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CHAPTER 1

Introduction

1.1 Abstract

Second-generation p-values (SGPVs) have been proposed and discussed in the literature as an alternative

inferential statistic to indicate when the data support the null or alternative hypothesis, or when the data are

inconclusive. As they are inferentially non-denominational, SGPVs can be used with frequentists, likeli-

hood or Bayesian methods. This dissertation compares the behavior of SGPVs to classical equivalence tests,

explores the operational characteristics of SGPV for study planning, and presents a tool for flexible false

discovery rate computations for classical p-values.

First, we derive the mathematical relationship between SGPVs and traditional equivalence testing. We

provide a conceptual framework for comparing the two approaches and conclude that the flexibility of the

second-generation p-value framework offers notable advantages including ease of use, clear interpretation,

and improved statistical properties. Second, we investigate different ways to specify the ”interval null hy-

pothesis” or indifference zone that is critical to the second-generation p-value (SGPV). We propose allowing

the indifference zone to shrink as the sample size grows as a way of mitigating collaborator uncertainty about

the indifference zone. Shrinking the indifference zone can balance the power and errors in a classical sense,

but it is only practically useful in certain settings. Third, we introduce a new user-friendly R package for esti-

mating FDRs and computing adjusted p-values for FDR control. A key contribution of this package is that it

distinguishes between these two quantities while also offering several refined algorithms for estimating them.

In conclusion, this work identifies the most flexible and easy-to-use method for establishing equivalence,

proposes a new concept to adjust for collaborator uncertainty in SGPV methods, and creates a new user-

friendly package for computing FDRs and adjusted p-values. The motivation behind these contributions is

that the reporting of second-generation p-values and false discovery rates greatly improves the dissemination,

transparency, and accessibility of statistical analyses.

1.2 Summary of Work

A statistician’s role is to choose an analysis method appropriate for dataset and the collaborator’s hypothesis

and then be able to explain this method and the results to the collaborator. Complexities in the data and

inherent communication gaps within research teams can make this a difficult process. We want to explore

ways to improve transparency and accessibility of statisticians’ analyses. This is a very broad goal so in

this dissertation we focus on two specific statistical areas, interval null hypotheses and false discovery rates.
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These two methods have been discussed in academic literature since the 1980s and have been widely used in

practice.

Traditionally, an analysis compares data to a single value statistic like a mean. For example, the reported

average height of American women is 5 foot 4 inches (Fryar et al., 2018). When a random sample’s average

height is compared to the reported national average this is called a point null hypothesis. Almost never do we

find absolute equivalence between the data and the point null hypothesis. Therefore sometimes it is beneficial

to change this point null hypothesis so that when the data is ”close enough” we still conclude equivalence.

We call this a region of practical equivalence or an interval null.

Two methods that use the interval null framework are equivalence tests and second-generation p-values.

The Journal of Pharmacokinetics and Biopharmaceutics first introduced equivalence tests as a way to establish

bioequivalence in 1984 (Hauck and Anderson, 1984). There are many popular versions of equivalence tests

but we will focus on the frequentist Two-One Sided t-Tests (TOST) (Schuirmann, 1987). The TOST reports

when a data driven confidence interval is contained within the interval null. In 2018 second-generation p-

values (SGPVs) were proposed to indicate when the data support the null or alternative hypothesis, or when

the data are inconclusive (Blume et al., 2018). SGPVs are inferentially non-denominational, as they use any

data driven interval; a frequentist confidence interval, a likelihood support interval, or a Bayesian credible

interval.

In the first paper we identify the most flexible and easy-to-use method for establishing statistical equiva-

lence with an interval null hypothesis. A thorough investigation is done to compare the behavior of second-

generation p-values to classical equivalence tests. This includes the derivation of the mathematical relation-

ship between SGPVs and traditional equivalence testing. We also compare the large sample size behavior,

Type 1 error, and power between these methods. We conclude that the flexibility of the second-generation p-

value framework offers notable advantages including ease of use, clear interpretation, and improved statistical

properties. This detailed comparison clarifies the properties and difference between SGPVs and equivalence

tests. This paper will help statisticians to decide what method to use to establish equivalence.

In the second paper we propose a technique to address the complexities of study planning with a col-

laborator. The collaborator can be confident, uncertain, or unable to make a hypothesis; or in the SGPV

context, to identify an indifference zone. We investigate how different ways of specifying the interval null

hypothesis in second-generation p-value (SGPV) analyses change the statistical properties of the test. Then

after examining these results we propose allowing the indifference zone to shrink as the sample size grows

as a way of mitigating collaborator uncertainty about the indifference zone. Shrinking the indifference zone

can balance the power and errors in a classical sense. However, we only suggest shrinking of the indifference

zone in certain settings when the collaborator is uncertain in the indifference zone. When the collaborator

2



is confident in a hypothesized indifference zone then the statistician should use the collaborator’s specified

interval. Our recommendations given for different levels of collaborator uncertainty allow the statistician to

obtain the most accurate test results and conclusions.

Another commonly discussed area of statistics is multiple comparisons or multiple testing in large-scale

datasets. Classical p-values can be adjusted to maintain control of the family-wise error rate (FWER) (Tukey,

1953). However in large-scale inference this FWER control can come at the cost of Type II Error rate

inflation. Instead it has become common practice to control the false discovery rate (FDR) instead of the

FWER in these settings because its Type II Error rate inflation is much less severe (Benjamini and Hochberg,

1995). The FDR is the propensity for an observed result to be mistaken and FDR estimates should accompany

observed results to help the user contextualize the impact of findings. It is also important to note that in

practice methods for controlling the FDR are often confused with the methods used to provide an estimate of

the FDR for a particular result.

In our third and final paper we present a tool for flexible and transparent false discovery rate computation

for classical p-values. This new user-friendly R package is titled ”FDRestimation” and can be found on

CRAN. It can be used to estimate FDRs and compute adjusted p-values for FDR control. This package clearly

distinguishes between these two quantities while also offering several adjustment methods like Benjamini-

Hochberg, Benjamini-Yekutieli, Bonferroni, Sidak, and others. In addition, this package can be used to

estimate the null proportion, which is a value used in FDR computation, for a given dataset using many

previously proposed methods. In this paper we also propose a new method for null proportion estimation

called ”Last Histogram Height”. In conclusion we strongly encourage more transparent reporting of false

discovery rates for observed findings.

To summarize, in this dissertation we identify the most flexible and easy-to-use method for establishing

statistical equivalence with an interval null hypothesis, we propose a technique to address the complexities

of study planning for SGPVs with collaborator uncertainty, and we present a tool for flexible and transpar-

ent false discovery rate computation for classical p-values. These contributions greatly improve statistical

practice and the transparency of results being communicated with collaborators.
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CHAPTER 2

Establishing Statistical Equivalence:

A Comparison of Second-generation p-values and Equivalence Tests

2.1 Abstract

Equivalence testing has been well-established and used widely in psychology and clinical trial research since

1980s. More recently Blume and collaborators proposed second-generation p-values (SGPVs) to address the

known flaws of the classical p-value. The framework employed in both of these methods uses an interval null

or indifference zone, which indicates a region of practical equivalence, instead of the traditional use of a single

point null. Given that statisticians choose which the methods they apply, a thorough comparison of the two

approaches is warranted. In this paper we establish the conceptual and technical relationship between these

two methods. We have derived the direct mathematical connection between the reported p-values for SGPV

and equivalence tests. This derivation has not been shown in previous literature and we feel it is essential in

understanding the difference in the two methods. We have also compared large sample size behavior, Type 1

error, and power between these methods. We conclude that while connections between the methods do exist,

the flexibility of the second-generation p-value framework offers notable advantages including ease of use,

clear interpretation, and desirable statistical properties.

Keywords

Second-generation p-values, equivalence tests, Two One Sided Tests, interval null, evidence, bioequivalent
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2.2 Introduction

In a typical work flow, statisticians analyze a dataset to see if it matches some assumed or expected behavior.

This analysis commonly characterizes the data with a single value, such as mean value or odds ratio. In

practice, absolute equivalence between the data and a single value or ”point null hypothesis” is rarely found.

Some practitioners may think an estimated parameter is ”close enough” to the point null in order to form their

conclusions. This region of practical equivalence must be identified by a collaborator before looking at the

data. Two methods that use this framework are equivalence tests and second-generation p-values.

Equivalence tests were first introduced in the Journal of Pharmacokinetics and Biopharmaceutics in 1984

(Hauck and Anderson, 1984). The main purpose of these tests was to establish bioequivalence; for example

when a pharmaceutical company is testing for drug approval they compare the new drug’s performance to

an older approved drug’s performance (Kirkwood and Westlake, 1981; Rogers et al., 1993). There are many

different proposed versions of equivalence tests. The most well-known tests include the Kirkwood and West-

lake’s test of mean equivalence using a confidence interval for the difference in two means (Kirkwood and

Westlake, 1981), the frequentist Two-One Sided t-Tests (TOST) (Schuirmann, 1987), the test of Anderson

and Hauck (Hauck and Anderson, 1984), the test of Berger and Hsu(Berger and Hsu, 1996), and even the

Bayesian Region of Practical Equivalence (ROPE) (Kruschke, 2018). In this paper we will focus our compar-

ison between SGPV and equivalence tests specifically on the TOST method. Some literature has criticized

equivalence tests for their poor statistical behavior and cautioned users to avoid it (Berger and Hsu, 1996;

Ennis and Ennis, 2010; Perlman and Wu, 1999; Meyners, 2012). In this paper we will address and clarify

some of these concerns.

The second-generation p-value (SGPV) method was proposed to use a region of practical equivalence

instead of a point null hypothesis. The SGPV method was first introduced in 2018 as a way to measure ”the

proportion of data-supported hypotheses that are null” (Blume et al., 2018, 2019). This proportion is included

in the reported p-value and final inference outcome as a measure of overlap between the data interval and the

indifference zone. The reported p-values from the SGPV method, contained in the unit interval, indicate

when the data are consistent with an alternative hypothesis (∼ 0), when the data are inconclusive (∼ 0.5),

or when the data are consistent with a null hypothesis (∼ 1). Even though this is a fairly new method it has

generated great interest and has a variety of uses.

2.2.1 Inference Outcomes

Both SGPVs and equivalence tests compare a data driven interval to a pre-specified scientifically relevant

indifference zone or equivalence range. It is of interest to know exactly how these two methods are related to

one another.
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Table 2.1: Inference outcome comparison table between equivalence tests and SGPVs. Equivalence testing
yields two evidential outcomes while SGPVs yield three outcomes. This is shown with the first row, ”Consis-
tent with the alternative”, not being applicable for equivalence p-values. This is a critical distinction in favor
of SGPVs interpretation.

To begin this comparison, we must answer the question whether equivalence tests provide the same infor-

mation as SGPVs. The answer to this question is visualized in Table 2.1. For inference purposes we assume

the null is that the data agrees or is practically equivalent with the indifference zone. The three outcomes

include data being consistent with the null, the data being inconclusive, and the data being consistent with

the alternative. In Table 2.1 we see that it is possible for the SGPV to report all three outcomes, whereas the

equivalence tests can only report two of these outcomes: data being consistent with the null or inconclusive.

For the user this means when using an equivalence test, for example the TOST, they can never conclude or

report that the data is consistent with the alternative. The user can also never conclude non-equivalence or a

difference with the interval null.

Next, to help visualize this comparison in the p-value space Figure 2.1 shows a simple simulated example.

Data was simulated 500 times under the true point null, N(0,1), with sample size of n=6 and tested against

the indifference zone [θ−,θ+]=[-0.375,0.375]. SGPVs were computed using the ”sgpv” R package Welty

et al. (2020) and TOST reported p-values were computed using the ”TOSTER” R package (Lakens and

Caldwell, 2022). In Figure 2.1 the majority of p-values occur in three of the zones in this six-zone grid.
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Figure 2.1: Graph of simulated SGPVs versus reported TOST p-values. In this example there are 500 iter-
ations of sample size of n=6 for random data generated under the point null, N(0,1), and tested against the
indifference zone [θ−,θ+]=[-0.375,0.375].

These most common zones include the zone labelled ”D” in which is SGPV consistent with the alternative and

equivalence tests inconclusive, the ”E” zone which both SGPV and equivalence tests are inconclusive, and the

”J” zone which is both SGPV and equivalence tests consistent with the null. In zone ”D” the SGPV and TOST

tests differ in their inference outcomes. Having an additional inference outcome of data being consistent with

the alternative is a major conceptual advantage for SGPV over equivalence tests. This differentiation in

number of possible outcomes makes a level comparison theoretically impossible. We continue on with the

comparison even with this inconsistency to ensure thorough investigation before presenting our final opinions

and recommendations.

2.3 Background/Methods

2.3.1 Setup and Notation

To clarify notation the user is interested in learning about the difference between two populations, this differ-

ence is represented by parameter θ . For example, θ is often the difference in population means θ = µ1−µ2 or

relative risk θ = p1/p2 . The user starts by collecting data x = (x1, ...,xn), from which an uncertainty interval

for the population difference, θ , is constructed, this will be denoted as Ix = (I−x , I+x ). For example, Ix might be

a confidence interval, credible interval or likelihood support interval for the difference in population means.

For the ease of exposition, in this paper we will assume that Ix is a 95% confidence interval for the difference

in means. The null hypothesis can be written as H0 : θ = θ0. For example, when considering equivalence
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Figure 2.2: Line graph showing the indifference zone, equivalence range or interval null.

between the two populations, for the difference in population means we would typically set θ0 = 0 or for the

relative risk θ0 = 1. This is called a ”strong” null hypothesis because it states that the population parameters

must be exactly equal to be considered null.

However, it is often the case that we only care if the populations means are ”close enough”, in the sense

that θ is near θ0, which we write as θ− ≤ θ ≤ θ+. Here [θ−,θ+] is an indifference region or a region of

practical equivalence around the point null of θ0. In this context if the difference in the data populations is

within this zone, we treat the populations as if they were equal. Thus, what we really have is an interval null

hypothesis that states that H0 : θ− ≤ θ ≤ θ+ and we want to report or measure how consistent the data are

with this null interval. Figure 2.2 illustrates this interval null or indifference zone. The area outside [θ−,θ+]

is considered the alternative hypothesis or the range of non-equivalence (difference).

An important wrinkle for statistical procedures is that when hypothesis testing investigators often want to

measure the evidence for the null hypothesis. Of course, this is a hypothesis testing no-no (Fisher, 1959). It

is strictly not allowed, as large p-values indicate that the data are inconclusive, and small p-values indicate

that the data different from the null or are consistent with the alternative. p-values can never be interpreted as

representing evidence for the null hypothesis. Equivalence testing methods came up with a creative solution

to this problem. They flip the null and implicit alternative hypotheses. As such, we now have H0 : (θ < θ−

or θ > θ+) so that the new null is the old implicit alternative and the new implicit alternative is the old null;

H1 : (θ ≥ θ− and θ ≤ θ+), or more clearly H1 : θ− ≤ θ ≤ θ+. Hence rejecting an equivalence test because of

a small or significant p-value now means we have evidence that data are equivalent to the indifference zone.

One specific equivalence test that flips the null and the implicit alternative is the TOST procedure. However,

there are other methods, such as the SGPV, available where the null hypothesis is not flipped but can still

conclude evidence for data equivalence.

2.3.2 Second-generation p-values

The aim of the second-generation p-value method (SGPV) is to measure the fraction of data-supported effect

sizes that are within the indifference zone (Blume et al., 2018, 2019). To do this the uncertainty interval, Ix,

is compared to the indifference zone, [θ−,θ+] by computing the amount of overlap between these intervals.
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Figure 2.3: Illustration of the four cases of overlap between the indifference zone and the uncertainty interval
and their corresponding SGPVs.

Equation 2.1 shows the reported second-generation p-value formula where H0 = [θ−,θ+] and (Ix∩H0) is the

intersection or overlap of the two intervals. The function denoted with f (x) = |x| returns the length of the

interval or section of overlap.

pδ =
|Ix∩H0|
|Ix|

×max
{
|Ix|

2|H0|
,1
}

(2.1)

In Equation 2.1 the fraction of length of overlap to length of indifference zone is multiplied by a correction

factor. This correction factor applies when |Ix| > 2|H0| meaning the uncertainty interval is very wide in

comparison to the null interval. When the data are ”sufficiently precise” or the uncertainty interval length is

|Ix| ≤ 2|H0|, the SGPV is simply the fraction of overlap, pδ = |Ix∩H0|
|Ix| (Blume et al., 2018).

There are three inference interpretations for pδ when data are inconclusive we have 0< pδ < 1, when data

are consistent with the alternative we have pδ = 0, and when data are consistent with the null or indifference

zone we have pδ = 1. For SGPV there are four possible cases for overlap between Ix = (I−x , I+x )and H0 =

[θ−,θ+] , which is illustrated in Figure 2.3. These include no overlap, complete overlap, partial overlap from

the left, and partial overlap from the right.

As shown the indifference zone, H0 = [θ−,θ+], remains fixed while different data uncertainty intervals

are tested; this is how the method should be pictured in practice. For Case 1, or no overlap, the interpretation

is that the data are always consistent with the alternative. For Case 3 and 4 the interpretation is that the
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data are inconclusive, (0 < pδ < 1). For Case 2 the interpretation is that either the data are inconclusive,

(0 < pδ < 1), or that the data are consistent with the null, (pδ = 1). Complete overlap can be pictured in 2

different ways, either H0 ⊂ Ix or Ix ⊂ H0. In Figure 2.3 we see the first way, or Case 2a, where 0 < pδ < 1.

For Case 2b where Ix ⊂ H0 the SGPV is always pδ = 1, or the data are consistent with the null. These cases

help to understand what pδ measures and reports in practice.

2.3.3 Equivalence Tests

Equivalence tests were created to establish a similarity or practical equivalence between new data and an es-

tablished dataset or equivalence range (Kirkwood and Westlake, 1981; Mandallaz and Mau, 1981; Schuirmann,

1987; Seaman and Serlin, 1998). The most popular method introduced in 1987 is the Two One-Sided Tests

(TOST) procedure (Schuirmann, 1987). As mentioned before, the TOST procedure flips the null and alter-

native hypotheses, and tests if the data Ix = (I−x , I+x )are outside the equivalence range [θ−,θ+] (Schuirmann,

1987). This is the opposite of what the null hypothesis is testing in the SGPV method. It is flipped so that

the user can statistically conclude bioequivalence when the procedure rejects. Because of this flip, the SGPV

the reported p-values, pδ , should be compared to 1 minus the reported TOST p-value, 1− pT . This also

means when plotted against one another the reported p-value the line of equality will not be y = x but instead

y = 1− x for the unit interval x,y ∈ [0,1]. This concept will be clear in the graphs shown below.

One thing to note here is that there is no measure of overlap or length of the intervals included in this

procedure. Instead of using a measure of overlap, it must test the if the data is outside the indifference zone

twice with two different one-sided tests. First the data is tested against the lower bound of the indifference

zone (H01 : θ < θ−) and then against the upper bound of the indifference zone (H02 : θ > θ+). The tests are

ordinary, one-sided, α-level t-tests. The composite null hypothesis for the TOST is that H0 : (θ < θ−orθ >

θ+). The conclusion if both one-sided tests reject is that we reject the null (H0) and accept the alternative

H1 : (θ ≥ θ−andθ ≤ θ+) or H1 : θ ∈ [θ−,θ+] . We then conclude that our evidence is contained in the

equivalence range,Ix = (I−x , I+x )⊂ [θ−,θ+]; for example in standard practice this means the two populations

are equivalent (Schuirmann, 1987). The reported p-value, pT , associated with the TOST procedure is the

p-value of largest magnitude from the two one-sided tests, as seen in Equation 2.2.

pT = max{pT1 , pT2} (2.2)

As mentioned above there are only two inference interpretations for this method because the reported

TOST p-value has the same interpretation as a traditional p-value. Either both tests reject at some α signifi-
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cance level and we conclude the data is consistent with the equivalence range or we don’t reject both tests and

conclude the data is inconclusive. When one of the tests rejects this means one side of the data uncertainty

interval is inside the equivalence range, or partial overlap. However, if only one test rejects the method still

concludes inconclusive and reports the larger p-value. The information of partial overlap with the indiffer-

ence zone is never reported to the user. The user has no reason to believe their dataset has any overlap with

the indifference zone when seeing just the reported p-value. This reported conclusion is highly misleading.

It is important to note as originally introduced by Schuirmann if each of the one-sided tests are testing for

significance at an α− level then the conclusion is that an uncertainty interval, Ix, of (1−2α)% is contained

within the equivalence range (Schuirmann, 1987). For example, if each test is testing at an 5% level then

we conclude that the 90% uncertainty interval is contained within the equivalence range. Therefore, when

we compare the TOST and the SGPV using the same α (5%) for the tests we would draw conclusions about

different uncertainty intervals. The TOST is concluding a smaller interval, Ix, of (1−2α)% or 90%, is within

the indifference zone compared to SGPV, Ix, of (1−α)% or 95%. These are very different statements that

affect the user’s choice and interpretation of α . To be clear in this paper we will use the same α in all tests

for the following examples.

2.3.4 Relationship between SGPV and TOST

To see the extent of the relation, we simulated SGPV and TOST p-values and plotted them against one

another. This example has 500 iterations of data generated under the true point null, which is θ0=0, for the

mean using a standard normal distribution with sample size n=6. Here the indifference zone,[θ−,θ+], is set

to [-0.375,0.375], which is the middle ≈ 30% of a standard normal distribution. The points have different

shapes and shading to distinguish between cases of overlap for the indifference zone and the uncertainty

interval. Here the uncertainty interval Ix is a 95% confidence interval for the mean from a standard t-test.

In Figure 2.4 we see that TOST reported p-values and SGPVs are not one to one especially in this scenario

with a small sample size, but that there is some interesting behavior occurring. If we were to split the graph

into quadrants using x=0.5 and y=0.5, quadrants 2 and 4 have lots of data points and quadrants 1 and 3 don’t.

To when 0 ≤ pδ ≤ 0.5 then the TOST is restricted to 0.5 ≤ pT ≤ 1 and when 0.5 ≤ pδ ≤ 1 then the TOST

reported p-value is restricted to 0≤ pT ≤ 0.5. Also notice that the cases have patterns or trends. For example,

Case 1, no overlap, is clustered around pδ = 0 and pT = 1. For Case 2 points are stuck on the pδ = 0.5 line or

in the bottom right hand quadrant. The data in Cases 3 and 4 generally follow a curved line that can identify.

Because of these observed patterns we have derived the technical or mathematical connection between SGPV

and TOST reported p-values in the next section.
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Figure 2.4: Graph of same simulated data as shown in Figure 2.1 but here highlighting differences in cases
of overlap. The four cases of overlap are represented by different shapes and shading of points.

2.4 Technical Derivation

In order to truly understand the connection between the TOST and the SGPV reported p-values a mathemat-

ical link must be established. To start this derivation, we look at the second-generation p-value formula in

Equation 2.1. As a reminder the data derived uncertainty interval is denoted as Ix = (I−x , I+x ) and the prespec-

ified indifference zone is denoted as H0 = [θ−,θ+]. Here we can replace all of the length computations with

exact differences seen in Equation 2.4. However, the ”overlap length” in the numerator must remain because

the exact difference varies with different cases of overlap. We can see this more clearly by splitting Figure 2.4

up into separate cases of overlap, like in Figure 2.5.

pδ =
|Ix∩H0|
|Ix|

×max
{
|Ix|

2|H0|
,1
}

(2.3)

=
overlap length
(I+x − I−x )

×max
{

(I+x − I−x )

2(θ+−θ−)
,1
}

(2.4)

2.4.1 Case 1 (no overlap)

The first case of overlap, when there is no overlap between the uncertainty interval and indifference zone, can

be seen on the number line in Figure 2.6. Here overlap length=0 and Equation 2.4 becomes pδ = 0 no matter

what the reported TOST p-value, pT , is. For the TOST test if there is no overlap then one of the one-sided

tests will return pT very large and potentially close to 1. For the specific example shown in Figure 2.6 below

the one-sided test for H01 : θ > θ+ will return a very high p-value because the uncertainty interval is to the
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Figure 2.5: Graph of same simulated data as shown in Figure 2.1 but here split into 4 separate plots by overlap
case. This is shown to emphasize the mathematical patterns within each case.

Figure 2.6: Line graph for Case 1 of overlap, or no overlap.

right of the equivalence range. Therefore, for Case 1 when pδ = 0 then pT is close to 1 and SGPV concludes

data is consistent with the alternative and TOST concludes data is inconclusive with indifference zone.

2.4.2 Case 2 (complete overlap)

Next we look at Case 2, when there is complete overlap between the uncertainty interval and indifference

zone, shown on the line graph in Figure 2.7. There are two subcases of complete overlap; Figure 2.7 shows

when the indifference zone is contained inside the uncertainty interval H0 ⊂ Ix, we will call this Case 2a. The

other version is when the uncertainty interval is contained inside the indifference zone Ix ⊂ H0, for reference

Case 2b. For Case 2b the overlap length=I+x − I−x and so pδ = 1 always. Here the TOST from both one-sided

tests will return pT close to 0. Both SGPV and TOST conclude for Case 2b that the data is consistent with

the null.

On the other hand, for Case 2a the derived behavior is Equation 2.5 below. The correction factor causes

the SGPV to range to be 0.5≤ pδ ≤ 1 depending on the lengths of the intervals. Here the TOST varies from

0≤ pT ≤ 1 because I−x and I+x are outside of θ−andθ+ and only the largest p-value is reported. For Case 2a
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Figure 2.7: Line graph for Case 2a of overlap, or complete overlap.

Figure 2.8: Line graph for Case 3 (on top) and Case 4 (on bottom) of overlap, or partial overlap.

there is no exact mathematical connection between the TOST and SGPV.

pδ =
(θ+−θ−)

2cα S√
n

×max

{ cα S√
n

(θ+−θ−)
,1

}
(2.5)

2.4.3 Cases 3 and 4 (partial overlap)

Finally, with the Cases 3 and 4 in Figure 2.8 we see partial overlap between the uncertainty interval and

indifference zone. The overlap length= I+x −θ− in Case 3 and overlap length = θ+− I−x in Case 4.

We know by definition of a simple t-test that pT1 = P(θ < θ−|H0) = 1−Fn

(
x̄−θ−

S/(
√

n)

)
and pT2 = P(θ >

θ+|H0) = Fn

(
x̄−θ+

S/(
√

n)

)
. Using this information the derived mathematical connection between the reported

TOST p-value and the SGPV can be seen in Equation 2.6. This specific equation can be seen as the curved

trend line that is present in the simulated examples shown in Figures 4 and 5.

pδ =

[
1

2cα

F−1
n (1− pT )+

1
2

]
×max

{ cα S√
n

(θ+−θ−)
,1

}
(2.6)

These derived connections can help us to compare the SGPV to the TOST in any given scenario. We

know the amount of overlap can limit the values pδ and pT can take, which in turn influences the inference

outcomes that the method reports.
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Figure 2.9: Graph of simulated SGPVs versus reported TOST p-values. In this example there are 500 itera-
tions repeated for three different sample sizes of n = 10,20, and 50 for data generated under the null, N(0,1),
and tested against the indifference zone [θ−,θ+]=[-0.375,0.375]. Here the plots are separated by case and by
sample size to show the convergence over sample size in each of the cases.

2.4.4 Limiting Behavior

The relationship between SGPV and TOST is most complicated in small sample sizes. To visualize how

sample size affects this relationship SGPVs and reported TOST p-values were simulated under the true point

null, N(0,1), for 500 iterations, repeated for three different sample sizes of n = 10,20, and 50and tested

against an indifference zone of [θ−,θ+]=[-0.375,0.375]. In Figure 2.9 we see that for a sample size of n=10

the points lie the farthest from the line of equality, y=1-x. As the sample size increases we see the points

begin to converge closer to equality, on a curved line which is identified in Equation 2.6 above, and to the

location where data is consistent with the null, pT = 0 and pδ = 1. Notice as the sample size increases there

are less outliers from the curved line. This can be mathematically explained when the uncertainty interval

shrinks smaller than 2 times the indifference zone length, so that the correction factor, or the max{} function,

in Equation 2.6 goes away.

For data generated under the point null, when the sample size increases the uncertainty interval in all cases

narrows naturally and is more likely to be centered closer to the point null. This means the uncertainty interval

is either contained in or has overlap with the indifference zone. Each of the cases of overlap have different

limiting probabilities under the true point null. For Case 1 under the null as n→ ∞ the P(Case 1)→ 0. For

Case 2a because the uncertainty interval shrinks smaller than the indifference zone and P(Case 2a)→ 0. Next

for Case 2b which is when Ix ⊂H0, under the true point null this is becomes most likely when the uncertainty
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Figure 2.10: Histogram of simulated raw p-values and TOST p-values under the null. In this example there
are 10,000 iterations of sample size of n=6 for data generated under the null, N(0,1), and tested against the
indifference zone [θ−,θ+]=[-0.5,0.5].

interval shrinks, P(Case 2b)→ 1. Finally, for Cases 3 and 4 of partial overlap P(Case 3 or Case 4)→ 0.

2.5 Error Comparison

2.5.1 Type I Error

Type I Error is the probability under the null that a test or method ”rejects the null”. In order to compare

how both procedures control the Type 1 Error, we must first understand the intention behind the reported

p-values. In the traditional p-value space when p > 0.05 the null is rejected. The SGPV rejects the null when

data is consistent with the alternative or pδ = 0. TOST rejects the null when the data in inconclusive and

pT1 > 0.05 and pT2 > 0.05. We ran a quick simulated example of data under the null for sample size n = 6

with 10,000 iterations to generate raw p-values, TOST p-values and SGPV p-values. Figure 2.10 shows a

histogram comparing these results for raw p-values and TOST reported p-values. We see that the raw p-

values are uniformly distributed over the range from 0 to 1, which is expected when data is generated under

the null (Hung et al., 1997). However, the TOST p-values are not uniform; they are right skewed with a peak

at probability 0.2. We also found that as the sample size increases the TOST reported p-values converge to

pT = 0 which is not a stable distribution. When data is generated under the true point null each one-sided

test does not have null or uniform behavior. Therefore, the max or larger reported TOST p-value distribution

is also non-uniform.

The user must change their interpretation of TOST p-values because the distribution is non-uniform.

When reporting results a traditional p-value threshold or cut-off of α = 0.05 is used when approximately 5%

of the p-values under the null occur between 0 and 0.05. For the TOST in the example shown in Figure 2.10
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Figure 2.11: Histogram from the same simulated data as shown in Figure 2.10. Here we see the raw p-values
and SGPVs generated under the null.

if we used a cutoff of α = 0.05 we only have 2.28% of the results, pT , in the range 0 to 0.05. In order to truly

capture 5% of the results the p-value threshold would have to be recalculated under simulation, and here it

would be set at α = 0.0817. This is a major problem for users of TOST p-values who want to interpret them

as universal scales of evidence against the null hypothesis. It is very plausible, that in one study a TOST

p-value of 0.0817 is actually less significant than a TOST p-value of 0.023 simply because of the different

underlying null p-value distributions.

This discrepancy is not taken into consideration when reporting the Type I Error for TOST in the original

published procedure (Schuirmann, 1987). In this case, one can not report the p-value as a measure of evidence

against the null, but rather one must report the simulated quantile of the p-value under the null. The users

should be aware of this difference and hire a statistician to run simulations and recalculate the 5% threshold

for analyses using TOST method. This is a very subtle point about p-values.

pT = |pT1 − pT2 | (2.7)

One solution to this is instead of taking the maximum of the p-values from the two tests, take the absolute

value of the difference shown in Equation 2.7. This has been shown to have better p-value behavior under the

null, more uniformly distributed under the null, but this is not a perfect fix (Hauck and Anderson, 1984).

For comparison the SGPVs performed as expected under the null with a large spike at 0.5 as seen in

Figure 2.11 (Blume et al., 2018). The SGPVs spike at 0.5 is when the uncertainty interval is very large and
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Table 2.2: Comparison of power between TOST and SGPV methods with similar Type I Errors. This example
was for a one sample test for proportion with 10,000 iterations of sample size of n=22 for data generated under
the null, θ0=0.1, and tested against the indifference zone [θ−,θ+]=[0.05,0.15].

contains the indifference zone, Case 2a. Here the length correction factor in Equation 2.1 applies. SGPV still

requires a threshold to identify Type 1 Error but if this threshold remains than the Type 1 Error rate converges

to 0 as the sample size increases. However, unlike the TOST p-value the SGPV is not a tail area probability

but rather a proportion, this is an important conceptual difference. This can be useful in multiple comparisons

as the SGPV is considered a measure of statistical evidence. The TOST p-value cannot be interpreted this

way.

2.5.2 Type II Error and Power profile of tests (ROC)

It has been previously claimed that the TOST ”always has higher power than SGPV” (Lakens and Delacre,

2018). This statement is false because there are many counterexamples available. Here we show one coun-

terexample to disprove this statement. We used 10,000 simulations of one sample exact tests for proportion

whereθ− = 0.05and θ+ = 0.15 and n=22. Here we tested if the proportion of successes was θ0=0.1, so

data was simulated using a random discrete binomial distribution and then tested with an exact binomial test

instead of a t-test. In Table 2.2 we show one example where it is clear that SGPV has slightly higher power

than the TOST method. It is obvious that power of 0.826 > 0.727 in this example with similar Type I error.

Even if we removed the pδ = 0.5 we get higher power 0.780 > 0.727. Further, it has been proven in other

literature for many different methods that the TOST is not uniformly more powerful (Ennis and Ennis, 2010).

We conducted a brief analysis of receiver operating characteristics, ROC, of the two tests using the same

data from Table 2.2. In this analysis shown in Figure 2.12 the best predictive performance is when a method

maximizes the area under the curve, AUC (Hanley and McNeil, 1982). This reduces the number of false

positives while increasing the number of true positives. For the sake of interpretation, we have labeled the
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Figure 2.12: ROC curves for the same simulated data as shown in Table 2.2. Here we compare the TOST,
shown with circles, SGPV, shown with triangles, and SGPV fair, shown with squares.

Figure 2.12 x-axis ”Type 1 Error” instead of false positives and the y-axis ”Power” instead of true positives.

In this example SGPV, shown as the line with triangles, has higher AUC (0.882) than the TOST(0.779), the

line with circles. This means SGPV has more predictive power for this simulated test for proportions.

In Figure 2.12 we kept all SGPVs even those that were equal to 0.5 for the line with the triangles. It is

important to note that the interpretation of SGPVs close to 0.5 as ”inconclusive” and this value can have a

high frequency in simulation because of the correction factor in Equation 2.1. When we removed all values

where pδ = 0.5 , labeled as ”SGPV fair”, the line with the squares in Figure 2.12 resulted. Here SGPV fair

still had an AUC (0.870) that was greater than the TOST(0.779). This behavior was similar in multiple other

cases we tried, however we will not provide a formal proof for which test is uniformly more powerful.

2.6 Discussion and Comments

Previous publications have considered the benefits and flaws of equivalence p-values. Specifically, Berger

and Hsu thoroughly proved that the TOST does not always assert bioequivalence at the α-level(Berger and

Hsu, 1996). This severely undermines the claims and interpretation of the TOST reported p-values because

even when a specific α is used, the conclusions of the test are for a smaller or more precise confidence

interval. It was also stated by Berger and Hsu that ”the TOST is highly biased with power much less than
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0.05 for moderate and large (standard deviation)” (Berger and Hsu, 1996). This is largely due to the fact that

the length or amount of overlap is not used when computing results. Along the same lines, Perlman and Wu

noted that when the sample variance of the data is too large the TOST can never conclude data is consistent

with the alternative and should then advise the user to collect more observations (Perlman and Wu, 1999).

These flaws have been used to warn against the TOST method for at least the last 20 years, yet this method is

still in practice especially in psychology research.

Both the TOST reported p-value and the power calculations ignore the fact that two tests were conducted

and only use information from one of the one-sided tests even though the conclusion of null comes from both

of the one-sided tests’ results. This discrepancy between one and two test information needs to be corrected.

This could be corrected with a length or overlap correction factor. The power and reported p-values should

use information from both sides of the indifference zone, like the SGPV, for it to be an appropriate measure.

In this paper we focused on TOST but for future research we propose this comparison be extended to non-

inferiority tests and the Bayesian ROPE methods.

After seeing the results from this comparison, the SGPV has superior properties and the TOST can be

misleading in practice. First, the SGPV’s addition of a third inference interpretation of data being consistent

with the alternative allows the user to conclude statistical difference. This is almost never done in practice

because most methods have limited inference capabilities. Second, the amount of overlap in the two intervals

should be reported as it is very valuable to the user. Third, the TOST conclusions are limited to a (1−2α)%

confidence interval, where the SGPV can be used for any user-specified data uncertainty interval. After

this investigation we can conclude that SGPVs are more valuable, more informative, and more flexible.

Only when users are given complete information about their specific hypotheses can they make appropriate

recommendations for future science.
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CHAPTER 3

Adjusting for Collaborator Uncertainty in the Indifference Zone for Second-Generation p-value

Applications

3.1 Abstract

In this paper we investigate different ways to incorporate collaborator uncertainty into statistical analysis

in order to identify the best practice for future use. Specifically, we focus on collaborator uncertainty in

identifying the indifference zone for use in a second-generation p-value (SGPV) analysis. Traditionally,

SGPV uses a fixed bound that remains unchanged after being identified by a collaborator. We propose a new

concept of shrinking the indifference zone as sample size increases in the case of collaborator uncertainty. Our

results show that when an uncertain but wide small sample interval is identified, shrinking the indifference

zone balances the errors between behaviors of a fixed zone and a point null. It increases power, Pθ1(pδ = 0),

when compared to a fixed zone and increases probability of true nulls, Pθ0(pδ = 1) when compared to a

single point. This identified trade-off and improved behavior will change future analyses and will benefit

communication between statisticians and collaborators.

Keywords

interval null, uncertainty, evidence, shrinking, test errors, second-generation p-values
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3.2 Introduction

When starting a statistical analysis, the analyst looks to a field expert for an assumed hypothesis. This given

hypothesis is then treated as ”truth” in order to properly interpret results. However, in practice the true

underlying distribution is never known. The field expert or collaborator can only make an informed guess

and this guess will always have some uncertainty. Although rarely done in practice, the amount of uncertainty

in the assumed hypothesis should be discussed and influence the statistician’s analysis plan.

Consider a fictional field expert in biochemistry, Dr. Jane Doe, who is currently collecting data to measure

adult response in body temperature to minimal exposure of chemical ”X”. She hypothesizes that the mean

body temperature will remain stable or at 98.6 degrees Fahrenheit (F). However, there is no previous literature

to serve as a basis for her hypothesis. She consults a statistician, who recommends that Dr. Jane Doe instead

identify a range of body temperatures that are practically equivalent to 98.6 F.

This range can be treated as an interval null or indifference zone. This concept of changing a point null

into an interval null has changed how researchers think about hypothesis testing (Cohen, 2021). Hypothesis

tests do not always have to test for strict equality. When using a null indifference zone, an equivalence test or

second-generation p-value (SGPV) should be used for the analysis (Blume et al., 2018, 2019).

Even though Dr. Jane Doe is more confident in specifying a range of null temperatures than a single

point, the lack of previous literature gives her concern. When expressing this concern to the statistician, the

statistician replied that this range will be treated as ”truth” and all results will be interpreted in this context.

Current statistical practice does not have the flexibility to account for this concern or uncertainty. In this paper,

we propose a better way to conduct SGPV analyses with hypothesis uncertainty. We show our investigation

of the different ways in which the analysis can be modified in light of this concern to improve results. To

conclude, we share the results for the best methods we found to account for different levels of collaborator

uncertainty in SGPV analyses.

3.2.1 Uncertainty Framework

Collaborator uncertainty can be put into three categories; unable, uncertain, and confident. First, when a

collaborator is unable to identify an indifference zone this is usually because there is no expertise or little

previous literature. In this case we suggest the SGPV method should not be used because there is no basis to

form the pre-specified hypothesis. Then, statisticians would be forced to randomly guess and check the errors

before deciding on a null hypothesis. This ”double-dipping” of the data to determine a null hypothesis and to

compute the results is bad statistical practice. It introduces data bias and will have misleading results. Next,

in the case where the collaborator is confident in a pre-specified indifference zone the statistician should treat

this as the true null and conduct the normal analysis. Finally, when the collaborator is uncertain of the pre-
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specified null indifference zone they may have a hesitant guess or a wide small sample estimate. However, not

enough previous literature is available in order for them to have full confidence in the interval. Statisticians

should not treat a ”likely” true interval the same as a ”confidently” true interval.

One way to improve the analysis for likely true intervals is to make the indifference zone more precise.

This idea is to reduce the width of the interval between the point null and the wide small sample interval

bounds by a factor proportional to the standard deviation. Our research investigates how narrowing this

distance affects test errors and performance. Another idea is to use the wide small sample interval but then

shrink this interval at a set rate as sample size increases, for example 1/
√

n . Here the underlying theory is

that the null zone will shrink away from any possible alternative points. As the sample size increases the

interval null becomes more precise and is more likely to contain only practically null values. This relieves

collaborators’ concerns knowing different sized datasets are compared to different levels of precision.

In this paper we will first outline the properties of the SGPV method and show how they relate to the in-

difference zone. Then, we will examine different scenarios of collaborator uncertainty and how the solutions

of narrowing and shrinkage affect the test properties. Finally, we will interpret our findings and present our

recommendations for future research.

3.3 Background

3.3.1 Notation

Here we set the notation for use in all the following examples. The collaborator chooses a null hypothesis

that the parameter of interest,θ , practically null or within a specified indifference zone, θ̂H0. In Figure 3.1

we can see an illustration of the indifference zone where H0 = [θ−,θ+] = [θ0−δ ,θ0 +δ ]; where the length

of the null zone is 2δ . The indifference zone contains and is centered around the point null or θ0.

Figure 3.1: Line graph showing the indifference zone or interval null.

The investigator then collects data x = (x1, ...,xn), to test this hypothesis. From the dataset an uncertainty

interval for the parameter of interest, θ , is constructed. In this paper we call that interval I(x) = (I−x , I+x ).

This uncertainty interval might be a confidence interval, credible interval or likelihood support interval for

the mean. To simplify, in this paper we will assume that I(x) is a 95% confidence interval for the mean. This

technically can be defined in Equation 3.1 and here the length of the uncertainty interval is 2×Zα/2

√
V√
n .
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I(x) =
(

θ̂ −Zα/2

√
V√
n
, θ̂ +Zα/2

√
V√
n

)
(3.1)

Figure 3.2: Plot showing data driven 95% confidence interval or uncertainty interval for the mean changing
over sample size.

It is commonly known that the data driven uncertainty interval, specifically a confidence interval for a

parameter like the mean, shrinks as the sample size grows (Blume et al., 2018; Robbins, 1970). For all of

the following examples we have used a 95% confidence interval for the mean with θ0 = θ̂ = 0,θ1 = 1 and

xi ∼ N(0,1). In Figure 3.2 the uncertainty interval is shown from sample size in the range n ∈ [0,250].

This figure confirms that the uncertainty interval narrows closer to the point null, or θ0, as the sample size

increases. Now we must identify the test and hypothesis that is used to analyze this data.

3.3.2 Second-generation p-values

The second-generation p-values (SGPV) method was created to measure the fraction of data-supported effect

sizes that are within the indifference zone (Blume et al., 2018, 2019). The uncertainty interval, I(x), is

compared to the indifference zone, H0 = [θ−,θ+]. Specifically the amount of overlap between these two
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intervals is used to decide the inference outcome. Equation 3.2 shows the reported p-value or SGPV where

(I ∩H0) is the intersection or overlap of the two intervals and the function f (x) = |x| is the length of that

interval or overlap:

pδ =
|I∩H0|
|I|

×max
{
|I|

2|H0|
,1
}

(3.2)

It is clear in Equation 3.2 that the length of overlap is used to determine pδ . This amount of overlap can

be condensed into four different cases, which shown in Figure 3.3. Each of these cases of overlap corresponds

to one of three inference outcomes. In Case 1 pδ = 0 and there is no overlap between the intervals. This

means the outcome concludes the data is consistent with the alternative. In Case 2 when the outcome can

either conclude the data is consistent is inconclusive or the data is consistent with the null. Finally, in Cases

3 and 4 then 0 < pδ < 1, or there is some overlap between the intervals the outcome concludes the data is

inconclusive with the null.

Figure 3.3: Illustration of the four cases of overlap between the indifference zone and the uncertainty interval
for SGPVs.

3.3.3 Properties and Errors

In order to define the errors or properties of the SGPV method we must first identify all possible outcomes.

The three inference outcomes of the SGPVs include data being consistent with the null, data being consistent

with the alternative, and data being inconclusive. This means that the errors will be defined first by whether

the data are truly null, H0, or alternative, H1, and secondly by the probability of being null, probability of
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being alternative and the probability of being inconclusive.

3.3.3.1 Probability that data are consistent with the alternative

This probability found in Equation 3.4 comes directly from Supplement Equation 3.5 from Blume’s paper in

2018 (Blume et al., 2018). This inference outcome only occurs when pδ = 0 is the data consistent with the

alternative.

β = Pθ (pδ = 0) (3.3)

= Φ

[√
n(θ0−δ )−

√
nθ√

V
−Zα/2

]
+Φ

[
−
√

n(θ0 +δ )+
√

nθ√
V

−Zα/2

]
(3.4)

Power

When data is generated under an alternative or θ̂ = θ1 6= θ0 then Equation 3.2 becomes β1 = Pθ1(pδ = 0).

Traditionally this is known as the Power or (1- Type II Error) for a test.

Type I Error

When data is generated under the point null, θ̂ = θ0 Equation 3.4 reduces to Equation 3.5. Traditionally this

is identified as the Type I Error for a test.

β0 = Pθ0(pδ = 0) = 2Φ

[
−
√

nδ )√
V
−Zα/2

]
(3.5)

Probability that data are consistent with the null

This probability found in Equation 3.7 comes directly from Supplement Equation 3.8 from Blume’s paper in

2018 (Blume et al., 2018). This inference outcomes only occurs when pδ = 1 and consequently when the

uncertainty interval is smaller than the indifference zone; |Ix|< |H0|orδ > Zα/2

√
V
n .

ω = Pθ (pδ = 1) (3.6)

= Φ

[√
n(θ0 +δ )−

√
nθ√

V
−Zα/2

]
−Φ

[√
n(θ0−δ )−

√
nθ√

V
+Zα/2

]
(3.7)

Otherwise when the uncertainty interval is wider than the indifference zone,δ ≤ Zα/2

√
V
n , we can never

conclude the data is consistent with the null, pδ 6= 1. This means the probability will be 0 or Equation 3.8
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holds. This is a form of ”self-protection” in the framework of the SGPV method. The test will never conclude

data is consistent with the null when the uncertainty interval cannot be contained within the indifference zone.

ω = Pθ (pδ = 1) = 0 (3.8)

3.3.3.2 Probability that data are inconclusive

This probability found in Equation 3.9 comes directly from Supplement Equation 3.11 from Blume’s paper in

2018 (Blume et al., 2018). This inference outcome occurs when there is some overlap between the uncertainty

interval and the indifference zone. These 3 probabilities obtain the characteristic that their sum is always 1

under a specified dataset. When θ̂ = θ0 holds then β0 +ω0 + γ0 = 1, and when θ̂ = θ1 6= θ0 holds then

β1 +ω1 + γ1 = 1.

γ = Pθ (0 < pδ < 1) = 1−Pθ (pδ = 0)−Pθ (pδ = 1) (3.9)

3.3.4 Connection for probabilities

Table 3.1 compares these errors or probabilities to a traditional p-value significance framework. For the

columns under traditional p-value the reported p-values are compared to a pre-specified threshold, most

commonly 0.05. Even after choosing the optimal threshold the traditional p-value tests cannot conclude data

is consistent with the null. The 2 outcomes for traditional p-values are to reject the null (data are consistent

with the alternative) or to fail to reject the null (data are inconclusive). The SGPVs’ gain of an additional

inference outcome allows users to make more specific conclusions based on the data.

In order to pick the best statistical analysis method or indifference zone technique we must balance these

errors. The ”correct” errors must be maximized; the probability of data being consistent with null under

θ0(ω0) and the probability of data being consistent with alternative under θ1(β1 or power). The ”incorrect”

errors must be minimized; the probability of data being consistent with null or inconclusive under θ1(γ1 and

ω1) and the probability of data being consistent with alternative or inconclusive under θ0(γ0 and β0 or Type

I error). This perfect balance between maximizing correct errors and minimizing incorrect errors is rare in

practice. Often this is the goal of a-priori study planning and conversations between the collaborator and the

statistician.
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Table 3.1: Table linking test properties or errors for specific inference outcomes under different underlying
data distributions for traditional p-values compared to SGPVs

3.3.5 Neyman Pearson Extension

This classical idea of trading off errors was famously addressed by Jerzy Neyman and Egon Pearson in the

Neyman-Pearson lemma (Neyman et al., 1933). In the traditional two inference outcome framework they

compared tests with the same Type I error, Pθ0(p ≤ 0.05), in order to maximize power, Pθ1(p ≤ 0.05). The

best test which has identical Type I errors to other tests but has the highest power is not always unique but is

labeled the ”Most Powerful” (MP) test.

SGPV PowerNP =
β1

(β1 + γ1)
(3.10)

=
(Pθ1(pδ = 0))

(Pθ1(pδ = 0)+Pθ1(0 < pδ < 1))
(3.11)

SGPV Type I ErrorNP =
β0

(β0 + γ0)
(3.12)

=
(Pθ0(pδ = 0))

(Pθ0(pδ = 0)+Pθ0(0 < pδ < 1))
(3.13)

28



As we transition to the three inference outcome framework of the SGPV method we will need to modify

the Neyman-Pearson lemma. To make a direct comparison we must remove the third outcome of data being

consistent with the null in the denominator as it was not in the original framework. The SGPV Neyman-

Pearson equivalent for power and Type I error are shown in Equations 8 and 9. Basically we have scaled the

Type I error and power by the appropriate denominators. We will use these new equations to find the ”Most

Powerful” test when comparing different indifference zone procedures.

3.4 Indifference Zone Procedures

The original SGPV method requires a collaborator to pre-specify a fixed indifference zone. This performs best

when the collaborator is confident in these fixed values. However, there are ways to modify this procedure

in light of collaborator uncertainty. In this section we will compare the properties or errors for different

indifference zone procedures. First, we will look at fixed interval behavior. Next, we will simulate narrowing

the indifference zone by a fixed proportion of the standard deviation. Finally, we will show results from

shrinking the difference zone.

3.4.1 Fixed Intervals

To begin our analysis, we must first establish the behavior or probabilities of fixed indifference zones. The

goal of an indifference zone is to identify a range of practically equivalent null values. Importantly this range

must not include any alternative values that the researcher desires to identify, these should be distinct from

the null. However, with natural human error sometimes the collaborator will identify the wrong indifference

zone, or a range that contains an alternative value.
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Figure 3.4: Plot showing different fixed indifference zones over sample size versus the assumed uncertainty
interval. Here we can also see how they compared to the null and the alternatives.

In Figure 3.4 we see five different fixed indifference zones plotted over sample size. We see that even the

smallest indifference zone [-0.25,0.25] is wider than the uncertainty interval for n ≥ 60. Also note that an

alternative point is identified atθ1 = 1 and so the two largest indifference zones, in blue and purple, include

this alternative point. This will be important in understanding what happens if the collaborator identifies an

indifference zone that is too wide. For computation the ”sgpv” R package was used (Welty et al., 2020).

In Figure 3.5 we see the resulting six probabilities or errors over sample size. As expected the two largest

indifference zones shown as the blue and purple lines have the worst statistical properties behavior. They

have almost no power, β1, and high probability of incorrectly concluding null, ω1. Even though the blue and

purple lines have the highest probability of correctly identifying the null, they cannot differentiate between

null and alternative. We want an interval with appropriate width; wide enough to capture all practically null

values but narrow enough to be precise and exclude alternative points. Also, important to note is the point

null behavior, or the red lines. The point null as discussed before in the traditional p-values cannot identify

any true nulls. However, it has the highest power. After reviewing these results, we can move forward with

our investigation knowing we want to find an interval that balances errors between the point null and the

widest interval [−1.25,1.25].
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Figure 3.5: Plot showing 6 different probabilities, β0,β1,ω0,ω1,γ0,andγ1, over sample size for fixed SGPV
indifference zones.

In order to compare which fixed bound has the best balance of all the statistical properties we first notice
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Type I error, β0, and probability of false nulls, ω1, are low and almost identical for bounds at 0.25, 0.5, 0.75,

and 1. Next we are looking maximize both the power, β1, and the probability of true nulls, ω0, so we plot

the sum of these against sample size in Figure 3.6. The indifference zone that best maximizes this sum after

n = 30 is [−0.5,0.5] or the pink line. The next best indifference zones are constant at 0.75 and constant at

0.25. As expected the statistical properties perform best when the indifference zone is between the point

null and the closest alternative point of interest. Interestingly the best zone happens to be exactly halfway

between the point null and the closest alternative point of interest. This closest alternative point of interest is

not known in practice.

Figure 3.6: Plot comparing ”correct errors” power, β1, versus probability of true nulls, ω0, for fixed SGPV
indifference zones.

3.4.2 Narrow the Interval

After seeing the behavior in Figure 3.6, we consider what happens when the collaborator is not confident in

the chosen indifference zone. We could ”jump” from line to line in Figure 3.4 in order to obtain good test

performance. However, we want to avoid data double-dipping in this procedure. When the collaborator is

unsure of an indifference zone but is confident in the closest alternative point to the point null we can narrow

the interval. Picking a distance between the known point null and hypothesized closest alternative point to

narrow will allow the statistical properties to have the better performance when compared to just using the

distance of the hypothesized closest alternative point. Using that interval would be too wide and could result

in low power and high probability of false nulls.
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Figure 3.7: Plot showing comparing indifference zones narrows to half the distance between a point null and
an alternative point. Here we are comparing the blue line at 1.25 to the pink line at 0.625 and the green line
at 0.9 to the yellow line at 0.45.

After many simulations and shown in Figure 3.6 we found the ideal width to be the halfway distance

between the point null and the closest alternative point. Here we use the indifference zone that is halfway

between the point null, θ0, and the collaborator identified alternative θ̂1. Where |θ̂1−θ0|= d, the indifference

zone is[θ0− d
2 ,θ0 +

d
2 ]. This procedure allows both correct errors, power, β1, and probability of true nulls,

ω0, to be maximized. Also seen in Figure 3.5 when the indifference zone is [-0.5,0.5] and the true alternative

is θ1 = 1, the probability of being inconclusive and the incorrect errors, β0 and ω1, remain relatively low

when compared to other zones.
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Figure 3.8: Plot showing 6 different probabilities,β0,β1,ω0,ω1,γ0,andγ1 over sample size for narrowed in-
difference zones. Here we are comparing the blue line at 1.25 to the pink line at 0.625 and the green line at
0.9 to the yellow line at 0.45.
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In Figures 5 and 6 we see can see the difference in behavior for wide versus small intervals. Now let us

consider what actually implementing this process, specifically when the collaborator incorrectly identifies θ1.

Here the collaborator is confident so we will assume cases where they are incorrect but close, θ̂ ′1 = 1.25 and

θ̂ ′′1 = 0.9. In Figures 7 and 8 we compare the blue indifference zone at 1.25 to the narrowed pink indifference

zone at 0.625 and the green indifference zone at 0.9 to the narrowed yellow indifference zone at 0.45. We

see in both of these comparisons that the power, β1, is improved and the probability of inconclusive under

alternative, γ1, is reduced. So even when the collaborator incorrectly identifies the closest alternative point

narrowing the interval to half the distance always improves final results.

3.4.3 Shrinking over Sample Size

Finally, we will consider the cases where the collaborator is uncertain but can identify a wide small sample

indifference zone or make a guess for the closest alternative point. We introduce a new concept of shrinking

the indifference zone over sample size from a wide small sample uncertain estimate,
[
θ̂−, θ̂+

]
. This idea

of shrinking the indifference zone with sample size is similar to the concept behind multiple comparisons in

large data (Benjamini, 2010; Miller, 1981).

In order to choose what rate the indifference zone should shrink with sample size, we must first consider at

what rate is the uncertainty interval shrinking naturally. We know that under assumptions of 95% confidence

interval the rate of shrinkage is 1√
n as we can see in the formula for the length of Ix in Equation 3.14. For all

examples we assume V = 1.

|Ix|(n) = 2Zα/2

√
V√
n

(3.14)
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Figure 3.9: Plot showing different shrinking indifference zones over sample size versus the assumed uncer-
tainty interval. Here we can also see how they compared to the null and the alternatives.

As defined in Blume’s paper δ , or half of the length of the null zone, does not depend on the sample size

and is a fixed bound (Blume et al., 2018). For our analyses we would like to change this concept and consider

different δ s that shrink at different rates with the sample size. In Equations 11, 12, and 13 we have chosen

three rate of shrinkage for δ to analyze. These equations are proportional to because we will fix them to all

start at
[
θ̂−, θ̂+

]
when n = 1 and to end at [θ0−d/2,θ0 +d/2] when n = ∞. This fixed start and end points

were determined using the information from the previous sections.

δ1(n) =

√
V

n1/4
(3.15)

δ2(n) =

√
V

n1/3
(3.16)

δ3(n) =

√
V

n1/2
(3.17)
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We plot these indifference zones in Figure 3.9 to see how they behave over sample size. After investigating

different scenarios, we suggest the following procedure. If the collaborator is uncertain ask them for a wide

small sample estimate of the indifference zone or a best guess of a wide closest alternative point. This will be

an interval where we will start shrinkage from so this interval should be wider and be in context of very small

sample sizes. Now as seen above the ideal behavior occurs at a point halfway between the closest alternative

and point null. Therefore, we will limit the range of the shrinking zone to stop at the point halfway between

the wide small sample estimate and the point null. Here when |θ̂−− θ0| = |θ̂+− θ0| = d then we use the

indifference zone that shrinks from
[
θ̂−, θ̂+

]
to [θ0− d

2 ,θ0 +
d
2 ]. If we let the zones shrink to 0 they will

behave similar to a point null which never identifies true nulls; we do not want this behavior.
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Figure 3.10: Plot showing 6 different probabilities, β0,β1,ω0,ω1,γ0,andγ1, over sample size for shrinking
SGPV indifference zones.

For example, we will assume either the indifference zone wide small sample estimate is
[
θ̂−, θ̂+

]
=
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[−0.9,0.9] or the estimate of the closest alternative point is θ̂1 = 0.9. In either of these cases the following

results will apply. In Figure 3.9 we see δ1,δ2,and δ3 all begin at 0.9 when n=1 and when n > 250 shrink close

to 0.45, which is the halfway point. In the plot it is clear that the uncertainty interval is shrinking to 0 and so

becomes smaller than all of the indifference zone quickly. This is actually good null behavior because when

the indifference zone can contain the uncertainty interval, Ix ⊂H0, then we can conclude the data is consistent

with the null.

In Figure 3.10 we can see the six different probabilities/errors for the shrinking indifference zones. When

compared to the fixed wide small sample estimate at 0.9 or the black line all of the shrinking zones have

improved power β1, less probability of being inconclusive γ1, and almost identical Type 1 error. The slight

loss in probability of true nulls ω0and gain in probability of being inconclusive γ0 is worth the others errors

benefit. This is the balance we are seeking in all of these scenarios.

Figure 3.11: Plot showing Neyman-Pearson translation for shrinking SGPV indifference zones.

To really compare these indifference zones, we can look to our modified Neyman Pearson method de-
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scribed above. As defined in Equations 8 and 9 the 1-Power and Type 1 error equivalents are plotted on both

plots shown in Figure 3.11. The dashed lines are the Neyman Pearson equivalents for Type 1 Error and the

solid lines are 1-Power. We have split these into two different plots because the Neyman Pearson method

compares tests with equivalent Type 1 Error in order to choose the most powerful one and the point null has

higher Type I error compared to the other indifference zones. The plot on the bottom only shows n∈ [10,250]

because this is where the Type 1 Error is equivalent for the four methods. For indifference zone hypotheses

the yellow line or the zone shrinking at rate 1
n1/2 has the lowest 1-Power that intersects with the Type I error.

This means it has best performance or is the ”Most Powerful” when compared to the other zones. Even

though 1
n1/2 was the most powerful all three shrinkage rates had very similar performance here so we leave it

up to the collaborator to choose which to use.

3.5 Discussion and Comments

We propose our final recommendations for SGPV analysis with collaborator uncertainty in Table 3.2. The

collaborator is either confident, uncertain or unable. The most ideal results come when the collaborator is

certain. In other cases, the statistician has to choose the best analysis in order to give the best possible the

results.

When the collaborator is confident their chosen indifference zone does not contain any significant al-

ternative points we suggest using a fixed zone in a traditional SGPV analysis. When the collaborator can

only confidently identify the closest alternative point, then narrowing the interval will ensure the best results.

When unsure the collaborator should be asked to identify their best guess of the wide small sample estimate

for the indifference zone or alternative point. Shrinking from this wide small sample estimate to the halfway

point over sample size is the best approach. This approach balances errors between a point null and fixed null

wide small sample approach. When the collaborator is completely unable to identify an indifference zone or

alternative point then a point null hypothesis should be used instead.

In Table 3.3 we present results from a real dataset in different levels of collaborator uncertainty. The

ACTIV-6 clinical trial recently released resulted from the ivermectin trial (Interventions et al., 2022). In this

trial 1591 patients with mild to moderate cases of COVID-19 were randomized to ivermectin treatment or

placebo. Patients reported each day their symptoms and severity, any health care visits, and medications

taken. The endpoint of interest between the two groups is mean time spent unwell and was estimated using

a longitudinal ordinal regression model. The results published are that ”the difference in the amount of time

spent feeling unwell with COVID was estimated to be 0.49 days in favor of ivermectin” with a 95 credible

interval of (0.15, 0.82) (Interventions et al., 2022).

The data is especially interesting because time spent unwell is measured in discrete number of days be-
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Table 3.2: Final recommendations for different levels of collaborator uncertainty in SGPV analyses.
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Table 3.3: Results from COVID-19 ivermectin clinical trial dataset for different levels of collaborator uncer-
tainty in SGPV analyses.

tween 0 and 14 days however the predicted result is only a portion of a day, 0.49 days difference. This

measurement is worth statistical discussion and an indifference zone should be chosen carefully. Collabo-

rators and statisticians should decide before looking at the data what the indifference zone is for mean time

spent unwell. In Table we show what would happen if the collaborator has different levels of uncertainty for

different hypotheses. The reported SGPVs in Table 3.3 are all either inconclusive or consistent with the null.

Therefore, as long as the null zone is greater than a difference of 3 hours the inference outcome will not be

that ivermectin improved time spent unwell. We are confident given the study design and discrete variable a

collaborator would not identify an indifference zone smaller than 0.5 a day or 12 hours.

We have thoughtfully made these recommendations and would like for this conversation to continue in the

literature. Shrinking the null zone due to collaborator uncertainty could be beneficial in brain imaging, other
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COVID research, or with discrete variables modeled as continuous. Another area this could be beneficial is

in new the techniques for SGPV variable selection proposed by Yi Zuo (Zuo et al., 2021, 2022). Collaborator

uncertainty should be discussed and evaluated by collaborators and statisticians. Then this information should

modify the analysis plan in an appropriate way. Results will then reflect the best version of the underlying

truth. This concept will change the current framework of statistical collaboration.
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CHAPTER 4

FDRestimation: Flexible False Discovery Rate Computation in R

4.1 Abstract

False discovery rates (FDR) are an essential component of statistical inference, representing the propensity

for an observed result to be mistaken. FDR estimates should accompany observed results to help the user

contextualize the relevance and potential impact of findings. This paper introduces a new user-friendly R

package for estimating FDRs and computing adjusted p-values for FDR control. The roles of these two

quantities are often confused in practice and some software packages even report the adjusted p-values as

the estimated FDRs. A key contribution of this package is that it distinguishes between these two quantities

while also offering a broad array of refined algorithms for estimating them. For example, included are newly

augmented methods for estimating the null proportion of findings - an important part of the FDR estimation

procedure. The package is broad, encompassing a variety of adjustment methods for FDR estimation and

FDR control, and includes plotting functions for easy display of results. Through extensive illustrations, we

strongly encourage wider reporting of false discovery rates for observed findings.

Keywords

false discovery rate, multiple comparisons, adjusted p-value, null proportion estimation, R Package
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4.2 Introduction

The reporting of observed results is not without controversy when multiple comparisons or multiple testing

is involved. Classically, p-values were adjusted to maintain control of the family-wise error rate (FWER).

However, this control can come at the cost of substantial Type II Error rate inflation, especially in large-scale

inference settings where the number of comparisons is several orders of magnitude greater than the sample

size. Large scale inference settings occur frequently in the analysis of genomic, imaging, and proteomic

data, for example. Recently, it has become popular to control the false discovery rate (FDR) instead of the

FWER in these settings because its Type II Error rate inflation is much less severe. The FDR is essentially

the propensity for a finding to be mistaken i.e., the propensity for a non-null claim to be, in fact, wrong.

Controlling the FDR at or below a specific level, say γ , does not imply that the Type I Error rate, per-

comparison or family-wise, is also controlled at the same level. The increase in Type I Errors that is allowed

by FDR control is accompanied by fewer Type II errors. Moreover, different approaches to controlling the

FDR allow for different degrees of error trade-off. And software for implementing these approaches vary

widely in their scope, options, and accessibility. In addition, methods for controlling the FDR, which use the

classical rejection-testing framework, are often confused with the methods used to provide an estimate of the

FDR for a particular result.

The FDRestimation package distinguishes between methods for FDR control and methods for FDR

estimation, and it allows the user to easily access complex statistical routines for computing the desired

quantity. The plotting functions allow users to visually assess results and differences between methods. We

should note that the base package function stats::p.adjust is now frequently used to compute the

estimated FDR, however stats::p.adjust actually reports the adjusted p-values for FDR control, and

these are not always the same thing. More on this important distinction later. Our package also provides a

wide range of methods for estimating the FDR, estimating the proportion of null results, and computing the

adjusted p-values. We hope by clearly illustrating the usage of our package in routine settings that these FDR

methods will become more accessible and gain even more popularity in routine practice.

4.2.1 Simple Motivating Example

We begin with a simple example to fix ideas. Table 4.1 shows five unadjusted (raw) p-values for experimental

features along with their corresponding Z-values. The third column lists the Benjamini-Hochberg adjusted p-

values to be used for FDR control (Benjamini and Hochberg, 1995). Controlling the FDR at level γ amounts

to selecting all of the adjusted p-values in column 3 that are below γ . Note here that the adjusted p-values are

monotonically increasing, just like the raw p-values, but inflated.
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Feature Raw p-value Z-value Adjusted p-value FDR Lower Bound FDR

Feature 1 0.005 2.807 0.025 0.025 0.019

Feature 2 0.049 1.969 0.064 0.122 0.126

Feature 3 0.050 1.960 0.064 0.083 0.128

Feature 4 0.051 1.951 0.064 0.064 0.130

Feature 5 0.700 0.385 0.700 0.700 0.481

Table 4.1: Example with 5 features using the Benjamini-Hochberg adjustment and assuming a two-sided
normal distribution.

If the goal is to control the FDR at 5%, then only the first feature would be declared interesting and

selected. Throughout the paper, we use the term “interesting” to describe features that are selected by a

procedure with FDR control. We do not use the term “significant” in order to avoid confusion with those

features that would have been selected from by a procedure with strict Type I Error control.

The fourth column presents FDR estimates for each feature. As we show later, there are several ways

to invert the FDR control procedures to yield an estimate of the FDR. Our package performs this inversion

for most popular methods. The FDRs here were obtained by inverting the Benjamini-Hochberg FDR control

procedure, and so we will refer to them as the BH FDRs (Benjamini and Hochberg, 1995). In practice we

find these estimates to be the most context useful when making scientific decisions about which findings to

pursue.

Importantly, these are clearly not identical to the BH adjusted p-values nor are they even monotone. The

non-monotonicity results from the group-wise p-value adjustment procedure (”step-up”) and the non-smooth

estimate of the p-value mixture distribution, which is needed for FDR estimation. The important insight is

that the set of features that are selected by the FDR control procedure is not equivalent to the set of feature

whose individual FDR is less than the control threshold. For example, if the FDR threshold was γ=0.07, then

the first four features would be selected by BH to control the group-wise FDR at 7%. However, only the first

and fourth features have estimated false discovery rates below 0.07, and thus only these two features would

be reported as having a false discovery propensity less than 7%. Note that both approaches come from the

same Benjamini-Hochberg machinery, and thus have the same distributional assumptions. The distinction

between adjusted p-values and estimated FDRs are critical here.

Because FDRs are only estimates, and because there are a variety of estimation approaches, it helps to

have a feature-specific benchmark for each FDR. The fifth column provides such a benchmark; it displays a

well-known lower bound on the FDR assuming a Gaussian posterior and a null proportion of 50%. These

assumptions are relatively benign for reasons we discuss later and represent a “best-case” scenario. This
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benchmark shows two things: (1) the adjusted p-values are a poor substitute for the FDRs, and (2) the

smoothness of the FDR estimation approach is important.

4.3 Methods

4.3.1 FDR Methods

4.3.1.1 p-value Based Approaches

Let p1, ..., pm be the individual unadjusted p-values derived for each of m different features or tests. For

clarity, the ith p-value is for the ith feature and has not been adjusted for any multiple testing. It is sometimes

referred to as the “uni-variate” p-value. The sorted or ranked p-values are represented by p(1), ..., p(m) where

p(1) is the smallest, p(m) is the largest and with p(k) is the kth ranked p-value.

Let γ be the false discovery rate threshold for interesting findings. This threshold is context specific, and

is either set by the researcher or according to a community standard. This threshold is specified a priori

when performing FDR control procedures, but it need not be specified for FDR estimation procedures. The

Benjamini-Hochberg algorithm for FDR control is to find the largest index, say k, such that

p(i) ≤ γ
i
m

for i ∈ {1,2, ...,m} (4.1)

This can be written compactly k = max
[
i : p(i) ≤ γi/m

]
. Then all features with p(1), ..., p(k) are deemed

interesting at the FDR γ threshold and considered “findings”. This is called a “step-up” procedure because

not all of the rejected features will have unadjusted p-values that meet the above criterion. Only the largest

of them must meet that criterion. Because this is a “step-up” procedure, the adjusted p-values will depend on

the raw p-values from other features. The Benjamini-Hochberg adjusted p-value for the ith feature is notated

in this paper by p̃i and defined in Equation (4.2), where := means “is defined as”.

p̃(i) := min
j≥i

(
p( j)m

j

)
≤ γ (4.2)

These adjusted p-values are monotone increasing in raw p-value ranking, so one can directly compare p̃i

to γ to see if a particular feature would be rejected as null for the FDR threshold γ . Importantly, the feature

specific FDR estimates need not be monotone. To see this, re-arrange Equation (4.1) as follows in Equation

(4.3).
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FDRi :=
pim

rank(pi)
· π̂0 (4.3)

The derivation of FDR is described in the following section. This shows that the BH procedure is, in

effect, estimating the feature specific FDR as FDRi. See also Efron LSI for motivation for this definition

(Efron, 2013). Because estimation of the feature specific FDR does not include group-wise control of the

FDR, the “step-up” monotonicity condition does not apply. Thus, feature specific FDR estimates such as

FDRi are not always monotone in raw p-value ranking.

A consequence of this dichotomy is that an individual feature may be rejected at FDR γ level by the

BH algorithm even though its feature specific FDR estimate is actually greater than γ . This is largely a

consequence of the smoothness of the FDR estimates and the fact that they can have substantial variability.

Note that there are several methods for estimating the FDR, and some methods may be better suited to certain

contexts. Our package offers several methods for FDR estimation, as described in later sections of this paper.

Figure 4.1: Simulated example of raw p-values and the threshold of interest.

To illustrate we simulated real data from 100 hypothesis tests and captured the 100 raw p-values. For

context, 80 of these p-values were generated from a uniform distribution (and hence under the null) while the

other 20 were generated from a skewed distribution representing the alternative. Results are computed using

our p.fdr function, which we detail later. The raw p-values are displayed in Figure 4.1 as black points;

Figure 4.2 shows only the 20 features with the smallest ranked raw p-values. The black sloped line is the BH

rejection line from Equation (4.1). Also included in the plot are the BH adjusted p-values (blue stars), the BH
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FDR threshold for interesting findings (blue horizontal line), and the BH FDR estimates (red points).

Figure 4.2: Magnified section of Figure 1.

In Figure 4.2 we see that exactly 8 of the adjusted p-values fall below our threshold of interest (blue line,

set here to 0.06). Therefore, the BH FDR procedure that controls the group-wise FDR identifies the 8 smallest

p-values as interesting findings. However, notice the non-monotonicity of the individual FDRs. Only the first

and last of the 8 lowest FDRs are less than 0.06.

From these results it should be clear that the feature-specific FDRs and the BH adjusted p-values have

different purposes and interpretations. To emphasize, when a feature is identified as ’interesting’ by an FDR

control procedure, it does not always follow that the feature’s individual propensity to be a false discovery is

less than the desired threshold. Both quantities must be computed, as the tasks are not always exchangeable.

4.3.1.2 Z-value Based Approaches

For FDR estimation, it is often helpful to transform the p-values p1, ..., pm to into Z-values z1, ...,zm using the

standard normal quantiles. For example, zi = Φ−1(1− pi) for one-sided p-values or zi = Φ−1(1− pi/2) for

two-sided p-values. Efron explains the rationale as an attempt to leverage the distributional properties of a

set of Gaussian random variables(Efron, 2013). Note that these Z-values are not intended to be the original

test statistics. We will adopt Dr. Bradley Efron’s formulation as described here (Efron, 2013).

We begin with the classic two-group model, which assumes each of the m features is either null (distribu-

tion known) or alternative (distribution unspecified), but that this status is unknown. As a group the combined

data can be used to provide an estimate of the mixture distribution, where the mixing proportion (π0) is also

unknown. Let f0(z) be the probability density function of the z-values when they come from the true null
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distribution and f1(z) be the probability density function of the z-values when they come from the alternative

distribution. Then F0(·) and F1(·) denote the probability of rejection for any subset Z of the real line such

that,

F0(Z ) =
∫

Z
f0(z)dz and F1(Z ) =

∫
Z

f1(z)dz (4.4)

With mixing or null proportion π0, the proportion of non-null features is simply π1 = 1−π0. The mixing

distribution function is

F(Z ) = π0F0(Z )+π1F1(Z ) (4.5)

When working with Z-values, it is reasonable to use a gaussian distribution for the theoretical null prob-

ability density function, so that f0(z)∼ N(0,1) (Efron, 2013). When estimating the FDR, is it also common

to assume that π0 = 1 because doing so results in a conservative estimate of the FDR. Then, an application of

Bayes famous theorem yields:

FDR(Z ) := Pr{null|z ∈Z }= π0F0(Z )

F(Z )
(4.6)

Substituting the natural empirical estimate of the mixture distribution F(Z ) results in empirical Bayes

estimates the global FDR Equation (4.6) (Benjamini and Hochberg, 1995) (Efron, 2013). For example, the

obvious empirical estimate of the mixing distribution function is the step function F̂(Zi) = rank(pi)/m.

Notice that the right hand side of Equation (4.1) then looks like γ · F̂(Zi) or γ times the step function. In

some settings smoothing F̂(Zi) can be beneficial. Very often it is assumed π0 = 1 and F0(Z ) = 1−Φ(Z )

for one-sided tests. An advantage of estimating the FDR from the right hand side of Equation (4.6) is that

one only needs to accurately estimate the mixture distribution function to get good estimates of the FDR and

this does not require the independence of the z-values.
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Figure 4.3: Density histogram of the simulated example.

Figure 4.3 and Figure 4.4 show the application of this framework using the same simulated data as in the

last example (100 tests, 80 truly null). In the z-space, the null distribution is now the standard normal and

the alternative distribution was set to N(2,1) (of course this is unknown, in practice). Figure 4.3 shows these

densities overlaid on a histogram of the raw data. The blue curve indicates the null density, the red curve

indicates the alternative density, and the black curve is the mixture density with π0 = 0.8. Clearly, the blue

curve does not fit the histogram well, with a much shorter right tail than the histogram shows. So, assuming

all 100 tests come from the null distribution does come with a penalty.

Figure 4.4: FDR simulated Z-values plot.
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Figure 4.4 displays the relationship between the Z-values and various FDR quantities. The black dots

show the raw p-values (y-axis) versus their Z-value (x-axis); the red dots show the estimated FDRs (y-axis)

versus their Z-value (x-axis); and the blue stars show the BH adjusted p-values (y-axis) versus their Z-value

(x-axis). This is the comparable plot to Figure 4.1, where the x-axis has been changed from p-value ranking

to z-scale. The usefulness of this plot is that is shows what the desired FDR quantity is for a given Z-value.

This provides context for our FDRs and adjusted p-values.

Here we see that Z-values greater than 2.85 and less than -2.5 have adjusted p-values less than 0.06 (blue

threshold line, horizontal). This means in order to control the group-wise FDR, one would identify features

with these Z-values as “interesting”. Notice that the Z-value above 4 has a FDR less than 0.06. Also the

Z-value of 2.9 has a FDR less than 0.06. In practice, we find that the display in Figure 4.1 is more intuitive

for non-statisticians, but that Figure 4.4 provides some essential insight into the stability and smoothness of

the estimation procedure.

4.3.1.3 Lower Bound on the FDR

The previous section introduced an empirical Bayes estimator for the FDR, which has become one of the most

popular estimates. However, there are many different approaches for estimating the FDR. We have found it

helpful in practice to be able to benchmark the magnitude of the FDR under known conditions in order to

provide a contrast for estimators that rely heavily on distributional assumptions. This lower bound can help

to contextualize findings and illuminate differences masked by empirical assumptions.

Our preferred benchmark is a well-known lower bound on the posterior probability of the null (hypothesis)

under a gaussian model. This lower bound depends only on the data for the feature or test of interest and it

does not borrow strength across features (for better or worse). Hence, it can also be used when only a single

test is performed, i.e. when only a single p-value is available. In our experience, the gaussian assumption

tends to have minimal influence because sampling distributions tend to be symmetric.

The lower bound arises as follows. Let the joint density of data from a single feature be g(X1, ...,Xn|θ)

where θ is a parameter of interest. The likelihood function is Ln(θ)∝ g(x1, ...,xn|θ) and denote the maximum

likelihood estimator as θ̂n. Recall that the null hypothesis is H0 : θ = θ0. Let π0 = P(null) be the prior

probability of the null and let z be the observed test statistic of the null hypothesis. Then, a lower bound on

the posterior probability, P(null|x1, ...,xn), which is effectively the FDR, is given by

P(null|x1, ...xn)≥

(
1+

L(θ̂n)

L(θ0)

π1

π0

)−1

≈
(

1+ exp(z2/2)
π1

π0

)−1
(4.7)
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The first inequality holds because
∫

g(x1, ...xn|θ1)h(θ1)dθ1 leqg(x1, ...xn|θ̂n) for all θ1 ∼ h(θ1). Note

that
∫

h(θ1)dθ1 = π1 by definition. The second approximation comes from the general asymptotic behavior

of a classical likelihood ratio test, where −2log L(θ0)

L(θ̂n)
∼ χ2

1 = [N(0,1)]2 for one-dimensional parameters.

This lower bound is similar to that derived and explored by Berger (1985). Our function uses default odds,

π1/π0 = 1, reasonable in many circumstances, which easily can be changed. As the z-statistic approaches

zero, the lower bound approaches 1/2, as would be expected.

For illustration, consider feature 4 in Table 4.1. Feature 4 has an observed p-value of 0.051, but has

a univariate gaussian lower bound on the FDR of 0.13 = (1+ exp(1.9512/2))(− 1). In this case the BH

estimated FDR is 0.064, substantially below the lower bound. This discrepancy in estimates is due to differing

underlying assumptions. In contrast, feature 2 has a p-value of 0.049 and FDR of 0.122, very close to its lower

bound. Although feature 4 has nearly the same p-value as feature 2, its BH FDR is nearly half that of feature

2. The univariate gaussian lower bound is helpful for identifying when FDR estimates may be optimistic, as

in the case above. Similarly, we see that the adjusted p-values can be much less than the lower bound, which

is another reason why they should not be mistaken for FDR estimates.

4.3.2 Adjustment Methods

The computation of adjusted p-values and FDRs for each method follows a similar intuitive approach. First,

estimates of the FDR for each feature are obtained using the preferred method, e.g. Benjamini-Hochberg or

Benjamini-Yekutieli. Step-up or step-down adjustments are not applied at this stage. Next, adjusted p-values

are obtained from the estimated FDRs by applying the step-up or step-down adjustment that is associated

with the method. The step adjustment is necessary for error control but not for FDR estimation. For methods

that do not have a step-up or step-down component, e.g. Bonferroni, the adjusted p-values and FDRs will be

the same. The distinction between the estimated FDRs and the adjusted p-values is an important one that is

routinely confused in practice.

Note that all estimates of adjusted p-values and FDRs are forced to be 1 or less. Also, when ranks are used

in our package the ties.method = "random". This means for example that if the 4 smallest p-values

in a vector tie in value then they will be assigned ranks 1,2,3,4 randomly. The user can change the ties method

in the input to the function.

Below we illustrate this with the remaining five methods (BH is discussed above).

4.3.2.1 Benjamini-Yekutieli

Benjamini-Yekutieli (BY) is a step-up method for controlling the false discovery rate under arbitrary depen-

dence (Benjamini and Yekutieli, 2001). For a pre-specified dependence structure, there exits an adjustment
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function called c(m) that is used to modify the Benjamini-Hochberg estimate of the FDR. For example, in

the case of flexible positive dependence, the function c(m) = ∑
m
j=1

1
j is used. Then, the threshold criteria is

to find the largest index i such that Equation (4.21) holds, which is a scaled version of the BH criterion given

in Equation (4.1).

p(i) ≤ γ
i
m

1
c(m)

(4.8)

This can be written compactly k = max
[
i : p(i) ≤ γ · i/(m · c(m))

]
or for non-ordered vectors of p-values

k = max [rank(pi) : pi ≤ γ · rank(pi)/(m · c(m))]. Then all features with p(1), ..., p(k) are deemed interesting

at the FDR γ threshold and considered “findings”. Recall that Benjamini-Hochberg procedure uses the step

function (F(p(i)) = i/m) as its implicit empirical estimate of the mixing distribution function (CDF) Check

this notation. The Benjamini-Yekutieli procedure amounts to simply using a modified estimate for the CDF,

namely (F(p(i)) = i/(m · c(m))).

Mathematically, the adjusted p-values and estimated FDRs are

p̃BY
(i) := min

j≥i

(
p( j)

m · c(m)

j

)
≤ γ (4.9)

FDRBY
i := pi

m · c(m)

rank(pi)
· π̂0 (4.10)

Comparing this form to the general formula for the FDR in Equation (4.6), we see that the BY correction

amounts to changing the estimate of the mixture distribution F(Z ) from [rank(pi)/m] to [rank(pi)/(m ·c(m))]

to account for dependence. Note that we have avoided using the ordered notation for False discovery rate

estimates, say FDR(i), because although those estimates are dependent on ordered p-values the FDR estimates

themselves do not have to be monotonic.

Here we see the BY FDRs, or red points, jump above and below the 0.06 threshold in ranks 1 to 6. Then

in ranks 7 and greater the red dots remain above the threshold and quickly are adjusted to the value of 1. The

positive dependence correction causes these BY FDRs to be closer to 1, or more conservative.

54



4.3.2.2 Bonferroni

The Bonferroni correction controls the family wise error rate (FWER) (Bonferroni, 1936). We include it in

our function because of its popularity in multiple adjustments even though it is not directly related to FDR.

For this method we would reject the null hypothesis for each pi ≤ γ

m in order to control the FWER at ≤ γ

level. In our functions the adjusted p-values and adjusted FDRs will always be identical for this method.

p̃Bon
i := pim≤ γ (4.11)

FDRBon
i := pim · π̂0 (4.12)

From this form we see that the Bonferroni correction amounts to changing the estimate of the mixture

distribution F(Z ) to [1/m].

4.3.2.3 Sidak

The Sidak or Dunn-Sidak correction controls the family wise error rate (FWER) (Šidák, 1967). This correc-

tion method is exact for tests that are independent, it is conservative for tests that are positively dependent,

and it is liberal for tests that are negatively dependent. For this method is slightly less strict then the tradi-

tional Bonferroni method. For each pi ≤ γSid = 1− (1− γ)
1
m reject the null hypothesis in order to control the

FWER at ≤ γ level. In our functions the adjusted p-values and adjusted FDRs will always be identical for

this method.

p̃Sid
i := 1− (1− pi)

m ≤ γ (4.13)

FDRSid
i := 1− (1− pi)

m · π̂0 (4.14)

From this form we see that the Sidak correction amounts to changing the estimate of the mixture distri-

bution F(Z ) to [pi/(1− (1− pi)
m)] assuming F0(Z) = pi.
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4.3.2.4 Holm

The Holm method, also known as the Holm-Bonferroni method, controls the FWER and is less conservative

and therefore uniformly more powerful than the Bonferroni correction (Holm, 1979). For this method we

use the step-down procedure which would reject the null for those rankings 1, ...,(k− 1) such that k is the

smallest ranking where:

p(k) ≤
γ

m+1− k
(4.15)

From the above equation we see that it relies on the ranking or j that means our function’s outputted

adjusted p-value and FDR can be different.

p̃Holm
(i) := max

j≤i

(
p( j)(m+1− j)

)
≤ γ (4.16)

FDRHolm
i := pi(m+1− rank(pi)) · π̂0 (4.17)

From this form we see that the Holm correction amounts to changing the estimate of the mixture distri-

bution F(Z ) to [1/(m+1− rank(pi))].

4.3.2.5 Hochberg

The Hochberg method uses the same equation as the Holm method, Equation (4.15) (Hochberg, 1988). How-

ever for this method we use the step-up procedure. This means we would reject the null for those rankings

1, ..., j such that j is the largest ranking where:

p( j) ≤
γ

m+1− j
(4.18)

This change from the step-down to the step-up procedure results in the Hochberg correction being more

powerful than the Holm method.
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p̃Hoch
(i) := min

j≥i

(
p( j)(m+1− j)

)
≤ γ (4.19)

FDRHoch
i := pi(m+1− rank(pi)) · π̂0 (4.20)

From this form we see that the Hochberg correction is the same as the Holm and amounts to changing the

estimate of the mixture distribution F(Z ) to [1/(m+1− rank(pi))].

4.3.3 Null Proportion (π0) Estimation

The proportion of truly null features (π0), also known as the mixing proportion, is an important component

of the FDR estimate that can be a strong driver of the estimate. While generally not identifiable, reasonable

estimates of π0 can be obtained under certain conditions. Many of the popular FDR estimation routines take

a conservative approach by setting π0 = 1, which results in a larger, i.e. conservative, FDR estimates.

The default in p.fdr is to assume that π0 = 1. However, users are able to set the null proportion to

a particular value or specify an estimation routine to estimate π0 from the data. Many methods have been

proposed for estimating the mixing proportion π0 in a two-component mixture. p.fdr includes several of

these methods such as Storey, Meinshausen, Jiang, Nettleton, and Pounds (Storey and Tibshirani (2003);

Meinshausen et al. (2006); Jiang and Doerge (2008); Nettleton et al. (2006); Pounds and Morris (2003)). In

next section, we propose a new approach that we call “Last Histogram Height”. This new approach is simple,

appears to have excellent performance over a wide range of scenarios, and less computationally intensive that

Storey’s approach, which is quite popular. An evaluation and comparison to existing approaches is described

in the subsequent subsection.

4.3.3.1 Last Histogram Height

Under the null, a test statistic for a feature, say a Z-value, is standard normal. As such, the corresponding

p-value has a uniform distribution over the unit interval. Therefore, if all the features were null, we would

expect an empirical histogram of the observed p-values to be approximately flat. Moreover, we see that the

distribution of non-null p-values tends to be shifted toward zero.

The “Last Histogram Height” method uses the bin height of p-values near 1 to estimate the true proportion

of null features. We rely on the assumption that larger p-values are more likely to be come from null features.
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Let bin heights be H1,H2, ...,HB, where B is the total number of bins. When B = m (m is the number of

features) and all features are null, we would expect Hi ≈ 1 for all i = 1, ...,B. The caveat is estimating bin

height is sensitive to the choice of bin width. However, we have found that Scott’s normal reference rule

tends to work very well for this method (Scott, 1979).

When π0 < 1, the empirical distribution of the p-values (as shown by the histogram) will not be uniform

over the unit interval. Departure from the uniform becomes easier to detect as π0 moves further from 1

because the histogram shape quickly deviates from a uniform appearance. An example is presented in Fig-

ure 4.5, which shows a histogram of raw p-values from our simulated example of m = 1000 features. The red

horizontal line is drawn at the height of the last bin, HB. In this approach HB is our “null height” and HB ·B

is an estimate of the total number of null features. We then divide that by the number of total features (m) to

estimate the null proportion (see Equation (4.21)):

π̂0 =
HBB

m
(4.21)

Figure 4.5: Simulated histogram of p-values with horizontal line at the last bin height.

The approach works because we would expect π0 ∗m/B null p-values to be in each bin. This simple

method performed well over many different simulation settings, as we described in the next section. It is also

relatively free of constraining assumptions on the alternative distribution. We note that this approach can also

be viewed as a form of central matching, as discussed by Efron (Efron, 2013), with center mass 1
B and a very
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small bin width. The “Last Histogram Height” algorithm is as follows:

Algorithm 1 Last Histogram Height Method
Resultado: Null proportion estimate

1. Plot a histogram of the raw p-values, p1, p2, ...pm, with B number of bins, where B < m

• The most consistent bin method is scott, according to our simulations

2. Store the histogram bin heights Hb for each bin b = 1,2, ...,B

3. Call the height of last bin HB the “null height”

4. Set the estimate of π0 to be

π̂0 =
HBB

m

4.3.3.2 Storey

Storey et al. (2003) propose an iterative procedure for estimating π0. This procedure is popular and tends

to have good performance characteristics over a wide range of scenarios. Storey’s method relies on the fact

that null p-values are uniformly distributed. As such, the bin height of p-values greater than 1/2 should give a

conservative estimate of the null proportion. But there is nothing magical about 1/2, so Storey uses a tuning

parameter. Let λ identify “large” p-values, e.g., #pi > λ where i = 1, ...,m, such that the estimate of the

null proportion π̂0(λ ), can be tuned by λ to yield a desirable bias-variance trade-off. Storey smoothes π̂0(λ )

before tuning, which provides some numerical stability. Note that for the “Last Histogram Height” approach,

the bin height closest to one is used to estimate the null proportion, which is conceptually similar to using

limλ→1 π̂0(λ ) as Storey does. Storey’s algorithm for estimating π0 is as follows:

Algorithm 2 Storey’s Method
Resultado: Null proportion estimate

1. Let p(1), p(2), ...p(m) be the ordered p-values. This also denotes the ordering of the features in terms of their

evidence against the null hypothesis.

2. For a range of λ , say λ = 0,0.05,0.10, ...,0.95, and i = 1, ...,m, calculate

π̂0(λ ) =
#{pi > λ}
m(1−λ )

3. Let f̂ be the natural cubic spline with 3 df of π̂0(λ ) on λ

4. Set the estimate of π0 to be when λ = 1:

π̂0 = f̂ (1)
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4.3.3.3 Comparison

Below in Figure 4.6 are three plots showing the range of behavior of the six methods for estimating the

null proportion that are included in our R package. These plots show the arrogate behavior of each method

for estimating π0 over 1000 simulations where the methods are used on a set of 100 features. A standard

normal distribution was used for null features and three different alternative distributions were examined for

alternative features (three different plots). The x-axis represents the true π0 used to generate data and ranges

from 0 to 1. The y-axis represents the average estimate π0 (over the 1,000) simulations) for each of the six

methods. Figure 4.7 shows the corresponding mean squared error (MSE) for these simulations.

Figure 4.6: Comparison of null proportion estimation methods performance.

”Last Histogram Height” and Storey’s method preformed the best across these scenarios (and others not

shown here). They routinely produce the closest estimates of the true null proportion and have the some of

lowest MSEs. Although we only display three different mixture distributions for a set of 100 features here,

we tested 12 different mixture distributions over three different features set sizes to confirm our results. We

also tested the mean squared error and the results are well represented by the three examples given here. Our

recommendation is to use the default of setting π0 = 1 when the majority of features are expected to be null

or nearly null. But in cases where the null proportion is likely to be different from one (say less than 0.95 or

0.9), then the “Last Histogram Height” algorithm tends to perform the best.
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Figure 4.7: Comparison of null proportion estimation methods MSE.

4.3.4 Implementation

FDRestimation is a user-friendly R package that directly computes and displays false discovery rates

from p-values or z-scores under a variety of assumptions. The following sections will explain the primary

functions in this package and illustrate how to implement them.

4.3.5 p.fdr Function

This p.fdr function is used to compute FDRs and multiple-comparison adjusted p-values from a vector of

raw p-values. The stats package function stats::p.adjust is similar in that it will produce multiple-

comparison adjusted p-values. However, stats::p.adjust returns the BH adjusted p-value labeled

as the FDR estimate. Strictly speaking this is inaccurate, because the BH FDR estimate should not have

the forced monotonicity that its adjusted p-values must have. In addition, when estimating the FDR, our

FDRestimation::p.fdr function allows adjustments of key assumptions that are not adjustable in the

stats::p.adjust implementation (they are set to the simplest, most popular options).
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Arguments Description

pvalues A numeric vector of raw p-values.

zvalues A numeric vector of Z-values to be used in pi0 estimation

or a string with options “two.sided”, “greater” or “less”. Defaults to “two.sided”.

threshold A numeric value in the interval [0,1] used in a multiple comparisons

hypothesis tests to determine significance from the null. Defaults to 0.05.

adjust.method A string used to identify the adjustment method. Defaults to BH.

Options are BH, BY, Bon, Holm, Hoch, and Sidak.

BY.corr A string of either “positive” or “negative” to determine which correlation

is used in the BY method. Defaults to positive.

just.fdr A Boolean TRUE or FALSE value which output only the FDR vector instead of

the list output. Defaults to FALSE.

default.odds A numeric value determining the ratio of pi1/pi0 used in the computation of

single lower bound FDR. Defaults to 1.

estim.method A string used to determine which method is used to estimate

the null proportion or pi0 value. Defaults to set.pi0.

set.pi0 A numeric value to specify a known or assumed pi0 value in the interval [0,1].

Defaults to 1. Which means the assumption is that all inputted raw p-values come from

the null distribution.

hist.breaks A numeric or string variable representing how many breaks are used in the pi0

estimation histogram methods. Defaults to “scott”.

ties.method A string a character string specifying how ties are treated. Options are ”first”,

”last”, ”average”, ”min”, ”max”, or ”random”. Defaults to ”random”.

sort.results A Boolean TRUE or FALSE value which sorts the output in either increasing or

non-increasing order dependent on the FDR vector. Defaults to FALSE.

na.rm A Boolean TRUE or FALSE value indicating whether NA’s should be removed from

the inputted raw p-value vector before further computation. Defaults to TRUE.

Table 4.2: Inputs to the p.fdr function taken directly from the R documentation (R Core Team, 2021).

This FDRestimation::p.fdr function allows for the following adjustment methods: Benjamini-

Hochberg, Benjamini-Yekutieli (with both positive and negative correlation), Bonferroni, Holm, Hochberg,

and Sidak (Benjamini and Hochberg (1995); Benjamini and Yekutieli (2001); Bonferroni (1936); Holm
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(1979); Hochberg (1988); Šidák (1967)). It also allows the user to specify the threshold for important findings,

the assumed pi0 value, the desired pi0 estimation method, whether to sort the results, and whether to remove

NAs in the imputed raw p-value vector count (stats::p.adjust actually counts NAs as viable features

in its Bonferroni adjustment). Table 4.2 shows all of the inputs for this function and their descriptions.

The underlying methods for estimating the null proportion can be set by using the “estim.method” and

“set.pi0” arguments. The default value of “set.pi0” is 1, meaning it assumes that all features are null features.

Accordingly, this approach will yield conservative estimates of the FDR. Alternatively, and less conserva-

tively, one can attempt to estimate the null proportion from the data. To do this, we recommend using “Last

Histogram Height”, as it was the simplest routine and one of the most accurate in our simulations (R Core

Team, 2021).

Figure 4.8: Example of output produced with p.fdr code.

Here we see an example of how to use this FDRestimation::p.fdr function in R. We simulate 100

features with a true null proportion of 80%.

s e t . s eed ( 8 8 8 8 8 )

# S i m u l a t e Data

sim . d a t a . p= c ( r u n i f ( 8 0 ) , r u n i f ( 2 0 , min =0 , max = 0 . 0 1 ) )
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# F u l l s e t

p . f d r ( p=sim . d a t a . p , t h r e s h o l d = 0 . 0 5 , a d j u s t . method =”BH” )

# F i r s t 5 p−v a l u e s f o r F i g u r e 7

p . f d r ( p=sim . d a t a . p [ 1 : 5 ] , t h r e s h o l d = 0 . 0 5 , a d j u s t . method =”BH” )

The function will return a list object of the p.fdr class. In Figure 4.8 we see this list object from the

first five p-values for with the following components (R Core Team, 2021).

• fdrs A numeric vector of method adjusted FDRs.

• Results Matrix A numeric matrix of method adjusted FDRs, method adjusted p-values, and raw p-

values.

• Reject Vector A vector containing Reject.H0 and/or FTR.H0 based off of the threshold value and

hypothesis test on the adjusted p-values.

• pi0 A numeric value for the pi0 value used in the computations.

• threshold A numeric value for the threshold value used in the hypothesis tests.

• Adjustment Method The string with the method name used in computation(needed for the plot.fdr

function).

4.3.6 get.pi0 Function

The get.pi0 function is used to estimate the null proportion from the raw p-values. The user can choose

one of six different methods included in our function: Last Histogram Height, Storey, Meinshausen, Jiang,

Nettleton, and Pounds (Storey and Tibshirani (2003); Meinshausen et al. (2006); Jiang and Doerge (2008);

Nettleton et al. (2006); Pounds and Morris (2003)). The user may also change the methods of determining the

number of histogram breaks, which is an essential component for many of the methods implemented here.

Table 4.3 shows function arguments and their descriptions.
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Arguments Description

pvalues A numeric vector of raw p-values.

set.pi0 A numeric value to specify a known or assumed pi0 value in the interval [0,1].

Defaults to 1. Which means the assumption is that all inputted raw p-values come from

the null distribution.

estim.method A string used to determine which method is used to estimate

the null proportion or pi0 value. Defaults to set.pi0.

zvalues A numeric vector of Z-values to be used in pi0 estimation

or a string with options “two.sided”, “greater” or “less”. Defaults to “two.sided”.

threshold A numeric value in the interval [0,1] used in a multiple comparisons

hypothesis tests to determine significance from the null. Defaults to 0.05.

default.odds A numeric value determining the ratio of pi1/pi0 used in the computation of

single lower bound FDR. Defaults to 1.

hist.breaks A numeric or string variable representing how many breaks are used in the pi0

estimation histogram methods. Defaults to “scott”.

na.rm A Boolean TRUE or FALSE value indicating whether NA’s should be removed from

the inputted raw p-value vector before further computation. Defaults to TRUE.

Table 4.3: Inputs for the get.pi0 function taken directly from the R documentation (R Core Team, 2021).

Here we see an example of how to use this get.pi0 function in R. We used the simulated data from

above sim.data.p where the true null proportion was set to 80%. In the first example, for the purposes

of the estimation routine, π0 was set to a single value with the set.pi0=0.8 argument (1 is the default).

Alternatively, we can use one of the six estimation methods in get.pi0 instead of specifying π0 a priori.

Below is an example where we set the estimation method to "last.hist" (i.e., “Last Histogram Height”).

In that case, the get.pi routine returned an estimate of null proportion of 0.95.

s e t . s eed ( 8 8 8 8 8 )

# S e t n u l l p r o p o r t i o n wi th known v a l u e

g e t . p i 0 ( sim . d a t a . p , e s t i m . method =” s e t . p i 0 ” , s e t . p i 0 = 0 . 8 )

[ 1 ] 0 . 8
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# Get n u l l p r o p o r t i o n wi th l a s t h i s t o g r a m h e i g h t method

g e t . p i 0 ( sim . d a t a . p , e s t i m . method =” l a s t . h i s t ” )

[ 1 ] 0 . 8 5

4.3.7 plot.p.fdr Function

This plot.p.fdr function is used to plot the results of p.fdr. By default, the adjusted FDRs, adjusted

p-values and raw p-values are plotted along with two threshold lines to help contextualize the points. Any

combination of p-values and thresholds can be removed from the plot. The user can set the axis limits, the

location of the legend, the title of the plot and the plotting symbols and colors. Table 4.4 shows all the

function arguments and their descriptions.

Figure 4.9: Benjamini-Hochberg p.fdr plot.

Here we see an example of the plot.p.fdr function in R. We used our simulated data sim.data.p,

where the a true null proportion was 80%, for illustration. Figure 4.9 show the default plot, and Figure 4.10

zooms in on an interesting subset of findings.
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Arguments Description

p.fdr.object A p.fdr object that contains the list of output.

raw.pvalues A Boolean TRUE or FALSE value to indicate whether or not to plot the raw p-value

points. Defaults to TRUE.

adj.pvalues A Boolean TRUE or FALSE value to indicate whether or not to plot the adjusted

p-value points. Defaults to TRUE.

sig.line A Boolean TRUE or FALSE value to indicate whether or not to plot the raw p-value

significance line. Defaults to TRUE.

adj.sig.line A Boolean TRUE or FALSE value to indicate whether or not to plot the adjusted

significance threshold. Defaults to TRUE.

threshold A numeric value in the interval [0,1] used in a multiple comparisons

hypothesis tests to determine significance from the null. Defaults to 0.05.

x.axis A string variable to indicate what to plot on the x-axis. Can either be “Rank” or

“Zvalues”. Defaults to “Rank”.

xlim A numeric interval for x-axis limits.

ylim A numeric interval for y-axis limits. Defaults to c(0,1).

zvalues A numeric vector of Z-values to be used in pi0 estimation

or a string with options “two.sided”, “greater” or “less”. Defaults to “two.sided”.

legend.where A string “bottomright”, “bottomleft”, “topleft”, “topright”. Defaults to “topleft”

is x.axis=”Rank” and “topright” if x.axis=”Zvalues”.

main A string variable for the title of the plot.

pch.adj.p A plotting ’character’, or symbol to use for the adjusted p-value points. This can

either be a single character or an integer code for one of a set of graphics symbols.

Defaults to 17.

pch.raw.p A plotting ’character’, or symbol to use for the raw p-value points. This can either

be a single character or an integer code for one of a set of graphics symbols.

Defaults to 20.

pch.adj.fdr A plotting ’character’, or symbol to use for the adjusted FDR points. This can

either be a single character or an integer code for one of a set of graphics symbols.

Defaults to 20.

col A vector of colors for the points and lines in the plot. If the input has 1 value all

points and lines will be that same color. If the input has length of 3 then

col.adj.fdr will be the first value, col.adj.p will be the second, and col.raw.p is the third.

Defaults to c(”dodgerblue”,”firebrick2”, ”black”).

Table 4.4: Inputs for the plot.p.fdr function taken directly from the R documentation (R Core Team,
2021).

# F i g u r e 9

p l o t ( p . f d r ( p=sim . d a t a . p ) )
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# F i g u r e 10

p l o t ( p . f d r ( p=sim . d a t a . p ) , x l im =c ( 0 , 2 5 ) , y l im =c ( 0 , 0 . 2 5 ) )

Figure 4.10: Magnified section of Figure 8.

4.3.8 Operation

This article was written using R version 4.0.3 (2020-10-10 on https://cran.r-project.org/bin/windows/base/

old/4.0.3/) and FDRestimation version 1.0.0. The FDRestimation R package is available from CRAN

and works on R versions 3.4 and above.

The package can be installed from CRAN using the following code:

# I n s t a l l from CRAN

i n s t a l l . p a c k a g e s ( ” FDRes t ima t ion ” )

# Load t h e package

l i b r a r y ( FDRes t ima t ion )

4.4 Conclusions

We encourage the use of FDR methods and desire to illuminate the importance of contextualizing important

findings. Our package provides useful and easy tool for those want to compute the false discovery rate,

analogous to the role that stats::p.adjust plays for multiple comparison adjustments in everyday
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practice. Importantly, we hope it is now clear that p-value adjustments are not interchangeable with FDRs.

In addition, FDRestimation package clearly delineates between methods for FDR control and methods

for FDR estimation, while still allowing the user to choose from many different inputs and assumptions for

their data. The more flexibility the user has at their disposal with these methods, better interpretations and

applications will result.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Software availability

R package FDRestimation is available from CRAN: https://cran.r-project.org/package=FDRestimation

Source code available from: https://github.com/murraymegan/FDRestimation

Archived source code at time of publication: https://doi.org/10.5281/zenodo.4684221

License: MIT + file LICENSE
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CHAPTER 5

Conclusion

This dissertation aims to improve transparency and accessibility of statistical analyses, specifically for the

methods of second-generation p-values (SGPVs) and false discovery rates (FDRs). First, we identify SGPV

as the most flexible and easy-to-use method for establishing statistical equivalence with an interval null hy-

pothesis when compared to the TOST test. Reasons for favoring SGPV include the benefit of a third inference

outcome, ease of interpretation, clear statistical properties, and the amount overlap between intervals being

used in the reported p-value. Second, we also propose a technique of shrinking the indifference zone over

sample size in SGPV analyses to address collaborator uncertainty. In the case where a collaborator is un-

certain in the hypothesis but can estimate a wide interval, shrinking the interval over sample size can benefi-

cially balance the power and errors. This paper opens up a new discussion of how statisticians should discuss

hypotheses with collaborators during the study planning phase. Third, we present an R package ”FDResti-

mation” for flexible and transparent false discovery rate computation for classical p-values. It distinguishes

between estimated FDRs and adjusted p-values for many different published adjusted methods.

The following points summarize the key contributions of this work. These contributions improve current

statistical methodology and encourage transparent collaboration with other researchers.

• Our comparison clearly identifies SGPV as the most flexible and easy-to-use statistical method to

establish statistical equivalence when compared to equivalence tests, like TOST.

• We present a solution to adjust for collaborator uncertainty in SGPV analyses and encourage statisti-

cians to discuss hypothesis uncertainty with collaborators.

• We introduce a user-friendly R package to compute and distinguish between FDRs and adjusted p-

values. This package can be used to account for multiple testing in high-dimensional data scenarios

like genomics.

70



References

Benjamini, Y. (2010). Simultaneous and selective inference: Current successes and future challenges. Biomet-
rical Journal, 52(6):708–721. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.200900299.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society, 57(1):289–300.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under
dependency. Annals of statistics, pages 1165–1188.

Berger, R. L. and Hsu, J. C. (1996). Bioequivalence trials, intersection-union tests and equivalence confidence
sets. Statistical Science, 11(4):283–319. Publisher: Institute of Mathematical Statistics.

Blume, J., Greevy, R., Welty, V., Smith, J., and Dupont, W. (2019). An Introduction to Second-Generation p
-Values. The American Statistician, 73:157–167.

Blume, J. D., McGowan, L. D., Dupont, W. D., and Jr, R. A. G. (2018). Second-generation p-values: Im-
proved rigor, reproducibility, & transparency in statistical analyses. PLOS ONE, 13(3):e0188299. Pub-
lisher: Public Library of Science.

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto
Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–62.

Cohen, M. P. (2021). Why Not an Interval Null Hypothesis? Journal of Data Science, 17(2):383–390.
Publisher: School of Statistics, Renmin University of China.

Efron, B. (2013). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction.
Cambridge University Press.

Ennis, D. M. and Ennis, J. M. (2010). Equivalence hypothesis testing. Food Quality and Preference,
21(3):253–256. Place: Netherlands Publisher: Elsevier Science.

Fisher, R. A. (1959). Statistical methods and scientific inference. Hafner, New York. OCLC: 1516472.

Fryar, C. D., Kruszon-Moran, D., Gu, Q., and Ogden, C. L. (2018). Mean body weight, height, waist
circumference, and body mass index among adults: United states, 1999-2000 through 2015-2016. Natl
Health Stat Report, (122):1–16.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operating charac-
teristic (ROC) curve. Radiology, 143(1):29–36. Publisher: Radiological Society of North America.

Hauck, W. W. and Anderson, S. (1984). A new statistical procedure for testing equivalence in two-group
comparative bioavailability trials. Journal of Pharmacokinetics and Biopharmaceutics, 12(1):83–91.

Hochberg, Y. (1988). A sharper bonferroni procedure for multiple tests of significance. Biometrika,
75(4):800–802.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics,
pages 65–70.

Hung, H. M. J., O’Neill, R. T., Bauer, P., and Kohne, K. (1997). The Behavior of the P-Value When the Alter-
native Hypothesis is True. Biometrics, 53(1):11–22. Publisher: [Wiley, International Biometric Society].

Interventions, A. C.-. T., Group, V. A.-. S., and Naggie, S. (2022). Ivermectin for treatment of mild-to-
moderate covid-19 in the outpatient setting: A decentralized, placebo-controlled, randomized, platform
clinical trial. medRxiv.

71



Jiang, H. and Doerge, R. (2008). Estimating the proportion of true null hypotheses for multiple comparisons.
Cancer informatics, 6:117693510800600001.

Kirkwood, T. B. L. and Westlake, W. J. (1981). Bioequivalence Testing – A Need to Rethink. Biometrics,
37(3):589–594. Publisher: [Wiley, International Biometric Society].

Kruschke, J. K. (2018). Rejecting or Accepting Parameter Values in Bayesian Estimation. Advances in
Methods and Practices in Psychological Science, 1(2):270–280. Publisher: SAGE Publications Inc.

Lakens, D. and Caldwell, A. (2022). TOSTER: Two One-Sided Tests (TOST) Equivalence Testing.

Lakens, D. and Delacre, M. (2018). Equivalence Testing and the Second Generation P-Value. Technical
report, PsyArXiv. type: article.

Mandallaz, D. and Mau, J. (1981). Comparison of Different Methods for Decision-Making in Bioequivalence
Assessment. Biometrics, 37(2):213–222. Place: United States Publisher: Biometric Society.

Meinshausen, N., Rice, J., et al. (2006). Estimating the proportion of false null hypotheses among a large
number of independently tested hypotheses. The Annals of Statistics, 34(1):373–393.

Meyners, M. (2012). Equivalence tests – A review. Food Quality and Preference, 26:231–245.

Miller, R. G. (1981). Miscellaneous Techniques. In Miller, R. G., editor, Simultaneous Statistical Inference,
pages 211–229. Springer, New York, NY.

Nettleton, D., Hwang, J. G., Caldo, R. A., and Wise, R. P. (2006). Estimating the number of true null
hypotheses from a histogram of p values. Journal of agricultural, biological, and environmental statistics,
11(3):337.

Neyman, J., Pearson, E. S., and Pearson, K. (1933). IX. On the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 231(694-706):289–337. Publisher: Royal Society.

Perlman, M. D. and Wu, L. (1999). The Emperor’s new tests. Statistical Science, 14(4):355–369. Publisher:
Institute of Mathematical Statistics.

Pounds, S. and Morris, S. W. (2003). Estimating the occurrence of false positives and false negatives in mi-
croarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics,
19(10):1236–1242.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.

Robbins, H. (1970). Statistical Methods Related to the Law of the Iterated Logarithm. The Annals of Mathe-
matical Statistics, 41(5):1397–1409. Publisher: Institute of Mathematical Statistics.

Rogers, J. L., Howard, K. I., and Vessey, J. T. (1993). Using significance tests to evaluate equivalence be-
tween two experimental groups. Psychological Bulletin, 113(3):553–565. Num Pages: 553-565 Publisher:
American Psychological Association (US).

Schuirmann, D. J. (1987). A comparison of the Two One-Sided Tests Procedure and the Power Approach for
assessing the equivalence of average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics,
15(6):657–680.

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3):605–610.

Seaman, M. A. and Serlin, R. C. (1998). Equivalence confidence intervals for two-group comparisons of
means. Psychological Methods, 3(4):403–411. Num Pages: 403-411 Place: Washington, US Publisher:
American Psychological Association (US).

72
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