
DEEP REINFORCEMENT LEARNING FOR ADAPTIVE CONTROL IN ROBOTICS

By

Luke Bhan

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER of SCIENCE

in

Computer Science

May 13, 2022

Nashville, Tennessee

Approved:

Gautam Biswas, Ph.D.

Marcos Quinnones-Grueiro, Ph.D.

Copyright © 2022 Luke Bhan
All Rights Reserved

ii

ACKNOWLEDGMENTS

I would like to thank my mom and my dad for their support. Additionally, I would like to
thank my lab mates Ibrahim and Tim as well as my mentors Dr. Biswas and Dr. Quinones-
Grueiro for their assistance with my development as a young researcher.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 Introduction and Motivation . 1

1.1 Introduction . 1

2 Policy Blending for Assistive Control . 3

2.1 Introduction . 3
2.2 Related Work . 4
2.3 Formalism . 5

2.3.1 Robust Markov Decision Process 5
2.3.2 Domain Randomization . 6
2.3.3 System Identification Via Parameter Estimation 7
2.3.4 Autotuned Search Parameter Model (SPM) 7

2.4 Approach . 8
2.4.1 Blending Network Learning . 9
2.4.2 Concurrent System Identification 9

2.5 Experiments . 9
2.5.1 Assistive Gym . 9
2.5.2 Training of Sub-Policies . 10
2.5.3 Training of Blending Network . 11
2.5.4 Training of Domain Randomization 12

2.6 Discussion and Results . 13

3 Hybrid Model Predictive Control and Deep Reinforcement Learning for Fault
Tolerant Control of Octorotors . 17

3.1 Introduction . 17
3.2 Background on Fault Tolerant Control 17
3.3 Related Work . 18
3.4 Formalism . 18

3.4.1 Reinforcement Learning . 18
3.5 Octorotor Design . 20

3.5.1 UAV Model . 20
3.5.2 Designing Realistic Faults . 21

3.6 Proposed Framework . 22

iv

3.7 Experiments and Results . 23
3.7.1 Experimental Design . 23
3.7.2 Results For Single-Motor Faults 26
3.7.3 Results of Dual Motor Faults . 26

3.8 Limitations and Future Work . 28

4 Conclusion . 33

References . 34

v

LIST OF TABLES

Table Page

2.1 Trained policies and their respective observation and action spaces . . . 11
2.2 Trained policies and their respective observation and action spaces . . . 12
2.3 Mean and STDEV of Each Method Given a Specific Impairment 16

3.1 Octocopter Parameters . 21
3.2 PPO Parameters . 25

vi

LIST OF FIGURES

Figure Page

2.1 Policy blending with system identification for a human-robot collabora-
tive task . 8

2.2 Example of our robot completing the itching task even when the human
is dis-functionally moving its arm upward 13

2.3 Training reward average over 50 episodes for single impairment policies.
The rewards here are averaged over the training of 3 seeds. 13

2.4 Application of the trained policy to a real environment for 100 separate
episodes. We use the highest reward policy for each situation. a) Shows
the itch force applied when the human has a combination of all three
impairments. b), c), and d) show the force applied when the human has a
single impairment in the form of limited range, weakness, or involuntary
motion respectively. 15

2.5 Training reward averaged over 50 episodes for our policy exploration
methods. The rewards shown here are averaged over the training of 3
seeds . 16

3.1 Cascade Control scheme for the octocopter 20
3.2 Octocopter motor fault configuration 22
3.3 Fault Adaptive Control framework . 23
3.4 Reward Function for Training the DRL Agent on a Single Motor 3 Fault 27
3.5 Comparison of X-trajectory Between PD Control and Hybrid Scheme

for 8x Fault on Motor 3 . 28
3.6 Comparison of Y-trajectory Between PD Control and Hybrid Scheme

for 8x Fault on Motor 3 . 29
3.7 Robustness of Hybrid Scheme for Single Motor 3 Fault. The robustness

is shown over a box-plot where the circles are outliers and the edges of
the box represent the first and third quartiles of the data. 30

3.8 Reward Function for Training the DRL Agent on a Dual Motor 5 and 6
Faults . 31

3.9 Comparison of X-trajectory Between PD Control and Hybrid Scheme
for 4x Faults on Motor’s 5 and 6 . 31

3.10 Comparison of Y-trajectory Between PD Control and Hybrid Scheme
for 4x Faults on Motor’s 5 and 6 . 32

3.11 Robustness of Hybrid Scheme for Dual Motor 5 and 6 Faults 32

vii

CHAPTER 1

Introduction and Motivation

1.1 Introduction

In recent years, the control of nonlinear systems using data-driven methods has garnered

large interest due to a multitude of reasons. First, the amount of pure compute available

in modern processors has increased. Second, advances in Deep Learning algorithms, par-

ticularly in reinforcement learning, have shown viability on both simulated and real-world

tasks. However, there is still a series of significant challenges to overcome before robotics

can robustly be deployed in real-world applications. In particular, data-driven policies

struggle to generalize to real world environments due to the ever changing dynamics of

system parameters. Furthermore, policies need to be robust to unforeseen state inputs and

maintain ”reasonable” safety guarantees to avoid damaging nearby surroundings.

In this work, we present two approaches for controlling real-world robotic systems

with vastly different environmental challenges. Our work is based on data-driven methods

for control as these methods have shown great promise to capture the nonlinear dynamics

of systems that cannot be represented physically. First, we propose a form of hierarchical

reinforcement learning that combines system identification and policy blending for general-

izing across different human-assitive environments. We are able to show sample efficiency

over standard domain randomization and able to regularly complete an itching task that

otherwise would require large training times (¿ week). Next, we showcase a different form

of deep reinforcement learning by designing a hybrid-model based data-driven control ar-

chitecture for flying an octorotor under motor faults. We demonstrate improved control

over a model-based controller for both single and dual faults at high fault magnitudes. Fur-

thermore, we validate the robustness of our approach by varying the system parameters fed

to the controller and demonstrate consistent flight across a single trajectory task. In both

1

the aforementioned scenarios we demonstrate a control scheme for data-driven methods

that are both sample efficient and generalize across their respective tasks.

2

CHAPTER 2

Policy Blending for Assistive Control

This chapter is adapted from a conference paper published at the International Control of

Robotics and Automation. Bhan et al. (2022)

2.1 Introduction

Over the last few years, there has been significant interest in developing models that are

trained in simulation and then transferred to the real world Kaspar et al. (2020), Tobin

et al. (2017), Tan et al. (2018). Despite progress in learning from simulated policies, these

methods still suffer from long simulation times as they require large amounts of experience

to handle the unknown environments present in the real world. Additionally, these poli-

cies struggle to generalize for complex situations as they may become unpredictable when

faced with new challenges. As such, researchers have approached training these policies

in two distinct ways. The first approach utilizes techniques, such as Kalman Filters to

identify system parameters that can inform policies on how to respond in different environ-

mental conditions Ljung (1986). However, these policies struggle to generalize and often

require re-tuning Ljung (1986). The second approach involves randomizing sets of system

parameters during training so that the policy learns to robustly handle a wide variety of

situations. This approach - domain randomization Peng et al. (2018b) - requires the actual

parameters to be in the set of random values and as such, the robustness of the policy is

directly correlated to the range of the generated randomized parameters. Moreover, the re-

sulting policies are overly conservative in action selection, especially when the parameter

set is large. Finally, for complex tasks with many parameters, creating large ranges across

multiple parameter values requires significant training time before a robust policy can be

generated Matas et al. (2018).

Both of the above-mentioned approaches require a single policy that aims to 1) solve

3

the task at hand for a single set of parameters and 2) can generalize the solution to a wide set

of parameters. These policies struggle to generalize and fail for parameter spaces in com-

plex tasks. As an alternative, we attempt to decouple the process of generating generalized

system parameters to support the learning of policies that solve the task efficiently. We do

this by utilizing blending techniques informed by system identification methods. With our

approach, we train single policies that are efficient for a distinct sets of the parameter space

and utilize a blending network to identify how best to combine the actions of these individ-

ual policies based on the estimated parameters of the system. We verify the validity of our

approach for a collaborative robot and human itching task in which the human has different

combinations of motor impairments. Our proposed approach works with the assumption

that the space of each parameter is bounded, thus any combination of parameter values

results in a convex space. This guarantees convergence of the blending network given a set

of individual policies learned to control the system under single parameter variability.

2.2 Related Work

There have been many approaches to policy learning based on estimation of simulation pa-

rameters; however, to the author’s knowledge, none combined system identification with a

blending approach. For example, Martinsen et al. (2020) demonstrates the use of simultane-

ous system identification and policy training where they explore a series of predictive error

methods to minimize the difference between the observed parameters and the estimated

parameters for model predictive control (MPC). Additionally, domain randomization has

been used for a motorized robotic control tasks Peng et al. (2018a). However, these tasks

do not consider a collaborative environment nor do they handle multiple faults introduced

by the interacting agents. Furthermore, OpenAI et al. (2019) solves a challenging Rubik’s

cube control task by automatic domain randomization that slowly increases the difficulty

of the task, but can take significant time as it does not consider the integration of any real-

world sampling. Lastly, Mehta et al. (2019) considers an adaptive domain randomization

4

strategy where the framework attempts to identify domains that can create challenging en-

vironments for the policy. This approach is similar to ours, except that their approach is

purely data driven based on the result of their policy. This requires significant training time

due to potential sample inefficiency. In contrast, we utilize prior domain knowledge to

identify environments that have a high potential of being challenging for the policy.

In addition to the large amount of research designed for efficient sim2real transfer, there

have been a series of recent work that demonstrate the effectiveness of policy blending.

Narita and Kroemer (2021) demonstrates the use of policy blending for simple tasks such

as opening a cap, flipping a breaker, and turning a dial. However, their policy learns directly

from sensor measurements and does not consider impairments in the agents. Furthermore,

Dragan and Srinivasa (2013) has shown a policy blending technique between a human and

robot policy for robot-assisted control to accurately assist the human with various tasks

such as fetching a water bottle. However, this work does not consider training models

using modern deep reinforcement learning (DRL) techniques. Given these approaches, it is

worthwhile to combine robust policy blending with modern system identification as a new

approach to generalized modelling.

2.3 Formalism

In this section, we first formalize the reinforcement learning problem for tasks with multiple

varying parameters. Then, we outline three approaches presented in the literature to solve

such tasks.

2.3.1 Robust Markov Decision Process

We model tasks with multiple varying parameters as a robust Markov decision process

(R-MDP) defined using a tuple (S,A,R,P,γ), where S is the state space, A the action

space, R : S×A → R represents a reward function, γ ∈ [0,1] is called a discount factor,

and P(s,a) ∈ M (S) is an uncertainty probability set where M (S) represents a family of

probability measures over next states s′ ∈ S. The next state of the system is contingent on

5

the conditional measure p(s′|s,a) ∈ P(s,a) where s ∈ S is the current state and a ∈ A is

the action selected by an agent.

In this work, we adopt the assumption that P is structured as a Cartesian product

⊗s∈S,a∈APs,a, also known as the state-action rectangularity assumption Wiesemann et al.

(2013). This implies that nature can choose the worst-transition independently for each

state and action. Moreover, we assume that the uncertainty probability set is defined by

the parameter space that characterizes the task λt ∈ Λ such that P(st+1 = s′|st ,λt ,at ,κ)

(S×Λ×A → S).

In a standard MDP framework, a policy π : S → p(A) maps states to distributions over

actions with the goal of maximizing the sum of the discounted rewards over the future. The

optimization criterion is the following

J (π∗) = max
π∈⋄

V π(∫) , ∀∫ ∈ S. (2.1)

where the value function, V π : S → R, defines the value of being in any given state s

V π(s) = E

[
∞

∑
t=0

γ
tR(s,a)

]
, ∀s ∈ S. (2.2)

Traditional RL algorithms require that the system dynamics and reward function do not

change over time to be able to find an optimal deterministic Markovian policy satisfying

3.2. This property is clearly not satisfied in the R-MDP case. Therefore, we propose an

approach to decouple learning how the system dynamics change depending on the system

parameters and learning how to optimally solve the task.

2.3.2 Domain Randomization

To effectively identify π∗ in simulation, a set of parameters must be defined to model the

environment. Domain randomization attempts to sample a set of some N parameters which

we will denote ξ for which a reasonable range of potential values is constructed - usually

6

from domain specific knowledge Tobin et al. (2017). In this paper, we will consider domain

randomization of the uniform type such that the parameters are uniformly sampled within

a feasible range. For example, the weakness of a certain human joint can be sampled

uniformly between 0 and 1 where 0 invokes no mobility while 1 is a joint that is at full

strength.

2.3.3 System Identification Via Parameter Estimation

System identification through parameter estimation is a well studied subject in which a

estimator can consistently receive samples from a real world environment and generalize

these samples into an estimated true value. In this work, we utilize the Unscented Kalman

Filter (UKF) for our estimator Wan and Van Der Merwe (2000) and make the assumption

that our real-world parameters can be measured with some confidence, but may be cluttered

with noise. Although this is a strong assumption, it can be softened for systems with non-

measurable parameters by using approximate models of the system plus general estimation

methods like Particle Filtering. See for example Shamrao et al. (2018).

2.3.4 Autotuned Search Parameter Model (SPM)

When the environment’s parameters cannot be measured neither estimated through physics-

based estimation, we propose to utilize a new technique that can estimate the parameters

by interacting with the environment as an agent. Recently, Du et al. formulated a new ap-

proach to system identification where they define a data-driven model that learns a map

from observation-action-parameter estimate sequences to a probability distribution, i.e.

(o1:T ,a1:T ,ξguess) =⇒ (0,1)N such that the parameter estimates ξguess are greater than,

less than, or equal to the true parameters Du et al. (2021). The mapping works like a binary

classifier that is continuously trained concurrently to the policy such that it slowly con-

verges to the real world parameters by learning from its own policy interaction trajectories.

Following this iterative search, we can then perform a level of system identification that

does not completely rely on domain knowledge for our experiments.

7

Involuntary
Movement
Policy (PI)

Weakness
Policy (PW)

Limited Range
Policy (PL)

Action = [PI(o(t)), PW(o(t)),
PL(o(t))]T W

Env

Blending
Network

Robot and
Human

Observations

System
Identification

Method

o(t)

Atotal

?

Weight Vector
(W=[w0, w1, w2])PI(o(t))

PW(o(t))

PL(o(t))

Figure 2.1: Policy blending with system identification for a human-robot collaborative task

2.4 Approach

In this section, we present the details of our solution scheme for solving collaborative

tasks with multiple varying parameters. Figure 2.1 show the different components of the

proposed approach instantiated for the case study presented in the next section. A set of

individual policies learned for individual parameter changes is required. Each individual

policy can be trained for a single parameter distribution and the total number of policies

scales linearly with respect to the total number of parameters. Training each policy can

be accomplished through Domain Randomization techniques. The core components of the

proposed scheme - the blending network and system identification technique - are described

next.

8

2.4.1 Blending Network Learning

To create a decoupled policy in which we can solve individual tasks while maintaining

robustness to a variety of system parameters, we introduce a blending network in which

we consider solely the N system parameters ξ as its state space. This policy then only

needs to output the weights W of its sub-policies at each time step to generate the action

for the environment. The sub-policies of this model are trained on a single set of constant

system parameters in which a unique environment is identified through previous domain

knowledge. We then define the action of the blending network as a= 1
N ∑

N
i=0 wiπi(st) where

wi ∈ R, N is the number of sub policies and πi(st) represents the action taken by the sub

policy given a state at time t.

2.4.2 Concurrent System Identification

We then combine the blending network with a concurrent system identification scheme to

obtain a generalized policy that is robust to different environmental changes, i.e. different

combinations of parameter values. To do this, we let the state space of the blending net-

work consist of only the estimated parameters and as such must learn to associate certain

parameters with the appropriate sub-policies. In practice, every certain number of training

steps, we utilize our system identification method to update the state space of the blending

network with a more accurate set of estimate system parameters and continue training. We

emphasize that our approach is independent of the system identification method chosen and

thus can be tailored based on the available domain knowledge of the environment.

2.5 Experiments

2.5.1 Assistive Gym

For our experiments, we utilize a framework introduced by Erickson et al. (2019) which

is an Open AI gym environment for collaborative human and robot interaction. Assistive

gym is a realistic physics environment powered by PyBullet that enforces realistic human

joints as well as it provides a series of robots for collective tasks. We utilize the Jaco robot

9

as it performed best in the individual itching policies explored in Erickson et al. (2019) for

our control task and define the success value of a task as the amount of force applied to the

target itch position throughout the entire episode. Each episodes consists of 200 time steps

equating to 20 seconds of real-world time.

2.5.2 Training of Sub-Policies

For demonstrating our model, we attempt to solve a collaborative itching task using assis-

tive gym Erickson et al. (2019) where a robot is assisting an impaired human in itching.

We consider 3 impairments similar to Clegg et al. (2020) for the human:

(a) Involuntary Movement: The first impairment is involuntary movement which is han-

dled by adding noise normally distributed to the joint actions of the human. For this

policy, we sample the noise according to a normal distribution where each joint in

the arm has a mean of 0 noise and a standard deviation of 5 degrees of noise.

(b) Weakened Strength: The second impairment involves weakness in the ability for the

human to move their arms which is introduced by lowering the strength factor in the

PID controller of the joints. This value is also sampled normally with a mean of 0.66

and standard deviation of 0.2 with 1 representing full strength and 0 representing

immobility.

(c) Limited Range: Lastly, we consider a limitation in the range of movement for each

joint in the arm of the human. Like above, full joint movement is represented by 1

and immobile joints are represented by 0. As such, we sample the limited movement

from a normal distribution with mean 0.75 and standard deviation of 0.1.

Initially, we begin by training a single policy for each individual impairment on 2 mil-

lion time steps (5000 episodes) using Proximal Policy Optimization (PPO) Schulman et al.

(2017). We designed a grid-search experiment to obtain the neural network architecture.

The best configuration for each network obtained consists of 2 layers of 64 nodes. For all

10

Table 2.1: Trained policies and their respective observation and action spaces

Policy Observation Space Action Space
Involuntary
Movement

34 human joint values
30 robot joint values

10 human joint values
7 robot joint values

Weakness
34 human joint values
30 robot joint values

10 human joint values
7 robot joint values

Limit Range
of Motion

34 human joint values
30 robot joint values

10 human joint values
7 robot joint values

blending network

Only System Parameters:
1 for Estimate Weakness
1 for Estimated Range Limit
10 for Estimated
Involuntary
Movement Joints

3 weighted values for
blending the policies

single impairment policies, we define a state space of 64 joints between the robot and hu-

man along with an action space of 17 joint targets. All policies use the same reward function

as defined in Erickson et al. (2019). This reward function considers a weighted combination

of the distance of the robot arm to the target itch position, a penalty for large actions, and

the contact induced with the itch target: R(t) = wdistance ∗ ||postarget − posrobot ||+waction ∗

||a(t)||+w f orce ∗Ftarget where wi represents a weight for that term i, ||postarget − posrobot ||

is the Euclidean distance from the arm to the target, ||a(t)|| is the Euclidean norm of the

action vector taken by the robot and Ftarget is the current force applied to the target.

2.5.3 Training of Blending Network

Similar to the sub-policies, we consider the same reward and utilize a PPO model with

2 layers of 64 nodes each for training the blending network. However, for the blending

network we train for 400k time steps and the state space only consists of the system param-

eters. Unlike the sub-policies, our blending network is trained on a human with all three

impairments and as such must consider many more cases of how the robot needs to act. By

training the policy on a general all three impairments, we allow our blending network to

11

Table 2.2: Trained policies and their respective observation and action spaces

Method Policy Blending State Space

Domain
Randomization No

Trained from Human
and Robot Observation
Space

UKF Yes
12 Parameters Estimated
By UKF Sampling Real World

Autotuned SPM Yes
12 Parameters Estimated by
Mapping Function of Interaction
Between Policy and Real World

Perfect
Parameters Yes

Parameters are Passed as the
State Space at the Start of
Each Epsiode

become more robust to parameter identification and improve on the notion that training a

single policy to handle all three impairments is complex and time-consuming due to sample

inefficiency.

2.5.4 Training of Domain Randomization

To train the domain randomization model, we train on a human invoking exhibiting all

three impairments. Similar to above, we use PPO with layers of 64 nodes each. However,

these impairments are now sampled uniformly as such:

(a) Involuntary Movement: The noise for each joints angle is between [−10,10] degrees.

(b) Weakened Strength: We consider a weakness coefficient between [0.25,1].

(c) Limited Range: We consider range limitations between [.5,1] times the original mo-

tion.

12

Figure 2.2: Example of our robot completing the itching task even when the human is
dis-functionally moving its arm upward

0 1000 2000 3000 4000 5000

Episodes Trained

−100

−50

0

50

100

150

A
ve

ra
ge

R
ew

ar
d

O
ve

r
50

L
as

t
E

p
si

o
d

es

Training Reward Functions of Single Impairment Models

Involuntary Movement Policy

Limited Range Policy

Weakened Strength Policy

Figure 2.3: Training reward average over 50 episodes for single impairment policies. The
rewards here are averaged over the training of 3 seeds.

2.6 Discussion and Results

For our initial sub-policies, we can see that the weakness and limit based policies can

achieve a higher reward consistently over the involuntary movement policy in Fig. 2.3.

For our blending network, we consider the best performing sub-policies and only train on

humans with a combination of all three impairments. As such, in Fig. 2.5 can see that the

rewards are much lower than those of the individual policies. Additionally, we notice that

13

there is a significant advantage to using a blending-based policy with system identification

over general domain randomization. Furthermore, we can see that the ability to estimate the

real-world parameters enhances the policies overall convergence as the auto tuned policies

struggle to achieve the same success as the UKF based or the baseline (system parameters

are perfectly known to the blending network at each timestep). To further evaluate our

policies, we define a testing experiment in which we undergo 100 episodes of our human

exhibiting all three impairments in which the impairment values are sampled as above but

in conjunction. We still utilize the given system identification method for estimating the

state space of the blending network. Fig. 2.4 a) shows a box plot of the performance for

the joint parameter variations. We consider experiments in which the human only enacts

a single impairment and the results are shown in b), c), and d) of Fig. 2.4 and Table 2.3,

respectively.

From the box plots, we can see that we outperform domain randomization for 100 sepa-

rate episodes. Furthermore, there is a difference between the system identification methods

as the UKF and the system fed with the correct parameters outperform the autotuned search

approach. As such, we can determine two important things about our approach. First, the

policy blending has a significant improvement over general domain randomization in terms

of both sample efficiency and performance. Second, our design can successfully employ

various types of system identification; however, those identification methods may signifi-

cantly affect the overall performance of the policy and should be based on the maximum

amount of domain knowledge available.

Given this, we must note limitation of our scheme is that we need to develop the sub-

policies; however, these theoretically provide us stability and robustness when faced with

unknown environments. Additionally, given that these sub-policies can be reused as they

are now decoupled from the main blending network, different approaches can quickly be

tested and tuned - a problem limiting current domain randomization methods. Furthermore,

it is not guaranteed that a linear combination of weights from the blending network and the

14

Perfect
Parameters

UKF Autotuned
SPM

Domain
Randomization

0

10

20

30

40

It
ch

F
or

ce
A

pp
lie

d

a)
Perfect

Parameters
UKF Autotuned

SPM
Domain

Randomization

0

10

20

30

40

It
ch

F
or

ce
A

pp
lie

d

b)

Perfect
Parameters

UKF Autotuned
SPM

Domain
Randomization

0

10

20

30

40

50

It
ch

F
or

ce
A

pp
lie

d

c) Perfect
Parameters

UKF Autotuned
SPM

Domain
Randomization

0

10

20

30

40

It
ch

F
or

ce
A

pp
lie

d

d)

Figure 2.4: Application of the trained policy to a real environment for 100 separate
episodes. We use the highest reward policy for each situation. a) Shows the itch force
applied when the human has a combination of all three impairments. b), c), and d) show
the force applied when the human has a single impairment in the form of limited range,
weakness, or involuntary motion respectively.

action spaces of the blending policy is a good approximation other than from an empirical

standpoint. Different methods could certainly be used for the policy blending and this is a

future direction of exploration.

15

0 250 500 750 1000 1250 1500 1750 2000

Episodes Trained

−100

−80

−60

−40

−20

0

20

40

60

A
ve

ra
ge

R
ew

ar
d

O
ve

r
L

as
t

50
E

p
si

o
d

es

Domain Randomization

UKF

Autotuned SPM

Perfect Parameters

Figure 2.5: Training reward averaged over 50 episodes for our policy exploration methods.
The rewards shown here are averaged over the training of 3 seeds

Table 2.3: Mean and STDEV of Each Method Given a Specific Impairment

Combined
Impairments

Involuntary
Movement
Impairment

Limited
Range
of Motion

Weakness
in Joints

Method Mean STDEV Mean STDEV Mean STDEV Mean STDEV
Domain
Randomization 1.33 2.18 0.96 1.94 1.56 2.77 1.07 1.90

UKF 8.68 10.58 18.14 14.62 8.05 10.09 18.13 14.49
Autotuned SPM 5.26 7.35 6.34 8.67 5.71 7.35 10.42 10.32
Perfect
Parameters 9.03 10.23 15.02 14.40 11.2 11.71 19.0 13.81

16

CHAPTER 3

Hybrid Model Predictive Control and Deep Reinforcement Learning for Fault

Tolerant Control of Octorotors

This chapter is adapted from a conference paper published at Systems of Fault Tolerant

Control. Bhan et al. (2021)

3.1 Introduction

Fault tolerance is imperative for real world cyber physical systems that can be altered,

damaged, and even destroyed by their environment. In this work, we will present a fault

tolerant control scheme using data-driven methods for UAV’s (Octorotors) and showcase

our schemes feasibility for large magnitude faults.

3.2 Background on Fault Tolerant Control

Fault tolerant control (FTC) approaches are split into two distinct solutions: active and pas-

sive. Active solutions require fault detection online that informs the controller about the

characteristics and magnitudes of any potential faults. Passive solutions involved prede-

fined faults in which there is less computational complexity; however, they are constrained

by the designers ability to predict fault instances.

Furthermore, there are two main approaches to fault controllers. There are model-based

and data-driven methods depending on the controller architecture. Model-based controllers

are designed based off of the physical implications due to the fault dynamics. Meanwhile,

data-driven controllers learn directly from the system data. The limitation of model-based

controllers come from their assumption about the UAV dynamics and they lack an ability

to handle unforseen faults. On the contrary, data-driven methods generally rely on a large

amount of data to capture the non-linear dynamics of the system and thus are not always

easy to develop.

17

The performance of model-based FTC methods depends on having accurate and com-

prehensive first-principle models. Complex models require enhanced control methods com-

promising the robustness of the controller. Data-driven FTC methods allow developing

complex control strategies but they are sample inefficient requiring numerous experiments

to achieve a satisfactory performance. As such, deep reinforcement learning (DRL) ap-

proaches attempt to minimize this sample inefficiency and have become very popular for

solving continuous control tasks in the last few years Dulac-Arnold et al. (2019).

3.3 Related Work

Reinforcement learning has been applied for fault tolerant control in a series of different

applications. Naug et al. (2020) Zhang and Gao (2020) Zhang et al. (2017). However, to the

authors knowledge, it has never been applied to an octorotor. Moreover, it has been applied

in numerous ways to a quadrotor. For example, Fei Et. Al. had proposed an approach

that modifies the torque vector for recovering a quad rotor in the case of cyber attacks.

Fei et al. (2020) Additionally, Ahmed Et. Al. showcased a hybrid RL FTC scheme for

degraded state operation, but not a complete fault. Ahmed et al. (2020). Theoretically, an

octorotor should be able to handle larger faults than that of a quadrotor due to its 8 motor

shape. Therefore, it would be worthwhile to see if a data-driven FTC scheme is possible for

Octorotors. Furthermore, Carlucho et al. (2020) has shown that altering the PID parameters

of a model based scheme is very viable in the robotic setting. Given this, we will attempt to

apply a PID altering approach to a UAV where we minimize the ”overshoot” of the initial

MPC.

3.4 Formalism

3.4.1 Reinforcement Learning

Reinforcement learning (RL) aims to solve an optimal control problem through neural

network-based methods. The control law is refined through the continuous interactions

of a learning agent with an environment Sutton and Barto (2018). The control problem is

18

formalized through the following definition: A Markov decision process is defined by a

four tuple: M = {S,A,T,R}, where S represents the set of possible states in the environ-

ment. The transition function T : S×A×S → [0,1] defines the probability of reaching state

s′ at t +1 given that action a ∈ A was chosen in state s ∈ S at decision epoch, t

T = p(s′|s,a) = Prob{st+1 = s′|st = s,at = a} (3.1)

. The reward function R : S×A → ℜ estimates the immediate reward R ∼ r(s,a) obtained

from choosing action a in state s. The objective of the agent is to find an optimal policy π∗

that maximizes the following criteria ∀s ∈ S:

V π∗
(s) = max

π∈Π
E

[
∞

∑
t=0

γ
tR(st ,at)|s0 = s,at = π(s)

]
, (3.2)

where V π : S → R is called value function and it is defined as

V π(s) = E

[
∞

∑
t=0

γ
tR(st ,at)|s0 = s

]
, ∀s ∈ S, (3.3)

where 0 < γ ≤ 1 is called the discount factor, and it determines the weight assigned to

future rewards. The agent’s objective is to find the policy that maximizes the expected

sum of reward. Obtaining a policy with optimality guarantees requires the following two

conditions to be satisfied

1. |R ∼ r(s,a)| ≤C < ∞,∀a ∈ A,s ∈ S

2. T and R do not change over time.

Systems subjects to faults undergo changes that cause their dynamic model, represented

by the transition function T , to change over time Dulac-Arnold et al. (2019). Therefore,

learning direct control with DRL for fault tolerance is not theoretically feasible. Given this,

we propose a fault adaptive control scheme that avoids using DRL for direct control, but

19

combines model based and DRL in the following sections.

3.5 Octorotor Design

3.5.1 UAV Model

We consider an octocopter dynamics model based on Newton-Euler equations of motion

for a rigid body. octocopter’s cascade control scheme is shown in Figure 1. This control

approach allows for stabilization of the position and orientation of the octocopter with

respect to a trajectory. A set of three PID controllers adjust the vehicle attitude, and a

different set of three PID controllers adjust the position variables, together forming nested

feedback loops.

Control
allocation

Motors Airframe
Altitude

controller

Position
controller

Attitude
controller

Z_ref

x_ref, y_ref

[x, y,Ψ]

z

Fz

Tx,Ty, Tz

VDC ω

Position, attitude

[Φ,Θ,Ψ]

 Φref

Ψ_ref

 Θref

Figure 3.1: Cascade Control scheme for the octocopter

The reference trajectory is defined in terms of position and yaw angle [xt ,yt ,zt ,zt ,ψt].

The Altitude PID controller generates the required force in the z direction. The position PD

controllers estimate, based on the current position of the vehicle and yaw angle, the refer-

ence for the pitch (θ) and roll (φ) angles. The attitude PD controllers generate the required

torque in each direction. The control allocation block transforms the torques and forces

into a reference voltage for each motor of the octocopter. Finally, each motor generates

angular velocity according to brushless dc motor dynamics and we cap the input voltage to

11.1V to represent a realistic motor scenario. Osmić et al. (2016)

20

Table 3.1: Octocopter Parameters

Parameter Value
Mass 2

Inertia Coefficient X 0.0429 kgm2

Inertia Coefficient Y 0.0429 kgm2

Inertia Coefficient Z 0.0748 kgm2

Length 1m
Rotor Thrust Constant 8.54858∗10−6 Ns2/rad2

Drag Constant 1.3678∗10−7 Nms2/rad2

Nominal Motor Resistance 0.2371 Ω

Electrical Motor constant 0.0107 Vs/rad
Mechanical Motor Constant 0.0107 Nm/A

3.5.2 Designing Realistic Faults

The design of realisitc faults is of large importance to accurately represent the scheme in the

real world. As such, we consider motors which are mechanically suspectible to degredaiton

in the form of bearing wear and corrosion. To represent these faults, we chose to modify

the resistance parameter in the following motor representation. We consider the following:

ω̇ =
1

Jm
(Keic −Tload −D f ω −Tf), ic =

1
Req

(vDC −Keωi), (3.4)

where Req = 2
3 ∑

3
j=1 R j is the equivalent electric resistance of the coils, Ke is the back

electromotive force constant, ω is the angular velocity, Tf is the static friction torque, D f is

the viscous damping coefficient, Jm is the inertia along the z axis, vDC is the input voltage

control signal, ic is the current demanded, and Tload represents the torque load generated

by the propellers. When we increase the Req value, we are enhancing the resistance in the

circuit which could be caused by dust or the aformentioned erosions. This will result in a

loss of effectiveness for each motor. In this work, we consider single and dual motor faults

according to Figure 2’s motor location.

21

x

y

3

2

1

4

5

6

7

8

Figure 3.2: Octocopter motor fault configuration

3.6 Proposed Framework

In this section, we will formulate our FTC approach and discuss it’s intuition. We pro-

pose the combination of model-based control schemes with DRL as a solution to the FTC

problem presented in Figure 3. Model-based control methods like Proportional Integral

Derivative (PID) Controllers remain dominant in real world industry applications thanks to

their simple structure, ease of implementation, and wide variety of tuning methods Borase

et al. (2021). Nonetheless, traditional tuning methods for PID control do not account si-

multaneously for multiple input-output systems and multiple PID controllers. We propose

to extend the scheme proposed in Carlucho et al. (2020) to accommodate faults assuming

they are not catastrophic- the system can continue to operate in a degraded manner and

22

performance can be recovered to some extent by updating the PID parameters.

System

Parameter

Estimation

Classic

Controller

u

y

DRL

Agent

ρ

ξ y

Figure 3.3: Fault Adaptive Control framework

The core of the proposed approach relies on the combination of parameter estimation

techniques with DRL. We propose to update the PID controller when the value of the

parameter(s) associated with faults affect the control performance. We assume that the

faults can be accurately measured through widely studied estimation techniques like the

Unscented Kalman Filter and the Particle Filter Daigle et al. (2012). The estimated param-

eters are then used as inputs to the DRL agent (s = ρ) and the action of the agent consists

in a new set of parameters for the controller(s) (a = ξ).

3.7 Experiments and Results

3.7.1 Experimental Design

In this work, we considered training the DRL agent to learn how to adapt the parameters of

PD position controllers. This implies a four-dimensional action space a= {Kx
p,K

x
d,K

y
p,K

y
d}.

Additionally, the state space consists of the position vector, velocity vector, Euler angles,

23

and their angular velocities s = {x,y,z, ẋ, ẏ, ż,φ ,θ ,ψ, φ̇ , θ̇ , ψ̇}. The only information re-

ceived by the agent is the motor resistance estimated and the reward function is defined by

R = (10− error)/10 where error is the Euclidean distance calculated between the posi-

tion of the octocopter and the reference trajectory. We defined 10 meters as the maximum

deviation allowed from the reference trajectory and we re-scale the reward between 0-1 as

suggested for continuous control tasksHenderson et al. (2018). Other error functions were

considered such as Rt = max(0,1−||x−xre f ||)−Cθ ||θ ||−Cω ||ω|| where x is the position

vector, ω is the angular velocity and θ is the euler angle vector and Cθ and Cω are constants

that penalize the octorotor for spinning. However, we found that this error function did not

perform well as the constants were hard to tune and the octorotor was not robust to noise.

We considered a change in the reference from (x = 0,y = 0) to (x = 5,y = 5) as the

trajectory tracking task for simplification purposes and assuming that the resulting archi-

tecture will scale well as long as the changes in the reference are smaller than the one

experience during training. Different fault magnitudes must be experienced by the agent to

learn how to adapt the position controller parameters. However, we noticed that randomly

selecting the fault magnitude for each episode resulted in no convergence. We thus defined

a curriculum learning approach where we first expose the agent to the lower bound of the

fault magnitude until it converges and then we generate for each episode with probability

of 0.5 a fault with maximum magnitude. In this way, we avoid the catastrophic forgetting

problem for the agent.

We demonstrate the approach on two different experiments. For both experiments, we

use PPO as defined previously with the following parameters:

In the first experiment, we explore a single fault on motor 3 as defined in figure 2.

We initially begin training the DRL agent on a 3x fault (3 times the nominal value of

the parameter) and after convergence is reached, we then introduce a larger 8x where at

the beginning of the episode, a choice of the fault is made between 3x and 8x with equal

probability. We then test our approach by comparing the trajectory between the nominal PD

24

Table 3.2: PPO Parameters

Parameter Value
Optimizer ADAM
Batch Size 64

Discount Factor 0.99
Initial Learning Rate 0.0003

Time Steps of an Episode 2000
Total Number of Episodes 3000

controller and the DRL scheme when the DRL controller is given the exact magnitude of

the 8x fault. Furthermore, we then evaluate the robustness of our controller by introducing

variance in the estimated parameter such that the value given to the controller is biased. We

sample the parameter from a normal distribution with mean value equal to the true value

and a deviation of 0.5x the nominal resistance.

For our second experiment, we explore a dual motor fault on motor 5 and 6 as defined

in figure 2. However, our controller is now given two values for the estimated motor re-

sistances instead of the one above. For training, we set both motors to an equal 2x fault

and allow the DRL agent to learn until convergence is reached. Then, following the same

method as proposed above, we introduce a large fault of 4x in both motors such that a

choice is made between the smaller and larger fault at the beginning of each episode. Fol-

lowing this, we then test our approach by comparing the trajectory where both motors have

a 4x fault. However, to explore the robustness of our approach, we then explore setting mo-

tor 6 to a 4x fault and allow the fault of motor 5 to vary. We then introduce variance in the

state estimator of both motors such that parameters fed are normally distributed with mean

equal to the true value and a standard deviation of 0.5x the nominal resistance. This allows

us to explore the effects of large state estimation errors in both of our motors. Furthermore,

it also allows us to explore the realistic case of different fault magnitudes on the two dif-

ferent motors. In this exploration, it’s worth noting that we are considering multiplicative

faults where changes in the motor dynamics may affect the dynamics of the controllers

and control allocation requirements. This results in a more complex scenario to handle

25

and showcases the value of using a DRL agent for online adaptation. Furthermore, it is

worth highlighting that we do not consider additive faults as they have been widely studied

subject Zheng and Li (2019) and most likely will not need a DRL-based tuning approach.

3.7.2 Results For Single-Motor Faults

For our single-motor fault experiment, we can see in figure 3.4 that our reward function

clearly converges by step 1000 and when the larger fault is introduced, we have a dip in

performance, but then converge again by the time training ends. As such, this demonstrates

that our scheme first minimizes the error with a small fault, and then builds on it’s initial

learning by minimizing the error of both the small and larger fault. From figures 3.5 and

3.6, we can see that our method outperforms the nominal PD controller in terms of a 8x fault

for a single episode. In the X-direction, it is clear that our controller does not overshoot and

converges closer to the reference value while the nominal PD controller significantly over-

compensates and contains more error in it’s convergence. Meanwhile, in the Y-direction,

both controllers perform similarly due to the positioning of the motor fault. Furthermore,

in 3.7, we can see that while the median error of smaller faults are outperformed by the

nominal PD, when we move to larger faults, our approach can still accurately achieve con-

vergence with a significantly lower error when compared to the nominal PD controller. As

such, a parameter estimator can be used to measure the active states of each motor and

when a large fault is detected, our controller can be invoked to ensure the stability of the

octocopter. Additionally, figure 3.7 demonstrates that our controller is robust to large insta-

bility as only a marginal set of outliers ever surpass the PD controller’s error in 7x, 7.25x,

and 8x faults. However, this is just a 100 trial run at each fault magnitude and thus is only

an empirical monte-carlo robustness figure and has no robutsness guarentees.

3.7.3 Results of Dual Motor Faults

Considering a multi-motor fault carries larger impact on the octocopter’s performance, we

only explore multi-motor faults up to 4x. Similar to above, we can see in figure 3.8 that our

26

Figure 3.4: Reward Function for Training the DRL Agent on a Single Motor 3 Fault

controller first learns to handle the smaller dual fault and then struggles initially when the

larger fault is introduced, but ultimately converges to minimize the larger and small fault

errors. As such, in a single episode’s trajectory, we can see in figure 3.9 that both the nom-

inal controller and the reinforcement learning scheme converge to the correct X position.

However, we can see that the nominal controller performs poorly as it initially becomes un-

stable and then overcompensates for the fault while our approach accurately compensates

to ensure a much faster convergence. Furthermore, in the Y-direction show by figure 3.10,

we can see that the reinforcement learning approach slightly overcompensates, but still

converges equally fast as the nominal controller. We can see that the approach shown is not

perfect in the Y-direction, but the improvements in the X-direction significantly outweigh

the marginal overshoot in the Y-direction. Similar to figure 3.7, we can also see in 3.11 that

the hybrid based control outperforms the sole PD controller at large faults when the PD

controller begins to deteriorate in stability. However, in this case, we set a single motor to a

4x fault and vary the fault of the second motor. Despite the variance of the second motor’s

fault, we see that the controller is robust to parameter estimation noise as even the outliers

in the dual motor fault experiment have smaller error than that of the nominal controller.

27

Figure 3.5: Comparison of X-trajectory Between PD Control and Hybrid Scheme for 8x
Fault on Motor 3

Additionally, this demonstrates that our approach is viable for different magnitude faults in

each motor as figure 3.11 demonstrates an equal or better performance then the PD control

scheme at almost every single fault magnitude.

3.8 Limitations and Future Work

We present a hybrid MPC and RL scheme for fault tolerant control. We evaluated our

scheme on a simple trajectory task and identified improvement over the nominal controller

for large magnitude faults. In this section, we will quickly discuss the assumptions, limita-

tions and potential future work. For our simulation we make a series of key assumptions:

• The proposed model is representative of a real world Octorotor.

• The integrator does not introduce numerical instability in cases where we would be

able to fly.

• Our simple trajectory task from 0, 0 to 5, 5 is applicable to a real world trajectory as

it will consist of a series of waypoints with smaller distance between the points.

28

Figure 3.6: Comparison of Y-trajectory Between PD Control and Hybrid Scheme for 8x
Fault on Motor 3

Here, we can see that our assumptions can already be relaxed as for example it would be

interesting to see in the future if we can train our approach on complex trajectories. Fur-

thermore, robustness is certainly a limitation of our work as we have no formal guarantees

that the learning controller will stay stable. As such, it is imperative that we stress our work

is only viable in situations where large magnitude faults would otherwise deem the nomi-

nal approach unstable. Furthermore, we have limitations in the fact that our approach was

only tested in simulation. To create the simulation, we needed to use a variable time-step

integrator and thus we are introducing some variance in our simulation with respect to the

real world. Naturally, future work would then be to attempt our scheme on a small scaled

real-world octorotor. Beyond this, there are also limitations in training resources and com-

putation power for the network size and it would be interesting to see if we can develop a

scheme that performs as well under nominal conditions and therefore always include the

control rather than having to ”switch” it on under large faults. Lastly, it would be very in-

teresting to see if a formal method approach could be developed for robustness guarantees

as without this, we cannot utilize our controller in the real world.

Given these, there is a large amount of research to be done with UAVs and fault tolerant

29

Figure 3.7: Robustness of Hybrid Scheme for Single Motor 3 Fault. The robustness is
shown over a box-plot where the circles are outliers and the edges of the box represent the
first and third quartiles of the data.

control. However, this work takes us one step closer to utilizing data-driven methods with

UAVs and thus should be built upon for future exploration and research.

30

Figure 3.8: Reward Function for Training the DRL Agent on a Dual Motor 5 and 6 Faults

Figure 3.9: Comparison of X-trajectory Between PD Control and Hybrid Scheme for 4x
Faults on Motor’s 5 and 6

31

Figure 3.10: Comparison of Y-trajectory Between PD Control and Hybrid Scheme for 4x
Faults on Motor’s 5 and 6

Figure 3.11: Robustness of Hybrid Scheme for Dual Motor 5 and 6 Faults

32

CHAPTER 4

Conclusion

Data-driven approaches for nonlinear robotics control are viable and generalize better to

the real world than some physics based approaches. Particularly, we demonstrate this in

two vastly different cases of robotics control. We first demonstrate a hierarchical reinforce-

ment learning architecture that combines system identification and policy blending differ-

ent human-assitive environments. We exhibit augmented sample efficiency over standard

domain randomization and are able to regularly complete an itching task across a series of

different human impairments.

Additionally, we demonstrate a different data-driven scheme for fault tolerant control

of octorotors. We showcase our approach on both single and dual motor faults successfully

navigating the ocotrotor over a PD control method. Furthermore, we validate the robustness

of our approach by varying the system parameters fed to the controller and showcase very

little change in controller behavior.

Lastly, we identified a series of oppurtunities for improving on our foundation. In

particular, we considered applying a policy blending approach for fault-tolerant control

in which we do not need the time-delay required by system diagnostic checks. Further-

more, our hierarchical reinforcement learning architecture shows great promise for multi-

impairment systems that can be combined in nontrivial ways. Lastly, we mentioned that

the nature of policy blending does not require linearity and other approaches for combining

parameter weights may be worthwhile to explore. Ultimately, this work lays a foundation

for applying data-driven models to generalized nonlinear control processes in a sample

efficient manner.

33

References

Ahmed, I., Quiñones-Grueiro, M., and Biswas, G. (2020). Fault-tolerant control of degrad-
ing systems with on-policy reinforcement learning.

Bhan, L., Quiñones-Grueiro, M., and Biswas, G. (2021). Applying reinforcement learning
for fault tolerant control in octorotors. Systems of Fault Tolerant Control (Systol).

Bhan, L., Quiñones-Grueiro, M., and Biswas, G. (2022). Concurrent policy blending
and system identification for generalized assistive control. International Conference of
Robotics and Control(ICRA).

Borase, R. P., Maghade, D. K., Sondkar, S. Y., and Pawar, S. N. (2021). A review of
PID control, tuning methods and applications. International Journal of Dynamics and
Control, 9(2):818–827.

Carlucho, I., De Paula, M., and Acosta, G. G. (2020). An adaptive deep reinforcement
learning approach for MIMO PID control of mobile robots. ISA Transactions, 102:280–
294.

Clegg, A., Erickson, Z., Grady, P., Turk, G., Kemp, C. C., and Liu, C. K. (2020). Learning
to collaborate from simulation for robot-assisted dressing. IEEE Robotics and Automa-
tion Letters, 5(2):2746–2753.

Daigle, M., Saha, B., and Goebel, K. (2012). A comparison of filter-based approaches for
model-based prognostics. In 2012 IEEE Aerospace Conference, pages 1–10.

Dragan, A. and Srinivasa, S. (2013). A policy blending formalism for shared control.
International Journal of Robotics Research, 32(7):790 – 805.

Du, Y., Watkins, O., Darrell, T., Abbeel, P., and Pathak, D. (2021). Auto-tuned sim-to-real
transfer.

Dulac-Arnold, G., Mankowitz, D. J., and Hester, T. (2019). Challenges of real-world rein-
forcement learning. CoRR, abs/1904.12901.

Erickson, Z., Gangaram, V., Kapusta, A., Liu, C. K., and Kemp, C. C. (2019). Assistive
gym: A physics simulation framework for assistive robotics.

Fei, F., Tu, Z., Xu, D., and Deng, X. (2020). Learn-to-recover: Retrofitting uavs with
reinforcement learning-assisted flight control under cyber-physical attacks. In IFAC,
pages 7358–7364.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep
Reinforcement Learning That Matters. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1).

34

Kaspar, M., Osorio, J. D. M., and Bock, J. (2020). Sim2real transfer for reinforcement
learning without dynamics randomization. CoRR, abs/2002.11635.

Ljung, L. (1986). System Identification: Theory for the User. Prentice-Hall, Inc., USA.

Martinsen, A. B., Lekkas, A. M., and Gros, S. (2020). Combining system identification
with reinforcement learning-based mpc. IFAC-PapersOnLine, 53(2):8130–8135. 21st
IFAC World Congress.

Matas, J., James, S., and Davison, A. J. (2018). Sim-to-real reinforcement learning for
deformable object manipulation. CoRR, abs/1806.07851.

Mehta, B., Diaz, M., Golemo, F., Pal, C. J., and Paull, L. (2019). Active domain random-
ization.

Narita, T. and Kroemer, O. (2021). Policy blending and recombination for multimodal
contact-rich tasks. IEEE Robotics and Automation Letters, 6(2):2721–2728.

Naug, A., Quiñones-Grueiro, M., and Biswas, G. (2020). A relearning approach to rein-
forcement learning for control of smart buildings. CoRR, abs/2008.01879.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron,
A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N., Tworek, J.,
Welinder, P., Weng, L., Yuan, Q., Zaremba, W., and Zhang, L. (2019). Solving rubik’s
cube with a robot hand.

Osmić, N., Kurić, M., and Petrović, I. (2016). Detailed octorotor modeling and pd control.
In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
002182–002189.

Peng, X., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018a). Sim-to-real transfer of
robotic control with dynamics randomization. pages 1–8.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018b). Sim-to-real transfer
of robotic control with dynamics randomization. 2018 IEEE International Conference
on Robotics and Automation (ICRA).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms.

Shamrao, Padmanabhan, C., Gupta, S., and Mylswamy, A. (2018). Estimation of terrame-
chanics parameters of wheel-soil interaction model using particle filtering. Journal of
Terramechanics, 79:79–95.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S., and Vanhoucke,
V. (2018). Sim-to-real: Learning agile locomotion for quadruped robots.

35

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the real world.

Wan, E. and Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear es-
timation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No.00EX373), pages 153–158.

Wiesemann, W., Kuhn, D., and Rustem, B. (2013). Robust markov decision processes.
Mathematics of Operations Research, 38(1):153–183.

Zhang, D. and Gao, Z. (2020). Fault tolerant control using reinforcement learning and
particle swarm optimization. IEEE Access, 8:168802–168811.

Zhang, D., Lin, Z., and Gao, Z. (2017). Reinforcement-learning based fault-tolerant con-
trol. In 2017 IEEE 15th International Conference on Industrial Informatics (INDIN),
pages 671–676.

Zheng, J. and Li, P. (2019). Fault tolerant control of actuator additive fault for quadrotor
based on sliding mode observer. In 2019 Chinese Control And Decision Conference
(CCDC), pages 5908–5913.

36

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction and Motivation
	1.1 Introduction

	2 Policy Blending for Assistive Control
	2.1 Introduction
	2.2 Related Work
	2.3 Formalism
	2.3.1 Robust Markov Decision Process
	2.3.2 Domain Randomization
	2.3.3 System Identification Via Parameter Estimation
	2.3.4 Autotuned Search Parameter Model (SPM)

	2.4 Approach
	2.4.1 Blending Network Learning
	2.4.2 Concurrent System Identification

	2.5 Experiments
	2.5.1 Assistive Gym
	2.5.2 Training of Sub-Policies
	2.5.3 Training of Blending Network
	2.5.4 Training of Domain Randomization

	2.6 Discussion and Results

	3 Hybrid Model Predictive Control and Deep Reinforcement Learning for Fault Tolerant Control of Octorotors
	3.1 Introduction
	3.2 Background on Fault Tolerant Control
	3.3 Related Work
	3.4 Formalism
	3.4.1 Reinforcement Learning

	3.5 Octorotor Design
	3.5.1 UAV Model
	3.5.2 Designing Realistic Faults

	3.6 Proposed Framework
	3.7 Experiments and Results
	3.7.1 Experimental Design
	3.7.2 Results For Single-Motor Faults
	3.7.3 Results of Dual Motor Faults

	3.8 Limitations and Future Work

	4 Conclusion
	 References

