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CHAPTER 1

Introduction

1.1 Overview

Quantitative measurement of abdominal organs provides clinical indications in diagnosis or as-

sessing treatment responses. For instance, accurately measuring spleen volume can be crucial for

myeloproliferative neoplasms (MPN) [3] and splenic volume or splenic index reduction (SVR) is

associated with improved overall survival [4, 5]. These sensitivities to structural changes can be

clinically framed using computed tomography (CT) or magnetic resonance imaging (MRI). The

primary application of CT has been suggested for early detection and characterization of patient

abdominal anatomies [6, 7]. CT produces signals which are processed by the scanner to generate

cross-sectional images (slices) of the body [8]. This has opened new investigations into abdomi-

nal imaging biomarkers for diseases such as diabetes, hypertension, kidney malfunction, and other

metabolic syndromes [9, 10, 11, 12, 13].

CT scans are used as a screening tool within various regions of the human body, and the

Hounsfield unit (HU), the standardized transformation of the original attenuation coefficient mea-

surement that represents radiodensity at standard pressure and temperature [14], provides quantita-

tive scales for detecting possible tissues. By exploiting the imaging techniques, statistical analysis

of abdominal organs can provide useful information in the clinical workflows [15, 16]. However,

statistical evaluation of CT by clinicians and radiologists is commonly hindered by limited repro-

ducibility or repeatability [5, 17, 18]. Disagreements in CT measurements can result from various

scope of possibilities, such as the sensitivity of manual assessments, imaging protocols, or software

differences, as well as the inherent heterogeneity of anatomies.

Prior empirically derived expertise has made substantial strides for defining gold standards of

the medical image analysis [19, 20]. Modern statistical approaches, such as machine learning, can

increase reproducibility and explore biomarkers for substantial clinical problems by exploiting the

learned distribution from those gold-standard labels [21, 22]. These methods regularized energy

functions that push the manual ground truth towards data-driven models. More recent machine
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learning techniques, including deep convolutional neural networks [23] have been studied to extract

deep implicit features. Such models [24, 25, 26, 27] are generally successful in processing large

scale of natural images [28] and reducing variability and bias in medical image analysis [29].

The focus of this thesis is on quantitative abdominal analysis with data-centric deep learning

and clinical contexts. The core aspects which we propose are how characterizing medical images

can explore biomarker discoveries and, on the contrary, how clinical context can improve medical

image analysis. Specifically, the development of robust medical image segmentation technique,

the study of the variability of medical images, the use of clinical context, and spatial long-range

dependencies.

The first section in this thesis covers the introduction of abdominal imaging and the challenges

of medical image analysis. The next section introduces quantitively measurements with deep learn-

ing tools such as abdomen region of interests (ROI). The third section studies the variability of

CT contrast enhancement phases. The fourth section introduces the deep learning-based medical

segmentation method for high-resolution 3D images. The fifth section explores the body atlas for

spatial variability and organ characterization. The sixth section illustrates the clinical context of

imaging and non-imaging features. The last section introduces transformer models for modeling

long-range dependencies of 3D medical images. Last in this thesis, the prior contributions, and

recent challenges regarding the field are outlined.

1.2 Abdominal Imaging

Computed tomography is routinely used for abdominal imaging in the clinical practice [30]. CT im-

ages use fan-beam X-rays for demonstrating various anatomic structures with high-contrast based

on physical densities, resulting in absorbing/blocking X-rays and intensity of CT images (i.e.,

Hounsfield Units), in which the radiodensity of distilled water at standard pressure and temperature

(STP) is defined as, while the radiodensity of air at STP is defined as -1000 HU [14]. The standard

attenuation have a relatively consistent intensity range for anatomical tissues (e.g., bone appears

brighter than soft tissues), which allows clinicians and patients to see the interior body without

surgery. Despite the consistent scale of HU, this section demonstrates the variability of CT imaging

from perspectives and the challenges for conducting robust automatic methods of abdominal tissues

on a large scale of clinical data.
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Figure 1.1: The de-identified data retrieved from clinical scans under IRB approval exhibited large
variations in the field of view due to types of scanner, protocols of study, or anatomy variance in
patients.

1.2.1 Abdomen CT Field of Views (FOVs)

Clinical CT scans are acquired protocols. Different requirements exhibit large variabilities in image

resolution, contrast, sequence, and patient anatomies. Field of view (FOV) is a critical property for

volumetric images, along the cranial-caudal axis, three-dimensional data can have a range of pelvis

or thigh to lung areas. Regarding anatomies, abdominal CT scans include from the upper esopha-

gus, aorta through liver, spleen, pancreas to the lower kidneys. Referencing body parts, abdominal

imaging scans body waist, abdominal viscera, outer abdominal wall, muscle, inner abdominal wall,

subcutaneous fat, organs, and other soft tissues. The diversity of coverage raises challenges of

structural measurements due to spatial alignment between subjects as shown in Figure. 1.1.

To quantify body consistency from variations of FOV, especially patients with metabolic syn-

dromes, prior study [31] suggested anatomical structure localization (i.e., axial slices) that can be

identified by spatial consistency. The potential applications include content navigation [32], lesion

detection [33], classification [34], and segmentation [25, 35], which universally benefit from accu-

rate quantitative assessment of body parts in regions of 1) shoulder and lung, 2) abdomen and 3)

pelvis.
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Figure 1.2: Examples of kidney in different contrast phase CT scans. (a) The pre-contrast CT does
not show the substructure of kidney. In (b) and (c), visible cortex, medulla boundary, as well as the
pelvicalyceal system, (c-1) shows a clearer tissue contrast (green box). (c-2) shows the segmentation
on three kidney substructures. (d) and (e) are portal venous and delayed phase CT scans show the
enhanced ureter.

1.2.2 CT Enhancement Phases

Dynamic CT images are widely used for screening abdominal organs [8]. Radiocontrast agents

are suggested [36] in the clinical process to improve the visibility of internal anatomies. Contrast

medium (i.e., intravenous iodine) is recommended by physicians before scanning [37]. During

scanning, maximal contrast differences can be acquired according to the timing. In addition to

non-contrast CT were typically used for detecting calcification, fat in tumors or inflation, enhanced

phases [38, 39, 40, 41] typically contain 1) early arterial phase CT, where the scan is obtained after

bolus tracking for optimal contrast of arteries, 2) late arterial phase CT, in which enhancement of

the portal vein can be seen, 3) portal venous phase CT, acquired about 1 minute after injection,

can provide optimal contrast of liver, spleen through blood supply by the portal and splenic vein,

4) delayed phase CT, which is scanned 6-10 minutes after bolus tracking, show the best contrast
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difference of renal structures such as renal veins and urinary system. Figure. 1.2 shows an example

of the renal cortex, medulla, and pelvicalyceal system can be better visualized at late arterial phase

CT scans compared to other phases.

1.2.3 CT Resolution

The resolution of clinically acquired CT scans can have potential differences. Among the cohorts

that we have been studying with, the slice thickness (along with the cranial-caudal view) approx-

imately ranges from 0.8 mm to 8.0 mm, while the in-plane resolution ranges from 0.5 x 0.5 mm

to 1.0 x 1.0 mm. Conventionally, the voxels of the CT volumes are highly anisotropic (1.0 x 1.0

x 3.0 mm), the large slice thickness makes it difficult to yield smooth 3-D surfaces of anatomic

structures. In addition to slice thickness, the variability of multiple views’ reconstruction also can

have a substantially diverse resolution. During the reconstruction process, given considerations of

radiation dose, acquiring a volume acquisition CT is the ability to reconstruct the images in three

planes: the axial, sagittal, and coronal planes. Viewing the abdominal organs in all tri-planes is par-

ticularly useful. Typically, the axial reconstructed scans are commonly used for image processing

and analyses due to the consistent anisotropic planes with 512 × 512 pixels. In real-world medical

image analysis applications, interpolation methods (e.g., bilinear interpolation, nearest interpola-

tion) are implemented for scans to keep consistent resolution and dimensions. Under current ap-

proaches [42, 43, 44], high resolution (approximately 0.8 × 0.8 × 1.0 mm) is used for quantitatively

evaluating abdominal organs.

1.3 Body Compositions

1.3.1 Abdominal Organs

As below, 13 main abdominal organs are demonstrated, and viscera backgrounds inside the abdom-

inal cavity are also shown.

Spleen: In the upper left abdomen, the spleen is a large organ working as a blood filter in the

human body. The spleen removes old red blood cells and keeps the reserve of blood. In enhanced

CT images, the spleen exhibits a slightly brighter contrast in the venous phase. Neighboring tissues

are the kidney, splenic artery and veins diverge at the right side of the spleen. Spleen diseases are

associated with many syndromes [45, 46, 47] and can be an essential marker for liver, pancreas

5



Figure 1.3: Axial slice visualization of abdominal CT multi-organ segmentation. The algorithm
segments the abdominal slice into liver, spleen, pancreas, gallbladder, kidneys, stomach, portal
veins, aorta, IVC, adrenal glands, etc.

disease, cancer, and other infections [48].

Kidney: Kidneys work as essential organs in urinary systems, they serve as filters of the blood

by removing wastes to the urinary bladder. The kidneys locate in the lower abdomen, strictly,

they are posterior to the rear of the abdominal cavity in the retroperitoneum. Kidneys are typically

connected to the rear of the liver and spleen, around most of the air HU (¡1000), showing a relatively

clear boundary. Multiple contrast protocols are suggested for screening kidneys, specifically non-

contrast, portal venous, delayed phased are used. Inside kidneys, renal structures can suggest as

useful markers for evaluating kidney morphologies. Including renal cortex, columns, medulla, and

pelvicalyceal system, measurements of these inner anatomies can be opportunities and challenges

for investigating renal functions.

Gallbladder: The gallbladder is a glandular organ where bile is stored before being released

into the small intestine. It locates beneath the middle liver; a normal gallbladder can have liquid

contrast showing lower contrast to the liver. Some patients have gallstones that appear brighter than

surrounding tissues.

Esophagus: The esophagus is the organ that contains the muscular tube through digesting sys-

tems from the pharynx to the stomach. In the study, the esophagus is the up-most organ that ranges

from the middle thorax region to the middle abdomen.
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Liver: The liver provides a wide range of functions, including protein synthesis, production

of biochemicals, and detoxification. It is located under the diaphragm (upper right quadrant of the

abdominal cavity). The inferior vena cava passes through the right posterior of the upper liver;

portal vein drains into the liver from middle abdomen; gallbladder underneath and connects to liver.

Stomach: The muscular, hollow organ performs the digestive function of the human body. The

shape of it depends on the patient’s food consumption before scanning. In addition, the contrast of

stomach is also potentially depending on patients. It locates between the esophagus and the small

intestine, the left upper region of the abdominal cavity.

Aorta: The aorta is the essential vascular vein that distributes oxygenated blood to the human

body. Originating from the left ventricle of the heart to the lower abdomen, then divided into two

smaller arteries. Aorta can be observed in normal enhanced CT images and brighter in arterial phase

scans.

Inferior Vena Cava (IVC): The IVC is located in the posterior of the abdominal cavity and on

the right side of the vertebral column. It distributes de-oxygenated blood from the lower body to

the right atrium of the heart. Parts of IVC pass through the liver and appear brighter in contrast to

surrounding tissues in enhancement phases.

Portal and Splenic Vein: The hepatic portal vein carries blood from the gastrointestinal tract

and spleen to the liver. The portal and splenic veins are formed by the connection of the superior

mesenteric vein and vessels in the spleen. The middle portal vein is substantially surrounded by

the pancreas, and the portal vein connects the liver, splenic vein connects the spleen. In contrast-

enhanced CT scans, portal and splenic veins appear brighter than the liver and spleen, especially in

the portal venous phase.

Pancreas: The glandular organ is responsible for many essential functions, including producing

hormones, secreting pancreatic enzymes for digestion. The pancreas is composed of the head, body,

and tail, each part’s function can be different. The head is typically located in the concavity of the

duodenum, the body behind the stomach, and horizontally extends along the splenic vein, the tail

directs to the spleen. The pancreas is one of the most morphological organs in the human abdomen,

the shape can be variant depending on patient diseases.

Adrenal Glands: The left and right adrenal glands are endocrine glands responsible for re-

leasing hormones. Adrenal glands are relatively small anatomies in the abdomen cavity, they are
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wishbone-shaped structures. The intensity and texture are similar to the glandular organ – the pan-

creas. They are located in the upper kidneys, the right adrenal gland is close to the lower-left liver,

and the left is close to the lower right spleen. Segmentation examples are shown in Figure. 1.3.

1.3.2 Body parts

Other anatomic structures are important for quantitatively measuring abdominal contexts. Under-

standing comprehensive backgrounds can be supportive to the clinical analysis, especially for ab-

dominal metabolic syndromes. Meaningful backgrounds include:

Body mask: The body mask covers all areas inside the human body, differencing air intensities

in the CT scan. Fat: The skin surface or the body waist circumstances defines the outline of the

human body. Outside the abdominal wall, and muscle are the subcutaneous fat. Inside the abdominal

wall, visceral fat is surrounded by most soft tissues including organs. Subcutaneous fat and visceral

fat are crucial for measuring the health status of patients, obesity levels.

Muscle: The oblique abdominal muscles are composed of three types: the external oblique,

internal oblique, and transverse abdominal. Muscles form the lateral boundaries of the abdominal

wall and are brighter than the surrounding fats and inner tissues. The surrounding fats such as

subcutaneous fat are outside abdomen cavity, the visceral fat around abdominal organs are in the

abdomen wall.

Abdominal wall: The abdominal wall is an essential structure to characterize ventral hernias,

and to differentiate muscle, bones. The abdominal wall defines the abdomen cavity, most organs

locates inside the inner abdominal wall. Examples of body compositions are shown in Figure. 1.4.

1.4 Large Scale Medical Data

The large-scale data resources of medical images and electronic health records (EHR) can be col-

lected within institutes. For leveraging innovative programs for clinical and translational research,

institutes established platforms for enhancing the quality and efficiency of research conducted. Such

as ImageVU, the research data archiving platform, which serves as Vanderbilt’s reserve of computed

tomography (CT) and magnetic resonance imaging (MRI), along with image metadata including ac-

quisition protocols, study descriptions, and exam codes.

Variations in Large-Scale Data: As high-performance computers are widely used, the standard
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Figure 1.4: Example of CT images (subcutaneous fat in navy, visceral fat in brown).

processing for medical images along with the powerful data platforms are investigated to enable high

throughput analysis. In addition to the individual scale of the study, the works also provide visions

in large-scale populations to understand human body functions, behavior, disease, and syndromes.

The large-scale data analysis brings new challenges as patients are heterogeneous, variations pose

difficulties in rectifying inter-and intra-subjects. Large statistical models are proposed to reconcile

such variation; however, there are other challenges such as variations in scanning protocols, modal-

ities, tissue morphology, etc, which are not well considered in related works. Considering intra- and

inter-subjects, several essential problems still exist, such as image contrast/intensity standardization,

region of interest’s navigation, quality assurance, denoising, and robust registration.

1.5 Machine Learning in Medical Image Analysis

To quantitatively and qualitatively investigate medical data, modern machine learning concepts and

techniques are essential. The section covers major machine learning approaches for solving prob-

lems in clinically acquired medical images. In addition, the chapter describes how these techniques

are used for volumetric analysis and application to clinical workflows.
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1.5.1 Medical Image Segmentation

Segmentation refers to the process of acquiring target objects (i.e., organs) at pixel-level from an

image, is one of the most widely used tools for quantitatively and qualitatively assessing organs,

tissue in the medical image analysis [49, 50, 51]. Modern approaches are discussed from multi-

atlas methods [19, 52, 53, 54, 55, 56], which uses a paring of scans and corresponding manual

labels. The typical framework of atlas-based methods is: 1) a set of annotated labels are registered

to a target subject, and 2) label fusion to construct the moving image segmentation. Another most

adopted approach is the deep learning [57, 58, 59, 60, 61, 62, 63, 64], which is described as a

supervised learning paradigm using expert annotated labels as ground truth data. The models are

trained to recognize patterns and information and minimize the cost function of prediction and

ground truth. In medical segmentation, the model predicts to assign a label class to every pixel in a

scan. Pioneering works such as UNet [57, 65] and FCN [66] successfully characterized an encoding

step and decoding step, where the more extract global features into representation, then upsample

low level features back to original image space. Inspired from fundamental computer vision to

medical images, medical image segmentation accuracy has achieved significant improvement in

recent years even though expert efforts are very time-consuming and resource-intensive.

Due to the limitation of computing hardware, such as memory of GPU, 3D CNN-based methods

are rarely explored. This results in impractical applications as the spatial context of medical images

is important. Instead of feeding the entire scan into hardware, researchers proposed patch-based

algorithms [42, 43, 63, 67] for adapting high-resolution CT/MRI scans.

1.5.2 Self-Supervised Learning

Deep neural networks have been used as the fundamental architecture [24, 68, 69] to many target

tasks such as detection, classification, and segmentation. The models trained from expert annotated

data like ImageNet show superior results. However, the performance of these models is common

concerning the amount of training data, different networks were designed with denser architectures

including AlexNet [70], ResNet [24], DenseNet [71]. Collecting large-scale annotated datasets in

the medical domain is resource-intensive. The BTCV dataset [72], which consumes more than

10 experts’ efforts forms 30 subjects’ multi-organ segmentation labels. To exploit the large-scale

medical images and avoid extra expert efforts, self-supervised methods were proposed to learn
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visual and contextual features from unlabeled images.

In self-supervised learning, the models treat the learning as a supervised learning task with the

generated pseudo-label, which is called pretext tasks. By modeling from pretext tasks, networks

are trained by optimizing designed objective functions. Recent studies on pretext tasks of natural

images have been focused on colorizing [73], inpainting [74], jigsaw puzzle [75], etc. There are

two key factors for designing pretext tasks: 1) the augmentation/distortion can be automatically

generated without manual efforts; 2) the visual features captured from the images are useful for

representation learning.

Self-supervised learning and transfer learning [76] are explored in recent years and becoming

the de facto framework [76] for medical image analysis. Prior works [77] focused on chest CT

such as LUNA [78] due to its promising application of identifying lung nodules. Other approaches

like denoising [79], image inpainting [74], jigsaw puzzle [75], clustering [80], patch shuffling [81],

Rubik’s cube [82] are proposed, which achieved milestones in downstream tasks. More recently,

the contrastive learning [83] brought insights and show its powerful capabilities in capturing visual

representations. Contrastive learning is conducted between augmented data pairs, the model attempt

to differentiate positive or negative pairs by minimizing contrastive loss.

1.5.3 Transformers

Self-attention-based transformer models [84, 85, 86] are a family of prominent deep learning meth-

ods. Initially, self-attention is a mechanism aligning different sequence positions to compute a hid-

den state, and it has become an integral part of sequence modeling and transduction methods. Due

to its advantages on learning dependencies of long sequences, the transformer is used for process-

ing sequential signals such as the natural language processing (NLP) [86] or speech processing [87].

The original receipt of transformer consists of an encoder and a decoder [84], each part has a stack

of L blocks of the self-attention module as shown in Figure. 1.5.

Inspired by the major success of NLP, researchers brought the idea to computer vision. The

vision transformer (Vit) [88], which partition image into patches and flattened sequences, directly

transferred the advantages of the sequence-to-sequence model to image recognition. The excep-

tional performance attracts works in the object detection field [89], semantic segmentation [90], and

video understandings [91].
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Figure 1.5: Two connected transformer blocks, in which contains the normalization, multi-head
self-attention layers (W-MSA), multi-layer perceptron (MLP).

There are two major advantages of transformer-based models, 1) transformers provide the larger

capacity for learning long-range dependencies and show their effectiveness of capturing global con-

textual information; 2) they can benefit from large-scale pre-training.

Transformer models also demonstrate its superior transferability [88] from pretext tasks to

downstream tasks. As discussed in the prior section, collecting large-scale annotated data is non-

trivial, expensive, and time-consuming. Researchers are exploring better models for the capabilities

of capturing features through self-supervised learning. Empirical experiments show that transformer

models are superior at modeling large-scale data and preserving its representations into broader tar-

get tasks. This advantage attracts researchers in the medical domain as data without expert annota-

tions are easier to get.

The rapid increase of transformer-based models motivated the medical image analysis [92, 93,

94], fundamental medical image problems are under revisiting with self-attention mechanisms in a

sequence to sequence manner. In these pioneering works, the transformer blocks are used either as a

bottleneck feature encoder or as additional modules after the convolutional layer achieved potential

promising results.
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Figure 1.6: Representative images are predicted to associate with comorbidities and ICD-10 codes
(phenotype components) identified in each risk category. The red outlines show the pancreas tissue
can be different under phenotyping contexts. (1) is from a nominally healthy pancreas group with
potential lung infections; (2) is from type I diabetes and other chronic kidney disease patients with
atrophic pancreas; (3) is from other metabolic syndromes including type II diabetes; (4) is from
patients with weight loss and pancreatitis.

1.6 Multi-Modal Clinical Context

Electronic health records (EHR) [95] associated with patients’ healthcare journey including demo-

graphics, procedural terminologies, diagnoses, lab tests, and medication notes. These non-imaging

clinical contexts are categorized into structured (i.e., ICD, CPT codes) and unstructured formats

(i.e., notes). The major usage of EHR is to efficiently query or access healthcare history for clini-

cians in decision making and diagnostic processes such as Parkinson’s disease and type 2 diabetes

(T2D) [96, 97]. However, the ability to identify specific disease progression is often limited be-

cause the feature extraction approaches require manually labeling, resulting in limiting complexity

and biasing to feature significance. Additionally, feature selection from a single modality (e.g.,

EHR or image) is a highly variable process that relies on tunned parameters. Recently, many ap-

plications [98, 99, 100] are found in the biomedical informatics and epidemiology for precision

medicine. Patient trajectory modeling, outcomes prediction [101, 102] is studied with the data-

driven algorithms shown in Figure. 1.6.

1.6.1 Predictive Modeling with EHR

Predictive modeling with bioinformatics data drives the quality of medicine with personalized and

quantified information. Fortunately, the routinely collected patient electronic records are approach-
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ing a large scale in volume and complexity. However, these EHR data are yet to be used in con-

structing predictive models to support care delivery. First, querying and formatting EHR data is

difficult since statistical models require customized variables to analyze specific disease progres-

sions. Next, preprocessing, curating variables needs many efforts and expertise, the inappropriately

collected variables may result in biased or imprecise predictions. In addition, EHR data are longi-

tudinal in nature, missing visits or medical events can lead to poor clinical outcomes. Furthermore,

EHR exhibits features as a single modality, incorporating imaging biomarkers can offer a better

understanding of patients.

Recent studies of deep learning unlock mining useful information from EHR [103, 104]. Key

deep learning architectures (e.g., convolutional neural networks (CNN) [105], recurrent neural net-

works (RNN) [106]) have been employed for the modeling of EHR data. From Boltzmann ma-

chines [107] that learning a representation in an automatic manner to denoising autoencoders for

extracting features, they showed the promising power of reducing the tedious expert efforts. In

both methods, logistic regression, random forest, or support vector machines (SVM) are used un-

der supervised learning to map representation to the outcomes. Considering the longitudinal nature

of patient data, RNN exhibits early success in modeling temporal information. To predict future

disease progression based on EHR or imaging trajectories, long short-term memory (LSTM) [108]

with a forgetting mechanism are introduced to handle irregular time intervals of each variable. In

this article, we aim to analyze the real-world challenges when incorporating complex EHR. The

machine learning models that adapt the data in the wild can show some insights into best practices

in clinical prediction tasks 1.6.

1.6.2 Multi-modal Representation Learning for Medical Data

The multimodality learning [109, 110] has been widely studied in recent years because of its ability

to utilize different types of input data. Modality specifies a single target task with varied represen-

tation formats, and multimodal learning suggests understanding with a variety of senses engaged in

the modeling. Inspired by the pioneer works in the NLP, natural image domain, researchers explored

the usage of semantic knowledge of medical images along with diagnostic reports for explanatory

supports [111, 112].
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1.7 Challenges in Modern Medical Image Analysis

The application of medical image analysis to big clinical data is a challenging field with recent

technological advances. However, most prior works directly adopted brutal machine learning al-

gorithms, clinical contexts are inadequately involved in the inferencing process. In this thesis, we

target the challenging task of exploiting clinical context into data-centric deep learning techniques.

Including those published in this dissertation, we aim to facilitate the ability to investigate many

yet unanswered questions about the theories, methods, and translational applications. Starting from

critical challenges of clinical acquired large-scale data, we summarize key challenges and our aims

as below.

1.7.1 Variations in Medical Image FOV

Clinically acquired CT scans can exhibit large variations in the field of view, especially for coverage

of the chest, abdomen, or pelvis. Without pre-processing, such scans are difficult to use for medical

image analysis due to a lack of spatial consistency. Using pre-processing to remove inconsistency

in the field of view helps to localize anatomical regions in each body part and enable more pre-

cise image registration and machine learning. Recent method [31] suggested that image quality,

quantitative analysis, and anatomical structure localization could be combined to estimate spatial

consistency across the human body in CT. The method required the creation of distance metrics,

varied combinations of scalars, isotropic variance, and slice thickness, which resulted in difficul-

ties in creating a consistent performance for capturing continuities between slices in medical image

volumes.

Aim 1: To achieve slice-wise tissue navigation and to quantify body consistency, we aim to

explore the robust body part regression technique with self-supervised learning, which estimated

a uniform spatial location. We target the slice-wise regression across the human body for CT and

MRI images.

1.7.2 CT Enhancement Phase Identification

Dynamic contrast enhancement Computed Tomography (Dynamic CT) is widely used in clinical

diagnosis. For quantitative measurement in tissues, the standard Hounsfield Units (HU) scale is used

in contrast-enhanced CT scans for describing radiodensity. However, the differences and metrics
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are often investigated manually by physicians. Therefore, missing information or mislabeling are

commonly observed in large-scale studies. Revisiting phase knowledge and contrast protocols in

meta-data are resource-intensive. Moreover, correcting phase labels is hard and challenging due to

variations in tissue, contrast material, injection protocols, vascular dynamics, and metabolism.

Aim 2: To investigate the automated method of identifying CT contrast phases, we aim to pro-

pose a multi-domain contrast disentangling GAN, by learning disentangled representations across

contrast phases features. The method needs to learn an intermediate representation, then reconstruct

a synthetic contrast-enhanced image. The goal of using a generative model is to employ adversarial

loss and synthetic classification as data augmentation for improving classification performance

1.7.3 High-Resolution 3D Medical Image Segmentation

Current medical image segmentation methods [26, 64] are inspired by the segmentation method

from natural images. They perform well on smaller dimensional 2D images, however, medical

images are high resolution and high dimensional or 3D volumes. Deep neural networks can suffer

from limits of computing resources. Regarding the resource-accuracy trade-offs, 2D approaches

are typically taking separated slices for training resulting in lacking spatial information. The 3D

architecture needs scans to be either 1) patched or 2) down-sampled, it is the slowest way to train at

approximately 80 iterations per minute and one patch per iteration.

Aim 3: To exploit 3D context and to cope with the limitation of computational resources, re-

searchers investigated hierarchical frameworks, we aim to propose a concise coarse-to-fine frame-

work by using random patch network fusion to alleviate the difficulties for 3D multi-organ segmen-

tation. The method is needed to segment original CT without image scaling in the input and output.

We propose a two-stage cascade architecture that utilizes the fact that the performance of a higher

resolution level in a hierarchical model is indicative of the low-resolution level in the hierarchy.

1.7.4 Body Reference Space

Studies have shown great impact and efforts on building brain region atlases for clinical usage with

different modalities images. However, limited studies are proposed in creating a standard reference

framework for abdominal organs and showed that the development of abdominal atlases is remained

challenging across multi-modality images (CT and MRI).
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Aim 4: We target to present a contrast-preserving CT abdominal atlas framework, optimized for

healthy kidney organs with contrast-characterized variability and the generalizable features across

a large population of clinical cohorts. Meanwhile, we explore the study in kidney substructures in-

cluding renal cortex, medulla, and pelvicalyceal system. We propose a pioneering work to segment

each part of the kidney substructure and conduct volumetric analysis for reproducibility.

1.7.5 Combining Clinical Context

The ability to phenotype patients is a fundamental task in clinical research and medicine. Cur-

rent methods rely primarily on bioinformatics data such as EHR markers. In addition, previous

approaches include heavy manual efforts of feature engineering. However, considering the het-

erogeneous condition of patients, the utility of EHR may not be sufficient to provide support of

accurately subtyping. Such as type II diabetes progressions are prognosed on the expression of lab

tests, demographics (e.g., BMI), and other imaging markers (e.g., a retinal screening, pancreatic

abnormality). Therefore, EHR-based approaches may be undesirable because 1) biomarkers lack

specificity and comprehensiveness, 2) the sample or patient may be too heterogeneous, 3) several

markers required can be larger than available EHR detected. In many of these conditions, a critical

challenge is whether multi-modal data could be modeled for comprehensive analysis.

Despite the rapid development in multimodal deep learning research, limited related works are

observed in the medical domain. Partly due to the complexity of anatomies and scarcity of well-

organized clinical data, the paired imaging features, and informatics features are hard to interact

with. Previous approaches explored data-level fusion in a canonical way such as early, late or

intermediate fusion. Different strategies are used during the decision-making process because of

the varying assumption of conditional independence between multiple data modalities.

Aim 5: To address above challenges, we target the pancreas segmentation task to model both

the pancreas imaging features and clinical features via predictive phenotyping. The rationale is

that the larger scale of EHR data with (e.g., ICD-10 code) which indicates phenotype subgroups

can be potentially correlated to the different appearance of the pancreas. Specifically, the proposed

approach consists of an encoder, a segmentation decoder, and a predictor with sets of phenotypes

candidates’ centroids.
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1.7.6 Modeling Medical Spatial Representations

Although such CNN-based approaches have powerful representation learning capabilities, their per-

formance in learning long-range dependencies is limited to their localized receptive fields. As a

result, such a deficiency in capturing multi-scale information leads to sub-optimal segmentation of

structures with variable shapes and scales (e.g. brain lesions with different sizes). However, the lo-

cality of the receptive fields in convolutional layers still limits their learning capabilities to relatively

small regions.

Aim 6: To leverage the power of transformers for volumetric medical image segmentation and

introduce a novel transformer-based architecture. We aim to reformulate the task of 3D segmenta-

tion as a 1D sequence-to-sequence prediction problem and use a transformer as the encoder to learn

contextual information from the embedded input patches. The extracted representations from the

transformer encoder can be merged with the CNN-based decoder via skip connections at multiple

resolutions to predict the segmentation outputs.

1.8 Contributed Work

We have developed tools for quantitative image biomarkers with 3D medical images. This includes

construction of CT-based body part regression (contribution 1), contrast identification model (contri-

bution 2), and high-resolution medical image segmentation (contribution 3). In addition, we study

the medical image analysis with clinical context, which contains phenotyping with non-imaging

markers and outcomes predictions to diabetes patients (Contribution 4). Subsequently, we combine

recent advanced self-attention mechanisms in medical image segmentation tasks (Contribution 5)

for modeling spatial long-range dependencies with self-supervised learning.(Contribution 6). The

3D atlases is built to support tissue mapping for kidney, kidney substructures, and pancreas (Contri-

bution 7). Finally, the application of the quantitative biomarkers are demonstrated for splenomegaly

analysis (Contribution 8).

1.8.1 Contribution 1: Body Part Regression for CT

Computed tomography (CT) is an essential imaging technique for human body scanning. How-

ever, there are challenges regarding the quantitative and qualitative analysis. We investigate the

computer-aided approaches for modeling a large degree of variability in the abdominal CT images.
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We evaluate the reproducibility and sensitivity of the automated methods for organs. Body compo-

sitions are varying significantly in medical images which results in a gap between clinical acquired

image and research quality image. This is expected because the raw data from the medical center

are acquired in a large variety of parameters. The previous method exhibits severe nonlinearities

with the order of slices. To curate the data in the wild, we investigate the use of spatially navigation

techniques characterized as body part regression and evaluated the approach for abdominal organ

analysis.

The contributed aspects are covered in the following, we proposed (1) a self-supervised solu-

tion to boost current body part regression are designed using 1030 multi-center CT scans without

using manual labels; (2) a novel unsupervised-supervision method is introduced to achieve robust

body part regression and (3) a preprocessing pipeline is proposed using BUSN to normalize the

CT volumes spatially, which is evaluated by organ navigation and 3D multi-organ segmentation on

normalized scans.

This part will be covered in Chapter 2 and Chapter 3.

1.8.2 Contribution 2: CT Contrast Phase Identification

The dynamic CT images are heterogeneous, showing scanner-dependent variation to meet the de-

mand of contrast optimum. However, the difference in scanning protocol, morphologies in organs,

and metabolic effect variation in patients are significant. These unknown factors potentially impact

the quality of medical image analysis. To tackle the CT contrast characterizations, we propose a

bi-level optimization approach to classify the contrast phases in CT scans. In this work, we pro-

pose CD-GAN, an adversarial learning network to perform contrast phase classification by learning

from both real and synthetic images. 1) A two-step generator is introduced, which learns the dis-

entangled representations and domain-specific features among multiple contrast CT. 2) We perform

quantitative and qualitative evaluations on the prevalent baselines (VGG, ResNet-50, StarGAN, and

3DSE).

This part will be covered in Chapter 4.
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1.8.3 Contribution 3: High-Resolution 3D Medical Image Segmentation

Medical image segmentation is an essential way to quantitatively access imaging biomarkers. Af-

ter retrieving the IRB-approved medical images, we propose the computer-aided method for high

resolution 3D CT scans. Regarding abdominal organs, body circumstance, fats, muscles, etc, we

map a field of view (FOV) into deep learning models outputs. The contributions of this work are:

1) We proposed a new coarse-to-fine framework termed ‘random patch network fusion’ by intro-

ducing randomly localized patches between first and second stage. 2) We show that our proposed

method can be implemented to predict original space segmentation in second level model. 3) We

provided large-scale validations on analyzing patch-based strategies and comparing them with our

method, supporting that patch-based method plus random shifting could boost 3D segmentation

performance.

This part will be covered in Chapter 5.

1.8.4 Contribution 4: Combining Non-Imaging Clinical Context

Comprehensively interpreting medical data is becoming challenging because of heterogeneity and

variability of data modalities. In the past works, we studied outcome predictions with large amounts

of variables, such as phenotyping with interpretive patient information. We also investigated disease

progression associated with EHR data, which conveys important information. In particular, we

proposed a universal framework for pancreas CT segmentation with knowledge by EHR data. Our

work empowers machine learning models with interpretive abilities, which to 1) identify patient

phenotypes across imaging and EHR data, 2) bridging clinical feature modalities to representation

learning.

This part will be covered in Chapter 6.

1.8.5 Contribution 5: Spatial Long-range Dependencies

Transformer-based models show promising representation learning power for NLP and vision tasks.

In medical image analysis, there are emerged 2D and 3D approaches that achieves advantages on

classification and segmentation tasks. Transformer models also show its superiority of benefiting

from pre-trained weights, which can facilitate target tasks by reducing burden of manual annotation.

We proposed to use transformer encoder to increase the model’s capability for learning long-range
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dependencies and effectively capturing global contextual representations for 3D medical images.

This part will be covered in Chapter 7.

1.8.6 Contribution 6: Efficient 3D Transformer Models with Self-Supervised Learning

Transformer-based modes are of better capability benefit from large-scale pre-training. Instead of

acquiring massive gold-standard labels, we propose to use unlabeled data with the self-supervised

learning technique to model representations using image inpainting, contrastive learning and rota-

tion prediction. We show the scalability and robustness for the hierarchical transformer model.

This part will be covered in Chapter 8 and Chapter 9.

1.8.7 Contribution 7: Construction of 3D abdominal atlases and tissue correspondence mod-

eling

As in human anatomy requires accurate maps, coordinate system and reference space to support

effective communication within the region of interest. Body atlas can provide a useful tool to access

the relative variability of features. An anatomical template can also help to deal with probabilistic

distributions and confidence limits of structure identification, functional variables.

Under the project of the human biomolecular atlas program (HuBMAP), which aims to develop

an open and global platform to map healthy cells in the human body. We seek to build image level

atlases of the human body. Starting from the kidneys, we study to differentiate and contextualize

findings within tissues, organs and systems. We also construct kidney and its substructures, as week

as the pancreas atlas. The works define stable spatial reference template to generalize anatomical

characteristics across populations. Our main contributions are summarized as:

We constructed the first multi-contrast CT healthy kidney atlas framework for the public usage

domain. We proposed a standardized framework optimizing for kidney organs and generalized the

anatomical context of kidneys with significant variation of morphological and contrastive charac-

teristics across demographics and imaging protocols. We evaluate the generalizability of the atlas

template by transferring the atlas target label to the 13 organs well-annotated CT space with inverse

transformation. Unlabeled multi-contrast phase CT cohort is used to compute average and vari-

ance mapping to demonstrate the effectiveness and stability of the proposed atlas framework. Our

proposed atlas framework demonstrates a stable transfer ability in both left and right kidneys with
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median Dice above 0.8.

In the study of kidney substructures, we undertake concurrent studies to validate the following

targets: 1) design the clinical study cohort, 2) develop an automatic renal segmentation method for

arterial phase CT scans; 3) examine the repeatability and reproducibility of automatic and manual

segmentation by three independent observers; 4) estimate the feasibility of using the automatic

method for volumetric analysis.

This part will be covered in Chapter 10.

1.8.8 Contribution 8: Application of Quantitative Imaging Biomarkers

Investigations in the imaging structures has been used in clinical biomarker associated with disease,

infection and cancer. We have explored quantitative estimations of biomarkers of clinical interest in

molecular, histology, radiography characterization of abdominal anatomies such as splenomegaly.

Unique challenges emerge when validating machine learning generated imaging biomarkers. We

provide spleen volumetric changes for evaluating significant metrics among patients.

This part will be covered in Chapter 11.

22



CHAPTER 2

Body Part Regression with Self-Supervision

2.1 Introduction

Clinically acquired CT scans can exhibit large variations in field of view, especially for coverage of

the chest, abdomen or pelvis (Figure . 2.1). Without pre-processing, such scans are difficult to use

for medical image analysis due to lack of spatial consistency. Using pre-processing to remove in-

consistency in field of view helps to localize anatomical regions in each body part and enable more

precise image registration and machine learning. Recently, Zhang et al. [113] suggested that image

quality, quantitative analysis, and anatomical structure localization could be combined to estimate

spatial consistency across the human body in CT. The potential applications include content navi-

gation [32], lesion detection [33], classification [34] and segmentation [24, 35], which universally

benefit from accurate quantitative assessment of body parts in regions of 1) shoulder and lung, 2)

abdomen and 3) pelvis shown in Figure. 2.1.

To achieve slice-wise tissue navigation and to quantify body consistency, the body part regres-

sion technique was proposed, which estimated a uniform spatial location (i.e., global position scores

in Figure. 2.2) of axial slices for a particular subject [113]. Initially, body part regression was

formed as a supervised learning task using deep learning [113]. However, intensive manual anno-

tation is required to prepare the large-scale training cohort. To alleviate the manual efforts, Yan et

al. [31] proposed an unsupervised regression network (URN) to perform body part regression in an

annotation-free manner. The method required the creation of distance metrics, varied combinations

of scalars, isotropic variance, and slice thickness, which resulted in difficulties in creating consistent

performance for capturing continuities between slices in medical image volumes.

Challenges and limitations with annotation-free method restrict the generalizability and robust-

ness of models. Therefore, to leverage the current framework, we propose a self-supervised ap-

proach named blind-unsupervised-supervision network (BUSN) using robust regression [114] and

uses the corrected predictions to provide extra supervision. Our contributions are in four folds: (1)

an self-supervised solution to boost current body part regression are designed using 1030 multi-
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Figure 2.1: Slice disorder problem in three regions with the unsupervised regression network
(URN). The left panel indicates the global location scores along slices indices. The body part
regression values (blue dots) are inconsistent in the right panel compared with an ideal linear rela-
tionship (red line).

center CT scans without using manual labels; (2) a novel unsupervised-supervision method is in-

troduced to achieve robust body part regression; (3) we propose a neighbor message passing cor-

rection method to further improve the BUSN results by modeling the spatial relationships between

axial slices; and (4) a preprocessing pipeline is proposed using BUSN to normalize the CT volumes

spatially, which is evaluated by organ navigation and 3D multi-organ segmentation on normalized

scans.

Herein, 1030 whole body CT scans without manual annotation are used to train and evaluate

the proposed method. First, regression scores are evaluated with R-squared metric. For body part

regression results, the proposed method achieved superior performance compared with baseline

methods. Second, organ-wise navigation is performed according to slice by slice scores. This ex-

periment shows that the robust body part regression is able to be used for localization of anatomies.

Last, as an example of application, we trained a 3D multi-organ segmentation model for evaluating

performance on abdomen CT scans using BUSN as a preprocessing stage.
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Figure 2.2: Proposed deep blind unsupervised-supervision network (BUSN). Panel (A) is the unsu-
pervised network with robust regression refinement. Panel (B) is the deep supervised network using
the refined prediction scores. After training, only the right panel (B) is required to perform body
part regression.

2.2 Data

Body part regression: The method is evaluated using a large -scale of 1030 whole body CT scans

from multi-center datasets (Tab. 2.1) to compensate the insufficient of views in lung and pelvis. Five

multi-center datasets are used only for training, while the sixth, 100 scans of (BTCV) [19] are used

for external validation.

Organ navigation: We used the independent 100 whole abdominal CT volumes from BTCV as

the external evaluation. We used all 100 research-controlled cases for evaluation. The in-plane

resolution ranges from 0.59 x 0.59 to 0.98 x 0.98 mm2.

Multi-organ segmentation: We used the same external cohorts of BTCV 100 scans, each with

all 12 labeled organs, in the multi-organ segmentation task. We integrate the body part regression

method as a preprocessing step, where each slice is assigned a slice score. For each scan, the axial

slices with score between -6 and 5 are kept in the final 3D volume. The axial slices outside the range

will be cropped out. While the zero-padding is applied to fill the volume if the score range is not be

able to cover -6 to 5. Last, all scans are resampled to a unified dimension of [168,168,64], with the

resolution of 2 x 2 x 6 mm for training a 3D segmentation network [115].
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2.3 Experiment

2.3.1 Body Part Regression

To evaluate the accuracy of regression scores, we apply BUSN method to predict a score corre-

sponding to each 2D slice. Slices are soft-tissue windowed and fed into the unsupervised network

Figure. 2.2. A rough score is predicted according to slice thickness and continuity nature. Then,

robust regression refinement is implemented for fixing incorrect scores. Finally, an accurate score is

predicted from an encoder-decoder structure with deep supervision. In this section, the deep super-

vision network is composed of multi-level convolution layers, which are deployed in a symmetric

scheme to enable efficient inference. ReLU and max-pooling layers are implemented in the encoder

part of the network. Pooling layers helped to enlarge the receptive field of neurons where more con-

textual information is considered in layers. The decoder part consists of convolution, upsampling

and ReLU layers. The convolution filters are set to 3x3x3, while the maxpooling kernel is 2x2x2.

The stride is 1 and downsample/upsample factor is set to 2 in each dimension. We used the Adam

optimization with learning rate of 0.0001. The batch size is set to 4. All weights are trained from

scratch with random initialization. The results are evaluated with R-squared measurement, relative

to true anatomical position. The unsupervised BPR method pipeline was employed as state-of-

the-art performance for body part regression. To assess ablation performance, the self-supervision

method was performed to the target CT scans with robust correction and the BUSN with neighbor

message passing scheme (NMP). All experiments are implemented with same data configuration.

The encoder part of the unsupervised learning is learnt from the relative locations and distances

between slices. Let La denotes the loss given sequential slices.

La =−
m−1

∑
i=1

log(S( f (i+1)− f (i))) (2.1)

where S is a sigmoid function. f (i) is the predicted score of the ith slice. Let Lb be the correlation

between slices.

Lb =−
m−2

∑
i=1

| f (i+2)−2 f (i+1)+ f (i)| (2.2)

The loss function is given by: LU = waLa +wbLb. The weights wa and wb were empirically set

as 1 and 10 according to [31]. Lb indicates the numeric difference between two slice which are

proportional to physical distance of two images. Equation 1 keeps the qualitative order of the
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regressed slice scores. The value variance between two slice scores is close to the physical distance

between the two images. Since we used the sets of neighboring equidistant slices (e.g., slices j, j+k,

j+2k, . . .), the slice scores should be equidistant as well. In the experiment, the order loss (Eq.1)

and distance loss (Eq.2) collaborate to constrain each slice score f (i) towards the direction relative

to other neighboring slices. Under the defined loss function (Eq.1, Eq.2), the URN output scores

range in -15 and 15. The learned regression scores and patient anatomical body parts correspond

well (−15: upper chest, −5: upper liver, 0: lower abdomen, 5: lower pelvis). URN is also robust to

the varying position, size and imaging variance.

2.3.2 Robust Regression Refinement

Robust regression [116] refinement is introduced to further correct the inconsistent prediction values

(in Figure. 2.2) by hypothesizing that the distribution of the body part regression scores follow a

linear distribution. We adopted the random sample consensus (RANSAC) [116] algorithm. As

shown in Figure. 2.4, the RANSAC robust regression help removed the outlier predictions (yellow

points) in a volume, and forms the corrected pseudo-labels following the evenly distributed scores.

The RANSAC is an iterative approach to evaluate parameters from discrete observed data contains

inliers and outliers when outliers are presented to be no influence on the values of the evaluation.

RANSAC estimates parameters with high degree of accuracy even with large number of outliers.

The linear distributed pseudo labels are used for the second stage training. Unlike many robust

estimation approaches such as statistics of least-median and M-estimators squares [117] prevailed

in image processing, RANSAC was created by resampling technique that presents candidates by

minimum number of observations. The aim of the approach is to model the hidden linear trend from

heterogeneous input data using robust linear regression (i.e., resilient to outliers). In our context,

the robust regression is deployed to correct the discontinuity of the predicted scores as the training

labels for the unsupervised learning Figure. 2.2. The robust regression is critical as it helps achieve

the expected linearity of score across slice indices.

2.3.3 Deep Supervision Network

The section of deep supervision network uses a symmetric convolutional architecture. As shown

in Figure. 2.2, the end-to-end network is defined with multichannel inputs, where each channel is
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corresponding to a score number. According to the continuous property of slices, the supervision

task is formulated as multichannel pixel-wised image to score regression.

The deep supervision network [118] introduced in the BUSN method Figure. 2.2 is a standard

encoder-decoder CNN. The end-to-end network is defined with multichannel inputs (2.5D) to lever-

age the performance from using a single input slice (2D) every time. The U-Net [65] is used as the

backbone. Different from the standard U-Net, we concatenate deep supervision (Figure. 2.2) from

different levels to integrate the deep features from coarse to fine. A dense layer is used to convert the

long dimensional 1D features from deep supervision to regress a single location score [119, 120].

During the training, we employ the L1 loss for each channel, which is more resilient to outliers

compared with L2 loss. To leverage the knowledge of each level and to alleviate the outliers, the

deep supervision scheme acquires weighted sum of losses from each level. The final supervision

loss LS is given by

LS =−
N

∑
s=1

wsLs (2.3)

where LS is the loss function of level s, N is the total number of levels, ws are weight parameters

of level s. The weight of final output is set as 1, while the weights of sub-labels are set as 0.1 and

0.01 [118]. N is empirically set to four to present four transpose layers.

2.4 Results

Figure. 2.3 presents qualitative results of body part regression on a randomly selected scan. The

URN indicates a slice from lung area to abdomen, a kidney area slice to liver region or an upper

pelvis slice to lower pelvis. BUSN and NMP helped fix the ordering problem from the URN model.

Figure. 2.4 compares the R-squared error of all methods including URN, BUSN and BUSN with

neighbor message passing. Paired t-test is presented as the statistical analysis. From the results,

BUSN presents better linearity to unsupervised approach with significant improvement. Figure. 2.3

compares the quantitative results of the body part regression using conventional linear regression

and the robust regression of the same cohort. The pure BUSN network fixes the disordering problem

in chest, abdomen and pelvis regions using self-supervision.

Across individuals, the body part regression scores should help localize organs. We performed

organ-wise comparisons across 100 individuals (Figure. 2.5). The horizontal range indicates the
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Figure 2.3: The three rows show slices in chest, abdomen and pelvis regions in the same subject,
under same regression score (-3, 2 and 10) with four columns (URN, BUSN, BUSN with Neighbor
Message Passing and ground truth). The slice predicted by BUSN with NMP is closer to the refer-
ence slice.

Figure 2.4: A representative subject was evaluated with URN (left) and BUSN (right). Green
scatters are inliers of influence to the regression, yellow scatters are outliers of no influence to the
distributed data. Darker blue line indicates the normal linear regression on scatters points, lighter
blue line is the RANSAC regressor result according to inliers. Left panel presents the single URN
regression with amounts of outliers result in failure of linearity nature in chest and pelvis regions.
Right panel shows the testing result of BUSN method, the distributed scores follows good linearity
in chest, abdomen and pelvis regions in CT scan. In summary, BUSN takes advantage of self-
supervised network, which presents better continuity in regression result among neighbor slices and
shows scatter plots without number of outliers.
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Figure 2.5: Organ navigation task and organ-wise body part regression analysis: Density maps
represents the distribution of each organ in whole-body CT scan. The red box range represent the
URN method, while the blue box is the BUSN-plain method, and the green box shows the result
in BUSN with neighbor analysis. “*” indicates statistically significant (p-value < 0.01 from paired
t-test).

distribution of each organ over this cohort. For example, in the URN pipeline, the mean of top

border score (Figure. 2.5) of spleen is -4.0217, mean of bottom border is 4.2924, while the means

of BUSN is -3.7872 and 3.0158 respectively. A larger range indicates the larger uncertainty in

organ localization. The green box shows a more precise evaluation after implemented the proposed

BUSN method, which exclude outliers on the boundary of organs. The upper bound of aorta and

lower bound of left, right kidney is defined as the abdomen. We empirically selected the scalar -6

to 5 as the range of abdomen region according to the corresponding ground truth label of all of

training subjects (e.g. the top most slice that contains esophagus or liver label is score around -5.5,

-6 is selected to ensure slices above the top most labeled slice). Table. 2.1 shows the mean Dice

similarity coefficient (DSC) and standard deviation of multi-organ segmentation. We compared

four methods: (1) without using body part regression, (2) using URN, (3) using the proposed BUSN

method, and (4) the proposed BUSN with NMP. Without body part regression, the performance is

inferior compared with the results with body part regression method. The average DSC of BUSN

with NMP is 0.8145 against URN (0.7991) The BUSN with neighbor message passing performs
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Table 2.1: Multi-organ segmentation results with 3D U-Net and different preprocessing strategies
are presented with average Dice coefficients. The best performance results marked as bold. BR
means bodypart regression. “*” indicates statistically significant (p-value < 0.01 paired t-test) be-
tween left and right mean DSC.

Organ NO BR (Baseline) URN (Ke et al.)      BUSN (Ours) BUSN + NMP (Ours)    BUSN-plain BUSN 

1.Spleen 92.82 ± 2.13 94.57 ± 2.24                * 94.97 ± 2.05                  * 95.61 ± 2.01    0.9497 0.9561 

2.Right Kid 89.96 ± 2.54 90.41 ± 2.63                *           92.32 ± 2.43                  * 93.21 ± 2.17    0.9232 0.9321 

3.Left Kid 88.93 ± 2.01 90.44 ± 3.21                * 91.26 ± 2.51                  * 92.35 ± 2.12    0.9126 0.9235 

4.Gallbladder 53.94 ± 20.12 54.01 ± 21.14              * 54.73 ± 22.31                *       55.92 ± 18.94    0.5492 0.5423 

5.Esophagus 74.81 ± 5.47 75.77 ± 7.53                * 76.78 ± 6.36                  * 76.98 ± 6.02    0.7678 0.7698 

6.Liver 94.58 ± 1.94 95.36 ± 2.15                * 95.73 ± 2.86                  * 96.01 ± 1.46    0.9573 0.9601 

7.Stomach 82.98 ± 4.21 84.01 ± 6.01                * 84.72 ± 4.12                   * 85.47 ± 3.75    0.8391 0.8457 

8.Aorta 90.63 ± 3.45 91.16 ± 3.92                * 91.74 ± 3.05                     * 91.95 ± 2.33    0.9104 0.9153 

9.Inferior vena cava 80.65 ± 3.97 81.46 ± 4.62                * 82.86 ± 3.76                     * 82.99 ± 2.19    0.8246 0.8299 

10.Potal&splenic vein 62.17 ± 13.48 63.79 ± 14.27              * 69.01 ± 9.57                    * 71.62 ± 9.47    0.6901 0.7162 

11Pancreas 67.65 ± 10.27 71.71 ± 10.85              * 73.06 ± 9.48                     * 74.21 ± 9.01    0.7306 0.7421 

12Adrenal glands 63.21 ± 11.36 64.02 ± 13.10              * 64.89 ± 10.84                *          65.17 ± 8.23    0.6319 0.6517 

 

achieve the generally highest DSCs of organs with smaller variances. The p-value with paired t-test

between No BR and URN is 0.00097, 0.015 between URN and BUSN, and 0.0017 between BUSN

and BUSN with neighbor message passing.

2.5 Discussion

3D medical images are intrinsically spatialized, and the location of anatomies/organs are relatively

structured. The goal in this study is to predict a continuous, uniformly distributed score for each

axial CT slice along with body coordinate values. As the CT slice index in a 3D volume increases,

the predicted coordinate scores should be larger dependent. However, the variation of imaging

process, position, size lead to morphology difference in human bodies. Herein, we take the full

image of each slice, and intends to preserve the spatial context. The pixel-wised feature maps

provide strong prior information, then we use the global average pooling and linear layer to obtain

the final regression score. Overall, the numeric difference of the predicted slice scores can be

approximately corresponded to the spatial context.

In this paper, we propose an unsupervised-supervision learning body part regression framework

in a self-supervised paradigm that achieves superior performance without using manual annotations.
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Our method outperforms the state-of-the-art methods in terms of the body part regression accuracy.

The integration of robust regression analysis leads to the pseudo-ground truth data that are exploited

in the context of supervised networks. Furthermore, the part regression enables the superior content

navigation and volumetric segmentation. In the segmentation task, we compared our method with

the current state-of-the-art performance in the challenge dataset [44]. The averaged DSC score

in [44] is 0.832 compared to 0.8179 (ours BUSN). We achieved lower but comparable DSC scores

with single 3D UNet model without extra data.

One limitation of the deep learning-based segmentation is the generalizability across different

reconstructed scans. In this work, all experiments and results are performed on axial aligned im-

ages. So, the model cannot be applied to coronal view and sagittal view slides. Next, -6 to 5 are

empirically set to as the range when normalizing different scans as preprocessing according to the

experiments. However, body part regression might not be the optimal choice when applying the

modal to the CT including the extremities. A detailed comparison of body part regression to detec-

tion, such as multi-atlas labeling is expected. In the future, to further improve segmentation result,

it is worthy to investigate cropping volumes for each organ specifically and fitting cropped regions

into segmentation models. In the segmentation task, the body part regression preprocessing takes

30 seconds on average per case, which indicates reasonable time efficiency on implementation.

In this study, the self-supervised BURN method outperforms the baseline methods. In the fu-

ture, the usage of pseudo-ground truth data can be employed in the context of supervised learning

methods. Herein, we could take advantage of the stability in supervised learning as well as the

unsupervised nature of entire framework. Additionally, robust statistics would benefit for many

approaches as quality assurance (QA) is a promising avenue to regularize information and knowl-

edge. Therefore, the proposed self-boosted networks might be an opportunity for broader tasks with

consistent performance in regression, segmentation, or classification. Investigation into the boosted

approach could provide valuable improvements without extra manual efforts.
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CHAPTER 3

Anatomy-Aware Semi-Supervised Body Part Regression for Multi-Contrast CT Images

3.1 Introduction

The large-scale medical data enables artificial intelligence (AI) system the capability of modeling

general and broad representations across heterogeneous context [68]. Most machine learning algo-

rithms are trained with a well-designed, small data set with a specific region of interest. For instance,

computed tomography (CT) for quantifying measurements of body compositions [72] is routinely

suggested as the primary screening tool. However, to reduce the radiation exposure, characterization

of body depends on the requirements and scanning protocol in each medical institutes [121], result-

ing acquired CT scans of different field of view (FOV). In addition, there are potential challenges

on evaluating variance of single CT slice obtained from longitudinal data (e.g., the Baltimore longi-

tudinal study of aging (BLSA) abdomen and thigh data). This can lead to difficulties of collecting

medical image datasets and create accurate AI tool for the clinical contexts.

Quantifying the cross-sectional (slices) images of human body according to spinal anatomy pro-

vides a useful detection mean of locating body regions [122]. However, these investigation requires

massive manual efforts by clinicians and radiologists and are potential limited by insufficient repro-

ducibility and repeatability (e.g., selecting the consistent slice across longitudinal CTs for measuring

body compositions such as fat and muscle).

Another great challenge of training robust body part regression model is the heterogeneity of

imaging protocols [121, 123] for enhancement phases. The application of machine learning algo-

rithms relies on the distribution of training samples [68]. There is potential bias of CT enhancement

phases for learning body part regression models as portal venous phases data are used solely for

constructing the regression task.

Current pre-processing and data curation tools, such as the unsupervised body part regres-

sion [124] and BUSN [125], rely on purely self-supervised regularization of physical distances

across CT subjects, are insufficient to curate data in an accurate scope. In real clinical practice, clin-

icians and research experts focus on the anatomy-wise biomarkers for locating meaningful regions
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Figure 3.1: Representative physical variance in annotated anatomies’ landmarks. The right subject
demonstrates shorter distance between target landmarks.

or slices of CT data. For example, the metric of optimal slice for visualizing pancreas tissue can

indicates the diabetes patients phenotype. Recently, transformer-based models demonstrate better

representation learning capability when large-scale data presents [88, 126, 127]. The transformer

blocks utilize the advantage of self-attention mechanisms show exceptual performance for visual

tasks such as detection [89] and classification [88]. Inspired by the good scalability and efficiency

of training big transformer models [86], we propose to use vision transformer as the image percep-

tion model backbone for our regression task that leveraging 1) large scale medical multi-contrast

context; 2) anatomy-aware long-range dependencies for body part regression problem. In this work,

we propose to address the current limitations of body part regression systems by an anatomy-aware

semi-supervised approach. Regarding above challenges, we pose our contributions as: (1) we intro-

duce an practical approach for reducing body part regression variance; (2) the framework incorpo-

rates anatomy landmark context for body part regression. (3) Our method is designed for multiple

CT enhancement phases with a large scale of training samples (> 7000 CT volumes), and provides
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Table 3.1: Definition of anatomy-based landmarks for body parts. We demonstrate multiple land-
marks in abdomen regions for diverse organs such as liver, pancreas, kidneys.

evaluation based on each contrast phase test cohort; 4) we manually labeled 600 CT volumes for

regularizing its spatial context consistency.

3.2 Methods

3.2.1 Localization by Anatomy Landmarks

To investigate the localization performance by anatomies, we manually annotate several landmarks

across human body. To avoid bias and region shift of intra-subjects, we label CT landmark slices

by its target tissue position instead of vertebrae levels. Table 3.1 introduces description of each

landmark, we manually investigate 9 key locations including the end of head, the end of neck, the

aorta arch, the start of liver, the end of lung, the optimal slice of pancreas, the end of kidney, and

the furmer end. Particularly, we annotate several abdomen landmark to increase the requirement

of dense and accurate estimation for multiple overlapped organs. The order of the landmarks are

not restricted as organs or tissues can be shifted in different subject. For instance, the optimal

pancreas slice can appear ahead and behind kidney slices. Figure 3.1 demonstrates two examples of

annotated landmarks. It shows the variance between subjects, and it’s challenging to differentiate

accurate localization only based on physical distances.

3.2.2 Multi-Contrast Dataset Selection

The body part regression model requires data of diverse ROI, we collect a large-scale dataset by

several cohorts considering contextual information in the CT volumes. We select different body
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Uniform Body part Regression Agent

Figure 3.2: The demonstration of multiple contrast enhancement phases data in CT. The arterial
phases highlight the aorta, portal venous phase data reaches an optimal brightness of abdomen
organs such as liver and spleen, the delayed phase is better at capturing ureter system.

regions such as head, neck, lung, abdomen, and pelvis to model body compositions for a general-

purpose representation learning. The selected datasets contains multi-institutes clinical acquired

data for capturing heterogeneous information and domain gap.Lastly, to avoid bias to a specific

CT enhancement phases, we incorporate five contrast phase CT volumes collected from ImageVU.

Specifically, the non-contrast, early arterial, late arterial, portal venous and delayed phase CT scans

are obtained from queried clinical cohorts as shown in Figure 3.2. The data cohorts for this work

consist 1) ImageVU CT: 4893 subjects, 1,084,114 slices; 2) TCIA Covid 19: 650 subjects, 46,729

slices; 3) HNSCC: 687 subjects, 184,370 slices; 4) NLST: 874 subjects, 137,581 slices. In total,

there are 7104 CT volumes covering abdomen-pelvis, thoracis, head&neck regions. The data are

clinically-acquired under IRB approval.

3.2.3 Data Pre-Processing

Following [124, 125], we resize all slices to 128× 128, the pixel spacing and slice thickness are

maintained originally as the information is crucial for the distance loss. The intensity Hounsfield

Unit (HU) is clip to -1000 to 1000 and scaled to 0 to 1. Data augmentation of flip and rotation of

probability of 20% are applied to increase the learning capability of anatomy patterns.

3.2.4 Transformer-based MixMatch Model

In this section, we demonstrate our training approach for the semi-supervise body part regression

approach.

Transformer Blocks

We show the overview of the proposed approach in Fig. 3.3. The backbone model utilizes a stack

of transformers as the encoder for the regression task. The network consists the 2D transformers
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Figure 3.3: The overview of the framework. The volume is sample to several slices, followed by
data augmentation for semi-supervised loss. The images are then encoded by patch and position
embedding layers.

that exploiting self-attention mechanism. As commonly used in NLP, the transformer blocks take

on 1D sequence of input embeddings. In our model, the sequence of a 2D image is embedded

x ∈ RH×W×C with dimension of (H,W ) and C is the input channels. Then divide sequences into

flattened uniform non-overlapping patches xv ∈ RN×(P2.C) where (P,P) are the dimension of each

sequence and N = (H ×W )/P2 is the length. The linear projection of the image input can be

formulates as follow:

z0 = [x1
vE;x2

vE; ...;xN
v E]+Epos, (3.1)

The position embedding Epos uses the learnable parameter for memorizing the relative 2D grid

location of each embedded sequence: Epos ∈ RN×K to the projected embedding E ∈ R(P2.C)×K .

After the embedding layer, we utilize a stack of transformer blocks [88, 128] comprising of the

multi-headed self-attention (MHSA) and multilayer perceptron (MLP) by:

z′i = MHSA(Norm(zi−1))+ zi−1, i = 1 . . .L, (3.2)

zi = MLP(Norm(z′i))+ z′i, i = 1 . . .L, (3.3)

where Norm is the layer normalization. i denotes the block identifier, while L is the number of

transformer layers.

MixMatch Training
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The entire framework is shown in Figure. 3.3. In order to incorporate the labeled and large-scale

unlabeled data, we employ the holistic semi-supervised learning strategy for training our model.

The MixMatch [129] is a dominant self-supervised learning approach that takes advantages of data

augmentation and label guessing for additional regularization methods. Given the batch of X as the

labeled images with a set of landmark annotations, and the U as the unlabeled CT volumes, the

MixMatch provides a set of pseudo labels that regularized by the augmentation pairs. Formally, we

employ the L1 loss as the regression energy function, the MixMatch is defined as:

LU =
1

NU
∑

u j∈U
|yu − yu′ |, (3.4)

where NU is the total number of samples in a batch, u j is the jth sample of U , u′ is the augmentations

of sample u The total semi-supervised training loss is:

L = LX +λLU , (3.5)

Loss Functions

Following the definition in the self-supervised body part regression [124, 125], we use the two

objective function for modeling the ordering and distance as the regularization. The order loss is

designed for maintain the slice score increasing monotonically as follow:

Lorder =− 1
N

N

∑
i=1

1
m−1

m−1

∑
j=1

Lorder(∆Si j),∆Si j = si j+1 − si j, (3.6)

where si j is the score of jth slice in the volume i.

The distance loss models the numeric difference between two slice scores that are proportional

to the actual physical distance in the body. The distance loss is define as:

Ldistance =
N

∑
i=1

m−2

∑
j=1

f (∆i, j+2 −∆i, j+1),∆i, j = si, j − si, j−1, (3.7)

where f is the L1 loss. The total loss function is combined with the MixMatch loss, order loss and

distance loss.
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Table 3.2: The quantitative results comparison with baseline methods. The absolute error and scale
percentage error are shown according to the 8 manual defined landmarks.

3.3 Experiments

We conduct the experiment and evaluate the effectiveness of our proposed approach on the manual

labeled data. Our study compares UBR [124] and BUSN [125] as baselines in terms of statistical

measurements. We also add the robust smoothing strategy as an additional post-processing step to

compare the our methods.

Implementation Details

For defining body part regression score distribution, we normalize the score into -15 to 15, the

larger number indicates upper body regions until top of the head. We randomly split 20% the labeled

CT volumes as the held-out test set. The remaining labeled data are then randomly split to five folds

for training and validation. The entire unlabeled data are used as training. We apply our pipeline in

Pytorch and MONAI using single 16G NVIDIA GTX 6000 GPU. We train the model for 50 epochs.

Adam optimizer is used with an initial learning rate at 1× e−3 and decay rate of 0.999. We use 12

block of transformer layers as the model backbone.

Evaluation Metric

We use the entire annotated volume slices as the reference table, which establish a mapping

between anatomies and scores in range of -15 to 15. The ground truth label scores are determined

by linear distribution which defined by the manual labeled landmarks. We use absolute error and

scale percentage difference as the metric for evaluating body part regression scores in volume. The

absolute error is simply |spred − struth|, the scale percentage error is calculated by 1
30 |spred − struth|.
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Figure 3.4: Qualitative visualization show the effectiveness of maintaining cross subject consis-
tency of slice scores. A neck, aorta arch, pancreas, and furmer end slice for inter-subjects at same
predicted scores are shown.

Given absolute error of 1.5 and slice thickness of 2mm as an example, we derive the model can

differentiate physical distance error by 3mm.

3.4 Results and Discussion

3.4.1 Anatomies landmark boosted regression accuracy

We conduct experiments comparison between our approach to the baselines in Table. 3.2. The

results demonstrate the prediction accuracy with the 8 annotated landmark slice scores including

fermur end, kidney end, pancreas mid, lung end, liver start, aorta arch, neck end and head end.

We observe that our approach surpass baselines and achieves average absolute error with 0.429

against 1.564, 1.886, respectively. The scale percentage rate is 1.43% compared to 5.21% and

6.29% of baselines. The 0.429 indicates the general physical distance error can be controlled within

1mm, given slice thickness around 2mm. In addition, the abdomen slices such as kidney (0.601)

and pancreas (0.674) are harder to identify compared to other positions (e.g., fermur end: 0.275,

neck end: 0.204). This indicates the composition complexity between lung and abdomen regions,

compositions such as fat, muscles, organs can be shifted among subjects. Furthermore, we per-
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Table 3.3: The testing results categorized by different CT contrast phases. The performance show
late arterial and portal venous phase data are of higher accuracy partially due to the larger size of
training data.

Table 3.4: The results show the reproducibility and repeatability of the proposed automatic method
and two independent readers. It demonstrate the error between SemiBR and readers are similar to
inter-reader assessments.

form the same smoothing post processing using the RANSAC regression algorithm. The robust

regression can provide further smooth scores by excluding outlier predictions in a CT volume. The

SemiBR+Smoothing achieves the best quantitative result of 0.399 on average.

In Figure. 3.4, we demonstrate the qualitative results on the SemiBR predictions. Four body

regions are presented by selecting same regression slice scores. −9.6 indicates the slice near neck

end, we show four randomly picked subjects with the score. −1.5, 5.3, and 13.5 denote the aorta

arch, pancreas and the furmer end regions. The visualization show the regression consistency across

different subjects.
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3.4.2 Robustness to Multi-Contrast CT Scans

We also show the testing performance according to CT contrast enhancement phases in Table. 3.3.

We observe the portal venous phase data are of best performance. This is due to the potential larger

cohort of the phase. The late arterial, early arterial phase have the second and third best results

with 0.380 and 0.403, respectively. The non-contrast and delayed phase data are of similar contrast

except the concentrated dye medium in the ureter system. The performance is 0.452 and 0.468 for

non-contrast and delayed phase testing data.

3.4.3 Reproducibility and Repeatability

Table. 3.4 shows the comparison between the proposed deep learning based model and different

interpreters. First, the SemiBR prediction is evaluated against the first manual label, the average

absolute error is 0.426 and scale percentage error is 1.42%. We also compare the same prediction

with the second independent rater’s label, the absolute error and scale percentage are 0.445 and

1.48%. To investigate the reproducibility and study whether the automatic method can be repeated

for the testing cohorts with manual annotations, we calculate the performance between two raters.

The inter-rater absolute error is 0.431 and the scale percentage is 1.45%. We observe that the inter-

rater one is similar to the SemiBR-Rater1 assessment, and the SemiBR-Rater2 assessment. This

indicates the stability and consistency of the automatic method, and show sufficient reproducibility

and repeatability.

3.5 Conclusion

We introduce the SemiBR, a semi-supervised learning approach incorporating the self-supervised

tasks. The large-scale collected data is sufficient to provide rich spatial, diverse context of CT vol-

umes. In addition, we address the challenge of the applying body part regression and show its ro-

bustness to multi-contrast data. The major results show our approach achieves the best performance

that can distinguish physical distance within 1cm. We are interested to exploring this quantitative

tool for downstream medical tasks.
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CHAPTER 4

Phase Identification for Dynamic CT enhancements with Generative Adversarial Network

4.1 Introduction

Dynamic contrast enhancement Computed Tomography (Dynamic CT) is widely used in the clinical

diagnosis [37]. For quantitative measurement in tissues, the standard Hounsfield Units (HU) scale

is used in contrast-enhanced CT scans for describing radiodensity. In previous studies, contrast en-

hanced CT has been shown as an important means for identification of organ physiology, lesions

and abnormalities [36, 130, 131]. To capture complex relationships of tissues, enhancements are

acquired by injecting iodine contrast materials into peripheral veins [39]. As time proceeds, the

medium helps illuminate through aorta, heart atrium, pulmonary vein, lung, liver, spleen, pancreas,

kidneys and urinary system respectively [132]. However, the contrast agent timing information is

often tagged manually by physicians. Therefore, missing information or mislabeling can happen,

which is especially problematic in large-scale studies. Revisiting phase knowledge and contrast pro-

tocols in meta-data is resource intensive. Moreover, correcting phase labels is hard and challenging

due to variations in tissue, contrast material, injection protocols, vascular dynamics and metabolism.

Herein, we explore automatic means for classifying contrast enhancements for application in diag-

nose pathology.

Deep learning approaches have been widely used for classification tasks [24, 25, 28]. Instead

of generating shallow feature components [133], deep models such as VGG [134] and ResNet [24]

can encode very deep features by hundreds of convolutional layers. Traditionally, the image classi-

fication model is supervised by statistical learning-based loss functions (e.g., margin loss and cross

entropy loss [135]). To leverage the classification performance, the intrinsic embedding of the in-

put images are encoded using variational autoencoders [136]. From another perspective, generative

adversarial net (GAN) [137, 137, 138] is introduced to the classification tasks using a data-driven

discriminator, typically with a generator [139, 140, 141, 142]. More recently, the multi-domain

discriminator [143, 144] is presented to solve classification problem and improve image synthesis

performance.
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In abdomen CT imaging, contrast enhanced scans have been explored for detecting abnormal-

ities [33, 145], identifying tumors [119], and segmenting organs [4]. However, few studies have

been explored for contrast phase classification, whose aim is to classify an unlabeled contrast CT

slice with correct phase label [40, 41]. In this study, we target classification of five typical contrast

enhancement phases: (1) non-contrast (NC), (2) early arterial phase (EAP), (3) late arterial phase

(LAP), (4) portal venous phase (PVP), and (5) delayed phase [146]. The examples of different

phases are shown Figure. 4.1.

In this paper, we propose a multi-domain contrast disentangling GAN (CD-GAN) to perform

dynamic CT phase classification, by learning disentangled representations across contrast phases

features. The method (Figure. 4.2) takes 2-D slices to learn an intermediate representation, then

reconstruct a synthetic contrast enhanced image. The goal of using generated image is to employ

adversarial loss and synthetic classification as data augmentation for improving discriminator’s per-

formance. Our contribution in this study are as follows:

We propose CD-GAN, an adversarial learning network to perform contrast phase classification

by learning from both real and synthetic images.

1. A two-step generator is introduced, which learns the disentangled representations and domain

specific features among multiple contrast CT.

2. We perform quantitative and qualitative evaluations on of the prevalent baselines (VGG,

ResNet-50, StarGAN and 3DSE).

4.2 Materials and Methods

4.2.1 Dataset of Studies

Data retrieval. We performed de-identified CT studies retrieval from the ImageVU project of the

Vanderbilt University Medical Center (VUMC) under IRB approval. In the training process, we use

400 subjects (36350 2-D slices). These subjects are independent and unpaired with five contrast

phases. Experimental data was separated into 1) 80 non-contrast phase subjects, 2) 83 early arterial

phase (EAP) subjects, 3) 67 late arterial phase (LAP) subjects 4) 92 portal venous phase (PVP)

subjects, and 5) 78 delayed subjects. The average number of axial slices for all training scans is

91 with variance of 7.2. These 36350 2D slices are obtained from the 3D CT scans. The slice
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Figure 4.1: Schematic illustration on enhanced CT scan classification. Physician (box 1) assigns
contrast materials (box 2) to patients before screening. Different contrast phases scans (1) – (5)
are acquired by CT scanner (box 3) depend on time periods (middle axes): 1) non-contrast, 0s or
without contrast medium, the box shows the consistent contrast among tissues, 2) early arterial,
15-20s after injection, the optimal illuminated aorta is shown in the box, 3) late arterial, 40-50s
after injection, the yellow box shows the light aorta while portal veins starts to be bright, 4) portal
venous, 70-80s after injection kidney cortex starts to be bright, and 5) Delayed, 6-10 minutes after
injection, the ureter is very bright shown in the box. Last, different contrast unknown scans are fed
to our network system (box 4), which outputs a phase label (box 5).

thickness of these CTR volumes varies from 0.1 to 6 mm. In this initial query, we performed 2004

de-identified subjects from medical center. To obtain comprehensive studies on contrast phases,

we assessed each subjects’ longitudinal study with paired multi-phase scans. Out of 2004, 400

subjects are selected with 2-4 phases’ scans. 20 subjects are retrieved with all five phases volumes.

The retrieved CT scans are acquired from two manufacturers, Siemens and Philips. Before scan

acquisition, contrast agents were injected with amounts varying between 120 and 140 ml. CT

signals were acquired at different timing during imaging cycles. The in-plane pixel dimension of

these subjects varies from 0.78-0.86 mm. The section thickness ranged from 1.2-3.5 mm. The

resulting the number of slices ranged from 80 to 120.

In addition, 20 subjects with paired scans from all five contrast phases (100 scans in total) are

retrieved and coded. Scans in a subject are acquired from sessions along with different contrast

protocols. The paired 20 studies are used as external testing.
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Figure 4.2: The training pipeline of the proposed method. The encoded data in latent space are
acquired from the encoder part of generator. The phase identities are concatenated with the in-
termediate representation before being fed into the decoder part of generator. On the right, the
proposed classifier uses both adversarial loss and contrast classification loss on real and synthetic
image in the training.

4.2.2 Preprocessing

We convert each body CT scan to axial view 2-D slices with the original resolution of 0.8x0.8mm

and dimension of 512x512. For consistency, we use a wide HU window from -1000 to 1000 to

exclude intensity outliers. Then, image intensities are linearly normalized to -1 to 1. 2D images are

resized to 128 x 128, we randomly sampled 96 x 96 region for data augmentation.

Clinically acquired CT scans can exhibit large variance in volume size, so we adopt a critical

pre-processing with body part regression [31, 114]. The body part regression helps to remove slices

on inconsistency volumes, and to localize anatomical regions automatically. In order to capture

contrast feature in abdomen structures, we used the pre-trained model from unsupervised regression

network [31] to navigate slices in abdomen region (scalar reference index ranges from -6 to 5).

4.2.3 Contrast Disentangling Generative Adversarial Network (CD-GAN)

The network structure of CD-GAN is shown in Figure. 4.3. GANs are generative models to learn

the mapping conditioned on input image x and contrast phase code c. In architecture of a GAN,

the generator is trained to predict outputs that fools the discriminator, while the discriminator is

trained to distinguish the real and fake images. In our method, the discriminator is not only used to
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detect adversarial samples, but also to classify the phase contrast. Our rationale focuses on using

adversarial learning to guide the training process, which is to make classification more robust by

alleviating spatial inconsistency and leveraging overall performance.

Adversarial Loss: In CD-GAN, the adversarial loss is used to perform adversarial learn-

ing [147]. In order to distinguish real and synthetic images and perform the minmax problem,

we adopted the conditional GAN objective:

Ladv = E(x,y)[logD(x,y)]+E(x,c[log(1−D(G(x,c)))] (4.1)

where x is the real input image, G generates the synthetic image G(x,c) which conditioned on input

and target contrast phase identity c. D aims to distinguish real, synthetic image and maximize the

objective: minG maxD(Ladv) . The discriminator is conditioned on both real image x and synthetic

image y.

Contrast Classification Loss in Discriminator. To achieve classification in adversarial learn-

ing, we designed an auxiliary classification loss on top of D. The discriminator aims to classify

both real and synthetic images to proper phase categories by given target phase identity c
′
and con-

ditioned phase identity c respectively. For real image path, the contrast classification loss is defined

as:

Lcls = E(x,c′ )[− log(1−Dcls(c
′ |x)] (4.2)

where E(x,c
′
) denotes the probability distribution over its true contrast phase labels, and D tries

to classify real scan slices to its ground truth identity c
′
. For synthetic image path, the contrast

classification loss is denoted as:

Lcls′ = E(x,c)[− log(1−Dcls(c|G(x,c))] (4.3)

where c is the assigned phase identity of the synthetic slice. D tries to classify the synthetic image

to its assigned identity c. In this work, c is randomly selected for each image.

Contrast Disentangling Generator: By minimizing the adversarial and classification losses, the

generator is trained to synthesize images. The synthetic images are simulated with phase knowl-

edge and original contexts. In order to capture variations in CT scans, Genc learns a discriminative
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representation by encoding image to feature space: f (x) = Genc(x). To explicitly disentangle the

feature representation, the encoder learns variation information to an intermediate representation.

Then, Gdec synthesizes a CT slice: x
′
= Genc( f (x),c) with phase identity c. The phase identity c

is provided by a hot vector c, with target enhancement phase being 1. The learned intermediate

representation f (x) aims to preserve discriminative context while separate contrast identities. With

the phase identity added to Gdec, the encoder is trained to disentangle the phase variation from f (x).

Herein, f (x) is both generative and discriminative. The generator in the model is trained to synthe-

size images that are close to the given target domain. However, minimizing the adversarial loss and

classification loss cannot assure that generated images map the context of input image while editing

only the phase-related information. In this study, we employed the cycle consistency loss [137] to

the generator:

Lrec = E(x,c)[||x−G(G(x,c),c
′
)||] (4.4)

The reconstruction loss involves the forward-backward cycle. (where the generator takes the origi-

nal image as input), and also reconstruct the synthesized image back to the original domain. In this

experiment, we employed the L1 norm in the cycle reconstruction loss. The discussion of norms

can be found in [14].

Network Structure: The architecture of the proposed network is shown in Figure. 4.2. We

employ the DR-GAN [138] for Genc. Batch normalization and ReLU are applied after each convo-

lutional layer. The intermediate representation is acquired from the AvgPool layer in the encoder

network. Then, the representation is concatenated with phase identity c. In order to perform high

resolution image synthesis, the decoder part Gdec consists of a series of transpose convolutions that

transform the concatenated representation into a synthetic image. The discriminator D is designed

on top of PatchGAN [148] with two extra convolutional layers followed by LeakyReLU. The clas-

sification result is predicted from fully connected layer with a softmax function in the end of net

D.

Full Objective: The GAN architecture achieves a global optimum in the minmax game. In

CD-GAN, D and G improves each other during the iterative training. With D achieving better

performance of distinguishing real and synthetic image and classifying phase identity, the G is

trained for memorizing phase identity features to compete with D. Overall, three objectives are
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presented in CD-GAN. First, Genc is trained to disentangle the domain knowledge from contrast

enhancement CT slices. By using an assigned phase identity, the Gdec is learned to inverse the

process that synthesize a contrast preserving image. Last, the discriminator performs phase identity

classification on real/ synthetic as adversarial loss converges.

4.2.4 Baseline Architectures

We compared CD-GAN with a series of state-of-the-art approaches, including (1) VGG-16, a con-

volutional network for classification and detection, (2) ResNet-50, a very deep network for image

classification, (3) StarGAN, a multi-domain GAN architecture for capturing feature identities, and

(4) 3DSE, a 3D model for phase detection. (1) to (3) are implemented with 2D models, results

are evaluated at the scan-level by majority vote. (4) is trained using 3D volumes without a voting

algorithm.

VGG Net: VGG-16 is a convolutional neural network proposed for ImageNet [28]. The model

consists of a stack of convolutional layers, in which kernels are used with a small receptive field (3

x 3). At the end of the network, VGG-16 includes 1x1 convolution filters, which can be regarded as

a linear transformation of input features. Five max-pooling layers are carried out as spatial pooling

after convolutional layers, which is performed by 2x2 and stride of 2. Hidden layers are followed

by ReLU non-linearity transformations. The Softmax function is used at the end of the network to

perform multi-class classification.

ResNet50: The ResNet used residual mapping function to address the degrading problem in

very deep networks. ResNet integrated skip connections with convolutional layers as residual

blocks. The ResNet-50 consists of 50 convolutional layers with a filter of 3x3, shortcut connec-

tions are added to each pair of kernels. For each residual bottleneck block, we use a stack of 3

layers of conv.

StarGAN: StarGAN used a single generator that learns mappings among multiple domains,

while discriminator employed classification loss. The generator is a simplified U-Net shape [26],

which has two convolutional layers with a stride of 2 and six residual blocks. The decoder part

consists of two transposed convolution layers with an up sampling factor of 2. Domain codes are

concatenated with images before feeding into the generator, which performs an end-to-end synthe-

sis. The discriminator adopted PatchGAN. Instance normalization is used in the generator and no
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normalization is used in the discriminator. The discriminator minimizes only the classification error

associated with the known labels.

The 3DSE: 3DSE model consists of two convolutional layers, each followed by a ReLU and

pooling layers. The model introduced squeeze and excitation (SE) layers, which increase descriptive

capacity and inject global information. 3DSE is implemented as a light-weighted model with a

smaller parameter size than typical 3D models [41].

The HU Parameters. To establish the proposed method as an automatic approach to compare

with manual procedures, we performed labeling repeatability and reproducibility of manual identi-

fications. We performed a second round of manual labeling; the testing set is interpreted by another

observer. The interpreter was instructed to verify the contrast phase slice-by-slice independently.

The same procedure was used to label phase stages. The second interpreter (independent observer)

perform manual identification without consulting others. The accuracy result is shown in Table. 4.1.

We performed manual identification to assess the phase stages. The interpreter was instructed to

verify the contrast phase slice-by-slice. The interpreter is supervised by experienced radiologists (>

10 years of experience in radiology). In case of disagreement, consensus meetings were held and

performed quality check, adjustment on necessary subjects.

Hounsfield units are representing tissues varied significantly among enhancement phases. We

manually labeled each training subject under the supervision of radiologists. HU values for aorta by

imaging phases used in terms of magnitude were EAP > LAP > PVP > Delayed CT > non-contrast

CT. The HU value for portal vein were PVP > LAP > EAP > Delayed CT > non-contrast CT. We

set vessel specific Hounsfield Unit parameters (i.e., aorta in the late arterial phase were found to have

central ROI as a fixed HU, i.e., portal venous in the late arterial phase were found to have central

ROI as the fixed HU) as an extra validation method, which could be used to quantify visual analysis

for identifying studies in the correct phases. In this study, we manually checked HU parameters for

all EAP, LAP and PVP scans for all training images, since the non-contrast phase can be detected

by identifying the absence of contrast and the delayed phase indicator is the contrast in the ureters.

The mean HU value in aorta central ROI for EAP, LAP and PVP of training data are 242.0824.98,

191.4217.26 and 150.5219.73, respectively. The mean HU value in portal vein central ROI for EAP,

LAP, PVP of training data are 103.2914.19, 153.1520.42 and 162.8118.18, respectively. We set the

lower bound of mean aorta HU in LAP (173.74) as the fixed HU (xHU), the lower bound of mean
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portal vein HU in LAP (132.73) as the other fixed HU (yHU). We then use the manual validation as

an additional comparison on testing images.

4.2.5 Training Parameters

To provide phase transfer labels, we assign each slice with all five phase identities including the

presented phase of input. The phase identity is provided by a hot vector and concatenated with the

output of the encoder part of the generator. The generator reconstructs five enhancement phases for

each image. We follow the optimization strategy in [20], the batch size is set to be 8. All weights

are trained from scratch. The Adam optimizer is used with learning rate of 0.0001 and beta1 = 0.5

and beta2 = 0.999. We implement learning rate decay of step 1000 every 100000 iterations. We

used step of 1 for alternating between optimizing discriminator and generator [149]. This helps

discriminator to maintain optimal solution as the generator converges slowly, which discriminator

presents strong supervisions for both real, synthetic images and classification labels.

Training continues with 500,000 iterations and a complete time of about 36 hours on GPU.

Implementations are performed using NVIDIA Titan X GPU 12G memory and CUDA 9.0. Train-

ing, validation, and testing are executed on a Linux workstation with Intel Xeon CPU, 32GB of

RAM. The code of all experiments including baseline methods are implemented in python 3.6 with

anaconda3. Networks and frameworks are implemented in Pytorch 1.0.

4.2.6 Experimental Design

We conducted experiments on five phase classifications to evaluate the effectiveness of CD-GAN.

First, we compared baseline methods with CD-GAN training on unpaired CT scans. To set the

hyper parameters, we implemented standard five-fold cross validation, 400 scans are split into five

complementary folds, each of which contains 80 cases. For each fold of evaluation, we use 4 folds

as training and validation on the remaining fold. Then, in order to prove stability and sensitivity, we

test trained models on the withheld paired subjects. Experimental results are assessed by accuracy

score across five phase labels. The claim of statistical significance is evaluated by Stuart-Maxwell

test for multi-class confusion matrix (p− value < 0.01). In terms of evaluation of volume-wise

performance across 2D methods, the scan-level result is obtained from the same fusion strategy of

majority voting among all 2D algorithms.
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Figure 4.3: Scan-level confusion matrix result on withheld 20 paired subjects of VGG backbone
networks. ResNet-50 (right) achieves higher accuracy than VGG-16 (left) by using stacked convo-
lutional layers and skip connection design.

4.2.7 Evaluation Metrics

We evaluated multi-class classification performance with standard normalized confusion matrix.

Confusion matrix is a table layout the performance of classification tasks. Each row of the table

represents the instances in the predicted class, each column represents the instances in an accrual

category. Experimental results are measured by accuracy score.

accuracy(pi, p
′
i) =

1
N

N−1

∑
i=0

1(pi, p
′
i) (4.5)

where p is the predicted value, p
′
denotes the corresponding real score, N represents the total number

of samples. The fraction of prediction values over N is defined as the classification accuracy.

4.3 RESULTS

4.3.1 Quantitative Evaluation

Figure. 4.3 and 4.4 present the scan-level quantitative results on five enhancement phases. The con-

fusion matrix shows the accuracy of CD-GAN and baseline methods. CD-GAN achieved superior

performance over the baseline model on the ImageVU dataset. Compared to both the conventional

synonym models (VGG-16 and ResNet-50) and the approach with GAN architectures, our pro-

posed method employed advantages of GAN jointly with classification training achieves superior
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Figure 4.4: Quantitative result on withheld 20 paired subject of GAN architectures and 3DSE. CD-
GAN achieves consistent superior performance than StarGAN and 3DSE. Order of labels are the
same as Figure. 4.3, true labels top-down, predicted labels left-right are noncontrast, early arterial,
late arterial, portal venous and delayed respectively.

results. Figure. 4.3 reports accuracy score on VGG-16 and ResNet-50. ResNet-50 uses VGG net

as backbone but deeper with add-on skip connections. The ResNet-50 achieves consistently higher

accuracy, which indicates deeper feature caption with residual blocks leverages the performance

of phase detection. We speculate that the ResNet-50 stacks more convolutional layers can adapt

phase identity more accurately and provide global feature information, which is beneficial in the

enhancement detection contexts.

Figure. 4.4 compares methods with GAN architectures and state-of-the-art model 3DSE. Com-

pare to VGG backbone networks in Figure. 4.3, StarGAN achieves significant improvements p-

value<0.01, Stuart-Maxwell test, which indicates the effectiveness of adversarial learning. CD-

GAN shows consistent superior result compared with StarGAN, validating that the two-step treat-

ment of generator is beneficial. We also compared our method with 3DSE [41]. Our method

achieves comparable result in non-contrast phase (accuracy above 0.95). In addition, CD-GAN

achieves better accuracy score 0.92, 0.94, 0.93 on early arterial, venous and delayed phases. CD-

GAN corrects misclassification of early arterial scans and venous scan where 3DSE would make

mistakes, 0.83 to 0.92 and 0.90 to 0.94 respectively. Table. 4.1 summarizes the accuracy score in

the confusion matrix, * indicates the statistical improvement (p-value<0.01, Stuart-Maxwell test).

We also extract the information from Dicom header of each scan and compared methods with the

header accuracy. Note some scans are labeled blank or with dose usage instead of phase identities
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Figure 4.5: Qualitative result of the classification. Four samples are randomly selected from each
enhanced phase. Green boxes show critical criteria for identifying enhancement types. Estimated
class probabilities for the true label are shown.

in the header, we regard these scans as false (1(p, p
′
) = 0) in calculating accuracy scores.

4.3.2 Qualitative Evaluation

Figure. 4.5 shows the qualitative result of the experiment. Four example slices are randomly selected

from each enhancement phase. The top left slice shows an image in delayed phase. The green box

indicates the illuminated area in urinary system, which is the critical criterion for identifying delayed

scans. The bottom left slice is from a patient scanned in portal venous phase, in which liver, spleen

and kidneys are slightly bright. This slice is misclassified to late arterial phase by baseline models

due to the bright tissues. The top right shows an early arterial slice, the image is misclassified

to non-contrast phase by baseline models. The green box shows the only criteria for detecting

early arterial phase: the slightly illuminated aorta. The bottom right slice is a late arterial phase

image, which portal veins start to be bright (green box). Figure. 4.6 shows the qualitative result

on representative error predictions from each type of contrast phase. We observe that non-contrast

scans (left) are misclassified into portal venous phase due to higher density tissues of liver or spleen

in some subjects. The second image shows a misclassified case in early arterial phase. Due to

varying metabolic dynamics, early and late arterial phases are usually difficult to distinguish. In late

arterial phase, contrast material has been diffused to lower tissues: portal vein, liver, spleen start
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Figure 4.6: Representative error prediction in each type of contrast phase. Red boxes show the
misleading criteria for mislabels. Predicted class probabilities are shown on both ground truth and
mislabels (red) with all methods.

Table 4.1: Quantitative comparison of scan-level performance. We mark * to indicate statistically
significant (p-value < 0.01, Stuart-Maxwell test) compared to previous method. Best values are
marked bold.
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to be bright. The effect results in mislabeling with portal venous phase, in which liver and spleen

are bright (Figure. 4.6 columns 3 and 4). The fifth column in Figure. 4.6 show a representative

error prediction of delayed scans. The bright outer kidney indicates the scan is acquired during

venous phase and delayed phase, which raises difficulties in classification. The potential failure

predictions on class probabilities resulted in many error classifications. In this experiment, we

aimed at acquiring volume-wise phase identifications. Herein, we employed fusion strategy with

majority voting. The fusion method effectively addressed many wrong predicted slices, lead to a

correct phase corresponding to the CT scan.

4.4 Discussion

In this work, five representative CT contrast phases were classified by comparing different clas-

sification models. We revisited the challenge of classifying phase identities using abdomen CT

scans. The leading classification model was found to be both generative and discriminative of do-

main features. In general, GAN architectures showed a better accuracy score with measurement

of multi-class statistical test (p<0.01) than conventional models of stacking conv layers. In addi-

tion, uncertainties in the classifier may have been reduced when discriminator tries to distinguish

real/fake images. In comparison of GAN architectures, we implemented the method of performing

multi-domain generative model, StarGAN. The core limitation of StarGAN is it contains a shal-

lower generator to perform image translation with small dimension. Another problem for StarGAN

is that the generator fails to capture domain-invariant features (phase identities), which is important

in this task. We also compared state-of-the-art model 3DSE, which is a 3D model for detecting

phases. 3DSE is originally implemented as 3D model trained on thousands of scans. In our case,

CD-GAN is trained on 400 scans, which outperforms 3DSE with consistent improvement (Fig-

ure. 4.4). Overall, our method achieved superior performance with three key factors: 1) adversarial

learning present effectiveness for helping classifier to capture phase identities, 2) generator perform

as both generative and discriminative, and 3) multi-task discriminator design. One of the limitations

in our study presents in the training scans since we do not have the complete paired multi-phase

scans for all subjects. Capturing the inter-subject variance can be challenging in the experiment,

and it is expected to have improved performance if trained with complete paired CT volumes for

each patient. In the future, the additional work is needed to continue investing accurate cues for the
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task of phase identification.

The experience of training the network is presented. In our experience, GANs converge in the

training which stops at about 500,000 iterations (section 2.5), whereas the number for VGG-16

and ResNet-50 is 4,000,000. The largest relative difference between GANs and VGG backbones

is the adversarial learning. Those observations are in accordance to findings of previous studies

of adversarial examples [150]. Compared with single convolutional networks, adversarial learning

shows generally lower sensitivity [150] of variation in dataset. This is probably due to minmax

optimization, whose presence leads to boosted performance for both.

In this work, we studied the task of identifying CT contrast phases using abdominal CT scans.

We showed that our method achieved consistent superior performance as shown in Figure. 4.5.

However, abdominal scans may not cover all the structures that hints the phase stage. For instance,

the upper aorta and heart in the lung region is not investigated in the study. It is expected that the

cardiac CT imaging can further help determine the phase. The change of brightness of heart and

upper aorta relates the contrast timing. In addition, cardiac outputs result in the arrival of contrast

medium bolus and affects the timing of enhancements. In the future work, the cardiac imaging

studies could be added to the experiment.

We proposed a GAN architecture for contrast phase identity disentangling and provided a robust

classifier for body CTs in clinical archives that the classification performance can be boosted with

both synthetic images and real images. One major limitation for current image translation or image

synthesis is that GANs fail to handle high resolution contexts. Recently, Brock et al proposed

BigGAN [151], which studied the generation of high dimensional natural images with huge amount

of GPU resources. This study indicated the instabilities of current adversarial learning for image

synthesis. In addition, using synthetic images in medical scope should be more careful due to

clinical usage. Additional work is needed to investigate possible application of synthetic result. To

further improve the detection and classification of contrast phase identities, the Hounsfield unit scale

to material density distribution used by reconstruction signals could be adapted to the classification

model.
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4.5 Conclusion

In summary, the proposed CD-GAN achieved consistent superior performance compared with base-

line frameworks. The model developed in this study was used to detect clinically acquired CT

images. The configurations are fulfilled by introducing 1) adversarial learning, 2) disentangled

representations by generator, 3) multi-task discriminator.
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CHAPTER 5

High-resolution 3D Abdominal Segmentation with Random Patch Network Fusion

5.1 Introduction

Computed tomography (CT) of the abdomen is an essential clinical tool in diagnostic investiga-

tion and efficient quantitative measurement for internal organs, bones, soft tissue and blood ves-

sels [30]. CT allows for identification of structures in possible abnormalities and tumors. To ex-

plore complicated spatial relationship between abdominal organs and tissue structures, multi-organ

segmentation on CT scans has been widely studied [19, 49]. Manual annotations are regarded as

gold standard [51], but these are time and resource intensive. To reduce the manual efforts, atlas-

based methods [50, 52, 54, 152] and deep models [65, 111, 153] have been proposed to achieve

quantitative organ segmentation from the clinically acquired CT scans automatically [154]. CNN

based models are widely explored for medical image analysis. From the perspective of computa-

tion resource-accuracy trade-offs, 2D approaches take separated slices for training result in lacking

spatial information, but faster at approximately batch size of 8 and 700 iterations per minute [59].

The tri-planar architecture [155] performs better than 2D with advantage of three views for each

voxel at approximately batch size of 3 and 200 iteration per minute. The 3D architecture needs

scans to be either 1) patched or 2) down-sampled, it is the slowest way to train at approximately 80

iterations per minute and one patch per iteration. Recently, CNN methods have been explored to 3D

segmentation, which perform abdominal segmentation with 3D volumes, like 3D U-Net [57] or V-

Net [156]. However, we cannot directly fit the clinically acquired high resolution CT (e.g., 0.8 mm

or higher isotropic voxel size) to such networks due to the memory restriction of prevalent GPU. In

this context, [157] proposed a network to learn 2D or 3D patches along with volume coordinates

for 3D segmentation. One key observation is that the patch-based methods [53, 56, 158, 159, 160]

in high-resolution approaches tend to underperform given a lack of broad spatial context. Huo et

al. [161] demonstrated that the patch-based method for whole brain segmentation, to deal with the

local anatomical variation based on registered atlases.

Unlike brain segmentation, abdomen CT do not have a well-established registration method for
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standard space due to larger variations in soft tissues among subjects. Thus, removing spatial context

of a high dimensional volume by cropping images leads to a loss of relevant knowledge for abdom-

inal segmentation. A second way for implementing 3D training is to down-sample the image to

low resolution volume [57]. However, this approach introduces fuzzy interpolation operations that

will break biologic structures in medical images. Holger et al. proposed hierarchical method [66] ,

which introduced a coarse-to-fine strategy that significantly improved the performance of pancreas

segmentation. Holger et al. also proposed the multi-scale pyramid network [42] that extend the

hierarchical strategy to multi-stage learning. The input images are scaled at different levels, and

predictions by last level can be selectively emphasized. However, the performance of scaled images

may miss voxels due to inaccurate bounding box predicted by lower level models. Additionally, the

output segmentation from upper levels present higher resolution but it still needs to be up-sampled

to original space.

Currently, most prevailing deep learning frameworks on medical image segmentation are fo-

cused on similar backbones: FCN [153], U-Net [65] and Fast R CNN [162] . In practice, the

tri-planar architecture aims to collect combinations of three-view slices for each voxel, and a 3D

approach employs a 3D CT scan represented by a sequence of 2D slices. One of the first 3D models

was introduced by Urban G et al. [163] to segment brain tumors with varying size. The intuition

was followed by multi-scan, multi-path models [164, 165] to capture subsampled features of the

image. To exploit 3D context and to cope with limitation of computational resource, researchers

investigated hierarchical frameworks. They attempt to extract features at multiple resolution lev-

els. Holger et al. [166] proposed a hierarchical architecture to perceive multi-scale information in

pancreas segmentation. Chen et al. [165] aims to simulate human behaviors and generalize RNN

to employ 3D context. These approaches provide handling of different field of views at multiple

levels, which reduces problems in both spatial context and low-resolution segmentation.

More works have been done on coarse-to-fine methods on abdominal organ segmentation. Li et

al. [167] proposed hybrid densely connected UNets, which learns 2D intra-slice features in the first

stage then concatenates 3D contexts in the second stage. However, the connected 3D contexts are

still down-sampled volumes, which limits in preserving high-resolution details. Zhou et al. [168]

developed an FCN based fix-point model to learn both the rough pancreas location and fine seg-

mentation. But it only considered coarse-to-fine regions regardless of overlap regions, which is
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not optimized for spatial predictions. Similarly, Roth et al. [66] proposed a hierarchical method,

which introduced a coarse-to-fine strategy that significantly improved the performance of pancreas

segmentation. However, by constraining rough pancreas locations, the method might be vulnera-

ble to lose information. Roth et al. [42] extended the coarse-to-fine method to multi-scale pyramid

networks. The input images are scaled at different levels, and predictions by last level can be se-

lectively emphasized. However, the performance of scaled images may still miss voxels due to

inaccurate bounding box predicted by lower-level models. Zhu et al. [63] proposed an effective

sliding window approach, performing 3D pancreas segmentation in two stages from both entire CT

volume and sub-volumes. In addition, Zhu et al. [63] used the expanding bounding box to improve

the robustness for covering target regions. This approach adjusts many outliers in the experiment,

but it still may suffer from catastrophic failures in the coarse stage. In summary, current state-of-

the-art coarse-to-fine method for abdominal organ segmentation still needs down-sampling in the

training and testing and might be vulnerable to failure localization in the coarse stage. To address

these issues, we focus on proposing effective patch-based method without isotropic interpolation

in the fine stage, while protecting patches from losing target information. Herein, we propose a

concise coarse-to-fine framework named random patch network fusion (RPNF), design to alleviate

the difficulties for 3D multi-organ segmentation. The method presents two advantages comparing

to state-of-the-art methods.

To deal with the anatomical variance from medical images, patches are widely employed to

handle the high dimensionality issue [56, 158, 161]. Schelegl et al. [169] proposed a patch-based

method on retina images. For medical image segmentation, 3D patch-based methods are used in

many applications [170, 171]. In these methods, patches are represented as structural tiling ar-

chitectures. Each individual region within patch follows fixed pattern over a pre-defined cropping

displacement. Ding et al. [172] proposed translational data augmentation, which employed shifts

at each sampling point. The resulting performance exploited advantages of successive shifts and

yields to final result with concatenation. However, these methods are dependent on manually de-

fined landmarks or extra labels. To break the fixed definition, Cheheb et al. [173, 174] evaluated the

benefit of random features for patch-based segmentation, which provided a robustness analysis to

patch-based methods. Coupe et al. [175] proposed an ensemble method based on a large number of

CNNs processing for different brain areas. The assembleNet [175] introduces sharing of knowledge
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among multiple U-Nets and assembles result with high-resolution predictions by majority voting.

Herein, we propose a concise coarse-to-fine framework named random patch network fusion

(RPNF), design to alleviate the difficulties for 3D multi-organ segmentation. The method presents

two advantages comparing to state-of-the-art methods. 1) it enables segmentation in original CT

resolution without image scaling in the input and output. 2) it performs robustness to save the catas-

trophic failures from the coarse stage. The method enables segmentation in original CT resolution

by a two-stage cascade design. The proposed strategy is built on the concept that the performance

of a higher resolution level in hierarchical model is indicative of the low-resolution level in hierar-

chy. To validate the proposed strategy, experiments on baselines methods are performed, including

low-resolution [57], high-resolution [158] and multi-scale pyramid models [176]. For the family

of patch-based method, we evaluate different strategies including structural tiling, random shifting

and combined approaches. We perform sensitivity analysis in terms of patch numbers, as well as

the ablation studies on behalf of averaged coverages per voxel and the effect of variant patch size.

We present our study on the dataset from “Multi-Atlas Labeling Beyond the Cranial Vault” (BTCV)

Challenge of MICCAI 2015. For external validation, we evaluate our method on two cohorts that

were excluded from training, the ImageVU pancreas with 40 subjects and HEM1538 with 82 sub-

jects. To summarize, the contributions of this work are:

1. We proposed a new coarse-to-fine framework termed ‘random patch network fusion’ by in-

troducing randomly localized patches between first and second stage.

2. We show that our proposed method can be implemented to predict original space segmenta-

tion in second level model.

3. We provide large-scale validations on analyzing patch-based strategies and comparing them

with our method, supporting that patch-based method plus random shifting could boost 3D

segmentation performance.

5.2 Theory

The proposed method for abdominal segmentation consists of three main components: (1) a 3D

multi-organ U-Net that produces coarse, preliminary segmentation, (2) a random patch sampling

process which imposes constraints of the field of view, and (3) a second stage model followed by
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Figure 5.1: Method framework. Given a CT scan with at high resolution of 0.8 x 0.8 x 2mm, a
low-res section (left panel) is trained with multi-channel segmentation. The low-res part contains
down-sampling and normalization in order to preserve the complete spatial information. After the
coarse segmentation are acquired from low-res UNet, we interpolate the mask to match the image’s
original resolution. Next, random patch sampling (mid panel) is employed to collect patches, and
patches are concatenated with corresponding coarse segmentation masks. Finally, we trained a
patch-based high-res (right panel) segmentation model, the high-dimensional probability maps are
acquired from integration of all patches on field of views. Majority vote is used to merge estimates
into a final segmentation.

statistical fusion to achieve final segmentation (Figure. 5.1). The approach combines convolutional

neural networks, hierarchical models and statistical fusion. For training the subject image i, given

Hounsfield Units of voxels, the goal of the random patch network fusion algorithm is to estimate the

segmentation S using observed labels s
′

from voters Vi. Consider the framework as a hierarchical

model with two stages l and h. At each level, let Sm =(Sl,Sh) be the mapping vector that corresponds

to labels at each level of segmentation. Let s ∈ L, Ym = (Yl,Yh) be the collection of ground truth at

the m level of hierarchy. The entire problem definition of our goal is to estimate the segmentation

such that:

f (Vi j = s
′ |Yi = (s,S,θ) (5.1)

where voters V for each voxel j observes label s
′
given the ground truth Y , hierarchical model S, the

parameters of each model θ .
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5.2.1 Stage 1: Preliminary segmentation

The labeled data i represents the original resolution CT scan. x is the down-sampled volume using

tri-linear interpolation. Consider the segmentation network parameterized by θ . Low-resolution

training aims to:

argmax(θl ,Yl)LDl (θl) (5.2)

where LDl (θl) is the Multi-Sourced Dice Loss (MSDL) [4]. MSDL was proposed as a way of

evaluating datasets with varying labels with a single score by extending the Dice loss to adapt

unbalanced multi-organ segmentation:

LDl =− 2
A

∑
A
a=0 w∑

M
i=1 ∑

N
j=1Yi jPi j+ ∈

∑
A
a=0 w∑

M
i=1 ∑

N
j=1Y 2

i j +∑
A
a=0 w∑

M
i=1 ∑

N
j=1 P2

i j+ ∈
(5.3)

where A denotes the number of anatomies and w represents the variance to different label set prop-

erties in given image dimension of M and N. Y is the voxel value and P are the predicted probability

maps. A small number, ∈, was used in computing the prediction and voxel value correlation to

prevent discontinuities. MSDL was iteratively optimized, and Pi j was computed by the softmax of

the probability of voxel j in image i to anatomy a.

5.2.2 Stage 2: Random patch sampling

We proposed an approach that is inspired by hierarchical algorithms [171] and random sampling [173].

We randomly select predicted voxels in the coarse segmentation mask according to the distribution.

Using the selected voxel as indices’ center, we place a bounding box as the local field of view. In

order to introduce randomness, we also add a random shift to all axes’ direction by the distribution.

The distance of shifting is given by Gaussian random number generator, the mean and variance of

the norm is determined by the mean distance of centers indices (e.g. the spleen patches have the

mean distances of 4.2 and variance of 2.3 in x axes direction, the shifting distance to x direction is

generated by the Gaussian random number generator). Patches are cropped according to bounding

boxes as second stage model inputs as shown in the middle panel of Figure. 5.1. The strategy crops

CT scan at original resolution without re-sampling, and it builds the hierarchy of non-linear features

from random patches regardless of 3D contexts. The method employs detail context at original

resolution and incorporates advantages of data augmentation with shifting.
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5.2.3 Stage 3: Label fusion

After separating full spatial context to k randomly selected subspaces, patches will overlap with each

other. The overlapped region could provide more than one segmentation label for a voxel. Herein,

except placing patches back to original coordinate space, it is required to summarize a single label

given a vector of class labels from n candidates. In this work, we implement label fusion with

majority vote algorithm, which fuses n segmentation from network predictions to a single label.

The final segmentation label for voxel j in image i is acquired by:

Si j = argmax
1
n

n

∑
m=1

p(a|s′ , j) (5.4)

where p(a|s′ , j) = 1 if s
′

equals to anatomy class a and 0 otherwise. We ignore the voters outside

the image space, related values are excluded in the label fusion. For voxels with equal number of

voters, we label the voxel randomly to either be target or background. uncertainty.

5.3 Methods

The 3D abdominal segmentation task involves segmentation of 12 abdomen structures with highly

deformable volume and shape. Anatomies present high class-imbalance, which involve large organs

(spleen, liver, stomach and kidneys), vessels (aorta, portal and splenic vein, and inferior vena cava

(IVC)), and small anatomies (esophagus, gallbladder, pancreas and adrenal glands). The details of

each dataset are provided below.

BTCV dataset: We perform de-identified data acquired from the Vanderbilt University Medical

Center (VUMC) under IRB approval. We retrieved 100 subjects with 12 labeled anatomies, labels

are annotated by experts. We integrate all 100 subjects in this study, the in-plane pixel dimension of

each scan varies from 0.4 to 1.2 mm. Each volume is preprocessed by excluding outlier intensities

beyond -1000 and 1000 HU. The slice thickness ranges from 1 to 6 mm. Each CT scan consists 80

to 225 slices of 512 x 512 pixels. 100 CT scans are independent from subjects and with contrast

enhancement in portal venous phase. Part of the dataset is released in the MICCAI 2015 Multi-Atlas

Labeling Challenge, which contains 30 scans with 3779 axial slices. The 12 organs were outlined

manually by interpreters under supervision of clinical radiologists (MD) from Vanderbilt University

Medical Center (> 10 years of experience in abdomen radiology). For each organ, the interpreter

65



Figure 5.2: Representative random patches for 12 abdominal organs of a single subject. The patch
size is 128x128x48 and 8 samples are shown for each anatomy. Patch size defines the volume of field
of view corresponding to organs. Large organs like spleen, liver and stomach cannot be covered until
a number of patches are sampled, the patch of 128x128x48 covers most regions of mid-sized organ
(kidney, pancreas, and portal & splenic vein), while small anatomies (adrenal glands, gallbladder,
and vessels) can be covered by single patch with above size. The patch size effect is explored in an
ablation study.

was instructed to verify the segmentation slice-by-slice in all axial, sagittal, and coronal views. To

avoid inter-rater variability and perform reproducibility, we have independent observers perform

manual segmentation on the same dataset.

HEM1538 dataset: We retrieved 82 splenomegaly subjects substantially acquired with clinically

trials. 117 splenomegaly CT scans are included and used as external validation [141]. Splenomegaly

indicates the enlargement of spleen with different levels of red blood cell destruction and inflation.

These scans have large variance of spleen shape, which size varies from 143 cubic centimeter (cc)

to 3045 cc. Each CT volume consists of 60 to 200 slices of 512 x 512 pixels, with resolution of

(0.59 x 0.59 mm to 0.98 x0.98 mm). The slice thickness ranged from 1mm to 2mm. For each case,

the spleen is manually annotated and reviewed by a radiologist.

ImageVU pancreas: A total of 40 subjects were selected and retrieved from Vanderbilt Uni-

versity Medical Center (VUMC). The dataset is collected from a group of 40 outliers out of 598

retrieved subjects. These outlier-guided subjects were a collection of studies that evaluated with

benefits for rare/in-frequent population. The pancreas was manually traced for each subject under

a soft tissue window. Patches for organs: To illustrate the random patch definition, we show the

sampled patch field of views in Figure. 5.2, which are acquired from BTCV dataset, 12 annotated

anatomical structures are shown.
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5.3.1 Preprocessing and body part regression

We processed CT scan with soft tissue window with range of -175 to 250 HU. Intensities were

normalized to (0,1). Clinically acquired CT scans can exhibit large variance in volume size, we

adopt a critical pre-processing with body part regression [31, 114]. The body part regression helps

to remove slices on inconsistency volumes, and to localize anatomical regions automatically. We

used the pre-trained model from unsupervised regression network to navigate slices in abdomen

region (scalar reference index ranges from -6 to 5).

5.3.2 Baseline architectures

We compared our random patch network fusion framework with a series of state-of-the-art ap-

proaches, including 1) low-resolution model on down-sampling images to fit maximum GPU mem-

ory, 2) high-resolution architecture with complete tiling patches, and 3) hierarchy with two-level

pyramids.

Low-resolution architecture: The 3D U-Net is trained on images with finest resolution to

house the maximum GPU memory. Each scan is down-sampled from (512, 512) to (168, 168) and

normalized to consistent voxel resolution of (2 x 2 x 6). The output and ground truth labels are com-

pared using MSDL. We ignored the background loss in order to increase weights for anatomies. The

final segmentation maps are up-sampled to original space with nearest interpolation [177] in order

to spatially align with CT resolution. This approach is trained end-to-end, and the resulting segmen-

tation is summarized in Figure. 5.3 and Figure. 5.4. Qualitative results are shown in Figure. 5.5 and

Figure. 5.6. The low-resolution framework incorporated down-sampled volume which lacks detail

structures of anatomies, but it preserves complete spatial context in CT scan.

High-resolution architecture: The image is normalized to 1 mm isotropic resolution with

dimension of 512 x 512. Since the high-resolution volume cannot be fed into GPU given structure

of 3D U-Net, we employed k patches tile to cover full CT space. The patch number k for each

image is based on equal distribution that continually tiles in x, y, and z axes. Each image is split

to 32 patches along with the dimension, each patch covers a subspace. To maximize the usage of

GPU memory, we use patch volume with (168 x 168 x 64) voxels. The subspace can be presented
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by coordinate (x,y,z) and patch size (dx,dy,dz).

φk = [xk : xk +dx,yk : yk +dy,zk : zk +dz] (5.5)

Patches are extracted without overlaps, each patch is padded to fixed size once it exceeded

the volume dimension. For 3D U-Net, we adjust the decoder section upon original 3D U-Net im-

plementation to be compatible with 12 labels prediction. 12 output channels are employed in the

de-convolutional layers in the model. We also presented the overlapped patch strategies analyzed in

Figure. 5.7. The half-overlapped patches covered half volume of subspaces, one-third overlapped

patches cover one-third volume of subspace, etc. The high-resolution method is evaluated end-to-

end, and final segmentation masks are acquired by tiling ordered patches.

Hierarchy with multi-scale pyramid network: To effectively segment an image at higher reso-

lution, we compare our method with the multi-scale auto-context pyramid approach. The method

both captured spatial information at lower resolution down-sampled images while learned accurate

segmentation from higher resolution in multiple levels. F = ( fm(Xm,θm)),m = 1, . . .M, with m the

order of levels in the approach. Xm is the subspace at level m. In the first level, the 3D U-Net

is trained the same as low-res network, which employed lowest resolution to fit largest amount of

spatial information. In the next levels, it uses the predicted segmentation masks as an input channel

to the next network. The succeeded input volume is cropped according to bounding box define by

predicted segmentation map in level m− 1. And down-sampled by a factor of dm = dm1/2. The

previous level’s segmentation is up-sampled by 2 in order to align with higher resolution levels. 3D

U-Net at each level is optimized using Dice loss as the same wit low-resolution training. The pre-

dicted segmentation masks and cropped images are concatenated as the next level input. The final

segmentation masks are acquired by interpolating the last level prediction and match the cropped

images to original coordinates. In our implementation, we trained the pyramid models with two

levels.

5.3.3 Implementation Details

We adopt 3D U-Net as the segmentation model, which contains encoder and decoder paths with four

levels resolution. It employs deconvolution to up-sample the lower level feature maps to the higher
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space of images. This process enables the efficient denser pixel-to-pixel mappings. Each level in

the encoder consists two 3×3×3 convolutional layers, followed by rectified linear units (ReLU) and

a max pooling of 2×2×2 and strides of 2. In the decoder, the transpose convolutions of 2×2×2

and strides of 2 are used. And followed by two 3×3×3 convolutions, followed with ReLU. 3D U-

Net employs skip connectors from layers of same level in the decoder to provide higher-resolution

features to the decoder part. The last layer is a 1×1×1 convolution that set the number of output

channels to the number of class labels. We used Multi-sourced Dice Loss and Dice Loss for multi-

organ segmentation and single class segmentation respectively.

The baseline low-resolution multi-organ segmentation uses the largest volume size of 168 x 168

x 64 in order to fit maximum memory of a normal 12GB GPU under architecture of 3D U-Net.

The volume size is also employed in baseline hierarchical method for training the first level model.

For patch-based segmentation, we firstly chose the medium size of (128,128,48) for experiments,

the effect of different size of patch is evaluated in ablation study, presented in Figure. 5.8 and

Figure. 5.9.

To fairly compare methods, the same 3D U-Nets is used with same hyper-parameters except

input dimension and channels. We use batch size of 1 for all implementations. We used Instance

Normalization, which is agnostic to batch size. We adopted ADAM algorithm with SGD, momen-

tum=0.9. The learning rates is set to 0.001 and it reduced by a factor of 10 every 10 epochs after

50th epoch. Implementations are performed using NVIDIA Titan X GPU 12G memory and CUDA

9.0. Training, validation and testing are executed on a Linux workstation with Intel Xeon CPU,

32GB of RAM. The code of all experiments including baseline methods are implemented in python

3.6 with anaconda3. Networks and frameworks are implemented in Pytorch 1.0.

5.3.4 Experimental Design

We conducted experiments on three perspective of analysis to evaluate the effectiveness of different

approaches. First, we compared state-of-the-art methods with RPNF on multi-organ segmentation

to provide effectiveness. Then, in order to prove robustness and sensitivity, we did three ablation

studies to validate the effect of 1) patch-based strategies, 2) number of random parches per scan

and 3) patch size. Last, we tested the trained model on two external datasets to provide stability

of the RPFN. All segmentation comparisons are assessed the average DSC score across 12 non-
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background labels. The claim of statistical significance is evaluated by paired t-test (p<0.01).

5.3.4.1 Random Patch Network Fusion

To perform best effectiveness of the proposed method, we implemented experiments with maximum

number (50) of patches for evaluating performance of baselines and RPNF. We implemented experi-

ments with 5 fold cross validation on BTCV dataset. To perform standard five-fold cross validation,

we split 100 scans into five complementary folds, each of which contains 20 cases. For each fold

evaluation, we use 4 folds as training and testing on the remaining cases.

We compared RPNF with three baseline architectures (low-resolution, high-resolution and hi-

erarchy) with same dataset and parameters on task of multi-organ segmentation. Briefly, we first

trained the low-resolution approach, which has been shown its capability on 3D multi-organ seg-

mentation with full spatial contexts. Second, we trained the 3D networks with structural tiles with-

out overlapping to evaluate the high-resolution method. In this setting, local patches are cropped

by pre-defined coordinates, patch size remains the same as low-resolution training (168 x 168 x

64). To evaluate the coarse-to-fine methods, we trained the two-level pyramid networks as the third

baseline. In the first level, the low-dimensional representation is used for computational efficiency.

Then, the input volume is cropped according to bounding box define by predicted segmentation map

in the first level. The volume is down-sampled by a factor of d2 = d1/2, which means pyramid net-

works use higher resolution patches in the second level hierarchy. In this experiment, we evaluate

the proposed method on all of 12 abdominal anatomies. We aim to show the method can be applied

to multiple organs with variant sizes (large organ such as liver, and small anatomy such as adrenal

gland). Thus, we claim the effectiveness of RPNF on the representative multi-organ dataset.

5.3.4.2 Ablation Study

In this section, we evaluated the effect of three key factors that influence the performance. To

simplify the evaluation on patch strategies and numbers, we conducted experiments on spleen seg-

mentation as the representative task of abdomen segmentation. On evaluation of patch size, we

performed the experiments on three representative organs (liver, spleen and pancreas). We per-

formed experiments on the same BTCV dataset with 80 training scans, the withheld 20 cases are

split with 10 for validation and 10 for testing.
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Effect of patch-based strategies: For comparing patch-based strategies, we implemented meth-

ods of structural tiling, structural plus randomness and pure randomness. Briefly, we first employed

complete structural tiling. Similar to high-resolution training, we cropped the image with fixed co-

ordinates. In the second strategy, we start from the structural bounding boxes in the first method,

then randomly shift each box in three directions (x, y and z). Last, we perform pure random se-

lection of patches instead of pre-defined bounding boxes. To perform a fair comparison, the same

3D segmentation network with the same parameters are used in experiments. To be specific, the

patch size = 128 x 128 x 48, batch size = 1, optimizer = “Adam”, and learning rate = 0.001. The

preprocessing remains the same for different strategies.

Effect of average number of coverages per voxel: To further evaluate patch-based methods, we

conducted a large-scale of experiments on number of coverages per voxel. We designed experiments

on use of average number of coverages per voxel from 1 to 50. The structural tiling method is

implemented by increasing overlapped region with 1/2, 1/3, 1/4, . . . 1/50. The structural plus

randomness is performed by shifting overlapped patches randomly. Last, the evaluation on the

pure randomness strategy is achieved by increasing number of random patches until reach the same

average coverage per voxel as other experiments. We showed the analysis in Figure. 5.7.

Effect of patch size: While patch-based studies achieved promising results, there are rare work

focused on effect of patch size. Following the current prevailing GPU memory, previous studies

implemented patch with dimension for maximizing usage of memory (for example: 128x128x96

volume typically occupies 12 GB with 3D U-Net). To better understand the effect of patch size, we

evaluated 3D segmentation on three representative abdominal organs, spleen, liver and pancreas.

We first employed three different sizes for evaluating dimension of x-y axes. Volume size varies

from 64x64x48, 96x96x48 to 128x128x48. Then we performed training on different volume length

(128x128x36, 128x128x48 and 128x128x64). Except patch size, other settings remain the same as

random patch network fusion.

5.3.5 Validation on External Datasets

To show the stability of the proposed method, we validate the trained model on two independent

cohorts (HEM1538 and ImageVU pancreas). We implemented the model of RPNF and baseline

approaches on all subjects in these two unseen datasets. For evaluation of HEM1538, we aim to
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present the stability of our model, which trained on normal spleen and test on splenomegaly cases.

For ImageVU pancreas, we compare the performance on outlier-guided study with academic con-

trolled dataset. The same preprocessing and patch selections are used in the validation correspond

to each model. Except the proposed PRNF method, the output segmentation volumes from other

models were resampled back to the original image space.

5.3.6 Evaluation Metrics

We used the Dice similarity coefficients (DSC) as the measurement for our method and baseline

approaches,

DSC =
2|A∩M|
(|A|+ |M|)

=
2|T P|

(2|T P|+ |FP|+ |FN|)
(5.6)

where T Pis true positive, T P is false positive, FN is false a negative. The statistical measurement

between methods were evaluated by paired t-test and the difference was significant when p < 0.05.

5.4 Results

5.4.1 Random Patch Network Fusion

In Figure. 5.3, the quantitative boxplot shows the proposed random patch network fusion method

with 12 anatomies’ labels achieved superior performance compared with baseline methods on metric

of DSC scores. Table. 5.1 reports mean DSC scores and standard deviation. As shown in Table. 5.1,

our proposed framework achieves state-of-the-art method “Hierarchy” [62] by a large margin. For

large organs, our RPFN achieves 0.963 against 0.942 (spleen), 0.965 against 0.955 (liver), 0.856

against 0.826 (stomach), which are around advancement of 1.5%. In comparison of middle sized

organ, our methods achieve 0.931 vs 0.881 (right kidney), 0.945 vs 0.887 (left kidney), 0.788 vs

758 (esophagus), 0.923 vs 0.903 (aorta), 0.853 vs 0.833 (IVC), 0.761 vs 0.721 (pancreas), which

are around 3% advancement. Regarding of small tissues, our method achieves 0.826 vs 0.501

(gallbladder), 0.728 vs 0.698 (portal and splenic vein), 0.736 vs 0.690 (adrenal glands), which

increases by a large margin.

Figure. 5.3 indicates our method achieved significant improvement with paired t-test of p-value

< 4 0.001, compared with performance of the state-of-the-art two-level hierarchy. In Figure. 5.3,

the DSC scores of high-resolution methods are the lowest since local patches result in holistic in-

formation. Unlike patch-based method in brains [55], abdomen CTs do not have registration step
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Table 5.1: Mean DSC and variance of 12 abdominal organs compared with our method and three
baseline approaches on BTCV miccai2015 challenge testing cohort. Our method presented signif-
icant improvement compared to Hierarchical method. (p-value < 0.01 with paired t-test). Note:
Bold values indicates best mean DSC of each organ.

Table 5.2: Segmentation performance of models trained on BTCV dataset in Mean DSC and vari-
ance, tested on HEM1538 and ImageVU pancreas, the proposed method is compared with baselines
(p-value < 0.01 with paired t-test between random patch network fusion and two-level hierarchy).
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Figure 5.3: Quantitative results from the testing cohort: spleen to liver (50 patches used). We com-
pare our random patch network fusion method with three baseline approaches (high-res, low-res
and hierarchical framework). The high-res method presents result with large variance and outliers
in boxplot due to limited field of view in each patch. The low-resolution segmentation performs
better than high-res method in mean DSC, which indicates complete spatial information is essential
in abdominal organ segmentation. The hierarchical approach increases training resolution in the
second step and achieved higher DSC. Hierarchical method’s performance is limited when bound-
ing box is inaccurate from previous levels. Our method achieves overall highest result compared
to hierarchical method with significant improvement, “*” indicates statistically significant (p¡0.01
from paired t-test). The random patch fusion framework employs advantages from both low-res and
high-res settings, and it achieves segmentation without resample postprocessing. In boxplot, small
anatomies (gallbladder, esophagus) present higher improvements than large organs (spleen, kidneys
and liver), which presents higher median DSC, smaller variance and fewer outliers.

Figure 5.4: Quantitative result for the testing cohort: stomach to adrenal glands (50 patches used).
“*” indicates our method outperforms hierarchical method by statistically significant improvement
(p<0.01 from paired t-test).
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Figure 5.5: Same subject qualitative result of our method compared to baseline approaches (spleen
to liver). Second and third row presents direct high-resolution and low-resolution segmentation,
mis-predictions are shown due to limited field of view, and resampling respectively. The hierarchical
method presents smoother boundaries but suffers from truncation due inaccurate bounding box from
first step. Our random patch fusion method presents complete segmentation masks with smoother
boundaries among structures.
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Figure 5.6: The same subject qualitative result of our method compared to baseline approaches from
stomach to adrenal glands.

Table 5.3: Comparison of coarse-to-fine methods between our proposed approach and state-of-the-
art methods. The evaluation is conducted on BTCV testing dataset in terms of mean DSC.

to alleviate the bias and variance in patients, which indicates intensities in patches are not scaled

and normalized. Herein, we observed that soft structures such as stomach and pancreas show large

std (DSC score) in Figure. 5.3 and Figure. 5.4. A similar result happens in large structure, liver

and spleen, since the segmented tiled patches contain outliers. On performance of low-resolution

model, we see an improvement for all structures compare to high-resolution model, which indicates

that spatial contexts are essential for 3D segmentation. As full context provides complete shape and

background knowledge to training model, the low-resolution model shows smaller standard devia-

tion in Table. 5.1. The limitation of the low-resolution method comes from the tri-linear and nearest

interpolation during downsample-upsample steps. Small structures, gallbladder, adrenal glands are
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Table 5.4: Fine stage performance comparison with state-of-the-art methods on patch selection
strategies using same backbone network (3D UNet). The evaluation is performed on BTCV testing
data on 12 abdominal organs in terms of mean and variance.

with limited number of voxels in low-resolution volume, the predicted segmentation will not mem-

orize the shape structure after up-sampling with nearest interpolation. In hierarchy approach, we

implemented multi-scale pyramid network with two levels, the result present in grey boxes in Fig-

ure. 5.3 and Figure. 5.4. The hierarchical approach shows general better DSC scores than low-res

model by incorporating spatial context in first level and higher resolution context in second level.

The final segmentation result relies on the bounding box predicted by outputs in previous level.

We observe that cases may miss part of structure due to cropping with inaccurate bounding box,

as presented in qualitative result (Figure. 5.5). The uncertainty of boundaries results in amounts of

outliers especially in segmenting soft structures (such as stomach and pancreas). Herein, the boost

in DSC score for these structures are marginal for the hierarchical approach. The random patch

network fusion presents overall higher DSC scores on all structures. We see a high improvement

of 30% DSC score for gallbladder. Adrenal glands also present large improvements, these small

structures benefit greatly since a single random patch will cover entire structure, and the random

patch works as data augmentation scheme while benefits with assembled result with label fusion.

The random patch fusion network utilized advantages from all the baseline approaches, 1) complete

spatial context in low-resolution model, 2) detailed feature of structures in high-resolution model

and 3) coarse attention mechanism provided by multi-scale architecture. Additionally, the second

step of our method predicts masks in original CT space, which indicates no re-sampling step needed

for final segmentation result.
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Figure 5.7: Boxplot and uncertainty curves on patch strategies. The boxplots on the left presents
the DSC coefficients on testing scans of baseline hierarchy method compared to the complete tiling.
Complete tiling shows less variance than baseline hierarchy method. Red diamonds present outliers
in complete tiling, and baseline hierarchy shows better DSC (green triangles) than complete tiling.
Uncertainty plots show means/standard deviations comparison of structural tiling, structural tilling
plus random shift and only random shift methods along with averaged patches per voxel. This
presents DSC of each experiment with averaged covered voxels from 2 to 50.

5.4.2 Ablation Study

5.4.2.1 Effect of Patch-Based Strategies

Hierarchy vs complete tiling: We present the results of 3D spleen segmentation by two patch-based

baselines in left panel of Figure. 5.6, which is the two-level hierarchy method and complete tiling.

The two-level hierarchy approach used the same patch configuration in the second step as complete

tiling. Patch size of (128,128,48) is used for both experiments. The implementations are conducted

with averaged patches per voxel of 1, which indicates no overlapped patches. In Figure. 5.7, we

observed similar scenario as high-resolution experiment, the mean DSC score is lower than hierar-

chical method. This effect is probably due to complete tiling act only on local patches, which lacks

holistic context. The unsatisfied performance of the tiling patches presents two reasons. First, com-

pare with hierarchical method, complete tiling contains unrelated patches without target. Second,

the large variance of target present unbalanced intensity distribution. Structural tiling vs random

shift: In this section, We evaluated translational data augmentation techniques. The right panel of

Figure. 5.7 compares structural tiling, structural tiling plus random shift, and only random shift

strategies. The structural tiling means adjacent patches cropped along axes such as complete tilling.

With the increasing of average covered voxel, we shift the tiled patches to be overlapped by half,
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Figure 5.8: Boxplot on three different patch size along x-y axes. The ablation study conducted
on three abdominal organs (spleen, liver and pancreas). Patch size range from small (64x64x48),
medium (96x96x48) and large (128x128x48). The boxplots show that larger patch sizes perform
better than smaller patch sizes.

Table 5.5: Average time cost per CT volume in the testing phase on different multi-organ segmen-
tation models, where mean DSC is the average Dice score across 12 organs on BTCV testing data.

1/3, 1/4, etc. The structured shifting was implemented in three dimensions (x, y and z axes) in order

to balance spatial context for augmentation. The grey dash line in Figure. 5.7 indicates performance

of structural tiling and random shift. From tiled patches, we implemented Gaussian random shift

upon structural patches. This method involves moving the image randomly along the x, y, and z

direction, which enables network to ignore absolute location of targets.

5.4.2.2 Effect of Average Number of Coverages per Voxel

We point out that patch-based approaches’ performance is partially influenced by number of over-

lapping region of interests. To pin-point the gain of increasing number of patches, we conducted

large-scale of experiments on spleen by using coverage of 2 per voxel to 50 for each patch strat-

egy. For structural tiling, the number of coverages per voxel is calculated by overlapping tiles.

For random shifting, we count the mean coverages per voxel as the same with structural tiling. In

Figure. 5.7. These competitors perform decently when number of coverages reach 10 and more.

Curves represent the mean DSC of each experiment, while the shading area indicates variance. In-
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Figure 5.9: Boxplot on three different patch size along the z-axis. The experiments are conducted on
spleen, liver and pancreas with patch size ranging from small (128x128x36), medium (128x128x48)
and maximum (128x128x64). The boxplots also present that larger number of slices perform better
than less in the volume.

terestingly, the performance of random shift is higher than structural tiling when n is less than 15.

For n larger than 15, the effect of random shift is less influential compared with pure structural tiling.

Herein, we conclude that translational data augmentation is comparable to random shift effect when

averaged patches per voxel reaches a large number.

5.4.2.3 Effect of Patch Size

Figure. 5.7 shows the results on dimension of 64/96/128. With the increasing of the scheduled

dimension, all models perform better DSC, as indicated by larger spatial context. Big patches

contain broader spatial context with consistent intensity distribution and trace of boundaries. Then,

we conducted experiment on increasing of slice numbers. With the fixed x-y dimension of 128, we

changed volume length from 36 to 64 shown in Figure. 5.7, it’s no supervise that the performance

follows similar result in x-y dimension. We conclude that 3D U-Net is capable to capture local

features in patch with larger size, with the current computational resource, larger patch is better

than small patches in segmentation metric.

5.4.2.4 Validation on External Datasets

In this evaluation, we investigated two clinical scenarios instead of research subjects. We adopt the

model trained on the BTCV dataset and tested on external cohort with HEM1538 (splenomegaly)

and ImageVU (pancreas). which are manually labeled by experts. Results are shown in Table. 5.2

and Figure. 5.10. HEM1538: The quantitative performance on HEM1538 is presented in Table. 5.2.
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Table 5.6: Evaluation of different medical image segmentation methods on the BTCV testing dataset
in multi-organ segmentation (12 organs). The evaluation is performed in terms of mean DSC and
across organs.

Table 5.7: Leaderboard of Multi-Atlas Abdomen Labeling Challenge (mean DSC).

We implemented the same comparison experiments with low-resolution, high-resolution and multi-

scale hierarchy. The mean Dice similarity coefficient (DSC) is calculated for all testing scans in

HEM1538. The multi-scale hierarchy method achieves best DSC among baseline approaches and

was used as a reference method. Our proposed random patch network fusion models perform better

than multi-scale hierarchy as presented in boxplot with significant improvement (p<0.01, paired

t-test). As HEM1538 is a pathology cohort with extra large spleens, we prove that RPFN could

effectively preserves the stability on generalizing knowledge from normal spleen to splenomegaly.

ImageVU pancreas: In this study, we introduced an outlier-guided cohort since clinically acquired

scans contain hard cases among population. The quantitative result is presented in Table. 5.2, the

mean volume DSC showed the detailed measurement for all methods, which showed that the pro-

posed RPFN with 50 patches and majority vote achieves superior performance compared with the

two-level multi-scale hierarchy with (p<0.01, paired t-test with mean DSC).

5.4.3 Comparison of State-of-the-art Methods

5.4.3.1 Coarse-to-fine Methods

Our model is compared with other state-of-the-art coarse-to-fine networks. The results are in Ta-

ble. 5.3. Roth et al. [66] used hierarchical 3D fully convolutional networks (FCN) with two stages.

Zhou et al. [168] developed a fix-point model for small organ segmentation. Li et al. [178] com-

bined 2D and 3D FCNs for hierarchically aggregating volumetric contexts. Zhu et al. [63] proposed
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Figure 5.10: Qualitative result of three representative subjects. From low to high, we show the
segmentation result evaluated by our method. The testing performance on external datasets (top:
HEM1538-splenomegaly, bottom: ImageVU-pancreas outliers).
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a novel 3D coarse-to-fine framework that achieved promising result on pancreas segmentation. For

each method, we trained 12 models for 12 organs. Comparing with these state-of-the-art coarse-

to-fine methods, our work achieves a consistent higher DSC. The average Dice of our method is

0.8564, compared to 0.7920 [66], 0.8138 [168], 0.8176 [178], 0.8328 [63], respectively.

5.4.3.2 Patch Selection Methods

We implemented different patch selection strategies used in abdominal organ segmentation. To

fairly conduct the evaluation, we used 3D UNet as the segmentation model for all methods. All

experiments are implemented using the same BTCV dataset on 12 organs. As shown in Table. 5.4,

we compared five different strategies with our method in addition to the ablation study. The eval-

uation metric employed in these experiments includes the mean surface distance, Dice scores, and

Hausdorff distance. In comparison of single-stage model, patches selected with overlap perform

better than tiles without overlap. In comparison of two-stage model, we evaluated the fine-stage

performance using fine-scaled, sliding window, and our random patch method. The average Dice of

our method is 0.8564, compared to 0.8297, 0.7991, respectively.

As shown in Table. 5.4, our method outperforms other patch selection strategies in terms of

three evaluation metrics. We observed that the fine-scaled and the sliding window method per-

form well when the first stage predictions are relatively good. But the fine-stage is sensitive to

catastrophic failures predicted from coarse stage. The Zhu et al. [63] method outperforms Roth et

al. [179] mainly because it involves the operation of expanding box (n=12). Our method achieved

the improvement may be due to the smoothing effect introduced by random patches, it could save

the catastrophic failures in the first stage. Figure. 5.5 shows visualization of sample results of our

method compared to Roth et al. [179]. We could observe that the fixed patches may be vulnerable

to the error field of view given by first-stage segmentation.

5.4.3.3 Comparison of Time Efficiencies with Different Methods

We discuss the average time cost of our proposed method against other coarse-to-fine methods. The

number of patches used in the approach matters the overall testing time. Here, we choose n = 50 and

n = 25 for discussing the concern of accuracy-time trade-off. In experiments of Roth et al. [179],

Zhou et al. [168], and Zhu et al. [63], we trained 12 models for 12 abdominal organs. The time cost
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evaluation is calculated after acquiring the final multi-organ segmentation output (including post-

processing steps reported in each method). In implementing Zhu et al. [63]. We choose the overlap

size n = 6 and 12 as noted in the study. Experimental results are shown in Table. 5.5. Zhu et al. [63]

is the most efficient. Our method achieves comparable time efficiency on N = 25. When N is larger,

the performance improves but the testing time also increases which is reasonable. We also observe

that, in the testing phase of coarse-to-fine methods, the time of loading models composes the most

part. Overall, coarse-to-fine methods take more than double seconds in the testing phase due to

the loading of multiple models, and the automatic algorithms take much less time than radiologists,

which presents the clinical significance of the work.

5.4.3.4 Comparison with Different Medical Image Segmentation Methods

We discussed different prevalent methods on medical image segmentation methods on the task of 12

abdominal organ segmentation. We used the same data split configuration during experiments. The

results are shown in Table. 5.6. In comparison of 2D methods, the basic model 2D UNet [26] and

ResNet [24] suffer from worse DSC of small organs such as adrenal glands and gallbladder. Mask R-

CNN [25] and DeepLab V3 [180] achieves higher performance because the localization effect in the

framework. In experimental results of 3D methods. We observe low performance due to the severely

down-sampled volume of CT images in 3D UNet [115], V-Net [156], and 3D FCN [181], While

nnUNet [58] benefits from the cascaded framework that incorporates many ensembled predictions in

the outputs. In comparison of 2D/3D hybrid networks, former methods achieve comparable results,

these studies utilized both 2D and 3D context in a single network. Compare with above current

state-of-the-art medical image segmentation methods, coarse-to-fine frameworks achieve consistent

higher DSC in the task, probably due to the effective combination of low-resolution context and

high-resolution contexts.

5.4.3.5 Comparison with Multi-Atlas Abdomen Labeling Challenge leaderboard

The result of top teams on the leaderboard are listed in Table. 5.7. Note that “try” team leads the top

several rankings. It is also noticeable that some latest work achieved high performance such as Zhou

et al. [44] that achieves mean DSC of 0.850 are not reported on the leaderboard. Compare with the

leaderboard, our method outperforms other state-of-the-art methods, and achieve the highest mean
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DSC and the best Hausdorff distance performance in the standard competition.

5.5 Conclusion and Discussion

In the work, we revisit the challenging whole volume based 3D abdominal segmentation. Due

to limitations in low-resolution, high-resolution and hierarchy approaches under restricted GPU

memory, we explored the usage of randomly selected patches to the hierarchical method. First,

we provided a 3D coarse multi-organ segmentation using 3D U-Net. Then, we implemented the

random sampling to crop the context around target for removing fixed pattern in patches. Next,

we trained a high resolution fine-tuning network to compensate the shape and boundary structure

for patches. Last, we employed majority vote mechanism to fuse the full segmentation mask for

CT scan. Moreover, we conducted exhaustive experiments on comparison of different strategies of

patch-based methods, we demonstrated that translational data augmentation and random sampling

both provided boosted performance in comparison to simply adding more patches in 3D CNN.

Additionally, we did large scale of experiments on effect of average covered patches per voxel,

which we conclude that more patches generously perform better than a smaller number of patches.

However, majority vote works differently on variant structures, too many patches only increase the

computational time in some anatomies. Besides, we deployed the trained models on two unseen

datasets, we show that the method can be generalized to outlier cases and pathological cohort.

In this study, the proposed random patch network fusion enables the training to address the

memory issue for high dimensional 3D abdominal segmentation. In this study, 50 random patches

are used for segmenting variant isotropic resolution at (0.8 x 0.8 x 2) for CT scans. It could

be possible that GPU memory would be large enough for housing entire abdomen CT in the fu-

ture. However, the local-global feature trade-off games would still exist. Herein, the random patch

network fusion technique could be a good choice for such scenarios.

The major limitation of the proposed method is that the computational time would be linearly

accumulated with the increasing number of random patches. Besides, the majority vote algorithm

is not time efficient when applied to voxel-wise voting. Another disadvantage of majority vote is

that when voxel is rarely covered by voters, the voxel is vulnerable to be miss-labeled. Therefore,

it’s appealing to investigate better statistical fusion algorithm with more efficient time and space

complexity, while perverse stability for removing outlier labels.
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Another limitation in this work is that the hierarchical labeling framework still failed to mimic

doctor’s process for identifying structures. In the future, the hierarchical labeling could be investi-

gated in clinical inspired approaches. Instead of simply transferring low-resolution feature to high

resolution model, we could also pass anatomies’ features to next hierarchy. For example, radiol-

ogist would first find portal and splenic vein before identifying pancreas. If we could transfer the

correlated feature as a prior in different levels’ hierarchy, the performance would be potentially

improved. In addition, previous works indicated a high-dimensional data often suffer redundancy

(e.g., not every voxel in 3D volume is useful). Mining the boundary of organ versus backgrounds

or other tissues could leads to a more efficient model. We posit that it is worth additional study of

the patch selection strategy around boundaries. Future work could study the efficacy of boundary

patches and inner voxel patches.

In summary, the proposed random patch network fusion achieved consistent superior segmenta-

tion performance compare with other labeling frameworks, since it led to a better balance between

performance and computational cost compared to other patch-based and multi-stage approaches.

The balanced configurations are fulfilled by introducing 1) two-stage hierarchical levels, 2) ran-

domly localized patches, 3) network label fusion. Our method presented positive result of 3D ab-

dominal segmentation in variety of structures and datasets. We hope random patch network fusion

will be useful with other context tasks that involve hierarchical labeling design.
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CHAPTER 6

Pancreas CT Segmentation by Predictive Phenotyping

6.1 Introduction

Patient care data, such as CT scans and electronic health records (EHR) with the pancreatic dis-

ease, are heterogeneous in nature. Disease progression and treatment delivery are associated with

different care trajectories, which in turn lead to varying pancreas patterns. In anticipation of di-

abetes, patients are observed with atrophic pancreas tissues [182], with progression noted in the

patients’ medical history in terms of International Classification of Diseases (ICD) codes. Current

pancreas segmentation methods [43, 183, 184, 185] are typically driven by imaging data, while

phenotype covariates [186, 187, 188, 189, 190] that indicate underlying patient conditions are not

well considered. We observe that different disease types present heterogeneous textures (Fig. 6.1),

and thereby hypothesize that identifying different pancreas patterns can extract the discriminative

contexts which can well benefit pancreas segmentation.

Data-driven phenotype clustering has been recently used to group patients sharing close out-

comes [191, 192, 193, 194]. Combining imaging biomarkers, Virostko et al. [195] assessed the

pancreas size with type I diabetes patients. Tang et al. [121] showed the feasibility of onset type

II diabetes prediction using CT scans. However, to date, how to fully exploit the EHR data for

guiding medical image segmentation has been rarely studied. A naı̈ve approach is to simply con-

catenate both image and EHR data as a two-channel input, and then train a standard convolutional

neural network for deriving the outcome. However, this fusion strategy is not directly applicable

for our task since 1) a patient can have hundreds of phenotype categories; 2) the fusion strategy

cannot account for patients’ observed outcomes (e.g., onset of comorbidities, chronic progression

of metabolic syndrome); and 3) it requires EHR data as input during inference, which does not com-

monly exist for many real-world pancreas segmentation datasets (e.g., BTCV MICCAI Challenge

[72], TCIA pancreas CT [196]).

To address above challenges, we propose the first pancreas segmentation framework to model

both the pancreas imaging features and clinical features via predictive phenotyping. The rationale
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is that the larger scale of EHR data with (e.g., ICD-10 code) which indicates phenotype subgroups

can be potentially correlated to the different appearance of the pancreas. Specifically, the proposed

approach consists of an encoder, a segmentation decoder, and a predictor with sets of phenotypes

candidates’ centroids. Our method is designed to meet the following requirements: 1) The subject

image should be partitioned into several subgroups sharing similar future outcomes; 2) The assigned

discrete representation should retain the patient phenotype context, and 3) The phenotype represen-

tation is used as prior knowledge for predicting. Particularly, in our framework, the encoder maps

an image into a latent representation; the predictor assigns one or several phenotype categories by

taking the latent variable as input; the segmentation decoder estimates the pixel-wise labels condi-

tioned on the assigned centroid. To homogenize future outcomes in each subgroup, we introduce a

phenotyping objective given CT images by regularizing Kullback-Leibler (KL) divergence between

the learned latent representation and the embedding centroid. Finally, the segmentation model esti-

mates the pancreas segmentation mask given encoding of the image and the risk embedding.

Our contribution is four-folds: we successfully (1) learn a phenotype embedding between CT

and EHR; (2) formulate a pancreas segmentation framework that benefits from predicting phenotype

subgroups; (3) demonstrate improved pancreas segmentation performance on healthy and disease

patient cohorts; (4) design the embedding approach without requiring EHR at the testing phase.

The significance of the study is that we use an experimental CT imaging-phenotyping approach

for investing clinical underpinnings of pancreas segmentation. The phenotype embedded model

enriches segmentation contexts improving the characterization of heterogeneous disease and allows

for deeper consideration of patient phenotype in image-based learning.

6.2 Method

6.2.1 Problem Formulation

Let X ∈ X and Y ∈ Y be variables for input images and an output segmentation label. C ∈ C

is the patient phenotype onset (i.e., one or a combination of future outcomes) where X , Y and

C are the image feature, label, and phenotype onset space, respectively. Specifically, CT image

X selection is censored from timestamp: date of diagnostic code is later than date of scan at least

1 year. The input of C is the sequence of covariate admissions, the feature of one admission is a

multi-hot vector containing the comorbidities or demographics: C′
EHR = [M′,M1,M2, ...,MC ]. M′ is
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Figure 6.1: Phenotype embedded segmentation architecture in the training phase. The left diagram
shows the embedding network combining image features, predictive phenotyping, pre-existing risk
conditions lying in the latent space to be fed into the segmentation model. The predictor is trained
for predicting phenotype-dependent feature maps and selecting “similar” cluster assignment, where
the phenotype information is not required as input in the testing phase. Right top: encoder for pro-
cessing phenotype covariates, right bottom: the predictor follows self-training scheme from image
feature. Here, SA denotes soft assignment for risk embeddings, R for ReLU, FC for fully connected
layers.

the set of demographic values, MC is the set of phenotype admissions constructed by binary vectors

of aggregate ICD-10 codes. In the training phase, we are given the dataset D = {xn,yn,cn}N
n=1

consists of observations (x,y,c) for N subjects. In the testing phase, we assume the dataset only

comprising image volume {xn}N
n=1. The goal is first to identify a set of K predictive phenotypes

Z = {z1,z2, ...,zK} lying in the latent space. Each phenotype cluster is supposed comprising of

homogeneous patients that can be represented by the cluster centroid. This predictive phenotyping

updates the encoder to suggest the context to which cluster a patient belongs. Second, we design the

segmentation model to estimate the pixel-wise label given the encoding variable and the predictive

phenotyping distribution. Let z̄ be the random variable that lying in the phenotype onset latent

space and s be the image feature. The predictive phenotyping can be fulfilled by optimizing the

Kullback-Leibler (KL) divergence between distributions conditioned on the image: p(ẑ|s) and onset

phenotypes p(z̄|c), respectively. Combining the aim of segmentation, we establish our goal as

following objective:

EY∼(x,y,c) [− logP(y|s, ẑk)]+KL(ẑk|s ∥ z̄k|c) . (6.1)
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6.2.2 Loss Functions

Loss functions are designed to meet the objective in Eq. 6.1 and are proposed to iteratively refine the

predicted phenotyping from image features. Specifically, our model is trained by matching image

distribution to the target distribution defined by future outcomes. To this end, we define the objective

as KL divergence between an expectation and the cluster assignment:

L1(z̄, ẑ) = Ez∼P(x,c)

[
−

K

∑
k=1

z̄k log ẑk

]
, (6.2)

where z̄k and ẑk indicate the k-component of z̄, ẑ, respectively. Note that the KL divergence loss

reaches its minimum when two latent distributions are equivalent. Additionally, the segmentation

loss penalizes the predicted mask ȳ and the ground truth label y by DSC-loss:

L2(ȳ,y) = EY∼P(s,ẑ)

[
1− 2×∑i yiȳi

∑i yi +∑i ȳi

]
, (6.3)

where the form follows [197] to prevent a model from background bias.

6.2.3 Phenotype Embedding

To encourage homogeneous future outcomes in each phenotyping cluster, we employ embedded

mapping [198] as our initialization method. Given an initial estimate of the non-linear mapping

c′ and cluster centroid µ . We adopt the self-supervision [199] training strategy that iteratively

1) optimizes soft-assignment between embedded points and clustering centroids; 2) updates deep

mapping and centroids. The soft-assignment block in Fig. 6.1 follows [200] using Student’s t-

distribution as a kernel to estimate between data points and cluster centroid:

qik =
exp(1+∥c′i −µk∥2 /α)

∑ j exp(1+
∥∥c′i −µ j

∥∥2
/α)

, (6.4)

where α denotes the degrees of freedom of Student’s t-distribution (α = 1 for all experiments), exp

is the exponential operation with power −(α + 1)/2 and qik can be interpreted as the probability

of assigning sample i to cluster k. More comparisons of clustering benchmarks can be found in

[193, 194]. After initialization, the embedding learning is iteratively updated during segmentation

training.

90



6.3 Experiments

6.3.1 Dataset

The abnormal pancreas segmentation dataset. We have curated an abnormal pancreas dataset

that contains 2000 adult patients (aged 18-50 years) with 14927 recorded visits and de-identified

longitudinal CT scans under IRB approval. Each patient is associated with 101 covariates under

radiologists’ query, including information on demographic and abdomen-related comorbidities that

can potentially impact pancreas tissues. CT images are acquired at least one year (range from 1.0 to

2.1 years) earlier than diagnosis codes for each patient, to meet the requirements of the prognostic

task with predictive phenotyping. For the segmentation task, 300 patients’ CT images are annotated

and used for experiments. Each CT scan is 512 × 512 × Slices, where the number of slices ranges

from 72 to 121 under the body part regression process of [125] to acquire relatively same abdomen

region of interest (ROI). The slice thickness ranges from 1mm to 2.5mm.

BTCV MICCAI Challenge 2015. We used the MICCAI 2015 Multi-Atlas Abdomen Labeling

Challenge [72] as one of the external testing sets. The challenge dataset contains 50 abdominal CT

scans. For evaluating the testing phase of the proposed method, the dataset does not include patient

phenotype information. Each CT scan is manually labeled with 13 structures including pancreas

with a spatial resolution of ([0.54 ∼ 0.54] × [0.98 ∼ 0.98] × [2.5 ∼ 5.0] mm3).

TCIA pancreas CT. We use the 82 abdominal contrast enhanced CT scans from National Institutes

of Health Clinical Center as the second external testing set. The publicly available study cohort

contains 17 kidney donor subjects, and 65 patients were selected with no pancreatic cancer lesions

and pathology. Each CT scan is in a resolution of 512 × 512 and slice thickness of [1.5 ∼ 2.5] mm.

6.3.2 Implementation Details

Follow prevailing pancreas segmentation baselines [43, 184, 185], we adopt the coarse-to-fine strat-

egy for 3D pancreas segmentation. The coarse stage takes a highly down-sampled CT volume at an

input dimension of 164 × 164 × 64. For the fine stage, we cropped 64 × 64 × 64 sub-volumes con-

strained to be in the pancreas region of interest (ROI). For experiments, 10% and 20% of subjects

are randomly selected as validation and testing sets with the in-house dataset. Note that, the two ex-

ternal datasets are only used for testing, no subjects are used for the training procedure. We used 1)
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Figure 6.2: Testing performance on ImageVU dataset. Left: Distribution (median and quartiles)
of DSC, the predictive phenotyping shows smaller variance and reduces the number of outliers
(DSC<0.4). Right: The DSC (mean) comparison with varying K. The performance shows higher
improvement as K increase from 1 to 4, then becomes marginal after K = 4. * denotes statistically
significant under Wilcoxon signed-rank test (p<0.05).

CT window range of [-175, 275] HU; 2) scaled intensities of [0.0,1.0]; 3) training with Nvidia 2080

11GB GPU with Pytorch implementation; 4) Adam optimizer with momentum 0.9. The Learning

rate is initialized to 0.001 followed by a factor of 10 every 50 epochs decay.

Metrics. Segmentation performance is evaluated between ground truth and prediction by Dice-

Sorensen coefficient (DSC), Averaged Surface Distance (ASD), and symmetric Hausdorff Distance

(HD).

6.3.3 Comparison with State-Of-The-Arts

We compare the proposed method with various state-of-the-art methods: 1) 3D-UNet[115]; 2)

hierarchical 3D FCN [201] (denoted as “3D FCN”); 3) the fixed-point model [184] (denoted as

“C2F Fixed-point”); 4) 3D ResDSN [185] (denoted as “C2F ResDSN”); and 5) the random patches

model [43] (denoted as “C2F Random-patches”). Here “C2F” denotes the coarse-to-fine training

strategies [43, 184, 185].

6.3.4 Results

We compare our method against state-of-the-art approaches with respect to the cluster number at 4

(Table6.1). Our method significantly improves performance in terms of DSC, ASD and HD, with
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Table 6.1: Performance comparison on the abnormal pancreas segmentation dataset. C2F denotes
coarse-to-fine training. * denotes statistically significant against above method with Wilcoxon
signed-rank test.

Methods DSC ASD HD
3D-UNet (Cicek et al.) 0.697 5.592 27.154
3D FCN (Holger et al.) 0.724* 4.042* 25.195*
C2F Fixed-point (Zhou et al.) 0.746* 2.981* 22.516*
C2F ResDSN (Zhu et al.) 0.767* 2.105 22.017
C2F Random-patches (Tang et al.) 0.775* 1.976* 20.591*
Predictive phenotyping (Ours, K=4) 0.791* 1.697* 19.482*

Table 6.2: External testing performance comparison on BTCV MICCAI Challenge 2015 and TCIA
pancreas (mean DSC) with our model trained on the internal data. Note that no subject from these
two datasets are used for training. C2F denotes coarse-to-fine training strategies. * for statistically
significant against above method with Wilcoxon signed-rank test.

Methods BTCV TCIA
3D-UNet (Cicek et al.) 0.685 0.770
3D FCN (Holger et al.) 0.709* 0.776*
C2F Fixed-point (Zhou et al.) 0.726* 0.797*
C2F ResDSN (Zhu et al.) 0.730* 0.804
C2F Random-patches (Tang et al.) 0.742* 0.813*
Predictive phenotyping (Ours, K=4) 0.757* 0.822*

p < 0.05 under Wilcoxon signed-rank test. Importantly, the Hausdorff distance (HD) improvement

shows that EHR information provided useful context to reduce outliers. In Table 6.2, we further

investigate the comparison experiment results with external testing sets. The two public challenge

data do not include patient EHR, i.e., demographics, ICD codes. Our method implicitly predicts the

future outcomes from the image feature and fused to the segmentation task. The method achieves

a mean DSC of 0.757 on BTCV data, and 0.827 on TCIA pancreas CT. Predictive phenotyping

improves several outlier cases, showing less variance (Fig 6.2). Qualitative inspection confirms the

numerical results (Fig 6.3). First, we inspect the data of a patient with potential lung infections and

relatively normal pancreas tissue. In the second case, the patient has type I diabetes, observing a

degraded pancreas tissue. Importantly, the improvement with respect to the degraded pancreas is

larger than the healthy pancreas, showing the predictive phenotyping can be informative for identi-

fying variant patterns.

Ablative Study. Efficacy of the predictive phenotyping and network architecture In Table 1, we

compared the backbone model (row 5) and predictive phenotyping (row 6). The EHR improved

performance on two datasets by 1.5%, significant Wilcoxon signed-rank test, p¡0.001. For the dia-
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Figure 6.3: Two representative cases. The top subject has potential lung infections and relative
normal pancreas tissue. The bottom case has type 1 diabetes with degraded pancreas tissue. The
accuracy gain of the diabetes case is larger than the normal case, showing the method’s ability for
identifying degraded pancreas tissue.

betic patients, performance improvement gains were larger. Predictive phenotyping with the EHR

outperforms naı̈ve approach with feature concatenation by a large margin, from 74.5% to 77.9%.

We compared with pancreas segmentation state-of-the-art methods. Predictive phenotyping signif-

icantly improved performance in terms of DSC, ASD and HD, with p¡0.05, Wilcoxon signed-rank

test. Importantly, HD improvement shows that EHR information provided useful context to reduce

outliers. We further investigate the comparison experiment results with external testing sets. For

external validation, the two public challenge data do not include patient EHR, i.e., demographics,

ICD codes. Our method implicitly predicts the future outcomes from the image feature and fused

to the segmentation task. The method achieves a mean DSC of 0.757 on BTCV data, and 0.827 on

TCIA pancreas CT.

Importance of hyper-parameter K We further evaluate the performance by varying the number of

clusters K from 1 to 10 on the in-house dataset. Fig. 6.2 shows improved DSC as K increased, the

DSC improves from 0.7814 to 0.7956 as K from 1 to 4. The performance is observed no significant

improvement after k = 4 (p < 0.1, Wilcoxon signed-rank test).
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6.4 Discussion and Conclusion

Comparing Table 1 and Table 2, the proposed method shows higher improvement over baseline

methods if the cohort has more severe cases of abdominal diseases. Specifically, the performance

improvement on the abnormal pancreas segmentation dataset in terms of the average Dice is 1.6%,

which is larger than that of the BTCV dataset (1.5%), and the TCIA dataset (1.1%), respectively.

We have also demonstrated two qualitative examples. To show that our method can lead to more

performance gain for the atrophic pancreas than the normal pancreas. The larger improvement on

diseased cohort can be a potential advantage of the phenotype embedding. In addition to the major

segmentation objective, the case-specific feature projected to the phenotype embedding space can

be observed. The comorbidities developed in the next two years with 4 identified clusters, and

listed ICD-10 codes are with most frequencies in each grouped phenotype component. The first

component shares the most cases with relative normal pancreas, while the second, third and fourth

indicate varying phenotype outcomes of the atrophic pancreas, metabolic syndrome, and pancreas

with inflammatory fats, respectively. The number of phenotype components K is one of the most

important parameters in the study: increasing k can potentially impact the predictive embedding

with higher diversity representing data distribution. However, the interpretability will decrease as it

shares fewer similar data points. In the future, the interpretability of the predicted phenotyping can

be further evaluated with more clinically meaningful investigations.

In this work, we introduce pancreas segmentation by predictive phenotyping, a patient-oriented

approach for understanding between EHR and CT data. The experimental imaging-phenotyping

approach is used for investigating the phenotype underpinnings of the pancreas. We demonstrate a

predictive task to encourage image embedding to the phenotyping cluster with similar patient out-

comes. The EHR data is designed as input at the training phase, and only images are required for

inferencing phenotyping context and segmentation at the test phase. Throughout experiments on

the in-house dataset and two public challenge datasets, we show that the method highlights a sig-

nificant role over state-of-the-art segmentation. The integrated imaging-phenotyping method could

encourage solutions that better respect anatomical variability, especially associated with disease

progression or comorbidities. When EHR data is available, the method can be applied for boosting

performance.
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CHAPTER 7

Spatial Long-Range Dependencies: Transformers for 3D Medical Image Segmentation

7.1 Introduction

Vision transformers have recently gained traction for computer vision tasks. Dosovitskiy et al. [88]

demonstrated state-of-the-art performance on image classification datasets by large-scale pre-training

and fine-tuning of a pure transformer. In object detection, end-to-end transformer-based models

have shown prominence on several benchmarks [202, 203]. Recently, hierarchical vision transform-

ers with varying resolutions and spatial embeddings [204, 205, 206, 207] have been proposed. These

methodologies gradually decrease the resolution of features in the transformer layers and utilize

sub-sampled attention modules. Recently, multiple methods were proposed that explore the possi-

bility of using transformer-based models for the task of 2D image segmentation [90, 208, 209, 210].

Zheng et al. [90] introduced the SETR model in which a pre-trained transformer. We introduce a

novel architecture, dubbed as UNEt TRansformers (UNETR) shown in Figure. 7.1, that utilizes a

transformer as the encoder to learn sequence representations of the input volume and effectively

capture the global multi-scale information, while also following the successful “U-shaped” network

design for the encoder and decoder.

7.2 Data

Medical Segmentation Decathlon (MSD) dataset [211] comprises of 10 segmentation tasks from

different organs and image modalities. These tasks are designed to feature difficulties across medi-

cal images, such as small training sets, unbalanced classes, multi-modality data and small objects.

Therefore, the MSD challenge can serve as a comprehensive benchmark to evaluate the general-

izability of medical image segmentation methods. The pre-processing pipeline for this dataset is

outlined in supplementary materials. BTCV : The Beyond the Cranial Vault (BTCV) abdomen

challenge dataset [72] contains 30 subjects with abdominal CT scans where 13 organs are annotated

by interpreters under supervision of radiologists at Vanderbilt University Medical.
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Figure 7.1: Overview of UNETR. Our proposed model consists of a transformer encoder that di-
rectly utilizes 3D patches and is connected to a CNN-based decoder via skip connection.

Figure 7.2: Overview of UNETR architecture. A 3D input volume (e.g. C = 4 channels for MRI
images), is divided into a sequence of uniform non-overlapping patches and projected into an em-
bedding space using a linear layer. The sequence is added with a position embedding and used as an
input to a transformer model. The encoded representations of different layers in the transformer are
extracted and merged with a decoder via skip connections to predict the final segmentation. Output
sizes are given for patch resolution P = 16 and embedding size K = 768.
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Figure 7.3: Qualitative comparison of different baselines in BTCV cross-validation. The first row
shows a complete representative CT slice. We exhibit four zoomed-in subjects (row 2 to 5), where
our method shows visual improvement on segmentation of kidney and spleen (row 2), pancreas and
adrenal gland (row 3), gallbladder (row 4) and portal vein (row 5). The subject-wise average Dice
score is shown on each sample.

7.3 Experiment

We propose to leverage the power of transformers for volumetric medical image segmentation and

introduce a novel architecture dubbed as UNEt Transformers (UNETR). We reformulate the task

of 3D segmentation as a 1D sequence-to-sequence prediction problem and use a transformer as the

encoder to learn contextual information from the embedded input patches. The extracted represen-

tations from the transformer encoder are merged with the CNN-based decoder via skip connections

at multiple resolutions to predict the segmentation outputs. Instead of using transformers in the

decoder, our proposed entire framework (shown in Figure. 7.2) uses a CNN-based decoder. This is

due to the fact that transformers are unable to properly capture localized information, despite their

great capability of learning global information.
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7.4 Results

UNETR outperforms the state-of-the-art methods for both Standard and Free Competitions on the

BTCV leaderboard. As shown in Table VII-1, in the Free Competition, UNETR achieves an overall

average Dice score of 0.899 and outperforms the second, third and fourth top-ranked methodolo-

gies by 1.238%, 1.696% and 5.269% respectively. In the Standard Competition, we compared the

performance of UNETR against CNN and transformer-based baselines. UNETR achieves a new

state-of-the-art performance with an average Dice score of 85.3% on all organs. Specifically, on

large organs, such as spleen, liver and stomach, our method outperforms the second best baselines

by 1.043%, 0.830% and 2.125% respectively, in terms of Dice score. Furthermore, in segmentation

of small organs, our method significantly outperforms the second best baselines by 6.382% and

6.772% on gallbladder and adrenal glands respectively, in terms of Dice score.

7.5 Discussion

Our experiments in all datasets demonstrate superior performance of UNETR over both CNN and

transformer-based segmentation models. Specifically, UNETR achieves better segmentation accu-

racy by capturing both global and local dependencies. In qualitative comparisons, this is illustrated

in various cases in which UNETR effectively captures long-range dependencies (e.g. accurate seg-

mentation of the pancreas tail in Figure. 7.3). Moreover, the segmentation performance of UNETR

on the BTCV leaderboard demonstrates new state-of-the-art benchmarks and validates its effec-

tiveness. Specifically for small anatomies, UNETR outperforms both CNN and transformer-based

models. Although 3D models already demonstrate high segmentation accuracy for small organs

such as gallbladder, adrenal glands, UNETR can still outperform the best competing model by a

significant margin. This is also observed in Figure. 7.3, in which UNETR has a significantly better

segmentation accuracy for left and right adrenal glands, and UNETR is the only model to correctly

detect branches of the adrenal glands. For more challenging tissues, such as gallbladder in row

4 and portal vein in row 5, which have low contrast with the surrounding liver tissue, UNETR

is still capable of segmenting clear connected boundaries. This section introduces a transformer-

based architecture for semantic segmentation of volumetric medical images by defining the task as

sequence-to-sequence prediction problem. We proposed to use a transformer encoder to increase the

model’s capability for learning long-range dependencies and effectively capturing global contextual
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representation at multiple scales.
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CHAPTER 8

Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis

8.1 Introduction

Vision Transformers (ViT)s [88] have started a revolutionary trend in computer vision [212, 213]

and medical image analysis [94, 214]. Transformers demonstrate exceptional capability in learning

pre-text tasks, are effective in learning of global and local information across layers, and provide

scalability for large-scale training [215, 216]. As opposed to convolutional neural networks (CNNs)

with limited receptive fields, ViTs encode visual representations from a sequence of patches and

leverage self-attention blocks for modeling long-range global information [216]. Recently, Shifted

windows (Swin) Transformers [204] proposed a hierarchical ViT that allows for local computing

of self-attention with non-overlapping windows. This architecture achieves linear complexity as

opposed to quadratic complexity of self-attention layers in ViT, hence making it more efficient. In

addition, due to the hierarchical nature of Swin Transformers, they are well-suited for tasks requiring

multi-scale modeling.

In comparison to CNN-based counterparts, transformer-based models learn stronger features

representations during pre-training, and as a result perform favorably on fine-tuning downstream

tasks [216]. Several recent efforts on ViTs [217, 218] have achieved new state-of-the-art results by

self-supervised pre-training on large-scale datasets such as ImageNet [28].

In addition, medical image analysis has not benefited from these advances in general computer

vision due to: (1) large domain gap between natural images and medical imaging modalities, like

computed tomography (CT) and magnetic resonance imaging (MRI); (2) lack of cross-plane con-

textual information when applied to volumetric (3D) images (such as CT or MRI). The latter is

a limitation of 2D transformer models for various medical imaging tasks such as segmentation.

Prior studies have demonstrated the effectiveness of supervised pre-training in medical imaging for

different applications [219, 220]. But creating expert-annotated 3D medical datasets at scale is a

non-trivial and time-consuming effort.

To tackle these limitations, we propose a novel self-supervised learning framework for 3D med-
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Figure 8.1: Overview of our proposed pre-training framework. Input CT images are randomly
cropped into sub-volumes and augmented with random inner cutout and rotation, then fed to the
Swin UNETR encoder as input. We use masked volume inpainting, contrastive learning and rotation
prediction as proxy tasks for learning contextual representations of input images.

ical image analysis. First, we propose a new architecture dubbed Swin UNEt TRansformers (Swin

UNETR) with a Swin Transformer encoder that directly utilizes 3D input patches. Subsequently, the

transformer encoder is pre-trained with tailored, self-supervised tasks by leveraging various proxy

tasks such as image inpainting, 3D rotation prediction, and contrastive learning (See Fig. 8.1 for

an overview). Specifically, the human body presents naturally consistent contextual information in

radiographic images such as CT due to its depicted anatomical structure [124, 125]. Hence, proxy

tasks are utilized for learning the underlying patterns of the human anatomy. For this purpose, we

extracted numerous patch queries from different body compositions such as head, neck, lung, ab-

domen, and pelvis to learn robust feature representations from various anatomical contexts, organs,

tissues, and shapes.

Our framework utilizes contrastive learning [221], masked volume inpainting [74], and 3D ro-

tation prediction [222] as pre-training proxy tasks. The contrastive learning is used to differentiate
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various ROIs of different body compositions, whereas the inpainting allows for learning the texture,

structure and correspondence of masked regions to their surrounding context. The rotation task

serves as a mechanism to learn the structural content of images and generates various sub-volumes

that can be used for contrastive learning. We utilize these proxy tasks to pre-train our proposed

framework on a collection of 5,050 CT images that are acquired from various publicly available

datasets.

Furthermore, to validate the effectiveness of pre-training, we use 3D medical image segmen-

tation as a downstream application and reformulate it as a 1D sequence-to-sequence prediction

task. For this purpose, we leverage the Swin UNETR encoder with hierarchical feature encoding

and shifted windows to extract feature representations at four different resolutions. The extracted

representations are then connected to a CNN-based decoder. A segmentation head is attached at

the end of the decoder for computing the final segmentation output. We fine-tune Swin UNETR

with pre-trained weights on two publicly available benchmarks of Medical Segmentation Decathlon

(MSD) and the Beyond the Cranial Vault (BTCV). Our model is currently the state-of-the-art on

their respective public test leaderboards.

Our main contributions in this work are summarized as follows:

• We introduce a novel self-supervised learning framework with tailored proxy tasks for pre-

training on CT image datasets. To this end, we propose a novel 3D transformer-based archi-

tecture, dubbed as Swin UNETR, consisting of an encoder that extracts feature representa-

tions at multiple resolutions and is utilized for pre-training.

• We demonstrate successful pre-training on a cohort of 5,050 publicly available CT images

from various applications using the proposed encoder and proxy tasks. This results in a pow-

erful pre-trained model with robust feature representation that could be utilized for various

medical image analysis downstream tasks.

• We validate the effectiveness of proposed framework by fine-tuning the pre-trained Swin

UNETR on two public benchmarks of MSD and BTCV and achieve state-of-the-art on the

test leaderboards of both datasets.
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Figure 8.2: Overview of the Swin UNETR architecture.

8.2 Related Works

8.2.1 Medical Segmentation with Transformers

Vision transformers are first used in classification tasks and are adopted from sequence-to-sequence

modeling in natural language processing. Self-attention mechanisms that aggregate information

from the entire input sequence are first achieving comparable, then better performance against prior

arts of convolutional architectures such as ResNet [223] or U-Net [115]. Recently, transformer-

based networks [93, 224, 225, 226] are proposed for medical image segmentation. In these pioneer-

ing works, the transformer blocks are used either as a bottleneck feature encoder or as additional

modules after convolutional layers, resulting in limited exploitation of the spatial context advantages

of transformers. Comparing to prior works [93, 94], which are using transformers as secondary en-

coder, we propose to utilize transformers to embed high-dimensional volumetric medical images,

which allow for a more direct encoding of 3D patches and positional embeddings.

Most medical image analysis tasks such as segmentation requires dense inference from multi-

scale features. Skip connection-based architectures such as UNet [115] and pyramid networks [42]

are widely adopted to leverage hierarchical features. However, vision transformers with a single

patch size, while successful in natural image applications, are intractable for high-resolution and

high-dimensional volumetric images. To avoid quadratic overflow of computing self-attention at

scales [227, 228], Swin Transformer [204, 229] is proposed to construct hierarchical encoding by

a shifted-window mechanism. Recent works such as Swin UNet [230] and DS-TransUNet [231]

utilize the merits of Swin Transformers for 2D segmentation and achieve promising performance.

104



Augmenting the above-mentioned methods, we learn from 3D anatomy in broader medical image

segmentation scenarios by incorporating hierarchically volumetric context.

8.2.2 Pre-training in Medical Image Analysis

In medical image analysis, previous studies of pre-training on labeled data demonstrate improved

performance by transfer learning [219, 220]. However, generating annotation for medical images

is expensive and time-consuming. Recent advances in self-supervised learning offer the promise of

utilizing unlabeled data. Self-supervised representation learning [232, 233, 234] constructs feature

embedding spaces by designing pre-text tasks, such as solving jigsaw puzzles [75]. Another com-

monly used pre-text task is to memorize spatial context from medical images, which is motivated

by image restoration. This idea is generalized to inpainting tasks [1, 2, 74] to learn visual represen-

tations [235, 236, 237] by predicting the original image patches. Similar efforts for reconstructing

spatial context have been formulated as solving Rubik’s cube problem [238], random rotation pre-

diction [222, 239] and contrastive coding [126, 221]. Different from these efforts, our pre-training

framework is simultaneously trained with a combination of pre-text tasks, tailored for 3D medical

imaging data, and leverages a transformer-based encoder as a powerful feature extractor.

8.3 Swin UNETR

Swin UNETR comprises a Swin Transformer [204] encoder that directly utilizes 3D patches and is

connected to a CNN-based decoder via skip connections at different resolutions. Fig. 8.2 illustrates

the overall architecture of Swin UNETR. We describe the details of encoder and decoder in this

section.

8.3.1 Swin Transformer Encoder

Assuming that the input to the encoder is a sub-volume X ∈ RH×W×D×S, a 3D token with a patch

resolution of (H ′,W ′,D′) has a dimension of H ′×W ′×D′×S. The patch partitioning layer creates

a sequence of 3D tokens with size H
H ′ × W

W ′ × D
D′ that are projected into a C-dimensional space via

an embedding layer. Following [204], for efficient modeling of token interactions, we partition the

input volumes into non-overlapping windows and compute local self-attention within each region.

Specifically, at layer l, we use a window of size M × M × M to evenly divide a 3D token into
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voxels. The shifted windowing mechanism is illustrated in Fig. 8.3. The outputs

of encoder blocks in layers l and l +1 are computed as in

ẑl = W-MSA(LN(zl−1))+ zl−1

zl = MLP(LN(ẑl))+ ẑl

ẑl+1 = SW-MSA(LN(zl))+ zl

zl+1 = MLP(LN(ẑl+1))+ ẑl+1,

(8.1)

where W-MSA and SW-MSA denote regular and window partitioning multi-head self-attention

modules, respectively, ẑl and ẑl are the outputs of W-MSA and SW-MSA; LN and MLP denote

layer normalization and Multi-Layer Perceptron (see Fig. 8.2). Following [204], we adopt a 3D

cyclic-shifting for efficient batch computation of shifted windowing. Furthermore, we calculate the

self-attention according to

Attention(Q,K,V ) = Softmax
(

QK⊤
√

d

)
V. (8.2)

where Q,K,V represent queries, keys and values respectively, d is the size of the query and key.

Our encoder uses a patch size of 2× 2× 2 with a feature dimension of 2× 2× 2× 1 = 8 (i.e.

single input channel CT images) and a C = 48-dimensional embedding space. Furthermore, the

overall architecture of the encoder consists of 4 stages comprising of 2 transformer blocks at each

stage (i.e. L = 8 total layers). In between every stage, a patch merging layer is used to reduce the

resolution by a factor of 2. Stage 1 consists of a linear embedding layer and transformer blocks that

maintain the number of tokens as H
2 × W

2 × D
2 . Furthermore, a patch merging layer groups patches

with resolution 2×2×2 and concatenates them, resulting in a 4C-dimensional feature embedding.

A linear layer is then used to downsample the resolution by reducing the dimension to 2C. The

same procedure continues in stage 2, stage 3 and stage 4 with resolutions of H
4 × W

4 × D
4 , H

8 × W
8 × D

8

and H
16 ×

W
16 ×

D
16 respectively. The hierarchical representations of the encoder at different stages are

used in downstream applications such as segmentation for multi-scale feature extraction.
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8.3.2 Decoder

The encoder of Swin UNETR is connected to a CNN-based decoder at each resolution via skip

connections to create a “U-shaped” network for downstream applications such as segmentation.

Specifically, we extract the output sequence representations of each stage i (i ∈ {0,1,2,3,4}) in

the encoder as well as the bottleneck (i = 5) and reshape them into features with size H
2i × W

2i × D
2i .

The extracted representations at each stage are then fed into a residual block consisting of two

post-normalized 3× 3× 3 convolutional layers with instance normalization [240]. The processed

features from each stage are then upsampled by using a deconvolutional layer and concatenated with

processed features of the preceding stage. The concatenated features are fed into a residual block

with aforementioned descriptions. For segmentation, we concatenate the output of the encoder (i.e.

Swin Transformer) with processed features of the input volume and feed them into a residual block

followed by a final 1×1×1 convolutional layer with a proper activation function (i.e. softmax ) for

computing the segmentation probabilities (see Fig. 8.2 for details of the architecture).

8.4 Pre-training

We pre-train the Swin UNETR encoder with multiple proxy tasks and formulate it with a multi-

objective loss function (Fig. 8.1). The objective of self-supervised representation learning is to

encode region of interests (ROI)-aware information of the human body. Inspired by previous works

on context reconstruction [1, 2] and contrastive encoding [241], we exploit three proxy tasks for

medical image representation learning. Three additional projection heads are attached to the encoder

during pre-training. Furthermore, the downstream task, e.g. segmentation, fine-tunes the full Swin

UNETR model with the projection heads removed. In training, sub-volumes are cropped random

regions of the volumetric data. Then, stochastic data augmentations with random rotation and cutout

are applied twice to each sub-volume within a mini-batch, resulting in two views of each data.

8.4.1 Masked Volume Inpainting

The cutout augmentation masks out ROIs in the sub-volume X ∈ RH×W×D×C randomly with vol-

ume ratio of s. We attach a transpose convolution layer to the encoder as the reconstruction head

and denote its output as X̂ M . The reconstruction objective is defined by an L1 loss between X
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Figure 8.3: Shifted windowing mechanism for efficient self-attention computation of 3D tokens
with 8×8×8 tokens and 4×4×4 window size.

and X̂ M

Linpaint = ∥X −X̂ M ∥1, (8.3)

The masked volume inpainting is motivated by prior work which focused on 2D images [74]. We

extend it to 3D domain to showcase its effectiveness on representation learning of volumetric med-

ical images.

8.4.2 Image Rotation

The rotation prediction task predicts the angle categories by which the input sub-volume is rotated.

For simplicity, we employ R classes of 0◦, 90◦, 180◦, 270◦ rotations along the z-axis. An MLP

classification head is used for predicting the softmax probabilities ŷr of rotation categories. Given

the ground truth yr, a cross-entropy loss is used for rotation prediction task:

Lrot =−
R

∑
r=1

yr log(ŷr), (8.4)

The 3D rotation and cutout also serves simultaneously as an augmentation transformation for con-

trastive learning.
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8.4.3 Contrastive Coding

The self-supervised contrastive coding presents promising performance on visual representation

learning when transferred to downstream tasks [83, 242]. Given a batch of augmented sub-volumes,

the contrastive coding allows for a better representation learning by maximizing the mutual infor-

mation between positive pairs (augmented samples from same sub-volume), while minimizing that

between negative pairs (views from different sub-volumes). The contrastive coding is obtained by

attaching a linear layer to the Swin UNETR encoder, which maps each augmented sub-volume to a

latent representation v. We use cosine similarity as the distance measurement of the encoded repre-

sentations as defined in [83]. Formally, the 3D contrastive coding loss between a pair vi and v j is

defined as:

Lcontrast =− log
exp(sim(vi,v j)/t)

∑
2N
k 1k ̸=i exp(sim(vi,vk)/t)

, (8.5)

where t is the measurement of normalized temperature scale. 1 is the indicator function evaluating

to 1 iff k ̸= i. sim denotes the dot product between normalized embeddings. The contrastive learning

loss function strengthens the intra-class compactness as well as the inter-class separability.

8.4.4 Loss Function

Formally, we minimize the total loss function by training Swin UNETR’s encoder with multiple

pre-training objectives of masked volume inpainting, 3D image rotation & contrastive coding as

follows:

Ltot = λ1Linpaint +λ2Lcontrast +λ3Lrot . (8.6)

A grid-search hyper-parameter optimization was performed which estimated the optimal values of

λ1 = λ2 = λ3 = 1.

8.5 Experiments

8.5.1 Datasets

Pre-training Datasets : A total of 5 public CT datasets, consisting of 5,050 subjects, are used to

construct our pre-training dataset. The corresponding number of 3D volumes for chest, abdomen

and head/neck are 2,018, 1,520 and 1,223 respectively. The collection and source details are pre-

sented in the supplementary materials. Existing annotations or labels are not utilized from these
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Methods Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg.
SETR NUP [90] 0.931 0.890 0.897 0.652 0.760 0.952 0.809 0.867 0.745 0.717 0.719 0.620 0.796
SETR PUP [90] 0.929 0.893 0.892 0.649 0.764 0.954 0.822 0.869 0.742 0.715 0.714 0.618 0.797
SETR MLA [212] 0.930 0.889 0.894 0.650 0.762 0.953 0.819 0.872 0.739 0.720 0.716 0.614 0.796
ASPP [243] 0.935 0.892 0.914 0.689 0.760 0.953 0.812 0.918 0.807 0.695 0.720 0.629 0.811
TransUNet [94] 0.952 0.927 0.929 0.662 0.757 0.969 0.889 0.920 0.833 0.791 0.775 0.637 0.838
CoTr* [93] 0.943 0.924 0.929 0.687 0.762 0.962 0.894 0.914 0.838 0.796 0.783 0.647 0.841
CoTr [93] 0.958 0.921 0.936 0.700 0.764 0.963 0.854 0.920 0.838 0.787 0.775 0.694 0.844
RandomPatch [43] 0.963 0.912 0.921 0.749 0.760 0.962 0.870 0.889 0.846 0.786 0.762 0.712 0.844
PaNN [44] 0.966 0.927 0.952 0.732 0.791 0.973 0.891 0.914 0.850 0.805 0.802 0.652 0.854
nnUNet [58] 0.967 0.924 0.957 0.814 0.832 0.975 0.925 0.928 0.870 0.832 0.849 0.784 0.888
UNETR [214] 0.972 0.942 0.954 0.825 0.864 0.983 0.945 0.948 0.890 0.858 0.852 0.812 0.891
Swin UNETR 0.976 0.958 0.956 0.893 0.875 0.985 0.953 0.949 0.904 0.899 0.898 0.846 0.918

Table 8.1: Leaderboard1Dice results of BTCV challenge on multi-organ segmentation. The pro-
posed method achieves state-of-the-art performance in both free and standard competitions. Note:
Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus, Liv: liver,
Sto: stomach, Aor: aorta, IVC: inferior vena cava, Veins: portal and splenic veins, Pan: pancreas,
AG: left and right adrenal glands.

Figure 8.4: Qualitative visualizations of the proposed Swin UNETR and baseline methods. Three
representative subjects are demonstrated. Regions of evident improvements are enlarged to show
better details of pancreas (blue), portal vein (light green), and adrenal gland (red).

datasets during the pre-training stage.

BTCV : The Beyond the Cranial Vault (BTCV) abdomen challenge dataset [72] contains 30

subjects with abdominal CT scans where 13 organs are annotated by interpreters under supervision

of radiologists at Vanderbilt University Medical Center. Each CT scan is acquired with contrast

enhancement phase at portal venous consists of 80 to 225 slices with 512× 512 pixels and slice

thickness ranging from 1 to 6 mm. The multi-organ segmentation problem is formulated as a 13

classes segmentation task (see Table 8.1 for details). The pre-processing pipeline is detailed in

supplementary materials.

MSD: Medical Segmentation Decathlon (MSD) dataset [211] comprises of 10 segmentation

tasks from different organs and image modalities. These tasks are designed to feature difficulties

1https://www.synapse.org/#!Synapse:syn3193805/wiki/217785/
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across medical images, such as small training sets, unbalanced classes, multi-modality data and

small objects. Therefore, the MSD challenge can serve as a comprehensive benchmark to evaluate

the generalizability of medical image segmentation methods. The pre-processing pipeline for this

dataset is outlined in supplementary materials.

8.5.2 Implementation Details

For pre-training tasks, (1) masked volume inpainting: the ROI dropping rate is set to 30% (as

also used in [232]); the dropped regions are randomly generated and they sum up to reach overall

number of voxels; (2) 3D contrastive coding: a feature size of 512 is used as the embedding size; (3)

rotation prediction: the rotation degree is configured to 0◦, 90◦, 180◦, and 270◦. We train the model

using the AdamW [244] optimizer with a warm-up cosine scheduler of 500 iterations. The pre-

training experiments use a batch-size of 4 per GPU (with 96× 96× 96 patch), and initial learning

rate of 4e−4, momentum of 0.9 and decay of 1e−5 for 450K iterations. Our model is implemented

in PyTorch and MONAI2. A five-fold cross validation strategy is used to train models for all BTCV

and MSD experiments. We select the best model in each fold and ensemble their outputs for final

segmentation predictions. Detailed training hyperparameters for fine-tuning BTCV and MSD tasks

can be found in the supplementary materials. All models are trained on a NVIDIA DGX-1 server.

8.5.3 Evaluation Metrics

The Dice similarity coefficient (Dice) and Hausdorff Distance 95% (HD95) are used as measure-

ments for experiment results. HD95 calculates 95th percentile of surface distances between ground

truth and prediction point sets. Metric formulations are as follows:

Dice =
2∑

I
i=1YiŶi

∑
I
i=1Yi +∑

I
i=1 Ŷi

, (8.7)

HD = max{max
y′∈Y ′

min
ȳ′∈Ȳ ′

∥y′− ȳ′∥,max
ȳ′∈Ȳ ′

min
y′∈Y ′

∥ȳ′− y′∥}. (8.8)

where Y and Ȳ denote the ground truth and prediction of voxel values. Y ′ and Ŷ ′ denote ground truth

and prediction surface point sets. Surface Dice [245] is also used, which is referred as Normalized

Surface Distance (NSD) in MSD challenge evaluation. The metric measures the overlap of ground

2https://monai.io/
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Method Rank
Average Accuracy

Dice ↑ NSD ↑

Swin UNETR 1 78.68 89.28
DiNTS [246] 2 77.93 88.68
nnUNet [58] 3 77.89 88.09
Models Gen. [2] 4 76.97 87.19
Trans VW [1] 5 76.96 87.64

Table 8.2: Overall performance of top-ranking methods on all 10 segmentation tasks in the MSD
public test leaderboard. NSD denotes Normalized Surface Distance.

Organ Task01 Brain Tumour Task03 Liver Task06 Lung
Metric Dice1 Dice2 Dice3 Avg. NSD1 NSD2 NSD3 Avg. Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 NSD1
Kim et al [247] 67.40 45.75 68.26 60.47 86.65 72.03 90.28 82.99 94.25 72.96 83.61 96.76 88.58 92.67 63.10 62.51
Trans VW [1] 68.03 46.98 68.40 61.14 87.52 72.42 90.91 83.62 95.18 76.90 86.04 97.86 92.03 94.95 74.54 76.22
C2FNAS[248] 67.62 48.60 69.72 61.98 87.61 72.87 91.16 83.88 94.98 72.89 83.94 98.38 89.15 93.77 70.44 72.22
Models Gen. [2] 68.03 46.98 68.40 61.14 87.52 72.42 90.91 83.62 95.72 77.50 86.61 98.48 91.92 95.20 74.54 76.22
nnUNet [58] 68.04 46.81 68.46 61.10 87.51 72.47 90.78 83.59 95.75 75.97 85.86 98.55 90.65 94.60 73.97 76.02
DiNTS [246] 69.28 48.65 69.75 62.56 89.33 73.16 91.69 84.73 95.35 74.62 84.99 98.69 91.02 94.86 74.75 77.02
Swin UNETR 70.02 52.52 70.51 64.35 89.07 80.30 93.46 87.61 95.35 75.68 85.52 98.34 91.59 94.97 76.60 77.40

Table 8.3: MSD test dataset performance comparison of Dice and NSD. Benchmarks obtained from
MSD test leaderboard

truth and prediction surfaces (with a fixed tolerance) instead of the overlap of two volumes. This

provides a measure of agreement between the surfaces of two structures.

8.5.4 Results

8.5.4.1 BTCV Multi-organ Segmentation Challenge

We extensively compare the benchmarks of our model with baselines. The published leaderboard

evaluation is shown in Table 8.2. Compared with other top submissions, the proposed Swin UNETR

achieves the best performance. We obtain the state-of-the-art Dice of 0.908, outperforming the

second, third and fourth top-ranked baselines by 1.6%, 2.0% and 2.4% on average of 13 organs,

respectively. Distinct improvements can be specifically observed for organs that are smaller in size,

3https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/

Organ Task07 Pancreas Task08 Hepatic Vessel Task09 Spleen Task10 Colon
Metric Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 NSD1 Dice1 NSD1
Kim et al [247] 80.61 51.75 66.18 95.83 73.09 84.46 62.34 68.63 65.49 83.22 78.43 80.83 91.92 94.83 49.32 62.21
Trans VW [1] 81.42 51.08 66.25 96.07 70.13 83.10 65.80 71.44 68.62 84.01 80.15 82.08 97.35 99.87 51.47 60.53
C2FNAS[248] 80.76 54.41 67.59 96.16 75.58 85.87 64.30 71.00 67.65 83.78 80.66 82.22 96.28 97.66 58.90 72.56
Models Gen. [2] 81.36 50.36 65.86 96.16 70.02 83.09 65.80 71.44 68.62 84.01 80.15 82.08 97.35 99.87 51.47 60.53
nnUNet [58] 81.64 52.78 67.21 96.14 71.47 83.81 66.46 71.78 69.12 84.43 80.72 82.58 97.43 99.89 58.33 68.43
DiNTS [246] 81.02 55.35 68.19 96.26 75.90 86.08 64.50 71.76 68.13 83.98 81.03 82.51 96.98 99.83 59.21 70.34
Swin UNETR 81.85 58.21 70.71 96.57 79.10 87.84 65.69 72.20 68.95 84.83 81.62 83.23 96.99 99.84 59.45 70.89

Table 8.4: MSD test dataset performance comparison of Dice and NSD. Benchmarks obtained from
MSD test leaderboard3.
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such as splenic and portal veins of 3.6% against prior state-of-the-art method, pancreas of 1.6%, and

adrenal glands of 3.8%. Moderate improvements are observed in other organs. The representative

samples in Fig. 8.4 demonstrate the success of identifying organ details by Swin UNETR. Our

method detects the pancreas tail (row 1), and branches in the portal vein (row 2) in Fig. 8.4, where

other methods under segment parts of each tissue. In addition, our method demonstrates distinct

improvement in segmentation of adrenal glands (row 3).

8.5.4.2 Segmentation Results on MSD

The overall MSD results per task and ranking from the challenge leaderboard are shown in Ta-

ble. 8.3 and 8.4. The proposed Swin UNETR achieves state-of-the-art performance in Task01

BrainTumour, Task06 Lung, Task07 Pancreas, and Task10 Colon. The results are comparable for

Task02 Heart, Task03 Liver, Task04 Hippocampus, Task05 Prostate, Task08 HepaticVessel and

Task09 Spleen. Overall, Swin UNETR presents the best average Dice of 78.68% across all ten

tasks and achieves the top ranking in the MSD leaderboard. The detail number of multiple tasks

are shown in Table 8.3. Qualitative visualization can be observed in Fig. 8.5. Swin UNETR with

self-supervised pre-training demonstrates visually better segmentation results in the CT tasks. The

pre-trained weights are only used for fine-tuning CT tasks including Liver, Lung, Pancreas, Hep-

aticVessel, Spleen, and Colon. For MRI tasks: Brain Tumour, Heart, Hippocampus, Prostate, ex-

periments are trained from scratch because of the domain gap between CT and MRI images. Due

to space limitations, we present the MSD test benchmarks for the remaining three MRI tasks in the

supplementary materials.

8.5.5 Ablation Study

8.5.5.1 Efficacy of Pre-training

A comparison of all MSD CT tasks using pre-trained model against training from scratch can be

observed in Fig. 8.6. Distinct improvement can be observed for Task03 Liver, Dice of 77.77%

comparing to 75.27%. Task08 Hepatic Vessel achieves 68.52% against 64.63%. Task10 Colon

shows the largest improvement, from 34.83% to 43.38%. Task07 Pancreas and Task09 Spleen both

achieve significant improvement from 67.12% to 67.82%, and 96.05% to 97.32% respectively.
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Figure 8.5: Qualitative results of representative MSD CT tasks. Average Dice values are illustrated
on top of each image. Our model demonstrates more accurate performance in comparison to DiNTS
for both organ and tumor segmentation across different tasks.

Loss Function Average Accuracy

Dice ↑ HD ↓

Scratch 83.43 42.36

Lrot 83.56 36.19
Lcontrast 83.67 38.81
Linpaint 83.85 28.94
Linpaint +Lrot 84.01 26.06
Linpaint +Lcontrast 84.45 24.37
Linpaint +Lcontrast+Lrot 84.72 20.03

Table 8.5: Ablation study of the effectiveness of each objective function in the proposed pre-training
loss. HD denotes Hausdorff Distance. Experiments on fine-tuning the BTCV dataset.

8.5.5.2 Reduce Manual Labeling Efforts

Fig. 8.7 demonstrates the comparison results of fine-tuning using a subset of BTCV dataset. We

show using 10% of labeled data, experiments with pre-training weights achieve approximately 10%

improvement comparing to training from scratch. On employing all labeled data, the self-supervised

pre-training shows 1.3% higher average Dice. The Dice number 83.13 of learning from scratch with

entire dataset can be achieved by using pre-trained Swin UNETR with 60% data. Fig. 8.7 indicates
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Figure 8.6: The indication of Dice gap between using pre-training (Green) and scratch model (Blue)
on MSD CT tasks validation set.

that our approach can reduce the annotation effort by at least 40% for BTCV task.

8.5.5.3 Size of Pre-training Dataset

We perform organ-wise study on BTCV dataset by using pre-trained weights of smaller unlabeled

data. In Fig. 8.8, the fine-tuning results are obtained from pre-training 100, 3,000, and 5,000 scans.

We observe that Swin UNETR is robust with respect to the total number of CT scans trained. Fig. 8.8

demonstrates the proposed model can benefit from larger pre-training datasets with increasing size

of unlabeled data.

8.5.5.4 Efficacy of Self-Supervised Objectives

We perform empirical study on pre-training with different combinations of self-supervised objec-

tives. As shown in Table 8.5, on BTCV test set, using pre-trained weights by inpainting achieves the

highest improvement at single task modeling. On pairing tasks, inpainting and contrastive learning

show Dice of 84.45% and Hausdorff Distance (HD) of 24.37. Overall, employing all proxy tasks

achieves best Dice of 84.72%.

8.6 Discussion and Limitations

Our state-of-the-art results on the test leaderboards of MSD and BTCV datasets validate the effec-

tiveness of the proposed self-supervised learning framework in taking the advantage of large number
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Figure 8.7: Data-efficient performance on BTCV test dataset. Significance under Wilcoxon Signed
Rank test, ∗ : p < 0.001.

of available medical images without the need of annotation effort. Subsequently, fine-tuning the pre-

trained Swin UNETR model achieves higher accuracy, improves the convergence speed, and reduces

the annotation effort in comparison to training with randomly initialized weights from scratch. Our

framework is scalable and can be easily extended with more proxy tasks and augmentation trans-

formations. Meanwhile, the pre-trained encoder can benefit the transfer learning of various medical

imaging analysis tasks, such as classification and detection. In MSD pancreas segmentation task,

Swin UNETR with pre-trained weights outperforms AutoML algorithms such as DiNTS [246] and

C2FNAS [248] that are specifically designed for searching the optimal network architectures on

the same segmentation task. Currently, Swin UNETR has only been pre-trained using CT images,

and our experiments have not demonstrated enough transferability when applied directly to other

medical imaging modalities such as MRI. This is mainly due to obvious domain gaps and different

number of input channels that are specific to each modality. As a result, this is a potential direction

that should be studied in future efforts.

8.7 Conclusions

In this work, we present a novel framework for self-supervised pre-training of 3D medical images.

Inspired by merging feature maps at scales, we built the Swin UNETR by exploiting transformer-

encoded spatial representations into convolution-based decoders. By proposing the first transformer-
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Figure 8.8: Pre-trained weights using 100, 3000 and 5000 scans are compared for fine-tuning on the
BTCV dataset for each organ.

based 3D medical image pre-training, we leverage the power of Swin Transformer encoder for

fine-tuning segmentation tasks. Swin UNETR with self-supervised pre-training achieves the state-

of-the-art performance on the BTCV multi-organ segmentation challenge and MSD challenge. Par-

ticularly, we presented the large-scale CT pre-training with 5,050 volumes, by combining multiple

publicly available datasets and diversities of anatomical ROIs.

8.8 Appendix

We provide the supplementary materials in the following. In Sec. 8.9, we describe the details of

datasets that are used for pre-training from public sources. In Sec. 8.10, we illustrate the preprocess-

ing and implementation details of fine-tuning tasks using BTCV and MSD datasets. In Sec. 8.11, we

present qualitative and quantitative comparisons of segmentation tasks in MRI modality from MSD

dataset. The presented results include benchmarks from all top-ranking methods using the MSD

test leaderboard. In Sec. 8.12, the model complexity analysis is presented. Finally, we provide

pseudocode of Swin UNETR self-supervised pre-training in Sec. 8.13.

8.9 Pre-training Datasets

In this section, we provide additional information for our pre-training datasets. The proposed

Swin UNETR is pre-trained using five collected datasets. The total data cohort contains 5,050
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CT scans of various body region of interests (ROI) such as head, neck, chest, abdomen, and pelvis.

LUNA16 [249], TCIA Covid19 [250] and LiDC [251] contain 888, 761 and 475 CT scans which

composes the chest CT cohort. The HNSCC [252] has 1,287 CT scans from head and neck

squamour cell carcinoma patients. The TCIA Colon dataset [253] comprises the abdomen and

pelvis cohort with 1,599 scans. We split 5% of each dataset for validation in the pre-training stage.

Table 8.6 summarizes sources of each collected dataset. Overall, the number of training and val-

idation volumes are 4,761 and 249, respectively. The Swin UNETR encoder is pre-trained using

only unlabeled images, annotations were not utilized from any of theses datasets. We first clip CT

image intensities from −1000 to 1000, then normalize to 0 and 1. To obtain informative patches of

covering anatomies, we crop sub-volumes of 96× 96× 96 voxels at foregrounds, and exclude full

air (voxel = 0) patches. In summary, Swin UNETR is pre-trained via a diverse set of human body

compositions, and learn a general-purpose representation from different institutes’ data that can be

leveraged for wide range of fine-tuning tasks.

8.10 Preprocessing Pipelines

We report fine-tuning results on two public benchmarks: BTCV [72] and MSD challenge [51].

BTCV contains 30 CT scans with 13 annotated anatomies and can be formulated as a single multi-

organ segmentation task. The MSD contains 10 tasks for multiple organs, from different sources

and using different modalities. Details regarding preprocessing these datasets are provided in the

subsequent sub-sections of 2.1 and 2.2.

8.10.1 BTCV Dataset

All CT scans are interpolated into the isotropic voxel spacing of [1.5× 1.5× 2.0] mm. The multi-

organ segmentation problem is formulated as a 13 class segmentation, which includes large organs

such as liver, spleen, kidneys and stomach; vascular tissues of esophagus, aorta, IVC, splenic and

portal veins; small anatomies of gallbladder, pancreas and adrenal glands. Soft tissue window is

used for clipping the CT intensities, then normalized to 0 and 1 followed by random sampling of

96×96×96 voxels. Data augmentation of random flip, rotation and intensities shifting are used for

training, with probabilities of 0.1, 0.1, and 0.5, respectively.
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Task01 BrainTumour Task02 Heart

Swin UNETR: 0.86

Swin UNETR: 0.82DiNTS: 0.59

DiNTS: 0.97DiNTS: 0.65 Swin UNETR: 0.98

(1)

(2) (2)

(1)

DiNTS: 0.89 Swin UNETR: 0.91

Task03 Liver Task04 Hippocampus

DiNTS:0.91 Swin UNETR: 0.87

Swin UNETR: 0.88DiNTS: 0.80

Swin UNETR: 0.94 DiNTS: 0.85

DiNTS: 0.67 Swin UNETR: 0.75

(1)

(2)

(1)

(2)

Task05 Prostate Task06 Lung

DiNTS:0.79 Swin UNETR: 0.91

Swin UNETR: 0.87DiNTS: 0.81

Swin UNETR: 0.80 DiNTS: 0.83

DiNTS: 0.87 Swin UNETR: 0.87

(1)

(2)

(1)

(2)

Figure 8.9
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Task07 Pancreas Task08 Hepatic Vessel

Swin UNETR: 0.66

Swin UNETR: 0.79DiNTS: 0.76Swin UNETR: 0.89

(1)

(2)

(1)

(2)

DiNTS:0.72 Swin UNETR: 0.78

DiNTS: 0.87

DiNTS: 0.63

Task09 Spleen Task10 Colon

Swin UNETR: 0.79DiNTS: 0.46Swin UNETR: 0.96

(1)

(2)

(1)

(2)

DiNTS:0.97 Swin UNETR: 0.98

DiNTS: 0.95

DiNTS: 0.30 Swin UNETR: 0.74

Figure 8.10: Qualitative visualizations of the proposed Swin UNETR and DiNTS on MSD Tasks

Dataset Region of Interest #Total Samples Source Train/Validation
LUNA16 [249] Chest 888 luna16.grand-challenge.org/Data/ 844/44
TCIA Covid19 [250] Chest 761 wiki.cancerimagingarchive.net/display/Public/COVID-19 723/38
HNSCC [252] Head/Neck 1287 wiki.cancerimagingarchive.net/display/Public/HNSCC 1223/64
TCIA Colon [253] Abdomen/pelvis 1599 www.cancerimagingarchive.net/collections/ 1520/79
LiDC [251] Chest 475 wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI 451/24

Table 8.6: Summary of datasets for pre-training, the use of cohorts identifies diversified regions of
interest.

8.10.2 MSD Dataset

The MSD challenge contains 6 CT and 4 MRI datasets. We provide additional parameters of pre-

processing and augmentation details for each task as follows:

Task01 BrainTumour: The four modalities MRI images for each subject are formed into 4 chan-

nels input. We convert labels to multiple channels based on tumor classes. which label 1 is the per-

itumoral edema, label 2 is the GD-enhancing tumor, and label 3 is the necrotic and non-enhancing

tumor core. Label 2 and 3 are merged to construct tumor core (TC), label 1, 2 and 3 are merged to
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Organ Task02 Heart Task04 Hippocampus Task05 Prostate MRI tasks Avg
Metric DSC1 NSD1 DSC1 DSC2 Avg. NSD1 NSD2 Avg. DSC1 DSC2 Avg. NSD1 NSD2 Avg. DSC NSD
Kim et al [247] 93.11 96.44 90.11 88.72 89.42 97.77 97.73 97.75 72.64 89.02 80.83 95.05 98.03 96.54 80.96 93.43
Trans VW [1] 93.33 96.51 90.29 88.77 89.53 97.87 97.67 97.77 73.69 88.88 81.29 95.42 98.52 96.97 81.32 93.72
C2FNAS[248] 92.49 95.81 89.37 87.96 88.67 97.27 97.35 97.31 74.88 88.75 81.82 98.79 95.12 96.96 81.24 93.49
Models Gen [2] 93.33 96.51 90.29 88.77 89.53 97.87 97.67 97.77 73.69 88.88 81.29 95.42 98.52 96.97 81.32 93.72
nnUNet [58] 93.30 96.74 90.23 88.69 89.46 97.79 97.53 97.75 76.59 89.62 83.11 96.27 98.85 97.56 81.74 93.91
DiNTS [246] 92.99 96.35 89.91 88.41 89.16 97.76 97.56 97.66 75.37 89.25 82.31 95.96 98.82 97.39 81.76 94.03
SwinUNETR 92.62 96.23 89.95 88.42 89.19 97.63 97.32 97.48 75.65 89.15 82.40 95.89 98.70 97.30 82.14 94.66

Table 8.7: Additional MSD MRI test dataset performance comparison of Dice and NSD. Bench-
marks obtained from MSD test leaderboard. Task01 BrainTumuor results are shown in the paper.
Note: The results reported for TransVW [1] and Models Genesis [2] are from the official leader-
board for MRI tasks.

Models #Params (M) FLOPs (G) Inference Time (s)
nnUNet [58] 19.07 412.65 10.28
CoTr [93] 46.51 399.21 19.21
TransUNet [94] 96.07 48.34 26.97
ASPP [180] 47.92 44.87 25.47
SETR [90] 86.03 43.49 24.86
UNETR 92.58 41.19 12.08
SwinUNETR 61.98 394.84 13.84

Table 8.8: Comparison of number of parameters, FLOPs and averaged inference time for various
models in BTCV experiments.

construct whole tumor (WT), and label 2 is the enhancing tumor (ET). We crop the sub-volume of

128× 128× 128 voxels and use channel-wise nonzero normalization for MRI images. Data aug-

mentation probabilities of 0.5, 0.1 and 0.1 are set for random flips at each axis, intensities scaling

and shifting, respectively.

Task02 Heart: The heart MRI images are interpolated to the isotropic voxel spacing of 1.0 mm.

Channel-wise nonzero normalization is applied to each scan. We sample the training sub-volumes

of 96× 96× 96 voxels by ratio of positive and negative as 2:1. Augmentation probabilities for

random flip, rotation, intensities scaling and shifting are set to 0.5, 0.1, 0.2, 0.5, respectively.

Task03 Liver: Each CT scan is interpolated to the isotropic voxel spacing of 1.0 mm. Intensities

are scaled to [−21,189], then normalized to [0,1]. 3D patches of 96×96×96 voxels are obtained by

sampling positive and negative ratio of 1 : 1. Data augmentation of random flip, rotation, intensities

scaling and shifting are used, for which the probabilities are set to 0.2, 0.2, 0.1, 0.1, respectively.

Task04 Hippocampus: Each hippocampus MRI image is interpolated by voxel spacing of 0.2×

0.2× 0.2, then applied spatial padding to 96× 96× 96 as the input size of Swin UNETR model.

Same as other MRI datasets, channel-wise nonzero normalization is used for intensities. Probability
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of 0.1 is used for random flip, rotation, intensity scaling & shifting.

Task05 Prostate: We utilize both given modalities for prostate MRI images for each subject as

two channels input. Channel-wise nonzero normalization is used. Voxel spacing of 0.5 and spatial

padding of each axis are employed to construct the input size of 96×96×96. We use random flip,

rotation, intensity scaling and shifting with probabilities of 0.5 as data augmentations. Random

affine is applied as additional transformation with scale factor of [0.3,0.3,0.0] and rotation range of

[0,0, pi] at each axis.

Task06 Lung: We interpolate each image to isotropic voxel spacing of 1.0. Houndsfield unit (HU)

range of [-1000, 1000] is used and normalized to [0,1]. Subsequently, training sample are cropped

to 96×96×96 with positive and negative ratio of 2 : 1. Augmentation probabilities of 0.5, 0.3, 0.1,

0.1 are used for random flip, rotation, intensities scaling and shifting.

Task07 Pancreas: We clip the intensities to a range of −87 to 199. Patch size of 96× 96× 96

is used to sample training data with positive and negative ratio of 1 : 1. We set augmentation of

random flip, rotation and intensity scaling to probabilities of 0.5, 0.25 and 0.5, respectively.

Task08 HepaticVessel: To fit the optimal tissue window for hepatic vessel and tumor, we clip each

CT image intensities to [0,230] HU. We apply data augmentation same with Task07 Pancreas for

training.

Task09 Spleen: Spleen CT scans are pre-process with interpolation isotropic voxel spacing of 1.0

mm on each axis. Soft tissue window of [−125,275] HU is used for the portal venous phase contrast

enhanced CT images. We use the training data augmentation of random flip, intensity scaling &

shifting with probabilities of 0.15, 0.1, and 0.1, respectively.

Task10 Colon: We use HU range of [−57,175] for the colon tumor segmentation task and normal-

ized to 0 and 1. Next, we sample training sub-volumes by positive and negative ratio of 1 : 1. Same

as Task07 and Task08, we use random flip, rotation, intensity scaling as augmentation transforms

with probabilities of 0.5, 0.25 and 0.5, respectively.

8.11 Results

8.11.1 MSD Qualitative Comparisons

In this section, we provide extensive segmentation visualization from MSD dataset. In particular,

we compare two cases randomly selected from Swin UNETR and DiNTS for each MSD task. As
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shown in Fig 8.10, DiNTS includes the under-segmentation due to lack of parts of labels (Heart,

Hippocampus). The missing parts result in a lower Dice score. On BrainTumour, Liver, Pancreas,

HepaticVessel and Colon tasks, the comparison indicate that our method achieves better segmen-

tation where the under-segmentation of tumors are observed in DiNTS. For Lung task, the over-

segmentation is observed with DiNTS where surrounding tissues are included with label of the lung

cancer, while Swin UNETR clearly delineate the boundary. In Heart and Spleen, DiNTS and Swin

UNETR have comparable Dice score, yet Swin UNETR performs better segmentation on tissue

corner (See Fig 8.10). Overall, Swin UNETR achieves better segmentation results and solves the

under- and over-segmentation outliers as observed in segmentation via DiNTS.

8.11.2 MSD Quantitative Comparisons

In this section, we provide the quantitative benchmarks of MRI segmentation tasks from MSD

dataset. In addition to Task01 BrainTumour, we implement experiment on three remaining MRI

dataset including Heart, Hippocampus and Prostate (see Table. 8.7). The results are directly ob-

tained from the MSD4 leaderboard. Regarding MRI benchmark, we achieve much better perfor-

mance on brain tumor segmentation presented in the paper, with average Dice improvement of 2%

against second best performance. Comparing to models genesis [2], nnUNet [58], the Swin UN-

ETR shows comparable results on Heart, Hippocampus and Prostate. Overall, we achieve the best

average results (Dice of 82.14% and NSD of 94.66%) across four MRI datasets, showing Swin

UNETR’s superiority of medical image segmentation.

8.12 Model Complexity and Pre-training Time

In this section, we examine the model complexity along with inference time. In Table. 8.8, the

number of network paramerts, FLOPs, and averaged inference time of Swin UNETR and base-

lines on BTCV dataset are presented. We calculate the FLOPs and inference time based on input

size of 96× 96× 96 used in the BTCV experiments with sliding window approach. Swin UN-

ETR shows moderate size of parameter with 61.98M, less than transformer-based methods such as

TransUNet [94] of 96.07M, SETR [212] of 86.03M, and UNETR [214] of 92.58M, but larger than

3DUNet (nnUNet) [58] of 19.07M, ASPP [180] 47.92M. Our model also shows comparable FLOPs

4https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/
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and inference time in terms of 3D approaches such as nnUNet [58] and CoTr [93]. Overall, Swin

UNETR outperforms CNN-based and other transformer-based methods while perserves moderate

model complexity. Regarding self-supervised pre-training time of Swin UNETR encoder, our ap-

proach takes only approximately 6 GPU days. We evaluate pre-training on the 5 collected public

datasets with totally 5,050 scans for training and validation, and set maximum training iterations to

45K steps.

8.13 Pre-Training Algorithm Details

In this section, we illustrate the Swin UNETR pre-training details. The Swin UNETR is trained in

self-supervised learning paradigm, where we design masked volume inpainting, rotation prediction

and contrastive coding as proxy tasks. The self-training aims at improving the quality of represen-

tations learnt by large unlabeled data and propagating to smaller fine-tuning dataset. To this end,

we leverage multiple transformations for input 3D data, which can exploit inherent context by a

mechanism akin to autoencoding and similarity identification. In particular, given an input mini

batch data, the transform of random rotation is implemented on each image in the mini batch itera-

tively. To simultaneously utilize augmentation transformations for contrastive learning, the random

rotation of 0◦, 90◦, 180◦, 270◦ is applied twice on the same input to generate randomly augmented

image pairs of the same image patch. Subsequently, the mini batch data pairs are constructed with

the cutout transforms. The drop size of voxels are set to 30% of input sub-volumes. We randomly

generate masked ROIs inside image, until the total masked voxels are larger than scheduled number

of dropping voxels. Unlike canonical pre-training rules of masked tokens in BERT [85], our local

transformations to the CT sub-volumes are then arranged to neighbouring tokens. This scheme can

construct semantic targets across partitioned tokens, which is critical in medical spatial context.

By analogy to Models Genesis [2], which is CNN-based model consisting expensive convolutional,

transposed convolution layers and skip connection between encoder and decoder, our pre-training

approach is trained to reconstruct input sub-volumes from the output tokens of the Swin Trans-

former. Overall, the intuition of modeling inpainting, rotation prediction and contrastive coding is

to generalize better representations from aspects of images context, geometry and similarity, respec-

tively.

124



CHAPTER 9

Characterizing Renal Structures with 3D Block Aggregate Transformers

9.1 Introduction

Hierarchical models [42, 115, 127] are received significant interest in medical image analysis due

to their advantages of modeling heterogeneous high-resolution radiography images. Recent works

on vision transformers [88, 204] show superior performance on visual representations compared to

state-of-the-art convolution-based networks [223]. However, ViT usually requires large-scale train-

ing data with expensive clinical expertise [127, 224]. When trained on smaller cohorts, transformer-

based models often suffer from a lack of inductive bias [88, 254] and lead to data inefficiency.

Moreover, the self-attention mechanism on modeling multi-scale features for high-resolution med-

ical volumes is computationally expensive [204, 255, 256]. These challenges inspire designing

hierarchical transformer structures in analogy to convolution-based networks (e.g., 3D UNet [115]).

Addressing the data inefficiency of transformers is critical for its application on medical image

analysis, especially for understanding small targets on 3D high-dimensional image volumes.

One such challenge is segmenting the small structures of kidney sub-components. Renal struc-

ture volumes from clinical CT scans have been recently suggested as a useful surrogate for eval-

uating renal function [257, 258]. These investigations elucidate the correlations of the volumetric

measurements on the renal cortex, medulla, and pelvicalyceal system with kidney function. In such

studies, manual segmentation is performed as the gold standard for visual and quantitative morpho-

logical assessment on CT scans [259] as shown in Figure 9.1. However, manual quantification by

clinical experts is resource-intensive, time-consuming, and may suffer from insufficient inter- and

intra-reproducibility.

To improve the representation learning of transformers in small datasets, recent works envision

the use of local self-attention to form hierarchical transformers [204, 230, 256]. To leverage infor-

mation across embedded sequences, ”shifted window” transformers [204] are proposed for dense

predictions and modeling multi-scale features. However, these attempts that aim to complicate the

self-attention range often yield high computation complexity and data inefficiency. Inspired by the
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Figure 9.1: Left: visual and 3D illustration of the kidney components. Right: Demonstration of
the hierarchical transformer design, the 3D block aggregation is conducted every two hierarchies,
blocks at a factor of 8 are merged to perform communication of sequence representations.

aggregation function in the nested ViT [260], we propose a new design of a 3D U-shape medical seg-

mentation model with Nested Transformers (UNesT) hierarchically with the 3D block aggregation

function, that learn locality behaviors for small structures or small dataset. This design retains the

original global self-attention mechanism and achieves information communication across patches

by stacking transformer encoders hierarchically.

Our contributions in this work can be summarized as:

• We introduce a novel 3D medical segmentation model, named UNesT with a 3D block ag-

gregation function. This method achieves hierarchical modeling of high-resolution medical

images and outperforms local self-attention variants with a simplified design, which leads to

improved data efficiency.

• We collect and manually delineate the first renal substructures dataset (116 patients) on char-

acterizing multiple kidney components. We show that our method achieves state-of-the-art

performance to accurately measure the cortical, medullary, and pelvicalyceal system volumes.

• We demonstrate the clinical utility of this work by accurate volumetric analysis, strong cor-

relation, and reproducibility. Validation on external public dataset KiTS shows the generaliz-

ability of the proposed method.

9.2 Related Works

3D Medical Segmentation with Transformers. Transformer-based 3D medical image segmen-

tation models [93, 214, 224, 261, 262, 263, 264, 265, 266] are popular and achieve state-of-the-
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art performance in several benchmarks. The self-attention mechanism [128] allows the inputs at

different positions of a sequence to interact with each other, and then compute the overall repre-

sentation from the sequences. Although transformers exhibit outstanding performance in learning

global context, their deficiency in capturing localized information remain. To address this, Trans-

Fuse [262], TransBTS [261], CoTr [93], UNETR [214] are proposed architectures which combine

transformers and CNNs into hybrid designs. More recently, hierarchical transformers are proposed

with shifted-window [204], it enables cross-patch self-attention connections. Based on Swin ViT,

Swin UNETR [127, 267] and SwinUNET [230] are introduced for capturing multi-scale features

in CT images. However, the modification on local self-attention results in quadratic increase of

complexity.

Hierarchical Feature Aggregation. The aggregation of multi-level features could improve the

segmentation results by merging the features extracted from different layers. Modeling hierarchical

features, such as U-Net [115] and pyramid networks [42], multi-scale representations are lever-

aged. The extended feature pyramids compound the spatial and semantic information through two

structures, iterative deep layer aggregation which fuses multi-scale information as well as hierar-

chical deep aggregation which fuses representations across channels. In addition to single network,

nested UNets [268], nnUNets [58], coarse-to-fine [185] and Random Patch [43] suggest multi-stage

pathways that enrich the different semantic levels of feature progressively with cascaded networks.

Different from the above CNN-based methods, we explore the use of data-efficient transformers for

modeling hierarchical 3D features by the block aggregation.

9.3 Method

9.3.1 UNesT Architecture

The proposed network contains a hierarchical transformer as the encoder, which consists of three

hierarchies to perform self-attention communications among image blocks. Following the motiva-

tion of NesT [260] for natural images, we process the volumetric information between 3D adjacent

blocks by the aggregation layer every two hierarchies. The overall architecture, as shown in Fig-

ure 9.2, also contains skip connections with convolution modules and a decoder for better capturing

localized information.

Given the input image sub-volume X ∈ RH×W×D, the volumetric embedding token is with
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Figure 9.2: Overview of the proposed UNesT with the hierarchical transformer encoder. Block
aggregation and image feature down-sampling are performed between hierarchies.

patch size of Sh × Sw × Sd . Then all projected sequences of embeddings are partitioned to blocks

with a resolution of X ∈ Rb×T×n, where T is the number of blocks at the current hierarchy, b

is the batch size, n is the total length of sequences. The dimensions of the embeddings follow

T × n = H
Sh
× W

Sw
× D

Sd
. In the subsequent transformer layers, we use the canonical multi-head self-

attention (MSA), multi-layer perceptron (MLP), and Layer normalization (LN). We add learnable

position embeddings to sequences for capturing spatial relations before the blocked transformers.

The output of encoder layers t −1 and t are computed as follows:

ẑt = MSAHRCHYl(LN(zt−1))+ zt−1

zt = MLP(LN(ẑt))+ ẑt ,
(9.1)

where MSAHRCHYl denotes the multi-head self-attention layer of hierarchy l, ẑt and zt are the output

representations of MSA and MLP. In the practice, MSAHRCHYl is applied parallel to all partitioned

blocks:

MSAHRCHYl(Q, K, V) = Stack(BLK1, ...,BLKT)

BLK = Attention(Q, K, V) = Softmax(QK⊤
√

σ
)V,

(9.2)

where Q,K,V denote queries, keys, and values vectors in the multi-head attention, σ is the size

of each vector. All blocks at each level of hierarchy share the same parameters given the input

X , which leads to hierarchical representations without increasing complexity. Finally, the block

aggregation is merged spatially by adjacent 8 blocks.
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9.3.2 3D Block Aggregation

Following [260], we extend the spatial nesting operations to 3D blocks where each volume block is

modeled independently. Information across blocks is communicated by the aggregation module. At

hierarchy l, the spatial operations are conducted to down-sampled feature maps at Rb×H ′/2×W ′/2×D′/2.

At the bottom of each hierarchy, the embeddings are blocked back to feature Zl+1 ∈ Rb×T/8×n for

hierarchy l + 1. There are three hierarchies in our model design, a factor of 8 is reduced in a total

number of blocks which results in [64, 8, 1] blocks. In the volumetric plane, the encoded blocks are

merged among adjacent blocks representations. The design and use of the aggregation modules in

the 3D scenario leverage local attention, lead to a data-efficient design.

9.3.3 Decoder

To better capture localized information and further reduce the effect of lacking inductive bias of

transformer, we use a hybrid design with a convolution-based decoder for segmentation. The fea-

tures from different hierarchies of the transformer encoder are fed into skip connections followed

by convolution layers. As shown in Figure 9.2, we extract the output representations at the image

level and each hierarchy to 3×3×3 conv layers, then upsample by a factor of 2. Next, the output

of the transposed conv is concatenated with the prior hierarchy representations. The segmentation

mask is acquired by 1× 1× 1 conv layer with a softmax activation function. Compared to some

prior related works such as TransBTS [261] and CoTr [93], our design employs the hierarchical

transformer directly on images and extract representations at multiple scales without conv layers.

9.4 Experiments

9.4.1 Dataset

Renal Substructure Dataset. The study design uses clinically collected renal CT of 116 de-

identified patients accessed under IRB approval. We use selected ICD codes related to kidney

dysfunction as exclusion criteria, that could have a potential influence on kidney anatomies. The

left and right renal structures are outlined manually by three interpreters under the supervision of

clinical experts. The annotation for the cortex label also includes the renal columns, the medulla is

surrounded by the cortex, and the pelvicalyceal systems contain calyces and pelvis that drain into

the ureter. All manual labels are verified and corrected independently by expert observers. For the
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Table 9.1: Segmentation results of the renal substructure on testing cases. The UNesT achieves
state-of-the-art performance compared to prior kidney components studies and 3D medical seg-
mentation baselines. The number of parameters and GFLOPS (with a single input volume of
96× 96× 96) are shown for deep learning-based approaches. * indicates statistically significant
(p < 0.01) by Wilcoxon signed-rank test.

Method #Param GFLOPS Cortex Medulla Pelvicalyceal System Avg.
DSC HD DSC HD DSC HD DSC HD

Chen et al. [270] N/A N/A 0.7512 40.1947 N/A N/A N/A N/A N/A N/A
Xiang et al. [271] N/A N/A 0.8196 27.1455 N/A N/A N/A N/A N/A N/A
Jin et al. [272] N/A N/A 0.8041 34.5170 0.7186 32.1059 0.6473 39.9125 0.7233 35.5118
Tang et al. [123] 40.9M 423.9 0.8601 19.7508 0.7884 18.6030 0.7490 34.1723 0.7991 24.1754
nnUNet [58] 19.1M (3DUNet) 412.7 0.8915 17.3764 0.8002 18.3132 0.7309 31.3501 0.8075 22.3466
TransBTS [261] 33.0M 359.4 0.8901 17.0213 0.8013 17.3084 0.7305 30.8745 0.8073 21.7347
CoTr [93] 46.5M 399.2 0.8958 16.4904 0.8019 16.5934 0.7393 30.1282 0.8123 21.0707
nnFormer [224] 158.9M 146.5 0.9094 15.5839 0.8104 15.9412 0.7418 29.4407 0.8205 20.3219
UNETR [214] 92.6M 41.2 0.9072 15.9829 0.8221 14.9555 0.7632 27.4703 0.8308 19.4696
UNesT 87.3M 37.5 0.9201 14.5401 0.8356 13.5933 0.7843 24.5445 0.8467* 17.5593

test set of 20 subjects, we perform a second round of manual segmentation (interpreter 2) to assess

the intra-rater variability and reproducibility.

KiTS19. To validate the generalizability of the proposed method while remaining the target of

characterizing renal tissues, we apply the model to the public KiTS19 dataset. The KiTS19 [269]

task focuses on the whole kidney and tumor segmentation. We perform five-fold cross-validation

experiments and show results of the held-out 20% as testing.

9.4.2 Implementation Details

Five-fold cross-validation is used for all experiments on 96 subjects, while 20 subjects are used

for held-out testing. The five-fold models’ ensemble is used for inferencing and evaluating test

set performance. For experiment training, we used 1) CT window range of [-175, 275] HU; 2)

scaled intensities of [0.0,1.0]; 3) training with single Nvidia RTX 2080 11GB GPU with Pytorch

and MONAI implementation at batch size of 1 (input image sub-volume size of 96× 96× 96); 4)

AdamW optimizer with warm-up cosine scheduler of 500 steps. The learning rate is initialized to

0.001 followed by a decay of 1e−5 for 50K iterations. For fair comparison and direct evaluation of

the effectiveness of models, no pre-training is performed for all segmentation tasks.

Metrics. Segmentation performance is evaluated between ground truth (rater 1) and prediction by

Dice-Sorensen coefficient (DSC), and symmetric Hausdorff Distance (HD). Volumetric analyses

are evaluated under R squared error, Pearson R, absolute deviation of volume, and the percentage

difference between the proposed method and manual label.
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Table 9.2: Comparison of volumetric analysis metrics between the proposed method and the state-
of-the-art clinical study on kidney components.

Metrics Cortex Medulla Pelvicalyceal System
Tang et al. [123] UNesT Tang et al. [123] UNesT Tang et al. [123] UNesT

R Squared 0.9200 0.9359 0.6652 0.6837 0.4586 0.5917
Pearson R 0.9838 0.9891 0.8156 0.8368 0.6772 0.7148
Absolute Deviation of Volume 3.0233 2.7254 3.5496 3.2958 0.9443 0.8012
Percentage Difference 4.8280 3.9478 7.4750 7.0382 19.0716 13.5737

9.5 Results

9.5.1 Characterization of Renal Structures

We evaluate the UNesT performance on two groups of methods: 1) the clinical kidney compo-

nents studies such as CortexSeg [270], CorteXpert [271], AAM [272], and 2) recent conv- [58] and

transformer-based [93, 214, 224, 261] 3D medical segmentation baselines.

Segmentation Results. Compared to canonical kidney studies using shape model or random forests

in Table 9.1, the deep learning-based methods improve the performance by a large margin from

0.7233 to 0.7991. Among the nnUNet [58] and extensive transformer models, we obtain the state-

of-the-art average Dice score of 0.8467 compared to the second-best performance of 0.8308, with

a significant improvement p < 0.01 under Wilcoxon signed-rank test. We observe higher improve-

ment on smaller anatomies such as medulla and collecting systems. We compare qualitative results

in Figure 9.3. Our method demonstrates the distinct improvement of detailed structures for medulla

and pelvicalyceal systems.

Volumetric Analysis. Table 9.2 lists the volume measurement with the proposed method. The

UNesT achieves an R squared error of 0.9359 on the cortex. The correlation performance met-

ric with Pearson R achieves 0.9891 for the UNesT against the manual label on the cortex. Our

method obtains 2.7254 with an absolute deviation of volumes. The percent difference in the cortex

is 3.9478. Quantitative results show that our workflow can serve as the state-of-the-art volumetric

measurement compared to prior kidney characterization pipeline [123].

9.5.2 Ablation Study

Effect of the Block Aggregation. We show the hierarchical architecture design (with 3D block

aggregation) is critical for medical image segmentation (as shown in Figure 9.4 left and middle).

The result shows that the hierarchy mechanism achieves superior performance at 20% to 100% of
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Figure 9.3: Qualitative comparisons of representative renal sub-structures segmentation on two right
(top) and two left (bottom) kidneys. The average DSC is marked on each image. UNesT shows
distinct improvement on the medulla (red) and pelvicalyceal system (green) against baselines.

training data. At the low data regime, the block aggregation achieves a higher improvement (> 4%

of DSC) compared to the second-best method. We notice that the model without block aggregation

(canonical transformer layers) obtains lower performance. The results show that block aggregation

performs as a critical component for representation learning for transformer-based models.

Data Efficiency. The Figure 9.4 shows the data efficiency of our proposed method. First, UNesT

achieves better performance when training with fewer data. Second, UNesT with block aggregation

demonstrates a faster convergence rate (15% and 4% difference at 2K/30K iterations) compared to

the backbone model without hierarchies.

Generalizability. To validate the generalizability of the UNesT, we compare KiTS19 results among

nnUNet [58] and transformer-based methods. Our approach achieves moderate improvement at

DSC of 0.9778 and 0.8398 for kidneys and tumors, indicating that the designed architecture can be

used as a generic 3D segmentation method.
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Middle: Comparison of the convergence rate for the proposed method with and without hierarchical
modules, validation DSC along training iterations are demonstrated. Right: Results on the KiTS19
dataset show the generalizability of the proposed UNesT.

9.6 Discussion and Conclusion

In this paper, we target the critical problem that transformer-based models are commonly data-

inefficient, which leads to unsatisfied performance when tasked with learning small structures and

small datasets. In this work, we develop the first cohort of renal sub-structures study, specifically the

renal cortex, medulla, and pelvicalyceal system. Upon the clinically acquired subjects, we propose a

novel hierarchical transformer-based 3D medical image segmentation approach (UNesT). We show

that the proposed method is data-efficient for accurately quantifying kidney components and can

be used for volumetric analysis such as the medullary pyramids. Figure 9.5 in the supplementary

materials shows the proposed automatic segmentation method achieves better agreement compared

to inter-rater assessment, 0.01 against 0.29 of mean difference indicating reliable reproducibility.

Clinical Impact. Visual quantitative analysis of renal structures remains a complex task for radi-

ologists. Some of the histomorphometry features of regions of the kidney (e.g. textural or graph

features) are poorly adapted for manual identifications. In this study, we show that UNesT achieves

consistently reliable performance. Compared with previous studies on cortex segmentation, the

proposed approach significantly facilitates derivation of the visual and quantitative results.

Efficient segmentation is critical for clinical practice in deploying individual assessment. We

note that, unlike other large organs, the renal segmentation dataset can be different in terms of

imaging protocols, patient morphology, and institutional variations. We consider the framework

adaptable to the segmentation of abnormal primitives in the future. In terms of sensitivity, we be-

lieve that the approach can be further improved from two perspectives. First, pre-registration of the
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Figure 9.5: The Bland-Atman plots compare the medulla volume agreement of inter-rater and auto-
manual assessment. We show the cross-validation on interpreter 1, interpreter 2 manual segmenta-
tion on the same test set. Interpreters present independent observation without communication. The
auto-manual assessment shows the agreement between UNesT and interpreter 1 annotations.

kidney region of interest can help to reduce the shape and size variations and thus boost the seg-

mentation performances. Second, incorporating dose usage in the segmentation loop can be very

helpful. It can be expected that augmented contrast can be measured to better identify adjacent

tissues among renal structures.
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CHAPTER 10

Abdominal Atlas Template for Accurate Tissue Correspondence

10.1 Introduction

The construction of human body templates can provide information of anatomical details of organs

and neighboring tissues. The study of body atlas can differentiate and contextualize findings of tar-

get organs. However, currently there is no standard reference space of abdomen to define platforms

for healthy anatomies. Complicated relationships between cells in multi-perspectives such as orga-

nization, specialization and cooperation, are challenging to analyze. Extensive studies of mapping

the organization and molecular profiles of cells within tissues or organs are needed across the human

body. While the majority of efforts are distributed to the cellular and molecular perspectives [273],

generalizing information from cell to organ level is essential to provide a better understanding of the

functionality and linkage across scales. The use of computed tomography provides an opportunity

to contextualize the anatomical characteristics of organs and systems in the human body. Creating a

generalizable framework with integration of micro-scale information and system-scale information

benefits clinicians and researchers to visualize details across scales. The linkage between the cor-

respondence of the organ anatomical structures to the pathogenesis of organ-related disease can be

explored, increasing the confidence level of the explainable findings with the use of the anatomical

information generated from the generalizable framework [274].

In this work, we present a contrast-preserving CT abdominal atlas framework, optimized for

healthy kidney organs with contrast-characterized variability and the generalizable features across

a large population of clinical cohorts. Specifically, we initially extracted the abdominal volume of

interest with a similar field of view to the atlas target image, using a deep neural network called body

part regression (BPR) [125]. 2D slices of the CT volume assessed with BPR model and generate a

value ranging from -12 to +12, corresponding to an approximate anatomical location in the body. By

limiting the range of values for abdominal regions, each CT volume is cropped and excludes other

regions apart from the abdomen, such as the lung and pelvis. A two-stage hierarchical registration

pipeline is then performed, registering the extracted volume interest to the high-resolution atlas

135



target with affine and non-rigid registration [275, 276]. To ensure the stability and the variation

localized in the atlas template, average and variance mappings across the multi-contrast registered

output is computed to demonstrate a better understanding of anatomical details of kidney organs

across different contrasts.

Besides the whole kidney, Renal structure volumes from clinical CT images have been recently

suggested as a useful surrogate for evaluating renal function [277, 278]. These investigations es-

tablished correlations of measurements of the renal cortex, medulla, and pelvicalyceal system with

kidney function. Manual segmentation remains the gold standard for visual and quantitative mor-

phological assessment on arterial phase CT scans [279, 280]. However, manual quantification by

kidney experts is resource-intensive, time consuming, and may suffer from insufficient inter- and

intra-reproducibility.

The increasing demands for useful large-scale volume quantification presents opportunities and

challenges to develop rapid and accurate methods for measuring renal structures. Imaging hard-

ware, acquisition protocols, and non-uniform shapes can lead to significant variability in renal mor-

phology. Though imaging modalities such as computed tomography (CT) and magnetic resonance

imaging (MRI) provide high quality images, the renal cortex, medulla and pelvicalyceal system

can be difficult to differentiate due to low-contrast boundaries. As shown in Figure. 10.1, contrast-

enhanced CT can provide increased imaging contrast and can characterize some aspects of renal

physiology. The arterial phase CT scans show the optimal contrast between the enhanced cortex,

medulla, and pelvicalyceal system. Prior investigations focused on renal cortex segmentation by

CT and MRI [278, 280]. However, these studies were limited to a small number of datasets and

required tedious manual assessment. Consequently, semi-automatic studies on images done for

clinical indications were established for exploring risk factors and markers in the setting of kidney

disease [281, 282, 283, 284]. Because potential renal structure delineation undergo a standardized

evaluation in the contrast-enhanced CT, fully-automatic evaluation methods were feasible and use-

ful for characterizing clinical correlations in the larger population [282, 283, 285, 286]. Among

these, Chen et al. [285] proposed a method with active appearance model (AAM) for cortex seg-

mentation on abdominal CT. Jin et al. [282] extensively studied AAM that combines random forest

and 3D Hough transform. Xiang et al. [283] constructed a cortex model that adapted model with

graph search. However, the cortex, medulla, and pelvicalyceal system contain different nephron
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Figure 10.1: Illustration of defining atlas standardize reference for multi-contrast phase CT. The
color grid in the three-dimensional atlas space represents the defined spatial reference for the ab-
dominal volume of interest and localize abdominal organs with each contrast phase characteristics.
Blue arrows represent the bi-directional transformation across the atlas target defined spatial refer-
ence and the original source image space.

segments that may have different markers in assessment of renal function. Separate analysis of

cortex, medulla and the collecting system may help clarify associations with clinical factors and

enable discrepant findings. To date, study of simultaneously segmenting renal cortex, medulla and

pelvicalyceal system in contrast-enhanced abdominal CT has only rarely been explored.

In addition, we also show the construction of pancreas atlas, the first healthy pancreas atlas

template for tissue mappings.

10.2 Data

Kidney and Pancreas Atlas: A large clinical cohort of multi-contrast CT was employed for ab-

dominal organ registration. In total, 2000 patients’ de-identified CT data were initially retrieved

in de-identified form from ImageVU with the approval of Institutional Review Board (IRB). For

kidnet atlas, in these 2000 patients, since some of them consisted of kidney organ disease scans,

qualified criteria in ICD-9 codes and age range from 18-50 years old were set and applied to extract

scans with healthy kidneys from all subjects. 720 subjects out of 2000 were identified after quality

assessment and extract the corresponding contrast phase abdominal CT scans, which included 290

unlabeled CT volumes in total with: 1) non-contrast: 50 volumes, 2) early arterial: 30, 3) late arte-

rial: 80 volumes, 4) portal venous: 100 volumes, 5) delayed: 30 volumes. For pancreas atlas, a same
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query process is performed, but to keep normal pancreas subjects for building the atlas template. All

CT volumes are initially reoriented to standard orientation before further processing [178]. BPRN

was initially performed to each modality volumes and obtain the similar field of view with the atlas

target. They were then resampled to the same resolution and dimensions with the atlas target for

performing registration pipeline. We aim to adapt a generalized atlas framework for localizing the

anatomical and contextual characteristics of kidney organs across multi-contrast.

Renal Structures: The patient dataset (102 subjects) used in our experiments was acquired

from Vanderbilt University Medical Center (VUMC) archival clinically obtained images with IRB

approval. The initial query for this study included 2000 patients. As shown in Figure. 10.2, to

obtain comprehensive evaluation, we assessed each subject’s deidentified electronic health record

(EHR) data, including demographics, ICD-9, and ICD-10 codes. The aim of the assessment was to

identify normal kidneys from the large-scale cohort. We used selected ICD codes related to kidney

dysfunction as exclusion criteria, supervised by kidney experts, that could have potential influence

for kidney anatomies. A small subset of subjects was categorized by ICD-10 codes; these ICD-10

codes were converted to ICD-9 standard. For this control study, we selected adult subjects 18 to 50

years old, (median age of 35). Of 2000 potential subjects, 720 subjects were retrieved after exclusion

for ICD codes indicating possible kidney dysfunction. We further limited our study to those who had

arterial abdominal CT scans, which yielded 102 subjects. As depicted in Figure. 10.2, we split the

102 subjects into several subsets for different usage. The left and right renal structures were outlined

manually by interpreters under supervision of clinical experts. On CT scans in the dataset 1, testing

set (dataset 3), the renal cortex, medulla and pelvicalyceal systems were segmented by the first

interpreter using a tool for academic usage, a tracing pad is used for delineating contours. For each

tissue, the interpreter was instructed to verify the segmentation slice-by-slice in all axial, sagittal,

and coronal views. The annotation for cortex label also includes the renal columns, the medulla was

surrounded by the cortex, and the pelvicalyceal systems contain calyces and pelvis that drain into

ureter. All manual labels were verified and corrected independently by expert observers. Dataset 1

was used as training and evaluation for the base automatic system. Afterward, the dataset 2 labels

are initialized by applying the first system, and then manually refined to reach the standard of manual

segmentation (on average 1 hour per subject for refinement). Last, we trained the final automatic

system that incorporates all subjects. For the test set of 20 subjects (dataset 3), we performed a
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Figure 10.2: Framework of study design. From D0-A to D0-C, the flowchart shows the criteria from
initial query to the CT scans used in this study. Dataset 1 was used for training and validating base
system, and dataset 3 is held for external testing. Dataset 1 and dataset 2 were used for training and
validation the proposed system.

second round of manual segmentation to assess the intra-rater variability. The same procedure was

used to label three renal structures. To assess inter-rater variability and perform reproducibility, we

have another two interpreters perform manual segmentations on a subset in dataset 3 independently

using the same annotation protocol, as shown in Figure. 10.2. We evaluated the intra- and inter-rater

variability on this dataset by Bland-Altman agreement plots in the result section. Both interpreters

are supervised by experienced radiologists (> 10 years of experience in kidney radiology).

10.3 Experiments

10.3.1 Kidney and Pancreas Atlas

On constructing the kidney and pancreas atlas, we performed registrations, each source image (mov-

ing/floating) is resampled to the same voxel resolution and the 3-dimensional shape of the atlas tar-

get (fixed/target) with cropping/padding slices. Our registration pipeline is composed of 2 hierarchal

stages: 1) affine registration and 2) non-rigid registration. Dense displacement sampling (DEEDS),

a 3D medical registration tool in discretized sampling space that has been shown to yield a great
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performance in abdominal organs registration, is used for both affine non-rigid registration in this

pipeline. The DEEDS affine registration is first performed to initially align both moving images and

the atlas target to preserve 12 degrees of freedom of transformation and provide a prior definition

of the spatial context and each affine component. An affine transformation matrix is generated as

the output and become the second stage non-rigid registrations’ input. The DEEDS non-rigid reg-

istration is refined with the spatial context as the local voxel-wise correspondence with its specific

similarity metric, which will be illustrated below. Five different scale levels are used with grid spac-

ing ranging from 8 to 4 voxels to extract patches and displacement search radii from six to two steps

between 5 and 1 voxels. Deformed scans with the displacement data from randomly control point

selection is generated and localize the original image space voxel information to the atlas space

after deformation. To ensure the stability of the atlas generated, all successfully deformed scans are

summed and compute an average and variance mapping to visualize the intensity fluctuation and

variation around the abdominal body and kidney/pancreas organs.

The similarity metric defined in DEEDS registration tool is measuring the self-similarity con-

text with the patches extracted from moving images. Such a similarity metric aims to find a similar

context around neighboring voxels in patches. The self-similarity metric S is optimizing a distance

function D between the image patches extracted from the moving image M. A function q2 is com-

puted to estimate both the noise in local and global perspectives. Meanwhile, a certain number of

neighborhoods kinds N is also defined as to determine the kinds of self-similarities in the neighbor-

hood. As randomly extracting an image patch with a center at x, the measurement calculation of the

self-similarity can be demonstrated as follows:

D(M,x,y) = exp(
S(x,y)

q2 ) (10.1)

where y is defined as the center of another patch from one of the neighborhood N. This similarity

metric provides an opportunity to avoid the image artifacts or random noise from the central patch

extracted and prevent a direct adverse effect in calculation. The distance between pairwise patches

is calculated within six neighborhoods and concentrate in extracting the contextual neighboring

information, instead of the direct shape representation.
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10.3.2 Automated Renal Structures Segmentation

The automatic segmentation is based on deep neural networks. We trained the system in two stages

in order to capture both global and local context, and to prevent instability due to resolution changes,

as shown in Figure. 10.3. In the first stage, we used the entire volume of each CT scans, each down-

sampled to (2 2 6) mm and padding to volume size of 168 168 64. The purpose of the first phase

is to capture the global context and locate the relative position of kidneys/pancreas. We used the

3D U-Net [115] as the backbone, a state-of-the-art segmentation network. While there are other

backbone architectures, these are expected comparable empirical performance. In the second stage,

we randomly select predicted voxels in the first stage. Using the pixel indices as the center, a

renal bounding box was calculated and created. In order to perform randomness, a random shift

was added. The distance of shifting was derived by a random number generator with mean and

variance among bounding boxes centers, as shown in Figure. 10.3. Then, we trained a patch-based

network using the same backbone network, followed by majority voting. In our experiment, we

used Dice loss as the error function to adapt the multi-labels in the training. We also used instance

normalization due to the batch size of 1 employed in the experiment, each normalization layer is

followed by a Rectified Linear Unit (ReLU).

Experimental Design. Original CT scans were clipped by soft tissue window with a range from

-175 to 250 Hounsfield Unit (HU). Second, the soft-tissue windowed CT images and labels were

resampled and normalized using cubic spline and nearest interpolation, respectively. All abdominal

scans were processed using body part regression technique to ensure the same field of view (FOV)

from middle lung to pelvis. We performed 5-fold cross validation during experiments, 82 subjects

(dataset 1 and dataset 2) are uniformly split to five-folds, for each experiment, 4 folds were used

for training and the remaining one set for validation. This procedure was repeated five times until

every set was used for validation. The stopping criteria and optimal model were selected according

to the best performance in validation set. The best performed model on validation set was selected

for testing. The withheld 20 subjects (dataset 3) were used as the testing set.

Statistical Analyses. Renal cortex, medulla and pelvicalyceal systems volumes were computed

as the product of the number of foreground pixels multiplied with the pixel spacing in x and y

direction and the corresponding slice thickness. Accuracy. Several metrics have been proposed to

evaluate imaging segmentation accuracy. We computed the Dice coefficient and average Hausdorff
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Table 10.1: Summarized statistics for the final automatic system compared to manual segmentation.

Table 10.2: Comparison between our best performance and state-of-the-art segmentation methods.

distance to judge segmentation from different methods against the ground truth. We compared the

different methods’ volume predictions against the ground truth with Dice scores, Hausdorff distance,

and absolute deviation of volumes.

Agreement and Bias. Bland-Altman plots serve to compare different algorithm’s estimates

agreement with the manual segmentation.

10.4 Results

We show the qualitative representations as shown in Figure. 10.3 of registrations across multiple

contrast phases are shown in terms of single subject registration, average template and variance

mapping in Figure. 10.3 and the surface tissue mapping (Figure. 10.4). The multi-organ label pro-

vided general localization information of anatomical structures in atlas target image and compared

with the deformed output from each contrast phase. The qualitative representation of the single

subject registration demonstrated good localization ability of kidneys/pancreas organ with the cor-

responding contrast characteristics, while the kidney/pancreas organs in the early and late arterial

phase subject is shown with small level of over-deformed. The average mapping of each contrast

phase was then computed with all successfully registered contrast-corresponding volumes. Each
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Figure 10.3: The qualitative representation of the single subject registrations, average mapping
and variance mapping of each contrast phases are demonstrated. The contrastive and morphologi-
cal characteristics of kidney organs are demonstrated in the single subject registration and average
mapping of each phases. Small variations are shown surrounding the kidney organs region in the
variance mapping, while great variations are located in the diaphragm region nearby with liver and
spleen (Color bar is provided in the supplementary file).
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Figure 10.4: The surface rendering of the registered kidney with significant morphological variation
are also illustrated. The 2D checkerboard pattern demonstrate the correspondence of the deforma-
tion from atlas space to the moving image space. A stable deformation across the change in volu-
metric morphology of kidney (100 cc to 308 cc) are demonstrated with the deformed checkerboard.

average template is shown with stable abdominal body registration and a significant clear bound-

ary of both left and right kidneys. The contrast characteristics of the kidneys were demonstrated

and well allocated in the similar anatomical location of the atlas template. Apart from the contrast

characteristics, the anatomy of kidney sub-structure and renal-related vessels can barely appear in

the average template of early arterial, late arterial and delayed phase. To ensure the stability of

transferring kidneys’ anatomical information, variance map of each contrast phase template is also

computed to demonstrate the voxel variability of each organ across the clinical cohort. The small

variation in the kidney is illustrated with a color range from yellow to green, while significant vari-

ation in voxels is shown near the diaphragm region and the color range from orange to red indicated

the highly deformed variability across the registered outputs. Overall, the anatomical and contrast

characteristics of kidney organs can be both preserved and transferred to the atlas template with

good stability.

In Figure. 10.6, we show the constructed pancreas average template and its segmentation atlas

fused by queried population data. The qualitative results show the stability of the proposed frame-

work for pancreas atlas. In Figure. 10.7, the surface rendering of the 3D checkerboard show the

consistent correspondence of the pancreas across different subjects.

Renal Segmentation Similarity Analysis. We compared our automatic renal segmentation

methods on the “leave-out” test set (dataset 3 in Figure. 10.2). The mean Dice and variance are
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Figure 10.5: Examples of representative subjects’ visualization. Sections surrounded by blue labels
are cortex segmentation, the red is the medulla label, and green is the collecting system. The
automatic segmentation are acquired from using the final system model, the comparison between
automatic result with manual annotations shows that our method achieves comparable segmentation
performance that can be used for measurements.

0.8701 (cortex), 0.7984 (medulla), and 0.7590 (pelvicalyceal system). We calculated the Hausdorff

Distance (HD) for comparing the segmentation result, the HD metric evaluates the largest surface

distance between automatic and manual labels. The pelvicalyceal system shown received on HD of

34.1723. Dice scores of 0.7512 and 0.8196 (p-value < 0.001, statistically significant in. The relative

absolute volume difference showed that our method achieves 3.0233. On the basis of metrics,

our method outperformed previous studies as shown in Table. 10.2. Representative segmentation

visualization of the automatic model is shown in Figure. 10.5.

We calculated the volume measurement by the automatic method. The automatic method

achieves R squared error of 0.9200 on cortex. The correlation performance metric with Pearson

R achieved 0.9838 for the automatic system against manual label on cortex. The automatic method

obtained 3.00233 with absolute deviation of volumes. The percent difference on cortex volumes is

4.8280. Metrics are evaluated for medulla and pelvicalyceal system. Quantitative results showed

that the automatic model could be used as the automatic volume measurement for the qualitative

observer method.

145



Figure 10.6: Average template for pancreas atlas. The segmentation atlas in red color is shown in
three planner view.

Figure 10.7: The surface rendering of the registered pancreas with variations. The 3D checkerboard
pattern demonstrates the correspondence of the deformation from atlas space to the moving image
space.

146



10.5 Conclusion

This section presents a healthy kidney atlas to generalize the contrastive and morphological charac-

teristics across patients with significant variability in demographics and imaging protocols. Specif-

ically, the healthy kidney atlas provides a stable reference standard for both left and right kidney

organs in 3-dimensional space to transfer kidney information using registration pipeline. Significant

variance on the field of view and the organ shape can be focused as the optimization parameters to

reduce the possibility of failure registration. Potential future exploration with the use of the atlas

template can be further investigated in both engineering and clinical perspectives, to provide better

understandings and measures towards the kidney organs.

Additionally, we developed an automatic algorithm to segment the renal cortex, medulla, and

pelvicalyceal system using deep neural networks in arterial phase CT scan. From the clinical ac-

quired dataset, this study shows that this automatic method to segment renal structures achieves

reliable performance. We also show that the automatic method is feasible in quantifying imaging of

potential biomarkers in complex scenarios such as the medullary pyramids.

Visual quantitative analysis of renal structures remains a complex task for radiologists. Some

of the histomorphometry features of regions of the kidney (e.g. textural or graph features) are sub-

visual for human eyes. In this study, we showed that our proposed framework achieved consistently

high performance. Compared with previous studies on cortex segmentation, the deep neural network

segmentation approach significantly facilitated derivation of the visual and quantitative result.

In the volumetric analysis, the R squared error and Pearson R results in Table. 10.1 show strong

correlation between automatic volume measurements and manual references, especially in the renal

cortex and medulla. In this study, we established the approach of assessing the repeatability and

reproducibility of the manual effort across three independent observers, and we achieved consistent

agreements. This effort contributed to assess the automated segmentation algorithm that can yield

the same result for a given image set after training with these ground truth data. We observed a rel-

atively small volume difference between the performance of automatic system and manual ground

truth for renal cortex and medulla, while the pelvicalyceal system showed a higher difference, re-

flecting this very challenging tissue to assess from images.

In line with previous literature focused on cortex, such as studies that measured volumes for

assessing kidney donation and studies on renal segmentation for MR Urography, we achieved seg-
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mentation on cortex, medulla, and pelvicalyceal system simultaneously in arterial CT scans. Our

study suggests that fully automatic medulla segmentation is feasible and accurate. In evaluating time

efficiency, manual segmentation took about 7 hours per CT scan. The acceleration may provide a

rationale and further support for delivering treatment in clinical procedures.
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CHAPTER 11

Clinical Application: Validation and Estimation of Spleen Volume Via Computer-assisted

Segmentation on Clinically Acquired CT Scans

11.1 Introduction

Organ size measurements provide clinical utility in diagnosis and assessing treatment response

with different cancers. For instance, reduction in spleen volume is a crucial response element

for myeloproliferative neoplasms (MPN) [3], and recent studies showed that significant (greater

than or equal to 35%) splenic volume reduction (SVR) in myelofibrosis patients is associated

with improved overall survival [287, 288]. Splenic volume is measured in MPNs as an indi-

cator of extramedullary hematopoiesis, and SVR is a surrogate endpoint used to measure suc-

cess of a intervention in MPNs [289, 290]. Quantitative estimates of splenic biomarkers have

been of clinical interest in molecular, histologic, radiographic, and physiologic characterization of

spleens [15, 16, 291]. Unique challenges emerge when validating machine learning generated imag-

ing biomarkers. Changes in imaging hardware, acquisition parameters, and patient positioning dur-

ing imaging cause significant variations among images. Several groups, such as the NCI-sponsored

Quantitative Imaging Network [292] and the Radiological Society of North America’s Quantitative

Imaging Biomarker Alliance [293], have pursued multicenter imaging trials to address these vari-

abilities. Using machine learning algorithms to compute biomarkers presents additional challenges.

Performance from machine learning algorithms is dependent not only on the training data set but

also data set upon which the algorithms are deployed. Park and Han addressed this challenge in

their recent evaluation of diagnostic and predictive artificial intelligence technologies. They postu-

late that validating such algorithms’ performance requires testing in a clinical cohort that adequately

represents the target patient population [294]. Given an image from ultrasound, magnetic resonance

imaging or computed tomography (CT), manual annotation of spleen segmentation is still the gold

standard [5], yet the process is time intensive and requires domain expertise. Here, computer-

assisted spleen labeling could not only reduce resource consumption, but also support investigation

into spleen size’s clinical utility as a biomarker [19, 154, 295]. Several challenges remain, including
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significant inter-subject variability in spleen size, shape, and orientation. The multi-atlas approaches

produced encouraging results [296, 297], and we recently developed a deep convolutional neural

network algorithm that performs significantly better than previous methods [141]. The non-manual

measurements are “fit for purpose”; i.e., the rigor and methods utilized should be in accordance

with the intended purpose of the biomarker study [298]. Given this “fit for purpose” approach, it is

difficult to establish absolute benchmark criteria for validation studies. Accordingly, the reporting

of validation studies becomes increasingly important to allow investigators to evaluate whether the

assay is appropriate for a proposed study. We hypothesize that automated measures of spleen size

can serve as a biomarker for clinicians to better predict MPN disease progression and response to

therapy. Investigation into and potential utility of spleen volume as a biomarker is limited due to the

time-intensive process in obtaining those measurements. Indeed, Sargent et al. defined a set of pre-

requisite criteria for an imaging biomarker before clinical validation studies can be performed [299].

Notably, the authors highlight the necessity that the technology to assess the biomarker of interest

be stable and widely available. With automated spleen volume estimation, it is essential to validate

the methods following such criteria for clinical validation. The goal of this study is to evaluate the

performance of the proposed state-of-the-art spleen segmentation algorithm in measuring spleen

volumes on clinically acquired CT scans from patients with MPNs. Our validation study includes a

complete assessment of the technical performance of the biomarker assay using the state-of-the-art

deep neural networks. Such assessment includes measures of assay accuracy, repeatability, repro-

ducibility, technical bias, sensitivity, and specificity. We investigate four pipeline estimates for using

the deep learning algorithms on all scans: 1) manual segmentation by expert readers; 2) automatic

segmentation using deep learning algorithms; 3) unidimensional measurements and 4) 3-D splenic

index measurement. Further, the validation study defines the limits of the detection and quantifi-

cation for a given assay [15]. In the context of imaging biomarkers, the assay includes both the

image generation process (the specific imaging protocol) and the subsequent post-processing pro-

cedures to yield the biomarker measurement accuracy. Ultimately, through the validation process,

we show the agreement and bias proportion to the intended purpose of the biomarker study. In the

cross-validation experiments, our computer-assisted method produced segmentation masks with an

averaged dice coefficient of 0.95148 when evaluating against hand labeled masks. Most importantly,

our proposed method’s volume estimation achieved R2 coefficient of 0.99800 and Pearson R coeffi-
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Figure 11.1: Pipeline for the proposed method and unidimensional linear regression estimation
methods. The computer-assisted method in estimation 2 includes two CNN models with a coarse-
to-fine framework. Estimation 3 and 4 use measurements of length and width (splenic index) from
the ground truth for cc (cubic centimeter) volume estimation.

cient of 0.99905, indicating a significant improvement over traditional linear estimations [45]. This

demonstrates the potential of obtaining more accurate spleen volume estimates from state-of-the-art

deep learning algorithm.

11.2 Materials and Methods

Data Acquisition Under Institutional Review Board (IRB) approval, we obtained 138 de-identified

abdominal CT from patients enrolled in NCT02493530. This is a Phase 1 multi-center study of

TGR-1202 administered together with ruxolitinib in patients with MPNs. To minimize spectrum

bias, we utilized a consecutive series of patients from four study locations (Mayo, Wisconsin, Col-

orado, Vanderbilt). Including multi-center data provides evidence to evaluate how this algorithm

adapts to the variability inherent in multi-center trials. The spleen was segmented by expert readers

from each scan in this dataset to establish the ground truth.

Manual Segmentation (Estimation 1)

Manual spleen segmentation on all 138 scans establishes baseline splenic volumes. We used

open sourced tool MIPAV software from the NIH (21) to trace the spleen anatomies. In our study,

CT scans from patients with splenomegaly were retrieved. We delineated the outlines on every axial

slice and filled the regions enclosed by the tool. A radiologist, certified by the abdominal imaging

board, verified all splenic contours on the volumetric investigations. We calculated ground truth
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Figure 11.2: Demonstration of the measurements from pipelines for estimating spleen volumes. The
manual and computer-assisted methods evaluate the spleen volume (estimation 1 and 2). The linear
estimates (3 and 4) manually extract splenic diameters along different axes (length and width) from
an unlabeled CT scan.

spleen volume for each image by directly multiplying unit volume (cc/voxel) with number of voxels

inside segmentation region.

In order to evaluate the repeatability and reproducibility, we retrieved a subset of 40 patients la-

beled by a second similarly qualified imaging analyst under the supervision of a radiologist to assess

the inter-rater reliability of manual segmentation. Both readers adhered to the same tracing protocol,

and the agreement evaluation is shown in the result by the Bland-Atman plot (Figure. 11.5). Deep

Convolutional Neural Network Algorithm (Estimation 2)

Stage1: Low-resolution segmentation. Given CT scans with a fine resolution of [0.8 x 0.8 x

2mm], we first downsampled the images and trained a 3D U-Net for segmentation with lower reso-

lution. Each scan slice is downsampled from [512 x 512] to [168, 168] and images were normalized

to a consistent voxel resolution of [2 x 2 x 6mm]. We used Dice loss to compare network outputs

and ground truth labels. We ignored the background loss in order to increase weights for anatomies.

The crude segmentation masks are then upsampled to original resolution with nearest interpolation

for later stages. This approach is trained end-to-end, and Figure. 11.3 to Figure. 11.5 assess of the
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Figure 11.3: Quality assurance of the deep learning method in estimation 2 with computed to-
mography. Top row: three representative subjects’ slice above state-of-the-art. Middle row: three
representative cases with successful segmentation. Bottom row: failure cases where manual correc-
tion was required.
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approach’s segmentation quality. The down-sampled volume in low-resolution framework while

lacking detailed structures of anatomies, still preserves complete spatial context in CT scan.

Stage2: Random patch selection. For each CT scan, we randomly selected voxels in the pre-

dicted coarse segmentation mask. Fixing the selected voxels as centers, we placed bounding cubes

with slight random shifts along all axes. A Gaussian random variable determines the shifting dis-

tance. High resolution patches from original images were cropped according to bounding cubes, and

they formed second stage model inputs (Middle panel of Figure.11.1). This strategy builds the hier-

archy of non-linear features from random patches regardless of 3D contexts, and it employs detailed

context at original resolution and incorporates advantages of data augmentation with shifting.

Stage3: High-resolution segmentation and label fusion. Using randomly selected high-resolution

patches from the prior stage, we trained a second 3D U-Net. Integrating all patches on field of views,

we estimated the full field of view. Majority vote is used to merge estimates into a final segmentation

yielding the spleen voxels. Specifically, after separating full spatial context to randomly selected

subspaces, the overlapped regions provide more than one segmentation label for a voxel. We sum-

marize a single label given a vector of class labels from candidates. We ignore voters outside the

image space and related values are excluded in the label fusion.

Linear Estimation of Spleen Volume with Spleen Length (Estimation 3 and 4)

Recently, Bezerra et al. [45] introduced a helpful approach that estimates spleen volume through

unidimensional spleen measurements and 3-D splenic index. We obtained maximum spleen length

from coronal/frontal plane (L) and maximum spleen width from oblique sagittal/axial plane (W).

We calculated spleen volume estimates with linear regression equations specified by Bezerra et

al. [45]. The equations they proposed for maximum spleen length and maximum spleen widths are

V = (L− 5.8006)/0.0126 and V = (W − 8.1101)/0.0098. Figure. 11.2 depicts maximum spleen

length and maximum spleen width alongside other estimation methods in this study.

11.3 Analysis.

Accuracy

Several metrics have been proposed to evaluate imaging segmentation accuracy [300]. We com-

puted the Dice coefficient and average Hausdorff distance to judge segmentation from different

methods against the ground truth (Table. 11.1). We compared the different methods’ volume pre-
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Figure 11.4: Bland-Altman Plot for computer-assisted method (estimation 2), linear estimate with
length and splenic index (estimation 3 and 4). On each plot, the x-axis indicates the mean volume
between the ground truth and the estimation from computer-aided method. The y-axis shows the
difference in volume. 1.96 standard deviation in shown as the confidence interval.

dictions against the ground truth with R-squared, Pearson correlation, and absolute and percent

deviations.

Bias

Bland-Altman plots (Figure. 11.4) serve to compare different algorithm’s estimates’ agreement

with the ground truth. (Figure. 11.4).

Reproducibility

Once trained, the automated segmentation algorithm yields same result for a given image. To

ascertain the method as a sound replacement for manual segmentation, we examined manual the ap-

proach’s reproducibility on a subset of 40 patients. This subset of patient images was labeled simul-

taneously by a second research associate in order to assess the inter-rater reliability. Assuming the

label from expert 2 is the ground truth, we present the reproducibility comparisons in Figure. 11.5.

11.4 Results

In Figure 11.3, we present examples of predicted segmentation masks on their respective CT scans.

The top row shows three examples with exceptional alignment. The second row’s predictions are

satisfactory but slightly flawed at the edges, and the bottom row presents some of our failure cases.

As shown in Table. 11.1, our proposed method’s population Dice coefficient statistic is 0.9515±

0.0332, indicating a high degree of alignment between prediction masks and ground truth masks.

The averaged symmetric Hausdorff Distance is 9.3846 ± 15.113. The superior volume estimation

performance of the proposed method becomes more apparent when we compare estimation 2’s R2
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Figure 11.5: The repeatability and reproducibility between different imaging analyst readers on 40
respective studies. Bland-Altman Plot between estimations (2-4). The mean in difference and a
confidence interval of 1.96 standard deviation are shown.

Table 11.1: Summarized Statistics for different estimations compared to ground truth

values (0.99800), Pearson R coefficient (0.99905), absolute difference in volume estimates (29.091

± 113.720 cm3) and percent difference in volume estimates (2.3443 ± 6.2031 cm3) (p < 0.05 with

paired t-test between estimation 2 and 3, 2 and 4 respectively) against those of the unidimensional

linear regression estimation methods. The Bland-Altman plots in Figure. 11.4 also illustrates that

the deep convolutional neural network algorithm produced superior results.

11.5 Discussion

Main Contributions The study demonstrates a deep learning algorithm’s ability to produce precise

spleen masks and spleen volume estimates from abdominal CT scans. Shown in Bland-Altman

plots, estimates 2-4 performing on normal patient CT scans and failed to inference accurately where

splenomegaly was present. Our proposed method yielded superior results in both cases and was

also able to produce empty mask for CT scans after splenectomy. Shown in Table. 11.1, our method

achieves a Pearson R coefficient of 0.99905 and an average non-significant absolute deviation of
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20.604cc with respect to the ground truth. This approach performs consistent comparable result

with resource-intensive manual segmentation with unidimensional measurements. These results

show that a deep learning algorithm supervised by manual segmentation can enable generation of

higher accuracy in estimation of spleen volumes.

In reviewing the performance of inter-rater reproducibility, we found that agreement between

experts were highly accurate (mean 6 cc in Bland-Atman plot in Figure. 11.5). Using the labeling by

the second expert as the ground truth, the computer-assisted segmentation achieves slightly higher

agreement (mean 3cc in Figure. 11.4). Typically, the automatic method observes outliers include

spleens with severe splenomegaly and those under surgery, which these outliers are required by

rudimentary visual quality refinement.

11.6 Clinical Improvement

Organ size measurements remain attractive biomarkers for the assessment of disease. However,

diagnosis time is always a concern, and the significant time and resource cost associated with the

extraction of organ size limits its use. So far, such methods demonstrated limited clinical utility to

justify its adoption in clinical workflows, and it is our vision that automated measures of organ size

will reduce the cost of obtaining such measures, allowing for the prospective evaluation of organ

sizes in the study of disease prognosis and treatment response.

11.7 Summary

In summary, we proposed a deep convolutional neural network algorithm that produced more ac-

curate spleen volume estimates for abdominal CT scans. Given the importance of spleen vol-

ume as a biomarker and considering the superior effectiveness of the algorithm on patients with

splenomegaly, we conclude the algorithm can provide sufficiently accurate spleen volume mea-

surements. Given the current inaccurate and computationally expensive algorithms or accurate but

laborious manual labeling, this proposed method should exempt expert radiologists from arduous

manual labeling of spleens while allowing more precise, and expedient clinical diagnosis and treat-

ment suggestions with better spleen volume estimates.
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CHAPTER 12

Conclusion and Future Works

12.1 Impact of the Dissertation

This dissertation applies the data-driven perspectives of statistical, machine learning, and deep

learning models in healthcare. Starting from fundamental medical image analysis techniques such

as data curation, segmentation, registration, synthesis and classification, we investigate several most

challenging problems for 3D clinical-acquired images, especially in abdomen imaging.

We had close collaborations with Vanderbilt University Medical Center (VUMC), by query-

ing from ImageVU, we extract thousands of subjects with abdomen CT images (> 10,000 CT

volumes). The first big challenge is to identify research quality data from the large-scale clinical-

acquired cohorts. To automatically identify the data within region of interest, we propose the body

part regression technique (BUSN (Chapter 2) and SemiBR (Chapter 3)). The tool can efficiently

detect slice-wise localization. Moreover, we show the curation tool can effectively clean data, which

used for down-streaming tasks such as segmentation. With the self- and semi-supervised learning

technique, we incorporate the deep learning with large-scale data of multi-contrast, multi-institutes,

and multi-regions. The other challenging task for accessing CT images is to identify enhancement

phases, the contrast phase for CT images is critical as it highlight the target tissues for screen-

ing. Also, there is distribution shifting if the machine learning model is biased to single or several

contrast phase data. To address the problem, we propose the GAN-based method (CDGAN (Chap-

ter 4)) to identify the enhancement phases of raw clinical-acquired images. In summary, we target

to create the automatic image quality assurance tools for CT images, and applies to large-scale

data-driven machine learning techniques to effectively extract research quality data.

Quantifying medical images and measuring biomarker metrics can be useful for delivering clin-

ical decisions and research discoveries. One of the most crucial mean for quantitative measurement

is the segmentation. Medical image segmentation, especially for 3D CT and MRI volumes, are

challenging because the high-resolution, high-dimensional, and complex spatial context. In this

thesis, we first propose a coarse-to-fine method (RandomPatch (Chapter 5)) for high-resolution
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3D images, the two-stage method can effectively modeling hierarchical context by high- and low-res

models. We also create an approach (PredictivePhenotyping (Chapter 6)) for taking both image

and EHR data as input, which can modeling the phenotype information as the same time. After

the storm of the transformer model, we investigate the 3D perspective of Vision Transformer [88]

models in spatial medical image segmentation. We propose the UNETR (Chapter 7) model for

CT and MRI images. Later, to benefit from the scalability and efficiency of transformer models, we

propose the self-supervised pre-training technique with a new generic medical image segmentation

method (Self-Supervised Swin UNETR (Chapter 8)). Furthermore, we focus on evaluating the

scaling and efficient properties of transformer blocks in hybrid medical image segmentation models.

Toward more efficient transformer encoder, we propose to use the 3D aggregation blocks within the

encoder, named UNEST (Chapter 9), the one achieves the challenging segmentation task of re-

nal sub-structures and whole brain segmentation. We show that scaling up the network complexity

can significantly benefit from the large-scale data pre-training and for low-data regime training in

down-stream tasks. In summary, all these proposed segmentation methods tackle the challenges

of hierarchical contexts in the spatial medical images. We achieve state-of-the-art performance for

many segmentation benchmark datasets.

After accessing the effective tools for quantitative measurements, we focus on studying the

abdominal tissue mapping. We build the first CT image based atlas templates on the queried pop-

ulation data. Using the affine and deformable registration, we construct the framework of normal

kidney atlas), kideny sub-structure atlas, and pancreas atlas (Chapter 10) with CT images.

Under HubMAP project, we investigate the stability of the constructed average template for each

organ, and validate its usage for surface, tissue mapping.

We extensively study and validate the quantitative tools for clinical-oriented problems. First, we

evaluate whether the automatic segmentation method is stable for segmenting splenomegaly data

(Splenomegaly Validation (Chapter 11)). The performance and metrics on the enlarged spleens

are sufficient to quantify and provide useful biomarkers for clinical workflows. In addition, we

investigate five different types of EMR features to predict the onset of T2DM (T2DM Prediction

(Chapter 11)). We show that each contextual feature from patients’ clinical history improves the

prediction of onset T2DM. Next, we construct a deep neural network for encoding pancreas CT

slices for the T2DM onset prediction.
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In general, we worked on data- and human-centric artificial intelligence systems for medical im-

age analysis and healthcare. We lead research on efficient and robust deep learning for either public

and real clinical data. We enable innovative methodologies applicable for real clinical problems.

12.2 Visions Beyond Medical Image Analysis

Our research mission is to explore leading technologies for healthcare scenarios. The science is

desired to help clinicians, radiologist, and researchers for their daily work, or to use quantitative

tools exploring new findings. Our vision of a successful artificial intelligence system in healthcare

is not to replace individuals, but to create new approaches. We see current deep learning techniques

are insufficient to achieve robustness and generalizability, making it inapplicable to real clinical

workflow. We propose some technical perspectives for developing medical AI systems.

Vision 1: Efficient Models. Current deep learning models can only modeling small well-

distributed data. With the increase of training model complexity, medical AI systems require ef-

ficient and scalable agent for learning useful contexts.

Vision 2: Multi-Modal Data. Clinical data from multiple modalities can convey multi-view

context of a target. Different information modalities, such as image, reports, standard notes, ICD,

CPT codes, and medicine history can compensate each other as an entry to biomedical informatics.

The ability of joint modeling multi-modalities data can empower models with rich representation

contexts.

Vision 3: Collaborated Learning. To increase and diversify the available data for medical AI

systems. And instead of training isolated machine learning algorithms within a data center, Fed-

erated learning (FL) can lead to better leverage of multiple sites participating. The de-centralized

training strategy brought by FL is effective for learning from data streams and adapting clients’

models via transfer learning.

Vision 4: Life-Long Learning. The data-driven scene classification is an essential technique

for image-guided medicine. We consider the life-long classification problem as the model is re-

quired to learn multiple concepts (categories) in sequential order through a stream of new training

data points. In addition, it has been known in various clinical applications, that multiple biomark-

ers can be discovered for the same disease progressions over time. New explicit data signals are

consistently evolving to impact existing tasks. Currently, transfer learning or fine-tuning ML sys-
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tems without catastrophic forgetting is the key target for lifelong classification problems. Models

for well-controlled small datasets and learning offline by connectionist models are suffering from

interference and the loss of knowledge, which leads to the limited representation learning ability of

deep neural networks. Thus, it is necessary to develop scalable networks that are robust to massive

spatio-temporal information when the new instances are observed.

12.3 Future Works

In this section, we propose to explore future directions based on the current contributed works.

12.3.1 Scaling Transformer Medical Segmentation Models for Large-Scale Data

The self-attention-based transformers have been endorsed as prodigious encoders in modeling volu-

metric medical image representations. In comparison to the explicit and well-adopted convolutional

neural networks (CNNs), transformer models re-designs the learning paradigm in a sequence-to-

sequence mechanism, exhibiting larger receptive field for global context. However, the optimal

scaling of transformer models as efficient encoder for 3D medical image segmentation remains un-

clear. We will focus on evaluating data efficiency and transformer scales for 3D medical images.

We will investigate the efficient design of hierarchical transformers, the spatial block aggregation

mechanism are employed for the transformer encoder. In addition, the scaling properties of the

transformer model for medical image analysis remains unclear. We will study the properties of

scaling up models for whole brain segmentation. Using the advantages of large GPU hardware, the

scalability and robustness can be evaluated with large size of training data and low-data regime.

12.3.2 Understanding Imaging Biomarks for Type 1 Diabetes with CT and MRI images

Type I and II diabetes mellitus are common and significant chronic disease with both inherent and

environmental causes. Diabetes is characterized by obesity with attendant risk factors including hy-

perglycemia, hypertension, and hyperglycemia stemming from insulin resistance. Potential markers

of T1D and T2D include the aforementioned risk factors as well as regional obesity and pancreas

changes which can be learned from patients’ imaging and diagnostic history. Clinical framing of

these variables relative to T2DM are complex through multiple risk factors, e.g., body mass index

(BMI), pancreas tissue volume, visceral/subcutaneous fat distribution, and glucose tests. Previous
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works have shown these hand-crafted features can be used to classify the presence. We will continue

to study the quantitative biomarkers for metabolic syndrome related disease. Collaborating with UT

Austin, we will continue to study the pancreas tissue pattern with MRI images.

12.3.3 Learning Continuously from Incremental Data and Organ Segmentation

Computation infrastructures are leading operations in the real word medical image understanding

to increasingly continuous information instead of isolated data concepts and distributions. For in-

stance, clinicians or medical agents interacting with the experience benefit from progressive knowl-

edge over life-long time spans. The capability to increasingly learn new knowledge and retain pro-

gressively learned information named lifelong artificial intelligence (AI) system is attracting great

application in image perceptions. Following the studies of multi-modalities data for CT and MRI

abdominal data, we will investigate whether a model can learn different data incrementally (e.g.,

Learn CT images at first stage, then learn MRI images and pancreas label. The final model can take

either CT or MRI image as input and segment pancreas.).

12.3.4 Collaborative Learning with Federated Clients for Healthcare

Following the study of learning multi-institute data, we will extend the collaborative learning with

federated learning techniques. Healthcare data providers and clients can focus on training their

own data, then the model can be distributed for inference to other without sharing patient data.

The distributed aggregation servers will sends the consensus model to all collaborating centers for

fine-tuning models. This learning paradigm can well protect the data privacy while exploiting the

multi-institute data.
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Viergever, and I. Išgum, “Deep learning for multi-task medical image segmentation in mul-
tiple modalities,” in International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 478–486, Springer.

[156] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for
volumetric medical image segmentation,” in 2016 fourth international conference on 3D vi-
sion (3DV), 2016.

[157] A. de Brebisson and G. Montana, “Deep neural networks for anatomical brain segmenta-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 20–28.
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