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CHAPTER 1 
 

1. THE POTENTIAL OF COLLISION CROSS SECTION AS A MOLECULAR DESCRIPTOR 

IN ION MOBIITY-MASS SPECTROMETRY* 

 

1.1 Introduction 

From the central dogma of molecular biology, studies of genomics, transcriptomics, and 

proteomics provide higher order information about gene and protein expression to better 

understand implicated phenotypes.1,2 However, these approaches provide limited information 

about real-time production of chemical species related to cellular metabolism as a function of 

external stimuli or phenotype of interest. To address the need for rapid characterization of cellular 

metabolism, metabolomics seeks to uncover information on a molecular basis by examining 

expressed cellular products that can be correlated with a specific phenotype, stimuli, or other 

experimental conditions.3  

While several analytical approaches have been utilized to study metabolism and related cellular 

processes (e.g. NMR, electrochemistry, etc.),4,5 mass spectrometry (MS) has gained wide-spread 

adoption as a result of its high throughput, low limits of detection, and molecular specificity. Mass 

spectrometers can collect chemical information on the microsecond (μs) time scale,6 and with the 

rise of high-resolution, accurate mass techniques such as time of flight (TOF), Orbitrap, and ion 

 
* This chapter contains material adapted from the published research article: “Untargeted 
Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor 
in Ion Mobility-Mass Spectrometry” by Charles M. Nichols, James N. Dodds, Bailey S. Rose, 
Jaqueline A. Picache, Caleb B. Morris, Simona G. Codreanu, Jody C. May, Stacy D. Sherrod and 
John A. McLean, Analytical Chemistry, 2018, 90, 14484–14492.. It has been reproduced with the 
permission of the publisher and co-authors. 
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cyclotron instruments, a unique chemical formula can often be generated based solely on mass 

measurement for a specific analyte signal.7,8 While identifying a specific chemical formula is 

advantageous, many metabolic pathways include isomeric molecules covering a range of 

biological classes, such as carbohydrates (e.g. glucose/galactose),9 nucleosides (e.g. 

adenosine/deoxyguanosine), and lipids (7-dehydrocholesterol/desmosterol).10 As biological 

function follows molecular structure, characterization of isomeric species is imperative for 

complete molecular identification and accurate pathway analysis. In many MS experiments, 

fragmentation techniques such as collision induced dissociation (CID) or electron transfer 

dissociation (ETD) are utilized to provide structural information about a specific analyte measured 

in the study.11,12 However, as many metabolite isomers are less than 300 Dalton, these compounds 

often possess identical fragmentation spectra at similar energy thresholds and hence molecular 

fingerprinting by MS/MS and high resolution precursor mass is often not specific enough to 

identify a unique molecular structure.13 Furthermore, as quadrupoles isolate on nominal mass, 

molecules with different molecular formulas but similar exact mass (i.e. nominal mass isobars) 

cannot be isolated, thereby complicating MS/MS analysis.14 To address these challenges, pre-

separation techniques such as gas and liquid chromatography,15,16 and more recently ion mobility 

(IM),17 have been interfaced prior to mass analysis to provide enhanced structural recognition and 

increased analyte coverage. 

With the advent of commercially available ion mobility-mass spectrometers in 2006,18 collision 

cross section (CCS) has become an additional molecular descriptor for untargeted experiments. 

CCS measurements are being standardized across instrumental platforms using rigid experimental 

protocols, and as such provide a molecular descriptor independent of system settings which are 

transferable between laboratories.17,19–21 These collected CCS measurements provide the 
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capability to distinguish isomeric species in complex mixtures, provided enough resolution is 

accessible in the IM dimension.22  In a study of a library of 554 primary metabolite standards (Mass 

Spectrometry Metabolite Library of Standards, MSMLS), a database of 1246 CCS values 

measured using uniform field drift tube (DT) IM-MS was established to facilitate chemical 

identification in untargeted metabolomic workflows. Detailed descriptions of standard 

preparation, analysis, and database construction from this study can be found in Appendix B, 

Section B1. The database was then further analyzed to provide insight into the potential benefit of 

ion mobility as an added separation dimension and molecular descriptor in metabolomics. 

1.2 IM-derived CCS for molecular fingerprinting 

1.2.1 Beyond mass resolving power: enhancing selectivity 

Isomeric compounds are ubiquitous in metabolomic processes across a wide range of biological 

classes.  Of the more than 500 compounds in the MSMLS library, almost one-third (31%) have a 

chemical formula in common with another compound, forming an isomeric pair. While recent 

advances in ion mobility have provided increased separation coverage of isomeric species, current 

untargeted metabolomic workflows identification is based first on primary mass measurement and 

subsequently supported with additional descriptors such as retention time, isotope ratios, and 

fragmentation matching. From this viewpoint, it is imperative to describe how much resolving 

power in the mass dimension is necessary for metabolomic studies.  

In the analysis of the MSMLS library, we found that most analytes (64%) are resolvable based 

only on the mass dimension utilizing 40,000 mass resolving power (e.g., high resolution TOF, see 

Figure 1.1). Increasing levels of mass resolving power (300,000 for Orbitrap and up to 40,000,000 

for FT-ICR, respectively)23,24 provides minimal increases in resolution of these metabolites (ca. 

3% more). As ca. 30% of the compounds in the MSMLS library are isomers, essentially no level  
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Figure 1.1 MSMLS plate coverage using different separation strategies.  (A) Many analytes 
contained in the library can be resolved in the mass dimension at modest resolving power (TOF 
Rp = 40,000), with only incremental increases in coverage resulting from the use of an instrument 
with significantly higher resolving power (FT-ICR Rp = 40,000,000). (B) The addition of IM prior 
to mass analysis allows for isomeric separation and thus increases plate coverage by 10%. 
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of increased mass spectrometry efficiency (short of exited state isomer resolution with MS 

resolving power of ca. 10 billion as theorized by Marshall and coworkers.25) will be able to resolve 

these compounds, and hence orthogonal separation techniques are still required. Modest resolving 

power for commercially available IM instrumentation (ca. 70 CCS/ΔCCS) resolves an additional 

10% of compounds in the library, which outweighs the benefits of additional mass resolving power 

beyond 40,000 (e.g., TOF MS).  

1.2.2 CCS standardization for database construction 

Metabolomic databases commonly used in untargeted analyses (e.g. METLIN, HMDB, etc)26 

include multiple descriptors of analyte information (e.g. accurate mass, ion adduct form, 

fragmentation pattern, and retention time) to increase confidence in molecular identification.27 

Similarly, significant efforts have been made in the IM community to establish reliable CCS 

databases for analyzing unknown features across a range of biochemical classes, including lipids, 

metabolites, and xenobitics.19,20,28,29 In Chapter 2 of this work, we detail the curation of the largest 

standardized repository of CCS values to date, of which a significant portion came from the 

MSMLS study. The repository contains CCS values acquired from DTIM instrumentation and 

calibrated using standard methods established for interlaboratory comparison. It includes values 

derived from relevant molecules of 95 chemical classes (as of this writing), both organic and 

inorganic. This open-source database, the Unified CCS Compendium, encourages the continuous 

submission and addition of more data and provides a resource to the community for the further 

adoption of CCS in untargeted identification workflows.  

1.2.3 Mass-mobility correlations 

In addition to their applicability as a molecular descriptor for direct database matching, CCS values 

provide additional information in the form of their conformational relationship to the mass 
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dimension, which manifests as characteristic class-specific correlations, where molecular classes 

separate in conformational space due to differences in their structural motifs.30 In the MSMLS 

library, we observed several such relationships for individual structural super classes represented 

in the library, similar to previous IM-MS literature.30–34 These correlations have shown utility as 

an additional rapid identifier of biomolecular class for uncharacterized biological samples,35 

making their mathematical description particularly useful. Unlike the canonical biochemical 

classes (nucleotides, proteins, carbohydrates, and lipids), metabolites exhibit less distinguished 

structural differences between chemical classes, and so several mathematical fits were investigated 

to find mass/mobility correlations which exhibit high class specificity. Fits and confidence 

intervals for representative super classes are shown in Figure 1.2, and detailed analysis parameters 

and expressions can be found in Appendix B, Section B2 (Eq. B1-B6). 

In the work described in Chapter 2 with the CCS Compendium, we explore the utility of generating 

regression models from the large, curated dataset to mathematically characterize the mass-mobility 

relationship of all classes and subclasses with sufficient representative data. We show that using 

these models allows for the filtering of false positive isobaric identifications from an untargeted 

study. In Chapter 3 of this work, this approach is taken a step further, allowing automated filtering 

of large lipidomic datasets using the Compendium-based regression models. In a proof-of-concept 

study, we show that the novel informatics workflow reduced tentative identification candidates of 

almost 900 molecular features by over 50%, effectively increasing the confidence of the remaining 

identifications. The additional confidence and structural information provided by incorporating 

IM-derived chemical data in this way promotes an informed interpretation of the analytical 

measurements in untargeted experiments.  

1.3 Advancing CCS resolving power  
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Figure 1.2 Conformational space plots of molecular super classes contained in the MSMLS 
library.  Representative nonlinear regression fits (solid black lines) along with 99% confidence 
intervals (black dotted lines) are shown for each. Gray dots denote all molecules CCS values 
obtained in the library. All CCS error bars are smaller than their respective symbols. 
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1.3.1 Isomeric prevalence in metabolites 

Recent advances in ion mobility resolving power have provided increased separation coverage of 

isomeric species.36,37 To illustrate the resolving power in the IM dimension needed for untargeted 

metabolomic experiments, the pairwise matches of all isomers in the MSMLS library with a CCS 

were analyzed and the resulting pairs were binned by percent difference in cross section (%ΔCCS). 

In brief, analytes with identical chemical formulas were grouped into isomeric sets and were 

subsequently matched in a pairwise comparison. Each pairwise match was generated using an 

enumeration strategy wherein a percent difference in CCS was calculated for each possible 

combination of isomers. Most isomeric sets consist of 2-3 compounds, whereas the largest 

isomeric set was comprised of 9 unique analytes (see Figure B3). In one example, there are 5 sugar 

compounds which share the same chemical formula (C6H13O9PNa+, exact m/z 283.0195), which 

results in a total of 10 pairwise isomer matches in this analysis. The percent difference in CCS for 

all isomer matches were calculated, and the compiled results for all isomer pairings are displayed 

in Figure 1.3(B) (positive ion mode) and Figure 1.3(C) (negative ion mode). Approximately half 

of the isomer pairs generated are ≥ 2.0% different in CCS and require ca. 70 resolving power 

(CCS/ΔCCS) to separate at half height, which is within the range of conventional DTIM and 

traveling wave (TWIM) instruments.37,38 In order to separate additional isomers, more resolving 

power is required (ca. 140 for ~1.0-2.0% difference in CCS, and ca. >300 for ~0.5% CCS 

difference).  

1.3.2 High resolution ion mobility 

In Chapter 4 of this work, we assess a production prototype high resolution IM (HRIM) platform 

based on structures for lossless ion manipulation (SLIM) technology. The resolving power 

(CCS/ΔCCS) of the IM stage was benchmarked across various ion masses and instrument   
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Figure 1.3 Sorted isomer sets in the MSMLS dataset by percent difference CCS. The resulting 
difficulty in separations is noted in panels (B) for positive and (C) negative ion forms. 
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parameters (traveling wave speeds and amplitudes), and results indicated that the platform can 

access resolving powers in excess of 200 across a broad range of masses. This study indicated that 

the HRIM-MS platform is capable of resolving peaks with CCS values spaced to at least within 

~0.6%. With this added resolving power, an estimated 25% increase in isomeric coverage of the 

MSMLS library could theoretically be accessed in addition to the 10% gain using conventional-

resolution DTIM shown in Figure 1.1.  

Unlike DTIM measurements, CCS cannot be directly measured by SLIM-based HRIM. Instead, 

they must be calibrated using calibrant sets with known reference values. In addition to 

benchmarking resolving power, Chapter 4 also includes one of the first studies of CCS calibration 

strategies for HRIM measurements across multiple operational ranges. The results show that the 

calibrated CCS retains its high relative accuracy (< 0.5% bias from reference values) under all 

surveyed conditions. While this method worked well for a standard calibrant mixture, the CCS 

bias of lipids calibrated in this way was consistently higher (up to 3%). With the aim of expanding 

the utility of high-resolution CCS values to broader application spaces, Chapter 5 explores CCS 

calibration of lipid analytes from five lipid subclasses. In this study, we examined the accuracy, 

reproducibility, and practical applicability of calibration strategies for a broad range of lipid 

subclasses and developed a straightforward and generalizable framework for obtaining high-

resolution CCS values. By applying subclass-specific corrections to values calibrated with a 

broadly available general calibrant set, values were obtained with biases < 0.4%. Using this 

method, a high-resolution CCS database containing over 90 lipid values was generated to support 

untargeted applications. 

1.4 Untargeted multidimensional analysis of complex samples 
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Separation and characterization of isomeric species in biological extracts often requires multiple 

steps of chemical separation to gain increased confidence in assigning molecular structure. Using 

the MSMLS library, we underscore the importance of isomeric characterization in untargeted 

experiments by the analysis of a commercially available extract of human serum (NIST 1950) 

which has been characterized previously in traditional GC and LC-MS experiments.39,40 Detailed 

methodology and experimental parameters related to this analysis can be found in Appendix B, 

Section B3.  

As an example of the molecular complexity characteristic of untargeted analyses, Figure 1.4A 

shows the base peak chromatogram in Figure 1.4(A) of the NIST 1950 human serum and the 

extracted ion chromatogram (lower trace) details a specific molecular feature at m/z 203.0528 that 

elutes into an unresolved broad peak over a ca. 2-minute chromatographic window. This broad 

distribution in the elution profile indicates the potential presence of multiple isomeric forms with 

similar, yet not identical, retention times. Although TOF MS has high resolving power (ca. 

40,000), potentially two chemical formulae are within 10 ppm of the measured m/z (C6H12O6Na 

and C7H8N4O2Na, at 1.7 ppm and 8.3 ppm respectively; see Figure 1.4(C)). While assignment of 

this feature to chemical formula C6H12O6Na is more probable due to lower observed mass error, 

isotope ratios were used to confirm this molecular formula assignment, wherein the relative 

abundance of the M+1 peak in the serum more closely aligns with the isotope model for 

C6H12O6Na as opposed to C7H8N4O2Na (Figure 1.4(B)). However, even after a specific molecular 

formula is determined, 9 potential isomers (including both constitutional rearrangements and 

stereochemistry for this chemical formula) exist within the MSMLS standards, all carbohydrates. 

These isomers possess almost identical fragmentation profiles (see [M-H]- ion, Figure 1.4(C)), and 

sophisticated algorithms for identification by MS/MS are needed, an observation which has been 
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previously noted in other carbohydrate studies.41 Note that Figure 1.4(C) utilizes the deprotonated 

ion of  C6H12O6, as the [M+Na]+ species noted in the other panels provides no fragmentation 

spectra due to ejection of the sodium charge carrier during collisional activation. Although 

previous studies utilized relative abundance ratios of fragment ions to determine molecular 

structure, this technique is time intensive and currently is not readily amended to rapid structural 

determination in untargeted workflows.41 Similar to the chromatographic profile, ion mobility 

distributions obtained at three separate time points in the chromatogram (roman numerals) also 

indicate two separate chemical species present in the serum (Figure 1.4(D)). The collision cross 

sections measured for these two distributions helps narrow potential chemical structures from 9 

potential isomeric forms down to 4 tentative identifications based on a CCS match within 1%. The 

smaller distribution at 140.7 Å2 (light red, A) closely aligns with 3 isomers of C6H12O6 in the 

standards (fructose, galactose and mannose at ca. 141.5 Å2. The larger distribution at 147.0 Å2 

(light blue, B) closely aligns with α-D-glucose, which is noted at 146.3 Å2 in the database. 

Although in this example ion mobility does not provide definitive identification of the compounds 

observed in the NIST serum, it does significantly reduce the possible candidates from the 9 

potential structures noted in the database. 

By using CCS as additional metric for tentative identification, additional confidence in identifying 

molecular signatures can be gained. The NIST serum experiment clearly illustrates the importance 

of hyphenating sequential separation dimensions based on chemical affinity, gas-phase area, and 

m/z (LC-IM-MS) to obtain the widest scope of molecular coverage in untargeted workflows. The 

research described in this work, as a whole, aims to support the integration of IM into 

multidimensional untargeted metabolomics and lipidomics workflows by providing guidelines,  
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Figure 1.4 Untargeted analysis of NIST 1950  (A) HILIC base peak chromatogram for NIST 1950 
human serum sample and (lower trace) the extracted ion chromatogram of m/z 203.0528, which 
consists of two distributions of interest that were further examined by isotope ratio pattern and ion 
mobility for structural characterization. (B) Expected and measured isotope ratio abundances for 
two possible chemical formulas corresponding to m/z 203 within 10 ppm. The chemical formula 
C6H12O6 [M+Na]+ more closely aligns with experimental measurements from the NIST serum 
both on basis of mass accuracy (2 ppm) and isotope ratio pattern (M+1). (C) Fragmentation spectra 
for isomers of with shared chemical formula C6H12O6 [M-H]-. (D) Selected ion mobility 
distributions for m/z 203 extracted over three time points in the chromatographic dimension. 
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recommendations, and novel analysis approaches for increasing molecular annotations confidence 

using CCS values.  

1.5 Conclusions 

Utilizing orthogonal dimensions of separation in addition to mass analysis is imperative to fully 

characterize relevant biological pathways in untargeted metabolomics and lipidomics. While 

additional resolving power in the m/z dimension is always advantageous, the diminishing returns 

of these efforts may not offset the additional analysis time required for ultra-high resolution mass 

acquisition (i.e. FT processes). However, orthogonal separation techniques such as LC and IM can 

often resolve many isomeric forms, facilitating their identification for a more comprehensive 

understanding of the biochemical implications of experimental samples. The intrinsic class-

specific mass-mobility correlations represent a reproducible method of characterization for 

biochemical classes which interfaces seamlessly into the timescale of traditional LC/GC-MS 

workflows. The full potential of adding CCS as a molecular descriptor in untargeted metabolomic 

and lipidomic analyses will be realized through continued collaborative work toward the 

standardization of methodology and further innovation in informatic approaches, as seen 

throughout this work. Following a summary of the work described in the preceding chapters, 

Chapter 6 discusses its outlook and future directions, including several projects currently 

underway.   
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CHAPTER 2 
 

2. STANDARDIZATION OF COLLISION CROSS SECTION REPORTING: BUILDING A 

UNIFIED CCS COMPENDIUM TO ANNOTATE AND PREDICT MULTI-OMIC 

COMPOUND IDENTITIES† 

 

2.1 Introduction 

Mass spectrometry (MS) has become a central technique for the investigation of the global profile 

of biochemical species in molecular phenomic studies.1,2 These studies aim to address the grand 

challenges of biomedical research including comprehensive descriptions of biological systems, 

natural product and drug discovery endeavors, omics sciences to improve health outcomes, and 

progress in synthetic biology.3–6 As the complexity of the systems being studied increases, so must 

the ability to increase analyte coverage. Orthogonal separation techniques including gas and liquid 

chromatography are often used in conjunction with MS to improve coverage; however, feature 

annotation and identification from these types of experiments can be challenging due to analyte 

co-elution and retention time variability, among other issues.7 

These challenges can be addressed with the use of additional analytical separation techniques, such 

as ion mobility spectrometry (IM) coupled to MS (IM-MS), which is selective to analyte gas phase 

structure.3,8 One practical benefit of using gas-phase IM is that there are no memory effects or 

sample-to-sample carryover due to continuous replacement of the separation gas. Additionally, IM 

 
† This chapter contains material adapted from the published research article: “Collision Cross 
Section Compendium to Annotate and Predict Multi-omic Compound Identities” by Jaqueline A. 
Picache, Andrzej Balinski, Katrina L. Leaptrot, Stacy D. Sherrod, Jody C. May, and John A. 
McLean, Chemical Science, 2019, 10, 983–993.. It has been reproduced with the permission of the 
publisher and co-authors. 
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separations do not require disposable solvents or packed columns and are amenable to all ionizable 

chemical species. The main advantages of IM-MS are an increase in analytical peak capacity over 

MS alone as well as the ability to measure gas phase mobility by means of an experimental drift 

time.9 This mobility can then be used to calculate an analyte’s collision cross section (CCS), a 

rotationally averaged surface area of the molecule in its gaseous, ionic form. These CCS values 

are specific and can be compared across different laboratories, making them particularly well-

suited for species identification and characterization purposes. Previous studies indicate that the 

level of reproducibility varies across analyte classes.10,11 Recent studies using drift tube IM-MS 

have shown that CCS values can be measured within a 0.30% RSD when data is acquired with a 

previously established standardized method.12 

As a result of these advantages, several research groups have used IM-MS to build CCS libraries 

in which the measured values serve as additional molecular descriptors for assigning identities to 

unknown analytes. A few of the larger libraries to note include, but are not limited to: Li and 

colleagues’ peptide database which includes > 2300 CCS values,13 Pagel and colleagues’ 

glycomics database of > 900 CCS values,14 and Xu and colleagues’ small molecule database 

containing > 1400 CCS values.15 Additionally, many excellent smaller CCS libraries have been 

generated for lipids,16–18 primary metabolites,18–20 secondary metabolites and other natural 

products,18,21,22 as well as illicit substances,23 among others. 

While each of these libraries adds to the working knowledge of the IM-MS field, there remain 

challenges that need to be addressed. The first is reconciling CCS measurements across various 

IM implementations such as drift tube (DTIMS), traveling wave (TWIMS), ion trapping (TIMS), 

and structures for lossless ion manipulation (SLIM) techniques. Inherently, these techniques utilize 

different methodologies for determining the gas-phase CCS, namely DTIMS (and drift tube-based 
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SLIM) utilize the fundamental ion mobility relationship for correlating the measured arrival times 

directly to CCS, whereas the other IM techniques obtain a CCS value through calibration.  In order 

to reconcile non-DTIMS CCS values with DTIMS values, proper calibrants must be chosen for a 

given experiment, which can prove challenging.10,24 An in-depth discussion of considerations for 

comparing CCS information obtained from different IM techniques can be found in a recent review 

by Gabelica et al.25 

Another challenge lies in the difficulty of accurately and efficiently extracting drift time 

measurements from raw data files in large scale. Currently, most DTIMS drift times for chemical 

standards are manually extracted, improving accuracy at a cost of throughput. However, several 

software options exist that aim to automate the extraction of drift times on a large scale and/or 

predict drift times.26,27 The recent IM-MS analysis addendum to Skyline is one example that has 

made considerable strides in these efforts,28,29 but the IM-MS field is still working towards a 

streamlined analytic workflow. 

Other informatics programs aim to predict CCS values based on experimental data and chemical 

structure. Some examples of these software include Zhu and colleague’s machine learning 

algorithms for metabolites (MetCCS) and lipids (LipidCCS).16,19 A major barrier to the success of 

machine learning CCS prediction is that algorithm training sets are generally not yet large and/or 

specific enough.30 An alternate strategy recently described by Colby et al. is the in silico chemical 

library engine (ISiCLE) workflow which utilizes a combination of molecular dynamics, quantum 

chemistry, and ion mobility calculations in order to predict CCS values based on theoretical 

structure information.31 These CCS prediction efforts are critically important for determining CCS 

values where empirical measurements on authentic chemical standards are unavailable. 
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To aid in the mainstream adoption of IM in analyte identification workflows, we explored the 

potential in curating libraries of empirical CCS values measured via ion mobility into a single, 

self-consistent compendium. The Unified CCS Compendium presented herein serves as a tool 

where new data from the community can be vetted using a quality control protocol and 

subsequently integrated. Included in this curated Compendium are several prevalent calibrant sets 

(polypeptides, branched phosphazenes, inorganic salt clusters, etc.), as well as molecular standards 

from a variety of chemical classes measured using DTIMS. These data sets can be used as 

reference values for other IM-MS techniques. Furthermore, this tool incorporates annotative 

features (i.e. visualization of chemical locales of molecules) and predictive statistics (chemical 

structure-based trends) to aid in identifying unknown biochemical species. These predictive trends 

serve as a powerful filter for increasing confidence in tentative identifications. In order to 

demonstrate the efficacy of this approach, the structural filtering method was applied to 

metabolites in a human serum sample. The full interactive visualization of the Compendium, as 

well as inclusion criteria and guidelines for submitting additional CCS measurements, can be 

found as an open access tool.32 

2.2 Experimental Methods 

2.2.1 Materials and Instrumentation 

Methanol (MeOH), water, acetonitrile (ACN), isopropanol (IPA), and formic acid of Optima grade 

purity were purchased from Fisher Scientific (Fair Lawn, NJ). Anhydrous methyl-tert-butyl ether 

(MTBE) was purchased from Sigma Aldrich (St. Louis, MO). Normal human serum was 

purchased from Utak (Valencia, CA). A mixture of fluoroalkyl phosphazenes, 

tris(fluoroalkyl)triazines, betaine, and trifluoracetic acid reference standards were purchased from 

Agilent Technologies (G1969-85000, Santa Clara, CA). In this manuscript, liquid chromatography 
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MS (LC-MS) and LC-IM-MS data were acquired using a 1290 Infinity LC system and a 6560 IM-

QTOF MS (Agilent Technologies). 

2.2.2 Data Sources and Inclusion Parameters 

 The 3833 IM-MS measurements included in the Compendium are reported in a series of 

manuscripts found elsewere.10,12,18,33–38 In order to provide highly repeatable and reproducible data, 

the Compendium currently only contains CCS values calculated from the fundamental low-field 

IM equation (Mason-Schamp relationship) incorporated into a standardized inter-laboratory 

protocol for single field and stepped field DTIMS acquisition on a commercial uniform-field IM-

MS instrument (6560, Agilent).12,39,40 In-depth information about single and stepped field DTIMS 

has previously been described.12 All measurements were acquired in triplicate and aligned with a 

suite of 13 reference standards (Agilent Technologies) containing symmetrically-branched 

fluoroalkyl phosphazines, namely hexaxis(fluoroalkoxy)phosphazines, tris(fluoroalkyl)triazines, 

betaine, and trifluoracetic acid. These reference standards were previously measured with very 

high precision; and it is currently believed that these CCS values are among the most accurate 

obtained to date.12 

In total, there are 1216 single field measurements within the Compendium; and the average relative 

standard deviation (RSD) for the single field measurements is 0.12%. Compounds were matched 

to reference standards’ values from an inter-laboratory study.12 The average percent error of 

Compendium CCS measurements was found to be 0.04% and -0.33% for positive and negative 

modes, respectively, with all percent error values at < 0.58% for both polarities. The remaining 

2617 stepped field values were reconciled by calculating a “true effective length” for each data set 

(data set defined as a group of measurements collected in a one-day acquisition period) using 

calibrant measurements within the set. This “true effective length” was then used to align 
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measurements with reference standards’ values. More details and tools to calculate “true effective 

length” as well as instructions to calibrate acquired stepped field CCS data are accesible in the 

online interface.32 Once each data set was individually scaled, the average RSD for stepped field 

measurements was calculated to be 0.32%. When compared to inter-laboratory reference values, 

average percent errors were 0.07% and 0.01% for positive and negative modes, respectively. 

Ninety-one percent of matched values had a percent error < 1% for both polarities. These 

empirically derived metrics, in conjunction with known errors propagated in this system,12 were 

subsequently used as the Compendium’s data inclusion criteria. Full descriptions of the inclusion 

criteria and instructions for submitting data to the Compendium can be accessed from the online 

user interface.32 

2.2.3 Data Preparation, Statistical Modeling, and Visualization 

Data from all sources were curated into a unified format using the statistical computing 

programming environment R (R Foundation for Statistical Computing, Vienna, Austria).41 This 

unified format includes the following information for each Compendium entry: name, formula, 

CAS registry number (when available), mass-to-charge (m/z), charge state, ion species, size-to-

charge (CCS/z), percent RSD, number of observed DTIMS peaks, and annotations for the most 

intense DTIMS peak(s). Charge-normalization of mobility measurements via CCS/z was utilized 

to preserve the original drift time scale and analysis consistency.39 In drift time spectra, ions of 

similar mass and higher charge states typically have smaller drift times than lower charge state 

ions; and therefore, appear lower when visualized in drift time vs m/z space. Contrastingly, because 

CCS as calculated from the Mason-Schamp relationship is directly proportional to charge, higher 

charge state ions have larger CCS values than lower charge state ions when visualized in CCS vs 

m/z space. By charge-normalizing, data can be plotted in CCS/z vs m/z space, and measurements 
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appear as they would in drift time vs m/z space. Furthermore, when values were not charge-

normalized, statistical modeling could not be standardized and was charge-state dependent. The 

number of DTIMS peaks observed for each molecule as well as information about which peak was 

observed to be most intense is included in the Compendium. These data meet the outlined criteria 

and follow the standardized IM-MS data reporting efforts led by Gabelica et al.42 Briefly, all 

observed DTIMS peaks are reported in the online Compendium compound table via a peak number 

assignment where the smallest CCS/z (earliest drift time) will be assigned number 1 and 

subsequent peaks will be assigned 2, 3, etc. Compounds with one observed peak will be assigned 

a “1”. Additional information regarding DTIMS peak annotation can be found in Appendix C. 

The unified format also includes a hierarchical chemical classification for each compound which 

includes a kingdom, super class, class, and subclass based on structure. This was performed via 

the ClassyFire web-based application which operates using a comprehensive chemical ontology 

(ChemOnt) that classifies each molecule based on its SMILES identifier as an input.43,44 For 

example, a phosphatidylcholine would be classified as a member of the organic compound 

kingdom, the lipids and lipid-like molecules super class, the glycerophospholipid class, and the 

glycerophosphocholine subclass. 

Iterative nonlinear regression modeling was performed using the R program for each chemical 

class and subclass that contained at least ten data points. Source code for this statistical modeling 

is provided on the McLean Research Group Github.45 Each class was tested against three nonlinear 

regression models: a power fit (PF), a four-parameter sigmoidal fit (4P), and a five-parameter 

sigmoidal fit. Representative equations for these models are described in Appendix C, eq. 1-3. 

These models were chosen based on previous work.34,46,47 The goodness of fit for each model was 

assessed using the corrected Akaike information criterion (AICc) for each of the three models. 
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This conservative metric accounts for small sample sizes, bias correction, and varying degrees of 

freedom in nonlinear candidate models; and has previously been shown to be highly reliable when 

comparing nonlinear models.48,49 The model with the lowest AICc value was taken to be the best 

fit. Ninety-nine percent confidence (CI) and predictive (PI) intervals were calculated as described 

in Appendix C, eq. C4 and eq. C5, respectively. CI and PI were calculated in the same manner for 

all nonlinear regressions. 

The Unified CCS Compendium was visualized using the following open-source R packages: plotly 

(v4.7.1), ggplot2 (v2.2.1.900), data.table (v1.10.4-3), plyr (v1.8.4), and shiny.50–54 Source code for 

the Compendium GUI can be found on the McLean Research Group Github.45 

2.2.4 Evaluation of the Compendium in the Analysis of Human Serum 

Non-endogenous fatty acids 17:0 and 19:0 were used as internal standards and added into 100 µL 

control human serum. 800 µL of cold MeOH (-20˚C) was subsequently added and the sample was 

stored at -20˚C overnight to precipitate out proteins. The sample was subsequently centrifuged at 

14,000 rpm and 4˚C for five minutes. The supernatant was collected; and 2.4 mL ice cold MTBE 

and 800 µL ice cold water were added. This MTBE:MeOH:water sample was vortexed then 

centrifuged at 10,000 rpm and 4˚C for ten minutes. The nonpolar liquid fraction was siphoned, 

dried under vacuum, and stored at -20˚C until use. Dried fractions were resuspended in 100 µL of 

70:18:12 water:IPA:ACN and analyzed via LC-MS and LC-IM-MS. Further details are provided 

in Appendix C. LC-MS data was analyzed using Progenesis QI (v2.3, Nonlinear Dynamics, 

Durham, NC). Resulting features were tentatively identified using the Metlin Metabolomics and 

LipidBlast databases.55,56 LC-IM-MS raw acquisition files were converted to mzML format using 

MSConvert (v3.0, ProteoWizard).57 Drift time values from LC-IM-MS experiments for individual 

process replicates were extracted using an internally developed python script45 in which drift times 
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were matched against the retention time and m/z of the tentatively identified compounds. These 

match functions had a threshold of 30 s (or 1% variation) for retention time and 5 ppm for m/z, 

respectively. Once drift times were extracted from the mzML data files, CCS/z values were 

calculated from the Mason-Schamp relationship using the averaged drift times. Chemical class 

probability hierarchies were analyzed using distance of the mean calculations based on where 

serum CCS/z values fell within the Compendium as compared to the regression models. 

2.3 Results and discussion 

2.3.1 CCS Compendium Properties 

The Unified CCS Compendium compiled in this work consists of a total of 3833 CCS values (see 

inclusion criteria in the Experimental Section) obtained with uniform drift tube instruments in 

nitrogen drift gas utilizing a standardized CCS protocol.12 Measurements consist of 2740 cations 

and 1093 anions, all of which were acquired in replicates of > 3. Associated measurement RSDs 

can be found on the web-based Compendium.32 Thirteen ion species types are represented, as 

indicated in Figure 2.1(A). The most common species observed were proton coordination (38%), 

proton loss (27%), and sodium coordination (25%). Ion species were assigned based on the charge 

source of the molecule. For example, if a compound was observed as [M+2Na-H]+, the ion species 

was labelled as “+Na.” Likewise, if a compound had multiple charge carriers of the same type, 

such as [M+4H]4+, it was labelled as “+H”. Compounds with multiple different equal charge 

carries, such as [M+H+K]2+ were recorded as both “+H” and “+K”. The charge distribution, 

Figure 2.1(B), in the Compendium ranged from +1 to +31 for cations and -1 to -3 for anions. More 

than 90% of the compounds were singly or doubly charged. Overall, replicate measurements were 

highly reproducible as evaluated by RSD. The global average RSD was 0.25%, and 97% of all  



29 
 

 

Figure  2.1 Compendium metadata statistics. (A-B) Overall distribution of the 3833 measured ions 
from (+) and (-) ion polarity modes by ion species and charge state. (C) Relative standard deviation 
(RSD) of all measurements binned by CCS/z. Global average RSD is 0.25%, and Compendium 
RSD threshold is 0.7%. (D) Distribution of ions contained in the database as a function of the m/z. 
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compounds had an RSD of < 1.0%. The average RSD per CCS/z bin is shown in Figure 2.1(C). 

RSD is observed to increase as CCS/z increases due to multiple observed conformers in larger 

molecules. Under highly controlled interlaboratory experimental conditions, RSD is < 0.3%;12 and 

the empirical RSD threshold of 0.7% for the Compendium is a practical limit for data from 

independent studies. The Compendium data set spans a m/z range of ca. 74 to ca. 3300 Da; 

however, most compounds are less than 1500 Da. The full distribution of compound masses is 

shown in Figure 2.1(D). 

2.3.2 CCS Compendium Visualization 

The data set was visualized using code written in the R language. The graphical user interface 

(GUI) of the Unified CCS Compendium is shown in Figure 2.2(A) and is accessible online.32 The 

default view for this GUI is to show all data grouped by super class. Users have the ability to zoom 

and select regions of interest which facilitates maneuvering densely populated areas. By hovering 

the cursor over any data point, as shown in Figure 2.2(B), users can access specific information 

regarding the corresponding entry including the compound’s name, molecular formula, CAS 

identity, m/z, observed charge species, CCS/z and associated RSD, source citation, and digital 

object identifier. The interactive GUI can be tailored to the user’s needs. Search functionality 

allows users to find data on any compound within the Compendium’s compound table. Users can 

also isolate a specific data subset based on ion polarity, adduct type, super class, class, and data 

source. Subsetting data by super class or class reveals its CCS/z vs m/z area of occupancy. 

The Compendium covers 14 super classes which delineate into 80 classes and 157 subclasses. The 

distribution of compounds into each super class is summarized in Figure 2.2(C). A list of super 

classes including m/z range and number of compounds per super class is summarized in Table 2.1.  
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Figure  2.2 Compendium user interface  (A) depicting measured data points classified into super 
classes indicated in the legend above. An enlarged version of the area within the black box is 
shown in (B) to illustrate how each data point reveals an information box in the online 
Compendium. (C) Distribution of compounds across the 14 structural super classes. 
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Super classes and their subsequent classes are further delineated in Table C1. Full classification of 

individual compounds can be found on the web-based Compendium.32 Of the 80 classes, 48 had a 

sufficient (n > 10) number of data points to undergo regression fitting tests. In total, 24 classes and 

24 subclasses were modeled. As new data will be added and regression fitting algorithms are 

iterative, it should be noted that the most up-to-date regression model equations can be found 

online.32 A few observations can be made from thce data fitting study. Both four-parameter 

(Appendix C, eq. C2) and five-parameter (Appendix C, eq. C3) regressions were the best fit more 

frequently for classes in which m/z range included masses under 200 Da. This suggests a potential 

minimum observable CCS due to the asymptotic nature of sigmoidal curves. In theory, the IM-

derived CCS will converge on the CCS of the neutral drift gas which, for sufficiently low CCS 

measurements, should manifest as a non-zero y-intercept in these CCS/z vs m/z projections. In the 

canonical literature, this minimally observable IM measurement is referred to as the gas 

polarization limit.39 The smallest CCS/z measurement in the Compendium is 100.81 Å2, for a 

single cesium cation at m/z 132.90. Presently, more data points are needed to generate functional 

forms of a global type of fit. 

2.3.3 Predictive Structural-Chemical Trends 

While the Compendium visualizes the simple, yet fundamental aspects of the relationship between 

CCS/z and m/z, its highest utility lies in its predictive potential. To support predictive analysis, a 

99% CI and 99% PI were generated as described in Appendix C, eq. C4 and eq. C5 for each class 

fit with a nonlinear regression. Briefly, the CI depicts the value range in which the regression mean 

is expected to be for normally distributed data.58 For our data, the mean CCS/z value for a given 

m/z should be contained within the CI in 99% of cases. The upper and lower CI limits are depicted 

as the outer solid lines. throughout Figure 2.3. The distance between the two limits is closest where  
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Table  2.1 Curated CCS Compendium Super Classes 

 
Super Class m/z Range N 

Alkaloids and derivatives 138 – 609 4 

Benzenoids 108 – 887 269 

Homogeneous metal compounds 132 – 2991 62 

Homogeneous non-metal compounds 144 1 

Lipids and lipid-like molecules 125 – 1017 810 

Nucleosides, nucleotides, and analogues 226 – 809 386 

Organic acids and derivatives 89 – 3302 1085 

Organic nitrogen compounds 74 – 1233 102 

Organic oxygen compounds 105 – 1506 345 

Organic polymers 294 – 1724 250 

Organohalogen compounds 301 – 2834 66 

Organoheterocyclic compounds 96 – 1684 335 

Phenylpropanoids and polyketides 133 – 1424 116 

Polyhedralcarbon molecules 210 – 227 2 
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the data point density is highest and prediction error is lowest along the regression model. The 

99% PI depicts the ‘y’ variable value (CCS/z) range expected for 99% of data points at a given ‘x’ 

value (m/z).58 

Figure 2.3 is a representative example of this data correlation process. It depicts the super class 

“Organoheterocyclic compounds” which contain many human metabolites and natural products. 

Three classes within “Organoheterocyclic compounds” are shown in Figure 2.3(B-D). The 

“Quinolines and derivatives” (Figure 2.3(B)) and “Imidazopyrimidines” classes (Figure 2.3(C)) 

were best fit by a 4P regression model. The “Pteridines and derivatives” class (Figure 2.3(D)) was 

fit best by the PF regression. In these cases, data fit regressions and corresponding CIs and PIs 

define the CCS/z vs m/z space that 99% of data for diazines, imidazopyrimidines, and pteridines 

and derivatives should occupy. While current AICc values indicate these models are appropriate, 

the specificity and predictability of these intervals will improve with the inclusion of more data 

and further delineation of each class into subclasses. 

In the Compendium, the 99% interval bands included in the data projections are calculated directly 

from the Compendium data, therefore most of the empirical measurements within the dataset will 

fall within these interval bands. As these bands represent a probability, there remains the 

possibility that CCS values for compound standards will fall outside of these projections, and users 

should examine these cases on an individual basis to determine if CCS values are repeatably and 

reproducibly outside of the predicted range. For example, multimers dissociating occurring after 

the ion mobility measurement but prior to mass analysis (i.e, post-mobility ion activation) would 

lead to a larger than expected drift time and corresponding CCS. Additionally, CCS values for 

unknown analytes/isomers obtained from untargeted experiments represent previously  
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Figure  2.3 Compendium regression models  (A) Compendium GUI output of all ion entries within 
the “Organoheterocyclics” super class. (B) “Quinolines and derivatives” class; and a 4P regression. 
(C) “Imidazopyrimidines” class; and a 4P regression. (D) “Pteridines and Derivatives”” class; and 
a PF regression. For (B-D), the center solid line is the regression model, outer solid lines are 99% 
confidence intervals and the dash lines are 99% prediction intervals. 
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unmeasured peak features which could fall outside of the interval bands. In these scenarios, the 

user should exercise caution in determining if the predicted structural class is appropriate. 

2.3.4 The Compendium as an Identification Filter 

To test the predictability and filtering abilities of the Compendium, metabolites extracted from 

control human serum were analyzed using classical LC-MS or LC-IM-MS workflows. In the LC-

MS data, 4719 deconvoluted features were observed with 955 tentative identifications matched by 

conservative criteria for exact mass (< 10 ppm) and isotopic distribution (70%) using METLIN 

and LipidBlast databases.55,56 In order to append drift time values to these tentative identifications, 

an in-house python script was developed (available online).45 Using this script, we can extract drift 

times at a rate of 4x105 measurements per hour, per sample. Drift times from each of the three 

technical replicates were aligned to the tentative identifications based on retention time and m/z. 

In these data, most of the aligned drift times were self-consistent with an RSD < 1%. The drift 

times were averaged and used to calculate CCS/z values using the single-field extension of the 

Mason-Schamp relationship. Superimposing the tentatively identified serum metabolite data over 

the Unified CCS Compendium data (Figure 2.4(A)) indicates that the tentatively identified 

compounds have equivalent mobility-mass correlations as known chemical compounds. 

For proof-of-concept purposes, the serum data was subset into compounds tentatively identified 

as lipids. Compounds in the green highlighted area of Figure 2.4(A) represent the CCS/z vs m/z 

space within the Unified CCS Compendium containing all lipid regressions generated for data in 

the “Lipids and lipid-like molecules” super class. In total, 550 compounds present in the serum 

sample were tentatively identified as lipids; and 422 of these compounds overlapped with at least 

one of the lipid classes and/or lipid subclass regression models. Distance from the mean values 

were calculated to prioritize the probability that a serum compound belonged to a given lipid class. 
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An example of this process is depicted in Figure 2.4(B) for the compound with m/z 744.49 and 

CCS/z 278.2 Å2 (gold circle). Potential tentative identifications for m/z 744.49 included 53 

glycerophosphocholine (PC) and glycerophosphoethanolamine (PE) isomers. This unknown 

compound (gold line, Figure 2.4(B) call-out box) was 9.44 standard deviations from the PE 

subclass regression model (red line, Figure 2.4(B) call-out box), but at 2.54 standard deviations 

from the PC subclass regression model (blue line, Figure 2.4(B) call-out box), this compound was 

within the 99% CI of the PC fit with a difference of about 1.5 Å2 from the mean CCS/z value of 

PCs (at m/z 744). Thus, by comparing an unknown compound to statistical fits of existing data 

within the Unified CCS Compendium, we made a putative identification and have higher 

confidence in its assignment. 

The molecular identification workflow for m/z 744.49 is summarized in Figure 2.4(C). The m/z 

744.49 was deconvoluted to its neutral mass of 705.53 Da. At unit resolution, there are tens of 

thousands of potential chemical formulas with a mass of 705 Da. Within 100 ppm mass error of 

705.53 Da, there are 7276 possible chemical formulas. Subsequently, there are 653 chemical 

formulas within 10 ppm mass error and 325 chemical formulas within 5 ppm mass error (the 

observed mass error). Of these 325 formulas, 173 are known compounds found in the PubChem 

database. Heuristic filtering based on instrumentation mass accuracy, mass defect, isotope 

distribution, and information from orthogonal separations enables tentative identification of 

compounds with a specified level of confidence. In this example, 53 tentative PC and PE 

identifications were returned after heuristic filtering through Progenesis QI. Using the 

Compendium, this list can be further narrowed into 21 PC isomers with the neutral mass 705.53 

and m/z 744.49. 
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Figure  2.4 Compendium annotation filtering workflow  (A) Overlay of human serum metabolites 
(gold) with the Compendium (black). Green area represents CCS/z vs m/z space occupied by any 
and all lipid subsets within the Compendium. (B) Example plot for class-specific filtering of an 
unknown serum compound, m/z 744.49 and CCS 278.2 Å2 (gold circle), tentatively identified as a 
PC (blue regression model) or PE (red regression model). The probability of the unknown 
compound’s class falling within the PC or PE class is shown in the call out box. Based on distance 
from the mean calculations, the compound falls within 2.54 standard deviations of the PC 
regression model and 9.44 standard deviations of the PE regression model which indicates the 
unknown compounds has a higher probability of being a PC than a PE. (C) Molecular identification 
workflow for the unknown compound depicted in panel b. After Compendium filtering, 
identifications were reduced to 21 PC isomers with the m/z 744.49. (D) Fragmentation of the 
isolated m/z 744.49 at CID 0V, 10V, 20V, and 40V. An increase in the intensity for m/z 184.07, 
corresponding to the phosphocholine head group mass, is observed with increase in collision 
voltage. 
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To validate our PC prediction, m/z 744.49 underwent mass isolation from the serum matrix and 

was fragmented using collision induced dissociation at 0 V, 10 V, 20 V, and 40 V. The mass 

spectra, shown in Figure 2.4(D), demonstrate the increase in the intensity of m/z 184.07, the 

signature m/z of a phosphocholine head group, as collision energy increased. While further 

investigation using chemical standards can lead to high-confidence identifications of unknown 

compounds, using the CCS filtering workflow presented here allows investigators to achieve high 

confidence in assigning the chemical class to an unknown molecule using IM-MS datasets. This 

predictive ability is expected to be particularly important for chemical class and structure 

annotation of isomers belonging to known compounds from which CCS information has not been 

previously measured (i.e., an “unknown unknown” isomer), as is the case for most human 

metabolites which are expected to be isomeric but current undiscovered.59 

2.4 Conclusions and Future Directions 

In this work, we illustrate the utility of IM-MS in quantitatively characterizing biochemical species 

using a Unified CCS Compendium. Prior to this work, quantitative CCS libraries have been limited 

in scope to a narrow range of chemical classes, polarities, and adduct types. Therefore, we curated 

a Unified CCS Compendium obtained from chemical standards representing a wide variety of 

structures spanning 14 super classes, 80 classes, and 157 subclasses. We anticipate subsequent 

contributions from the IM-MS community; thus the informatics infrastructure was designed to 

accommodate future expansion. The current biochemical species contained within the Unified 

CCS Compendium enabled generation of optimized nonlinear regression models with CI and PI 

for 45 classes and subclasses. These models enabled prediction and filtering of unknown 

biochemical species. The capabilities demonstrated in this manuscript establish a foundation for 

utilizing CCS/z as an additional molecular characterization dimension. The Unified CCS 
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compendium was used to predict and identify unknown chemical species originating from a serum 

sample. Future work will focus on expanding the number of entries in the Compendium to improve 

predictive power. 

We anticipate the Unified CCS Compendium to be a collaborative effort of the IM-MS community 

and invite contributions to this open-access repository for quality-controlled CCS measurements. 

Specific guidelines for submitting data can be accessed from the interactive online interface.32 

While the Compendium is initially designed to only include DTIMS data, considerations for 

adding CCS information obtained from other IM techniques will be included in future revisions. 

The standardized DTIMS CCS measurements contained within the Compendium can serve as 

calibrant reference values for other IM techniques, which will enable the incorporation of more 

CCS data into this body of work. 
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CHAPTER 3 
 

3. IMPROVING CONFIDENCE IN LIPIDOMIC ANNOTATIONS BY INCORPORATING 

EMPIRICAL ION MOBILITY REGESSION ANALYSIS AND CHEMICAL CLASS 

PREDICTION‡ 

 
3.1 Introduction 

Lipids and lipid-like molecules play critical roles in a diverse array of biological processes, 

including membrane structure, signaling, and energy storage.1  Although the implications of their 

dysregulation in a number of diseases makes lipids of prime interest for study,2 global analysis is 

often hindered by the wide range of chemical and physical properties arising from the structural 

diversity of this single superclass of molecules.3–5 Mass spectrometry-based lipidomics has risen 

to meet this challenge, enabling high sensitivity and high throughput measurements which 

facilitates not only a broader understanding of lipid metabolism, but also the discovery of 

significant molecular signatures for further study.6–8  

Although great strides have been made toward comprehensive annotation of the lipidome, 

confident compound identification remains a bottleneck in untargeted analyses.9–11 

Comprehensive lipid identification by accurate mass alone is unattainable due to the prevalence of 

isomeric species as well as the limited number of commercially available analytical standards.8 

Tandem MS (MS/MS) ion fragmentation is often used to aid in the identification of lipid species 

with support from both experimental and in silico libraries.12–16  However, MS/MS approaches are 

 
‡ This chapter contains material adapted from the submitted research article: “Improving 
Confidence in Lipidomic Annotations by Incorporating Empirical Ion Mobility Regression 
Analysis and Chemical Class Prediction,” by Bailey S. Rose, Jody C. May, Jaqueline A. Picache, 
Simona G. Codreanu, Stacy D. Sherrod, John A. McLean, Bioinformatics, Submitted. 
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challenged by structurally-similar lipids and chimeric fragmentation data resulting from isobaric 

signals, such as those arising from complex biological matrices. Liquid chromatography (LC) has 

also been extensively used in lipidomic analyses to improve peak capacity, resolve isomers, and 

help mitigate ion suppression effects at the ionization source.17,18 The use of retention time as a 

chemical descriptor for species identification has been supported by the expanding landscape of 

retention time libraries and prediction tools,19,20 but these approaches are not easily applicable 

across different laboratories and platforms due to the influence of various experimental parameters 

and matrix effects on retention time variability.21,22 Additionally, direct sample analysis techniques 

such as those utilized for MS imaging are incompatible with chromatography and thus cannot take 

advantage of retention time correlation. Despite these limitations, the integration of 

complementary analytical techniques into multidimensional MS strategies is necessary to expand 

coverage and confidence in lipidomic annotations.23,24   

An analytical separation technique that has had increasing success within the lipidomics 

community is ion mobility.19,24,25 This gas phase separation is rapid (milliseconds) and structurally 

selective, which can resolve isomers/isobars while providing an additional metric for compound 

annotation, namely the collision cross section (CCS).26 CCS values provide direct, albeit coarse-

grained, structural information for lipids and have been demonstrated to be highly reproducible 

across laboratories.27 Further, the millisecond timescale of ion mobility measurements falls within 

the timescales of the LC and time-of-flight MS dimensions (minutes and microseconds, 

respectively)28 and thus these analytical separations (LC-IM-MS) can be performed concurrently 

on a single sample injection. Many recent efforts have focused on the generation of CCS databases 

to aid in compound identification efforts.29–34 Figure 3.1 compares lipid coverage of a large 

repository of standardized experimental CCS values, the Unified CCS Compendium,31 to the  
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Figure 3.1 Lipid database coverage  (log scale) of the LIPID MAPS Structural Data-base (LMSD, 
grey) and the Unified CCS Compendium (pink). 
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LIPID MAPS Structural Database.12 Similar to MS/MS libraries, CCS database initiatives require 

substantial resources and expertise to curate and are limited by available chemical standards. 

However, the curation of such empirical databases has been widely successful in compiling CCS 

values for thousands of lipid species across a variety of classes and subclasses. Additionally, these 

databases have had significant success as training sets for developing large-scale theoretical CCS 

libraries using various predictive approaches.34–38 

Here, we demonstrate an integrated LC-IM-MS lipidomics workflow supported by a sequential 

chemical class prediction informatics strategy to increase the confidence in lipidomic annotations. 

In both informatic approaches, the confidence is increased in accordance with the Metabolomics 

Standards Initiative (MSI) confidence level system, where additional molecular descriptors can be 

leveraged to effectively narrow the search space of candidate identifications.10,39,40 First, using 

characteristic class-specific mobility-mass correlations (available in the Unified CCS 

Compendium), candidate identifications of lipidomic features are automatically filtered on the 

basis of their measured CCS values, increasing the confidence in resulting annotations. Second, 

features which do not yield candidate identifications from conventional database matching can be 

assigned tentative classes based on their CCS values using a previously developed machine 

learning framework (i.e., SIFTER).37 Using this dual approach, increased lipidomic coverage can 

be achieved with high confidence (putative) in the annotations and resulting biological 

interpretations. 

3.2 Experimental Methods 

3.2.1 Materials 
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Optima grade water, acetonitrile (ACN), isopropanol (IPA), methanol (MeOH), and ammonium 

acetate; as well as bicinchoninic acid (BCA) assay reagents and albumin standards were purchased 

from Fisher Scientific (Fair Lawn, NJ). Anhydrous methyl-tert-butyl ether (MTBE), ammonium 

bicarbonate (NH4HCO3), heptadecanoic acid, and nonadecanoic acid were purchased from Sigma 

Aldrich (St. Louis, MO). Lipid standards including phosphatidylglycerol (PG, chicken egg) 

extract, phosphatidylinositol (PI, bovine liver) extract, glucosyl(β) sphingosine (d18:1), C17 

ceramide (d18:1/17:0), and a mixture of heavy-labeled lipids SPLASH LIPIDOMIX were 

purchased from Avanti Polar Lipids (Alabaster, AL). 

3.2.2 Instrumentation 

All data were acquired using a commercial drift tube ion mobility-mass spectrometer (6560A IM-

QTOF, Agilent Technologies, Santa Clara, CA) equipped with an electrospray source (Agilent Jet 

Stream)41 operated under the following source conditions: gas temperature, 280 °C; drying gas, 12 

L/min; nebulizer, 30 psi; sheath gas temperature, 300 °C; sheath gas flow, 11 L/min; capillary 

voltage (VCap), 3500 V; nozzle voltage, 1800 V; fragmentor, 320 V; and octopole 1 RF Vpp, 750 

V. The drift tube was operated with 3.95 Torr of nitrogen gas with the pressure regulated in real 

time using closed-loop pressure controlling system (Alternative Drift Gas Kit, Agilent).42 

Additional drift tube parameters were as follows: ion trap fill time, 20 ms; ion trap release time, 

300 μs; drift tube entrance, 1474 V; drift tube exit, 224 V; rear funnel entrance, 217.5 V; rear 

funnel RF, 150 Vpp; rear funnel exit, 45 V; and IM hexapole delta, -8 V. The QTOF stage was 

operated in Low Mass Range (m/z 50-1700), ion slicer operated at High Sensitivity and the 

digitizer operated at 2 GHz Extended Dynamic Range. 

3.2.3 Preparation and analysis of standard lipid extracts 
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Purified TLC fractions of phosphatidylglycerol (PG) and phosphatidylinositol (PI, Avanti) were 

prepared to a final concentration of 10 µg/mL in IPA. The standard extracts were analyzed in both 

positive and negative ion modes via direct infusion IM-MS with a sample flow rate of 10 µL/min. 

Ion mobility arrival times for calibrant ions (ESI Low Concentration Tuning Mixture, Agilent) 

were used to calibrate single-field CCS values for lipid features. Where possible, these features 

were identified by exact mass measurements and the LIPID MAPS Structure Database.12 This data 

was then collated and submitted to the Unified CCS Compendium to support downstream 

identification of PG and PI lipid subclasses. 

3.2.4 Brain tissue lipid extraction 

Murine brain tissue samples43 were lysed using ice cold lysis buffer (1:1:2 MeOH:ACN:NH4HCO3 

0.1M, pH 8.0), followed by sonication using a probe tip sonicator, 10 pulses at 30% power, cooled 

on ice between samples. Protein concentration was determined using a BCA assay, and samples 

were normalized to 200 µg total protein in 200 µL lysis buffer. 800 µL of cold MeOH was added 

to each sample, and the samples were incubated at -80 ˚C overnight to facilitate protein 

precipitation. These samples were centrifuged for 10 minutes at 10,000 rpm (4 ˚C), supernatant 

transferred and dried in vacuo. Dried samples were resuspended in 150 µL water, vortex 

thoroughly, followed by 150 µL MeOH, and incubated on ice for 10 minutes. Isotopically labeled 

lipid mixture (SPLASH LIPIDOMIX, Avanti) was added as an internal standard. A liquid-liquid 

extraction was performed by adding 1 mL MTBE, vortexing, and subsequently centrifuging for 10 

minutes at 10,000 rpm and 4 ˚C. The nonpolar, MTBE layer containing the lipophilic components 

was removed and dried under vacuum. These fractions were resuspended for LC-IM-MS analysis 

in 100 µL IPA containing 40 µg/mL heptadecanoic acid and nonadecanoic acid, as well as 10 

µg/mL glucosyl(β) sphingosine and N-heptadecanoyl-D-erythro-sphingosine. 
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3.2.5 Liquid chromatography 

The lipophilic tissue extracts were analyzed using a 1290 Infinity LC system (Agilent). Reversed 

phase LC was performed at a flow rate of 300 µL/min by injecting 4 µL of the sample onto a C18 

column (HypersilGold 1.9 µm, 2.1 mm x 100 mm column, Thermo Fisher) held at 40 ˚C with 

mobile phases consisting of 10 mM ammonium acetate in 9:1 H2O:MeOH (A) and 5:3:2 

IPA:MeOH:ACN (B). The gradient used was 70% B for 1 min, 70-86% B in 2.5 min, 86% B for 

6.5 min, 86-100% B in 1 min, 100% B for 6 min, 100-70% B in 0.1 min, and 70% B for 1.9 min. 

The total duration of the method was 19 minutes, with a 5-minute post time to allow the column 

to equilibrate between injections. 

3.2.6 Data acquisition 

Samples were analyzed in both positive and negative ion modes. For each polarity, full scan MS 

data was acquired for all samples, while auto MS/MS data was acquired only for the pooled 

samples between batches. Top 2 and top 4 auto MS/MS data were acquired using an absolute 

threshold of 5000 counts and stepped collision energies at 20 and 40 V. Additionally for CCS 

determination, LC-IM-MS data from the pooled samples was acquired in triplicate. A previously 

established single field relationship derived from the fundamental ion mobility equation was used 

to determine the CCS values from the IM arrival time measurements of all detected features.27 

3.2.7 Data processing 

Initial processing of LC-IM-MS data involved saturation correction and smoothing in both the 

retention time and drift time dimensions using the PNNL PreProcessor (v. 2.0).44 Ion mobility 

arrival times for calibrant ions were acquired at the beginning of experiments and applied offline 

to the individual data files to determine the single-field CCS values using IM-MS Browser (B.10, 

Agilent). IM-MS Browser was then used to apply a preset inclusion region of mass-mobility space 
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to each file, generating extracted files containing data limited to the IM-MS region in which 

lipidomic data is known to occupy.45 This IM-MS prefiltering step helps to minimize artifactual 

and higher order charge state signals which are uncharacteristic of lipids. Finally, 4D feature 

finding was performed in Mass Profiler (B.10, Agilent). Processing of LC-MS and LC-MS/MS 

data including retention time alignment, charge carrier deconvolution, and molecular feature 

finding was performed in Progenesis QI (v2.3, Nonlinear Dynamics, Durham, NC). The resulting 

deisotoped/deconvoluted features represent discrete molecules and thus are referred to as 

molecular features. Tentative identifications were assigned to features via accurate mass 

measurement at a 10 ppm mass tolerance matched against entries from a combination of data 

repositories including METLIN Metabolite and Chemical Entity Database, Human Metabolome 

Database, LIPID MAPS Structure Database, and LipidBlast.12,13,46,47 Here, annotation confidence 

levels (i.e., tentative identifications) are notated in accordance with the Metabolomics Standards 

Initiative (MSI) scheme, where higher confidence assignments can be derived from additional 

pieces of analytical information.10,39,40 

3.2.8 Classification 

All subsequent data processing was performed in the R statistical programming environment (v. 

3.6.0) unless otherwise noted. Following tentative identification, all identified molecular features 

were assigned a hierarchical classification, including a kingdom, superclass, class, and subclass, 

in accordance with the structure-based comprehensive ontology, ChemOnt.48 IUPAC International 

Chemical Identifier strings (InChIKeys) were assigned for each compound annotation using the 

Chemical Translation Service (CTS) via the R package, webchem (v0.4.0).49,50 These InChIKeys 

were then used as input to the web application ClassyFire in order to assign each taxonomical 

classification.51  
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3.2.9 Collision Cross Section Filtering Pipeline 

CCS values obtained from LC-IM-MS processing were appended to the tentatively identified 

molecular features (output from Progenesis QI) using a mass tolerance of 7 ppm and retention time 

tolerance of 0.5 minutes. Nonlinear least squares regression models were generated for known 

classes and subclasses within the Unified CCS Compendium using previously developed R 

scripts.31  These regression models were used to filter the candidate identifications on two levels 

(Figure D2): the first filter was applied to all features whose candidate classes or subclasses had a 

representative regression model, assigning higher confidence to those annotations whose CCS fell 

within the 99% predictive interval associated with the class and subclass of that identification. The 

second filter was applied to all features whose annotations were from multiple subclasses and had 

passed the first filter. This filter calculated the distance of the CCS of the feature from the mean 

of the regression model of each of its candidate classes or subclasses. The annotations from the 

class or subclass whose model fell closest to the feature CCS are assigned a higher confidence 

(Figure D3). All analysis code and R scripts can be found on the McLean Research Group 

GitHub.52  

3.3.10 SIFTER Chemical Class Prediction 

Chemical class prediction of unknown molecules for which the previous filtering pipeline yielded 

no results were subjected to predictive analysis using the previously developed Supervised 

Inference of Feature Taxonomy from Ensemble Randomization (SIFTER) algorithm.37 SIFTER 

utilizes a random forest machine learning approach to assign chemical class predictions and has 

been described elsewhere.37 

3.3 Results and discussion 

3.3.1 Expansion of Compendium Lipid Coverage 
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To support the broader applicability of the proposed analysis pipeline, efforts were made to expand 

the lipid subclass coverage of the CCS Compendium to include PG and PI lipids, which are major 

glycerophospholipid subclasses. Total purified extracts of PG and PI were analyzed via IM-MS, 

and CCS values of the identified features were calibrated and added to the Compendium. This 

analysis resulted in 35 new PG CCS values and 34 new PI CCS values, expanding the overall 

glycerophospholipid coverage (Figure 3.1). Addition of this data to the Compendium enabled the 

generation of two new subclass regression models for downstream predictive analysis (Figure D3). 

3.3.2 Workflow Design and Assessment 

An overview of the parallel workflow incorporating the ion mobility CCS data is shown in Figure 

3.2. After alignment, deconvolution, and feature finding, the molecular features are searched 

against accurate mass databases to assign tentative identifications. The features that have accurate 

mass candidates in a database were assigned tentative identifications and are subjected to CCS 

filtering to produce more high-confidence IDs (in this case, putative annotations - level 2).39 

Unidentified features which did not match any accurate mass database entries are submitted to 

SIFTER to predict molecular classifications (Figure 3.2(B)). 

Initial assessment of the CCS filtering approach was performed using LC-IM-MS data acquired 

from a standard mix of isotopically-labeled lipids (SPLASH LIPIDOMIX, Avanti). The masses of 

the molecular features corresponding to the known components of the mixture were corrected to 

their unlabeled counterparts to facilitate database matching. These corrected masses were assigned 

tentative identifications from the LIPID MAPS Structure Database to verify that the filtering 

pipeline would determine the correct option for each feature as expected based on its CCS value. 

In this preliminary test with molecular features corresponding to the standard mix components, the 

correct class was assigned the highest confidence for 24 of 26 features (92%), and the correct  
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Figure  3.2 Complementary parallel analysis workflows utilizing IM-MS derived measurements, 
(A) a CCS filtering pipeline to increase the confidence of features with tentatively assigned 
identifications described in this work, and (B) the SIFTER algorithm to predict the molecular 
classification of lipidomic features not identified by accurate mass database searching. 
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subclass was assigned the highest confidence level in 19 of 26 features (73%). Upon more detailed 

analysis, two incorrect assignments were due to erroneous ion mobility feature selection in the 

automated peak picking, and one additional incorrect assignment resulted from an absence of the 

correct candidate subclass in the tentative annotation list. These preliminary tests provided insight 

into the reliability of the workflow with which to proceed to its application to biological samples. 

Though these results are promising, the performance is expected to improve as data additions to 

the Compendium improve the accuracy of the regression models.  

3.3.3 CCS Filtering of Lipidomic Data 

An untargeted lipidomics experiment was performed on murine brain tissue lipophilic extracts 

using the CCS filtering pipeline. An illustration of the number of features reduced in each step of 

the pipeline (Figure 3.2(A)) is contained in Figure 3.3, with features that pass through each level 

of the filter being assigned higher confidence (Figure 3.3(B)).   

Of the 1657 molecular features extracted from the raw data, 1083 (65%) were tentatively identified 

using accurate mass database searching. During mass database matching, the average number of 

candidate identifications per compound was 61 and, on average, 75% of these candidates were 

database entries with the same chemical formula, i.e., mass isomers. The candidate identifications 

were next assigned a hierarchical structural classification using the ClassyFire algorithm.51 Of 

these classified compounds, 39 (~4%) did not have a representative regression model in the 

training data, and thus could not be assigned any higher confidence other than the initial tentative 

identification (Figure 3.3(C)).  

Following classification, the features were subjected to two stages of CCS-based filtering using 

both the CCS values and the regression models generated from entries in the Unified CCS  
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Figure  3.3 Feature reduction workflow for assigning molecular identifications  with increasing 
levels of confidence using the ion mobility-derived CCS. (A) Of 1657 features, 1083 were 
tentatively identified and thus subjected to CCS filtering. The remaining 574 with no 
identifications were submitted to the SIFTER algorithm for classification prediction. (B) Results 
of the CCS filtering pipeline in which increased confidence is assigned from each level of the filter. 
(C) Out of 1083 tentatively identified features, 39 did not have an ID with a representative 
regression model. (D) 883 features passed the class-specific filter, while 161 features fell outside 
the predictive interval of their class model(s). Finally, (E) 512 features were passed through the 
feature-specific filter. The 371 remaining features had IDs from only one class and did not need 
the additional filtering level. 
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Compendium. The first filter level is a class-specific heuristic filter that assigns a higher 

confidence to an annotation if the CCS of that feature falls within the 99% predictive interval of 

the class to which the annotation belongs. In addition to assigning increased confidence, this step 

also serves as a quality assurance step, ensuring that the annotations that pass to the next stage are 

plausible candidates for the molecular feature. Here, 883 molecular features had annotations that 

passed this filter, whereas 161 features had CCS values that fell outside of the predictive intervals 

of all their candidate identifications, meaning these tentative identifications could not be further 

validated with their CCS information (Figure 3.3(D)). 

In the second stage of the filtering pipeline, the proximity of the feature CCS to the mean of the 

regression models is evaluated. Higher confidence is assigned to an annotation if the mean of the 

corresponding class regression model falls within a shorter distance to the CCS of the feature than 

those of other potential classes. Over 500 features had annotations that could be distinguished in 

this way, while the remaining 371 had only one candidate class or subclass, and therefore did not 

require further filtering (Figure 3.3(E))). 

Using this CCS filtering approach, 82% of the features tentatively identified via accurate mass 

information (883 out of 1083) were able to be assigned some increased confidence using their CCS 

values. The average number of potential identification candidates for these high-confidence IDs 

was decreased from 65 to 31, which represents a reduction of over 50% of the possible compound 

identities that can be assigned to these features. 

In addition to decreasing the overall average candidates per feature, the CCS filtering method also 

shifted the distribution of candidates significantly (Figure 3.4(A)). Prior to filtering the annotations 

on the basis of their CCS values, only 34% of the features had 10 or fewer candidates. Of the 883  
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Figure  3.4 Comparison of feature annotations before and after applying the filtering pipeline (A) 
The list of possible candidate identifications were decreased by filtering on the basis of their CCS 
values. (B) Lipid class distribution of the unfiltered features with identifications assigned by 
accurate mass only, as compared to (C) class distribution of features with identifications assigned 
by the combination of accurate mass and CCS filtering. 
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features whose candidate identifications had been subjected to filtering, 67% had 10 or fewer 

remaining candidates. This effective narrowing down of feature identification candidate lists 

increases the confidence in the remaining options.  

For these filtered lists, all the remaining candidate identifications are compounds within the same 

chemical class, providing high confidence in the class assignments, even in cases in which 

persisting isomeric/isobaric ambiguity increases the possible number of candidates. This, in turn, 

lends higher confidence to the resulting lipid class profile in these analyses. Figure 3.4(B) 

illustrates differences in lipid class distribution among “unfiltered” features (where the “top hit” 

of the accurate mass database search was used as the identification) and “filtered” features (where 

the CCS filtering pipeline was used to assign the feature identity). In addition to the shift in 

distribution of lipid classes between the two groups of features, the share of features with assigned 

identifications belonging to non-lipid classes is reduced in the filtered group. Out of the 883 initial 

identifications made using the top candidate, only 441 of these identifications were consistent once 

the CCS filtering steps were applied (50%), reinforcing the notion that identifications based on 

mass measurement alone are insufficient for accurate lipid structure assignments. 

3.3.4 SIFTER Classification of Unknown Features 

The molecular features which were not assigned any tentative identifications or “hits” based on 

mass database searching were submitted to the SIFTER algorithm.37 Figure 3.5(B) details the 

hierarchical class distribution of the 192 features whose classes were successfully predicted by 

SIFTER. As can be expected from a lipophilic extract, almost half of the predictions are lipids and 

lipid-like molecules (48%, 93/192). The fact that these compounds were not identified from the 

initial mass database searching suggests that these databases are incomplete in terms of lipidomic 

coverage, which might be accepted given that the majority of unidentified compounds derived  
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Figure 3.5 Molecular classifications successfully predicted with SIFTER machine learning 
algorithm for experimental features with no tentative identifications assigned by database search. 
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from biological sources are predicted to be lipids.53  Notably, a little over half of the predictions 

from SIFTER were not classified as lipids and lipid-like molecules, but were organic acids (e.g., 

amino acids and peptides), organic oxygen compounds (e.g., carbohydrates), and 

organoheterocyclic compounds (e.g., nucleic acids). Since only lipid-specific databases were used 

for the accurate mass database searching, it is not surprising that most of the unidentified features 

are predicted to be molecules other than lipids. Further, amino acids and carbohydrates, which 

make up a large majority of the predicted non-lipids, are common lipid headgroup components 

whose presence may be partially explained by degradation at the sample level or in-source 

fragmentation during analysis. 

The results from the CCS filtering and the SIFTER classification taken together address two 

limitations of identification assignment related to database coverage. Searching a large database 

or multiple databases increases search space and likelihood of a “hit”, but also increases the 

likelihood of false positives and can lower the confidence when the candidate lists are long. 

Conversely, searching a small, focused database space will result in fewer overall candidate 

identifications, lowering class coverage. Using additional analytical information, such as CCS 

provided by IM, mitigates both limitations, and the dual approach demonstrated in this manuscript 

illustrates a strategy to maximize the chemical information which can be derived from ion mobility 

measurements 

Despite providing increased confidence in molecular annotations, the parallel informatics 

workflow described in this manuscript comes with challenges. In both the CCS filtering pipeline 

and the SIFTER prediction, performance is limited by the training set and their resulting regression 

models. Additionally, the confidence in the assignment decreases with the classification 

hierarchical structure, i.e. there is more confidence in assigning a molecular class than a subclass 
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because of the limited CCS space covered by the empirically-trained regression models. In other 

words, the more specific the classification, the more overlap in its model with other similar models. 

Similarly, classes that are not well-populated in the training set will result in less confidence in 

annotations of that class. These limitations illustrate the importance of a reliable and representative 

training set and will diminish as the coverage of empirical databases, such as the Unified CCS 

Compendium, increases. 

3.4 Conclusions 

An integrated parallel workflow using IM-derived CCS for high-confidence untargeted lipidomics 

was demonstrated.  This dual workflow combines a previously developed classification prediction 

algorithm with a novel CCS filtering pipeline. The utility of the workflow was shown using 

untargeted LC-IM-MS data from a murine brain lipid extract. Filtering candidate compound 

identifications on the basis of their measured CCS values increased the confidence of the 

annotations of 883 compounds by narrowing their candidate lists by over 50% on average. Using 

the SIFTER machine learning algorithm to predict the classification of unidentified features 

provided insight into the likely classes of 192 compounds which otherwise were not assigned a 

tentative identification based on accurate mass searching. Both pipelines will continue to yield 

higher confidence results as the collaborative Unified CCS Compendium training set is expanded. 

Further integration of these approaches with other analytical techniques, for example tandem 

MS/MS ion fragmentation or LC retention time searching or prediction, will promote high 

confidence and increased coverage to improve interpretation and understanding of the complexity 

of the lipidome.  
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CHAPTER 4 
 

4. CCS CALIBRATION STRATEGIES AND SEPARATION PERFORMANCE OF A 

PROTOTYPE HIGH-RESOLUTION ION MOBILITY PLATFORM § 

 

4.1 Introduction 

Ion mobility (IM) has emerged as a robust separation strategy for complex chemical analyses 

largely due to its ability to be interfaced with mass spectrometry (MS) to improve peak capacity 

and aid in the separation of isobaric signals. Whereas conventional ion mobility does not perform 

at the same level of selectivity and resolution as liquid and gas chromatography (LC and GC),1 IM 

separations are several orders of magnitude faster than LC and GC (100s of ms vs. minutes), and 

can be integrated online with chromatography techniques or MS imaging to further increase peak 

capacity.2,3 Additionally, IM provides an additional molecular measurement, namely the gas-phase 

collision cross section (CCS), which can be used to gain further structural insight and support 

compound identifications.4–6 Whereas many of the technical hurdles associated with integrating 

IM with MS have largely been addressed, one of the contemporary challenges of IM has been the 

limited resolution offered by the technique. For example, MS routinely operates with resolving 

power (Rp) values on the order of tens of thousands (time-of-flight MS) to hundreds of thousands 

(Fourier Transform MS, FTMS), yet the resolving power of current commercially-available time-

dispersive IM techniques generally benchmark below 100.2,7–9 Recent and notable exceptions do 

 
§ This chapter contains material adapted from the published research article: “Resolving Power 
and Collision Cross Section Measurement Accuracy of a Prototype High-Resolution Ion Mobility 
Platform Incorporating Structures for Lossless Ion Manipulation” by Jody C. May, Katrina L. 
Leaptrot, Bailey S. Rose, Kelly L. W. Moser, Liulin Deng, Laura Maxon, Daniel DeBord and John 
A. McLean, Journal of the American Society of Mass Spectrometry, 2021, 32, 1126–1137. It has 
been reproduced with the permission of the publisher and co-authors. 



73 
 

exist, namely trapped ion mobility spectrometry (TIMS) which demonstrates Rp values as high as 

400,10,11 and a recently-introduced, cyclic, multi-pass instrument based on traveling wave ion 

mobility spectrometry (TWIMS) which is capable of very high Rp values, around 750 for 100 

transits (~1 meter/transit) around the drift ring.12 These IM techniques typically require long scan 

speeds (e.g., ~1.5 seconds for 100 passes in cyclic TWIMS),12 and/or target a narrow range of 

mobilities in order to access high resolutions, which is analogous to the resolution/throughput 

tradeoffs for FTMS instruments, where resolving power scales with acquisition duration.  

In 2014, Smith and coworkers developed a generalized ion optical architecture they termed 

structures for lossless ion manipulation (SLIM),13–15 which utilizes 2-dimensional arrays of 

electrodes patterned upon printed circuit boards (PCBs) that are driven by combinations of 

dynamic (RF) and static (DC) electrical potentials to allow ion populations to be trapped and 

accumulated,16,17 turned at right angles,18,19 selected through tee-junctions,11,20 and lifted (elevators 

and escalators) to different SLIM levels.21,22 Ion mobility separations in SLIM devices have been 

demonstrated both with traditional uniform electric fields (drift tube ion mobility spectrometry, 

DTIMS),14,18,20,23 and with dynamically-switched DC potentials (TWIMS),24,25 the latter allowing 

for ion transfer across long distances without utilizing high electrical potentials.22,26 Using several 

right-angle turns, a serpentine path SLIM device operated with traveling waves was 

demonstrated,19 and an extended, ~13 meter path length IM spectrometer was subsequently 

developed,27,28 which was capable of accessing resolving powers in excess of 300.21,29 A multi-

pass design was later developed, enabling variable path-lengths through multiple transits through 

the device, e.g., ~1094 meters via 81 passes, yielding averaged resolving powers in CCS-space of 

~1860.30–32 At the time of writing, this represents the highest resolving power published to date. 

Other SLIM technology developments in ion mobility have included filtering ions based on their 
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mobilities,14,32 accumulating/compressing spatially dispersed ion packets (so-called CRIMP),33 

and dual polarity ion confinement and ion-ion reactions.34–36  

Here, we evaluate the separation capabilities of a pre-production prototype SLIM-based ion 

mobility spectrometer (SLIM-IM) that utilizes the extended (~13 meter) separation path length 

design and operates with traveling waves to enable high resolution ion mobility (HRIM) 

separations prior to mass analysis. We evaluate this platform to provide performance metrics and 

guidance to the broader scientific community. In contrast to conventional square wave operation 

of traveling wave IM, we evaluate the effects of both square and sine waveforms on separation 

performance of this platform. The resolving power of this instrument is benchmarked in CCS-

space. Finally, we develop a calibration method for converting SLIM-IM arrival times to CCS and 

assess the CCS measurement bias of the instrument using a broadly available MS tuning mixture. 

4.2 Experimental Methods 

4.2.1 Materials and sample preparation. 

Agilent ESI-L Low Concentration Tune Mix containing fluoroalkyl phosphazene calibrant ions 

was used as received from the vendor. All solvents were obtained from Fisher Scientific (Optima 

Grade, Hampton, NH, USA). 

4.2.2 Instrumentation. 

Data were acquired using a prototype serpentine path SLIM ion mobility device (MOBILion 

Systems, Chadds Ford, PA, USA) integrated with a commercial quadrupole time-of-flight mass 

spectrometer (6545, Agilent Technologies, Santa Clara, CA, USA). A schematic of this IM-MS 

platform is shown in Figure 4.1. A liquid chromatography system (1290 Infinity II, Agilent) was 

used to introduce samples to the IM-MS via flow injection analysis (20 uL injection volume; 0.100  



75 
 

 

Figure 4.1 Schematic of the prototype SLIM-IM-MS instrument  used in this study with significant 
components annotated. 
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mL/min flow rate).37 Samples were ionized via electrospray (Jet Stream, Agilent) operated at 4.0 

kV on the entrance capillary and 2.0 kV on the focusing nozzle lens. Ions were transferred to 

vacuum via a resistive glass capillary and collected by a source ion funnel (200 Vpp, 1.1 MHz, 1-

10 Torr), where they were focused radially and introduced to the SLIM PCB stack, where a set of 

SLIM electrodes were operated as an ion accumulation trap. The SLIM-IM separation region 

utilized ~2.5 Torr of high purity nitrogen gas, which was metered by a gas flow controller (Alicat 

Scientific, Tucson, AZ) monitored with a capacitance gauge (627F Baratron, MKS Instruments, 

Andover, MA), which provided a regulation of better than ±0.002 Torr. 

4.2.3 SLIM Ion Accumulation and Gating. 

Ion gating was achieved in the “Ion Accumulation Region” within the SLIM device (Figure 4.1 

callout) which operated a segment of the SLIM as a store-and-release ion trap by applying a 

repulsive DC potential (±80 V relative to the SLIM DC bias in positive/negative ion mode) for 10 

ms (ion accumulation time), and then restoring this potential to the dynamic traveling wave for ion 

release.24  This trapping potential was applied to the last set of dynamic DC electrodes in the 

segment (corresponding to the last column of dark blue pads in Figure 4.2). 

4.2.4 SLIM Separation Path. 

The SLIM electrode geometry comprising the IM region is based upon a previous design,21 which 

utilizes a 13-meter serpentine ion path length with 44 U-shaped turns (Figure 4.1, SLIM Path). In 

SLIM, two planar boards with mirrored electrode geometries are stacked (~3 mm apart) to 

establish the fields necessary for ion manipulation (Figure 4.2(A)). As previously described,28 the 

SLIM surface electrode design on each board consists of three electrode types: a pair of outer guard 

tracks (3 mm width, 15 V) with DC-only potentials; six rows of inner RF-only tracks (~0.5 mm  
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Figure 4.2 SLIM geometry and operational principles. (A) Three-dimensional representation of 
printed circuit board stacking in the SLIM device for a short section incorporating one complete 
segment of the TW waveform (8 switching electrodes). (B) SLIM electrode layout. (C) 
Longitudinal wave propagation, square wave operation, and (D) sine wave operation. Ion conveyor 
pad electrodes are grouped into sets of eight longitudinal electrodes. At each sequential time point, 
the wave progresses along the track, propelling ions along the traveling wave at average velocities 
related to their gas-phase mobilities. 
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width, 300 Vpp, 735 kHz) for ion confinement; and five rows of ion conveyor pads (~0.5 mm width 

by ~1.0 mm length) which establish the traveling wave potentials used for ion manipulation. In 

this work, eight conveyor pads in each row (a set) are used to establish one phase of either a square 

or sinusoidal waveform by applying different potentials to each pad. A digitally generated 

waveform is applied to each individual segment of electrodes, with adjacent electrodes receiving 

the same waveform, but shifted by 45 degrees. A total of >1,400 sets (nearly 60,000 pad electrodes) 

are used across the 13 m serpentine path. With a pad-to-pad distance of 1.125 mm (1.0 mm pad 

length; 0.125 gap between pads) and the traveling wave stepped across 8 pads (9.0 mm total length) 

to complete a single phase of the waveform, the wave switching frequencies surveyed in this work 

(5-25 kHz) correspond to wave speeds between 45 and 225 m/s (Table E1).  Both the wave speed 

and the peak-to-peak wave amplitude (30-40 Vpp) directly influence the ion mobility dispersion 

observed for traveling wave operation. These parameters are the same as the wave speed and wave 

height, respectively, commonly used to tune TWIMS instruments. 

Following IM separation, ions exit the SLIM boards, are collected by a rear ion funnel (200 Vpp, 

1.1 MHz, 2.5 Torr), and transferred through an exit quadrupole to the conventional front optics of 

the Q-TOF for mass analysis. SLIM IM-MS data is acquired using an 8-bit ADC digitizer 

(U1084A, Keysight Technologies). 

4.2.4 Software. 

QTOF instrument control and MS data acquisition were accomplished via MassHunter Data 

Acquisition software (version.09.00). The SLIM-IM module control and data acquisition utilized 

a custom user interface (GAA Custom Engineering). IM-MS data was viewed and processed using 

MassHunter IM-MS Browser (version 10). IM traces were integrated across narrow m/z ranges 

and imported into Excel (Microsoft) for further analysis, including peak fitting and peak metric  
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calculations (arrival time centroid, resolution, resolving power, percent valley, etc.). IM profile 

data acquired for the assessment of resolving power across many SLIM-IM conditions were 

extracted using IM-MS Browser and further processed and visualized in the R statistical computing 

programming environment (R Core Team, Vienna, Austria) using the tidyverse suite of tools.38 

4.2.5 Resolution Calculations. 

IM resolution is commonly assessed using “resolving power” which is derived from measurements 

of a single peak in the IM dimension.39 To obtain resolving power values, IM arrival time data 

were converted to CCS space.25 Briefly, the peak centroids (tp) and peak widths calculated at the 

full-width at half the maximum height (ΔtFWHM) were obtained by applying normal distribution 

fits to the peak of interest within the extracted SLIM-IM data traces. CCS values corresponding to 

these peaks were obtained in a separate experiment using a drift tube instrument (6560 IM-QTOF, 

Agilent), as previously described.40,41 The known CCS values of two peaks (CCSp1, CCSp2) within 

the same drift spectrum were then used to obtain a CCS difference between two peaks (p1 and p2) 

as follows: 

∆CCS!! = &CCS!" − CCS!#&                (4.1) 

A time difference between the two peaks, Δtpp, was similarly calculated from the time centroids of 

the peaks, tp1 and tp2: 

∆t!! = &t!" − t!#&               (4.2) 

This relationship was then used to convert the FWHM values to CCS-space, which is used to 

calculate the CCS-based resolving power, Rp(CCS/ΔCCS), as follows: 

R!(CCS/∆CCS) =
$$%

∆'!"#$
∙ ('%%
($$%%%

              (4.3) 
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This CCS-based resolving power is more representative of the separation capabilities for SLIM-

IM and can be used to make direct comparisons between the separation capabilities of different 

ion mobility techniques.25,27 It is noted here that this arrival time to CCS conversion assumes a 

linear correspondence, whereas the relationship between TWIMS arrival times and CCS are known 

to be nonlinear,42 however the uncertainty is expected to be low due to the fact that the conversion 

is only applied across the width of a single peak.  The average CCS is used when reporting the 

resolving power from a spectrum containing multiple peaks. Two-peak resolution (Rpp) and 

percent valley (V) calculations were conducted as previously described.43 

4.2.6. CCS Calibration. 

High precision CCS values for the 8 tune mix ions were previously measured from a reference 

DTIMS instrument operated in nitrogen drift gas (DTCCSN2).40  These reference CCS values 

(CCSref) were converted to “reduced CCS” (CCS’) by including the ion-neutral reduced mass (µ) 

and ion charge-state z) dependencies (eq. 4.4) as previously described.44 

CCS) = CCS*+, ∙ .
-
.
          (4.4) 

Note here that CCS’ is different from the reduced CCS used in the ion transport community to 

rescale CCS without hard sphere contributions.45 The tune mix ion raw arrival times were 

measured at various wave speeds and amplitudes and plots of the reduced CCS versus SLIM-IM 

arrival time were fitted with nonlinear regression models using the R statistical programming 

environment. These models were then used as calibration equations to calculate the CCS of the 

tune mix ions from the SLIM-IM measurements (TW(SLIM)CCSN2).  As the accuracy of any given 

CCS measurement is unknown, the percent CCS bias between the calculated and reference DTIMS 

CCS values was used to assess the performance of the various models: 
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%	CCS	Bias = ($$%0$$%&'()
$$%&'(

× 100        (4.5) 

The consensus CCS reference values used here have a reported interlaboratory repeatability of 

0.22%,41 however, expanded uncertainty analysis has estimated that the uncertainty in these drift 

tube CCS measurements fall within the range of 2.7 to 4.6%,46 thus limiting the CCS accuracy that 

can be obtained from this assessment. 

4.3 Results and discussion 

4.3.1 Accessible Resolving Powers. 

Benchmarking experiments were conducted to determine the SLIM-IM conditions in which the 

highest resolving powers are accessed. For these experiments, two waveforms (square and sine 

wave), five wave speeds (45, 90, 135, 180, and 225 m/s), and three wave amplitudes (30, 35, and 

40 Vpp) were evaluated, spanning the optimal transmission and separation range of the instrument. 

IM profile data was extracted for each of eight tune mix ions that appear prominently in positive 

ion mode (m/z 622, 922, 1222, 1522, 1822, 2122, 2422, 2722). All data was acquired in triplicate, 

resulting in a total of N=720 Rp(CCS) values for the entire data set. Note that the high RF potentials 

(300 Vpp) applied to the RF electrodes optimized total ion signal, but at a cost of reduced low m/z 

transmission, such that m/z 322 did not appear in high abundance and was thus not included in the 

analysis.  

An initial assessment of the two waveforms was conducted which indicated that both waveforms 

access similar resolving powers, however, the square wave dataset exhibited a narrower optimal 

range of arrival times which correspond to the highest Rp(CCS) values (Figure E3). Additionally, 

fewer ions were observed to separate within the square wave data (N=188, or 52% of the total data 

set) as compared to the sine wave data (N=247, 69%), and recent work from Smith and coworkers 
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have indicated that square wave operation of SLIM-IM can contribute to more ion heating than 

sine wave.47 As such only the sine wave data was evaluated in subsequent experiments.  

Considering that nearly all traveling wave IM operation to date has utilized a square waveform to 

approximate a sinusoidal axial potential,23,48 the broader scale IM separation range observed for 

operating with a true sine wave in this work implies that the traveling wave technique can be 

improved using tailored waveforms. The full workup for square wave data can be found in Figure 

E4. Hereafter only sine wave operation of the SLIM-IM will be discussed. 

Results are summarized in Figure 4.3 for optimization of resolving power as a function of the sine 

wave speed, sine wave amplitude, and analyte mass-to-charge. Only ions which exhibit mobility 

selective behavior (i.e., not surfing) are considered. Here and elsewhere, the raw arrival times are 

discussed, and it is important to note that the majority of this measured arrival time represents time 

spent within the SLIM path (i.e., the true IM drift time), although there are contributions from time 

spent in other portions of the instrument, including the ion transfer optics to the TOF stage. The 

scatter plot in Figure 4.3(A) reveals three distinct ranges of arrival times where different resolving 

power values are accessed.49 (I) For fast arrival times (<200 ms), so-called “ion surfing” 

conditions, ion mobilities are too fast to allow IM-selective “roll-over” events to occur. Here, little 

to no IM separation occurs under most SLIM-IM conditions (see Figure E2). (II) For intermediate 

arrival times between ca. 200-700 ms, the highest resolving powers are observed. In this region of 

ion motion, ions are fully subject to mobility-selective ion drift throughout the SLIM separation 

path. The corresponding box-and-whisker plot in this range of arrival times show that the majority 

of Rp(CCS) values are between ca. 230-260 (242 mean value for the 400-600 ms bin), with a few 

data points exhibiting resolving powers in excess of 300. (III) For the slower arrival times beyond 

ca. 700 ms, the Rp(CCS) magnitude gradually declines, which is interpreted as resulting from peak  
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Table 4.3 Visualization of resolving power performance for a sinusoidal traveling wave across the 
various operational parameters explored in this study. (A) A summary of all CCS-based Rp values 
(N=247) as a function of arrival time for tune mix components (cy-clophosphazenes) measured 
across various SLIM-IM parameters, including wave speeds (45, 90, 135, 180, and 225 m/s) and 
wave amplitudes (30, 35, and 40 Vpp). Box and whisker overlays summarize the data within 200 
ms bins. (B) Average Rp(CCS) values (3 replicates per data point) calculated for 90 m/s wave 
speed at 30, 35, and 40 Vpp wave amplitudes. (C) Average Rp(CCS) values calculated for 225 m/s 
data. The horizontal dotted line in these scatter plots represents the average Rp across the entire 
dataset (ca. 210). (D) Heat maps visualizing the resolving powers observed for each tune mix 
component (x-axis) at each wave speed (y-axis) for wave amplitudes of 30 (left panel), 35 (middle 
panel), and 40 Vpp (right panel). Each square represents an average of three replicate 
measurements. Here, the dark blue regions represent conditions in which ions are transmitted, but 
no IM separation occurs (i.e., ion “surfing” conditions), which is observed at low m/z, high wave 
amplitude, and low wave speeds. (E) Color scale for panel D with average and standard deviation 
Rp(CCS) values measured for tune mix components at each wave amplitude (x-axis). 
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broadening due to extended ion-gas diffusion that corresponds to long residence times within the 

SLIM-IM separation path. The box-and-whisker plots at these long arrival times indicate that the 

majority of resolving powers continue to decline, falling below 200 for times greater than ~1.2 

seconds. Figures 4.3(B) and 4.3(C) contain overlays of the average Rp(CCS) observed at each of 

the three wave amplitudes for low and high wave speeds (90 and 225 m/s, respectively). Here, the 

two wave speeds investigated represent conditions where ions either are undergoing transitions 

from ion surfing to IM-selective drift (Figure 4.3(B), 90 m/s), or where all ions experience 

continuous ion drift (Figure 4.3(C), 225 m/s). The results are somewhat complicated, but in 

general, the highest resolving power values are observed for ions near the transition from ion 

surfing to IM-selective drift (e.g., 90 m/s). At 90 m/s, the highest wave amplitude (40 Vpp) 

generally accesses the highest resolving powers, consistent with previous TWIMS findings,4 

though Rp(CCS) differences no longer appear significant under conditions where all ions have 

fully transitioned to an IM-selective drifting behavior, e.g., region III (Figure 4.3(C)). Collectively, 

Figures 4.3(B) and 4.3(C) suggest that operating near the boundary of IM-selective traveling wave 

behavior can offer a slight increase in Rp(CCS), specifically for operating at the highest wave 

amplitudes (40 Vpp) under the lowest wave speeds which still yield IM separations (90 m/s).  In 

other words, the highest resolving powers are obtained near the onset of ion surfing behavior, and 

this information can be used to target high resolution for specific analyte systems.  Under these 

conditions, ions are mobility-separated while spending the minimal amount of time within the 

elevated pressure SLIM separation path which otherwise leads to diffusional broadening of the 

peaks. Figure 4.3(D) recasts the resolving power data as a function of different m/z 

cyclophosphazene analytes. This projection is useful for illustrating mass-dependent effects on the 

measured resolving powers. Each square within the heat map represents the Rp(CCS) value (N=3, 
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averaged) for each tune mix ion measured at each wave speed (y-axis) and wave amplitude (panels) 

surveyed. The corresponding values for the heat map color scale and overlays of the average 

Rp(CCS) values observed across each wave amplitude are contained in Figure 4.3(E). Here, the 

ion-specific data confirms that the highest resolving powers are achieved for all ions at 35 and 40 

Vpp wave amplitudes, although these projections also reveal that IM separation across the full range 

of masses surveyed is only achieved under the higher wave speeds, above 135 m/s.  

Of note is that the optimal conditions for resolving power are slightly different for higher mobility 

(lower m/z) species than is observed for lower mobility (higher m/z) ions. When optimizing overall 

resolving power of the SLIM-IM, we recommend using the higher range of values for both wave 

speed (e.g., 180-225 m/s) and wave amplitude (e.g., 35-40 Vpp) to ensure all ions are undergoing 

mobility separation. However, to achieve the highest resolving power for a single-species rather 

than a range of species, the highest wave amplitude (40 Vpp) is recommended, and the wave speed 

can be adjusted to further optimize the separation (e.g., higher speeds for low m/z ions; lower 

speeds for high m/z).  These results suggest that simultaneously scanning wave speed and wave 

amplitude should allow the highest Rp values to be achieved across a range of m/z, similar to the 

practice of operating TWIMS instruments using ramped wave heights. 

Table 4.1 summarizes the highest Rp values observed and the corresponding SLIM-IM conditions 

in which they were accessed for each tune mix ion. Overall, 40 Vpp wave amplitudes yielded the 

highest resolving powers. While in some cases the highest Rp value was observed at 35 Vpp, for 

most of those occurrences, the highest and second highest Rp values (Table E2) were within the 

reproducibility error of one another. Finally, the highest mass tune mix component (m/z 2722) 

yielded the highest resolving powers, at Rp(CCS)=316 for 40 Vpp, 90 m/s SLIM-IM conditions. 

These observations hold for the phosphazenes which are structurally stable compounds, however,  
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Table 4.1 Highest resolving power values observed 

  

Tune Mix Ion 
Highest Rp 
Measured 
(CCS/ΔCCS) a. 

Corresponding Parameter 

Corresponding 
Arrival Time (ms) 

Wave 
Amplitude 
(Vpp) 

Wave Speed 
(m/s) 

m/z 622  297.4±5.0 (3) 40 225 290.5 

m/z 922  274.1±16.6 (3) 40 180 437.9 

m/z 1222  276.0±22.5 (3) 40 180 462.9 

m/z 1522  251.8±13.2 (3) 40 180 596.4 

m/z 1822  258.8±3.7 (3) 40 90 304.7 

m/z 2122  263.2±1.5 (3) 40 90 381.6 

m/z 2422  283.6±9.5 (3) 35 90 622.1 

m/z 2722  315.7±8.6 (3) 40 90 535.4 

a. Highest Rp is averaged over replicate measurements, denoted in the parenthesis. The time-
to-CCS conversion is determined from Equation 3 using the differences between the tune 
mix ion and the next highest m/z ion in the spectrum. 
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more fragile ions may not be able to access the same level of resolving power due to different 

levels of ion heating experienced under the different wave amplitudes and speeds.  It is also noted 

that these results are for singly-charged ions—higher resolving powers are expected when 

investigating higher charge states. 

4.3.2 Collision Cross Section Calibration. 

Recent work from Smith and coworkers evaluated the use of different negative mode calibrants 

for use with a 13-m SLIM-IM (SLIM “SUPER”)47 which has the same geometry as the platform 

used in this current study, with the exception that the SLIM SUPER incorporates an additional 

return path to perform multi-pass experiments.30 In addition to evaluating negative mode, their 

work assessed both sine and square wave operation under three wave amplitudes (40, 50, and 60 

Vpp) at a fixed wave speed (200 m/s). 

Here, we evaluate positive ion mode, sine wave operation of the HRIM SLIM-IM platform. 

Because the choice of calibrant strongly affects CCS calibration in TWIMS, pragmatically we 

chose to only assess tune mix to determine the parameters which yield the lowest CCS errors when 

other factors are not considered. Figure 4.4(A) contains plots of reduced CCS of the reference 

values versus SLIM-IM arrival times, fitted with three calibration equations: a power fit, a second 

order polynomial fit, and a third order polynomial fit. Here, 40 Vpp and 180 m/s was chosen for 

this assessment, as this yielded the overall highest resolving powers where none of the tune mix 

ions were observed to be surfing (Figure E5). Our results indicate that the CCS errors are lowest 

when using a 3rd order polynomial fit (R2=0.9999), with an average CCS bias across all ions of 

0.12%.  While lower error for a 3rd order fit was also noted in the work from Smith and 

coworkers,47 here we observe significant improvement in using a 3rd order polynomial as compared 

to a conventional power fit (R2=0.9995; 0.45% bias), summarized in Figure 4.4(B).  Using the 3rd 
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order fit, we also evaluated three different wave speeds (135, 185, and 225 m/s) under which ions 

are not undergoing surfing behavior, and all three yielded similar CCS error, with the lower wave 

speed, 135 m/s, exhibiting the lowest absolute CCS bias of 0.07%. Errors associated with the other 

SLIM-IM wave speeds and amplitudes for the 3rd order polynomial fit are summarized in Figure 

E6. 

For CCS determination, we find that the SLIM-IM conditions which yield the highest resolving 

powers are also best-suited for CCS calibration, namely 40 Vpp and 135 m/s. Regarding the 

calibration equation itself, we note that all three fits yielded low errors of less than 0.5% bias and 

emphasize that polynomial fits cannot be extrapolated without high error.  Thus, a power fit is 

recommended when a generalizable calibration is desired, whereas the 3rd order polynomial fit can 

be used when the lowest CCS errors are needed, and the CCS values fall within the range of 

calibration. Additional errors are expected when applying these calibrations to other ions, however, 

this evaluation serves to assess the errors associated with the calibration method itself, as well as 

the lowest fit errors that can be expected with this approach, namely less than 0.2%.  Additional 

refinements to this calibration method, such as incorporating a time correction to the raw arrival 

time data or calibrating across a narrower range of ion mobilities, should further improve the error 

of this approach. 

4.4 Conclusions 

The accessible resolution and CCS measurement capabilities of a SLIM-based HRIM-MS system 

was critically evaluated. This pre-production prototype instrument is based directly on a previous 

IM-MS design and similarly utilizes structures for lossless ion manipulation to enable the transfer 

and mobility separation of ions across a large distance (~13 meters) for HRIM analyses. The 

resolving power (CCS/ΔCCS) of the SLIM-IM device was benchmarked to between 230 and 315  
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Figure 4.4 Influence of different calibration equations and instrument parameters  on calibrating 
SLIM-IM arrival times of tune mix ions to CCS .  (A) The coefficients of determination (R2) and 
average biases across all ions for three fit equations: a power fit (left panel), a 2nd order polynomial 
(center panel), and a 3rd order polynomial (right panel). Data was obtained under mobility-
selective conditions at 40 Vpp and 180 m/s.  (B) Summary of the CCS biases associated with each 
fit equation. (C) CCS biases observed at 40 Vpp and different wave speeds.  Each data point was 
measured in triplicate. 
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for a commonly used MS tuning mixture, corresponding to the highest wave amplitudes surveyed 

in this study (35 and 40 Vpp). The optimal resolving powers were observed under conditions where 

ion arrival times are between 1.5 to 3-times the arrival times associated with surfing-only behavior, 

which corresponds to ion speeds which are 30-70% greater than the speed of traveling wave itself. 

Notably, all of the ions from the mixture were transmitted within a short dispersion timeframe 

(<700 ms) and able to access CCS-based resolving powers in excess of 230, suggesting that this 

IM-MS platform is well-suited for broadband, untargeted studies.  
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CHAPTER 5 
 

5. A COLLISION CROSS SECTION CALIBRATION STRATEGY FOR LIPID 

MEASUREMENTS IN SLIM-BASED HIGH RESOLUTION ION MOBILITY** 

 

5.1 Introduction 

Ion mobility interfaced with mass spectrometry (IM-MS) has become an important technique for 

the analysis of complex biological samples.1–6 Similar to chromatography, the added structurally-

selective separation capabilities of IM improve analyte coverage and aid in the discrimination of 

isomeric and isobaric species that otherwise hinder comprehensive analysis when using MS 

alone.7,8 Although chromatographic methods can be extensively optimized to enhance chemical 

selectivity and chromatographic resolution, achieving reproducible retention times across different 

laboratories remains a challenge.9–11 Conversely, there are fewer options to tailor the selectivity in 

IM as separations are based directly on an intrinsic physical property of the analyte, namely its 

gas-phase structure or structures. Because of this, IM-derived collision cross section (CCS) values 

add a highly reproducible metric for filtering and annotating features derived from mass spectra, 

while simultaneously providing a specific structural descriptor for molecular species.12–14 

Collision cross section values can be directly derived from classical electrodynamics using 

uniform-field drift tube ion mobility (DTIM) measurements via the fundamental low field Mason-

Schamp equation (DTCCS).15,16 On the other hand, traveling wave ion mobility (TWIM)-based 

 
** This chapter contains material adapted from the submitted research article: “A Collision Cross 
Section Calibration Strategy for Lipid Measurements in SLIM-based High Resolution Ion 
Mobility,” by Bailey S. Rose, Jody C. May, Allison R. Reardon, John A. McLean, Journal of the 
American Society for Mass Spectrometry, Submitted. 
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techniques use dynamic electric fields for separation, so CCS determination is less straightforward.  

Though progress has been made toward derivation of a functional first-principles equation from 

traveling wave fundamentals,17 in practice traveling wave collision cross section values (TWCCS) 

are typically obtained through calibration from experimentally measured arrival times of calibrants 

with known or agreed upon DTCCS values.18–22 Calibrating TWCCS introduces error in the form of 

a bias from fundamentally measured reference values (typically DTIM) that is dependent on both 

the functional equation form used in the calibration as well as the structural similarity of the 

calibrants and analytes.20,23–27 However, with appropriate considerations, these calibration 

methods can regularly achieve biases of < 2% and have shown high interlaboratory reproducibility 

(< 1%).13,28–30 This has led to widespread adoption of CCS as a compound annotation parameter 

and the construction of many CCS libraries to support such studies.13,28,31–35 

While the conventional resolution range of commercially available DTIM and TWIM systems (40 

to 60)7 has been successful in discriminating many molecular species in complex spectra, there 

remain many more structurally similar isomeric and isobaric species that require higher 

resolution.36,37 Despite the importance of DTIM in providing direct CCS measurements from first-

principles theory, DTIM instruments rarely achieve resolving powers above ca. 100. Recent 

advances in structures for lossless ion manipulation (SLIM) technology have enabled the 

development of a TW-based high resolution IM (HRIM) system with resolving powers in excess 

of ~200.38–40 The increased ion mobility resolution of SLIM-based HRIM has enabled the 

separation of many biologically relevant compounds of various chemical classes, as well as the 

elucidation of previously unseen molecular features.41–44 To support the proper annotation of these 

additional features, robust calibration methods need to be developed and validated such that SLIM-
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based CCS values (TW SLIMCCS) can be reliably and reproducibly derived from HRIM 

measurements. 

 Calibration of CCS for TW-SLIM has been explored previously in a limited capacity using 

variously modified TWIM calibration protocols. Whereas fundamental differences between the 

TWIM platforms used in these studies raised concerns regarding the influence of ion heating, the 

results provided evidence that calibrated CCS values are not significantly influenced by TW 

separation parameters such as wave height and amplitude, and CCS biases under 2% were 

achievable in most cases.40,45,46 Prior investigations into the utility of conventional resolution CCS 

databases have demonstrated the importance of low bias and high precision (reproducibility and 

repeatability) for untargeted applications, as lowering database search tolerances below 1% can 

drastically reduce the number of candidate identifications and improve annotation confidence.47 

With the inherently higher precision of HRIM this is even more salient, as many biologically-

relevant isomers exhibit CCS differences of less than 2%.37 Therefore, TW-SLIMCCS calibration 

with expected biases under 1% and high reproducibility (< 0.5% RSD) could provide improved 

confidence in the expansion of database matching using HRIM. 

Here, we describe the development and evaluation of a simple, reproducible TW-SLIMCCS 

calibration strategy focused on lipids. Lipids are a functionally and structurally diverse class of 

biomolecules with a high prevalence of isomers and distinct CCS trends that can aid in their 

annotation and characterization.48,49 Additionally, the various subclasses of lipids occupy a well-

defined range of m/z and CCS values (Figure 5.1), which allows the parameters of the calibration 

approach to be confined while enabling the generation of class-specific recommendations for 

calibrant selection and calibration methodology. To assess the choice of calibrants, we compare 

the calibrated CCS obtained from structurally similar calibrant sets, as well as a more broadly 
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Figure 5.1 Overview of the two lipid classes and five subclasses surveyed  in this study. (A) 
General chemical structure of each class and headgroup of each subclass. (B) Range and 
distribution of predicted [M+H] CCS values for all lipids from each subclass as rep-resented in the 
LIPID MAPS Structural Database and predicted using LipidCCS from the Zhu laboratory. 
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applicable calibrant mixture of current and widespread use. We also examine the utility of a 

generalizable calibration method combined with subclass-specific CCS correction factors to 

provide the most precise and accurate CCS determinations from high resolution TW-SLIM 

measurements. 

5.2 Experimental methods 

5.2.1 Materials and solvents 

High purity (Optima grade) solvents including water, methanol, acetonitrile, chloroform, and 

formic acid were obtained from Fisher Scientific (Hampton, NH, USA). A tuning mixture 

containing betaine and a series of symmetrically branched hexakis(fluoroalkoxy)phosphazines 

(HFAPs, ESI-L low concentration tuning mixture, Agilent) was used for instrument tuning and 

CCS calibration. Purified TLC fractions of total lipid extracts including phosphatidylcholine (PC, 

chicken egg), phosphatidylethanolamine (PE, chicken egg), phosphatidylserine (PS, porcine 

brain), cerebroside (GlcCer, porcine brain), and sphingomyelin (SM, porcine brain), were 

purchased as lyophilized solids from Avanti Polar Lipids (Birmingham, AL, USA) and were 

reconstituted in chloroform, then prepared to a final concentration of 10 µg/mL in 1:2 

chloroform:methanol for analysis. A deuterated lipid standard mix of varying lipid concentrations 

(SPLASH, Avanti) was diluted 1:10 in 1:2 chloroform:methanol for analysis.  

5.2.2 Instrumentation 

Data were acquired using a 13-meter serpentine path SLIM-based HRIM platform (beta prototype, 

MOBILion Systems) integrated with a time-of-flight mass spectrometer (6546, Agilent 

Technologies). A schematic of this instrument is shown in Figure F1. Samples were introduced 

using a liquid chromatography system (1290, Agilent) and ionized by electrospray ionization (Jet 

Stream, Agilent). TW-SLIM ion mobility experiments were conducted in pure nitrogen drift gas 
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at ambient temperature, resulting in nitrogen-specific cross section measurements (CCSN2). 

Measurements for the standard lipid mix were also made using a commercial DTIM-MS system 

(6560, Agilent) for reference CCS comparison for these lipids.50,51 

5.2.3 Data acquisition 

Lipid extract samples were injected using a 3-minute automated flow injection acquisition with a 

constant flow solvent of 0.1% formic acid in 1:1 methanol:water at a carrier flow rate of 70 µL/min 

and an injection volume of 10 µL. Reversed phase liquid chromatography (RPLC) was used for 

the standard lipid mix, and detailed parameters, solvents, and gradient can be found in Figure F2. 

In all cases, the ESI source was operated in positive ion mode using the following conditions: 

nebulizer pressure, 20 psi; sheath gas flow rate, 12 L/min; sheath gas temperature, 275 °C; drying 

gas flow rate, 5 L/min; drying gas temperature, 325 °C; capillary voltage, 4000 V; entrance nozzle 

voltage, 2000 V. The SLIM boards were operated at ca. 2.5 Torr. TW-based separation was 

performed using a wave speed of 180 m/s and a peak-to-peak wave amplitude of 40 Vpp. These 

separation parameters were chosen based on optimal conditions for high resolving power in the 

m/z range of the lipid analytes as described previously.40 Data was acquired via MassHunter 

Acquisition (v. 9.0, Agilent) and MOBILion software. For CCS calibration with HFAPs, data for 

tune mix was acquired in a separate experiment using identical instrument parameters (i.e., 

external CCS calibration).  For calibration using the lipids, lipids observed within the spectra from 

each extract was selected as calibrants (i.e., internal CCS calibration). For data acquired on the 

DTIMS instrument, the LC and ESI source conditions were identical to those used on the TW-

SLIM system. The drift tube was operated under 3.95 Torr nitrogen gas, and additional drift tube 

parameters were as follows: ion trap fill time, 20 ms; ion trap release time, 300 μs; drift tube 

entrance, 1474 V; drift tube exit, 224 V; rear funnel entrance, 217.5 V; rear funnel RF, 150 Vpp; 
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rear funnel exit, 45 V(matched to the QTOF autotune setting); and IM hexapole delta, -8 V. The 

QTOF stage was operated in Low Mass Range (m/z 50-1700), ion slicer operated at High 

Sensitivity and the digitizer operated at 2 GHz Extended Dynamic Range. Single-field CCS values 

were obtained using HFAP drift times as described previously.  

5.2.4 Data processing and software 

PNNL Preprocessor (version 3.0) was used for IM-MS file conversion and drift bin compression 

(2-to-1) for the TW-SLIM data.52 Lipid feature arrival times (peak centroids) were extracted 

manually within MassHunter IM-MS Browser (developer version). To increase confidence in peak 

selection, only features falling within the expected lipid IM-MS correlation region were considered 

for extraction.53 CCS calibration and bias calculations were performed in Excel (Microsoft). 

5.2.5 Guiding calibration theory 

Calibration of CCS from commercial TW systems is commonly performed using a set of calibrants 

with known DTCCS values.21 Their experimental arrival time (tA) is plotted against the 

corresponding “reduced” DTCCS values (CCS’), as calculated using eq. 5.1 where z represents the 

ion charge and µ is the reduced mass of the ion-neutral pair.  

CCS) = $$%	
*+

23,-

      (5.1) 

As described previously, conformational space occupancy arises from average density as related 

to the cubic volume and squared area of a given set of biomolecules, giving rise to a length squared 

versus length cubed relationship.54 Similarly, the arrival time-CCS' relationship has been modeled 

using many nonlinear equation forms but generally power functions or polynomials are used for 

TW data.18,20,21,23 Studies using both power functions and polynomials have shown high 
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reproducibility and relatively low biases under varying TW amplitudes and speeds.40,45 Trinomial 

equation forms resulted in the lowest biases from DTCCS values in these prior studies and therefore 

is used as the basis for CCS calibration in this work (eq. 5.2). 

CCS) = A(𝑡4)5 + B(𝑡4)# + C(𝑡4) + D   (5.2) 

Calibrated CCS bias from reference DTCCS values (CCSref) is used as a comparison metric to 

estimate accuracy for the different calibration methods (eq. 5.3). Values from a large database of 

standardized DTCCS values, the Unified CCS Compendium, were used as reference values for 

lipids with a database m/z match. 34   

%	CCS	Bias = 	 $$%0$$%&'(
$$%&'(

× 100          (5.3) 

5.3 Results and discussion 

Here we evaluate three strategies for CCS calibration of lipid measurements from a SLIM-based 

HRIM platform: (1) The broadly available HFAP tuning mixture was used for calibration 

following the protocols set forth in previous TW-SLIM studies which are in turn modeled from 

conventional TW calibration practices; (2) calibration using subclass-specific lipid calibrant sets 

was evaluated to determine if chemically similar calibrants significantly impacted the TW-SLIMCCS 

measurement bias from reference CCS values obtained from DTIM measurements; (3) a correction 

factor was applied to the calibration obtained using the HFAPs to determine if a more generalizable 

calibration protocol could be developed with similar or better biases observed from the first two 

approaches.  

5.3.2 HFAPs as TW-SLIM Calibrants 
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Here, we first evaluate a widely used set of calibrants, HFAPs, for calibration of the lipid features, 

which is desirable from a standpoint that this tuning mixture is widely accessible and currently 

utilized for tuning and benchmarking the instrumentation used in this study. Additionally, the ions 

from this mixture cover the entire experimental arrival time range and reference DTCCS values of 

these compounds are available to assess CCS measurement accuracy.12 Using HFAPs with the 

calibration method described in eq. 5.1 and 5.2 yielded calibrated TW-SLIMCCS values with high 

reproducibility (<0.35% RSD for all lipids), however systematic subclass-dependent biases of +2-

3% from drift tube values were observed across all five lipid sub-classes (Figure F3). A systematic 

bias of ~2% is consistent with the results from Hines, et. al. where HFAP was used to calibrate 

lipids and was attributed to a structural mismatch between the calibrants (phosphazines) and 

analytes (lipids).24 

5.3.3 Lipid-specific calibrants 

It is well-documented that the choice of calibrant plays a significant role in the resulting CCS 

calibration accuracy.23–25 As structurally-similar calibrants have been shown to improve CCS bias 

in many cases, we next curated subclass-specific sets of lipid calibrants which are observed in each 

lipid extract using the reference DTCCS values in the Unified CCS Compendium and criteria 

outlined in Figure 5.2(A). Briefly, features were only considered as calibrants if they had a single 

symmetrical HRIM profile with no indication of multiple contributing structures (i.e., peak 

asymmetry or splitting), and a DTCCS value matching the feature m/z was also present in the 

Compendium. Additionally, quality thresholds of high abundance and multi-replicate observations 

were used to further screen the candidate calibrants. This selection process resulted in 5-7 calibrant 

lipids from each subclass extract, each of which spanned the majority of the arrival time range of 

the analytes (Figure 5.2(B)). 
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Figure 5.2 Subclass-specific calibrant selection.  (A) Criteria used to select calibrant lipids from 
each subclass extract.  (B) CCS range of each set of calibrants chosen as compared to the range of 
all observed lipid features (grey) in each class. 
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Using lipids of the same subclass to calibrate the analytes was found to lower the CCS bias 

substantially to an absolute average bias of 0.48%.  All lipid-calibrated TW-SLIMCCS values were 

found to be within 2% of the reference DTCCS values, and 80% were within 1% bias (Figure 

5.3(A)). While promising, this strategy requires a relatively large number of calibrants with known 

CCS values, which may not be achievable in most situations.  Additionally, for this approach, it is 

important to choose calibrants which span the full range of analyte arrival times due to the high 

errors associated with extrapolating trinomial fits.  Whereas the more commonly used power fits 

perform better when the calibration range must be extrapolated, these equations can result in higher 

CCS biases than the trinomial fit used here.40 Thus a calibration procedure that incorporates 

calibrants spanning a broad range of arrival times with a trinomial calibration equation is desirable. 

5.3.4 Generalizable calibration using HFAPs 

Aside from using new calibrant sets, there is precedent for adjusting calibrated CCS bias using 

corrections of varying degrees of complexity. Including a correction factor to the TWCCS 

calibration has been used to address various systematic contributions to bias, including 

instrumental time delays, ion motion disparities, and calibrant structural differences, while 

providing a more generalizable calibration protocol accessible to a broader community of 

researchers.12,17,26,55 Here, we apply a subclass-specific semi-empirical correction to the trinomial 

fit based on the HFAP calibrants. To achieve this, each TW-SLIMCCS determined from HFAP 

calibration was rescaled to the average bias of its respective subclass using a simple linear 

correction factor. This strategy lowered the bias to an absolute average of 0.38%, which is a lower 

bias that what was observed with using lipid-specific calibrants (Figure 5.3(B)). Using a subclass-

specific correction factor also resulted in less bias variability than the lipid calibrants, with 98% of 

biases under 1% and all values under 1.5% (Figure 5.4). In addition to providing lower variability,   
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Figure 5.3 CCS biases from triplicate DTCCS values two calibration strategies.  In both panels, 
grey values represent those calibrated using HFAP calibrants with no added correction factor. (A) 
Lipids calibrated from lipid calibrants within the same subclass. Shaded regions represent the 
arrival time ranges of the calibrant sets. (B) Lipids calibrated from HFAP calibrants with an added 
subclass-specific correction factor. 
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using HFAPs with a correction factor is a more straightforward and broadly applicable calibration 

approach. HFAPs are widely available, exogenous compounds that cover a broad experimental 

arrival time range, and their DTCCS values have been thoroughly vetted by the community. This 

mixture is also stable and structurally defined, whereas lipids are more prone to solution-phase 

degradation and may also have unresolved structural contributions to their mobility profiles. For 

these reasons, the correction factor applied to HFAP-based calibration is a more practical strategy 

for obtaining the CCS of lipids from HRIM measurements. 

Using the corrected HFAP calibration, an empirical HRIM-derived database of over 90 TW-

SLIMCCS values was compiled (Table F2), including over 20 lipids that were previously unresolved 

by conventional resolution DTIM. The cerebrosides, in particular, produced many new spectral 

features, likely as a result of isomeric variations in the sugar headgroup. In many subclasses, new 

conformational trendlines were observed in the high-resolution dataset that were obscured by 

higher abundance isobars in conventional resolution. In all cases, mapping the correlations of the 

high-precision calibrated CCS values will be essential for the characterization of the newly 

resolved features. The publication of this database provides a significant resource to the 

community and may be applied to future studies in HRIM lipid annotation and characterization. 

Similar to databases for molecular annotation at varying MS resolving power, we find this is also, 

and potentially more, necessary for ion mobility-derived CCS values.  

5.3.5 Application to other lipids 

To test the generalizability of the correction approach to broader lipidomic applications, a standard 

mix of heavy-labelled lipids from various classes was analyzed. For comparison, DTCCS values 

for this standard lipid mix were measured and have been published to the Unified CCS 

Compendium.56 The observed features were extracted, identified, and then subjected to calibration  
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Figure 5.4 CCS bias distributions for two calibration strategies  (A) CCS values calibrated from 
calibrants within the same subclass and (B) values calibrated from HFAPs with an applied 
correction factor. Center lines represent the median of each subclass. Markers outside whiskers 
represent statistical outliers. Blue shaded regions represent the target bias of ±1%. 
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using HFAP and an averaged correction factor from the extract lipids that were originally evaluated 

in this study. This approach overcorrected the CCS and resulted in negative biases ranging from 

0.5 to 2.4, as shown in Figure 5.5(A). The standard lipids of subclasses from which the correction 

factor was derived (i.e. PE, PS, and SM) had biases within the range of their corresponding 

subclasses (-1.1 to 1.3%, Figure 5.3(B)), but the glycerolipids (DG and TG) exhibited higher biases 

in general (up to -1.6%). In addition to lipid class, arrival time range also contributed to these 

biases (Figure 5.5(B)). Although lysophosphatidylcholine (LPC) is within the classes examined in 

this study, its arrival time falls below the range of those lipids, and accordingly, the observed bias 

was higher (2.4%). These results suggest a smaller magnitude correction may be useful for general 

use in lipidomics experiments where subclass information is unknown.  

While the average subclass specific correction was 2.7%, a smaller correction of 1.5% was applied 

as a more “general” correction to the SPLASH mix standards. Applying this more conservative 

correction resulted in lower biases, with the highest absolute value at 1.1% (Figure 5.5(C), Table 

F1). As expected, application of the smaller correction factor to the other lipid extract species 

resulted in higher absolute biases than their subclass-specific corrections (Figure 5.5(D)). 

However, most values (94%) still fell within 2% bias, which is comparable to the expected CCS 

bias in conventional TWIM experiments and is sufficient for many applications. While not 

explicitly explored here, for cases where the specific lipid subclass is known, applying a second 

subclass-specific correction would result in even lower biases as observed here. 

5.4 Conclusions 

In this work we evaluated the accuracy and practical applicability of various CCS calibration 

strategies for five lipid subclasses on a SLIM-based TWIM platform. Using a simple trinomial 

calibration based on a HFAP tuning mixture resulted in subclass-dependent systematic biases of  
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Figure 5.5 CCS biases from DTCCS values of heavy-labelled lipid standard mix components. In 
all panels, blue shaded regions represent the target bias of ±1%. (A) Standard lipids calibrated with 
HFAP and an averaged correction factor derived from the five standard extracts examined in this 
study. Analytes are arranged in order of increasing measured arrival times. (B) The arrival time 
range of the standards as compared to those of the lipid extract species. (C) Standard biases when 
calibrated with HFAP and a “general” correction factor of 1.5%. (D) Biases of the standard mix 
(SPLASH) as well as lipid extract species when calibrated using the general correction factor. The 
grey shaded region represents the expected bias of conventional TWIMS, ±2%.   

  



113 
 

2-3% from reference DTCCS values. While curation of custom calibrant sets of lipids within each 

subclass lowered the bias to within 0.5% on average, using subclass specific semi-empirical 

correction factors with the more generalizable HFAP calibration provided the lowest biases (< 

0.4%) and variability (98% of values under 1% bias). This HFAP-based correction strategy 

provides a straightforward and accessible method for obtaining highly reproducible lipid CCS 

values and, with empirically determined correction factors, it can be generalized to other 

compounds. Using this calibration method, we curated a HRIM CCS database of over 90 calibrated 

lipid values from all five subclasses, including those of many newly resolved lipid features. The 

routine acquisition of high precision CCS values with bias under 1% will enable the construction 

of new HRIM libraries, as well as standardization and inter-laboratory comparison, paving the way 

for further characterization of newly elucidated spectral features in support of untargeted 

applications.  
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CHAPTER 6 
 

6. CONCLUSIONS AND OUTLOOK 

 

6.1 Summary 

Untargeted metabolomics and lipidomics seek to comprehensively profile small molecules and 

lipids found in complex biological samples to gain a better understanding of the pathways and 

networks that govern large scale biological processes.1,2 Largely due to its sensitivity and 

specificity, mass spectrometry (MS) has become an increasingly prevalent analytical strategy for 

untargeted omics studies.3–5 A truly global analysis of the highly complex biochemical activity of 

these systems remains elusive though, largely as a result of challenges in confident annotation of 

untargeted data.6,7 Even with high-resolution mass spectrometers, comprehensive identification by 

accurate mass alone is unattainable due to the prevalence of isomeric species as well as the limited 

number of commercially available analytical standards, especially in lipidomics.8 In a global MS 

study of a complex biological sample, one feature can be assigned hundreds of tentative 

identifications which are indistinguishable without additional information. Due to the predictable 

fragmentation patterns of many biochemical classes, MS/MS is often used to aid in the 

identification of lipid species, increasing its confidence to a “probable structure”. However, even 

MS/MS approaches are incapable of resolving all species in biological matrices.9,10 Thus the 

combination and integration of several analytical techniques into a single workflow is often 

necessary to expand coverage and increase confidence of lipidomic annotations in order to 

facilitate meaningful biological conclusions.11,12 
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Ion mobility (IM) has gained widespread use in recent years for structural analysis.13–15 This gas 

phase separation technique separates ions based on their shape and size, and its millisecond 

timescale nests well between the timescales of liquid chromatography (LC) and MS. In addition 

to a complementary dimension of separation, IM can provide a structurally selective metric for 

compound annotation, the collision cross section (CCS).11,16 CCS values are highly reproducible 

and can differentiate many isomeric species that have variation in their conformation despite their 

identical mass. They also manifest class-specific conformational trends that can be utilized in 

identification or filtering workflows.17,18 Because of these advantages, many recent efforts have 

focused on the generation of class-specific CCS databases to aid in compound identification.19–21 

Such databases have seen success in annotating many datasets, but have been relatively narrow in 

scope.16,22 This work aimed to develop tools and strategies to enable the broader adoption of CCS 

as an additional molecular descriptor in support of high-confidence untargeted molecular 

annotation. 

In Chapter 2, we explored the potential of pooling existing CCS databases into one self-consistent 

repository to facilitate the broader adoption of IM to current molecular identification workflows. 

A collaborative library of multi-omic CCS values was curated and standardized to provide 

resources and guidelines for the IM community. This dataset, the Unified CCS Compendium, not 

only allows empirical matching to a large set of experimental CCS values, but also unlocks the 

predictive potential of statistical modeling, both of which provide tools with which to address the 

challenge of identification confidence. Some of the predictive applications of the Compendium are 

explored in Chapter 3, where we developed an informatic pipeline to increase identification 

confidence in lipidomic identifications without the need for exact matching from an experimental 

or in silica MS library. This integrated high-confidence workflow provides support for the 
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application of IM to untargeted studies, and when combined with LC and tandem MS data, it can 

further increase coverage in untargeted studies, thus increasing confidence in the resulting 

biological interpretations 

While these database matching and predictive informatics strategies provide support for the 

application of IM to identification workflows, there exist numerous cases for which the resolution 

of commercially available drift tube IM instrumentation is insufficient for separation of isomers. 

Because biological function is dictated by structure and isomers are prolific in nature, it is of great 

importance to pursue techniques capable of distinguishing isomeric species. SLIM technology, 

based on scalable printed circuit board architectures, allow for extended pathlength high resolution 

IM separations (HRIM).27–29 In Chapter 4, we surveyed the resolving power capabilities and CCS 

calibration strategies for a prototype HRIM system. The fundamental calibration study in Chapter 

4 was used as a foundation for Chapter 5, where it was applied to the analysis of a broad range of 

lipid species. The consensus values from the Compendium allowed for the evaluation of 

calibration accuracy of these species and allowed for subclass-specific optimization of the 

calibration protocol. The efforts described in Chapters 4 and 5 provide a comprehensive evaluation 

of both HRIM instrumental performance and CCS calibration to establish protocols for highly 

selective and accurate IM measurements. These more structurally specific CCS measurements not 

only enable the analysis of previously unresolved lipid species but will also ultimately improve 

the performance of IM-based informatics for untargeted studies.  

Overall, the guidelines, recommendations, and strategies developed throughout this work enable 

the adoption and integration of IM and CCS into untargeted workflows for molecular identification 

and characterization. The added structural resolution from the integration of IM into -omics studies 

will facilitate a broader annotation of relevant pathway components, including isomeric species. 
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This global profile will enable a more comprehensive understanding of molecular dysregulation 

in large-scale biological processes. 

6.2 Future directions 

6.2.1 Compendium expansion and updates 

The Unified CCS Compendium, described in Chapter 2, was developed as a collaborative resource 

to which data can be added from the community. Since the initial publication of this work in 2019, 

over 500 new CCS values have been added to the Compendium thanks to the efforts of multiple 

research groups around the world. The expansion has included measurements from previously 

unrepresented compound classes of interest such as steroid conjugates23 and perfluoroalkyl 

substances (PFAS)24,25. The Compendium has been widely used in numerous works for compound 

annotation,26,27 prediction,28,29 and method validation.30,31 Continued work toward the expansion 

and maintenance of this shared resource will enable further refinement of the predictive tools built 

with the Compendium as a training set, as well broader adoption of CCS for IM workflows as the 

field continues to grow into new application areas.  

Currently, guidelines are in place to ensure only highly vetted data is added to the database to 

maintain the quality of the consensus values. However, working toward data volume in addition 

to data quality will be advantageous in the further advancement of this tool. The implementation 

of a confidence system would allow the addition of published values that pre-date the 

Compendium and its standardized guidelines. Data quality could be ranked as a measure of metrics 

such as relative standard deviation, replicate number, or bias from gold-standard values. The 

quality value could then be used to indicate confidence in subsets of CCS values, allowing users 

to filter by quality to apply appropriate considerations in their downstream use of the data. 

Importantly, the largescale addition of data enabled by this system would enable more refined and 
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advanced predictive models, leading to more confident annotation and prediction of CCS values 

in untargeted workflows. 

6.2.2 CCS-based filtering for untargeted lipidomics 

The CCS filtering informatics workflow described in Chapter 3 was applied in a proof-of-concept 

lipidomics study to filter tentative identifications, which resulted in candidate lists of 50% fewer 

tentative identifications on average. Since the initial study, the workflow has also been applied to 

lipidomics studies from more complex biological systems.  In one pilot study, a global lipidomics 

experiment was performed on murine plasma from a knockout model of a transmembrane lipid 

transfer protein.32 The resulting molecular feature lists were subjected to the IM filtering workflow, 

resulting in 289 features with increased identification confidence, of which 105 were significantly 

altered in the knockout model as compared to the wild type. Notably, eicosanoid species were 

significantly altered, suggesting that eicosanoid production may be an important link to the 

expressed phenotype of the knockout animals. The subclass-specific information provided by the 

CCS filtering approach was integral to findings that are currently being interrogated in follow-up 

assays.  

Continued improvements and additions to the IM filtering workflow will be integral to its 

adoption and success in the broader IM community. One example of innovation already 

underway is the addition of a complementary filter based on Kendrick mass defect (KMD), 

which has been used previously in lipid class identification.33 In this approach, exact mass values 

from the Compendium were used to calculate KMD and create class-specific linear regression 

models similar to the CCS-based models in the Compendium (Figure 6.1(A)). Features that do 

not fall within the predictive interval can then be filtered from further analysis (Figure 6.1(B)). In 

a discovery study, this 
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Figure 6.1 Kendrick mass defect filtering.  (A) KMD model mean (solid blue line) and 99% 
predictive interval (dashed line) generated based on the exact mass of steroids and derivatives in 
the Unified CCS Compendium (represented as black markers). (B) KMD filter results of features 
in an untargeted study, where 57 features (black) were rejected as they fell outside the predictive 
interval (dashed line). 
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combined workflow was used to elucidate phase II anabolic androgenic steroid metabolites in urine 

and resulted in the rejection of 834 tentatively identified metabolites from IM filtering, with an 

additional 57 rejected from KMD filtering.  

This combined filtering approach highlights the value of integrating complementary analytical 

approaches for higher confidence annotations in untargeted studies. Further automated informatic 

integration of other dimensions such as LC and tandem MS, in addition to IM, will be a key focus 

in the future directions of this project.  

6.2.3 HRIM derived CCS values for lipid characterization 

In Chapters 5 and 6, we benchmarked a HRIM platform and developed recommendations and 

calibration strategies specific to analyte mass range and chemical class. Current work is focused 

on the application of these protocols to lipid extract characterization. The high resolving power 

afforded by the HRIM platform allows for the separation and elucidation of previously unseen 

isomeric and isobaric lipid species. Figure 6.2 shows an example of a HRIM 2D spectrum of a 

phosphatidylcholine (PC) total extract. In this spectrum, there are clearly separated features in the 

arrival time dimension that do not separate in mass (e.g. m/z 782.5672). By using the characteristic 

trends in acyl chain length and degree of unsaturation described by Leaptrot, et. al.,14 these species 

can be assigned tentative identifications. 

Mapping of these lipid species across various biological extracts, as well as calibration of their 

CCS values will facilitate the construction of HRIM databases, supporting future work in 

untargeted lipidomic applications of HRIM. These more structurally specific CCS measurements 

will not only enable the analysis of previously unresolved lipid species but will also ultimately 

improve the performance of IM-based informatics for lipidomics. 
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Figure 6.2 HRIM 2D spectrum of a phosphatidylcholine extract  showing tentative identifications 
of spectral features based on accurate mass. The feature at m/z 782.5672 has three arrival time 
features, which can be annotated in part by their characteristic acyl chain trend lines (orange lines). 
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6.3 Concluding remarks and outlook 

The grand challenge of untargeted, discovery-based metabolomics and lipidomics remains rooted 

in the molecular annotation bottleneck. Though great strides have been made in recent years, the 

biochemical complexity of biological matrices continues to preclude a truly global profile of the 

metabolites and lipids in any given sample. Ion mobility is uniquely suited to address this 

challenge, as it fits within the analytical timescale of an LC-MS experiment, it provides an 

additional dimension of separation with which to further deconvolute molecular complexity, and 

it also can be used to obtain an additional molecular descriptor for identification, the CCS. 

However, there is still work to be done before the full potential of this powerful approach can be 

realized. Because CCS values must be experimentally measured, database construction is arduous 

and limited by the availability of standards. Therefore, interlaboratory standardization and 

subsequent pooling of databases, as well as standards-free approaches using machine learning and 

other predictive strategies will be instrumental in advancing the field beyond targeted assays. 

Further, the addition of the IM dimension adds a layer of data complexity, which, as of this writing, 

still incurs a significant amount of manual analysis time or development of custom analysis tools. 

Broader adoption of IM outside of specialized analytical research will require significant work 

toward the further advancement of informatic tools and software for data handling and analysis. 

The work described in this dissertation seeks to lay a fundamental foundation upon which new 

innovative strategies can be built to enable the deployment of IM for high confidence global 

untargeted metabolomics. 
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APPENDIX B 

 

B. SUPPLEMENTARY MATERIALS FOR CHAPTER 1  

 
 

B1 MSMLS Study Sample Preparation and Acquisition Parameters 

B1.1 MSMLS Sample Preparation 

The Mass Spectrometry Metabolite Library of Standards (MSMLS, IROA technologies) is 

supplied as dried standards distributed across seven 96-well plates (Sigma-Aldrich; St. Louis, MO) 

and each well contains 5 μg of analytical standard. All solvents used to reconstitute the analytes 

prior to analysis, including water (H2O), methanol (MeOH), acetonitrile (ACN), isopropanol 

(IPA), and chloroform (CHCl3) were Optima LC-MS grade purchased from Fisher Scientific (Fair 

Lawn, NJ). Stock solutions of the hydrophilic standards were prepared by adding 100 μL 1:9 

(MeOH: H2O) to each well prior to mixing on a waving rotator for 5 minutes. The stocks were 

then distributed in 20 μL aliquots throughout five 96-well plates (Waters part no. 186005837). 

Stock plates that were not immediately analyzed were capped and transferred to -80 °C for storage. 

Working solutions of the hydrophilic standards were prepared by adding 80 μL of water with 0.1% 

formic acid to the 20 μL stock solutions, sealed with plate covers (Waters part no. 186006332), 

and subsequently mixed on a waving rotator for 5 minutes. The hydrophobic analyte set was 

prepared similarly, where stock solutions were prepared with 100 μL 2:1:1:0.3 (MeOH: CHCl3: 

IPA: H2O), and distributed in 20 μL aliquots throughout five 96-well plates. Working solutions 
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were prepared by adding 80 μL of 1:1 (MeOH: IPA). The concentration of the working solutions 

used for IM-MS analysis was 10 μg/mL. 

B1.2 Collision Cross Section Measurements 

CCS measurements for the MSMLS were obtained on a commercially available drift tube ion 

mobility-mass spectrometer (DTIMS, Agilent 6560) operated with nitrogen gas (3.95 Torr) at 

room temperature (~25 °C) and using both single-field and stepped-field approaches. The single-

field CCS values reported here were measured in triplicate, while the stepped-field values were 

collected in a single acquisition. Stepped-field measurements were acquired using an automated 

flow injection analysis (FIA) stepped-field approach. Briefly, the FIA method was performed with 

a liquid chromatography system (Agilent 1290) modified with a 100 μL sample loop (Agilent part 

no. G4226-87303) coupled to an IM-MS (6560, Agilent). 20 μL of the working solution was 

injected from the 96-well plate with 1:1 (water: isopropanol) as the carrier solvent. For traditional 

stepped-field CCS determination by FIA, following a 0.5 s delay, an entrance potential was stepped 

every 0.5 min. in increments of 100 V from 1074 V to 1674 V; the first step from 1074 to 1174 

occurred at 1.0 minute rather than 0.5 min. For single-field CCS determination using FIA, 4 μL of 

sample was injected into the carrier solvent at a flow of 800 μL/min. Data was collected for 0.5 

min, followed by a 0.4 min postrun flushing cycle. A drift tube entrance voltage of 1574 V was 

used. DTIMS exhibits a linear relationship between drift time and CCS, and single-field CCS 

values are determined by first measuring the drift time of ions (ESI Low Concentration Tuning 

Mix, Agilent) with a known CCS. The calibrant ions were infused for 0.5 minutes while IM-MS 

spectra are collected; calibration experiments were preformed intermittently to ensure instrument 

stability. IM-MS Browser (Agilent, B.08) was used to plot the linear regression of the calibration 

ions for single field experiments, and the instrumental coefficients β and Tfix, were extracted and 
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used to convert raw ion drift times to CCS. The resulting single- and stepped-field CCS library 

can be found in the Supporting Information. 

B1.3 IM-MS Source and Drift Cell Conditions 

To obtain high coverage of analytes within the MSMLS, both electrospray (Agilent Jet Stream, 

AJS) and chemical ionization (APCI) sources were used. The majority of the samples collected 

with the AJS in both ion modes were measured using the following conditions: gas temperature, 

250 °C; drying gas, 8 L/min; nebulizer, 60 psig; sheath gas temperature, 300 °C; sheath gas flow, 

11 L/min; capillary voltage (VCap), 3500 V; nozzle voltage, 800 V; fragmentor, 340 V; octopole 

1 RF Vpp, 750 V. All metabolites were first investigated using the AJS source; those which were 

not observed in either ion polarity were subsequently investigated using the APCI source under 

the following conditions: gas temperature, 250 °C; vaporizer, 200 °C; drying gas, 7 L/min; 

nebulizer, 30 psig; VCap, 3800 V; corona, 5 μA; fragmentor, 350 V; octopole 1 RF Vpp 750 V. 

Some of the low m/z ions (typically ≤ 200 Da) exhibited metastable ion dissociation in the DTIMS 

which resulted in uncorrelated mobilities. In these cases, we increased the fragmentor potential to 

> 350 V and decreased the Trap Funnel RF to ≤ 80 Vpp to culminate the ion signal into a single IM 

distribution. The IM-MS settings for the CCS values reported herein are as follows: 0.9 frames/s; 

18 IM transients/frame; 60 ms max drift time; 600 TOF transients/IM transient; 20000 μs trap fill 

time; 180 μs trap release time; drift tube exit voltage, 224 V; rear funnel entrance voltage, 217.5 

V; rear funnel exit voltage, 45 V. 
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B2  Nonlinear regression analysis 

Iterative nonlinear regression modeling for the super classes was performed using GraphPad Prism 

7, and 99% confidence intervals were generated for each biomolecular super class. Three fits were 

tested for each super class: power fit (PF), 4-parameter sigmoidal (4P), and 5-parameter sigmoidal 

(5P). The most parsimonious fit was chosen by a probabilistic comparison of the corrected Akaike 

information criterion (AICc) values. 

Power Association (General) 

𝑦	 = 	𝑦6 + (plateau − 𝑦6) ∗ (1 − 𝑒078)   Eq. B1 

4P sigmoidal (General) 

𝑦	 = 𝑦9 +	
:./0		0	:1

"	<	"6(345671	8	0)	∙	;
         Eq. B2 

Lipids and lipid-like molecules- Power association 

𝑦	 = 	75.41 + (516.9 − 75.41) ∗ (1 − 𝑒06.666>?"8)   Eq. B3 

Organic oxygen compounds- Power association 

𝑦	 = 	101.9 + (935.0 − 101.9) ∗ (1 − 𝑒06.666#?"8)   Eq. B4 

Nucleosides, nucleotides, and analogues- Power association 

𝑦	 = 	117.6 + (1.52 × 10@ − 117.6) ∗ (1 − 𝑒0".6A×"68<8)        Eq. B5 

Organic acids and derivatives – 4P sigmoidal 

𝑦	 = 104.8 +	 #"A.5	0	"6C.>
"	<	"6(=>>.@ 	8	0)	∙	1.11A>B

    Eq. B6 
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Figure B1. The distribution of isomeric families within the MSMLS. Most isomeric sets contain 
2 or 3 isomers per group, and the largest set contained 9 isomers. 
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B3 Preparation and analysis of NIST 1950 Serum 

B3.1 Preparation of human serum 

Protein precipitation was performed by adding 800 μL of ice cold MeOH to 100µL NIST 1950 

serum and stored at -80 ˚C for one hour. The sample was centrifuged at 14,000 rpm for 5 minutes 

before collecting the supernatant. Next, 2.4 mL ice cold methyl tert-butyl ether and 800 µL ice 

cold water were added. The sample was vortexed then centrifuged at 10,000 rpm at 4˚C for 10 

minutes. The polar and nonpolar fractions were separated and dried separately in vacuo. Samples 

were stored at -20 ˚C until analysis. Dried fractions were resuspended in 200 µL of the initial 

mobile phase solvent and analyzed via LC-IM-MS. 

B3.2 Liquid chromatography 

LC-IM-MS was performed on the prepared NIST 1950 serum using HILIC chromatography for 

the hydrophilic layer of the liquid-liquid extraction. For this method, 4 μL of sample was injected 

onto a column heated to 40 °C. The Millipore SeQuant Zic-HILIC (2.1 x 100 mm, 3.5 μm) 

column was used with mobile phase A and B being 9:1 and 1:9 (water: acetonitrile, buffered 

with 5 mM ammonium formate), respectively. The mobile phase flow rate was 200 μL/min. The 

gradient was initially held at 98 %B from 0 to 1 minutes, decreased to 45 %B from 1 to 20 

minutes, held at 45 %B from 20 to 22 minutes, increased to 98 %B from 22 to 40 minutes, and 

subsequently held at 98 %B from 40 to 45 minutes before the next injection. 
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APPENDIX C 

 

C. SUPPLEMENTARY MATERIALS FOR CHAPTER 2  

 
 
Section C1 Ion Mobility Peak Annotation 

In some of the acquired measurements, multiple ion mobility peaks were observed. In an effort 

to preserve information, all observed peaks were annotated by assigning a peak number to each 

peak. Peak Number where “1” refers to the smallest observed CCS and each subsequent peak is 

assigned 2, 3, and so on. An example is shown in Figure S1. 
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Figure C1. Illustration of annotating CCS values for analytes with multiple ion mobility peaks. 
If only one peak is observed, the number “1” is assigned. 
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Section C2 LC-MS and LC-IM-MS acquisition parameters 

Serum samples were analyzed via liquid chromatographic separation using an C18 Zorbax RRHD 

(1.8µm) column on a 1290 Infinity LC system (Agilent Technologies). Solvent A was water with 

0.1% formic acid; and Solvent B was 3:2 isopropanol:acetonitrile with 0.1% formic acid. 2 µl of 

sample were injected via autosampler and separations occurred using a 30 min gradient described 

in Fig. S5a at 200 µl/min. Post-LC separation, analytes were ionized using an electrospray 

ionization source (Jet Stream, Agilent Technologies) at 300°C and a VCap voltage of 3500 V. The 

drying gas flow rate was 8 L/min, while the sheath gas flowed at 11 L/min. When data was acquired 

using LC-IM-MS mode, ion mobility separations were performed using a uniform field drift tube 

with high-purity nitrogen drift gas at 3.95 Torr at room temperature (~298 K). A single field 

analysis at 1574 V was performed on a standardized calibrant mixture (Agilent Tune Mix) to 

normalize sample drift times. Time-of-flight scan range was 100 m/z to 1700 m/z.  

 



143 
 

 

 

Figure C2. (A) LC Gradient. (B). Agilent 6560 instrument schematic.  
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Section C3 Nonlinear regression equations 

Power Fit  

y = a ∙ x0D + y6       (Eq. C1) 

a is the curve max – curve min; k is the curve rate   

  

Four-Parameter Sigmoidal Fit (4P) 

y = yE +
FCDE0F1

"<"6(345F718E)∙#
      (Eq. C2) 

y50 is x at curve half-maximum; H is the Hill Slope   

  

Five-Parameter Sigmoidal Fit (5P) 

y = yE +
FCDE0F1

G"<"6((345F718E)∙#H
G      (Eq. C3) 

S is the curve symmetry parameter   

    

Confidence Interval 

𝑧 ∙ 𝑠:,8 ∙ P
"
J
+ (80	8̅)=

LL0
Q
"/#

     (Eq. C4) 

z is standard deviations z score based on interval percentage   

(z-score for 99% is 2.576);       
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Sy,x is the standard error of the x and y data inputs;    

SSx is the sum of the squared deviations from the x input mean  

  

Predictive Intervals 

𝑧 ∙ 𝑠:,8 ∙ P1 +
"
J
+ (80	8N )=

LL0
Q
"/#

     (Eq. C5) 
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Table C1. Table of all Super Classes and Classes represented in the unified CCS 
Compendium at date of submission. 

 

Super Class Class m/z Range N 

Alkaloids and derivatives 
Yohimbine alkaloids 609 1 

 138 – 164 3 

Benzenoids 

Anthracenes 178 – 271 9 
Benzene and substituted derivatives 108 – 886 159 

Fluorenes 166 1 
Indanes 300 1 

Naphthalenes 128 – 254 25 
Pentacenes 278, 280 2 

Phenanthrenes and derivatives 178 – 303 19 
Phenols 109 – 208 31 
Pyrenes 202 – 304 22 

Homogeneous metal compounds Homogeneous transition metal 
compounds 132 – 2991 62 

Homogeneous non-metal 
compounds Non-metal oxoanionic compounds 200 1 

Lipids and lipid-like molecules 

Fatty acyls 125 – 935 223 
Glycerolipids 253 – 746 8 

Glycerophospholipids 171 – 1017 334 
Prenol lipids 137 – 886 21 
Sphingolipids 548 – 8989 146 

Steroids and steroid derivatives 287 – 648 78 

Nucleosides, nucleotides, and 
analogues 

(5'->5')-dinucleotides 662 – 783 29 
5'-deoxyribonucleosides 250 – 408 19 

Flavin nucleotides 455 – 809 9 
Imidazole ribonucleosides and 

ribonucleotides 337 – 362 4 

Nucleoside and nucleotide analogues 24, 268 2 
Purine nucleosides 250 – 613 49 
Purine nucleotides 280 – 790 125 

Pyrimidine nucleosides 226 – 281 23 
Pyrimidine nucleotides 304 – 646 124 

Organic acids and derivatives 

Carboximidic acids and derivatives 131, 154 2 
Carboxylic acids and derivatives 89 – 2110 623 

Keto acids and derivatives 115 – 184 11 
Hydroxy acids and derivatives 103 – 239 12 

Organic carbonic acids and 
derivatives 155 1 

Organic phosphonic acids and 
derivatives 124 – 205 13 
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Organic sulfonic acids and 
derivatives 124 – 213 4 

Peptidomimetics 225 – 1317 23 
Proteins 493 – 3302 139 

Sulfinic acids and derivatives 108, 111 2 
Super Class Class m/z Range N 

Organic acids and derivatives Tryptic peptides 288 – 1580 254 
Organic nitrogen compounds Organonitrogen compounds 74 – 1233 101 

Organic oxygen compounds 
Organic oxoanionic compounds 227 – 411 6 

Organooxygen compounds 105 – 1505 340 

Organic polymers 
Cyclic Peptides 1111 – 1704 20 

Polypeptides 294 – 1724 230 
Organohalogen compounds Organofluorides 301 – 2834 66 

Organoheterocyclic compounds 

Azoles 127 – 458 12 
Benzimidazoles 145 – 225 4 
Benzodioxoles 191 – 272 4 
Benzopyrans 421, 424 2 

Dihydrofurans 173 – 350 6 
Dithiolanes 228 1 
Furofurans 199, 200 2 

Imidazopyrimidines 119 – 218 60 
Indoles and derivatives 148 – 381 69 

Lactams 348 – 738 10 
Lactones 153 – 350 6 

Naphthofurans 821 – 1684 14 
Pteridines and derivatives 162 – 483 28 

Pyridinecarboxylic acids and 
derivatives 140 1 

Pyridines and derivatives 96 – 285 52 
Pyrroles 110 1 

Quinolines and derivatives 172 – 431 17 
Tetrahydroisoquinolines 178 – 181 2 

Tetrapyrroles and derivatives 563 – 1378 9 
Triazines 215 – 325 8 

Phenylpropanoids and polyketides 

Anthracyclines 540 – 1320 6 
Cinnamaldehydes 133, 134 2 

Cinnamic acids and derivatives 149 – 360 5 
Coumarins and derivatives 161, 186 2 

Flavonoids 269 – 1424 44 
Isoflavonoids 140 – 418 16 

Linear 1,3-diarylpropanoids 255 – 280 4 
Macrolactams 786 - 825 3 
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Macrolides and analogues 661– 955 15 
Phenylpropanoic acids 165 – 284 11 

Tetracyclines 410 8 
Polyhedralcarbon molecules  720, 840 2 
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APPENDIX D 

 

D. SUPPLEMENTARY MATERIALS FOR CHAPTER 3  

 

 

 

Figure D1. Detailed flow description of the integration of the filtering pipeline (pink) with a 
typical untargeted lipidomics annotation workflow.  
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Figure D2. Decision tree describing the IM filtering process. 
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Figure D3. Phosphotidylglycerol (PG) and phosphotidyinositol (PI) conformational plot with 
regression models, including 99% predictive intervals. The PG regression model uses a 4-

parameter sigmoidal equation, and the PI regression model uses a power equation. These models 
were built with methods outlined in Chapter 2. 
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Table D1. Collision cross section values of phosphatidylglycerol and phosphatidylinositol lipids 
measured via drift tube ion mobility with nitrogen (DTCCSN2) in positive and negative ionization 
mode. Standard deviations are reported from three replicate measurements (n=3). 
 

Name Molecular 
Formula 

MW 
(Da) 

DTCCSN2 (Å2) 

[M+Na]+ [M+2Na-H]+ [M-H]- 

PG 16:00 C22H45O9P 484.28 -- -- 216.3±0.636 
PG 18:00 C24H49O9P 512.31 -- -- 222.9±1.208 
PG 18:01 C24H47O9P 510.30 -- -- 219.8±0.411 
PG 18:02 C24H45O9P 508.28 -- -- 217.3±0.130 
PG 20:04 C26H45O9P 532.28 -- -- 222.6±0.678 
PG 22:05 C28H47O9P 558.30 -- -- 227.9±1.886 
PG 22:06 C28H45O9P 556.28 -- -- 226.1±0.452 
PG 32:00 C38H75O10P 722.51 -- -- 266.8±0.070 
PG 32:01 C38H73O10P 720.49 -- -- 265.0±0.113 
PG 32:02 C38H71O10P 718.48 -- -- 263.4±0.429 
PG 34:01 C40H77O10P 748.53 279.3±0.552 280.5±0.298 273.1±0.171 
PG 34:02 C40H75O10P 746.51 277.4±0.138 279.2±0.231 271.3±0.058 
PG 34:03 C40H73O10P 744.49 -- 277.2±1.343 269.3±0.059 
PG 36:01 C42H81O10P 776.56 -- 288.2±0.225 281.1±0.401 
PG 36:02 C42H79O10P 774.54 -- 286.6±0.723 279.5±0.362 
PG 36:03 C42H77O10P 772.53 -- 285.0±0.653 277.5±0.174 
PG 36:04 C42H75O10P 770.51 -- 283.6±0.837 276.6±0.229 
PG 36:05 C42H73O10P 768.49 -- -- 274.8±0.250 
PG 38:04 C44H79O10P 798.54 -- 290.2±0.716 283.7±0.193 
PG 38:05 C44H77O10P 796.53 -- 289.1±0.263 282.8±0.328 
PG 38:06 C44H75O10P 794.51 -- -- 281.7±0.326 
PG 40:05 C46H81O10P 824.56 -- -- 288.9±0.415 
PG 40:06 C46H79O10P 822.54 -- -- 288.0±0.136 
PG 40:07 C46H77O10P 820.53 -- -- 286.5±0.364 

PI 18:00 C27H52O12P 599.32 -- -- 238.4±0.240 
PI 18:01 C27H50O12P 597.30 -- -- 236.7±0.221 
PI 18:02 C27H48O12P 595.29 -- -- 235.0±1.412 
PI 20:04 C29H48O12P 619.29 -- -- 239.8±0.365 
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PI 32:00 C41H79O13P 810.53 -- -- 282.3±0.891 
PI 32:01 C41H77O13P 808.51 -- -- 281.1±0.690 
PI 34:01 C43H81O13P 836.54 -- -- 286.4±0.239 
PI 34:02 C43H79O13P 834.53 -- -- 284.8±0.461 
PI 34:03 C43H77O13P 832.51 -- -- 285.1±1.107 
PI 35:01 C44H83O13P 850.56 -- -- 289.8±0.310 
PI 35:02 C44H81O13P 848.54 -- -- 288.4±0.194 
PI 35:03 C44H79O13P 846.53 -- -- 288.1±0.141 
PI 36:01 C45H85O13P 864.57 -- -- 293.3±0.346 
PI 36:02 C45H83O13P 862.56 -- -- 292.0±0.101 
PI 36:03 C45H81O13P 860.54 -- -- 290.8±0.069 
PI 36:04 C45H79O13P 858.53 -- -- 289.4±0.186 
PI 36:05 C45H77O13P 856.51 -- -- 289.0±0.384 
PI 37:01 C46H87O13P 878.59 -- -- 296.5±1.107 
PI 37:02 C46H85O13P 876.57 -- -- 295.1±0.179 
PI 37:03 C46H83O13P 874.56 -- -- 293.5±0.151 
PI 37:04 C46H81O13P 872.54 -- -- 293.0±0.279 
PI 38:03 C47H85O13P 888.57 -- -- 297.3±0.665 
PI 38:04 C47H83O13P 886.56 -- -- 296.4±0.514 
PI 38:05 C47H81O13P 884.54 -- -- 295.4±0.531 
PI 38:06 C47H79O13P 882.53 -- -- 294.2±0.281 
PI 39:02 C48H89O13P 904.60 -- -- 301.7±0.535 
PI 39:03 C48H87O13P 902.59 -- -- 300.7±1.086 
PI 39:04 C48H85O13P 900.57 -- -- 299.6±0.941 
PI 39:05 C48H83O13P 898.56 -- -- 298.6±0.437 
PI 40:04 C49H87O13P 914.59 -- -- 302.8±0.828 
PI 40:05 C49H85O13P 912.57 -- -- 301.6±0.829 
PI 40:06 C49H83O13P 910.56 -- -- 300.8±0.759 
PI 40:07 C49H81O13P 908.54 -- -- 299.9±0.520 
PI 40:08 C49H79O13P 906.53 -- -- 299.1±0.721 
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APPENDIX E 

 

E. SUPPLEMENTARY MATERIALS FOR CHAPTER 4  

 

 
 

Figure E1. Traveling wave operation of SLIM IM illustrated for two SLIM segments (8 pads 
each) using (A) a square waveform, and (B) a sine waveform. 
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Figure E2. A multidimensional IM-MS spectrum of tune mix ions illustrating the spectrum 
observed under conditions where the lower m/z ions are “surfing” the traveling wave and no IM 
separation occurs.  Here, SLIM conditions were 90 m/s and 30 Vpp. Under surfing conditions, 

all ions exhibit the same arrival times, which corresponds to the wave propagation time through 
the SLIM device (90 m/s / 13 m = ~144 ms). 
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Figure E3. Plots projecting the single-peak resolving power in CCS-space, Rp(CCS), as a 
function of the measured arrival times for (A) square wave, and (B) sine wave operation of the 

traveling wave.  Plots contain data points for all wave amplitudes (30, 35, and 40 Vpp) and wave 
speeds (45, 90, 135, 180, and 225 m/s) surveyed in these experiments, with data points omitted 

for ions which do not exhibit IM-selective behavior (that is, ions which “surf” the wave and thus 
are not resolved).  For square wave, 52,2% of the measurements are IM-selective (188 out of 

360), whereas for sine wave, 68.6% of the ions (247 out of 360) are observed to separate via the 
traveling wave.  In both projections, the circle markers connected with solid traces represent the 

average Rp(CCS), determined for 200 ms arrival time bins, and the horizontal dotted line 
corresponds to the average Rp(CCS) across the entire dataset.  Whereas both datasets exhibit 

similar resolving powers, the square wave data (panel A) transmits fewer ions under IM-selective 
conditions across the parameters surveyed. 
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Figure E4. Plots assessing the resolving power performance for a square waveform under the 
traveling wave parameters surveyed in this work. (A) CCS-based Rp values (N=188) as a 

function of the measured arrival time for tune mix components (cyclophosphazenes) measured 
across various SLIM IM parameters, including wave speeds (45, 90, 135, 180, and 225 m/s) and 
wave amplitudes (30, 35, and 40 Vpp). Box and whisker overlays summarize the data within 200 
ms bins. (B) Average Rp(CCS) values (3 replicates per data point) determined for 90 m/s wave 
speed at 30, 35, and 40 Vpp wave amplitudes.  Under the highest amplitude evaluated (40 Vpp), 
no ions are transmitted under IM-selective arrival times for square wave. (C) Average Rp(CCS) 
values calculated for 180 m/s data. The horizontal dotted line in these scatter plots represents the 
average Rp across the entire dataset (ca. 215). (D) Heat maps visualizing the resolving powers for 

each tune mix component (x-axis) at each wave speed (y-axis) for wave amplitudes of 30 (left 
panel), 35 (middle panel), and 40 Vpp (right panel). Each square represents an average of three 

replicate measurements. Here, dark blue squares represent conditions in which ions are 
transmitted, but no IM separation occurs (i.e., ion “surfing” conditions), whereas grey boxes 

correspond to conditions where ion transmission is poor. (E) Color scale for panel D with 
average and standard deviation values overlaid. 

  



158 
 

 

 

Figure E5. Resolving power (CCS/ΔCCS) results for all tune mix ions, separated into the 
different wave amplitudes and wave speeds surveyed.  Here, ions which are not fully separated 

by the traveling waves (surfing ions) are also included. 
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Figure E6. CCS calibration biases observed across all SLIM IM parameters for a 3rd order 
polynomial fit.  Dotted lines represent ±0.4% bias of the calibrated CCS compared with the 

reference CCS values. 
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Table E1. Corresponding Wave Speeds for SLIM IM Wave Switching Frequencies. 

 

SLIM IM TW Output Drive Frequency (kHz) Equivalent Wave Speed (m/s) a. 

5 45 

10 90 

15 135 

20 180 

25 225 

a. To calculate the wave speed, the drive frequency (in kHz) is multiplied by the pad-
to-pad distance (1.125 mm) and the number of pads traversed to complete one phase 
of the wave form (8 pads). 
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Table E2. The Second Highest Resolving Powers Observed 

 

Tune Mix Ion 
Highest Rp 
Measured 

(CCS/ΔCCS) a. 

Corresponding Parameter 

Corresponding 
Arrival Time (ms) Wave 

Amplitude 
(Vpp) 

Wave Speed 
(m/s) 

  m/z 622  283.7±20.7 (3) 40 180 215.0 

  m/z 922  258.7±8.0 (3) 40 225 437.9 

  m/z 1222  247.1±9.7 (3) 40 225 601.2 

  m/z 1522  243.0±7.1 (2) 35 90 330.8 

  m/z 1822  255.1±7.1 (3) 35 90 426.5 

  m/z 2122  257.9±12.7 (3) 35 90 523.8 

  m/z 2422  268.8±8.9 (3) 40 90 458.2 

  m/z 2722  253.0±10.1 (3) 35 90 721.8 

a.  Highest Rp is averaged over replicate measurements, denoted in the parenthesis. The time-to-CCS 
conversion is determined from Equation 3 in the main text using the differences between the tune 

mix ion and the next highest m/z ion in the spectrum. 
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APPENDIX F 

 

F. SUPPLEMENTARY MATERIALS FOR CHAPTER 5  

 
 

 
 

Figure F1. Schematic of the beta prototype HRIM-MS platform used in this study.  
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Figure F2. The standard lipid mix was analyzed using a 1290 Infinity LC system (Agilent). 
Reversed phase LC was performed at a flow rate of 250 µL/min using a C18 column 

(HypersilGold 1.9 µm, 2.1 mm x 100 mm column, Thermo Fisher) held at 40 ˚C with mobile 
phases consisting of 10 mM ammonium formate and 0.1% formic acid in H2O (A) and 60:36:4 

IPA:ACN:H2O (B). The 30 minute gradient is illustrated above. 
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Figure F3. CCS calibration bias for all values calibrated from triplicate measurements using 
HFAPs with a 3rd order polynomial as compared to established DTCCS values. Dashed lines 
represent average biases for each subclass, and error bars represent the measurement standard 

deviation.  
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Figure F4. Inter-day reproducibility of experimental arrival times (green) and calibrated CCS 
values from all lipid features (n = 92).  
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Table F1. Subclass specific semi-empirically derived correction factors used for correction of 
HFAP-calibrated CCS values.  

Class Subclass Correction factor 
Glycerophospholipids PC 0.0321  

PE 0.0275  
PS 0.0223 

Sphingolipids GlcCer 0.0241 
 SM 0.0281 

SPLASH Mix   0.0150 
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Table F2. Table of calibrated and corrected CCS values for all lipids using the correction factors 
in Table S1. DTCCS values in the left column are sourced from the Unified CCS Compendium. 
Lipid features from each subclass that were not identified are annotated as their subclass and 
measured m/z. When arrival time features were observed for one m/z, peak numbers are 
annotated in ascending order of arrival time. 

Tentative ID Feature Description 

Name Adduct 
DTCCS 

(Å2) 
Bias 
(%) 

m/z 
(measured) 

Peak 
# 

TW-SLIMCCS 
(Å2) 

RSD 
(%) 

Phosphatidylcholines 
PC 34:01 [M+H]+ 283.1 0.21 760.5899 1 283.7 0.14 
PC 34:01 [M+H]+ 283.1 0.64 760.5902 2 284.9 0.18 
PC 34:01 [M+Na]+ 286.0 0.00 782.5720 1 286.0 0.16 
PC 34:02 [M+H]+ 280.6 0.03 758.5742 1 280.7 0.17 
PC 34:02 [M+Na]+ 284.2 -0.49 780.5566 1 282.8 0.18 
PC 34:03 [M+H]+ 278.2 -0.09 756.5605 1 277.9 0.31 
PC 36:01 [M+H]+ 289.4 0.15 788.6210 1 289.8 0.17 
PC 36:01 [M+H]+ 289.4 0.60 788.6215 2 291.1 0.19 
PC 36:01 [M+Na]+ 291.4 -0.50 810.6054 1 290.0 0.18 
PC 36:01 [M+Na]+ 291.4 0.29 810.6051 2 292.2 0.13 
PC 36:02 [M+H]+ 287.1 0.03 786.6056 1 287.2 0.17 
PC 36:02 [M+Na]+ 289.8 -0.31 808.5896 1 288.9 0.15 
PC 36:03 [M+Na]+ 288.2 -0.74 806.5746 1 286.1 0.17 
PC 38:03 [M+Na]+ 294.2 -0.55 834.6071 1 292.6 0.17 
PC (m/z 782.57)      -- -- -- 782.5742 1 293.3 0.19 
PC (m/z 804.56)      -- -- -- 804.5588 1 296.4 0.14 
PC (m/z 832.59)      -- -- -- 832.5906 1 302.9 0.17 
PC (m/z 836.63)      -- -- -- 836.6243 1 305.0 0.17 

Average absolute % bias 0.33   Average % RSD 0.17 
Phosphatidylethanolamines 
PE 34:01 [M+H]+ 271.1 0.67 718.5438 1 272.9 0.18 
PE 34:01 [M+Na]+ 277.1 0.44 740.5270 1 278.3 0.19 
PE 34:02 [M+H]+ 269.5 0.06 716.5275 1 269.7 0.21 
PE 34:02 [M+Na]+ 274.1 0.17 738.5098 1 274.6 0.20 
PE 36:01 [M+H]+ 278.1 0.51 746.5752 1 279.5 0.19 
PE 36:01 [M+Na]+ 283.3 0.61 768.5599 1 285.0 0.22 
PE 36:01 [M+Na]+ 283.3 -1.09 768.5587 2 280.2 0.18 
PE 36:01 [M+2Na-H]+ 284.9 0.31 790.5421 1 285.8 0.16 
PE 36:02 [M+H]+ 276.2 0.07 744.5589 1 276.4 0.19 
PE 36:02 [M+Na]+ 281.0 0.20 766.5410 1 281.6 0.18 
PE 36:02 [M+Na]+ 281.0 -0.85 766.5448 2 278.6 0.19 
PE 36:03 [M+H]+ 274.4 -0.63 742.5467 1 272.7 0.22 
PE 36:03 [M+Na]+ 278.7 -0.96 764.5288 1 276.0 0.25 
PE (m/z 740.53)      -- -- -- 740.5295 1 273.5 0.20 

Average absolute % bias 0.51   Average % RSD 0.20 
Phosphatidylserines 
PS 36:01 [M+H]+ 285.6 0.40 790.5650 1 286.7 0.15 



168 
 

PS 36:02 [M+H]+ 283.1 -0.16 788.5505 1 282.6 0.16 
PS 38:04 [M+H]+ 286.7 0.56 812.5484 1 286.5 0.15 
PS 38:04 [M+H]+ 286.7 -0.07 812.5490 2 288.3 0.16 
PS 40:04 [M+H]+ 293.5 -0.34 840.5801 1 292.5 0.15 
PS 40:05 [M+H]+ 291.9 -0.08 838.5661 1 291.7 0.17 
PS 40:06 [M+H]+ 290.0 -0.37 836.5494 1 288.9 0.17 
PS 40:06 [M+Na]+ 294.0 -0.14 858.5327 1 293.6 0.14 

Average absolute % bias 0.27   Average % RSD 0.16 
Cerebrosides 
GlcCer 36:01 [M+H-H2O]+ 281.0 0.20 710.6001 1 281.5 0.14 
GlcCer 36:01 [M+H-H2O]+ 281.0 0.95 710.5992 2 283.7 0.16 
GlcCer 36:01 [M+Na]+ 285.1 -0.47 750.5925 1 283.8 0.12 
GlcCer 40:00 [M+Na]+ 298.9 -0.23 808.6726 1 298.2 0.15 
GlcCer 40:00 [M+Na]+ 298.9 0.54 808.6729 2 300.5 0.14 
GlcCer 40:01 [M+H-H2O]+ 293.9 0.05 766.6641 1 294.0 0.18 
GlcCer 40:01 [M+H-H2O]+ 293.9 0.58 766.6653 2 295.6 0.19 
GlcCer 40:01 [M+Na]+ 297.3 -0.44 806.6560 1 296.0 0.15 
GlcCer 40:02 [M+H]+ 295.1 -0.02 782.6565 1 295.1 0.15 
GlcCer 40:02 [M+H]+ 295.1 0.84 782.6593 2 297.6 0.08 
GlcCer 42:00 [M+Na]+ 304.3 -0.02 836.7027 1 304.2 0.16 
GlcCer 42:00 OH [M+Na]+ 306.7 -0.08 852.6966 1 306.5 0.12 
GlcCer 42:01 [M+H-H2O]+ 299.5 0.23 794.6925 1 300.2 0.17 
GlcCer 42:01 [M+H-H2O]+ 299.5 0.70 794.6928 2 301.6 0.13 
GlcCer 42:01 [M+Na]+ 302.9 -0.83 834.6867 1 300.4 0.19 
GlcCer 42:01 [M+Na]+ 302.9 -0.12 834.6864 2 302.5 0.18 
GlcCer 42:01 OH [M+Na]+ 305.4 -0.18 850.6816 1 304.9 0.13 
GlcCer 42:02 [M+H]+ 300.4 -0.36 810.6905 1 299.3 0.15 
GlcCer 42:02 [M+H]+ 300.4 0.18 810.6890 2 300.9 0.11 
GlcCer 42:02 [M+H]+ 300.4 0.92 810.6884 3 303.2 0.14 
GlcCer 42:02 [M+H-H2O]+ 297.6 -0.13 792.6776 1 297.2 0.13 
GlcCer 42:02 [M+H-H2O]+ 297.6 0.41 792.6778 2 298.8 0.12 
GlcCer 42:02 [M+Na]+ 300.7 -0.63 832.6701 1 298.8 0.15 
GlcCer 42:02 OH [M+Na]+ 303.1 -0.70 848.6660 1 301.0 0.16 
GlcCer 42:04 OH [M+H]+ 300.2 -0.48 822.6523 1 298.8 0.14 
GlcCer 43:02 [M+Na]+ 303.6 -0.39 846.6836 1 302.4 0.09 
GlcCer 44:02 [M+Na]+ 307.5 -0.66 860.7005 1 305.5 0.14 
GlcCer 46:05 OH [M+H]+ 309.9 -0.69 876.6957 1 307.8 0.14 

Average absolute % bias 0.43   Average % RSD 0.14 
Sphingomyelins 
SM 34:01 [M+H]+ 281.2 0.18 703.5808 1 281.7 0.13 
SM 34:01 [M+Na]+ 279.9 0.87 725.5647 1 282.3 0.22 
SM 36:01 [M+H]+ 288.4 -0.36 731.6116 1 287.4 0.15 
SM 36:01 [M+Na]+ 284.1 1.32 753.5268 1 287.9 0.15 
SM 36:02 [M+H]+ 285.3 -0.51 729.5966 1 283.9 0.15 
SM 38:00 [M+H]+ 289.8 0.16 745.6293 1 290.3 0.18 
SM 38:01 [M+H]+ 293.4 -0.11 759.6422 1 293.1 0.15 
SM 38:01 [M+Na]+ 293.3 0.04 781.6248 1 293.4 0.12 
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SM 40:00 [M+H]+ 300.8 0.08 789.6903 1 301.0 0.14 
SM 40:01 [M+H]+ 299.1 -0.10 787.6743 1 298.8 0.14 
SM 40:01 [M+Na]+ 297.2 0.62 809.6581 1 299.0 0.13 
SM 40:02 [M+H]+ 296.8 -0.31 785.6599 1 295.9 0.15 
SM 41:01 [M+H]+ 302.3 -0.18 801.6911 1 301.7 0.15 
SM 41:02 [M+H]+ 300.1 -0.49 799.6761 1 298.6 0.19 
SM 42:00 [M+H]+ 306.5 0.11 817.7225 1 306.8 0.14 
SM 42:01 [M+H]+ 304.4 -0.05 815.7058 1 304.3 0.14 
SM 42:02 [M+H]+ 302.2 -0.19 813.6896 1 301.6 0.15 
SM 42:02 [M+Na]+ 302.0 -0.28 835.6737 1 301.2 0.14 
SM 42:03 [M+H]+ 300.8 -0.66 811.6745 1 298.8 0.19 
SM 44:01 [M+H]+ 305.7 -0.29 827.7070 1 304.8 0.17 
SM 44:02 [M+H]+ 311.0 -0.39 843.7410 1 309.8 0.21 
SM 44:03 [M+H]+ 308.7 -0.34 841.7226 1 307.6 0.14 
SM (m/z 733.63)      -- -- -- 733.6272 1 290.1 0.13 
SM (m/z 761.66)      -- -- -- 761.6590 1 295.6 0.14 

Average absolute % bias 0.35   Average % RSD 0.15 
SPLASH Mix 
18:1(d7) LPC [M+H]+ 232.9 -0.53 529.4026 1 231.7 0.09 
18:1(d7) LPC [M+Na]+ 236.0 -1.14 551.3809 1 233.4 0.10 
15:0-18:1(d7) DG [M+H-H2O]+ 255.6 0.75 570.5576 1 256.7 0.16 
15:0-18:1(d7) DG [M+Na]+ 257.1 -0.18 610.5485 1 257.6 0.12 
15:0-18:1(d7) PE [M+H]+ 271.7 0.31 711.5758 1 272.6 0.10 
15:0-18:1(d7) PE [M+Na]+ 277.8 0.03 733.5595 1 277.9 0.11 
15:0-18:1(d7) PS [M+H]+ 278.6 0.23 755.5674 1 279.2 0.10 
18:1(d9) SM [M+H]+ 286.3 0.71 738.6596 1 287.5 0.10 
18:1(d9) SM [M+Na]+ 286.9 0.22 760.6386 1 288.4 0.11 
15:0-18:1(d7)-15:0 TG [M+NH4]+ 312.1 -0.11 829.8109 1 309.3 0.10 
15:0-18:1(d7)-15:0 TG [M+Na]+ 310.6 -0.41 834.7644 1 311.7 0.10 

Average absolute % bias 0.42   Average % RSD 0.11 
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