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CHAPTER 1

Thesis Motivation

Quantum chromodynamics (QCD) is the theory of strong interaction, one of the four fundamental interac-

tions with the others being gravity, electromagnetism and the weak interaction. QCD describes the interaction

between quarks and gluons, which are the fundamental particles that make up composite hadrons such as the

proton, neutron and pion. Most of the mass of the protons and the neutrons in everyday matter is in turn due

to the binding energy of their constituent quarks as a result of the strong force between them.

The goal of high energy physics is to determine the most fundamental building elements of matter and to

understand the interactions between these particles. The subject of high energy nuclear physics is the study of

nuclear matter in extreme conditions, the phases in which it can exist, the transition between different phases,

and characterizing the properties of the matter in each phase. To achieve these goals, hadron and nuclear

colliders, such as the Large Hadron Collider (LHC) at CERN and the Relativistic Heavy Ion Collider (RHIC)

at the Brookhaven National Laboratory, are built as an experimental approach to unveil the mysteries in high

energy particle and nuclear physics. Protons and nuclei are accelerated to speeds that are very close to the

speed of light and collide with each other. These collisions produce massive particles that can be detected by

detectors built around the collision points, providing a glimpse into what will happen in the aftermath of the

collisions.

QCD predicts the existence of a deconfined state of matter, consisting of an extended volume of interact-

ing quarks, anti-quarks and gluons, namely quark-gluon plasma (QGP). Calculations from lattice QCD have

suggested a smooth crossover between hadrons at low temperature and QGP at high-temperature [1]. It is

predicted that QGP comes into existence at temperatures and densities more extreme than any we know of in
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the present natural universe, except perhaps in the interior of neutron stars, or in neutron star mergers [2, 3]

Such extreme conditions are thought to have existed a few microseconds after the Big Bang. QGP can be

created from heavy ion collisions at particle accelerators such as RHIC and LHC. While the details of QGP

produced in heavy ion collisions, including its initial state effects, how the system attains thermal equilibrium

and its dynamics are not yet very well understood.

The lifetime of QGP formed in heavy ion collisions is of the order of 10−22s, making it challenging to

probe the dynamics of the rich QGP matter. In ultra-relativistic heavy ion experiments, elliptic flow and

jet quenching are arguably the two most important observables. Observation of an elliptic flow, almost as

large as that predicted by ideal hydrodynamics, led to the claim of the formation of an almost perfect fluid at

RHIC. The observation of jet quenching, i.e. the jet energy reduction in the presence of QGP, implies strong

interaction between highly energetic partonic constituents and the dense colored medium.

In the early stages of a heavy ion collision, scatterings with large momentum transfer can happen between

the partonic constituents of the incident nucleons resulting in highly energetic outgoing partons with sizeable

transverse momentum (pT ). Further interactions of the scattered partons with the QGP may modify the spatial

and momentum distribution of the final-state hadronic fragments relative to those in proton-proton collisions.

This phenomenon, known as jet quenching, is useful in probing the properties of QGP. The properties of

QGP can be accessed by studying the modification of the jet shower compared to the vacuum reference. As a

common practice, pp collisions are regarded as a vacuum proxy, as no QGP is expected to be created, while

in heavy ion collisions, jet variables are modified due to the interactions between the hard parton that initiates

the jet shower and the partonic constituents of QGP.

Studies of jet substructure in heavy ion collisions aim to understand how the parton momenta and energies

are distributed within the jet radius during the jet evolution with or without the presence of a QCD medium,

which lies in the very forefront of investigation of the jet quenching phenomenon. Measurements of the jet
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shapes and jet fragmentation functions have revealed modifications of the internal structure of jets due to

quenching, providing opportunities for understanding in-medium parton evolution and medium response to

hard probes.

Recent studies have reported successful measurements on the parton splitting functions in pp [4, 5] and

in PbPb collisions [6]. In these studies, attempts are made to expose the “2-prong” internal structure of a

single jet, such that the 1 → 2 parton splitting process can be studied. By removing wide-angle soft radiation

until two subjets with sizable transverse momentum are found with the help of a jet grooming algorithm, the

splitting of one parton into two well-separated partons is located. This hard splitting is subjected to medium-

induced modifications, providing access to the properties of parton evolution with or without the presence

of QGP. The measurements have suggested an enhancement of wider, and more unbalanced splittings due to

quenching.

Modern data analysis techniques, especially machine learning, have attracted much attention these days.

Machine learning is a data-driven method that automates analytical model building. Enthusiasts have been

struggling with the application of machine learning in the study of jet physics and jet quenching. Various

approaches have been developed with differences in the usage of artificial neural networks or in the training

strategies.

This doctoral thesis focuses on the application of machine learning techniques in the study of jet quench-

ing. The various aspects presented in the thesis are structured as follows. In Chapter 2, a brief introduction

to quark-gluon plasma (QGP) is presented. Some experimental results are selected for the illustration of

the jet quenching phenomenon. In Chapter 3, the full Monte Carlo event simulation procedures used in this

study are described, with illustrations of the event mixing technique and background subtraction method. In

Chapter 4, the state-of-the-art jet reconstruction and jet grooming methods are introduced, by which a general

feature engineering method for jet studies is inspired. In Chapter 5, the full procedure of the machine learning

3



approach is introduced, involving the usage of an artificial neural network, its training, and its calibration.

Finally, in Chapter 6, how the machine learning approach can be used in jet quenching studies are shown as

results. In addition, the conclusion and overlook are also presented.

The PYTORCH framework [7] is used for the development of a machine learning application. The full

code and data used in this study are available as open-source [8].

4



CHAPTER 2

The Quark Gluon Plasma

2.1 Quantum chromodynamics and quark gluon plasma

The strong interaction, dominating nuclear physics, is one of the four fundamental interactions, with

the others being gravity, electromagnetism, and the weak interaction. The strong force takes effect at two

different ranges. On a scale of about 1 to 3 fm, the effective field theory description involves the exchange of

mesons (e.g., pions) that bind the protons and neutrons together to form the nucleus of an atom. On a scale

that is smaller than the radius of a nucleon (about 0.8fm), the relevant degrees of freedom are quarks and

gluons, and the strong force confines the quarks within hadrons, such as the proton and neutron. Most of the

mass of a proton or a neutron, the basic building blocks of everyday materials, results from the strong force

field energy, while the individual quarks contribute only about 1% of the mass of a proton. On such a small

scale, the strong force is mediated by the exchange of gluons, which are massless particles that act between

quarks, antiquarks and other gluons. Quarks and gluons, which are often referred to as partons, carry color

charges represented in three distinct colors, red, green and blue. Color charge is completely unrelated to the

everyday meaning of color and is analogous to electromagnetic charge.

Details in the theory of quantum chromodynamics (QCD) describe the rules of quark-gluon interactions,

the strength of which is characterized by the coupling constant αs. In quantum field theory, the coupling con-

stant depends on the four-momentum Q2 transferred in the parton-parton scattering. For strong interactions,

the Q2 dependence is very strong between coupled gluons. A first-order perturbative QCD calculation gives

αs(Q2) =
12π

(22−2n f ) · ln(Q2/Λ2
QCD)

, (2.1)
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where n f is the number of quarks active to pair production (up to 6) and ΛQCD is the fundamental energy

scale (∼ 0.22GeV) in quantum chromodynamics. The dependence of a coupling constant on the energy scale

is known as ”running of the coupling”.

The “running coupling constant” implies that for very small parton distances and high values of Q2, the

inter-quark coupling decreases, and vanishes asymptotically. In the limit of very large Q2 (so-called the hard

processes), quarks can be considered to be “free”, known as asymptotic freedom. Therefore perturbative QCD

calculation can be applied. On the other hand, at large distances, the coupling between the quarks increases,

leading to the observed confinement of quarks and gluons in bound states, e.g., hardons. Consequently, at

standard room temperature and density conditions, quarks and gluons are found in bound colorless states

(hardons), either as color-anticolor (qq̄) mesons or a color-triplet red-blue-green producing ”white” (qqq)

baryons. Measurements of the “running coupling constant” phenomenon are shown in Fig. 2.1.

Figure 2.1: Summary of measurements of αs as a function of the energy scale Q. Figure from [9].

Asymptotic freedom can be achieved by sufficiently increasing the energy density of a system, allowing

for the deconfinement of quarks and gluons. Analogous to a plasma of ions, electrons and photons in quantum
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electrodynamics, a phase of deconfined quarks and gluons at extremely high temperature and energy density

is predicted to exist, known as the quark-gluon plasma (QGP). It is believed that QGP dominated the entire

universe before hadronic matter was created. The necessary conditions of extremely high energy density for

QGP formation are believed to have existed for a microsecond or so after the Big Bang. The study of QGP

plays an important role in finite temperature QCD field theory, as well as understanding of the early evolution

of the universe.

In the laboratory, QGP can be created copiously under controlled conditions in the collision of two heavy

atomic nuclei accelerated to energies of more than a hundred GeV, which are able to achieve high enough

energy densities to produce QGP and probe its transition through hadronic matter. The idea of exploring

QGP dynamics using heavy ion collisions was first suggested by J. D. Bjorken in the early 1980s [10]. It is

predicted that QGP could survive over a time scale ≳ 5fm/c at temperature of ≳ 200− 300MeV, achieved

in relativistic nucleus-nucleus collisions. It was believed that depositing such a large amount of energy into

a small volume would create the necessary conditions for the hadrons to melt into an assembly of weakly

interacting quarks and gluons. Studies also laid out key experimental signatures of the short-lived QGP,

including enhancements of strange particle production [11], higher rates of direct di-lepton and photon pro-

duction compared to collision systems without the presence of QGP [12], melting of charmonia (bound states

of charm-anticharm quarks, such as the J/ψ meson) due to color-screening in QGP [13], and the extinction

of high-pT jets due to parton energy loss in QGP [14].

2.2 Relativistic Heavy Ion Experiments

The first ultra-relativistic heavy ion experiments began in the mid-1980s with fixed-target experiments at

the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) and the Super Proton

Synchrotron (SPS) at the European Center for Nuclear Research (CERN). At SPS, lead ions with beam energy

up to 158 GeV/nucleon into gold or lead targets. Observations of a suppressed J/ψ meson (charmonium state)
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yield by the NA50 experiment [15], strangeness enhancement measured by the WA57 experiment [16] among

other results from SPS prompted the year 2000 announcement of a new state of matter, in which quarks and

gluons are deconfined to ”roam freely” [17]. With the start of operations of Relativistic Heavy Ion Collider

(RHIC) in Brookhaven National Laboratory (BNL) the formation of a deconfined state of QCD matter was

confirmed [18].

However, measurements from the RHIC experiments (BRAHMS, PHENIX, PHOBOS, and STAR) [19–

22] contradicted earlier ideas that the medium produced in these collisions was a weekly interacting plasma

of ”free” quarks and gluons. Instead, clear signatures such as the collective behaviors of final-state particles,

and the suppression of energetic particles, establishing that the QGP behaves more like a strongly-coupled

near-perfect fluid of quarks and gluons flowing with the smallest specific viscosity ever observed for any

fluid. Since then, experiments at RHIC have extensively characterized the medium properties and evolution

of the QGP in a wide range of center-of-mass energy per nucleon pair (
√

sNN) from 3 to 200 GeV. Since

heavy ion collisions took place at the Large Hadron Collider (LHC) in 2010, results from four collaborations

at CERN (CMS, ATLAS, ALICE and LHCb) have further advanced our understanding of the hot and dense

QCD medium by focusing on QGP measurements at a much higher center-of-mass energy per nucleon pair

(
√

sNN) scales from 2.76 to 5.02 TeV [23].

2.3 Evolution of a heavy ion collision

To understand the thermodynamics properties of QCD matter under different conditions, a phase diagram

is introduced, with temperature on the y-axis and baryochemical potential µb on the x-axis, as shown in

Fig. 2.2. The baryochemical potential describes the excess of quarks over antiquarks in a system. Specifically,

it refers to the energy needed to increase the system’s baryon number by 1 unit. Everyday matter (nuclear

matter) at standard room temperature and density resides within the hadron gas region in the phase diagram.

The high temperature phase of QCD matter is in the form of QGP, while at low temperature and high µb a
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color supercondicting phase is predicted [24, 25] that may possibly exists in the core of neutron stars, but this

region of the phase diagram is not presently accessible experimentally.

The evolution of QGP formed in heavy ion collisions accessible at the LHC is believed to be similar to

that of the early universe, starting from high temperature and µb = 0. At RHIC, a large range of µb > 0 can

be investigated by lowering the beam energy from the top energy of
√

sNN = 200 GeV down to
√

sNN = 3

GeV. Perturbative QCD techniques, computational tools studying processes with large Q2, break down when

considering the bulk properties of the system across the phase diagram. However, lattice QCD calculations

can help explore the behavior of a system of bound state hadrons with increasing temperature (at µb = 0) and

predict a phase transition from hadron gas to QGP. Lattice QCD calculations at finite µb are challenging [26],

but the general expectation is that there is a first-order transition from hadron gas to QGP at high µb, while

at low µb the transition is a smooth crossover [27]. Then, a big question emerges as whether a critical point,

the endpoint on a phase equilibrium curve, exists or not. Locating the critical point on QCD phase space

diagram is one of the primary goals of the beam energy scan (BES) program at RHIC, where collisions at

center-of-mass energies (
√

sNN) of 7.7GeV, 11.5GeV, 19.6GeV, 27GeV and 39GeV are studied in BES

phase 1 [28] while collisions at
√

sNN ranging from 3GeV to 19.6GeV are studied in BES phase 2 [29].

Lattice QCD calculations at µb = 0 have suggested a sharp but continuous rise in energy density, pressure,

and entropy divided by different powers of temperature when crossing the crossover band from the hadron gas

phase to the QGP phase. This increase is indicative of the increasing number of the degrees of freedom in the

system as the quarks and gluons become deconfined. The calculations also indicates a critical temperature,

Tc, around 170MeV, above which QGP can form.

A schematic view of the space-time evolution of a heavy ion collision is presented (Fig. 2.3) with colors

indicating the temperature of the plasma formed, which also suggests that QGP forms later with further

distance (bigger z or rapidity y) away from the collision point. Two nuclei coming from opposite beam

2Figure from NSAC 2015 Long Range Plan for Nuclear Physics.
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Figure 2.2: QCD phase space diagram as a function of baryochemical potential µb and temperature T. The
transition between QGP and hadron gas is represented as a continuous crossover at low µb with a yellow band
2.

Figure 2.3: Space-time evolution of a heavy ion collision. Figure from [30].
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directions come into contact at t = 0 and z = 0, liberating many of the partons as a result of the inelastic

collisions between individual nucleons. The frequent scattering of the partons leads to the local equilibrium at

time τ0, after which the relativistic hydrodynamics can be used to describe the evolution of the system. Then,

the QGP expands and cools until its temperature drops to some point around the critical temperature (Tc),

after which hadrons come into presence. The hadrons may interact inelastically and change their identities

before the chemical freeze-out temperature (Tch) is reached. Hadrons may still interact with each other in

elastic collisions and exchange momenta and energies. Finally, as the temperature drops to the kinetic freeze-

out temperature (Tf o) at time τ f , hadrons stop interacting and freely stream outwards. Signals from final-state

particles are collected by detectors that are built around the collision point, which are then used for further

analysis.

2.4 Event kinematics and centrality

A few basic phenomenological observables that are commonly used in heavy ion collisions are briefly

discussed in this section. As a convention, natural units are adopted in high-energy physics where ℏ= c = 1.

This implies that quantities such as the mass, energy, momentum and temperature are presented in the unit of

electronvolt (eV). With natural units, the relativistic energy-momentum equation, which describes how total

energy scales with the rest mass and momentum, is

E2 = p2
x + p2

y + p2
z +M2

= p2
T + p2

z +M2,

(2.2)

where pT (transverse momentum) is the portion of momentum transverse to the z-axis. Conventionally, the

beam direction is defined as the z-axis and is perpendicular to the transverse plane spanned by the x-axis and

the y-axis, as shown in Fig. 2.4 (left). Detectors are usually built in a cylindrical shape, covering full or part

of the azimuthal angle (φ ) around the beam direction.
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In special relativity, rapidity (y) is commonly used as a measure for relativistic velocity,

y =
1
2

ln(
E + pz

E − pz
). (2.3)

In an experiment often the mass of the particle is not determined and the rapidiy can not be measured. In this

case, the pseudorapidity (η) is used. It is defined as

η =
1
2

ln(
|p|+ pz

|p|− pz
)

=−ln[tan(
θ

2
)],

(2.4)

where θ is the polar angle of an outgoing particle. The relation between the polar angle θ and pseudorapidity

η is shown in Fig. 2.4 (right) for clarity. For particles moving with relativistic velocities close to the speed of

light (c) rapidity and pseudorapidity differ very slightly. A second-order Maclaurin expansion gives that

y ≈ η − cosθ

2
(

m
pT

)2, (2.5)

which clearly shows that at large pT ≫ m, pseudorapidity becomes equal to (true) rapidity.

Figure 2.4: Left: Cylindrical coordinate system used in high-energy collider physics measurements. Right:
Relation between polar angle θ and pseudorapidity η . Figures from [31].

In heavy ion collisions, the impact parameter (b) of the incoming nuclei significantly affects the physics of

the ensuing processes due to the fact that it controls the fraction of overlap between two Lorentz-contracted
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“discs”, thus determining the initial geometry and the size of QGP. Collision events may vary from being

entirely head-to-head (most central) to barely missed (most peripheral) as they approach each other. Any

event in between corresponds to an elliptic overlap region controlled by the impact parameter b. The impact

parameter is difficult to measure, with exceptions in Monte Carlo simulation as it is programmable. In

practice, the degree of overlap or the “centrally” of a collision is described as a percentage quantile of the

total nuclear inelastic cross section, ranging from 0% for the most central case to 100% being the most

peripheral case. When centrality comes to the selection of samples, the 0−10% centrality class refers to the

top 10% events with the smallest impact parameters (biggest overlap sizes).

Reliable control on the impact parameter can be achieved on an event-by-event basis, as it can be inferred

from experimental observables. It is assumed that in a collision event, the impact parameter, the number

of participating nucleons (Npart ) and the number of binary collisions between the incoming nucleons (Ncoll)

are monotonically related to observables, such as the total number of produced particles (multiplicity) and/or

the energy deposited in detectors. Theoretical calculations from a “Glauber model” [32] can describe the

relationship between these quantities and the collision centrality, shown in Fig. 2.5.

Figure 2.5: Left: Simulation of a PbPb collision at LHC with an impact parameter b ≈ 7fm. Participant nu-
cleons (Npart ) are shown with solid circles and spectators with dotted circles. Middle and Right: Distributions
of Npart and Ncoll in different collision systems at RHIC and LHC according to Glauber model calculations.
Figures from [33].
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2.5 Jet and Jet quenching

Most of the interactions in relativistic heavy ion collisions are soft processes, in which the momenta

transferred between the interacting partons are relatively small. While very rare, hard processes do happen

where a large amount of momentum can be transferred, producing a pair of back-to-back high pT partons

(quarks and gluons), or pairs of partons and electroweak bosons (γ and W/Z bosons) that appear at a large

angle relative to the beam direction (see Fig. 2.6). Considering that hard scattering processes occur prior to

QGP formation, the pair of the outgoing products undergo interaction with the surrounding medium if there

is any, followed by fragmentation and hadronization. As a result, detected final-state particles associated to

the hard scattering process, known as hard probes, play an important role in probing QGP. A highly energetic

parton coming from the hard scattering process produces a cone-shaped spray of final-state particles, the

collection of which is referred to as a “jet”. Fully reconstructed jets are observed to connect to the energy and

direction of the initial hard-scattered high pT partons, providing crucial information about the organization

and properties of QGP.

As a high-pT parton passes through the strongly coupled QGP, it: (i) loses energy and longitudinal mo-

mentum, (ii) gains momentum transverse to its original direction, (iii) deposits energy and momentum into

the droplet of QGP. These phenomena, unique to the case where a QCD medium is present, lead to modifica-

tions on the total energy of a jet and on how the energy is distributed within the jet’s cone, compared to that

in the cases where QGP is absent. Such modifications, widely known as the “jet quenching” effects, offer

opportunities to further understand the quark-medium interaction mechanism in the QGP.

Energetic partons may lose energy through both elastic and inelastic collisions with the constituents of

the QGP medium, with their typical diagrams shown in Fig. 2.7.

The energy loss though inelastic collisions, so-called radiative energy loss, is often considered as the

most important component in studying the parton energy loss in a QCD medium. Even in vacuum, energetic
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Figure 2.6: “Jet quenching” in a head-on nucleus-nucleus collision. Two quarks undergo hard scattering: one
goes directly into vacuum, the other travels through the medium and loses energy. Medium properties such
as transport coefficient q̂, gluon density dNg/dy and temperature T affect the energy loss process. Figure
from [34].

Figure 2.7: Typical diagrams for parton energy loss in a QCD medium though elastic (left) and inelastic
(right) collisions. Figure from [35].
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partons produced in hard scattering will under go vacuum splitting process, while the presence of a QCD

medium will lead to modifications on the gluon radiation or the parton splitting process. Theoretical approach

to the energy loss in a QCD medium often treats medium partons as scattering centers, and the emitted gluons

are considered to be able to maintain coherence to its emitter. This leads to an estimation of the total energy

loss for a parton traveling in a QCD medium [36] as,

∆E ∼ L2, (2.6)

where L is the path length through the medium. Such path-length dependence is different from that of the

bremsstrahlung in QED, which is not squared, suggesting that parton energy loss in QCD medium might be

large.

The energy loss occuring in the 2 → 2 elastic collisions is usually called elastic or collisional energy loss,

which is considered to be small for light flavor partons, especially when the energy of the jet is sufficiently

high. On the contrary, for heavy flavor partons or at low and intermediate energy regimes, the collisional

energy loss contributes dominantly to the total energy loss. The collisional energy loss, though relatively

small for light flavor energetic jets, may still play an important role in understanding the nuclear modification

on the full jet in QGP. It is also an essential ingredient in studying the medium response to the propagating jet,

considering the fact that scattered medium partons may gain energy and momentum from parton collisions

(“recoil” effects).

2.6 Experimental Observations

From an experimental perspective, QGP is defined as a locally thermalized state of matter in which

quarks and gluons are deconfined. The color degrees of freedom become manifest over the nuclear, rather

than merely nucleonic, volumes. The thermalization and the deconfinement mark the formation of QGP in

heavy ion collisions. In this section, an overview of experimental observations on QGP is presented, with
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selected contents including measurements on both collective and localized behaviors of QGP, specifically the

flow and the jet quenching phenomena.

2.6.1 Bulk Properties

Bulk properties are properties due to interactions between system participants, which are referred to as

quarks and gluons as they become deconfined in QGP. Explorations of its bulk properties have led to discov-

eries about the freeze-out temperatures, specific viscosity and anisotropic flow, which provide information

about the degree of thermalization and the equation of state (EoS) related to QGP formation. In experiments,

these discoveries are made with measurements of particle multiplicities, total yields of different particle

species and their momentum spectra, especially at low transverse momentum (pT ), where most of the parti-

cles are produced in heavy ion collisions.

2.6.1.1 Strange particle production and chemical freeze-out

In heavy ion collisions, inelastic collisions between particles stop at a certain temperature, the chemical

freeze-out temperature, and the abundance of system elements becomes fixed. Measurements on the yields of

different hadron species, especially strange particles, provide information about the bulk properties of QGP

at the chemical freeze-out temperature.

Due to the fact that the mass of a strange quark (∼ 150MeV) is similar to the critical temperature of QCD

transition, the yield of strange particles is expected to be enhanced in heavy ion collisions, which serves as

a signature of QGP formation. The pT integrated yields of primary strange particles (K0
s , Λ, Λ̄) and multi-

strange particles (Ξ−, Ξ̄+, Ω−, Ω̄+) are compared with to those of non-strange particles such as pions [37],

as shown in Fig. 2.8. The measured ratios between strange particle yields and that of pions have suggested

that strange quarks are equilibrated in the system, with exceptions of the most peripheral heavy ion collisions.
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Interestingly, these ratios have shown a significant dependence on the total multiplicity instead of the initial

volume (collision centrality) or the initial energy density (collision energy).

Figure 2.8: pT -integrated yield ratios to pions (π+ + π−) as a function of ⟨dNch/dη⟩ measured in |y|< 0.5.

Such particle production ratios reflect how far a system is away from chemical equilibrium. The obser-

vation of strange particle saturation in high multiplicity PbPb events leads to a common belief that QGP is

formed and reaches chemical equilibrium. Though pp events are conventionally regarded as systems where

no QGP is formed, those high multiplicity pp events have shown enhanced strange particle yields, which is
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also the case in pPb collisions. The similarities of strange particle production in pp, pPb and PbPb collisions

are understood to be connected to the formation of a deconfined QCD phase at high temperature and energy

density.

2.6.1.2 Spectra and kinetic freeze-out

The inelastic collisions between hadrons cease after the temperature drops down to the chemical freeze-

out temperature. Even though the particle species are fixed, hadrons still interact with each other and ex-

change momentum before the temperature reaches the kinetic freeze-out temperature (Tf o). Measurements

of hadron transverse momentum spectra provide information about the characteristics of the system at ki-

netic freeze-out. To better understand the transverse expansion of the system, a hydrodynamic-motivated

fit method [38] is introduced to the hadron pT spectra, which extracts a random motion component and a

collective motion component, which are respectively described by fit parameters of the kinetic freeze-out

temperature Tf o and the radial flow collective velocity ⟨βT ⟩.

Figure 2.9 shows the χ2 contours of extracted fit parameters Tf o and ⟨βT ⟩ for different hadrons at different

centrality bins, measured by the STAR experiment [22]. For copiously produced hadrons (π , K, p) in AuAu

collisions, as the collisions appear more and more central, the extracted Tf o becomes smaller, while the ⟨βT ⟩

becomes larger. This implies that compared to the most peripheral collisions, systems in the most central

collisions tend to be more difficult to reach the kinetic freeze-out, thus having a lower Tf o. The systems

in central collisions develop stronger radial flow, leading to larger ⟨βT ⟩ than that in peripheral collisions.

Interestingly, the multi-strange particles such as φ and Ω appear to have a higher freeze-out temperature and

a lower radial flow velocity than that of π , K, p, which indicates that those multi-strange particles undergo

little interactions at hadronic level with the expanding matter. If that is true, multi-strange particles should

accumulate radial flow velocity before chemical freeze-out, leading to their sensitivity to the partonic stage

of the QCD matter.
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Figure 2.9: χ2 contours for Tf o and ⟨βT ⟩, extracted from thermal + radial flow fits, for copiously produced
hadrons (π , K, p) and multi-strange hadrons (φ , Ω) with 9 different centrality selections.
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2.6.1.3 Collectivity in QGP

Due to the strongly coupled nature of an almost hydrodynamically ideal QGP liquid, any spatial anisotropy

in the initial stage of heavy ion collisions could manifest itself in the final state. The anisotropy could arise

from either the elliptical overlap region of colliding nuclei or the local energy hot spot in the incoming nu-

clei. The non-circular geometry of QGP formed in heavy ion collisions, especially in off-central collisions,

as shown in Fig. 2.10 (left), would produce initial azimuthal anisotropies. If the QGP were a weakly cou-

pled gas of quarks and gluons, the initial anisotropies would be washed out and would result in an isotropic

distribution of final-state particles. However, for a strongly coupled liquid such anisotropies translate into a

fast hydrodynamic expansion with anisotropy in pressure gradients. The anisotropies are minimally affected

during the thermalization and the hydrodynamization stages, and survive through the hadronization and the

free-streaming stages [39]. Thus, the collective behaviors of final-state particles, also known as the “flow”,

can be observed.

Figure 2.10: Left: Example of an off-central heavy ion collision which produces an approximately elliptical
overlap region, resulting in anisotropy gradients in the azimuthal plane. Right: A hydrodynamic model
with temperature-dependent parameterization of η/s is compared with ALICE measurements of the Fourier
coefficients vn (n=2 to 4 from top to bottom). Figures from [40].

In order to quantify the measurement of azimuthal anisotropy, a Fourier expansion can be performed on
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the angular distribution of (charged) hadrons registered in the final state of the collisions

dN
dφ

∝ 1+∑
n

2vn(pT )cos(n(φ −ϕRP)), (2.7)

where φ is the azimuthal angle of a particle relative to the beam direction, N is the total number of particles

in the event, ϕRP is the azimuthal angle of the reaction plane and vn is the n-th order harmonic coefficient.

The different harmonic coefficients represent different aspects of the global flow behavior. The first order

coefficient v1 quantifies the flow of particles in the plane that is traverse to the beam direction, known as

“directed flow”. The second order v2, so-called the “elliptic flow”, is the largest component that characterizes

the anisotropy due to the elliptic overlap region of the colliding nuclei. Higher order coefficients, for example,

the third order v3 known as the “triangular flow”, are results of fluctuations or lumpiness in the initial energy

density in the area of overlap between the colliding nuclei.

Figure 2.10 (right) shows ALICE measurement on the flow harmonic coefficients with hydrodynamic

fits [41, 42]. The elliptic flow, parameterized by v2, is observed to be strongest in mid-central collisions

(40−50%) due to the eccentric shape of the overlap region between incoming nuclei. While v2 is observed

to be small in the most-central collisions (0−5%) due to the circular overlap region. The vn measurements,

in comparison to calculations from a hydrodynamic model with temperature-dependent parameterization of

η/s, provide constraints on the viscosity of the QCD medium.

Studies have been done on both the elliptic and the triangular flow, in addition to their relations with the

initial-state geometry. A geometry scan experiment in small collision systems, p+Au, d+Au and 3He+Au,

are conducted at RHIC. The Figure 2.11 shows the hydrodynamic evolution of a typical p+Au (up), d +Au

(mid) and 3He+Au (bottom) collision, calculated from a hydrodynamic model. In the first panel of each row,

regions marked in red indicate high energy density due to geometry overlap. The following three panels show

snapshots of the temperature distribution at three successive time points. The initial energy configuration sets

a pressure gradient field, which translates into a velocity field that determines the azimuthal momentum
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distribution of final-state particles.

Figure 2.11: Evolution of a typical p+Au (up), d +Au (mid) and 3He+Au (bottom) collision, calculated
from a hydrodynamic model. Figure from [43].

The PHENIX experiment measured both v2 and v3 in the three small collision systems [43], shown in

Fig. 2.12, providing evidence for the origin of the collective flow at the smallest scales. The measurement

has shown the orderings of v2 and v3,

vp+Au
2 < vd+Au

2 ≈ v
3He+Au
2

vp+Au
3 ≈ vd+Au

3 < v
3He+Au
3

(2.8)

rooted in the initial geometric eccentricities. This ordering implies that the hydrodynamic evolution can

efficiently translate the initial geometry eccentricities into the collective behavior of final-state particles. It

also suggests that QGP forms in such small collision systems.

In addition to measurements of the flow harmonic coefficients, two- and multi- particle correlations are
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Figure 2.12: PHENIX measurements of v2 (a) and v3 (b) in p+Au , d +Au and 3He+Au collision systems.
Figure from [43].
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also utilized to quantify the collective behaviors of particles. In the studies of two-particle correlations, the

relative pseudorapidity (∆η) and the relative azimuthal distance (∆φ ) are measured between a pair of particles,

a trigger particle and an associated particle in the same event. Pairs of particles are selected within the same

pT range. Two-dimensional histograms of ∆η versus ∆φ are shown in Fig 2.13 for pp and PbPb collisions,

measured by the CMS experiment [44, 45]. An away-side ridge, referring to ∆φ ≈ π , is expected due to the

conservation of momentum. The hadrons comprising dijet products of hard scattering emerge back-to-back

in the azimuthal angle, but they are not necessarily at the same rapidity. In the two-particle correlation pattern

the particles from the back-side jet swing at a different η in each event leading to a smeared peak as a function

of η at the away-side, when many events are are overlayed. In pp collisions, a jet-like peak is observed at the

near-side ∆φ ≈ 0, due to the showering process from a high-pT parton coming from hard scattering, while

in PbPb collisions, a near-side ridge is also observed, showing collective long-range correlations between the

particles due to flow. The 2D histogram is projected onto the ∆φ axis over the range outside of the jet peak

|η |> 2, to which a Fourier function fit can be performed in order to extract the flow harmonic coefficients vn.

Figure 2.13: 2D maps of dihadron correlations for pp (left) and PbPb (right) collisions, measured by the CMS
experiment. Figures from [44, 45].
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2.6.2 Hard Probe: Jet

2.6.2.1 RAA and dijet asymmetry

A wide variety of measurements on jet observables have been performed in PbPb collisions and in pp

collisions. Jets produced in pp collisions are considered as vacuum references due to the absence of the QGP.

The inclusive jet spectra have been measured by the ATLAS experiment, which has shown a significant sup-

pression in inclusive jet production in PbPb collisions compared to that in pp collisions. Nuclear modification

factor (RAA), the observable that is used to quantify the suppression, is defined as

RAA =

1
Nevt

d2N jet
d pT dy |cent

⟨TAA⟩
d2σ jet
d pT dy |pp

, (2.9)

where N jet is jet yield in PbPb collisions, σ jet is jet cross-section in pp collisions, Nevt is the total number of

collisions within centrality range, ⟨TAA⟩ is the mean nuclear thickness accounting for geometric enhancement.

Interestingly, RAA remains below 1 even for high-pT jets, indicating a considerable energy loss due to jet

medium interactions.

The total energy loss experienced by a propagating parton depends on the path length in QGP. A pair of

back-to-back partons originating from hard scattering may travel through QGP with different path lengths,

leading to momentum asymmetry in associated full-reconstructed jets. For illustration, the dijet asymmetry

in a single PbPb collision is shown in Fig. 2.15, which clearly shows an asymmetry between the transverse

momenta of the leading and the subleading jet.

The dijet asymmetry ratio (AJ), is defined in Eq. 2.10,

AJ =
pT,1 − pT,2

pT,1 + pT,2
, (2.10)

where pT,1 and pT,2 are the transverse momentum of the leading and the subleading jet respectively. Measure-
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Figure 2.14: ATLAS measurement on the nuclear modification factor RAA as a function of pT at
√

sNN =
2.76TeV. Figure from [46].

Figure 2.15: Dijet asymmetry in an PbPb collision recorded by the CMS experiment. Figure from [47].
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Figure 2.16: Distribution of the dijet asymmetry ratio (AJ), measured by the CMS experiment. Data are shown
as black points, while histograms show (a) simulations with PYTHIA and (b)-(f) PYTHIA events embedded
into PbPb data. Figure from [47].

ment of the distribution of AJ in PbPb collisions is reported by the CMS experiment [47]. For comparison,

pp collisions simulated with the PYTHIA event generator are embedded into min-bias PbPb data. In this way,

the embedded events are considered non-quenching references. Results (Fig. 2.16) can show a suppression

at AJ = 0, especially in the most-central PbPb collisions (centrality 0−10%), indicating the dijets tend to be

more unbalanced compared to those in peripheral collisions.

2.6.2.2 Fragmentation function and jet shape

The energy lost due to parton propagation in QGP is observed to be recovered by soft hadrons at large

angles with respect to the jet axis. Observables such as the fragmentation function and jet shape help with

understanding of the details about modifications due to the interactions with QGP. The jet fragmentation

function aims to quantify the partition of the jet energy into its constituent particles, measured with variables
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defined as,

z =
ptrack
∥
p jet , ξ = ln(

1
z
), (2.11)

where ptrack
∥ is the momentum component of the track along the jet axis. Low ξ values correspond to high pT

particles within the jet cone and vice versa. Measurements of the jet fragmentation functions in PbPb colli-

sions of different centrality are shown in Fig. 2.17, as reported by the CMS experiment [48]. The distribution

of ξ in peripheral PbPb collisions (centrality 70−100%) is in agreement with that measured in pp collision,

showing no modification of the jet fragmentation function. However, for the most central collisions (central-

ity 0−10%), a significant enhancement on high ξ values (ptrack
T < 3 GeV) is observed, with depletion in the

intermediate region as compensation. The result has shown an enhancement of soft particle contribution to

the jet energy and suppression of high-pT particles in central PbPb collisions compared to pp collisions.

Figure 2.17: CMS measurements of the jet fragmentation functions in PbPb collisions (top) and their ratio to
the pp reference (bottom), from peripheral (left) to central collisions (right). Figure from [48].

Further study of the jet energy redistribution and its dependence on distance from the jet axis in PbPb

collisions can be done with measurements of the jet shape observable, which is defined as,

ρ(r) =
1

δ r
1

N jet
∑
jets

∑tracks∈[ra,rb)
pTrack

T

p jet
T

, (2.12)

where the jet cone is divided into rings with radial width δ r, and each ring has an inner radius ra = r−δ r/2

and an outer radius rb = r+δ r/2. Results from CMS measurements of the jet shapes [49] in PbPb collision
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are shown in Fig. 2.18, with observation of the redistribution of jet energy to softer particles extending to

large angles away from the jet axis, especially in the most central PbPb collisions.

Figure 2.18: CMS measurement of the jet shapes in PbPb collisions (top) and their ratio to the pp reference
(bottom), from peripheral (left) to central (right) collisions. Figure from [49].

2.6.2.3 Splitting function and jet substructure

The splitting function of QCD describes the 1→ 2 parton splitting process. Specifically, when two partons

are seperated by an angle θ , the 1 → 2 splitting probability takes the form

dPi→ jk =
dθ

θ
dzPi→ jk(z), (2.13)

where Pi→ jk(z) are the Altarelli-Parisi QCD splitting functions [50] which depend on the momentum fraction

z and the parton flavors i, j and k. Approximately, Eq. 2.13 for soft gluon emission from a hard gluon or

quark can be described by

dPi→ig ≃
2αsCi

π

dθ

θ

dz
z
, (2.14)

where αs is the strong coupling constant and Ci is the Casimir factor (4/3 for quarks, 3 for gluons).

The QCD splitting function can not be directly measured due to the existence of a θ → 0 singularity.
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However, efforts have been made [4], providing a semi-direct method to test the QCD splitting function by

studying the 2-prong structure of jets. Specifically, the shared momentum ratio between the two prongs (zg)

can be measured in both pp and PbPb collisions, which takes the form

zg =
min(pT,1, pT,2)

pT,1 + pT,2
, (2.15)

where pT,1 and pT,2 are the momenta of the two prongs and the g subscript denotes that zg is obtained after a

jet grooming algorithm is applied. Details of the jet grooming algorithm will be discussed in later sections.

Analytic expression for Eq. 2.14 has been compared with zg distribution measured in pp collisions with CMS

Open Data, as shown in Fig. 2.19.

Figure 2.19: Distribution of zg from CMS Open Data with analytic calculation. Figure from [4].

Such zg distribution in PbPb collisions is also measured by the CMS experiment [51], leading to the

observation of modification on jet substructure, shown in Fig. 2.20.
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Figure 2.20: Distribution of zg in PbPb collisions and smeared pp collisions, measured by the CMS experi-
ment. Figure from [51].
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CHAPTER 3

Monte Carlo Samples

Full Monte Carlo simulation involves two stages: (i) collision event generation and (ii) detector response.

Physics processes are modeled by Monte Carlo event generators, which usually have a bunch of tunable

parameters. Currently, various event generators are available on the market, with each having its own im-

plantation of one or more processes. Detector system can also be modeled with Monte Carlo simulation

framework GEANT4 [52], which is widely used in studies of high energy physics.

In this thesis, only the first part of the simulation is performed, without consideration of the detector

response. In this section, the full procedure of how Monte Carlo samples are produced is introduced, includ-

ing simulations on both the hard event generation and the soft thermal background. In addition, a thermal

background subtraction method that is able to correct jet observables is discussed.

3.1 Dijet events

After hard scattering, scattered two partons will undergo the parton showering process individually, pro-

ducing two back-to-back jets. Such kind of collision event is named as a dijet event simply because of the

observation of two jets in one collision. Two Monte Carlo event generators are utilized to generate dijet

events, which are introduced in this section.
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3.1.1 PYTHIA

PYTHIA [53] is the most widely-used event generator in high energy physics and is able to produce pp

collisions with various features, covering a wide range of energies. Currently, it is available with imple-

mentations of two programming languages, PYTHIA6 in Fortran and PYTHIA8 in C++. Both have the same

underlying modeling of physics processes. In this thesis, PYTHIA8.2 is used. Among various processes of

interest1 that are implemented in PYTHIA8, only the hard QCD process is switched on in the simulation,

which accounts for the 2 → 2 hard scattering process. In practice, the default tune 14 is used and a few

parameters2 are adjusted for biased selection on high pT events, which are explained below.

• PhaseSpace:pTHatMin is the minimum average transverse momentum of scattered partons, with 100

GeV used in this thesis.

• PhaseSpace:bias2Selection is the switch of biased sampling from the phase space. The default value

is off while On is used.

• PhaseSpace:bias2SelectionRef determines that unit event weight should be assigned to events that are

sampled with p̂T,Re f from the phase space, if above parameter is On. The value of 100 GeV is used.

• PhaseSpace:bias2SelectionPow determines the oversampling at p̂T should be done with an amount of

(p̂T/p̂T,Re f )
Pow. The value of 4 is used.

3.1.2 JEWEL

JEWEL [54] is a Monte Carlo event generator that is able to simulate jet evolution in heavy ion collisions,

which implements a fully microscopic description of jet evolution in medium, including coherence effects. In

JEWEL, all partons coming from the initial hard scattering process undergo collisions with medium partons

1Details can be found: https://pythia.org/manuals/pythia8245/ProcessSelection.html
2Details can be found: https://pythia.org/manuals/pythia8245/PhaseSpaceCuts.html
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and suffer both radiative and elastic energy loss. As a result, recoiling medium partons carry away energy

and momentum from the jet. Considering the fact that medium partons are heated up by a jet and even-

tually become part of the jet, such a medium response would definitely introduce modifications to the jet

substructure.

In practice, JEWEL can be used in the study of: (i) the showering process of the initial hard scattered

parton in a medium and (ii) medium response. Note that even though JEWEL claims to be able to simulate

jet evolution in heavy ion collisions, it does not have a description of the thermal background, which comes

from soft rather than hard processes. In this thesis, such thermal background is named “uncorrelated”, as it

has nothing to do with the hard scattering process. While the “correlated” background refers to the medium

response, consisting of recoiling thermal partons due to interactions with the hard scattered partons.

Treatment of the recoiling partons is tricky. It is easy to switch on or off the medium response effects in

simulation, while it is rather difficult to do so in real experiments. With JEWEL, events can be generated with

or without a medium response. When running without medium response (“recoil off”), recoiling partons do

not show up in the event. Thus, inclusive or inter-jet observables can be compared to (background-subtracted)

experimental data. On the contrary, when running with a medium response (“recoil On”), information about

recoiling partons is stored in the event, which makes it possible in the studies of the modification introduced

by the medium response. Such recoiling partons can not be subtracted with experimental background subtrac-

tion techniques. As a result, a special subtraction algorithm (“4MomSub”) is introduced with jet substructure

observables studied [55]. A few parameters1 are configured as described below.

• PTMIN is the minimum average transverse momentum, with 100 GeV in use.

• MASS is the mass number of colliding nucleus (208. for Pb).

• SQRTS is the center-of-mass energy (
√

sNN) of the collising system, with 5020. GeV in use.

1Details can be found from the user manual [54].
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• PROCESS is the selected hard process, with “PPJJ” standing for hard scattering (dijet).

• KEEPRECOILS controls whether or not recoils effects should be included (T for true).

• WRITESCATCEN controls whether or not information about thermal momentum component should

be recorded (T for true).

• WRITEDUMMIES controls whether or not dummy particles (used for 4MomSub) should be recorded

(T for true).

Parameters related to medium properties are also configurable and are described below.

• TAUI is the initial time τi ( f m/c), with 0.6 in use.

• TI is the initial temperature Ti (GeV ), with 0.4 in use.

• CENTRMIN is the lower end of centrality range (%) to be simulated, with 0. in use.

• CENTRMAX is the upper end of centrality range (%) to be simulated, with 10. in use.

In this thesis, JEWEL events are generated with the medium response (“recoil On”), while the “4Mom-

Sub” is not performed. Dijet events generated from PYTHIA and JEWEL are mixed with uncorrelated thermal

background, after which an experimental background subtraction method is applied. Details about the gen-

eration of such thermal background as well as the mixing and subtraction techniques are described in later

sections.

3.2 Uncorrelated underlying events

The uncorrelated underlying events, as described briefly in the previous section, consist of particles that

do not originate from the hard processes, but rather - from soft interactions. Such events are often referred to
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(i) the pileup events in pp collisions and (ii) the underlying events in heavy ion collisions, which both are the

results of simultaneous proton-proton collisions in a single beam bunch crossing. The high-luminosity LHC

is expected to deliver an average pileup of 200 pp collisions per bunch crossing, while the underlying event

in the most central heavy ion collisions at LHC energy may lead to a background pT of more than 300 GeV

per unit area in η −φ space (Fig. 3.1).

Figure 3.1: The energy density deposited in the calorimeter towers of the CMS detectors in PbPb collisions
as a function of the event centrality. Figure from [56].

A data-driven approach to the generation of a thermal background is applied. The uncorrelated underlying

event is generated following a Boltzmann distribution for the transverse momentum of the particles, which

are distributed uniformly in pseudorapidity η and azimuthal angle φ (Fig. 3.2 and Fig. 3.3). This method

was previously used in ref. [57]. Uncorrelated underlying events are generated with configurations of two

different multiplicity settings, corresponding roughly to the mid-central (40-50%) and the most-central (10-
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20%) PbPb collisions, inferred from published experiment results [58]. In this thesis, the two multiplicities

are distinguished as a low multiplicity with a total multiplicity of 1700 and a high multiplicity with a total

multiplicity of 7000. Details about the two multiplicity configurations are listed in Tab. 3.1.

Values Mid-central Most-central
Pseudorapidity Interval |η |< 3 |η |< 3
Total Event Multiplicity 1700 7000

Corresponding Centrality Interval 40-50% 10-20%
Average Yield ⟨ dN

dη
⟩ 283 1167

Average Transverse Momentum ⟨pT ⟩ 0.9GeV 1.2GeV
Average Transverse Momentum Density ⟨ρ⟩ 35.0GeV/Area 227.1GeV/Area

Table 3.1: Description of the simulated underlying events.
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Figure 3.2: pT spectrum (left) and yield (right), for particles from uncorrelated underlying events generated
with a data-driven approach at two different multiplicities.

3.3 Background Subtraction

In this thesis, a single embedded event is made of a dijet event and an uncorrelated underlying event,

which respectively intimate the hard scattering and the soft thermal background in heavy ion collisions. An

embedded PYTHIA event does not have any quenching effect, even though a thermal background is mixed

in, thus making it a control set. In contrast, the embedded JEWEL event has a quenching effect and thermal

background, as is expected in real heavy ion collisions.

The underlying event in PbPb collisions is observed to fluctuate per event, with its pT deposit being a
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Figure 3.3: Average pT deposit in η −φ plane, for particles from uncorrelated underlying events generated
with a data-driven approach at low multiplicity (left) and high multiplicity (right).

function of η and φ . Due to intense pileup events in pp collisions and underlying events in PbPb collisions,

efficient techniques are crucial in order to mitigate the impact of large backgrounds on jet kinematics and jet

substructure. Luckily, various background subtraction methods are available.

One category of background subtraction methods depends on a specific jet definition. For example, Area

Subtraction [59], an area-based subtraction method that is able to correct jet’s 4-momenta from its area and

an estimated energy density. The area, a jet property, is unique to the jet definition. While another category

of subtraction methods try to correct particles prior to jet clustering, such as Constituent Subtraction [60],

Iterative Constituent Subtraction [61], SoftKiller [62], PUPPI [63] and jet cleansing [64].

3.4 Constituent Subtraction

In this thesis, the Constituent Subtraction (CS) algorithm is used for background subtraction on embedded

events. Three implementations, jet-by-jet, event-wide and iterative CS are in the algorithm family, sharing a

similar design on background density (ρ) estimation and on ghost subtraction.

The background density ρ , as its name suggested, is the amount of pT from the underlying event per unit
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area on the η −φ plane. An event is divided into patches on the η −φ plane (Fig. 3.4), with each has

pT,patch = ∑
i∈patch

pT,i. (3.1)

Thus the estimated ρ can be calculated as

ρ = medianpatches{
pT,patch

Areapatch
}, (3.2)

where the median instead of the average is used to avoid over-estimation due to high-pT patches. In the

following subsections, how the background density ρ is used in three subtraction methods will be introduced.

These three methods have very little difference in their implementations, while they share the same idea of

how to use the background density ρ . Simply speaking, “ghosts” carrying negative momenta proportional to

ρ are added to events, which behave like momentum consumers. The way those ghosts consume momentum

is exactly the same as subtraction, which will be introduced in the following subsections1.

Figure 3.4: Patches for estimation on background density ρ2.
1Materials from https://indico.cern.ch/event/649482/contributions/2993293/attachments/1687676/2714424/PeterBerta CS 17.7.

2018.pdf
2Figure from Boost2012 https://indico.cern.ch/event/179612/timetable/?view=standard
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3.4.1 Jet-by-jet

The subtraction procedure starts with adding uniformly distributed ghosts to the event, of which each

populates a small area (implemented as a free parameter Aghost ) on the η − φ plane and carries a negligi-

ble amount of momentum. In the second step, particles and ghosts are clustered into jets with jet-finding

algorithms. The momenta that ghosts carry are so few; thus, they can be safely clustered into jets without

introducing significant differences in the jet kinematics. In the third step, the ghosts that are clustered into

jets are set to carry negative momenta proportional to the estimated background density ρ . In the last step,

the ghosts are paired with constituents based on a specific metric. The 4-momenta of each constituent is

corrected by subtracting the 4-momenta of its paired ghost. The full procedure is illustrated in Fig. 3.5.

The metric of how a ghost is paired with a jet constituent is determined based on their “distance”, which

is described by

∆Ri,k = pα
T,i ·

√
(yi − yg

k)
2 +(φi −φ

g
k )

2, (3.3)

where i and k are the indices of the jet constituent and the ghost respectively, α is a free parameter and the

subscript g indicates a quantity that is associated with the ghost. The introduction of a positive α indicates

that a jet constituent with lower pT is more likely to be paired to a ghost. In other words, jet constituents

with lower pT (being mostly particles from thermal backgrounds) are subject to correction in the subtraction

procedure.

The correction starts from the ghost-particle pair with the lowest distance and a jet constituent’s momen-
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Figure 3.5: Procedure of the jet-by-jet constituent subtraction algorithm with 4 steps: (i) adding ghosts to an
event (upper left), (ii) clustering particles and ghosts into jets (upper right), (iii) setting ghosts’ momenta to
be negative and proportional to ρ (lower left), (iv) subtracting ghosts’ momenta from their paired constituents
(lower right).
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tum is corrected by following

i f pT,i ≥ pg
T,k :

pT,i → pT,i − pg
T,k,

pg
T,k → 0,

otherwise :

pT,i → 0,

pg
T,k → pg

T,k − pT,i.

(3.4)

Such subtraction procedure stops if

∆Ri,k > ∆Rmax, (3.5)

where ∆Rmax is a free parameter.

3.4.2 Event-wide

The event-wide constituent subtraction implements a procedure that is very similar to the jet-by-jet

method. It starts by adding ghosts to the event. However, ghosts are not clustered into jets, which is the

case in the jet-by-jet method. So the name “event-wide” comes due to the fact that the ghosts and particles

are paired event-wide, with the same metric in the distance as Eq. 3.3. Then the subtraction begins on the

(event-wide) ghost-particle pair with the lowest distance, and the same subtraction method as Eq. 3.4 is used.

The full procedure of the event-wide constituent subtraction is shown in Fig. 3.6.

In this thesis, the event-wide constituent subtraction method is used with free parameters configured as

Aghost = 0.005,

α = 1,

∆Rmax = 0.3.

(3.6)
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Figure 3.6: Procedure of the event-wide constituent subtraction algorithm with 3 steps: (i) adding ghosts
to an event (left), (ii) setting ghosts’ momenta to be negative and proportional to ρ (mid), (iii) event-wide
pairing and subtracting ghosts’ momenta from their paired constituents (right).

Figure 3.7: Procedure of the iterative event-wide constituent subtraction algorithm: (i) leftover ghosts after
the first iteration of the event-wide constituent subtraction (left), (ii) setting ghosts’ momenta to be negative
and proportional to ρ after redistribution (mid), (iii) a second iteration of event-wide pairing and subtraction
(right).

Comparison between different subtraction methods and between different free parameter sets will be intro-

duced in later sections.

3.4.3 Iterative

In the event-wide constituent subtraction method, a local cold spot in the thermal background produces

leftover ghosts carrying momenta that are not subtracted, which can be seen from Fig. 3.6 (right). Thus an

improvement, the iterative event-wide constituent subtraction method, is introduced. After the first iteration

is applied, which is the same as the event-wide subtraction, leftover ghosts are redistributed uniformly on the
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η −φ plane. And a second iteration takes action to handle those leftover ghosts, as shown in Fig. 3.7. The

second iteration may utilize different free parameter set (Aghost , α and ∆Rmax). More iterations other than two

could also be applied.
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CHAPTER 4

Jet Reconstruction

A jet is a topological object reconstructed from collimated entities as a proxy collection of the sprayed

hadrons originating from the fragmentation of a highly energetic parton. In experiment and also in theory,

the definition of a jet, including its energy and its boundary (or area), is ambiguous. Firstly, the definition

of a jet depends on its clustering algorithm, which determines the composition (constituents) of a jet and its

boundary. Secondly, a jet may be clustered from full information at the hadron level, or partial information

which contains only energy deposits in detectors or reconstructed tracks. In practice, jet algorithms are

required to be simple to implement in experiment analysis and theoretically calculable in theory. In addition,

two more properties are desired:

• Invariant under the radiation of infinitely soft particles,

• Invariant under collinear splittings into hard fragments.

The above two requirements are often referred to as the infrared safety and the collinear safety (or jointly the

IRC-safety), as illustrated in Fig. 4.1 and Fig. 4.2 from Ref. [65]. Any disobey of these two requirements in

the design of a jet clustering algorithm will lead to biased jet spectra and divergence in theoretical calculations.

In this thesis, full information of simulated events is accessible at the hadron level, without detector

response. A jet clustering algorithm is performed on events, of which background is subtracted with the

event-wide constituent subtraction method. In this chapter, the family of jet clustering algorithms will be

introduced, together with the jet grooming techniques. The combination of jet clustering and jet grooming

helps access the jet substructure, which is the topological structure of a jet containing information about the
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Figure 4.1: Illustration of collinear safety (left) and collinear unsafety (right).

Figure 4.2: Illustration of collinear safety (a) and collinear unsafety (b,c). The addition of a soft gluon
converts the event from having two jets (b) to just one jet (c).

jet showering process.

4.1 Jet clustering algorithms

Currently, in high energy physics, a family of jet clustering algorithms known as sequential recombination

algorithms are employed, which iteratively pair entities (particles or pseudojets1) to reconstruct jets. Such

clustering procedure, also referred to as jet finding, terminates until particles are exhausted or a specific

terminating condition is reached.

In the clustering, a distance di, j between entities i and j, and a distance diB between entity i and the beam

1Here, it refers to the intermediate results of reconstructed jets.

47



are defined as,

di j = min(k2p
t,i ,k

2p
t, j)

∆2
i j

R2 ,

diB = k2p
t,i ,

(4.1)

where ∆i j =
√
(yi − y j)2 +(φi −φ j)2 and kt,i, yi and φi are transverse momentum, rapidity and azimuthal

angle of entity i. In addition to the radius parameter R, a parameter p is introduced to govern the relative

power of the transverse momentum versus angular distance ∆i j. The clustering algorithm iteratively identifies

the smallest distance, and if it is di j then the two entities are combined, while if it is diB then entity i is labeled

as a jet and is removed from entity list.

Different values of parameter p correspond to different clustering algorithms [66], with p =−1 referring

to the anti-kt algorithm, p = 1 referring to the kt algorithm and p = 0 referring to the Cambridge/Aachen

(C/A) algorithm. Though sharing similar metrics in measuring distances, these algorithms behave differently.

The kt algorithm tends to pair soft particles first. On the contrary, the anti-kT algorithm is more likely to pair

hard particles first. Since p = 0 in the Cambridge/Aachen algorithm, the metric no longer depends on the

transverse momentum. Thus the C/A algorithm tends to pair particles with smaller angular distances first.

In addition to differences in the ordering, differences in the boundaries of reconstructed jets are there. The

anti-kT is commonly used as the default jet finding algorithm due to its constrain on the jet area, producing

jets with circular areas. For illustration, the behaviors of these algorithms are shown in Fig. 4.3.

All the sequential clustering algorithms described above are IRC-safe and are implemented in the FAST-

JET framework [67].
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Figure 4.3: Illustration of jet clustering algorithms. Figure from [66].
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4.2 Jet grooming

Jet grooming techniques are mostly used in the context of boosted jets and jet substructure, with improve-

ments in the reconstruction precision and benefits in mitigation of pileup and underlying events. Compared

to background subtraction methods, jet grooming techniques are not generic subtraction methods. The most

frequently used grooming methods are filtering [68], trimming [69], pruning [70] and soft drop [71], each of

which has free parameters that control the performance of configured groomers. Groomers based on machine

learning [72] are also implemented and tested recently. These methods often work with subjets that are de-

termined by the Cambridge/Aachen (C/A) algorithm applied to an anti-kt jet. Specific algorithms or criteria

related to grooming are then applied to these subjets to eliminate soft and/or wide-angle contributions to a

jet, which are the most likely to be contaminated by thermal backgrounds.

The soft drop grooming starts from jets defined with the anti-kt algorithm. Constituents of an anti-kt jet

with a radius R0 are reclustered with the Cambridge-Aachen algorithm to form a pairwise clustering tree with

an angular-ordered structure (Fig. 4.4). Such declustering takes advantage of the fact that the C/A algorithm

tends to combine entities that are close to each other, prior to entities that are far away.

𝑅!

Harder Branch
Branches

Groomed

Jet Border

Figure 4.4: Pairwise clustering tree with an angular-ordered structure, of which soft branches are groomed
by a soft drop groomer.

The soft drop declustering procedure has two free parameters, a threshold of the shared momentum ratio
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zcut and an angular power β , and is implemented as:

1. Undo the last step of C/A clustering and break the jet j into two separated subjets as j1 and j2.

2. Given the soft drop condition,

z ≡
min(pT,1, pT,2)

pT,1 + pT,2
> zcut(

∆R12

R0
)β , (4.2)

where z is the momentum fraction carried by the softer subjet, ∆R12 =
√

(y1 − y2)2 +(φ1 −φ2)2 is the

angular distance between subjets and R0 the jet radius. If the two seperated subjets pass the soft drop

condition, then the declustering stops and the jet j is the final soft-drop jet.

3. Otherwise, The subjet with smaller pT is groomed. Redefine j to be the subjet with larger pT and

repeat the soft drop declustering procedure.

Such procedure is illustrated in Fig. 4.5.

Figure 4.5: Illustration of the soft drop grooming.

4.3 Groomed substructure observables

The declustering procedure of the soft drop method is able to expose the topological structure of a jet and

group its constituents into a hierarchical tree. Soft branches that can’t pass the grooming criteria, correspond-

ing typically to the soft and wide-angle radiation, are discarded. In contrast, the two subjects that can pass
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the criteria carry information about the hard splitting that happens in the early stage of the parton showering.

Such information can be interpreted and is useful in the study of the jet quenching phenomenon.

The first splitting that satisfies the soft drop condition (Eq. 4.2), the “2-prong” structure (Fig. 4.6), pro-

vides access to the branching kinematics. In practice, groomed substructure observables can be measured, for

Figure 4.6: Illustration of the “2-prong” structure of a jet. Deashed lines correspond to subjets that are
groomed by the soft drop groomer. θg is defined as Rg/R0. Figure from [4].

example, zg, which is the momentum fraction carried by the relatively softer subjet. The subscript g denotes

such observable is obtained from a groomed jet. Other observables include the angular distance between the

two separated subjets Rg and groomed jet mass mg.

These groomed substructure observables are sensitive to thermal backgrounds and jet quenching, which

will be analyzed in later sections.

4.3.1 Sensitivity to thermal backgrounds

Measurements on the groomed substructure observables have opened a new front in heavy ion jet physics.

However, background effects are not well understood. Local background hot spots in heavy ion collisions

can lead to incorrect identification of the splitting that is unrelated to the jet showering process. Though such
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background effects can be avoided in the background-free region of phase space, namely at sufficiently large

pT and/or smaller jet radius, the understanding of how the background subtraction affects jet substructure and

associated groomed substructure observable is imperative.

4.3.1.1 Mistagging of the subleading prong

In this section, studies on the mistagging of the subleading prong in the presence of thermal backgrounds

are discussed, based on Ref. [73].

As the soft drop grooming method can be utilized to reveal the “2-prong” structure of a jet, a question

arises as whether the thermal background affects tagging on the leading and subleading prongs, with the

following cases that can happen:

• Both the leading and subleading prongs are correctly reconstructed and tagged.

• Both prongs and correctly identified, but swapped. In this case, zg and Rg are not affected.

• The leading prong is correctly tagged, while the subleading prong is reconstructed from background

hot spot (mistag), as shown in Fig. 4.7.

• The subleading prong is groomed away.

• the subleading prong is outside the jet, while some of its constituents may be present.

• Other cases, for example several above cases all happen at the same time.

Simulations have been done by embedding PYTHIA jets into a thermal background that is comparable

to that in the most central heavy ion collisions. Constituent subtraction is applied to the embedded event to

mitigate the impact introduced by thermal backgrounds. The performance of locating the splitting of interest

is studied across various groomers, with the measurement of the subleading prong tagging purity, as shown
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Figure 4.7: Example of mistagging of the subleading prong in embedded events. In the case of thermal
background (right), a background hot spot at large angle passing the grooming conditions leading to the true
subleading prong being aborbed into the leading prong, thus a mistagging happens.

in Fig. 4.8. These studies have shown that the mistagging rate is reduced with jet pT over 200 GeV, for soft

drop groomers with zcut = 0.1 and β = 0. The soft drop groomer with such a free parameter set is used in

later studies.

4.3.1.2 Dependence on background subtraction

In this section, the performance of the constituent subtraction method is studied across its three imple-

mentations, which are the “jet-by-jet”, the “event-wide” and the “iterative”. Descriptions about the procedure

of each implementation is discussed in Sec. 3.4. The soft drop grooming method is used, as discussed in

Sec. 4.2.

As a study on the performances of subtraction methods, here the jet energy scale and groomed jet observ-

ables are measured in two different embedding scenarios and across three implementations of the constituent

subtraction methods. Scales of the jet energies before and after embedding + subtraction are measured.

To achieve so, jets that are clustered from background-subtracted events are matched to those at the gen-

erator level, such that their relative energy scales can be calculated. The results are shown in Fig. 4.9.

The groomed substructure observables are compared between cases with and without thermal backgrounds

(shown in Fig. 4.10). Note that an additional cut of Rg > 0.1 is applied.
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Figure 4.8: Subleading prong tagging purity as a function of jet pT , measured for various groomers. The
purity includes only the cases where the subleading prong is correctly tagged as the same one in the embedded
scenarios.
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Figure 4.9: Jet energy scale, a 2D distribution of pembed+sub
T /pT versus pT where pT is the jet momentum at

generator level, pembed+sub
T is the momentum of the matched jet after embedding + subtraction. Red points

are taken from a Gaussian fit for each pT bin. Three different subtraction methods, the “jet-by-jet” (top), the
“event-wide” (mid) and the ”iterative” (bottom) are measured with mid-central (left) embedding and most-
central (right) embedding.
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Figure 4.10: Groomed Substructure observables before/after embedding, with constituent subtraction applied.
Comparison across three implementations, the “jet-by-jet” (top), the “event-wide” (mid) and the “iterative”
(bottom) are shown.
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The “jet-by-jet” method fails to subtract background contamination at larger distances relative to the jet

axis, especially at high multiplicity embedding, leading to excesses at Rg ≈ 0.3. On the contrary, both the

“event-wide” and the “iterative” methods work well in constraining background effects on groomed substruc-

ture observables, while the “iterative” method tends to subtract more around the jet border, which leads to

deletions at larger Rg. In addition, the “iterative” method is a little bit more aggressive than the “event-wide”

method, showing an over-subtraction at smaller jet pT . Based on the measurements on the jet energy scale

and the groomed substructure observables, a choice of the subtraction method can be made. The “event-wide”

constituent subtraction is preferred and is used in later studies.

4.3.2 Sensitivity to jet quenching

With simulations of the dijet events and the thermal backgrounds in heavy ion collisions, groomed sub-

structure observables can be compared between quenched jets and vacuum jets, which will be shown in this

section. PYTHIA events and JEWEL events are embedded into thermal backgrounds, after which a background

subtraction method is applied to the embedded events. As discussed in previous sections, the “event-wide”

constituent subtraction method is used, with free parameters ∆Rmax = 0.3, α = 1 and Aghost = 0.005. The anti-

kT algorithm is then applied to background-subtracted events with a definition of a jet radius R = 0.4. The

constituents of each anti-kT jet then undergo the C/A algorithm, resulting in an angular-ordered substructure,

on which the soft drop declustering is performed with free parameters zcut = 0.1, β = 0. The distributions

of the groomed substructure observables are shown in Fig. 4.11, which can show a strong modification on

the hard splittings due to quenching with enhancement on wider (larger Rg) and more unbalanced splittings

(lower zg).

58



0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

g
dzdN  

N1

 [200,400] GeV∈
T,jet

 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8+Mid-central BG

Jewel+Mid-central BG

0.1 0.2 0.3 0.4 0.5

gz

0.5

1

1.5

Je
w

el
 / 

P
yt

hi
a8

0.1 0.2 0.3 0.4

2

4

6

8

10

g
dRdN  

N1

 [200,400] GeV∈
T,jet

 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8+Mid-central BG

Jewel+Mid-central BG

0.1 0.2 0.3 0.4

gR

0.5

1

1.5

Je
w

el
 / 

P
yt

hi
a8

0.05 0.1 0.15 0.2 0.25

2

4

6

8

10

12

14

16

T
,je

t
/p g

dm
dN

 
N1

 [200,400] GeV∈
T,jet

 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8+Mid-central BG

Jewel+Mid-central BG

0.05 0.1 0.15 0.2 0.25

T,jet
/pgm

0.5

1

1.5

Je
w

el
 / 

P
yt

hi
a8

0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

g
dzdN  

N1

 [200,400] GeV∈
T,jet

 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8+Most-central BG

Jewel+Most-central BG

0.1 0.2 0.3 0.4 0.5

gz

0.5

1

1.5

Je
w

el
 / 

P
yt

hi
a8

0.1 0.2 0.3 0.4

2

4

6

8

10

g
dRdN  

N1

 [200,400] GeV∈
T,jet

 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8+Most-central BG

Jewel+Most-central BG

0.1 0.2 0.3 0.4

gR

0.5

1

1.5

Je
w

el
 / 

P
yt

hi
a8

0.05 0.1 0.15 0.2 0.25

2

4

6

8

10

12

14

16

T
,je

t
/p g

dm
dN

 
N1

 [200,400] GeV∈
T,jet

 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8+Most-central BG

Jewel+Most-central BG

0.05 0.1 0.15 0.2 0.25

T,jet
/pgm

0.5

1

1.5

Je
w

el
 / 

P
yt

hi
a8

Figure 4.11: Groomed Substructure observables of the vacuum jets (PYTHIA) and the quenched jets (JEWEL),
with constituent subtraction applied to embedded events. Dijet events are embedded into the mid central
backgrounds (upper) and into the most central backgrounds (lower).
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4.4 The Primary Lund Plane

The QCD splitting function in the soft and collinear litmit (Eq. 2.14) can be refactored in double-

logarithmic format,

dPi→ig ≃
2αsCi

π
d lnzθ d ln

1
θ
. (4.3)

Hence, the plane spanned by lnzθ and −lnθ is uniformly populated by such splittings, with a weight of

2αsCi/π . The primary emission off an emitter, described by kinematics variables z and θ , thus can be repre-

sented as a single point on the plane, namely the primary Lund plane [74]. As a semi-inclusive measurement

of the QCD splitting function, the groomed substructure variables zg and Rg are closely related to the hard

splitting of an energetic parton. Thus, the primary Lund plane comes as a novel tool, providing a description

of the phase space of the splitting.

In heavy ion collisions with the presence of QGP, modifications may happen on the QCD splitting func-

tion, leading to a modified phase space of the splitting. This can be tested by the measurement of the primary

Lund plane density, defined as

ρ(zg,Rg) =
1

N jet

d2N
d ln(zgRg)d ln(1/Rg)

, (4.4)

where zg and Rg are taken from the soft drop declustering as described in previous sections.

A region of interest on the primary lund plane is accessible with the help of the soft drop groomers, as

constraints are applied to splitting kinematics. Such kind of selection can be made through configurations on

the free parameter set (zcut , β ) of the soft drop groomer. For illustration, the primary Lund plane with regions

of interest selected by the soft drop groomers of three different configurations is shown in Fig. 4.12.

Here, the primary Lund plane density is measured with PYTHIA and JEWEL events embedded into ther-

mal backgrounds, which respectively simulate vacuum jets and quenched jets in the presence of thermal

60



Figure 4.12: The primary Lund plane, on which regions of interest are selected by the soft drop groomers.
Shaded areas correspond to kinematic regions that are groomed away. Figure from [57].

backgrounds, as shown in Fig. 4.13. It can be seen, vacuum jets simulated by the PYTHIA event generator

populates the primary Lund plane uniformly, while quenched jets simulated by JEWEL show a modified phase

space of splitting, with enhancements on the lower-left corner corresponding to wider and softer splittings.
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Figure 4.13: Plots pf the primary Lund plane density, filled with jets clustered from background-subtracted
PYTHIA events (left) and JEWEL events (right), embedded into the mid-central backgrounds (upper) and the
most-central backgrounds (lower). Soft drop is applied in order to access the substructure observables of jets.
Dashed lines in red correspond to kinematic limits.
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CHAPTER 5

Machine Learning

The previous chapters aim to introduce a basic understanding of the jet substructure from an experimental

perspective but are still theory-driven. These Monte Carlo simulations become a start point for testing a new

modern data analysis tool, that is, machine learning. Such data-driven techniques allow for new approaches

to the analysis of jet substructure and uncovering new patterns in nature. Enthusiasts have been leading in the

development of machine learning applications in particle physics1.

As the main topic of this thesis, a machine learning approach to the identification of quenched jets is

developed, which will be introduced in this chapter. A brief description of the convolutional neural network

(CNN) will be given, after which the recurrent neural network (RNN) will be discussed, together with the

description of a sequence-based feature engineering method designed specifically for jets. A supervised

machine learning strategy is applied to the classification problem for the purpose of distinguishing quenched

jets from vacuum jets. In addition, the robustness of trained models will be discussed.

5.1 Convolutional Neural Network

The convolutional neural network (CNN) (shown in Fig. 5.1) could be the first artificial neural network

for a novice to begin with. It is commonly used to process visual images or videos. Its architecture involves

three modular parts, often named layers, which are collections of neurons operating together. The three layers

are typically the convolutional (Conv) layer, the pooling layer, and the fully connected (FC) layer.

1A living review of machine learning for particle physics: https://iml-wg.github.io/HEPML-LivingReview/
1Firgue from https://en.wikipedia.org/wiki/Convolutional neural network.
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Figure 5.1: Typical CNN architecture.1

5.1.1 Architecture

The convolution (conv) layer is the core building block of a CNN, with learnable parameters in filters. A

filter, also named as a kernel, is a matrix of weights (and biases). During the convolution operation, each filter

is convolved across the area of the input matrix-shaped volume, computing the dot product between the filter

parameters and the input elements, producing a 2-dimensional activation map of that filter. For illustration,

the convolution operation is shown in Fig. 5.2.

In practice, a few parameters3 control the output dimension of the convolution operation. Taken Fig. 5.2

for illustration, the input matrix has a dimension of (5,5,1) as its height, width and depth. The typical value of

the depth for visual inputs, such as images and videos, is three, corresponding to RGB channels. Around the

input matrix, padding of size 1 is added with zeros (zero-padded) or other values in padded cells. The grey

overlap region on the input matrix represents the convolution filter (kernel) with a size of (3,3) as its height

and width. The dot product of the filter and the input matrix is represented as the grey cell on the output

matrix in green, after which the filter moves by 1 row (or 1 column) and a new dot product is calculated. The

parameter so-called “stride” controls how much distance in cells the filter should move after each convolution

operation. The convolution layer eventually produces an output matrix of dimension (5,5,1) with the given

input matrix.
2Figure from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.
3Details can be found: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html.
1Figure from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.
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Figure 5.2: Illustration of the convolution operation in CNN. Cells in blue are the matrix-shaped inputs. Cells
surrounded by dashed grey lines are paddings. The grey region on the input matrix represents where the
convolution operation takes place. The green cells are the output matrix, on which the grey cell represents
the dot product of the convolution operation.2

Figure 5.3: Illustration of the filters (kernels) of the convolution layer. Three filters work on three different
input channels, corresponding to the RGB channels, and produce an output matrix.1
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A typical CNN is often built with polling layers for the purpose of downsampling. The max-pooling is

shown in Fig 5.4, which divides the input matrix into rectangles and outputs the max value of each sub-region.

Such a downsampling method, as its name suggests, is able to significantly reduce the size of a matrix while

keeping the most important features and the amount of calculation. Meanwhile, the pooling layers contribute

to local translation invariance due to the fact that max-pooling operations are robust to small translations of

the input matrix.

Figure 5.4: Illustration of the max-pooling layer.1

After several combinations of the convolution layers and the pooling layers, the final classification is

done via fully connected (FC) layers (Fig. 5.5). In fully connected layers, the neuron applies a linear

transformation to the input vector, done by typical matrix multiplication operations followed by bias offsets

(either learnable or fixed). A non-linear transformation is then applied to the product through a non-linear

activation function, for example, the softmax activation function. As shown in Fig. 5.5, all possible layer to

layer connections are present. Thus the output values depend on every input value, with different weights and

biases.
1Firgue from https://en.wikipedia.org/wiki/Convolutional neural network.
1Figure from https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b.
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Figure 5.5: Illustration of the fully connected layer.1

5.1.2 Jet Images and preprocessing

In order to utilize the convolutional neural network (CNN) in jet physics, jet images are introduced. A jet

image can be easily constructed by taking the constituents of a jet and discretizing its transverse energy into

pixels on the η −φ plane (Fig. 5.6).

Preprocessing is commonly applied to images that are about to be processed by the convolutional network

and are crucial, especially in jet physics. It helps the neural network to learn discriminating features and not

learn the symmetries of space-time. Meanwhile, such a procedure can greatly improve performance and the

required size of data used in training a neural network.

The most important step of the preprocessing, when it comes to jet physics, is alignment, involving several

operations such as translation, rotation and reflection. Such operations are typically designed according to

the characteristics of jets. In the translation operation, the center of the image is defined on the η −φ plane,

implying that the center of a jet image can be different from the jet axis. In the rotation operation, jet images

are typically rotated such that the primary features align along a specific axis. In the study of the W-jet
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Figure 5.6: Construction of a jet image. Figure from The Third Machine Learning summer school (https:
//indico.cern.ch/event/613571/contributions/2617924/attachments/1496948/2329564/deepjets.pdf).
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tagging [75, 76], such an axis is defined as the one starting from the center of the leading subjet to the

center of the subleading subjet, based on the fact that a boosted W boson produces a jet with a “2-prong”

structure. In contrast, the reflection operation can control on which side of the image the hardest radiation

should appear. Fig. 5.7 shows the average jet-image for W jets before and after preprocessing, where there is

a clear “2-prong” structure in the average jet image after preprocessing.

Figure 5.7: Average jet image for W jets, before (left) and after (right) preprocessing. Figures from Ref. [76].

5.1.3 Discussion

It can be seen from the convolution operation a filter scans over the whole image and subtracts the high-

level information about whether a specific feature is present or not. Thus a convolution filter after training

carries spatial information about the feature with discriminating power. This enables interpretation, empir-

ically rather than analytically, from a well-trained CNN by the visualization of its convolution filters. For

example, Fig. 5.8 shows the visualization of the convolution filters extracted from the first convolutional

layer of a CNN, which is trained for the purpose of quark/gluon jets classification. Note that in the study

(Ref. [77]), due to the lack of rotation operations in jet image preprocessing, many of the filters are simply

rotations of other filters. This also implies that the rotation operation in the jet image processing helps to
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reduce the number of filters, and eventually reduces computation complexity.

Figure 5.8: Average convolved filter differences for jet images, extracted from CNN trained for the purpose
of quark/gluon jets classification. Figure from Ref. [77].

Even though the visualization of the convolution filters can show what features are important in the

classification problem, analytical analysis of the filters is not practical (This claim is made based on the

author’s limited knowledge of machine learning). What is even worse, CNN has its limitation in learning

freely rotated features. In other words, a feature after rotation simply becomes a new one. Thus a question

arises, that is, whether an image after rotation can be categorized into the same class as it is. A simple

experiment on the hand digit recognition problem is shown in Fig. 5.9, where a digit of “7” after rotation is

wrongly classified. This simple experiment has shown that image preprocessing is necessary in achieving

rotational invariance on classification.
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Figure 5.9: Example of the hand digit recognition with CNN. A digit of “7” is correctly recognized (upper),
while a rotated “7” is wrongly classified as “2” (lower). Results from handwritten digit recognition play-
ground (online): http://www.denseinl2.com/webcnn/digitdemo.html.

71

http://www.denseinl2.com/webcnn/digitdemo.html


5.2 Recurrent Neural Network

In the later part of the thesis, the recurrent neural network (RNN) will be introduced1 and is used. What

makes it unique is that RNNs can use their internal state (memory) to process various length sequences

of inputs. Thus it’s capable of handling tasks such as natural language processing. An RNN, as its name

suggests, has recurrent loops in the network, allowing information to persist and be discarded. An RNN can

be viewed as multiple copies of the same network, each passing information to its successor, as shown in

Fig. 5.10.

Figure 5.10: Illustration of the recurrent neural network (upper) with its repeating modules (lower). At step
t, RNN takes input values xt and produces output values ht .

In theory, RNN should be able to deal with the long-term dependencies, for example, making predictions

about the next value based on previous values. However, in practice, the vanishing gradient problem can

happen in training. As a result, the long short-term memory (LSTM) network is invented, which has the

advantage of relative insensitivity to gap length.

1Figures in this section are from https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
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5.2.1 The long short-term memory (LSTM) Netwotk

LSTMs are explicitly designed to avoid the gradient problem, while maintaining the capability of learning

long-term dependencies. The repeating module of an LSTM network has an improved design and is different

from that of a traditional RNN, as shown in Fig. 5.11.

Figure 5.11: Repeating modules in a LSTM network.

The core idea behind the design of the LSTM network is the cell state, where information can be removed

or added. In contrast, other structures (so-called “gates”) are designed to regulate information flow in or out

of the cell state. Details about the dynamics of the LSTM modules are beyond the purpose of this thesis but

can be easily found in studies on the behaviors of RNN and the LSTM (Ref. [78, 79]). In the PYTORCH

implementation, several LSTM layers can be used together to form a stacked LSTM, with each taking in

outputs from the previous LSTM layer, computing outputs and feeding results to the next. Outputs from the

LSTM network ([h0, . . . ,ht , . . . ]) contain output values ht from the last layer of the LSTM for each t, with

“hidden size” referring to the size of ht . Details about other configurable parameters can be found from

PYTORCH online manuals1.
1Description about the LSTM implementation from Pytorch online manual: https://pytorch.org/docs/stable/generated/torch.nn.

LSTM.html
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5.2.2 Jet Sequential Substructure Observables

In order to make use of the LSTM network, a feature engineering method is designed specifically for

jet physics by making use of the jet substructure observables. As described in Section 4.2 and Section 4.3,

the C/A declustering procedure reveals the angular-ordered pairwise substructure of a jet, on which a hard

splitting can be located by the soft drop groomer.

Once the hard splitting is located, the declustering continues on the harder subjet recursively until a subjet

can no longer be divided. This procedure is similar to the recursive soft drop [80], but without grooming on

the subleading subjet of each splitting. Note that whether to remove the subleading subjet is not studied in

this thesis. But the benefit of not doing so is that a reasonable number of the total splittings can be achieved

from the declustering procedure.

Along the desclustering, a sequence of splittings can be found, with all the harder subjets forming the fea-

ture branch as labeled in Fig. 5.12. On the feature branch, each point represents a splitting with substructure

𝑅!

Branches
Feature Branch

Groomed

Jet Border

Figure 5.12: Feature branch selected from the declustering sequence of a jet.

observables describing its kinematics. The observables include, but are not limited to, the momentum frac-

tion z, angular distance ∆R, perpendicular momentum k⊥ and invariant jet mass minv, which are all calculated
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from the pair of de-clustered subjets with

z =
min(pT,i, pT, j)

pT,i + pT, j
,

∆R =
√

(φi −φ j)2 +(ηi −η j)2,

k⊥ = min(pT,i, pT, j)∗∆R,

minv =
√
(Ei +E j)2 − (pi +p j)

2,

xt = [z,∆R,k⊥,minv],

(5.1)

where i, j denote the two subjets at the de-clustering step t. In this way, sequential vectors [x0, . . . ,xt , . . . ] are

extracted along the feature branch, and are then used in the training of a neural network.

A similar feature engineering method is utilized in this study (Ref. [81]), where Lund coordinates (lnzθ ,

−lnθ ) are extracted from the C/A declustering sequence of jets and are used in the training of an RNN. Ideas

are the same, as sequential observables obtained from jet declustering can describe the kinematics of parton

showering. Note that the Lund coordinates form a subset of the feature vector xt .

5.3 Supervised Machine Learning

In order to apply the machine learning method in jet physics, the best practice is to start from a simple

classification problem. In this thesis, the machine learning approach to the identification of quenched jets

against vacuum jets is studied only with simulations. A similar study has been done (Ref. [81]), focusing on

different neural network architectures and their performances, while thermal backgrounds or event biases are

not taken into consideration.

As described in Chapter 3, jets are clustered from background-subtracted events that are mixed from dijet

events and thermal background events. Jets associated with the PYTHIA event generator are labeled with 0,

referring to as the vacuum (non-quenched) jets or the negative class. In contrast, jets associated with the
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JEWEL event generator are labeled with 1 and are referred to as the quenched jets or the positive class. In

addition to a label indicating whether the jet is quenched, each jet has a weight that is scaled from the weight

of the dijet event given by its generator. Such event weight is typically proportional to its cross-section. In

this thesis, the weight of a jet is calculated as the event cross-section divided by the total, meaning that the

weights of the whole class sum up to 1. Note that by doing this, the relative weights instead of the absolute

cross-sections are used in the next step, that is, the loss calculation. Weights are used for compensation due to

biased selection towards high pt dijet events at the generator level. It should be pointed out that simulations

with biases and weights are common practices in Monte Carlo simulations as more samples from interested

phase space can be generated to gain statistical benefits. In this thesis, a machine learning approach suitable

to such simulations is designed, with weights taking roles in the loss calculation, which will be discussed in

the next section. As for real experimental data, weights can be simply downgraded to 1.

A total number of 400k embedded events are simulated with PYTHIA and are divided into halves. Inclu-

sive jets over 120 GeV clustered from events of each half are organized into a training set and a validation

set. This procedure is also applied in simulations with JEWEL. A jet pT cut of pT > 200 GeV and a cut on

the jet substructure observable Rg > 0.1 are applied. In addition, jets with only one constituent are discarded.

The total numbers of jets with and without cuts are listed in Tab. 5.1.

No. of Jets Training Set Validation Set
PYTHIA+Mid-central 43203 / 314814 43034 / 314533
PYTHIA+Most-central 42535 / 310332 42272 / 310276
JEWEL+Mid-central 52908 / 302280 52500 / 302707
JEWEL+Most-central 52954 / 298675 52967 / 298876

Table 5.1: Description of datasets used in training and validation, w/ and w/o cuts.

5.3.1 Training of a neural network

A neural network has built-in learnable parameters (weights and biases) and is able to map high dimen-

sional input data to a vector of values. In this way, predictions on the categories of the inputs are made. But a
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neural network is not able to achieve this on initialization. In the training process, those learnable parameters

are adjusted on the guidance of a loss function.

The loss function should work in a way that can quantify how well a neural network works in making

correct predictions. The commonly used loss functions in binary classification are the mean square error

(MSE) loss function1 and the binary cross entropy (BCE) loss function2, described by

lMSE =

∑
batch

ωi ∗ (xi − yi)
2

∑
batch

ωi
,

lBCE =

∑
batch

ωi ∗ (yilogxi +(1− yi)log(1− xi))

∑
batch

ωi
,

(5.2)

where xi,yi,ωi refer to the predictive label, the truth label and the input weight of the sample with index i.

As a typical practice, the loss is summed over samples in a batch with its size determined by the parameter

“batch size”.

Batched samples taken by RNN are required to have the same lengths. In this thesis, post-sequence

paddings are added to the samples in a batch, such that samples have equal lengths. Discussion about padding

is in Appendix A. The mean square error (MSE) loss function is used. Discussion about the two loss functions

is in Appendix B.

The training of a neural network involves the following steps:

1. Randomly select a number of samples from both the positive and the negative classes to form a batched

input.

2. The neural network takes the batched input and gives predictive label for each sample in the batch.

3. Calculate the training loss (MSE or BCE) based on the predictive label from the neural network and

1Details about MSE can be found: https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html.
2Details about BCE can be found: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html.
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the truth label.

4. Adjust the learnable parameters of the neural network, such that the training loss is decreasing over

training steps. For illustration, the training loss as a function of training steps is plotted in Fig. 5.13.

Figure 5.13: Example of training loss (MSE) decreasing in the training of a neural network.

5.3.2 Validation and Hyper-tuning

In machine learning, validation is referred to as the procedure where a trained model is assessed with a

validation dataset. The validation loss (MSE or BCE) is calculated with the given validation dataset as the

measurement of the performance of a trained neural network. The validation dataset differs from the training

dataset to guarantee the best model picked in the validation has no way to memorize the training dataset.

Validation loss is used in the so-called hyper-tuning of a neural network. Unlike the learnable parameters,

which can be adjusted in the training process, hyper-parameters can not be adjusted during the training. Thus,

hyper-tunning refers to the strategy of optimizing the neural network by selecting a hyper-parameter set. In
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this thesis, hyperparameters related to the architecture of a neural network and its training are tuned with the

HYPEROPT [82] package.

The LSTM neural network is built with stacked LSTM layers and full-connect layers. The hidden size

of the LSTM layer, as described in Section 5.2.1, is the size of the output vector ht at step t. The output of

the last step from the top LSTM layer is directed to two full-connect layers. Thus the input dimension of the

first full-connect layer is equal to the hidden size of the LSTM neural network. The output dimension of the

first full-connect layer is equal to the input dimension of the second. Both the input and output dimensions

of the first full-connect layer, with the former being equal to the hidden size of the LSTM layer, are the

hyper-parameters defining the architecture of the neural network.

During the training, the training dataset is used multiple times, with each named as an epoch. In an

epoch, the dataset is shuffled in order to increase the randomness. The training process stops once the total

training epochs reach a maximum. The total training steps in one epoch can then be calculated as the size

of the training dataset divided by the batch size. After each step, the neural network will adjust its learnable

parameters, where the learning rate controls how much the parameters should be changed. After each epoch,

the learning rate reduces based on a given decay factor. The number of maximum training epochs, the batch

size, the learning rate and its decay factor are the hyper-parameters related to the training process.

We scan over the hyper-parameter search space 50 times and arrange 3 times of training for each hyper-

parameter set. The trained model with minimal validation loss is selected as the best. The distribution

of validation loss for different hyper-parameter options is displayed using violin plots, showing both the

probability density of validation loss and its quartiles, as shown in Fig. 5.14. The full hyper-parameter sets

and their optimal values are listed in Tab. 5.2.
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Figure 5.14: Distribution of validation loss for different architecture configurations, for the mid-central mix-
ing (left) and the most-central mixing (right) respectively. The best models are indicated in red. The outer
possibility density contour cuts off at min/max values. The inner white point represents the median value.
The inner thick bar shows the first and the third quartiles.

Parameters Mid-central Most-central
No. of LSTM Layers 2 2

FC Dim 1 16 18
FC Dim 2 4 8

No. of Epochs 50 45
Batch Size 10000 18000

Learning Rate 0.0250 0.0371
Decay Factor 0.9689 0.9896

Table 5.2: List of hyper-parameters related to neural network architecture and the training process and their
optimal values after hyper-tuning.

5.4 Robustness

A trained neural network can be used as a classifier, making predictions about how quenched a jet is on

a jet-by-jet basis. It is noticed the distributions of raw LSTM output from trained neural networks exhibit a

non-deterministic behavior in the metric. During the training, samples of the negative class are labeled with

0, while samples of the positive class are labeled with 1, without intermediate labels in between. Thus the

metric that quantifies the quenching effect suffers from the stochastic nature of machine learning, rooted in

the randomness of selecting samples to form a batch. A calibration method is designed to solve the non-

determinism issue.
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In binary classification, the predictive labels are either positive (P) or negative (N). Thus four possible

situations could happen as a combination of the predictive labels and the true labels, as shown in Fig. 5.15. If

the prediction is P and the actual value is also P, then it is called a true positive (TP); however, if the actual

value is N then it is said to be a false positive (FP). Conversely, a true negative (TN) occurs when both the

prediction outcome and the actual value are N, and false negative (FN) is when the prediction outcome is N

while the actual value is P. With a given threshold, The true positive rate (TPR) and the false positive rate

(FPR) hence are defined as,

T PR =
T P

T P+FN
,

FPR =
FP

FP+T N
.

(5.3)

Considering that the selection of thresholds for classification affects the predictive labels, a curve of TPR

Figure 5.15: Outcomes in binary classification, where x is the “score” given by the classifier, Y is the true
label and Ŷ is the predictive label inferred from x and a threshold.

versus FPR at various thresholds can be plotted, as shown in Fig. 5.16. Such plot is named as the receiver

operating curve (ROC), with the area under the curve (AUC) showing the performance of the classifier.

A universal threshold for the binary classification across all trained neural networks is not achievable. In

order to solve the non-determinism issue, a calibration method is designed with the help of the ROC curve.

To better explain how thresholds can be determined from the ROC curve, three points are plotted, with each
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Figure 5.16: The receiver operating curve (ROC) in binary classification, with a bigger area under curve
(AUC) being a better classifier.

associated with a specific T PR or FPR, as shown in Fig. 5.17. The threshold associated with T PR = 0.4

(marked in red) can divide samples of the positive class into two subsets at a 60/40 ratio. In contrast, the

threshold associated with FPR = 0.6 (marked in blue) can divide the samples of the negative class into two

subsets at a 60/40 ratio. The point marked in green is the closest point to the upper left corner of the ROC

curve, with its inferred threshold being commonly selected for binary classification.

The calibration method is designed such that samples of the negative class are uniformly distributed

along with the newly established metric. Meanwhile, the relative quantitive relationships between samples’

raw LSTM output are kept in order. The new metric is bound to FPR; meanwhile the threshold on the raw

LSTM output corresponding to a specific FPR value can be determined from the ROC curve. The distribution

of the raw LSTM output from trained neural networks and their values after calibration are shown in Fig. 5.17.

It can be seen that such a calibration method produces almost identical distributions of the calibrated LSTM

values for three well-trained classifiers.
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Choice of the threshold is based on the purpose of division. In later analysis, the threshold associated

with T PR = 0.4 is used to divide the positive class into two subsets, one subset of which all the samples pass

the threshold and another. The differences between samples of the two subsets are shown in the next chapter.
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Figure 5.17: Distributions of the raw LSTM output from top 3 best trained neural networks (top), and dis-
tributions of calibrated values (mid), each with three thresholds corresponding to points on the ROC curve
(bottom).
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CHAPTER 6

Results

Samples of the positive class (JEWEL) are divided into two subsets, consisting of top 40% and bottom 60%

samples respectively, based on raw LSTM output. To better understand the relation between LSTM output

and quenching effects, we plot the distributions of substructure variables of the groomed jets (Fig. 6.1) and

primary Lund plane density for the hard splittings after grooming (Fig. 6.2), for two subsets separately. In

contrast, samples of the negative class (PYTHIA 8) serve as a baseline and are compared.

These two subsets of samples have shown quenching effects at different levels. The top 40% samples

of the positive class show severe modification on the jet substructure with enhancement on wider and softer

splittings. In comparison, the bottom 60% samples exhibit a quenching pattern that is similar to that of the

negative class. Two neural networks that are trained at two different multiplicity scenarios behave consis-

tently and show similar abilities in quantifying quenching effects, which is exciting as this machine learning

approach doesn’t suffer much from the density of uncorrelated underlying events. Such robustness against

thermal background density may benefit from the soft drop declustering, as it exhibits high purity in locating

the hard splitting for selected phase space, as studied in Ref. [73].

Our study has shown a promising machine learning approach to identifying quenching effects in the

presence of uncorrelated underlying events. Sequential sub-structure variables extracted from jet clustering

history carry information about the parton showering process with or without quenching effects and can be

learned by an LSTM neural network. The well-trained neural network can then be used to select jets at dif-

ferent quenching levels. We also studied the non-deterministic behavior which happened with the supervised

machine learning algorithm. With the help of the ROC curve, a calibration method is designed to avoid

84



0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

g
dzdN  

N1

Mixed with Mid-central BG
 [200,400] GeV∈

T,jet
 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8
Jewel (Top 40%)
Jewel (Bot 60%)

0.1 0.2 0.3 0.4 0.5

gz

0

0.5

1

1.5

R
at

io

Jewel (Top 40%) / Pythia8
Jewel (Bot 60%) / Pythia8

0.1 0.2 0.3 0.4

2

4

6

8

10

g
dRdN  

N1

Mixed with Mid-central BG
 [200,400] GeV∈

T,jet
 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8
Jewel (Top 40%)
Jewel (Bot 60%)

0.1 0.2 0.3 0.4

gR

0

0.5

1

1.5

R
at

io

Jewel (Top 40%) / Pythia8
Jewel (Bot 60%) / Pythia8

0.05 0.1 0.15 0.2 0.25

2

4

6

8

10

12

14

16

T
,je

t
/p g

dm
dN

 
N1

Mixed with Mid-central BG
 [200,400] GeV∈

T,jet
 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8
Jewel (Top 40%)
Jewel (Bot 60%)

0.05 0.1 0.15 0.2 0.25

T,jet
/pgm

0

1

2

R
at

io

Jewel (Top 40%) / Pythia8
Jewel (Bot 60%) / Pythia8

0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

g
dzdN  

N1

Mixed with Most-central BG
 [200,400] GeV∈

T,jet
 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8
Jewel (Top 40%)
Jewel (Bot 60%)

0.1 0.2 0.3 0.4 0.5

gz

0

0.5

1

1.5

R
at

io

Jewel (Top 40%) / Pythia8
Jewel (Bot 60%) / Pythia8

0.1 0.2 0.3 0.4

2

4

6

8

10

g
dRdN  

N1

Mixed with Most-central BG
 [200,400] GeV∈

T,jet
 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8
Jewel (Top 40%)
Jewel (Bot 60%)

0.1 0.2 0.3 0.4

gR

0

0.5

1

1.5

R
at

io

Jewel (Top 40%) / Pythia8
Jewel (Bot 60%) / Pythia8

0.05 0.1 0.15 0.2 0.25

2

4

6

8

10

12

14

16

T
,je

t
/p g

dm
dN

 
N1

Mixed with Most-central BG
 [200,400] GeV∈

T,jet
 R = 0.4, pTanti-k

 > 0.1
g

=0., Rβ=0.1 
cut

Soft Drop z

Pythia8
Jewel (Top 40%)
Jewel (Bot 60%)

0.05 0.1 0.15 0.2 0.25

T,jet
/pgm

0

1

2

R
at

io

Jewel (Top 40%) / Pythia8
Jewel (Bot 60%) / Pythia8

Figure 6.1: Distribution of the substructure variables of the groomed jets in the mid-central events (top) and
the most-central events (bottom). Samples of the positive class (JEWEL) are plotted with stacked histograms.
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Figure 6.2: Primary Lund plane density for top 40% Jewel samples (left) and bottom 60% Jewel samples
(right). Plots for the mid-central and the most-central mixing scenarios are shown on the upper and lower
panels respectively.
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non-determinism.

A well-trained neural network is capable of quantifying quenching effects, making it possible to divide

jets simulated from a quenching model (JEWEL) into two subsets. The two separated subsets of jets have

shown differences in substructure variables related to two different parton showering patterns. A vacuum-

like pattern, similar to what is implemented in PYTHIA 8, and a medium-like pattern, which produces highly

quenched jets.

The procedure of extracting sequential substructure variables can be used as a general feature engineer-

ing method on jets. The techniques involved in the study, such as the background subtraction and the jet

grooming, have been previously applied to experimental data and their effectiveness is well-studied. Thus,

our machine learning approach is very promising in the exploration of different jet classification topics with

real experimental data.
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Appendix A

Appendix: Sequence Padding

Considering that the sequential data in the same batch may have various lengths, thus they should be

padded to equal lengths, before being processed by RNN. Typical padding methods include the pre-sequence

padding and the post-sequence padding, as shown in Fig. A.1.

Figure A.1: Illustration of the pre-sequence and the post-sequence padding.

In this thesis, the feature vector refers to the vector xt containing jet substructure observables at declutter-

ing step t. Post-sequence pads of zeros are added to sequences in the same batch, such that all sequences are in

equal lengths, the same as the longest sequence in the batch. The PYTORCH framework has implementations

on the post-sequence padding1.

Note that the padding procedure is applied only in the training and the validation of a neural network,

during which samples are selected to form a batch. When using the trained neural network as a classifier,

predictive label is made based on only one sequence, thus no padding is needed.

In addition, how padding affects the predictive labels given by a neural network is not studied. It’s noticed

by the author that the predictive labels can be slightly different with and without padding.

1Details can be found: https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad sequence.html.
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Appendix B

Appendix: Loss Functions

Both the mean square error (MSE) and the binary cross entropy (BCE) loss functions (Eq. 5.2) are able

to guide the neural network to learn, with each having their advantages and disadvantages.

It should be pointed out that in the BCE loss function, the loss value is capped at a specific value in order

to avoid infinity when xi or yi goes to 0 or 1, as described in the PYTORCH online maunal1. But the feature of

BCE loss function still persists, as significant loss when xi differs from yi is contributed to the total training

loss. As a result, fast convergence could be easily reached when training a neural network with the BCE loss

function. While this feature may leads to bad noise tolerance with wrongly labeled samples. The choice of

the loss function is made with compromises between training speed and noise tolerance. In this study, the

MSE loss function is used.

The comparison between networks trained with BCE and MSE is vague. To achieve so, additional metrics

on the performance of well-trained neural networks are required.

1Details can be found: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html.
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(Curran Associates, Inc., 2019) pp. 8024–8035.

[8] L. Liu, Github repository for jet quenching studies with machine learning, (2022), https://github.com/
ustcllh/JetML.

[9] M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, et al. (Particle Data Group), Review of particle
physics, Phys. Rev. D 98, 030001 (2018).

[10] J. D. Bjorken, Highly relativistic nucleus-nucleus collisions: The central rapidity region, Phys. Rev. D
27, 140 (1983).

[11] J. Rafelski and B. Müller, Strangeness production in the quark-gluon plasma, Phys. Rev. Lett. 56, 2334
(1986).

[12] L. D. McLerran and T. Toimela, Photon and dilepton emission from the quark-gluon plasma: Some
general considerations, Phys. Rev. D 31, 545 (1985).

[13] T. Matsui and H. Satz, J/ψ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B 178, 416
(1986).

[14] J. D. Bjorken, Energy Loss of Energetic Partons in Quark - Gluon Plasma: Possible Extinction of High
p(t) Jets in Hadron - Hadron Collisions, (1982).

[15] M. C. Abreu et al. (NA50), Anomalous J / psi suppression in Pb - Pb interactions at 158 GeV/c per
nucleon, Phys. Lett. B 410, 337 (1997).

[16] E. Andersen et al. (WA97), Strangeness enhancement at mid-rapidity in Pb Pb collisions at 158-A-
GeV/c, Phys. Lett. B 449, 401 (1999).

[17] CERN, New state of matter created at cern, (2000), https://home.cern/news/press-release/cern/
new-state-matter-created-cern, Accessed = 2022-06-12.

90

http://dx.doi.org/ 10.1038/nature05120
http://arxiv.org/abs/hep-lat/0611014
http://arxiv.org/abs/hep-lat/0611014
http://dx.doi.org/10.1038/s41567-020-0914-9
http://dx.doi.org/ 10.1103/PhysRevLett.124.171103
http://dx.doi.org/10.1103/PhysRevLett.119.132003
http://arxiv.org/abs/1704.05066
http://dx.doi.org/10.1103/PhysRevD.96.074003
http://arxiv.org/abs/1704.05842
http://dx.doi.org/10.1103/PhysRevLett.120.142302
http://arxiv.org/abs/1708.09429
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/ustcllh/JetML
https://github.com/ustcllh/JetML
https://github.com/ustcllh/JetML
http://dx.doi.org/ 10.1103/PhysRevD.98.030001
http://dx.doi.org/ 10.1103/PhysRevD.27.140
http://dx.doi.org/ 10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevLett.56.2334
http://dx.doi.org/10.1103/PhysRevLett.56.2334
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1016/0370-2693(86)91404-8
http://dx.doi.org/10.1016/0370-2693(86)91404-8
http://dx.doi.org/ 10.1016/S0370-2693(97)00915-5
http://dx.doi.org/10.1016/S0370-2693(99)00140-9
https://home.cern/news/press-release/cern/new-state-matter-created-cern
https://home.cern/news/press-release/cern/new-state-matter-created-cern
https://home.cern/news/press-release/cern/new-state-matter-created-cern


[18] M. Gyulassy, in NATO Advanced Study Institute: Structure and Dynamics of Elementary Matter (2004)
pp. 159–182, arXiv:nucl-th/0403032 .

[19] BRAHMS Collaboration, Quark gluon plasma and color glass condensate at RHIC? The Perspective
from the BRAHMS experiment, Nucl. Phys. A 757, 1 (2005), arXiv:nucl-ex/0410020 .

[20] PHENIX Collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions
at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757, 184 (2005),
arXiv:nucl-ex/0410003 .

[21] P. Collaboration, The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757, 28 (2005),
arXiv:nucl-ex/0410022 .

[22] STAR Collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma:
The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757,
102 (2005), arXiv:nucl-ex/0501009 .

[23] P. Foka and M. A. Janik, An overview of experimental results from ultra-relativistic heavy-ion collisions
at the CERN LHC: Hard probes, Rev. Phys. 1, 172 (2016), arXiv:1702.07231 [hep-ex] .

[24] M. G. Alford, K. Rajagopal, and F. Wilczek, QCD at finite baryon density: Nucleon droplets and color
superconductivity, Phys. Lett. B 422, 247 (1998), arXiv:hep-ph/9711395 .
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