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CHAPTER I 

INTRODUCTION 

 

 Thermal imaging is a vital technology to a diverse range of application spaces such as 

autonomous vehicles, military targeting and surveillance, firefighting, and physiological 

evaluation [1-4]. Therefore, bolstering the accuracy (by efficient means) of thermal cameras is 

crucial to further development of these application spaces. In this chapter, we will discuss the 

current state of thermal imaging and address how to improve it. First, we will consider the 

fundamentals of the technology in its current form. Next, we will focus on why imaging various 

emissivities presents a pressing problem in thermal imaging. Then, we will detail how deep 

learning offers a solution to this problem. Finally, we will review how multispectral thermal 

imaging enables deep learning to provide an improved solution. 

 

1.1 Fundamentals of Thermal Imaging 

 A thermal camera captures radiation from a specific spectral range within the far-infrared 

(FIR) spectrum and constructs a heat map of the imaged scene corresponding to the intensity of 

the radiation captured by each pixel in the thermal camera. This section will break down how the 

spectral range is chosen, the radiation is captured and measured, and the temperature calculation 

is performed. 
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1.1.1 Optimal spectral range for thermal imaging 

Most thermal cameras utilize a spectral range from 7.5 μm to 14 μm [5]. There are two key 

reasons for the selection of this spectral range. First, the composition of Earth’s atmospheric gases 

gives rise to several atmospheric transmission windows. These windows offer high transmission 

of electromagnetic radiation due to the low absorptivity of common atmospheric gases within the 

spectral range of the windows. Any device which relies on capturing electromagnetic radiation 

that travels long distances through the atmospheric medium must consider these windows. If such 

a device were designed to only capture radiation in spectral ranges falling outside any atmospheric 

windows, it would largely fail to capture radiation from the desired source and instead capture 

spontaneous radiative emissions from the atmosphere in the case of long-range imaging. Thus, in 

the design of a thermal camera, it is imperative that the range of radiation capture falls within an 

atmospheric window. There are several atmospheric windows within the infrared (IR) regime, 

however largest window stretches from 7.5 μm to 14 μm as seen in Figure 1 [6].  

 

 

 

 

 

 

Figure 1: Atmospheric transmittance of electromagnetic radiation in the 

wavelength range of 0 μm to 15 μm. 
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 The second primary factor in determining the optimal spectral range for a thermal camera 

is consideration of the spectral and temperature dependent intensity of radiation emitted from the 

source. At this point, Planck’s blackbody radiation distribution, which is seen in Equation 1, must 

be analyzed [7]. 

𝐸𝐵(𝜆, 𝑇) =
2𝜋ℎ𝑐2

𝑛2𝜆5

1

𝑒

ℎ𝑐
𝑛𝜆𝐾𝑏𝑇−1

  (1) 

Here c is defined as the speed of light in a vacuum, n is the refractive index (n ≈ 1 in atmospheric 

conditions), λ is the wavelength of light emitted, and T is the temperature of the object. Values of 

h and Kb are given as Planck’s and Boltzmann’s constants, respectively. Ideally, the spectral range 

chosen should contain the maximum of this function at the temperatures most likely to be 

measured. Choosing a spectral range which satisfies this criterion does not require as low of a 

sensitivity threshold for the measurement device as does a spectral range which produces less 

emissive power. As a result, this design choice yields greater manufacturing freedom, thus 

enabling a less expensive production cost and a more affordable product to consumers. Observing 

Figure 2 shows that at ambient temperatures (300 K), the maximum of Planck’s blackbody 

distribution resides at nearly the exact center of the 7.5 μm to 14 μm atmospheric window [8]. 

 

 

 

 

Figure 2: Planck’s law at 300 K in the IR region (black) plotted over the FIR 

atmospheric transmission windows (blue). 
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 It should be noted that as an object’s temperature increases, the peak irradiance will shift 

towards lower wavelengths. The peak irradiance is approximated by Wein’s law which is seen in 

Equation 2 [7]. 

𝜆𝑚𝑎𝑥 =
𝑏

𝑇
   (2) 

The equation defines λmax as the wavelength at which a blackbody produces the peak irradiance, b 

as Wein’s displacement constant, and T as temperature. Using Wein’s law, the approximate 

temperature at which a blackbody’s peak irradiance wavelength falls below 7.5 μm is 386 K and 

above. This is not a concern as the total irradiance within the 7.5 μm to 14 μm spectral range will 

still be greater than at 300 K, thus the sensitivity threshold of the measurement device is still met. 

However, if temperatures decrease below 207 K the peak irradiance wavelength will increase past 

14 μm. Coupled with low total irradiance, utilizing only the 7.5 μm to 14 μm atmospheric window 

requires a very low sensitivity threshold. For these reasons, low temperature measurements require 

a more specialized thermal camera. Nevertheless, in most use cases a thermal camera with a 7.5 

μm to 14 μm spectral range is optimal. 

 

1.1.2 Capturing and measuring IR radiation for thermal imaging 

 There are two main types of IR detectors which a thermal camera may employ: cooled 

quantum detectors and microbolometer detectors. The cooled quantum detector relies on cooling 

low-bandgap materials (such as InSb) to temperatures low enough that the photoelectric effect can 

be used to measure IR radiation [5]. This is the type of detector that would be used in the 

specialized low temperature thermal camera mentioned in the previous section. The vast majority 
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of thermal cameras operate using a detector called a microbolometer. This subsection will focus 

on the microbolometer detector. 

 A microbolometer is comprised of an IR absorbing material, a temperature sensing 

material, a reflector, two metal contacts, and a readout integrated circuit (ROIC) [9]. The absorbing 

material is a thin-film metal deposited on top of the sensing material. The sensing material quickly 

reaches thermal equilibrium with the absorbing material contacting it. This membrane is 

constructed to have the absorbing material approximately 2.5 μm above the reflecting layer. The 

spacing forms a λ/4 resonator which maximizes and isolates absorption of electromagnetic 

radiation in the desired 7.5 μm to 14 μm spectral range. The membrane’s sensing material is 

designed with long thin bridges that connect to the metal contacts suspending the membrane. These 

bridges provide thermal insulation between the membrane and the ROIC. The metal contacts 

connect to the ROIC, which enables measuring the resistance of the sensing material. Each 

microbolometer acts as a single pixel within the thermal camera, thus they are fabricated into an 

array with dimensions of the desired resolution. SEM images depicting the structure of a 

microbolometer array can be seen in Figure 3 [10]. 

 

Figure 3: (A) Top-view of a microbolometer array and (B) side-view of two 

microbolometers with the ROIC in view. 
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 The thin-film metal in the absorbing layer preferably has a low heat capacity to produce a 

large temperature response to absorbed radiation. Ideally, it should also possess a high absorptivity 

in the FIR region. The absorbing layer is commonly made with Ti, NiCr, or TiNb [11]. A sensing 

material should have a high temperature coefficient of resistance to maximize the sensitivity of the 

device. It should also have a low thermal conductivity to provide as much thermal insulation 

between the membrane and the ROIC as possible. Given these desired properties, the sensing 

material is often constructed using amorphous Si or V2O5 [12]. 

 Once the microbolometer array is fabricated, it is housed within a vacuum package that 

utilizes an IR transmissive cap that allows electromagnetic radiation to pass through to the array. 

The vacuum packaging prevents heat exchange with the atmosphere. The packaged array is fitted 

to a camera with an IR transmissive lens (often Ge). The lens focuses incoming radiation onto the 

microbolometer array. With the camera assembled, each pixel in the array is calibrated to establish 

the relationship between the measured microbolometer resistance and the incident detectable 

radiant power flux [13]. The relationship is a curve fitted equation which estimates the total 

detectable radiant power flux, Qtot, as a function of the measured resistance, R, for some pixel, i, 

as seen in Equation 3. 

𝑄𝑡𝑜𝑡 = 𝑓𝑖(𝑅)   (3) 

1.1.3 Solving the object temperature 

 There are three sources that contribute towards the total detectable radiation incident with 

the camera upon taking a measurement. The first source is radiation emitted from the imaged 

object. The radiative power flux emitted by the object that is detected by the camera is derived 

using the Stefan-Boltzmann Law as seen in Equation 4 [7]. 
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𝑄𝑜𝑏𝑗 =  𝑓(𝜆1𝑇𝑜𝑏𝑗 , 𝜆2𝑇𝑜𝑏𝑗)𝜀𝜏𝜎𝑇𝑜𝑏𝑗
4

   (4) 

In this equation, σ is the Stefan-Boltzmann constant and Tobj is the temperature of the object. The 

emissivity of the object is ε and the transmittance of the atmosphere between the object and the 

camera is τ, with both evaluated for the spectral range of the camera, λ1 to λ2. The function f(λ1 

Tobj, λ2 Tobj) is the fraction of the blackbody emissive power emitted in the spectral range from λ1 

to λ2. This function is evaluated using Equation 5 [7]. 

𝑓(𝜆1𝑇, 𝜆2𝑇) =  
∫ 𝐸𝐵(𝜆,𝑇)

𝜆2
𝜆1

𝑑𝜆

∫ 𝐸𝐵(𝜆,𝑇)𝑑𝜆
∞

0

=  
15

𝜋4 ∫
𝜉3𝑑𝜉

𝑒𝜉−1

𝐶1/𝜆2𝑇

𝐶1/𝜆1𝑇
   (5) 

The constant C1 is defined as hc/Kb. 

 The second source of radiation detected by the camera comes from reflections of radiation 

emitted by surrounding objects off the object being observed. The detected radiative power flux 

that is attributed to reflections is given in Equation 6. 

𝑄𝑟𝑒𝑓𝑙 =  𝑓(𝜆1𝑇𝑠𝑢𝑟𝑟 , 𝜆2𝑇𝑠𝑢𝑟𝑟)(1 − 𝜀)𝜏𝜎𝑇𝑠𝑢𝑟𝑟
4    (6) 

Notice that compared to Equation 3 Tobj has been changed to the surrounding objects’ temperature 

Tsurr as they will emit the source of reflected radiation. Furthermore, the reflectivity of the object 

is used rather than the emissivity. An object’s reflectivity is defined as (1-ε). 

 The last source of radiation the microbolometers detect is from the atmosphere. Due to 

Kirchhoff’s Law (emissivity is equal to absorptivity), since the atmosphere absorbs some amount 

of the incoming radiation, it is also expected to emit some amount of radiation [7]. The detected 

radiative power flux attributed to atmospheric emissions is defined in Equation 7. 
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𝑄𝑎𝑡𝑚 =  𝑓(𝜆1𝑇𝑎𝑡𝑚, 𝜆2𝑇𝑎𝑡𝑚)(1 − 𝜏)𝜎𝑇𝑎𝑡𝑚
4    (7) 

 The detected radiative power flux incident with a microbolometer can now be written as 

seen in Equation 8. 

𝑄𝑡𝑜𝑡 =  𝑄𝑜𝑏𝑗 + 𝑄𝑠𝑢𝑟𝑟 + 𝑄𝑎𝑡𝑚   (8) 

Substituting the curve fitted relationship between measured microbolometer resistance and 

detected radiant power flux for each pixel provides a correlation between a pixel’s measured 

resistance and the temperature of the imaged object. The equation is then rearranged to solve for 

Tobj, thus the relationship between the object’s temperature and the measured resistance of the 

microbolometer is now formulated in Equation 9. 

𝑇𝑜𝑏𝑗 =  √
𝑓𝑖(𝑅) − 𝑄𝑠𝑢𝑟𝑟 − 𝑄𝑎𝑡𝑚

 𝑓(𝜆1𝑇𝑜𝑏𝑗,𝜆2𝑇𝑜𝑏𝑗)𝜀𝜏𝜎

4
   (9) 

To solve Tobj, the user must provide the emissivity of the object, the transmittance of the 

atmosphere, and the surrounding and atmospheric temperatures (which are often assumed as the 

same). Note that Tobj appears on both sides of the equation, thus Tobj must be solved iteratively. 

This solves the temperature for a single pixel in a thermal camera. 

 

1.2 Emissivity and Thermal Imaging 

 As stated in the previous section, a user must supply a thermal camera’s software with the 

emissivity of the object(s) being imaged, the atmospheric transmittance, surrounding temperatures, 

and atmospheric temperatures. In general, one can reasonably assume the atmospheric 

transmittance, surrounding temperatures, and atmospheric temperatures is the same for all pixels 
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in the microbolometer array. On the contrary, if the imaged scene contains various objects of 

different emissivities, then the pixels corresponding to the measurement of each materials’ 

temperature must use the correct emissivity for that material to obtain accurate measurements. This 

has long presented a problem in thermal imaging. Figure 4 shows how failure to compensate for 

the discrepancy can result in drastically inaccurate measurements. The room temperature infrared 

image’s Vanderbilt logo, Figure 4B, appears cold with respect to the non-painted portion of the 

metal slab. The non-painted metal is reflecting much of the camera user’s body heat, whereas the 

painted portion does not reflect a significant amount of heat. In the high temperature scene, Figure 

4C, the radiant power emitted from the high emissivity paint is greater than the sum of the reflected 

body heat and radiant power emitted from the low emissivity metal surface causing the logo to 

appear warmer than the non-painted portion.  

Figure 4: A metal slab (low emissivity) with a Vanderbilt logo designed using 

black paint (high emissivity) imaged in (A) the visible spectrum and the infrared 

spectrum with the metal slab at (B) room temperature and (C) after being warmed 

in an oven. 

 

 There are currently two predominant solutions to the emissivity problem in thermal 

imaging. The first consists of putting a small piece of tape or applying some paint of known 



10 
 

emissivity onto the observed objects and performing the temperature calculation using the 

emissivity of the tape or paint. The measured temperature of the object at the location of the paint 

or tape is assumed relatively constant throughout the body of the object [14]. This is not always 

an accurate assumption, nor is it always viable to put tape or paint on all objects of measurement 

such as in military surveillance applications. 

The second solution utilizes defining regions of interest (ROI) around each unique material 

within the thermal imaging software and providing the materials’ emissivities for each ROI [15].  

This solution requires extensive interaction by the thermal camera’s user and is therefore a 

cumbersome approach to the problem. This renders the solution unfeasible for application spaces 

that require near instantaneous measurements on thermal video feed such as autonomous driving. 

Furthermore, hasty manual creation of an ROI may result in imperfect boundaries between objects 

of differing emissivities causing inaccurate measurements along the edges of an ROI. 

 

1.3 Deep Learning for Semantically Segmented Material Classification 

 This section will discuss how deep learning semantic segmentation provides a solution to 

the emissivity problem in thermal imaging presented in the previous section. First, we will lay the 

groundwork for a basic understanding of deep learning to better grasp how it applies to the 

problem. Then, we will discuss two generalized architectures of deep learning models that perform 

semantic segmentation classification. Finally, we will address why deep learning techniques 

provide the optimal solution to the emissivity problem. 
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1.3.1 Basics of deep learning 

 Deep learning is a subset of machine learning and artificial intelligence that utilizes 

artificial neural networks (ANNs) with many layers to learn and extract meaningful features from 

data to perform some task [16]. These methodologies have been used in various applications such 

as computer vision, speech recognition, language translation, drug design, and many more [17-

20]. This subsection will focus on the convolutional neural networks (CNNs) subset of deep 

learning as it applies best to the emissivity problem and is the means of performing semantic 

segmentation. CNNs excel at computer vision tasks because they can contextualize patterns and 

shapes within images to make a well-informed prediction of what the CNN is observing [21]. 

These networks tend to consist of several types of layers including fully connected, convolutional, 

pooling, and occasionally upsampling layers. 

 Fully connected layers (sometimes called dense layers) serve as the basis for conventional 

ANNs. Many CNNs apply one or more fully connected layers to flattened data at the end of the 

neural network. These layers can form increasingly abstract representations of data as more layers 

are included. However, neural networks consisting of only fully connected layers often suffer from 

overfitting and poor generalization in computer vision tasks [22]. Each layer is comprised of many 

neurons or nodes and each neuron connects to all the neurons of the previous layer as depicted in 

Figure 5 [23]. The connections are formed via a dot product of a neuron’s weights and the neurons’ 

outputs from the previous layer. A neuron applies an activation function such as ReLU, seen in 

Equation 10, to the result of the dot product before passing its value to the following layer [24]. 

𝑓(𝑥) = 𝑚𝑎𝑥{0, 𝑥}  (10) 
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Training the neural network updates the weights associated with each neuron starting with the 

layers at the end of the network in a process called backpropagation. The weights are updated 

according to stochastic gradient descent of a given loss function.  

 

 

 

 

 

Figure 5: An ANN consisting of only fully connected layers. 

 

 Convolutional layers stride several convolutional kernels called filters across data output 

from previous layers. Each filter contains a set of trainable weights. In a single step of the stride, 

the weights are multiplied in an element-wise fashion with the values of the input, and the sum of 

this multiplication is the output. The final output of the convolution is a matrix of all strides. Each 

filter produces its own matrix in the output. This is illustrated in Figure 6 [25]. The geometry of 

the kernel is what enables CNNs to identify shapes and patterns exceedingly well. As a 

convolutional kernel undergoes training, its weights change in a manner that causes the kernel to 

output a high value when it detects a pattern that matches the pattern it is searching for and a low 

value when it does not. As a result, each filter becomes specialized in detecting a specific pattern. 

For instance, one filter may specialize in identification of curved edges while another specializes 
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in identification of straight edges [26]. Since the filters stride over the entire input matrix, the 

identification is location-invariant which significantly helps the generalization of these networks. 

 

 

 

 

 

Figure 6: Convolutional kernels applied to input data and the resulting output 

data. 

 

 Pooling layers help a CNN to discard unneeded information via dimensionality reduction 

of the input matrix while conserving useful information. There are many types of pooling, but the 

most used is max pooling. The max pooling kernel is often a 2x2 kernel that strides over the input 

matrix without overlap. For a single stride, its output is the maximum value of the area contained 

by the kernel, and the remaining values are discarded. A schematic of this process is seen in Figure 

7 [27]. Since a max pooling kernel simply passes along the maximum value and discards the rest, 

it does not have any trainable parameters. Max pooling is a sensible choice of pooling given the 

convolutions that it follows output a higher value for applicable patterns and low values for 

nonapplicable patterns, thus only the most valuable information is passed into the output [28]. 
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Figure 7: Input and output tensor before and after applying max pooling. 

 

 Upsampling is used in the special case of encoder-decoder type CNNs. This type of CNN 

will be expanded upon in the following section. Dimensionally, an upsampling layer performs the 

opposite operation as a pooling layer. Upsampling takes a single value and places it within a 2x2 

area. The remaining three values are either the same value as the original single value, or they are 

zeros. In the first case, no parameters are learned for the layer. In the second case, the index of the 

original value is either always assigned to the top-left location in the new 2x2 area, or the index of 

its location is a trained parameter. The latter is shown in Figure 8 [29]. This layer is added when 

it is necessary to add resolution to the previous layer’s output. 

 

 

 

Figure 8: Upsampling with trained index placement. 
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 The final layer in a multiclass ANN or CNN classifier has as many neurons along the 

classification dimension as the amount of target classes. Instead of ReLU, the activation function 

used is softmax. The softmax activation function normalizes the outputs into a probability 

distribution of predicted classes. Thus, the class that the neural network believes the data in 

question most likely falls into will have the highest value. Because it is a probability distribution, 

the sum of the softmax for all possible classes must equal one. The softmax function is given in 

Equation 11 [30]. 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 (11) 

The equation normalizes the input vector from the final layer of the model, 𝑧, such that the 

model predicts class i to have the probability 𝜎(𝑧)𝑖 of being the correct class out of K classes. 

 

1.3.2 Semantic segmentation model architectures 

 Semantic segmentation entails creating a pixelwise classification map of an entire image. 

An example of an input image and its semantically segmented output is seen in Figure 9 [31]. 

There are several types of deep learning architectures which perform semantic segmentation. One 

of these models is the sliding-window (or patch-based) CNN and another is the U-net CNN [32, 

33]. 
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Figure 9: (A) Image of a cat in a field and (B) the corresponding semantic 

segmentation of the image. 

 

 The sliding-window CNN inputs a small patch of pixels from a larger image and classifies 

the central pixel of the patch. As the name suggests, preprocessing is performed to extract many 

overlapping patches of pixels as if a small window was slid over the image and at each step the 

contents within the window were classified. A CNN consists of one or more convolutional layers, 

followed by flattening of the data, and then one or more fully connected layers. The final layer is 

a fully connected layer using the softmax activation function to perform the classification [34]. A 

schematic of the architecture is given in Figure 10. This CNN differs from a standard CNN 

architecture as it does not apply pooling because the input patch is too small to lose any spatial 

data. A drawback of the patch-based CNN approach is that the small input restricts the model from 

contextualizing information from the greater image which may help with the classification task. 

Furthermore, the patch-based CNN’s output loses some resolution from the input due to not 

evaluating the edges of the input. Edges are not segmented because some pixels’ corresponding 

patch falls outside of the image. Padding the edges of the image with black pixels can recover the 

resolution, but this can cause poor classification accuracy where the padding is necessary. 
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Figure 10: Generalized CNN architecture of the patch-based approach to 

semantic segmentation. 

 

 The U-net CNN is a fully convolutional approach to semantic segmentation tasks. The 

architecture follows an encoder-decoder type structure. The encoding portion takes an entire image 

as input data and compresses it into a smaller dimensionality via convolutions and pooling to 

discard excess information in the image. A decoder portion follows, which projects the compressed 

data into the classification space using convolutions and upsampling. Skip connections are used 

throughout the model to symmetrically pass data from the encoding portion to the decoding portion 

[33]. The architecture is visualized in Figure 11. The skip connections are used to prevent the 

vanishing gradient problem in neural networks with many layers. The vanishing gradient problem 

prevents layers early in the network from optimally learning the proper weights. This is because 

changes in weights have a diminishing effect on the output of the neural network the further the 

weights are from the classification layer. Incorporating skip connections gives weights that appear 

early in the neural network a more direct effect on the output of the neural network. This enables 

the design of a deeper neural network that can create more complex abstractions of the input data 

than would otherwise be possible without skip connections [35]. Since the U-net model inputs an 

entire image at a time, it can use the contextual information of the entire image for classification 
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that the patch-based models are incapable of utilizing. Performing classification with U-net models 

is generally quicker than the patch-based model because they do not require overlapping patches 

from the image. This means that a single pixel is only processed by the model once for the semantic 

segmentation task, thus less overall computation is required. As a result, U-net models are better 

fit for applications where the classification map must be generated quickly such as in autonomous 

vehicles. 

 

 

 

 

 

 

 

 

Figure 11: Generalized CNN architecture of the U-net approach to semantic 

segmentation. 

 

1.3.3 Solving the emissivity problem with deep learning 

 This work proposes using the deep learning techniques previously discussed to create a 

semantic segmentation map of the materials within a thermal image. Once the material imaged by 
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each pixel is identified, the emissivity of said material can be looked up in a database provided to 

the thermal imaging software. At this point, the temperature of each pixel is recalculated using the 

correct emissivity. This circumnavigates the need to apply additional materials to the objects of 

the scene or to draw ROIs around each object by hand and then manually specify the correct 

emissivity. Effectively, the deep learning model creates the necessary ROIs, and the software fills 

in the applicable emissivity to each ROI. This expedites the process required to obtain accurate 

temperature measurements with little to no additional effort from the thermal camera’s user. If a 

model can achieve very high accuracy for the material classification semantic segmentation map, 

then the results may produce even more precise results than manual creation of the ROIs. 

 

1.4 Multispectral Imaging to Enhance Material Classification 

 Thermal images provide no information on the unique spectral surface radiative 

characteristics of a material. A thermal camera that captures radiation in the 7.5 μm to 14 μm 

spectral window does not have the ability to discern the precise spectral origin of the 

electromagnetic radiation. This inability results in the loss of material specific spectral information 

that the deep learning algorithm could leverage to perform the semantic segmentation with higher 

accuracy [36]. A thermal image is akin to a grayscale image as opposed to an RGB image in the 

visible spectrum (0.4 μm – 0.7μm) because spectral characteristics govern the color of materials. 

For example, grass appears green due to chlorophyll’s high scattering rate of mid-wavelength 

visible light (green) as opposed to its low scattering rate of high and low wavelength visible light 

(blue and red) [37], and this feature helps observers identify the material. 
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 Further increasing the amount of spectral information in a thermal image, via hyperspectral 

imaging (HSI) or multispectral imaging (MSI), available to the deep learning model improves 

material classification accuracy [38]. Although dense spectral information is not inherently 

captured by a thermal camera, applying spectral filters to a thermal camera enables the extraction 

of spectral features in the FIR spectrum. A wide range of applications within geological sciences, 

military, and medical fields have taken a similar approach by incorporating HSI or MSI data to 

improve models’ semantic segmentation performance for images in the visible spectrum [39-41]. 

In the FIR range, the radiosity (amount of radiation leaving a surface) is a combination of 

spontaneous emission and reflection. As a result, HSI and MSI in the FIR range provides 

information about both emissive and reflective features of a material in the thermal camera’s 

spectral range, unlike visible images which are solely reflection [42]. However, most HSI and MSI 

semantic segmentation work is performed in the visible region. Specifically, three visible region 

datasets are predominantly used in the development of HSI segmentation models: Indian Pines, 

Salinas Scene, and University of Pavia datasets [43-45]. These datasets consist of airborne or 

satellite HSI of farmland and cityscape containing between 105 and 220 bands in the visible region. 

While most HSI semantic segmentation models are designed for visible region data, the core 

architecture of the models can be applied to semantic segmentation of FIR MSI given that 

modifications are made to accommodate for the number of bands in the FIR MSI dataset. 

Objects in HSI data have been classified by employing several CNN architectures to 

semantically segment image scenes, such as the 1D-convolutional neural network (1D-CNN), 

which identifies a material’s spectral features captured in a single spatial location [46]. The 2D-

CNN, which was the type of CNN described in the previous section, limits the kernel to learning 

spatial features and treats the many HSI bands as color channels. This prevents the convolutional 
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kernel from explicitly learning spectral features [47]. The 3D-CNN, which enables spectral-spatial 

feature detecting kernels, has shown that learning the features across the spectral-spatial domain 

enables better classification performance than learning only a spectral or spatial component of the 

HSI data-cube [48]. These three types of CNNs are pertinent as all three of these feature types 

(spectral, spatial, and spectral-spatial) are observed in FIR MSI data. 

The Hybrid-Spectral-Net (HybridSN) incorporates principal-component-analysis (PCA) to 

disregard bands with little information and then feeds the data through a series of 3D convolutions 

to identify spectral-spatial features. The data are then reshaped and passed through 2D 

convolutions to further identify spatial features. The HybridSN demonstrates that independently 

learning spectral-spatial and spatial features both reduces computational time for training and 

increases classification performance [49]. All the models mentioned previously employ single 

patch-based segmentation. The spectral-spatial multi-scale feature fusion network (SMFFNet) 

supports a spatially small spectral-spatial patch input containing all bands and a spatially large 

spatial patch input containing few bands. The two inputs are put through a series of independent 

and parallel 3D and 2D convolutions before the data streams are fused. This separates the spectral-

spatial and spatial feature detection into their own sections of the networks. The model has 

achieved nearly perfect metrics across the standard visible region HSI datasets [50]. The U-Net 

model has also been tested on HSI datasets, but due to the identical input and output dimensionality 

nature of the U-Net the spectral bands are input as color channels [51]. Much like the 2D-CNN, 

this restricts the model to only detecting spatial features. 
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CHAPTER II 

METHODS 

 

2.1 Experimental Methods 

 We created a dataset of MSI thermal images using the FLIR A655sc High-Resolution 

LWIR science-grade infrared camera in conjunction with FLIR ResearchIR software. All thermal 

images were captured in 3 different spectral ranges. The first spectral range covers 7.5 μm to 14 

μm, the spectral range inherent to the thermal camera. The two other spectral ranges cover 7.5 μm 

to 9 μm and 8.5 μm to 14 μm by inserting Andover short-pass and long-pass edge filters into the 

thermal camera, respectively. Each thermal image consists of eight unique material blocks 

(aluminum, acrylic, bakelite, cork, ethylene-vinyl acetate [EVA], granite, silicone, and maple) 

placed on a ceramic sample holder. The sample holder and materials were placed in an oven, heated 

to temperatures ranging from 30 oC to 55 oC with measurements taken every 5 oC. The temperature 

of the samples was monitored with a thermocouple. The room temperature was recorded as 20.8 

oC. At each temperature, seven permutations of a two by four stacking of the blocks were 

constructed. For each permutation, one image was collected for each of the three filters, giving a 

total of 21 images per temperature. With six distinct temperatures, a total of 42 scenes were imaged 

yielding 126 thermal images (7∙3∙6 = 126). After changing the oven temperature, the material 

blocks were allowed to equilibrate for 20 minutes at the new temperature. Opening the oven and 

handling the blocks to obtain permutations disrupts the material blocks’ temperature. Thus, 

between changing the permutation of the blocks and imaging the scene at different spectra, the 

blocks were allowed to equilibrate for 10 and 5 minutes at the target temperature, respectively. An 
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ROI containing only the ceramic background and material blocks was applied in the ResearchIR 

interface to avoid imaging the interior walls, racks, and heating elements within the oven. The 

restricted ROI yielded thermal images with resolution of 294x181 pixels for all images collected. 

The ground truth for each scene was created in ImageJ by outlining each block and assigning it a 

color corresponding to its material [52]. A single permutation’s set of MSI thermal images and the 

corresponding ground truth is shown in Figure 12. 

 

 

 

Figure 12: Thermal images of the test scene taken with the oven set to 50 oC for 

the (A) full spectrum, (B) long-pass, and (C) short-pass spectral ranges. D is the 

ground truth for the scene. (Colors ascribed to ground truth image do not 

correspond to the false color assignment in the thermal images; however, material 

locations do correspond.) 
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2.2 Computational Methods 

2.2.1 Data preprocessing 

 Let the dimensionality of the dataset be represented by I ∈ ℝT x P x M x N x B, where T is the 

number of different temperatures for which data were collected. P signifies the number of 

permutations collected at each temperature. M and N express the height and width, respectively, 

of pixels in the thermal images. B gives the number of unique spectral windows at which each 

scene is imaged. The data were split into three sets: 5 of the 7 permutations for training, 1 of the 7 

for validation, and 1 of the 7 for testing. Each (M x N) thermal image was normalized such that 

the minimum and maximum temperatures were 0 and 1, respectively, in each scene with the 

remaining temperatures in the range [0,1]. For all data in I, preprocessing steps to realize eventual 

pixel-wise segmented classification was performed by independently extracting and vectorizing 

overlapping spectral-spatial data-cube patches and spatial data-square patches for each of the (M 

x N x B) scenes. Corresponding spectral-spatial data-cube and spatial data-square patches share 

the spatial location of their central pixels. Let each individual spectral-spatial patch’s 

dimensionality be represented by W ∈ ℝS1 x S1 x B, where S1 represents both the spatial height and 

width of the data-cube patch. Similarly, let the individual spatial patch’s dimensionality be given 

by U ∈ ℝS2 x S2 x 1, where S2 represents both the spatial height and width of the data-square patch. 

The unity value in the third dimension of U signifies that the patches were only extracted from the 

full spectrum thermal image for this input. W and U were extracted from I with a spatial stride of 

(1 x 1) and no padding along the outer edges of the normalized thermal images. The central spatial 

pixel of W and U is the pixel to be classified by the neural network such that the output space is 

defined by a vector with elements O ∈ ℝ1 x 1 x B meaning all spectral bands within a single spatially 

defined set of pixels are classified together. 
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 The ground truths have a dimensionality of G ∈ ℝT x P x M x N. For each (M x N) scene in the 

ground truth dataset, a (M – S2 + 1) x (N – S2 + 1) key for the materials’ spatial locations are 

equated to the color in each pixel of the ground truth with a one hot encoding label (a standard 

method of labeling the outputs of neural networks). The reason for the loss of spatial dimension 

size in the key is due to not using padding when extracting W and U. S2 determines the size of the 

output since the spatial patch has a larger height and width than the spectral-spatial patch. The one 

hot encoding label key is vectorized such that it defines the class corresponding to each element 

of the output space. 

 

2.2.2 Deep learning models and metrics 

All neural networks were developed using the Keras functional API of Tensorflow2. The 

design of the primary neural network used for material classification was inspired by the SMFFNet 

model proposed for handling HSI data with several modifications to better fit to our dataset (M-

SMFFNet). The model is built with two input layers, one that accepts all data for I cast into W and 

another that accepts all data for I cast into U. The input layer that W feeds into has a shape of (S1 

x S1 x B x 1), where the 1 specifies that only one color channel is present in the data. This input 

is followed by a 3D convolution with a kernel size of (2 x 2 x 2) to detect the spatial-spectral 

features within the data. The input layer for U is shaped as (S2 x S2 x 1) since the input contains 

no spectral data. This input continues into two 2D convolutions with (3 x 3) kernel sizes. Following 

the convolutions of both inputs, the data is flattened and then fused using a concatenation layer. 

The concatenated data are subsequently passed through two dense layers containing 128 units. 

Finally, a softmax layer is applied to perform the classification. The softmax contains nine classes, 

one for each material block and an extra for the ceramic background. The neural network is 
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depicted in Figure 13. All convolution and dense layers utilize L2 regularization on the kernel and 

bias, both with coefficients of 3x10-3 to prevent exploding gradients. Additionally, all convolution 

and dense layers are batch normalized before applying a ReLU activation. The loss function was 

calculated via categorical cross-entropy. An ADAM optimizer was utilized with the initial learning 

rate set to 1x10-5. The model was allowed to train for a maximum of 1000 epochs, but early 

stopping was enforced upon diminishing returns on the validation set’s categorical accuracy. The 

patience for improving validation categorical accuracy was set to 50 epochs. A callback was 

employed to restore the weights from the best performance on the validation set. 

 

 

 

 

 

 

Figure 13: A detailed schematic of extracting spatial-spectral and spatial patches 

from the MSI cube captured in Figure 12, and the subsequent M-SMFFNet that 

classifies the central pixel. 
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Three other models were also trained and tested. The M-SMFFNet was compared with a 

modified HybridSN (M-HybridSN), a U-Net, and a custom 3D-2D U-Net developed for this work. 

The M-HybridSN takes its input from W and returns an output of O, except the transformation of 

G to O is defined by S1 rather than S2 because U is not included in the model. The U-Net and the 

3D-2D U-Net both take in I, which has been reshaped to stack the temperature and permutation 

into the same dimension. They both output in the dimensionality of G with the temperature and 

permutation dimensions stacked in the same manner as the input. Detailed schematics of all three 

of these models can be found in the supplemental information. 

All neural networks were evaluated against three metrics. The first is overall accuracy of 

the test scenes. This is computed by dividing the number of correctly predicted pixels by the total 

number of pixels. Overall accuracy tells how well the model segmented the entirety of the images. 

Second, we observe the average accuracy, which is solved via dividing the number of correct pixels 

for each material by the true number of pixels representing that material. These per material 

accuracies are then summed and divided by the total number of materials to yield the average 

accuracy. This metric better accounts for imbalances between the number of pixels representing 

each material in the data. Third, we evaluate Cohen’s Kappa, which is given by subtracting the 

probability of the predictions agreeing with the true values (Pe) from the overall accuracy and then 

dividing this difference by 1-Pe. Cohen’s Kappa assesses the model’s performance against 

segmenting the model by chance. The metric also identifies models that perform exceptionally 

well in cases of imbalanced data. 
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2.2.3 Data postprocessing 

 After determining the material occupying each pixel in the testing set, images of the 

predictions are generated. The results are evaluated using the metrics described in the previous 

subsection, along with a confusion matrix. The semantic segmentation map of materials and their 

corresponding emissivities is then used to calculate the corrected temperature using Equation 9. 

Once all the temperatures are corrected, a new heatmap of each test scene is generated. Average 

corrected object temperatures are calculated by taking the mean corrected temperature of the pixels 

corresponding to the ground truth for each object. 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

3.1 Material Classification 

 Each models’ performance can be visualized against the ground truth in Figure 14. Doing 

so reveals that the U-Net architectures greatly reduce the salt and pepper classification noise seen 

in the patch-based architectures. This is the small, scattered patches of misclassified pixels seen in 

Figures 14C and 14E. However, this comes at the expense of edge detection. The U-Net 

architectures tend to have more difficulty distinguishing between similar materials when they are 

placed next to each other, resulting in the model producing poor segmentation boundaries as seen 

in Figures 3B and 3D between the acrylic, bakelite, and silicone, as well as the cork and maple. 

While the patch-based architectures manage to define the boundaries better, there is significant 

salt and pepper noise around the edges of each block. 

 

 

Figure 14: (A) Ground truth, (B) U-Net, (C) M-HybridSN, (D) 3D-2D U-Net, 

and (E) M-SMFFNet semantic segmentation material classification of the test 

scene at 50 oC. 
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 The performance of each model evaluated against all the selected metrics is given in Table 

1. The M-SMFFNet performed the best in most of the per material accuracy metrics, and every 

compiled metric (OA, AA, Kappa). The 3D-2D U-Net performed second best in two of the three 

compiled metrics but does worse than the M-HybridSN in average accuracy. This is due to the 

model overfitting to silicone and acrylic when attempting to predict bakelite. The poor 

performance on bakelite had a significant impact on the model’s average accuracy. The same 

overfitting issue occurred with the classic U-Net as well. It should be noted that the traditional U-

Net, the only model that does not consider spectral-spatial information, does significantly worse 

on granite than any other model. Looking back to Figure 12, granite has the most substantial visual 

difference between bands, thus suggesting that it has significant changes in its surface radiative 

properties depending on the spectral region observed. This explains why the U-Net model, which 

does not explicitly learn spectral features, is unable to classify granite as accurately as the other 

models. 

Table 1: Each models’ performance metrics for all test scenes. The result of the 

model with the best performance for each category is highlighted in blue. 

 

 

 

 

 

U-Net M-HybridSN 3D-2D U-Net M-SMSFFNet

Acrylic 60.5 30.9 70.0 39.3

Aluminum 95.2 99.4 99.1 98.9

Bakelite 19.0 73.3 16.2 70.0

Ceramic 98.2 97.2 98.7 96.5

Cork 85.0 87.6 81.7 94.9

EVA 93.9 98.2 97.9 98.4

Granite 75.8 95.3 94.3 97.4

Maple 76.3 65.3 70.2 75.0

Silicone 64.6 54.2 70.0 67.8

OA 80.5 82.3 83.1 84.5

AA 74.3 78.0 77.6 82.1

Material
Model

Kappa 

(x100)
76.4 79.1 79.6 82.1
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 A confusion matrix for M-SMFFNet is given in Figure 15. It is normalized by rows such 

that each row sums to one and each cell gives the fraction of pixels truly belonging to the material 

given along the vertical axis classified as the material along the horizontal axis. A perfect model 

would yield ones along the diagonal with zeros in all off-diagonal cells. All test temperatures are 

evaluated in the confusion matrix. 

 

 

 

 

 

 

 

 

 

Figure 15: A confusion matrix of the predictions given by M-SMFFNet across all 

temperatures in the test set. 

The confusion matrix further confirms the model’s success in characterizing aluminum, ceramic, 

cork, EVA, and granite. However, the neural network fails to correctly identify acrylic, bakelite, 

silicone, and maple consistently. The confusion matrix, along with the prediction map in Figure 

14E, reveals that the problem stems from the neural network having trouble distinguishing between 
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samples within each of the two groups of materials. The first group is acrylic, bakelite, and silicone, 

while the second group consists of cork and maple. Materials belonging to these two groups tend 

to have similar spectral features (emissivities as a function of irradiated wavelength) and few 

distinguishable spatial features (emissive patterns from a material’s surface) among each other. 

Similar features are expected within the first group as these materials are all polymeric with 

homogenous smooth surfaces. The second group consists of wooden materials, hence the similar 

spectral features, yet the grains in the maple offer some spatial feature differences when compared 

to the unordered pattern of the cork surface. The model tends to predict materials falling into the 

first group as bakelite, and materials in the second group as cork, hence the increased material 

accuracies for bakelite and cork versus the other material(s) in their groups. 

 

3.2 Temperature Correction 

As seen in Figure 16A, temperatures along the edges of the aluminum block are corrected 

to an unreasonably high temperature. This is caused by the reflectance term within the correction 

calculation. Tsurr is assumed to be the temperature of the room exterior to the oven; however, the 

edges of the aluminum are slightly curved and reflect heat from the interior walls and heating 

elements of the oven. Since the interior of the oven is much hotter than room temperature, which 

is not accounted for in the calculation, most of the reflected heat manifests itself within the 

emission term. As a result, the aluminum’s edge temperature is perceived to emit a significant 

amount of energy, thus resulting in an overestimation of the corrected temperature. Another 

heatmap of the scene was generated with the maximum colormap value set to aluminum’s average 

temperature. This allows the other materials’ results to be visually analyzed as well. Comparing 

Figures 12A and 16B shows that the corrected temperatures have a much narrower distribution 
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than the uncorrected temperatures, except for the edges of the aluminum block. A narrower 

distribution is to be expected as the materials should all be at the same temperature having 

equilibrated in the same oven. A true thermal image would be uniform and show no detail. 

 

 

Figure 16: (A) The resulting temperature correction for the 50 oC test scene, and 

(B) the same data with the heatmap capped to the average temperature of 

aluminum. 

 

The result is further supported by the average material temperatures in Figure 17. The 

average temperature of aluminum is typically higher than the others, again due to the edges of the 

block reflecting heat from the oven. Despite the neural nets’ inability to distinguish materials 

within the two groups mentioned in the previous section, the temperature correction still obtains 

favorable results. Since the spectral characteristics of the materials in each group are similar, their 

emissivities are approximately the same. Thus, the temperature correction comes out to the same 

value regardless of the predicted material assuming the prediction falls within the group that each 

material resides. While the M-MSFFNet was able to accurately predict the pixels containing 

granite, the composite material has a nonuniform emissivity across its surface. A single emissivity 

is used for the entirety of the granite surface in the temperature correction. This results in the 
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average temperature of the granite approaching the expected value, yet the surface maintains a 

significant temperature fluctuation. 

 

Figure 17: Average temperature of each object’s surface before and after the 

correction for test scenes (A) Toven = 30 oC and (B) Toven = 50 oC. 

 

The root mean square error between average object surface temperature and the oven 

temperature for both measured and corrected cases across all temperatures is shown in Figure 18. 

While it is not expected that the root mean square error (RMSE) be exactly zero, due to the cooling 

of the blocks upon opening the oven, we do expect the RMSE to approach zero for all materials. 

Approximating the time constant for cooling from both radiative and convective losses suggests 

that a negligible amount of cooling occurs before an image is taken, therefore the assumption that 

the RMSE should have a value close to zero is affirmed. Applying the temperature correction 

yields a decrease in the spread of the RMSE from 9.8 oC to 2.8 oC. The average RMSE across all 

materials decreases from 8.2 oC to 4.3oC.  



35 
 

 

Figure 18: Root mean square error of average surface temperature for each 

material across all test scene temperatures between the (A) measured temperature 

and (B) corrected temperature against the expected temperature (Toven). 
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CHAPTER IV 

CONCLUSIONS 

Material classification by applying a CNN to multispectral thermal images is accurate 

given that the materials have unique spectral and spatial features. The M-SMFFNet provides the 

best semantic segmentation results out of the models tested. The 3D-2D U-Net performs nearly as 

well without the salt and pepper noise inherent in patch-based segmentation schemes. All tested 

neural networks generally fail when the spectral features are similar and tend to overfit to a 

particular material within a group of similar materials (such as polymeric plastics or wood-based 

materials). Despite the neural networks’ failure to discern these materials, the similarity between 

the spectral emissivities enables an accurate temperature correction. The temperature correction 

fails when calculating the temperature of highly reflective materials if the surrounding 

temperatures are not uniform. Composite materials with nonuniform emissivities enable high 

classification accuracies due to significant spatial features, yet the temperature calculation fails to 

account for the nonuniform emissivity across the surface. Temperature correction methodologies 

described in this work are best applied to materials with uniform surfaces. 
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CHAPTER V 

FUTURE WORK 

 

5.1 Incorporating the Visible Spectrum 

 By implementing RGB images into the dataset, the deep learning models will have more 

spectral information that they can use to help further improve the material classification 

performance. We have already begun this process by designing and 3D printing an iPhone 

attachment for the thermal camera. The attachment is seen in Figure 19. It was designed to align 

the point of views of the iPhone’s camera and the thermal camera as closely as possible. Feature 

matching algorithms such as those provided by OpenCV may be used to perform the remaining 

image alignment necessary [53]. 

 

 

 

 

 

 

Figure 19: 3D printed FLIR thermal camera attachment for iPhone XR. 
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5.2 Transfer Learning 

 Visual tasks are interconnected and can benefit from sharing information between each 

other [54]. For instance, when somebody looks at a chair their brain may examine and utilize many 

features about the chair paired with some amount of prior knowledge to conclude that they are in 

fact observing a chair. These features may include the curvature of the seat, the color of the wood, 

the shading of the shadow cast below the chair, the shape that the edges of the chair form, etc. The 

taskonomy team at Stanford and UC Berkeley have shown that the identification of surface 

normals, curvature, and edge detection all play vital roles in the computer vision task of semantic 

segmentation [55]. Applying deep learning models which perform these specific tasks and 

incorporating the outputs into the semantic segmentation deep learning models may help the 

classifier generalize and have a more holistic understanding of the objects they are trying to 

semantically segment, thus improving the performance of the models. 
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SUPPLEMENTAL INFORMATION 

 

 

 

 

 

 

 

Figure S.I.1: Transmission curves of the long-pass and short-pass filters. 

 

Table S.I.1: Emissivity values used to calculate the corrected temperatures [56-

58]. 

 

 

 

Material Emissivity

Acrylic 0.95

Aluminum 0.18

Bakelite 0.95

Ceramic 0.90

Cork 0.78

EVA 0.69

Granite 0.86

Maple 0.84

Silicone 0.95
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Figure S.I.2: Schematic of the architecture used for the modified-HybridSN 

model. 
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Figure S.I.3: Schematic of the architecture used for the 2D U-Net model. 
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Figure S.I.4: Schematic of the architecture used for the 3D-2D U-Net model.
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