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Chapter 1

INTRODUCTION

1.1 Scientific Background

Respiratory syncytial virus (RSV) is a ubiquitous, single-stranded RNA virus from the Pneu-

moviridae family frequently detected in children under the age of two [1, 2]. It is a leading

cause of acute respiratory infection (ARI) and deaths in infants, especially in low-income and

middle-income countries [3]. The virus is very contagious and can be spread through direct

contact with viral droplets (for example, kissing the face of a child with RSV), touching a

contaminated surface, or when an infected person coughs or sneezes [4]. A previous study

approximated a global incidence of 33.8 million RSV-associated cases of ARI each year; 3.4

million (roughly 10.1%) of these cases require hospitalization [5]. It has been demonstrated

that the majority of children hospitalized for an RSV-associated ARI are previously healthy,

indicating that the decision-making process for who should be hospitalized is predominantly

directed by either exhibition of symptoms or the judgment of the physician [6, 7, 8]. It is

currently unclear as to whether a data-driven risk index could identify patients at reduced

need of intervention at hospital admission, and how we can quantify patient-level risk when

encountering missingness in patient covariate profiles.

A variety of quantitative methods have been proposed in an effort to reduce subjectivity

in the assessment of respiratory disease severity. Some studies have devised clinical scoring

systems based on patient examinations conducted upon hospital admission. One study by

Bierman & Pierson established a treatment protocol for adolescents with status asthmaticus

[9]. A later study utilized a clinical scoring system adapted from the one developed by

Bierman & Pierson to assess patient improvement over time in infants affected by acute

wheezing [10]. Another developed a global respiratory severity score (GRSS) to quantify
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disease severity in infants with primary RSV infection [11]. The GRSS was independently

validated by a separate research group, Kubota et al., who determined that the GRSS was

clinically useful in guiding the decision-making process as to which infants younger than 10

months infected with RSV need respiratory support [12].

The aforementioned studies were primarily concerned with developing procedures to sum-

marize patient health states at the time of presentation. In contrast, we aim to establish a

quantitative framework for predicting patient risk of disease severity at the time of hospital

admission. We propose a risk index that makes use of several forms of patient covariate

information such as medical history, clinical, and medical examination data to generate by

way of a predictive model a unique severity score for each patient. These scores represent the

probability at time of hospital admission that the corresponding patient will experience a

major medical intervention and/or event (MMIE). We will leverage these scores to determine

whether there exist obvious subgroups in less need of intervention. The resultant model may

subsequently be applied to new subjects whose outcomes are not yet known to predict their

probability of experiencing an MMIE. Additionally, we seek to determine how we can best

characterize MMIE risk when dealing with incomplete patient covariate information. In a

world where hospital resources are finite, the ability to quantify patient risk from time of

admission, even when a portion of a patient’s covariate profile is unknown, is indispensable.

1.2 Data

Our data are from a three-year viral surveillance prospective cohort at Al-Bashir Government

Hospital in Amman, Jordan between the months of March 2010 and March 2013. This

hospital, established in 1954, is the major government-run referral center in the city of

Amman. It is estimated by the Ministry of Health that this hospital provided care to at

least 50-60% of children residing in Amman at the time [8]. Of the 17,557 children admitted

to the pediatric ward during this time period, 11,230 (64%) were under the age of two

[13]. During the three-year period, children under the age of two exhibiting a fever and/or
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respiratory symptoms were enrolled within 48 hours of admission to the hospital. Throat

and nasal swabs for all patients in the cohort were collected and subsequently tested for 11

respiratory viruses by reverse-transcription polymerase chain reaction (RT-PCR). The data

for this research specifically relate to the subset of 1,397 subjects who tested positive for

RSV, independent of tests for other viruses.

After the children were enrolled, their parents or legal guardians were given a standard-

ized questionnaire to procure demographic and clinical data. This information included:

age; sex; gestational age; birth weight; type of birth delivery (caesarean section [CS] or nor-

mal spontaneous vaginal delivery [NSVD]); child and maternal history of asthma, allergic

rhinitis, and eczema; family history of asthma; history of breast feeding; number of sib-

lings; number of household members; day care attendance; smoke exposure (cigarette and/or

hookah pipe); and underlying medical conditions (UMCs). UMCs in this study population

included: diabetes, heart disease, Down syndrome, kidney disease, sickle cell disease, cystic

fibrosis, cancer, genetic/metabolic disorders, cerebral palsy, neurological disorders, mental

retardation/developmental delay, seizure disorder, chronic diarrhea, gastroesophageal reflux

disease, immunodeficiency, asthma/reactive airway disease, liver disease, hypothyroidism

and/or other medical conditions.

The treating physician recorded the following information relating to physical examina-

tions once the children were admitted: duration of symptoms, decreased activity, irritability,

loss of appetite, shortness of breath, apnea, heart rate, body temperature, respiratory rate,

oxygen saturation level (further categorized as ≥95, 90-94, ≤89), flaring/retractions (further

categorized as flaring only, retractions, and accessory muscle use), wheezing (further cate-

gorized as audible by stethoscope only, audible without stethoscope, or not specified), and

cyanosis (further categorized as circumoral, generalized cyanosis, or not specified). When the

children were discharged, the following data were obtained: antibiotic use, blood culture re-

sults, chest radiography results, oxygen use, admission to the intensive care unit, mechanical

ventilation, length of stay in the hospital, and status at discharge [12].
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A table detailing all relevant model predictors is available in the Appendix (Table 5.1).

Table 1.1 below details the severity markers considered as components for the model outcome,

discussed in further detail in Section 2.1. All study data were entered into a secure Research

Electronic Data Capture (REDCap) database (Vanderbilt University, Nashville, Tennessee,

USA). All analyses were performed using R version 4.1.2.

Table 1.1 Severity Markers

Variable name Description Details

los Length of hospital stay Days (continuous)

any icu Admittance to intensive care unit 0 = No, 1 = Yes

vent Receipt of mechanical ventilation 0 = No, 1 = Yes

discharge status Alive or dead prior to discharge 0 = Alive, 1 = Dead

oxygen Receipt of supplemental oxygen 0 = No, 1 = Yes
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Chapter 2

METHODOLOGY & RESULTS

2.1 Defining Model Outcome

Before we specify a model we must first define the model outcome, which will in this case be

experiencing an MMIE. However, there exists no universally established clinical definition

for what constitutes an MMIE. We must therefore carefully consider how to delineate the

model outcome for this research. We wish for the outcome to serve as an indicator of disease

severity and a proxy for hospitalization need. Since these can be reflected in a multitude

of ways, it is appropriate to opt for a composite endpoint: a combination of at least two

separate severity markers. This will allow for MMIE classification to be a function of several

markers rather than just one. For this study, we consider a patient who experiences an

MMIE to have met the minimum threshold for hospitalization. We will denote an MMIE

by the occurrence of at least one of the following four events during a patient’s hospital

stay: admittance to the intensive care unit (ICU); receipt of mechanical ventilation (MV);

a hospital stay (LOS) exceeding a pre-specified number of days; or death prior to discharge.

Figure 2.1 shows the distribution of LOS for the 1,383 complete-case subjects. The

distribution is noticeably right-skewed, indicating that extended stays in the hospital were

rare. Roughly 75% of subjects in our study population were discharged from the hospital

within one week. Figures 2.2 and 2.3 display the distribution of LOS stratified by MV and

ICU, respectively. Together the histograms in Figure 2.2 demonstrate that, congruent with

intuition, subjects admitted to the ICU at some point during their stay remained in the

hospital for a longer period of time on average than subjects who were not. Comparing LOS

for the two groups by a Welch’s two sample t-test, it is apparent that the means of the two

groups are significantly different (p < 0.001). Similarly, Figure 2.3 shows that patients who
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Figure 2.1 | Histogram for hospital length of stay. The distribution of length of stay
is right-skewed, indicating that extended stays in the hospital were rare. Roughly 75% of
subjects were discharged from the hospital within one week.
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Figure 2.2 | Histograms for hospital length of stay stratified by ICU admittance.
The left histogram shows length of stay for subjects who did not have an ICU visit. The
right histogram depicts length of stay for subjects who did visit the ICU. Individuals who
were admitted to intensive care had longer hospital stays on average than individuals not
admitted to intensive care (p < 0.001).
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Figure 2.3 | Histograms for hospital length of stay stratified by ventilation receipt.
The left histogram shows length of stay for subjects who did not receive mechanical venti-
lation. The right histogram depicts length of stay for subjects who did receive mechanical
ventilation. Individuals who were on a ventilator remained at the hospital for a longer period
of time on average than those who were not on a ventilator (p < 0.001).

received mechanical ventilation at some point during their hospitalization stayed longer on

average than those who did not. The results of a Welch’s t-test indicate that the means of

the two groups are significantly different (p < 0.001). The question remains, however, as to

how exactly LOS should be treated in the outcome variable configuration. At what point

does LOS rise to a clinically meaningful level of severity? In making this decision, we wish to

avoid the extreme situations in which nearly all patients experienced or did not experience

an MMIE such that the predictive ability of the model is preserved. We determined that

designating a hospital length of stay exceeding three days as severe unambiguously captures

disease severity to an appropriate extent.

It was considered for a time whether a fifth element should be included in the outcome

configuration: whether the patient received supplemental oxygen at some point during hos-

pitalization. Ultimately the decision was made to exclude such a component.One basis for

this is that in theory a patient can be dehospitalized and still be sent home with oxygen.

We do not wish to capture within the outcome the situation where a subject is well enough
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that he/she can be discharged with oxygen in tow. An even greater reason for the exclusion

is that oxygen is often prescribed without regard for whether the patient actually needs it.

A patient receiving oxygen does not directly imply that he/she required hospitalization or

even the oxygen itself. Therefore, receipt of supplemental oxygen does not rise to the level

of severity we aspire to capture with this endpoint, so the decision was made to ignore it.

In summary, an MMIE is defined as experiencing at least one of the following events: ICU

visit, mechanical ventilation receipt, hospital stay period exceeding three days, or dead prior

to discharge. Those who met none of these criteria did not experience an MMIE. Based on

this definition, out of the 1,397 observations in the data set, 923 individuals experienced a

severe outcome and 458 did not. Note that for 16 individuals, it could not be determined

whether the individual experienced a severe outcome on account of missing data. Among

this subgroup we have complete information concerning ICU admittance, but we are missing

LOS for 14 subjects, MV for 15, and discharge status for 15. For subject 341 the only missing

variable was discharge status, and for subject 1162 we were only missing MV. The rest of

the subjects are missing all outcome variables with the exception of ICU admittance.

2.2 Defining Notation

After defining the outcome, the next step is to select an appropriate regression model to

fit to the data. Regression analysis is a statistical process used to estimate the effects of P

parameters (β1, · · · , βP , where p = 1, · · · , P ) on an outcome for i = 1, · · · , N subjects. The

ith subject’s covariate information is represented by xi = xi1, · · · , xiP . Traditional methods

for regression analysis estimate the model by a least squares approach; that is, selecting

values for β1, · · · , βP that minimize the sum of the squared residuals for the model:

RSS =
N∑
i=1

(
yi −XT

i β
)2

= ||y −Xβ||2

Modeling a binary outcome using linear regression is not appropriate, however, as not all

of the resulting probabilities will be bounded between 0 and 1. We will instead consider a
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logistic regression, a particular class of regression analysis used to model the probability of

a binary outcome. Logistic regression will keep the probabilities properly bounded. Let Yi

represent the MMIE outcome for the ith subject, and let πi = P (Yi = 1|Xi = xi) represent

the probability that the ith subject experiences the outcome given the patient’s covariate

information. Thus, we fit the model

π(xi) = expit(β0 + β1xi1 + · · ·+ βPxiP ) = expit(β0 + xTi β)

, where expit(x) = ex

1+ex
. The likelihood for logistic regression takes the following form:

L(β; X,Y) =
N∏
i=1

π(xi)
yi(1− π(xi))

1−yi

logL(β; X,Y) =
N∑
i=1

log[π(xi)
yi(1− π(xi))

1−yi ]

=
N∑
i=1

[yi log π(xi) + (1− yi) log(1− π(xi))]

=
N∑
i=1

[log(1− π(xi)) + yi log(
π(xi)

1− π(xi)
)]

=
N∑
i=1

[yi(β0 + xTi β)− log(1 + exp(β0 + xTi β))]

To determine the values of β0, β1, · · · , βP that maximize logL(β; X,Y), we derive the score

function by taking the partial derivative with respect to βj for j = 0, 1, · · · , P , setting the

expression equal to zero, and solving:

∂ logL(β; X,Y)

∂βj
=

N∑
i=1

yixij −
N∑
i=1

exp(β0 + xTi β)xij
1 + exp(β0 + xTi β)

= 0

=
N∑
i=1

xij(yi − π(xi)) = 0

= DT (β)V−1(β)(Y− µ(β)) = XT (Y− µ(β)) = 0
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This expression cannot be solved for β analytically because there exists no closed-form

solution. As an alternative, the estimating equations are fit by a computational method

such as the Gauss-Newton algorithm.

2.3 Estimating Risk Among Study Population

Though the inclusion of more parameters in a typical logistic regression model makes use of

more of a patient’s covariate profile, this does not necessarily imply that a more complex

model is best. To demonstrate this, let us compare a logistic regression where one key

covariate is used (Model 1) to one with five key covariates (Model 2). The covariates are

selected from Table 5.1. The covariate used in Model 1 is age, measured in months. The

covariates used in Model 2 are age, the sex of the child, whether the child has a history of

asthma, the duration of the child’s current illness measured in days, and whether the child

exhibits cyanosis. We use the MMIE outcome previously defined in Section 2.1 for both

models. For this demonstration, we will only consider the complete-case subjects.

Model 1
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Figure 2.4 | Histograms for logistic regression. Though Model 2 makes use of more of
a patient’s covariate profile than Model 1, we wish to ensure that the superior predictive
performance of the more comprehensive model is directly related to its ability to better
predict the outcome, not that it is merely a better fit to the data used to generate it. To
mitigate this issue, we will invoke a ridge penalty when specifying the model.

It is apparent from the histograms in Figure 2.4 that the Model 2 approach results in

increased heterogeneity in the risk score distribution compared to the Model 1 approach,
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suggesting that the use of additional covariates is in general more desirable. However, we

wish to ensure the superior predictive performance of the more comprehensive Model 2 is

directly related to its ability to better predict the outcome rather than the model merely

being a better fit to the data used to generate it. The addition of more covariates is not

guaranteed to yield a better model in terms of prediction, and we wish to avoid the dan-

gers of overfitting. An alternative model-building approach that will help to mitigate the

aforementioned challenges is known as penalized regression.

Penalized regression is a type of regression analysis where each of the model coefficient

estimates undergoes a certain degree of shrinkage toward zero, thereby reducing the overall

variance for and improving the out-of-sample predictive ability of the model. The mechanism

by which this is accomplished is related to the well-known bias-variance tradeoff, whereby

a small increase in bias is sacrificed for a significant reduction in variance to minimize the

overall prediction error. Ridge regression is a form of penalized regression where, instead

of estimating the coefficients by minimizing the sum of the squared residuals, the following

expression is minimized:

N∑
i=1

(
yi −XT

i β
)2

+ λ
P∑
p=1

β2
p = ||y −Xβ||2 + λ||β||2

Notice that the above expression is similar to the expression minimized under traditional

regression analysis. The difference is in the presence of the second term in the above expres-

sion, λ||β||2. This term acts as a shrinkage penalty; it causes the coefficients to be drawn

closer to zero. The overall effect of the penalty term is modulated by the value chosen for

λ. A value of zero for λ produces classical least squares and no shrinkage will be applied; as

λ approaches ∞, the effect of the shrinkage penalty increases and all coefficients approach

zero.

We will specify a logistic regression model with a ridge penalty. The objective function
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for this model will take the following form:

− 1

N

N∑
i=1

[yi(β0 + xTi β)− log(1 + exp(β0 + xTi β))] + λ||β||2

To determine the optimal value for λ, we employ M -fold cross-validation, where M = 10. In

this method, all observations from the data are first placed into one of two sets: a training

set and a test set. From there, the training set is split into M equally-sized folds. Then, for

each fold, the model is fit using the observations not contained in that fold and an estimate

for the validation error, CVm, is calculated. A value for λ is chosen that will minimize the

mean cross-validation error,

CV λ =
1

M

M∑
m=1

CV m

. We may also arrive at the optimal λ by minimizing the binomial deviance,

D = −[Yilog10(Ei) + (1− Yi)log10(1− Ei)]

, where Yi represents the ith patient’s outcome and Ei represents the ith patient’s risk score.

Once the optimal value for λ is identified, it may be used in the penalty term of the

regularized logistic regression to adjust model coefficients. The models will be fit using the

command cv.glmnet from the R package glmnet.

Nearly all data-related research must deal with the problem of missingness; this case is

no different. One approach to handling missing data is to conduct a complete case analysis

where subjects with missingness are excluded completely. A drawback to this method,

however, is that potentially useful information is ignored; subjects with partial missingness

are still relevant to the research question and should not be dismissed out of hand. A second

limitation of complete-case analysis is that the results can be biased if the missingness pattern

is informative. Another approach called multiple imputation (MI) is an improvement over

complete case analysis in that it makes use of all available information in the data. This
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Figure 2.5 | Finding optimal value for λ by binomial deviance minimization.
Depicted here are the binomial deviances as a function of the natural logarithm of the λ values
for the first four of one hundred iterations of multiple imputation. The dashed vertical line
on the left indicates the optimal value for λ that minimizes the prediction error of the model.

method generates multiple plausible copies of the entire dataset where missing values are

replaced with imputed values informed by the rest of the data. The mice package in R

implements multiple imputation by chained equations and will be used to accommodate the

missing data for this research. This procedure assumes that the data are missing at random

(MAR). It consists of a four step process; first, every missing value in the dataset is imputed

using a simple imputation. Next, the imputed values for one variable are reverted back to

missing. Then, a regression model is fit for the observed values of that variable predicted
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by the other data variables with missingness. Lastly, the missing values for the variable of

interest are replaced with predictions from the regression model. This is repeated for each

variable in the dataset, and that entire process is repeated [14]. Reference Section 5.2 in the

Appendix for pseudocode detailing the multiple imputation procedure.
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Figure 2.6 | Finding optimal value for λ by mean cross-validation (CV) error
minimization. Depicted here are the λ values and average errors for the CV procedures
corresponding to the first four of one hundred iterations of multiple imputation. In each
plot, the value for λ that minimizes the mean CV error is labeled by the red dot.

We conducted one hundred rounds of multiple imputation on our data to fill in plausible

values where information is unknown. This process yielded one hundred copies of our data.

We next fit penalized logistic regression one hundred times to each of the data copies, where
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Histogram of risk scores
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Figure 2.7 | Histogram of average risk scores. This histogram summarizes the average
risk scores across one hundred iterations of multiple imputation for the 1,397 subjects in the
study population. The average patient from this population has a risk of experiencing an
MMIE of approximately 2

3
. The figure suggests that the collected covariate information does

not indicate that unnecessary hospitalizations occurred frequently in this population.

M -fold cross-validation was employed for each iteration to determine the optimal value for

λ that minimizes the prediction error of the model. Figure 2.5 demonstrates how we can

find the natural logarithm for the optimal λ by minimizing the binomial deviance. The first

four of one hundred iterations of multiple imputation are shown here. The optimal value

is where the left vertical dashed line intersects with the x-axis. Similarly, Figure 2.6 shows

how we can also derive the λ values by minimizing the mean cross-validation error. Again

the first four iterations of one hundred are depicted. The red dot identifies the value for λ

that minimizes the error. These λ values regulate the amount of shrinkage to be applied to

the coefficients in the resulting one hundred model fits. A naive approach might then take

the coefficients from each of the fits and average them to form a single model. However,
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since each of the fits are a function of the random imputation procedure, it becomes unclear

for patients with missingness what data to plug in to generate the risk scores. Instead we

avoided this approach and, rather than aggregate to a single model, plugged the covariate

information from each data copy into the corresponding model. This process returned one

hundred risk scores corresponding to each of the 1,397 patients in our study population.

Last, we calculated the average risk score for each subject across the one hundred iterations.

These average scores are plotted in Figure 2.7.

2.4 Applying Model to New Subjects with Missingness

In real-world applications of this model, the scenario where a portion of a patient’s co-

variate information is incomplete should not be rare. However, it is unclear how to best

characterize risk of MMIE for such a patient. When a patient’s covariate profile is complete,

a single risk score is returned and its interpretation is straight-forward: the probability

of this patient experiencing an MMIE given his/her covariate information. When dealing

with partial covariate information, we can generate a distribution of plausible risk scores

by leveraging multiple imputation to use the patient’s existing covariate profile to inform

his/her unavailable information. We will explore this mechanism by predicting risk scores for

pseudo-subjects, patients from our study population for whom we have access to complete

covariate information that have been altered to have different types of missingness. For this

demonstration, three subjects were selected. Each of these subjects were predicted by the

model to be at either low (subject A), medium (subject B), or high (subject C) risk for

experiencing an MMIE prior to alteration.

We will first observe when more information is missing from patient covariate profiles

relative to less. Figure 2.8 depicts four plots lettered A-D; the densities for three pseudo-

subjects are shown in each plot. The variable k represents the amount of covariates each

subject is missing in the corresponding plot. As we go from plot A to plot D, the amount

of covariates that are missing from the patients’ covariate profiles increases. In plot A, the
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Figure 2.8 | Density plots evaluating effect of missingness on risk prediction:
amount of missing covariates. Each plot lettered A-D depicts three densities correspond-
ing to three pseudo-subjects. The variable k represents the number of missing covariates in
each subject’s covariate profile. The amount of missingness increases as we go from plot A
to plot D.

age variable is missing for the three subjects. For plot B, the duration of the child’s current

illness in days, heart rate, body temperature, and respiratory rate variables are also missing.

Additional missing covariates for plot C include whether there is a smoker in the household,

gestational age of the child, whether child exhibited wheezing, whether child has a history

of rhinitis, and whether the child experienced shortness of breath. For plot D, all covariates

are missing with the exceptions of number of household members, whether child had an

underlying heart, lung, neuromuscular, immune, or cancerous condition, whether there is a

family history of asthma, and oxygen saturation level range.

We also wish to evaluate this mechanism when important variables are missing relative

to less important ones. “Important” variables are those that existing scientific literature has
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identified as closely related to disease severity. Three variables considered “important” are

age, whether the child was born prematurely, and the gestational age of the child at birth [1,

16, 17]. We will compare the scenario where these variables are missing to when variables

comparatively less related to disease severity are missing, such as whether the child’s mother

has a history of asthma, whether there is a smoker in the household, and the child’s heart

rate. Figure 2.9 contrasts these situations with two plots lettered A & B. In plot A the less

important variables have been removed; in plot B the important variables are missing.
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Figure 2.9 | Density plots of pseudo-subjects with missingness in non-important
and important variables. Each plot lettered A & B depicts three densities corresponding
to three pseudo-subjects. The variable k represents the number of missing covariates in each
subject’s covariate profile. In plot A, three variables considered to be less related to disease
severity relative to the ones in plot B are missing. In plot B, three variables that have been
identified by existing scientific literature as related to disease severity are missing.
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Chapter 3

DISCUSSION

The 3,168 hospitalized children in the three-year cohort were tested for 16 different res-

piratory viruses. RSV was detected the most frequently. This finding is consistent with

prior literature and demonstrates the high burden of RSV-associated ARI for this particular

age group [17]. Several existing epidemiologic studies concerning RSV-associated ARI in

young children have focused on comparing characteristics among subgroups defined by hos-

pitalization status [6, 8, 18]. But hospitalization only serves as a marker of disease severity

given that the hospitalization is necessary, which in our study is reflected by development

of MMIE. Of the RSV-associated ARI hospitalizations in this cohort for which the data

were available, approximately two-thirds ( 923
1381

) experienced an MMIE and approximately

one-third ( 458
1381

) did not. This finding seems to challenge the notion that all hospitalizations

in this cohort were necessary.

With that being said, the average risk score in Figure 2.7 was roughly 2
3

and the majority

of patients in this cohort had high risk scores. A naive interpretation of this figure could be

that patients with a risk score under 0.50 should not have been hospitalized and those with

a risk score north of 0.50 should have been hospitalized. However, committing the error of

keeping a patient at the hospital who could have been discharged is significantly less harmful

than the error of discharging a patient who should have remained hospitalized. This suggests

a conservative application of the risk scores is most appropriate. We would thus conclude

by Figure 2.7 that the collected covariate information does not indicate that unnecessary

hospitalizations occur often in this study population.

As discussed in Section 2.1, key considerations were made as to what length of hospital

stay rises to a meaningful level of severity. Figure 3.1 presents histograms that summarize
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Histogram of risk scores: LOS > 2
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Histogram of risk scores: LOS > 3
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Histogram of risk scores: LOS > 4
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Figure 3.1 | Risk score histograms for each considered threshold for hospital length
of stay. We wish to determine the threshold for hospital length of stay that appropriately
captures disease severity for the configuration of the model outcome. The histograms in
this figure summarize the distribution of risk scores for the complete-case patients. The
histograms correspond to each of the potential configurations for defining the severe outcome
by length of stay: length of stay exceeding two days (top left), three days (top right), and
four days (bottom middle). It was determined that a length of hospital stay exceeding three
days captures disease severity appropriately.

the distribution of the risk scores corresponding to the 1,333 patients. The three histograms

correspond to the different thresholds being considered: lengths exceeding 2, 3, and 4 days.

The difference in sample size is due to a subject who remained in the hospital for three days

whose mechanical ventilation status is unknown. Referencing the figure, it is evident that

the distribution of risk scores is heavily left skewed when a threshold of 2 days is chosen

(top left). This phenomenon is a consequence of too many subjects meeting the severity

requirement. On the other hand, when the threshold is 4 days we arrive at a much flatter

distribution (bottom middle). Under this configuration those who remain in the hospital

long enough to reach the threshold are likely to be considered severe on account of one of

the other markers, and so the inclusion of length of stay starts to border on redundancy. It
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is for the 3 day threshold that a balance is found (top right). Here, enough subjects qualify

as severe that the variable’s inclusion in the model is useful, but not too many such that

the distribution of the risk scores becomes inflated. Thus a length of stay greater than three

days was determined to appropriately constitute severity for the purposes of this study.

In Section 2.4 we were interested in determining how to best quantify MMIE risk for

subjects whose covariate profiles have various forms of missingness. First, we juxtaposed the

situations where more of a patient’s covariate profile is unknown relative to less. Referencing

Figure 2.8, when the patients’ covariate profiles are more complete, we are more confident

as to the patients’ true risk of experiencing an MMIE. This confidence is illustrated by the

reduced spread in the densities where more complete information is available relative to

subsequent plots. When the extent of missingness is greater, there is less certainty regarding

the subjects’ true risk scores. This results in increased variability in the densities where

fewer covariates are available in comparison to those in the other plots. Another noticeable

phenomenon is that in situations with more complete covariate information, the central

tendencies of the densities are more distinct from one another (an artifact of the original risk

profiles for the selected subjects). In contrast, when more of the patients’ covariate profiles

are unknown, the densities appear to be merging together. They are converging to a shape

we are familiar with: that of the histogram of risk scores from Figure 2.8. This trend reveals

that in cases of severe absence of information, this procedure will rely on population-level

tendencies for forecasting patient risk.

In addition, we investigated missingness in terms of variable relatedness to disease sever-

ity. In Figure 2.9, it is apparent that there is generally more variability in the densities in

plot B where important variables are removed relative to plot A when less important vari-

ables are missing. This indicates that, in line with intuition, missingness in variables closely

related to disease severity is associated with a greater degree of uncertainty regarding true

patient risk relative to missingness in other variables. The reverse also holds: in situations

where covariates associated with severity are available, we are more certain regarding the
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true risk of MMIE experience relative to when other covariates are available. We also see

bimodal densities for subjects A & C in plot B. These are an artifact of a binary variable

that was made to be missing: birth prior to 37 gestational weeks (i.e. premature birth).

It has been documented in existing scientific literature that a child being born prematurely

is associated with experiencing severe forms of RSV. The covariate profiles for the subjects

appear to indicate that they most likely did not experience premature birth as evidenced by

the higher peaks at lower risk values. However, for both subjects the imputation procedure is

willing to allow for the possibility of premature birth judging from the lower peaks at higher

risk values, albeit at a reduced probability. In comparing the heights of the peaks associated

with lower risk of MMIE experience, it appears that the covariate profile for subject A is

more indicative of a person born prematurely relative to subject C.

There are some limitations to this study that should be addressed. First, this analysis

is heavily dependent on how the MMIE outcome is defined, as it is used as a proxy for

hospitalization requirement and an indicator of disease severity. Components related to

severity such as length of stay in the hospital, use of a ventilator, a trip to the intensive

care unit, and death were incorporated into the outcome configuration. It is crucial to the

efficacy of the procedure that the model outcome is specified such that it appropriately

emulates RSV disease severity and hospitalization need. If the specification of the study

endpoint inadequately captures this, the findings of this research will prove to be invalid.

Another limitation is that the data are solely comprised of patients who were hospitalized.

We do not have access to data for non-hospitalized patients and thus have no way to compare

those in our study population to them. The ability to compare these two subgroups would be

valuable, as it is unclear whether hospitalization itself has an effect on disease severity. Thus

the proposed index is not properly calibrated to a population of non-hospitalized subjects

and is more reasonably applied to patients once the decision to hospitalize them has been

made.

Future directions beyond this work could include validating the proposed risk index on
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a separate study population. Another angle could involve the collection of two samples

of hospitalized and non-hospitalized patients to then contrast them and evaluate whether

hospitalization has an impact on disease severity. The risk index conceived in this paper

can be used to quantitatively characterize RSV patient risk of disease severity at hospital

admission. Its use could provide unique insights regarding the risk of experiencing an MMIE

among hospitalized patients and assist in alleviating the global burden of RSV in children.
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Chapter 5

APPENDIX

5.1 Table of Model Predictors

Table 5.1 Model Predictors

Variable name Description Details
age months revised Age Months (continuous)

sex child Sex of child 0 = Female, 1 = Male
delivery child Type of child’s delivery at birth 0 = CS, 1 = NSVD
gestage week Gestation age at child’s birth Weeks (continuous)

premature Child born before 37 gestational weeks 0 = No, 1 = Yes
breastfeeding History of breastfeeding 0 = No, 1 = Yes

breastfeeding time Total time of breastfeeding Months (continuous)
no siblings Number of siblings in same household Simple count (continuous)

no household Number of household members Simple count (continuous)
daycare Does the child attend daycare? 0 = No, 1 = Yes
smoke Does anyone in the household smoke? 0 = No, 1 = Yes

child asthma Patient hx of RAD? 0 = No, 1 = Yes
mother asthma Mother hx of asthma? 0 = No, 1 = Yes

hx Patient has underlying heart, lung, 0 = No, 1 = Yes
neuromuscular, immune, cancerous
condition?

child eczema Patient hx of eczema? 0 = No, 1 = Yes
child allergies Patient hx of rhinitis? 0 = No, 1 = Yes
mom allergies Mother hx of rhinitis? 0 = No, 1 = Yes

fhx asthma Family hx of asthma? 0 = No, 1 = Yes
days symptoms Duration of child’s current illness Days (continuous)

app sx Loss of appetite 0 = No, 1 = Yes
sob sx Shortness of breath 0 = No, 1 = Yes

apnea sx Apnea/cessation of breathing 0 = No, 1 = Yes
pulse Heart rate Beats per minute (continuous)
temp Body temperature Celsius (continuous)

respiratory rate Respiratory rate Breaths per minute (continuous)
o2 sat on room air range Oxygen saturation level range 0 = ≥ 95, 1 = 90-94,

2 = 85-89, 3 = < 85
flaring Flaring/retractions/accessory 0 = None,

muscle use 1 = Mild (flaring only),
2 = Moderate (retractions),
3 = Severe (accessory muscle use)

wheezing yn Wheezing 0 = No, 1 = Yes
cyanosis yn Cyanosis 0 = No, 1 = Yes
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5.2 Multiple Imputation Pseudocode

A multiple imputation procedure has three steps:

1. Impute: fill in plausible values for missing data, resulting in multiple “complete”

datasets

2. Analyze: conduct analysis procedure on each version of the complete dataset

3. Pool: aggregate analysis results

To begin we set a random seed for reproducibility, loaded relevant libraries including mice

and glmnet as well as the data itself, and defined the number of iterations of multiple

imputation we wished to conduct (in this case, 100). We defined the outcome as described

in Section 2.1.

We made the object pdat a data frame containing all model variables and the outcome.

We used the command mice to create 100 copies of pdat where the unknown data were

replaced with plausible values informed by the known data. We then pulled the data from

the jth + 1 imputation and stacked it under that from the first to jth imputation in a data

frame called impdat.

From there we defined a 1,397 x 100 matrix called p.res to hold the generated risk

scores and looped through impdat for one hundred iterations, each time selecting the data

for the corresponding iteration and assigning it to an object, kdat. We then initialized a

matrix Xmat and filled it with two-way interactions for the demographic/social, history, and

clinical data. A final data frame, mdat, was derived that held the first and second order

terms without place-holder, duplicated, or linearly dependent columns.

From this data frame we found that iteration’s imputed design and outcome matrices

X.EN and Y.EN, respectively. These matrices were used as arguments in the cv.glmnet

command, the output of which was saved to an object zz. The predict function nested

within a previously encoded expit function was used to return the predicted probabilities of
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MMIE experience for that iteration, which were saved in the corresponding column of p.res.

This process was repeated over 100 iterations, and the imputed scores were aggregated to a

vector pr using rowMeans.
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