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Chapter 1. Introduction 

 

1.1 Overview 

 

Stroke is caused by stenosis, occlusion, or rupture of a blood vessel supplying the brain, and is 

the leading cause of adult disability in the United States1. Despite advances in acute stroke 

care, 20-30% of strokes result in death within one month, and 70-80% cause long-term 

disability2, 3. However, due to advancements in therapies to prevention stroke or lessen stroke 

risk factors (termed primary stroke prevention), as well as treatments to prevent stroke 

recurrence (termed secondary stroke prevention), the majority of strokes may be avoidable as 

risk factors become better-defined4. Therapies which have played an important role in mitigating 

stroke are improved medical management, aneurysm stabilization with aneurysm coils, as well 

as revascularization with surgical procedures and stenting5, 6. Currently, when an ischemic 

stroke or transient ischemic attack occurs, blood vessels are primarily evaluated for large vessel 

steno-occlusion, which is interpreted along with the pattern of ischemic injury and changes in 

symptomatology, as these are better characterized and measurement techniques are more 

accessible. This procedure however does not capture the wide range of tissue-level 

compensation mechanisms that may be present in patients. To improve clinical outcomes in 

stroke, the research in this document is focused on translational studies developing novel 

analysis and magnetic resonance imaging (MRI) methods for assessing functional 

hemodynamics in patients with cerebral metabolic dysfunction. Cerebral metabolism is the 

consumption of nutrients, often discussed in terms of oxygen in this context, and is maintained 

through blood flow and response to metabolic stress to avoid stroke or other damage to tissue. 

Examples where these methods have been used to improve patient care and outcomes are 

chronic anemia, such as in sickle cell disease7, 8, or vasculopathies including atherosclerosis9, 10. 

These methods may also extend to other non-vasculopathic conditions where cerebral 

metabolism may be affected, such as Parkinsons11, 12. 

MRI-measured functional parameters have demonstrated applicability for assigning 

therapies, and diagnosing patients with cerebrovascular13, 14 conditions. However, though tissue 

function plays an important role in stroke risk, risk for cognitive impairment, and mechanisms for 

compensation in cerebrovascular disease, functional parameters are rarely considered in 

clinical settings. However, by improving the accessibility and interpretability of functional 

images, patient care could be improved greatly. The functional parameters that will be 

considered most thoroughly in this work are oxygen extraction fraction (OEF), cerebrovascular 



2 
 

reactivity (CVR), and cerebral blood flow (CBF). OEF is a particularly appealing physiological 

parameter as it reflects the cumulative balance of the cerebral metabolic rate of oxygen 

(CMRO2) to oxygen delivered, and may provide a composite biomarker of inadequate tissue-

level compensation mechanisms 15-18. However, OEF has not been fully realized as a biomarker 

of stroke risk due to technical difficulties associated with measuring this parameter. CVR 

parameters inform on parenchymal response to metabolic stress, and can provide information 

on both magnitude and delay in response to a vascular stimulus. CVR has been used to inform 

treatment decisions for patients19. Large-scale implementation of CVR has been slowed by 

difficulties in standardizing vascular stimuli, and difficulties associated with image interpretation. 

CBF is now a more commonly implemented MRI metric, and methods for measuring it have 

recently been included as a standard sequence on Philips MRI-scanners, however there are still 

standing difficulties associated with establishing MRI measured CBF as a standard in clinical 

practice. Primarily, MRI measured CBF is prone to artifacts that make interpreting these images 

difficult. Unfortunately, in cases of atypical physiology such as cerebrovascular disease, CBF 

maps can show large artifacts that require specialized techniques to understand underlying 

physiology. As will be explored further in this text, specialized analysis techniques, e.g. machine 

learning, show promise for assisting in interpretation of artifacts that result from unique 

physiologies of cerebrovascular diseases as novel contrasts. By focusing on developing MRI 

and analysis methods for improving our implementation of MRI-measured functional 

parameters, the work in this dissertation aims to bring these specialized techniques closer to the 

mainstream clinical practice.  

 Developments in this work include novel MRI methods for measuring cerebral 

metabolism, as well as machine learning techniques to classify patients according to their risk of 

cerebrovascular incident. While development of non-invasive MRI methods for measuring these 

parameters will improve their accessibility and acceptance in clinical practice, our understanding 

of these parameters is largely informed by previously existing measurements of oxygen 

consumption. The gold standard for most cerebral functional metrics is O-15 Positron Emission 

Tomography (O-15 PET)20-22. However, O-15 PET exposes patients to ionizing radiation, and 

requires specialized equipment, particularly an on-site cyclotron to create O-15, as it has a half-

life of approximately 2 minutes and therefore must be used almost immediately after leaving the 

cyclotron. O-15 PET is also invasive, as it requires arterial injection and sampling. In contrast to 

PET, MRI can measure OEF, CBF, and CVR non-invasively and rapidly, typically 2-6 minutes 

for a functional scan, and also provides unique avenues for contrast, such as the blood oxygen 

level dependent (BOLD) effect, which is used for reactivity imaging in this work. 
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The primary disease of study 

in this dissertation is moyamoya. 

Moyamoya is an intracranial arterial 

steno-occlusive disease, and is 

characterized by development of 

compensatory arterial collateral 

networks and high stroke risk 23, 24. 

Figure 1 shows an angiogram of an 

internal carotid artery displaying 

typical moyamoya pattern. Distal 

segments of the ICA undergo 

stenosis, which can progress to 

include the middle cerebral artery, 

anterior cerebral artery, and in later 

stages of moyamoya, the posterior 

circulation as well, which is not 

shown in Figure 1.  Surgical 

revascularization is a common 

treatment for moyamoya, however 

gaps persist in our abilities to (i) assign patient treatment options, e.g. surgery vs. conservative 

medical management and (ii) evaluate the impact of surgery on parenchymal health. Compared 

with atherosclerotic cerebrovascular conditions, moyamoya etiology is poorly understood, 

animal models do not exist, and randomized trials demonstrating surgical utility do not exist 23-25. 

Importantly regarding moyamoya, revascularization therapies do not have equal effectiveness 

for all individuals, and the demographics and physiology which determine surgical outcomes is 

not clear. More information on moyamoya, including how its unique physiology relates to the 

methods development pursued here, is given in further sections.  

 

Given this background, the following three steps outline how each chapter in this thesis works 

towards improving our ability to quantify stroke risk in high risk populations: 

1. Implement machine-learning techniques, which are becoming ubiquitous in imaging 

science, for the purpose of identifying recurrent stroke risk in patients with moyamoya. 

2. Develop methodology for triaging moyamoya participants for therapies.  

Figure 1. Internal Carotid Artery Angiography in Moyamoya. 
This is an angiogram of an internal carotid artery and its 
associated branches in a patient with moyamoya. The two 
important characteristics of moyamoya are shown here, where 
intracranial stenosis is causing reduced delivery of blood to 
proximal branches of the ICA, and compensatory moyamoya 
collaterals are developing to mitigate that reduction in blood 
delivery. 
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3. Improving methodology for measuring OEF in patients with local cerebrovascular 

impairment, as is common in vasculopathy. 

 

1.1.1 Medical Imaging Modalities 

 

While this work focuses on MRI, there are many alternate medical imaging modalities. Different 

imaging modalities are often implemented in tandem for diagnosis and research purposes, 

including in this dissertation, where gold standard angiography images are acquired with a 

separate imaging modality than MRI. Additionally, for one of the aims in this work, the primary 

motivation for developing MRI methods is to design a non-invasive and more accessible 

alternative to the O-15 PET method for measuring cerebral oxygen extraction. For these 

reasons, it is important to understand the basics of common medical imaging modalities to 

understand the context of this work. Depending on level of invasiveness, spatial and time 

resolution, ease of access, and possible therapeutic applications, different imaging modalities 

will be more suited for measuring different aspects of physiology and anatomy. A brief overview 

of these basics for many common imaging modalities is shown below. 

 

Magnetic Resonance Imaging (MRI)26: MRI has perhaps the widest array of applications of any 

imaging modality, due to its non-invasiveness and sensitivity to a wide range of tissue 

parameters. MRI can acquire structural images at sub-millimeter spatial resolution, functional 

images of brain activation, neuron fiber directionality maps, sub-second time-resolution real-time 

videos, and more. MRI has two major disadvantages, first of which is that obtaining an MRI can 

be cost prohibitive due to the costs associated with purchasing and maintaining an MRI 

scanner. Second, MRI is extremely sensitive to magnetic materials, which cause reduced image 

quality and can also be very hazardous. This drawback can often be avoided with specialized 

medical implants, however some implants, tattoos, piercings, dental work, and metal in the body 

from shrapnel or any other source can all be contraindications for MRI. The time and spatial 

resolution of MRI varies widely depending on the application. Some examples are high-

resolution T1 images having 0.5mm resolution with minutes required for a single scan, and 

functional scans having a temporal resolution of a few seconds, but image resolutions of 3-5 

mm. 

 

Positron Emission Tomography (PET)27, 28: PET utilizes intravenous or intraarterial injection of 

radio-labeled molecules, called radiotracers, typically to measure physiology and metabolism. 
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These radiotracers are designed to target specific physiology. One common example of this is 

F-18-fluorodeoxyglucose, which is a radiolabeled glucose molecule. Glucose molecules are 

disproportionately taken up by cancerous cells, and are for this reason, often used for cancer 

imaging. A second example, which is relevant to the methodology developed in this work is O-

1522, which can be used to image oxygen metabolism (Section 1.5). Modern PET scanners can 

have a time resolution of 500 picoseconds, and spatial resolution of 4-6 mm. Due to high 

scanner costs, difficulties associated with acquisition of radiolabeled molecules, and exposure 

to ionizing radiation from injected radiotracers, accessibility to PET may be limited. The MRI 

methods developed in this work are, in part, intended as an alternative to invasive and 

expensive O-15 PET methods for measuring cerebral hemometabolism. One study found that 

the overall effective dose from an FDG PET scan was 6.23 mSv. 

 

Computed Tomography (CT)28, 29: CT uses rapidly axially rotating x-ray sources and detectors to 

acquire high-resolution 3-dimensional images. It is sensitive to differences in density, more 

specifically Hounsfield units, which are a measure of a materials radioabsorption. Because of 

this sensitivity, CT is ideal for imaging bones, and is therefore often used to provide a high-

resolution image of the skull in MRI and ultrasound experiments that need accurate 3D 

representations of the skull for simulation purposes. However, medical applications of CT are 

ubiquitous, useful for investigating tumors, stroke, or angiography if implemented with an 

intravenous contrast agent, known as CT Angiography (CTA). Modern CT scanners acquire a 

temporal resolution of 66-138 ms and a spatial resolution of 0.5-0.625 mm. CT poses the 

highest exposure to ionizing radiation of the methods listed in this section, with radiation dosage 

from one study found to be 7.22 – 25.95 mSv, depending on protocol. 

 

Digital Subtraction Angiography (DSA)30: Like CT, DSA uses x-rays to acquire images, however 

DSA images are typically acquired in a single projection, rather than axially acquired 3-D 

images, though 3-D images are possible. Additionally, DSA utilizes multi-vessel intraarterial 

injection of contrast agents and each imaging acquisition requires radiation. In this work, DSA is 

used as the gold-standard angiography technique for identifying arterial stenosis and 

neoangiogenic collaterals. 

 

Single Photon Emission Computed Tomography (SPECT)31: SPECT is a less commonly 

implemented imaging modality, because many of its applications are similar to PET, though 

SPECT images are more difficult to quantify. However, SPECT is sometimes used in cerebral 
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metabolism imaging similarly to PET, though SPECT is significantly less invasive in this 

application, as SPECT does not require arterial blood sampling. 

 

Ultrasound32: Like MRI, ultrasound has a wide range of applications, largely due to non-

specialized ultrasound technology being relatively affordable and minimally invasive. Ultrasound 

can be used to measure both physiology and anatomy, and has growing relevance for 

therapeutic applications as well, particularly in the specialized technique high intensity focused 

ultrasound (HIFU)33. In cerebrovascular imaging, transcranial Doppler ultrasound is used to 

measure intracranial blood-flow velocities in the middle-cerebral-artery to determine stroke risk 

in children with sickle cell anemia34. Ultrasound will have greatly varying resolution depending 

on application, with reduced penetration depth when acquiring higher resolution images. 

However, high-resolution ultrasound is considered to be resolution of 0.15mm or better, which 

can be acquired with a penetration depth of 5-6 cm. 

 

Infrared Spectroscopy35: Infrared spectroscopy is used to measure concentrations of 

biomolecules. In the applications in this work, infrared spectroscopy is not used to collect 

images, however. Infrared spectroscopy is used to acquire arterial oxygen saturation values via 

a pulse-oximeter clipped onto the participant’s finger. 

 

It is also important to note that with specialized equipment, it is possible to perform multiple 

imaging modalities simultaneously. The most common examples of this are PET-MRI and PET-

CT. Conducting tests with these technologies can help to remedy some challenges of imaging 

with multiple modalities. For example, when images are collected with two different modalities at 

two separate time-points, the participant will not be positioned identically in both scans. To 

compare images quantitatively under these conditions, coregistration (Section 1.6) is required 

to ensure identical brain tissue is being compared between separate images. However, this is 

especially complicated when images have low spatial-resolution, as PET typically does. 

Therefore, by collecting MRI and PET, or CT and PET images simultaneously, the relative 

spatial correspondence of images from separate modalities can be determined with greater 

confidence. 
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1.2 Stroke and Moyamoya 

 

Stroke is the disruption of nutrient-rich oxygenated blood to the brain parenchyma, i.e. the 

functional tissue, which is comprised of neurons and glial cells. Stroke is often caused by a 

ruptured blood vessel or an obstructed blood vessel, however stroke can have other causes as 

well, such as a narrowed blood vessel or reduced oxygen content of the blood. Brain tissue 

cannot effectively operate anaerobically; therefore even brief disruptions in blood supply can 

damage tissue36. This urgency in treating stroke is the origin of the colloquialism “time is brain.” 

More quantitatively, 1.9 million neurons are lost per minute of untreated stroke, approximately 

equivalent to the neuronal loss due to 3.6 years of normal brain aging36. Approximately 795,000 

Americans have a stroke each year37, and stroke remains the leading cause of adult disability 

and second-most cause of death, with 20-30% of strokes resulting in death within one month, 

and 70-80% causing long-term disability 2, 3. However, stroke risk factors are becoming 

increasingly well understood, such as high blood pressure, diabetes mellitus, and smoking. As a 

result, stroke incidence has been decreasing over time38. Additionally, improvements in acute 

stroke treatment play a role in improving outcomes to stroke. The goal of acute stroke treatment 

is to induce reperfusion as rapidly as possible, either by pharmacological or mechanical means. 

Intravenous recombinant tissue plasminogen activator (rtPA) is the current standard of care for 

acute stroke, however this treatment in most cases must be administered within 4.5 hours of 

stroke symptom onset, and most stroke patients do not receive this treatment. Recent studies 

have identified methods for extending the window for rtPA administration to 24 hours with 

advanced blood-flow imaging39, 40. Thrombectomy and proximal artery occlusion are alternative 

treatments for acute stroke, however patients must be taken to specialized centers for these 

procedures41. 

Diseases can increase the likelihood of stroke, one general class of these is 

cerebrovascular disease (CVD). The most common CVD is atherosclerosis, a disease that is 

typically extracranial1. When extracranial, atherosclerosis is a relatively well characterized 

disease with standardized treatment procedures, such as that from the North American Stenting 

vs. Carotid Endarterectomy Trial (NASCET)42, and the Carotid Revascularization 

Endarterectomy versus Stenting Trial (CREST)43. Similar trials for intracranial atherosclerosis, 

Stenting vs. Aggressive Medical Management in Patients at Risk for Stroke with Intracranial 

Stenosis (SAMMPRIS) and Vitesse Intracranial Stent Study for Acute Ischemic Stroke Therapy 

(VISSIT) found that aggressive medical management was the preferable treatment for 

intracranial stenosis. However aggressive medical management for intracranial stenosis 
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resulted in 12.2-15.5% recurrent stroke, compared to only 7% of patients with extracranial 

atherosclerosis who underwent carotid endarterectomy. This tendency towards poorer 

outcomes for intracranial CVD is why while intracranial CVD is less common it is still 

responsible for 7-24% of new strokes1, and therefore requires improved treatments to reduce 

harm from these diseases. This lack of knowledge for treating intracranial CVD is the motivation 

for focusing on moyamoya in this study, a type of intracranial CVD that is particularly poorly 

characterized. The functional methods developed in this work will improve surveillance of and 

aid in treatment decisions for moyamoya and cerebrovascular disease generally.  

Moyamoya is an 

intracranial arterial steno-

occlusive disease affecting the 

supraclinoid internal carotid 

artery (ICA) and its proximal 

branches, which leads to 

delayed blood arrival times21, 

delayed reactivity timing9, and 

development of compensatory 

collateral vessels. Moyamoya 

is clinically relevant as it incurs 

a seven-fold increase in stroke 

risk compared to age- and 

race-matched adults44 and 

treatment regimens, which may 

comprise either medical 

management or surgical 

revascularization, have not 

been established by randomized clinical trials. The current standard for identifying disease 

severity in moyamoya is stenosis grading of major intracranial vessels with catheter 

angiography, however this procedure carries perioperative risk and exposes patients to ionizing 

radiation, and for these reasons is suboptimal for surveillance. In moyamoya disease, steno-

occlusion of the intracranial segments of the ICA and its proximal branches causes the 

development of an elaborate network of collateral vessels44. Moyamoya often progresses to 

involve bilateral intracranial arteries, but may begin as unilateral impairment44. Stenosis usually 

occurs in the ICAs, anterior cerebral arteries (ACAs), and middle cerebral arteries (MCAs), with 

 
Figure 2. Intracranial Cerebrovascular Anatomy. An illustration (a) 
and magnetic resonance angiograms (b-d) showing intracranial vascular 
anatomy. All of the main vessels are illustrated in a simple view in (a), 
which shows an axial projection, as in (b). (c) and (d) show the same 
image volume as in (b), except from a coronal (c) and sagittal (d) 
projection. ICA = Internal Carotid Artery, ACA = Anterior Cerebral Artery, 
MCA = Middle Cerebral Artery, PCA = Posterior Cerebral Artery. 

 

(a) (b)

(c) (d)

ICA

ACA

MCA

PCA

Basilar

ACA ICA Basilar
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the basilar artery and the posterior cerebral arteries (PCAs) being affected least often. Magnetic 

resonance angiographies and an illustration of cerebral vascular anatomy are shown in Figure 

2. Moyamoya can be idiopathic or have a secondary presentation to other diseases such as 

sickle cell disease, obesity, diabetes, or atherosclerosis, though the causal relationship between 

these diseases and moyamoya is not clear. Idiopathic moyamoya is rare (<1 case per 100,000 

children in North America)45, while secondary moyamoya presentation is more common 25. Our 

understanding of moyamoya etiology is currently in development, animal models do not exist, 

and there is no known treatment to reverse or stop moyamoya disease progression. Current 

moyamoya treatments aim to improve blood flow to impaired regions to reduce risk of ischemia 

and stroke 24. This is typically accomplished with anti-platelet agents, or revascularization 

surgery when medication is insufficient, though these treatments do not reverse disease 

progression 24, 25. The lack of disease-modifying treatment options and a poor understanding of 

etiology and physiology makes moyamoya a pressing subject for research.  

Although moyamoya is 

the disease of focus in this 

dissertation, these techniques 

could be applied to a range of 

diseases, particularly other 

cerebrovascular diseases, 

though the general methodology 

could be applied to identify 

characteristic physiology for any 

disease with cerebral functional 

hemodynamic abnormality. For 

example, the functional imaging 

methods discussed in this work 

are also being implemented in 

other studies investigating sickle 

cell disease46, Alzheimer’s 

disease47, Parkinson’s disease, 

and Huntington’s disease. 

 

 

 

  
Figure 3. Illustration of Microvascular Anatomy. Oxygenated blood 
is flowing from the heart through the arteries, and branches out into 
arterioles, the diameter and flow through which is controlled by smooth 
muscle. The arterioles branch into capillaries, which form the blood-
brain barrier, and are the exchange site of nutrients and waste 
products with tissue. Capillaries collect into venules, and drain into 
veins. Blood flows through the veins and returns to the lungs for 
oxygenation to return to circulation. 
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1.3 Cerebral Hemometabolism and Compensation Mechanisms 

 

Micro- and macrovascular anatomy and function are affected in CVD, including by (i) 

delayed blood arrival, (ii) reduced vascular compliance, (iii) heterogeneous flow velocities, and 

(iv) large vessel stenosis.  Understanding this underlying physiology is important for 

understanding why and how cerebral metabolic parameters are measured.  

 

The anatomy of microvasculature is illustrated in Figure 3. After being oxygenated in the 

lungs, blood is pumped in to the arteries by the heart. This creates perfusion pressure, which 

causes blood to be pushed into the arterioles, which branch off of the arteries. Blood flow to 

tissue is controlled by smooth muscle, which largely responds to pH changes in the blood, 

driven by the pH difference between arterial and venous blood, where venous blood has pH 

7.369+/-0.120 and arterial blood has pH 7.384+/-0.12448. Arterioles branch further to form 

diffuse beds of capillaries, which serve as the exchange site, also called the blood-brain barrier, 

for nutrients and waste products between blood and tissue. After passing through the capillary 

beds, blood is deoxygenated and the capillaries come together into a venule, which in turn flows 

into a vein. The blood is then returned to the lungs, and circulation repeats. The amount of 

blood that flows into the capillary beds is determined by metabolic need, and is controlled by the 

smooth muscle, which can dilate and contract to control flow into the arterioles. The influx of 

oxygenated blood from dilatation, caused by the smooth muscle, is the origin of the BOLD 

effect. The blood that flows into the capillaries provides much greater nutrient content to tissue 

than is needed for neuronal activity, likely to guarantee neuronal survival under metabolically 

stressful conditions. This disproportionate response in blood supply to tissue is important for 

understanding the BOLD effect, and will be revisited in Section 1.4 where the MR physics of 

BOLD is discussed.49  

As CVD progresses, vasculature can respond to reduced blood supply through 

compensation mechanisms. However when these compensation mechanisms are exhausted, 

stroke can occur. Moyamoya progression manifests as tissue-level hemodynamic changes due 

to arterial occlusion, development of arterial collaterals, and exhaustion of cerebrovascular 

reserve 50, 51. These physiological processes cause changes in baseline cerebral blood flow 

(CBF; rate of blood delivery to tissue), cerebrovascular reactivity (CVR; ability of 

microvasculature to increase flow to meet increased demand), or oxygen extraction fraction 

(OEF; ratio of oxygen consumed to oxygen delivered).  
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 It is imperative that brain tissue receives a constant and steady supply of arterial blood 

to supply oxygen, glucose, and other metabolites as well as to carry away waste products. Cell 

death causes irreversible tissue damage after only 5 minutes of interrupted blood supply. The 

equation that describes tissue metabolism is shown below:  

 

 𝐶𝑀𝑅𝑂2 = 𝐶𝐵𝐹 ∙ 𝑂𝐸𝐹 ∙ [𝐻𝑏] ∙ 𝐶𝑎 (1) 

 

Where CMRO2 is the cerebral metabolic rate of oxygen here in mL O2 / 100g Tissue / 

min, CBF is cerebral blood flow in mL blood / 100g Tissue / min, OEF is oxygen extraction 

fraction is unitless as O2 consumed / O2 delivered, [Hb] is hemoglobin in g / mL (typically must 

be converted from g/dL), and Ca is the oxygen carrying capacity of hemoglobin and is 1.34 mL / 

g. 

Maintaining oxygen supply to tissue corresponds to maintaining CMRO2 in Equation 1. 

Therefore, CBF and OEF can be elevated in response to reductions in [Hb], as occurs in Sickle 

Cell Anemia. In terms of microvasculature, CBF is elevated by maintaining dilation of the 

smooth muscle, and OEF is elevated as proportionally more oxygen from blood is extracted in 

the capillaries. Both of these compensation mechanisms are limited however. When blood flow 

can no longer be elevated from baseline, there will be no room for the vasculature to respond to 

stress. This room to respond to metabolic stress is called the cerebrovascular reserve, and 

testing this reserve is the underlying principle behind CVR imaging. When compensation 

mechanisms are exhausted, CBF can no longer be elevated, OEF can no longer be elevated, 

and cerebrovascular reserve is exhausted, CMRO2 can no longer be maintained, and stroke 

occurs. Understanding the status of CBF, OEF, and CVR therefore give insight into stroke risk, 

and potentially into responses to therapies as well. This is the reason these methods are used 

to interrogate cerebral metabolism.  

 

1.4 MRI Physics 

 

To understand the MRI methods development component of Chapter 4, as well as the 

principles behind other methods used here, such as T2-Relaxation-Under-Spin-Tagging 

(TRUST) and pseudo-Continuous Arterial Spin Labeling (pCASL), it is necessary to review 

some relevant MRI physics principles52. The following section is a description of all of the most 

important details for my understanding of MRI, essentially what I would have wanted access to 

when I began my PhD. 
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When placed in a magnetic field, the energy of nuclear states can diverge. This is known as the 

Zeeman Effect, and these energy differences between states are fundamentally what is 

manipulated in MRI to acquire images. Outside of specialized cases53-55, MRI measures signal 

from the single proton nuclei of hydrogen in H2O molecules, and these hydrogen protons have 

two states in a magnetic field. These states are the lower energy spin up state, aligned with the 

external field, and the higher energy spin down state. The word spin comes from the nuclear 

parameter spin, which refers to an inherent angular momentum that the nuclei posses. The 

nuclei exist in a superposition of the up and down state, however the individual wave functions 

overlap with one another on the scale of proton-densities utilized in MRI, and therefore quantum 

effects are not relevant, and this ensemble of spins is treated with classical electromagnetic 

theory. When aligned with a strong magnetic field, called 𝑩𝟎
⃑⃑⃑⃑  ⃑ and measured in Tesla, these 

protons form a magnetic moment, which will precess about 𝑩𝟎
⃑⃑⃑⃑  ⃑ and absorb externally applied 

energy in the form of radio-frequency (RF) pulses, the fields of which are referred to as B1. The 

frequency of the B1 pulse will be selected to match the precession frequency of the magnetic 

moments, known as the Larmour Frequency, 𝜔0, determined by a nuclei-dependent constant 

called the gyromagnetic ratio, 𝛾, and the strength of 𝑩𝟎
⃑⃑⃑⃑  ⃑. This relationship is 𝜔0 = 𝛾 ∙ 𝐵0 where 

the gyromagnetic ratio for hydrogen is 𝛾 = 42.58 𝑀𝐻𝑧/𝑇 or 𝛾 = 267.7 𝑀𝑟𝑎𝑑/𝑇 when expressed 

in radians. Because the RF pulse is played at the Larmour Frequency, 𝑩𝟏
⃑⃑⃑⃑  ⃑ will be perpendicular 

to the magnetic moment 𝑴⃑⃑⃑ . This relationship is often envisioned and handled mathematically by 

operating in a rotating reference frame, also rotating in accordance with the Larmour Frequency. 

When absorbing energy from this radio-frequency pulse, the spins will tilt away from alignment 

with the main magnetic field, as described by the right-hand rule, the motion of which is referred 

to as nutation. These moments will then relax back to equilibrium, during which time they emit 

energy detectable via magnetic induction with an antenna, called a coil. Engineering of 

specialized MRI coils is a field in and of itself. Coil design is complicated, because MRI relies on 

the generation of very precise gradient fields. These gradients can be used for multiple 

purposes, such as diffusion labeling, flow velocity selective labeling, and crushing of residual 

MRI signal. However, these gradients will be used ubiquitously in MRI for slice selection, which 

is the process by which slices of tissue are imaged in isolation from the rest of the subject. 

Stacks of these slices create three-dimensional volumes, however three-dimensional volumes 

can also be acquired directly in MRI, called 3D acquisition. Both 2D and 3D acquisition have 

advantages and therefore both are utilized in MRI. For slice selection, first a gradient is applied. 
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This gradient causes the magnetic field to vary linearly through space. Based on the relationship 

mentioned previously, 𝜔 = 𝛾 ∙ 𝐵 , the spatial variation of the gradient will correspond to a 

variation of Larmour frequency. An RF pulse can be applied which is tuned to the frequency that 

corresponds to a slice that we are interested in imaging, which will cause the magnetic moment 

of that specific region to nutate. The total amount of rotation can be selected based on RF pulse 

strength and duration through an equation derived by integrating the frequency equation given 

earlier as 𝜙 = 𝛾 ∙ 𝐵1 ∙ 𝑡. The region of space that is excited is a slice that can now be imaged. By 

applying magnetic field gradients, always facing in the axial-direction though the intensity of 

which varies in all directions, the ensemble of these moments can be wound and unwound in 

space, corresponding to traversal through frequency space, also called k-space. By recording 

the signal at various points in k-space, a frequency-domain image is collected. These k-space 

images can be two- or three- dimensional, with advantages and drawbacks to these acquisition 

styles. Via a Fourier transform, the k-space image can be converted into a spatial domain 

image, i.e. the images we are familiar with seeing in MRI. The signal that this ensemble of 

protons emits will depend on the direction and magnitude of the magnetic moment when each 

line of k-space is acquired. Only the lateral component of the magnetic moment is measured in 

MRI, and the lateral direction of the moment is referred to as the phase. It is possible to select 

for these two parameters, the direction and magnitude of the magnetic moment, by utilizing 

carefully-selected radio-frequency pulses and knowledge of how the moments will relax back to 

their equilibrium after being excited. This sequence of radio-frequency pulses is referred to as a 

pulse-sequence, and the complexity of pulse sequences can vary greatly. MRI contrast will 

depend on how protons relax in their local environments, the specific study of which is called 

relaxometry. In some cases, as with the use of a vasodilatory stimulus in the work presented 

here, the local proton relaxation can be controlled as well as the MRI pulse sequence. MRI 

pulse sequences make careful use of the parameters that describe MRI relaxation, and 

therefore these relaxation parameters are important for MRI methods development and contrast 

mechanisms. The work presented here focuses partly on developing a novel MRI pulse 

sequence, therefore the following introductory sections will discuss MRI contrast mechanisms 

and how they relate to the methods developed in this work. 

 

1.4.1 Relaxation Parameters 

 

Relaxation parameters are most often discussed in terms of constants, known as T1, T2, T2’ 

(tee-two-prime), and T2*(tee-two-star), each of which are typically in units of seconds. The 



14 
 

inverse of these is R1, R2, R2’, and R2*, which are in units of 1 / seconds, and therefore are rates 

of relaxation. Since, R2’ = R2 - R2*, R2’ is discussed less often, partially because it is a linear 

combination of R2 and R2*, and partially because the physical property which R2’ represents 

causes decay that is recoverable in MRI, and therefore is not relevant in many MRI applications. 

R2 is caused by spin-spin interactions on the microscopic or mesoscopic scale. R2’ is caused by 

local field inhomogeneity on the macroscopic scale. R2* is the fastest decay constant, and is the 

combination of decay from both R2 and R2’ sources. R1 is caused by spin-lattice interactions. R1 

and the R2 parameters are independent from one another, and describe longitudinal relaxation 

and transverse decay respectively. The motion of magnetic moments is described by an 

empirical system of differential equations known as the Bloch Equations. Expressed as a vector, 

the Bloch Equations are: 

 𝑑𝑴⃑⃑⃑ 

𝑑𝑡
= 𝛾𝑴⃑⃑⃑ × 𝑩⃑⃑ 𝟎 +

1

𝑇1

(𝑀0 − 𝑀𝑧)𝑧̂ −
𝑴⃑⃑⃑ 𝑷𝒆𝒓𝒑𝒆𝒏𝒅𝒊𝒄𝒖𝒍𝒂𝒓

𝑇2
 

(2), 

 

where 𝑴⃑⃑⃑  is the magnetic moment vector, 𝑩⃑⃑ 𝟎  is the main magnetic field vector, 𝑀0  is the 

magnitude of the magnetic moment at equilibrium, 𝑀𝑧 is the component of 𝑴⃑⃑⃑  that is parallel to 

𝑩⃑⃑ 𝟎, and 𝑴⃑⃑⃑ 𝑷𝒆𝒓𝒑𝒆𝒏𝒅𝒊𝒄𝒖𝒍𝒂𝒓 is the component of 𝑴⃑⃑⃑  that is perpendicular to 𝑩⃑⃑ 𝟎. Expressing the Bloch 

Equations in Cartesian coordinates: 

 𝑑𝑀𝑧

𝑑𝑡
=

𝑀0 − 𝑀𝑧

𝑇1
 

(3) 

 

 

𝑑𝑀𝑥

𝑑𝑡
= 𝜔0𝑀𝑦 −

𝑀𝑥

𝑇2
 

(4) 

 𝑑𝑀𝑦

𝑑𝑡
= −𝜔0𝑀𝑥 −

𝑀𝑦

𝑇2
 

(5) 

 

Where x and y are orthogonal to the main magnetic field B0, and z is parallel with B0; 𝜔0 is the 

Larmour Frequency. Just a few techniques form the foundation of most modern MRI sequences 

and take the form of exponential decay equations. 

 

T1 Recovery Solution 

This equation describes the longitudinal component of the magnetic moment following an 

inversion, i.e. 180 degree excitation from equilibrium. The magnetic moment will then recover to 

equilibrium according to the following equation. 
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 𝑀𝑧

𝑀0
= 1 − 2𝑒−

𝑇𝐼
𝑇1 

(6) 

Where TI is the time between excitation and the sequence read-out. However, in most cases, 

the magnetization will not be at equilibrium following successive excitations. In this case, we can 

use the repetition time (TR), or the time between consecutive excitations for a solution that 

accounts for multiple acquisitions. 

 𝑀𝑧

𝑀0
= 1 − 2𝑒−

𝑇𝐼
𝑇1 + 𝑒−

𝑇𝑅
𝑇1 

(7) 

 

T2* Decay Solution 

When excited into the transverse position, via a 90 degree excitation pulse, the transverse 

component of the magnetization will begin to decay rapidly due to both T2* and T2’ effects. This 

decay with time, t, is described by the following equation. 

 𝑀𝑥𝑦

𝑀0
= 1 − 𝑒−

𝑡
𝑇2∗ 

(8) 

 

As above, this first solution does not account for multiple acquisitions, and therefore a more 

complete solution is: 

 𝑀𝑥𝑦

𝑀0
= 𝑒−

𝑇𝑅
𝑇1 ∙ (1 − 𝑒−

𝑡
𝑇2∗) 

(9) 

Where 𝑒−
𝑇𝑅

𝑇1  is the magnitude of the longitudinal component of the magnetic moment after 

recovering for a full TR, at which point it is excited again. The T2* decay is applicable in 

sequences where readouts are occurring very rapidly. Gradient echo sequences, also 

sometimes called echo planar imaging (EPI), are rapid and commonly implemented in situations 

where T2* contrast is of interest. 

 

T2 Decay Solution 

If after an excitation pulse, a 180-degree pulse is applied to reverse the phase of the 

magnetization vector, some signal can be recovered. As described previously, T2 decay is 

caused by spin-spin interactions, T2’ however represents signal lost to local field inhomogeneity 

and therefore this signal will recover. The signal measured by a pulse sequence like this is 

described by the following equation: 

 𝑀𝑥𝑦

𝑀0
= 1 − 𝑒−

𝑇𝐸
𝑇2 

(10) 
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Where TE is the echo time, and is the time between the excitation pulse and readout in a spin-

echo sequence. Because R2’ can be recovered in a spin-echo sequence, spin echo sequences 

are governed by R2 decay. However, since a gradient-echo does not have any spin refocusing, 

gradient-echo sequences are governed by R2* decay and are therefore much more susceptible 

to field inhomogeneity. R2-weighted images are less affected by this drawback. This sensitivity 

to susceptibility can be a disadvantage, e.g. when a patient has dental work that causes signal 

loss in the frontal lobe, or an advantage, e.g. when susceptibility can be used as a source of 

contrast as it is in BOLD imaging. There is a similar solution for spin-echo sequences when 

accounting for multiple repetition times.  

 𝑀𝑥𝑦

𝑀0
= 𝑒−

𝑇𝑅
𝑇1 ∙ (1 − 𝑒−

𝑇𝐸
𝑇2) 

(11) 

 

1.4.2 Standard MRI Scans and Applications 

 

The focus of this research is on developing novel MRI methods for measuring cerebral 

metabolism, however standard anatomical scans are also acquired in all cases. These standard 

scans are commonly applied in clinical practice as well as research, and can help to 

characterize a cohort by defining presence of infarcts, tumors, and other structural 

abnormalities. Without standard structural MRI, it can sometimes be difficult to interpret 

specialized functional imaging. The physical difference between these scans is the number and 

timing of applied RF pulses and gradients. 

 

T1-Weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE)56: MPRAGE is the most 

common scan for acquiring high-resolution structural images using a three-dimensional readout, 

a 180 degree pre-pulse, and rapid gradient-echo acquisitions. MPRAGE produces high contrast 

between grey and white matter, and can acquire sub-millimeter resolution on modern hardware. 

T2*-Weighted Gradient Echo: In accordance with Equation 9, T2*-weighted images can be 

acquired. T2*-weighted images are highly vulnerable to susceptibility effects. This results in 

large artifacts in regions with inhomogeneous magnetic field, particularly near the sinuses, but 

also enables BOLD imaging, where susceptibility effects from deoxygenated blood are used to 

measure neuronal activation and vascular response to stimulus. 

T2-Weighted Spin Echo: From Equation 11, TE and TR can be chosen to acquire a T2-weighted 

image. These images can be used for detection of infarcts, particularly when modified for a 

FLAIR sequence, below. 
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Fluid Attenuated Inversion Recovery (FLAIR)57: The T1 of cerebral spinal fluid (CSF) at 3 Tesla 

is 4300 ms58. Using this information along with Equation 7, it is possible to solve for a TI that 

completely nulls CSF signal. FLAIR uses this principle to produce a T2-weighted and CSF nulled 

image that has hyper-intensities in regions affected by stroke where macrophages can 

accumulate to clear tissue, and blood flow is reduced59. As a result, FLAIR is the most reliable 

way to identify infarcted tissue using MRI. 

Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI)60: Diffusion weighted and 

diffusion tensor MRI both use bipolar gradients to encode diffusion information. Diffusion 

weighted MRI, however, does not provide a direction to this diffusion, and is mostly used for 

early detection of stroke. Diffusion tensor imaging does provide direction information for 

diffusion, and can therefore be used for white matter fiber tracking and measuring nerve 

regeneration. 

MRI Angiography61, 62: MR angiographies are often considered separately from other standard 

structural MRI scans. This distinction may be made because angiography scans utilize MR 

contrast agents, especially chelated gadolinium, more often than other structural applications. 

Angiography utilizing contrast agents takes advantage of an inflow effect, however there are two 

common non-contrast MRI angiography methods. These are Time of Flight Angiography (ToF), 

and Phase Contrast Angiography (PC). ToF uses an RF pulse to label blood in the neck, and 

images this blood once it arrives in the brain, this labeled blood having flown into the cerebral 

vessels. PC uses a bipolar gradient to label blood flowing at arterial velocities, and the acquired 

velocity map highlights the arteries. 

 

Many of these scans play a role in diagnosis of stroke. For example, lesions which have not 

cleared tissue and become fluid filled can be detected on FLAIR, in which they are hyper-

intense. As lesions become chronic, they can be detected on T1, where they are dark and 

approaching CSF signal. DWI imaging can detect acute lesions, where the apparent diffusion 

coefficient will be reduced in tissue suffering from insufficient blood flow. Infarct type can also be 

defined using imaging, where cerebral infarcts are often defined as being greater than 3mm in 

at least one dimension, and are white matter hyperintensities otherwise. 
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1.4.3 Specialized MRI Scans and Applications 

 

Arterial Spin Labeling (ASL) 

A diagram demonstrating the principles behind ASL is shown in Figure 4. Blood in the neck is 

magnetically labeled as it flows into the brain. The labeling plane is positioned so that blood is 

flowing orthogonal to the labeling plane, and the imaging volume covers as much of the brain as 

possible. An image of the brain is acquired, after waiting a post-label delay, for magnetically 

labeled blood to flow into the brain; this is the label image. Additionally, an image is acquired 

without a label; this is the control image. The difference between the control and label image 

shows a map where the labeled blood flowed during the post-label delay, and can be converted 

to a quantitative map of cerebral blood flow by using the flow modified Bloch equation 63. The 

method used in this work is called pseudo-continuous arterial spin labeling (pCASL), in which a 

rapid train of RF pulses approximate a continuous RF field. This method works due to a 

phenomenon known as flow-driven adiabatic inversion, in which the flow of blood through the 

applied gradient field improves labeling. Quantitative analysis of pCASL is described by the 

following equation, which is derived from the Bloch equations modified to consider flow, as is 

the case in arteries64: 

 

 
𝐶𝐵𝐹 =

𝜆

𝑇1𝑎𝑝𝑝
∙
𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝑅) − 𝑀𝑙𝑎𝑏𝑒𝑙(𝑇𝑅)

2𝑀0(𝑇𝑅)
 

(12) 
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Figure 4. Diagram of 
pseudo-Continuous Arterial 
Spin Labeling. (a) shows an 
anatomical image, overlayed 
with the image volume and 
labeling plane associated with 
pseudo-continuous arterial 
spin labeling. (b) shows the 
vessels through which blood 
is delivered to the brain and 
passes through the labeling 
plane, where arterial blood-
water is labeled with 
radiofrequency pulses. A 
labeled and non-labeled 
image are shown in (c), 
subtraction of which and 
processing can yield a 
quantitative map of cerebral 
blood flow. 
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Which can be further analyzed with a dual compartment model for inside and outside the 

vascular system, which cannot be solved analytically, and must be fit for CBF65, 66: 

 

 
𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑀𝑙𝑎𝑏𝑒𝑙 =

2𝑀0𝛼 ∙ 𝐶𝐵𝐹

𝜆
∙
𝑒−𝛿𝑅1𝑎

𝑅1𝑎𝑝𝑝
[𝑒(𝛿−𝑤)∙𝑅1𝑎𝑝𝑝 − 𝑒(𝛿−𝜏−𝑤)∙𝑅1𝑎𝑝𝑝] 

(13) 

 

Where 𝑀𝑙𝑎𝑏𝑒𝑙 is the magnetization of the labeled pCASL image, 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the magnetization of 

the unlabeled control pCASL image, 𝑀0 is equilibrium magnetization, 𝑓 is CBF in mL/g/s, 𝛼 =

0.85  is pCASL labeling efficiency, 𝜆 = 0.9 𝑚𝑙/𝑔  is the whole-brain blood-brain partition 

coefficient, 𝛿 = 1.5𝑠 is the tissue transit time, 𝑅1𝑎 = 0.59 𝑠−1 is the longitudinal relaxation rate for 

oxygenated macrovascular arterial blood water at 3.0T67, 𝑅1𝑎𝑝𝑝  is the apparent longitudinal 

relaxation rate of perfused tissue (𝑅1𝑎𝑝𝑝 = 𝑅1,𝑇𝑖𝑠𝑠𝑢𝑒 +
𝑓

𝜆
), R1,Tissue = 0.77 s-1, 𝑤 is the pCASL 

post-label delay time, and 𝜏  is the pCASL labeling duration. CBF is converted to units of 

mL/100g/min by multiplying by a factor of 6000. 

 

Finally, pCASL can be processed with a single compartment model, which assumes complete 

mixing of labeled blood-water with cerebral blood-water 63: 

 

 

𝐶𝐵𝐹 =
6000 ∙ 𝜆 ∙ (𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑀𝑙𝑎𝑏𝑒𝑙) ∙ 𝑒

𝑃𝐿𝐷
𝑇1𝑏𝑙𝑜𝑜𝑑

2 ∙ 𝛼 ∙ 𝑇𝐼1 ∙ 𝑀0 ∙ (1 − 𝑒
−

𝜏
𝑇1𝑏𝑙𝑜𝑜𝑑)

 

(14) 

 

Oxygenated vs. Deoxygenated Hemoglobin 

In deoxygenated hemoglobin, the iron molecules have unpaired electrons and therefore 

produce magnetic fields in response to an externally applied magnetic field, i.e. deoxygenated 

hemoglobin is a paramagnetic protein. However, the iron in oxygenated hemoglobin does not 

have unpaired electrons, and is a diamagnetic protein, and produces much weaker magnetic 

fields in comparison to its paramagnetic counterpart. This difference in magnetic properties 

results in different magnetic susceptibilities for arterial and venous blood, which can be detected 

with MRI as decreased T2 and T2* caused by deoxygenated hemoglobin68. A diagram 

demonstrating this phenomenon is shown in Figure 5. Due to its paramagnetism, 

deoxyhemoglobin produces greater magnetic fields in the MRI scanner compared to 

oxyhemoglobin. In MRI, we measure signal primarily from the nuclei of hydrogen atoms in water 

molecules. These protons are perturbed by fields from hemoglobin, and therefore have weaker 
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MRI signal for deoxyhemoglobin compared to oxyhemoglobin. Therefore, arterial blood gives 

stronger MRI signal than venous blood. This difference can be quantified to calibrate the 

percentage oxygen saturation that corresponds to different MRI-measured parameters. The 

difference between oxy- and deoxyhemoglobin is the basis for a large part of this work, and the 

following methods. Generally, this is referred to as the BOLD effect. 

 

T2-Relaxation-Under-Spin-Tagging (TRUST) 

TRUST is a method for estimating whole-brain oxygen extraction fraction, a biomarker 

for cerebrovascular disease49, using a calibrated model relating T2, hematocrit, and blood 

oxygenation status69, 70. The TRUST pulse sequence is shown in Figure 6. A spin labeling 

 

RF pulse is implemented to label cerebral venous blood, and a T2-weighting module, with a 

duration called the effective echo time (eTE) applies a T2-weighting. This T2-weighting module 

is a rapid chain of 180-degree pulses following a 90-degree excitation pulse. The time between 

each 180-degree pulse is called the 𝜏𝐶𝑃𝑀𝐺, which has been set to 10ms after determining that 

 
Figure 5. Micro- and Nano-Scale Phenomena Responsible for the Blood Oxygenation Level Dependent 
(BOLD) Effect. The oxygenated red blood cell (left) has oxygenated hemoglobin, which is diamagnetic due to 
electrons in hemoglobin iron being bound to oxygen. Because it is diamagnetic, the oxygenated red blood cell 
produces a much smaller local magnetic field as compared to the paramagnetic deoxygenated hemoglobin, 
represented on the right. The spins of water molecule hydrogen nuclei are perturbed by the large field from 
deoxygenated hemoglobin, and therefore produce a lower MRI signal as compared to the water molecules 
surrounding the red blood cell on the left. Oxygenated hemoglobin and deoxygenated hemoglobin correspond to 
arterial and venous blood respectively, and therefore these differences in signal can be used to measure oxygen 
saturation, and rapid changes in bloodflow. 
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this value gives the closest estimates to a true T2 value from TRUST70. The superior sagittal 

sinus (SSS) is the main vein that drains the brain after blood has circulated through the 

capillaries, and is typically where venous oxygenation is measured to determine cerebral 

oxygen consumption 70.  After a post-label delay, that cerebral venous blood is imaged in the 

SSS, with a slice perpendicular to the SSS. Varied eTE values in the T2-weighting module give 

a T2 decay curve. This T2 decay value is then input to an empirical model, which relates T2, 

hematocrit, and blood oxygen saturation to calculate in-vivo venous blood oxygen saturation in 

the SSS. Thus, TRUST can be used to calculate whole-brain venous oxygen saturation (Yv). 

Where Ya is the arterial oxygen saturation, measured via pulse-oximetry, whole-brain OEF can 

be calculated from TRUST using the following equation.  

 

 

 
𝑂𝐸𝐹 =

𝑌𝑎 − 𝑌𝑣

𝑌𝑎
 

(15) 

 

The signal in the SSS from a whole-brain TRUST measurement is 69: 

 
𝑆𝑏𝑙𝑜𝑜𝑑,𝑙𝑎𝑏𝑒𝑙 = (1 − 2 ∙ 𝑒

−
(𝑇𝐼−𝑒𝑇𝐸)

𝑇1𝑏 ) ∙ 𝑒
−
𝑒𝑇𝐸
𝑇2𝑏 ∙ 𝑒

−
𝑇𝐸
𝑇2𝑏

∗
 

(16) 

 

 
𝑆𝑏𝑙𝑜𝑜𝑑,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑒

−
𝑒𝑇𝐸
𝑇2𝑏 ∙ 𝑒−𝑇𝐸/𝑇2𝑏

∗
 

(17) 
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By taking the difference of the control and label images, we find: 

 𝛥𝑆 = 𝑆𝑜 ∙ 𝑒𝑒𝑇𝐸∗𝐶 (18) 

 

Where 𝑆𝑜 = 2 ∙ 𝑒
−

𝑇𝐼

𝑇1𝑏
−

𝑇𝐸

𝑇2𝑏
∗

 and 𝐶 =
1

𝑇1𝑏
−

1

𝑇2𝑏
. We can fit for C and calculate T2b after calculating 

T1b from hematocrit 67.  

 To measure OEF, we must first collect Ya and Yv values for the brain. Arterial oxygen 

saturation is regionally invariant in a patient, and is typically 95-100%. Because of this, pulse-

oximetry on the finger is sufficient for determining Ya in the brain. However, venous oxygenation 

is variable depending on blood supply and metabolic needs of the region of interest 71. Using 

MRI, we can measure venous blood T2 in the SSS and calculate oxygenation with a calibrated 

relationship between T2, hematocrit, and oxygenation. There are two primary methods for 

measuring cerebral OEF with MRI, TRUST and the asymmetric spin echo described below. 

TRUST has the advantage of being highly reproducible in its estimation of T2, with its primary 

limitation being that it does not provide spatial information regarding OEF, and therefore gives a 

whole-brain estimate. TRUST also has the limitation of being dependent on a calibrated model, 

which is currently contentious, however ASE also suffers from limitations regarding its model. 

 

 

Asymmetric Spin Echo (ASE) 

Susceptibility methods, namely ASE, have shown promise for measurement of OEF72-75. 

ASE uses a spin-echo sequence with the refocusing pulse shifted from TE/2 by a value called 𝜏, 

the ASE pulse sequence is shown in Figure 7. This shifting imparts an R2’ weighting on the 

image, which can be input to a model of R2’, hematocrit, OEF, and cerebral blood volume to fit 

quantitative MRI maps of OEF. Compared to TRUST, ASE has the benefit of providing 

topographical maps of OEF rather than a whole brain mean value. However, the susceptibility 

model to which ASE data is fit is sensitive to several assumptions. The model assumes 

Figure 7. Conventional 
Asymmetric Spin Echo (ASE) 
Pulse Sequence. This pulse 
sequence is similar to a simple 
spin echo, however the refocusing 
pulse is shifted from the center 

point by a value 𝜏 . This shifting 
induces R2’ weighting, which for 
multiple values of 𝜏  can be fit to 
calculate oxygen extraction 
fraction and venous cerebral blood 
volume. 
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randomly oriented blood vessels, which is not satisfied in all regions of the brain, such as where 

vessels drain into large veins. Additionally, the model is exclusively a tissue model, so any 

cerebral spinal fluid (CSF) contamination ruins data from that voxel. Also, the model assumes 

that all susceptibility effects are from deoxygenation blood, however the brain has other sources 

of susceptibility particularly iron concentrations, which will vary by brain region. Diffusion effects 

are also assumed to be negligible, as the model is a tissue model in the static dephasing 

regime, however simulations have suggested that diffusion effect contributions to ASE 

measured parameters may not be negligable76. The fourth chapter of this work involves the 

development of new ASE methods to address these challenges by making modifications to the 

ASE pulse sequence, which help to compensate for these limitations of ASE. If accuracy and 

reproducibility of ASE are improved, this sequence may help to integrate OEF into standard 

stroke screening, and increase the rate of early stroke risk detection. ASE has two primary 

benefits, first that it provides a topographical map of hemometabolic parameters, and second 

that it can be used to estimate multiple parameters. However, the limitations described earlier 

currently confound the widespread adoption of ASE. 

 

BOLD Reactivity Imaging 

The implementation of BOLD MRI relies on the BOLD effect. The BOLD effect is the name 

of the phenomenon where MRI signal increases in a brain region upon activation. When 

neurons are activated, oxygen is consumed. However, to compensate for this oxygen 

consumption, arterioles dilate and oxygenated blood flows into the tissue, flushing away the 

deoxygenated, diamagnetic venous blood. This removal of diamagnetic blood causes a 

reduction in susceptibility dephasing effects, and corresponding increases in MRI signal, 

especially T2*-weighted signal, which is highly sensitive to susceptibility effects. By using rapid 

acquisition (approximately 2 second TR) with T2*-weighted gradient echo sequences, neuronal 

activation can be measured, though approximately, by BOLD MRI. BOLD signal however is also 

affected by outside effects such as cerebral blood flow, cerebral blood volume, blood oxygen 

saturation, and unaccounted for susceptibility effects such as iron concentrations and air-tissue 

interfaces77. By measuring the magnitude of signal change in response to stimuli, as well as 

delay in that response, maximum CVR and CVR delay can be calculated from BOLD imaging. 

Applications outside of this research use stimuli such as finger tapping, visual stimuli, or even 

resting-state acquisitions to measure neuronal activation in the brain. BOLD is unique in its 

ability to measure reactivity and functional information, however it suffers from several 
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limitations. These limitations include multiple signal sources, as described previously, as well as 

a lack of standardization of BOLD protocol. 

 

1.5 Improving Measurement of Cerebral Metabolism for Clinical Applications 

 

 Stroke occurs when blood supply to tissue is insufficient. A normal blood flow in healthy grey 

matter is 55 ± 6 mL/100g/min78, and rough estimates of thresholds for tissue functioning have 

been identified with reversible tissue damage beginning at 20 mL/100g/min, and 10 

mL/100g/min for irreversible tissue damage79. However, in reality the damage to tissue from 

inadequate blood supply is dependent on many factors, and the thresholds for neurological 

damage are less clear. These factors include duration of blood supply restriction, delay in tissue 

response to metabolic stress, the magnitude of response to metabolic stress, cerebral blood 

volume, and how severely blood flow is restricted. These tissue parameters can be adjusted on 

a tissue level to maintain cerebral metabolism, typically represented by the rate of oxygen 

metabolism, which should remain around 2.0+/- 0.6 mL/100g/min. As a result of the complexity 

of this system, wide ranges of values are observed in tissue which went on to develop infarcts 

and that which did not79. While CBF and OEF measurements give baseline values for these 

parameters, CVR tells us how tissue will respond to stress in the future. An understanding of 

cerebral metabolism can improve our ability to understand tissue risk for stroke as well as best 

treatment options. The MRI methods ASL and BOLD, described in the previous section, have 

improved our ability to monitor hemodynamic impairment in patients with cerebrovascular 

disease through non-invasive measurement of CBF and CVR. This functional hemodynamic 

information has been used in acute80, 81 and chronic82, 83 stages of cerebrovascular disease to 

aid in diagnosis, as well as in surveillance imaging to evaluate response to intervention19, 84. 

OEF measures are promising, though are less frequently considered in clinical decisions due to 

very limited access to techniques for measuring it. To understand how these physiological 

parameters are used in a clinical setting, this section describes CBF, CVR, and OEF, as well as 

how they are measured, interpreted, and what may improve their usefulness, in further detail. 

 

1.5.1 Oxygen Extraction Fraction (OEF) 

 

According to Equation 1 85, if CBF decreases, as it tends to in cerebrovascular disease, 

the brain tissue must extract more oxygen per volume blood to satisfy metabolic requirements 

and maintain CMRO2. Because of this, elevations in OEF are indicative of a potential imbalance 
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in oxygen delivered to oxygen consumed, as has been validated previously where regional 

elevation in OEF has been demonstrated with PET imaging in patients with regional 

cerebrovascular impairment 86. OEF is elevated in patients with impaired vasculature, 

demonstrated in Watchmaker et al. where healthy TRUST measured OEF was reported with an 

interquartile range of 0.29-0.38, and moyamoya OEF was 0.38-0.45 87. The gold standard OEF 

measure is O-15 PET; however, PET is invasive and requires an on-site cyclotron for production 

of radiolabeled oxygen. For these reasons, O-15 PET measurement of OEF is infrequently 

employed as an indicator of cerebrovascular impairment. TRUST has been developed for 

measuring OEF, and has high reproducibility69. However, TRUST provides exclusively whole-

brain measures and the calculation of OEF from TRUST-measured T2 requires a calibrated 

curve, which is contested70, 88. The ASE sequence will allow for regional measurements of OEF. 

ASE consistently under-estimates OEF and over-estimates CBV, and therefore improvements 

on accessible methods for reliable and regional OEF measurement are needed to allow its 

application in clinical practice.  

 

1.5.2 Cerebrovascular Reactivity (CVR) 

 

CVR indicates the effectiveness of vascular response to an increase in metabolic 

demand89. CVR is often acquired with BOLD contrast and a respiratory challenge. By measuring 

the time delay and magnitude of maximum BOLD signal following the respiratory stimulus, CVR 

measurements indicate effectiveness of vascular response and cerebrovascular reserve9. 

Delays in and limited magnitude of vascular response, indicate possible impairment in blood 

arrival time, function of smooth muscle, or elasticity of arterioles9. These properties inform on 

how tissue will respond to stress, and therefore make CVR a sensitive metric of cerebrovascular 

impairment in moyamoya and other cerebrovascular diseases. 

Vascular stimuli for reactivity studies are vasodilatory, in that they cause relaxation of 

arteriolar smooth muscle, increasing CBF and CBV locally. These stimuli can be oral, 

respiratory, or endogenous. Respective examples of these are the carbonic anhydrase inhibitor 

acetazolamide90, mild hypercapnia induced by inhaling an air mixture containing 5% CO2
13, and 

breath holds91. Acetazolamide cannot be modulated down after a dose has been given, 

additionally there are dosage concerns when applying acetazolamide1. Breath holds, while least 

invasive, can present challenges associated with patient compliance. Respiratory stimuli 

however, are minimally invasive, and easily modulated. However, there are different choices in 

selection of gas mixtures for vasodilatory stimuli. Two common choices are hypercapnic 
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hyperoxia (i.e. carbogen, 95% O2 5% CO2) and hypercapnic normoxia (95% room air mixture 

5% CO2). There is some controversy in selection of these gasses, due to the fact that hyperoxia 

in carbogen administration leads to small increases in capillary and venous oxyhemoglobin13, 

which results in increased measurements of CVR due to hyperoxia rather than true CVR. 

Additionally, it is possible that the Haldane effect92, in which CO2 binds to hemoglobin 

competitively with O2, may affect measured CVR parameters when utilizing carbogen as a 

stimulus. However, vascular responses from hypercapnic hyperoxia and hypercapnic normoxia 

are correlated (p<0.05)13, and either stimulus is acceptable for reactivity studies. CVR 

measurements are generally safe, however vasoactive stimuli can make the participant feel 

breathless. They can also influence cerebral metabolism slightly, and therefore are typically 

performed under medical supervision in case of a cerebrovascular event. 

On CVR-weighted BOLD-MRI maps, delays in vascular compliance can manifest as 

apparent negative signal or underestimation of CVR on statistical analysis, due to 

misidentification of baseline BOLD signal9, 50, 93, 94.  These artifacts are fundamental, as they 

preclude accurate quantitative assessment of hemodynamic parameters in one of the most 

obvious applications, cerebrovascular disease. In these cases, more advanced methods, which 

measure both maximum CVR (as opposed to baseline CVR) and CVR delay may help to extract 

time delay information and help to improve interpretability of CVR images. Additionally, 

application procedure of CVR, including best practice for stimulus delivery as well as processing 

technique, is not standardized.  

CVR measures have demonstrated utility in identifying cerebrovascular reserve in 

patients at high risk for stroke95-97, and give information beyond baseline measurements of 

metabolism. CVR measurements inform on how a participant is likely to respond to 

cerebrovascular challenge in the future, and is therefore a promising marker for stroke risk. To 

increase the utility of CVR parameters, interpretability of CVR in cases of cerebrovascular 

disease must be expanded. This may be achieved with specialized analysis techniques, and 

through the standardization of BOLD protocols. 

 

1.5.3 Cerebral Blood Flow 

 

 Gold standard CBF is calculated from time varying concentration of intravenously 

administered contrast agents in CT, PET, or MRI, however these contrast agents are invasive 

and PET methods require an on-site cyclotron. In MRI, the use of contrast agents may become 

unnecessary due to the ASL pulse sequence, which is non-invasive and utilizes an endogenous 



27 
 

label for perfusion signal 63. The ASL pulse sequence labels arterial blood water with an RF 

pulse or series of pulses. The arterial blood water acts as an endogenous contrast agent, 

allowing for CBF measurements to be taken non-invasively. Though contrast-based methods 

are the gold standard, ASL measurements have improved by accounting for multiple 

compartments 98, or fine-tuning parameters like label location and flip angle based on velocity 

measurements 99, 100. In pCASL, labeling efficiency is a function of arterial flow velocity, which is 

fast and asymmetric in patients with flow-limiting stenosis 101. This can lead to error in CBF 

estimation. By modulating pCASL pulse sequence parameters with vessel encoding on a 

patient-specific level, we can improve labeling efficiency and accuracy of CBF measurement in 

patients with moyamoya disease. 

CBF measurement with MRI is a promising and non-invasive alternative to contrast-

based perfusion methods, and have also demonstrated utility in patient populations with 

cerebrovascular and neurological conditions46, 54, 102. However, complications arise when 

measuring CBF under conditions of cerebral ischemia and arterial steno-occlusion. Blood transit 

through the arterial system and associated blood arrival times may be lengthened, which can 

manifest as image artifacts on CBF maps. For instance, delayed blood arrival on ASL-MRI can 

manifest as signal voids in extreme cases, or hyperintense endovascular signal in more modest 

cases, owing to labeled blood water that remains in the arterial tree prior to exchange with 

tissue water97, 102. This is the case in moyamoya, and the relationships between ASL and 

moyamoya physiology must be better characterized before ASL can be implemented more 

regularly in clinical practice. ASL improvements have been made by interpreting signal artifacts 

as a source of contrast for underlying physiology, as well as through modifications to ASL 

implementation based on the unique physiology found in cerebrovascular disease. 

 

1.6 MRI Processing and Machine Learning Approaches 

 

1.6.1 Image Coregistration 

 

One technique that is common to MRI image analysis is image coregistration103. Coregistration 

refers to the process by which two images in different resolution and spatial orientation are 

aligned with one another, and can be implemented by either linear or non-linear 

transformations. In this work, small sub-structures of the brain are not investigated in great 

detail, and therefore coregistrations will be performed using linear registration. This allows for 

uniform comparison of different patient scans, so differences between groups can be compared. 
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An alternative to coregistration is to segment images, such that values from regions of interest 

are extracted. Coregistration has the benefit of allowing images to be compared visually in a 

similar space, however it is possible that coregistration may alter the quantitative values 

estimated from an image, and also the choice of coregistration technique will affect values as 

well. Extraction also depends on technique, but may impart less distortion of quantitative 

measurements compared to coregistration. Both techniques have advantages and 

disadvantages, however in this work, coregistration is implemented so as to allow for simpler 

visual comparison between images, some of these comparisons are displayed in figures. 

 

1.6.2 Machine Learning Approaches 

 

 Machine learning is a set of techniques in which algorithms are developed to improve 

their performance at a given task when iterating over appropriate training data. For example, 

artificial neural networks (ANNs), logistic regression models, and support vector machines 

(SVMs) are supervised and unsupervised learning techniques that have shown success in 

classification of medical imaging data 47, 104, 105. The choice of technique depends on the specific 

task being addressed, as well as what resources and data are available for developing and 

training the algorithm. Supervised learning is a branch of machine learning in which the 

algorithm is provided with training data including inputs and desired outputs. Supervised 

learning algorithms identify patterns in training data, allowing for subsequent identification of 

outputs for new data. 

 While machine learning approaches have grown in acceptance and popularity, 

especially the convolutional neural network (CNN) which is well suited for extracting features 

from images, challenges exist for further adoption of these algorithms. For example, real-world 

data is complex, and creation of uniform training data is difficult. One component of addressing 

this challenge is the development of techniques to train algorithms under conditions of missing 

data. Two promising techniques are data deletion and imputation, which are still being tested in 

real world applications106. One challenge more specific to medical imaging data is the fact that 

typically, 2D CNNs are implemented in 3D spaces. This leads to challenges that are being 

addressed by the development of models with more effectively integrate 3D information 107, 108. 

Another important development in data processing is to improve consideration of multiple 

clinical data elements (CDEs) in processing, rather than processing imaging modalities and 

demographic information separately. CDEs can include different MRI contrasts such as 

structural imaging and diffusion weighted imaging, different imaging modalities such as MRI and 
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CT, as well as demographic factors like race or age, all of which can be integrated using 

processing networks and principle component analysis approaches106, 109. 

The work in this dissertation utilizes supervised learning techniques, which have existed 

longer than their unsupervised learning counterparts and are a robust choice for processing 

small data sets. Supervised learning techniques have shown promise in a wide range of 

classification problems, including identification of disease in medical images 47, 104, 110. By 

analyzing medical images to identify patient disease, supervised learning algorithms may be 

able to aid radiologists in their diagnoses or help to identify treatment options in medical 

facilities with limited training in medical image interpretation. Further development of machine 

learning techniques in clinical applications will provide greater indication of what might be 

necessary to implement supervised learning techniques routinely in a clinical setting, and which 

diseases and applications might be best suited for a supervised learning approach.  

 

Chapter 2: Classifying Intracranial Stenosis Disease Severity from Functional MRI Data 

using Machine Learning 

 

2.1 Introduction 

 While functional imaging with MRI is growing in popularity, several key factors preclude 

widespread adoption of these methods. One important limitation is that functional imaging 

typically performs best under normal physiological conditions, and the unique blood flow 

properties of cerebrovascular diseases complicate image interpretation. However, the image 

artifacts that result from abnormal physiology may convey information on that same physiology. 

Therefore, it is possible that artifacts, which would typically be considered to confound image 

interpretation, can be viewed instead as a source of contrast. In this chapter, we use machine 

learning techniques to interpret functional images in moyamoya in an attempt to use artifacts 

that result from long arterial transit times and delays in reactivity as contrast for moyamoya 

severity.  

Under conditions of cerebral ischemia and arterial steno-occlusion, blood transit through 

the arterial system and associated blood arrival times may be lengthened, which can manifest 

as image artifacts on CBF and CVR-weighted maps. For instance, delayed blood arrival on 

ASL-MRI can manifest as signal voids in extreme cases, or hyperintense endovascular signal in 

more modest cases, owing to labeled blood water that remains in the arterial tree prior to 

exchange with tissue water in the capillaries97, 102. On CVR-weighted BOLD-MRI maps, delays 

in vascular compliance can manifest as apparent negative signal or underestimation of CVR on 
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statistical analysis, due to misidentification of baseline BOLD signal9, 50, 93, 94.  These artifacts are 

fundamental, as they preclude accurate quantitative assessment of hemodynamic parameters in 

cerebrovascular disease. We investigated whether emerging machine learning approaches 

could exploit contrast from these apparent artifacts as novel contrast sources to distinguish flow 

territories with vs. without clinical indicators of hemodynamic impairment in patients with 

moyamoya.  

Moyamoya is an intracranial arterial steno-occlusive disease affecting the supraclinoid 

internal carotid artery (ICA) and its proximal branches, which leads to delayed blood arrival 

times21, delayed reactivity timing9, and development of compensatory collateral vessels. 

Moyamoya is clinically relevant as it incurs a seven-fold increase in stroke risk compared to 

age- and race-matched adults44 and treatment regimens, which may comprise either medical 

management or surgical revascularization, have not been established by randomized clinical 

trials. The current standard for identifying disease severity in moyamoya is stenosis grading of 

major intracranial vessels with catheter angiography, however this procedure carries 

perioperative risk and exposes patients to ionizing radiation, and for these reasons is 

suboptimal for surveillance. 

 Machine-learning techniques, which have been successfully applied in both 

anatomical111, 112 and functional imaging47, 104, should have relevance for identifying functional 

hemodynamic biomarkers in patients with moyamoya. Machine learning algorithms include but 

are not limited to artificial neural networks (ANN)111, 113, random forests114, decision trees115, and 

support vector machines (SVM)47, 104, 116. To investigate the possibility of analyzing contrasts in 

functional hemodynamic maps with machine learning techniques, we applied SVMs to evaluate 

multiple functional imaging contrasts to discriminate hemispheres with vs. without known 

hemodynamic impairment. 

We hypothesized that transit time related artifacts in hemodynamic images, such as 

endovascular signal on ASL-MRI and reactivity delays on CVR-weighted MRI (CVRw-MRI), can 

classify brain parenchyma supplied by angiographically-confirmed stenotic vessels. To test this 

hypothesis, we sequentially acquired catheter angiography, anatomical imaging, and ASL- and 

BOLD-MRI in a cohort of moyamoya patients, and evaluated discriminatory capacity of 

hemodynamic imaging methods for hemispheres supplied by steno-occlusive vessels using 

machine learning approaches. As an exploratory analysis, we used similar methods to identify 

variables indicative of new infarct risk in tissue. Finally, we discuss potential and remaining 

limitations to machine learning algorithms in this cohort, as well as potential relevance of these 

findings to more common atherosclerotic cerebrovascular disease patients. 
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2.2 Materials and Methods 

 

2.2.1 Participant demographics 

 

All participants provided informed, written consent, and all components of the study were 

approved by the Vanderbilt University Institutional Review Board. Criteria for inclusion were 

adult patients with a clinical diagnosis of moyamoya confirmed by catheter angiography, 

identified from the Vanderbilt Neurology and Neurosurgery services between January 27, 2011 

and January 19, 2018. Hemispheres with prior surgical revascularization (direct or indirect) were 

excluded. Healthy controls were recruited if they had no prior neurological condition and no 

current cerebrovascular disease confirmed by vascular and anatomical imaging at the time of 

enrollment. Demographic information is shown in Table 1. All components of this study were 

performed in compliance with the Declaration of Helsinki of 1975 (and as revised in 1983), 

Health Insurance Portability and Accountability Act, and all protocols were approved by the 

Vanderbilt University Institutional Review Board (IRB Study 140915). 

 

2.2.2 Acquisition 

 

Data were acquired using a 3.0T MRI scanner 

(Philips, Best, The Netherlands) with body coil 

RF transmission and 16-channel SENSE-

array neurovascular coil reception.  

 

Anatomical imaging. MRI acquisition included 

T2-weighted (TR/TE=3000/80 ms; 

resolution=0.6x0.6x4.0 mm3), T2-weighted 

axial fluid-attenuated inversion recovery 

(FLAIR) (turbo inversion recovery; 

TR/TI/TE=11000/2800/120 ms; spatial 

resolution=0.9x1.1x3.0 mm), and T1-weighted 

(magnetization-prepared-rapid-gradient-echo; 

spatial resolution=1.0x1.0x1.0 mm3, 3D turbo field echo; TR/TE=8.2/3.7 ms) scans.  

 

 
Controls All Patients 

N (count) 10 53 

Age (years) 29 ± 4.1 45 ± 14.2 

Sex 60% F 81% F 

Race (Black) 0% 38% 

Race (Asian) 0% 9% 

Race (White) 100% 53% 

Diabetes 0% 36% 

Smoking 0% 25% 

Stenosis Location 

ICA none 33 Right, 30 Left 

MCA none 31 Right, 25 Left 

ACA none 18 Right, 10 Left 

PCA none 4   Right,  3  Left 
Table 1. Demographic information for Moyamoya 
Participants in Chapter 2. Continuous variables are 
shown as mean ± one standard deviation. Categorical 
variables are shown as percentages. 
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Catheter angiography. Clinically-indicated digital subtraction angiography (DSA) was performed 

with a Philips Allura Xper biplane neuro X-ray system. Data were collected per clinical indication 

with manual catheter injection of contrast to the common carotid arteries or ICAs and vertebral 

arteries (four injections per patient)117. 

 

Arterial spin labeling. Quantitative CBF measurements were obtained with a 2D multi-slice 

(slices=17; spatial resolution=3x3x7 mm3) pseudo-continuous ASL (pCASL) sequence 

(TR/TE=4200/12.5 ms)118. Due to the seven-year duration of this study, pCASL parameters 

were similar but varied slightly: protocol A (label duration=1600 ms; label delay=1525 ms) and 

pCASL protocol B (label duration=1650 ms; label delay=1800 ms). These post-label delay 

values are common for 3.0T ASL studies, but are shorter than expected circulation times in 

many moyamoya patients102, 117, which may lead to endovascular signal artifacts that are of 

interest to this study. The potential influence of multiple pCASL protocols is addressed in the 

Discussion. 

 

CVR-weighted BOLD imaging. CVR-weighted measurements were obtained during BOLD 

imaging (TR/TE=2000/30 ms; spatial resolution 2.7x2.7x3.5 mm3; 360 dynamics) with a 

vasodilatory hypercapnic-hyperoxic stimulus (95% O2, 5% CO2). The stimulus paradigm 

consisted of 180 seconds hypercapnic-hyperoxia interleaved with 180 seconds normocapnic-

normoxia repeated once. This stimulus has been investigated previously for reproducibility and 

sensitivity to lateralizing disease in the moyamoya patient population13, 119. Differences between 

stimuli are addressed in the Discussion. Throughout the scan, respiratory rate, blood pressure, 

end-tidal CO2, arterial oxygen saturation, and heart rate were monitored (Medtronic, Dublin, 

Ireland).  

 

2.2.3 Analysis 

 

Anatomical imaging and catheter angiography. T2-weighted, T2-weighted FLAIR, and T1-

weighted MRI were used to record prior infarcts by a board-certified radiologist (LTD) who was 

blinded to other hemodynamic and functional imaging findings. Moyamoya patient hemispheres 

were separated into groups that were supplied by either a severely stenotic vessel or mildly 

stenotic vessels, in which Stenting versus Aggressive Medical Management in Patients at-Risk 

for stroke with Intracranial Stenosis (SAMMPRIS)6 criteria were used. More specifically, a 

hemisphere with severe stenosis was supplied by a major intracranial vessel (first segment of 
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middle cerebral artery, posterior cerebral artery, or anterior cerebral artery; intracranial ICA; or 

basilar artery) with ≥70% stenosis, and mild stenosis was a hemisphere with all supplying 

vessels <70%. Although stenosis of smaller and more distal vessels is possible, vascular 

stenosis of these more distal segments is difficult to quantify even on catheter angiography, and 

more importantly, the spatial extent of impairment from these vessels will be more focal and 

potentially variable. Here, as a first-principle study, and to ensure that the regions considered 

met accepted clinical criteria for impairment as recommended by prior trials6, we focused on 

stenosis in major intracranial vessels as defined above. We define stenosis<70% as mildly 

impaired, as moyamoya is a bilateral condition and stenosis of smaller vessels not apparent on 

angiography is likely.  

 

Arterial spin labeling. ASL preprocessing included affine motion correction120, spatial smoothing 

(full-width-half-maximum=3 mm), slice-time correction, control and label pair-wise subtraction, 

and dynamic averaging (protocol A: measurements=27; protocol B: measurements=20). 

Additionally, T1-weighted images served as an intermediate template to register the control 

images from ASL acquisition to Montreal Neurological Institute (MNI) space using linear co-

registration (FMRIB’s Linear Image Registration Tool; FLIRT) with 12 degrees of freedom. 

Images were co-registered to ensure that comparisons could be made between hemispheres 

while keeping proportions of gray and white matter approximately consistent in volumes of 

interest, and so that anterior and posterior flow territories could be identified consistently 

between participants. The transformation matrix was recorded and applied to the quantitative 

ASL difference magnetization map. Quantitative CBF maps were calculated according to a two-

compartment model applied to the processed difference magnetization (Mcontrol-Mlabel), using the 

fmincon constrained non-linear optimization function in Matlab65, 66: 

 

 
𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑀𝑙𝑎𝑏𝑒𝑙 =

2𝑀0𝑓𝛼

𝜆
∙
𝑒−𝛿𝑅1𝑎

𝑅1𝑎𝑝𝑝
[𝑒(𝛿−𝑤)∙𝑅1𝑎𝑝𝑝 − 𝑒(𝛿−𝜏−𝑤)∙𝑅1𝑎𝑝𝑝] 

(19) 

 

where 𝑀𝑙𝑎𝑏𝑒𝑙 is the magnetization of the labeled pCASL image, 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the magnetization of 

the unlabeled control pCASL image, 𝑀0 is equilibrium magnetization, 𝑓 is CBF in mL/g/s, 𝛼 =

0.85  is pCASL labeling efficiency, 𝜆 = 0.9 𝑚𝑙/𝑔  is the whole-brain blood-brain partition 

coefficient, 𝛿 = 1.5𝑠 is the tissue transit time, 𝑅1𝑎 = 0.59 𝑠−1 is the longitudinal relaxation rate for 

oxygenated macrovascular arterial blood water at 3.0T67, 𝑅1𝑎𝑝𝑝  is the apparent longitudinal 
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relaxation rate of perfused tissue (𝑅1𝑎𝑝𝑝 = 𝑅1,𝑇𝑖𝑠𝑠𝑢𝑒 +
𝑓

𝜆
), R1,Tissue = 0.77 s-1, 𝑤 is the pCASL 

post-label delay time, and 𝜏  is the pCASL labeling duration. CBF is converted to units of 

mL/100g/min by multiplying by a factor of 6000. Note that 𝑅1𝑎𝑝𝑝 contains a dependence on f, 

which makes the minimization routine required. We chose to use a more complete form of the 

kinetic model compared with a recently-proposed simplified model63, since the simplified model 

explicitly assumes that all labeled blood water spins are delivered to tissue at the post-labeling 

delay time and also that the labeled spin relaxation is only due to blood water R1, whereas 

tissue water R1 also contributes. In practice, these assumptions are not expected to influence 

findings in a significant way, and the above model also makes approximations regarding 

expected blood and tissue transit times; 

note that in this study the different models 

will only scale the endovascular signal 

slightly differently. However, as the 

purpose of this study was specifically to 

consider contrast in the context of 

endovascular artifacts, we used the more 

complete model to reduce the number of 

assumptions that were fundamentally in 

conflict with our primary hypothesis. The 

CBF images resulting from this approach 

are expected to have endovascular 

artifacts, which can be exploited with 

machine learning analysis as an indicator 

of arterial collateralization and long blood 

arrival times121, 122.  

 

CVR-weighted BOLD imaging. BOLD 

preprocessing included motion correction 

and spatial smoothing, similar to ASL 

preprocessing, and images were 

corrected for slice-timing using the FSL 

software, FEAT103. Following affine motion 

correction, both BOLD and ASL images were qualitatively evaluated for residual motion effects, 

 
Figure 8. Representative Images for Cerebral Metabolic 
Parameter Maps at Three Stages of Moyamoya 
Impairment. Representative images for each physiological 
parameter (rows) and patient group (columns) used to test 
the primary hypothesis in this study. The mild stenosis 
moyamoya patient is a 48 year old female with stenosis in 
the right M1 segment of the MCA and left supraclinoid ICA. 
The severe stenosis patient is a 23 year old female with 
stenosis bilaterally in both M1 MCA and supraclinoid ICA 
segments. With increasing arterial steno-occlusion, CBF-
weighted data demonstrate heterogeneous hyperintense 
endovascular signal, CVRDelay lengthening, and CVR 
reduction.  
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manifesting as peripheral signal hyperintensities on the ASL difference images and focal 

hyperintensities on the BOLD time courses, and any images with residual motion that was 

deemed to preclude interpretability were excluded. BOLD images were co-registered to an MNI 

atlas using the same techniques as described in the Arterial spin labeling section above. Three 

CVR parameters were calculated from BOLD reactivity data. First, CVR was defined as the 

mean BOLD signal change in response to stimulus, for which the last 60s of both 180s 

hypercapnic stimulus blocks (30 images per 60 seconds) were averaged to calculate a stimulus 

image and the last 120s of the 180s interleaved period were averaged to calculate a baseline 

image. The CVR map is the fractional signal change map. To analyze time-delayed vascular 

response to stimulus9, a rectangular regressor was applied to represent on and off stages of the 

paradigm. This regressor was advanced in time until maximum correlation between voxel time 

course and shifted regressor was found. Time until maximum correlation was defined as 

CVRDelay (seconds), and the value of maximum correlation is CVRMax (z-statistic between shifted 

regressor and voxel time course). These values are calculated on a voxel-wise basis to create 

CVRDelay (time delay) and CVRMax (maximal statistical response) maps. Representative maps 

are shown in Figure 8; all parameters are defined in Table 2.  

 

2.2.4 Quantification of observables 

 

While moyamoya is generally a bilateral condition, severity can vary regionally24. Each 

hemisphere was separated into two regions, one approximately supplied by the ICA and 

another by the vertebrobasilar (VBA) arteries. These were estimated from a common flow 

territory map atlas calculated with vessel-encoded ASL123, 124. A standard histogram and 

associated voxel-intensity threshold approach was applied to the T1-weighted atlas to estimate 

the fractional tissue volumes in each region.   

  The inputs to machine learning techniques are regional imaging and demographic 

information. In ICA and VBA flow territories, we calculated three standard statistical measures 

(i) 99th percentile (99th%), (ii) mean, and (iii) standard deviation (std) of the voxel intensities for 

CBF, CVR, CVRDelay, and CVRMax maps (Table 2). Owing to recent evidence suggesting that the 

coefficient of variation (CoV) in ASL maps has relevance for discerning important arrival time 

information121, spatial CoV of CBF was also calculated in both ICA and VBA flow territories 

according to the following equation121. 

 
𝐶𝐵𝐹 𝐶𝑜𝑉 =

𝐶𝐵𝐹 𝑠𝑡𝑑

𝐶𝐵𝐹 𝑚𝑒𝑎𝑛
∙ 100% 

(20) 
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This yielded 13 imaging measures per flow territory (26 per brain hemisphere). Additionally, five 

demographic and risk factor variables, including age (continuous), sex (dichotomous), race 

(categorical: Black, Asian, or White), smoking status (dichotomous), and diabetes 

(dichotomous) were considered.   

 

2.2.5 Statistical Considerations and Hypothesis Testing. 

 

The overall goal of this work was to consider each brain hemisphere in each patient as a 

separate data point, and to divide these hemispheres into (i) healthy controls (control), (ii) 

patients with all supplying vessels with stenosis < 70% (mild), or (iii) patients with at least one 

supplying vessel with stenosis ≥ 70% (severe). Next, we evaluated the performance of single or 

combinations of imaging and demographic variables using machine learning for discriminating 

the hemispheres by category.  

 For machine learning, the support vector machine (SVM) classifier algorithm was 

utilized. An SVM performs binary classifications by transforming the data space into a higher 

dimensional space using a kernel, and optimizing the position of a hyper-plane to define a 

boundary separating input groups116. SVM classifiers were trained in MATLAB using the fitcsvm 

function with a radial bias function kernel and fitcsvm default parameters, including kernel scale 

set to 1, box constraints set to 1, standardized data, and solving with sequential minimal 

optimization125. Predictive performance was assessed with receiver operating characteristic 

Parameter Acquisition 
Method 

Description Unit 

CBF pCASL Rate of blood delivery to brain tissue at 
physiological baseline 

mL/100g/min 

CBF-CoV CBF-CoV Ratio of CBF standard deviation to CBF 
mean. 

Percentage 

CVR BOLD Mean BOLD signal change in response to 
vasodilatory stimulus 

Percentage 

CVRDelay BOLD Statistical measure of vascular response 
delay time (i.e., time for the regressor to 
become maximally correlated with the 
experimental data) 

Seconds 

CVRMax BOLD Statistical measure of vascular response 
magnitude to stimulus (i.e., the z-statistic 
at the CVRDelay time) 

Z-Statistic 

Table 2 Parameter Definitions in Chapter 2. Definitions of the four physiological parameters used in this study. 
For each parameter except CBF coefficient of variation (CoV), we calculated mean, 99th percentile, and standard 
deviation values in flow territories supplied by both the left and right internal carotid arteries as well as the 
vertebrobasilar flow territory. For CBF-CoV, only the mean value of this parameter by convention. 
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(ROC) analysis using the ROC area under the curve (ROCAUC). Sensitivity and specificity were 

recorded at the point along the ROC curve that yielded maximum Youden’s index126. Youden’s 

index is the sum of sensitivity and specificity minus one, and is a common method used to 

define a threshold with optimal compromise between sensitivity and specificity127, 128. For 

comparisons made by stenosis extent, classifiers were validated with stratified, repeated 3-fold 

validation, where ROC curves were averaged for each fold, and the final reported ROC was the 

average of all repetitions129.  

 Hemispheres were grouped into one of three categories: (i) control (from healthy 

subjects), (ii) mild (major supplying vessels all with stenosis <70%) and (iii) severe (at least one 

major intracranial vessel with stenosis ≥70%). Single-variable, two-variable, and three-variable 

SVM classifiers were tested with all combinations of variables for each of the three group-

comparisons: controls vs. mild regions, controls vs. severe regions, and mild vs. severe regions. 

The number of variable combinations tested is,  

 

 
𝐶(𝑣, 𝑘) =

𝑣!

𝑘! ∙ (𝑣 − 𝑘)!
 

(21) 

 

Where C is the total number of combinations, v=31 is the number of variables being tested per 

hemisphere, and k=1, 2, or 3 is the dimensionality of the SVM algorithm. A suitable number of 

repetitions for cross validation was determined when the ROCAUC value was found not to 

change by more than 0.01 for 95% of these variable combinations when the number of 

repetitions was doubled. Single- and two-variable classifiers were implemented with 100 

repetitions, and three-variable SVMs were implemented with 200 repetitions.  

 The process of ranking best performing variables was by maximum ROCAUC value for 

the control vs. mild hemispheres as this was a more clinically meaningful and challenging 

criteria (e.g., compared with distinguishing control vs. severe), however ROCAUC values for 

other hemisphere classifications are also included. 

 As an exploratory analysis, hemispheres were grouped by those with vs. without new 

infarcts in the subgroup of patients with surveillance imaging. A similar procedure with single- 

and two-variable classifiers was applied to determine potential for identifying hemispheres that 

progressed to develop new infarcts. Here, due to a smaller sample size, a leave-one-out 

approach was used instead of 3-fold validation for cross validation. 

While the primary focus of this study was on SVM performance, we also summarize 

group-wise comparisons of the input variables using two-sided p-values calculated with a 
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Wilcoxon rank-sum test for parameters in each of the three hemisphere groups: control vs. mild, 

control vs. severe, and mild vs. severe. When p<0.0038 (after a correction for the 13 functional 

variables calculated in each flow territory) the group-wise difference was denoted as significant. 

This analysis was repeated in the exploratory analysis to determine group-wise effects in 

hemispheres that had recurrent stroke at follow up. 

 CBF-CoV, CBF-mean, and CBF-std were compared in separate linear regression 

analyses, in which the Pearson correlation coefficient (r) was used to assess correlation 

between variables. For presenting variables, the map used is shown first, followed by the 

hyphenated statistical measure and the flow territory denoted in parentheses. For example 

CBF-std (ICA) denotes the standard deviation of the CBF in the ICA territory. 

 

2.3 Results 

Sixty-six moyamoya patients were enrolled, of whom 53 patients met inclusion criteria, and 22 

patients received follow-up imaging (follow-up duration=363±145 days). Eleven patients were 

excluded due to prior bilateral revascularization surgeries and two for incomplete or motion-

corrupted data sets. Fourteen patients had only one hemisphere excluded due to unilateral 

revascularization surgery. Ultimately, this study included 92 patient hemispheres from 53 

moyamoya patients, and 20 control hemispheres from 10 control subjects. Of 92 patient 

hemispheres, 64 were supplied by at least one flow-limiting stenotic vessel of the anterior 

circulation. The distribution of stenotic arteries were the intracranial segment of the ICA (33 

right, 30 left), first segment of the MCA (31 right, 25 left), first segment of the ACA (18 right, 10 

left), and first segment of the PCA (4 right, 3 left) (Table 1). Preservation of posterior circulation 

until late disease stages is common in moyamoya, consistent with the finding that all 

hemispheres had anterior vessel stenosis, but only 7.6% of hemispheres were also supplied by 

a severely stenotic vessel from the posterior circulation. The mild stenosis group had 20 

hemispheres collected with pCASL protocol A, and 8 hemispheres collected with protocol B; the 

severe stenosis group had 32 hemispheres collected with pCASL protocol A and 32 

hemispheres collected with protocol B. All control data were collected with pCASL protocol B.   

 Twenty-two patients received follow-up imaging. Five hemispheres were excluded from 

recurrent stroke analysis due to unilateral revascularization surgery. Six hemispheres had new 

infarcts and 33 hemispheres had no new infarcts at follow-up. All but one of the new infarcts 

occurred in anterior flow territories. Of the six hemispheres with new infarcts, two had arterial 

stenosis<70% of the supplying vessels in that hemisphere and four had stenosis≥70%. Of the 

33 hemispheres without new infarcts, 11 had arterial stenosis<70% and 22 had stenosis≥70%. 
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Variable 1 Variable 2 Variable 3 Control hemispheres vs. 
hemispheres supplied by mildly 
stenotic vessel 

Hemispheres supplied by mildly 
vs. severely stenotic vessels 

   ROC
AUC 

Specificity Sensitivity ROC
AUC 

Specificity Sensitivity 

Machine learning results: performance of two commonly recorded variables 

CBF-
Mean 
(ICA) 

CVR-Mean 
(ICA) 

None 0.65 0.83 0.43 0.54 1.0 0.20 

Machine learning results: three-variable performance 

CBF-std 
(ICA) 

CBF-mean 
(VBA) 

CVRDelay-
mean (VBA) 

0.71 0.67 0.69 0.75 0.67 0.74 

CBF-std 
(ICA) 

CVR-mean 
(VBA) 

CBF-CoV 
(ICA) 

0.71 0.83 0.53 0.75 0.67 0.74 

CBF-std 
(ICA) 

CVR-mean 
(VBA) 

CBF-CoV 
(VBA) 

0.71 0.67 0.69 0.75 0.67 0.76 

CBF-std 
(ICA) 

CVRDelay-
mean (ICA) 

Diabetes 0.71 0.83 0.53 0.74 0.67 0.73 

CBF-std 
(ICA) 

CVRDelay-
std (ICA) 

CVR-mean 
(VBA) 

0.71 0.83 0.52 0.74 0.67 0.75 

CBF-std 
(ICA) 

CVRDelay-
std (ICA) 

Smoking 0.71 0.67 0.70 0.74 0.67 0.73 

CBF-std 
(ICA) 

CVRDelay-
99th% 
(VBA) 

CVRMax-
mean (VBA) 

0.71 0.67 0.69 0.74 0.67 0.74 

CBF-std 
(ICA) 

CVRMax-std 
(ICA) CBF-CoV 

(ICA) 

0.71 0.83 0.52 0.74 0.67 0.74 

CBF-std 
(ICA) 

CVRMax-
99th% 
(VBA) 

CVR-mean 
(ICA) 

0.71 0.83 0.52 0.74 0.67 0.73 

Machine learning results: two-variable performance 

CBF-std 
(ICA) 

CVRDelay-
mean (ICA) 

None 0.70 0.83 0.52 0.75 0.67 0.75 

CBF-std 
(ICA) 

CVRMax-std 
(VBA) 

None 0.70 0.67 0.66 0.75 0.67 0.75 

CBF-std 
(ICA) 

CBF-mean 
(VBA) 

None 0.70 0.83 0.51 0.75 0.67 0.74 

CBF-std 
(ICA) 

CVRMax-
mean (ICA) 

None 0.70 0.67 0.67 0.74 0.67 0.73 

CBF-std 
(ICA) 

CVR-std 
(ICA) 

None 0.70 0.67 0.69 0.74 0.67 0.73 

CBF-std 
(ICA) 

CVR-mean 
(VBA) 

None 0.70 0.83 0.52 0.74 0.67 0.74 

Machine learning results single-variable performance 

CBF-std 
(ICA) 

None None 0.70 0.83 0.52 0.75 0.67 0.74 

Table 3. High-Performing Functional Parameters for Predicting Moyamoya Stenosis. The highest performing 
variable combinations, for control vs. mildly stenotic and mildly stenotic vs. severely stenotic hemisphere SVM 
algorithms, in comparison to one combination of commonly measured variables (CVR-mean and CBF-mean 
measured in the ICA flow territory; top). Region is shown in parentheses for each variable. CBF-std (ICA) is the only 
single variable that displays classification with ROCAUC > 0.60 for both control vs. mild and mild vs. severe 
comparisons. Additionally, CBF-std (ICA) is present in all of the highest performing variable combinations. 
Sensitivity and specificity are reported at the point along the ROC curve with maximum Youden’s index. 
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 Mean tissue 

composition was 

calculated in each of 

the flow territory 

maps and was 

determined to be 64% 

and 70% gray matter 

for ICA and VBA flow 

territories, 

respectively. The 

same regions were 

used in all subjects 

and therefore tissue 

composition bias is 

anticipated to be 

similar across all 

subjects. This fraction 

of gray matter is to be 

expected for typical 

BOLD and ASL voxel 

dimensions of 2-7 

mm as used here.  

In machine 

learning analysis, 

data were input to 

single-variable (C=31 

total variable 

combinations), two-

variable (C=465 total 

variable combinations), and three-variable (C=4495 total variable combinations) SVM 

algorithms, in which all possible combinations of variables were tested for classification 

performance. In single variable learning, the best performing variable was CBF-std (ICA) with 

ROCAUC=0.70 for control vs. mild classification and ROCAUC=0.75 for mild vs. severe 

classification. No other variables yielded ROCAUC>0.60 for all classifications.  

 
Figure 9 High-Performing Physiological Parameters for Predicting Moyamoya 
Stenosis Compared to Conventional Parameters in Support Vector Machines. 
A comparison of classification performance for variables more commonly used for 
identifying cerebrovascular impairment (CVR-mean and CBF-mean measured in the 
ICA flow territory; a) to the newly identified variables from the SVM analysis (CBF-
std and CVRDelay-mean in the ICA territory; b).  
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The highest performing two and three variable classifications are shown in Table 3. All 

highest performing variable combinations contained CBF-std (ICA). Fifteen imaging variables 

and two demographic variables (diabetes and smoking) were identified. A high performing two-

variable SVM using CBF-std (ICA) and CVRDelay-mean (ICA) is displayed in Figure 9 in 

comparison to a two-variable SVM using variables that are often recorded: CVR-mean (ICA) 

and CBF-mean (ICA). In Figure 9, when comparing control vs. mild hemispheres, SVM 

performance is similar for CBF-mean (ICA) and CVR-mean (ICA) (ROCAUC=0.65) compared to 

CBF-std (ICA) and CVRDelay-mean (ICA) (ROCAUC=0.70). However, when classifying mild vs. 

severe hemispheres, CBF-mean (ICA) and CVR-mean (ICA) (ROCAUC=0.54) are outperformed 

by CBF-std (ICA) and CVRDelay-mean (ICA) (ROCAUC=0.75).  

 

 
Figure 10. Group-Wise Comparisons of Physiological Parameters by Moyamoya Stenosis Group. P-values 
from a Wilcoxon rank-sum test for each imaging variable when comparing controls to hemispheres supplied by 
mildly stenotic vessels (a, d), controls to hemispheres supplied by severely stenotic vessels (c, e), and 
hemispheres supplied by mildly versus severely stenotic vessels (c, f). Each variable is shown for the ICA flow 
territory (top) and the VBA flow territory values (bottom). Variables are considered significant at or below 
p=0.0038, which includes a multiple-comparison correction accounting for 13 imaging variables. 
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 Figure 10 summarizes all functional variables using standard Wilcoxon rank-sum 

analysis. In control vs. mild hemisphere comparison, two significant variables were found in the 

ICA territory, CBF-99th%, and CVR-mean, compared to no variables from the VBA territory.  In 

comparisons between hemispheres supplied by mild vs. severely stenotic vessels, significance 

was found for six variables in the ICA flow territory: CBF-99th%, CBF-std, CBF-CoV, CVRDelay-

mean, CVRDelay-99th%, and CVRDelay-std, compared to only one from the VBA territory, CVRDelay-

std. Figure 11 contains box plots comparing two commonly recorded hemodynamic variables 

displayed in Figure 9 (CVR-mean and CBF-mean from the ICA flow territory) to candidate 

variables identified through SVM analysis from Figure 9 (CBF-std and CVRDelay-mean in the ICA 

flow territory). Variables identified from SVM analysis are consistent with moyamoya 

pathophysiology and prolonged blood arrival times.  

 Relationships between CBF-CoV, CBF-mean, and CBF-std from the ICA territory were 

investigated with linear regression to identify how these variables, which all reflect spatial 

properties of CBF heterogeneity and blood arrival, may be related at different stages of 

impairment in moyamoya disease 

(Figure 1). CBF-std (ICA) correlated 

with CBF-mean (ICA) for control 

(r=0.72) and mild (r=0.74) 

hemispheres, but not in 

hemispheres supplied by severely 

stenotic vessels (r=0.37). The CBF-

CoV (ICA) was correlated with CBF-

std (ICA) in control hemispheres 

(r=0.81) and inversely with CBF-

mean (ICA) in hemispheres supplied 

by severely stenotic vessels (r=-

0.72). In all comparisons, 

significance of relationships between 

CBF-CoV (which comprises CBF-std 

and CBF-mean; Equation 20), CBF-

std, and CBF-mean were dependent 

on supplying artery stenosis. Results 

demonstrate that CBF-CoV may be 

closely related to CBF-std in control 

 
Figure 11. High-Performing and Conventional Physiological 
Parameters Compared Between Moyamoya Group Illustrated 
in Boxplots. Group-wise comparisons for variables more 
commonly used for identifying cerebrovascular impairment (CVR-
mean and CBF-mean measured in the ICA flow territory; a, b) to 
that from non-conventional variables (CBF-std and CVRDelay-mean 
in the ICA flow territory; c, d). 
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hemispheres and to CBF-mean in severely stenotic hemispheres, however CBF-CoV may 

present unique information in hemispheres supplied by mildly stenotic vessels. 

 As an exploratory analysis, in the subgroup of patients with follow-up imaging, we 

investigated abilities to distinguish hemispheres with vs. without new infarcts at follow-up using 

single and two-variable SVM classifiers applied to data acquired at the first time point (Figure 

12). In single-variable machine learning analysis, the four highest performing variables were 

CVRDelay-mean (VBA) (ROCAUC=0.90, Specificity=0.97, Sensitivity=0.83), Age 

(ROCAUC=0.84, Specificity=0.70, Sensitivity=1.0), CBF-mean (ICA) (ROCAUC=0.82, 

Specificity=0.91, Sensitivity=0.83), and CBF-mean (VBA) (ROCAUC=0.65, Specificity=0.55, 

Sensitivity=0.83). In two-variable SVM analysis, the four highest performing variable 

combinations were CBF-mean (ICA) and CVRDelay-mean (VBA) (ROCAUC=0.94, 

Specificity=0.85, Sensitivity=1.0), CBF-mean (ICA) and CVRDelay-99th% (VBA) (ROCAUC=0.93, 

Specificity=0.79, Sensitivity=1.0), CVRDelay-mean (VBA) and CVRDelay-99th% (VBA) 

(ROCAUC=0.89, Specificity=0.97, Sensitivity=0.83), and CVRDelay-mean (VBA) and CBF-CoV 

(ICA) (ROCAUC=0.88, Specificity=0.88, Sensitivity=0.83). Four variables discriminated 

hemispheres progressing to new infarcts on Wilcoxon rank-sum analysis: CBF-mean (ICA) 

(p=0.001), CVRDelay-mean (VBA) (p=0.006), CBF-CoV (ICA) (p=0.045), and CBF-std (VBA) 

(p=0.049).  

 

 
 
Figure 12. Predicting Recurrent Infarcts in Moyamoya Using Machine Learning and Group-Wise 
Comparisons. Boxplots and SVM analysis with two promising variables for distinguishing hemispheres with vs. 
without new infarcts. Boxplots are (a) CBF-mean (ICA) in which recurrent vs. no recurrent stroke hemispheres has 
p=0.001 and (b) CVRDelay-mean (VBA) in which recurrent vs. no recurrent stroke hemispheres has p=0.006. SVM 
analysis is shown in (c), in which an ROCAUC=0.94, Specificity=0.85, and Sensitivity=1.0 is found for distinguishing 
recurrent stroke risk with CVRDelay-mean (VBA) and CBF-mean (ICA). 
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2.4 Discussion 

 

This study analyzed non-invasive hemodynamic imaging and demographic variables from 

patients with non-atherosclerotic intracranial stenosis and moyamoya to understand if machine 

learning could be applied to classify hemispheres by arterial stenosis confirmed by gold-

standard, invasive catheter angiography. The primary hypothesis is that endovascular image 

artifacts, which are often assumed to complicate interpretation, display maximal performance of 

the variables considered in support vector machine (SVM) algorithms for distinguishing 

moyamoya hemispheres supplied by vessels with vs. without arterial steno-occlusion. In an 

exploratory analysis, CVRDelay-mean (VBA), CBF-mean (ICA), CVRDelay-99th% (VBA), CBF-CoV 

(ICA), and age were identified through similar machine learning procedures as having potential 

relevance for discriminating hemispheres at risk of developing new infarcts. 

Functional contrasts identified for classifying arterial stenosis or recurrent stroke status 

reflect physiology previously identified in the literature. CBF-std (ICA) is consistent with 

endovascular signal artifacts due to delayed blood arrival. Increasing arterial collateralization 

throughout moyamoya progression causes longer blood arrival and arterial circulation times on 

the order of 2-3s in many patients117, resulting in labeled blood water remaining in the arterial 

tree during pCASL acquisition when typical post-labeling delays of 1.5-2s are used. This 

incomplete water exchange can result in heterogeneous signal intensity and over-estimation of 

CBF in pCASL data.  Zaharchuk et al.122, showed that hyper-intense endovascular signal 

artifacts on arterial spin labeling MRI indicated arterial collateralization in moyamoya disease, 

confirmed by digital subtraction angiography. Mutsaerts et al.121 also explored the relationship of 

CBF-CoV to complex cerebrovascular architecture in older adults with hypertension, and 

demonstrated that CBF-CoV is correlated with arterial transit time. More recently in patients with 

steno-occlusive disease it was shown that CBF-CoV can provide contrast consistent with 

perfusion abnormalities130. Customization of pCASL labeling parameters is also an active area 

of research to address these limitations, and both correction and optimization strategies have 

been proposed131. In reactivity experiments, it was also previously demonstrated through cross-

correlation time-delay analysis that moyamoya patients with intracranial stenosis have delayed 

hemodynamic response functions to respiratory stimuli9. These findings agree with the results of 

machine learning techniques presented in this work and specifically that arterial arrival artifacts 

on commonly-parameterized ASL images have potential diagnostic relevance in patients with 

moyamoya. Interestingly, CBF-mean (ICA), while commonly used to identify status of 

cerebrovascular disease, was not identified as a high performing variable for distinguishing 
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hemispheres supplied by stenotic vessels in this study. This may be unique to moyamoya 

pathophysiology, possibly resulting from high endovascular signal artifacts artificially elevating 

the quantified mean CBF values. Functional variables that are conventionally used for 

distinguishing cerebrovascular impairment, such as CBF-mean and CVR-mean did not always 

have highest performance in machine learning classification and group-wise comparisons 

compared to time delay variables that are less often recorded, such as CBF standard deviation 

and mean reactivity delay.  

It is also likely that some hemodynamic parameters considered here represent 

redundant information. For example, both CBF-std (ICA) and CBF-99th% (ICA) were found to be 

significant in group-wise analyses. CBF-std is elevated in patients with moyamoya due to 

hyperintense signal artifacts in pCASL acquisition caused by long arterial transit times. 

However, CBF-99th% is elevated in moyamoya due to the same reasons in many cases. 

Additionally, since the CBF-CoV was found to be correlated with CBF-std (ICA) in controls 

(r=0.72) and hemispheres with mild stenosis (r=0.74) and with CBF-mean (ICA) in hemispheres 

with severe stenosis (r=-0.72), CBF-std, CBF-mean, and CBF-CoV represent redundant 

information to some extent, however this appears to vary with stenosis severity (Figure 13). 

SVM use with functional hemodynamic information extends earlier results demonstrating 

that machine learning, which has been applied to provide promising anatomical112, and 

functional47, 104, 132 classifications, also has diagnostic potential in cerebrovascular disease 

patients with complex vascular architecture and function. For example, Asadi et al. 2014133 used 

 
Figure 13 Comparisons Between CBF-mean, CBF-std, and CBF-CoV, Three Related Parameters. A 
regression analysis comparing ICA variables CBF-CoV, CBF-std, and CBF-mean at different stages of moyamoya 
severity, defined as control hemispheres, moyamoya hemispheres supplied by arteries with stenosis < 70%, and 
moyamoya hemispheres supplied by arteries with stenosis ≥ 70%. CBF-std (ICA) is correlated with CBF-mean 
(ICA) for controls (r=0.72) and hemispheres supplied by mildly stenotic vessels (r=0.74), but not in hemispheres 
supplied by severely stenotic vessels (r=0.37). The CBF-CoV was correlated with CBF-std (ICA) in control 
hemispheres (r=0.81) and with CBF mean (ICA) in hemispheres supplied by severely stenotic vessels (p=-0.72), 
however no other regressions including CBF-CoV presented |r| > 0.46. These findings indicate that CBF-CoV is 
more closely related to CBF-std in control hemispheres, but is more determined by CBF mean in tissue affected 
by reduced blood flow and increased arterial transit times at later stages of moyamoya. 
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ANN and SVM algorithms to predict outcomes for patients receiving thrombectomy for acute 

ischemic stroke. Additionally, Collij et al. 2016104 used SVM classifiers to discriminate patients 

with suspected Alzheimer’s disease, from mild cognitive impairment, from subjective cognitive 

decline using ASL perfusion maps. These findings collectively offer increased support that both 

anatomical and functional hemodynamic imaging can serve as important machine learning 

inputs. As functional changes generally precede anatomical changes, machine learning using 

functional data may have even more relevance for identifying disease trajectory. Applying 

different classification algorithms to the problem addressed in this study has the potential to 

improve classification performance.  SVM algorithms have the advantage of high performance 

in binary classification, and no local minima in optimization, however SVM performance is 

dependent on the choice of kernel, and most SVM theory is developed for binary 

classification134. One possible alternate classifier is the convolutional neural network (CNN)135, 

which exhibits good feature extraction and high performance for analyzing and processing MRI 

images, and has been implemented in processing and interpretation applications for functional 

data136, segmentation111, 137, and reconstruction113. The random forest classifier may also 

perform well for distinguishing moyamoya patients based on functional image properties138.  The 

random forest algorithm can be robust against over-fitting, having high performance in 

classification tasks, and success in a wide variety of applications, including image 

segmentation139, and disease classification114. Many algorithms may be suited for identifying 

characteristic physiology in hemo-metabolic images, however we chose SVM since it inherently 

accounts for non-linearity in data, always finds global solutions, and is relatively resistant to 

over-fitting for a non-parametric algorithm134. Finally, machine learning is often associated with 

big data applications, to which this study’s sample size is comparatively small. Particularly in the 

exploratory analysis (22 patients with follow-up imaging), where sample size imbalances could 

bias SVM algorithms. Therefore, these results should be interpreted with caution. However, they 

could provide motivation for future investigations with larger sample sizes. We considered 

sample size concerns here by using supervised SVM algorithms with no more than three 

dimensions, reducing model complexity and sensitivity to over-fitting.  

VBA involvement in patients with new infarcts was unexpected, since only one 

hemisphere that displayed new infarcts had their stroke in the VBA flow territory. However, this 

could suggest that abnormal vascular compliance in the VBA territory may indicate a global 

increase in infarct risk. One possible explanation for the finding that CVRDelay in the VBA flow 

territory is reduced at later stages of disease is that since highly impaired moyamoya patients 

typically have extreme stenosis in bilateral anterior flow territories, the VBA supplies anterior 
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flow territories via flow through the posterior communicating artery or other collateral pathways. 

This may reduce CVRDelay in the VBA flow territory. This could occur with greater severity at later 

stages of disease, making reduced CVRDelay (VBA) in moyamoya patients indirectly 

representative of anterior flow impairment and high risk for stroke. Importantly, of all the 

parameters considered, the parameter most prognostic for new infarcts was simply the mean 

hemispheric CBF.  

It is worthwhile to consider how machine learning results may generalize to other more 

common cerebrovascular conditions. In atherosclerosis for example, reductions in vascular 

compliance83 and increased arterial collateralization10 are also associated with increased 

severity of impairment, therefore CVRDelay and CBF-std may also provide information for 

identifying impairment or risk. However, collateralization and hyper-intense signal artifacts are 

often less extreme and may influence fewer vessels in patients with atherosclerosis. It is likely 

that atherosclerotic intracranial stenosis will exhibit similar patterns as moyamoya, however the 

extent and conspicuity of these patterns may often be more subtle; as such, such investigations 

may require larger sample sizes. For both stenosis severity and new infarct classification, 

demographic variables were not as prevalent in high-performing SVM algorithms as imaging 

variables. This is likely due to moyamoya patients not exhibiting many traditional stroke risk 

factors (e.g., smoking, diabetes, hypercholesterolemia, hypertension) as older atherosclerotic 

patients. However, age was identified as a high performing single-variable SVM for classifying 

hemispheres by new infarct status. For these reasons, the findings in this study may not 

translate directly to atherosclerotic intracranial stenosis or other cerebrovascular disease 

patients. 

 

2.4.1 Limitations 

 

The results should be considered in light of the following limitations. Patient 

heterogeneity is always a potential confound in clinical studies. To address this, we enrolled 

only patients with non-atherosclerotic intracranial stenosis who are typically younger (25-45 

years) and in whom traditional stroke risk factors (e.g., hypercholesterolemia, hypertension, and 

atherosclerosis) are less variable, as these generally become more significant in later life. 

Additionally, brain hemispheres with prior revascularization surgery were excluded. Second, we 

utilized a hypercapnic-hyperoxic stimulus, which is medical grade and available at most medical 

centers, although application for reactivity mapping remains as an off-label use. Hypercapnic-

hyperoxia does not elicit the same CVR response as hypercapnic-normoxia, however 
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hypercapnic-hyperoxia has been characterized in terms of its effect on blood and tissue R2*119, 

sensitivity to lateralizing disease in patients with cerebrovascular disease13, 97, and its correlation 

with hypercapnic-normoxic stimuli (though the relationship is not 1:1)13. Third, the proportion of 

gray and white matter in volumes of interest will affect values calculated in these regions, due to 

different levels of perfusion, transit time, and reactivity in gray matter versus white matter; 

however, this is likely not a major confound in this study as we utilized identical regions in all 

subjects and therefore similar levels of gray and white matter were present in all participants. 

Fourth, two slightly different pCASL labeling protocols were implemented in this study, which 

resulted from the long 7-year duration of data collection and a minor change to the imaging 

protocol. The main difference between these protocols is a 275 ms (1525 ms vs. 1800 ms) 

difference in post-labeling delay. Error associated with this variation is not expected to be a 

major confound relative to the long arterial circulation times in patients with moyamoya which 

are typically 2000-3000 ms117, however some variability could arise due to this difference. 

Finally, patient motion is always a potential confound in imaging studies. To address this, we 

implemented standard motion correction protocols, and visually inspected images for residual 

peripheral signal brightening artifacts on ASL or focal hyperintensities in the BOLD CVR time 

course before inclusion in data analysis. We did not observe any differences in motion between 

groups, however we cannot rule out that some residual variation did exist. 

 

2.4.2 Conclusion 

 

In conclusion, we utilized machine-learning techniques to identify characteristic 

moyamoya physiology from functional hemodynamic images, and used this information to 

classify patients into groups determined by clinical indicators of impairment, including both 

vasculopathy extent and development of new infarcts. We found that functional properties that 

perform well for classification, such as standard deviation of cerebral blood flow and mean delay 

in cerebrovascular response to stimulus, can be attributed to known characteristics of 

moyamoya progression, such as development of arterial collaterals and smooth muscle 

dysfunction. In an exploratory analysis of patients with new infarcts, the most prominent variable 

of those measured for predicting new infarcts was the baseline CBF in the anterior flow territory.  
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CHAPTER 3: A Magnetic Resonance Imaging Study of Pre-Surgical Indicators of 

Revascularization Response in Adults with Moyamoya Vasculopathy 

 

3.1 Introduction 

In clinical practice, symptomatology and anatomical information largely in the form of 

angiography inform clinical decisions. However, this information does not provide insight 

regarding tissue function, which is critical for understanding how tissue is responding to 

impairment. Tissue function can also inform on disease trajectory, which is particularly relevant 

in diseases like moyamoya, in which treatment outcomes are difficult to predict. In this chapter, 

we investigate tissue reactivity parameters as biomarkers for positive outcomes to surgery with 

the goal that these parameters may help to triage patients with moyamoya for therapies. 

Moyamoya disease (MMD) is a cerebrovascular condition characterized by frequently 

progressive non-atherosclerotic arterial stenosis of the intracranial segments of the internal 

carotid arteries (ICA), as well as proximal middle cerebral arteries (MCA), and anterior cerebral 

arteries (ACA), and carries more than a seven-fold increased risk of stroke 24.  

Appropriate MMD management frequently includes surgical revascularization with direct 

revascularization (e.g., superficial artery to middle cerebral artery bypass), indirect 

revascularization (e.g., encephaloduroarteriosynangiosis, EDAS or pial synangiosis), or a 

combination of the two procedures122. However, not all persons with moyamoya who undergo 

surgical revascularization have similar or successful outcomes, and the factors which underlie 

these differences in response to surgery are inconclusive24. Previous work has been conducted 

on vessel patency post-surgery in moyamoya disease, however work investigating metabolic 

function and neoangiogenic response post-surgery is more limited140. An important issue that 

would improve informed selection of patients for therapies pertains to whether personalized 

functional tissue signatures may be used to portend the variable course of surgical response.  

The standard for grading moyamoya severity and revascularization success is digital 

subtraction angiography (DSA), however this method provides an incomplete picture of disease 

as it does not convey functional information 51, 141. Unfortunately, MRI-measures of CBF are 

complicated in moyamoya by long arterial circulation times, which can lead to low signal-to-

noise ratio and endovascular signal artifacts on non-invasive approaches, particularly ASL 122. 

Cerebrovascular reserve capacity and collateral circulation may be more specific indicators of 

vascular health and potential for collateral pathway formation in patients with moyamoya, and as 

such CVR measures are being adopted with increasing frequency 89, 142. In CVR measurements 

conducted in this study, vessels are challenged using a hypercapnic-hyperoxic stimulus 
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vasodilatory stimulus to evaluate abilities of arteriolar smooth muscle to relax to increase CBV 

and CBF, an indicator of the hemodynamic reserve capacity 124, 143, 144. This stimulus has been 

investigated previously for reproducibility and sensitivity to lateralizing disease in moyamoya 13. 

Promising CVR measurements without an external stimulus are under development as well 89, 

95.  

The time for the maximal CVR response (i.e., CVRDelay) and the maximal CVR response 

itself (i.e., CVRMax) may provide a more complete perspective on hemodynamic status than a 

static measure of basal CBF or macrovasculopathy alone, especially in MRI studies owing to 

known limitations of non-invasive CBF measurements in the setting of arterial vasculopathy9, 102. 

In small cohort studies, reactivity metrics have recently been reported to correlate with infarct 

progression in adults with moyamoya 141. Moyamoya frequently has preserved patency of the 

vertebrobasilar arteries (VBA) until advanced stages of disease, including preserved CBF and 

possibly autoregulatory capacity of posterior territory microvasculature as well 122, 145.  Due to 

the severe intracranial stenosis that occurs in the internal carotid arteries and their main 

branches in moyamoya and the relative preservation of the posterior circulation, blood from the 

VBAs often supply anterior brain regions through circuitous collateral flow pathways, and may 

also provide an important route for circulating growth factors or other markers of ischemic stress 

which may play a fundamental role in neoangiogenesis 146-149. 

Of additional interest, it remains unclear whether demographic parameters such as age, 

race, and gender might affect revascularization outcome. This is particularly important given the 

increasingly recognized North American moyamoya phenotype24. Specifically, while idiopathic 

MMD was historically identified in persons of East Asian ancestry, a more common North 

America moyamoya phenotype in the United States has been identified as well, and it is 

possible that risk factors that influence East Asian versus North American moyamoya condition 

trajectory are non-overlapping44, 150-152. In support of this, an analysis of moyamoya patients 

identified from the United States National Inpatient Sample between 2008 and 2015 provided 

evidence for increasing moyamoya prevalence in that time, and for moyamoya incidence being 

inversely related to median income and directly related to urban locations 152. Following 

retrospective analysis of records from 4,474 adult and pediatric North American moyamoya 

patients, it was also observed that Black patients were less likely to undergo surgical 

revascularization compared to patients of other races 151. As such, understanding the North 

American moyamoya phenotype, and specifically potential influence of race on treatment 

response, is warranted. 
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The logical extension of this work is to understand whether pre-surgical hemodynamic 

profiles may predispose patients to collateral vessel formation and as such better surgical 

outcomes. The aim of this study was to identify pre-surgical hemodynamic MRI profiles, 

specifically higher VBA flow-territory CVR and reduced CVR response times in response to a 

vasoactive stimulus, that are associated with better revascularization outcomes at one-year 

follow-up. A secondary aim is to confirm that both race and age influence revascularization 

success between racial demographic groups included in this study, which includes Black and 

White moyamoya participants. 

 

3.2 Methods 

3.2.1 Participants 

All participants provided informed, written consent for this prospective, interventional study. All 

study components were performed in compliance with the Declaration of Helsinki of 1975 (and 

as revised in 1983), Health Insurance Portability and Accountability Act, and all components of 

the study were approved by the local Institutional Review Board (number and location removed 

to preserve double-blind peer-review).  

Participants were identified from the local Neurology and Neurosurgery services 

between November 1, 2013 and January 8, 2019. Criteria for inclusion were adults with a 

clinical diagnosis of moyamoya confirmed by DSA and scheduled for revascularization surgery 

in one or both hemispheres. Idiopathic or syndromic etiology were documented and considered 

separately in sub-analyses, in which age analysis comparing response groups was repeated 

excluding participants with syndromic moyamoya (who are older, as expected, given increasing 

prevalence of atherosclerosis with age). Exclusion criteria were pregnancy, moyamoya 

secondary to sickle cell anemia, chronic infarct larger than 1/3 of the MCA territory, greater than 

1/3 MCA territory vascular collateralization before surgical intervention (determined from pre-

surgical clinically indicated DSA), or independent condition expected to lead to death in less 

than two years. Participants received DSA within one month prior to a clinically-indicated 

surgical revascularization and again at approximately one-year follow-up. A target of one-year 

follow-up was chosen as this is the approximate expected timeline for neovascularity to occur 

post-EDAS, as has recently been summarized from 63 revascularized hemispheres at median 

follow-up of 14 months) 153. Within six months prior to revascularization, MRI including 

anatomical and hemodynamic imaging was performed as outlined below.  
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3.2.2 MRI 

MRI studies were performed using a 3.0T MRI scanner (Philips Healthcare, Best, The 

Netherlands) with body coil RF transmission and phased array SENSE reception.  

 Anatomical images included diffusion-weighted imaging (spatial 

resolution=2.05x2.56x4.00mm, b=1000 s/mm2, single shot echo planar imaging (EPI), repetition 

time (TR) and echo time (TE) TR/TE=3149/83 ms), T2-weighted (TR/TE=3000/80 ms; 

resolution=0.6x0.6x4.0 mm3), T2-weighted axial fluid-attenuated inversion recovery (FLAIR) 

(turbo inversion recovery; TR/TI/TE=11000/2800/120 ms; spatial resolution=0.9x1.1x3.0 mm3), 

and T1-weighted (magnetization-prepared-rapid-gradient-echo; spatial resolution=1.0x1.0x1.0 

mm3, 3D turbo field echo; TR/TE=8.2/3.7 ms) scans.  

 Pre-surgical CVR-weighted images were obtained during BOLD imaging 

(TR/TE=2000/30 ms; spatial resolution 3.0x3.0x3.5 mm3; 360 dynamics) with a vasodilatory 

hypercapnic-hyperoxic stimulus (95% O2, 5% CO2). Stimulus was delivered via a non-

rebreathing facemask supplied by compressed gas cylinders at a flow rate of 12 L/min with 

nasal cannula for end-tidal CO2 (ETCO2) monitoring. The stimulus paradigm consisted of 180 

seconds hypercapnic-hyperoxia interleaved with 180 seconds room-air repeated once. 

Throughout the scan, respiratory rate, blood pressure, end-tidal CO2, arterial oxygen saturation, 

and heart rate were monitored (Medtronic, Dublin, Ireland), the stimulus was considered well-

tolerated if the participant was able complete the study without an adverse event.  

 

3.2.3 Revascularization surgery 

All participants underwent a form of indirect surgical revascularization. Participants underwent 

either indirect revascularization via encephaloduroarteriosynangiosis (EDAS) or combination 

superficial temporal artery-to-middle cerebral artery (STA-MCA) bypass and indirect surgery; 

participants with different surgery types were considered separately on sub-analyses154. 

Revascularization type was determined by clinical indication and caliber of the STA and MCA, 

when appropriate. Postoperatively, participants were brought to the neuro-intensive care unit for 

recovery where they were closely monitored for neurologic changes. Participants were 

maintained on antiplatelet medication and intravenous fluids overnight for hydration.  Blood 

pressure parameters were managed to minimize hypertensive episodes that could lead to 

hemorrhage, or hypotensive episodes that could lead to ischemia.  
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3.2.4 Digital subtraction angiography 

Both pre- and post- surgical DSA utilized a six-vessel injection protocol, performed in the 

neuroangiography suite using a Philips Allura Xper biplane neuro X-ray system with the 

participant in the supine position. Selected arterial catheterizations of bilateral external carotid 

arteries, bilateral internal carotid arteries, and bilateral vertebral arteries were performed in 

multiple projections using nonionic, water-soluble intra-arterial contrast. All injections were 

performed by hand by the collaborating neurovascular surgeon using the following volumes and 

rates: ICA injections: 3–4 cc over 0.5s, external carotid artery injections: 2–3 cc over 2s, 

common carotid artery injections: 4–5 cc over 0.5s, and VBA injections: 4 cc over 2s. Digital 

images were acquired at three frames/second. 

 

3.2.5 Analysis 

Post-surgical arterial collateral grading was performed by three independent raters, including 

one board-certified neuroradiologist (LTD, experience = 8 years) and two board-certified 

cerebrovascular neurosurgeons (RVC, experience = 8 years; MRF, experience = 9 years). At 

the Vanderbilt Hospital where this study was conducted, catheter angiograms of the head and 

neck are performed and evaluated exclusively by the cerebrovascular neurosurgery service. 

Therefore,  members of this service, along with neuroradiology, were included as qualified 

raters. The three raters independently used DSA to ensure inclusion criteria and classify 

participant hemispheres. The graders were blinded to results of all MR experiments. Gradings 

were taken from a lateral projection of DSA during the late arterial phase following external 

carotid artery injection, depending on MCA territory filling due to arterial collateralization19, 155. 

One group comprised participants with poor response to revascularization surgery, with less 

than 1/3 MCA territory collateralization. The second group of participants consisted of those with 

good responses, defined as greater than 1/3 MCA territory collateralization. Additionally, 

modified Suzuki Scores (mSS), were recorded by a board-certified neuroradiologist using 

standard criteria 155. Stage 0: no evidence of vessel disease; Stage 1: mild-to-moderate stenosis 

around the carotid bifurcation with absent or slightly developed ICA disease; Stage 2: severe 

stenosis around the carotid bifurcation or occlusion of either the proximal ACA or MCA with well-

developed ICA disease; Stage 3: occlusion of both the proximal ACA and MCA with well-

developed ICA disease (few ACA or MCA branches are faintly opacified in antegrade fashion); 

and Stage 4: complete occlusion of both the proximal ACA and MCA (without antegrade 

opacification). 
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Prior infarcts were recorded by the same neuroradiologist using structural MRI results. 

Infarcts were defined as being hyperintense, visible in two planes, and being at least 3 mm in 

one dimension on T2-weighted FLAIR, and hypointense approaching CSF signal on T1-weighted 

imaging. The rater was blinded to other hemodynamic and functional imaging findings while 

recording prior infarcts.  

  BOLD preprocessing included motion correction using Functional Magnetic 

Resonance Imaging of the Brain Software Library (FSL) and spatial smoothing with a kernel of 

full-width-half-maximum = 3 mm 103. Following affine motion correction, BOLD images were 

evaluated for motion corruption, and any images with residual motion that was deemed to 

preclude interpretability were documented and excluded. BOLD images were co-registered to a 

2 mm Montreal Neurological Institute (MNI) atlas, where T1-weighted images served as an 

intermediate template to register images from BOLD to standard MNI space using linear co-

registration (FMRIB’s Linear Image Registration Tool; FLIRT) with 12 degrees of freedom. Next, 

two CVR parameters were calculated from the BOLD reactivity data. To analyze time-delayed 

vascular response to stimulus, a rectangular regressor, which represents the gas stimulus 

paradigm, was applied and advanced in time until maximum correlation between voxel time 

course and shifted regressor was found13. Time until maximum correlation was defined as 

CVRDelay (seconds), and the value of maximum correlation as CVRMax (unitless; normalized z-

statistic between shifted regressor and voxel time course). These values were calculated on a 

voxel-wise basis to generate CVRDelay (time delay) and CVRMax (maximal statistical response) 

maps.  

Next, VBA territory masks were applied, and eroded to render them relevant appropriate 

for the VBA territory regardless of circle of Willis variant 124. Cerebrovascular reactivity 

parameters, CVRDelay and CVRMax were calculated within the flow territory mask. In all analyses, 

flow territories in each hemisphere are considered separately, as moyamoya progression can 

be asymmetric and separate hemispheres can have aggressive or indolent disease course 155. 

Pre-surgical hemispheres from each parameter map (CVRMax, and CVRDelay) were averaged for 

participants with poor vs. good collateralization, as defined using criteria from DSA above.  

Finally, non-imaging stroke risk factors including age, sex, race, vasculopathy extent, 

and type 2 diabetes status were recorded.  

 

3.2.6 Posterior circulation variants 

To evaluate posterior circulation, the same three raters described above evaluated angiography 

data to determine PCOM size relative to the PCA in each hemisphere. The posterior circulation 
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was graded as: (i) only P1 PCA segment visible (PCOM not visible), (ii) P1 PCA segment larger 

than PCOM, (iii) P1 PCA segment same size as PCOM, (iv) P1 PCA segment smaller than 

PCOM, and (v) only PCOM visible (P1 PCA segment not visible; i.e., fetal variant). Participants 

were then categorized into those that had a fetal or fetal-type variant (i.e., categories iii-v) or 

without any fetal variant (i.e., categories i or ii).  

 

3.2.7 Statistical analysis and considerations 

A Wilcoxon rank-sum test was applied to evaluate differences in VBA flow-territory CVRDelay and 

CVRMax between those with good (e.g., >1/3 MCA territory revascularized) vs. poor (e.g., <1/3 

MCA territory revascularized) surgical outcomes. For both functional evaluations, significance 

was defined as two-sided p<0.05. To control for age and race, CVRDelay and CVRMax were also 

interrogated via separate logistic regressions as independent variables along with age and race, 

and with surgical response as the dependent variable. Fisher's exact test was used to 

determine whether there were significant differences in surgical outcome between participants 

with or without PCOM greater than or equal to P1 gauge on angiography. 

For completeness, descriptive statistics for demographic parameters and other 

angiographic parameters were reported although these were not part of hypothesis testing. A 

Wilcoxon rank-sum test was applied to evaluate age differences between groups, whereas a 

Fisher’s exact test was applied to compare race, sex, and posterior circle of Willis variant. To 

elucidate any potentially confounding correlations, a Fisher’s exact test was applied to evaluate 

if there were significant differences between (i) revascularization procedure (combined vs. 

indirect) and surgical response (good vs. poor), (ii) moyamoya type (idiopathic vs. syndromic) 

and surgical response (good vs. poor), (iii) race (Black vs. White) and moyamoya origin 

(idiopathic vs. syndromic), (iv) surgical procedure (combined vs. indirect) and moyamoya origin 

(idiopathic vs. syndromic). A Wilcoxon rank-sum test was applied for (v) age and moyamoya 

origin (idiopathic vs. syndromic).  

All Participants: Demographics 

 Idiopathic Syndromic Total 

N 26 5 31 

Age (Years) 42±13 61±9 45±14 

Sex (% female) 23F (89%) 3F (60%) 26F (84%) 

Black (%) 8 (31%) 1 (20%) 9 (29%) 

White (%) 18 (69%) 4 (80%) 22 (71%) 

Body Mass Index (kg/m2) 32.6±10.2 33.4±9.9 32.7±10.0 

Type 2 Diabetes (%) 7 (27%) 3(60%) 10(32%) 

Current Smoker (%) 11 (42%) 1(20%) 12(39%) 

Hypertension (%) 10 (39%) 4(80%) 14(45%) 

Infarcts (%) 22 (85%) 5 (100%) 27 (87%) 

 
 
 
 
 
Table 4 Demographic and 
Comorbidity Information for 
Moyamoya Participants in 
Chapter 3. 
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3.3 Results 

3.3.1 Demographics  

MR imaging and angiography was performed on 37 participants with moyamoya. Of these, one 

participant was excluded due to sickle cell anemia, four were excluded for having inadequate 

and/or non-diagnostic quality imaging, and one participant was excluded for having pre-surgical 

collateralization >1/3 of the MCA territory. As such, the remaining sample consisted of 31 

participants (Table 4; sex= 26F / 5M; age= 45±13 years), from which 41 total revascularized 

hemispheres were considered (Table 5). Of 31 participants, 29% were Black and 71% were 

White (Table 6). Participants with idiopathic (n=26) and syndromic moyamoya secondary to 

atherosclerosis (n=5) were included.  

 

3.3.2 Revascularization response 

MRI was acquired 3±3 months 

before revascularization surgery. 

No participants had overt strokes 

between the research scan and 

revascularization surgery. Of the 

41 hemispheres, 

revascularization procedures 

were indirect (n=32) or 

combination (n=9). For post-

surgical follow-up, DSA was 

acquired at 13±8 months post-

surgery to evaluate collateral 

filling of the MCA territory. 

Figure 14 illustrates the 

categorical scoring criteria. For 

EDAS hemispheres, 18/32 

(56%) met angiographic criteria 

for poor collateralization and 

14/32 (44%) met angiographic 

criteria for good collateralization 

at follow-up. For combination 

surgery hemispheres, 5/9 (56%) 

All Hemispheres: Revascularization Response 

 Good Poor Total 

N 23 18 41 

Age (years) 41±14 50±11 45±14 

Sex (% female) 21F (91%) 13F (72%) 34F (83%) 

Black (%) 4 (17%) 9 (50%) 13 (32%) 

White (%) 19 (83%) 9 (50%) 28 (68%) 

Direct + Indirect (%) 5 (22%) 4 (22%) 9 (22%) 

Indirect Only (%) 18 (78%) 14 (78%) 32 (78%) 

Fetal or Fetal-Type 
Posterior 

Circulation 

4 (17.4%) 5 (27.7%) 9 (22.0%) 

Modified Suzuki 
Score 

2.3±0.8 2.4±0.9 2.4±0.8 

Table 5. Demographic and Surgical Information for Participants in 
Chapter 3. Demographic and surgical information for all hemispheres 
separated by those meeting angiographic criteria for good vs. poor 
neoangiogenic responses to revascularization surgery. A good vs. 
poor response to revascularization surgery is defined as 
neoangiogenic collaterals filling >1/3 middle cerebral artery (MCA) 
territory or <1/3 MCA territory, respectively. Fetal or Fetal-Type 
Posterior Circulation is defined as the ipsilateral posterior 
communicating artery being greater than or equal to the size of the P1 
segment of the Posterior Cerebellar Artery. 

 
 

Racial Demographics 

 Black White p-value 

N 9 (29%) 22 (71%)  

Age (years) 47.3±11.9 44.3±14.5 0.47 

Sex (% female) 8F (89%) 18F (82%) 1.00 

Body Mass Index (kg/m2) 33.1±10.0 32.6±10.3 0.85 

Type 2 Diabetes (%) 4 (44%) 6 (27%) 0.42 

Current Smoker (%) 2 (22%) 10 (45%) 0.42 

Hypertension (%) 5 (56%) 9 (41%) 0.69 
Table 6 Demographic and Comorbidity Information: Demographic 
Makeup  
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met criteria for poor collateralization and 4/9 (44%) met criteria for good collateralization at 

follow-up (Table 5). No significant difference was observed between collateralization responses 

to combination direct+indirect vs. indirect only procedures (p=1.00). All participants tolerated the 

respiratory stimulus well. 

 

3.3.3 Pre-surgical indicators of revascularization success 

 

All participants tolerated the the respiratory stimulus well by the stated criteria. The EtCO2 

responses to stimulus was 5±1 mmHg (mean ± standard deviation). Maximum cerebrovascular 

reactivity in the VBA flow-territory (CVRMax), normalized to the whole-brain mean, was 

significantly reduced in those meeting angiographic criteria for poor (1.04 ± 0.05 unitless) vs. 

good (1.12 ± 0.13 unitless) responses. There was no significant difference between mean 

CVRDelay in participants meeting angiographic criteria for good (32.9±8.1 seconds) vs. poor 

(36.8±8.0 seconds) responses (p=0.13). In logistic regression, with age and race included, 

CVRMax remained significant and CVRDelay was not significant. Figure 15 summarizes case 

examples of a 28-year-old White participant meeting criteria for good (i.e., >1/3 MCA territory 

revascularized) response to surgery, as well as a 28-year-old White participant meeting criteria 

for a poor response to surgery (i.e., <1/3 MCA territory revascularized). In BOLD experiments, 

EtCO2 responses to stimulus was 5±1 mmHg (mean ± standard deviation). These effects are 

demonstrated on group-averaged reactivity maps in Figure 16 and quantitative group-wise 

comparisons are presented in Figure 17. 

 

 
 
Figure 14 Angiograms for Patients with a Good and Poor Response to Revascularization Surgery. 
Encephalo-duro-arterio-synangiosis (EDAS) indirect surgical revascularization and varied collateralization 
responses. (a) During the EDAS procedure, the dura is opened, and the pia and arachnoid are exposed.  The 
superficial temporal artery (white arrow), reflected superiorly by blue vascular loops, is then laid on the surface of 
the brain, and its adventitia is sutured to the pia to complete the indirect bypass. Pre-surgical and post-surgical 
Digital Subtraction Angiography (DSA) from a participant meeting criteria for (b) good (25 year-old White female) 
vs. (c) poor (57 year-old Black female) surgical revascularization response. The poor response fills <1/3 the 
middle cerebral artery (MCA) territory with new collateral vessels, and the good response fills >1/3 MCA territory 
with new collateral vessels. These angiograms show lateral projections from the DSA during the late arterial 
phase following external carotid artery injection. 

Pre-surgical

b
Post-surgical

c

>1/3 MCA territory filling <1/3 MCA territory filling

a

Superficial 

temporal artery

Pre-surgical Post-surgical

Good responder Poor responder
Encephalo-duro-arterio-synangiosis
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In secondary analysis of non-imaging parameters, age was a significant predictor of 

response to surgery where participants with poor response to surgery (age 50 ±11 years) were 

older than those with good response to surgery (age=41±14 years). This effect remained 

significant when age analysis comparing response groups was repeated excluding participants 

with syndromic moyamoya. Race was also significantly associated with surgical response, 

whereby White participants had higher collateralization scores post-surgery compared to Black 

participants (poor response = 9 Black 9 White; good response = 4 Black 19 White). There was 

no significant difference between males and females for surgical response (p=0.21; poor 

response = 13 female 5 male; good response = 21 female 2 male). 

 
Figure 15 Structural and Functional MRI in Moyamoya Participants with Good and Poor Response to 
Revascularization Surgery. Group-averaged physiological parameter maps for participants meeting criteria for 
poor vs. good revascularization responses, with neoangiogenic collaterals filling <1/3 middle cerebral artery (MCA) 
territory (left) vs. >1/3 MCA territory (right) respectively. The physiological parameters are normalized maximal 
cerebrovascular reactivity (top, a; CVRMax) and delay in maximal response to cerebrovascular stimulus (bottom, b; 
CVRDelay), with the focus of this study on the tissue in the vertebrobasilar artery flow-territory. Participants with good 
surgical outcomes also had higher CVRMax (blue arrow). A trend for reduced CVRDelay for those with good vs. poor 
outcomes was also observed (black arrow). P-values for these trends are summarized in Figure 17. 
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To fully characterize the cohort, 

properties of response groups are recorded 

here. There was no difference (p=1.00) in 

surgical outcome between participants who 

received combination vs. indirect 

procedures (combination revascularization: 

poor response 4/9 (44%), good response 

5/9 (56%) vs. indirect revascularization: 

14/32 (44%) poor response, 18/32 (56%) 

good response). There was also no 

statistical difference (p=0.38) in surgical 

outcome between idiopathic vs. syndromic 

participants (idiopathic: poor response 

14/35 (40%), good response 21/35 (60%) 

vs. syndromic: 4/6 (67%) poor response, 

2/6 (33%) good response). There was no 

difference (p=1.00) in racial diversity 

between idiopathic vs. syndromic 

moyamoya participants (idiopathic: 11/35 

(31%) Black, 24/35 (69%) White; 

syndromic: 2/6 (33%) Black, 4/6 (67%) 

White).  

Additional cohort characteristics 

regarding moyamoya subtype 

macrovascular morphology were also 

tested and recorded here. There was no 

statistical difference (p=0.60) in surgical 

procedure assigned to idiopathic vs. 

syndromic moyamoya (idiopathic: indirect 

28/35 (80%), direct+indirect 7/35 (20%); 

syndromic: indirect 4/6 (67%) 

direct+indirect 2/6 (33%)). Consistent with 

expectations, participants with idiopathic 

moyamoya were significantly younger  than 

 
Figure 16. Group-Averaged CVR Parameter Maps for 
Patients with Good and Poor Response to 
Revascularization. Case examples of pre-surgical imaging in 
participants who met angiographic criteria for poor vs. good 
surgical outcomes at one-year follow-up. A 28-year-old White 
female with good response (right column) had idiopathic 
moyamoya, EDAS surgery, and had 22.7 months between 
revascularization surgery and DSA. A 28-year-old White male 
with poor response (left column) had idiopathic moyamoya, 
combination direct-indirect surgery, and had 39.7 months 
between surgery and DSA. Pre-surgical anatomical images and 
angiography for participants with good (right) and poor (left) 
responses to revascularization are shown in (a). Trends 
identified in Figure 2 and Figure 3 are also demonstrated here, 
where mean VBA-territory CVRMax is lower (b; blue arrow- Poor 
Response: 0.94; Good Response: 1.37), and CVRDelay is higher 
(c; black arrow- Poor Response 37.9s; Good Response: 22.7s), 
in the participant with the poorer response.  
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those with syndromic moyamoya secondary to atherosclerosis (idiopathic: 42±13 years; 

syndromic: 60±8 years). There was no significant difference in the presence or absence of a 

fetal or fetal-like circle of Willis in those meeting angiographic criteria for good vs. poor 

responses to surgery (Table 5; p=0.47). Of 23 hemispheres meeting criteria for good surgical 

outcomes, 17.4% had a PCOM greater than or equal to the size of the P1 segment of the PCA, 

compared to 27.7% of 18 hemispheres meeting criteria for poor surgical outcomes. Additionally, 

CVRMax (non-fetal=1.10±0.12; fetal-type=1.07±0.07; p=0.49;) and CVRDelay (non-

fetal=36.51±13.90 seconds; fetal-type: 35.10±10.46 seconds; p=0.91) were not different 

between participants with different circle of Willis variants. Finally, mSS was not different 

between participants with good vs. poor surgical outcomes (p=1.00). 

 

3.4 Discussion 

This study considered hemodynamic and demographic indicators of surgical revascularization 

outcome in a study of Black and White North American moyamoya participants. Hemodynamic 

parameters, specifically higher posterior territory reactivity, had potential for portending 

favorable revascularization responses. Age was a major indicator of revascularization response 

in moyamoya, whereby younger participants had greater post-surgical MCA territory neo-

vascularization. Additionally, race was a significant factor contributing to revascularization, 

whereby White participants met angiographic criteria for a better revascularization response 

 

 
Figure 17 Group-Wise Comparisons Between Functional and Demographic Parameters which Distinguish 
Surgical Outcome. Boxplots for three continuous parameters, and a pie chart for one categorical parameter 
showing differences between participants with poor vs. good response. As shown in Figure 2, CVRMax was 
significantly higher in participants who met angiographic criteria for a good surgical revascularization response (a; 
p=0.02). Although not reaching the threshold for significance, CVRDelay showed a trend for being lower (i.e., faster 
vascular response time to vasoactive stimulus), in the posterior flow-territory (b; p=0.08).  Age is also a significant 
discriminatory predictor of response to surgery of all parameters considered (c ; p=0.02), with younger 
participants having better surgical outcomes. White participants significantly more frequently met angiographic 
criteria for a better response to surgery compared to Black participants (d; p=0.04). Small variations in sample 
size are seen in this figure due to the outlier exclusion process described in the Methods section. 
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more frequently compared to Black participants. This is particularly noteworthy due to the 

increasing awareness of moyamoya in North America 156.  

 

It has previously been observed that the VBA flow-territory, i.e. the posterior cerebral circulation, 

is typically less affected until advanced stages of moyamoya 157. As vasculopathy progresses, 

tissue can be supplied by complex networks of arterial collaterals, which are increasingly 

supplied by the posterior circulation, the communicating arteries, and the ophthalmic artery 146, 

147. This preservation of posterior cerebral vasculature may help to explain the role of posterior 

circulation in moyamyoa response to revascularization therapy. In this study, greater posterior 

flow-territory CVRMax, and reductions in CVRDelay, in participants who responded better to 

surgical intervention provide evidence that participants with these reactivity profiles may have 

higher collateralization potential. Prior literature has indicated that alternate, especially posterior, 

flow territories may compensate for anterior impairment in moyamoya. One such study by 

Vernieri et al. analyzed stroke outcomes in participants with carotid artery occlusion as they 

relate to collateralization of the ophthalmic artery, the posterior communicating artery, and the 

anterior communicating artery.  It was observed that the greater the number of territories that 

were collateralized, the lower the likelihood of stroke. Additionally, 60% of participants with no 

collateralization had a subsequent stroke compared to 38% of participants with only posterior 

communicating artery collateralization 146.  Furthermore, Strother et al. included 39 participants 

with moyamoya disease and 33 controls, and found that the ratio of posterior communicating 

artery lumen diameter to precavernous ICA lumen diameter was significantly higher in 

participants with moyamoya, indicating posterior contributions to anterior circulation functional 

impairment147.  

This study’s finding that greater posterior reactivity performance indicates likelihood for 

greater MCA territory reperfusion in response to revascularization in moyamoya extends these 

studies to demonstrate the likely relevance of pre-surgical posterior circulation reactivity on 

collateralization success. However, it is also important to note that differences in reactivity, while 

statistically significant, are frequently subtle. Similar to other diagnostic imaging tools, these 

trends should complement the broader clinical history and vascular status for the patient, but do 

not provide a definitive biomarker or revascularization potential. In this study, VBA flow-territory 

changes indicate potential for MCA territory reperfusion, not necessarily that these posterior 

flow territories themselves are developing additional collateral networks in response to surgical 

revascularization.  It should also be noted that revascularization surgery for moyamoya is 

generally considered standard of care for patients with new or recurrent stroke, and performing 
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a randomized clinical trial whereby participants are randomized into non-surgical arms is 

unethical. 

  

In this study, cerebrovascular compliance was measured with time-delay analysis. Other 

methods for measuring CVR that do not correct for reactivity response time, may underestimate 

reactivity, when long delay times are present as in moyamoya, as has recently been shown 9. 

While the method implemented in this study for acquiring reactivity parameters has the limitation 

of requiring the delivery of a hypercapnic stimulus, the gas challenge was well tolerated, and no 

participants reported adverse events during the scan, or discontinued the scan due to 

discomfort. Promising methods for measuring reactivity using resting state (i.e., without gas 

stimuli) are under development, in which either breath modulation or resting state CO2 

fluctuations in the blood are used as regressors for estimating different metrics of vascular 

compliance and reactivity 89, 95, 158, 159. These methods may have promise as well for quantifying 

reactivity in patients with cerebrovascular disease.  

 

This study utilized CVR parameters, rather than baseline CBF, as hypothesized biomarkers of 

revascularization potential. This is partly due to accurate measurement of CBF in moyamoya 

being complex with MRI-based approaches. As the arterial blood T1 at 3T (1600-1900 ms) is 

shorter arterial circulation times in moyamoya (frequently 2000-3000 ms), it is often difficult to 

evaluate CBF reliably using ASL in moyamoya, as labeled blood water remains in the arterial 

tree, prior to arriving at the capillary exchange site 102, 117.  Additionally, other MRI-based CBF 

methods generally require exogenous contrast agents, which are being regulated more strictly, 

suffer from difficulties in arterial input function estimation, and are non-ideal for surveillance.  

There are several physiological implications of this work as well. Although it has been 

reported that pediatric populations have more efficacious responses to surgical intervention 

compared to adults, this study utilizes gold standard post-surgical DSA to confirm that younger 

adults also have improved surgical outcomes compared to older adults 44. Therefore, these 

findings highlight that age is likely a relevant factor in portending revascularization response in 

adults as well.  

 

Additionally, revascularization differences between Black and White participants were observed; 

these differences may have several contributing factors. Polymorphism in the gene RNF213 has 

been associated with moyamoya disease, and results suggest that race, and as such additional 

genetic variants, may partially predispose patients to better vs. poorer revascularization 
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outcomes24, 160. More specifically, moyamoya vasculopathy is associated with angiogenic 

circulating markers including inflammatory cytokines, circulating progenitor cells, and 

inflammatory mediators 148. Some individuals may develop few collaterals following 

revascularization, as the prerequisite circulating factors of angiogenesis may not be present in 

sufficient concentration. This complexity may be increased by genetic factors that mediate 

circulating markers of angiogenesis 149. Differences in polymorphisms and potentially associated 

circulating markers between Black, White, and Asian patients could contribute to the difference 

in revascularization response. An associated issue may arise from differences in endothelial 

function, as known differences in chemical equilibrium of superoxide, nitric oxide, and 

peroxynitrite may predispose Black patients to unique responses to revascularization, even in 

the presence of similar vascular growth factors 161. It is also possible that differences in 

response to revascularization are attributable to underlying co-morbidities, such as diabetes 

mellitus and hypertension, which are more common in Black than White individuals 162. 

However, age, sex, BMI, type 2 diabetes, smoking, and hypertension were not significantly 

different between Black and White participants in this study. Further studies into the 

relationships between vessel wall thickening 163, circulating markers 148, genetics 149, 164, and 

imaging markers for moyamoya are needed to improve the collective understanding of, and 

treatments for, North American moyamoya.  

 

3.4.1 Limitations 

One limitation, which is common in most moyamoya studies, is sample size. This study included 

31 participants enrolled over approximately six years, all of whom were well characterized with 

hemodynamic MRI and surveillance DSA. This study only enrolled adults, required that all 

participants undergo indirect revascularization, and excluded syndromic participants with sickle 

cell anemia who have additional reactivity aberrations secondary to the downstream effects of 

reduce blood oxygen content. This limitation precluded the use of multivariate approaches, 

however groups were matched for relevant co-variates and these are presented for 

completeness. To ensure adequate statistical power, the analyses focused on the primary 

hypothesis, which was isolated to a brain region that was anticipated to contribute considerably 

to cerebrovascular function in later stages of moyamoya, namely the VBA flow-territory. 

Therefore, while the sample size was modest, analysis was focused to evaluate a specific 

hypothesis albeit with the obvious caveat that not all modifiable risk factors could be taken into 

account, sample size concerns are likely influential in the discovery that significance was 

reduced for CVR parameters in multi-variate analysis. An additional limitation is that this study 
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utilized only one scanner, and was performed at a single institution. A third limitation is that 

idiopathic and syndromic participants with moyamoya secondary to atherosclerosis were 

included. However, syndromic patients with sickle cell anemia were excluded who have 

hyperemia secondary to reduced blood oxygen content, and corresponding reduced vascular 

reserve capacity 165. Additionally, demographics for both cohorts were reported, and considered 

participants with syndromic moyamoya separately in a secondary subanalysis to evaluate the 

role of idiopathic vs. syndromic moyamoya. The expected phenotypic similarity between 

idiopathic moyamoya and moyamoya secondary to atherosclerosis was supported by this 

subanalysis. Finally, a future study including only participants with unilateral revascularization 

surgery could investigate the influence reactivity parameters in the contralateral hemisphere 

have on revascularization outcomes, and this comparison has previously been shown to have 

clinical relevance 166. However, as moyamoya progresses, there is frequently bilateral 

involvement and revascularization of both hemispheres, and as such the population included 

here is representative of a generalizable idiopathic moyamoya cohort.  

 

3.4.2 Conclusion 

We provide evidence for pre-surgical VBA flow-territory cerebrovascular reactivity being greater 

in moyamoya participants with greater arterial collateralization in the MCA territory at a one-year 

follow up for revascularization surgery. This highlights that topographical features of preserved 

cerebral auto-regulation in moyamoya may contribute to neoangiogenic potential. It was also 

observed that younger participants, as well as White relative to Black participants, had greater 

MCA territory collateralization in response to surgical revascularization. Findings provide 

additional evidence that surgical outcome and disease etiology may be different within North 

Americans with different racial backgrounds, and that age, race, and posterior hemodynamic 

patterns should be considered when evaluating potential for treatment response.  

 

CHAPTER 4: Vascular Space Occupancy and Refocused Dual-Echo Asymmetric Spin 

Echo Variants Improve Quantitative Estimates of Cerebral Metabolism 

 

4.1 Introduction 

 

While oxygen extraction fraction has been shown to be an important biomarker for stroke 

outcomes, this parameter is typically not considered, due to inaccessibility of methods for 

measuring it. In this chapter, we improve on an MRI method called the asymmetric spin echo, 
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which is a non-invasive MRI method for estimating oxygen extraction fraction. Improved 

accessibility of methods for measuring oxygen extraction could improve stroke outcomes, as 

this parameter informs on tissue function and stroke risk. 

Measures of cerebral metabolism can be made with O-15 PET, however this technique 

requires ionizing radiation exposure, arterial sampling, and an on-site cyclotron due to the short 

half-life of O-15, and is therefore suboptimal for surveillance or research studies22. However, 

alternative methods using MRI are under development for measuring cerebral physiology non-

invasively. These metrics are pCASL for cerebral blood flow63, BOLD for cerebrovascular 

reactivity9, Vascular Space Occupancy (VASO) for cerebral blood volume (CBV)167, and 

TRUST70 or the Asymmetric Spin Echo (ASE)168 for OEF. Regarding OEF, TRUST has 

demonstrated high reproducibility, and has been successfully implemented for informing 

treatment decisions14, 169. However, TRUST is restricted to a single whole-brain measure of OEF 

and does not provide any other information regarding cerebral metabolism. Alternatively, ASE 

provides a topographical map of OEF, and also provides a topographical map of venous 

cerebral blood volume (vCBV) as well.  

 ASE utilizes a spin echo, with an off-center refocusing pulse to introduce R2’ weighting, 

which is influenced by intravascular oxygen saturation. An extravascular tissue model has been 

developed for susceptibility effects in brain tissue, which approximates the blood vessel network 

as infinite-cylinders with negligibly small volume, from which ASE data can be fit for OEF and 

vCBV using R2’, known susceptibility parameters, and hematocrit170. This method is 

promising168, however it has several limitations76, 170. This tissue model only accounts for 

extravascular tissue signal, and assumes that all susceptibility effects are caused by 

deoxygenated blood contributions. However, other origins of susceptibility, such as variable iron 

content171 and field inhomogeneity172, exist in tissue. The model also treats blood vessels as 

randomly oriented cylinders, and assumes that the volume of the blood vessels in each voxel is 

negligible compared to the tissue volume in that voxel170. These assumptions are not sound in 

regions of the brain where vessels collect into large veins. Partial volume effects, especially with 

CSF, can contaminate signal. As a result, ASE measurements may be most reliable in white-

matter, where tissue is typically more homogenous, vessel orientation is closer to random, 

partial volume effects with CSF are minimal, and confounding effects from large vessels are 

minimized168. Finally, ASE is often implemented as a multi-readout approach172, with no 

refocusing pulse between echoes. As ASE measurements are sensitive to extraneous 

susceptibility effects, refocusing pulses between consecutive readouts in ASE may help to 

control for these unaccounted-for sources of susceptibility. 
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 To help control for the unaccounted for intravascular signal in ASE measurements, 

Methods for nulling intravascular signal have shown success using bi-polar gradients168. 

However, bi-directional gradients must be fine-tuned to null intravascular signal, signal nulling is 

dependent on the chosen encoding velocity parameter, and practically they can only null blood 

flowing in one direction unless multiple gradients are implemented. Furthermore, this signal 

nulling module adds to echo time, resulting in reduced MRI signal at readout. Another method 

for nulling intravascular signal has been developed previously, associated with the vascular 

space occupancy (VASO) technique173, originally designed for estimating cerebral blood 

volume. VASO uses an inversion pre-pulse with a TI tuned to null intravascular blood water 

signal, and has been used for measuring cerebral blood volume. However, a similar pre-pulse 

may be played before the asymmetric spin echo sequence, which may null intravascular signal 

while avoiding the limitations associated with bipolar gradients, since the VASO pulse will be 

before the ASE sequence, and not during. 

While ASE is a promising method for measuring cerebral metabolism, further 

developments are needed to overcome its limitations. Variations of ASE have been 

implemented, including multi-echo approaches and bi-directional gradients for nulling 

intravascular signal168, 172, though these methods have not solved the issues associated with 

ASE implementation. In this work, we investigate reproducibility of two novel ASE variants for 

measuring OEF. First, an ASE variant with a refocusing pulse between the first and second 

readout is novel, as previous applications of ASE have not implemented a refocusing pulse 

between consecutive readouts in multi-readout approaches. Second, Vascular Space 

Occupancy Asymmetric Spin Echo (VASO-ASE) uses a pre-pulse similar to VASO, which nulls 

intravascular signal. The VASO- prepulse in ASE will negate intravascular signal, thus 

increasing the measured signals conformation to the assumptions made in the ASE R2’ tissue 

model170. We hypothesize that novel ASE variants, refocused dual-echo ASE and VASO-ASE, 

will produce more physiological OEF and CBV values, confirmed by comparison to OEF values 

measured by TRUST in healthy controls. 
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4.2 Methods 

 

4.2.1 Participant Recruitment 

 

All participants provided informed, written consent, and the Vanderbilt University Institutional 

Review Board approved all components of the study. Participants were recruited from 

Vanderbilt. Criteria for inclusion were adult healthy controls with no known history of 

neurological condition or cerebrovascular disease. Images were read by a board-certified 

neuroradiogist for incidental findings including chronic infarct, anatomical abnormalities, or 

neurodegeneration, these were recorded and their implications were considered for the 

participants’ inclusion in this study. White matter lesions were not considered criteria for 

exclusion. 

 

4.2.2 Acquisition 

 

All participants underwent an MRI protocol on a Philips (Best, The Netherlands) Ingenia 3.0T 

containing structural sequences, as well as ASE and TRUST sequences for evaluating 

reproducibility and cerebral metabolism. 

 

Structural Imaging. All participants underwent axial 2D Fluid-Attenuation-Inversion-Recovery 

(FLAIR; TR/TI/TE=11000/2800/120 ms; resolution=0.96x1.29x4.00 mm) and 3D T1-weighted 

MPRAGE (TR/TE=8.2/3.7; spatial resolution=1.0x1.0x1.0 mm).  

 

Asymmetric Spin Echo (ASE). All ASE variants were acquired with TR=4400ms and TE1=64ms. 

For sequences with a second echo, TE2=107ms. Resolution=3.44x3.44x3.00mm, and multi-slice 

variants had 13 slices with a 3mm slice gap. Parallel imaging was off. Slice acquisition in each 

TR was acquired with equidistant temporal slice spacing and interleaved spatial acquisition. Fat 

saturation was accomplished with a SPIR pulse. Peripheral Nerve Stimulation (PNS) and 

Gradient modes were both set to high (Max B1=13.5 𝜇𝑇, Max gradient strength = 22.5 mT/m, 

max slew rate 180 mT/m/ms) to reduce the duration of the EPI readout, preserving R2’ 

weighting. The refocusing pulse, the shifting of which makes the spin echo asymmetric, is 

shifted temporally from TE1/2 by a value 𝜏. 𝜏 ranges from 0 to 20 ms acquired in intervals of 

0.5ms, resulting in 41 total tau values, each of which is acquired in a separate measurement. 

Measurements of consecutive tau had randomized acquisition, consistent across all scans and 
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subjects, to minimize the impact of scanner drift over the ASE scan duration. Two separate 

scans were acquired each for three ASE variants,  

i) ASERF-, a multi-slice ASE sequence with no 180-degree refocusing pulse between 

the first and second echoes, and the standard method for implementing ASE (Figure 

18a),  

ii) ASERF+, a multi-slice ASE sequence with a 180-degree refocusing pulse between the 

first and second echoes (Figure 18b),  

iii) Vascular-Space-Occupancy ASE (VASO-ASE), a single-slice single-echo ASE 

sequence with a pre-pulse at 1039 ms before the excitation pulse for nulling 

intravascular signal (Figure 18c)173.  

iv) One scan was acquired for a single slice ASERF- scan was also acquired in each 

participant to evaluate single slice ASE against multi slice ASE (Figure 19). 

 

Figure 18. All Pulse Sequences 
for the Asymmetric Spin Echo 
(ASE) that are Investigated in 
Chapter 4. TR= 4400ms and 
TE1=62ms. For sequences with a 
second echo, TE2=107ms. For 
VASO-ASE TI=1039ms, the 
inversion time for nulling 
intravascular signal with 
TR=4400ms. Non-refocused dual 
echo ASE (ASERF-) is shown in a) 
and is the standard method for 
implementing ASE. Refocused 
dual echo ASE (ASERF+) is shown 
in b) and adds a refocusing pulse 
between the first and second 
readout in ASE, which should 
reduce the extraneous effects of 
R2’ decay between the first and 
second echo. Vascular space 
occupancy ASE (VASO-ASE) is in 
c) and adds an intravascular 
signal nulling pre-pulse which is 
intended to bring the measured 
ASE signal better in compliance 
with the model which is fit to 
calculate physiological parameters 
from ASE. Due to slice timing 
constraints, VASO-ASE is single 
echo and single slice, while all 
other methods have two echoes 
and 13 slices. 
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TRUST. TRUST was acquired for measuring whole-brain oxygen extraction fraction69, 70. First 

cerebral blood-water is either inverted (label) or not (control), followed by a post label delay of 

1022 ms. During the post-labeling delay, spins are labeled with a train of refocusing pulses, 

separated by 10 ms each. This creates an effective TE (eTE), during which T2 weighting is 

achieved. Four eTE values are acquired, eTE=1ms, 40ms, 80ms, and 160ms. Arterial oxygen 

saturation (Ya) was also measured during TRUST with an MRI-compatible pulse-oximeter. 

 

4.2.3 Image Analysis and Processing 

 

Structural Imaging. FLAIR and T1-weighted 

images were used to record lesions and any 

structural abnormalities. 

 

ASE. Calculation of physiological parameters 

has been described in previous literature168, 172. 

Briefly, a susceptibility model, which relates 

OEF, R2’ and vCBV170, is fit with logarithmic 

signal against 𝜏. First, a linear model is fit to 

logarithmic long-tau signal values (tau>10ms), 

simultaneously for both the first and second 

echo, which gives the relaxation parameter R2’. 

A linear model is used because long-tau 

approximations of the model are linear in 𝜏 170. 

The logarithmic short-tau (𝜏 <=10) signal values 

are then fit to a model, which is quadratic in tau 

as indicated by short-tau approximations of the 

susceptibility model, and gives vCBV. An 

example of this fitting is shown in Figure 20. These parameters can be input to the equation 

below to calculate OEF. 

 

 
𝑂𝐸𝐹 =

𝑅2′

𝛾 ∙ 𝑣𝐶𝐵𝑉 ∙
4
3 ∙ 𝜋 ∙ 𝛥𝜒0 ∙ 𝐻𝑐𝑡 ∙ 𝐵0

 
(22) 

 

 
Figure 19 Comparison of Corresponding Single-
Slice and Multi-Slice ASE Methods. There was 
some concern between comparing values from 
VASO-ASE and other multi-slice ASE variants, so a 
single slice ASERF- scan was acquired for each 
participant. However, correlation between the single-
slice and multi-slice version of ASERF- have good 
correlation of WM OEF has good reproducibility. 
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Where 𝛾 is the gyromagnetic ratio in radians 267.5e6 
1

𝑠∗𝑇
 , 𝛥𝜒0 is the susceptibility difference 

between fully oxygenated and fully deoxygenated blood per unit hematocrit 0.18e-6174, Hct is 

the small-vessel hematocrit calculated as 85% of the large-vessel hematocrit which is 42 a 

standard value for healthy controls, and B0 is the strength of the main magnetic field, 3 Tesla in 

this case. 

 For all ASE maps, acquired data were 

smoothed with a 3-by-3 voxel kernel (10.32 x 10.32 

mm) prior to processing, and these images were 

used to measure mean values. Mean values were 

acquired by co-registering the images to a standard  

MNI space, using FSL FLIRT103 with T1 as an 

intermediary template, and measuring mean values 

in a standard white-matter and grey-matter atlas. For 

completeness, to present our data as images with 

relatively low-resolution sometimes are, the maps 

were up-sampled to 1mm isotropic, smoothed again 

with a 9mm x 9mm matrix, and a white-matter mask 

was applied to eliminate signal from grey matter and 

CSF voxels. 

 SNR was calculated for OEF maps using a subtraction method175. The first and second 

OEF maps are subtracted from one another to acquire a noise map. Images were co-registered 

and standard MNI atlases were used for ROIs. An ROI map, either for WM or GM, was used to 

calculate a mean signal value in the ROI from the first OEF map, and a mean noise value from 

the standard deviation of the signal intensity in the ROI. SNR in the region was calculated as the 

mean signal divided by sqrt(2) times the noise value. All images were qualitatively assessed for 

motion during each scan, and were excluded if motion precluded adequate fitting of ASE data. 

Where signal maps are shown of acquired ASE images, signal is in arbitrary units, normalized 

to the 95th percentile of the signal in the 𝜏 = 0 ms image for the first echo. 

 

TRUST. TRUST methodology has also been documented previously69, 70. A model calibrated for 

healthy adult hemoglobin88 relating T2, hematocrit, and venous blood oxygen saturation (Yv) can 

be fit. T2 is measured from TRUST fitting, hematocrit is assumed to the standard healthy control 

value 42, and Yv is calculated from the calibrated model. This is repeated with three 

measurements, and the signal intensity from the superior sagittal sinus after each eTE gives a 

 
Figure 20 Decay and Signal Fitting in 
Asymmetric Spin Echo. Decay curve and 
fitting from a WM voxel in an ASERF- 
acquisition. Long tau is fit for R2’, short tau is 
fit for vCBV, and OEF is calculated using the 
procedure described in the methods. 
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decay curve which can be fit for T2. Arterial blood oxygen saturation (Ya) is measured with 

pulse-oximetry during the TRUST scan, and OEF can be calculated as shown below. 

 

 
𝑂𝐸𝐹 =

𝑌𝑎 − 𝑌𝑣

𝑌𝑎
 

(23) 

 

4.2.4 Statistical Analysis 

 

ASE variants are tested to compare reproducibility, as well as correlation with TRUST-

measured OEF. Group-wise comparisons are made using a Wilcoxon Rank-Sum test with a 

significance threshold of p=0.05 (Bonferonni correction to p=0.013 for four methods used to 

calculate OEF). Intraclass correlation coefficient (ICC) was calculated for reproducibility metrics, 

where ICC = 0.7 – 0.8 is considered moderate, ICC = 0.8 – 0.9 is considered good, and ICC > 

0.9 is considered great reproducibility. Pearson’s r is calculated for reproducibility assessment 

with the same consideration thresholds as for ICC. A linear model is fit to the data for 

reproducibility to identify the slope, which can inform on correspondence of one measure to 

another. Bland-Altmann plots were also calculated to visualize reproducibility. Statistical tests 

are performed on OEF, however other ASE parameters (vCBV and R2’) are only evaluated 

qualitatively, as they are not part of hypothesis testing. 

 

4.3 Results 

 

 

4.3.1 Participant Demographics 

 

This study includes n=14 participants scanned between March 1st and August 8th of 2021. 

Participants were 27.7 ± 5.2 years old (range=21-42 years), and the population was 50% male 

and 50% female (Table 7). The racial makeup of the cohort was 11/14 (79%) White, 2/14 (14%) 

Asian, and 1/14 (7%) Black. 
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4.3.2 Imaging Results 

 

Signal images in ASE 

for slice seven of 

thirteen are shown in 

Figure 21. In all ASE 

variants and for all 

echoes, signal 

decreases with 

increasing tau value. 

Note that the second 

echo signal decrease 

from 𝜏 = 0 ms to 𝜏 = 20 

ms is greater for ASERF- 

than for ASERF+ 

 Representative 

quantitative OEF, 

vCBV, and R2’ maps 

for each ASE variant are shown in Figure 22 and boxplots with group-wise mean WM results 

from each ASE variant are in Figure 23. In Figure 22, a) shows images as they are output from 

processing, and b) shows the same topographic maps as they are sometimes shown 

colloquially with up-sampling and more intensive smoothing. P-values for OEF are shown in 

Figure 23 a). OEF reported from ASERF- was statistically lower than TRUST-measured OEF 

(p<0.01), however OEF values from ASERF+ (p=0.35) and VASO-ASE (p=0.19) were not 

significantly different from this standard. Mean values for ASE-measured vCBV are shown in 

Figure 23 b). Mean values for ASE-measured R2’ are in Figure 23 c). OEF, vCBV, R2’ results, 

and p-values are shown in Table 8. 

Scan # Age Race Sex OEF 
TRUST 

OEF 
ASERF- 

OEF 
ASERF+ 

OEF 
VASO-ASE 

1 27 White M 39.8 27 37.7 35.3 

2 31 White F 37.7 24.4 35.8 32.2 

3 29 White F 47.8 26.6 36.2 36.5 

4 24 White F 36.6 24 34 34.0 

5 28 Black M 39.3 26.8 37.7 33.3 

6 29 White F 44 26.7 35.2 35.2 

7 42 White M 36.8 26.1 36.6 32.8 

8 32 White M 31.5 25.7 35.3 33.2 

9 24 White M 38.1 25.8 36 31.3 

10 25 Asian M 44.6 26.4 39 33.9 

11 21 White F 37.2 26.1 40.1 39.8 

12 22 White F 42.4 27.2 40.2 37.2 

13 28 White F 39.3 26.8 36.2 32.2 

14 26 Asian M 36.1 25.1 35.8 34.2 

Mean 28 - - 39.4 26.1 36.8 34.4 

St. Dev. 5 - - 4.2 1.0 1.9 2.3 

 
Table 7 Demographic and MRI-Measured Parameter Estimates of All 
Participants in Chapter 4. Demographic information for all 14 participants of this 
study. The cohort was scanned between March 1st and August 8th 2021, and were 
27.7 ± 5.2 years old, and was 50% female. Additionally, mean OEF values are 
shown for the first acquisition of TRUST and each ASE method. For all ASE 
measures, OEF shown are mean white-matter values. 
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 SNR values for OEF maps in white matter and grey matter (GM) are shown in Figure 

24. SNR was statistically lower in GM compared to WM in ASERF- (p<0.01) and VASO-ASE 

(p<0.01), but not ASERF+. Both VASO-ASE (p<0.01) and ASERF+ (p<0.01) had lower WM SNR 

than ASERF-, and VASO-ASE had lower WM SNR than ASERF+ (p<0.01). SNR and p-values are 

shown in Table 8. 

 Reproducibility measures were also taken for each ASE variant (Figure 25 and Table 

8). Reproducibility was similar between TRUST, ASERF-, and ASERF+, however reproducibility 

was poor for VASO-ASE. 

 

 

 

 

 

 

 

 
Figure 21 A Signal Montage for Each ASE Method and Each Echo. Mean signal decreases over 𝜏 for all methods 

and all echoes. Mean signal decrease over 𝜏 is greater for ASERF- than for ASERF+. 
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4.4 Discussion 

 

In this study, OEF measures 

from three variants of the 

asymmetric spin echo pulse 

sequence were tested for 

reproducibility with a better-

established MRI method for 

measuring OEF in the brain 

called TRUST. ASE without a 

refocused second echo (ASERF-) 

is the most commonly 

implemented version of ASE, 

which has two echoes with no 

refocusing pulse between the 

first and second echo. A novel 

variant of ASE utilizing a 

refocusing pulse (ASERF+) is the 

 
Figure 22 Representative Parameter Maps for all ASE Variants. Representative images for each physiological 
parameter map calculated from ASE and each ASE variant are shown in a) and b). The images as they are output 
from processing, and from which values in this study are extracted are shown in a). Functional images are 
sometimes presented, as an up-sampled, smoothed, grey matter masked version of the images from a) are 
shown in b).  
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Figure 23 TRUST and ASE Variant Mean Value Group-Wise 
Comparisons. Mean values for each parameter map are shown in a, 
b, and c. OEF is shown in a), for which hypothesis testing was 
performed demonstrating that ASERF- produces lower OEF values 
(p<0.01) compared to TRUST measured OEF, but ASERF+ (p=0.035) 
and VASO-ASE (p=0.012) do not. Mean values for vCBV (d) and R2’ 
(e) are also shown, however these measurements were not part of 
hypothesis testing. 
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first novel variant of ASE tested in this study, which is identical to ASERF- except that a 

refocusing pulse is executed between the first and second echo. Vascular space occupancy 

ASE (VASO-ASE) is the second novel ASE method tested in this study, which only has one 

echo, however an intravascular signal nulling pre-pulse is designed to cause ASE signal to 

conform better to the susceptibility model assumption that intravascular signal is negligible170. 

This study found that OEF values output by ASERF+ and VASO-ASE are not significantly 

different from TRUST, held as a standard in this study, though ASERF- produces OEF values 

that are non-physiological and significantly less than that of TRUST (Figure 23).  

 OEF values are compared between each method in this study in Figure 23 a), where it 

is demonstrated that there is not a statistical difference between TRUST-measured OEF, and 

mean white matter (WM) OEF from the two novel ASE variants. TRUST measured OEF has 

been validated in prior literature for reproducibility and accuracy 70, 88. The cause of improved 

correspondence between novel ASE methods and the TRUST method is different for each 

method. For ASERF+, this change is the result of the refocusing pulse. The model from 

Yablonskiy et al. 1994170, 176 which is the basis of calculating OEF, vCBV, and R2’ from ASE is a 

model of extravascular tissue signal, which strictly considers susceptibility effects from randomly 

oriented cylinders, deoxygenated blood vessels in this case. However, other sources of 

susceptibility in the brain exist, such as iron concentrations171 and field inhomogeniety172. When 

 TRUST ASERF- ASERF+ VASO-ASE 

OEF (%; mean ± 
St. Dev.) 

36.5±4.6% 26.1±1.0% 36.8±1.9% 34.4±2.3% 

OEF (%; range) 28.6 – 44.8 24.0 – 27.2 34.1 – 40.2 31.3 – 39.8 

vCBV (%) - 10.8±1.4% 5.0±0.5% 3.7±0.4% 

R2’ (s) - 5.9±0.6s 4.0±0.3s 2.5±0.3s 

p-Value  
ASE OEF  

vs. 
TRUST OEF 

- <0.01 0.35 0.19 

OEF Map SNR 

SNR (WM) - 6.3±1.5 2.7±0.5 2.1±0.3 

SNR(GM) - 4.2±1.0 2.3±0.5 1.5±0.2 

p-Value  
OEF SNR(GM) 

vs.  
OEF SNR(WM) 

- <0.01 0.15 <0.01 

OEF Reproducibility 

Intraclass 
Correlation 
Coefficient 

0.98 0.91 0.89 0.61 

Pearson’s r 0.96 0.93 0.9 0.62 

Slope 1.04 1.1 0.73 0.65 

Table 8 Mean and Standard Deviation Values for TRUST and ASE Variants 
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the refocusing pulse is played between the first and second echo in ASERF+, these 

unaccounted-for sources of susceptibility may be better controlled. This effect may be the cause 

of the observed lower decay times, lower and more physiological measures of vCBV, as well as 

higher and more physiological measures of OEF. Improvements from VASO-ASE also help to 

account for assumptions made by the Yablonskiy model, though a different assumption. By 

nulling signal from deoxygenated blood, which decays rapidly compared to tissue, a similar 

effect is observed. Eliminating rapidly decaying venous blood signal, which is not accounted for 

in the model, also results in lower decay times, and may be the cause of lower and more 

physiological measures of vCBV, as well as higher and more physiological measures of OEF 

observed in VASO-ASE. 

 SNR values displayed in Figure 24 also 

warrant discussion. For ASERF- and VASO-

ASE, GM SNR is significantly lower than that 

for WM, which is not the case for ASERF+. The 

reductions in GM SNR from the OEF image 

may be caused by several factors that make 

GM signal less reliable in ASE, including CSF 

contamination, larger vessels, less randomly 

oriented vessels as they converge into large 

veins. ASERF+ doesn’t display this effect, 

possibly because of its mechanism for 

controlling extraneous susceptibility effects, 

described in the previous paragraph. 

Additionally, ASERF+ WM SNR was found to be 

lower than that of ASERF-. This may be because 

ASERF+ reports a wider range of, and more 

physiological, OEF values. This wider range of 

values may increase noise. Finally, while the 

absolute values of OEF and vCBV that are 

measured with VASO-ASE are closer to 

physiological values, VASO-ASE also has the 

poorest reproducibility and SNR. The cause of 

this is likely that while the TI in the VASO pre-

pulse is chosen to null intravascular signal 

 
Figure 24 Group-Wise Comparisons of Signal-to-
Noise Ratio in All ASE Variants. Box plots showing 
mean SNR values for white matter and grey matter 
regions calculated from oxygen extraction fraction 
maps. SNR was lower in GM compared to WM for 
ASERF- (p>0.01) and VASO-ASE (p<0.01), but not in 
ASERF+ (p=0.15). WM SNR was lower than ASERF- 
for ASERF+ (p<0.01) and for VASO-ASE (p<0.01), 
and VASO-ASE OEF SNR was lower than ASERF+ 
WM SNR (p<0.01). GM = Grey Matter. WM = White 
Matter. Both VASO-ASE (p<0.01) and ASERF+ 
(p<0.01) had lower WM SNR than ASERF-, and 
VASO-ASE had lower WM SNR than ASERF+ 
(p<0.01). Two participants had motion on one 
VASO-ASE scan, and therefore a subtraction to 
calculate OEF was not possible, so these 
participants were excluded. 
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completely, extravascular signal is also affected167, 173. This reduces SNR of the acquired 

VASO-ASE images, which can lead to poorer fitting and lower SNR values in the OEF image.  

 The results of this study may inform best implementation practices of ASE. This study 

has found that both novel variants, ASERF+ and VASO-ASE, improve the physiological 

measurement of ASE compared to the standard ASERF- method. However, reproducibility and 

SNR analyses indicate that ASERF+ and ASERF- outperform VASO-ASE in those regards. 

Additionally, slice-timing issues complicate multi-slice applications of VASO. These findings 

indicate that ASERF+ may improve the reliability for measuring OEF and vCBV for ASE 

applications intended to measure these physiological parameters. However, a correlation 

analysis of white matter OEF values measured from ASERF- and ASERF+ demonstrates a slight 

correlation between the methods (r=0.58). This correlation indicates that these two methods are 

reporting on similar underlying physiology, and even though ASERF+ produces more 

physiological measures of OEF, ASERF- and previous studies which utilize it retain their value in 

understanding cerebral physiology. 

 

4.4.1 Limitations 

 This study’s findings should be regarded with several limitations. First, one existing 

variant of ASE which uses bipolar gradients for nulling intravascular signal was not investigated 

in this study168. However, it is worth noting that this method increases TE, is incompletely 

 
Figure 25 Reproducibility Measures of all ASE Variants and TRUST. Regression and Bland-Altmann Plots for 
reproducibility of TRUST, ASERF-, ASERF+. and VASO-ASE. Reproducibility metrics were high for TRUST, ASERF-, 
and ASERF+, with Pearson’s r >=0.9 for each, but not for VASO-ASE which had Pearson’s r=0.61. Two patients 
had motion in one VASO-ASE scan, and were therefore excluded from reproducibility analyses. 
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effective depending on b-value choice, and also can be dependent on vessel orientation and 

gradient scheme. A second important limitation is that while OEF values are compared between 

TRUST and ASE, TRUST is technically a whole-brain measure of OEF, while ASE mean values 

in this study were calculated in white matter. The motivation for this choice is CSF 

contamination, as discussed in the paragraphs above. This limitation is minor, since a meta-

analysis of OEF values between grey and white matter using gold-standard PET methodology 

found no difference between grey and white matter OEF values177. Finally, while VASO-ASE is 

novel and gives further insight into the relationship between intravascular signal and calculated 

physiological parameters of ASE, due to timing issues, this method is limited to only one echo 

and only one slice. Regardless, VASO-ASE was found to not be the best performing method for 

measuring OEF compared to ASERF+. Concerns regarding comparing the single-slice VASO-

ASE method to the other multi-slice methods are addressed in Figure 19, which demonstrates 

that mean values between single-slice and multi-slice methods similar, and Figure 26, which 

demonstrates that relationships between VASO-ASE and other methods is preserved when all 

methods use only one echo. 

 

4.4.2 Conclusion 

 This study measured 

three variants of the 

asymmetric spin echo pulse 

sequence, two of which are 

novel and were designed 

with the intention of bringing 

the acquired data in 

correspondence with the 

assumptions made by the 

model on which this method 

is founded170. Hypothesis 

testing focused on OEF 

metrics, as OEF shows 

promise for reporting on 

cerebrovascular stress, 

though there is no well-

established non-invasive 

 
Figure 26 Physiological Parameters of TRUST and ASE Using Only 
the First ASE Echo. This is a similar plot as in Figure 5, however in all 
multi-echo acquisitions, the second echo was excluded. This was to 
demonstrate that differences in OEF that were identified between TRUST 
and the ASE methods were not due to differences in number of echoes. 
ASERF- and ASERF+ are no longer differentiated in this analysis, because 
the only difference between the two is whether the second echo is 
refocused or not. All other identified statistical trends are preserved. 
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method for acquiring topographic images of OEF. We found that refocused dual-echo ASE 

produced more physiological values of OEF and vCBV than the standard non-refocused 

method, and also that it has good reproducibility metrics. 

 

CHAPTER 5: CONCLUSION 

  

The work in this thesis is designed to help improve methods for detecting stroke risk in patients 

with cerebrovascular disease and for triaging those patients for therapies. Stroke is the leading 

cause of adult disability, a leading cause of death, and people with cerebrovascular disease are 

at dramatically increased risk of stroke, more than a seven-fold increase from moyamoya 

disease for example. By improving our ability to assign effective therapies early in disease 

course, further improvement in functional imaging methodologies can reduce the frequency and 

severity of stroke. 

 Current methodology for interrogating recurrent stroke risk after a stroke or transient 

ischemic attack or for initial stroke risk in extremely high risk populations such as those with 

sickle cell disease primarily involves structural and anatomical measurements of tissue and 

vasculature, especially with angiography. However, if functional measurements are not made, a 

participant’s stroke profile is not fully characterized. Functional measurements however are 

often difficult to perform, and may be invasive. Non-invasive MRI methods for measuring 

cerebral blood flow and oxygen extraction fraction are in development, however both of these 

continue to pose challenges that prevent adequate interpretation and acquisition in all patients. 

This challenge is the motivation for each of the three aims in this text. 

 The first aim in this work addressed the concern that cerebrovascular reactivity imaging 

is confounded by long response times, and as a result arterial spin labeling measured cerebral 

blood flow produces hyper-intensity artifacts that confound image interpretation in patients with 

highly-developed arterial collateral networks, moyamoya in this case. Interpreting these images 

is difficult, because hyper-intensity artifacts indicate collateral networks, but collateral networks 

can indicate both a strong compensation response to moyamoya, as well as late stages of 

disease. We found that novel characteristics of reactivity and blood flow images, namely 

reactivity delay and standard deviation of cerebral blood flow, can out-perform standard image 

characteristics, mean blood flow and baseline reactivity, for distinguishing stenosis severity in 

patients with moyamoya when input to machine learning algorithms. 

 The second aim was intended to improve triaging of moyamoya patients for therapies. 

Moyamoya is progressive, and no therapies halt or reverse the disease. Surgical 
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revascularization is the leading therapy for moyamoya, however not all patients have efficacious 

response to therapy. Since moyamoya primarily affects anterior vasculature, we hypothesized 

that posterior territory reactivity parameters could inform on success of revascularization 

surgery. We found that greater posterior territory maximum reactivity in response to a 

respiratory vasoactive stimulus was significantly associated with positive response to surgical 

intervention. 

 Finally, in the third aim, we developed novel variants of an MRI pulse sequence, called 

the asymmetric spin echo, which can be used to non-invasively measure topographic maps of 

oxygen extraction fraction and cerebral blood volume. We identified that novel asymmetric spin 

echo variants output mean white-matter oxygen extraction values that are physiological, 

whereas other asymmetric spin echo variants underestimate oxygen extraction fraction to non-

physiological levels. 

 Stroke treatment has improved over the last 30 years, with major milestones achieved 

via large clinical trials such as the NASCET, CREST, and SAMMPRIS trials. The introduction of 

tPA drugs for treatment of acute stroke has also improved outcomes. However, treatment for 

non-atherosclerotic conditions like moyamoya lags behind the recent developments in stroke 

treatment. Moyamoya treatment first involves the administration of blood thinners for preventing 

microthrombi, however revascularization surgery remains the most common treatment for 

moyamoya. Unfortunately, a lack of randomized clinical trials results in treatment decisions for 

moyamoya being subjective, and outcomes are varied, as there are not standardized criteria for 

triaging patients with moyamoya for surgery. Outcomes in moyamoya may be improved by 

improving methods for interrogating moyamoya functional status. 

  Functional imaging methods with MRI are generally accessible and have demonstrated 

applicability for interpreting stroke risk, as well as acting as biomarkers for response to 

therapies. However functional imaging methods are often confounded in cases of abnormal 

physiology. Cerebral blood flow measurements with MRI in cerebrovascular disease are 

complicated by long arterial transit times, which preclude uniform quantification of CBF. 

Cerebral reactivity measurements, while are impacted less by abnormal physiology, do not have 

a standardized measurement protocol. External vasoactive stimuli are generally implemented, 

although protocols using endogenous stimuli are being developed. External stimuli can be either 

pharmacologic agents, such as acetazolamide, or respiratory stimuli of several varieties 

incorporating carbon dioxide. Additionally, the flow rate of respiratory stimuli is contentious as 

well. Implementation of functional imaging modalities would benefit greatly from a greater 
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understanding of the effects abnormal physiology has on blood flow, and from standardization of 

measurement protocol in the case of reactivity. 

 I believe that the future of moyamoya treatment will comprise further development of 

functional imaging techniques as described above, as well as an improved understanding of 

moyamoya progression and compensation. The origin of moyamoya is unclear. We know that it 

is genetically linked, occurs more frequently in females, and can be idiopathic or syndromic, but 

the risk factors are complicated. Additionally, outcomes in moyamoya are often determined by 

angiogenic response to stenosis, however the factors which determine this response are also 

unclear. Circulating and genetic factors have been identified which interact with one another, 

however certainty regarding these variables eludes us. As angiogenic response is important for 

moyamoya outcome, angiogenic factors which underlie this response are critical for developing 

further treatments and triaging of moyamoya. One important component regarding the future of 

moyamoya treatment is the development and quantification of genetic and circulating factors, 

which contribute to angiogenesis. 

 A study which I foresee elucidating large parts of moyamoya treatment is one in which 

all of these factors are considered in parallel. Blood tests should be performed on each 

participant to measure circulating factors, genetic tests should also be performed which will help 

to quantify identified genetic components of moyamoya. Participants should receive functional 

and angiographic imaging pre- and post- surgically, which will help to elucidate the role that 

functional, genetic, and circulating parameters have on moyamoya outcome to interventions. 

Ideally, this will also inform on the parameters that determine neovascularization, and further 

pharmacologic research can help to induce revascularization responses following surgical 

intervention.  

 The completion of each of the aims in this work contributes to the body of literature, and 

available methods for, non-invasive assessment of tissue function. This work also demonstrates 

that functional tissue parameters provide information on tissue-level compensation for 

cerebrovascular impairment that anatomical information does not provide on its own. These 

methods, when refined through further research, and the consideration of functional information 

alongside anatomical information, can help to improve stroke prevention and outcomes, as well 

as triaging for intervention and therapies. 
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