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CHAPTER 1

Introduction

Scientific research has been described by some as being in a "reproducibility crisis" [1]. It is becoming

increasingly difficult for other researchers to reproduce work described in literature. The broad field of

molecular simulation is just as susceptible to these challenges in reproducibility [2]. It is quite common

for the necessary input parameters and workflow information to be included in the methods or supplemental

information of these publications. However, this is not always the case, key parameters and details of the

simulation workflow are commonly omitted, making it difficult for researchers to reproduce, and hopefully,

extend the work. This is especially true for soft material simulations (e.g., molecular liquids, polymers, and

other biomaterials that are easily deformed at ambient conditions and can only be described by multiple

configurations of structures over sufficiently long simulation times to predict their properties), which require

complex, usually multistep, ad hoc initialization routines and similarly complex simulation workflows based

on the application.

As massive computational resources are continually improving and increasing in availability, large scale

molecular screening of soft matter is becoming more accessible, in a similar effort to the Materials Genome

Initiative (MGI) [3]. MGI [3] leverages computational screening of many hard matter systems to preemptively

identify potential candidate materials for experimental synthesis. With the hope that new hard materials for

experimental synthesis could be identified and developed in half the time previously required to identify and

develop synthesis protocols, the MGI [3] was developed to use computational screening as a cost- and time-

effective way to identify systems of interest to direct experimental synthesis efforts. Being able to apply

similar approaches to thin films and other soft material designs could have massive impacts on nanotribology

and many other complex fields and problems in nanoscience. However, the computational study of soft

materials is quite challenging to simulate compared to hard materials (e.g., crystals, alloys, salts, and other

materials which do not easily deform at biologically-relevant (ambient) conditions). For example, in soft

materials, the intermolecular forces are of the same order of magnitude as the thermal motion (kBT , where kB

is Boltzmann’s constant and T is the absolute temperature), in contrast to hard materials where the interatomic

forces are much greater than kBT (typically resulting in crystalline structures). This means that for soft

materials, very long simulation times are required to ensure proper thermodynamic sampling as well as quite

large systems to capture the mesoscale order, drastically different to hard materials. Like the MGI [3],

specialized tools are necessary to better facilitate the screening and study of candidate soft matter systems.

These tools need to be readily available to computational chemists, expose tunable properties of the systems to
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support screening, be extensible by others, and also promote and support reproducible soft matter simulations.

To support these efforts, we have developed the Molecular Simulation and Design Framework (MoSDeF),

an open-source set of Python libraries that are designed to address issues of automation/efficiency, accuracy,

and reproducibility in molecular simulations, with a major focus on soft material applications [4–8].

The work presented first describes best practices in molecular simulation [9] (Chapter 2). With the

goal that by providing more accessible best practices documents which condense many common pitfalls

and other issues that impact novice simulators, common sources of errors and hindrances to reproducibility

can be caught and fixed much earlier in a simulation workflow. Next, best practices and guiding principles

are provided in Chapter 3 to encourage more Transparent, Reproducible, Usable by others, and Extensible

(TRUE) [5] science with a focus on computational chemistry. Since MoSDeF has been in development for

over a decade at this point [10, 11] development efforts and updates to MoSDeF have been continual during

this time and many changes to the tools have occurred. Chapter 4 provides development updates for the three

main MoSDeF libraries mbuild, foyer, and gmso. Then, in Chapter 5 [12] and Chapter 6 [6, 13], we

explore two science applications of MoSDeF and TRUE to screen over large soft matter parameter spaces for

self-assembly and tribological properties. Chapter 5 screens over coverage ratios of patchy, polymer-coated

nanoparticles using coarse-grained (CG) parameters to emulate alkane polymer patches and their effect on

self-assembled structures. Chapter 6 screens through thin films in shear contact, exploring the effect of ter-

minal group chemistry and composition on tribological properties: coefficient of friction (µ) and force of

adhesion (F0). A decision tree-based random forest (RF) model is developed for both properties above, ex-

ploring the impact of thin film composition and terminal group chemistry as a predictive model, leading to

orders of magnitude speedup in property prediction. Finally, the results are summarized in Chapter 7.
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CHAPTER 2

Best Practices for Molecular Simulation

2.1 Introduction

For the beginner and experienced practitioners of molecular simulation, there are many nuanced details of

molecular simulation that might not be completely obvious, but can have drastic effects on the results of

the simulation. While not a fully extensive introduction to molecular simulation overall, the work below

seeks to inform the simulationist of many ideas and assumptions that are made during a molecular simulation

and their subsequent impacts on the results 12. This seeks to provide a useful starting point and source of

reference material and general checklists that one should follow when designing and performing molecular

simulation. This work serves as a resource to inform users of important details before/during a molecular

simulation and best practices to ensure that their simulations are justified and that they are treating the system

correctly for the property of interest they want to measure. By providing peer-reviewed best practices for

molecular simulation, we hope to further improve the quality of molecular simulations as well as improve

their reproducibility.

2.2 Background

Molecular simulation techniques play an important role in our quest to understand and predict the properties,

structure, and function of molecular systems, and are a key tool as we seek to enable predictive molecular

design. Simulation methods are useful for studying the structure and dynamics of complex systems that are

too complicated for pen and paper theory, helping interpret experimental data in terms of molecular motions.

Additionally, they are increasingly used for quantitative prediction of properties of use in molecular design

and other applications [2–6].

The basic idea of any molecular simulation method is straightforward; a particle-based description of

the system under investigation is constructed and then the system is propagated by either deterministic or

probabilistic rules to generate a trajectory describing its evolution over the course of the simulation [7, 8].

Relevant properties can be calculated for each “snapshot” (a stored configuration of the system, also called a

“frame”) and averaged over the entire trajectory to compute estimates of desired properties.

Depending on how the system is propagated, molecular simulation methods can be divided into two

main categories: Molecular Dynamics (MD) and Monte Carlo (MC). With MD methods, the equations of

1Portions of this chapter reprinted with permission from the following work:
2Braun, E., Gilmer, J., Mayes, H. B., Mobley, D. L., Monroe, J. I., Prasad, S. & Zuckerman, D. M. Best Practices for Foundations in

Molecular Simulations [ Article v1.0]. Living journal of computational molecular science 1, 5957. ISSN: 2575-6524 (2019).
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motion are numerically integrated to generate a dynamical trajectory of the system. MD simulations can be

used for investigating structural, dynamic, and thermodynamic properties of the system. With MC methods,

probabilistic rules are used to generate a new configuration from the present configuration and this process is

repeated to generate a sequence of states that can be used to calculate structural and thermodynamic properties

but not dynamical properties; indeed, MC simulations lack any concept of time. Thus, the “dynamics”

produced by an MC method are not the temporal dynamics of the system, but the ensemble of configurations

that reflect those that could be dynamically sampled. This foundational document will focus on the concepts

needed to carry out correct MD simulations that utilize good practices. Many, but not all, of the concepts here

are also useful for MC simulations and apply there as well. However, there are a number of key differences,

which are outside the scope of this current document.

Either method can be carried out with different underlying physical theories to describe the particle-based

model of the system under investigation. If a quantum mechanics (QM) description of matter is used, elec-

trons are explicitly represented in the model and interaction energy is calculated by solving the electronic

structure of the molecules in the system with no (or few) empirical parameters, but with various approxima-

tions to the physics for tractability. In a molecular mechanics (MM) description, molecules are represented

by particles representing atoms or groups of atoms. Each atom may be assigned an electric charge and a

potential energy function with a large number of empirical parameters (fitted to experiment, QM, or other

data) used to calculate non-bonded and bonded interactions. Unless otherwise specified, MD simulations

employ MM force fields, which calculate the forces that determine the system dynamics. MM simulations

are much faster than quantum simulations, making them the methods of choice for vast majority of molecular

simulation studies on biomolecular systems in the condensed phase. However, typically, they are of lower

accuracy than QM simulations and cannot simulate bond rearrangements. QM simulations may be too com-

putationally expensive to allow simulations of the time and length scales required to describe the system of

interest [6]. The size of the system amenable for to QM simulation also depends on what method is chosen,

from high-level ab initio methods to semi-empirical methods; discussion of these methods are outside the

scope of this article, and useful references are separately available [9]. Computational resources available are

also an important consideration in deciding whether QM simulations are tractable. Roughly, QM simulations

might be tractable with hundreds of atoms or fewer, while MD simulations routinely have tens or hundreds

of thousands of atoms in the system. Much above that level, coarse-graining methods are used. They reduce

resolution and computational cost. Although many of the approaches for atomistic simulations discussed

here can apply to coarse-grained simulations, such simulations are not the focus of this paper and we will not

discuss how coarse-grained simulations are initially built.

Speed is a particular concern when describing condensed phase systems, as we are often interested in the
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properties of molecules (even biomacromolecules) in solution, meaning that systems will consist of thousands

to hundreds of thousands or millions of atoms. While system size alone does not dictate a classical descrip-

tion, if we are interested in calculations of free energies or transport properties at finite (often laboratory)

temperatures, these include entropic contributions (as further discussed below) meaning that fluctuations and

correlations of motions within the system affect computed properties, meaning that simulations must not only

sample single optimal states but instead must sample the correct distribution of states – requiring simulations

of some length. Furthermore, many systems of interest, such as polymers (biological and otherwise) have

slow motions that must be captured for accurate calculation of properties. For example, for proteins, rele-

vant timescales span from nanoseconds to seconds or more, and even rearrangements of buried amino acid

sidechains can in some cases take microseconds or more, with larger conformational changes and protein

folding taking even longer [10, 11]. Recent hardware innovations have made microsecond-length simulations

for biological systems of 50-100,000 atoms relatively routine, and herculean efforts have pushed the longest

simulations out past the millisecond range. However, the field would like to reach even longer timescales,

meaning that switching to a more detailed energy model is only done with some trepidation because slower

energy evaluations mean less time available for sampling. Thus the need for speed limits the use of quantum

mechanical descriptions.

Thus, for the rest of this document we will restrict ourselves to classical MD.

One other important note is that, within classical molecular simulations, bond breaking and forming is

generally not allowed (with notable exceptions such as reactive force fields), meaning that the topology or

chemistry of a system will remain constant as a function of time. That is, the particles comprising the system

move around, but the chemical identity of each molecule in the system remains a constant over the course

of the simulation (with only partial exceptions, such as the case of constant pH simulations [12]). This also

means that the notion of pH in molecular simulations primarily refers to the selection of fixed protonation

states for the components of the system.

Here, we first discuss the scope of this document, then go over some of the fundamental concepts or sci-

ence topics which provide the underpinnings of molecular simulations, giving references for further reading.

Then, we introduce a variety of basic simulation concepts and terminology, with links to further reading. Our

goal is not to cover all topics, but to provide some guidance for the critical issues which must be considered.

We also provide a checklist (Appendix A) to assist with preparing for and beginning a modeling project,

highlighting some key considerations addressed in this work.
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2.3 Scope of this document

There are several excellent textbooks on classical simulation methods; some we have found particularly help-

ful are Allen and Tildesley’s “Computer Simulations of Liquids” [13], Leach’s “Molecular Modelling” [8],

and Frenkel and Smit’s “Understanding Molecular Simulations” [7], though there are many other sources.

Tuckerman’s “Statistical Mechanics: Theory and Molecular Simulation” [14] may be helpful to a more ad-

vanced audience.

In principle, anyone with adequate prior knowledge (namely, undergraduate level calculus and physics)

should be able to pick up one of these books and learn the required skills to perform molecular simulations,

perhaps with help from a good statistical mechanics and thermodynamics book or two. In practice, due to

the interdisciplinary and somewhat technical nature of this field, many newcomers may find it difficult and

time consuming to understand all the methodological issues involved in a simulation study. The goal of

this document is to introduce a new practitioner to some key basic concepts and bare minimum scientific

knowledge required for correct execution of these methods. We also provide a basic set of “best practices”

that can be used to avoid common errors, missteps and confusion in elementary molecular simulations work.

This document is not meant as a full introduction to the area; rather, it is intended to help guide further

study, and to provide a foundation for other more specialized best-practices documents focusing on particular

simulation areas.

Modern implementations of classical simulations also rely on a large body of knowledge from the fields

of computer science, programming, and numerical methods, which will not be covered in detail here.

2.4 Science topics

A new practitioner does not have to be an expert in all of the fields that provide the foundation for our sim-

ulation methods and analysis of the data produced by these methods. However, grasping some key concepts

from each of these disciplines, described below, is essential. This section serves as a preface for Section 2.5

and suggestions for further reading on these subjects are provided throughout the document. In each subsec-

tion, we begin by highlighting some of the critical topics from the corresponding area, then describe what

these are and why they are important to molecular simulations.

2.4.1 Classical mechanics

2.4.1.1 Key concepts

Critical concepts from classical mechanics include:

• Newton’s equations of motion

• Hamilton’s equations
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• Point particles and rigid bodies

• Holonomic constraints

Molecular simulation methods work on many-particle systems following the rules of classical mechanics.

Basic knowledge of key concepts of classical mechanics is important for understanding simulation methods.

Here, we will assume you are already familiar with Newtonian mechanics.

Classical molecular models typically consist of point particles carrying mass and electric charge with

bonded interactions (describing bond lengths, angles, and torsions) and non-bonded interactions (describing

electrostatic and van der Waals forces). Sometimes it is much more efficient to freeze the internal degrees

of freedom and treat the molecule as a rigid body where the particles do not change their relative orientation

as the whole body moves; this is commonly done, for example, for rigid models of the water molecule. The

timestep for simulation is determined by the fastest frequency motion. Due to the high frequency of the

O-H vibrations, accurately treating water classically would require solving the equations of motion with a

small timestep (commonly 1 fs). Thus, for computational efficiency water is often instead treated as a rigid

body to allow a larger timestep (often double the length). Keeping specified objects rigid in a simulation

involves applying holonomic constraints, where the rigidity is defined by imposing a minimal set of fixed

bond lengths and angles through iterative procedures during the numerical integration of the equation of

motion (see subsection 2.5.6 for more on constraints and integrators).

Classical mechanics has several mathematical formulations, namely the Newtonian, Hamiltonian and

Lagrangian formulations. These formulations are physically equivalent, but for certain applications one for-

mulation can be more appropriate than the other. Many simulation methods use the Hamiltonian formulation

and therefore basic knowledge of Hamiltonian mechanics is particularly important.

Classical mechanics has several conserved quantities and simulators should be familiar with these, for

example, the total energy of a system is a constant of motion. These concepts play an important role in

development and proper implementation of simulation methods. For example, a particularly straightforward

check of the correctness of an MD code is to test whether energy is conserved.

Most books on molecular simulations have a short discussion or appendices on classical mechanics that

can serve the purpose of quick introductions to the basic concepts; Shell’s book also has a chapter on simu-

lation methods which covers some of these details [15]. A variety of good books on classical mechanics are

also available and give further details on these concepts.
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2.4.2 Thermodynamics

2.4.2.1 Key concepts

A variety of thermodynamic concepts are important for molecular simulations:

• Temperature and pressure

• Internal energy and enthalpy

• Gibbs and Helmholtz free energy

• Entropy

One of the main objectives of molecular simulations is to estimate/predict thermodynamic behavior of real

systems as observed in the laboratory. Typically this means we are interested in macroscopic systems, con-

sisting of 1023 particles or more (i.e. at least a mole of particles). But properties of interest include not only

macroscopic, bulk thermodynamic properties, such as density or heat capacity, but also microscopic proper-

ties like specific free energy differences associated with, say, changes in the conformation of a molecule. For

this reason, it is important to understand key concepts in thermodynamics, such as temperature, pressure, en-

tropy, internal energy, various forms of free energy, and the relationships between them. Paramount, however,

is an understanding of the connection between thermodynamics and statistical mechanics, which allows us to

relate macroscopic, experimental measurements to the behavior of the much smaller system that is simulated.

This topic involves a variety of subtleties and thus can be a confusing and difficult, so we refer the reader to

a more extensive discussion in one of several books [15, 16].

As an example, consider temperature. In a macroscopic sense, we understand this quantity intuitively

as how hot or cold something is. The laws of thermodynamics provide us with a further abstraction, telling

us that this is in fact the derivative of the internal energy with respect to the entropy. This mathematical

definition itself is not particularly helpful, but provides a starting point for other derivations. If we want to

understand temperature from the point of view of understanding molecular behavior, we finally must turn

to statistical mechanics. Since molecular dynamics is mostly used to simulate behavior at the molecular

or atomistic level, it is necessary to utilize statistical-mechanical expressions in computing what would be

observed as the macroscopic, thermodynamic temperature.

This discussion should not provide the impression that statistical mechanics is more important than ther-

modynamics. The two are intimately connected and we must rely on both to successfully conduct and obtain

information from MD simulations. In particular, thermodynamics provides rigid rules that must be satisfied

if we are to faithfully reproduce reality. For instance, if energy is not conserved, the first law is not satisfied
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and we are for sure simulating a system out of equilibrium (i.e. we are somehow adding or removing en-

ergy). In this sense, the laws of thermodynamics provide us rigorous sanity checks in addition to many useful

mathematical relations for computing properties. Basic thermodynamic principles thus also dictate proper

simulation protocols and associated best practices.

The concept of the thermodynamic limit is important here. Specifically, as the size of a finite system

is increased, keeping the particle number density roughly constant, at some point it is said to reach the

thermodynamic limit where its behavior is bulk-like and no longer depends on the extent of the system. Thus,

small systems will exhibit unique behaviors that reflect their microscopic size, but sufficiently large systems

are said to have reached the thermodynamic limit and macroscopic thermodynamics applied. This is due to the

fact that the effect of interfaces or boundaries have largely been removed, and, more importantly, that averages

of system properties are now over a sufficiently large number of molecules that any instantaneous snapshot

of the system roughly corresponds to average behavior (i.e. fluctuations in properties become negligible with

increasing system size).

Although we usually think of thermodynamics applying macroscopically and statistical mechanics apply-

ing on the microsopic level, it is important to remember that the laws of thermodynamics still hold on average

regardless of the length scale. That is, a molecule in contact with a thermal bath will exchange energy with

the bath, but its average energy is a well-defined constant. This allows us to define thermodynamic quantities

associated with microscopic events, such as the binding of a ligand to a protein. This is useful because it

allows us to assign molecular meaning to well-defined thermodynamic processes that can only be indirectly

probed by experiment. Importantly, as long as we have carefully defined our ensemble and thermodynamic

path, we can apply the powerful relationships of thermodynamics to more easily calculate many properties

of interest. For instance, one may use molecular dynamics to efficiently numerically integrate the Clapeyron

equation and construct equations of state along phase coexistence curves [17, 18].

2.4.2.2 Books

Equilibrium thermodynamics is taught in most undergraduate programs in physics, chemistry, biochemistry

and various engineering disciplines. Depending on the background, the practitioner can choose one or more

of the following books to either learn or refresh their basic knowledge of thermodynamics. Here are some

works we find particularly helpful:

• Atkins and De Paula’s “Physical Chemistry” [19], chapters 1 to 4.

• McQuarrie and Simon’s extensive work, “Physical Chemistry: A Molecular Approach” [20]

• Dill’s “Molecular Driving Forces” [16]
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• Kittel and Kroemer’s “Thermal Physics” [21]

• Shell [15]: Chapters 1-15.

2.4.3 Classical statistical mechanics

2.4.3.1 Key concepts

Key concepts from statistical mechanics are particularly important and prevalent in molecular simulations:

• Fluctuations

• Definitions of various ensembles

• Time averages and ensemble averages

• Equilibrium versus non-equilibrium

Traditional discussions of classical statistical mechanics, especially concise ones, tend to focus first or

primarily on macroscopic thermodynamics and microscopic equilibrium behavior based on the Boltzmann

factor, which tells us that configurations rN occur with (relative) probability exp
[
−U(rN)/(kBT )

]
, based on

potential energy function U and temperature T in absolute units. Dynamical phenomena and their connection

to equilibrium tend to be treated later in discussion, if at all. However, as the laws of statistical mechanics

arise naturally from dynamical equations, we will discuss dynamics first.
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Figure 2.1: Energy landscapes. (a) A highly simplified landscape used to illustrate rate concepts and (b) a
schematic of a more complex landscape with numerous minima and ambiguous state boundaries.

The key dynamical concept to understand is embodied in the twin characteristics of timescales and rates.

The two are literally reciprocals of one another. In Figure 2.1(a), assume you have started an MD simulation
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in basin A. The trajectory is likely to remain in that basin for a period of time – the “dwell” timescale – which

increases exponentially with the barrier height, (U‡ −UA). Barriers many times the thermal energy kBT

imply long dwell timescales, approximated as the reciprocal of exp
[
(U‡ −UA)/(kBT )

]
. The rate coefficient

kAB relates to the transition probability per unit time per amount of reactant(s). All transitions occur in a

random, stochastic fashion and are predictable only in terms of average behavior. More detailed discussions

of rates and rate coefficients can be found in numerous textbooks (e.g., [16, 22]).

Once you have understood that MD behavior reflects system timescales, you must set this behavior in

the context of an extremely complex energy landscape consisting of almost innumerable minima and barriers,

as schematized in Figure 2.1(b). Each small basin represents something like a different rotameric state of a

protein side chain or perhaps a tiny part of the Ramachandran spaces (backbone phi-psi angles) for one or

a few residues. Observing the large-scale motion of a protein then would require an MD simulation longer

than the sum of all the timescales for the necessary hops, bearing in mind that numerous stochastic reversals

are likely during the simulation. Because functional biomolecular timescales tend to be on µs - ms scales and

beyond, it is challenging if not impossible to observe them in traditional MD simulations. There are numerous

enhanced sampling approaches [23, 24] but these are beyond the scope of this discussion and they have their

own challenges which often are much harder to diagnose (see [25] and https://github.com/dmzuckerman/

Sampling-Uncertainty).

What is the connection between MD simulation and equilibrium? The most precise statement we can

make is that an MD trajectory is a single sample of a process that is relaxing to equilibrium from the starting

configuration [22, 26]. If the trajectory is long enough, it should sample the equilibrium distribution – where

each configuration occurs with frequency proportional to its Boltzmann factor. In such a long trajectory

(only), a time average thus will give the same result as a Boltzmann-factor-weighted, or ensemble, average.

We refer to such a system, where the time and ensemble averages are equivialent, as “ergodic.” Note that the

Boltzmann-factor distribution implies that every configuration has some probability, and so it is unlikely that

a single conformation or even a single basin dominates an ensemble. Beware that in a typical MD trajectory

it is likely that only a small subset of basins will be sampled well – those most quickly accessible to the initial

configuration. It is sometimes suggested that multiple MD trajectories starting structures can aid sampling,

but unless the equilibrium distribution is known in advance, the bias from the set of starting structures is

simply unknown and harder to diagnose.

A fundamental equilibrium concept that can only be sketched here is the representation of systems of

enormous complexity (many thousands, even millions of atoms) in terms of just a small number of coordinates

or states. The conformational free energy of a state, e.g., FA or FB is a way of expressing the average or

summed behavior of all the Boltzmann factors contained in a state: the definition requires that the probability
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(or population) peq of a state in equilibrium be proportional to the Boltzmann factor of its conformational free

energy: peq
A ∼ exp(−FA/kBT ). Because equilibrium behavior is caused by dynamics, there is a fundamental

connection between rates and equilibrium, namely that peq
A kAB = peq

B kBA, which is a consequence of “detailed

balance”. There is a closely related connection for on- and off-rates with the binding equilibrium constant.

For a continuous coordinate (e.g., the distance between two residues in a protein), the probability-determining

free energy is called the “potential of mean force” (PMF); the Boltzmann factor of a PMF gives the relative

probability of a given coordinate. Any kind of free energy implicitly includes entropic effects; in terms of

an energy landscape (Figure 2.1), the entropy describes the width of a basin or the number of arrangements

a system can have within a particular state. One way to think of this it is that entropy of a state relates to

the volume of 6N-dimensional phase space that the state occupies, which in the one-dimensional case is just

the width. These points are discussed in textbooks, as are the differences between free energies for different

thermodynamic ensembles – e.g., A, the Helmholtz free energy, when T is constant, and G, the Gibbs free

energy, when both T and pressure are constant – which are not essential to our introduction [16, 22].3

A final essential topic is the difference between equilibrium and non-equilibrium systems. We noted

above that an MD trajectory is not likely to represent the equilibrium ensemble because the trajectory is

probably too short. However, in a living cell where there is no shortage of time, biomolecules may exhibit

non-equilibrium behavior for a quite different reason – because they are driven by the continual addition

and removal of (possibly energy-carrying) substrate and product molecules. In this type of non-equilibrium

situation, the distribution of configurations will not follow a Boltzmann distribution. Specialized simu-

lation approaches are available to study such systems [24, 27] but they are not beginner-friendly. Non-

equilibrium molecular concepts pertinent to cell biology have been discussed at an introductory level (e.g.

http://www.physicallensonthecell.org/). Notably, many experiments are conducted at non-equilibrium condi-

tions; for example, membrane diffusion coefficients are commonly measured by setting up a concentration

gradient across the membrane and measuring the flux. It can be tempting to the beginner to setup an MD

simulation in the same manner as such an experiment. However, maintaining non-equilibrium conditions is

typically more complicated in an MD simulation than in an experiment as large reservoirs are commonly

required. Frequently, equilibrium methods can provide the same or similar information as a non-equilibrium

experiment; users should seek to obtain familiarity with such methods before choosing to conduct a non-

equilibrium MD simulation.

2.4.3.2 Books

Books which we recommend as particularly helpful in this area include:

3Occasionally F is used to refer to either appropriate free energy, A or G, but this is not standard.
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• Reif’s “Fundamentals of Statistical and Thermal Physics” [28]

• McQuarrie’s “Statistical Mechanics” [29]

• Dill and Bromberg’s “Molecular Driving Forces” [16]

• Hill’s “Statistical Mechanics: Principles and Selected Applications” [30]

• Shell’s “Thermodynamics and Statistical Mechanics” [15]

• Zuckerman’s “Statistical Physics of Biomolecules” [22]

• Chandler’s “Introduction to Modern Statistical Mechanics” [31]

2.4.3.3 Online resources

Several online resources have been particularly helpful to people learning this area, including:

• David Kofke’s notes: http://www.eng.buffalo.edu/~kofke/ce530/Lectures/lectures.html

• Scott Shell’s notes: https://engineering.ucsb.edu/~shell/che210d/assignments.html

2.4.4 Classical electrostatics

2.4.4.1 Key concepts

Key concepts from classical electrostatics include

• The Coulomb interaction and its long-range nature

• Polarizability, dielectric constants, and electrostatic screening

• When and why we need lattice-sum electrostatics and similar approaches

Electrostatic interactions are both some of the longest-range interactions in molecular systems and the

strongest, with the interaction (often called “Coulombic” after Coulomb’s law) between charged particles

falling off as 1/r where r is the distance separating the particles. Atom-atom interactions are thus necessarily

long range compared to other interactions in these systems (which fall off as 1/r3 or faster). This means

atoms or molecules separated by considerable distances can still have quite strong electrostatic interactions,

though this also depends on the degree of shielding of the intervening medium (or its relative permittivity or

dielectric constant).

The static dielectric constant of a medium, or relative permittivity εr (relative to that of vacuum), affects

the prefactor for the decay of these long range interactions, with interactions reduced by 1
εr

. Water has a

high relative permittivity or dielectric constant close to 80, whereas non-polar compounds such as n-hexane
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may have relative permittivities near 2 or even lower. This means that interactions in non-polar media such

as non-polar solvents, or potentially even within the relatively non-polar core of a larger molecule such as

a protein, are effectively much longer-range even than those in water. The dielectric constant of a medium

also relates to the degree of its electrostatic response to the presence of a charge; larger dielectric constants

correspond to larger responses to the presence of a nearby charge.

It turns out that atoms and molecules also have their own levels of electrostatic response; particularly,

their electron distributions polarize in response to their environment, effectively giving them an internal

dielectric constant. This polarization can be modeled in a variety of ways, such as (in fixed charge force

fields) building in a fixed amount of polarization which is thought to be appropriate for simulations in a

generic “condensed phase” or by explicitly including polarizability via QM or by building it into a simpler,

classical model which includes polarizability such as via explicit atomic polarizabilities [32, 33] or via Drude

oscillator-type approaches [34], where inclusion of extra particles attached to atoms allows for a type of

effective polarization.

Because so many interactions in physical systems involve polarity, and thus significant long-range interac-

tions that decay only slowly with distance, it is important to regard electrostatic interactions as fundamentally

long-range interactions. Indeed, contributions to the total energy of a system from distant objects may be

even more important in some cases than those from nearby objects. Specifically, since interactions between

charges fall off as 1/r, but the volume of space at a given separation distance increases as r3, distant interac-

tions can contribute a great deal to the energies and forces in molecular systems. In practice, this means that

severe errors often result from neglecting electrostatic interactions beyond some cutoff distance [8, 35–38].

Thus, we prefer to include all electrostatic interactions, even out to very long ranges. Once this is decided, it

leaves simulators with two main options, only one of which is really viable. First, we can simulate the actual

finite (but large) system which is being studied in the lab, including its boundaries. But this is impractical,

since macroscopic systems usually include far too many atoms (on the order of at least a mole or more). The

remaining option, then, is to apply periodic boundary conditions (see subsection 2.5.2) to tile all of space

with repeating copies of the system. Once periodic boundary conditions are set up, defining a periodic lat-

tice, it becomes possible to include all long-range electrostatic interactions via a variety of different types of

sums which can be described as “lattice sum electrostatics” or Ewald-type electrostatics [38, 39] where the

periodicity is used to make possible an evaluation of all long range electrostatic interactions, including those

of particles with their own periodic images.

In practice, lattice sum electrostatics introduce far fewer and less severe artifacts than do cutoff schemes,

so these are used for most classical all-atom simulation algorithms at present. A variety of different efficient

lattice-sum schemes are available [39]. In general these should be used whenever long range electrostatic
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interactions are expected to be significant; they may not be necessary in especially nonpolar systems and/or

with extremely high dielectric constant solvents where electrostatic interactions are exclusively short range,

but in general they should be regarded as standard (see also subsection 2.5.7, below).

2.4.4.2 Books

On classical electrostatics, we have found the undergraduate-level work by David J. Griffiths, “Introduction

to Electrodynamics” [40], to be quite helpful. The graduate-level work of Jackson, “Classical Electrody-

namics” [41], is also considered a classic/standard work, but may prove challenging for those without a

background relatively heavy in mathematics.

2.4.5 Molecular interactions

2.4.5.1 Key concepts

Molecular simulations are, to a large extent, about molecular interactions, so these are particularly key, in-

cluding:

• Bonded and nonbonded interactions

• The different types of nonbonded interactions and why they are separated in classical descriptions

• The dividing line between bonded and nonbonded interactions

Key interactions between atoms and within or between molecules are typically thought of as consisting

of two main types – bonded and non-bonded interactions. While these arise from similar or related physical

effects (ultimately all tracing back to QM and the basic laws of physics) they are typically treated in rather

distinct manners in molecular simulations so it is important to consider the two categories separately.

Bonded interactions are those between atoms which are connected, or nearly so, and relating to the bonds

connecting these atoms. In typical molecular simulations these consist of bond stretching terms, angle bend-

ing terms, and terms describing the rotation of torsional angles, as shown in Figure 2.2. Torsions typically

involve four atoms and are often of two types – “proper” torsions, around bonds connecting groups of atoms,

and “improper” torsions which involve neighbors of a central atom; these are often used to ensure the appro-

priate degree of planarity or non-planarity around a particular group (such as planarity of an aromatic ring).

It is important to note that the presence of bonded interactions between atoms does not preclude their also

having non-bonded interactions with one another (see discussion of exclusions and 1-4 interactions, below).

Nonbonded interactions between atoms are all interactions which are included in the potential energy of

the system aside from bonded interactions. Commonly these include at least point-charge Coulomb electro-

static interactions and “non-polar” interactions modeled by the Lennard-Jones potential or another similar
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Figure 2.2: Standard MM force fields include terms that represent (a) bond and angle stretching around
equilibrium values, using harmonic potentials with spring constants fit to the molecules and atoms to which
they are applied; and (b) rotation around dihedral angles (green arrow) defined using four atoms, typically
using a cosine expansion.

potential which describes short range repulsion and weak long-range interaction even between non-polar

atoms. Additional terms may also be included, such as interactions between fixed multipoles, interactions

between polarizable sites, or occasionally explicit potentials for hydrogen bonding or other specialized terms.

These are particularly common in polarizable force fields such as the AMOEBA model.

Often, the energy functions used by molecular simulations explicitly neglect nonbonded interactions be-

tween atoms which are immediately bonded to one another, and atoms which are separated by only one

intervening atom, partly to make it easier to ensure that these atoms have preferred geometries dictated by

their defined equilibrium lengths/angles regardless of the nonbonded interactions which would otherwise

be present. This neglect of especially short range nonbonded interactions between near neighbors is called

“exclusion”, and energy functions typically specify which interactions are excluded.

The transition to torsions, especially proper torsions, is where exclusions typically end. However, many

all-atom energy functions commonly used in biomolecular simulations retain only partial nonbonded inter-

actions between terminal atoms involved in a torsion. The atoms involved in a torsion, if numbered beginning

with 1, would be 1, 2, 3, and 4, so the terminal atoms could be called atoms 1 and 4, and nonbonded inter-

actions between such atoms are called “1-4 interactions”. These interactions are often present but reduced,

though the exact amount of reduction differs by the energy function or force field family. For example, the

AMBER family force fields usually reduce 1-4 electrostatics to 1
1.2 of their original value, and 1-4 Lennard-

Jones interactions to 1
2 of their original value. 1-4 interactions are essentially considered the borderline

between the bonded and non-bonded regions. These short-range interactions can be quite strong and there is

potentially a risk of them overwhelming longer-range interactions, hence their typical reduction.
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2.4.5.2 Books

For a discussion of molecular interactions, we recommend “Intermolecular and surface forces” by Jacob N.

Israelachvili. A variety of other books discuss these from a simulation perspective, e.g. Leach [8] and Allen

and Tildesley [13].

2.5 Basic simulation concepts and terminology

Above, we covered a variety of fundamental concepts needed for understanding molecular simulations and

the types of interactions and forces we seek to model; here, we shift our attention to understanding basics of

how molecular simulations actually work.

2.5.1 Force fields

The term “force field” simply refers to the included terms, particular form, and specific implementation

details, including parameter values, of the chosen potential energy function.4

Most of the terms included in potential energy functions have already been detailed in subsection 2.4.5,

with the most common being Coulombic, Lennard-Jones, bond, angle, and torsional (dihedral) terms (Fig-

ure 2.2). Here, we very briefly describe the mathematical forms used to represent such interactions.

Non-bonded interactions of the Lennard-Jones form are well-described throughout the literature (for in-

stance see Ch. 4 of Leach [8]); these model a short-range repulsion that scales as 1/r12 and a long-range

attraction that scales as 1/r6. Coulombic interactions, including both short and long-range components, are

described in detail elsewhere in this document. To represent bonded interactions, harmonic potentials are of-

ten employed. The same is true for angles between three bonded atoms, but the harmonic potential is applied

with respect to the angle formed and not the distance between atoms. Torsional terms are also commonly

employed, usually consisting as sums of cosines, i.e. a cosine expansion.

While the above are perhaps the most common potentials used, there are a variety of common variations

as well. More exotic potentials based on three-body intermolecular orientations, or terms directly coupling

bond lengths and bending angles are also possible. Some historic force fields also added an explicit (non-

Coulombic) hydrogen bonding term, though these are less frequently used in many cases today. Additionally,

other choices of potential function are of course acceptable, including Buckingham or Morse potentials, or

the use of “improper” dihedral terms to enforce planarity of cyclic portions of molecules. This may even

4It is worth noting there is a occasionally a bit of ambiguity when the term “force field” is used. In some cases it is used to refer to
a library of parameters that could be applied to assign an energy function to a specific molecular system via a parameterization process
after applying some specific chemical perception like atom typing to that system [42]. For example, one might speak of the AMBER
ff15FB [43] protein force field, which essentially provides a recipe for assigning parameters to a protein once atom types are assigned.
In other cases, “force field” is used to refer to the specifics of the potential energy function after application to a specific system — what
could also be called a “parameterized system”. For our purposes here, the distinction between a force field library and a parameterized
system is not particularly important, but it is worth noting the potential ambiguity.
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include empirical corrections based on discrete binning along a particular set of degrees of freedom [44, 45],

as well as applied external fields (i.e. electric fields) and force field terms describing the effect of degrees

of freedom, such as solvent, that have been removed from the system via “coarse-graining.” [46] For a more

in-depth discussion of common (as well as less common) force field terms, see Ch. 4 of Leach [8], or for an

in-depth review of those specific to simulating biomolecules, see Ponder & Case [32].

Functional forms used to describe specific terms in a potential energy function may be vastly different in

mathematical character even though they seek to describe the same physics. For instance, the Lennard-Jones

potential implements an r−12 term to represent repulsions, while an exponential form is used in the Buck-

ingham potential. This results in very different mathematical behavior at very short distances and as a result

differences in numerical implementation as well as evaluation efficiencies via a computer. For this reason,

one functional form may be preferred above another due to enhanced numerical stability or simplicity of

implementation, even though it is not as faithful to the underlying physics. In this regard, force field selection

is a form of selecting a model – one should carefully weigh the virtues of accuracy and convenience or speed,

and be ever-conscious of the limitations introduced by this decision (for instance, see Becker, Tavazza, Trautt

& Buarque De Macedo [47]). It is also important to know that most MD simulation engines only support a

subset of functional forms. For those forms that are supported, the user manuals of these software packages

are often excellent resources for learning more about the rationale and limitations of different potential energy

functions and terms (e.g. see Part II of Amber reference manuals[48] and Ch. 4 of the reference manual for

GROMACS [49]).

For practical purposes, most beginning users will not be fitting a force field or choosing a functional

form, but will instead be using an existing force field that already relies on a particular functional form and

is available in their simulation package of choice, so for such users it is more important to know how the

functional form represents the different interactions involved than to necessarily be able to justify why that

particular functional form was chosen.

Many examples of force fields abound in the literature — in fact, too many to provide even a representative

sample or list of citations, as most force fields are specifically developed for particular systems or categories of

systems under study. However, reviews are available describing and comparing force fields for biomolecular

simulations [32, 50], solid, covalently-bonded materials [51], polarizable potentials [52], and models of

water [53, 54], to name just a few. Many force fields are open-source and parameter file libraries may

be found through the citations in the resources above or are often distributed with molecular simulation

packages. Limited databases of force fields also exist, most notably for simulations of solid materials where

interatomic potentials display a much wider array of mathematical forms [55, 56].

Specification of a force field involves not just a choice of functional form, but the details of the specific
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parameters for all of the interacting particles which will be considered — that is, the specific parameters

governing the interactions as specified by the functional form. Parameters are usually specific to certain types

of atoms, bonds, molecules, etc., and include point charges on atoms if electrostatic terms are in use.

Some choices which are often considered auxiliary actually comprise part of the choice of the force field

or interaction model. Specifically, settings such as the use of constraints, the treatment of cut-offs and other

simulation settings affect the final energies and forces which are applied to the system. Thus, to replicate a

particular force field as described previously, such settings should be matched to prior work such as the work

which parameterized the force field. The choice of how to apply a cutoff, such as through direct truncation,

shifting of the potential energy function, or through the use of switching functions, should be maintained if

identical matches to prior work computing the properties of interest are desired. This is especially important

for the purposes of free energy calculations, where the potential energy itself is recorded. However, force

fields are in some cases slow to adapt to changes in protocol, so current best practices seem to suggest that

lattice-sum electrostatics should be used for Coulomb electrostatics in condensed phase systems, even if the

chosen force field was fitted with cutoff electrostatics, and in many cases long-range dispersion corrections

should be applied to the energy and pressure to account for truncated Lennard-Jones interactions [57, 58].

For almost all force fields, many versions, variants, and modifications exist, so if you are using a literature

force field or one distributed with your simulation package of choice, it is important to pay particular attention

(and make note of) exactly what version you are using and how you obtained it so you will be able to

accurately detail this in any subsequent publications.

As clearly described in Becker, Tavazza, Trautt & Buarque De Macedo [47], it is of paramount importance

to understand the capabilities and limitations of various force field models that may seem appropriate for one’s

work. Depending on the physics being simulated and the computational resources at hand, no force field in

the literature may provide results that accurately reproduce experiment. But with so many force fields to

pick from, how is this possible? The issue lies in what is termed “transferability.” Simply put, a classical

description of dynamics, as implemented in MD, cannot universally describe all of chemistry and physics.

At some level of finer detail, all of the potential functions described above are simply approximations. Due

to this, force field developers must often make the difficult decision of sacrificing accuracy or generality. For

instance, a force field may have been developed to very accurately describe a single state point, in which case

it is obvious that extensive testing should be performed to ensure that it is also applicable at other conditions.

Even with force fields developed to be general and transferable, it is essential to ensure that the desired level

of realism is achieved, especially if applying such a model to a new system (even more caution is advised

when mixing force fields!). Either way, it is always a good idea to check results against previous literature

when possible. This helps ensure that the force field is being implemented properly and, though it may seem
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laborious on a short-time horizon, can pay substantial dividends in the long-run.

Because this balance of accuracy versus generality and transferability can be challenging, some efforts

eschew transferability entirely and instead build “bespoke” force fields, where each molecule is considered as

a unique entity and assigned parameters independently of any other molecule or representation of chemical

space (e.g. [59]). Such approaches offer the opportunity to assign all molecules with parameters assigned

in a consistent way; however, they are unsuitable for applications where speed needs to exceed that of the

parameter assignment process – so, for example, for docking of a large library of potential ligands to a

target receptor, if compounds must be screened at seconds or less per molecule, such approaches may not be

suitable.

2.5.2 Periodic boundary conditions

Periodic boundary conditions allow more accurate estimation of bulk properties from simulations of finite,

essentially nanoscale systems. More precisely, simulations of comparatively small systems with periodic

boundary conditions can be a good approximation to the behavior of a small subsystem in a larger bulk

phase (or at least are a much better approximation than simply simulating a nanodroplet or a finite system

surrounded by vacuum). Periodic boundary conditions can alleviate many of the issues with finite size effects

because each particle interacts with periodic images of particles in the same system. Clearly, though, it is

undesirable for a single particle to interact with the same particle multiple times. To prevent this, a cut-off

of many non-bonded interactions should be chosen that is less than half the length of the simulation box in

any dimension. (However, as noted in subsection 2.4.4 these cut-offs are not normally applied to electrostatic

interactions because truncating these interactions induces worse artifacts than does including interactions with

multiple copies of the same particle. Instead, what are often termed “cut-offs” that are applied to electrostatics

are instead a shift from short-range to long-range treatments.) Such cut-offs impose a natural lower limit to

the size of a periodic simulation box, as the box must be large enough to capture all of the most significant

non-bonded interactions. Further information on periodic boundary conditions and discussion of appropriate

cut-offs may be found in Leach [8], sections 6.5 and 6.7 and Shell [60]’s lecture on Simulations of Bulk

Phases.

It is very important to note that periodic boundary conditions are simply an approximation to bulk be-

havior. They DO NOT effectively simulate an infinitely sized simulation box, though they do reduce many

otherwise egregious finite-size effects. This is most easily seen by imagining the placement of a solute in a

periodic simulation box. The solute will be replicated in all of the surrounding periodic images. The con-

centration of solute is thus exactly one per the volume of the box. Although proper selection of non-bonded

cutoffs will guarantee that these solutes do not directly interact (hence the common claim that such systems
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are at infinite dilution), they may indirectly interact through their perturbation of nearby solvent. If the sol-

vent does not reach a bulk-like state between solutes, the simulation will still suffer from obvious finite-size

effects.

Macroscopic, lab-scale systems, or bulk systems, typically consist of multiple moles of atoms/molecules

and thus from a simulation perspective are effectively infinite systems. We attempt to simulate these by sim-

ulating finite and fairly small systems, and, in a sense, the very idea that the simulation cell is not infinite, but

simply periodic, immediately gives rise to finite-size effects. Thus, our typical goal is not to remove these

completely but to reduce these to levels that do not adversely impact the results of our simulations. Finite-size

effects are particularly apparent in the electrostatic components of simulations, as these forces are inherently

longer ranged than dispersion forces, as discussed in subsection 2.4.4. One should always check that un-

expected long-range correlations (i.e. on the length-scale of the simulation box) do not exist in molecular

structure, spatial position, or orientation. It should also be recognized that periodic boundary conditions in-

nately change the definition of the system and the properties calculated from it. Many derivations, especially

those involving transport properties, such as diffusivity [61], assume infinite and not periodic boundary con-

ditions. The resulting differences in seemingly well-known expressions for computing properties of interest

are often subtle, yet may have a large impact on results. Such considerations should be kept in mind when

comparing results between simulations and with experiment.

2.5.3 Main steps of a molecular dynamics simulation

While every system studied will present unique challenges and considerations, the process of performing a

molecular dynamics simulation generally follows these steps:

1. System preparation

2. Minimization/Relaxation

3. Equilibration

4. Production

Additional explanations of these steps along with procedural details specific to a given simulation package

and application may be found in a variety of tutorials [62, 63]. It should be noted that these steps may be

difficult to unambiguously differentiate and define in some cases. Additionally, it is assumed that prior to

performing any of these steps, an appropriate amount of deliberation has been devoted to clearly defining the

system and determining the appropriate simulation techniques.
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2.5.3.1 System preparation

System preparation focuses on preparing the starting state of the desired system for input to an appropriate

simulation package, including building a starting structure, solvating (if necessary), applying a force field,

etc. Because this step differs so much depending on the composition of the system and what information

is available about the starting structure, it is a step which varies a great deal depending on the nature of the

system at hand and as a result may require unique tools.

Given the variable nature of system preparation, it is highly recommended that best practices documents

specific to this issue and to the type of system of interest be consulted. If such documents do not exist,

considerable care should be exercised to determine best practices from the literature.

Loosely speaking, system preparation can be thought of as consisting of two logical components which

are not necessarily consecutive or separate. One comprises building the configuration of the system in the

desired chemical state and the other applying force field parameters.

For building systems, freely available tools for constructing systems are available and can be a reasonable

option (though their mention here should not be taken as an endorsement that they necessarily encapsulate

best practices). Examples include tools for constructing specific crystal structures, proteins, and lipid mem-

branes, such as Moltemplate [64], Packmol [65], and Atomsk [66].

A key consideration when building a system is that the starting structure ideally ought to resemble the

equilibrium structure of the system at the thermodynamic state point of interest. For instance, highly energet-

ically unfavorable configurations of the system, such as blatant atomic overlaps, should be avoided. In some

sense, having a good starting structure is only a convenience to reduce equilibration times (if the force field

is adequate); however, for some systems, equilibration times might otherwise be prohibitively long.

System preparation is arguably the most critical stage of a simulation and in many cases receives the least

attention; if your system preparation is flawed, such flaws may prove fatal. Potentially the worst possible

outcome is if the prepared system is not what you intended (e.g. it contains incorrect molecules or protonation

states) but is chemically valid and well described by your force field and thus proceeds without error through

the remaining steps — and in fact this is a frequent outcome of problems in system preparation. It should not

be assumed that a system has been prepared correctly if it is well-behaved in subsequent equilibration steps;

considerable care should be taken here.

Assignment or development of force field parameters is also critical, but is outside the scope of this work.

For our purposes, we will assume you have already obtained or developed force field parameters suitable for

your system of interest.
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2.5.3.2 Minimization

The purpose of minimization, or relaxation, is to find a local energy minimum of the starting structure so

that the molecular dynamics simulation does not immediately “blow up” (i.e. the forces on any one atom

are not so large that the atoms move an unreasonable distance in a single timestep). This involves standard

minimization algorithms such as steepest descent. For a more involved discussion of minimization algorithms

utilized in molecular simulation, see Leach [8], sections 5.1-5.7.

2.5.3.3 Assignment of velocities

Minimization ideally takes us to a state from which we can begin numerical integration of the equations of

motion without overly large displacements (see Leach [8], section 7.3.4); however, to begin a simulation,

we need not just positions but also velocities. Minimization, however, provides only a final set of positions.

Thus, starting velocities must be assigned; usually this is done by assigning random initial velocities to atoms

in a way such that the correct Maxwell-Boltzmann distribution at the desired temperature is achieved as a

starting point. The actual assignment process is typically unimportant, as the Maxwell-Boltzmann distribu-

tion will quickly arise naturally from the equations of motion. Since the momentum of the center-of-mass of

the simulation box is conserved by Newtonian dynamics, this quantity is typically set to zero by removing

the center-of-mass velocity from all particles after random assignment, preventing the simulation box from

drifting.

In some cases, we seek to obtain multiple separate and independent simulations of different instances or

realizations of a particular system to assess error, collect better statistics, or help gauge dependence of results

on the starting structure. It is worth noting that even very small differences in initial configuration, such as

small changes in the coordinates of a single atom, lead to exponential divergence of the time evolution of

the system [13], meaning that simply running different simulations starting with different initial velocities

will lead to dramatically different time evolution over long enough times. An even better way to generate

independent realizations is to begin with different starting configurations, such as different conformations

of the molecule(s) being simulated, as this leads to behavior which is immediately different. When rigid

molecules are present, care must be taken to prevent components of velocities assigned along constraints

from being forced to zero [67]. With a thermostat present, this only delays system equilibration, but for NVE

simulations, such as might be used in hybrid MC/MD simulations, it can result in violations of equipartition

and large subsequent errors [68].

24



2.5.3.4 Equilibration

Ultimately, we usually seek to run a simulation in a particular thermodynamic ensemble (e.g. the NVE or

NVT ensemble) at a particular state point (e.g. target energy, temperature, and pressure) and collect data for

analysis which is appropriate for those conditions and not biased depending on our starting conditions/config-

uration. This means that usually we need to invest simulation time in bringing the system to the appropriate

state point as well as relaxing away from any artificially induced metastable starting states. In other words,

we are usually interested in sampling the most relevant (or most probable) configurations in the equilibrium

ensemble of interest. However, if we start in a less-stable configuration a large part of our equilibration may

be the relaxation time (this may be very long for biomolecules or systems at phase equilibrium) necessary to

reach the more relevant configuration space.

The most straightforward portion of equilibrium is bringing the system to the target state point. Usually,

even though velocities are assigned according to the correct distribution, a thermostat will still need to add or

remove heat from the system as it approaches the correct partitioning of kinetic and potential energies. For this

reason, it is advised that a thermostatted simulation is performed prior to a desired production simulation, even

if the production simulation will ultimately be done in the NVE ensemble. This phase of equilibration can be

monitored by assessing the temperature and pressure of the system, as well as the kinetic and potential energy,

to ensure these reach a steady state on average. For example, an NPT simulation is said to have equilibrated to

a specific volume when the dimensions of the simulation box fluctuate around constant values with minimal

drift. This definition, though not perfectly rigorous, is usually suitable for assessing the equilibration of

energies, temperature, pressure, and box dimensions during equilibration simulations.

A more difficult portion of equilibration is to ensure that other properties of the system which are likely

to be important are also no longer changing systematically with simulation time. At equilibrium, a system

may still undergo slow fluctuations with time, especially if it has slow internal degrees of freedom – but key

properties should no longer show systematic trends away from their starting structure. Thus, for example, for

biomolecular simulations it is common to examine the root mean squared deviation (RMSD) of the molecules

involved as a function of time, and potentially other properties like the number of hydrogen bonds between

the biomolecules present and water, as these may be slower to equilibrate than system-wide properties like

the temperature and pressure.

Once the kinetic and potential energies fluctuate around constant values and other key properties are no

longer changing with time, the equilibration period has reached its end. In general, if any observed properties

still exhibit a systematic trend with respect to simulation time (e.g. Figure 2.4) this should be taken as a sign

that equilibration is not yet complete.
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Depending on the target ensemble for production, the procedure for the end of equilibration is somewhat

different. If an NVE simulation is desired, the thermostat may be removed and a snapshot selected that is

simultaneously as close to the average kinetic and potential energies as possible. This snapshot, containing

both positions and velocities may be used to then start an NVE simulation that will correspond to a tem-

perature close to that which is desired. This is necessary due to the fact that only the average temperature

is obtained through coupling to a thermostat (see subsection 2.5.4), and the temperature fluctuates with the

kinetic energy at each timestep.

If the target is a simulation in the NVT ensemble at a particular density, equilibration should be done in

the NPT ensemble. In this case, the system may be scaled to the desired average volume before starting a

production simulation (and if rescaling is done, additional equilibration might be needed).

The schematic below (Figure 2.5) demonstrates what is generally an appropriate equilibration work-flow

for common production ensembles. Clearly, this schematic cannot cover every case of interest, but should

provide some idea of the general approach. For more information on equilibration procedures, see Leach [8],

section 7.4 and Shell [60], lectures on Molecular dynamics and Computing properties.

2.5.3.5 Production

Once equilibration is complete, we may begin collecting data for analysis. Typically this phase is called

“production”. The main difference between equilibration and production is simply that in the production

simulation, we plan to retain and analyze the collected data. Production must always be preceded by equili-

bration appropriate for the target production ensemble, and production data should never be collected imme-

diately after a change in conditions (such as rescaling a box size, energy minimizing, or suddenly changing

the temperature or pressure) except in very specific applications where this is the goal.

For bookkeeping purposes, sometimes practitioners choose to discard some initial production data as

additional equilibration; usually this is simply to allow additional equilibration time after a change in protocol

(such as a switch from NPT to NVT), and the usual considerations for equilibration apply in such cases (see

Shell [60], lecture on Computing Properties).

Analysis of production is largely outside the scope of this work, but requires considerable care in com-

puting observables and assessing the uncertainty in any computed properties. Usually, analysis involves

computing expectation values of particular observables, and a key consideration is to obtain converged es-

timates of these properties — that is, estimates that are based on adequate simulation data so that they no

longer depend substantially on the length of the simulation which was run or on its initial conditions. This

is closely related to the above discussion of equilibration. Depending on the relaxation timescales involved,

one may realize only after analysis of a “production” trajectory that the system was still equilibrating in some
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sense.

A separate Best Practices document addresses the critical issues of convergence and error analysis; we

refer the reader there for more details [69] (https://github.com/dmzuckerman/Sampling-Uncertainty). For

more specific details on procedures and parameters used in production simulations, see the appropriate best

practices document for the system of interest.

One other key consideration in production is what data to store, and how often. Storing data especially

frequently can be tempting, but utilizes a great deal of storage space and does not actually provide significant

value in most situations. Particularly, observations made in MD simulations are correlated in time (e.g.

see https://github.com/dmzuckerman/Sampling-Uncertainty [69]) so storing data more frequently than the

autocorrelation time results in storage of essentially redundant data. Thus, storing data more frequently than

intervals of the autocorrelation time is generally unnecessary. Of course, the autocorrelation time is not

known a priori which can make it necessary to store some redundant data. Disk space may also be a limiting

factor that dictates the frequency of storing data, and should at least be considered. Trajectory snapshots

can be particularly large. However, if there are no disk space limitations it may be best to avoid discarding

uncorrelated data so sampling at intervals of the autocorrelation time may be appropriate.

If disk space proves limiting, various strategies can be used to reduce storage use, such as storing full-

precision trajectory snapshots only less frequently and storing reduced-precision ones, or snapshots for only

a portion of the system, more often. However, these choices will depend on the desired analysis.

For many applications, it will likely be desirable to store energies and trajectory snapshots at the same

time points in case structural analysis is needed along with analysis of energies. Since energies typically use

far less space, however, these can be stored more often if desired.

2.5.4 Thermostats

Here, we discuss why thermostats, which seek to control the temperature of a simulation, are (often) needed

for molecular simulations. We review background information about thermostats and how they work, intro-

duce some popular thermostats, and highlight common issues to understand and avoid when using thermostats

in MD simulations.

2.5.4.1 Thermostats seek to maintain a target temperature

As mentioned above, molecular dynamics simulations are used to observe and glean properties of interest

from some system of study. In many cases, to emulate experiments done in laboratory conditions (exposed to

the surroundings), sampling from the canonical (constant temperature) ensemble is desired [70]. Generally,

if the temperature of the system must be maintained during the simulation, some thermostat algorithm will
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be employed.

2.5.4.2 Background and How They Work

The temperature of a molecular dynamics simulation is typically measured using kinetic energies as defined

using the equipartition theorem: 3
2 NkBT =

〈
∑

N
i=1

1
2 miv2

i
〉
. The angled brackets indicate that the temperature

is defined as a time-averaged quantity. If we use the equipartition theorem to calculate the temperature for a

single snapshot in time of a molecular dynamics simulation [8, 22] instead of time-averaging, this quantity

is referred to as the instantaneous temperature. The instantaneous temperature will not always be equal to

the target temperature; in fact, in the canonical ensemble, the instantaneous temperature should undergo

fluctuations around the target temperature.

Thermostat algorithms work by altering the Newtonian equations of motion that are inherently micro-

canonical (constant energy). Thus, it is preferable that a thermostat not be used if it is desired to calculate

dynamical properties such as diffusion coefficients; instead, the thermostat should be turned off after equili-

brating the system to the desired temperature. However, while all thermostats give non-physical dynamics,

some have been found to have little effect on the calculation of particular dynamical properties, and they are

commonly used during the production simulation as well [71].

There are several ways to categorize the many thermostatting algorithms that have been developed. For

example, thermostats can be either deterministic or stochastic depending on whether they use random num-

bers to guide the dynamics, and they can be either global or local depending on whether they are coupled

to the dynamics of the full system or of a small subset. Many of the global thermostats can be made into

local “massive” variants by coupling separate thermostats to each particle in the system rather than having a

single thermostat for the whole system. There are also several methods employed by thermostat algorithms to

control the temperature. Some thermostats operate by rescaling velocities outside of the molecular dynamics’

equations of motion, e.g., velocity rescaling is conducted after particles’ positions and momenta have been

updated by the integrator. Others include stochastic collisions between the system and an implicit bath of

particles, or they explicitly include additional degrees of freedom in the equations of motion that have the

effect of an external heat bath.

2.5.4.3 Popular Thermostats

Within this section, various thermostats will be briefly explored, with a small description of their uses and

possible issues that are associated with each. This is not an exhaustive study of available thermostats, but is

instead a survey of just some of the more popular and historic thermostats used in MD.

1. Gaussian
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The goal of the Gaussian thermostat is to ensure that the instantaneous temperature is exactly equal

to the target temperature. This is accomplished by modifying the force calculation with the form

F = Finteraction +Fconstraint , where Finteraction is the standard interactions calculated during the simula-

tion and Fconstraint is a Lagrange multiplier that keeps the kinetic energy constant. The reasoning for

the naming of this thermostat is due to its use of the Gaussian principle of least constraint to deter-

mine the smallest perturbative forces needed to maintain the instantaneous temperature [70]. Clearly,

this thermostat does not sample the canonical distribution; it instead samples the isokinetic (constant

kinetic energy) ensemble. However, the isokinetic ensemble samples the same configurational phase

space as the canonical ensemble, so position-dependent (structural) equilibrium properties can be ob-

tained equivalently with either ensemble [72]. However, velocity-dependent (dynamical) properties

will not be equivalent between the ensembles. This thermostat is used only in certain advanced appli-

cations [72].

2. Simple Velocity Rescaling

The simple velocity rescaling thermostat is one of the easiest thermostats to implement; however,

this thermostat is also one of the most non-physical thermostats. This thermostat relies on rescaling

the momenta of the particles such that the simulation’s instantaneous temperature exactly matches the

target temperature [70]. Similarly to the Gaussian thermosat, simple velocity rescaling aims to sample

the isokinetic ensemble rather than the canonical ensemble. However, it has been shown that the simple

velocity rescaling fails to properly sample the isokinetic ensemble except in the limit of extremely small

timesteps [73]. Its usage can lead to simulation artifacts, so it is not recommended [73, 74].

3. Berendsen

The Berendsen [75] thermostat (also known as the weak coupling thermostat) is similar to the

simple velocity rescaling thermostat, but instead of rescaling velocities completely and abruptly to the

target kinetic energy, it includes a relaxation term to allow the system to more slowly approach the

target. Although the Berendsen thermostat allows for temperature fluctuations, it samples neither the

canonical distribution nor the isokinetic distribution. Its usage can lead to simulation artifacts, so it is

not recommended [73, 74].

4. Bussi-Donadio-Parrinello (Canonical Sampling through Velocity Rescaling)

The Bussi [76] thermostat is similar to the simple velocity rescaling and Berendsen thermostats, but

instead of rescaling to a single kinetic energy that corresponds to the target temperature, the rescaling

is done to a kinetic energy that is stochastically chosen from the kinetic energy distribution dictated by
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the canonical ensemble. Thus, this thermostat properly samples the canonical ensemble. Similarly to

the Berendsen thermostat, a user-specified time coupling parameter can be chosen to vary how abruptly

the velocity rescaling takes place The choice of time coupling constant does not affect structural prop-

erties, and most dynamical properties are fairly independent of the coupling constant within a broad

range [76].

5. Andersen

The Andersen [77] thermostat works by selecting particles at random and having them “collide”

with a heat bath by giving the particle a new velocity sampled from the Maxwell-Boltzmann distri-

bution. The number of particles affected, the time between “collisions”, and how often it is applied

to the system are possible variations of this thermostat. The Andersen thermostat does reproduce the

canonical ensemble. However, it should only be used to sample structural properties, as dynamical

properties can be greatly affected by the abrupt collisions.

6. Langevin

The Langevin [78] thermostat supplements the microcanonical equations of motion with Brownian

dynamics, thus including the viscosity and random collision effects of an implicit solvent. It uses

a general equation of the form F = Finteraction +Ff riction +Frandom, where Finteraction is the standard

interactions calculated during the simulation, Ff riction is the damping used to tune the “viscosity” of the

implicit bath, and Frandom effectively gives random collisions with solvent molecules. The frictional and

random forces are coupled through a user-specified friction damping parameter. Careful consideration

must be taken when choosing this parameter; in the limit of a zero damping parameter, both frictional

and random forces go to zero and the dynamics become microcanonical, and in the limit of an infinite

damping parameter, the dynamics are purely Brownian.

7. Nosé-Hoover

The Nosé-Hoover thermostat [70] abstracts away the thermal bath from the previous thermostats

and condenses it into a single additional degree of freedom. This fictitious degree of freedom has a

“mass” that can be changed to interact with the particles in the system in a predictable and reproducible

way while maintaining the canonical ensemble. The choice of “mass” of the fictitious particle (which

in many simulation packages is instead expressed as a time damping parameter) can be important as

it affects the fluctuations that will be observed. For many reasonable choices of the mass, dynamics

are well-preserved [71]. This is one of the most widely implemented and used thermostats. However,

it should be noted that with small systems, ergodicity can be an issue [70, 79]. This can become
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Table 2.1: Basic summary of popular thermostats. ✗ indicates that the thermostat does not fulfill the state-
ment, ✓ indicates that the thermostat does fulfill the statement, and (✓) indicates that the thermostat fulfills
the statement under certain circumstances.

Thermostat Ensemble Deterministic/ Global/ Physical? Correct Correct
Stochastic Local Structural Dynamical

Properties? Properties?

None Microcanonical Deterministic ✓ ✓ ✓
Gaussian Isokinetic Deterministic Global ✗ ✓ ✗
Simple Velocity Rescaling Undefined Deterministic Global ✗ ✗ ✗
Berendsen Undefined Deterministic Global ✗ ✗ ✗

Bussi Canonical Stochastic Global ✗ ✓ (✓)
Andersen Canonical Stochastic Local ✗ ✓ ✗
Langevin Canonical Stochastic Local ✗ ✓ ✗
Nosé-Hoover Canonical Deterministic Global ✗ ✓ (✓)

important even in systems with larger numbers of particles if a portion of the system does not interact

strongly with the remainder of the system, such as in alchemical free energy calculations when a solute

or ligand is non-interacting. Martyna et al. [79] discovered that by chaining thermostats, ergodicity can

be enhanced, and most implementations of this thermostat use Nosé-Hoover chains.

2.5.4.4 Summary

Table 2.1 serves as a general summary and guide for exploring the usage of various thermostats. Knowing the

system you are simulating and the benefits and weaknesses to each thermostat is crucial to successfully and

efficiently collect meaningful, physical data. If you are only interested in sampling structural properties such

as radial distribution functions, many of the given thermostats can be used, including the Gaussian, Bussi,

Andersen, Langevin, and Nosé-Hoover thermostats. If dynamical properties will be sampled, it is preferable

to turn off the thermostat before beginning production cycles, but the Bussi and Nosé-Hoover thermostats

(and in cases with implicit solvent, the Langevin thermostat), can often be used without overly affecting the

calculation of dynamical properties. Since dynamical properties are unimportant during equilibration, faster

algorithms like the Andersen or Bussi thermostats can be used, with a switch to the Nosé-Hoover thermostat

for production. Overall, the Bussi thermostat has been shown to work well for most purposes, and its use is

recommended as a general-purpose thermostat.

2.5.5 Barostats

Here, we discuss why barostats are used, give their background, discuss roughly how they work, describe

some popular options, and summarize with some recommendations.
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2.5.5.1 Motivation

Typically, thermodynamic properties of interest are measured under open-air conditions in a laboratory, which

(for short timescales) means at they are measured at essentially constant temperature and pressure. To obtain a

non-atmospheric pressure, some device, like a piston, inert gas, etc., would be needed to control the pressure

and volume of the system [14, 60]. Such conditions correspond to what is called the isothermal-isobaric

ensemble, probably one of the most popular ensembles for MD simulations. As is the case with thermostats, if

the pressure must be maintained in a simulation, a barostat algorithm will be needed to sample this ensemble.

2.5.5.2 Background and How They Work

Barostat algorithms control pressure alone, not temperature, so if the target ensemble is isothermal-isobaric,

they must be applied with a thermostat. If a barostat is applied without a thermostat, only the number of

particles (N), the pressure (P), and the enthalpy (H) of the system are held constant. This is known as the

isoenthalpic-isobaric ensemble (NPH). To sample from the isothermal-isobaric ensemble (NPT), a thermo-

stating algorithm like the ones discussed earlier must also be applied.

Much of the background information on barostats is analogous to thermostats. The pressure of a molec-

ular dynamics simulation is commonly measured using the virial theorem (an expectation value relating to

positions and forces) [8, 60]. When pairwise interactions and periodic boundary conditions are considered,

different approaches are often utilized [13, 14, 60]. Regardless, these formulas give pressure as a time-

averaged quantity, similar to the temperature. If we use these formulas to calculate the pressure for a single

snapshot, this quantity is referred to as the instantaneous pressure. The instantaneous pressure will not always

be equal to the target pressure; in fact, in the NPH and NPT ensembles, the instantaneous pressure should

undergo fluctuations around the target pressure.

For the purpose of molecular modeling, consider a hypothetical system that is being compressed and/or

expanded by a fictitious piston that has some mass which acts in all directions uniformly. Since the piston is

acting on the system from all directions, it can be considered as applying a uniform compression or expansion.

The mass of the piston can be tuned to change the compression of the system, which will change how often

the particles in the system will interact with the system enclosure. These impacts from the particles on the

“enclosure” will impart a stress on the system box from the surroundings and serve as a type of barostat.

The next section will describe the main differences between the many barostats that are available, and give

some recommendations for proper use. Some barostats work based on scaling or rescaling the coordinates in

the system (the volume and the center-of-mass coordinates of the molecules involved), whereas others work

by modifying the equations of motion to ensure constant pressure.
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2.5.5.3 Popular Barostats

Here, we introduce a few notable barostats and give a high-level summary of each, noting some key issues.

This is not an exhaustive list of barostats and barostat algorithms, just a sampling of popular and historic ones

used in MD.

1. Simple volume rescaling

Every time this barostat is executed, the volume of the system is modified such that the instanta-

neous pressure is exactly equal to the target pressure. This does not sample the proper ensemble and

thus cannot be used for production sampling [60]. This also does not smoothly approach the target

pressure either, which might cause very unphysical issues with the system during integration.

2. Berendsen

The Berendesen [75] weak coupling barostat is very similar to the Berendsen thermostat discussed

earlier. It seeks to improve upon the simple volume rescaling method mentioned above. This is

achieved by coupling the system to a weakly interacting pressure bath [75]. This bath scales the vol-

ume periodically by a scaling factor, which produces more realisitc fluctuations in the pressure as it

slowly approaches the target pressure. In contrast to volume rescaling, Berendsen will approach the

target pressure more realistically, but the ensemble it is sampling from is not well defined and cannot

be guaranteed to be NPT or NPH. Berendsen can be useful for the beginning stages of equilibration,

but should not be used for production sampling.

3. Andersen

First described by Andersen [77] in 1980, the system is coupled to a fictitious pressure bath, by

adding an additional degree of freedom to the equations of motion. This behaves as if the system is

being acted upon by an isotropic piston. This is similar to the Nosé-Hoover thermostat, which is also

an extended system algorithm. This barostat does sample the correct ensemble. However, it is isotropic

in nature and applying anisotropic pressures to parts of the system is not possible.

4. Parrinello-Rahman

The Parrinello-Rahman [80] barostat is an extension to the Andersen barostat. Unlike the Andersen

barostat, Parrinello-Rahman supports the anisotropic scaling of the size and shape of the simulation

box [80]. This can be quite useful in solid simulations, where phase changes can be shape changes

in a crystal lattice, compared to a liquid or gas, which has no well defined shape. This barostat has

essentially the same properties as the Andersen one, with the additional support anisotropy.
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5. Martyna-Tuckerman-Tobias-Klein (MTTK)

The MTTK barostat has substantial similarity to the Parrinello-Rahman and Andersen barostats.

When Parrinello-Rahman’s equations of motion were discovered to hold true only in the limit of large

systems, the MTTK barostat introduced alternate equations of motion to correctly sample the ensemble

for smaller systems as well [81, 82]. Thus, MTTK [81, 82] is usually seen as an improvement over

Parrinello-Rahman [80] for such systems.

6. Monte Carlo

Constant pressure may also be achieved by periodically performing Monte Carlo moves that adjust

the system volume. For an explanation of how such moves are accepted or rejected, see “Monte Carlo

simulations in other ensembles” in Shell [60]. These MC barostats are computationally advantageous

in that the virial need not be computed, and they may be easily extended to accommodate anisotropic

systems. They rigorously explore the correct distribution of volumes in the NPT ensemble. However,

they do not preserve dynamic fluctuations. Unlike for extended system barostats, there is no sense of

relaxation time over which the volume of the system responds. Instead, the rate at which the volume

may respond is limited by the frequency with which MC moves are performed and the maximum

allowed change in volume. Thus, long-time dynamics are not accurately reproduced in any sense for

MC barostats.

2.5.5.4 Summary

The simple volume rescaling and Berendsen barostats are not recommended for collection of production data,

as they do not sample from any correct ensemble, nor do they utilize any “realistic” approach to achieve the

target pressure. They can, however, be used for approaching the target pressure. The Berendsen barostat

acts in a more realistic fashion in this regard compared to the volume rescaling barostat, which itself is

primarily useful only as a very stable thermostat for very early simulation stages if other algorithms have

trouble beginning from particularly strained starting structures. (Alternatively, such issues can be avoided

by running NVT equilibration before using a barostat, Figure 2.5.) Extended ensemble barostats are suitable

for the production runs of most systems. It is usually not recommended to use these for the equilibration

process, as these barostats do not behave as well when not near the target pressure. These can be affected

by the starting configuration and pressure values much more than the Berendsen or simple volume rescaling

barostats. MTTK and Parinello-Rahman allow for more flexibility in terms of the shape modulation of the

simulation box. However, not all extended-ensemble barostats have been implemented all simulation engines,

limiting user choice. It is recommended to begin with the Berendsen barostat to quickly bring the system to
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the target pressure, and then switch to an extended ensemble barostat for final equilibration and production.

2.5.6 Integrators

For systems consisting of more than three interacting bodies with no constrained degrees of freedom, there

is no analytical solution to the equations of motion. Instead, we must approximate the dynamics in a discrete

manner. This is usually termed numerical integration of the equations of motion. Algorithms to perform this

integration take many forms and are usually called integrators. Here, we explain the need for integrators,

discuss key criteria like energy conservation, and highlight a number of commonly used integrators.

2.5.6.1 Desirable integrator properties

So-called “good” integrators contain certain features that are appealing for molecular simulations. We start

with the most obvious feature, which is that the integrator induces little error in the dynamics. Since inte-

gration is fundamentally about taking discrete steps to approximate continuous dynamics, this discretization

process introduces errors (as can be observed by comparison to analytically soluble problems, like the har-

monic oscillator). These errors are termed discretization errors, whereas additional errors called truncation

errors are also accumulated through loss of precision during computer calculations. As will be discussed

shortly, there are many strategies for avoiding discretization errors. For truncation errors, the only solution is

to utilize a higher precision data type during calculations (i.e. use doubles instead of floats).

Integrators that minimize discretization error should preserve phase-space volume and conserve energy.

If phase space volume is not preserved, then the sampled ensemble at a later timestep will not be the same as

that in which the system was initialized. This means that the collected data will not in fact reflect the ensemble

of interest. Luckily, this issue may be avoided simply by guaranteeing that the integrator is reversible [7].

More details may be found in Tuckerman, Berne & Martyna [83], but basically if the mathematical operator

representing the integrator preserves phase space volume, it also satisfies the definition of reversibility: if the

operator is applied to propagate forward by ∆t, the starting condition may be recovered by in turn applying

the operator to the result using −∆t as the timestep.

Energy conservation is also a desirable integrator property and is imperative in simulating the micro-

canonical (NVE) ensemble. This is a much trickier property to examine, and varies with different integrators.

For instance, some classes of integrators better-preserve energy over short times, while others better-preserve

energy at long times. The latter is generally preferred, though it may necessitate other sacrifices such as

greater energy fluctuations away from the desired, exact system energy. When the energy does change over

the course of a simulation, it is said to “drift.” The most common reason for energy drift is due to a timestep

that is overly long. If the timestep is much too long, the system can become unstable and blow up (energies
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become very large) due to overlap of atoms. Even when the timestep is long enough that the system is still

stable over long times, it may be too long for the chosen integrator to conserve energy. Other simulation

parameters may also impact energy drift, such as the method of truncating forces and energies, as well as

the choice of numerical precision. The latter effect, due to truncation errors, will become obvious if two

simulations with different timesteps are compared. Shorter timesteps, and hence more steps to achieve a

simulation of the same length, will result in more drift, since errors get larger with the number of calcula-

tions performed by the computer. This is exactly opposite to the behavior that is expected for poor energy

conservation associated with discretization error, where a shorter timestep will reduce energy drift.

Overall, then, integrators do exhibit energy fluctuations that are timestep-dependent. All Verlet-equivalent

integrators exhibit energy fluctuations which decrease with the square of the timestep [13], which is often an

important check when assessing the correctness of an implementation. Thus, both energy drift and energy

fluctuations are important criteria to understand when assessing integrators, and can be useful measures of

simulation quality in the NVE ensemble.

Additionally, it is also desirable that an integrator be computationally efficient. Integrator cost mostly

appears in the length of the timestep that may be taken while still avoiding discretization error. As discussed

further below, the timestep must be at least an order of magnitude less than the smallest timescale of motion

present in the system. However, depending on the accuracy of the integrator with respect to reproducing the

true dynamics, a smaller timestep might be necessary. If the integrator requires a very small timestep to avoid

discretization error, then the computational cost greatly increases. Hence, a truly “good” integrator allows

for long timesteps while still achieving low discretization error. This has the added benefit of also reducing

truncation error, which is proportional to the number of timesteps taken. It is worth noting that the issue of

integrator choice versus timestep is not always simple; in some cases, a “better” integrator might allow longer

timesteps but also carry an additional computational cost that outweighs the benefits of an increased timestep.

2.5.6.2 Deterministic integrators

The most commonly used integrators are variants of the Verlet algorithm (e.g. Velocity Verlet or Leapfrog).

Such integrators include terms for updating particle positions up to the order of the square of the timestep (i.e.

they include forces). Inclusion of higher-order terms is favored in other families of algorithms, but generally

leads to greater complexity and reduced computational efficiency at only marginal improvement in accuracy.

Detailed discussion and derivation of many common integrators may be found in section 7.3 of Leach [8] and

4.3 of Frenkel & Smit [7]. Such integrators are not applicable, however, for simulations involving stochastic

dynamics, as discussed below.
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2.5.6.3 Stochastic integrators

Stochastic dynamics simulations include application of a random force to each particle, and represent dis-

cretizations of either Langevin or Brownian dynamics. A detailed description of such stochastic dynamics

may be found in McQuarrie [29], Chapter 20. As detailed in subsection 2.5.4, it is common to apply temper-

ature control through the use of Langevin dynamics. As a brief aside, this highlights the fact that the choice

of integrator is often tightly coupled to the choice of thermostat and/or barostat. Different combinations may

demonstrate better performance and for expanded ensemble methods it is necessary to utilize an integrator

specific to the selected temperature- or pressure-control algorithm.

With Langevin or other stochastic dynamics, the random forces usually prevent the integrator from pre-

serving phase-space volume, which ends up dictating the choice of timestep. Specifically, despite issues

with phase-space volume, some stochastic integration schemes achieve preservation of part of the full phase-

space (i.e. configurations or velocities are preserved) [84] via cancellation of error. In practice these issues

are easily remedied through an appropriate choice of timestep depending on the integration scheme.

Stochastic dynamics necessarily perturbs dynamics. Specifically, with Langevin or Brownian dynamics,

calculations of any dynamic properties with longer timescales than the application of the random forces will

be very different than those from deterministic trajectories. If one is interested in only configurational or ther-

modynamic properties of the system, this is of no consequence. If dynamics are of interest, the dependence

of these properties on the integrator parameters (e.g. friction factor) should be assessed [71].

2.5.6.4 Choosing an appropriate timestep

The maximum timestep for a molecular dynamics simulation is dependent on the choice of integrator and

the assumptions used in the integrator’s derivation. For the commonly used second order integrators, such as

the Verlet and Leapfrog algorithms, the velocities and accelerations should be approximately constant over

the timestep. Thus, the timestep is limited by the highest frequency motion present in the system, which

for all-atom simulations is usually bond vibrations. It is commonly found that using a timestep that is one

tenth of this vibration’s characteristic period is sufficient to conserve energy in the microcanonical ensem-

ble. For example, if hydrogen molecules are present in the simulation box and the H-H bond vibration is

the highest-frequency motion in the system with its force field harmonic force constant set to 500 N/m, the

oscillation period can be calculated using the equation for simple harmonic motion (T = 2π

√
µ

k , where µ

is the reduced mass and k is the force constant) to be 8 fs; thus, a 0.5 fs timestep can be used. As another

example, if an ab initio MD simulation is being conducted in which C-H bond vibrations are known to be the

highest-frequency motion, infrared spectra can be consulted to find that this bond vibration frequency will be

approximately 3000 cm−1, which is 11 fs; thus, either a 0.5 or 1.0 fs timestep would be recommended. For
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all-atom simulations with constraints on the high-frequency bonds, timesteps can be commonly increased to

2 fs; coarse-grained simulations with particles of higher mass and smaller force constants can have much

larger timesteps. After choosing a timestep, a test simulation should be run in the microcanonical ensemble

to ensure that the choice of timestep yields dynamics that conserve energy. The timestep should also be short

enough that properties calculated from the simulation, regardless of ensemble, are independent of the chosen

timestep. This is because an inappropriately large timetep can lead to subtle changes to the ensemble being

simulated [8, 13] and alter computed thermodynamic and transport properties, especially in stochastic simu-

lations or those coupled to thermostats or barostats [84]. Methods also exist to increase the timestep beyond

the limit imposed by the system’s highest-frequency motion. Some examples of these enhanced timestepping

algorithms include multiple-timestep methods which separately integrate high-frequency motion from low-

frequency motion and schemes which repartition atomic masses to decrease the highest-frequency motion

seen in the system[85, 86].

2.5.7 Long range electrostatics

In view of the long-range nature of Coulombic interactions (subsection 2.4.4), handling of electrostatics is

particularly important in many systems. Here we describe the motivation for the different treatments of these

terms, and give an overview of the core idea of the basic algorithms typically employed.

2.5.7.1 Motivation

The calculation of non-bonded interactions is generally the most time-consuming step of classical energy

calculation. While the number of type of bonded interactions remain unchanged during an MD simulation,

the strength and importance of non-bonded interactions varies substantially as a simulation proceeds.

Additionally, Coulombic interactions fall off only very slowly with distance, as r−1, further complicating

handling of non-bonded interactions in two different ways. First, calculating all Coulomb interactions over a

periodic system results in needing to compute a sum which is conditionally convergent — that is, the value of

the sum depends on the order in which it is evaluated [8], meaning we must exercise extreme care or the result

will be ambiguous. Second, long-range interactions may be relevant, but determining pairwise distances is

an expensive computation that grows with the square of the number of atoms involved.

As discussed in subsection 2.5.2, simulations designed to represent bulk systems are generally performed

under periodic boundary conditions, so that the electrostatic potential at any point is due to all the other

charges in the system including all of their periodic copies. Given that this is the goal, a set of different

methods have been developed to efficiently compute the electrostatic potential due to this infinite, periodic

system.
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In the early days of simulations, electrostatic interactions were often simply truncated at a particular cutoff

radius (rc). This, however, creates artificial boundary effects and other problems [13], as well as neglecting

important long-range interactions.

2.5.7.2 Ewald Summation

The Ewald summation technique [87] provides one way to efficiently handle long-range electrostatics in

periodic systems. To understand this technique, consider the relationship between the charge distribution and

the Coulombic potential written in the differential form (the Poisson equation):

∇
2
φ(x) =−1

ε
ρ(x)

where φ(x) is the potential at point x, ρ(x) is the charge density at point x and ε is the permittivity of the

medium. The standard way to determine the potential from this equation is to first discretize the equation and

then solve, but this requires the functions ρ and φ to be smooth. However, here, because we use point charge

electrostatics, ρ is a set of delta functions.

The Ewald method is based on (temporarily) replacing the point charge distributions by smooth charge

distributions in order to apply existing numerical techniques to solve this partial differential equation (PDE).

The most common smooth function used in the Ewald method is the Gaussian distribution, although other

distributions have been used as well. Thus the overall charge distribution is divided into a short-range or “di-

rect space” component (ρsr) involving the original point charges screened by the Gaussian-distributed charge

of the same magnitude (Figure 2.6) but opposite sign, and a long-range component involving Gaussian-

distributed charges of the original sign (ρ lr). The screening distribution is of opposite sign to allow the

screened interactions to fall off rapidly with distance, as we will see below. The sum of the short-range ρsr

and the long-range ρ lr charge distributions is still the same as the original charge distribution.

Unlike the original, full potential, the direct space screened interaction (Figure 2.6, top) decays rapidly. In

fact, it decays even faster than Van der Waals interactions (1/r6) and hence relative short cutoffs, comparable

to those used for Van der Waals interactions, can be used for handling direct-space Coulomb interactions

(Figure 2.7).

The potential due to long-range charge interactions does not decay rapidly, and thus requires consider-

ation of all periodic copies. This would pose severe problems if calculated via direct summation, but the

smoothness of the charge ρ lr (and hence potential (φ lr) allows the use of fast PDE solvers. Specifically,

while the sum is long-ranged in real space, taking the Fourier transform converts it into a sum in reciprocal

space which is short-ranged in reciprocal space, damped by a factor exp
(
−k2σ2/2

)
where k is the reciprocal
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space vector and σ is the width of the Gaussian.

The final term in Ewald summation is a so-called self term which gets subtracted out of the overall sum;

it is calculated only once at the beginning of the simulation as it depends only on the charge magnitudes and

not their positions. It also does not contribute to the force.

2.5.7.3 Grid based Ewald summation

Ewald summation as described in the previous section takes O(n3/2) time, where n is the number of charge

sites. Switching to a discrete Fourier transform can reduce the cost to to O(nlog(n)). Discretization involves

spreading the charge over a grid. Several common grid-based implementations are available which tackle this

problem, including Particle-Particle Particle Mesh (P3M), Particle Mesh Ewald (PME) and Smooth Particle

Mesh Ewald (SPME). Specifics are chosen in each case to combine accuracy, speed and ease of implementa-

tion. In this subsection, we give an overview of the grid-based approach.

Grid-based Ewald summation approaches involve five general steps:

1. Charge assignment: In this step, charges are interpolated onto the grid. While the original PME method

uses Lagrangian interpolation for charge assignment, the SPME method uses the smoother cardinal B-

splines (hence the name Smooth-PME) to distribute charge onto the grid.

2. Transformation of the grid to reciprocal space: A Fast Fourier Transform (FFT) is used to convert the

charges on the grid to their equivalent Fourier space structure factors.

3. Energy calculation: The reciprocal space potential is calculated by solving the Poisson equation in

Fourier space, and the reciprocal space potential is then stored on the grid.

4. Transformation of the grid back to real space: An Inverse FFT is used to convert the reciprocal space

potential back to the real space.

5. Force calculation: The force is given by the gradient of the potential. PME [36], SPME [88] and

P3M [89] use different methods for calculating the force given the resulting potential.

Optimizing the performance of grid based methods can be somewhat challenging; many key choices are

made in method implementation and only relative few settings are exposed to the user. Some typical options

include:

• Grid dimensions or spacing: A fine grid would be slower, requiring interpolation and calculations for

more grid points, but in principle accuracy should be higher.
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• Screening function: The width of the Gaussian screening function can often be tuned, but the ideal

width is coupled with the direct space cutoff giving limited room for tuning. In some cases alternate,

non-Gaussian screening functions are available.

• Direct-space cutoff: This is typically kept at or near the value used for the van der Waals cutoff. De-

creasing the cutoff improves the direct space performance but increases the complexity of the reciprocal

space calculations.

In principle, it is possible to optimize settings for handling of long-range electrostatics in order to achieve

considerable efficiency gains while maintaining accuracy, though this can involve considerable care [90]. For

novice users, we suggest typically using well-validated or default settings for the particular method employed,

and only deviating from these with careful consideration and testing.
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Figure 2.3: Periodic boundary conditions are shown for a simple 2D system. Note that the simulated system
is a sub-ensemble within an infinite system of identical, small ensembles.
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Figure 2.4: Shown are graphs of a hypothetical computed property (vertical axis) versus simulation time
(horizontal axis). For some system properties, equilibration may be relatively rapid (top panel), while for
others it may be much slower (bottom panel). If it there is ambiguity as to whether or not a key property is
still systematically changing, as in the bottom panel, equilibration should be extended.
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Figure 2.5: Common equilibration work-flows are shown; these vary depending on the target ensemble for
production simulations (right). Typically, an initial phase of equilibration at constant volume and temperature
is needed to bring the system to the desired target temperature or energy. For stability reasons, this initial
phase is usually needed even if the goal is to also bring the system to a target pressure. If the production
ensemble is an NVE ensemble, an initial NVT simulation is usually followed by a short additional NVE
equilibration before collection of production data. If the production ensemble is NVT, protocols may differ
depending on whether it is necessary to allow the system to equilibrate to a particular density/volume or
whether the volume is selected a priori (second and third rows). And if production is to be NPT, it is usually
equilibrated first at NVT before equilibrating to the target pressure (final row).
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Figure 2.6: Screening charge distribution. (Top) The original charge distribution. (Bottom) Point charges
can be split into Direct space (blue) and Reciprocal space charges (red). The direct space charge consists
of the original charges and Gaussian-distributed screening charges of opposite sign. The reciprocal space
charge is only the Gaussian-distributed charge of the original sign. Together these sum to the original charge
distribution, but computation of the electrostatic potential due to each component becomes much easier.
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direct-space term after Gaussian screening (black,-) and the r−6 in van der Waals term (red, -.). Note: The
value on the vertical axis has been scaled to allow easy visualization of the relative decay of each term.
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2.6 Should you run MD?

A critical question before preparing an MD simulation of your system is whether you even should use MD for

your system in view of the resources you have and what information you hope to obtain. MD is a tool, but it

may not be the right tool for your problem. Before beginning any study, it is critical to sort out what questions

you want to answer, what resources (computational and otherwise) you have at your disposal, and whether

you have any information about your system(s) of interest that indicate you can realistically expect to answer

those questions given a set of MD simulations. Try to understand basic concepts of statistical uncertainty

([91] and https://github.com/dmzuckerman/Sampling-Uncertainty [69]) and use these to make an educated

guess regarding your chances of extracting pertinent and reliable information from your simulation.

As noted above, the frequency of the fastest vibrational motions in a system of interest sets a fundamental

limit on the timestep which, given fixed computational resources, sets a limit on how much simulation time

can be covered with any reasonable amount of computer time. Thus, as noted in Section 2.2, the longest

all-atom MD simulations are on the microsecond to millisecond timescale. This means that if your system is

complex and answering your questions will require sampling critical events that have a timescale of seconds

or longer, MD will not be the right tool for the job. You could invest a huge amount of effort running MD

simulations and find that they did not address your questions.

Ideally, you should have some information before beginning that the relevant timescales for your system

might be accessible given the amount of MD you can afford to run, or you could plan a set of exploratory

MD simulations to assess feasibility. But do not simply plunge in and attempt to run simulations until you

find the answers to your questions, as the required timescales could end up being orders of magnitude longer

than what you can afford to spend. Time is only one consideration out of many; disk storage and computer

time availability can also prove limiting factors, and opportunity cost, as well, is not to be overlooked.

Ultimately, we ought to be assessing whether MD is the best tool for the job. For our problem of interest,

will it really be faster to answer your questions using an MD simulation, or are there experiments which could

be done which would answer the question more quickly? Maslow famously wrote, “I suppose it is tempting,

if the only tool you have is a hammer, to treat everything as if it were a nail.” We do not want to end up in

a position where we are running MD simulations not because they are the best tool for the job, but because

they are the only tool available to us. If an experiment could answer our key questions with far less cost

and time, and the questions are indeed compelling, perhaps our time might be better spent finding a suitable

experimental collaborator rather than running a set of simulations. To give a concrete example, one could

imagine using molecular dynamics simulations to screen a library of commercially available compounds for

binding to a potential protein target, but if the compounds are commercially available at an inexpensive rate
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and a suitable assay is available, it might be far faster and cheaper to simply screen the compounds.

So, count the cost of your potential simulations, assess whether they realistically have a chance of answer-

ing the questions you seek to answer, and then carefully decide whether the likelihood of success is worth the

cost. If not, don’t tackle that problem with MD.

2.7 Use your MD simulations and interpret the results with care and caution

Analysis of molecular simulations is largely outside the scope of this work; however, some words of caution

are worthwhile. It is tempting, especially for those new to or outside of the area, to view simulations as

providing “the answer”, giving full mechanistic insight in atomistic detail into what happens in a particular

situation and why it happens. Instead, MD results are better thought of as the results of a computational

experiment that results from a particular model (including force field), system composition, and protocol.

The resulting simulation(s) might or might not be statistically meaningful, relevant to experiment, or useful,

but results will be obtained regardless.

This, then, leads us to one of the real dangers of molecular simulations: A simulation produces results,

which tempt users to interpret or overinterpret them, whether the results are meaningful or not. For exam-

ple, even a very short, unequilibrated MD simulation can produce movies which appear interesting and, by

virtue of the fact that they result from MD, reveal the positions of all the atoms in a system as a function

of time. It’s easy to run several short MD simulations where (for example) the composition of the system

is varied, and conclude that any observed differences are a result of variations in composition. But as noted

in subsubsection 2.5.3.3, even simulations started from the same structure but slightly different initial posi-

tions or velocities will diverge over time yielding different results, so perhaps any differences are simply a

result of this divergence rather than due to the change in conditions. Thus, analysis will require great care

and caution to avoid overinterpreting data, and error analysis becomes particularly critical (as discussed in

https://github.com/dmzuckerman/Sampling-Uncertainty [69]).

In summary, then, do not use MD simulations simply to make movies and inspect these. Considerable

care must be exercised to avoid overinterpeting the full atomistic detail they provide. While movies in some

cases can be useful, proper error analysis is always essential.

2.8 Conclusions

Molecular simulations are particularly exciting, because they provide a detailed view into the structure and

function of systems at a molecular or atomistic level. Additionally, they allow us to precisely compute

thermodynamic and statistical properties and connect these to underlying motions, structure, and function.

Thus MD has played a significant role in our field in suggesting new experiments, generating ideas, and
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helping to provide mechanistic understanding. Advances in hardware, software, methods and force fields

also make MD-based calculations particularly appealing for predictive molecular design, where simulations

could be used to help guide experiments to develop materials or molecules with desired properties.

Still, MD simulations require considerable care, as conducting them requires choosing a variety of set-

tings, and the optimal choice of settings typically depends on the problem being considered. Thus, it is our

hope that this document provides a helpful overview of some of the fundamental considerations for prepar-

ing and conducting MD simulations and paves the way for more specialized documents which will focus on

calculations of specific properties or for specific classes of systems, since the approach employed will often

need to vary depending on such choices.

This document also provides a checklist covering some of the key points raised in this work and high-

lighting particularly common sources of failure; we encourage readers to follow this when considering a

simulation study.

Our focus here has been on the basics — focusing on things you need to understand before beginning

to prepare simulations for yourself. Additionally, we have primarily focused on issues relating to how sim-

ulations are conducted, and leave data analysis for a separate treatment. As a starting point relating to data

analysis, readers should probably review the Best Practices document on sampling and uncertainty estimation

(https://github.com/dmzuckerman/Sampling-Uncertainty [69]).

Please remember that this is an updatable work, so we welcome contributions and suggestions via our

GitHub issue tracker at https://github.com/MobleyLab/basic_simulation_training.
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CHAPTER 3

Towards Molecular Simulations that are Transparent, Reproducible, Usable By Others, and

Extensible (TRUE)

3.1 Introduction

Systems composed of soft matter (e.g., liquids, polymers, foams, gels, colloids, and most biological mate-

rials) are ubiquitous in science and engineering, but molecular simulations of such systems pose particular

computational challenges, requiring time and/or ensemble-averaged data to be collected over long simulation

trajectories for property evaluation. Performing a molecular simulation of a soft matter system involves mul-

tiple steps, which have traditionally been performed by researchers in a “bespoke” fashion, resulting in many

published soft matter simulations not being reproducible based on the information provided in the publica-

tions. To address the issue of reproducibility and to provide tools for computational screening, we have been

developing the open-source Molecular Simulation and Design Framework (MoSDeF) software suite.

In this chapter 12, we describe a set of principles to create Transparent, Reproducible, Usable by others,

and Extensible (TRUE) molecular simulations. MoSDeF facilitates the publication and dissemination of

TRUE simulations by automating many of the critical steps in molecular simulation, thus enhancing their

reproducibility. We provide several examples of TRUE molecular simulations: All of the steps involved in

creating, running and extracting properties from the simulations are distributed on open-source platforms

(within MoSDeF and on GitHub), thus meeting the definition of TRUE simulations.

3.2 Background

Reproducibility in scientific research has become a prominent issue, to the extent that some have opined that

science has a “reproducibility crisis” [2]. Along with the rest of the scientific community, computational sci-

entists are grappling with the central question: How can a computational study be performed and published

in such a way that it can be replicated by others? This has become increasingly important as researchers

seek to harness the ever expanding computational power to perform large-scale computational screening of

materials [3–9] inspired by the materials genome initiative (MGI)[10], where reproducibility issues com-

monly faced in small-scale studies will only be compounded as the number of simulations grow by orders of

magnitude.

Addressing the issues of reproducibility in soft matter simulation is particularly challenging, given the

1Portions of this chapter reprinted with permission from the following work:
2Thompson, M. W., Gilmer, J. B., Matsumoto, R. A., Quach, C. D., Shamaprasad, P., Yang, A. H., Iacovella, C. R., McCabe, C.

& Cummings, P. T. Towards Molecular Simulations That Are Transparent, Reproducible, Usable by Others, and Extensible (TRUE).
Molecular Physics 118, e1742938. ISSN: 0026-8976, 1362-3028 (June 2020).
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complexity of the simulation inputs and workflows. Here we define soft matter as anything easily deformed

at room temperature, e.g., liquids, polymers, foams, gels, colloids, and most biological materials. Figure 3.1

shows a schematic of the general multi-step workflow for performing atomistic simulations of soft matter

systems, proceeding from system “chemistry” (chemical composition and state conditions such as phases(s),

temperature, pressure, and composition) to “properties” (e.g., structural, thermodynamic and transport prop-

erties, phase equilibria, and dielectric properties) In such systems, the differences in potential energy between

distant configurations are on the same order as the thermal motion, requiring time and/or ensemble-averaged

data to be collected over long simulation trajectories for property evaluation. The equilibration procedures

and system sizes considered may strongly influence the resulting measured properties, since one must con-

sider both the local conformations of the underlying components, along with any mesoscopic structuring

present in the system. To capture sufficiently large length and time scales, soft matter simulations are typi-

cally performed using methods such as molecular dynamics (MD) or Monte Carlo (MC) that employ empiri-

cal force fields to model the interactions between atoms and molecules; the appropriate force field parameters

must be identified before the simulation can be performed.

Some commonly available force fields, such as the Optimized Potential for Liquid System (OPLS)[11]

and the General Amber Force Field (GAFF)[12] contain thousands of possible parameters that are differenti-

ated by their chemical context (e.g., the element a given interaction site represents, the number and identity

of bonded neighbors, the local environment of bonded neighbors, the type of system, etc.). Selecting the ap-

propriate force field parameters for a particular use case is often non-trivial. Workflows may also involve the

optimization of specific parameters, such as partial charges, or require separate procedures to develop novel

force fields, such as coarse-grained (CG) models, before a simulation can be performed. Furthermore, due to

the complex nature of the underlying constituents (e.g., highly branched polymers), setup of an initial system

configuration may be challenging and require additional relaxation procedures to ensure system stability[13].

As such, soft matter simulations typically require multi-step workflows with many inputs. The various

steps are often accomplished by separate pieces of syntactically and/or semantically incompatible software

tools, that may require translators or ad hoc modifications to facilitate interoperability. These tools, and

especially the “glue” code that facilitates interoperability, are typically neither publicly available nor version-

controlled. The latter is particularly important for long-term reproducibility, since to repeat a particular

calculation may require using versions of the relevant codes used when the work was originally published,

which could be a number of years ago.

The above complexities often make it difficult for researchers themselves to fully capture and preserve

the procedures used to perform a simulation, let alone clearly disseminate these to the rest of the community.

A typical soft matter simulation publication provides an overview of the methods and procedures used but
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Figure 3.1: Schematic of the typical process required to compute properties of soft matter systems from
system “chemistry,” which refers to chemical composition and state (including temperature, pressure and
composition), starting from the need to either gather or derive force field parameters to model the system.
For coarse-grained (CG) simulations, the CG force fields are often derived from atomistic simulations.

falls significantly short of including the necessary information to unambiguously reproduce the published

work. This information includes, but is not limited to, citations to the sources of force field(s) used, the

numeric parameters of the force field(s) used, how the force field parameters were assigned to the system,

constants and options provided in the underlying algorithms, and the exact choices used in constructing

the initial configuration of the system. It is important to recognize that the results from a simulation can

depend on the minute details[14]. These details include, but are not limited to, the random seed used to

generate a distribution, the specific force field parameters and how they were used, the exact procedures

employed to equilibrate a system, etc. For example, small variations in force fields (e.g., changes in distances

at which interactions are truncated, different partial charges, the specific method for handling long-ranged

interactions, etc.) can change some predicted properties quite significantly[14–16]. The minute details may

also be inherent to the software used to perform the simulations, and thus the use of “in-house” or commercial

(i.e., closed-source) software stymies reproducibility. If the source code cannot be viewed, the underlying

algorithms and inputs cannot be examined, the quality of the code and whether it has undergone proper

validation is unknown, and errors cannot be identified. As an example, a long standing disagreement related to

phase transitions in supercooled water was only recently settled after the source code of the in-house software

used to perform the calculations was shared. The differences in observed transitions were attributed to a subtle

error in how velocities were assigned when initializing the many short MD simulations in the hybrid MD/MC

workflows.[17, 18]. The use of open-source simulation engines therefore clearly enhances reproducibility,

as the underlying source code can be examined (note, the use of open-source simulation engines is now

routine for MD studies, but often these engines and other open-source codes are modified to implement new

force field parameters or functional forms, and MC studies still commonly use in-house software). However,
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it is atypical for input scripts and data files for open-source simulation engines to be included as part of

a publication and thus reproducibility still largely depends on the thoroughness of the description of the

methods and model in the text. Furthermore, the algorithms and specific choices used to generate a data

file, which may influence the results and their validity (e.g., how a force field was applied), are lost if the

software and/or procedures used to generate the data file are not made available. Even when using open-

source simulation engines, researchers still routinely use in-house software for other steps in the process,

i.e. generation of initial configurations, selection of force field parameters, and analysis. Furthermore, if a

workflow relies upon manipulation or modification of individual pieces of software by a user (e.g., initializing

a system using software with a graphical user interface, GUI[19]), or human-modification of files, it is often

difficult to capture and convey the exact procedures in such a manner that they can be reproduced by another

researcher.

Fortuitously, several researchers have proposed general guidelines for increasing reproducibility in com-

putational research, which can be used to infer best practices for soft matter simulation. Donoho et al.[20]

propose that all details of computations – code and data – should be made “conveniently available” to other

researchers; they also provide arguments in favor of the creation and use of community developed software

libraries and the use of scripting. Others[21, 22] have proposed succinct “rules” as keys to reproducible com-

putational research, including version control, replacement of manual input with scripts, and public access to

these scripts, input files, and resulting data. It was also noted that computational frameworks that integrate

different tools within a common environment naturally satisfy many of these rules. One of the most vocal

proponents of reproducibility in computational science[23, 24], has gone as far as asserting that GUIs are

the “enemy of reproducibility”. GUIs hide details and require human interaction and manipulation in con-

trast to scripts, which fully reveal the way in which calculations are performed. A classic example is Excel

spreadsheets, where the relationship between calculation cells and data is normally hidden, and the order of

calculation is not obvious, nor necessarily controllable. In 2010, Harvard University economists Reinhart

and Rogoff published a highly cited and influential paper on the role of debt in limiting growth in national

economies[25]. The study, based on data manipulated within an Excel spreadsheet, was often cited by politi-

cians favoring austerity policies in the wake of the 2008 financial crisis while public economic policy was

being formed. Subsequently, Herndon et al.[26] found that the spreadsheet contained errors in formulae that

dramatically changed the conclusions.

Determining how these guidelines for reproducibility should be — and/or can be — implemented in soft

matter simulation is in itself a challenge. For example, simply providing code is not effective if that code

is poorly written or not well documented and has subtle issues, such as dependencies within a code (e.g.,

use of external libraries, especially if they are proprietary/non-free or difficult to obtain/install) These issues
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may create barriers to proper compilation/installation and hence hamper reproducibility. Similarly, providing

a raw data file without defining the structure of it, and/or without appropriate metadata, does little to aid in

reproducibility. Since journals largely do not provide mechanisms for sharing code, scripts, and/or data (aside

from supplemental material), it is also not clear how such information should best be shared.

As such, in order to implement best practices, we assert that the development of new tools and standards

will be required, in order to facilitate necessary changes to the way in which simulators perform and publish

their research. However, development of new tools does little to improve reproducibility if those tools are

not used; to be widely adopted by the community, they must provide additional value to researchers, e.g.,

minimizing errors, reducing development time, preventing knowledge loss, providing novel functionality,

etc.

For almost a decade now, we have been developing a robust Python-based, open-source integrated soft-

ware framework for performing simulations of soft matter systems with the goal of implementing best

practices and enabling reproducibility. This framework, known as the Molecular Simulation and Design

Framework (MoSDeF) [27], was developed initially at Vanderbilt University, in collaboration with com-

puter scientists in the Institute for Software Integrated Systems [28], to facilitate screening studies of mono-

layer lubrication using MD methods. MoSDeF provides a core foundation and includes tools for program-

matic system construction (mBuild)[29, 30], tools for encoding force field usage rules and their application

(Foyer)[31–33], and has recently integrated the signac framework[34, 35], developed at the University

of Michigan as a means of improved data and workflow management. The MoSDeF toolkit has been used in

various published results[8, 9, 29, 33, 36, 37] and ongoing research projects, with the primary MoSDeF tools

having each been downloaded over 18,000 times from Anaconda Cloud[38] since February 2017. Despite

being initially developed for monolayer lubrication, the underlying tools can be and have been applied to soft

matter systems in general, and the modular, object-oriented design naturally allows for intuitive extension.

Current MoSDeF activities are expanding the capabilities related to:

• Initializing system configurations by providing a plugin architecture for community contributions

• Providing initialization routines for a wide variety of common systems

• Developing an improved backend that will support an increased number of force field types and simu-

lation engines, including open-source MC software

• Developing modules that implement methods for partial charge assignment

• Including improved support and libraries for coarse-grained models

• Developing modules that allow for reproducible derivation of coarse-grained and atomistic force fields
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• Developing workflows for free energy methods and phase equilibria

• Specifically identifying and implementing best practices within the various modules/workflows that

improve reproducibility.

Through the MoSDeF integrated framework, the exact procedures used to set up and perform simulation

workflows and associated metadata (i.e., the provenance) can be scripted, encapsulated, version-controlled,

preserved, and later reproduced by other researchers. This allows molecular simulation studies to be con-

ducted and published in a manner that is TRUE: Transparent, Reproducible, Usable by others, and Extensible.

The remainder of this paper is organized as follows. In Section 3.3, we briefly review MoSDeF an its

capabilities. In Section 3.4, we consider four examples of TRUE molecular simulations in diverse applica-

tion areas. Finally, in Section 3.5, we summarize our conclusions and prospects for future development of

MoSDeF.

3.3 Overview of MoSDeF

3.3.1 MoSDeF tools and capabilities

MoSDeF is a set of an open-source Python libraries, designed to facilitate the construction and parame-

terization of systems for molecular simulation. MoSDeF includes routines to output syntactically correct

configuration files in formats used by common simulation engines, currently supporting GROMACS[39–

41], LAMMPS[42], HOOMD-blue[43–45], and Cassandra [46], as well as other common file formats (e.g.,

MOL2, PDB) through integration with the open-source ParmEd[47] parameter editing package. Each library

(i.e., Python module) in MoSDeF is designed such that it can be used as a standalone package, in combi-

nation with other libraries within MoSDeF, or with other libraries developed and used by the community.

This composability/modularity is an essential design feature in terms of the robust development of MoSDeF,

allowing the framework to be more modifiable, testable, extensible, and have fewer bugs than monolithic ap-

proaches[14]. MoSDeF is implemented using concepts from the computer science/software engineering field

of model integrated computing (MIC)[48, 49], a systems engineering approach, pioneered at the Institute for

Software Integrated Systems (ISIS) at Vanderbilt, that emphasizes the creation of domain-specific modeling

languages that capture the features of the individual components of a given process, at the appropriate level

of abstraction. By using concepts from MIC, MoSDeF can easily be abstracted and is able to capture the re-

lationships that exist between data and processes regardless of the level of abstraction, essential for ensuring

that system initialization scripts are transparent and usable by others. MoSDeF follows a modern open-source

development model with special emphasis on effective code sharing, accepting external feedback, and bug

reporting.
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• All modules and workflows developed for MoSDeF build upon the scientific Python stack, thus en-

abling transparency, promoting code reuse, lowering barriers to entry for new users, and promoting

further community driven, open-source development.

• GitHub is used for hosting MoSDeF’s version-controlled software development, deployment, and doc-

umentation/tutorials, using a pull request (i.e., fork-pull) model that allows for code review and auto-

mated testing, helping ensure proper standards have been followed and allows for automated testing of

software and software artifacts.

• Automated builds and testing of the software are hosted on Travis CI[50] and also on Microsoft’s Azure

Pipelines[51] to ensure that proposed modifications to the code do not break the current performance

and the CodeCov[52] tool is used to ensure that modifications to the code are covered by unit tests.

• All software developed as part of the MoSDeF project are open-source, with the standard MIT li-

cense[53] that allows free use, reuse, modifications, as well as commercialization.

• Slack[54] is used to facilitate effective collaborative communication and software development across

a wide geographic area[55].

By developing software in a modular, extensible, open-source manner, using freely available tools de-

signed for collaborative code development (e.g., git, GitHub, and Slack), we are creating a long-term community-

developed effort, similar to the success seen by other tools in the community (e.g., GROMACS[39–41],

VMD[56], LAMMPS[42], HOOMD-Blue[44, 57], etc.). This has become especially important as the group

of MoSDeF developers has expanded beyond Vanderbilt University. A recent U.S. National Science Foun-

dation grant[58] has provided support for leading molecular simulation research groups from Vanderbilt, the

universities of Michigan, Notre Dame, Delaware, Houston and Minnesota, along with Boise State University

and Wayne State University to further improve and increase support of MoSDeF as described below. This

group spans a broad range of expertise, and an equally broad range of scientific applications, open-source

simulation codes (HOOMD-Blue[44, 57], Cassandra[59], GOMC[60, 61] and CP2K[62]), workflow and

data management software[34, 35, 63] and algorithms and analysis tools; computer scientists from ISIS are

also involved in the collaboration, helping to ensure the use of best practices and provide novel insight into

algorithmic and software development. In combination, this collaboration is working to dramatically expand

the capabilities of MoSDeF and thus facilitate researchers in the area of molecular simulation to be able to

publish TRUE simulations.

Here, we briefly describe the two key tools used in the current version of MoSDeF, focusing on the

specific aspects of the tools that help to enable TRUE simulations.
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3.3.1.1 mBuild

The mBuild Python library[29, 30] is a general purpose tool for constructing system configurations in a

programmatic (i.e., scriptable) fashion. While tools exist in the community for system construction[64–

66], they tend to be system specific (e.g., bilayer construction), often employ GUIs which may hamper

reproducibility[23] and may be limiting for workflows that require automation, and most are designed around

the concept that components of the system can be described by self-contained templates (e.g., where a system

can be constructed by simply duplicating a template that describes a molecule). Such existing tools have

typically not been designed to work for systems where bonds are added between different components (e.g.,

polymer grafted surfaces) or for systems where one component is semi-infinite (e.g., a silica substrate that is

periodic in-plane) and most do not allow programmatic variation of specific structural/chemical aspects (e.g.,

the length of a polymer, the polymer repeat unit, size of a substrate, etc.); mBuild was designed specifically

to provide this missing functionality.

Rather than providing a tool to perform initialization that only applies to a specific family of systems (e.g.,

monolayers), mBuild provides a library of functions that users can combine, extend, and add to, in order

to construct specific systems of interest. mBuild allows users to hierarchically construct complex systems

from smaller, interchangeable pieces that can be connected, through the use of the concept of generative,

or procedural, modeling[29]. This is achieved through mBuild’s underlying Compound data structure,

which is a general purpose “container” that can describe effectively anything within the system: an atom,

a coarse-grained bead, a collection of atoms, a molecule, a collection of Compounds, or operations (e.g.,

a Compound that includes a routine to perform polymerization). To join Compounds (e.g., attachment

of a Compound that defines a polymer to a Compound that defines a surface), Compounds can include

Ports that define both the location and orientation of a possible connection. In mBuild, a user (or algo-

rithm) defines which Ports on two Compounds should be connected and the underlying routines in the

software automatically performs the appropriate translations and orientations of the Compounds (see Klein

et al.[29] for more details). This creates a new (composite) Compound that contains both of the original

Compounds, now appropriately oriented and positioned in space, with an explicit bond between them; since

Compounds are general data structures, the same operations (rotation, translation, connecting of Ports, etc.)

that were performed on the underlying Compounds can be performed on this new composite Compound.

The mBuild library can be used to create systems from “scratch” whereby a user implements all the rel-

evant code to define the building blocks and how they should be connected, or by using and/or extending

the various“recipes” included in mBuild. mBuild includes (but is not limited to) “recipes” for initializing

polymers, tilings (e.g., duplicating a unit cell, including bonding information), patterning (disk, sphere, ran-
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dom, etc.), lattices either from a Crystallographic Information File (CIF), their Bravais lattice parameters, or

the vectors describing the prism, box filling (via integration with PACKMOL[67]), monolayers and brushes

on flat, curved, and spherical surfaces, and bilayers and lamellar structures.

As an example, Fig. 3.2 shows a schematic and associated code for the construction of an alkane grafted

silica surface. In this code, a custom Compound class is defined for a CH2 moiety alongside a Compound

from the mBuild library that defines a crystalline silica surface; a“recipe” included in mBuild that performs

polymerization (Polymer) is used to connect copies of the CH2 moieties; the Monolayer “recipe”, also

included in mBuild, is used to perform the functionalization of the silica surface with the polymer, returning

a single composite Compound of the functionalized surface (for readability, the terminal groups are ignored

in this example). This example also highlights how system construction can be programmatically varied, e.g.,

the Polymer class takes as input the number of repeat units (in this case, set to 18). Similarly, the size of

the substrate can be toggled in the Monolayer class, where tile_x and tile_y define the number of

times the substrate is duplicated in the respective dimension. The number of chains attached to the surface

can also be modified via the number passed to the Random2DPattern class (here set to 25). Because

Compounds are general containers, changes to, e.g., the length of the polymer, do not require changes to the

rest of the script, namely the Monolayer class. Similarly, characteristics such as the repeat unit passed to

the Polymer class can be readily changed without need to change other aspects of the script. As a result, by

using the mBuild library, complex system initialization and variation/extension can often be accomplished

without the need to write significant amounts of code. As this example shows, by using concepts from MIC,

construction of systems in mBuild can be trivially abstracted (i.e., the level of complexity reduced) to the

level most appropriate to describe (i.e., model) the system, without making system construction a “black

box”. Since mBuild is an open-source, freely available Python library, scripts that unambiguously define all

the steps needed to initialize a system can be easily shared and disseminated with publications, with all code

easily interrogated, allowing system construction to be reproduced and improving transparency; mBuild

has additionally been architected so that users can contribute custom “recipes” for system initialization via a

plug-in environment, further allowing such routines to be easily shared, utilized and extended by others.

3.3.1.2 Foyer

The Foyer library[31] is a tool for applying force fields to molecular systems (i.e., atom-typing). Foyer

provides a standardized approach to defining chemical context (i.e., atom-typing rules)[32, 68] along with the

associated force field parameters. While there are freely available tools to aid in atom-typing[69–73], these

are typically specific to a particular force field or simulator, and/or capture the atom-typing and parametriza-

tion in a hierarchy (either through specific placement in a parameter file read by the code or as nested if/else
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Figure 3.2: Python script that uses mBuild to define a class for a –CH3– group, create a polymer composed
of multiple –CH2– groups, and connects copies of this polymer to a surface. Note for simplicity, the terminal
CH3 group is not shown.
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statements within the source code). Foyer does not encode usage rules into the source code, instead defining

usage rules and parameters in an XML file that is an extension of the OpenMM[74] force field file format. The

Foyer software itself is used to interpret and apply the rules and thus the software is not limited to use with

only a single force field type. By separating the usage rules from the source code, changes or extensions to

force field parameters/rules does not require changes to the code itself. Force field usage rules are encoded

using a combination of a SMARTS-based[75] annotation scheme, which defines the molecular environment

(i.e., chemical context) associated with a given parameter, and overrides that define rule precedence (i.e.,

which atom type to choose when multiple rules can apply to an interaction site). The use of overrides

avoids the need to define rule precedence via the order of the rules within a file (See [68] for more details).

As an example, Listing 1 shows the contents of an XML file that contains parameters and usage rules from

the OPLS force field for linear alkanes. We note that Foyer allows user-defined input (by pre-pending with

an underscore), allowing SMARTS to be used for non-elemental interaction sites (e.g., an interaction site

that represents a coarse-grained bead or an united atom interaction site). As such, the exact parameters and

their usage can be readily captured and disseminated along with a simulation and/or publication. This pro-

vides an improved way to disseminate custom force field parameter sets and/or novel force field parameters

(e.g., see Ref. [33]) that reduces ambiguity, as the format used by Foyer to encode the usage rules and

parameters is both human and machine readable; thus parameterization rules provided in a publication can

be automatically tested for accuracy and completeness. To further enhance reproducibility, the XML force

field files additionally include a doi tag for the source of the parameters (see Listing 3.1); upon successful

atom-typing, Foyer outputs a BibTeX file of references with the relevant DOIs, significantly improving the

transparency as to the origin of parameters used in a simulation and therefore reproducibility.

3.3.2 Other Community Tools

Here we briefly highlight other simulation tools and efforts with a considerable focus on reproducibility

and transparency, several with similar and/or complementary functionality to MoSDeF. We do not include

discussion of commercial tools, as the need to purchase software places a fundamental roadblock in terms of

reproducibility.

The Atomic Simulation Environment (ASE)[76] is a Python toolkit that provides wrappers to various

programs/libraries allowing atomistic simulations to be setup, run and analyzed within a single script. Support

is provided for numerous electronic structure codes and several MD simulation engines; however, as ASE

is primarily focused on hard matter systems it does not currently support robust tools for initialization of

complex soft matter systems or atom-typing.

Pysimm[77, 78], is an open-source Python toolkit for soft matter systems providing routines for system
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Listing 3.1: Listing 1. OpenMM formatted XML file for linear alkanes using the OPLS force field[11].

1 <ForceField>
2 <AtomTypes>
3 <Type name="opls_135" class="CT" element="C" mass="12.01100" def="[C;X4](C)(H)(H)H"
4 desc="alkane CH3" doi="10.1021/ja9621760"/>
5 <Type name="opls_136" class="CT" element="C" mass="12.01100" def="[C;X4](C)(C)(H)H"
6 desc="alkane CH2" doi="10.1021/ja9621760"/>
7 <Type name="opls_140" class="HC" element="H" mass="1.00800" def="H[C;X4]"
8 desc="alkane H" doi="10.1021/ja9621760"/>
9 </AtomTypes>

10 <HarmonicBondForce>
11 <Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>
12 <Bond class1="CT" class2="HC" length="0.1090" k="284512.0"/>
13 </HarmonicBondForce>
14 <HarmonicAngleForce>
15 <Angle class1="CT" class2="CT" class3="CT" angle="1.966986067" k="488.273"/>
16 <Angle class1="CT" class2="CT" class3="HC" angle="1.932079482" k="313.800"/>
17 <Angle class1="HC" class2="CT" class3="HC" angle="1.881464934" k="276.144"/>
18 </HarmonicAngleForce>
19 <RBTorsionForce>
20 <Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288" c1="-1.4644"
21 c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>
22 <Proper class1="CT" class2="CT" class3="CT" class4="HC" c0="0.6276" c1="1.8828"
23 c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>
24 <Proper class1="HC" class2="CT" class3="CT" class4="HC" c0="0.6276" c1="1.8828"
25 c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>
26 </RBTorsionForce>
27 <NonbondedForce coulomb14scale="0.5" lj14scale="0.5">
28 <Atom type="opls_135" charge="-0.18" sigma="0.35" epsilon="0.276144"/>
29 <Atom type="opls_136" charge="-0.12" sigma="0.35" epsilon="0.276144"/>
30 <Atom type="opls_140" charge="0.06" sigma="0.25" epsilon="0.12552"/>
31 </NonbondedForce>
32 </ForceField>
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setup and wrappers that support LAMMPS MD[65] and Cassandra MC[59] engines, allowing a simulation

workflow to be encoded in a Python script. Of particular note, pysimm includes routines that simplify the

process for performing complex workflows such as simulated growth/crosslinking of polymers[79]. We note

that since both ASE and pysimm are also developed as Python libraries, there is a natural level of interop-

erability between these tools and MoSDeF. Hoobas is another open-source molecular building package that

facilitates the construction of polymers for molecular dynamics simulation [80, 81]. indigox is an open-

source package that utilizes the CherryPicker algorithm to help parametrize molecules based on fragments of

previously-parametrized molecules [82]. Open Babel is a library of cheminformatics functions that sup-

port constructing molecular models, SMARTS-matching, and basic molecular dynamics functions with basic

molecular mechanics force fields [83, 84]. OpenKIM is a multifaceted toolkit providing a portal for storage

of interatomic models and their associated data, and an application programming interface (API) created such

that models can work seamlessly (and correctly) between different simulation engines; we note this API is

designed to ensure parameters are defined correctly, not to perform atom-typing or to encode usage rules and

does not provide tools for system initialization or workflow management. To date, OpenKIM has largely fo-

cused on atomic systems (i.e., a system is defined solely by its atoms, and “bonds” are an outcome of atomic

positions), whereas most soft-matter force fields include both non-bonded and bonded parameters and assign

different parameters to atoms based on the bonds. The Open Force Field consortium[85–87] has developed a

variety of open-source tools that utilize chemical perception via SMIRKS[88] patterns to identify atom types

and other force field parameters pertinent to each atom in a chemical system, similar to Foyer’s underly-

ing methodology. WebFF is an ongoing NIST-project aimed at developing an infrastructure for modeling

soft materials and curating force field data for traceable data provenance [89]. BioSimSpace provides an

API that allows users to mix-and-match various molecular modeling tools, facilitating the use of complex

workflows involving molecular dynamics, metadynamics, various water models, various force fields, free

energy methods, and various simulation engines[90]. signac is a Python library that provides basic com-

ponents required to create a well-defined and collectively accessible data space and enables data access and

modification through a homogeneous data interface that is agnostic to the data source. signac-flow is

an extension of the signac framework[35], which aids in the management of highly complex data spaces.

signac-flow allows submission to high performance computing (HPC) scheduling systems, including

both PBS and SLURM. Since signac-flow captures the entire workflow definition and execution, it can

be used to facilitate reproducible workflows. mBuild and Foyer have been used in combination with

signac-flow in several past and on-going research projects by the authors[8, 9]. FireWorks is another

workflow manager that supports dynamic workflows using MongoDB[91, 92].
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3.4 TRUE Molecular Simulations

We have defined TRUE molecular simulations as ones that are transparent, reproducible, usable by others

and extensible. In this section, we provide some examples of TRUE simulations utilizing the capabilities of

MoSDeF. But first we define what we mean by these terms in the context of molecular simulation.

A simulation is transparent when all the information needed to exactly follow the steps undertaken by

the original author(s) (such as all scripts used to set up the system, details of force field implementation, all

input files to the simulation engines, any other needed input files) are visible to anyone in the community.

This requires the sharing of this information in a version-controlled persistent open-source repository, such

as GitHub. This information, in and of itself, may only be useful to a true expert; however, few simulations

published today meet even this standard. A transparent simulation is reproducible when sufficient informa-

tion (in supplementary information and/or documentation) is provided so that future researchers interested in

duplicating the work can construct and run the reported simulation. From this point of view, a self-contained

workflow - such as a Jupyter notebook, or a virtual machine - is highly desirable. As defined here, repro-

ducibility does not require a high level of expertise - for example, the calculation could be reproduced by a

student in a class, a newcomer to simulation, etc. In particular, Jupyter notebooks provide a convenient, high-

level representation of a script that integrates with other common Python tools and can be converted directly

into a Python script using nbconvert. Two caveats about reproducibility must be borne in mind. First, we

note that in molecular simulation, reproducibility is unlikely to be exact, in the following sense: Two MD sim-

ulations, when run on different architecture machines, will not generate the same trajectory due to differences

in the handling of floating point operations. As in any nonlinear dynamical system, small differences between

trajectories (due to different rounding errors) grow exponentially large over time. Even when run on the same

computer, two simulations may not give the exact same trajectory. This is because of parallelized computing,

in which parts of the calculation are done by separate processors and then gathered (added together) in an

order that is not predictable due to fluctuations in message passing times. The problem is exacerbated even

more in MC simulations, where a difference in random number seed will generate a different sequence of ran-

dom numbers on the same machine with the same random number generator. On different machines, trying to

achieve reproducibility in MC simulations at the level of configurations on different machines requires using

the same random number generator with reproducible arithmetic (IEEE standard-compliant) with the same

seed; additionally, the same issue with parallelization noted for MD simulations also applies.[93] However,

we do not expect reproducibility at the level of individual simulation trajectories; what we expect is statistical

reproducibility in the averages of the properties calculated over the course of the simulation. Second, many

simulations that are reported in the literature require prodigious amounts of computational resources, such as
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millions of hours on a leadership-class supercomputer. In this case, having available all of the codes means

that reproducibility is limited to those having available to them similar levels of computing resources. In this

case, we propose that researchers may also elect to make available a simplified version of the reported calcula-

tion accessible to those that have limited computational resources (for example, using a much smaller system

size and shorter simulation times or a single physiochemical statepoint instead of many). Such scaled-down

versions could also have considerable pedagogical value.

We define a transferable, reproducible simulation to be usable by others when a future researcher can

utilize the available files and documentation to reproduce the calculation and make use of the data generated

- for example, to analyze the trajectory/trajectories for different properties. This requires a level of documen-

tation that includes information about where output files are located in the data space created by reproducing

the simulation, and how these files might be analyzed in different ways. Finally, a transferable, reproducible,

usable-by-others simulation is extensible if the documentation is sufficiently detailed that a future researcher

could change characteristics of the simulation - such as changing molecular species, state conditions, simu-

lation engine, properties calculated, etc.

By adhering to the principles of TRUE simulations, researchers will enable their work to be utilized in

ways that have not been hitherto possible. In particular, it will create resources that lower the barrier to entry

into the field of molecular simulation, as well as allow researchers to distribute their research in a more useful

fashion. Using MoSDeF is not necessary to create TRUE simulations, but as the examples below illustrate,

MoSDeF makes it considerably easier to distribute TRUE simulations by automating and standardizing many

of the steps, thus minimizing the documentation needed to create a TRUE simulation. Also, the open-source

nature of MoSDeF offers the ability for researchers to make contributions to the code base in the form of

methods, recipes, force fields, etc.

3.4.1 Ethane VLE using TraPPE

One popular application of molecular simulation involves the use of Monte Carlo (MC) methods, often em-

ploying extended ensembles in techniques such as Gibbs Ensemble Monte Carlo (GEMC) or grand canon-

ical Monte Carlo (GCMC), to simulate vapor-liquid equilibria (VLE) properties. Briefly, GEMC involves

simulating two distinct simulation boxes (which generally have different densities and compositions) and

performing MC moves to perturb both systems to balance the chemical potentials and pressures between the

two simulation boxes[94, 95], thus reaching phase equilibrium. This involves particle displacements within

boxes, particle exchanges across boxes, and box volume changes[94, 95]. GCMC methods, on the other

hand, involve simulating a single simulation box, but performing MC moves to insert or delete particles from

a reservoir[96]. Additionally, more complex MC moves have been proposed to accelerate equilibration for
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systems containing complex molecules, including configurational bias Monte Carlo (CBMC) methods[97].

The transferable potentials for phase equilibria (TraPPE) force field has been designed for conducting sim-

ulations for phase equilibria[98, 99]. Here, we present a TRUE workflow that examines ethane vapor-liquid

coexistence at a single thermodynamic statepoint. This workflow utilizes mBuild[29, 30] to initialize two

simulation boxes of ethane (vapor and liquid phases), Foyer[31, 68] to apply the TraPPE-United Atom

(TraPPE-UA) force field[98], and GOMC[60, 61, 100] to perform a GEMC simulation. mBuild is used to

pack ethane into two different simulation boxes according to the vapor and liquid densities at 236 K (Fig-

ure 3.3).

Figure 3.3: Two boxes of ethane constructed in mBuild. Liquid phase (left) and vapor phase (right) are
simulated simultaneously in GEMC.

Foyer is used to systematically apply TraPPE force field parameters. GOMC (version 2.40) is used to

perform the GEMC simulation at 236 K, with simulation parameters consistent with the TraPPE implemen-

tation[98, 99]: Lorentz-Berthelot combining rules, fixed bonds, 1.4nm Lennard-Jones cutoffs, analytical tail

corrections, and Ewald summations for electrostatic interactions. The resultant analysis validates the vapor

pressure, vapor density, and liquid density at 236K against published reference data (Figure 3.4)[98, 99]. A

link to this GitHub repository can be found in the supporting information. All Python dependencies related

to building, simulating, and analyzing are openly available and well-documented, and routines are built on

top of these dependencies that expose chemistry and statepoint variables.
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Figure 3.4: Vapor pressure (left), vapor density (middle), and liquid density (right) plots for ethane at 236 K,
using GEMC in GOMC with the TraPPE force field.

This workflow is transparent and reproducible, as this workflow and relevant software packages are open-

source and available on GitHub[30, 31, 61, 101]. Furthermore, the workflow is usable by others, as the logged

quantities can be analyzed for other properties beyond vapor pressure and densities. Lastly, this workflow

is extensible, as there is a pattern and clear room to implement other state points, molecules, force fields, or

simulation engines in addition to implementing workflow managers to facilitate large-scale screening studies.

3.4.2 Graphene Slit Pore

Graphene has been extensively researched as an electrode material for energy storage applications[102–104]

in recent years mainly due to its high surface area[102, 103, 105]. Furthermore, the interactions between

graphene pores and fluid molecules were studied with MD simulations through the use of slit pore mod-

els[106, 107]. Here we demonstrate a TRUE simulation workflow for a graphene slit pore solvated with

aqueous NaCl. This TRUE graphene simulation was performed with the use of mBuild[29, 30], Foyer[31,

68], GROMACS[39–41, 108–110], and MDTraj[111]. Pore-Builder[112], an mBuild recipe, was also

used to initialize the graphene sheets contained in the system.

This specific system, a graphene slit pore filled with aqueous NaCl, was initialized with mBuild. mBuild

compounds of the specific molecules were initialized with the mbuild.load() function using MOL2 files.

Once the molecule compounds were initialized, the GraphenePoreSolvent class within Pore-Builder

was utilized. This specific class makes use of the mbuild.Lattice class and the mbuild.solvate

function to build a graphene slit pore system solvated with fluid specified by the user. In this system, the
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Figure 3.5: A snapshot of the graphene slit pore system containing graphene carbon (cyan), water (red for
oxygen and white for hydrogen), sodium ions (blue) and chlorine ions (green).

graphene slit pore was built with three sheets on each side, and a pore width of 1.5nm. Additionally, the

length of the graphene sheet in the x direction was set to 5 nm and the length of the graphene sheet in the z

direction was set to 4 nm. The bulk region of fluid was set to 6nm on each side of the slit pore. 5200 waters

and 400 Na and Cl ions were solvated into the system. A snapshot of the system is shown in Figure 3.5.

Once the graphene slit pore system was initialized as an mBuild compound, it was atom-typed and

parametrized with Foyer. Three force fields were used in this system, with their information stored in

three separate XML files: GAFF[12], SPC/E[113], and the force field of Joung and Cheatham (JC)[114].

GAFF describes the interactions between the graphene atoms, SPC/E describes the water interactions, and JC

describes the Na and Cl interactions. Each force field uses 12-6 Lennard-Jones interactions, point charges,

and harmonic bonds and angles.

The simulation was run with GROMACS 2018.5. Steepest descent energy minimization was first per-

formed for 1000 steps to remove any energetic clashes from the initial configuration. Afterwards, a series of

two MD simulations were performed with the following parameters: cutoffs of 1.4nm for Coulombic and van

der Waals interactions, a temperature of 300K controlled with the v-rescale thermostat with a time constant

of 0.1ps, particle mesh Ewald to handle long-range electrostatics, and a timestep of 1fs. Additionally, the

graphene atoms were frozen in place. A GROMACS NDX file was created with a Water_and_ions group

so that the thermostat could be applied to the fluids; no thermostat is applied to the graphene, as the graphene

is kept rigid. First NVT equilibration was performed to further relax the system of any unfavorable config-

urations for 100,000 steps. Afterwards, NVT sampling was performed for 2,500,000 steps. In the sampling

run, all bonds were constrained using the LINCS[115] algorithm.

Once the sampling simulation was performed, the number density profile of each fluid type is calculated

with the use of MDTraj and plotted with Matplotlib. The results are shown in Figure 3.6. From these

results, we observe that the water molecules are mainly structured near the pore walls at 1.2nm and 2.0nm.

Additionally, there are two smaller peaks around 1.4 and 1.8nm indicating structuring of water in the middle
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Figure 3.6: Number Density Profiles across the width of the pore for water, Na, and Cl.

of the pore. The Na ions are structured in the middle of the pore around 1.6nm and the the Cl ions are

structured to each side of the Na ions, at around 1.5 and 1.7 nm. If the graphene was positively or negatively

charged, we would expect different structure behavior of the ions. This simulation can be extended to further

understand the effect of various parameters on the fluid structure within the pore. For example, the user can

easily specify a different pore width to study how this impacts the structure of water and ions. This workflow

is encapsulated in a Jupyter notebook, providing the user access to modify any of these high-level parameters.

The workflow for simulating a graphene slit pore satisfies the conditions to be a TRUE simulation. First,

this workflow is transparent as all scripts, input files, and force field information are available for anyone to

view[116]. Next, this workflow is reproducible as the exact steps to set up and run the simulation are con-

tained within a Jupyter notebook. Barring differences in computer architectures and parallelization schemes, a

user running this Jupyter notebook should be able to reproduce the number density profiles from the reference

simulation. Additionally, the trajectories are kept within the workflow directory, allowing users to analyze

properties other than number density. Finally, the functions and classes used to initialize the graphene slit

pore system are sufficiently documented so that a user may change characteristics of the simulation if they

wish. For example, a user can extend this workflow to study additional aqueous solutions.
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3.4.3 Lipid Bilayers

MD is a common technique used to perform simulation of biological systems. An example TRUE biological

simulation workflow is demonstrated in the true_lipids repository on GitHub[117]. This workflow

focuses on simulating lipids found in the outermost layer of the skin, the stratum corneum (SC). The SC,

which is primarily composed of ceramides (CER), cholesterol (CHOL), and free fatty acids (FFA) [118],

essentially controls the barrier function of the skin [119]. In this workflow a hydrated pre-assembled bilayer

of skin lipids configuration was initialized, simulated, and analyzed in a well-documented and reproducible

fashion.

Figure 3.7: Simulation snapshot of lipid bilayer containing CER N-hydroxysphingosine C24:0 (CER NS),
cholesterol and lignoceric acid. The CER NS and FFA tails are shown in silver, cholesterol in yellow, and the
headgroup oxygen, nitrogen and hydrogen atoms in red, blue and white respectively.

mBuild was used to initialize the system configuration, specifically utilizing the Bilayer[120] recipe.

A simplified model system containing only CER N-hydroxysphingosine (NS) C24:0, CHOL, and FFA C24:0

was chosen for this example; however a more complex mixture could be easily built by the Bilayer recipe.

For each leaflet of the bilayer, 36 lipids were randomly placed on a 6x6 lattice and rotated about the bilayer

normal axis. The lattice was set up and spaced such that the lateral area occupied by each lipid was equal

to the target and as designated by the area_per_lipid parameter. In addition, the lipids were rotated

about a randomly chosen axis parallel to the bilayer by the tunable tilt_angle parameter. Finally, 20

waters per lipid were added to each of the two ends of the simulation box at a density of 1gcm−3. The full

system contains 72 lipids and 2880 water molecules. While many of the steps involved in setting up the initial

configuration involve random number generators, exact reproducibility on the same machine was enforced
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by the initialization of a random seed.

Simulations were conducted using the GROMACS 2018.5 [39–41, 108–110] MD engine, using a modi-

fied CHARMM36 force field [121, 122] with a 1fs timestep. The system was first energy-minimized using

the steepest descent algorithm for 20000 steps in order to remove high energy atomic contacts. Temperature

fluctuations were stabilized by running a 500 ps NVT simulation using the Berendsen thermostat [123] at

305 K with a time constant of 1ps. Next, the volume fluctuations were stabilized with a 10ns NPT simulation

at 305K and 1atm. This step and all others hereinafter in this section were in the NPT ensemble and use the

Nosé-Hoover thermostat [124] with a time constant of 1 ps and the Parinello-Rahman barostat [125] with

a time constant of 10 ps and a compressibility of 4.5× 10−5bar−1. Still at 1 atm, the system was linearly

annealed to 340 K over 5 ns, held at 340 K for 15 ns, linearly cooled to 305 K over 5 ns, and held at 305 K

for 25 ns in order to accelerate equilibration of the rotational orientation of the lipids. Finally, the system was

run for 20 ns at 305 K and 1 atm, saving coordinates to a trajectory file every 10 ps. The final snapshot of the

system is shown in Figure 3.7. More details on the simulation parameters can be found in Appendix B.

The trajectory from the final step was analyzed using MDTraj [111]. Neutron scattering is a popular tool

to experimentally obtain structural information of lipid lamella. A neutron scattering length density (NSLD)

profile was calculated for this simulated system along the bilayer normal axis in Figure 3.8.

It is apparent from these profiles that the 24-carbon fatty acid tail of the CER and the 24-carbon FFA tail

interdigitate, as indicated by the high density peak in the center of the profile. One can also observe that the

16-carbon sphingosine tail of the CER and CHOL do not interdigitate, and are not present in the middle of

the bilayer as there is a low-density trough in their deuteration profiles. The scattering length densities at

the outer edges of the bilayer suggest that the CHOL headgroup is located closer to the center of the bilayer

compared to that of other lipids. In addition to the NSLD profiles, an area per lipid of 32.90Å
2
, a tail tilt angle

10.8◦, a nematic order parameter of 0.9414 and a bilayer height of 48.13Å were calculated in the workflow.

All of these values and plots can be reproduced by executing the workflow. Furthermore, by extending

the workflow to screen over the parameter space, one could identify trends in the calculated values. The

Bilayer recipe is highly modular allowing the user to easily create reproducible bilayer structures contain-

ing different lipid types, system sizes, compositions, or water content using an intuitive Python script.

3.4.4 Friction Reduction Via Thin Film Coatings

Thin film coatings can be used to modify the surface properties of different systems[126]. One potential

application of these coatings is to improve tribological properties of surfaces at the micro and nanoscale[37,

126, 127]. In this example, we present a TRUE simulation of a thin film coated system, which is based on

an in-depth study by Summers et al.[37]. Specifically, we built a system of two 50× 50 rectangular silica
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Figure 3.8: Simulated NSLD profiles for specifically deuterated lipid tails.
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surfaces, parallel to one another. Each surface was coated with 100, 17-carbon long, alkylsilane chains, all of

which were terminated with a methyl group. Surface oxygens not functionalized with chains were backfilled

with hydrogen caps to form protonated hydrolysis. These systems were created with mBuild[29, 30], and

atom-typed, parametrized with Foyer[31, 68] using OPLS-aa[11] force field parameters. A visualization of

the described system is presented in Figure 3.9.

Figure 3.9: Thin film coated surfaces model

The system was simulated with LAMMPS[42] and GROMACS[39–41, 108–110]. MD simulations were

run under the canonical ensemble (NVT) and a Nosé-Hoover thermostat maintaining the temperature at

298K[124]. Long-range electrostatics were calculated using the particle-particle particle-mesh (PPPM) algo-

rithm [128]. The rRESPA time step algorithm was utilized with 0.25 fs, 0.5 fs, 0.5 fs, and 1.0 fs timesteps for

bonds, angles, dihedrals, and non-bonded interactions, respectively[129]. The simulation started with energy

minimization with LAMMPS for 10,000 steps, followed by another 50,000 steps with GROMACS to bring

the monolayers to a more relaxed state. This process continued with NVT equilibration by GROMACS to

bring the system to a desired stable state for 1,000,000 steps. The workflow proceeded to use GROMACS

to compress the system by pulling the top surfaces along the z axis to come into contact with the bottom

surface. In the next step, the top surface was sheared against the bottom surface by imposing a force to pull

it along the z axis at the rate of 0.01 nm
ps . The production run was designed to simulate for 5,000,000 steps,

which would be equivalent to 10 ns of shearing. From the GROMACS output file, the properties of the sys-
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tem can be calculated. The steady-state production period used for final data analysis was determined using

the automatic equilibration detection method provided by pymbar[130, 131]. By using a defined method to

determine the steady-state cutoff, the consistency of the data analysis process can be ensured, holding to the

first two criteria of TRUE, transparent and reproducible. The calculated nematic order of three example runs

were determined and are presented in Figure 3.10.

Figure 3.10: Steady state nematic order of the thin film coated on top and bottom surfaces

This example focuses on showcasing the extensibility of TRUE, emphasizing the ability to modify and

expand the project beyond the original study and parameters of interest. This goal can be achieved by ap-

plying Object-Oriented Programming (OOP) design principles, in combination with open-source libraries.

Encapsulating frequently used code into classes and functions helps improve the reusability of codes and

make it easier to create novel systems, just by changing and adding new variables. By pairing MoSDeF

suite libraries, mBuild[29, 30] and Foyer[31, 68], with other open-source libraries, such as signac and

signac-flow, part of the signac framework[34, 132], the extensibility could be made even more man-

ageable and achievable. Most importantly, all building blocks of the project have to be properly documented,

either as comments in the code or in a separate manual. These practices can help projects expand effectively.

For instance, in this example, although the arguments and variables were defined such that the surfaces were

filled with 100, 17-carbon long, alkylsilane chains, each then capped with a methyl group, many unique

systems can be created by altering the chain density, backbone chain length, backbone chemistries, termi-

nal groups, and others as need arises. The latter part of the example shows how we can expand the project

from the original system by varying backbone chain lengths. For the sake of demonstration, we only show

the first few steps of the workflow, starting with setting up the workspace using signac[34, 132], building

corresponding systems with mBuild[29, 30], and atom-typing, parametrizing with Foyer[31, 68]. Other

steps of the simulation can be added analogously. We implement signac-flow[34, 132] as the workflow

manager. These tools will become vital when needing to run a complete workflow and managing thousands

of systems. All scripts and files needed to run the above example are located in a GitHub repository[133].
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Users can interface with this example through the Jupyter notebook located within the repository. By provid-

ing properly documented codes and scripts used to set up the system, using open-source libraries to perform

simulation and data analysis, the first three criteria of TRUE are also satisfied. This example workflow is an

instance of a Transparent, Reproducible, Usable by others, and Extensible, or concisely, TRUE simulation.

3.5 Conclusions

In this paper, we have outlined some of the key issues related to reproducibility in molecular simulations of

soft matter. We have also discussed many practices that computational scientists could implement in efforts to

result in more reproducible science, such as using scripts instead of manual input, using open-source software

tools, and using version control and modern software development practices when developing software. In

this paper, we assert three central claims:

• The goal in computational molecular science should be simulations that are TRUE: Transparent, Re-

producible, Usable by others, and Extensible.

• Scientific results reported in the literature that depend on molecular simulations should adhere to the

above characteristics.

• Use of the Molecular Simulation and Design Framework (MoSDeF) is one way to enable TRUE sim-

ulations.

To demonstrate the second claim, we revisit some “ten rules” papers[21–23] that provide succinct instruc-

tions for practicing reproducible science and demonstrate how the above example workflows utilize MoSDeF

to this end. A common recommendation in these discussions is that every step in a workflow should be au-

tomated and free of manual input, i.e. scriptable. MoSDeF, in its current state, is a set of Python libraries

designed specifically to address this. In a single Python script (or Jupyter notebook), each step of a molecular

simulation workflow (generation of particle coordinates, application of a force field, running of a molecular

simulation, and analysis of the results) can be specified and run. The objective of measuring physical proper-

ties from some chemical input can be achieved with one call to an executable (although the simulation may

take some hours or days to run). In order for these scripts, which include many imports to other Python li-

braries, to produce identical (or sufficiently identical) results some years in the future, the underlying libraries

must be version-controlled. The core MoSDeF packages (mBuild and Foyer) undergo regular releases,

tagged with semantic version numbers, every few weeks or months as they are developed. Other packages,

such as simulation engines, the packages in the signac framework, and underlying scientific Python packages,

are also version-controlled and undergo regular releases. Specifying the version of each software package
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used in a simulation workflow is not necessarily sufficient to ensure reproducible science, but it is a signif-

icant improvement over the use of ad hoc or in-house scripts that often lack version control, proper testing,

or releases. Similarly, it has been argued that the use of community-developed software libraries, and the

extension of such libraries, further promotes reproducibility as compared to closed-source, in-house devel-

opment[20]. MoSDeF is a set of open-source that interface with other open-source, community-developed

libraries and software tools.

Additionally, MoSDeF makes use of virtually no GUIs - or, more specifically, no GUIs that hide the

details of a simulations protocol from the user. Some molecular visualization tools (NGLview, py3DMol,

VMD, ovito, fresnel) can be used in conjunction with MoSDeF, but these are only tools to visualize

systems and do not hide workflow details or replace steps in a workflow.

Finally, we would like to discuss an additional benefit of shifting toward more reproducible computa-

tional studies: the facilitation of large-scale screening of physiochemical space. Continuous improvements

in computer hardware and recent advancements in machine learning methodologies have driven interest in

studying large data sets, typically many orders of magnitude larger than typically seen in the literature. Pro-

vided that each step in a workflow can be automated - in other words, scriptable with no manual input - a

single simulation can be repeated with different physical inputs (e.g. at different thermodynamic statepoints

or with different chemistries) by only modifying the input parameters. For example, consider some system at

temperature and pressure (T,P) for which we care about some physical property A. One can run a simulation

at (T1,P1) and get property A1 but later decide we want to look at some other temperature and/or pressure.

One could manually move some files around and get property A2 from statepoint (T2,P2) without prohibitive

trouble, but doing this once is a plausible source of human error and repeating this process many times is

not feasible. Screening over N statepoints in a reproducible manner necessitates that running a workflow at

a single statepoint is reproducible. We hope the practices outlined in this paper and the use of MoSDeF can

enable reproducible computational science at each scale.
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CHAPTER 4

Recent MoSDeF Development Efforts

4.1 Introduction

During the "initialization" phase of a soft matter simulation workflow, multiple steps occur which are quite

common sources of error or other deficiencies that may reduce the reproducibility of the study. These steps

are: creation of the soft matter system (particle placement, etc.), application of force field interaction param-

eters to the newly created system, and translation of the system and parameters to a format that a simulation

engine can read. MoSDeF has three standalone libraries that are developed with these steps in mind. For

system initialization, mBuild [1–3], short for "Molecule Builder", is a python library designed to program-

matically create various molecular input structures, from crystalline systems, polymer networks, nanoparti-

cles, and polymer-coated substrates in a reproducible fashion, promoting TRUE [4] principles to assist with

more reproducible molecular simulations. mBuild was deigned to make the initialization of soft matter

systems much easier, but first class support is also available for hard materials. Simulation of these systems

are commonly performed using force fields that describe the interactions between various particles, where a

single periodic element can have 10’s to 100’s of interaction parameter combinations based on the chemi-

cal context of that particle. This makes the process of assigning the correct interactions (atom types) to the

system quite challenging and highly error prone. This is further complicated by the fact that these parame-

ters and interaction terms are usually applied or discovered during the simulation engine input step, which

makes transferability of these simulations much more difficult. Foyer [5] was designed as a simulation

engine agnostic way to store force field information, defining the chemical context for each parameter using

SMARTS [6] strings with additional custom grammar to support coarse-grained systems as well. By treat-

ing the system as a large collection of various graphs and subgraphs, using subgraph isomorphism [7] and

the SMARTS grammar above to define the subgraphs for the various atom types, a much more reproducible

and automated way to apply atom types to the system is possible. Developments and a in-depth description

of foyer is provided in Section 4.4. Finally, once the system has been built and the parameters assigned,

the system needs to be written out to many simulation engines based on the type of system and the force

field chosen. This requires a generic data structure to store the system topology as well as the force field

parameters and functional forms of the force field interactions, while also having knowledge of the supported

simulation engines and how to convert this data into a format usable by the engine. The General Molecular

Simulation Object (GMSO) is the third key library of MoSDeF, providing this functionality in a simulation

engine agnostic manner. By storing the force field functional forms using symbolic mathematics, tracking
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units, and supporting a wide range of simulation engines in an extensible manner, GMSO is becoming the

de-facto data structure to store parametrized system information in the MoSDeF ecosystem. However, all

three MoSDeF libraries are designed such that they can operate independently of one another, but many

convenience methods are exposed when using all the libraries in tandem.

This chapter 12 highlights the MoSDeF libraries and their recent development efforts to improve repro-

ducibility in molecular simulation, and supporting TRUE principles [4].

4.2 mBuild developments

4.2.1 Introduction

mBuild [1, 3, 8, 9], while still using the same data structures, design patterns, and overall design philosophy,

has changed quite drastically since Klein, Sallai, Jones, Iacovella, McCabe & Cummings [1]. Initially,

mbuild supported both the design of various soft matter systems as well as a parametrization scheme that

leveraged GROMACS [10, 11] force field parameter files to handle parameter assignment and eventual coercion

into file formats that could be parsed by GROMACS. However, as foyer [5] began to take shape, with its

SMARTS [6] based atom typing and parameter assignment, mBuild and foyer were finally separated

into two standalone packages [9, 12]. Instead of a monolithic design scheme, composable, independent

libraries were developed to provide researchers with more granularity in terms of the specific libraries they

might need. For example, one who uses interaction terms that are only based on elemental information and

position, would not need to leverage the more complex SMARTS-based atom typing of foyer, mbuild

provides all the information necessary in that case. mBuild and the MoSDeF libraries in general, have

underwent massive overhauls to be more composable, and standalone libraries based on what a user might

require, while also providing excellent interoperability between the libraries if desired. The section below

highlights major changes to mBuild since the 2016 paper. These changes add improved support for hard

material crystalline systems, enhancements to the polymer building routines, a robust plugin system for the

community to create and distribute custom, complex system building workflows, and improved support for

triclinic (non-orthogonal) simulation boxes.

4.2.2 mBuild Updates

4.2.2.1 Plugin System and Development

There may be cases where your mbuild.Compounds and/or building scripts can be generalized to support

a broad range of systems. Such objects would be a valuable resource for many researchers, and might justify

1Portions of this chapter reprinted with permission from the following work:
2Klein, C., Summers, A. Z., Thompson, M. W., Gilmer, J. B., McCabe, C., Cummings, P. T., Sallai, J. & Iacovella, C. R. Formalizing

Atom-Typing and the Dissemination of Force Fields with Foyer. Computational Materials Science 167, 215–227. ISSN: 0927-0256.
http://www.sciencedirect.com/science/article/pii/S0927025619303040 (Sept. 2019).
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development of a Python package that could be distributed to the community.

mBuild has been developed with this in mind, in the form of a plug-in system. Detailed below are the

specifications of this system, how to convert an existing Python project into an mBuild-discoverable plug-in,

and an example.

4.2.2.1.1 Entry Points

The basis of the plug-in system in mBuild is the https://packaging.python.org/guides/creating-and-discovering-plugins/

#using-package-metadata (setuptools.entry_points package). This allows other packages to register

themselves with the entry_point group we defined in mBuild, so they are accessible through the mbuild.recipes

location. Imagine you have a class named my_foo that inherits from mb.Compound. It is currently inside

of a project my_project and is accessed via a direct import, i.e. from my_project import my_foo. You

can register this class as an entry point associated with mbuild.recipes. It will then be accessible from

inside mBuild as a plug-in via mbuild.recipes.my_foo and a direct import will be unnecessary. The call

import mbuild discovers all plug-ins that fit the entry_point group specification and makes them avail-

able under mbuild.recipes.

4.2.2.1.2 Registering a Recipe

Here we consider the case that a user already has a Python project set up with a structure similar to the layout

below. This project (Listing 4.1) can be found here: https://github.com/justinGilmer/mbuild-fcc. The two

important files for the user to convert their mBuild plug-in to a discoverable plug-in are setup.py and

mbuild_fcc.py. To begin, lets first inspect the mbuild_fcc.py file, a shortened snippet is below in

Listing 4.2.

Listing 4.1: Sample Python project that extends mBuild functionality. In this case, an extension of the
mbuild.Lattice object for FCC crystal lattices.

mbuild_fcc
LICENSE
README.md
mbuild_fcc

mbuild_fcc.py
tests

__init__.py
test_fcc.py

setup.py
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Listing 4.2: Shortened code snippet that represents an mBuild Compound based on a repeat unit of the
FCC lattice.

1 import mbuild

2

3 class FCC(mbuild.Compound):

4 """Create a mBuild Compound with a repeating unit of the FCC unit cell.

5

6 ... (shortened for viewability)

7

8 """

9

10 def __init__(self, lattice_spacing=None, compound_to_add=None, x=1, y=1, z=1):

11 super(FCC, self).__init__()

12

13 # ... (shortened for viewability)

14

15 if __name__ == "__main__":

16 au_fcc_lattice = FCC(lattice_spacing=0.40782,

17 compound_to_add=mbuild.Compound(name="Au"),

18 x=5, y=5, z=1)

19 print(au_fcc_lattice)

There are two notable lines in this file that we need to focus on when developing this as a plug-in

for mBuild. The first is the import statement import mbuild. We must make sure that mbuild is in-

stalled since we are inheriting from mbuild.Compound. When you decide to distribute your plug-in,

the dependencies must be listed. The second is to select the name of the plug-in itself. It is considered

good practice to name it the name of your class. In this case, we will name the plug-in FCC. The last

step is to edit the setup.py file such that the plug-in can be registered under the entry_point group

mbuild.plugins, see (Listing 4.3).

99



Listing 4.3: Snippet of setup.py registering the FCC object as a discoverable mBuild plug-in.

1 from setuptools import setup

2

3 setup(

4 ...

5 entry_points={ "mbuild.plugins":[ "FCC = mbuild_fcc.mbuild_fcc:FCC"]},

6 ...

7 )

The important section is the entry_points argument on line 5. Here we define the entry_point group

we want to register with: "mbuild.plugins". Finally, we tell Python what name to use when accessing

this plug-in. Earlier, we decided to call it FCC. This is denoted here by the name before the assignment

operator FCC =. Next, we pass the location of the file with our plug-in: mbuild_fcc.mbuild_fcc as

if we were located at the setup.py file. Then, we provide the name of the class within that Python file we

want to make discoverable :FCC.

Since the setup.py file is located in the top folder of the python project, the first mbuild_fcc is the

name of the folder, and the second is the name of the python file. The colon (:) is used when accessing the

class that is in the python file itself.

4.2.2.1.3 Putting it all together

Finally, we have FCC = mbuild_fcc.mbuild_fcc:FCC. To test this feature, you should clone the

mbuild-fcc project listed above.

git clone https://github.com/justinGilmer/mbuild-fcc

Make sure you have mBuild installed, then run the command below after changing into the mbuild-fcc

directory.

cd mbuild-fcc

pip install -e .

Note that this command will install this example from source in an editable format.

4.2.2.1.4 Trying it Out

To test that you set up your plug-in correctly, try importing mBuild: If you do not receive error messages,

your plug-in should be discoverable!
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import mbuild

help(mbuild.recipes.FCC)

4.2.2.2 Hard Material Support

While mbuild has supported soft materials and their construction since its inception, support of crystalline

hard materials and molecular crystals was limited. Support for crystalline systems was added with the addi-

tion of the mbuild.Lattice data structure in mbuild version 0.6.0. Using a standard bravais angle notation

, or lattice vectors to represent the unit cell of a crystal lattice, the user can now define hard materials and

other repeating materials using crystallographic notation. Crystallographic notation has been standardized by

the IUCR, and this is also how crystalline materials are commonly defined when serialized to a form that is

both human and machine readable, the crystallographic index file (CIF) is the most common file format for

experimentalists and computational researchers to represent a crystal structure. This also allowed first class

support in mbuild to create crystalline hard materials and a convenient path to now parse CIF files, thanks

to the CIF reader provided by the garnett package , previously not possible.

Below is a summary and walkthrough of interfacing with the mbuild.Lattice structure, with common

crystalline systems provided as examples.

• Variable-dimension crystal structures

– Lattice supports the dimensionality of mBuild, which means that the systems can be in 1D,

2D, or 3D. Replace the necessary vector components with 0 to emulate the dimensionality of

interest.

• Multicomponent crystals

– Lattice can support an indefinite amount of lattice points in its data structure.

– The repeat cell can be as large as the user defines useful.

– The components that occupy the lattice points are mbuild.Compound objects.

* This allows the user to build any system since compounds are only a representation of matter

in this design.

* Molecular crystals, coarse grained, atomic, even alloy crystal structures are all supported

• Triclinic Lattices

– With full support for triclinic lattices, any crystal structure can technically be developed.
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– Either the user can provide the lattice parameters, or if they know the vectors that span the unit

cell, that can also be provided.

• Generation of lattice structure from crystallographic index file (CIF) formats

4.2.2.2.1 Lattice Data Structure Introduction

Below we will explore the relevant data structures that are attributes of the Lattice class. This information

will be essential to build desired crystal structures.

• Lattice.lattice_spacing

This data structure is a (3,) array that details the lengths of the repeat cell for the crystal. You can either

use a numpy array object, or simply pass in a list and Lattice will handle the rest. Remember that

mBuild’s units of length are in nm. You must pass in all three lengths, even if they are all equivalent.

These are the lattice parameters a,b,c when viewing crystallographic information.

For Example:

lattice_spacing = [0.5, 0.5, 0.5]

• Lattice.lattice_vectors

lattice_vectors is a 3x3 array that defines the vectors that encapsulate the repeat cell. This is an

optional value that the user can pass in to define the cell. Either this must be passed in, or the 3 Bravais

angles of the cell from the lattice parameters must be provided. If neither is passed in, the default value

are the vectors that encase a cubic lattice. Most users will not have to use these to build their lattice

structure of interest. It will usually be easier for the users to provide the 3 Bravais angles instead. If

the user then wants the vectors, the Lattice object will calculate them for the user.

For example: Cubic Cell

lattice_vectors = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

• Lattice.angles

angles is a (3,) array that defines the three Bravais angles of the lattice. Commonly referred to as

α,β ,γ in the definition of the lattice parameters.

For example: Cubic Cell

angles = [90, 90, 90]
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• Lattice.lattice_points

lattice_points can be the most common source of confusion when creating a crystal structure.

In crystallographic terms, this is the minimum basis set of points in space that define where the points

in the lattice exist. This requires that the user does not over define the system. MIT’s OpenCourseWare

has an excellent PDF for more information

https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-108-structure-of-earth-materials-fall-2004/

lecture-notes/lec7.pdf.

The other tricky issue that can come up is the data structure itself. lattice_points is a dictionary

where the dict.key items are the string id’s for each basis point. The dict.values items

are a nested list of fractional coordinates of the unique lattice points in the cell. If you have the same

Compound at multiple lattice_points, it is easier to put all those coordinates in a nested list under the

same key value. Two examples will be given below, both FCC unit cells, one with all the same id, and

one with unique ids for each lattice_point.

For Example: FCC All Unique

lattice_points = {'A' : [[0, 0, 0]],

'B' : [[0.5, 0.5, 0]],

'C' : [[0.5, 0, 0.5]],

'D' : [[0, 0.5, 0.5]]

}

For Example: FCC All Same

lattice_points = {'A' : [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]] }

4.2.2.2.2 Lattice Public Methods

The Lattice class also contains methods that are responsible for applying Compounds to the lattice

points, with user defined cell replications in the x, y, and z directions.

• Lattice.populate(compound_dict=None, x=1, y=1, z=1)

This method uses the Lattice object to place Compounds at the specified lattice_points.

There are 4 optional inputs for this class.

– compound_dict inputs another dictionary that defines a relationship between the lattice_points

and the Compounds that the user wants to populate the lattice with. The dict.keys of this
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dictionary must be the same as the keys in the lattice_points dictionary. However, for

the dict.items in this case, the Compound that the user wants to place at that lattice point(s)

will be used. An example will use the FCC examples from above. They have been copied below:

Listing 4.4: FCC lattice, with unique mappings for each lattice point

lattice_points = {'A' : [[0, 0, 0]],

'B' : [[0.5, 0.5, 0]],

'C' : [[0.5, 0, 0.5]],

'D' : [[0, 0.5, 0.5]]

}

# compound dictionary

a = mbuild.Compound(name='A')

b = mbuild.Compound(name='B')

c = mbuild.Compound(name='C')

d = mbuild.Compound(name='D')

compound_dict = {'A' : a, 'B' : b, 'C' : c, 'D' : d}

Listing 4.5: FCC lattice, with a single mapping to all lattice points

lattice_points = {'A' : [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]] }

# compound dictionary

a = mbuild.Compound(name='A')

compound_dict = {'A' : a}

4.2.2.2.3 Example Lattice Systems

Below are examples of homogeneous and heterogeneous 2D and 3D lattice structures using the Lattice

class. Beginning with Listing 4.6, the creation of a simple-cubic lattice (where the repeat points are only at

the vertices of the cubic cell). Next, Listing 4.7 showcases a body-centered cubic (BCC) structures with two

repeat units, one at the eight vertices and the final in the center of the cell, of CsCl. Then, Listing 4.8 is a

face-centered cubic (FCC) structure and Listing 4.9 is a diamond lattice, and finally, a 2D hexagonal sheet of

graphene (Listing 4.10) is also provided.
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Listing 4.6: Creation of a 2 ·2 ·2 repeat cell of polonium, which traditionally forms a simple-cubic lattice.

1 import mbuild as mb

2 import numpy as np

3

4 # define all necessary lattice parameters

5 spacings = [0.3359, 0.3359, 0.3359]

6 angles = [90, 90, 90]

7 points = [[0, 0, 0]]

8

9 # define lattice object

10 sc_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={'Po' :

points})↪→

11

12 # define Polonium Compound

13 po = mb.Compound(name='Po')

14

15 # populate lattice with compounds

16 po_lattice = sc_lattice.populate(compound_dict={'Po' : po}, x=2, y=2, z=2)

17

18 # visualize

19 po_lattice.visualize()

Figure 4.1: Polonium simple cubic (SC) structure
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Listing 4.7: Creation of a cesium chloride CsCl lattice, which is effectivelyA a body-centered cubic (BCC)
cell.

1 import mbuild as mb
2 import numpy as np
3

4 # define all necessary lattice parameters
5 spacings = [0.4123, 0.4123, 0.4123]
6 angles = [90, 90, 90]
7 point1 = [[0, 0, 0]]
8 point2 = [[0.5, 0.5, 0.5]]
9

10 # define lattice object
11 bcc_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={'A' :

point1, 'B' : point2})↪→

12

13 # define Compounds
14 cl = mb.Compound(name='Cl')
15 cs = mb.Compound(name='Cs')
16

17 # populate lattice with compounds
18 cscl_lattice = bcc_lattice.populate(compound_dict={'A' : cl, 'B' : cs}, x=2, y=2, z=2)
19

20 # visualize
21 cscl_lattice.visualize()

Figure 4.2: CsCl body-centered cubic (BCC) structure
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Listing 4.8: Creation of a Cu face-centered cubic (FCC) lattice.

1 import mbuild as mb

2 import numpy as np

3

4 # define all necessary lattice parameters

5 spacings = [0.36149, 0.36149, 0.36149]

6 angles = [90, 90, 90]

7 points = [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]]

8

9 # define lattice object

10 fcc_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={'A' :

points})↪→

11

12 # define Compound

13 cu = mb.Compound(name='Cu')

14

15 # populate lattice with compounds

16 cu_lattice = fcc_lattice.populate(compound_dict={'A' : cu}, x=2, y=2, z=2)

17

18 # visualize

19 cu_lattice.visualize()

Figure 4.3: Cu face-centered cubic (FCC) structure
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Listing 4.9: Si cubic diamond lattice.

1 import mbuild as mb

2 import numpy as np

3

4 # define all necessary lattice parameters

5 spacings = [0.54309, 0.54309, 0.54309]

6 angles = [90, 90, 90]

7 points = [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5],

8 [0.25, 0.25, 0.75], [0.25, 0.75, 0.25], [0.75, 0.25, 0.25], [0.75, 0.75, 0.75]]

9

10 # define lattice object

11 diamond_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={'A'

: points})↪→

12

13 # define Compound

14 si = mb.Compound(name='Si')

15

16 # populate lattice with compounds

17 si_lattice = diamond_lattice.populate(compound_dict={'A' : si}, x=2, y=2, z=2)

18

19 # visualize

20 si_lattice.visualize()

Figure 4.4: Si diamond (Cubic) structure
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Listing 4.10: Graphene 2D hexagonal lattice

1 import mbuild as mb

2 import numpy as np

3

4 # define all necessary lattice parameters

5 spacings = [0.246, 0.246, 0.335]

6 angles = [90, 90, 120]

7 points = [[0, 0, 0], [1/3, 2/3, 0]]

8

9 # define lattice object

10 graphene_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={'A'

: points})↪→

11

12 # define Compound

13 c = mb.Compound(name='C')

14

15 # populate lattice with compounds

16 graphene = graphene_lattice.populate(compound_dict={'A' : c}, x=5, y=5, z=1)

17

18 # visualize

19 graphene.visualize()

Figure 4.5: Graphene (2D) structure

4.3 GMSO developments

4.3.1 Introduction

GMSO is designed to enable the flexible, general representation of chemical topologies for molecular simula-

tion. Efforts are made to enable lossless, bias-free storage of data, without assuming particular chemistries,

models, or using any particular engine’s ecosystem as a starting point. The scope is generally restrained to

the preparation, manipulation, and conversion of input files for molecular simulation, i.e. before engines
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are called to execute the simulations themselves. In the scope of molecular simulation, we loosely define

a chemical topology as everything needed to reproducibly prepare a chemical system for simulation. This

includes particle coordinates and connectivity, box information, force field data (functional forms, parameters

tagged with units, partial charges, etc.) and some optional information that may not apply to all systems (i.e.

specification of elements with each particle). There are many tools in the ecosystem that attempt to provide

similar utilities, although there are limitations we will highlight below that made extending those tools more

difficult, spurring the development of GMSO. A similar utility for biomolecular-related simulations is the Pa-

rameter Editor (ParmEd) [13]. ParmEd was designed to represent the interaction terms and topological

information of biomolecular systems and simulation engine formats commonly used for this purpose. For

MoSDeF’s original goal, to better support the automatable and reproducible creation and parametrization of

soft matter systems, the engines and potential energy functional forms supported by ParmEd was more than

sufficient, ParmEd is still a key backend data structure in the MoSDeF tools for storing the parametrized

information and outputting to its supported simulation engines. However, as MoSDeF has developed and

its users have begun to explore more exotic interaction terms and corresponding potential energy functional

forms, the focus for biomolecular simulations limits parmed for our uses. There is also the OpenForceField

(OpenFF) Initiative’s to support storing, manipulating, and converting molecular mechanics data, OpenFF

Interchange [14]. While still heavily focused on biomolecular systems and simulation engines, MoSDeF

and OpenFF have developed interoperability between the two ecosystems, with further development under-

way. Although parmed[13] and OpenFF Interchange [14] are similar and provide for some of the

needs that MoSDeF requires for its parametrized system and topological information, support for arbitrary

functional forms and a force field file format that supports foyer’s SMARTS-based atomtyping engine [5]

(Section 4.4) were not tractable outcomes. This led to the development of GMSO, a data structure for pa-

rameterized systems and their topological information, using symbolic mathematics to represent the potential

energy functional forms, and the unyt [15] library for unit conversion based on the simulation engine the

system is converted to. Features that are enabled based on the design of gmso are defined in the following

section.

4.3.2 Features enabled by GMSO

• Supporting a variety of models in the molecular simulation/computational chemistry community: No

assumptions are made about an interaction site representing an atom or bead, instead atomistic, united-

atom/coarse-grained, polarizable, and other models can be extended and supported within GMSO.

• Greater flexibility for exotic potentials: The AtomType (and analogue classes for intramolecular in-

teractions) uses sympy to store any potential that can be represented by a mathematical expression.
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• Easier development for glue to new engines: by not being designed for compatibility with any particular

molecular simulation engine or ecosystem, it becomes more tractable for developers in the community

to add glue for engines that are not currently supported.

• Compatibility with existing community tools: No single molecular simulation tool will be a silver

bullet, so GMSO includes functions to convert objects. These can be used in their own right to convert

between objects in-memory and also to support conversion to file formats not natively supported at

any given time. Currently supported conversions include ParmEd, OpenMM, mBuild, MDTraj, with

others being added as need arises.

• Native support for reading and writing many common file formats (XYZ, GRO, TOP, LAMMPSDATA,

MOL2) and indirect support, through other libraries, for additional formats.

4.4 Formalizing atom-typing and the dissemination of force fields with foyer

4.4.1 Background

Considerable efforts have been undertaken by many research groups to develop accurate classical force fields

for a wide range of systems [16–22]. Force fields are often expressed as a set of analytical functions with

adjustable fitting parameters that describe the interactions between constituents of a system (often discrete

atoms but, more generally, interaction sites). Classical force fields are typically able to achieve high accuracy

by creating sets of highly specific fitting parameters (i.e., atom types), in which each atom type describes an

interaction site within a different chemical context. The chemical context is typically defined by the bonded

environment of an interaction site (e.g., the number of bonds and the identity of the bonded neighbors)

and may also consider, among other factors, the bonded environment of the neighbors, and/or the specific

molecule/structure within which the interaction site is included. Consequently, a force field may include tens

or even hundreds of different atom types for a given element. For example, there are 347 atom types that

apply to carbon in the OPLS force field parameter set distributed with GROMACS[23] where each atom type

corresponds to a carbon atom within a different chemical context. Thus, while force field development efforts

have reduced — or in some cases completely eliminated — the need for researchers to generate their own

fitting parameters, determining which parameters (i.e., atom types) to use can still be a tedious and error prone

task. Failure to properly identify the chemical context and atom type of an interaction site will inevitably lead

to the unfaithful implementation of the force field and thus inconsistent results.

Part of the difficulty in performing atom-typing (i.e., determining which atom type applies to an interac-

tion site) stems from the fact that there is not yet a standardized way of unambiguously expressing chemical

context and parameter usage. As such, journal articles that report novel force field parameters may vary sig-
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nificantly in terms of their clarity. In many cases, parameters are reported in a tabular format with minimal

annotations and few (if any) examples of how to appropriately assign the atom types. Since this approach

does not allow for automated evaluation, different users of the force field may apply the atom types differ-

ently based on their own interpretation of the information provided. Journal articles that utilize existing force

fields often do not report the specific fitting parameters and typically do not specify which atom types were

chosen for the interaction sites, instead providing citation(s) to the source of the force field parameters. Even

if the source of the parameters is clearly and fully specified, usage may again depend on the clarity of the

original source(s) and the interpretation by the end user, hampering reproducibility. Force field parameter

files that aggregate a large number of atom types (often thousands) into a single source suffer from some of

the same issues. Often, they include only brief, unstructured — and sometimes ambiguous — annotations as

to parameter usage, and may, or may not, provide clear citations of the original source of the parameters.

To apply force fields, users can perform atom-typing manually (e.g., creation of an atom-typed template

of a molecule or unit cell), although manual assignment of parameters becomes tedious and error prone for

large molecules and/or complex systems, and manual manipulation of files is not considered a good practice

in terms of reproducibility [24]. Furthermore, manual assignment of parameters does not lend itself well to

workflows such as screening [25], where thousands of unique systems with different chemical constituents

and structures may need to be atom-typed in an automated fashion. To avoid manual assignment, end- users

often develop in-house software to apply force fields in an automated fashion; however, such software is

not typically made freely available to the community and may be very limited in scope and applicability.

Without access to the same software, the exact atom-typing cannot be reproduced by others and if the source

code is not made freely available, the logic used to interpret and apply the force field is unknown and if

there are errors in the software/logic, these cannot be identified. There exist a number of freely available

atom-typing tools that read in a force field parameter file and execute a set of rules to apply the force field

to a chemical topology [26–32], enabling the exact atom-typing process to be reproduced. However, many

of these atom-typing tools are either closed-source [27, 30], simulation engine-specific [29, 32], and/or force

field-specific [28, 30, 31], which limits their utility. Furthermore, these tools almost universally rely on a

rigid hierarchy of rules[26], where rules must be called in a precise order such that more general atom types

are only chosen when more specialized matches do not exist (i e. ., the order of rules defines the precedence).

Maintaining, let alone constructing, these hierarchies is challenging, especially for a large number of atom

types. In order to add a new atom type or correct an error in hierarchical schemes, a developer must have a

complete picture of the hierarchy and know exactly where the relevant rule should be placed such that it does

not inadvertently override other rules. This may impose practical limits on functionality, where, for example,

a user is not able to easily extend the rules to include new atom types, or that such attempts to extend the
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rules result in incorrect atom-typing for other systems. For many tools, this approach is further complicated

by the encoding of the hierarchy as a set of heavily nested if/else statements within the source code of the

software. These heavily nested if/else hierarchies may be difficult to validate and debug, and any changes or

extensions to the rules, no matter how trivial, require modification of the source code itself. Reproducibility

issues may therefore arise if users make modifications or extensions to a piece of software and these changes

are not made freely available to the larger community and/or incorporated into the main software distribution.

This also creates a situation where there are effectively two sets of rules since there is no guarantee that the

logic statements in the source code (i.e., the machine readable rules) agree with the textual annotations in the

force field parameter file (i.e., the human readable rules).

Several atom-typing tools have been developed that remove the need to encode atom type usage rules

within the source code itself. A unifying feature of these tools is the use of the simplified molecular input

line-entry system (SMILES)[33] language, or variants thereof, for describing chemical structures associated

with an atom type. For example, Yesselman, et al.[32] developed an atom-typing toolset for the CHARMM

simulation engine, termed MATCH, that relies on assigning parameters by representing a molecule of interest

as a graph and performing subgraph matching against a library of fragments with known parameters. These

fragments are represented as “super smiles”, an extension of the SMILES language. By using super smiles

and storing these fragments in text files separate from the software, chemical context is expressed without the

need to define a rigid if/else hierarchy within the software and thus new atom types and rules (i.e., fragments

encoded as super smiles) can be added without modifying the code used to evaluate them. In recent work,

Mobley and coworkers[34] have developed an approach to defining force fields, termed SMIRNOFF, that

effectively eliminates explicit atom types altogether, instead using SMIRKS (another language related to

SMILES[33]) to identify chemical fragments that are associated with a set of force field parameters. Similar

to Yesselman, et al.[32], application of the force field relies on re- presenting the system as a graph and rules

as subgraphs. In other work, the Enhanced Monte Carlo (EMC) software developed by in’t Veld[35] encodes

chemical context of an atom type using SMILES. In all cases, the use of the SMILES-based approaches not

only removes the need to encode usage within the source code, but associates parameters with a human and

machine readable definition of their chemical context, although, these approaches all still require rules be

specified in a particular order to enable correct atom-typing.

In this work, we present Foyer, a Python library for performing atom-typing based upon first-order logic

over graph structures, designed to address many of the aforementioned issues, with a particular emphasis on

reproducibility and the dissemination of force fields to the community. Foyer relies upon a force-field-

agnostic formalism to express atom-typing and parameterization rules in a way that is expressive enough for

human consumption while simultaneously being machine readable, allowing a single, unambiguous format
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to be constructed for both dissemination and use by software. This logic is implemented via SMARTS[6]

to encode chemical context and “overrides” statements to define rule precedence. SMARTS extends the

SMILES language to support substructure definitions and allows expression of greater chemical detail and

logic operations within the chemical patterns. In Foyer, SMARTS has been extended such that it allows

user-defined “elements” (not in the periodic table) to be leveraged within the chemical context definitions,

thus enabling both atomistic and non-atomistic force fields to be used. By using SMARTS to define chemical

context, atom type definitions do not appear in the source code, and thus force fields can be created and

evolved without modification to the code used to evaluate them. Rule precedence is explicitly defined by the

aforementioned overrides statements, thus atom-typing rules can appear in any order in the file and include

recursive definitions to other atom types, eliminating physical placement in the file as a source of error and

providing increased flexibility. Since this iterative approach used by Foyer evaluates all rules, automated

evaluation can be used to help ensure that Foyer force field definitions (1) encompass all atom types in

the force field and (2) are sufficiently descriptive without conflicting rules, both necessary conditions for

publishing force fields in a way that is unambiguous and reproducible. The Foyer software provides routines

that create syntactically correct input files for a variety of common simulation engines and is designed to

take, as input, chemical topologies from several of other community developed tools (e.g., ParmEd [13],

OpenMM[36–38], and mBuild[1, 2, 39]). The manuscript is organized as follows. subsection 4.4.2 introduces

the use of SMARTS and overrides for encoding force field usage. This section also presents the XML

(Extensible Markup Language) file format used by Foyer, which builds upon the OpenMM force field file

format[36–38] extended to support the definition of the associated SMARTS, overrides statements, textual

descriptions of the parameters, and digital objective identifiers (DOIs) for the source of each atom type.

subsection 4.4.3 provides an overview of the Foyer software used to evaluate the SMARTS and overrides

statements encoded in the XML file format, including the iterative process —and its optimizations —used

for determining atom types. This section also discusses force field validation and verification within Foyer.

subsection 4.4.4 provides examples of the use of the Foyer software to perform atom-typing of several

different chemical systems. subsection 4.4.5 discusses best practices for the use of Foyer and force field

annotation scheme in terms of reproducibility, focusing on the use of version control and related open-source

software development tools to enable the creation and evolution of force fields in a transparent, testable

manner. subsection 4.4.6 provides concluding remarks.
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4.4.2 Defining chemical context and rule precedence

4.4.2.1 XML file format

Foyer utilizes the OpenMM force field XML format [38] to encode parameters, where this format is extended

to allow for the definitions of chemical context and rule precedence (discussed below). To briefly summarize

the OpenMM file format, atom types and forces are encoded as XML tags with various attributes defining the

types of elements that they apply to (by name only), as well as the associated parameters for that interaction

(e.g., the equilibrium bond length and spring constant for a harmonic bond). Listing 4.11 provides an example

of encoding the OPLS force field parameters for linear alkanes in the OpenMMXML format (note, this Listing

does not include our extensions). As shown in Listing 4.11, the XML format provides clear descriptions of

each of the parameters/properties defined in the file (e.g., element="C" indicates the entry is defining a carbon

atom), along with additional tags that provide unambiguous descriptions of the types of interactions being

used (e.g., the< HarmonicBondForce > tag is used to define the use of a harmonic force to define

bonds). As such, this file format includes a wealth of metadata that is both human and machine readable. For

more detailed information, we refer the reader to the OpenMM manual where this force field file format is

extensively documented [38].

Listing 4.11: OpenMM formatted XML file for linear alkanes using the OPLS force field.

1 <ForceField>
2 <AtomTypes>
3 <Type name="opls_135" class="CT" element="C" mass="12.01100"/>
4 <Type name="opls_136" class="CT" element="C" mass="12.01100"/>
5 <Type name="opls_140" class="HC" element="H" mass="1.00800"/>
6 </AtomTypes>
7 <HarmonicBondForce>
8 <Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>
9 <Bond class1="CT" class2="HC" length="0.1090" k="284512.0"/>

10 </HarmonicBondForce>
11 <HarmonicAngleForce>
12 <Angle class1="CT" class2="CT" class3="CT" angle="1.966986067" k="488.273"/>
13 <Angle class1="CT" class2="CT" class3="HC" angle="1.932079482" k="313.800"/>
14 <Angle class1="HC" class2="CT" class3="HC" angle="1.881464934" k="276.144"/>
15 </HarmonicAngleForce>
16 <RBTorsionForce>
17 <Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288" c1="-1.4644"

c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>↪→

18 <Proper class1="CT" class2="CT" class3="CT" class4="HC" c0="0.6276" c1="1.8828"
c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>↪→

19 <Proper class1="HC" class2="CT" class3="CT" class4="HC" c0="0.6276" c1="1.8828"
c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>↪→

20 </RBTorsionForce>
21 <NonbondedForce coulomb14scale="0.5" lj14scale="0.5">
22 <Atom type="opls_135" charge="-0.18" sigma="0.35" epsilon="0.276144"/>
23 <Atom type="opls_136" charge="-0.12" sigma="0.35" epsilon="0.276144"/>
24 <Atom type="opls_140" charge="0.06" sigma="0.25" epsilon="0.12552"/>
25 </NonbondedForce>
26 </ForceField>

The flexible nature of XML allows it to be readily extended via the addition of new tags/attributes without
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fundamentally changing the original format, as new tags/attributes can simply be ignored by software that

does not require them. As shown in Table 4.1, and discussed in detail later, four new attributes have been

added to the atom type entries in the existing OpenMM XML file format to enable the functionality needed

to encode usage rules in Foyer: def, desc, doi, and overrides. The use of XML additionally allows sanity

checks to be performed by using XML schemas to ensure the expected attributes have been provided in the

file.

Table 4.1: Extensions to the atom type definitions in the OpenMM XML format.

Attribute Description Example

def Chemical context of an atom
type via SMARTS

[C;X4](H)(H)(H) C

desc Textual description of the atom
type

Alkane CH3

doi Digital object identifier to the
atom type source

10.1021/ja9621760

overrides Atom type(s) the current rule is
given precedence over

opls_136

4.4.2.2 Using SMARTS to define chemical context

The chemical context of an interaction site is typically defined by its bonded environment, notably the num-

ber of bonds and the identities of bonded neighboring interaction sites, but may also include longer range

information, such as the bonded environment of neighbors. To encode this information, Foyer utilizes

SMARTS[6], a language for defining chemical patterns. SMARTS is an extension of the more commonly

used SMILES[33] notation, providing additional tokens that enable users to express greater chemical de-

tail and logic operations. SMARTS notation is expressed as strings that simultaneously include arbitrary

chemical complexity but are concise and clear enough for human consumption, in addition to being machine

readable. As an example, consider defining the chemical context of OPLS-AA atom types for carbon and

hydrogen atoms in a linear alkane, as shown in Listing 4.12 (note, only the < AtomTypes > section of the

file is shown, as this is the only section that differs from Listing 4.11). The reader is referred to Table 4.2 for

a visual depiction of these atom types.

Table 4.2: 2D depictions of molecular fragments referred to in the text.

To encode the chemical context, the def attribute is added to the OpenMM XML format to encode the

corresponding SMARTS string. Here, the atom type that specifies the terminal methyl group, "opls135" (“-

CH3”) can be expressed as [C;X4](C)(H)(H)H in the SMARTS notation. In this SMARTS notation, [C;X4]
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Listing 4.12: Atom type definitions for carbon and hydrogen atoms in a linear alkane using the OPLS force
field. Note, only the section that applies to atom types is shown for clarity.

1 <ForceField>
2 <AtomTypes>
3 <Type name="opls_135" class="CT" element="C" mass="12.01100"

def="[C;X4](C)(H)(H)H" desc="alkane CH3"/>↪→

4 <Type name="opls_136" class="CT" element="C" mass="12.01100"
def="[C;X4](C)(C)(H)H" desc="alkane CH2"/>↪→

5 <Type name="opls_140" class="HC" element="H" mass="1.00800" def="H[C;X4]"
desc="alkane H"/>↪→

6 </AtomTypes>
7 </ForceField>

indicates that the element of interest —always the first token in the SMARTS string —is a carbon atom

(i.e., C) and this carbon atom has 4 total bonds (i.e., ;X4, where ; indicates the logical operator AND). The

identities of the 4 bonded neighbors are 1 carbon atom and 3 hydrogen atoms, expressed as (C)(H)(H)H.

Similarly, the opls136 atom type, which describes a methylene group in an alkane, is expressed in SMARTS

notation as [C;X4](C)(C)(H)H. Here, the only change from the opls135 definition lies in the identity of the 4

bonded neighbors (2 carbon atoms and 2 hydrogen atoms). Increased chemical complexity can be described

by adding details about each of the neighboring interaction sites within SMARTS. For example, the opls140

atom type, which describes a generic alkane hydrogen, is defined as H[C;X4] - a hydrogen atom bonded to a

carbon atom with 4 bonds. Multiple valid SMARTS can be defined for each atom type, where, e.g., opls140

could be defined simply as def="H" since there is only a single hydrogen atom type defined in Listing 4.12.

However, such a definition would not necessarily provide a user of the force field with a clear understanding

of the chemical context for which this atom type applies, and may limit future evolution of the force field.

Our extension of the XML file format also includes the desc attribute (e.g., shown in Listing 4.12) that allows

for unstructured comments to be provided for each entry if desired.

We note that the parser in the Foyer libraries does not currently support the full SMARTS language,

instead providing support for the subset that was found to be relevant to the definition of chemical context for

atom types. Table 4.3 lists the currently supported primitives, Table 4.4 shows our extensions to the language,

and Table 4.5 outlines the logical operators supported.

4.4.2.3 Establishing rule precedence

Rule precedence must be established when multiple atom type definitions can apply to a given interaction

site. In typical hierarchical schemes, this is determined implicitly by the order in which rules are evaluated;

in general, more specific rules are evaluated first and when a match is found, the code stops evaluating rules

altogether. While this approach works, it becomes more challenging to maintain the correct ordering of rules
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Table 4.3: Currently implemented SMARTS atomic primitives1.

Symbol Symbol name Atomic property require-
ments

Default

* wildcard any atom (no default)
A aliphatic aliphatic (no default)
r <n> ring size in smallest SSSR2 ring of

size <n>
any ring atom

X <n> connectivity <n>total connections exactly one
#n atomic number atomic number <n> (no default)

1 This table has been adapted from the Daylight SMARTS website.
2 Smallest set of smallest rings.

Table 4.4: Extensions to SMARTS atomic primitives.

Symbol Symbol name Atomic property require-
ments

Default

_A non-element non-atomistic element (no default)
%<type> atomtype of atomtype <type> (no default)

as the number of atom types grows and as chemistries become more complex and specific. Users may find

it difficult, if not impossible, to make even small additions to a larger force field without breaking existing

behavior. Foyer allows rule precedence to be explicitly stated via the use of the overrides attribute added to

the XML file format. This allows atom type usage rules to be encoded in any order within the file, eliminating

incorrectly placed rule order as a source of error. Foyer iteratively evaluates all rules on all interaction sites

in the system, maintaining for each interaction site a “whitelist” consisting of rules that evaluate to True

and a “blacklist” consisting of rules that have been superseded by another rule (i.e., those that appear in the

overrides attribute). The set difference between the white- and blacklists of an interaction site yields the

correct atom type if the force field is implemented correctly (incorrect/incomplete definition of force fields is

discussed later). As an example of a system where overrides need to be defined, consider describing alkenes

and benzene in a single force field file, as shown in Listing 4.13 (note, only the < AtomTypes > section of the

force field file is shown). The reader is again referred to Table 4.2 for visual depictions of the relevant atom

types.

When atom-typing a benzene molecule, the carbon atoms in the ring will match the SMARTS patterns for

both opls142 (an alkene carbon) and opls_145 (a benzene carbon). Without the overrides attribute, Foyer

will find that multiple atom types apply to each carbon atom. Providing the overrides indicates that if the

Table 4.5: SMARTS Logical Operators1.

Symbol Expression Meaning

exclamation !e1 not e1
ampersand e1&e2 e1 and e2 (high precedence)
comma e1,e2 e1 or e2
semicolon e1;e2 e1 and e2 (low precedence)

1 This table has been adapted from the Daylight SMARTS website.
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Listing 4.13: Atom type definitions for alkenes and benzene using the OPLS-AA force field highlighting the
overrides syntax and mechanism for referencing other atom types. Note, only the section that applies to atom
types is shown for clarity.

1 <ForceField>
2 <AtomTypes>
3 <Type name="opls_141" class="CM" element="C" mass="12.01100"

def="[C;X3](C)(C)C" desc="alkene C (R2-C=)"/>↪→

4 <Type name="opls_142" class="CM" element="C" mass="12.01100"
def="[C;X3](C)(C)H" desc="alkene C (RH-C=)"/>↪→

5 <Type name="opls_144" class="HC" element="H" mass="1.00800"
def="[H][C;X3]" desc="alkene H"/>↪→

6 <Type name="opls_145" class="CA" element="C" mass="12.01100"
def="[C;X3;r6]1[C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r61"
overrides="opls_142"/>

↪→

↪→

7 <Type name="opls_146" class="HA" element="H" mass="1.00800"
def="[H][C;%opls_145]" overrides="opls_144" desc="benzene H"/>↪→

8 </AtomTypes>
9 </ForceField>

opls145 pattern matches, it will supersede opls_142. Thus, the difference between the whitelist (containing

opls142 and opls_145) and blacklist (containing only opls_142) would be opls_145.

Note that multiple atom types can be listed in a single overrides attribute. The approach taken here also

allows atom types to inherit overrides from the atom types they override. For example, consider a case in

which atom types 1, 2 and 3 each evaluate to True for an interaction site. If atom type 3 overrides atom type

2 (i.e., adds atom type 2 to the blacklist) and atom type 2 overrides atom type 1 (i.e., adds atom type 1 to

the blacklist), then atom type 3 will implicitly override atom type 1. Additionally, in Foyer, the SMARTS

grammar has been modified such that specific atom type names can also be included within the definition

(see Table 4.4). For example, opls146, the hydrogen atom attached to carbon atoms in a benzene ring, has

the SMARTS definition [H][C%opls_145], as shown in Listing 4.13; This states that the interaction site of

interest is a hydrogen atom (H) and is bonded to a carbon atom that has atom type opls_145 (C;%opls_145).

Because Foyer evaluates rules iteratively for each interaction site, such recursive definitions can be utilized

without the need to explicitly define atom types in a chemical topology input file. For example, in this case,

when Foyer identifies the interaction site of a carbon atom to be opls145, the next iteration to evaluate

the hydrogen atom will find that opls_146 now evaluates to True. Similar to how an overrides statement

clearly defines precedence, this recursive definition provides a clear way to identify chemical context and the

relationship between different atom types for highly specific parameters. We note, that one could also replace

the recursive reference to opls145 with its SMARTS string, although, in this case, it would result in a more

complex, less human readable definition.

Because the logic used to define chemical context is separated from the source code used to evaluate it, one

can construct a force field file that contains only the relevant subset of atom types need for a given application
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area. Using the above example of benzene and alkenes, if a system only contained benzene molecules, one

could avoid specifying the overrides attributes altogether by simply creating a force field file containing only

atom types relevant to benzene and eliminating those associated with alkenes. In many cases, considering

smaller subsets is beneficial as the amount of effort required to differentiate and set rule precedence between

atom types is reduced. Additionally, using smaller files will reduce the likelihood of errors related to defining

chemical context and rule precedence, reduce the number of test molecules with known atom types required

to fully validate the rules, and increase the readability of the force field files by limiting the number of entries.

4.4.2.4 Extension of SMARTS for non-atomistic systems

Foyer is able to atom-type systems in which an interaction site does not represent a single atom with a

standard element, but instead may represent a group of atoms (relevant to united-atom and coarse-grained

(CG) force fields) or a generic site (relevant to simplified models). Standard SMARTS notation does not

support non-atomic species due to its reliance on the presence of an element specification for each interaction

site. To circumvent this limitation, the Foyer SMARTS parser allows users to define custom “elements” by

prefixing their string representation with an underscore (see Table 4.4). For example, CCC could represent a

coarse-grained interaction site intended to model three carbon atoms. In its current implementation, Foyer

makes a first pass through force field files to detect any custom element definitions. These are injected into

the grammar that parses SMARTS strings and are given priority over standard elements. This allows non-

atomistic and atomistic atom types to be used either separately or together.

In practice, united-atom and coarse-grained force fields can be defined in an almost identical fashion to

all-atom force fields, where the only difference is that “elements” are user-defined strings prepended with an

underscore. As an example, consider an alkane modeled with the united-atom TraPPE force field[40, 41].

An interaction site in this force field represents both carbon and the hydrogen atoms bonded to it. Thus, this

force field contains two distinct atom types, one that represents (CH3) and one that represents (CH2). These

can be encoded as shown in Listing 4.14.

Focusing on atom type CH3_sp3, usage is encoded with the definition [_CH3;X1][_CH3,_CH2] which

states that the base “element” is _CH3 with one bond (i.e., ;X1) to either a _CH3 or a _CH2 group. In

SMARTS, a comma indicates an “OR” logic statement and a semicolon is used to denote an “AND” logical

statement (see Table 4.5 for a complete list of SMARTS logical operators). In this example, [CH3;X1] states

the element must be _CH3 “AND” have only a single bond. Atom-type _CH2_sp3, which represents a “mid-

dle” alkane carbon and its 2 associated hydrogen atoms, is defined similarly as [_CH2;X2]([_CH3,_CH2])[_CH3,_CH2].

Here, the base “element” is a CH2 with two bonds (i.e., ;X2), each of which may be either “element” _CH3

or _CH2. Note, the interaction sites defined in the input chemical topology would need to follow the same
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Listing 4.14: Atom type definitions for alkenes and benzene using the OPLS-AA force field highlighting the
overrides syntax and mechanism for autoreferencing other atom types. Note, only the section that applies to
atom types is shown for clarity.

1 <ForceField>
2 <AtomTypes>
3 <Type name="CH3_sp3" class="CH3" element="_CH3" mass="15.03500"

def="[_CH3;X1][_CH3,_CH2]" desc="Alkane CH3, united atom"/>↪→

4 <Type name="CH2_sp3" class="CH2" element="_CH2" mass="14.02700"
def="[_CH2;X2]([_CH3,_CH2])[_CH3,_CH2]" desc="Alkane CH2, united
atom"/>

↪→

↪→

5 </AtomTypes>
6 </ForceField>

naming convention as the force field file, labeled as CH3 and _CH2.

4.4.2.5 Determining bonded parameters

Once a chemical topology is atom-typed, bonded interactions can be determined by simply searching for

the matching pairs, triplets, and quartets (bonds, angles, and torsions, respectively). In many force fields,

the bonded parameters are not as specific as the non-bonded interactions, and thus are not defined directly

based on atom types. Thus, rather than atom types, a more general class identifier (some- times referred

to as the “bond family”) is used to identify these interactions. In Listing 4.15, both opls136 and opls_962

are part of the same class “CT”. Thus a bond between opls136-opls_962 would have the same parameters

(defined as class1="CT" class2="CT" in Listing 4.15) as a bond between opls_136-opls_136 (also defined as

class1="CT" class2="CT"). However, this general approach breaks down for certain chemical topologies.

For example, while the atom types for carbon atoms in alkanes[18] and perfluoralkanes[42] are both of

class “CT” and share the same bond and angle parameters for carbon atoms, they differ in terms of torsional

parameters. In order to handle this conflict, many codes require users to comment out the more general

set of parameters or include statements within the code that accomplish the same task. However, in this

approach, one would not be able to atom-type a system composed of a mixture of alkane and perfluoroalkane

molecules, since only one set of parameters can be included simultaneously. Note that while one could define

a new class to differentiate between alkanes and perfluoroalkanes, this would result in a force field file with

many duplicate parameters sets that simply have different labels.

The OpenMM format allows bonded parameters to be defined using the type attribute in place of the class

attribute, where type refers directly to the name attribute that stores the atom type, allowing for bonded inter-

actions to be defined with increased specificity. Additionally, mixed use of type and class in the definition of

these bonded interactions is supported. Referring to Listing 4.15, to provide the necessary distinction between

torsional parameters for perfluoroalkanes and alkanes, one could define perfluoroalkane torsions using type
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Listing 4.15: Force field XML snippet showing atom types defined for carbon in CH2 and CF2 substructures,
a bonded definition between carbons, and C-C-C-C dihedral definitions for hydrogenated and perfluorinated
alkanes.

1 <ForceField>
2 <AtomTypes>
3 ...
4 <Type name="opls_136" class="CT" element="C" mass="12.01100"

def="[C;X4](C)(C)(H)H" desc="alkane CH2"/>↪→

5 <Type name="opls_962" class="CT" element="C" mass="12.01100"
def="[C;X4](C)(C)(F)F" desc="perfluoroalkane CF2" />↪→

6 ...
7 </AtomTypes>
8 <HarmonicBondForce>
9 ...

10 <Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>
11 ...
12 </HarmonicBondForce>
13 ...
14 <RBTorsionForce>
15 ...
16 <Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288"

c1="-1.4644" c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>↪→

17 <Proper type1="opls_962" type2="opls_962" type3="opls_962" type4="opls_962"
c0="14.91596" c1="-22.564312" c2="-39.41328" c3="11.614784" c4="35.446848"
c5="0.0"/>

↪→

↪→

18 ...
19 </RBTorsionForce>
20 ...
21 </ForceField>

attributes (i.e., type1="opls962" type2="opls_962" type3="opls_962" type4="opls_962", where opls_962 is

defined in the < AtomTypes > XML section), and alkane torsions with the more general quartet for

alkanes of class1="CT" class2="CT" class3="CT" class4=CT" that uses class attributes. However, when it-

erating through bonded parameter definitions, OpenMM assigns parameters based on the first match found. In

the example described above, perfluoroalkane torsional parameters would therefore need to be defined before

alkane parameters in the torsional section, and thus the ordering shown in Listing 4.15 would result in the

incorrect assignment of torsional parameters for perfluoroalkanes. Several approaches can be taken to ad-

dress this. overrides statements could be used to set rule precedence for bonded topologies and thus eliminate

the need to specify order in the file, however additional modification to the force field file format would be

required because bonded parameters do not have a “name” attribute like atom types. In the approach taken

by SMIRNOFF[34], bonded parameters are defined directly using their chemical context (i.e., via SMIRKS),

eliminating this issue altogether; however, taking a similar approach would result in the duplication of many

parameters in the same way as defining a new class attribute. A more simple approach taken by Foyer is

to perform a preprocessing step on the bonded parameters. This step orders bonded parameters such that

the most specific cases are sorted to the top of the list to set precedence. This accomplished by assigning a
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weight to each entry proportional to the number of type attributes included (as these are the most specific).

For example, a torsion that explicitly defines the atom types for which it applies (i.e., has 4 type attributes)

would be given the highest weight, and sorted to the top of the list, whereas an entry that specifies only class

attributes would be given the lowest. Thus, for the force field XML shown in Listing 4.15, Foyer would

reverse the order of the two defined dihedrals during preprocessing.

4.4.3 Foyer Software

In order to read the force field usage specification discussed above and perform atom-typing, the Foyer

software has been developed as an open-source Python library. Python allows for portability between plat-

forms and provides a wealth of freely available modules (e.g., NumPy [43], SciPy [44], NetworkX [45]) to

facilitate many of the underlying operations. The source, documentation, tutorials, and examples of Foyer

are freely available and can be found on the GitHub project repository[12], tutorial repository[46], and web-

site[47]. Figure 4.6 provides an overview of the general software workflow, which we will discuss here.

4.4.3.1 Inputs and preprocessing

Foyer accepts, as input, the XML force field file and an input chemical topology for which to apply the force

field. In addition to sorting bonded parameters by specificity as described in the previous section, the XML

force field file undergoes a preprocessing and validation step via application of an XML schema definition.

Here Foyer enforces which elements (e.g. HarmonicBondForce) are valid and how their attributes should

be formatted. While this does not test the accuracy of the parameters, it does ensure that all of the expected

parameters are defined. Additionally, the schema ensures that atom types are not defined more than once

and that atom types referenced in other sections (e.g., < HarmonicBondForce >) are actually defined in the <

AtomTypes > section. Next, the SMARTS strings defined by the def attribute for all atom types are parsed

and checked for validity. This does not validate whether a SMARTS string is correctly defined for a given

interaction site but simply ensures that the SMARTS string can be interpreted by Foyer and does not contain

any erroneous characters. Parsing errors are captured and re-raised with error messages that allow a user to

pin point the location of the problem in the XML file and within the SMARTS string. Wherever possible,

Foyer attempts to provide helpful suggestions for fixing detected errors.

Input chemical topologies can be passed to Foyer through various data structures; the current version

supports the OpenMM Topology object [36–38], the ParmEd Structure object[13], and the mBuild Com-

pound object[1, 2, 39]. Each of OpenMM, ParmEd, and mBuild topologies support inputs from a variety of

common molecular file formats, such as PDB and MOL2, and thus it is typically straightforward to convert
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Figure 4.6: Flowchart of the Foyer software from chemical topology and force field XML inputs to a
simulation data file output.

a given system into a data structure that Foyer can accept. Regardless of the input format, once read into

Foyer the chemical topology is converted to an OpenMM Topology object. The OpenMM Topology object

provides a standardized data container to store the necessary system information and allows for leveraging of

routines already defined within OpenMM’s library.

4.4.3.2 Atom-typing

A flowchart of Foyer’s atom-typing procedure is shown in Figure 4.7. To perform atom-typing, Foyer

constructs a graph of the complete system defined by the chemical topology (or alternatively a graph of each

unique residue, see the Residue-based Atom-typing section below) and iteratively searches for SMARTS

matches via subgraph isomorphism (where subgraphs are generated for each SMARTS definition). Graph

construction and matching are performed using the NetworkX package[45], an open-source Python project
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that provides an intuitive interface for a multitude of graph-based algorithms and is the de facto standard

network analysis library in Python. During this step, the iterative process of determining the atom type is

Figure 4.7: Flowchart of Foyer’s atom-typing process.

undertaken, adding rules to the white and back lists for each interaction site in the system.

The implementation of the SMARTS based atom-typing scheme is comprised of several steps and inter-

nally relies on a subgraph isomorphism to detect matches as highlighted in Figure 4.8. First, a SMARTS

string is parsed into an abstract syntax tree (AST) from which we populate a SMARTSGraph object. This

class inherits from the Graph class in the NetworkX package. Elements in this SMARTSGraph are repre-

sented as nodes and chemical bonds as edges. Inheriting from NetworkX is convenient in that it allows
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Figure 4.8: Schematic of the workflow to apply SMARTS patterns to chemical topologies. The SMARTS
strings used to define atomtypes are read into a SMARTSGraph class which inherits from NetworkX’s
core data structure. Using the find_matches method, a SMARTSGraph instance can search for subgraph
isomorphisms of itself within a provided chemical topology and will yield all atoms that match the first token
in the original SMARTS string —the atom type that we are looking for.

us to leverage most of the algorithms and visualization methods already implemented there. The primary

distinguishing feature of the SMARTSGraph is the set of methods that encode the logic for matching the

more complex SMARTS tokens. These methods can be directly used by NetworkX’s implementation of the

VF2 subgraph isomorphism algorithm[7]. A thin wrapper provided by the findmatches method allows a

SMARTSGraph instance to search for all subgraph isomorphisms within a bare chemical topology (an non-

atom-typed graph of just elements and bonds). This method returns the indices of all elements that match

the first token in the SMARTS string, which defines the atom type that we are looking for. Successfully

matching elements have the atom type definition added to their whitelist and any overridden types added to

their blacklist. The appropriate atom type for an interaction site is determined by examining the difference

between white- and blacklists, where a sufficiently descriptive force field should yield only a single atom type

as the difference between the two lists.

The use of white- and blacklists provides users with a means to validate the completeness of the chemical

contexts defined by the set of SMARTS strings and overrides. For example, when considering a test molecule,

if multiple valid atom types are found as the difference between white- and blacklists, this indicates the rules

are not sufficiently unique and likely have incomplete information provided to the override attributes. Foyer

provides the list of conflicting types to aid in resolving such issues. If no atom types exist as the difference,

the interaction site of interest cannot be described by the force field rules as implemented. Typically, this will
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require adding a new atom type or amending an existing atom type’s definition. This may also indicate, that

there is an error in how rule precedence has been defined, such as, all the rules on the whitelist “overriding”

each other. The efficacy of this type of validation in Foyer will depend on providing a sufficient range

of systems to fully explore the combinations of atom types that can be applied, where, as a general rule,

the set of systems chosen to perform validation tests should collectively utilize all atom types defined in the

force field. Note, these validation tests can be done to identify conflicts and under-defined systems, but do

not necessarily indicate that the force field has been implemented corrected; separate verification tests are

needed to ensure proper implementation, whereby the atom types identified by Foyer are compared to that

of molecules with known, validated atom types, as discussed later.

4.4.3.2.1 Residue-based Atom-typing

Many systems of interest to molecular simulation contain topologies that consist of duplicates of smaller

molecules or repeat units, each with identical topologies. A brute-force implementation of the atom-typing

process wastes time by repeating subgraph isomorphism computation on each repeat unit and thus would not

scale well with system size. To eliminate unnecessary calculations, a map of atom-typed residues is saved

after each unique residue is atom-typed the first time. Then, when an identical residue is found, it copies the

atom-typed information from the residue map instead of repeating the subgraph isomorphism. This feature is

enabled by default but can optionally be turned off.

As an example, consider a box of N hexane molecules. After the subgraph isomorphism is called on the

first molecule, the result is copied and saved into a map. Then, when molecules 2 to N are encountered, those

results are copied into the running topology. The time it takes for the apply function to finish is timed for each

case and plotted in Figure 4.9 relative to the brute force approach, where significant speed improvements are

observed for common system sizes.

4.4.3.3 Force field assignment and output

Once atom-typed, the OpenMM Topology, now containing atom types for all particles in the system, is used

to create an OpenMM System object and bonded parameters of systems determined. This step can be ac-

complished by simply searching the list of bonded parameters for the appropriate pair, triplet, quartet of atom

types for bonds, angles, and dihedrals, respectively; such routines exist within OpenMM and are utilized in this

context, where again we note these interactions undergo a sorting to ensure more specific definitions appear

first in the file. Additionally, validation checks are performed at this time to ensure all triplets and quartets of

interaction sites have had angle and dihedral (proper and improper) parameters assigned (checks for bond pa-

rameterization of interaction site pairs are performed by OpenMM in the prior step). These validation checks
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Figure 4.9: Comparison of atom-typing cost with and without the use of residue templates. Without a residue
template map, the scaling is approximately linear with system size. With a map, the scaling is independent
of system size for small systems and becomes approximately linear at larger system sizes due to operations
other than the subgraph isomorphism. The speedup approaches a factor of approximately 30 as the system
size becomes large. The times to atom-type each system were obtained with a 2013 MacBook Pro, 3 GHz
Core i7, 8 GB RAM.

provide the user with an error (that can optionally be overridden) to help prevent the return of incorrectly

parameterized Structures. To output the atom-typed system into a usable format for a simulation engine, the

fully atom-typed and parameterized system is returned as a ParmEd Structure object. Through the use of the

ParmEd Structure, Foyer has access to various additional functionality, such as I/O routines that properly

parse the ParmEd Structure into common chemical file formats (MOL2, PDB, NAMD and GROMACS formats,

among others[13]). For file formats not natively supported by ParmEd, custom I/O routines for outputting to

these formats (e.g., the LAMMPS data file format) have been developed within the mBuild package.

It should be noted that by utilizing ParmEd to take advantage of the extensive I/O routines, the force

fields that Foyer currently supports must match functional forms supported by the internals of the ParmEd

Structure object. For example, non-bonded interactions are currently limited to a 12-6 Lennard-Jones func-

tional form. However, due to the large amount of force fields that utilize this functional form (e.g., Amber[16],

GAFF[48], OPLS[18], TraPPE[40, 41], CHARMM[17]), the current version of Foyer is still widely appli-

cable; planned future development will include support for additional functional forms to better accommodate

the diverse force field landscape that exists.
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4.4.3.4 Validating/verifying Output

Foyer provides scripts to validate its output files by comparing against systems with known atom types (e.g.,

those determined by hand or reference molecules provided by a force field developer). Output validation

requires (1) system(s) with known, validated atom types and (2) the force field XML file. The known systems

are read into Foyer and atom types are determined using the rules in the XML file. The atom types generated

by Foyer are then compared against the known atom-typed system(s). The pytest [49] library is used to

provide a clear, descriptive output of the results of these validation tests. Implementing output validation

tests is particularly useful to force field developers as they ensure that the desired output is retained if a force

field file is evolved through the addition of new atom types definitions or merged with a separate force field

file. The utility of these validation checks relies not only upon providing accurate reference systems, but

also a sufficient variety of test systems that encompass all defined atom types, as discussed previously. An

example of such a validation test suite is provided as part of the Foyer template repository freely available

on GitHub[50].

4.4.4 Usage Examples

At the time of publication, Foyer includes example force field XML files with def, overrides, and doi

statements for 110 OPLS atom types as well as parameters and atom types for the simulation of alkanes and

primary alcohols using the TraPPE force field; a set of molecules with known atom types (162 for OPLS,

12 for TraPPE) are also included for automated testing of the code. As discussed later in Section 5, separate

repositories have been created to demonstrate how to reproducibility distribute force fields. These include

OPLS compatible sets of parameters for perfluoropolyethers[51, 52], perfluoroalkanes[53], and alkylsilanes

grafted silica substrates[54]. Implementation of additional atom types for OPLS and TraPPE force fields and

the implementation of other ParmEd compatible force fields is an active area of work.

Here, a basic overview of the usage of Foyer is provided, although we direct readers to the GitHub

project repository[12] and tutorial repository[46] for additional usage examples. Consider constructing a

bulk system of ethane molecules and applying the OPLS force field. Listing 4.16 shows a simple mBuild

script to load an ethane molecule and fill a 2 nm x 2 nm x 2 nm box with 100 molecules. This defines the

system’s chemical topology to which the force field will be applied. As input, the force field file is identical to

Listing 4.11 but with the < AtomType > information from Listing 4.12, as Listing 4.12 includes the usage

rule definitions. Listing 4.16 demonstrates two different syntaxes for applying a force field using Foyer and

saving the output, in this case to the file format required by GROMACS. The second option allows different

forcefields to be applied to different topologies in the system. Listing 4.17 shows an example of creating two

separate chemical topologies in the system, and applying two different force field files to each. The two atom-
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Listing 4.16: Script to fill a box with ethane and apply the OPLS-AA force field to the system.

1 import mbuild as mb
2 from mbuild.examples import Ethane
3 from foyer.test.utils import get_fn
4 from foyer import Forcefield
5

6 """ Approach 1 """
7 # create the chemical topology
8 ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2,2,2])
9 # apply and save the topology

10 ethane_fluid.save("ethane-box.top", forcefield_files=get_fn("oplsaa_alkane.xml"))
11 ethane_fluid.save("ethane-box.gro")
12

13 """ Approach 2 """
14 # create the chemical topology
15 ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2,2,2])
16 # load the forcefield
17 opls_alkane = Forcefield(forcefield_files=get_fn("oplsaa_alkane.xml"))
18 # Apply the forcefield to atom-type system
19 ethane_fluid_typed = opls_alkane.apply(ethane_fluid)
20

21 # Save the atom-typed system
22 ethane_fluid_typed.save("ethane-box.top", overwrite=True)
23 ethane_fluid_typed.save("ethane-box.gro", overwrite=True)

Listing 4.17: Script to build a system with an amorphous silica substrate in contact with a bulk ethane system
and apply a different force field to the substrate and fluid respectively.

1 import mbuild as mb
2 from mbuild.examples import Ethane
3 from mbuild.lib.atoms import H
4 from mbuild.lib.bulk_materials import AmorphousSilica
5 from foyer.test.utils import get_fn
6 from foyer import Forcefield
7

8 # create a silica substrate, capping surface oxygens with hydrogen
9 silica = mb.SilicaInterface(bulk_silica=AmorphousSilica())

10 silica_substrate = mb.Monolayer(surface=silica, chains=H(), guest_port_name="up")
11 # determine the box dimensions dictated by the silica substrate
12 box = mb.Box(mins=[0,0,max(silica.xyz[:,2])], maxs=silica.periodicity + [0,0,4])
13 # fill the box with ethane
14 ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=200, box=box)
15 # load the forcefields
16 opls_alkane = Forcefield(forcefield_files=get_fn("oplsaa_alkane.xml"))
17 opls_silica = Forcefield(forcefield_files=get_fn("oplsaa-silica.xml"))
18 # Apply the forcefields to atom-type system
19 ethane_fluid_typed = opls_alkane.apply(ethane_fluid)
20 silica_substrate_typed = opls_silica.apply(silica_substrate)
21 # merge the two structures
22 system = silica_substrate_typed + ethane_fluid_typed
23 # Save the atom-typed system
24 system.save("ethane-silica.top", overwrite=True)
25 system.save("ethane-silica.gro", overwrite=True)

typed structures that result (ethane fluid and silica_substrate) are then combined using a simple + operator

and saved to any format supported by ParmEd (this assumes that cross interactions between ethane and silica

are defined using standard mixing rules). Note that if the surface and polymers were bonded together (e.g.,
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to create a surface-bound monolayer), the force field files would need to be combined into a single XML

document.

4.4.5 Promoting reproducible force field dissemination

Force field files and associated documentation, examples, and validation tests, can be readily developed and

distributed using standard software development approaches to improve quality and reproducibility. For

example, the common git + GitHub/Bitbucket based distribution process allows force field creators to dis-

seminate their force field files and associated content to the public via a version controlled repository that

can be referenced from relevant publications. In this approach, a specific version of the force field used

in a publication can be tagged in the git repository and a reference to this tagged version provided in the

manuscript, allowing for a clear reference to the exact parameters and usage rules employed in the work.

Other services, such as Zenodo[55], can additionally provide a digital object identifier (DOI) for the tagged

record and a snapshot of the content of the archive. For example, the software and examples associated

with this publication have been tagged on GitHub as “paperCOMMAT_2019” (see, Ref. [56]) with DOI:

10.5281/zenodo.2880526 archiving this tag (see Ref. [12]). A variety of other features of this standard

software development process translate well to force field development. Version control systems like git are

designed to facilitate distributed, collaborative software development and allow for changes to the files in

the repository to be easily tracked in a transparent manner. For example, as a force field is evolved or cor-

rected, revisions can be easily tracked, including the author(s) responsible for the changes, and the specific

differences between force field versions clearly identified using standard tools such as DIFF and through the

use of descriptive “commit” statements as the content of the repository is changed. The support for tracking

issues in services such as GitHub/Bitbucket additionally allow the community to provide feedback, request

clarification, or identify errors in a file in a transparent manner. Whenever the developers wish to they can

create a new release of the force field that, as noted above, can be tagged or provided with a citable DOI.

Verification and validation of a force field can also be simplified by using this software design approach, by

implementing automated testing tools that can perform checks on every new iteration (i.e., commit) of the

force field content, to ensure errors are not introduced as the force field is changed.

To promote these practices, we have created a template git repository on GitHub which contains the basic

framework needed to create, test, and publish a new force field as well as a guided tutorial that introduces

users to the SMARTS based atom-typing scheme[50]. This process was successfully used in recent work

that derived force field parameters for perfluoropolyethers[52], a novel lubricant class. The force field was

published in conjunction with the manuscript and made freely available on GitHub[53]. The specific version

of the force field at time of publication is citable via a separate DOI[51]. Any adjustments or improvements
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to the force field could now be released under a new DOI while the old one would still exist and point to the

originally published force field in order to maintain provenance.

4.4.5.1 Atom type DOI labels

While automated atom-typing and the containment of atom types and force field parameters within a single

file helps reduce user error and promotes reproducibility, users also require knowledge of the original source

of parameters, in order to ensure proper citation and validation that the parameters are appropriate for their

system of interest. Foyer achieves this goal by adding a doi attribute to each Type definition within the

AtomTypes block of a force field XML. Listing 4.18 shows the same atom-type definition for the OPLS-AA

methyl carbon as in Listing 4.12 with the additional doi attribute providing the DOI to the original source

where parameters for this atom type were derived.

Listing 4.18: Atom type definition for a methyl carbon tagged with the source DOI

1 <ForceField>
2 <AtomTypes>
3 <Type name="opls_135" class="CT" element="C" mass="12.01100"

def="[C;X4](C)(H)(H)H" desc="alkane CH3" doi="10.1021/ja9621760"/>↪→

4 </AtomTypes>
5 </ForceField>

This feature eliminates ambiguity concerning the origin of parameters for a particular atom type. Further-

more, Foyer automatically logs associations between DOIs and atom types during the atom-typing process,

providing a BibTeX file featuring the full citation for the sources of all parameters applied to a particular

system, along with additional notes detailing precisely which atom types are contained within each source.

For example, Listing 4.19 shows the BibTeX file generated for a nitropropane molecule using the OPLS-AA

force field, which includes all reference information as well as notes describing which atom type parameters

were obtained from each reference.

4.4.6 Conclusions

The Foyer Python library and annotation scheme for defining force field usage has been presented in this

work. Foyer defines a general applicable approach for the specification of classical force fields in a format

that is both human and machine readable and provides tools for automated atom-typing and validation. The

force field annotation scheme used in Foyer defines parameters and their usage within an XML formatted

force field, allowing force fields to be developed and evolved without the need to modify the source code

used to evaluate them. This annotation scheme uses SMARTS to define the chemical context of an atom type

and defines rule precedence via explicit override statements, allowing rules to appear in any order in a force
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Listing 4.19: BibTeX file generated during atom-typing of nitropropane using the OPLS-AA force field
(modified with line breaks for readability).

1 @article{Price_2001,
2 doi = {10.1002/jcc.1092},
3 url = {https://doi.org/10.1002},
4 year = {2001},
5 publisher = {Wiley-Blackwell},
6 volume = {22},
7 number = {13},
8 pages = {1340-1352},
9 author = {Melissa L. P. Price and Dennis Ostrovsky and William L. Jorgensen},

10 title = {Gas-phase and liquid-state properties of esters, nitriles, and nitro
compounds with the OPLS-AA force field},↪→

11 journal = {Journal of Computational Chemistry},
12 note = {Parameters for atom types: opls_761, opls_760, opls_764, opls_763}
13 }
14

15 @article{Jorgensen_1996,
16 doi = {10.1021/ja9621760},
17 url = {https://doi.org/10.1021},
18 year = {1996},
19 month = {jan},
20 publisher = {American Chemical Society (ACS)},
21 volume = {118},
22 number = {45},
23 pages = {11225-11236},
24 author = {William L. Jorgensen and David S. Maxwell and Julian Tirado-Rives},
25 title = {Development and Testing of the OPLS All-Atom Force Field on

Conformational Energetics and Properties of Organic Liquids},↪→

26 journal = {Journal of the American Chemical Society},
27 note = {Parameters for atom types: opls_135, opls_140, opls_136}
28 }

field file. The Foyer software treats chemical topologies as graphs and rules as subgraphs, to identify atom

types, using an iterative approach. This iterative approach allows force fields to be automatically evaluated

for completeness and identify under specified force fields, helping to prevent the dissemination and usage

of ambiguously defined force fields. Foyer is designed to be compatible with several common simulation

engines and utilizes/extends several existing open-source Python tools and file formats, in order to maxi-

mize flexibility and general applicability. Collectively, the approach utilized by Foyer can used to improve

the clarity of force field usage and dissemination within the molecular simulation community. The Foyer

software is open-source and freely available via GitHub [12, 47, 57].
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CHAPTER 5

Self-Assembly of Patchy Alkane-grafted Silica Nanoparticles

5.1 Introduction

In this work 12, the Molecular Simulation and Design Framework (MoSDeF) [2] and TRUE principals [3]

are employed to examine the self-assembly of anisotropically coated “patchy” nanoparticles. Specifically, we

use a coarse-grained model to examine silica nanoparticles coated with alkane chains, where the poles of the

grafted nanoparticle are bare, resulting in strongly attractive patches. Through a systematic screening process

leveraging MoSDeF [2, 4] and the Signac Framework [5–7] to sweep through parameter-space, the patchy

nanoparticles are found to form dispersed, string-like, and aggregated phases, dependent on the combination

of alkane chain length, coating chain density, and the fractional coated surface area. Correlation analysis is

used to identify the ability of various particle descriptors to predict bulk phase behavior from more computa-

tionally efficient single grafted nanoparticle simulations and demonstrates that the solvent-accessible surface

area of the nanoparticle core is a key predictor of bulk phase behavior. The results of this work enhance our

knowledge of the phase space of patchy nanoparticles and provide a powerful approach for future screening

of these or similar materials.

5.2 Background

The properties of systems containing nanoparticles are often highly correlated with the spatial arrangement

of the underlying particles [8–11]. It has been demonstrated that the arrangement of nanoparticles is often

dictated by the nanoparticle shape [12] and surface chemistry [13], as well as the properties of the solvent

or polymer matrix [14]. Functionalization of nanoparticles with oligomer or polymer coatings [15–17] is

one method that has been demonstrated to allow control over nanoparticle arrangement and phase behavior.

For example, Akcora et al. demonstrated via a combination of experiment, molecular simulation, and theory

that the phase behavior of polystyrene grafted silica nanoparticles could be tuned through the modification

of the length and density of the polystyrene grafts [18]. Long grafts and high surface densities resulted in

the formation of dispersed nanoparticle phases, gradually transitioning to strings, sheets, and spherical ag-

gregates as the graft length and/or graft density was reduced. The use of anisotropic surface functionalization

allows further control over the phase behavior and structural arrangement of the nanoparticles by introducing

directional interactions between nanoparticles. Often referred to as patchy particles, these anisotropic coat-

1Portions of this chapter reproduced with permission from AIP Publishing from the following work:
2Craven, N. C., Gilmer, J. B., Spindel, C. J., Summers, A. Z., Iacovella, C. R. & McCabe, C. Examining the Self-Assembly of Patchy

Alkane-Grafted Silica Nanoparticles Using Molecular Simulation. The Journal of Chemical Physics 154, 034903. ISSN: 0021-9606,
1089-7690 (Jan. 2021).
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ings can vastly increase the diversity and complexity of the structures formed by the nanoparticles [19–23].

For example, molecular simulations by Zhang et al. demonstrated that a variety of complex phases could be

achieved by modifying the arrangement of attractive patches on the surface of simplified composite nanopar-

ticles, including square-lattices, hexagonal-lattices, strings, rings, and polyhedral clusters [24]. Experiments

by Fava et al. demonstrated that gold nanorods end-functionalized with polystyrene could be induced to form

various phases depending on the solvent quality, including end-to-end, single-wide strings of nanorods when

the solvent quality was good for the nanorods and spherical aggregates when the solvent quality was poor

for the nanorods [25]. DNA grafted nanoparticles have also been demonstrated as a means of creating highly

specific, directional interactions between nanoparticles and colloids [21, 26, 27]. In other work, molecular

simulations and theoretical calculations by Bianchi et al. demonstrated that significant changes to the liquid

phase envelope could be achieved by the modification of the number of short range, directional, attractive

patches on the spherical particles, where a reduction in the number of patches could be seen to increase the

stability of the “liquid” regime to very low concentrations [28].

Controlling the anisotropic effect for functionalized nanoparticles can be a complicated task as there is

a nearly infinite design space of building blocks, where subtle features of the system (e.g., coating density,

and length) may play a significant role in phase behavior. Molecular simulation enables the design space

to be systematically probed by providing precise control over the individual building blocks and has been

extensively used to study nanoparticle systems [20, 29–32]. However, to date, most studies of nanoparti-

cles with anisotropic interactions have used simplified, generic phenomenological models that represent the

patchiness of the particles as differently interacting beads on a particle surface [30, 33, 34]. While such

models have provided tremendous insight and relate well to patterning approaches used by experimentalists

on larger length scales [35], they do not necessarily relate to a specific chemistry and may not capture subtle

details associated with polymer grafts (e.g., entropic interactions) [36, 37] which may significantly impact

the final structure/phase formed [38]. Grafted nanoparticle systems have also been studied via coarse-grained

(CG) models, although limited work has considered anisotropic systems [8, 18, 39–43]. Furthermore, in most

cases, these studies have utilized generic models of the chains and nanoparticle cores, rather than chemistry-

specific [44–46] and, therefore, may not be directly relatable to specific chemistries.

Here, we examine the properties of patchy, grafted nanoparticles, using a chemistry-specific CG model-

ing approach. Nanoparticle interactions are governed by a CG model for silica nanoparticles developed in

earlier work that was shown to accurately reproduce the energetic interactions of the corresponding atomistic

models [44]. Surface coatings are modeled as alkane chains using the CG model of Nielsen et al. with im-

plicit solvent interactions, where chains are considered to be in a good solvent and, thus, do not attract [47].

Uncoated regions of the nanoparticles result in the directional, attraction at the two poles. Using this de-
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tailed CG model, screening of the nanoparticle coatings is performed using the Molecular Simulation Design

Framework (MoSDef) [2, 3, 48, 49], to systematically examine the phase behavior of the nanoparticle sys-

tems, varying the density of the coating, fraction of surface coverage (FSA), and chain length of the alkane

graft. The bulk phase behavior is used to plot phase diagrams to identify key relations between the screen-

ing parameters. Simulations of singular grafted nanoparticles are also performed and it is demonstrated that

the solvent-accessible surface area (SASA) of the nanoparticle cores allows a priori prediction of the phase

behavior of bulk systems.

5.3 Methods

5.3.1 Nanoparticle Model

Patchy grafted nanoparticles are modeled as silica nanospheres, featuring an anisotropic (non-uniform) coat-

ing of alkane grafts. The CG model used to describe the nanoparticle cores was parameterized in earlier work

to model silica [43]. The nanoparticles are constructed as a composite particle of beads arranged on a spher-

ical surface using the golden spiral algorithm (see Figure 5.1) following the work of Summers et al. [44]; in

all cases, the nanoparticles are modeled as 5.0 nm in diameter, with 153 CG beads.

FSA 0.20 FSA 0.20 FSA 0.20

N
5

N
5

N
11

ρchain 2.5 ρchain 4.5 ρchain 2.5
FSA 0.65 FSA 0.65 FSA 0.65

N
5

N
5

N
11

ρchain 2.5 ρchain 4.5 ρchain 2.5

Figure 5.1: Visualizations of grafted nanoparticles based on tunable model parameters of fractional surface
area (FSA), chain length in CG beads (N), and chain density (ρchain). All grafted nanoparticles have symmetry
about the equator and are shown in two different orientations. Light green beads represent CG silica beads
attached to a CG alkane graft (gray). Dark green represents CG silica beads around the poles without grafts.

A Mie pair potential Equation 5.1 was used to define the interaction between beads in the nanoparticles,

where ε is the well depth and n and m are the potential exponents.
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This model of silica nanoparticles has been shown to accurately capture the energetic interactions between

atomistic nanoparticles. We note that, while short range square well potentials are also widely used to model

the interactions between nanoparticle cores in isotropically grafted nanoparticle simulations, Haley et al.

demonstrated that the liquid phase envelope of polymer grafted nanoparticles was reduced as the range of

the Lennard-Jones interaction between nanoparticle cores was reduced and began to more closely resemble

a square well potential [50]. Similarly, Kalyuzhnyi et al. demonstrated that the liquid phase envelope of a

four-site patchy particle model strongly depends on the core-core interactions. As such, accurately modeling

these interactions is key for studying the assembly of nanoparticle systems [51].

For alkane grafts, a 3:1 CG mapping from Nielsen et al. was used where single beads represent groupings

of three methyl units [47]. Parameters for the interactions between the silica cores and the cross-interactions

between silica cores and alkane grafts are derived to match interactions from all-atom models using the pro-

cedure outlined by Summers et al. [44] A schematic of a model grafted nanoparticle is included in Figure C.1

of the supplementary material, and all model parameters are reported in Table 5.1. Bonds and angles for alkyl

grafts are treated as harmonic bonds, with spring constants 1232.1 kcal
molnm2 and 2.8346 kcal

mol , respectively.

Table 5.1: Mie interaction terms used to model CG nanoparticles and chains. Beads in the core are labeled
“silica”, beads along the length of the chain are labeled “chain”, and beads that cap these chains are labeled
“terminus.”

Interactions ε[ kcal
mol ] σ [nm] n m

Silica-silica 0.9286 0.60 20.0087 4.7578
Silica-chain 0.6360 0.5291 29.6574 5.5835
Silica-terminus 0.6788 0.5331 28.0821 5.6179
Chain-chain 0.389092 0.4582 9.0 6.0
Terminus-terminus 0.434996 0.4662 9.0 6.0
Chain-terminus 0.411404 0.4662 9.0 6.0

The equilibrium length is set to 0.364 nm, and positions for angles are set for three chain groups to

3.019 42 radians and 3.054 33 radians for two chain groups and one terminus. Chains were constrained

to the surface by a rigid bead; note that chains are not free to move about the surface of the nanoparticle

and the nanoparticle core beads, and chain attachment beads, are integrated through time as a rigid body.

The effects of solvent were treated implicitly through the use of a Langevin thermostat and by truncating

chain-chain interactions at the minimum of the attractive well such that they are purely repulsive (i.e., the

Weeks-Chandler-Andersen potential [52]), as has been done in prior studies [44, 53].

In this work, patchiness is introduced through a polar coating pattern where the grafted chains cover the

surface of the silica core but are removed starting at the poles to expose the spherical core. This results in a

band of grafts encircling the equator of the particle that varies in thickness. Three properties of the coating

were investigated:

• Fractional surface area (FSA) of the exposed nanoparticle core, defined as the fraction of the nanopar-

142



ticle core surface area that is not covered by alkane chains, i.e., the fraction of the nanoparticle that is

“patchy.”

• Chain density ρchain defined as chains per nanometer squared.

• Chain length N defined by the number of 3:1 CG alkane beads on each grafted chain.

The effect of the model parameters on the grafted nanoparticles can be seen in the visualizations in

Figure 5.1 Each grafted nanoparticle model was constructed using the mBuild library and parameterized

with the Foyer library within the MoSDeF suite of tools.

5.3.2 Simulation Details

Simulations were performed using the 1.3.3 version of the HOOMD-Blue molecular simulation engine [54,

55] and the Signac framework [5, 6, 56] for workflow management. For bulk simulations, nanoparticle self-

assembly was examined by placing 25 nanoparticles in a 40 ∗ 40 ∗ 40nm3 box for 100 ns, for a given set

of design variables (see Table C.1). In total 44 simulations (state points) were considered. The simulation

workflow was as follows: First, a short energy minimization was performed to resolve any issues with over-

lapping particles from system construction, with a time step of 0.01 fs. This was followed by a 0.1 ns period

to further relax the system, with a step size of 1 fs. Next, the system was annealed in four stages from 1000

K to 400 K, running for 10 ns with 4 fs time steps at each stage, to remove any dependence of the final

self-assembled structure on the system’s initial configuration. Finally, the system was run at 300 K for 50 ns,

allowing a steady state configuration to be achieved. Data from the last 10 ns of the simulation were used

for analysis. This analysis includes calculation of the radial distribution function (RDF), using the Freud

Python package [57], analysis of local coordination using MDTraj [58], and visualization using the visual

molecular dynamics (VMD) package [59].

Simulations of single grafted nanoparticles were also performed that screen over the range of chain length

from 5 to 11 CG beads, chain density from 2.5 chains
nm2 to 5.0 chains

nm2 , and FSA from 0.2 to 0.65, for a total of 539

simulations; 40 of these simulations correspond to the same design variables of the 44 bulk simulations. For

each system, a brief energy minimization was performed followed by an NVT simulation run at 300 K for

10 ns with a 2 fs time step during which the nanoparticle core was held stationary, allowing only the alkane

grafts to move. SASA was calculated with a 0.25 nm probe particle using MDTraj [58] and normalized by

the idealized surface area of the 5.0 nm diameter nanoparticle (i.e., 2πD). The radius of gyration (Rg ) of the

entire grafted nanoparticle (RgNP ), Rg of each of the individual chains (Rg,chain), and asphericity of the entire

grafted nanoparticle (i.e., including the core and chains) were calculated from the single particle trajectories

using the MDAnalysis [60, 61] package. To be consistent with other prior work [19], we do not directly
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consider Rg but rather consider the ratio of nanoparticle radius (2.5 nm) to the two Rg measures, which are

labeled R−1
g,NP and R−1

g,chain. For analysis and comparison of the metrics computed in the bulk and single

grafted nanoparticle simulations, Spearman’s rank coefficients were determined using the SciPy computing

package [62].

5.4 Results

5.4.1 Bulk Simulations

Simulations of bulk grafted nanoparticles were performed to examine the phase behavior as a function of

chain length, surface grafted chain density, and FSA. The 44 systems simulated and the phases formed are

listed in Table C.1 of the supplementary material. Qualitatively, three distinct phases were observed, as shown

in Figure 5.2 "dispersed", "stringy", and "aggregated".

The phases were categorized both visually and by calculating the average number of nearest neighbors

(i.e., the coordination number); nearest neighbors are defined as nanoparticles within a distance of 7.5 nm

between the centers-of-mass of the nanoparticle core. Dispersed phases [Figure 5.2(a)] are defined as those

whose average nearest neighbor coordination number is less than 1. String-like aggregates [Figure 5.2(b)]

are defined as those with nearest neighbor coordination numbers ranging from 1 to 2 and a standard deviation

of these values of less than one. The use of standard deviation ensures that systems that consist of multiple

phases (e.g., higher-coordinated aggregated nanoparticles and lower-coordinated dispersed phases) are not

misidentified as strings. The third phase observed is characterized by nanoparticles that aggregate but do

not demonstrate significant string-like behavior or any long-range crystalline ordering [Figure 5.2(c)]. Such

phases are characterized by high coordination numbers; specifically, a coordination number greater than 2 is

used to define an aggregated phase or those where the standard deviation is above 1. We note that, visually,

the aggregated phases tend to be more planar in nature, rather than forming a spherical aggregate, as shown in

Figure 5.2(c). As evidenced by the coordination numbers (reported in the caption of Figure 5.2 and Table C.1

of the supplementary material), the dispersed phases show little-to-no aggregation of nanoparticles, whereas

the aggregated phases show significant grouping, both at the uncoated poles and in the coated regions. This

can also be seen in the radial distribution functions (RDFs) presented in the bottom row of Figure 5.2, where

dispersed phases do not show a strong first neighbor peak that would indicate aggregation, whereas the

aggregated phases show two strong short-ranged peaks; the first peak corresponds to nanoparticles directly

in surface contact at the patches, and the second peak, shifted by ∼2 Å, corresponds to interactions between

nanoparticles, buffered by the polymer grafts. A string-like phase appears as an intermediate between the

dispersed and aggregated phases in which the nanoparticles aggregate, but only at the poles that are not

grafted; this can be seen in Figure 5.2(b-4). In general, the RDF of the string-like phase shows only a single
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peak at the first neighbor separation, corresponding to direct nanoparticle-nanoparticle contact, although

strings that have multiple branches [see Figure 5.2(b-1)] show a small second peak shifted by ∼2Å.

To more clearly identify the correlations between chain density, chain length, FSA, and bulk phase, phase

diagrams of the bulk systems studied are plotted in Figure 5.3(a)-3(c). To simplify the ability to represent the

data, one of the three variables (chain length, chain density, FSA) is held fixed, while the others are varied.

From Figure 5.3(a), it is clear that, for the fixed chain length of 6, phase behavior is most strongly linked

to FSA and less dependent on chain density. Figure 5.3(b) shows that the likelihood of forming dispersed

phases significantly increases as graft length increases and FSA decreases. For shorter chain lengths, as the

FSA of the exposed nanoparticle core increases, nanoparticles begin to associate, first forming strings for

moderate values, then transitioning to aggregate phases as the “patches” become larger and less localized.

The phase behavior in Figure 5.3(c) shows that nanoparticles with longer chain lengths and denser coatings

are more likely to produce dispersed phases, as expected since such systems can more effectively shield the

nanoparticle cores, while systems with shorter chain lengths and less dense coatings are more likely to form

aggregate phases. The aforementioned work of Akcora et al. examined the phase behavior of isotropically

grafted silica nanoparticles as a function of graft length and graft density, finding similar trends in terms of

overall phase behavior as observed here [18]. We note that the string-like phases reported by Akcora et al.

visually appear to be 1–2 nanoparticles in width, rather than the single nanoparticle-wide chains observed

here, likely related to the more explicit directional interactions encoded in the patchy model. Additionally,

we note that the aggregated phase observed in this work tends to a planar shape, in agreement with sheet-like

structures observed by Akcora et al.; it was proposed that the underlying mechanism of sheet formation was

kinetically controlled directional phase separation, supported by the analysis of the growth of the structures.

It is likely that the same mechanism underlies the systems here, although our system sizes are too small to

confidently quantify growth scaling. The simulation results reported herein are also in qualitative agreement

with experiments of patchy spherical micelles formed from triblock copolymers that also formed string-like

aggregates; such experiments considered the role of temperature and pH on the assembly, rather than grafting

characteristics as reported herein, and thus, we cannot make a direct comparison of phase behavior [23]. We

additionally note the clear agreement in terms of the formation of string-like phases in experiments of larger,

patchy colloids that asssemble via charged particles at the poles [35].

5.4.2 Single Nanoparticle Simulations

The literature contains several proposed metrics for relating bulk phase behavior to the properties of single

grafted nanoparticles; the ability to predict phase landscapes from single nanoparticle simulations would

allow for substantially reduced computational cost compared to bulk simulations. Specifically, Lafitte et al.
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related the asphericity of a single grafted nanoparticle to the bulk phase [63], where it was found that grafted

nanoparticles with low asphericity yielded dispersed phases and nanoparticles with increasing asphericity

resulted in aggregated phases, with some stringy phases intermediate. This aggregation was proposed to result

from reduced shielding of the attractive cores due to an uneven spread of grafted chains on the nanoparticle,

which could be measured through asphericity [64]. Bozorgui et al. presented a geometric argument relating

the radius of gyration (Rg ) of the grafted chains to the radius of the particle, with regard to the ability of

nanoparticle cores to achieve close contact. In subsequent related work, mean field theory calculations by

Pryamtisyn et al. showed that the particle radius, normalized by Rg , of the grafted chains was a key parameter

dictating the anisotropic assembly of grafted nanoparticles [19] (here, referred to by the variable (R−1
g,chain).

In addition to these metrics, we consider Rg of the nanoparticle and chains, treated as a single entity, which

implicitly captures some of the information of both asphericity and chain Rg; as discussed in the simulation

details, we normalize the core nanoparticle radius by the Rg value of the nanoparticles and chains (here,

referred to R−1
g,NP). To quantify the relative amount of the nanoparticle core that can be accessed, SASA is

calculated and normalized by the nanoparticle surface area to give the fractional SASA ( fSASA). We note

that we would expect for short chains with dense surface coatings, fSASA should be closely related to FSA,

and longer chains may act to shield the uncoated regions, reducing or completely eliminating access to the

patches.

Spearman’s rank correlation coefficients [65] were calculated to ascertain if correlations exist between

(1) behavior observed for the bulk simulations (i.e., phase and the average and standard deviation of the co-

ordination number), (2) system parameters (i.e., chain length, chain density, and FSA), and (3) properties

measured from single grafted nanoparticle simulations (i.e., asphericity, R−1
g,chain, R−1g,NP, and fSASA). Fig-

ure 5.4 shows the correlations obtained, with larger and redder squares indicating correlations tending toward

1. Table C.2 of the supplementary material reports the numerical values, while Figure C.3–Figure C.2 show

the correlation scatter plots used to determine the correlation value.

First, we can observe that the phase and coordination number (both average and standard deviation) are

strongly correlated, as anticipated, given that this coordination number information was used to identify the

bulk phase. We note that, individually, none of the system parameters are strongly correlated with phase

information; this is as expected given that Figure 5.3 clearly shows the multi-parameter dependence. Of the

four metrics calculated for the single nanoparticle simulations, fSASA shows the largest correlation with phase.

R−1
g,NP and asphericity also appear to show reasonable correlation. R−1

g,chain does not appear strongly correlated

with phase. We note that high correlation values do not necessarily indicate that the metric can be used in a

predictive capacity. Figure 5.5 plots normalized histograms of various metrics as a function of the resulting

bulk phase. Figure 5.5(a) considers fSASA, which again, demonstrated the strongest correlation with phase.
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While there is some overlap between histograms, each histogram is sufficiently unique, suggesting that fSASA

can be used in a predictive capacity. For comparison, histograms of FSA are plotted in Figure 5.5(b), where a

substantial overlap is seen between each histogram, underscoring the need to use SASA to measure the actual

patch area that is accessible. Figure 5.5(c) considers asphericity; even though significant correlations were

observed with phase, it is clear that this metric is not sufficiently sensitive to uniquely identify each phase;

only the highest asphericity values have a single unique phase associated with them. Figure 5.5(d) plots

nanoparticle R−1
g,NP; while there appears to be clear correlations with phase, the overlap between histograms is

larger than in the case of fSASA, where we note that there are no values of R−1
g,NP that only result in a string-like

phase, limiting the predictive power. However, R−1
g,NP and asphericity may still be useful in helping to identify

trends in the bulk phase behavior. R−1
g,chain is plotted in Figure 5.5(e); substantial overlap between histograms

is observed, and thus, as the correlation value suggests, this cannot be used in a predictive capacity for the

systems considered here.

In order to test the ability of fSASA to be used in a predictive capacity for predicting phase behavior,

heatmaps were constructed using a mesh algorithm from the fSASA values, as shown in Figure 5.6; data points

for the bulk phase systems, as reported in Figure 5.3, are overlaid for comparison. Equivalent raw (i.e.,

unmeshed) heatmaps are included in Figure C.7 of the supplementary material.

Here, a color gradient is defined to capture transition values, where white is used to capture the value

of fSASA where the histograms cross in Figure 5.5(a) (i.e., fSASA values of ∼0.11 for dispersed to stringy

and ∼0.20 for stringy to aggregated), with the width of the gradients around these points correlating with

the overlap of the histograms, suggestive of the uncertainty in identifying the phase. As such, regions of

white can be considered to be estimates of the phase boundaries predicted by fSASA. Close agreement is seen

between the phase behaviors predicted from fSASA calculated for the single grafted nanoparticle simulations

in comparison with the phases identified from the bulk simulations. We note that the phase prediction in

Figure 5.6(c), where FSA is fixed at 0.55, shows a much more gradual transition from dispersed to stringy

phases, as evidenced by the broad gradient. For a value of FSA = 0.55, most of the chains are distributed

along the equator of the nanoparticle, with a large portion of the nanoparticle core exposed (e.g., see FSA

= 0.65 in Figure 5.1). In this regime (i.e., long chains and high FSA), chains will have a high degree of

conformational freedom, which may result in larger variability in the measurement. Furthermore, the actual

conformation may depend more strongly on the local environment of the grafted nanoparticle than for shorter

chains with lower FSA, where chain conformations will likely change if they are near another nanoparticle

(e.g., as discussed in the work of Bozorgui et al. [64] and Meng et al. [39]). The effects of interactions with

neighbors are not captured by the single grafted nanoparticle simulations from which fSASA is calculated.

Nonetheless, fSASA appears to be a strong predictor of phase. The supplementary material includes heatmaps
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generated from R−1
g,chain, R−1g,NP, and asphericity in Figure C.7–Figure C.12, including both raw and meshed

histograms. As might be expected from Figure 5.5, R−1
g,chain is not able to predict the phase behavior. R−1g,NP

overall provides a reasonable estimate of the phase behavior, although, due to the overlap of the histograms,

it does not provide as clear of a definition of the transitions as fSASA (i.e., the gradient regions are larger).

Asphericity provides a reasonable estimate of phase behavior when considering phase as a function of FSA

but does not seem to be predictive in the high FSA limit.

The results presented clearly demonstrate that for polar associating nanoparticle systems, fSASA values

obtained from simulations of single nanoparticles offer insight into the phase of the corresponding bulk

system and provide sufficient accuracy to be used in a predictive manner. As such, this may significantly

reduce the need to run as many computationally intensive simulations of the corresponding bulk systems to

establish a clear picture of the phase behavior. This may also allow for prescreening of the parameter space

to identify regions of interest, again further reducing the computational cost of examining possible systems.

As currently constructed, fSASA will not be able to help predict the structural arrangement for a particular

coating pattern (e.g., that a hexagonal sheet would form by an equatorial pattern, as proposed by Zhang and

Glotzer [24]), but it could help determine which combination of grafting variables are most likely to form the

phase of interest (i.e., the region intermediate between low fSASA systems that will disperse and high fSASA

systems that aggregate irrespective of the directional interactions).
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Figure 5.2: Examples of equilibrium phases with coordination numbers of [(a1)–(a3)] 0.00, 0.00, 0.00 in the
"dispersed" phase, [(b1)–(b3)] 1.80, 1.71, 1.76 in the "stringy" phase, and [(c1)–(c3)] 2.33, 2.41, 2.23 in the
"aggregated" phase, respectively. (4) represents the corresponding RDFs to the visualized systems, offset by
a value of 2000 in the y direction for clarity. Note that the scale of the RDFs is the same for all systems.
Grafts are omitted for clarity in the visualizations. Figure C.2 shows the same figure with grafted chains.
Aggregated phases are visualized from two separate orientations to more clearly demonstrate the structure.
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Figure 5.3: Bulk phase diagrams for (a). ρchain as a function of FSA with N held constant at six beads, (b)
FSA vs N with ρchain held constant at 3.5 chains

nm2 , (c) ρchain vs N with FSA held constant at 0.55. Black solid
lines are to guide the eye, delineating the stringy, aggregated, and dispersed phases
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Figure 5.4: Correlation matrix of key descriptors for the nanoparticle systems studied. Chain length, chain
density, and FSA are explicitly defined parameters. Coordination number, coordination number standard
deviation, and predicted phase are resultant measures from the bulk simulations. fSASA, R−1

g,chain, R−1
g,gNP,and

asphericity are calculated from single nanoparticle simulations. R−1
g,gNP is defined as the nanoparticle radius

divided by the radius of gyration of the grafted nanoparticle. R−1
g,chain is defined likewise, but with the radius

of gyration of the grafts. Coefficient values close to unity correspond to stronger linear correlation, where
strongly correlated systems are plotted as red, following the scale; note that the size of the markers also scales
linearly with the correlation value.
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N = 6 beads ρ= 3.5 CH/nm2 FSA = 0.55

Fractional Surface Area Fractional Surface Area Chain Density (CH/nm2)

Ch
ai

n 
De

ns
ity

 (C
H/

nm
2 )

Ch
ai

nl
en

gt
h 

(b
ea

ds
)

Ch
ai

nl
en

gt
h 

(b
ea

ds
)

a). b). c).

Fr
ac

tio
na

lS
ol

ve
nt

 A
cc

es
si

bl
e 

Su
rf

ac
e 

Ar
ea

Figure 5.6: Phase diagrams from Figure 5.3 overlaid on fSASA heatmaps. White regions are mapped to
the numerical value where histograms cross in Figure 5.5(a). Bulk simulation phase is represented as black
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density as a function of FSA with N held constant at six beads, (b) FSA vs N with chain density held constant
at 3.5 chains

nm2 , (c) chain density vs N with FSA held constant at 0.55.
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5.5 Conclusion

Molecular dynamics simulations have been performed to study the self-assembly of grafted nanoparticles to

gain insight into trends in phase behavior. A screening workflow was developed that leverages the MoS-

DeF [2] toolkit for system building and parameterization, the management of this dataspace was handled by

the Signac [6, 7, 56] framework, and analysis was performed using MDTraj [58], MDAnalysis [60, 61],

and Freud [57]. Patchy alkane-grafted nanoparticles with chains excluded from the poles form three main

phases: dispersed, stringy, and aggregated. Nanoparticle phases trend from dispersed, to stringy, to aggre-

gated phases through the increased fractional surface area, decreased chain density, and reduced chain length.

The fSASA of single-grafted nanoparticles was found to provide a predictive capability in terms of the equi-

librium phase of the corresponding bulk systems of nanoparticles. Furthermore, the relationships explored in

this work can likely be extended to other systems. For example, Asai et al. have shown that isotropic polymer

grafted nanoparticles can behave like Janus particles due to surface fluctuations [66]. Although the explicit

pattern patchy particles display may be challenging to replicate, the general principles that determine the

phase separation should be translatable to isotropic nanoparticles. While this work considered patches cre-

ated by exposed nanoparticle cores, this analysis could be easily adapted to capture systems where directional

attraction arises due to interactions between polymers. For example, we again note the close agreement be-

tween our work and that of patchy micelles formed from triblock copolymer building blocks [23]; we would

anticipate that a similar fSASA analysis of model systems could be used to predict the phase behavior.
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CHAPTER 6

High-Throughput Screening of Tribological Properties of Monolayer Films using Molecular

Dynamics and Machine Learning

6.1 Introduction

As feature lengths in micro- and nano- electromechanical devices (MEMs and NEMs) continues to decrease,

the surface area (Asurface) to volume ratio ( Asurface
V ) of these devices increases. As a result, the operation of

MEMs and NEMs devices tend to be dominated by surface effects as compared to their macroscale counter-

parts [1, 2], resulting in significant friction and wear (tribology). Traditional hydrocarbon-based lubricants

are too viscous to effectively lubricate MEMs/NEMs devices leading to the need to develop alternative lu-

brication strategies. As such, thin film coatings have emerged as a popular way to reduce the severity of

frictional effects in MEMs and NEMs [3]. Understanding and being able to minimize/engineer preferred

nanotribological effects is important to improve nanotechnology. To do this requires a molecular-level un-

derstanding of these surface and interfacial effects. With the ability of atomic force microscopy (AFM) to

inspect and investigate thin films, experimentalists can study and characterize nanotribological effects [4]

with increasing precision. Also, computational chemistry gives us unparalleled tunability and the ability to

isolate many molecular-level effects, especially in the field of nanotribology.

These thin film systems have many tunable parameters, from chain length, film composition, polymer

chemistry, and the structure and chemistry of the substrate material to name a few. This presents a rich

chemical parameter space to evaluate, which is extremely suitable for computational chemistry. Using com-

putational chemistry and tools to accelerate the design and implementation of this vast parameter space,

computational studies can accelerate the identification and molecular-level understanding of candidate thin

films faster and cheaper than attempting to do this through experimental means alone. In a similar effort

to the Materials Genome Initiative (MGI) [5], which leverages computational screening of many hard ma-

terials to pre-screen for potential candidate materials for experimental synthesis, being able to apply similar

approaches to thin films and other soft material designs could have massive impacts on nanotribology and

other disciplines. However, the computational study of soft materials (e.g., molecular liquids, polymers, and

other biomaterial that are easily deformed at relevant conditions and can only be described by an ensemble of

structures) is quite challenging to simulate compared to hard materials (e.g., crystals, alloys, salts, and other

materials which does not easily deform at biologically–relevant conditions). For example, in soft materials,

the intermolecular forces are of the same order of magnitude as the thermal motion (kBT , where kB is Boltz-

mann’s constant and T is the absolute temperature), in contrast to hard materials where the interatomic forces
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are much greater than kBT (typically resulting in crystalline structures). This means that for soft materials,

very long simulation times are needed to ensure proper thermodynamic sampling as well as quite large sys-

tems to capture the mesoscale order, drastically different to hard materials. Like the MGI, specialized tools

are necessary to better facilitate the screening and study of candidate soft matter systems. These tools need

to be readily available to computational chemists, expose many tunable parameters of the systems to support

screening, be extensible by others, and also promote and support reproducible soft matter simulations.

In this chapter 1 MoSDeF and the TRUE[8] principals are used to explore the scalable screening of soft

matter thin films for tribological properties. Then, predictive random forest (RF) models are developed to

explore the effect of the thin film coating terminal group chemistry and its effects on coefficient of friction (µ)

and the force of adhesion (F0). The work covered in this chapter span two journal articles [6, 7] and provides a

useful workflow for high throughput screening of soft matter films with non-equilibrium molecular dynamics

(NEMD).

6.2 Background

Monolayer films have shown promise as a means of reducing friction and wear of mechanical devices with

nanoscale surface separations (e.g., nano- and micro-electromechanical systems, NEMS and MEMS) [9,

10]. Such films are highly tunable through modification of their terminal group chemistries, backbone

chain length, backbone chemistry, and film composition, all of which have been demonstrated to impact their

tribological effectiveness along with other properties, such as durability, solvent interactions, and thermal

response [9–13]. This tunability presents a rich chemical parameter space that can be explored for the op-

timization of film properties as well as gleaning useful information about the quantitative structure-property

relationships (QSPR) of these systems, to develop better predictive models for design considerations [14,

15]. Of these various modifications, the chemical and physical characteristics (descriptors) of the terminal

groups plays a dominant role in the tribological response. For example, Yu et al. [12] showed that phenyl-

terminated monolayer thin films yield higher frictional forces than methyl-terminated films, explained by

the phenyl groups’ ability to twist and impede movement during shear (these can be thought of as structural

molecular descriptors according to QSPR) [14]. Hydroxylated and carboxylated thin films have been shown

to have high frictional and adhesive forces relative to methyl-terminated films, attributed to their ability to

form inter-monolayer hydrogen bonds during contact (physicochemical descriptors according to QSPR) [13,

1Reprinted with permission from (Summers, A. Z., Gilmer, J. B., Iacovella, C. R., Cummings, P. T. & McCabe, C. MoSDeF, a
Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships
in Lubricating Monolayer Films. Journal of Chemical Theory and Computation 0. PMID: 32004433, null. ISSN: 1549-9618. eprint:
https://doi.org/10.1021/acs.jctc.9b01183 [Mar. 0]), (Quach, C. D., Gilmer, J. B., Pert, D. O., Mason-Hogans, A., Iacovella, C. R.,
Cummings, P. T. & McCabe, C. High-Throughput Screening of Tribological Properties of Monolayer Films Using Molecular Dynamics
and Machine Learning. The Journal of Chemical Physics, 5.0080838. ISSN: 0021-9606, 1089-7690 [Feb. 2022]). Copyright 2022
American Chemical Society.
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14]. Similar trends found in molecular dynamics (MD) simulations further support these relationships[6, 16,

17]. Moreover, this interfacial region may feature not just a single terminal group chemistry but instead mul-

tiple chemistries. For example, experiments by Brewer et al. [13] demonstrated that a methyl-functionalized

microscope tip in contact with either hydroxyl or carboxyl terminated monolayers results in a lower coeffi-

cient of friction (COF) compared to the same tip in contact with a methyl terminated monolayer. Monolayers

composed of two or more terminal group chemistries within the same layer, at varied relative compositions,

may also provide a means to further tune and improve performance. For example, computational studies by

Lewis et al. [18] for monolayers composed of methyl terminated alkanes mixed with perfluoroalkanes showed

a regime where the COF was reduced compared to either pure component system. There are a multitude of

complex relationships between these various chemical/molecular descriptors when translated to monolayer

polymer systems as hinted at by Le et al. [14]

MD simulations are a useful tool to perform large-scale sweeps of the accessible parameter space to cre-

ate an in silico self-consistent data set. Computational examination avoids the need to develop experimental

synthesis techniques, which may be non-trivial and time intensive. Simulations can also more effectively

reveal the intrinsic properties associated with defect-free films on pristine contaminant-free surfaces. This

approach has been utilized to study and optimize various parameters describing the monolayer, such as back-

bone chain length and chain densities. Our recent development of the Molecular Simulation and Design

Framework (MoSDeF [19]) and the development of the Signac Framework[20–23] by Glotzer et al., enables

the large-scale screening of soft matter systems, allowing the reproducible initialization and parameterization

of systems, and the management of large dataspaces. These tools have been used to perform large scale

screening studies of soft matter systems in several recent papers [6, 24] as well as used to fully capture the

provenance of simulation workflows for increased reproducibility in other work [8, 25].

However, the vast parameter space to be explored for monolayer films would still make brute force com-

putational screening impractical. Instead, a promising approach is to combine computational screening with

machine learning (ML) techniques in order to accelerate and better direct the exploration of the parameter

landscape [6]. That is, use computational screening to gather sufficient data to train predictive ML models

(thus minimizing the number of computationally expensive simulations), and subsequently using the ML

models to predict the properties of new systems and guide the screening towards film chemistries with desir-

able properties. This approach has been utilized in other various studies with great success, such as develop-

ing predictive models that have errors lower than hybrid Density Functional Theory (DFT) methods [26, 27],

that learn and predict various protein folding events and structures [28–32], that use active learning to direct

iterative optimizations and uncover optimal targets like structures [33–37] and to accelerate the discovery

of novel monomers and polymers for favorable macroscopic properties [33, 38–43]. Different ML models

161



and techniques are applied but all demonstrate a useful approach to leverage in silico data from molecular

simulations and experimental data (when available). As the power of in silico data is further realized for ML

models and predictive design, being able to rapidly generate, screen, learn, and predict from these data will

be powerful tools for computational and experimental researchers alike.

In prior work, we developed a screening framework that enable computational screening studies to be

performed over a multitude of terminal group chemistries for contacting monolayers undergoing shear us-

ing non-equilibrium molecular dynamics (NEMD) simulations [6]. Uniform monolayers with 16 different

terminal group chemistries were examined, with each monolayer terminal group chemistry independently

varied, allowing key trends and several chemistry combinations that provided favorable tribological perfor-

mance, i.e., both low COF and low adhesion force (F0), to be identified. Furthermore, data from 100 different

monolayer terminal group combinations were used to develop, train, and test ML models that allow COF

and F0 to be predicted with good accuracy solely from the chemistry of the terminal groups expressed as

SMILES strings (discussed in detail in the Methods section). In addition, additional studies were performed

to evaluate the model’s predictive ability and extensibility to non-uniform terminal group monolayers. See

Section D.1 for a summary of the previous work related to chemically dissimilar films. The success of these

models, trained from a relatively small dataset, suggests that this approach can be used to prescreen com-

putational space and accelerate the identification of films with favorable properties, assuming the dataspace

is diverse enough to minimize the chance of overfitting. However, to determine if tribological performance

could be further improved —for example, by mixing terminal groups together within a film —several key

questions regarding the use of ML in a predictive capacity for monolayer films remain. Specifically, (1) what

is the minimal data set required in order to adequately train ML models for tribological properties; (2) how

transferrable are the ML models to systems with other chemistries and film compositions not included in the

training data; and (3) can the models be used to prescreen the design space and if so, what level of accuracy

can be achieved with a reasonable amount of training data?

To address these questions and further probe the tribological design space of thin films and the relation-

ships between terminal group chemistry, thin film composition, and tribology, here we consider systems in

which one monolayer consists of a single unique terminal group, and the other monolayer contains a mix

of two unique terminal groups, allowing the relative composition of the two groups to be varied. For these

designs, a pool of 19 different terminal groups were considered resulting in 9747 unique monolayer combina-

tions, when considering the mixing ratio of terminal groups in the mixed monolayer, as will be discussed in

detail in the Methods section and Figure 6.1. In the Methods section we provide an overview of the compu-

tational approach, focusing on the simulation workflow, analysis methods, and the ML model. In the results

section, we present the data generated from the MD screening and identify key terminal groups and combi-
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Figure 1. a) Simplified schematic of the systems studied. The top monolayer is a mixture of two types of terminal 
groups chemistries (A and B), studied at two different mixing ratios (25:75, 50:50), while the bottom monolayer 
is homogeneous (chemistry C). b) Depiction of the 19 different chemistries considered. From top to bottom, left 
to right, the terminal groups are amino, hydroxyl, methyl, acetyl, carboxyl, isopropyl, cyano, ethylene, methoxy, 
nitro, difluoromethyl, perfluoromethyl, cyclopropyl, pyrrole, phenyl, fluorophenyl, nitrophenyl, toluene, phenol. 

 

Figure 6.1: (a) Simplified schematic of the systems studied. The top monolayer is a mixture of two types
of terminal groups chemistries (A and B), studied at two different mixing ratios (25:75 and 50:50), while the
bottom monolayer is homogeneous (chemistry C). (b) Depiction of the 19 different chemistries considered.
From top to bottom, left to right, the terminal groups are amino, hydroxyl, methyl, acetyl, carboxyl, isopropyl,
cyano, ethylene, methoxy, nitro, difluoromethyl, perfluoromethyl, cyclopropyl, pyrrole, phenyl, fluorophenyl,
nitrophenyl, toluene, and phenol.

nations associated with improved tribological performance. We then develop and evaluate the dependence

of the ML models on the training set used, assessing the effectiveness of using a ML algorithm to predict

properties. Finally, we utilize the ML model to demonstrate the feasibility of screening large data spaces

(193,131 unique systems, created from 621 chemistries from the CheMBL library [44, 45]), investigating

suitable strategies for utilizing ML models to guide future work. All relevant information to reproducibly

generate this data and workflow is readily available and adaptable for others to use, following the principle of

TRUE (Transferable, Reproducible, Usable by others and Extensible) simulations described by Thompson et

al. [8] See Appendix D for more details.

6.3 Methods

6.3.1 Simulation Model and Workflow

In all cases, the simulated system consists of two opposing amorphous silica surfaces, each coated with an

alkylsilane monolayer film. Specifically, each surface has dimensions of 5x5nm2, constructed using the pro-

cedure outlined by Summers et al. [46], and available as an mbuild script provided in the supplemental

GitHub repository [47]. The silica surfaces have an average surface roughness of 0.11nm, closely approxi-

mating the more computationally intensive synthesis mimetic simulation approach by Black et al. [48] 100

alkylsilane chains are chemically bonded to each surface, with an in-plane surface density of 4 chainsnm−2;

this surface density is consistent with prior computational studies [6, 46, 48] and experiments [49–51] that

estimate chain surface densities to be between 4.0–5.0chainsnm−2. Each alkylsilane chain is composed of a

fully saturated 17 carbon backbone that is capped with a terminal group that can be easily varied computa-

tionally (see Figure 6.1b). The remaining undercoordinated oxygens at the surface are changed to hydroxyl

groups to mimic surface oxidation. Of the two surfaces in the dual monolayer systems, the bottom surface
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is homogeneous (singular terminal group), while the top surface contains a mixture of two types of alkylsi-

lane chains, differing by their terminal groups. The mixing ratios for the top monolayers considered in this

study are 25 : 75 and 50 : 50. The pool of 19 different terminal group chemistries investigated are shown in

Figure 6.1b; this adds 3 additional terminal group chemistries to those considered by Summers et al. [6] The

uniform bottom monolayer and the mixed top monolayer can be composed of any combination of groups

from Figure 6.1b, with the constraint that the two groups in the mixed monolayer must be different. In total

12,996 combinations ([19 terminal groups in uniform layer] * [19 * 18 terminal group combinations in mixed

layer] * [2 composition ratios]) were considered; this translates to a total of 116,964 simulations (12,996 * 3

* 3) when factoring in the composition ratios studied, the 3 normal loads, and 3 replicates considered for each

system. Of the 12,996 systems considered, 3249 systems with the mixing ratio in the top monolayer of 50 : 50

were duplicated during the screening and thus such combinations had 3 additional replicates; in total 9747

unique combinations (19∗19∗18 of 25:75 systems+ 1
2 ∗19∗19∗18 of 50:50 systems) were considered. We

also note that a small subset of simulations (less than 1% of the total) failed to complete due to unstable initial

configurations, but in all cases, each unique system composition reported includes at least 3 replicates.

Each monolayer system was prepared using the MoSDeF software suite[19, 52–55] (see Appendix D

for additional information). The initialization of the monolayer structure is encapsulated as an mbuild

recipe [53, 56], which preserves the entire process used to construct the monolayer structure. The foyer

library [52, 57] was used to atom type and parameterize each system with the Optimized Potential for Liquid

Simulation - All Atoms (OPLS-AA) forcefield[58]. Parameters for the alkylsilane chains were taken from

GROMACS 5.1 [59–61], and those for the silica surface from Lorenz et al [62]. The force field XML (ex-

tensible markup language) file used by foyer is provided in Appendix D and can be accessed from the

Supplemental Repository[47]. The project workflow as a whole was managed using the Signac Frame-

work [21, 22]. The use of MoSDeF in addition to the Signac Framework, ensures that all scripts and input

parameters used to initialize the systems, submit the systems for simulation, and analyze the systems are

captured and preserved, ensuring the simulations are TRUE (Transparent, Reproducible, Usable by Others,

and Extensible) [8]. All scripts and parameter files are available in the associated GitHub repository [47] (see

Appendix D).

MD simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) and GROMACS simulation engines [59, 61, 63, 64]. LAMMPS was solely used to relieve

the system of initial high-energy configurations and possible overlaps [63, 64]. The more stable structure

generated was then fed to GROMACS to perform the rest of the simulation workflow, starting with energy

minimization following a steepest descent algorithm, followed by a 1 ns equilibration in the canonical (NVT)

ensemble at 298K using the Nóse–Hoover thermostat[59, 61, 65]. An NVT simulation was then performed at
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298 K in which the two surfaces were brought into contact by applying a constant normal force of 5nN along

the z direction to the bottom surface over 0.5ns, allowing for the distance between the two surfaces to reach

a steady state. After compression, shearing simulations (with surfaces moving at relative speed of 10ms−1)

were performed at 3 different normal loads of 5nN, 15 nN, and 25 nN. Specifically, the shearing process is

simulated by pulling a ghost particle, which is coupled to the top surface via a harmonic spring with a spring

constant of 10,000kJmol−1 nm−2, in the x direction at 10ms−1. The shear is simulated for 10 ns, and the last

5 ns is used for analysis (production regime). The particle-particle particle-mesh (PPPM) algorithm was used

to calculate the long-range electrostatic interactions, using a force and pressure correction in the z-dimension

to support slab geometries; systems are periodic in the monolayer plane [61, 66].

6.3.2 Calculation of Tribological Properties

The coefficient of friction (COF), µ , and adhesion force, F0, were calculated from the last 5 ns of the simu-

lation trajectory for each system under shear using the modified version of Amonton’s law of friction given

by Equation 6.1. Here Ff , F0, µ , and FN represent the frictional force, the adhesive force, the coefficient of

friction, and the normal force, respectively [67]. A linear regression of the average friction force (ordinate)

versus normal load (abscissa) can be used to calculate the COF from the slope and F0 from the intercept of

the regression line with the ordinate axis. The friction force is calculated by summing all the forces in the

direction of shear on one of the monolayers every 1ps and averaged over the last 5ns of the simulation.

Ff = F0 +µFN (6.1)

6.3.3 Machine Learning Model

The dataset is analyzed using the random forest regressor as implemented in the scikit-learn library,

consistent with our prior work in Summers et al. [6, 68] Provided a training set, a set of input parameters

and expected outputs, the random forest ensemble model will create a series of decision trees, each generated

from a sub-sample of the training data set [69, 70]. The trained random forest model then makes predictions

by averaging the predicted values from the component decision trees. Each predictive model will rank the

importance of each of the input parameters based on how a given input affects the final prediction. This

ranking unveils information regarding properties that play an important role in predicting the tribological

properties of the monolayer (feature importance), making this method advantageous for screening/discovery

research. All of the random forest models in this study have 1000 trees, ensuring the predictions converge

in a reasonable amount of time[70]. In the forest, each decision tree is allowed to expand until all leaves are
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pure (choosing splits that decrease impurity defined by the Gini impurity). All models used mean squared

error (MAE) as error criterion during training. Each random forest model, and its subsequent decision trees,

are trained with 32–42 features, which are molecular descriptors calculated through RDKit[71]. This setup

is consistent with previous study by Summers et al. [6] allowing for direct comparison between these studies,

focusing on the accuracy of the models and feature importance ranking determined from the two sets of data.

An effort to optimize the parameters of the random forest model resulted in insignificant improvement in

model accuracy and thus the original values were retained for better comparability with prior work; further

details can be found in Appendix D (see Figure D.9–Figure D.11).

The chemical and physical input parameters for the ML model are supplied by the RDKit cheminfor-

matics library [71]. The COF and F0 calculated from the simulations are the expected outputs (i.e., targeted

properties) for the random forest ensemble to predict. The training procedure of these predictive models is

adapted from that described in previous work [6]. Briefly, each of the systems in the training set can be

represented by a set of SMILES strings [72], describing the terminal group chemistry. Each terminal group

is represented by two SMILES strings: one of a hydrogen capped structure and one of a methyl capped

structure. The SMILES strings are used to calculate molecular descriptors that characterize the chemical and

physical properties of chemical structures, via the RDKit [71] cheminformatics library. These descriptors

fit into four categories: size (e.g., molecular weight), shape (e.g., inertial shape factor), complexity (e.g.,

degree of branching), and charge distribution (e.g., topological polar surface area). The SMILES string of the

hydrogen- capped terminal group is used to calculate descriptors relating to shape, while the SMILES string

of the methyl-capped terminal group is used to calculate the remaining descriptors. While shape characteris-

tics can be sufficiently modeled with a hydrogen-capped structure, properties that involve charge distribution

among others are better represented if they mimic the actual structure the terminal groups are attached to; a

methyl terminus was found to be a sufficient approximation of the alkyl chain for these measurements [6].

Through this process, each chemical structure is represented by 53 descriptors, summarized in Appendix D

(see Table D.19). The molecular descriptors for the top and bottom monolayers are first calculated indepen-

dently. Descriptors for the top monolayer, with two terminal groups, are the weighted average (by relative

composition) of its component terminal groups’ descriptors, while descriptors for the bottom monolayer are

the molecular descriptors of its singular terminal group. This representation can have limitations when used

to describe monolayers, since it does not encode information regarding connectivity of constituent chains and

distribution pattern [73]. However, since we are mainly interested in the contribution of different terminal

group chemistries, making up the intermonolayer regions/interfaces, our method of calculating the molecu-

lar descriptor “fingerprint” was found to be sufficient to encapsulate information for the region of interest,

with an assumption that the two terminal groups in the top monolayer are randomly distributed. These are
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then combined, storing the mean and minimum of each descriptor as the “molecular fingerprint” of the entire

system, totaling 106 descriptors ([53 metrics]*[2 corresponding to min and mean]), which has been demon-

strated in previous work to encapsulate the most important features of these systems [6]. These “molecular

fingerprints” later undergo a dimensionality reduction step that removes descriptors whose values have low

variance and reduces highly correlated descriptors. Specifically, descriptors whose values are at least 90%

correlated will be reduced to only one attribute (descriptors are sorted alphabetically), while descriptors

whose variance is below 2% are also removed. This step reduced the number of descriptors (or effective fin-

gerprint) of each system to be between 32 and 45, with a mean of 37 ±3. The number of effective fingerprint

descriptors decrease as the size of the training data increase, since some correlations may not manifest with

a smaller data set. This dimensionality reduction process is consistent with that used in Summers et al. [6]

using the source code hosted in a GitHub repo [74]. The reduced list of molecular descriptors are then used as

the input parameters to the ML models. The process of determining molecular “fingerprint” of each system

is summarized in Figure 6.2.
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Figure 2. Process of generating the molecular descriptors (fingerprints) of the dual monolayer systems. 
Component terminal group chemistries of each top and bottom monolayer are represented by an H-terminated 
and methyl (CH3)-terminated SMILES string, which can be used by RDKit to calculate corresponding molecular 
descriptors. For this study, we consider a total of 53 descriptors (listed in Table S1 is the SI), which can be 
grouped into 4 categories, namely, shape, size, charge distribution, and complexity. The weighted averages of 
these descriptors are then calculated to represent their corresponding surface, which in turn, will be used to 
determine the fingerprint of each system. Figure adapted from Summers et al [8]. 
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Figure 6.2: Process of generating the molecular descriptors (fingerprints) of the dual monolayer systems.
Component terminal group chemistries of each top and bottom monolayer are represented by an H-terminated
and methyl (CH3)-terminated SMILES string, which can be used by RDKit to calculate corresponding
molecular descriptors. For this study, we consider a total of 53 descriptors (listed in Table D.19), which
can be grouped into four categories, namely, shape, size, charge distribution, and complexity. The weighted
averages of these descriptors are then calculated to represent their corresponding surface, which, in turn, will
be used to determine the fingerprint of each system. Figure adapted from Summers et al. [6]

The total simulation data set is split into subsets as shown graphically in Figure 6.3, as a means of

examining different aspects of the training and transferability of ML models. In all cases, the data are split

such that approximately 20% of the data are reserved for testing purposes, while the remaining 80% are

used for training the model. When considering all composition ratios, the training and test sets are labeled

total-train and total-test, respectively. We note that the most favorable systems, defined as those with both

low COF and F0 values, of the entire simulation dataset (see Table 6.1) are included in the total-test set

and removed from the training procedure. This allows us to evaluate the ML models’ ability to re-identify

these systems from a test set, which will be explored in the body of this work. As shown in Figure 6.3, the

dataset can be further broken down by composition ratio, with the 50:50 and 25:75 mixing ratios considered
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Figure 3. Summary of the data splitting process. The MD simulation data are split into two subsets: a total-test 
set (20% of the data set) and a total-train set (80% of the data set). The testing set is subdivided to create the 
5050-test and 2575-test sets. The training set is also subdivided to create the 5050-train and 2575-train sets. 

Figure 6.3: Summary of the data splitting process. The MD simulation data are split into two subsets: a
total–test set (20% of the dataset) and a total–train set (80% of the dataset). The testing set is subdivided
to create the 5050–test and 2575–test sets. The training set is also subdivided to create the 5050–train and
2575–train sets.

separately, e.g., 5050-test/5050-train and 2575-test/2575-train. To examine the role of training set size on the

performance of the ML model the total-train and 5050-train sets are further subdivided to create training sets

with fewer data points. Since COF and F0 of these films have been shown to have little correlation [6], they

are considered independently in the development of the ML models. To ensure that that the entire range of

COF and F0 are being properly sampled (Figure 6.4), each training set is binned based upon the values of the

COF or F0 into 10 equal size quantiles. Data are then randomly selected from each bin to create training sets
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Figure 4. Distribution of a) COF and b) F0 for systems considered in this study, obtained from MD simulations. Figure 6.4: Distribution of (a) COF and (b) F0 for systems considered in this study, obtained from MD
simulations.

of varying size. For each training set size, 5 variations are created that differ only by the random seed used

when sampling from the corresponding master training set, e.g., total-train and 5050-train. Distributions of

individual training sets are examined to ensure that they resemble the distribution of the full data set. Each

training set is then used to train and create a predictive ML model that predicts either COF or F0.
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6.3.4 Results

Considering first the results of the high throughput screening MD simulations, including those performed in

the current study and in Summers et al. [6], we identify 22 monolayer designs that provide favorable frictional

properties, e.g., those that have low simulated COF and F0 values (see Table 6.1 and Figure 6.5). This list was
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Figure 5. Distribution of simulated systems based on their COF and F0 values. The 22 most-favorable systems, 
listed in Table 1, corresponds to data points confined within the red dashed box in the lower left quadrant of the 
figure. 

 

Figure 6.5: Distribution of simulated systems based on their COF and F0 values. The 22 most–favorable
systems, listed in Table 6.1, correspond to data points confined within the red dashed box in the lower left
quadrant of the figure.

created by the intersection of the best 500 systems ranked from lowest to highest COF (values ranging from

0.074 to 0.114) with the best 500 systems ranked from lowest to highest F0 (values ranging from 0.007 nN

to 0.541 nN). We first note that, in general, these designs are in agreement with the conclusion obtained by

Summers et al. from a study of a considerably smaller dataset, where it was noted that the COF of monolayers

is primarily affected by the shape and size of the terminal group, with chemistries of small sizes and simple

shapes (e.g., sp hybridization) exhibiting the lowest COF [6]. Summers et al. also noted that the F0 is most

strongly affected by charge distribution, with polarity and hydrogen bonding both increasing the F0 [6]. In

agreement with these findings, we observe that a majority of the systems identified (19 out of 22) consists

of a cyano homogeneous monolayer. The cyano group is small in size, has sp hybridization and does not

readily form hydrogen bonds, characteristics that fit with previous work to identify chemistries that can lower

the COF and F0 of monolayers. We also note most systems in Table 6.1 are made up of 3 components and

only one system that consists of two homogeneous monolayers (System 1 in Table 6.1), which was simulated

in the Summers et al. work [6]. This result suggests a slight advantage to having mixed monolayer designs.

However, we also recognize that the data set is dominated with mixed monolayers compared to homogeneous
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monolayers, therefore the best performing systems are likely the result of the much larger representation of

mixed monolayer systems compared to the homogeneous systems. Nonetheless, mixed monolayer systems

could provide extra flexibility during the design process and allow for the optimization of other properties,

such as thermal stability or environmental interactions, depending on the specific application, giving these

designs advantages over homogeneous monolayers.

Using the simulation data, we now explore combining ML techniques with MD simulations to perform

high-throughput screening of monolayer systems. In Summers et al., the random forest regressor algorithm

was applied to create predictive ML models to estimate the frictional properties of alkylsilane monolayers

capped with different terminal group chemistries [6]. The ML models were trained on simulation data for

homogeneous monolayers with 16 distinct terminal groups, resulting in a relatively small data set, containing

only 100 data points. The models were then applied to a test set and compared to the COF and F0 results ob-

tained for the same systems directly from MD simulation to determine the accuracy of the ML models. This

comparison can be readily visualized by plotting the tribological properties obtained from the ML models

against the values calculated from the MD simulations; the coefficient of determination (R2) and the mean

absolute percentage error (MAPE) of the plots are used to quantitatively measure the accuracy of the ML

predictions. The R2 is commonly used/reported to quantify the correlation between the simulated and pre-

dicted values, and MAPE provides error metrics that scale by the prediction values[75]. Using the additional

simulation data generated herein, we can now better assess the feasibility of using ML to predict tribological

properties and determine the amount of data necessary to create models that can make sufficiently precise

estimations, as described below.

We first train a new set of ML models using 1000 data points from the 5050-train set. The models are

then applied to the 5050-test set and, as described in the Methods section, compared to the COF and F0 re-

sults obtained directly from the MD simulations in order to determine the accuracy of the ML models (see

Figure 6.6). Results for the ML models trained with the Summers et al. [6] data set applied to the 5050-test

set are also shown for comparison. When applied to the same testing set, the Summers et al. [6] models

provide R2 values of 0.472 and 0.657 for COF and F0 respectively, compared to 0.822 and 0.899 for COF

and F0 from the 5050-train set. While the R2 values are lower for the Summers et al. ML models, it is worth

noting that the training data set did not include any information regarding mixed monolayer compositions;

as such, the Summers et al. ML models still demonstrate impressive efficacy. This point is further demon-

strated by their MAPE, where the Summers et al. models could predict COF of system with 0.056 (5.6%)

error and predict F0 with 0.266 (26.6%) error. These MAPE values are higher but are still comparable with

those produced by the new set of models, trained with 10-fold amount of data. Clearly our prediction of F0 is

less accurate in the higher adhesion regime than the lower adhesion regime, as seen in Figure 6.6b and Fig-
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Figure 6. Predicted-versus-simulated plots for COF and F0 for models trained with 100 simulation data points for uniform 
monolayers from Summers et al. [8] data set (a and b) and trained with 1000 data points randomly chosen from the 5050-train 
set (c and d). The dotted line in the middle represents perfect prediction (y = x). The outer two lines represents the 15% variation 
from a perfect prediction (y = 1.15x and y = 0.85x). The coefficient of determination (R2) and mean absolute percentage error 
(MAPE) are included. For each system (data point), the predicted properties are averaged from the 5 predictions made by the 5 
ML models replicate, and the simulated properties are averaged from at least 3 simulations replicate. 

Figure 6.6: Predicted-versus-simulated plots for COF and F0 for models trained with 100 simulation data
points for uniform monolayers from the dataset of Summers et al. [6] (a) and (b) and trained with 1000 data
points randomly chosen from the 5050-train set (c) and (d). The dotted line in the middle represents perfect
prediction (y = x). The outer two lines represent the 15% variation from a perfect prediction (y = 1.15x and
y = 0.85x). The Coefficient of determination (R2) and mean absolute percentage error (MAPE) are included.
For each system (data point), the predicted properties are averaged from the five predictions made by the five
ML model replicates, and the simulated properties are averaged from at least three simulation replicates.

ure 6.6d, as was also observed in the prior work of Summers et al. [6] This is likely related to the challenges

associated with capturing the ability of systems to form hydrogen bonds between contacting layers, although,

since our primary goal in this work is to identify systems with low adhesion values, quantitative agreement

in the higher adhesion regime is not required, as previously discussed in Summers et al. [6] Nonetheless, this

result suggests that ML models trained with limited data could still provide meaningful estimation, and that

the use of the random forest regressor may lead to models that are predictive for chemistries and composi-

tions outside of the training set. It should be noted, however, that this relationship could be solely related

to these monolayer systems and specifically to non-equilibrium shearing and may not be applicable to other

non-equilibrium studies. The prediction deviation plots for these models are shown in Figure 6.7. In general,

we see that for lower values of COF or F0, both models deviate slightly in the positive direction, meaning

they predict a slightly higher value compared to simulation; as the value of either COF or F0 increases, a

negative deviation is observed with the ML models predicting slightly better performance than is observed in

the MD simulations (see Figure 6.7a, b). This skew in the predictions suggests that for favorable tribological

conditions (i.e., low COF and low F0), the model will tend to overestimate the values, thus reducing the like-

lihood of incorrectly identifying poor performing films as viable options. This trend appears to be correlated
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Figure 7. Deviations in predictions of COF and F0 from ML models trained with 100 simulation data points for 
uniform monolayers from Summers et al. [8] (a and b) and trained with 1000 simulation data points randomly 
chosen from the 5050-train set (c and d).  

Figure 6.7: Deviations in predictions of COF and F0 from ML models trained with 100 simulation data points
for uniform monolayers from Summers et al. [6] [(a) and (b)] and trained with 1000 simulation data points
randomly chosen from the 5050–train set [(c) and (d)].

to the size and distribution of the training set provided, with the trend becoming less apparent as the size of

the training data set is increased (see Figure 6.7c, d). Given that this behavior of the model minimizes the

chances of exaggerating the performance of high performing systems (i.e., those with low COF and F0), this

suggests the predictive ML models can be more confidently used to screen over potential film candidates for

possible applications. We also note that while the R2 values for COF models are substantially smaller than

those of F0 models, which might suggest the latter models outperform their COF counterparts, their MAPE

values indicate the opposite, where the F0 models exhibit significantly greater percentage errors. This dispar-

ity could be attributed to the difference in the range of these two properties; while COF values span a small

range of values from roughly 0.085 to 0.2, F0 can take values from 0 nN to 8 nN (see Figure 6.4), which

may affect how these metrics are calculated. Hence, it is important to recognize that that neither R2 or MAPE

values can directly relate to the predictive ability of the COF and F0 models, though they can still be used to

compare the performance of ML models of a similar type. Comparison of the feature importance of the two

models at this point can be misleading, since the two set of models are trained with feature vectors of various

size and components, as discussed in the Methods section. An extensive comparison feature importance of

different models in this study is further discussed in Appendix D (see Figure D.12–Figure D.15).

We further examine the quality of the ML model estimations as a function of training set size by gradually

increasing the amount of data used to train the ML models. We start with only using data from the 5050-train
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set; by doing so, we can later evaluate the transferability of the model to the 25:75 systems, i.e., can these

predictive models provide similarly precise estimation of the frictional properties of systems with different

designs. The R2 and MAPE values for models trained on data sets of increasing size from the 5050-train set

are reported in Figure 6.8. The results for each data set size are calculated from 5 models, each differing by
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Figure 8. Correlation between the amount of data in the training data set (N) and the predictive ability of the models 
trained using the 5050-train sets when applied to the 5050-test set to predict the COF (blue, circle) and F0 (red, 
square) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond to its respective 
property in the key, show the predictive ability of the models trained using the Summers et al. [8] data set. For each 
data point, the metric (R2/MAPE) are averaged from metric of individual ML models (5 replicates) when applied 
to the test set. The error bar of each point represents the standard deviation of the 5 ML models, each trained with 
different combinations of data. 

 

Figure 6.8: Correlation between the amount of data in the training dataset (N) and the predictive ability of the
models trained using the 5050–train sets when applied to the 5050-test set to predict the COF (blue circles)
and F0 (red squares) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond
to its respective property in the key, show the predictive ability of the models trained using the dataset of
Summers et al. [6] For each data point, the metrics (R2/MAPE) are averaged from the metric of individual
ML models (five replicates) when applied to the test set. The error bar of each point represents the standard
deviation of the five ML models, each trained with different combinations of data.

the random seeds used when sampling from the 5050-train set, and the standard deviation of the predictions

of the 5 models are represented as error bars. The R2 and MAPE of estimations made by the Summers et

al. [6] models are also shown in dotted lines for reference. From Figure 6.8a, we can see that the accuracy

of the ML model predictions improves rapidly as the training set size is increased, with the ML predictions

roughly plateauing between 1000 and 1500 data points for which the R2 values for COF are 0.799 ±0.007

and 0.835 ±0.011 and for F0 are 0.885 ±0.001 and 0.907 ±0.007, respectively. Similarly, in Figure 6.8b, the

MAPE of both COF and F0 models also decrease gradually from 0.0546 ±0.003 (5.46% ±0.3%) for COF

and 0.259 ±0.016 (25.9% ±1.6%) for F0 at 100 data points, and level off near 1000 data points, at 0.0339

±0.001 (3.39% ±0.01%) for COF and 0.175 ±0.003 (17.5% ±0.3%) for F0. While the predictive ability of the

models does increase with the size of the training set beyond 1000 datapoints, the gains in accuracy are much

less significant, suggesting one could achieve sufficiently accurate ML models even with a modest amount

of data. We now examine the transferability of the ML algorithms in terms of their ability to predict the

frictional properties of systems with different designs, i.e., systems with a different mixing ratio on the top

monolayer in the testing set than in the training set. Results from applying the ML models described above,

trained solely with data from the 5050-train set and the Summers et al. data set, on the 2575-test set are

reported in Figure 6.9. From Figure 6.9a, we observe that the R2 values for COF and F0 increase rapidly

before plateauing, again at a training set size of approximately 1000 points, with values of 0.647 ±0.001 and

0.848 ±0.007 for COF and F0, respectively. Similar trends are observed in Figure 6.9b, where the MAPE
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Figure 9. Correlation between the amount of data in the training data set (N) and the predictive ability of the 
models trained using the 5050-train sets when applied to the 2575-test set to predict the COF (blue, circle) and F0 
(red, square) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond to its 
respective property in the key, show the predictive ability of the models trained using the Summers et al. [8] data 
set. For each data point, the metric (R2/MAPE) are averaged from metric of individual ML models (5 replicates) 
when applied to the test set. The error bar of each point represents the standard deviation of the 5 ML models, each 
trained with different combinations of data. 

 

 
 

Figure 6.9: Correlation between the amount of data in the training dataset (N) and the predictive ability of the
models trained using the 5050-train sets when applied to the 2575-test set to predict the COF (blue circles)
and F0 (red squares) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond
to its respective property in the key, show the predictive ability of the models trained using the dataset of
Summers et al. [6] For each data point, the metrics (R2/MAPE) are averaged from the metric of individual
ML models (five replicates) when applied to the test set. The error bar of each point represents the standard
deviation of the five ML models, each trained with different combinations of data.

of both COF and F0 models rapidly decrease up until1000 data points before leveling-off, with an error of

0.0521 ±0.0 (5.21% ±0.0%) for COF and 0.26 ±0.003 (26.0% ±0.3%) for F0. While the accuracy is lower,

i.e., lower R2 and higher MAPE, than that observed for the 5050-test set (see Figure 6.8), the agreement is

promising, considering the ML models were not trained with data at these composition ratios. The plateau

of the accuracy of the models is important, as it shows that improvements in accuracy of the models with

larger data sets (as seen in Figure 6.9) do not necessarily manifest themselves when the model is transferred

to compositions outside of the original training set. Moreover, from Figure 6.8 and Figure 6.9, we notice the

5050-train models trained with 100 data points also exhibit slightly better accuracy than the model trained

with Summers et al. [6] data set, likely due to the inclusion of mixed-monolayer systems in their training sets.

We note, for random forest regressors, the variety of data is more important in determining the quality of the

predictions compared to the amount of data beyond a certain point, which is dependent on the complexity of

the systems of interest; this point is further examined for the specific systems studied herein in Appendix D

(see Figure D.16–Figure D.18). That is, there may be limited utility in using large training sets when trying

to develop ML models to prescreen systems outside of the design space of the original training set. However,

generating a set of systems with well distributed properties can be challenging and hard to estimate a priori,

and hence may require more thoughtful design of the initial screening space as well as a more active learning

approach to direct the screening space as the initial data is used to train the models. The results in Figure 6.9

suggest that the ML models are likely effective in predicting frictional properties of systems with design

variations, i.e., despite the noticeable decline in performance the models could likely be used as a high-level

screen to sieve the parameter space. To further examine the capability of ML models in shortening the list

of potential candidates to be simulated/synthesized, we examine the ability of the models to identify systems
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that exhibit favorable tribological performance (i.e., low COF or F0). To quantify the ability of the model

to predict favorable solutions, we calculate the intersection of the top performing systems predicted by the

ML model and those via simulation; an ideally performing ML model would be able to identify all of, or

a majority of, the best performing systems determined through simulation. The ability of the ML model

to accurately predict the systems with the favorable properties can be considered to be proportional to the

percentage of the overlapping systems compiled from MD simulation and ML prediction. An overlap of

100% indicates complete agreement between the two methods, i.e., ML and MD, while a low overlap value

indicates lower agreement, and by extension, poorer predictive ability of the ML models. We note that this

metric describes the ability of the ML model to accurately capture relative differences between systems of

interest and does not necessarily require quantitative agreement between the ML model and corresponding

MD simulations.

First, we first consider the ability of 5050-train models in determining the best performing systems in

the 5050-test set in Figure 6.10a. Systems in the set are first sorted separately, by the numerical value of
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Figure 10. Intersection between the top 15% performing systems predicted by ML models, at various training set 
size, and top 15% performing systems calculated by MD simulations (in silico data) of the 5050-test set (a) and 
the 2575-test set (b). The systems are ranked by COF (blue, circle) or F0 (red, square). The dashed, horizontal 
lines, colored to correspond with its respective property, show the predictive ability of the models trained using 
the Summers et al. [8] data set. 

 
 
 

 

Figure 6.10: Intersection between the top 15% performing systems predicted by ML models at various
training set sizes and top 15% performing systems calculated by MD simulations (in silico data) of the 5050–
test set (a) and the 2575–test set (b). The systems are ranked by COF (blue circles) or F0 (red squares). The
dashed, horizontal lines, colored to correspond with its respective property, show the predictive ability of the
models trained using the dataset of Summers et al. [6]

their COF and F0 calculated from the simulations; the top 15% of these systems (i.e., systems with the

lowest COF or F0 values) of each set are considered, corresponding to 100 chemistries for 5050-test and 193

for 2575-test. These lists are then compared to the top 15% of systems predicted by the ML models, as a

function of training set size, and the overlapping percentages are calculated. For COF, as the training set

size of the model increases, so too does the fraction of top performing solutions predicted, achieving 74.4%

±0.8% accuracy for models trained using 1000 data points and 83.0 ±0.9% accuracy for models trained with

2500 systems; adhesion shows a weaker dependence on training set size, reaching 67.6% ±1.1% at 1000 data

points and 71.2% ±1.2% at 2500 data points (see Figure 6.10a). Putting these results into perspective, if we

had utilized the 5050-train model of 1000 data points to predict systems with the best performing properties

from the 5050-test set and only simulated those in the top 15%, we would have reduced the total number
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of additional screening simulations by 85%, while still identifying 74.4% of the best performing systems as

ranked by COF, or 83% of the best performing systems ranked by F0. On the other hand, if we reduced the

number of systems to be simulated at random, we would only expect to detect 15% of the best performing

systems, ranked by COF or F0. In other words, this approach can significantly increase the odds of finding

systems with the top performing tribological properties. We conduct the same analysis of the ability of the

ML models to identify the best performing systems in the 2575-test set, i.e., focusing on the transferability of

the models, and show the results in Figure 6.10b. We observe predictions with an accuracy of roughly 61%

for both the best performing systems ranked by COF or by F0, almost independent of training set size (see

Figure 6.10b). Even though these accuracies are not as high as the models used on the 5050-test set, they

are still considerably higher than the 15% accuracy we would have expected if selecting systems at random.

This suggests reasonable efficacy of using this approach to prescreen design space. Even for models trained

with limited amounts of data, i.e., models trained with 500 data points whose accuracies are 61.3% ±1.3%

for COF models and 62.3% ±2.0% for F0, the predictions made should still be useful enough for prescreening

and provide focused guidance to perform the next round of simulations, while reducing the computational

costs substantially.

In Figure 6.10 we have compared an equipercentile of the top performers determined through different

techniques, i.e., MD and ML. This approach, however, can potentially result in missing out in potential

candidates, e.g., a model that has an accuracy of 60% in determining the true best 15% systems will miss

potentially 40% of the candidates. In practice, considering a larger list of top performing systems proposed

by the ML models is likely to increase the number of top performers identified in the given parameter space.

This is especially relevant for a quantity such as COF, where the overall numerical range is relatively small,

e.g., for 5050-test the top 15% of systems range from 0.0972 ±0.016 to 0.121 ±0.010 and the top 30%

increases the upper bound very modestly to 0.129 ±0.008. For F0 the range for the top 15% is 0.216 ±0.377

nN to 0.779 ±0.135 nN, with the upper bound increases to 1.002 ±0.171 for the top 30%. For 2575-test the

values are similar where the top 15% for COF ranging from 0.090 ±0.012 to 0.122 ±0.014, with the upper

bound increasing to 0.130 ±0.011 for the top 30%. For F0, 0.085 ±0.462 nN to 0.706 ±0.410 for 15%, with

the upper bound increasing to 0.951 ±0.436 when considering the top 30%. Figure 6.11 plots the overlap

between the top 15% systems (MD data), ranked by their simulated tribological properties and the top 30%

performing systems predicted by the 5050-train models. This set up demonstrates a significant increase

in accuracy in predicting the best performing systems in both test sets. Specifically, in Figure 6.11a, the

accuracy of predicting top performing systems starts at 78.0% ±7.5% and 92.4% ±2.1% (for models trained

with only 100 data points) to 91.6% ±2.1% and 97.0% ±0.6% (for models trained with 1000 data points) when

predicting top systems ranked by COF and F0, respectively. In Figure 6.10b, the overlap percentages start at

176



 12 

 

 

 

 

 

 

Figure 11. Intersection between the top 15% performing systems predicted by ML models, at various training set 
size, and top 30% performing systems calculated by MD simulations (in silico data) of the 5050-test set (a) and 
the 2575-test set (b). The systems are ranked by COF (blue, circle) or F0 (red, square). The dashed, horizontal 
lines, colored to correspond with its respective property, show the predictive ability of the models trained using 
the Summers et al. [8] data set. 
 

Figure 6.11: Intersection between the top 15% performing systems predicted by ML models at various
training set sizes and top 30% performing systems calculated by MD simulations (in silico data) of the 5050–
test set (a) and the 2575–test set (b). The systems are ranked by COF (blue circles) or F0 (red squares). The
dashed, horizontal lines, colored to correspond with its respective property, show the predictive ability of the
models trained using the dataset of Summers et al. [6]

72.8% ±6.7% and 85.1% ±2.1% (for models trained with 100 data points) to 84.1% ±1.6% and 88.5% ±1.1%

(for models trained with 1000 data points). In other words, by considering the top 30%, the ML models can

reduce the number of additional systems to be considered by 70%, while being able to accurately predict

the bulk of the best performing systems, regardless of the mixing ratio and even for very small training set

sizes. These results also present other criteria to consider in terms model accuracy and computational cost

in terms of using ML models to prescreen a dataspace, as these results show that it may be more efficient

to train a model with fewer datapoints but consider a larger range of predictions from the ML model (e.g.,

simulating the top 30% predicted by the ML model). These results suggest a general approach combining ML

techniques with MD simulations, namely simulating a small set of systems, e.g., about 5-10% of systems in

the design space, using the simulation results to train predictive ML models, and then utilizing the ML models

to screen over a wider range of potential systems, determining systems worthy of further investigation. Such

an approach could drastically minimize the number of total simulations needed, decrease the throughput time

to scan the parameter space, enabling higher quality candidates to be screened much faster.

Thus far we have considered models trained only using the 5050-train data. One would assume that

accuracy could be improved by training the models on a data set that also included those systems in the 2575-

train data set (i.e., using the total-train set). Figure 6.12 plots the scaling for R2 (Figure 6.12a) and MAPE

(Figure 6.12b) as a function of training set size when sampled from the total-train set and applied to the total-

test set. As seen earlier, the rapid increase in accuracy occurs as the training set size is increased to 1000 data

points; the improvements in adhesion are relatively minimal beyond that point, although considerable gains

are observed for COF, with both measures attaining an R2 value of >0.9 for a training set of size 7816 (see

Figure 6.12a). We also observe similar trends for MAPE in Figure 6.12b, where the error quickly drops from

0.0593 ±0.001 (5.93% ±0.1%), for COF predictions, and 0.324 ±0.033 (32.4% ±3.3%), for F0 predictions,
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Figure 12. Correlation between the amount of data in the training data set (N) and the predictive ability of the 
models trained using the total-train sets when applied to the total-test set to predict the COF (blue, circle) and F0 
(red, square) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond to its 
respective property in the key, show the predictive ability of the models trained using the Summers et al. [8] data 
set. For each data point, the metric (R2/MAPE) are averaged from metric of individual ML models (5 replicates) 
when applied to the test set. The error bar of each point represents the standard deviation of the 5 ML models, each 
trained with different combinations of data. 
 

Figure 6.12: Correlation between the amount of data in the training dataset (N) and the predictive ability
of the models trained using the total–train sets when applied to the total–test set to predict the COF (blue
circles) and F0 (red squares) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to
correspond to its respective property in the key, show the predictive ability of the models trained using the
dataset of Summers et al. [6] For each data point, the metrics (R2/MAPE) are averaged from the metric of
individual ML models (five replicates) when applied to the test set. The error bar of each point represents the
standard deviation of the five ML models, each trained with different combinations of data.

at 100 data points to 0.023 ±0.0 (2.30% ±0.0%) for COF predictions, and 0.179 ±0.0 (17.9% ±0.0%) for F0

predictions, at the maximum number of training data (7816). Focusing on the models trained with 1000 data

points, predictions from the total-train set ML models applied to the total-test set achieve R2 values of 0.701

±0.005 for COF and 0.888 ±0.005 for F0, which are slightly lower than the values obtained for the models

trained with the 5050-train set when applied on the 5050-test set (see Figure 6.8). This may appear to indicate

that this set of ML models require more data to attain a similar level of predictive ability, especially for COF

models. However, it is worth noting that these evaluations are done on two test sets of differing size and

composition. Moreover, the 5050-test set is a strict subset of the total-test set, so the latter includes a wider

range of systems, and hence is deemed more challenging for the ML models. Thus, the relative performance

of these models could not be directly compared at this point.

To evaluate the accuracy of using the total-train models for prescreening parameter space, i.e., their ability

to determine best performing systems, we again calculate the agreement between the top 15% performing

systems (398 total systems) from the total-test set as determined by Figure 6.13. Intersection between the (a)

top 15% performing systems, ranked by COF (blue, circle) or F0 (red, square) or combined (purple, cross),

of the total-test set determined from MD simulations and predicted by ML models trained with the total-train

sets. The overlapped fraction of most-favorable systems is determined by comparing those predicted by ML

models against those listed in Table 6.1. The error bar of each point represents the standard deviation of

the 5 ML models, each trained with different combination of data. The dashed, horizontal lines, colored to

correspond with its respective property, show the predictive ability of the models trained using the Summers

et al. [6] data set.

MD simulations and the top 15% and 30% top performing systems predicted by our ML models, plotted
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in Figure 6.13a and b. In Figure 6.13a, we see a steady improvement in the accuracy of the COF predictions
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Figure 13. Intersection between the (a) top 15% performing systems, ranked by COF (blue, circle) or F0 (red, 
square) or combined (purple, cross), of the total-test set determined from MD simulations and predicted by ML 
models trained with the total-train sets. The overlapped fraction of most-favorable systems is determined by 
comparing those predicted by ML models against those listed in Table 1. The error bar of each point represents the 
standard deviation of the 5 ML models, each trained with different combination of data. The dashed, horizontal 
lines, colored to correspond with its respective property, show the predictive ability of the models trained using the 
Summers et al. [8] data set. 

Figure 6.13: Intersection between the (a) top 15% performing systems, ranked by COF (blue circles) or
F0 (red squares) or combined (purple crosses), of the total–test set determined from MD simulations and
predicted by ML models trained with the total–train sets. The overlapped fraction of most-favorable systems
is determined by comparing those predicted by ML models against those listed in Table 6.1. The error bar of
each point represents the standard deviation of the five ML models, each trained with different combinations
of data. The dashed, horizontal lines, colored to correspond with its respective property, show the predictive
ability of the models trained using the dataset of Summers et al. [6]

as nearly 8000 data points in the training set are used, achieving an overlapping of 84.2% ±0.3%; F0, exhibits

a similar trend observed previously in Figure 6.9b, with little dependence on training set size beyond 1000

points, maintaining an overlapping value of approximately 63%. Hence, increasing the number of data points

to train the ML models can have a positive effect on the predictive ability for some properties, but the large

amount of training data needed to improve accuracy may ultimately negate potential performance gains in

terms of screening. Recall that for a training set size of 1000 data points, the 5050-train model could predict

>65% of high performing 50:50 systems and >60% of high-performing 25:75 systems, ranked by either

COF or F0 when conducting similar analyses (see Figure 6.10). In Figure 6.13b, we perform similar overlap

analyses with an extended list of top performing systems predicted by the ML models (top 30%). When

determining top COF/F0 systems, we observe that the overlapping fraction rapidly increases to above 80% at

N=500, and subsequently plateaus, displaying minimal increase in their accuracy past this point, similar to

what was previous observed in Figure 6.10. We now consider a new metric, most-favorable systems, defined

as those with both low COF and F0. This list of favorable systems is generated from the intersection of the top

15% (Figure 6.13a) or 30% (Figure 6.13b) of systems ranked by their predicted COF and F0 values. This list

is compared directly to those in Table 6.1 to determine their overlapping fraction, which indicates the ability

of the ML models to identify the most-favorable systems. Using this metric, we can see that the accuracy

of the prediction of these ML models as a function of training points used. In Figure 6.13a, we can see

that the overlapping percentage rapidly increases until around 1000 training data points, at which point the

overlapping fraction values are maintained at 6̃5%. Meanwhile, if we increase the intersection to 30%, we can

see that the overlapping fraction can surpass 80% with as few as N=500 data points and reach as high as 90.9%

when N increases. These results reassert the feasibility of the combinatorial approach described earlier, where
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users can use MD to generate small sets of data necessary to build a minimally functional baseline ML model

to screen over a wider set of potential candidates. The results from such baseline models, can be utilized for

various efforts, such as focusing on only simulating systems with the most favorable properties as predicted

from the model or building more varied and evenly sampled data sets based on the predictive deficiencies

from the baseline model to further improve its robustness. Either approach can improve the quality of results

obtained with finite computing resources. Depending on the specific application, complexity of the systems

of interest, and computing power, one can choose an optimal strategy to employ, e.g., how many data should

be collected to train ML models, and how much of the dataspace to be truncated based on suggestions by

the models. However, it is worth recalling that the performance of the random forest regressor algorithm

is dependent on the distribution of properties in the training data, and identifying a priori which systems to

simulation to ensure appropriate distribution may be challenging. Solving this issue may require additional

iterations of training ML models, where we create multiple predictive models as simulation data become

available, using these ML models to suggest additional systems to ensure appropriate sampling, rather than

identifying favorable candidates at this stage. Although such intermediate ML models, may not have high

accuracy, they can provide valuable information needed to improve the performance of the subsequent ML

models (Figure 6.14).
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Figure 14. Distribution of (a) COF and (b) F0 predicted by the ML models for 193,131 unique systems created 
with molecules from ChEMBL small molecules library.  

Figure 6.14: Distribution of (a) COF and (b) F0 predicted by the ML models for 193,131 unique systems
created with molecules from the ChEMBL small molecule library.[45]

In Table 6.2 and 3 we summarize the outcome, R2 and MAPE, of applying all of the ML models, i.e.,

Summers et al., 5050-train, and total-train models, on all available test sets, i.e., 5050-test, 2575-test, and

total-test; summary of other common metrics, i.e., mean absolute error (MAE) and mean squared error (MSE)

is also included in Appendix D (see Table D.20 and Table D.21) [75]. Table 6.2 directly compares of the

performance of the different ML models.

We note, of all models trained with 100 data points, the performance of the total-train models exhibits

the highest accuracy, followed by the 5050-train, and finally models trained by Summers et al. data. The

difference in performance likely results from the inclusion of mixed-monolayer systems, resulting in better
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distributed training sets provided by total-train. However, this trend does not persist for models trained

with more data. Interestingly, we note that the models trained on the 5050-train data appear to have better

performance compared to the total-train models when predicting the 5050-test set, since they require less

data to acquire similar predictive ability. Focusing on the performance of the different models on the total-

test set, which is expected to be more difficult to predict, the 5050-train models show comparable accuracy

to the total-train models. These observations trends are also confirmed by the MAPE values in Table 6.3.

This result suggests that as long as the models are trained on a sufficiently large data set that captures the

distribution of the population well, the models are extensible to untested regimes. That is, for significant

variations, in our case composition, it may be more computationally efficient and accurate to train models

with different compositions separately, rather than aggregating data into a large training set. Furthermore,

all models trained on a relatively small amount of data, e.g., 1000 data points, exhibit similar performance

across all test sets. This reaffirms the transferability of these ML models from a more general perspective

and highlights the feasibility of utilizing ML algorithms to estimate properties of systems whose designs may

be dissimilar to the training data used. Expectedly, the ML models trained with 7816 data points from the

total-train data set (80% of the total data set) demonstrate the best performance across all test sets, but of

course, require the highest computational in terms of gathering training data.

As a proof-of-concept of using ML to pre-screen the design space, we perform a screening study using one

of the total-train models (model-0) for COF and F0 (trained with 7816 data points each). The chemical space

for this screening was constructed by querying the ChEMBL small molecules library,36,37 and identifying

chemistries whose molecular weight ranges from 4 to 99 amu; this list of chemistries (981) underwent further

filtering to remove those containing metallic elements and those that cannot be processed by the RDKit

library [71], e.g., chiral or charged molecules, resulting in 621 unique terminal group chemistries (provided

in the Supplemental Repository [47]). With these 621 chemistries, 193,131 unique systems can be created in

which each monolayer is homogeneous (i.e., containing only one type of terminal group); mixed monolayer

chemistries were not considered at the moment due to the vast amount of data that would be generated, a

dynamically pruning approach to help drive the screening towards a smaller subset of the mixed monolayer

systems is necessary to explore this space in any feasible time and memory requirements. This simple system

design (dual homogeneous monolayers) was chosen to allow more unique chemistries to be considered in a

reasonable time frame, since introduction of mixed monolayers would scale up the number of systems to be

considered by several orders of magnitude. Descriptors for the 621 terminal groups were determined using

the SMILES strings for each chemistry (as described in the Method section); these descriptors were then

provided as input to the ML models which in turn predicted tribological properties for the 193,131 unique

systems. This screening process, which evaluated 385,641 systems since duplicate systems (i.e., systems in
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which chemistry A was the top monolayer and chemistry B on the bottom monolayer and vice versa) were

not removed, took approximately 24 hours to predict the COF and F0 values on a standard desktop computer

(0̃.22 seconds per system), which is orders of magnitudes faster than the time required to perform a single

MD simulation and without the need for expansive computational resources.

The distribution of COF and F0 of the systems predicted by the ML model are shown in Figure 6.14.

We note the distributions differ from that of the data set screened using MD simulations (see Figure 6.3 and

Figure 6.7), which is expected given the vastly expanded chemical design space. Using the first quartile of

the COF distribution (0.1280) and F0 distribution (0.8966 nN) obtained from MD as a reference, the data set

contains 5121 systems that can be considered to have good COF values and 10,598 systems with good F0

values. To further reduce the number of systems of interest, a list of 2000 best performing systems ranked

by their COF values and a list of the 2000 best systems ranked by their F0 are compiled, with the top 20

systems at the intersection of these lists reported in Table 6.3. We note that many of the same chemistries

that were identified by our initial MD simulations (see Table 6.1) are also observed in this list; specifically,

Systems 2, 3, and 16 have been considered in Summer et al.8; along with several other chemistries that

may be worth future consideration, such as various alkenes (allyl, propene), alkynes (acetylene, but-2-yne),

halocarbons (1,1-difluoroethyl, bromoethyl, vinyl chloride), and nitriles (cyano, malononitrile, acrylonitrile).

We note that none of the systems reported in Table 6.3 outperform those previously identified in Table 6.1

from the MD simulations (in terms of COF and F0), although this might be expected since the systems in

Table 6.4 consist of 2 homogeneous monolayers, and hence, do not include the benefits offered by the mixed

monolayers, as we discussed earlier. Nonetheless, this highlights the feasibility of combining ML with MD

screening to reduce computational cost and identify favorable candidates for further study, in particular for

reducing the vast design space of mixed monolayer systems using such a database for screening.
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Table 6.4: 20 best performing systems determined by the intersection of the top 2000 systems ranked by their
COF and the top 2000 systems ranked by their F0 . The properties were predicted using one of the total-train
models (model-0).

Terminal group A Terminal group B COF F0 (nN)

1 Cyano Propyl 0.1144 0.7257
2 Cyano Cyclopropyl 0.1151 0.4631
3 Methyl Cyano 0.1153 0.5532
4 Acetylene 1,1-difluoroethyl 0.1180 0.7699
5 Cyano Ethyl 0.1206 0.6490
6 Fulminic acid Cyclopropyl 0.1236 0.7117
7 Ethylene 1,1-difluoroethyl 0.1244 0.7341
8 Bromoethyl 1,2-

diformylhydrazine
0.1250 0.7695

9 Methyl Fulminic acid 0.1260 0.7704
10 Cyano Difluoroethyl 0.1265 0.7279
11 Bromoethyl Malononitrile 0.1269 0.7098
12 Acetylene Ethyl 0.1270 0.7254
13 1,1-difluoroethane Propene 0.1271 0.7290
14 Propyl 2,2-

difluoroacetamide
0.1280 0.7423

15 Acetylene Propyl 0.1281 0.7777
16 Methyl Acetylene 0.1281 0.7405
17 Bromoethyl 1,2-dicyanoethyl 0.1282 0.7737
18 Fulminic acid Ethyl 0.1283 0.7725
19 Cyclopropyl Acrylonitrile 0.1283 0.7152
20 Allyl But-2-yne 0.1283 0.7546

6.4 Conclusion

Utilizing the MoSDeF software suite with the Signac Framework [20, 22, 23], a workflow to initialize,

parametrize, convert to MD engine inputs, perform MD simulations, calculate the tribological properties

of interest, and then train a predictive ML model for these soft matter monolayer systems was developed

and extended from our previous smaller scale study [6]. The tribological properties of nearly 10,000 unique

system designs have been screened. From the MD simulations, we identified systems that exhibited both low

COF and F0. The bulk of these systems consisted of a cyano group monolayer contacting a heterogeneous

monolayer, suggesting mixed monolayer systems may provide a viable route for further tuning tribologi-

cal performance. However, we note that no clear trends were observed for different mixing ratios in the

monolayer, suggesting that their effects strongly depend on the chemistries involved. Although using high-

throughput screening we were able to much more readily determine systems with favorable properties than

could be accomplished through experiment, the process still requires a significant amount of time and com-

puting resources. However, coupling MD simulations with machine learning can guide the screening process

and reduce the simulations needed in order to optimize system designs. Using this approach, we have as-

sessed the dependence of the random forest regressor’s predictive ability based on the training set provided.

The results suggest a positive correlation between the performance of machine learning models with the size

of the training set, along with factors such as the distribution of the data; however, performance typically

plateaus once a modest data set size is reached. For the type of systems considered in this study, a training

set of 1000 data points is found to be sufficient to train an efficient predictive model. We note that at small
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training set sizes, i.e., fewer than 500 data points, the machine learning models were still quite successful in

determining the best and worst performing systems. Moreover, the models were shown to have high transfer-

ability when applied to predict properties of dissimilar systems and that improvements in accuracy seen for

larger training sets often do not necessarily equate to improved performance when models are transferred to

systems outside of the training set. These findings suggest a synergistic approach of using MD simulations

and machine learning to build high quality predictive models and minimize computing resources needed:

MD can be used to generate a small set of data to train baseline ML models, which can then be utilized

to quickly evaluate possible candidates and narrow the parameter space. The performance of the baseline

model is dependent on the distribution of training data provided; however, the accuracy of the model can

be improved via a few iterations of training, using earlier, less accurate, models to guide simulations toward

creating well distributed training data. In addition, the baseline model could help confirm/provide insight

about the connection between chemical intuition with properties of interest. We also note, that care must be

taken to ensure that the data set is not overtly biased and that the further trained models are not overfit to the

provided data. This work follows guidelines suggested by the TRUE standard, emphasizing the reproducibil-

ity and extensibility of the study; accordingly, the Supplementary Information contains all the information

needed to reproduce the simulations and machine learning models described in this work. The code and data

are distributed via GitHub.
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CHAPTER 7

Conclusions

While there is a concerted effort among researchers to enforce/encourage best practices for reproducible sci-

ence, additional work remains to ensure that novel research is performed in a transparent, reproducible, usable

by others, and extensible manner. Especially so in the field of molecular simulation, where many aspects of

the experiment that might not be as controllable in experimental studies (monolayer composition, energy

breakdowns, etc.) can be easily tuned and the full provenance of the data can be captured. Unfortunately,

this is easier said than done, as many researchers have noted the challenges of reproducible molecular sim-

ulation. This also means that there is clear need for guiding principals and best practices to make molecular

simulations more reproducible. By emphasizing and designing studies with reproducibility and extensibility

in mind, researchers will build a sturdy foundation to accelerate new discoveries and extend previous work,

leading to new insights at a much faster rate than before. In this work, it is shown that designing computa-

tional studies with reproducibility and extensibility in mind greatly increases the ability of others to reproduce

said studies, while also serving as a template or springboard for additional studies.

The chapters hitherto describe work to better define best practices, a software framework, and design

principles for reproducible molecular simulations. In addition, two example studies employing these methods

were also performed. In Chapter 2, best practices for molecular simulation were examined and condensed

into a set of guiding principles and information that simulationists are encouraged to follow. Best practices

are a key component of reproducible science and are a great way to summarize the knowledge and possible

issues that many researchers will encounter. It should be noted that documents such as these are never meant

to be a replacement for a deeper understanding of the source material itself, but instead a useful sanity check

for researchers to employ before, during, and after the simulation to spot early and quickly possible sources

of error. Chapter 3 provides a set of guiding principals for researchers to design their molecular simulation

studies such that their work will be easier for someone to replicate and validate their work and extend this

work even further. Case studies are also provided for many kinds of molecular simulation (lipid bilayers,

non-equilibrium molecular dynamics, vapor-liquid equilibria, etc.). Chapter 4 describes the new features

and developments of the Molecular Simulation and Design Framework (MoSDeF), and how these tools help

increase the reproducibility of the initialization of a molecular system for simulation. In Chapter 5, MoSDeF

and these best practices above were used to perform a screening study investigating the self-assembly of

coarse-grained nanoparticles with patches of CG alkane chains. It was found that measurable properties of

a single patchy nanoparticle (e.g. solvent-accessible surface area, radius of gyration, and asphericity) were
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capable of predicting the phase space of a larger system when allowed to self-assemble. This provides a

computationally cheaper alternative to explore and inform larger scale studies of self-assembly behavior,

while also serving as a reusable workflow for nanoparticle simulation studies. In Chapter 6, a workflow

to initialize, parametrize, convert to MD engine inputs, perform MD simulations, calculate the tribological

properties of interest, and then train a predictive ML model was developed and then massively scaled up,

showcasing the usefulness of designing studies with TRUE in mind. Through the use of MoSDeF and TRUE

principles, scalable, reproducible, and extensible molecular simulations are much more accessible and this

serves as a useful template and guide for future researchers.
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Appendix A

Best Practices for Molecular Simulation

A.1 License

To begin, the GitHub repository containing this work is freely available under a Creative Commons Attri-

bution 4.0 International license. The full contents of this license is provided below and is from git commit

cb3d58f0aa479a52d42f9dfbe36dde8033f6c764.

License Contents

=======================================================================

Creative Commons Corporation ("Creative Commons") is not a law firm and

does not provide legal services or legal advice. Distribution of

Creative Commons public licenses does not create a lawyer-client or

other relationship. Creative Commons makes its licenses and related

information available on an "as-is" basis. Creative Commons gives no

warranties regarding its licenses, any material licensed under their

terms and conditions, or any related information. Creative Commons

disclaims all liability for damages resulting from their use to the

fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and

conditions that creators and other rights holders may use to share

original works of authorship and other material subject to copyright

and certain other rights specified in the public license below. The

following considerations are for informational purposes only, are not

exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are

intended for use by those authorized to give the public
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permission to use material in ways otherwise restricted by

copyright and certain other rights. Our licenses are

irrevocable. Licensors should read and understand the terms

and conditions of the license they choose before applying it.

Licensors should also secure all rights necessary before

applying our licenses so that the public can reuse the

material as expected. Licensors should clearly mark any

material not subject to the license. This includes other CC-

licensed material, or material used under an exception or

limitation to copyright. More considerations for licensors:

wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public

licenses, a licensor grants the public permission to use the

licensed material under specified terms and conditions. If

the licensor's permission is not necessary for any reason--for

example, because of any applicable exception or limitation to

copyright--then that use is not regulated by the license. Our

licenses grant only permissions under copyright and certain

other rights that a licensor has authority to grant. Use of

the licensed material may still be restricted for other

reasons, including because others have copyright or other

rights in the material. A licensor may make special requests,

such as asking that all changes be marked or described.

Although not required by our licenses, you are encouraged to

respect those requests where reasonable. More_considerations

for the public:

wiki.creativecommons.org/Considerations_for_licensees

=======================================================================

Creative Commons Attribution 4.0 International Public License
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By exercising the Licensed Rights (defined below), You accept and agree

to be bound by the terms and conditions of this Creative Commons

Attribution 4.0 International Public License ("Public License"). To the

extent this Public License may be interpreted as a contract, You are

granted the Licensed Rights in consideration of Your acceptance of

these terms and conditions, and the Licensor grants You such rights in

consideration of benefits the Licensor receives from making the

Licensed Material available under these terms and conditions.

Section 1 -- Definitions.

a. Adapted Material means material subject to Copyright and Similar

Rights that is derived from or based upon the Licensed Material

and in which the Licensed Material is translated, altered,

arranged, transformed, or otherwise modified in a manner requiring

permission under the Copyright and Similar Rights held by the

Licensor. For purposes of this Public License, where the Licensed

Material is a musical work, performance, or sound recording,

Adapted Material is always produced where the Licensed Material is

synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright

and Similar Rights in Your contributions to Adapted Material in

accordance with the terms and conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights

closely related to copyright including, without limitation,

performance, broadcast, sound recording, and Sui Generis Database

Rights, without regard to how the rights are labeled or

categorized. For purposes of this Public License, the rights

specified in Section 2(b)(1)-(2) are not Copyright and Similar

Rights.
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d. Effective Technological Measures means those measures that, in the

absence of proper authority, may not be circumvented under laws

fulfilling obligations under Article 11 of the WIPO Copyright

Treaty adopted on December 20, 1996, and/or similar international

agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or

any other exception or limitation to Copyright and Similar Rights

that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database,

or other material to which the Licensor applied this Public

License.

g. Licensed Rights means the rights granted to You subject to the

terms and conditions of this Public License, which are limited to

all Copyright and Similar Rights that apply to Your use of the

Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights

under this Public License.

i. Share means to provide material to the public by any means or

process that requires permission under the Licensed Rights, such

as reproduction, public display, public performance, distribution,

dissemination, communication, or importation, and to make material

available to the public including in ways that members of the

public may access the material from a place and at a time

individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright

resulting from Directive 96/9/EC of the European Parliament and of
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the Council of 11 March 1996 on the legal protection of databases,

as amended and/or succeeded, as well as other essentially

equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights

under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License,

the Licensor hereby grants You a worldwide, royalty-free,

non-sublicensable, non-exclusive, irrevocable license to

exercise the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or

in part; and

b. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where

Exceptions and Limitations apply to Your use, this Public

License does not apply, and You do not need to comply with

its terms and conditions.

3. Term. The term of this Public License is specified in Section

6(a).

4. Media and formats; technical modifications allowed. The

Licensor authorizes You to exercise the Licensed Rights in

all media and formats whether now known or hereafter created,

202



and to make technical modifications necessary to do so. The

Licensor waives and/or agrees not to assert any right or

authority to forbid You from making technical modifications

necessary to exercise the Licensed Rights, including

technical modifications necessary to circumvent Effective

Technological Measures. For purposes of this Public License,

simply making modifications authorized by this Section 2(a)

(4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor -- Licensed Material. Every

recipient of the Licensed Material automatically

receives an offer from the Licensor to exercise the

Licensed Rights under the terms and conditions of this

Public License.

b. No downstream restrictions. You may not offer or impose

any additional or different terms or conditions on, or

apply any Effective Technological Measures to, the

Licensed Material if doing so restricts exercise of the

Licensed Rights by any recipient of the Licensed

Material.

6. No endorsement. Nothing in this Public License constitutes or

may be construed as permission to assert or imply that You

are, or that Your use of the Licensed Material is, connected

with, or sponsored, endorsed, or granted official status by,

the Licensor or others designated to receive attribution as

provided in Section 3(a)(1)(A)(i).

b. Other rights.
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1. Moral rights, such as the right of integrity, are not

licensed under this Public License, nor are publicity,

privacy, and/or other similar personality rights; however, to

the extent possible, the Licensor waives and/or agrees not to

assert any such rights held by the Licensor to the limited

extent necessary to allow You to exercise the Licensed

Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this

Public License.

3. To the extent possible, the Licensor waives any right to

collect royalties from You for the exercise of the Licensed

Rights, whether directly or through a collecting society

under any voluntary or waivable statutory or compulsory

licensing scheme. In all other cases the Licensor expressly

reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the

following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified

form), You must:

a. retain the following if it is supplied by the Licensor

with the Licensed Material:

i. identification of the creator(s) of the Licensed
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Material and any others designated to receive

attribution, in any reasonable manner requested by

the Licensor (including by pseudonym if

designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of

warranties;

v. a URI or hyperlink to the Licensed Material to the

extent reasonably practicable;

b. indicate if You modified the Licensed Material and

retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this

Public License, and include the text of, or the URI or

hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any

reasonable manner based on the medium, means, and context in

which You Share the Licensed Material. For example, it may be

reasonable to satisfy the conditions by providing a URI or

hyperlink to a resource that includes the required

information.

3. If requested by the Licensor, You must remove any of the

information required by Section 3(a)(1)(A) to the extent

reasonably practicable.
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4. If You Share Adapted Material You produce, the Adapter's

License You apply must not prevent recipients of the Adapted

Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that

apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right

to extract, reuse, reproduce, and Share all or a substantial

portion of the contents of the database;

b. if You include all or a substantial portion of the database

contents in a database in which You have Sui Generis Database

Rights, then the database in which You have Sui Generis Database

Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share

all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not

replace Your obligations under this Public License where the Licensed

Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE

EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS

AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF

ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
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IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,

WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,

ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT

KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT

ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE

TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,

NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,

INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,

COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR

USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR

DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR

IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided

above shall be interpreted in a manner that, to the extent

possible, most closely approximates an absolute disclaimer and

waiver of all liability.

Section 6 -- Term and Termination.

a. This Public License applies for the term of the Copyright and

Similar Rights licensed here. However, if You fail to comply with

this Public License, then Your rights under this Public License

terminate automatically.

b. Where Your right to use the Licensed Material has terminated under

Section 6(a), it reinstates:
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1. automatically as of the date the violation is cured, provided

it is cured within 30 days of Your discovery of the

violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any

right the Licensor may have to seek remedies for Your violations

of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the

Licensed Material under separate terms or conditions or stop

distributing the Licensed Material at any time; however, doing so

will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public

License.

Section 7 -- Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different

terms or conditions communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the

Licensed Material not stated herein are separate from and

independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

a. For the avoidance of doubt, this Public License does not, and

shall not be interpreted to, reduce, limit, restrict, or impose
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conditions on any use of the Licensed Material that could lawfully

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is

deemed unenforceable, it shall be automatically reformed to the

minimum extent necessary to make it enforceable. If the provision

cannot be reformed, it shall be severed from this Public License

without affecting the enforceability of the remaining terms and

conditions.

c. No term or condition of this Public License will be waived and no

failure to comply consented to unless expressly agreed to by the

Licensor.

d. Nothing in this Public License constitutes or may be interpreted

as a limitation upon, or waiver of, any privileges and immunities

that apply to the Licensor or You, including from the legal

processes of any jurisdiction or authority.

=======================================================================

Creative Commons is not a party to its public

licenses. Notwithstanding, Creative Commons may elect to apply one of

its public licenses to material it publishes and in those instances

will be considered the “Licensor.” The text of the Creative Commons

public licenses is dedicated to the public domain under the CC0 Public

Domain Dedication. Except for the limited purpose of indicating that

material is shared under a Creative Commons public license or as

otherwise permitted by the Creative Commons policies published at

creativecommons.org/policies, Creative Commons does not authorize the

use of the trademark "Creative Commons" or any other trademark or logo

of Creative Commons without its prior written consent including,
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without limitation, in connection with any unauthorized modifications

to any of its public licenses or any other arrangements,

understandings, or agreements concerning use of licensed material. For

the avoidance of doubt, this paragraph does not form part of the

public licenses.

Creative Commons may be contacted at creativecommons.org.

A.2 Checklist for Molecular Simulation
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Molecular Dynamics Simulation Checklist
Take stock of your plans

□ Count the cost: Think about what you know about the timescales of what you want to observe and

determine whether it is tractable to simulate this given the size of your system, your computational re-

sources, and the expense of the simulation. Would the questions you want to answer be better addressed

a different way?

□ Pick the desired ensemble (NV T , NPT , NV E, µV T )1

□ Determine reference states that you are trying to emulate/discover.

□ What temperature, pressure, etc. are you interested in?

□ What force field properly describes your system?

□ What is already known in the literature and what data do you wish to compare to?

Prepare to implement your plans and make critical decisions about the system

□ Choose a simulation package suitable for simulating that ensemble with your target force field

□ Determine whether you are simulating a bulk (typically periodic) or finite system and choose the appro-

priate cutoff types and periodicity (full periodicity for bulk systems, partial periodicity for interfaces,

etc.) as discussed in subsection 2.5.2

□ Prepare your system, paying particular attention to ensuring it contains the chemical components you

want with the structures you want, and that force field parameters are assigned as intended (it is good

practice to ensure that you properly implemented the force field by replicating energies, forces, or other

observables from prior publications)

Determine handling of cutoffs

□ As a general rule, electrostatics are long-range enough that either the cutoff needs to be larger than

the system size (for finite systems) or periodicity is needed along with full treatment of long-range

electrostatics (subsection 2.4.4)

□ Nonpolar interactions can often be safely treated with cutoffs of 1-1.5 nm as long as the system size is

at least twice that, but long-range dispersion corrections may be needed (subsection 2.5.1)
1For mixtures, the semi-grand ensemble (or osmotic ensemble) may be of interest, where the number of particles is fixed but their

identities can change [1] allowing, e.g., a constant chemical potential for salt ions to be maintained [2]
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Choose appropriate settings for the desired ensemble

□ Pick a thermostat that gives the correct distribution of temperatures, not just the correct average tem-

perature; if you have a small system or a system with weakly interacting component choose one which

works well even in the small-system limit.

□ Pick a barostat that gives the correct distribution of pressures

□ Consider the known shortcomings and limitations of certain integrators and thermostats/barostats and

whether your choices will impact the properties you are calculating

Choose an appropriate timestep for stability and avoiding energy drift

□ Determine the highest-frequency motion in the system (typically bond vibrations unless bond lengths

are constrained)

□ As a first guess, set the timestep to approximately one tenth of the highest-frequency motion’s charac-

teristic period

□ Test this choice by running a simulation in the microcanonical ensemble, and ensure that energy is

conserved

Determine your run protocol

□ Plan how you will minimize and equilibrate your system and test that your equilibration protocol actu-

ally allows you to reach equilibrium in the target ensemble (subsection 2.5.3)

□ Determine production settings, how many steps to run, and how often to store data/what data to store

□ Ensure you have sufficient storage, memory, and computer time to complete the planned calculations
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Appendix B

Towards Molecular Simulations that are Transparent, Reproducible, Usable By Others, and

Extensible (TRUE)

B.1 Packages and Libraries Necessary to Run Example TRUE Simulations

To successfully run these examples in a TRUE fashion requires the methodology to be reproducible as well

as the software used for all steps of the example/study. Without this, changes in various software packages

and their dependencies can introduce another source of irreproducibility to a TRUE study. Contained below

is a detailed listing of the main software packages and libraries used throughout the examples. This suite of

software is intended to be installed partly with the conda scientific software package manager, other python

modules not accessible through conda will be installed from their source code, and finally, any simulation

engine/extraneous packages will be compiled from their source code as well. Comprehensive installation

instructions will be provided for each step of this process and annotated. Due to limited molecular simulation

engines and other libraries being accessible with the Windows operating system, these next steps are only

expected to run successfully on GNU/Linux and Apple MacOS operating systems.

The following text assumes the reader intends to install these packages on their local machine or compute

node and can access a terminal emulator.

B.2 Installation of the conda Package Manager

To install the conda package manager, run the following commands in your shell session if you are using a

MacOS operating system.

The $ denotes a line in your terminal emulator and is not part of the command.

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

$ /bin/bash Miniconda3-latest-MacOSX-x86_64.sh

If you are using a local GNU/Linux machine, the following commands should be executed.

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

$ /bin/bash Miniconda3-latest-Linux-x86_64.sh

Follow the prompts according to your installation preferences, although the default location (your home

directory) can be expected to work. Please refer to the documentation (https://conda.io/projects/conda/en/

latest/user-guide/index.html) for any additional help or if your installation is on a computing cluster.
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B.3 Creating the conda Environment

After following the previous instructions and initalized the conda init shell support (if you are unsure

what that is, refer to the user guide above). Now we will install the software and libraries needed to follow

along with the TRUE examples.

Begin by creating a new conda environment with Python 3.7 as the base Python interpreter, and

activating into that environment. A conda environment is a directory that contains all of the necessary

libraries and software needed based on your installation instructions. For example, you can have multiple

environments, all of which use a different version of Python, and conda allows you to swap between these

environments by activating (switching to) or deactivating (exiting) an environment. These environments are

independent of one another, so modifying a certain environment will not change any other environments’

installed packages. All of the examples in this paper are expected to be ran while you are in the true37

python environment.

$ conda create -n true37 python=3.7

$ conda activate true37

Next, we will install all of our conda-installable packages and dependencies.

$ conda install -c conda-forge -c mosdef -c omnia -c bioconda mbuild foyer signac

signac-flow hoomd gromacs=2018.4 lammps pandas matplotlib unyt py3dmol scipy

openbabel gsd

↪→

↪→

An alternate option is to add the channels that conda will search to resolve the installation procedure to

the .condarc file located in your home directory.

$ conda config --add channels conda-forge

$ conda config --add channels mosdef

$ conda config --add channels omnia

$ conda config --add channels bioconda

$ conda install mbuild foyer signac signac-flow hoomd gromacs=2018.4 lammps pandas

matplotlib unyt py3dmol scipy openbabel gsd↪→

To list all of the installed packages in your current conda environment, run:

conda list

B.4 Create a Temporary Workspace

Note that we are also creating a master directory where all of these TRUE examples will be stored, do not run

a git clone command while inside another git repository. The commands to make the master directory

and changing to that directory are idempotent, so you can copy and paste the 3 commands below as many

times as desired.
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$ export TRUE_EXAMPLES=${HOME}/true_examples

$ mkdir -p ${TRUE_EXAMPLES}

$ cd ${TRUE_EXAMPLES}

B.5 Installation of the mosdef_trappe TRUE example

This example makes use of the Monte Carlo engine GOMC (https://github.com/GOMC-WSU/GOMC.git).

GOMC also requires a working c/c++ compiler, please consult the user manual: (https://gomc-wsu.github.

io/Manual/software_requirements.html) for additional help.

The instructions below assume you have an accessible c++ compiler.

The next step is to download a version of this sample workflow and install any dependencies, and to

do that we will use the git version control tool. MacOS and GNU/Linux ship with a version of git, the

commands to run are listed below.

To begin, we must compile and install GOMC.

$ export TRUE_EXAMPLES=${HOME}/true_examples

$ mkdir -p ${TRUE_EXAMPLES}

$ cd ${TRUE_EXAMPLES}

# GOMC requires cmake for compilation, we will install it from conda

$ conda activate true37

$ conda install -c conda-forge cmake

# clone GOMC

$ git clone https://github.com/GOMC-WSU/GOMC.git

$ cd GOMC

$ chmod u+x metamake.sh

$ ./metamake.sh

# once compiled, the executable should be located in the bin directory

$ ls ./bin

# add the gomc bin folder to our path, so we can find the executable no matter the

directory↪→

$ LOC_GOMC="$(pwd)/bin"

$ export PATH="${LOC_GOMC}:$PATH"

After installing GOMC, we can finally install mosdef_trappe.

$ export TRUE_EXAMPLES=${HOME}/true_examples

$ mkdir -p ${TRUE_EXAMPLES}

$ cd ${TRUE_EXAMPLES}
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$ LOC_GOMC="${TRUE_EXAMPLES}/GOMC/bin"

$ export PATH="${LOC_GOMC}:$PATH"

$ git clone https://github.com/ahy3nz/mosdef_trappe.git

$ cd mosdef_trappe

$ conda activate true37

$ python -m pip install -e .

B.6 Installation of the true_graphene Example

This TRUE example requires a few dependencies, including a mbuild plugin as well

$ export TRUE_EXAMPLES=${HOME}/true_examples

$ mkdir -p ${TRUE_EXAMPLES}

$ cd ${TRUE_EXAMPLES}

# install the mbuild plugin

$ git clone https://github.com/rmatsum836/Pore-Builder.git

$ cd Pore-Builder

$ conda activate true37

$ conda install -c conda-forge -c mosdef -c omnia --file ./requirements.txt

$ python -m pip install -e .

# now clone the graphene_pore example

$ git clone https://github.com/rmatsum836/true_graphene.git

B.7 Installation of the true-lipids example

By installing the other packages above, all of the dependencies for this example should be installed.

$ export TRUE_EXAMPLES=${HOME}/true_examples

$ mkdir -p ${TRUE_EXAMPLES}

$ cd ${TRUE_EXAMPLES}

$ conda activate true37

$ git clone https://github.com/uppittu11/true_lipids.git

If running this example does not work, follow this installation step below.

$ export TRUE_EXAMPLES=${HOME}/true_examples

$ mkdir -p ${TRUE_EXAMPLES}

$ cd ${TRUE_EXAMPLES}

$ conda activate true37

$ cd true_lipids

$ conda install -c conda-forge -c mosdef -c omnia mbuild mdtraj py3dmol
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B.8 Installation of the TRUE-nanotribology Project

To access and install the necessary software for this repository, the following steps should be taken.

$ export TRUE_EXAMPLES=${HOME}/true_examples

$ mkdir -p ${TRUE_EXAMPLES}

$ cd ${TRUE_EXAMPLES}

$ conda activate true37

$ git clone https://github.com/daico007/TRUE-nanotribology.git

$ cd TRUE-nanotribology

$ conda install -c conda-forge -c mosdef -c omnia -c bioconda --file ./requirements.txt

B.9 Removing the Installed Software

Listed below are all the steps needed to remove the examples, as well as the conda environment that was

created. Refer to miniconda’s site for assistance unsintalling miniconda.

$ export TRUE_EXAMPLES=${HOME}/true_examples

# The rm -f (force) command might be needed to remove the directories

$ rm -r ${TRUE_EXAMPLES}

# remove the conda environment, and clean up

$ conda activate base

$ conda remove -n true37 --all

$ conda clean --index-cache --packages --tarballs --yes
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Appendix C

Self–assembly of patchy alkane–grafted silica nanoparticles

Grafted nanoparticle systems were initialized using mBuild [1, 2]. A schematic of a grafted system is

shown in Figure C.1 for a single chain, with labels for each bead type: the silica coarse grained (CG) core

nanoparticle beads, the 3:1 CG alkane grafted chains which corresponds to a CH2CH2CH2 subunit, and the

terminus of those chains which corresponds to a CH2CH2CH3 subunit.

Alkane Terminus 
Bead

Silica Core 
Beads

Alkane Chain 
Beads

Figure C.1: A schematic of a nanoparticle, showing a single graft for clarity. Dark green beads demonstrate
the area of the surface with no alkane grafted chains (this makes up the patch) at the poles of the particle.
Light green beads around the equator will have chains grafted to the surface at the density ρchain that is
predetermined. The fractional surface area, FSA, of the particle presented here is 0.55, and totaled from the
area of the dark green beads.

44 bulk simulations were performed to identify the system structure. The simulation workflow is dis-

cussed in the main article; the Python script Analysis/escale-model0.5.py included in the project

GitHub repository includes the exact HOOMD-Blue information to run the simulations. See the section ti-

tled Section C.5 to access this script and related data. Figure C.2 visualizes several example systems of the

3 representative phases (aggregated, stringy, and dispersed), including radial distribution functions (RDFs);

Figure C.2 is identical to Figure 5.2 in the main text, however, surface grafted chains are also rendered.

Table C.1 shows the results of the bulk simulation, as well as the phases that form. Also appended are

the single nanoparticle simulation values that are associated with a given bulk simulation statepoint. A full

csv of these bulk simulation values, with the matching simulation identifiers is available in the previously

mentioned GitHub repository titled DataFull_TNP_Dataset.csv.
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Figure C.2: Examples of equilibrium phases with statepoints of a1). N = 10,rchain = 3.5,FSA = 0.45 a2).
N = 8,rchain = 3.5,FSA = 0.35 and a3). N = 10,rchain = 3.5,FSA = 0.55 in the dispersed phase. b1).
N = 6,rchain = 3.0,FSA = 0.45 b2). N = 6,rchain = 4.0,FSA = 0.45 and b3). N = 5,rchain = 3.5,FSA = 0.40
in the stringy phase. c1). N = 6,rchain = 2.5,FSA = 0.55 c2). N = 6,rchain = 3.0,FSA = 0.65 and c3).
N = 5,rchain = 3.5,FSA = 0.55 in the aggregated phase. (4) are the corresponding RDFs to the visualized
systems, offset by a value of 2000 in the y direction for clarity. Note, the scale of the RDFs is the same for all
systems. Aggregated phases are visualized from two orientations to more clearly demonstrate the structure.
This figure is a replicate of Figure 2 in the paper with chains visible.
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Table C.1: Bulk Simulation Data. Data from the last three columns are matched to data generated at the
same chain length, chain density, and FSA values for single particle simulations. Note that values of NaN in
these columns mean no single, grafted nanoparticle simulation was completed for that statepoint. Of the 44
total bulk simulations, 40 simulations were matched to single grafted nanoparticle simulations. For Phase, a
value of 0 is dispersed, 1 is stringy, and 2 is aggregated.

Chain Length (beads) Chain
Density
( Chains

nm2 )

FSA Avg
Coord
Number

Stdev Co-
ord Num-
ber

Phase fSASA R−1
g,chain R−1

g,gNP Asphericity

6 4.0 0.65 2.00 1.01 2 0.22 2.5 0.29 0.098
10 3.0 0.55 0.68 0.52 0 0.11 1.5 0.23 0.054
6 2.5 0.55 2.50 1.32 2 0.21 2.1 0.32 0.075
6 4.0 0.45 1.39 0.65 1 0.13 2.7 0.26 0.062
8 3.5 0.45 0.67 0.69 0 0.10 1.7 0.23 0.048
7 4.5 0.55 1.39 0.68 1 0.12 2.2 0.24 0.068
6 3.5 0.25 0.00 0.01 0 0.06 2.4 0.24 0.022
6 3.5 0.55 1.99 0.77 1 0.18 2.3 0.28 0.082
6 3.0 0.35 1.41 0.58 1 0.11 2.1 0.26 0.042
11 3.5 0.65 0.73 0.66 0 0.12 1.2 0.23 0.051
6 3.5 0.35 1.30 0.62 1 0.10 2.5 0.25 0.043
6 3.0 0.27 0.05 0.12 0 NaN NaN NaN NaN
6 4.5 0.35 0.04 0.13 0 0.07 2.7 0.24 0.045
8 4.0 0.55 1.14 0.66 1 0.12 1.8 0.24 0.071
8 3.5 0.35 0.00 0.00 0 0.07 1.7 0.22 0.032
6 4.5 0.55 1.65 0.69 1 0.15 2.5 0.26 0.076
5 3.5 0.40 1.81 0.58 1 0.16 2.8 0.28 0.066
9 4.2 0.55 0.08 0.27 0 NaN NaN NaN NaN
6 3.0 0.55 1.84 0.88 1 0.21 2.3 0.30 0.081
10 3.5 0.55 0.00 0.00 0 0.10 1.4 0.22 0.041
7 3.0 0.55 1.70 0.80 1 0.17 2.2 0.28 0.068
12 3.5 0.55 0.00 0.00 0 NaN NaN NaN NaN
6 3.0 0.65 2.42 1.02 2 0.25 1.9 0.32 0.094
6 4.5 0.65 2.14 1.03 2 0.20 2.3 0.28 0.104
8 3.5 0.65 1.62 0.71 1 0.18 1.9 0.27 0.082
8 2.5 0.45 1.06 0.70 1 0.11 1.7 0.26 0.036
10 3.5 0.65 1.28 0.64 1 0.14 1.3 0.24 0.058
8 4.5 0.55 0.77 0.68 0 0.10 2.1 0.23 0.062
6 3.5 0.45 1.64 0.67 1 0.15 2.4 0.27 0.064
6 3.5 0.65 2.20 1.29 2 0.24 2.4 0.31 0.103
6 4.5 0.45 1.59 0.84 1 0.12 2.4 0.25 0.064
5 3.5 0.20 0.01 0.02 0 0.06 2.8 0.26 0.017
9 3.5 0.55 0.86 0.61 0 0.11 1.5 0.23 0.059
6 4.0 0.55 1.71 0.53 1 0.17 2.4 0.27 0.086
10 2.5 0.55 1.19 0.63 1 0.12 1.3 0.24 0.059
8 2.5 0.55 1.86 0.69 1 0.15 1.6 0.28 0.056
7 3.5 0.50 1.38 0.64 1 0.14 2.1 0.26 0.060
8 4.2 0.55 1.15 0.55 1 NaN NaN NaN NaN
8 3.5 0.55 1.22 0.65 1 0.13 1.8 0.25 0.062
10 3.5 0.45 0.00 0.00 0 0.07 1.3 0.21 0.042
6 3.0 0.45 1.81 0.62 1 0.16 2.5 0.28 0.064
5 3.5 0.55 2.70 1.14 2 0.21 2.3 0.31 0.094
5 3.5 0.30 1.37 0.71 1 0.11 3.3 0.27 0.035
6 4.0 0.35 0.61 0.65 0 0.09 2.6 0.24 0.043
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C.1 Analysis of single nanoparticles

All single nanoparticle values at tested statepoints (11 FSA’s, 7 chain lengths, and 7 chain densities) are avail-

able in a csv file titled Data/Single_Tether_Data.csv available in the associated GitHub repository.

The Python scripts used to calculate the metrics, discussed below, are also included (Analysis/rg_asphere.py).

C.1.1 Solvent Accessible Surface Area (SASA)

SASA is calculated using the MDTraj [3] package based upon the algorithm of Shrake and Rupley [4] .

SASA values are calculated with a probe point radius of 0.25 nm. The nanoparticle core is modeled as a

single bead with 2.5 nm in radius. The chain molecules are modeled with a radius of 0.2291 nm and the

terminus beads have a radius of 0.2331 nm. 1000 points are generated over the surface of the particles and

the total SASA of the nanoparticle core is summed. The code for this calculation can be found in the file

Analysis/calculate_SASA.py in the GitHub repo. In this work, all SASA values are normalized

by the total spherical surface area (SASAsphere), which is 4πR2
NP. This normalized SASA value is fSASA

(Equation C.1).

fSASA =
SASA

SASAsphere
(C.1)

C.1.2 Radius of Gyration (Rg)

Radius of Gyration values are calculated using MDAnalysis [5, 6]. Two metrics are considered; the radius

of gyration of the entire grafted nanoparticle and the average radius of gyration of each of the chain grafts,

considered individually. Normalization of this value is done by dividing nanoparticle radius (2.5 nm) by Rg

and reported as R−1
g,NP( Equation C.2) and R−1

g,chain( Equation C.3) in the main text.

R−1
g,NP =

rnanoparticle

Rg,single grafted nanoparticle
(C.2)

R−1
g,chain =

rnanoparticle

Rg,averaged from individual grafted chains
(C.3)

C.1.3 Asphericity

Asphericity is calculated from single, grafted nanoparticle simulations using MDAnalysis [5, 6]. Values are

already unitless, so normalization is not required. Asphericity is calculated for the entire grafted nanoparticle

i.e., nanoparticle core and chains together, similar to R−1
g,NP.
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C.2 Variable Correlations

Figure C.3–Figure C.2 compare the various metrics considered in this work to establish if there are correla-

tions. Figure C.3 plots asphericity. Asphericity has a linear positive correlation with the metrics indicative of

the structure formed; phase, coordination number, and its standard deviation, as discussed in the main text.

Of the user-defined grafted nanoparticle parameters (i.e. FSA, chain length, and chain density), asphericity

seems to show the most positive correlation with FSA. Since FSA was predicted to be the strongest indicator

of phase from these three variables, it is sensible that asphericity is a good predictor of phase and highly

correlated with FSA. Asphericity and fSASA also show strong positive correlation, presumably for similar

reasons. A larger asphericity value of the nanoparticle is an effect of a greater portion of the chains being

located at the equator, which contributes to a less spherical particle. This is indicative of a larger FSA, and

likewise a larger fSASA because more chains at the equator results in less covering of the nanoparticle core at

the poles.

Figure C.3: Correlation plots of Asphericity versus other nanoparticle descriptors. This is done for 40 out of
the total 44 bulk simulations. Reciprocal Chain Rg is R−1

g,chain and Reciprocal Grafted NP Rg is R−1
g,NP.

Figure C.4 shows R−1
g,chain correlations. The highest correlation is to chain length, which is negative

because the inverse of the Rg values are plotted. Correlations between R−1
g,chain and the rest of the variables of

interest are relatively weak.

Figure C.5 plots correlations of R−1
g,NP. The correlations observed are very similar to the asphericity

results from Figure C.3 since they are inherently related. Both are calculated from the principle moments of

the gyration tensor.

Figure C.2 considers fSASA. fSASA has the strongest linear correlation with phase and coordination number.

When compared to standard deviation of the coordination number, there is a small dip where fSASA values all

correlate to deviation values of 0.4-0.9, then a rise as values become greater than 1.0. This can be attributed
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Figure C.4: Correlation plots of R−1
g,chain versus other nanoparticles descriptors. This is done for 40 out of the

total 44 bulk simulations. Reciprocal Chain Rg is R−1
g,chain and Reciprocal Grafted NP Rg is R−1

g,NP.

Figure C.5: Correlation plots of R−1
g,NP versus other nanoparticles descriptors. This is done for 40 out of the

total 44 bulk simulations. Reciprocal Chain Rg is R−1
g,chain and Reciprocal Grafted NP Rg is R−1

g,NP.

to the transition of stringy phases, which have relatively consistent neighbors, to aggregated phases which

can have a larger variability in number of neighbors (hence a larger standard deviation). fSASA also shows

closer correlation to FSA than R−1
g,NP. Table C.2 summarizes this data with calculations of the Spearman Rank

Coefficients.
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Figure C.6: Correlation plots of fSASA versus other nanoparticles descriptors. This is done for 40 out of the
total 44 bulk simulations. Reciprocal Chain Rg is R−1

g,chain and Reciprocal Grafted NP Rg is R−1
g,NP

.

C.3 Table of Correlations

Correlation values were calculated using the SciPy python library [7, 8]. The calculation and scripts for

visualizing these data are included in the Python Jupyter Notebook Analysis/Plot_Data.ipynb in-

cluded in the associated GitHub repository.
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C.4 Data Analysis and Plotting

The following plots overlay phase information from the bulk simulations upon heatmaps that are based on

calculations from the single, grafted nanoparticle simulations. Figure C.7–Figure C.10 are the raw heat maps

plotted on a mesh grid, and Figure C.11–Figure C.13 are created using the same data, but with a bilinear

interpolation to provide a smoother heatmap. The colormap is created such that, to the best approximation,

the white regions of each plot align with the transition regions predicted by the phase histograms in Figure 5.5

in the main text; for metrics that are strongly correlated with the predicted phase, these should represent

reasonable estimates of the phase boundaries. The code for plotting these can be found in the associated

GitHub repository, where Analysis/Plot_Data.ipynb and Analysis/plotting.py include the

relevant functions for replicating these plots. Note, Figure C.7 contains the same information as Figure 5.6

in the main text, but without averaging of the heatmap.

N = 6 beads ρ= 3.5 CH/nm2 FSA = 0.55
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Figure C.7: Phase diagrams overlaid on fSASA ( SASA
spherical surface area ) as a predictor. White regions indicate

areas from the fSASA histogram (Figure 5.5a) where overlap of the curves occur. Bulk simulation phase
is represented as black squares dispersed, purple circles– stringy, red triangles– aggregated. Left). chain
density as a function of FSA with N held constant at 6 beads Center). FSA versus N with chain density held
constant at 3.5 chains

nm2 . Right). Chain density versus N with FSA held constant at 0.55.
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Figure C.8: Phase diagrams overlaid on asphericity as a predictor. White regions indicate areas from the
asphericity histogram (Figure 5.5c) where overlap of the curves occur. Bulk simulation phase is represented
as black squares– dispersed, purple circles– stringy, red triangles– aggregated. Left). Chain density as a
function of FSA with N held constant at 6 beads. Center). FSA versus N with chain density held constant at
3.5 chains

nm2 . Right). Chain density versus N with FSA held constant at 0.55.
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Figure C.9: Phase Diagrams from Figure 5.3 overlaid on R−1
g,NP (Equation C.2) as a predictor. White regions

indicate areas from the R−1
g,NP histogram (Figure 5.5d) where overlap of the curves occur. Bulk simulation

phase is represented as black squares– dispersed, purple circles– stringy, red triangles– aggregated. Left).
Chain density as a function of FSA with N held constant at 6 beads. Center). FSA versus N with chain
density held constant at 3.5 chains

nm2 . Right). Chain density versus N with FSA held constant at 0.55.

N = 6 beads ρ= 3.5 CH/nm2 FSA = 0.55

Fractional Surface Area Fractional Surface Area Chain Density (CH/nm2)

Ch
ai

n 
De

ns
ity

 (C
H/

nm
2 )

Ch
ai

nl
en

gt
h 

(b
ea

ds
)

Ch
ai

nl
en

gt
h 

(b
ea

ds
)

a). b). c).

Ra
di

us
 o

f N
P/

R g
of

 G
ra

ft
s

Figure C.10: Phase Diagrams from Figure 5.3 overlaid with R−1
g,chain (Equation C.3) as a predictor. Bulk

simulation phase is represented as black squares– dispersed, purple circles– stringy, red triangles– aggregated.
Left). Chain density as a function of FSA with N held constant at 6 beads. Center). FSA versus N with chain
density held constant at 3.5 chains

nm2 . Right). Chain density versus N with FSA held constant at 0.55.
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Figure C.11: Phase Diagrams from Figure 5.3 overlaid with asphericity as a predictor. White regions indi-
cate areas from the asphericity histogram (Figure 5.5c) where overlap of the curves occur. Bulk simulation
phase is represented as: black squares– dispersed, purple circles– stringy, red triangles– aggregated. Bilinear
interpolation was used for meshing the asphericity values. Left). Chain density as a function of FSA with N
held constant at 6 beads. Center). FSA versus N with chain density held constant at 3.5 chains

nm2 . Right). Chain
density versus N with FSA held constant at 0.55.
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Figure C.12: Phase Diagrams from Figure 5.3 overlaid with R−1
g,NP (Equation C.2) as a predictor. White

regions indicate areas from the R−1
g,NP histogram (Figure 5.5d) where overlap of the curves occur. Bulk sim-

ulation phase is represented as black squares– dispersed, purple circles– stringy, red triangles– aggregated.
Bilinear interpolation was used for meshing the R−1

g,NP values. Left). Chain density as a function of FSA with
N held constant at 6 beads. Center). FSA versus N with chain density held constant at 3.5 chains

nm2 . Right).
Chain density versus N with FSA held constant at 0.55.
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Figure C.13: Phase Diagrams from Figure 5.3 overlaid with R−1
g,chain (Equation C.3) as a predictor. Bulk

simulation phase is represented as black squares– dispersed, purple circles– stringy, red triangles– aggregated.
Bilinear interpolation was used for meshing the R−1

g,chain values. Left). Chain density as a function of FSA
with N held constant at 6 beads. Center). FSA versus N with chain density held constant at 3.5 chains

nm2 . Right).
Chain density versus N with FSA held constant at 0.55.
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C.5 Downloading and Working with Datasets

C.5.1 Packages and Libraries Necessary to Run Simulations

Contained below is a detailed listing of the main software packages and libraries used throughout the work.

This suite of software is intended to be installed partly with the conda scientific software package manager,

other python modules not accessible through conda will be installed from their source code, and finally,

any simulation engine/extraneous packages will be compiled from their source code as well. Comprehensive

installation instructions will be provided for each step of this process and annotated. Due to limited molecular

simulation engines and other libraries being accessible with the Windows operating system, these next steps

are only expected to run successfully on GNU/Linux and Apple MacOS operating systems.

Text from this section of the SI is from the supplementary information of Thompson et al. [9] The fol-

lowing text assumes the reader intends to install these packages on their local machine or compute node and

can access a terminal emulator.

C.5.2 Installation of the conda Package Manager

To install the conda package manager, run the following commands in your shell session if you are using a

MacOS operating system.

The $ denotes a line in your terminal emulator and is not part of the command.

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

$ /bin/bash Miniconda3-latest-MacOSX-x86_64.sh

If you are using a local GNU/Linux machine, the following commands should be executed.

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

$ /bin/bash Miniconda3-latest-Linux-x86_64.sh

Follow the prompts according to your installation preferences, although the default location (your home

directory) can be expected to work. Please refer to the documentation (https://conda.io/projects/conda/en/

latest/user-guide/index.html) for any additional help or if your installation is on a computing cluster.

C.5.3 Create a Temporary Workspace

Note that we are also creating a master directory where all of the relevent data and code will be stored, do

not run a git clone command while inside another git repository. The commands to make the master

directory and changing to that directory are idempotent, so you can copy and paste the 3 commands below as

many times as desired.
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$ export NP_ASSEMBLY=${HOME}/patchy_np_analysis

$ mkdir -p ${NP_ASSEMBLY}

$ cd ${NP_ASSEMBLY}

C.5.4 Installation of the nanoparticle assembly GitHub Repo

(https://github.com/PTC-CMC/nanoparticle_assembly).

$ git clone https://github.com/PTC-CMC/nanoparticle_assembly.git

$ cd nanoparticle_assembly

C.5.5 Creating the conda Environment

After following the previous instructions and initialized the conda init shell support (if you are unsure

what that is, refer to the user guide above). Now we will install the software and libraries needed to do the

data analysis.

Begin by creating a new conda environment from the environment.yml file on the nanoparticle_assembly

GitHub Repo, and activating into that environment. A conda environment is a directory that contains all

of the necessary libraries and software needed based on your installation instructions. For example, you can

have multiple environments, all of which use a different version of Python, and conda allows you to swap

between these environments by activating (switching to) or deactivating (exiting) an environment. These

environments are independent of one another, so modifying a certain environment will not change any other

environments’ installed packages. All of the examples in this paper are expected to be ran while you are in

the patchy_np36 python environment.

$ cd Setup

$ conda env create -f environment.yml

$ conda activate patchy_np36

To list all of the installed packages in your current conda environment, run:

conda list

C.5.6 Navigating the Cloned Directory

Included in this repo is the code to generate the figures in both the main text and the supplementary informa-

tion. The Analysis directory contains the notebooks to open and see this information. Included notebooks

and their use are:

• Plot_Data.ipynb

This notebook generates plots from data read in from .csv files in the Data directory. It creates phase
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scatter plots, heatmaps, correlation plots, phase histograms, and the correlation matrix. Some slight

modifications were made to these plots such as changing labels for the figures presented in the main

text. This notebook can run just off of the .csv files and doesn’t need access to the Zenodo DOI (Digital

Object Identifier).

• COG_Single_NP’s.ipynb

This notebook is used to generate centers of geometry for the nanoparticle systems. It saves trajectories

named COG.xyz that can be read in for nearest neighbor calculations. Note that one will need the bulk

simulation data installed from this projects Zenodo source.

• Read_Trajectory.ipynb

This notebook reads in the center of geometry data and does coordination number calculations. This

data is saved out in Full_TNP_Dataset.csv. This must be run after COG_Single_NP’s.ipynb

because it needs the COG.xyz files.

• vis_scripts.ipynb

This file takes the full nanoparticle dcd files, and generates .xml files that show the full structures shown

in the paper. It prevents particles from being cut off at boundaries and gives a better visualization of

the full string structures that can be built.

• escale0.5-model3.py

This file will give relevant simulation parameters used in Hoomd-Blue. This is built for a deprecated

version of Hoomd-Blue, so replicating the simulation with this file is not possible within this repository.

However, the simulation parameters still can be used with updated scripts to replicate the simulations

performed.

Other important directories include Figures which are where generated plots will be saved, and Data

which is where output .csv files are kept from trajectory data.

Raw trajectory data can be imported from the Zenodo DOI. This can be located with the DOI 10.5281/zen-

odo.4042749 and installed into the nanoparticle_assembly/trajectory/ directory. The following

commands must be run.

$ cd ${NP_ASSEMBLY}

$ cd nanoparticle_assembly/trajectories/bulk

$ mv ../bulk_simulation_data.zip ./

$ unzip bulk_simulation_data.zip

$ cd ../single_particle
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$ mv ../single_particle_data.zip ./

$ unzip single_particle_data.zip

These files can then be analyzed using the scripts discussed above. However, recreating the plots from

Plot_Data.ipynb is still possible since that data is included in the .csv files in the Data folder.

C.5.7 Removing the Installed Software

Listed below are all the steps needed to remove the examples, as well as the conda environment that was

created. Refer to miniconda’s site for assistance uninstalling miniconda.

$ export NP_ASSEMBLY=${HOME}/patchy_np_analysis

# The rm -f (force) command might be needed to remove the directories

$ rm -r ${NP_ASSEMBLY}

# remove the conda environment, and clean up

$ conda activate base

$ conda remove -n patchy_np36 --all

$ conda clean --index-cache --packages --tarballs --yes
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Appendix D

High-Throughput Screening of Tribological Properties of Monolayers Films using Molecular

Dynamics and Machine Learning

D.1 Previous work of Summers et al. [1], chemically dissimilar monolayers

D.1.1 Screening of Chemically Dissimilar Monolayer Films as a Function of Terminal Group Chem-

istry

In Figure D.2a the COF and adhesion results for systems of both chemically identical (16 in total) and

chemically dissimilar (84 in total) films with a backbone length of 17 carbons are shown; numerical values

for chemically dissimilar films are included in Table D.2. From a tribological standpoint, the ideal monolayer

chemistry should feature both a low COF and low adhesive force, and thus favorable chemistries would

exist in the lower left-hand corner of Figure D.2a. Several chemically dissimilar systems appear to provide

favorable tribological properties as compared to chemically identical systems, as highlighted in Figure D.2b

and Figure D.2c. The majority of these systems features one monolayer that is polar/hydrophilic and another

that is nonpolar/hydrophobic. As an example, while carboxyl-terminated monolayers are found to yield

the highest adhesive forces for chemically identical systems (see Figure D.3), when paired with a nonpolar

counter monolayer the ability to form intermonolayer hydrogen bonds is eliminated, and these combinations

of terminal groups are able to provide favorable COF and adhesion values, consistent with prior studies in the

literature [2–4]. In particular, favorable tribological properties are found for monolayers featuring nitrile and

vinyl terminal groups, as shown in Figure D.2c. While nitrile and vinyl have several differences (chemical

composition, polarity), both groups are linear and feature a cylindrical shape with a small VDW radius, and

a more rigid nature owed to the presence of a double or triple bonds.

Screening of dual-monolayer systems was performed over two distinct parameter spaces: (1) chemically-

identical systems (Figure D.1b, where the top and bottom monolayer films feature the same chemistry) as a

function of terminal group and chain length and (2) chemically-dissimilar systems (Figure D.1c, where the

top and bottom monolayer films feature different chemistries) for a single fixed chain length of 17 carbons.

For each chemistry, five systems were generated, each corresponding to a unique arrangement of chains on

the available binding sites on the silica surface, by changing the “seed” provided to the monolayer builder.

Properties were evaluated for each of the five replicas and averaged to obtain values for each chemistry that

are independent of chain arrangement. For systems featuring chemically-identical films, all 16 terminal group

chemistries from Figure D.1a were considered along with five chain lengths (5, 8, 11, 14, and 17 backbone

carbons, excluding the terminal group), and three different normal loads (5, 15, 25 nN) resulting in 80 unique
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chemistries and 1200 simulations in total. Chemically-dissimilar films feature backbone chain lengths of 17

carbons and include select combinations of seven terminal groups (carboxyl, fluorophenyl, hydroxyl, iso-

propyl, methyl, nitro, and perfluoromethyl) with the 16 terminal groups in Figure D.1a (ignoring duplicates

already considered for chemical identical films), for an additional 84 unique chemistries and 1260 total simu-

lations. For the development of machine learning models, the set of 100 unique terminal group combinations

(both chemically identical and dissimilar) with a chain back length of 17 carbons are considered. To eval-

uate the predictive nature of the models, toluene and phenol terminal groups are considered and placed in

contact with opposing monolayers composed of the original 16 terminal groups (see Figure D.1a) with chain

length 17 carbons. This provides 30 additional unique chemistries (phenyl-phenol and pyrrole-phenol are not

considered due to instability of the simulations under high normal loads); 3 normal loads (5, 15, 25 nN) are

considered and 3 replicates for each of these systems, for a total of 900 additional simulations; In sum, 3360

simulations are therefore performed, with 194 unique dual monolayer chemistries with the aid of MoSDeF.

To further evaluate the utility of the models in Table D.1, in particular, their ability to pre-screen parameter

space, simulations are performed for toluene and phenol terminal groups (not part of the original training set)

in contact with the initial 16 terminal groups (see Figure D.1a). Figure D.4c,d plots predicted vs. simulated

values of COF and adhesion, where the predicted values represent the average of the predictions of the 5

models in Table D.1 and error bars correspond to the standard deviation of these 5 predictions. The models

predict the COF with reasonable accuracy, where most of the predictions are within the standard error of the

simulated values and data points visual track the line y = x. The ability to predict the force of adhesion values

is similar to that observed in Figure D.4b, in that values are well predicted in the lower adhesion regime

but underpredicted for higher values; specifically, quantitative agreement is not observed for phenol under

conditions where significant hydrogen bonding can occur between the two layers, although, as before, the

model does capture the appropriate trends. This validation provides evidence as to the predictive nature of

the models and that correlations between chemistry and tribology used by the machine learning model are

appropriate. As such, the "feature importances" are extracted from the models to evaluate which elements of

the system fingerprint have the most influence over each variable.
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Figure D.1: a.) Overview of the chemical parameter space examined in this work. The pool of terminal
group chemistries consists of (row 1) amino, hydroxyl, methyl, acetyl, carboxyl, isopropyl; (row 2) nitrile,
vinyl, methoxy, nitro; (row 3) perfluoromethyl, cyclopropyl, 2-pyrrole, phenyl, fluorophenyl, and nitrophenyl.
Representative dual-monolayer systems include both b.) chemically-identical and c.) chemically-dissimilar
compositions, shown as both schematics and simulation renderings, where oxygen is colored red, silicon
yellow, carbon cyan, hydrogen white, and fluorine green.

Figure D.2: (a) Scatter plot of COF and adhesion force data for chemically-identical systems (yellow) and
chemically-dissimilar systems (blue). The highlighted region indicates the area featuring the most tribologi-
cally favorable systems. (b) Plots the data from the highlighted region, where the seven systems are annotated
and (c) provides the corresponding terminal group chemistries in the favorable region. These include (1)
nitrile-isopropyl, (2) nitrile-methyl, (3) nitrile-perfluoromethyl, (4) vinyl-perfluoromethyl, (5) vinyl-nitro, (6)
carboxyl-isopropyl, and (7) carboxyl-vinyl.
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Figure D.3: Coefficient of friction (µ , blue circles), adhesive force (F0, red diamonds), and nematic order
(S2, yellow squares) for chemically-identical systems shown for each terminal group chemistry as a function
of chain length. Note the scale for F0 differs between the two rows in order to clearly display trends for both
polar and nonpolar systems. Error bars represent a single standard deviation calculated from the average of
the five chain attachment configurations for each system.

Figure D.4: Values predicted by RF model 1 for a.) COF and b.) adhesive force compared to the values
calculated from simulation for systems with 17 carbon backbones. The y = x line is drawn in black for
reference. Black circles denote data used as part of the training set, while red squares denote data that was
part of the test set. Comparison of predicted values and those calculated from simulation of c.) COF and d.)
adhesive force for phenol (black) and toluene (blue).
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D.1.2 Summary of chemically dissimilar films and model predictions

Table D.2: Mean and standard deviation of the coefficient of friction (COF) and adhesive force (F0, nN)
of chemically dissimilar films with c17 backbone length. Predictions from the models are also provided,
representing the mean and standard deviation of the 5 models.

System COF Calc. COF Pred. Fo Calc. (nN) Fo Pred. (nN)

acetyl-acetyl 0.147 ± 0.015 0.137 ± 0.003 1.467 ± 0.188 1.642 ± 0.307

acetyl-carboxyl 0.145 ± 0.005 0.137 ± 0.003 3.382 ± 0.150 3.070 ± 0.254

acetyl-fluorophenyl 0.121 ± 0.011 0.125 ± 0.002 1.448 ± 0.202 1.587 ± 0.102

acetyl-hydroxyl 0.150 ± 0.010 0.147 ± 0.001 2.171 ± 0.176 2.562 ± 0.332

acetyl-isopropyl 0.132 ± 0.008 0.132 ± 0.001 0.749 ± 0.141 0.743 ± 0.015

acetyl-methyl 0.137 ± 0.010 0.137 ± 0.001 0.819 ± 0.106 0.772 ± 0.038

acetyl-nitro 0.137 ± 0.005 0.134 ± 0.004 1.683 ± 0.124 1.892 ± 0.146

acetyl-perfluoromethyl 0.150 ± 0.005 0.143 ± 0.003 0.677 ± 0.045 0.695 ± 0.029

amino-amino 0.165 ± 0.022 0.151 ± 0.001 3.323 ± 0.252 3.631 ± 0.348

amino-carboxyl 0.139 ± 0.012 0.139 ± 0.001 7.942 ± 0.140 5.360 ± 1.361

amino-fluorophenyl 0.131 ± 0.005 0.133 ± 0.001 1.978 ± 0.118 1.696 ± 0.208

amino-hydroxyl 0.154 ± 0.012 0.154 ± 0.001 4.300 ± 0.111 3.664 ± 0.313

amino-isopropyl 0.136 ± 0.010 0.140 ± 0.001 0.758 ± 0.105 0.745 ± 0.012

amino-methyl 0.152 ± 0.011 0.149 ± 0.002 0.732 ± 0.144 0.773 ± 0.020

amino-nitro 0.137 ± 0.005 0.137 ± 0.001 2.629 ± 0.132 3.160 ± 0.435

amino-perfluoromethyl 0.157 ± 0.016 0.152 ± 0.003 0.832 ± 0.169 0.751 ± 0.050

carboxyl-carboxyl 0.147 ± 0.018 0.136 ± 0.005 6.055 ± 0.470 5.594 ± 0.239

carboxyl-cyano 0.112 ± 0.010 0.115 ± 0.003 6.251 ± 0.159 3.965 ± 0.928

carboxyl-cyclopropyl 0.136 ± 0.030 0.135 ± 0.001 0.471 ± 0.148 0.580 ± 0.012

carboxyl-ethylene 0.106 ± 0.011 0.115 ± 0.002 0.993 ± 0.102 1.032 ± 0.013

carboxyl-fluorophenyl 0.124 ± 0.012 0.123 ± 0.001 2.005 ± 0.127 1.880 ± 0.075

carboxyl-hydroxyl 0.147 ± 0.014 0.147 ± 0.001 7.335 ± 0.060 5.952 ± 0.647

carboxyl-isopropyl 0.111 ± 0.009 0.125 ± 0.006 0.834 ± 0.110 0.742 ± 0.033

carboxyl-methoxy 0.137 ± 0.014 0.138 ± 0.003 2.718 ± 0.219 2.859 ± 0.245

carboxyl-methyl 0.134 ± 0.013 0.134 ± 0.001 0.689 ± 0.118 0.743 ± 0.030

carboxyl-nitro 0.151 ± 0.015 0.136 ± 0.007 3.002 ± 0.172 3.702 ± 0.280

carboxyl-nitrophenyl 0.133 ± 0.006 0.131 ± 0.002 2.998 ± 0.142 3.257 ± 0.109

carboxyl-perfluoromethyl 0.141 ± 0.014 0.139 ± 0.001 0.558 ± 0.212 0.768 ± 0.042

carboxyl-phenyl 0.118 ± 0.010 0.125 ± 0.003 1.623 ± 0.086 1.478 ± 0.081

carboxyl-pyrrole 0.123 ± 0.004 0.128 ± 0.002 2.395 ± 0.113 2.706 ± 0.309

cyano-cyano 0.112 ± 0.022 0.109 ± 0.006 2.820 ± 0.455 2.477 ± 0.410

cyano-fluorophenyl 0.099 ± 0.012 0.110 ± 0.006 1.717 ± 0.183 1.660 ± 0.075

cyano-hydroxyl 0.144 ± 0.016 0.135 ± 0.004 3.394 ± 0.131 3.295 ± 0.655

cyano-isopropyl 0.103 ± 0.007 0.114 ± 0.006 0.477 ± 0.120 0.613 ± 0.054

cyano-methyl 0.116 ± 0.013 0.125 ± 0.005 0.475 ± 0.114 0.682 ± 0.099

cyano-nitro 0.104 ± 0.023 0.112 ± 0.006 2.063 ± 0.343 2.254 ± 0.298

cyano-perfluoromethyl 0.114 ± 0.010 0.126 ± 0.007 0.610 ± 0.099 0.721 ± 0.071

cyclopropyl-cyclopropyl 0.173 ± 0.014 0.165 ± 0.001 0.650 ± 0.252 0.382 ± 0.007

cyclopropyl-fluorophenyl 0.128 ± 0.013 0.132 ± 0.003 0.711 ± 0.163 0.793 ± 0.042

cyclopropyl-hydroxyl 0.150 ± 0.013 0.153 ± 0.002 0.675 ± 0.153 0.690 ± 0.018

cyclopropyl-isopropyl 0.152 ± 0.015 0.148 ± 0.001 0.561 ± 0.185 0.529 ± 0.010

cyclopropyl-methyl 0.148 ± 0.019 0.151 ± 0.001 0.539 ± 0.151 0.539 ± 0.021
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cyclopropyl-nitro 0.131 ± 0.012 0.132 ± 0.001 0.629 ± 0.203 0.648 ± 0.018

cyclopropyl-perfluoromethyl 0.162 ± 0.016 0.160 ± 0.001 0.335 ± 0.123 0.411 ± 0.019

ethylene-ethylene 0.135 ± 0.023 0.120 ± 0.002 0.859 ± 0.278 0.858 ± 0.033

ethylene-fluorophenyl 0.112 ± 0.011 0.118 ± 0.002 0.908 ± 0.111 1.136 ± 0.183

ethylene-hydroxyl 0.132 ± 0.006 0.138 ± 0.001 0.891 ± 0.039 0.975 ± 0.023

ethylene-isopropyl 0.130 ± 0.010 0.130 ± 0.001 0.587 ± 0.076 0.635 ± 0.010

ethylene-methyl 0.128 ± 0.014 0.132 ± 0.000 0.812 ± 0.188 0.787 ± 0.025

ethylene-nitro 0.111 ± 0.013 0.114 ± 0.001 0.960 ± 0.183 1.050 ± 0.024

ethylene-perfluoromethyl 0.133 ± 0.007 0.137 ± 0.002 0.583 ± 0.135 0.662 ± 0.024

fluorophenyl-fluorophenyl 0.121 ± 0.013 0.117 ± 0.002 1.996 ± 0.251 1.731 ± 0.141

fluorophenyl-hydroxyl 0.148 ± 0.012 0.145 ± 0.002 1.738 ± 0.119 1.723 ± 0.104

fluorophenyl-isopropyl 0.131 ± 0.007 0.129 ± 0.001 0.778 ± 0.045 0.840 ± 0.020

fluorophenyl-methoxy 0.140 ± 0.007 0.135 ± 0.003 1.360 ± 0.103 1.479 ± 0.066

fluorophenyl-methyl 0.122 ± 0.008 0.131 ± 0.004 1.098 ± 0.076 0.968 ± 0.063

fluorophenyl-nitro 0.116 ± 0.009 0.119 ± 0.002 1.748 ± 0.138 1.838 ± 0.069

fluorophenyl-nitrophenyl 0.117 ± 0.006 0.117 ± 0.001 2.292 ± 0.132 1.927 ± 0.152

fluorophenyl-perfluoromethyl 0.142 ± 0.005 0.137 ± 0.003 1.031 ± 0.051 0.972 ± 0.049

fluorophenyl-phenyl 0.125 ± 0.011 0.125 ± 0.002 1.175 ± 0.138 1.319 ± 0.109

fluorophenyl-pyrrole 0.115 ± 0.009 0.121 ± 0.002 1.532 ± 0.169 1.640 ± 0.061

hydroxyl-hydroxyl 0.180 ± 0.020 0.156 ± 0.001 4.891 ± 0.550 4.288 ± 0.390

hydroxyl-isopropyl 0.150 ± 0.018 0.148 ± 0.001 0.721 ± 0.133 0.740 ± 0.010

hydroxyl-methoxy 0.167 ± 0.006 0.160 ± 0.001 2.128 ± 0.073 2.414 ± 0.121

hydroxyl-methyl 0.153 ± 0.011 0.152 ± 0.001 0.765 ± 0.151 0.822 ± 0.054

hydroxyl-nitro 0.151 ± 0.012 0.147 ± 0.003 2.588 ± 0.128 3.201 ± 0.283

hydroxyl-nitrophenyl 0.146 ± 0.014 0.143 ± 0.001 2.646 ± 0.220 2.759 ± 0.026

hydroxyl-perfluoromethyl 0.152 ± 0.006 0.154 ± 0.001 0.807 ± 0.144 0.833 ± 0.032

hydroxyl-phenyl 0.154 ± 0.005 0.145 ± 0.003 1.524 ± 0.066 1.329 ± 0.048

hydroxyl-pyrrole 0.147 ± 0.016 0.147 ± 0.001 2.636 ± 0.168 2.521 ± 0.259

isopropyl-isopropyl 0.147 ± 0.019 0.137 ± 0.001 0.668 ± 0.293 0.626 ± 0.020

isopropyl-methoxy 0.145 ± 0.008 0.143 ± 0.002 0.873 ± 0.180 0.766 ± 0.040

isopropyl-methyl 0.140 ± 0.015 0.141 ± 0.001 0.598 ± 0.177 0.607 ± 0.015

isopropyl-nitro 0.123 ± 0.013 0.124 ± 0.003 0.774 ± 0.080 0.759 ± 0.030

isopropyl-nitrophenyl 0.120 ± 0.014 0.123 ± 0.001 1.082 ± 0.148 1.134 ± 0.028

isopropyl-perfluoromethyl 0.150 ± 0.012 0.147 ± 0.002 0.429 ± 0.096 0.547 ± 0.058

isopropyl-phenyl 0.132 ± 0.013 0.131 ± 0.001 0.910 ± 0.141 0.839 ± 0.049

isopropyl-pyrrole 0.131 ± 0.007 0.130 ± 0.001 0.797 ± 0.085 0.801 ± 0.034

methoxy-methoxy 0.159 ± 0.012 0.151 ± 0.002 1.332 ± 0.166 1.440 ± 0.066

methoxy-methyl 0.157 ± 0.014 0.151 ± 0.003 0.813 ± 0.152 0.781 ± 0.021

methoxy-nitro 0.151 ± 0.013 0.137 ± 0.007 1.540 ± 0.163 1.683 ± 0.249

methoxy-perfluoromethyl 0.167 ± 0.006 0.157 ± 0.003 0.599 ± 0.113 0.692 ± 0.045

methyl-methyl 0.169 ± 0.023 0.148 ± 0.001 0.801 ± 0.261 0.668 ± 0.016

methyl-nitro 0.125 ± 0.010 0.130 ± 0.002 0.822 ± 0.082 0.805 ± 0.056

methyl-nitrophenyl 0.133 ± 0.013 0.131 ± 0.002 1.255 ± 0.063 1.175 ± 0.032

methyl-perfluoromethyl 0.148 ± 0.019 0.150 ± 0.001 0.630 ± 0.178 0.598 ± 0.030

methyl-phenyl 0.142 ± 0.015 0.138 ± 0.002 1.080 ± 0.167 0.944 ± 0.021

methyl-pyrrole 0.140 ± 0.011 0.138 ± 0.000 0.972 ± 0.141 0.917 ± 0.048

nitro-nitro 0.135 ± 0.014 0.123 ± 0.001 2.283 ± 0.231 2.276 ± 0.091

nitro-nitrophenyl 0.119 ± 0.010 0.122 ± 0.001 2.326 ± 0.134 2.329 ± 0.089

nitro-perfluoromethyl 0.129 ± 0.015 0.134 ± 0.001 0.957 ± 0.132 0.912 ± 0.032
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nitro-phenyl 0.133 ± 0.009 0.126 ± 0.003 1.416 ± 0.109 1.449 ± 0.049

nitro-pyrrole 0.127 ± 0.012 0.127 ± 0.002 1.928 ± 0.072 2.475 ± 0.351

nitrophenyl-nitrophenyl 0.127 ± 0.016 0.121 ± 0.004 3.146 ± 0.414 2.378 ± 0.251

nitrophenyl-perfluoromethyl 0.133 ± 0.006 0.133 ± 0.001 1.347 ± 0.062 1.224 ± 0.022

perfluoromethyl-

perfluoromethyl

0.169 ± 0.010 0.150 ± 0.007 0.772 ± 0.148 0.586 ± 0.059

perfluoromethyl-phenyl 0.154 ± 0.010 0.143 ± 0.005 0.712 ± 0.189 0.872 ± 0.128

perfluoromethyl-pyrrole 0.134 ± 0.015 0.137 ± 0.001 0.791 ± 0.121 0.925 ± 0.094

phenyl-phenyl 0.136 ± 0.013 0.129 ± 0.002 1.473 ± 0.140 1.385 ± 0.062

pyrrole-pyrrole 0.146 ± 0.018 0.129 ± 0.001 1.985 ± 0.205 1.891 ± 0.208

D.1.3 Summary of chemically dissimilar models

Table D.3: Mean and standard deviation of the coefficient of friction (COF) and adhesive force (F0, nN)
of chemically dissimilar films with c17 backbone length. Predictions from the models are also provided,
representing the mean and standard deviation of the 5 models.

System Model 1 Model 2 Model 3 Model 4 Model 5

acetyl - acetyl Test Train Train Test Train

acetyl - carboxyl Test Train Train Train Train

acetyl - fluorophenyl Test Test Train Test Train

acetyl - hydroxyl Train Train Train Test Train

acetyl - isopropyl Train Train Train Train Train

acetyl - methyl Test Train Train Train Train

acetyl - nitro Train Train Train Train Test

acetyl - perfluoromethyl Train Test Train Train Train

amino - amino Train Test Train Train Train

amino - carboxyl Test Train Train Train Test

amino - fluorophenyl Train Train Test Train Train

amino - hydroxyl Test Train Train Train Train

amino - isopropyl Train Train Train Train Train

amino - methyl Test Test Train Test Train

amino - nitro Train Train Train Test Train

amino - perfluoromethyl Test Train Train Train Test

carboxyl - carboxyl Train Test Train Test Train

carboxyl - cyano Train Train Test Train Train

carboxyl - cyclopropyl Train Train Train Train Train

carboxyl - ethylene Train Train Train Train Train

carboxyl - fluorophenyl Test Train Train Train Train

carboxyl - hydroxyl Train Train Train Test Train

carboxyl - isopropyl Test Test Train Train Train

carboxyl - methoxy Train Train Train Test Test

carboxyl - methyl Train Test Train Test Train

carboxyl - nitro Train Train Train Train Test

carboxyl - nitrophenyl Train Test Train Train Train

carboxyl -

perfluoromethyl

Train Train Train Test Train

carboxyl - phenyl Train Train Train Test Train
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carboxyl - pyrrole Train Train Train Test Train

cyano - cyano Train Test Train Test Train

cyano - fluorophenyl Train Train Test Train Train

cyano - hydroxyl Train Train Test Train Train

cyano - isopropyl Train Test Test Train Train

cyano - methyl Train Train Train Train Test

cyano - nitro Train Train Train Train Train

cyano - perfluoromethyl Train Train Test Train Train

cyclopropyl -

cyclopropyl

Train Train Train Train Train

cyclopropyl -

fluorophenyl

Test Train Train Train Train

cyclopropyl - hydroxyl Train Train Test Train Train

cyclopropyl - isopropyl Train Train Train Train Train

cyclopropyl - methyl Train Train Train Train Train

cyclopropyl - nitro Train Train Train Train Test

cyclopropyl -

perfluoromethyl

Train Train Train Train Train

ethylene - ethylene Train Train Test Train Train

ethylene - fluorophenyl Train Train Train Train Test

ethylene - hydroxyl Train Train Train Train Train

ethylene - isopropyl Train Train Train Train Train

ethylene - methyl Train Train Train Train Train

ethylene - nitro Train Train Train Train Train

ethylene -

perfluoromethyl

Train Train Train Train Train

fluorophenyl -

fluorophenyl

Train Train Test Train Train

fluorophenyl - hydroxyl Train Train Test Train Train

fluorophenyl - isopropyl Train Test Train Train Train

fluorophenyl - methoxy Train Test Train Train Train

fluorophenyl - methyl Test Test Train Train Train

fluorophenyl - nitro Train Train Test Test Train

fluorophenyl -

nitrophenyl

Test Train Train Train Train

fluorophenyl -

perfluoromethyl

Train Train Train Train Train

fluorophenyl - phenyl Train Train Train Train Test

fluorophenyl - pyrrole Train Train Train Train Train

hydroxyl - hydroxyl Train Train Train Test Train

hydroxyl - isopropyl Train Train Train Train Train

hydroxyl - methoxy Train Train Train Train Train

hydroxyl - methyl Train Train Train Train Test

hydroxyl - nitro Train Train Test Train Train

hydroxyl - nitrophenyl Train Train Train Train Train

hydroxyl -

perfluoromethyl

Train Train Train Train Test

hydroxyl - phenyl Train Train Train Train Train

hydroxyl - pyrrole Test Train Test Train Train
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isopropyl - isopropyl Train Train Train Train Train

isopropyl - methoxy Train Train Train Train Test

isopropyl - methyl Train Train Train Train Train

isopropyl - nitro Train Test Train Train Train

isopropyl - nitrophenyl Train Train Train Train Train

isopropyl -

perfluoromethyl

Train Test Train Train Test

isopropyl - phenyl Train Train Train Test Train

isopropyl - pyrrole Train Train Train Train Test

methoxy - methoxy Train Test Test Train Train

methoxy - methyl Test Train Train Test Train

methoxy - nitro Train Train Test Train Train

methoxy -

perfluoromethyl

Train Train Test Train Train

methyl - methyl Train Train Test Train Test

methyl - nitro Test Train Train Test Test

methyl - nitrophenyl Train Train Test Train Train

methyl -

perfluoromethyl

Test Train Train Train Train

methyl - phenyl Train Test Train Train Train

methyl - pyrrole Train Train Train Train Train

nitro - nitro Train Train Train Train Train

nitro - nitrophenyl Test Train Train Train Train

nitro - perfluoromethyl Train Train Train Train Train

nitro - phenyl Test Train Train Train Train

nitro - pyrrole Train Test Test Test Train

nitrophenyl -

nitrophenyl

Train Test Test Train Test

nitrophenyl -

perfluoromethyl

Train Train Train Train Train

perfluoromethyl -

perfluoromethyl

Test Test Train Train Train

perfluoromethyl -

phenyl

Train Train Train Train Test

perfluoromethyl -

pyrrole

Train Train Train Train Test

phenyl - phenyl Train Train Train Train Test

pyrrole - pyrrole Train Train Train Test Train

D.1.4 Summary of properties of toluene and phenol containing films

245



0.08 0.14 0.20
COF (predicted)

0.08

0.14

0.20

C
O

F
(c

al
cu

la
te

d)

0 3 6
F0 (predicted), nN

0

3

6

F
0

(c
al

cu
la

te
d)

,
nN

Figure D.5: Plots of the predicted values vs. values calculated from simulation for COF and F0 for model 2;
red data points represent those reserved for testing. Data points represent the mean and error bars represent
the standard deviation of the calculated values (see Table D.2).
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Figure D.6: Plots of the predicted values vs. values calculated from simulation for COF and F0 for for model
3; red data points represent those reserved for testing. Data points represent the mean and error bars represent
the standard deviation of the calculated values (see Table D.2).
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Figure D.7: Plots of the predicted values vs. values calculated from simulation for COF and F0 for model 4;
red data points represent those reserved for testing. Data points represent the mean and error bars represent
the standard deviation of the calculated values (see Table D.2).
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Figure D.8: Plots of the predicted values vs. values calculated from simulation for COF and F0 for model 5;
red data points represent those reserved for testing. Data points represent the mean and error bars represent
the standard deviation of the calculated values (see Table D.2).

Table D.4: Mean and standard deviation of the COF and F0 for chemically dissimilar films containing
toluene and phenol, comparing the calculated values from simulation to those predicted by the models. Values
represents the mean and standard deviation.

System COF Calc. COF Pred. Fo Calc. (nN) Fo Pred. (nN)

acetyl-toluene 0.140 ± 0.007 0.127 ± 0.001 1.305 ± 0.161 1.095 ± 0.090
acetyl-phenol 0.128 ± 0.006 0.133 ± 0.002 3.627 ± 0.403 2.474 ± 0.491
fluorophenyl-toluene 0.140 ± 0.013 0.123 ± 0.003 0.958 ± 0.302 1.352 ± 0.111
fluorophenyl-phenol 0.134 ± 0.006 0.119 ± 0.001 2.766 ± 0.013 1.734 ± 0.115
nitro-toluene 0.133 ± 0.009 0.123 ± 0.002 1.280 ± 1.054 1.460 ± 0.083
nitro-phenol 0.148 ± 0.012 0.124 ± 0.002 3.408 ± 0.137 2.698 ± 0.295
amino-toluene 0.143 ± 0.004 0.137 ± 0.001 1.559 ± 0.071 1.155 ± 0.063
amino-phenol 0.130 ± 0.009 0.136 ± 0.002 6.656 ± 0.333 3.068 ± 0.532
methyl-toluene 0.146 ± 0.007 0.135 ± 0.002 0.700 ± 0.374 0.840 ± 0.043
methyl-phenol 0.130 ± 0.014 0.134 ± 0.002 1.180 ± 0.189 0.980 ± 0.075
phenyl-toluene 0.139 ± 0.011 0.129 ± 0.002 0.903 ± 0.617 1.338 ± 0.085
ethylene-toluene 0.129 ± 0.013 0.125 ± 0.001 0.847 ± 0.336 1.109 ± 0.141
ethylene-phenol 0.117 ± 0.005 0.118 ± 0.002 1.345 ± 0.110 1.250 ± 0.142
isopropyl-toluene 0.141 ± 0.009 0.130 ± 0.001 1.041 ± 0.091 0.818 ± 0.036
isopropyl-phenol 0.117 ± 0.010 0.128 ± 0.002 1.234 ± 0.069 0.925 ± 0.089
nitrophenyl-toluene 0.136 ± 0.006 0.121 ± 0.001 1.668 ± 0.339 1.421 ± 0.105
nitrophenyl-phenol 0.134 ± 0.009 0.126 ± 0.004 3.477 ± 0.092 2.700 ± 0.257
carboxyl-toluene 0.136 ± 0.005 0.126 ± 0.001 1.468 ± 0.098 1.459 ± 0.070
carboxyl-phenol 0.121 ± 0.002 0.133 ± 0.003 6.476 ± 0.532 4.170 ± 0.616
perfluoromethyl-toluene 0.151 ± 0.018 0.141 ± 0.003 0.419 ± 0.558 0.855 ± 0.080
perfluoromethyl-phenol 0.140 ± 0.013 0.138 ± 0.003 1.152 ± 0.064 1.038 ± 0.079
hydroxyl-toluene 0.164 ± 0.010 0.142 ± 0.004 1.219 ± 0.601 1.299 ± 0.051
hydroxyl-phenol 0.138 ± 0.012 0.145 ± 0.001 6.372 ± 0.349 2.808 ± 0.251
cyclopropyl-toluene 0.152 ± 0.008 0.136 ± 0.002 0.709 ± 0.097 0.768 ± 0.046
cyclopropyl-phenol 0.147 ± 0.004 0.134 ± 0.003 0.899 ± 0.068 0.902 ± 0.104
pyrrole-toluene 0.132 ± 0.002 0.126 ± 0.002 1.351 ± 0.245 1.401 ± 0.066
methoxy-toluene 0.146 ± 0.018 0.134 ± 0.002 1.406 ± 0.567 1.005 ± 0.038
methoxy-phenol 0.139 ± 0.006 0.134 ± 0.002 3.337 ± 0.122 2.195 ± 0.291
cyano-toluene 0.128 ± 0.012 0.111 ± 0.006 0.773 ± 0.235 1.483 ± 0.075
cyano-phenol 0.113 ± 0.016 0.112 ± 0.006 5.346 ± 0.096 3.024 ± 0.592
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D.2 Using the released source code

Following the best practices described by TRUE principles (Transferable, Reproducible, Usable by others,

and Extensible) [5], the code used to perform the molecular dynamics (MD) simulations and data analysis

with machine learning (ML) are released along with the publication. The code is archived and uploaded to

Zenodo for reference while a more light-weight, accessible version is hosted on GitHub [6]. To replicate the

study utilizing this repository in a TRUE fashion, one must install all software used during this study. Below

are the necessary details to set up and install a Python environment needed to operate on the repository. The

environment is managed partly with the scientific software manager, conda, while a few python libraries

need to be compiled from source. Since the simulation portion of this study was conducted on GNU/Linux

and the data analysis was performed on Apple MacOS operating systems, these operating systems will be the

main target in the instructions below.

D.3 Installation of the conda Package Manager

To install conda to a local machine, run the following commands in your terminal based on your operating

system (note that the initial “$” is meant to denote a line on the command line):

D.3.1 MacOS

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

$ /bin/bash Miniconda3-latest-MacOSX-x86_64.sh

D.3.2 Linux

$ cd ${HOME}

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

$ /bin/bash Miniconda3-latest-Linux-x86_64.sh

D.4 Cloning the repository and creating the python environment

Once the conda package manager has been installed, the reader can proceed to clone the repository and

create a working environment. We note, due to the sheer size of the simulation data, only the analysis

routines, along with the summarized data, is hosted on GitHub for easy access; the full simulation workflow

is archived and uploaded Zenodo.

MacOS and Linux:

$ git clone https://github.com/daico007/iMoDELS-supplements.git

$ cd iModels-supplements

$ conda install -c conda-forge mamba
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$ mamba env create --file env.yml

$ conda activate screening

D.5 Utilizing the repository

The iModels-supplements repository includes the summarized data generated from the MD simula-

tions and routines used to train and evaluate the efficacy of the ML models. The raw data contains informa-

tion regarding the systems as well as the calculated tribological properties, while the analysis routines can

be found in a collection of Python scripts (used to perform the training and evaluation of the ML models)

and Jupyter notebooks (used to plot and visualize data). We have set up a Jupyter notebook, named

Data-Lookup.ipynb, to specifically assist with 1) Looking up data generated from MD and 2) utilize

the trained ML models to predict tribological properties of new systems. More details of the structure of the

repository can be found on the GitHub page [6].

D.6 Additional force field details

This study utilized the Optimized Potential for Liquid System - All Atom, consistent with that used in Sum-

mers et al., study [1, 7, 8]. Beyond parameters for chemistries studied in the previous work, interaction

parameters for the three new chemistries (toluene, phenol, and difluoromethyl) are presented below. The

complete list of parameters is stored in a foyer-compatible XML file, named oplsaa.xml, and included

with the workflow repository [6].

D.6.1 Force field parameters

D.6.1.1 Toluene

Table D.5: Toluene nonbonded parameters.

Nonbonded parameters

Atom Type Element Charge Sigma, Å Epsilon, kcalmol−1 Reference

opls_140 H 0.06 2.5 0.03 [7]
opls_148 C -0.065 3.5 0.066 [7]
opls_145 C -0.115 3.55 0.07 [7]
opls_146 H 0.115 2.42 0.03 [7]

Table D.6: Toluene bonded parameters.

Harmonic Bond parameters

Bond Elements k, kcalmol−1 Å
−2

r0, Å Reference

opls_149-opls_140 C-H 340 1.09 [7]
opls_145-opls_148 C-C 317 1.51 [7]
opls_145-opls_145 C-C 469 1.4 [7]
opls_145-opls_149 C-C 317 1.51 [7]
opls_140-opls_148 H-C 340 1.09 [7]
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Table D.7: Toluene angle parameters.

Harmonic Angle parameters

Angle Elements k, kcalmol−1 deg−2
θ0, deg Reference

opls_149-opls_145-opls_145 C-C-C 70 120 [7]
opls_140-opls_149-opls_145 H-C-C 35 109.5 [7]
opls_136-opls_149-opls_145 C-C-C 63 114 [7]
opls_148-opls_145-opls_145 C-C-C 70 120 [7]
opls_145-opls_148-opls_140 C-C-H 35 109.5 [7]
opls_145-opls_145-opls_145 C-C-C 63 120 [7]
opls_145-opls_145-opls_146 C-C-H 35 120 [7]
opls_140-opls_148-opls_140 H-C-H 33 107.8 [7]

Table D.8: Toluene dihedral parameters.

Dihedral parameters

Dihedral Elements k1 k2 k3 k4 Reference
kcalmol−1

opls_149-opls_145-opls_145-opls_145 C-C-C-C 0 7.25 0 0 [7]
opls_149-opls_145-opls_145-opls_146 C-C-C-H 0 7.25 0 0 [7]
opls_140-opls_149-opls_145-opls_145 H-C-C-C 0 0 0 0 [7]
opls_136-opls_149-opls_145-opls_145 C-C-C-C 0 0 0 0 [7]
opls_140-opls_136-opls_149-opls_145 H-C-C-C −1.2×10−6 0 0.462 0 [7]
opls_148-opls_145-opls_145-opls_145 C-C-C-C 0 7.25 0 0 [7]
opls_148-opls_145-opls_145-opls_146 C-C-C-H 0 7.25 0 0 [7]
opls_145-opls_145-opls_145-opls_145 C-C-C-C 0 7.25 0 0 [7]
opls_145-opls_145-opls_145-opls_146 C-C-C-H 0 7.25 0 0 [7]
opls_145-opls_145-opls_148-opls_140 C-C-C-H 0 0 0 0 [7]
opls_146-opls_145-opls_145-opls_146 H-C-C-H 0 7.25 0 0 [7]

Table D.9: Toluene improper parameters.

Improper parameters1

Improper1 Elements Kφ , kcalmol−1 n γ , deg Reference

opls_148-opls_145-opls_145-opls_145 C-C-C-C 1.1 2 180 [7]
opls_145-opls_145-opls_145-opls_146 C-C-C-H 1.1 2 180 [7]
opls_149-opls_145-opls_145-opls_145 C-C-C-C 1.1 2 180 [7]

1 Dihedral OPLS parameters are converted from Ryckaert-Bell parameters stored in the “oplsaa.xml”.
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D.6.1.2 Phenol

Table D.10: Phenol nonbonded parameters.

Nonbonded parameters

Atom Type Element Charge Sigma, Å Epsilon, kcalmol−1 Reference

opls_145 C -0.115 3.55 0.07 [7]
opls_166 C 0.15 3.55 0.07 [7]
opls_167 O -0.585 3.07 0.17 [7]
opls_146 H 0.115 2.42 0.03 [7]
opls_168 H 0.435 10 0.0 [7]

Table D.11: Phenol bonded parameters.

Harmonic Bond parameters

Bond Elements k, kcalmol−1 Å
−2

r0, Å Reference

opls_145-opls_149 C-C 317 1.51 [7]
opls_145-opls_145 C-C 469 1.4 [7]
opls_145-opls_166 C-C 469 1.4 [7]
opls_167-opls_166 O-C 450 1.364 [7]
opls_146-opls_145 H-C 367 1.08 [7]
opls_168-opls_167 H-O 553 0.945 [7]

Table D.12: Phenol angle parameters.

Harmonic Angle parameters

Angle Elements k, kcalmol−1 deg−2
θ0, deg Reference

opls_149-opls_145-opls_145 C-C-C 70 120 [7]
opls_140-opls_149-opls_145 H-C-C 35 109.5 [7]
opls_136-opls_149-opls_145 C-C-C 63 114 [7]
opls_145-opls_145-opls_145 C-C-C 63 120 [7]
opls_145-opls_145-opls_146 C-C-H 35 120 [7]
opls_145-opls_145-opls_166 C-C-C 63 120 [7]
opls_145-opls_166-opls_145 C-C-C 63 120 [7]
opls_145-opls_166-opls_167 C-C-O 70 120 [7]
opls_166-opls_145-opls_146 C-C-H 35 120 [7]
opls_166-opls_145-opls_145 C-C-C 63 120 [7]
opls_166-opls_167-opls_168 C-O-H 35 113 [7]

Table D.13: Phenol dihedral parameters.

Dihedral parameters

Dihedral Elements k1 k2 k3 k4 Reference
kcalmol−1

opls_149-opls_145-opls_145-opls_145 C-C-C-C 0 7.25 0 0 [7]
opls_149-opls_145-opls_145-opls_146 C-C-C-H 0 7.25 0 0 [7]
opls_140-opls_149-opls_145-opls_145 H-C-C-C 0 0 0 0 [7]
opls_136-opls_149-opls_145-opls_145 C-C-C-C 0 0 0 0 [7]
opls_140-opls_136-opls_149-opls_145 H-C-C-C -1.20E-06 0 0.46199928 0 [7]
opls_145-opls_145-opls_145-opls_166 C-C-C-C 0 7.25 0 0 [7]
opls_145-opls_145-opls_145-opls_146 C-C-C-H 0 7.25 0 0 [7]
opls_145-opls_145-opls_145-opls_145 C-C-C-C 0 7.25 0 0 [7]
opls_145-opls_145-opls_166-opls_145 C-C-C-C 0 7.25 0 0 [7]
opls_145-opls_145-opls_166-opls_167 C-C-C-O 0 7.25 0 0 [7]
opls_145-opls_166-opls_145-opls_145 C-C-C-C 0 7.25 0 0 [7]
opls_145-opls_166-opls_145-opls_146 C-C-C-H 0 7.25 0 0 [7]
opls_145-opls_166-opls_167-opls_168 C-C-O-H 0 1.68200048 0 0 [7]
opls_166-opls_145-opls_145-opls_146 C-C-C-H 0 7.25 0 0 [7]
opls_167-opls_166-opls_145-opls_146 O-C-C-H 0 7.25 0 0 [7]
opls_146-opls_145-opls_145-opls_146 H-C-C-H 0 7.25 0 0 [7]
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Table D.14: Phenol improper parameters.

Improper parameters1

Improper1 Elements Kφ , kcalmol−1 n γ , deg Reference

opls_149-opls_145-opls_145-opls_145 C-C-C-C 1.1 2 180 [7]
opls_145-opls_145-opls_145-opls_146 C-C-C-H 1.1 2 180 [7]
opls_145-opls_166-opls_145-opls_146 C-C-C-H 1.1 2 180 [7]
opls_145-opls_145-opls_166-opls_167 C-C-C-O 1.1 2 180 [7]
opls_166-opls_145-opls_145-opls_146 C-C-C-H 1.1 2 180 [7]

1 Dihedral OPLS parameters are converted from Ryckaert-Bell parameters stored in the “oplsaa.xml”.

D.6.1.3 Difluoromethyl

Table D.15: Difluoromethyl nonbonded parameters.

Nonbonded parameters

Atom Type Element Charge Sigma, Å Epsilon, kcalmol−1 Reference

opls_140 H 0.06 2.5 0.03 [7]
opls_962 C 0.24 3.5 0.066 [7]
opls_965 F -0.12 2.95 0.053 [7]

Table D.16: Difluoromethyl bonded parameters.

Harmonic Bond parameters

Bond Elements k, kcalmol−1 Å
−2

r0, Å Reference

opls_136-opls_140 C-H 340 1.09 [7]
opls_140-opls_136 H-C 340 1.09 [7]
opls_136-opls_140 C-H 340 1.09 [7]
opls_140-opls_136 H-C 340 1.09 [7]
opls_1004-opls_140 C-H 340 1.09 [7]
opls_140-opls_1004 H-C 340 1.09 [7]
opls_962-opls_136 C-C 268 1.529 [7]
opls_965-opls_962 F-C 367 1.332 [7]
opls_965-opls_962 F-C 367 1.332 [7]
opls_140-opls_962 H-C 340 1.09 [7]

Table D.17: Difluoromethyl angle parameters.

Harmonic Angle parameters

Angle Elements k, kcalmol−1 deg−2
θ0, deg Reference

opls_136-opls_962-opls_965 C-C-F 50 109.5 [7]
opls_136-opls_962-opls_140 C-C-H 37.5 110.7 [7]
opls_140-opls_136-opls_962 H-C-C 37.5 110.7 [7]
opls_136-opls_136-opls_962 C-C-C 58.3500239 112.7 [7]
opls_965-opls_962-opls_965 F-C-F 77 109.1 [7]
opls_965-opls_962-opls_140 F-C-H 40 107 [7]

Table D.18: Difluoromethyl dihedral parameters.

Dihedral parameters

Dihedral Elements k1 k2 k3 k4 Reference
kcalmol−1

opls_140-opls_136-opls_962-opls_965 H-C-C-F 0 0 0.4 0 [7]
opls_140-opls_136-opls_962-opls_140 H-C-C-H 0 0 0.3 0 [7]
opls_136-opls_136-opls_962-opls_965 C-C-C-F 0.3 0 0.4 0 [7]
opls_136-opls_136-opls_962-opls_140 C-C-C-H 0 0 0.3 0 [7]
opls_140-opls_136-opls_136-opls_962 H-C-C-C 0 0 0.3 0 [7]
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In this study, we used the Random Forest Regressor algorithm [9] as implemented by scikit-learn

as the RandomForestRegressor [10] and hence, we can optimize parameters that are exposed to the

users. Of those, we have considered the number of trees, max depth, and max features, which are known to

have effects on the accuracy as well as the speed/performance of the algorithm. We perform optimization

by training and evaluating the models, which are trained with three data amounts (100, 1000, 7816), as a

function of different parameters. The results are shown in the following figures, with Figure D.9 showing

the effects of different number of trees (n_estimators), Figure D.10 showing the maximum depth of

each tree (max_depth), and the maximum number of features to consider when looking for the best split

(max_features) in Figure D.11. In each plot, the dashed, horizontal lines represent the performance

of the models trained with the parameters used by Summers et al., and by the models in the body of this

paper. We can see that, for all plots, at all training sizes, the performance of the models trained with the

parameters utilized previously Summers et al. are highly performant even when compared to these optimized

parameters. There is minor improvement for using a smaller number of trees when training models with 100

training points, though the improvement is not significant. Hence, for the sake of consistency and ability

to directly compare the modes from the Summers et al. paper, we have re-used the parameters utilized by

Summers et al [1].

D.7 Feature importance

An advantage provided by the random forest algorithm is the ability to interrogate how each model utilized

the provided features, called feature importance. This allows for interpretation and classification of features

that strongly affect the predictions made by the model, and by extension, determine the molecular descriptors

that strongly affect the system’s property of interest. As data are provided to train the model, we observe

improvement in the model regarding its ability to predict tribological properties of dual-monolayer systems

from different test sets, as pointed out in the main text. However, the driving force behind those improvements

have not been fully discussed. Here, we provide a comparison between the feature importances’ of several

models, trained with various training set sizes, to note any changes during this process.

The feature importance rankings of COF and F0 for different models, trained with varying amounts of

training data are shown in Figure D.12-Figure D.15. These set of plots show the process in which the random

forest algorithm ranks each parameter and show how the feature importance rankings shift as more/less data

are used to train the models. Comparing between COF models, while the highest-ranking feature, the hk-

alpha, is quite consistent across the models, the other feature positions shuffle. The adjustments in the feature

importance ranking reflect the changes that occur as the forest of decision trees finds descriptors that more

evenly split the data. This explains why there was still a steady positive correlation between the amount of
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data and the predictive ability of the COF models. Between F0 models, we note the position of the two highest

ranking features, hbonds and tpsa-min remain unchanged, though there are some shuffling among the lesser

ranked features. Among these two features, we observed a gradual adjustment in their relative importance.

However, the conclusions drawn from these different feature importance rankings remain consistent with

Summers et al. [1], for both the COF and F0 models, that the COF is mostly impacted by the shape and size

of the terminal group chemistries, while F0 is strongly affected by the terminal group charge distribution.

During the testing and evaluation of the random forest regressor model, an additional study on the effect

of training set distribution was explored. Since a random forest regressor depends on randomly sampling

from the training data, if the training data is from a biased dataset, the predictions from the model will

also be biased. To explore this, we prepared 3 biased datasets of 1000 points selected from extrema of our

data. Specifically, we created biased models using (1) 500 lowest values and 500 highest values, (2) 1000

highest values, (3) 1000 lowest values of the total-train set described in the main text. We then employed

the same training methodology as previously described. Note that training set size was held constant at 1000

points. The models’ performance was quantified by their ability to capture the trends/distribution of their test

set. The difference between the data distribution predicted by ML models against reference data generated

through MD simulations can be quantified by using KL divergence, which measures the distance between two

distributions, and visualized by the violin plots in Figure D.16. The reference data, those calculated directly

from MD simulations, are represented by the blue portion of the violin plot. Well-performing models are

the violin plots that reproduce a similar overall data distribution to the blue portion of the violin plot. It is

very apparent that biased distributions of data dramatically impact the predictive ability of these models. For

example, the dataset emulating a bimodal distribution from the very extreme values of COF and F0 led to a

predictive model that also approximated a bimodal distribution.

This effect may make it difficult for certain strategies that involve developing ML models from minimal

data, depending on the distribution. We compare the distribution of frictional properties of systems in the

5050-test set computed from simulations and the distribution predicted by the ML models (one trained with

the Summers et al. data set and one trained with 100 data points from the 5050-train data set) and present

the results in Figure D.17. We note that the Summers et al. models do not fully capture the MD-defined

distributions for either COF or F0; and, in both cases, fails to mimic the tails of the distributions. ML models

trained on a subset of the 5050-train, on the other hand, closely follow the simulation data. This improvement

is likely due to the inclusion of systems with mixed monolayers, which subsequently improve the distribution

of the utilized training set. The improvement in distribution induced by inclusion of more diverse systems

explains the increase in accuracy between the ML models trained with 100 data points from the total-train or

the 5050-train sets with those trained with data from the Summers et al. data set.
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However, we note, even for the training sets with well-distributed data, including more data could still

help improve the accuracy of the ML models. This point is demonstrated in Figure D.18 where we compare

the ability of the model trained with 100 data points and the model trained with 1000 data points from the

5050-train data set. These training sets are created such that they capture a similar distribution, closely

following the distribution of the complete data (see the Methods section). We can see that the models trained

with 1000 data points still demonstrate improvement in their ability to capture the distribution of the 5050-test

set, both by the shapes of their distributions and the alignment of the medians and quantiles value, indicating

data training set size still greatly affect the accuracy of the ML models. However, we note, larger training

set sizes would also increase variability, and thus it is not possible to fully separate out these two effects.

The benefit of adding more data in the training set is further discussed in the body of this work (the Results

section).

D.8 Additional metrics

In addition to the two metrics reported in previously in the body of this work (coefficient of determination,

R2, and mean average percentage error, MAPE), we also include other popular metrics, mean absolute error

(MAE) and mean squared error (MSE) below in Table D.20 and Table D.21 [11]. We note the trends pre-

sented in these metrics are consistent with conclusions drawn using the other metrics, i.e., R2 and MAPE, as

presented in the body of this work.

Table D.19: Molecular descriptors from RDKit [12] .

Molecular descriptor Description Category

Approximate Surface Area Approximation of molecular surface area using the approach defined by

Labute [13]

Size

Asphericity Measure of molecular shape (from Baumgartner [14]); A = 0 for spherical

shape, A = 1 for highly prolate shapes, and A = 0 : 25 for oblate shapes

Shape

Balaban J Related to connectivity, degree of branching [15] Complexity

Bertz CT Measure of molecular complexity through connectivity [16] Complexity

Chi0, Chi1 Connectivity indices [17] Complexity

Chi0n - Chi4n Connectivity indices over various molecular fragments (0=atoms, 1=one

bond fragments, 2=two bond fragments, etc.) [17]

Complexity

Chi0v - Chi4v Valence connectivity indices (0=atoms, 1=one bond fragments, 2=two bond

fragments, etc.) [17]

Complexity

Eccentricity Shape descriptor calculated from the inertiamatrix (0=spherical, 1=linear),

from Arteca [18]

Shape

Hall-Kier alpha Modifying term for kappa descriptors, related to shape/flexibility [19] Shape
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Hall-Kier kappa1 Alpha-modified topological shape descriptor; related to complexity/number

of cycles (rings) in the bond graph [19]

Shape

Hall-Kier kappa2 Alpha-modified topological shape descriptor; related to degree of star-like

bond graph vs.linearity [19]

Shape

Hall-Kier kappa3 Alpha-modified topological shape descriptor; related to "centrality" of

branching [19]

Shape

Hydrogen bond factor Developed in Summers et al. [1] work; related to ability for formation of

inter-monolayer hydrogen bonds

Charge distribution/ Misc.

IPC Complexity/connectivity descriptor estimated from adjacency matrix of bond

graph [20]

Complexity

Inertial shape factor Characterization of molecular shape from principal moments of inertia

(pm2/(pm1 *pm3), where pm1–3 are the three principal moments), from

Todeschini and Consoni [19]

Shape

logP Octanol - water partition coefficient estimated through the method of

Wildman and Crippen; [21] measure of hydrophobicity

Charge distribution/ Misc.

Molar refractivity Estimation of molecular polarizability; calculated through the method of

Wildman and Crippen [21]

Size

Molecular weight - Size

Molecular weight (heavy atoms) Molecular weight excluding hydrogens Size

Normalized principal moments ratios

(NPR1, NPR2)

Used to characterize molecular shape, from Sauer and Schwarz [22] Shape

Number of heavy atoms Number of non-hydrogen atoms Size

Number of rotatable bonds - Size/Shape

Number of valence electrons - Size

Plane of best fit Measure of molecular planarity (0=planar, in-creasing with less

planarity) [23]

Shape

Principal moments of inertia (PMI1,

PMI2, PMI3)

Three principal moments of inertia for the molecule (1=smallest, 3=largest) Shape

Radius of gyration (From Arteca [18]) Characterizes molecular shape, specifically, elongation Shape/Size

Sphericity Measure of molecular shape (0=spherical, 1=flat), from Robinson et al. [24] Shape

Topological polar surface area Estimation of surface area of only polar atoms, from Ertl et al. [25] Charge distribution

Total hydrophobic VSA Sum of SA contributions from atoms with −0.20 ≤ q < 0.20 Charge distribution

Total negative van der Waals surface

area (VSA)

Sum of SA contributions from atoms with q < 0.0 Charge distribution

Total negative polar VSA Sum of SA contributions from atoms with q < 0.20 Charge distribution

Total polar VSA Sum of SA contributions from atoms with |q|> 0.20 Charge distribution

Total positive VSA Sum of SA contributions from atoms with q > 0.0 Charge distribution

Total positive polar VSA Sum of SA contributions from atoms with q ≥ 0.20 Charge distribution

Fractional hydrophobic VSA Total hydrophobic VSA / Total VSA Charge distribution
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Fractional negative VSA Total negative VSA / Total VSA Charge distribution

Fractional negative polar VSA Total negative polar VSA / Total VSA Charge distribution

Fractional polar VSA Total polar VSA / Total VSA Charge distribution

Fractional positive VSA Total positive VSA / Total VSA Charge distribution

Fractional positive polar VSA Total positive polar VSA / Total VSA Charge distribution
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Figure D.9: Performance of predictive models, measured with R2 and MAPE, as a function of number of
trees. Models are evaluated at tree training set sizes, 100 (a and b), 1000 (c and d), and 7816 (e and f). The
dotted, horizontal line represents the accuracy of models trained with 1000 trees, which is used to train ML
models in the body of this work.
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Figure D.10: Performance of predictive models, measured with R2 and MAPE, as a function of maximum
depth. Models are evaluated at three training set sizes, 100 (a and b), 1000 (c and d), and 7816 (e and f). The
dotted, horizontal line represents the accuracy of models trained with no maximum depth, which is used to
train ML models in the body of this work.
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Figure D.11: Performance of predictive models, measured with R2 and MAPE, as a function of maximum
features. Models are evaluated at three training set sizes, 100 (a and b), 1000 (c and d), and 7816 (e and f).
The dotted, horizontal line represents the accuracy of models trained with the maximum number of features
provided (32–45 features), which is used to train ML models in the body of this work.

Figure D.12: Feature importance of models trained with 100 data points from the Summers et al. [1] data
when predicting COF (left) and F0 (right).
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Figure D.13: Feature importance of models trained with 1000 data points from the 5050-train data, COF
(left) and F0 (right).

Figure D.14: Feature importance of models trained with all data points (7816) from the total-train, COF
(left) and F0 (right).

Figure D.15: Feature importance of models trained with 1000 data points from the total-train data, COF
(left) and F0 (right).
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Figure D.16: Distribution of COF (a) and F0 (b) properties calculated from MD simulation (blue) and es-
timated using ML models (orange). From top to bottom, distribution (1) calculated from MD simulations
(reference), and estimated from ML models trained with (2) 1000 data points bootstrapping from the total-
train set, (3) 500 highest values and 500 lowest values from the total-train set, (4) 1000 highest values from
the total-train set and (5) 1000 lowest values from the total-train set.

Figure D.17: Distribution of (a) COF and (b) F0 for systems in the 5050-test set from MD simulations (upper,
blue) and from MD models prediction (lower, orange), trained with Summers et al. data (top) and with 100
data points from the 5050-train set (bottom). In each distribution, the center line represents the median and
the other two lines mark the two adjacent quantiles.

Figure D.18: Distribution of (a) COF and (b) F0 for systems in the 5050-test set from MD simulations (upper,
blue) and from MD models prediction (lower, orange), trained with 100 (top) and with 1000 (bottom) data
points from the 5050-train set. In each distribution, the center line represents the median and the other two
lines mark the two adjacent quantiles.
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Appendix E

Contributions to papers

In this appendix chapter, I describe my contributions to the publications I am listed as a co-author on using

the CRediT contributor role taxonomy [1].

In Chapter 2 "Best Practices for Molecular Simulation", I contributed to the conceptualization, resource

provisioning, manuscript original draft, manuscript review and editing, and visualization. I wrote a majority

of the initial text for the thermostat (subsection 2.5.4) and barostat (subsection 2.5.5) sections, as well as

Table 2.1. The figures, tables, and majority of the text for Chapter 2 are from [2].

In Chapter 3 "Towards Molecular Simulations that are Transparent, Reproducible, Usable By Others,

and Extensible (TRUE)", I contributed to the conceptualization, resource provisioning, manuscript original

draft, manuscript review and editing, and visualization. The figures, listings, tables and majority of the text

for Chapter 3are from [3]. I also assisted with the software development and creation of the supplemental

information, as well as a majority of the code listings.

In Chapter 4, I contributed to the methodology, software, validation, investigation, resources, data cura-

tion, manuscript original draft, manuscript review and editing, and visualization. I was the lead developer for

the plugin system and its user documentation in both mbuild and foyer (Section 4.2). I was the lead de-

veloper for the support of crystal lattices and triclinic geometries in mbuild (Section 4.2). For Section 4.3,

I contributed to the conceptualization, methodology, software, validation, investigation, manuscript original

draft, and the manuscript review and editing. For Section 4.4, I contributed to the methodology, software,

manuscript original draft, manuscript review and editing. Figures, tables, listings and text from [4].

For Chapter 6, I contributed to the methodology, software, validation, investigation, manuscript original

draft, manuscript review and editing. This chapter is a combination of figures, tables, and text from [5, 6]. For

[5], I included two additional test systems to validate the transferability of the model developed by Summers,

and the subsequent scaling up of systems to study in [6]. I was involved in all aspects of the computational

study in [6], but my co-first author, Co Quach, led the majority of the RF model development, extension, and

training. I was the lead developer of the data space, extension of the project, COF and F0 calculation, and

organization and distribution of simulations for [6].
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