user is inputting their current environmental factors (the current

weather and time) and how much time they want to look into the future. The survival

models are then consulted according to the analysis time. This determines the likelihood

that an incident of each cluster will occur at any location within the given time. Then

the Bayesian Network analysis is run using the input parameters to determine where an

incident is likely to happen. By using these two components together, we can predict

159

Figure 7.6: Error in Predicted Hex Incident Probabilities vs. Validation Data

the likelihood of a next incident at a given time and location. Note that both of these

components are necessary to use the toolchain. The survival likelihood for each incident

of each cluster describes how likely each type of incident is, while the Bayesian analysis

shows the probable distribution of any incident that might occur across the hex cells.

Example analysis from the trained toolchain: In table 7.5 we show the predicted

accident distribution starting at 15:00 on March 23rd, on a Thursday, in clear weather, with

an analysis time of 2 hours. The survival models indicate that there are a few clusters

that have over a 50% likelihood of having an accident during this time segment. The

Bayesian analysis then shows that cells 3523 and 4140 are tied for the most likely cells for

an incident to take place in given the parameters, with cells 5491, 4703, and 4699 following

close behind.

For comparison we provide the same analysis but during rainy weather in table 7.6.

Because the analysis time is the same, the survival models for each cluster give the same

accident probabilities. When determining which clusters are more likely, however, the

Bayesian analysis considers the rainy weather. This changes the most likely cells to 3513,

4332, 5290, 4803, and 3587. These cells have a higher probability than in the clear weather

160

Table 7.5: Prediction Ran with following Properties: Weather=’Clear-Day’,
Day=’Thursday’, Month=’March’, Date=’23rd’, StartTime=’15:00’, AnalysisTime=’2
hours’

Survival Models
Rank Cluster Incident Likelihood

1 1 0.6554
2 13 0.6294
3 7 0.49461
4 2 0.4448
5 6 0.2114

Hex Mapping
Rank HexCell Hex Probability

1 3523 0.05884
2 4140 0.05884
3 5491 0.04682
4 4703 0.04682
5 4699 0.04682

case due to the increased likelihood of incidents during rain.

161

Table 7.6: Prediction Ran with following Properties: Weather=’Rain’, Day=’Thursday’,
Month=’March’, Date=’23rd’, StartTime=’15:00’, AnalysisTime=’2 hours’

Survival Models

Rank Cluster Incident Likelihood

1 1 0.6554

2 13 0.6294

3 7 0.49461

4 2 0.4448

5 6 0.2114

Hex Mapping

Rank HexCell Incident Probability

1 3513 0.13108

2 4332 0.13108

3 5290 0.13108

4 4803 0.13108

5 3587 0.13108

162

Table 7.7: Prediction Ran with following Properties: Weather=’Snow’, Day=’Thursday’,
Month=’January’, Date=’10th’, StartTime=’17:00’, AnalysisTime=’6 hours’

Survival Models

Rank Cluster Incident Likelihood

1 1 0.9591

2 13 0.9491

3 7 0.8710

4 2 0.8288

5 6 0.5100

Hex Mapping

Rank HexCell Incident Probability

1 4334 0.201918

2 3862 0.174190

3 4350 0.036615

4 3943 0.036615

5 3792 0.036615

One last example demonstrated in table 7.7 shows snowy weather in mid-January, given

6 hours of analysis time. Notice that due to the increased analysis time the survival models

predict that incident’s belonging to several clusters are very likely to happen. Looking at

the cell distribution shows that there are two likely cells, but other cells are less likely than

rainy or clear conditions. This might be caused by people using their cars less in snowy

conditions (except in a few areas), although this is just speculation.

163

7.6 Conclusion

We have demonstrated that by combining clustering, survival analysis, and Bayesian

network inference techniques a toolchain can be created that accurately forecasts incidents

in both space and time. Unlike many popular techniques that focus on particular situations,

the toolchain is shown to well over the spatially diverse Nashville metropolitan area. By

leveraging this predictive model, in the future we will create more accurate dispatching

algorithms to respond appropriately to motor vehicle accidents as they occur.

164

Chapter 8

Generalizability: Applying the Decision Framework to Other Applications

8.1 Overview

A goal of this dissertation is to present decision-making approaches and frameworks

that are applicable to a diverse set of multi-agent SCPS. However, up to this point we

have primarily used the problems of emergency resource allocation and dispatch, which

are instances of the Spatio-Temporal Resource Allocation (STRM) class of problems, to

illustrate the challenges of SCPS decision-making and the proposed solution approaches.

This chapter details the other STRM problems that we have applied our decision-

making approaches to, which include electric fleet charge scheduling and dynamic vehicle

routing for paratransit vehicles. Each of these domains pose unique challenges both when

modeling the environment and during decision-making, which we detail below. However,

despite these unique challenges, we demonstrate that the structure of our decision support

framework and the spectrum of planning approaches can be generalized to these domains,

illustrating the broad applicability of our methods to SCPS problems.

The work comprising the description of the electric fleet charge scheduling problem

and our solution framework (Section 8.2) has been published in the 2020 IEEE Power &

Energy Society Innovative Smart Grid Technologies Conference [25].

• G. Pettet, M. Ghosal, S. Mahserejian, S. Davis, S. Sridhar, A. Dubey, and M. Meyer

(2021). “A Decision Support Framework for Grid-Aware Electric Bus Charge Schedul-

ing,” in 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies

Conference, ISGT 2020.

The work comprising the description of the dynamic vehicle routing problem for para-

transit services and our solution framework (Section 8.3) has been published in the 13th

165

ACM/IEEE International Conference on Cyber-Physical Systems [27].

• M. Wilbur, S. Kadir, Y. Kim, G. Pettet, A. Mukhopadhyay, P. Pugliese, S. Sama-

ranayake, A. Laszka, and A. Dubey (2022). “An Online Approach to Solve the Dy-

namic Vehicle Routing Problem with Stochastic Trip Requests for Paratransit Ser-

vices,” in ACM/IEEE 13th International Conference on Cyber-Physical Systems, IC-

CPS 2022.

8.2 Electric Fleet Charging

8.2.1 Introduction

Many municipalities have begun exploring the challenges of converting public transit

fleets to electric buses (EVs). EVs increase fleet management complexity since the system

now interacts with the power grid. Operators must determine where to build charging

stations and when to charge the EVs.

Several works have previously examined EV charge scheduling from the perspective

of energy cost optimization. Techniques that have been applied to the domain include ge-

netic programming [172], greedy algorithms [173], linear optimization [174], and solving

a Markov Decision Process using policy iteration [175].

While minimizing energy cost is important, it is equally important to consider the strain

charging decisions place on the power grid. Bus fast charging may have significant impact

on the grid and potentially cause thermal overloading, phase imbalances, and voltage vio-

lations [176, 177, 178]. This can lead to insulation breakdown in transformers and result in

blackouts in the transformer’s service area [179].

To accurately account for the energy needs of buses throughout the day with respect

to the grid’s condition, an integrated traffic and grid model is needed [180], [181], but is

understudied in the context of charge scheduling – a recent paper examines charge schedul-

ing with respect to grid constraints [182], but does not include the grid’s health in the cost

166

function or consider the impact of traffic on bus movement, for example. In this paper,

we present a principled fleet management policy that incorporates such models. A traffic

model provides precise travel time and power use information given different traffic con-

ditions, informing the policy when buses will need to be recharged. A power grid model

then quantifies how charging decisions impact the grid at various times and locations, and

whether the charging behavior causes equipment thermal overloading or unacceptable sys-

tem conditions [178, 177].

We present an anytime algorithm which leverages these traffic and grid models to es-

timate both the long term operational cost and power grid strain of charging decisions.

Unlike methods such as reinforcement learning that require extensive offline training, our

approach requires no training and does not assume a stationary environment. This is cru-

cial in dynamic city environments where traffic or grid loads can change due to unexpected

demand or emergencies.

Contributions: To realize such a charge scheduling policy we (1) construct a traffic

simulation of the fleet’s operating area to extract expected travel times and energy use

for each bus route segment, (2) create a power grid model that captures the effect of a

charging policy’s demand on the grid, and (3) define a control process that utilizes the

above simulations to find an optimal charging policy. We implement this framework on

the transit system of Richland, WA as a case study and compare it to a greedy charging

approach.

8.2.2 Decision Support Framework

Grid aware charge scheduling requires many inter-connected components (Figure 8.4).

A traffic model provides bus State of Charge (SOC) and travel time estimates while a

power grid model quantifies the grid impact of charging actions and determines if there are

infrastructure constraint violations. These models are incorporated in a simulation of the

transit system which is used by a decision theoretic planner to look ahead and determine

167

Figure 8.1: Street map of Tri-Cities region; the inset screenshot shows buses arriving and
parked at the Knight Street Transit Center.

an optimal charging policy. We discuss each of these components in detail below.

8.2.2.1 Traffic Model

The traffic model simulates local transit busses and their SOC while following a daily

schedule in realistic traffic conditions. The simulation domain for our case study is the Ben

Franklin Transit (BFT) service area, which includes Richland, WA, and the encompassing

cities of West Richland, Kennewick, and Pasco [183].

The street map data for the considered Tri-Cities region was obtained from © Open-

StreetMap (OSM) [184], and included metadata for traffic light programs, public transit

routes, and bus stop locations. The street map and zoomed in region of the Knight Street

Station transit hub is illustrated in Figure 8.1.

The OSM map data was loaded into SUMO, an open source, agent-based, microscopic

and continuous simulation package that can handle large networks [185]. The Traffic Con-

trol Interface (TraCI) allowed for controlling the SUMO simulation to extract detailed in-

formation at every time step in Python. Vehicles in SUMO follow common driving rules,

including interactions with other vehicles such as changing lanes and maintaining a min-

imum space between vehicles [186]. The built in “ElectricBus” vehicle type was used to

model the buses and their electricity use, and allows for custom bus attributes such as the

168

Figure 8.2: GIS overlay of the feeder model.

attributes listed in [186].

The electric bus flows were generated by repeating routes. Simulation output was col-

lected for the electric buses including travel time between stops and and SOC at each stop.

8.2.2.2 Power Grid Model

The power grid representing the 12.47kV distribution feeder network in Richland, WA

is modeled using GridLAB-D [187]. The substation and feeder layouts, equipment ratings,

and historical hourly load for every customer was attained from the local utility. In this

study scenario, two different distribution substations, each with 12 radial feeders, supply

power to the majority of loads within the study footprint. Fig. 8.2 illustrates the location of

these two substations and their feeder network stretching over the city of Richland.

As charging stations are connected to the distribution feeder system, various power

system conditions will be monitored throughout the day. Each charging station is mapped

to the nearest power grid node, and their impact to power grid depends on their location and

power consumption relative to the time of day. Figure 8.6 illustrates the one-line diagram

169

Figure 8.3: Simulated electric bus routes. Triangles represent the charger locations on each
route – black for the Knight Street station, yellow for the Three Rivers station.

of the two distribution substations and an example placement of a new charging station

placed mid-way down the feeder.

To be consistent with industry practice of building the system to ensure reliability under

worst case scenarios, a peak day’s hourly load profile is used to represent the power grid

load without bus charging. The charging load is then added on top of the peak day load, and

load flow analysis is performed to monitor nodal voltage deviations, phase imbalances, line

losses, and the apparent power drawn from the feeder head to analyze equipment thermal

loading. These measurements are:

• Nodal voltage deviation of the phases φ ∈ {a,b,c},

∆vi,φ =
vi,φ − vbase

vbase
(8.1)

170

Figure 8.4: Grid-aware Decision Support Framework for public transit EV charge schedul-
ing.

• Imbalance factor [176] of the circuit after charging at node i at time t approximated

by

Ii =
v2

v1
≈
√

1−
√

3−6α

1−
√

3+6α
, (8.2)

where,

α =
v4

ab + v4
bc + v4

ca

(v2
ab + v2

bc + v2
ca)

2 , (8.3)

and v1 and v2 are the positive and negative sequence voltage,

• Total line losses L in underground cables (Lug) and overhead lines (Loh) after charg-

ing at node i,

Li = Lug
i +Loh

i (8.4)

• Apparent power drawn from the feeder f head corresponding to the node i where the

171

charger is placed at time t,

S f = ∑
φ

Vf ,φ I f ,φ , ∀φ (8.5)

where, the complex voltage and current at the feeder f are denoted by Vf and I f .

The constraints which should not be violated are:

|∆vi,φ | ≤ ∆vmax, Ii ≤Imax,

Li ≤ Lmax, S f ≤ Smax.

 (8.6)

where, the suffix max denotes the limit of the measurements. Based on the above measur-

ands in (8.2)-(8.5), a novel grid score metric of charging at node i at time t is defined using

the following terms,

The grid score gi is given by,

gi =



0, if any of the inequalities in (8.6) is violated,

1− 1
∑n wn

[
w1 ∑

j∈φ

1
3
|∆vi, j|
∆vmax

+w2
Ii

Imax
+w3

Li

Lmax

+w4
S f

Smax

]
, otherwise.

(8.7)

where, wn, ∀n∈{1,2,3,4}’s are the various weights associated with the four additive terms

in (8.7) (normalized voltage violation, imbalance factor, loss and apparent power drawn at

feeder head). These weights are introduced so that the planner can choose to prioritize each

contributing factor in the metric differently. Uniform contribution from the contributing

factors would require each weight to be equal to 1. The joint grid score of multiple chargers’

charging impact at a particular time can be derived using an extension of the expression in

(8.7). The time variable t is dropped for simplicity in the above derivation. An example of

grid related inputs used are shown in Fig. 8.5. The individual charging impact is given in

Fig 8.5a, whereas Fig. 8.5b shows the plot of the assumed time of use (TOU) price of the

172

5 10 15 20
0

0.5

1

Knight Street Station Three Rivers Station Combined Score

5 10 15 20
0.1

0.2

0.3

0.4

Figure 8.5: Grid related input. (a) Individual and combined grid score of the chargers in
different hours of the day. (b) The Time of Use price of Electricity.

Figure 8.6: Richland distribution substations diagram

electricity throughout the day.

8.2.2.3 Decision Theoretic Planner

The overall system goal is to find an electric bus charging policy that minimizes both

the impact on the power grid and operating costs. We begin with several assumptions.

First, we assume that bus routes are set in advance, that each bus is assigned to a particular

route, and that there is a travel model which describes each bus’s travel time and battery

discharge throughout their routes (Section 8.2.2.1). Next, we assume there is a set of pre-

defined chargers C placed on the routes. We assume that we are given a model that captures

how different charging actions effect the health of the power grid (Section 8.2.2.2). Last,

173

we assume we have access to a time of use energy price model.

8.2.2.4 Markov Decision Process

We model the bus charging problem as a Markov Decision Process (MDP), which is

a model commonly used to describe state and control dynamics for systems with intrinsic

uncertainty[188, 189]. MDPs are described by the tuple (S,A,P(s,a),ρ(s,a)) where S is

a finite state space, A is a set of actions, P(s,a) is the state transition function for taking

action a in state s, and ρ(s,a) is the reward function for taking a at s.

States: A state captures environmental information which is needed for decision mak-

ing, including each bus’s SOC and position as well as energy pricing. Our model is limited

to states which are relevant to decision making – when buses arrive at and leave chargers.

Formally, a state at time t is represented by st and consists of a tuple (Bt , ε), where ε t is the

current time of use energy pricing and Bt is SOC and position information about the set of

buses B at time t.

Actions: Actions in our model correspond to assigning a charger c ∈ C to charge an

available bus. A bus bi ∈ B is available to charge at c at time t if it is in the set of buses

located at c at time t, γ(c, t). A valid action at a time t is represented as at = {c−> bi|c∈C}

where bi ∈ γ(c, t). c−> bi represents assigning bus bi to charge at charger c.

Transitions: State transitions depend on the travel model and charging actions. A bus

bi’s location will update based on its position along its assigned route POS(bi) and the

current traffic. We assume that buses do not deviate from their schedule to charge, and

spend the same amount of time at the charger weather they charge or not. bi’s SOC change

depends on both the travel model as well as charging actions.

Rewards: Our reward function captures an action’s impact on both the power grid and

operational (i.e. energy) costs:

ρ(s,a) =−ε̄a +β ḡ(s,a)+ψn f (s) (8.8)

174

where ε̄a is the total energy cost for taking action a, ḡ(s,a) is the total impact to the

power grid of taking a at state s (which is mapped to the joint grid score g(i,h) in Section

8.2.2.2), and β is a hyper-parameter that determines the tradeoff between the two. The last

term is a penalty given anytime a bus runs out of charge – ψ is a hyper-parameter, and n f (s)

is the number of ‘empty’ buses in state s.

8.2.2.5 Solution Approach

When choosing an approach to solve the above MDP, there are two required properties.

First, the approach needs to be adaptive to unexpected changes in the environment such as

equipment failure. Second, it must be capable of handling uncertainty in the environment,

including uncertainty in travel times or power grid demand. While the current model does

not include such uncertainty, incorporating it is a future goal.

With these requirements in mind, we solve the MDP using Monte Carlo Tree Search

(MCTS), a simulation based search algorithm that evaluates actions by sampling from a

large number of possible scenarios. The evaluations are stored in a search tree, which is

used to explore promising actions. Unlike approaches like reinforcement learning that re-

quire offline training, MCTS performs its computation online by sampling from underlying

simulations, making it flexible to changes in the environment. There is also substantial re-

search on handling uncertainty with MCTS using techniques such as sparse sampling [190]

and information set theory [191]. These properties make MCTS a good choice to solve our

MDP.

When implementing MCTS, there are a few domain specific considerations: the Tree

Policy and the Default Policy. The Tree Policy governs how the algorithm explores the

search tree. We use the standard Upper Confidence bounds applied to Trees (UCT) al-

gorithm [97], which is a principled approach that balances exploiting the most promising

actions with exploring other actions. The Default Policy estimates the value of a new node

by quickly simulating to a terminal node. The simplest default policy is uniform random

175

action selection, but domain specific information can be incorporated to make these esti-

mates more accurate. Buses with lower SOC’s are more likely to be charged at any given

moment, therefore our default policy chooses to charge each bus with probability inversely

proportional to their SOC.

8.2.3 Performance

8.2.3.1 Experimental Design

To evaluate the framework, we examine the Tri-Cities area in Washington, USA. This

mid-sized metropolitan area’s transit system services the cities of Richland, Pasco, and

Kennewick WA. Of the transit system’s 18 bus routes, we selected 5 to simulate as EVs,

which combined have 14 buses assigned to them on a typical day. We simulated charging

stations at two transit hubs – the Knight Street station, which all 5 bus routes pass through,

and the Three Rivers station, which 3 routes pass through. This setup simulates one main

charging hub, with one secondary hub for a subset of routes, and is shown in Fig. 8.3.

Our experimental runs are for one day of operation lasting from 6am to 10pm, and assume

that each bus starts with batteries at half maximum capacity from overnight charging. To

reduce noise, we run 10 experiments for each hyper parameter combination and average

their scores.

For this case study, initial hyper-parameter values and environmental constants were

selected from experience and are shown in Table 8.1. We focus on the effect of one key

parameter: the reward tradeoff β . It controls the balance between minimizing the system’s

energy cost with minimizing the system’s impact on the power grid, as explained in Section

8.2.2.3. The other hyper-parameters are kept constant.

176

Table 8.1: Experimental Parameters

Hyper-Parameter Value(s)

MCTS Iteration Limit 3000

Look ahead time horizon 3.5 hours

UCT exploit / explore tradeoff 3.5

Bus failure reward penalty ψ -500

Reward tradeoff parameter β {1,2,3,4,5}

Battery capacity 150 KWh

Charging rate 300 KW

To understand the efficacy of our framework, we compare it to a greedy bus charging

policy which charges any bus when it stops at a charger if its SOC is under a set threshold.

If there are multiple buses that could be charged, the bus with the lowest SOC is chosen.

The threshold ensures that buses are only charged when needed. For our experiments we

chose a threshold of 41kWh, as this was the lowest threshold that did not lead to bus failure.

8.2.3.2 Results and Discussion

Figure 8.7: Reward tradeoff parameter β ’s effect on the energy cost (a lower score is better)
to run the transit system per day. Red dashed line represents the greedy approach for
comparison.

177

Figure 8.8: Reward tradeoff parameter β ’s effect on the cumulative grid impact (a higher
score is better) to run the transit system per day. Red dashed line represents the greedy
approach for comparison.

Results are shown in Figs. 8.7 and 8.8. Fig. 8.7 plots the cumulative energy cost to

charge the buses for the 1 day scenario with different values for β , and compares them to

the greedy baseline policy. Figure 8.8 does the same but for the cumulative power grid

impact metric. Our first observation is that in all cases our framework outperforms the

baseline greedy policy. For energy costs, lower values are better and indicate that less

money is needed to charge the buses. The maximum cost using our framework of $860 is

$50 lower than the greedy policy’s $910. For the power grid metric, a higher value is better

and indicates that the charging decisions had a more favorable impact on the grid. Here

our lowest power grid score of 376 was better than the greedy policy’s score of 362. These

values represent a significant savings when scaled to an entire transit system. For example,

scaling our results to the full 75 buses in Richland’s transit system could save over $100k

per year without considering the avoided cost for grid upgrades or peak demand charges.

Our second observation is the effect of the reward tradeoff parameter β . Generally,

the higher the value of β the more emphasis is given to the power grid impact metric as

opposed to the energy cost. This is reflected in our results, as β = 1 has the lowest grid

impact score. As β is increased, the framework increasingly sacrifices energy costs to

achieve better grid impacts. The takeaway is that our framework is flexible to the needs of

different operators – if a city has very low tolerances for impacts to their power grid but can

spare extra operating costs, they can use higher values for β . On the other hand cities with

tighter budgets can decrease β to save operating costs at the cost of increasing the stress on

178

their power grid.

8.2.4 Conclusion

When managing an electric bus transit fleet, it is crucial that charging policies take the

power grid into consideration. We argue that to realize such a policy requires a decision

support framework which incorporates both traffic and power grid models. We discuss

how these models are used by a decision theoretic planner that evaluates possible charging

schedules with regard to their operational costs and impact on the grid. We implement said

framework on mid-sized transit network and found that our approach improves both costs

and grid impact compared to a greedy scheduling policy. The positive outcome of this

case study motivates future extensions in this domain. For example, our system assumes a

conservative worst case scenario of peak historic demand in the grid model – this can be

extended to a probabilistic demand model that allows more flexibility in decision making.

8.3 Dynamic Vehicle Routing Problem

The vehicle routing problem (VRP) is a well-known combinatorial optimization prob-

lem that assigns a fleet of vehicles to serve a set of user trip requests. The dynamic version

of this problem (DVRP) introduces a subset of requests that are not known at the time of

planning. The decision agent’s goal can be to maximize the number of requests served,

minimize the passenger’s travel time, minimize the total distance traveled while serving all

requests, or some combination of these objectives. In this work we focused on the socially

beneficial real-world DRVP of paratransit services in Chattanooga, Tennessee. Paratransit

services are a curb-to-curb transportation service provided by public transit agencies for

passengers who are unable to use fixed-route transit (e.g., passengers with disabilities).

A fundamental challenge in solving a DVRP with planning approaches is computational

tractability. For example, for the paratransit service we studied in Chattanooga with five

vehicles, each with a capacity of eight passengers, the action space is of the order of 1022.

179

While requests are relatively sparse in this problem setting (with one request occurring ev-

ery few minutes on average), each decision must be made fairly quickly to keep customers

from waiting for too long. One potential planning approach that could scale to a problem

of this complexity the hierarchical framework from Chapter 4. However, trip requests often

take users across large portions of the environment, making it difficult to spatially segment

the problem into well-isolated sub-problems for such a hierarchical approach.

Instead, we leverage the structure of the problem to find promising actions. We define a

budget heuristic that scores an action based on the time each vehicle has no passengers on

board – a higher score means that vehicles spend more time with no riders. This is based on

the idea that it is easier for empty vehicles to serve unexpected, dynamic requests, therefore

maximizing the slack in the system. Then, given a set of routes and a new requests, we

create a weighted graph based on the budget heuristic whose edges reqpresent: (a) which

vehicles can serve the new requests, and (b) which vehicles can swap unpicked requests

from their routes to maximize utility. From this graph we can sample feasible actions that

are weighted by their heuristic score, allowing our decision maker to focus on the best

promising actions during its search.

We applied our online planning framework using this heuristic sampling method to

manage a simulation of Chattanooga’s paratransit service, and compared its performance

to the actual decisions that were made by the service. We examined both the total number

of vehicle runs that were needed to service the requests, as well as the distance each vehicle

traveled. These metrics for one week of data are shown in figures 8.9 and 8.10. Overall, we

found that our decision support framework could save $145k per year in operation costs and

reduce CO2 emissions by 576 metric tons per year by using the vehicles more efficiently

than the methods used in practice today. This was achieved with a computational time of

less than 60 seconds on average for each request. This successful implementation of our

framework demonstrates its adaptability to complex SCPS problems.

180

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
0

5

10

15

20

variable base_runs mcvrp_runs

Paratransit Vehicle Runs for week of 2021-04-12

day_of_week

nu
m

be
r

of
 v

eh
ic

le
 r

un
s

Figure 8.9: The number of vehicle runs that were performed

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
0

500

1000

1500

2000

2500

variable base_distance mcvrp_distance

Paratransit Vehicle Distance Traveled for week of 2021-04-12

day_of_week

ve
hi

cl
e

di
st

an
ce

 t
ra

ve
le

d

Figure 8.10: distance

181

Chapter 9

Conclusion

This dissertation makes several important contributions toward creating scalable and

adaptive decision-making frameworks for Societal-scale Cyber-Physical Systems (SCPS).

First, this dissertation addresses the problem of creating an integrated decision sup-

port framework that combines generative models of the environment and procedures to

update these models as the environment evolves with online planners. Chapter 3 presents

a modular framework that that integrates these components, applies the framework to the

emergency response responder dispatch problem, and shows that it outperforms classical

optimization approaches. The standard centralized decision-making approach presented

in Chapter 3 is applicable only to multi-agent SCPS with relatively small state-action

spaces, but for these problems it completely captures the set of possible interactions be-

tween agents. This framework forms the foundation for each scalable planning approach

to follow.

Second, this dissertation addresses the challenge of creating online planning algorithms

that can scale to the complex environments present in many multi-agent SCPS. Chap-

ter 4 presents a hierarchical planning approach that splits a large SCPS into smaller sub-

problems that can be solved tractably using standard online planners. It utilizes two plan-

ning levels: a high-level planner leverages the spatial structure of the environment to spit

the problem into sub-problems and then coordinates between these sub-problems as the

environment evolves. A low-level planner then uses Monte-Carlo tree search to plan within

each sub-problem. This approach is applied to the emergency response resource alloca-

tion problem, and is demonstrated to scale significantly better than centralized planning

approaches while being adaptive to non-stationary environments.

Third, this dissertation addresses the challenge of designing decision-making approaches

182

that are robust to communication failures. Chapter 5 presents a decentralized decision-

making framework for multi-agent SCPS that enables each agent to independently deter-

mine its own course of action. It allows the system to function with access to limited inter-

agent communication while being extremely scalable in terms of the number of agents.

It examines techniques that cheaply model the behavior of other agents while each agent

is locally planning to compensate for loosing inter-agent coordination, and designs a cen-

tralized filter that requires minimal communication with each agent while ensuring that

system-wide constraints are satisfied.

Fourth, this dissertation addresses the challenge of utilizing the knowledge encoded in

learning-based decision-making policies even when the environment has changed. Chap-

ter 6 presents a hybrid decision-making approach called Policy Augmented Monte Carlo

tree search (PA-MCTS) which combines learning-based RL with online planning. Given a

specific computational budget, this hybrid framework converges to significantly better de-

cisions than standard online planning approaches, making it ideal for situations with tight

time constraints on decision-making. The online search also makes the approach signifi-

cantly more robust to environmental changes than standard state-of-the-art RL approaches.

Several properties of the approach are proven, including when PA-MCTS will return the

optimal action, when it will choose better actions than either pure MCTS or greedy Q ac-

tion selection, and the bound on the total deviation in cumulative rewards from an optimal

policy when used for sequential decision-making.

Finally, this dissertation addresses the challenge of creating generative models with

high-spatiotemporal resolution for SCPS environments. Chapter 7 presents a generative

modeling approach that enables event forecasting over large, heterogeneous geographic

areas using mixed-typed features (i.e., categorical and numeric features). It uses the Sim-

ilarity Based Agglomerative Clustering (SBAC) algorithm to find groups of similar events

spread across the spatial area. These groups of similar events also tend to have similar

arrival distributions, which makes forecasting for each group more accurate. These groups

183

are then mapped to spatial locations to achieve models with high spatial-temporal resolu-

tion.

This dissertation has shown that the above components, when integrated into a cohesive

decision support system, can significantly improve the performance of several SCPS: (1)

when the hierarchical framework was applied to emergency responder allocation in a sim-

ulation of Nashville, TN (see Chapter 4), our experiments show that it improves response

times by 21.6 seconds on average when compared to the policies in use today (Fig. 9.1), and

improves response times by about 82 seconds when there are three simultaneous vehicle

failures (Fig. 9.2) – demonstrating the framework’s adaptability to non-stationary condi-

tions. (2) Applying the proposed framework to schedule when electric buses should charge

throughout the day in a simulation of Richland, WA (see Section 8.2) resulted in an esti-

mated savings of over $100k in operating costs compared to greedy methods. (3) Applying

the framework to dynamically match and route paratransit vehicles to users in a simulation

of Chattanooga, TN (see Section 8.3) resulted in a savings of $145k in operating costs and

a reduction of 576 metric tons of CO2 emissions per year. The framework’s success on

this broad set of problems demonstrates it’s generalizability across SCPS domains.

184

Baseline LL Only HL & LL

170

180

190

Policy

Re
sp
on

se
Ti
m
e
(se

c)

5 regions
6 regions
7 regions

Figure 9.1: Results when the decision support framework is applied to emergency re-
sponder allocation in Nashville, TN. We compare the policy used by responders today
(baseline), the hierarchical framework without the high-level inter-region coordination (LL
Only), and the complete complete hierarchical planning framework described in Chapter 4
(HL & LL) when applied to incidents sampled from a non-stationary rate distribution. This
figure presents a zoomed in view of the average response times.

185

0 1 2 3
300

350

Number of Equipment Failures

Re
sp
on

se
Ti
m
e
(se

c)

Baseline
LL Only
MMC HL
RL HL

Figure 9.2: Results when the decision support framework is applied to emergency respon-
der allocation with vehicle failures in Nashville, TN. We compare the policy used by re-
sponders today (baseline), the hierarchical framework without the high-level inter-region
coordination (LL Only), and the complete complete hierarchical planning framework de-
scribed in Chapter 4 using both an MMC queuing high level planner (MMC HL) and a
surrogate model high level planner (RF HL) when subjected to increasing numbers of si-
multaneous equipment failures. This figure presents a zoomed in view of the average re-
sponse times.

9.1 Future Work

As data collection and processing techniques improve, cloud and fog compute in-

frastructure is extended, and the internet of things becomes reality, Societal-scale Cyber-

Physical Systems are becoming a pervasive aspect of our communities. Many such sys-

tems have an immense influence on our quality of life: for example, transit services can

enable environmentally friendly and equitable movement throughout a community, while

emergency response services are critical for the health and safety of community members.

Optimizing these systems makes our communities more efficient and pleasant. However,

SCPS present several challenges to overcome. They often cover very large, heterogeneous

areas that make learning forecasting models difficult. Since they closely interact with the

186

real world, the environments are constantly changing, which requires models that are con-

stantly updating as well as adaptive decision making approaches. Finally, they can involve

large numbers of agents that interact, leading to complex state-action spaces.

This dissertation has addressed several of these challenges, but there are still signif-

icant work yet to be accomplished. One key area that requires further exploration is

the hybrid decision-making approach presented in Chapter 6. This approach has shown

much promise for dealing with non-stationary environments with tight time constraints for

decision-making. However, so far the approach has only been applied to the simple inverted

pendulum control problem. The extensions necessary to apply this approach to complex

SCPS should be investigated. So far the approach has only used centralized planning –

would a decentralized or hierarchical framework further improve its scalability?

Another important gap is the explainability of these planning frameworks. These frame-

works will be approved and used by people who are not experts in decision-making theory

and data science. This hurts the adoption of the frameworks, particularly in safety criti-

cal applications such as emergency response. While there has been efforts to increase the

explainability of machine learning and reinforcement learning approaches, there is little

research on the same for planning approaches.

The overarching goal of this line of research is to create generalizable, scalable deci-

sion support frameworks for SCPS. This dissertation has addressed many challenges with

creating such a framework, but there is still work to be done before such methods can be

practically applied to many problems and accepted by stakeholders in these domains.

187

Bibliography

[1] Usdoe - the smart grid. https://www.smartgrid.gov/the smart grid/smart grid.html,

2021. Accessed: 2021-04-21.

[2] Fangzhou Sun, Yao Pan, Jules White, and Abhishek Dubey. Real-Time and Predic-

tive Analytics for Smart Public Transportation Decision Support System. In 2016

IEEE International Conference on Smart Computing (SMARTCOMP), pages 1–8,

May 2016.

[3] Trista Lin, Hervé Rivano, and Frédéric Le Mouël. A Survey of Smart Parking Solu-

tions. IEEE Transactions on Intelligent Transportation Systems, 18(12):3229–3253,

December 2017. ISSN 1558-0016.

[4] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and

Daniela Rus. On-demand high-capacity ride-sharing via dynamic trip-vehicle as-

signment. Proceedings of the National Academy of Sciences, 114(3):462–467, Jan-

uary 2017.

[5] Sean K. Keneally, Matthew J. Robbins, and Brian J. Lunday. A markov decision

process model for the optimal dispatch of military medical evacuation assets. Health

Care Management Science, 19(2):111–129, June 2016.

[6] M. S. Maxwell, S. G. Henderson, and H. Topaloglu. Ambulance redeployment: An

approximate dynamic programming approach. In Proceedings of the 2009 Winter

Simulation Conference (WSC), pages 1850–1860, December 2009.

[7] Erhan Erkut, Armann Ingolfsson, and Güneş Erdoğan. Ambulance location for max-

imum survival. Naval Research Logistics, 55(1):42–58, 2008.

[8] Amir Ali Nasrollahzadeh, Amin Khademi, and Maria E. Mayorga. Real-Time Am-

188

https://www.smartgrid.gov/the_smart_grid/smart_grid.html

bulance Dispatching and Relocation. Manufacturing & Service Operations Manage-

ment, 20(3):467–480, April 2018.

[9] X. Yu and S. Shen. An Integrated Decomposition and Approximate Dynamic Pro-

gramming Approach for On-Demand Ride Pooling. IEEE Transactions on Intelli-

gent Transportation Systems, 21(9):3811–3820, September 2020.

[10] Sanket Shah, Meghna Lowalekar, and Pradeep Varakantham. Neural Approximate

Dynamic Programming for On-Demand Ride-Pooling. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(01):507–515, April 2020.

[11] H. Shuai and H. He. Online Scheduling of a Residential Microgrid via Monte-Carlo

Tree Search and a Learned Model. IEEE Transactions on Smart Grid, 12(2):1073–

1087, March 2021.

[12] S. Yoshida, M. Ishihara, T. Miyazaki, Y. Nakagawa, T. Harada, and R. Thawonmas.

Application of Monte-Carlo tree search in a fighting game AI. In 2016 IEEE 5th

Global Conference on Consumer Electronics, pages 1–2, October 2016.

[13] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, et al. Mastering the

game of Go with deep neural networks and tree search. Nature, 529(7587):484–489,

January 2016.

[14] D. Lenz, T. Kessler, and A. Knoll. Tactical cooperative planning for autonomous

highway driving using Monte-Carlo Tree Search. In 2016 IEEE Intelligent Vehicles

Symposium (IV), pages 447–453, June 2016.

[15] C. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochenderfer. Combin-

ing Planning and Deep Reinforcement Learning in Tactical Decision Making for Au-

tonomous Driving. IEEE Transactions on Intelligent Vehicles, 5(2):294–305, June

2020.

189

[16] Geoffrey Pettet, Ayan Mukhopadhyay, Mykel J. Kochenderfer, and Abhishek Dubey.

Hierarchical planning for resource allocation in emergency response systems. In

Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical

Systems, pages 155–166, Nashville Tennessee, May 2021. ACM.

[17] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L Dean, and

Craig Boutilier. Hierarchical solution of Markov decision processes using macro-

actions. arXiv preprint arXiv:1301.7381, 2013.

[18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement

learning algorithm that masters chess, shogi, and go through self-play. Science, 362

(6419):1140–1144, 2018.

[19] Yi Qi, Brian L Smith, and Jianhua Guo. Freeway accident likelihood prediction

using a panel data analysis approach. Journal of transportation engineering, 133(3):

149–156, 2007.

[20] Shaw-Pin Miaou and Harry Lum. Modeling vehicle accidents and highway geomet-

ric design relationships. Accident Analysis & Prevention, 25(6):689–709, 1993.

[21] Li-Yen Chang. Analysis of freeway accident frequencies: negative binomial regres-

sion versus artificial neural network. Safety science, 43(8):541–557, 2005.

[22] Do-Gyeong Kim, Yuhwa Lee, Simon Washington, and Keechoo Choi. Modeling

crash outcome probabilities at rural intersections: Application of hierarchical bino-

mial logistic models. Accident Analysis & Prevention, 39(1):125–134, 2007.

[23] Williams Ackaah and Mohammed Salifu. Crash prediction model for two-lane rural

highways in the ashanti region of ghana. IATSS research, 35(1):34–40, 2011.

190

[24] Ayan* Mukhopadhyay, Geoffrey* Pettet, Chinmaya Samal, Abhishek Dubey, and

Yevgeniy Vorobeychik. An online decision-theoretic pipeline for responder dis-

patch. In ACM/IEEE International Conference on Cyber-Physical Systems, pages

12–pages. ACM, 2019.

[25] Geoffrey Pettet, Malini Ghosal, Shant Mahserejian, Sarah Davis, Siddharth Sridhar,

Abhishek Dubey, and Michael Kintner-Meyer. A decision support framework for

grid-aware electric bus charge scheduling. In 2021 IEEE Power & Energy Society

Innovative Smart Grid Technologies Conference (ISGT), pages 1–5, 2021.

[26] Geoffrey Pettet, Hunter Baxter, Sayyed Mohsen Vazirizade, Hemant Purohit, Meiyi

Ma, Ayan Mukhopadhyay, and Abhishek Dubey. Designing decision support sys-

tems for emergency response: Challenges and opportunities. Workshop on Cyber

Physical Systems for Emergency Response in conjunction with CPS-IOT Week 2022,

2022.

[27] Michael Wilbur, Salah Kadir, Youngseo Kim, Geoffrey Pettet, Ayan Mukhopadhyay,

Philip Pugliese, Samitha Samaranayake, Aron Laszka, and Abhishek Dubey. An

online approach to solve the dynamic vehicle routing problem with stochastic trip

requests for paratransit services. In ACM/IEEE 13th International Conference on

Cyber-Physical Systems (ICCPS). IEEE, 2022.

[28] Geoffrey Pettet, Ayan Mukhopadhyay, Mykel J. Kochenderfer, and Abhishek Dubey.

Hierarchical planning for dynamic resource allocation in smart and connected com-

munities. ACM Trans. Cyber-Phys. Syst., nov 2021. ISSN 2378-962X.

[29] Geoffrey Pettet, Ayan Mukhopadhyay, Mykel Kochenderfer, Yevgeniy Vorobeychik,

and Abhishek Dubey. On algorithmic decision procedures in emergency response

systems in smart and connected communities. In Proceedings of the 19th Inter-

191

national Conference on Autonomous Agents and MultiAgent Systems, pages 1046–

1054, 2020.

[30] Geoffrey Pettet, Ayan Mukhopadhyay, and Abhishek Dubey. Decision making in

non-stationary environments with policy-augmented monte carlo tree search. In The

5th Multi-disciplinary Conference on Reinforcement Learning and Decision Making,

pages 490–494, 2022.

[31] Geoffrey Pettet, Saideep Nannapaneni, Benjamin Stadnick, Abhishek Dubey, and

Gautam Biswas. Incident analysis and prediction using clustering and bayesian net-

work. In 2017 IEEE International Conference on Smart City Innovations, pages

1–8, 2017.

[32] Sayyed Mohsen Vazirizade, Ayan Mukhopadhyay, Geoffrey Pettet, Said El Said,

Hiba Baroud, and Abhishek Dubey. Learning incident prediction models over large

geographical areas for emergency response systems. IEEE Conference on Smart

Computing, 2021.

[33] Henrik Jaldell. How important is the time factor? saving lives using fire and rescue

services. Fire Technology, 53(2):695–708, 2017.

[34] Henrik Jaldell, Prachaksvich Lebnak, and Anurak Amornpetchsathaporn. Time is

money, but how much? the monetary value of response time for thai ambulance

emergency services. Value in Health, 17(5):555–560, 2014.

[35] Center of Disease Control and Prevention. Road traffic injuries and deaths — a

global problem. https://www.cdc.gov/injury/features/global-road-safety/index.html,

2019.

[36] Association for Safe International Road Travel. Road Safety Facts. https://www.

asirt.org/safe-travel/road-safety-facts/, 2019.

192

https://www.cdc.gov/injury/features/global-road-safety/index.html
https://www.asirt.org/safe-travel/road-safety-facts/
https://www.asirt.org/safe-travel/road-safety-facts/

[37] John A Deacon, Charles V Zegeer, and Robert C Deen. Identification of hazardous

rural highway locations. Transportation Research Record, 543, 1974.

[38] Dominique Lord, Simon P Washington, and John N Ivan. Poisson, poisson-gamma

and zero-inflated regression models of motor vehicle crashes: Balancing statistical

fit and theory. Accident Analysis & Prevention, 37(1):35–46, 2005.

[39] Jie Bao, Pan Liu, and Satish V. Ukkusuri. A spatiotemporal deep learning approach

for citywide short-term crash risk prediction with multi-source data. Accident Anal-

ysis & Prevention, 122:239–254, 2019. ISSN 0001-4575. doi: 10.1016/J.AAP.2018.

10.015.

[40] Richard Church and Charles ReVelle. The maximal covering location problem. In

Papers of the Regional Science Association, volume 32, pages 101–118, 1974.

[41] Matthew S. Maxwell, Mateo Restrepo, Shane G. Henderson, and Huseyin Topaloglu.

Approximate dynamic programming for ambulance redeployment. INFORMS Jour-

nal on Computing, 22(2):266–281, 2010.

[42] Nashville Fire Department. Private Communication, 2018.

[43] Yi Qi, Brian L. Smith, and Jianhua Guo. Freeway accident likelihood prediction

using a panel data analysis approach. Journal of Transportation Engineering, 133

(3):149–156, 2007. ISSN 0733-947X. doi: 10.1061/(ASCE)0733-947X(2007)133:

3(149).

[44] Qi Shi and Mohamed Abdel-Aty. Big data applications in real-time traffic operation

and safety monitoring and improvement on urban expressways. Transportation Re-

search Part C: Emerging Technologies, 58:380–394, 2015. ISSN 0968-090X. doi:

10.1016/J.TRC.2015.02.022.

193

[45] Yuanchang Xie, Dominique Lord, and Yunlong Zhang. Predicting motor vehicle

collisions using Bayesian neural network models: An empirical analysis. Accident

Analysis & Prevention, 39(5):922–933, 2007. ISSN 0001-4575. doi: 10.1016/J.

AAP.2006.12.014.

[46] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and Yev-

geniy Vorobeychik. An online decision-theoretic pipeline for responder dispatch. In

International Conference on Cyber-Physical Systems, pages 185–196, 2019.

[47] Christos G Cassandras. Smart cities as cyber-physical social systems. Engineering,

2(2):156–158, 2016.

[48] Megan K. Sutherland and Meghan E. Cook. Data-driven smart cities: A closer

look at organizational, technical and data complexities. In Proceedings of the 18th

Annual International Conference on Digital Government Research, dg.o ’17, pages

471–476, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5317-5. doi: 10.

1145/3085228.3085239. URL http://doi.acm.org/10.1145/3085228.3085239.

[49] Ayan Mukhopadhyay, Chao Zhang, Yevgeniy Vorobeychik, Milind Tambe, Ken-

neth Pence, and Paul Speer. Optimal allocation of police patrol resources using a

continuous-time crime model. In International Conference on Decision and Game

Theory for Security, pages 139–158, 2016.

[50] Ayan Mukhopadhyay, Yevgeniy Vorobeychik, Abhishek Dubey, and Gautam

Biswas. Prioritized allocation of emergency responders based on a continuous-time

incident prediction model. In Conference on Autonomous Agents and Multiagent

Systems, pages 168–177, 2017.

[51] Mohammad Abu-Matar and John Davies. Data driven reference architecture for

smart city ecosystems. In 2017 IEEE SmartWorld, pages 1–7, San Francisco, CA,

USA, 2017. IEEE, IEEE.

194

http://doi.acm.org/10.1145/3085228.3085239

[52] Chao Zhang, Victor Bucarey, Ayan Mukhopadhyay, Arunesh Sinha, Yundi Qian,

Yevgeniy Vorobeychik, and Milind Tambe. Using abstractions to solve opportunis-

tic crime security games at scale. In 2016 AAMAS Proceedings, pages 196–204,

Bologna, Italy, 2016. International Foundation for Autonomous Agents and Multia-

gent Systems, IFAAMAS.

[53] Ayan Mukhopadhyay, Zilin Wang, and Yevgeniy Vorobeychik. A decision theoretic

framework for emergency responder dispatch. In Conference on Autonomous Agents

and Multiagent Systems, pages 588–596, 2018.

[54] Qiying Hu and Wuyi Yue. Markov decision processes with their applications, vol-

ume 14. Springer Science & Business Media, New York, NY, USA, 2007.

[55] Ayan Mukhopadhyay, Chao Zhang, Yevgeniy Vorobeychik, Milind Tambe, Ken-

neth Pence, and Paul Speer. Optimal allocation of police patrol resources using a

continuous-time crime model. In International Conference on Decision and Game

Theory for Security, pages 139–158, New York, NY, USA, 2016. Springer, Springer.

[56] Ciro Caliendo, Maurizio Guida, and Alessandra Parisi. A crash-prediction model

for multilane roads. Accident Analysis & Prevention, 39(4):657 – 670, 2007.

ISSN 0001-4575. doi: https://doi.org/10.1016/j.aap.2006.10.012. URL http://www.

sciencedirect.com/science/article/pii/S0001457506001965.

[57] Sean K Keneally, Matthew J Robbins, and Brian J Lunday. A markov decision

process model for the optimal dispatch of military medical evacuation assets. Health

Care Management Science, 19(2):111–129, 2016.

[58] David Roxbee Cox and David Oakes. Analysis of survival data, volume 21. CRC

Press, New York, NY, USA, 1984.

[59] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

195

http://www.sciencedirect.com/science/article/pii/S0001457506001965
http://www.sciencedirect.com/science/article/pii/S0001457506001965

[60] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A search

meets graph theory. In 16th ACM-SIAM symposium on Discrete algorithms, pages

156–165, Vancouver, BC, Canada, 2005. SIAM, ACM.

[61] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[62] Here api. https://developer.here.com/, 2018. Accessed: 2018-11-17.

[63] Diederik P Kingma and Jimmy Lei Ba. Adam: Amethod for stochastic optimization.

In Proc. 3rd Int. Conf. Learn. Representations, 2014.

[64] Herbert Robbins and Sutton Monro. A stochastic approximation method. In Herbert

Robbins Selected Papers, pages 102–109. Springer, 1985.

[65] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

[66] George T. Taoka. Brake reaction times of unalerted drivers. ITE Journal, 59(3):

19–21, 1989.

[67] Thomas H Blackwell and Jay S Kaufman. Response time effectiveness: compari-

son of response time and survival in an urban emergency medical services system.

Academic Emergency Medicine, 9(4):288–295, 2002.

[68] Konstantinos G Zografos, Konstantinos N Androutsopoulos, and George M Vasi-

lakis. A real-time decision support system for roadway network incident response lo-

gistics. Transportation Research Part C: Emerging Technologies, 10(1):1–18, 2002.

[69] Xueping Li, Zhaoxia Zhao, Xiaoyan Zhu, and Tami Wyatt. Covering models and

196

https://developer.here.com/

optimization techniques for emergency response facility location and planning: a

review. Mathematical Methods of Operations Research, 74(3):281–310, 2011.

[70] Hector Toro-Dı́Az, Maria E Mayorga, Sunarin Chanta, and Laura A Mclay. Joint

location and dispatching decisions for emergency medical services. Computers &

Industrial Engineering, 64(4):917–928, 2013.

[71] Leslie W Kennedy, Joel M Caplan, and Eric Piza. Risk clusters, hotspots, and spatial

intelligence: risk terrain modeling as an algorithm for police resource allocation

strategies. Journal of Quantitative Criminology, 27(3):339–362, 2011.

[72] Martin B Short, Maria R D’orsogna, Virginia B Pasour, George E Tita, Paul J Brant-

ingham, Andrea L Bertozzi, and Lincoln B Chayes. A statistical model of crimi-

nal behavior. Mathematical Models and Methods in Applied Sciences, 18(supp01):

1249–1267, 2008.

[73] Praprut Songchitruksa and Kevin Balke. Assessing weather, environment, and loop

data for real-time freeway incident prediction. Transportation Research Record:

Journal of the Transportation Research Board, 1(1959):105–113, 2006.

[74] Vasin Kiattikomol. Freeway crash prediction models for long-range urban trans-

portation planning. PhD thesis, The University of Tennessee, Knoxville, 2005.

[75] Geoffrey Pettet, Saideep Nannapaneni, Benjamin Stadnick, Abhishek Dubey, and

Gautam Biswas. Incident analysis and prediction using clustering and bayesian net-

work. In 2017 IEEE SmartWorld, pages 1–8, San Francisco, CA, USA, 2017. IEEE,

IEEE.

[76] Ayan Mukhopadhyay, Geoffrey Pettet, Sayyed Mohsen Vazirizade, Di Lu, Alejan-

dro Jaimes, Said El Said, Hiba Baroud, Yevgeniy Vorobeychik, Mykel Kochender-

fer, and Abhishek Dubey. A review of incident prediction, resource allocation, and

197

dispatch models for emergency management. Accident Analysis & Prevention, 165:

106501, 2022.

[77] Olfa Chebbi and Jouhaina Chaouachi. Modeling on-demand transit transportation

system using an agent-based approach. In IFIP International Conference on Com-

puter Information Systems and Industrial Management, pages 316–326. Springer,

2015.

[78] Stefan Gössling. Integrating e-scooters in urban transportation: Problems, policies,

and the prospect of system change. Transportation Research Part D: Transport and

Environment, 79:102230, 2020.

[79] National Emergency Number Association. 911 Statistics.

www.nena.org/page/911Statistics, 2021.

[80] AON Impact Forecasting. Weather, Climate and Catastrophe Insight. Technical

report, AON Impact Forecasting, 01 2018.

[81] Mykel J Kochenderfer. Decision Making Under Uncertainty: Theory and Applica-

tion. MIT Press, 2015.

[82] Geoffrey Pettet, Ayan Mukhopadhyay, Mykel Kochenderfer, Yevgeniy Vorobeychik,

and Abhishek Dubey. On algorithmic decision procedures in emergency response

systems in smart and connected communities. In Conference on Autonomous Agents

and Multiagent Systems, page 1046–1054, 2020.

[83] Daniel Claes, Frans Oliehoek, Hendrik Baier, and Karl Tuyls. Decentralised online

planning for multi-robot warehouse commissioning. In Conference on Autonomous

Agents and Multiagent Systems, pages 492–500, 2017.

[84] Geoffrey Pettet, Ayan Mukhopadhyay, Mykel J. Kochenderfer, and Abhishek Dubey.

198

Hierarchical planning for dynamic resource allocation in smart and connected com-

munities. ACM Transactions on Cyber-Physical Systems, 2021.

[85] Michael Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons,

2009.

[86] Khashayar Rohanimanesh and Sridhar Mahadevan. Learning to take concurrent ac-

tions. In Proceedings of the 15th International Conference on Neural Information

Processing Systems, pages 1651–1658, 2002.

[87] Ayan Mukhopadhyay, Geoffrey Pettet, Mykel Kochenderfer, and Abhishek Dubey.

Designing emergency response pipelines: Lessons and challenges. AI for Social

Good Workshop, AAAI Fall Symposium Series, 2020.

[88] Spencer Chainey, Svein Reid, and Neil Stuart. When is a hotspot a hotspot? A

procedure for creating statistically robust hotspot maps of crime. Taylor & Francis,

London, England, 2002.

[89] Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information

Theory, 28(2):129–137, 1982.

[90] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means

problem is np-hard. In International Workshop on Algorithms and Computation,

pages 274–285. Springer, 2009.

[91] David G Kendall. Stochastic processes occurring in the theory of queues and their

analysis by the method of the imbedded markov chain. The Annals of Mathematical

Statistics, pages 338–354, 1953.

[92] John F Shortle, James M Thompson, Donald Gross, and Carl M Harris. Fundamen-

tals of Queueing Theory. Wiley, 2018.

199

[93] Michael Dzator and Janet Dzator. An effective heuristic for the P-median problem

with application to ambulance location. OPSEARCH, 50(1):60–74, 2013.

[94] Oded Kariv and S Louis Hakimi. An algorithmic approach to network location

problems. i: The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538,

1979.

[95] Mark S Daskin. Network and discrete location: models, algorithms, and applica-

tions. John Wiley & Sons, 1995.

[96] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[97] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Eu-

ropean Conference on Machine Learning, pages 282–293, 2006.

[98] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contrac-

tion hierarchies: Faster and simpler hierarchical routing in road networks. In Work-

shop on Experimental and Efficient Algorithms, pages 319–333, 2008.

[99] Stephan Huber and Christoph Rust. Calculate travel time and distance with open-

streetmap data using the open source routing machine (osrm). The Stata Journal, 16

(2):416–423, 2016.

[100] James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Berkeley Symposium on Mathematical Statistics and Probability,

volume 1, pages 281–297, 1967.

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

200

[102] Jonathan D Mayer. Emergency medical service: delays, response time and survival.

Medical Care, pages 818–827, 1979.

[103] Sangdon Park, Osbert Bastani, James Weimer, and Insup Lee. Calibrated prediction

with covariate shift via unsupervised domain adaptation. In International Confer-

ence on Artificial Intelligence and Statistics, pages 3219–3229, 2020.

[104] Forrest Laine, Chiu-Yuan Chiu, and Claire Tomlin. Eyes-closed safety ker-

nels: Safety for autonomous systems under loss of observability. arXiv preprint

arXiv:2005.07144, 2020.

[105] Shreyas Ramakrishna, Zahra Rahiminasab, Gabor Karsai, Arvind Easwaran, and

Abhishek Dubey. Efficient out-of-distribution detection using latent space of β -vae

for cyber-physical systems. ACM Transactions on Cyber Physical Systems, 2021.

[106] Richard S Sutton. Td models: Modeling the world at a mixture of time scales. In

International Conference on Machine Learning, pages 531–539. 1995.

[107] Doina Precup and Richard S Sutton. Multi-time models for temporally abstract

planning. In Neural Information Processing Systems, pages 1050–1056, 1998.

[108] J-P Forestier and Pravin Varaiya. Multilayer control of large markov chains. IEEE

Transactions on Automatic Control, 23(2):298–305, 1978.

[109] Constantine Toregas, Ralph Swain, Charles ReVelle, and Lawrence Bergman. The

location of emergency service facilities. Operations Research, 19:1363–1373, 1971.

[110] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. Solving an ambulance loca-

tion model by tabu search. Location Science, 5(2):75–88, 1997.

[111] Francisco Silva and Daniel Serra. Locating emergency services with different pri-

orities: the priority queuing covering location problem. Journal of the Operational

Research Society, 59(9):1229–1238, 2008.

201

[112] V. A. Knight, P. R. Harper, and L. Smith. Ambulance allocation for maximal survival

with heterogeneous outcome measures. 40(6):918–926, 2012.

[113] USA Today. Nashville bombing froze wireless com-

munications, exposed ‘achilles heel’ in regional network.

https://www.usatoday.com/story/news/nation/2020/12/29/nashville-bombing-

area-communications-network-exposed-achilles-heel/4070797001/, 2020.

[114] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and Yev-

geniy Vorobeychik. An online decision-theoretic pipeline for responder dispatch. In

ACM/IEEE International Conference on Cyber-Physical Systems, pages 185–196,

2019.

[115] One Concern. Artificial Intelligence: A GameChanger for Emergency Response.

Technical report, One Concern, 2017.

[116] Yisong Yue, Lavanya Marla, and Ramayya Krishnan. An efficient simulation-based

approach to ambulance fleet allocation and dynamic redeployment. In AAAI, 2012.

[117] H. Purohit, S. Nannapaneni, A. Dubey, P. Karuna, and G. Biswas. Structured sum-

marization of social web for smart emergency services by uncertain concept graph.

In 2018 IEEE International Science of Smart City Operations and Platforms Engi-

neering in Partnership with Global City Teams Challenge (SCOPE-GCTC), pages

30–35, April 2018. doi: 10.1109/SCOPE-GCTC.2018.00012.

[118] Wikipedia contributors. Computer-aided dispatch — Wikipedia, the free ency-

clopedia, 2019. URL https://en.wikipedia.org/w/index.php?title=Computer-aided

dispatch&oldid=916096608. [Online; accessed 20-October-2019].

[119] Craig Boutilier. Planning, learning and coordination in multiagent decision pro-

cesses. In Proceedings of the 6th conference on Theoretical aspects of rationality

and knowledge, pages 195–210. Morgan Kaufmann Publishers Inc., 1996.

202

https://en.wikipedia.org/w/index.php?title=Computer-aided_dispatch&oldid=916096608
https://en.wikipedia.org/w/index.php?title=Computer-aided_dispatch&oldid=916096608

[120] Mohammad Ghavamzadeh and Sridhar Mahadevan. Learning to cooperate using

hierarchical reinforcement learning. 2006.

[121] Shenyang Guo. Survival analysis. Oxford University Press, 2010.

[122] Natarajan Gautam. Analysis of queues: methods and applications. CRC Press, 2012.

[123] Johannes Fürnkranz and Tobias Scheffer. Machine Learning: ECML 2006: 17th

European Conference on Machine Learning, Berlin, Germany, September 18-22,

2006, Proceedings, volume 4212. Springer Science & Business Media, 2006.

[124] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi:

10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/1327452.1327492.

[125] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the mul-

tiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[126] Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. Algorithms for decision

making. MIT Press, 2022.

[127] Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for rein-

forcement learning. In 35th Uncertainty in Artificial Intelligence Conference, vol-

ume 115, pages 81–90, 2020.

[128] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Non-stationary reinforce-

ment learning: The blessing of (more) optimism. Available at SSRN 3397818, 2019.

[129] Geoffrey Pettet, Ayan Mukhopadhyay, Mykel Kochenderfer, Yevgeniy Vorobeychik,

and Abhishek Dubey. On algorithmic decision procedures in emergency response

systems in smart and connected communities. In Conference on Autonomous Agents

and Multi-Agent Systems, pages 1046–1054, 2020.

203

http://doi.acm.org/10.1145/1327452.1327492

[130] Jay K Satia and Roy E Lave Jr. Markovian decision processes with uncertain transi-

tion probabilities. Operations Research, 21(3):728–740, 1973.

[131] Chelsea C White III and Hany K Eldeib. Markov decision processes with imprecise

transition probabilities. Operations Research, 42(4):739–749, 1994.

[132] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Re-

search, 30(2):257–280, 2005.

[133] Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary Markov decision

processes, a worst-case approach using model-based reinforcement learning. Ad-

vances in Neural Information Processing Systems, 32:7216–7225, 2019.

[134] Samuel PM Choi, Dit-Yan Yeung, and Nevin L Zhang. Hidden-mode Markov deci-

sion processes for nonstationary sequential decision making. In Sequence Learning,

pages 264–287. Springer, 2000.

[135] Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algorithm

for near-optimal planning in large Markov decision processes. Machine Learning,

49(2):193–208, 2002.

[136] Leandro L Minku. Transfer learning in non-stationary environments. In Learning

from Data Streams in Evolving Environments, pages 13–37. Springer, 2019.

[137] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems:

Beyond learning algorithms. In 2013 AAAI Spring Symposium Series, pages 49–55,

2013.

[138] Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias Pfaff, Theo-

phane Weber, Lars Buesing, and Peter W Battaglia. Combining q-learning and

search with amortized value estimates. In International Conference on Learning

Representations, 2019.

204

[139] Ayan Mukhopadhyay, Zilin Wang, and Yevgeniy Vorobeychik. A decision theoretic

framework for emergency responder dispatch. In Conference on Autonomous Agents

and Multiagent Systems (AAMAS), pages 588–596, 2018.

[140] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search.

In International Conference on Computers and Games (CG), pages 72–83. Springer,

2006.

[141] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. A survey of Monte Carlo tree search methods. IEEE

Transactions on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[142] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[143] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint

arXiv:1606.01540, 2016.

[144] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double Q-learning. In 30th AAAI Conference on Artificial Intelligence (AAAI),

volume 30, pages 2094–2100, 2016.

[145] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor

Wiskunde en Informatica Amsterdam, 1995.

[146] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,

Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,

Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. Lessons learned

from the chameleon testbed. In USENIX Annual Technical Conference. USENIX

Association, July 2020.

205

[147] S Joe Qin. Survey on data-driven industrial process monitoring and diagnosis. An-

nual Reviews in Control, 36(2):220–234, 2012.

[148] Kathleen L Lane. Identifying and supporting students at risk for emotional and be-

havioral disorders within multi-level models: Data driven approaches to conducting

secondary interventions with an academic emphasis. Education and Treatment of

Children, 30(4):135–164, 2007.

[149] Sushant Jain, Rahul C Shah, Waylon Brunette, Gaetano Borriello, and Sumit Roy.

Exploiting mobility for energy efficient data collection in wireless sensor networks.

Mobile Networks and Applications, 11(3):327–339, 2006.

[150] Robert Morris, M Frans Kaashoek, David Karger, Hari Balakrishnan, Ion Stoica,

David Liben-Nowell, and Frank Dabek. Chord: A scalable peer-to-peer look-up

protocol for internet applications. IEEE/ACM Transactions On Networking, 11(1):

17–32, 2003.

[151] D. Dhungana, G. Engelbrecht, J. X. Parreira, A. Schuster, R. Tobler, and D. Valerio.

Data-driven ecosystems in smart cities: A living example from seestadt aspern. In

2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pages 82–87, Dec

2016. doi: 10.1109/WF-IoT.2016.7845434.

[152] Mohamed A Abdel-Aty and A Essam Radwan. Modeling traffic accident occurrence

and involvement. Accident Analysis & Prevention, 32(5):633–642, 2000.

[153] Hoong Chor Chin and Mohammed Abdul Quddus. Applying the random effect

negative binomial model to examine traffic accident occurrence at signalized inter-

sections. Accident Analysis & Prevention, 35(2):253–259, 2003.

[154] Saroj Raut and Swapnili Karmore. Review on: Severity estimation unit of automo-

tive accident. In Computer Engineering and Applications (ICACEA), 2015 Interna-

tional Conference on Advances in, pages 523–526. IEEE, 2015.

206

[155] Luis Moreira-Matias and Vitor Cerqueira. Cjammer-traffic jam cause prediction

using boosted trees. In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th

International Conference on, pages 743–748. IEEE, 2016.

[156] Younshik Chung. Development of an accident duration prediction model on the

korean freeway systems. Accident Analysis & Prevention, 42(1):282–289, 2010.

[157] Ayan Mukhopadhyay, Yevgeniy Vorobeychik, Abhishek Dubey, and Gautam

Biswas. Prioritized allocation of emergency responders based on a continuous-time

incident prediction model. In Sixteenth International Conference on Antonomous

Agents and Multiagent Sytems, Sao Paulo - Brazil, 05/2017 2017.

[158] Cen Li and Gautam Biswas. Unsupervised learning with mixed numeric and nomi-

nal data. IEEE Transactions on Knowledge and Data Engineering, 14(4):673–690,

2002.

[159] Richard O Duda and Peter E Hart. Pattern Elesslfication and Scene Analysis. Wiley,

1973.

[160] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28

(1):100–108, 1979.

[161] Douglas Fisher and Pat Langley. Methods of conceptual clustering and their relation

to numerical taxonomy. Technical report, DTIC Document, 1985.

[162] David W Goodall. A new similarity index based on probability. Biometrics, pages

882–907, 1966.

[163] Ronald Aylmer Fisher. Statistical methods for research workers. Genesis Publishing

Pvt Ltd, 1925.

207

[164] HO Lancaster. The combination of probabilities arising from data in discrete distri-

butions. Biometrika, 36(3/4):370–382, 1949.

[165] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and knowledge

discovery handbook. Springer, 2005.

[166] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20:53–65,

1987.

[167] G Shenyang. Survival analysis (pocket guides to social work research methods),

2010.

[168] D Collett. Modelling survival data. In Modelling Survival Data in Medical Research,

pages 53–106. Springer, 1994.

[169] Lee-Jen Wei. The accelerated failure time model: a useful alternative to the cox

regression model in survival analysis. Statistics in medicine, 11(14-15):1871–1879,

1992.

[170] Willliam Feller. An introduction to probability theory and its applications, volume 2.

John Wiley & Sons, 2008.

[171] Yinhai Wang and N Nihan. Quantitative analysis on angle-accident risk at signalized

intersections. In World Transport Research, Selected Proceedings of the 9th World

Conference on Transport Research (in print), 2001.

[172] Pablo L Durango-Cohen and Elaine C McKenzie. Trading off costs, environmental

impact, and levels of service in the optimal design of transit bus fleets. Transporta-

tion research procedia, 23:1025–1037, 2017.

[173] Topon Paul and Hisashi Yamada. Operation and charging scheduling of electric

208

buses in a city bus route network. In 17th International IEEE Conference on Intelli-

gent Transportation Systems (ITSC), pages 2780–2786. IEEE, 2014.

[174] Subramanya P Nageshrao, Jubin Jacob, and Steven Wilkins. Charging cost optimiza-

tion for ev buses using neural network based energy predictor. IFAC-PapersOnLine,

50(1):5947–5952, 2017.

[175] Guang Wang, Xiaoyang Xie, Fan Zhang, Yunhuai Liu, and Desheng Zhang.

bCharge: Data-driven real-time charging scheduling for large-scale electric bus

fleets. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 45–55. doi:

10.1109/RTSS.2018.00015. ISSN: 2576-3172.

[176] Azhar Ul-Haq, Carlo Cecati, Kai Strunz, and Ehsan Abbasi. Impact of electric

vehicle charging on voltage unbalance in an urban distribution network. Intelligent

Industrial Systems, 1(1):51–60, 2015.

[177] Sanchari Deb, Kari Tammi, Karuna Kalita, and Pinakeshwar Mahanta. Impact of

electric vehicle charging station load on distribution network. Energies, 11(1):178,

2018.

[178] M Kintner-Meyer, S Davis, S Sridhar, D Bhatnagar, S Mahserejian, and M Ghosal.

Electric vehicles at scale–phase I analysis: High EV adoption impacts on the western

US power grid. Technical report, 2020.

[179] Ralph Hermans, Mads Almassalkhi, and Ian Hiskens. Incentive-based coordinated

charging control of plug-in electric vehicles at the distribution-transformer level. In

2012 American Control Conference (ACC), pages 264–269. IEEE, 2012.

[180] Yuping Lin, Kai Zhang, Zuo-Jun Max Shen, Bin Ye, and Lixin Miao. Multistage

large-scale charging station planning for electric buses considering transportation

network and power grid. Transportation Research Part C: Emerging Technologies,

107:423–443, 2019.

209

[181] Marc Gallet, Tobias Massier, and Daniel Zehe. Developing a large-scale microscopic

model of electric public bus operation and charging. In 2019 IEEE Vehicle Power

and Propulsion Conference (VPPC), pages 1–5. IEEE, 2019.

[182] Avishan Bagherinezhad, Alejandro D Palomino, Bosong Li, and Masood Parvania.

Spatio-temporal electric bus charging optimization with transit network constraints.

IEEE Transactions on Industry Applications, 2020.

[183] BFT Homepage. URL https://www.bft.org/. Ben Franklin Transit Services and

Route Schedules.

[184] © OpenStreetMap Contributors. URL https://www.openstreetmap.org. Extracted

Tri-Cities street map and metadata.

[185] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-

Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wag-

ner, and Evamarie WieBner. Microscopic traffic simulation using SUMO. In 2018

21st International Conference on Intelligent Transportation Systems (ITSC), pages

2575–2582. IEEE, 2018.

[186] SUMO User Documentation. URL https://sumo.dlr.de/docs/index.html. Updated:

2020-07-08.

[187] GridLAB-D Simulation Software. URL https://www.gridlabd.org/.

[188] Ronald A Howard. Dynamic programming and markov processes. 1960.

[189] D. J. White. A survey of applications of markov decision processes. Journal of the

Operational Research Society, 44(11):1073–1096, 1993.

[190] Ronald Bjarnason, Alan Fern, and Prasad Tadepalli. Lower bounding klondike soli-

taire with monte-carlo planning. In Nineteenth International Conference on Auto-

mated Planning and Scheduling. Citeseer, 2009.

210

https://www.bft.org/
https://www.openstreetmap.org
https://sumo.dlr.de/docs/index.html
https://www.gridlabd.org/

[191] Daniel Whitehouse, Edward J Powley, and Peter I Cowling. Determinization and

information set monte carlo tree search for the card game dou di zhu. In 2011

IEEE Conference on Computational Intelligence and Games (CIG’11), pages 87–

94. IEEE, 2011.

211

LIST OF ABBREVIATIONS

ε̄a Total energy cost of taking action a

β Reward tradeoff hyper-parameter

ε t Time of use energy pricing at time t

γ(ci, t) Set of buses that can be charged at charger ci at time t

ψ Bus failure penalty hyper-parameter

ρ(s,a) Reward function given action a taken in state s

B Set of buses {b1, b2, ...}

C Set of chargers {c1, c2, ...}

g(s,a) Power grid impact score of an action a at in state s

n f (s) The number of failed buses in state s

AADT annual average daily traffic

ADP approximate dynamic programming

AFT Accelerated Failure Model

ALT A* Search with Landmarks

AMEXCLP adjusted maximum expected covering location model

CAD computer aided dispatch

CNN convolutional neural networks

CPS cyber physical systems

DSM double standard model

212

DTMDP Discrete Time Markov Decision Process

EE event extraction

EMS Emergency Medical Services

ERM emergency response management

GLM generalized linear models

GNN graph neural networks

HCPS Human-in-the-Loop Cyber-Physical Systems

LSCP location set covering problem

LSTM Long Short-Term Memory Neural Network

MALP maximum availability location problem

MCLP maximal covering location problem

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

MEXCLP maximum expected covering location model

MLE Maximum Likelihood Estimation

MVA motor vehicle accident

NFD Nashville Fire Department

NLP natural language processing

OSM Open Street Maps

POS part-of-speech

213

QPLSCP queuing probabilistic location set covering problem

RL reinforcement learning

RP random paramter

SBAC similarity based agglomerative clustering

SCPS Societal-scale Cyber-Physical System

SMDP Semi-Markov Decision Process

STRM spatiotemporal resource management

SUMO Simulation of Urban Mobility

TDOT Tennessee Department of Transportation

214

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Planning
	Forecasting
	Motivating Research Questions
	Outline

	Illustrative Domain: Emergency Resource Management
	The Emergency Response Problem
	Problem Definition

	A Decision-Theoretic Framework for SCPS Planning
	Overview
	Introduction
	Problem Description
	Our Solution
	Real Time Incident Prediction
	Dispatch Algorithm
	Predicting Environmental Factors

	Performance
	Data and Methodology
	Experimental Setup
	Results and Discussion
	Streaming Survival Analysis
	Predicting Travel Times
	Responder Dispatch

	Related Work
	Conclusion

	Hierarchical SCPS Planning
	Overview
	Introduction
	Problem Formulation
	Approach
	High-Level Planner
	Queuing Model
	Surrogate Model
	Optimization

	Low-Level Planner

	Integration Framework
	Travel Model
	Incident Prediction
	ERM System Model
	Simulation Framework

	Experiments
	Results
	Related work
	Conclusion

	Decentralized SCPS Planning
	Overview
	Introduction
	System Model
	Incident Arrival
	Decision-Making Process
	Problem Definition

	Rebalancing Approach to ERM
	Problem Complexity
	Multi-Server Queue Based Rebalancing
	Decentralized MCTS Approach

	Integration Framework
	Experimental Design

	Results and Discussion
	Queue Based Rebalancing Policy
	MMCTS Rebalancing

	Conclusion

	Combining Learning and Planning for Adaptive Decision Making
	Overview
	Introduction
	Related Work
	Markov Decision Processes in Non-Stationary Settings
	Policy Augmented Monte Carlo Tree Search
	Theoretical Analysis

	Experiments
	Conclusion

	Scalable Heterogeneous Demand Prediction
	Overview
	Introduction
	Related Research
	Our Approach
	Data Specification
	Overview of the Approach
	Clustering Analysis
	Survival Analysis per Cluster
	Bayesian Network Analysis for Associating Clusters with Hex Cells

	Discussion
	Using the Toolchain

	Conclusion

	Generalizability: Applying the Decision Framework to Other Applications
	Overview
	Electric Fleet Charging
	Introduction
	Decision Support Framework
	Traffic Model
	Power Grid Model
	Decision Theoretic Planner
	Markov Decision Process
	Solution Approach

	Performance
	Experimental Design
	Results and Discussion

	Conclusion

	Dynamic Vehicle Routing Problem

	Conclusion
	Future Work

	Bibliography
	LIST OF ABBREVIATIONS

