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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Portions of this chapter are published under the title, “Protective Genes and Pathways in 

Alzheimer’s Disease: Moving Towards Precision Interventions,” in Molecular Neurodegeneration. 

Supplementary materials from the publication can be found in Appendix A. 
 

 

1.1 OVERVIEW 

 

 Alzheimer's disease is a debilitating disorder that is characterized by neurodegeneration, 

memory loss and cognitive impairment. Sporadic late-onset AD is the most common form of the 

disease, though early-onset and familial forms of AD also exist. There is no cure for Alzheimer's 

disease and though only one disease-modifying therapy has been FDA-approved, the other five 

approved therapeutics are only effective for symptom management. Despite years of efforts, AD 

drug discovery has been plagued by numerous challenges. Proposed therapeutics have focused on 

amyloidosis, with many trials being halted due to toxicity or a lack of clinical efficacy on cognitive 

endpoints despite successfully lowering brain amyloid levels. In addition, AD is notably 

heterogeneous in presentation, making therapeutic development complex. 

 Studies using large-scale human "-omic" datasets (e.g., genomic, transcriptomic, proteomic, 

etc.) provide an opportunity to better acknowledge the heterogeneity and complexity of AD. More 

recently, -omics have been used to reveal novel insights into the biological mechanisms behind 

AD, which subsequently, helped to diversify possible therapeutic targets for AD. Though 

mitigation of harmful pathways and/or removal of neuropathology are two possible mechanisms 
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of action for AD therapeutics, our group and others have suggested that examining AD from a 

different perspective focusing on protective pathways may provide unique opportunities for the 

treatment of AD as well as for precision medicine. 

 The present dissertation focuses on the concept of resilience to AD or protection from AD, 

which refers to older individuals who have less brain atrophy or cognitive impairment than 

expected, given a particular level of AD neuropathology. Therefore, we believe that there are 

genetic and molecular factors that are protecting these individuals from the downstream 

consequences of pathology. Leveraging a unique statistical model, we aim to identify genetic and 

molecular modifiers of AD risk. Briefly, we leverage genotype data to identify variant-level 

modifiers of AD pathology on brain atrophy, transcriptomic data to identify gene-level modifiers 

of APOE effects on cognition, and finally, gene co-expression networks to identify novel 

associations with hallmarks of AD. In addition to novel drug target identification, these analyses 

provide a proof-of-concept for how these analyses can be used for biomarker discovery. Altogether, 

the analyses and results within this dissertation should demonstrate that 1) there are numerous 

ways to link genetic discovery to biological function and 2) that multi-omics can be used to 

discover and to explore previous results within new contexts. 

 

1.2 ALZHEIMER'S DISEASE 

 

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that is characterized by 

two main pathologies (i.e., amyloid and tau) and presents with significant cognitive impairment as 

it progresses.1, 2 AD is typically diagnosed in the clinic via neuropsychological tests, brain imaging, 

and biomarker analysis. However, the gold standard of diagnosis is determined by 
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neuropathological burden at autopsy though frameworks are evolving as technology improves and 

the AD field becomes more knowledgeable.3 

In 2019, an estimated 5.8 million Americans were living with AD, and it was ranked as the 

sixth leading cause of the death in the US as well as the most common cause of dementia among 

older adults.4 AD also represents a financial burden to patients, caregivers, and their loved ones; 

the estimated healthcare costs totaled $305 billion in 2020.5 Both the number of inflicted 

individuals and healthcare costs are expected to more than double by 2050 as the aging population 

increases making it clear that AD will become a major public health crisis.6 

AD is often divided into two categories: early-onset AD (EOAD) and late-onset AD 

(LOAD). EOAD comprises only 1-5% of all AD cases and is classified by onset before the age of 

65.7, 8 In contrast, the overwhelming majority of AD cases are late-onset and take place in 

individuals over the age of 65.7, 9 There are both sporadic and familial forms of EOAD and LOAD, 

where familial forms are most often associated with autosomal dominant mutations in genes such 

as APP (amyloid precursor protein), PSEN1 (presenilin 1), PSEN2 (presenilin 2).7, 8, 10 However, 

sporadic forms of EOAD11, 12 and LOAD have a more complex and multifactorial etiology.8, 13-17 

1.2.1 Discovery of Alzheimer’s Disease 

Alzheimer’s disease was discovered in 1906 by psychiatrist and neuroanatomist, Alois 

Alzheimer. At that time, he encountered a 50-year-old female patient who exhibited paranoia, 

memory disturbances, confusion, and aggressiveness. After her death, he discovered and described 

the two main neuropathologies of AD: beta-amyloid (Ab) plaques and tau neurofibrillary tangles 

(NFTs, Figure 1.1),18 which account for approximately 40 to 70% of the variance in cognition in 

older adults.19 However, it was not until over 60 years later that a relationship between Ab, tau, 

and dementia were fully established.19-21  
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Figure 1.1: Artistic depiction of amyloid and tau pathology. Adapted from Silbert 2007.22 

 

1.2.2 Amyloid Pathology 

In the context of AD, Ab comes from the proteolytic cleavage of amyloid precursor protein 

(APP), a single pass transmembrane protein, by b- and g-secretase into its pathologic forms Ab42 

and Ab40, which are 42 and 40 amino acids long, respectively (Figure 1.2). Though larger 

amounts of Ab40 are generated via cleavage overall, it is believed that Ab42 is more likely to 

aggregate due to its increased hydrophobicity in comparison to Ab40.23 The biological function of 

APP is unknown, though studies have linked APP to cell growth, cell survival, and neuronal 

migration.19 APP has also been compared to Notch, a developmental protein that is also cleaved 

by g-secretase.24, 25  

Amyloid plaques, also called neuritic plaques, are extracellular and primarily consist of 

Ab42.26  It has been hypothesized that the development of neuritic plaques is due to extracellular 

amyloid aggregation, though it has also been suggested that plaques begin intracellularly and 

become extracellular after neuronal death.23 Two types of plaques are most commonly observed 

in AD: diffuse and dense-core.27 Dense-core plaques often contain neuronal nuclear material and 
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have been associated with synaptic loss as well as activated astrocytes and microglia.28 In contrast, 

diffuse plaques are not accompanied by microglia, and it is unclear whether diffuse plaques play 

an independent role from dense-core plaques in the neuropathological progression of AD or 

whether they are observed in AD brains due to their development into dense-core plaques.27, 28 

Amyloid pathology has been linked to cognitive decline, neuroinflammation, as well as tau 

deposition.21, 29-32 

 

 
 

Figure 1.2. APP cleavage pathways. Adapted from Chen et al., 2017.33 A schematic demonstrating the non-
amyloidogenic and amyloidogenic cleavage pathways of human APP.  CTF stands for C-terminal fragment and 
AICD is APP intracellular domain. 
 

Amyloid burden has since become a biomarker for AD. Brain amyloid burden can be 

detected via positron emission tomography (PET) with tracers such as Pittsburgh compound B 

([11C]-PiB) and florbetapir ([18F]-AV-45)34 whereas cerebrospinal fluid (CSF) or plasma Ab are 

most often detected via immunoassay.35, 36 Both PET and CSF measurements of amyloid are highly 

correlated.37, 38 
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1.2.3 Tau Pathology 

 Tau is a component of the other major neuropathology of AD, neurofibrillary tangles. Tau 

and its associated pathologies, known as tauopathies, are also of particular interest in several 

neurodegenerative diseases including frontotemporal dementia, Parkinson’s disease, and 

amyotrophic lateral sclerosis.39-41 

 The severity of neurofibrillary tangle burden within the brain can be classified via Braak 

staging, which is broken up into 6 progressive stages (Figure 1.3).42 In stages I and II, NFTs are 

limited to the entorhinal cortex. In III and IV, NFTs spread to the limbic regions, including the 

hippocampus. Finally, in stages V and VI, NFTs can be found throughout the cortex.42 

 

 

Figure 1.3. Schematic of Braak staging for neurofibrillary tangles. Adapted from Braak and Braak, 1991.42 
 

Tau protein is encoded by the gene MAPT, microtubule associated protein tau, which is 

primarily expressed in neurons.39, 43 Though the exact function of tau protein is still being 

characterized, it has been suggested that tau acts to stabilize microtubules within the axon.39 In 

addition, studies have implicated tau in axonal transport of organelles and macromolecules.44 Tau 
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is regulated by posttranslational modifications such as glycosylation, phosphorylation, and 

ubiquitination.40, 45 

 In 1986, tau filaments in NFTs were discovered to be abnormally hyperphosphorylated,46 

and in more recent years, as many as 40 phosphorylation sites have been identified.20 

Hyperphosphorylated tau is pathologic, and it has been shown to “seed” the formation of tau 

filaments when interacting with normal tau.20 It is hypothesized that the prion-like propagation of 

tau filaments by hyperphosphorylated tau is how it is spread throughout the brain.20, 40, 47 Tau 

pathology has also been linked to cognitive impairment and neuronal loss.48-50 

 Similar to amyloid, tau PET imaging and CSF tau immunoassays51 are used as biomarkers 

for AD. Recently, several tau PET tracers have been developed so that tau progression throughout 

AD can be monitored.52 

1.2.4 Amyloid Cascade Hypothesis 

 The amyloid cascade hypothesis posits that the abnormal aggregation of Ab plaques 

precede tau filament formation and deposition. Then, both amyloid and tau pathology and 

downstream events instigate neuronal injury and neurodegeneration, subsequently causing 

cognitive impairment and memory loss (Figure 1.4).53-56 This hypothesis was strongly supported 

by many studies55 such as those focusing on familial EOAD, as many of the causal mutations of 

familial EOAD were identified in genes such as APP, PSEN1, and PSEN2, which are directly 

involved in the amyloid processing pathway.7, 8  

 Although the relationship between amyloid and tau is not fully characterized, studies have 

demonstrated that injection of Ab into mouse brains caused a 5-fold increase in tau tangles near 

the injection sites.57 In addition, it has been shown in a triple transgenic mouse that amyloid 

deposition occurs prior to tau pathology.58 This is further supported by a rodent study 
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demonstrating that antibodies against tau do not affect Ab pathology, which also suggests that 

amyloid is upstream of tau.59 In humans, biomarker studies observe amyloid via PET scans and 

CSF prior to increases in CSF tau (Figure 1.4).1, 2, 56 It should also be noted that, in the amyloid 

cascade framework, amyloid abnormalities can occur decades before any cognitive impairment 

presents.2, 60, 61 

 

 

Figure 1.4. Theoretical schematic for the amyloid cascade hypothesis. Adapted from Jack et al., 2013.2 This plot 
describes that biomarker abnormalities are detected in CSF Ab42 and amyloid PET long before CSF tau 
abnormalities are noted and can occur decades before cognitive impairment arises. 
 
 

Despite numerous studies supporting the amyloid cascade hypothesis, there is evidence to 

suggest that amyloid alone is not sufficient to cause AD. For example, studies have suggested that 

neurofibrillary tangles have a stronger correlation with cognitive impairment than neuritic 

plaques.27, 56, 62 Furthermore, amyloid-focused therapeutics have largely failed in clinical trials, 
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despite effectively reducing amyloid burden, due to toxicity or inability to meet cognitive 

endpoints.63-65 

1.2.5 Current Therapeutics for Alzheimer’s Disease 

There is no cure for Alzheimer’s disease. AD drug discovery has been plagued by a 99.6% 

failure rate between the years of 2002 to 2012 with proposed therapeutics primarily focusing on 

amyloidosis for the past 25 years.63, 66 In addition to the proposal of few non-amyloid-related 

targets, AD drug discovery is also suffering from numerous challenges including: the limitations 

of animal models, blood-brain barrier penetrance, and disease complexity and heterogeneity.63, 66 

To date, there have only been 6 FDA-approved therapies specifically for AD, with the last 

being aducanumab in 2021.67, 68 Aducanumab is touted as the first disease-modifying therapeutic 

for AD, and it is an monoclonal anti-amyloid antibody.69 The approval of aducanumab has been 

controversial.70-72 Though it has shown efficacy in reducing amyloid plaque burden,73 it has been 

debated whether or not it showed efficacy in preventing cognitive decline.70, 72 The other FDA-

approved drugs for AD are as follows: Donepezil, Rivastigmine, Galantamine, Memantine, and a 

combination of Donepezil and Memantine.  

Donepezil, Rivastigmine, and Galantamine are acetylcholinesterase inhibitors. 

Acetylcholine is a neurotransmitter that is essential to numerous central nervous system (CNS) 

functions including attention and cognition.74-76 After neurotransmission, acetylcholine is 

hydrolyzed resulting in free choline which is then taken up by the pre-synaptic neuron. In both 

aging and AD brains, it was discovered that cholinergic function is disrupted (likely due to 

neuronal death), which correlated with cognitive impairment and cognitive decline.76 Furthermore, 

treatment with cholinergic inhibitors such as scopolamine and atropine induce memory impairment 

in rats76 and induced memory loss in young, healthy adults.77 These studies along with numerous 
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others implicated cholinergic deficiency or dysfunction with cognitive impairment, supporting a 

“cholinergic hypothesis” of AD. Together, these studies supported the initial treatment approach 

of developing acetylcholinesterase inhibitors for AD. Today, Donepezil, Rivastigmine, and 

Galantamine remain viable treatment options for cognitive symptoms of mild to moderate AD. 

However, they are not disease modifying and are only effective for symptom management.78 

Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been 

approved for the treatment of moderate to severe AD as well as other disorders such as Parkinson’s 

disease and epilepsy.79 It can be used alone or in combination with the acetylcholinesterase 

inhibitor, Donepezil. Memantine functions as a low-affinity, uncompetitive antagonist for the 

NMDA receptor that both binds and dissipates quickly resulting in less negative effects than 

stronger NMDA receptor antagonists such as ketamine or MK-801.79, 80 In clinical trials, 

memantine treatment resulted in better cognitive and behavioral outcomes.81 

The NMDA receptor is activated by glutamate, the most abundant excitatory 

neurotransmitter in the CNS.80 Activation of the NMDA receptor plays a major role in synaptic 

plasticity (i.e., long-term potentiation and long-term depression), which is considered a correlate 

for learning and memory.82, 83 Though activation of the NMDA receptor is crucial for synaptic 

plasticity84 and neuronal survival,84 excessive activation also causes neuronal death.80  

Glutamatergic and NMDA signaling are aberrant in AD; Ab can impair glutamate reuptake 

and recycling as well as increase NMDA receptor currents, leading to excitotoxicity and cell 

death.80 Studies have also suggested that NMDA receptor co-agonists, such as D-serine are 

upregulated in AD; reduction of D-serine was able to lessen both amyloid- and NMDA receptor-

induced excitotoxicity.80 
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Historically, AD and AD drug discovery research has utilized a candidate gene approach, 

which probes a set of genes determined a priori that potentially contribute to AD risk or the AD 

endophenotype of interest.85, 86 Though familial and candidate gene studies of APP, PSEN1, and 

PSEN2 as well as studies supporting the amyloid cascade hypothesis53, 54  strongly directed AD 

drug discovery efforts to amyloid, amyloid-focused therapeutics have not shown clinical efficacy 

on improving cognition in historical trials.63-65, 67, 87 Furthermore, familial, early-onset cases of AD 

only make up a small percentage of all AD cases suggesting that there are factors other than 

amyloid that should be explored.  

The recent availability of large “-omics” datasets provide a unique opportunity to overcome 

some of the previous challenges that have hampered drug development in AD. First, it allows for 

a different perspective on AD drug discovery focusing on phenotype first to identify genes and 

variants of interest (e.g., reverse genetic approaches, genome- or exome-wide association studies), 

further diversifying therapeutic targets.64 In addition, the use of human data and human phenotypes 

are incredibly useful to supplement animal models, which are invaluable to drug discovery but 

have many limitations with regard to outcomes for AD drug discovery.88 The boon of “-omics” 

data also permits systems biology-based approaches that can help to probe the etiology behind a 

multifactorial disease such as AD.89 

Sporadic LOAD is complex, with numerous environmental and genetic factors 

contributing to the disease.9 LOAD is highly heritable with twin studies providing estimates of 

60%<h2<80%, 90 and to date over 40 risk loci for AD have been identified via large genome-wide 

association studies (GWAS), most of which are common variants with small effect sizes (Figure 

1.5).91-93 Although these new discoveries have provided novel insight on the biological 

contributors to AD, disease modifying treatments for Alzheimer’s remain elusive.63, 65, 94 
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Figure 1.5. A summary of genes containing rare and common variants that contribute to AD risk. Adapted 
from Karch et al., 2015.95 

 
 

1.3 RESILIENCE TO ALZHEIMER’S DISEASE 

 

The ideas of resistance to pathology and resilience against the downstream consequences 

of pathology have been of particular interest in the AD field as studies continue to identify 

individuals with less than expected pathology, atrophy, or impairment given their age and/or 

neuropathological progression.96 One such framework is presented in Figure 1.6. Protective 

factors can be defined as genetic97 or environmental features98 that reduce the risk that an 

individual will develop clinical AD. However, as our ability to measure the full neuropathological 

cascade of AD has expanded, the theoretical models have matured to include factors that protect 

from pathology, factors that protect against cognitive decline, and factors that protect against the 

downstream neurodegenerative cascade in AD (e.g., tau-related neurodegeneration).99  
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Figure 1.6. Hypothetical framework for resistance and resilience to AD. In brief, resistance can be defined 
as having less pathology than expected whereas resilience can be defined as less atrophy or cognitive impairment 
than expected given a level of pathology. 

 

Resilience to AD, also known as asymptomatic or preclinical AD, is a phenomenon that in 

which individuals present with the neuropathological hallmarks of AD, but do not show clinical 

signs of cognitive impairment. In fact, as many as 70% of cognitively unimpaired older adults have 

some amount of AD pathology present in the brain at death, and as many as 30% of cognitively 

unimpaired older adults meet neuropathological criteria for autopsy-confirmed AD.100-102 A shift 

in focus from AD risk to resilience presents an opportunity to uncover novel biological 

mechanisms of AD and to identify promising therapeutic targets for intervention. Such an 

approach has been transformative in other fields. For example, five loss-of-function variants in 

PCSK9 that are associated with extremely low-density lipoprotein (LDL) cholesterol levels were 

identified in participants of the Dallas Heart Study.103 These mutations led to the development of 

proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, which are currently used to treat 

statin-resistant hypercholesterolemia.94, 104 In a similar way, uncovering and characterizing the 
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genetic factors that protect against AD could lead to new therapeutic discoveries – in which pre-

existing biological pathways could be modulated for treatment. 

Protective factors contributing to resilience are broadly defined within the literature. In 

large genome-wide association studies looking at AD cases in comparison to controls, protective 

variant alleles and/or genes may be defined as those with odds ratio (OR) < 1 (as examples: 91, 92, 

105, 106). In studies using continuous outcomes, protective variants and/or genes may be defined as 

those associated with a delay in disease onset107, 108 or those associated with less pathology than 

expected.109 Additionally, protective genetic factors may arise through associations with known 

protective phenotypes such as longevity,110 cognitive reserve,111 educational attainment,112 or brain 

reserve.111, 113 Cognitive reserve has been defined by Stern et al.,114 as the “adaptability of cognitive 

processes that help to explain differential susceptibility of cognitive abilities to brain aging, 

pathology, or insult,” whereas brain reserve is described as the “neurobiological capital (i.e., 

number of neurons) that allows individuals to better cope with brain aging and pathology before 

clinical or cognitive changes arise.”114 Characterizing the manner in which genetic factors protect 

against AD is critical to advance the field. Genes may protect by reducing neuropathological 

burden, or by providing a more optimal response to high levels of neuropathology, or even by 

providing a higher biological or cognitive baseline that might buffer against the clinical 

manifestation of the first stages of AD.109 In this section, we will review, summarize, and carefully 

interrogate the evidence for emerging molecular pathways of protection to AD. 

1.3.1 Inclusion Criteria 

To identify AD protective or resilience variants and genes, we performed an initial PubMed 

search using the search terms: “protective variant Alzheimer”, “protective SNP Alzheimer’s 

Disease”, “protective GWAS Alzheimer”, and “SNP reduced risk AD”, which yielded a total of 



 15 

817 search results. The search results were further filtered manually to those that were relevant 

and in scope of this review (Figure 1.7). More specifically, we looked for previously identified 

variants in large GWAS and meta-analyses, case-control, cohort, or family studies, and rare variant 

analyses. Additionally, we included genes and variants that were previously reviewed or identified 

in the following papers: Andrews et al., 201997 and Ouellette et al., 2020.115 Although many 

protective single nucleotide polymorphisms (SNPs) and genes have been identified within the 

literature (see Appendix A.3), we have limited our discussion in this review to those with 

published functional evidence beyond genetic discovery analyses alone.  

“Functional evidence” includes (but is not limited to): additional analyses within the 

discovery manuscript, papers that replicated the original results, papers examining the biological 

effects of the variant of interest, papers that examine the annotated or referenced gene in the 

context of AD, and referenced literature that helps with interpretation and directionality of the 

biological mechanisms behind protection.     

 

 

Figure 1.7. Summary of literature search for protective variants. A schematic demonstrating how search 
results were refined to those highlighted in the review. 
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1.3.3 Evidence Categories 

For each highlighted variant, the strength of evidence for their mechanism of action is 

varied; the categories may be defined: “variant-level”, “gene-level”, and “pathway-level.” For 

example, the mechanistic evidence for non-coding common variants may be limited to replication 

in different cohort studies. For this “variant-level” evidence, we look to additional literature to 

suggest a putative functional gene near or within the locus and a biological pathway. Other variants 

may have “gene-level” evidence, such that the functional gene within the region is well-established 

or that they cause an amino acid change within the encoded protein. For these variants, we look to 

literature to help us interpret directionality of effect and the biological pathway(s) behind 

protection. The strongest variants have all three facets of evidence (including “pathway-level”); 

they have been replicated, they are annotated, and their function and mechanism of protection are 

well-studied. The level of evidence for each highlighted variant and gene is included in Table 1.1. 

1.3.4 Introduction to Overview of Protective Genes and Variants 

Similar to AD risk, there are both protective biological and environmental contributors to 

resilience (Figure 1.8). In the following sections, we will focus on a selection of genes and variants 

that directly mediate the cellular response to AD pathology or downstream cellular stressors of 

pathology in the brain (Table 1.1). These genes also represent viable disease-modifying targets 

for AD, which could be modulated during and/or after pathological onset, but before cognitive 

impairment. Many of the genes and variants reviewed in this publication were initially identified 

in genome-wide association studies and meta-analyses of AD. A comprehensive list of protective 

variants and genes identified to date in such studies are included in Appendix A.3 
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Table 1.1: Summary of reviewed protective variants and genes 

rsIDA AlleleB CPRAB MAFC Gene Evidence Reference 

rs63750847 C > T 21:27269932:C:T 0.0001 APP Pathway 116 

rs7412 C > T 19:45412079:C:T 0.087 APOE-e2 Pathway 
117 

rs121918393 C > A 19:45412013:C:A 0 APOE3ch Gene 
107 

rs9536314 T > G 13:33628138:T:G 0.147 KL (Klotho-
VS) 

Gene 
118 

rs9527025 G > C 13:33628193:G:C 0.168 KL (Klotho-
VS) 

Gene 
118 

rs10553596 T > -  10:115439641:T:- 0.19 CASP7 Gene 
119 

rs2230806 C > T 9:107620867:C:T 0.29 ABCA1 Pathway 
120 

rs72973581 G > A 19:1043103:G:A 0.05 ABCA7 Pathway 
121 

rs11218343 T > C 11:121435587:T:C 0.052 SORL1 Gene 
122 

rs142787485 A > G 2:26358156:A:G 0.0406 RAB10 Variant 
123 

rsIDA AlleleB CPRAB MAFC Gene Evidence Reference 
rs3851179 T > C 11:85868640:T:C 0.361 PICALM Variant 

124
 

rs3796529 C > T 4:57797414:C:T 0.194 REST Gene 
125 

rs72824905 C > T 16:81942028:C:T 0.007 PLCG2 Gene 
106 

rs3747742 T > C 6:41162518:T:C 0.306 TREML2 Gene 
105 

rs1990621 C > G 7:12283873:C:G 0.447 TMEM106B Variant  

-  -   MS4A cluster Variant 
126 

-  -   BDNF Pathway 
127 

-  -   Dlgap2 Gene 
128 

A rsID is given for all variants except for reviewed genes whose wild-type forms are protective or for those in a 
multi-gene cluster (major > minor). B Allele information from dbSNP (https://www.ncbi.nlm.nih.gov/snp/) 
and/or confirmed in the referenced literature. C Minor allele frequency information from dbSNP (ALFA project 
- global, https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/) and/or confirmed in the referenced literature. 
Abbreviations: CPRA, chromosome, position, reference allele, alternative allele; MAF, minor allele frequency. 

 

For this section, it should be noted that for common variants, one allele (often the minor 

allele) will be associated with protection from AD whereas the other allele will be associated with 

risk. When discussing protective variants, the effective allele will be given in the text unless 

otherwise stated. In addition, the definitive mechanism of action may not be known for all common 

variants, so functional evidence is used to help interpret the acting gene within the region as well 

as the directionality of its mechanism of action.  
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Figure 1.8. Theoretical contributors to resilience. A schematic demonstrating possible environmental and 
biological contributors to resilience to AD. The review focuses largely on proposed protective, biological 
pathways. 

 

1.3.5 Amyloid Precursor Protein A673T: Reduced Pathologic Ab generation 

APP, located on chromosome 21, is a gene that encodes amyloid precursor protein (APP). 

Ab peptides are formed by the proteolytic cleavage of APP by a-, b-, and g-secretases, and this 

processing pathway is also the source of neurotoxic Ab, a major component of Alzheimer’s disease. 

To date, there are over 60 identified mutations in the APP gene, with a large majority existing 

within coding regions.129 Over 25 of these mutations are pathogenic and increase the risk of 

autosomal dominant Alzheimer’s disease through increasing Ab production and oligomerization 

and reducing its clearance.129 

Though mutations in APP are often associated with an increased incidence of familial 

early-onset Alzheimer’s disease, Jonsson et al., identified a missense mutation within the APP 

gene in an elderly Icelandic population that was both protective against Alzheimer’s disease and 
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associated with a slower decline in cognitive function among cognitively normal individuals 94, 116. 

The identified variant is a rare SNP, rs63750847, that results in a substitution from alanine to 

threonine at position 673 of the protein (henceforth reported as p.A673T), which is near its b-

secretase cleavage site.116 Protection conferred by p.A673T is also further supported by in vitro 

studies demonstrating that the p.A673T allele results in a suboptimal b-secretase cleavage site that 

reduces production of pathologic Ab by 50% in comparison to wild-type cells and delayed Ab 

aggregation.130, 131 In addition, a study within a Finnish male sample found that APP p.A673T 

carriers had 28% lower plasma levels of Ab40 and Ab42 compared to their age and APOE matched 

controls.132 Altogether, there is strong gene- and pathway-level evidence that p.A673T is 

protective, and the data also suggest that a reduced amyloid burden throughout life is protective 

against AD as well. 

The p.A673T allele is extremely rare,133-135 so it has not been verified whether it exhibits 

the same protective effect in non-Nordic populations. For example, the carrier frequency for 

p.A673T was only 0.018% in the US white population134 and was found to be absent in a large 

Chinese sample136 suggesting the protective effect of the allele may be limited to individuals of 

Nordic descent.  

1.3.6 Apolipoprotein E 

The gene APOE, located on chromosome 19, encodes the protein Apolipoprotein E 

(APOE). There are three polymorphic alleles of APOE: APOE-e2, e3, and e4, with estimated 

global allele frequencies of 8%, 78%, and 14%, respectively.137 Well-established in the literature, 

APOE-e4 is known as the greatest common genetic risk factor for AD,138-141 in which individuals 

carrying even one APOE-e4 allele have up to 3 times increased risk for AD in comparison to e3/e3 

homozygotes. Carrying two APOE-e4 alleles can increase risk by up to 15-fold.142, 143  
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In contrast, APOE-e2 is a protective factor against AD.117, 144 The magnitude of protection 

has been debated within the literature due to differences between neuropathologically- and 

clinically confirmed AD cases (i.e., individuals exhibiting clinical symptoms may be assigned to 

the AD group in a case-control study, though they do not meet neuropathological criteria for 

AD).142 A recent study with neuropathological samples by Reiman et al., demonstrated that the 

prevalence of AD was extremely low in APOE-e2 homozygotes such that carriers of APOE-e2 are 

2.5 (e2/e3) to 8 (e2/e2) less likely to develop AD.142 The proposed mechanism by which APOE-

e2 provides protection from AD is through reduced Ab aggregation and improved Ab clearance. 

144, 145 However, the biological mechanisms underlying how APOE-e2 enhances Ab clearance have 

not yet been confirmed. One possible hypothesis of clearance is that APOE-e2-Ab complexes are 

more efficiently endocytosed and cleared within cells via their interaction with LDLR (low-density 

lipoprotein receptor), LRP1 (LDL receptor-related protein 1), and HSPGs (heparan sulfate 

proteoglycans), though this is still debated in the field.144-146  

In addition to Ab clearance, recent literature suggests that APOE may also be involved in 

the spreading of tau downstream of amyloidosis. Arboleda-Velasquez et al. identified an individual 

with both an autosomal dominant AD mutation in PSEN1 (presenilin 1, p.E280A) and two alleles 

of a rare mutation within APOE-e3, called the Christchurch mutation (APOE3ch, p.R136S), who 

experienced a multi-decade-long delay in the onset of cognitive symptoms despite having 

widespread amyloid deposition throughout the brain as measured by PET. Although heterozygous 

individuals were present in the cohort, homozygosity of APOE3ch was required for protection. 

Interestingly, tau deposition (as measured by flortaucipir) was limited to the medial temporal and 

occipital lobes.107 So far, these data suggest that the brain can withstand the widespread deposition 
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of amyloid for a long period of time if tau deposition is limited before the onset of cognitive 

impairment.   

Like APOE-e2, the APOE3ch protein displays similar protein-protein interactions with the 

LDLR and HSPG receptors, suggesting that it may offer protection through the same molecular 

mechanisms. For example, APOE3ch protein displays impaired binding affinity for HSPGs, and 

it has been suggested that this altered affinity may be responsible for its effects on tau deposition.107 

Recent studies by Therriault et al., examined the interaction of APOE-e4 and Ab on CSF and brain 

levels of tau supporting a probable relationship between APOE allele (e.g., APOE3ch) and tau 

deposition.147, 148 This relationship is further supported by Shi et al., who demonstrated that of tau 

transgenic mice expressing APOE-e4 had higher tau levels and more neurodegeneration than mice 

expressing APOE-e2 or APOE-e3.149 However, elucidation of the processes behind APOE3ch’s 

inhibition of tau spreading requires further study. 

Given APOE’s involvement in AD, it has been explored as a potential therapeutic target 

for AD treatment. Anti-APOE-e4 antibodies and antisense oligonucleotides that reduce brain 

APOE-e4 levels have been explored, with positive results in reducing Ab plaque burden.150, 151 In 

addition, therapeutics that modulate APOE function to make it more “APOE-e3-like” or “e2-like” 

have been explored with relatively positive results in vitro and in murine models,150 though there 

are important considerations with regard to lipid health as homozygous e2 carriers are likely to 

have a higher incidence of type III hyperlipoproteinemia.152 However, efforts to target APOE 

therapeutically for AD have been somewhat limited due to its widespread expression throughout 

the body (i.e., brain and periphery) and its broad function in biological processes related to adipose 

function, fertility, and metabolism.153, 154 A comprehensive review of APOE signaling in AD has 

been published previously, including the proposal of numerous therapeutic strategies.155 The 
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emergence of APOE3ch suggests that modifying APOE function and protein interactions (e.g., 

APOE-ABCA1, APOE-HSPG, APOE-Ab) through antibodies or small molecules may be the most 

promising pathway for protection.155 

1.3.7 Protection in the Presence of APOE-e4 

As aforementioned, individuals carrying at least one copy of APOE-e4 have significantly 

increased risk for AD and mortality.156 However, not every APOE-e4 carrier develops AD, 

suggesting that there are factors that confer protection in these higher-risk individuals.157 

Supporting this hypothesis, studies have identified variants that are protective from AD despite 

APOE-e4 carriership.  

An allele of the gene, Klotho (KL), named Klotho-VS was first implicated in human aging 

by Arking et al., in 2002.158 Klotho-VS is a haplotype containing two missense variants in linkage 

disequilibrium (LD): rs9536314 (p.F352V) and rs9527025 (p.C370S) 118. Though it has been 

debated within the literature,159, 160 one allele of Klotho-VS has been associated with protective 

phenotypes such as: slower cognitive decline,160, 161 greater cortical volume,162 and reduced 

amyloid burden.163 Most recently, a study by Belloy et al., suggested that a single allele of Klotho-

VS reduces AD risk by 1.3 times in APOE-e4 carriers in comparison to APOE-e4 carriers without 

Klotho-VS.118 The authors also recapitulated previous findings that APOE-e4-carrying Klotho-VS 

heterozygotes had reduced amyloid burden.  

Klotho is involved in numerous biological functions, including growth-factor mediated 

signaling, calcium homeostasis, synaptic function, autophagy, cellular survival, and others.164, 165 

Higher levels of Klotho have been associated with longer life spans166 and decreased markers of 

cellular aging (e.g., lower epigenetic age, higher telomerase activity).167, 168 Interestingly, 

heterozygotes with the -VS haplotype appear to have increased levels of Klotho and lower AD risk 



 23 

in comparison to homozygotes, suggesting that there is a protective range of Klotho.118 At this 

time, there is no established connection between Klotho and APOE function in clearance, though 

Klotho appears to mediate amyloid clearance via autophagic pathways that interact with APOE. 

169-172 Interestingly, Zhao et al. demonstrate that Klotho overexpression can reduce tau 

phosphorylation as well as improve Ab clearance in a mouse model of AD, which suggests that 

Klotho can also reduce the neuropathological burden of amyloid and tau independently of 

APOE.173 Though the evidence implicating Klotho-VS in AD is relatively strong, the exact 

biological pathway by which Klotho-VS is protective requires further study. 

In another study identifying modifiers of AD risk in APOE-e4 carriers, APOE-e4 

homozygotes carrying a common loss-of-function variant in CASP7 (rs10553596) had roughly 2-

fold reduced risk of AD compared to noncarriers.119 rs10553596 represents a TT deletion within 

the coding region of CASP7; this causes both a leucine to serine amino acid change at position 44 

of the protein as well as premature termination at position 133. Though caspase 7 is the likely 

functional gene, we can only speculate why this particular variant preferentially protects APOE-

e4 carriers. Caspase 7’s most well-established role is within the apoptotic cascade; however, it has 

been suggested that caspase 7 plays an integral role in the activation of microglia without initiating 

cell death.174 Therefore, the loss of caspase 7 function may reduce aberrant microglial activation, 

thus limiting neuroinflammation, neurotoxicity, or cell death in response to pathology.174-176 

However, neither of the variants of KL (Klotho) or CASP7 are protective in the absence of 

APOE-e4, suggesting that the protective effects may only be seen under higher pathologic 

burden.118, 119 Broadly, Klotho-VS and caspase 7 (rs10553596) appear to exhibit protection via 

increasing cellular tolerance of stress,177, 178 though elucidation of their true therapeutic potential 

requires further examination.  
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1.3.8 Lipid Signaling and Homeostasis 

APOE is also highly involved in lipid metabolism,153 and its major role in AD suggests that 

lipid signaling is an important etiological pathway of AD. Throughout the body, lipids play major 

roles in the structure and integrity of the cellular membrane, as well as endo- and exocytosis of 

macromolecules.179 In the brain, studies suggest that they also play roles in blood-brain barrier 

function, inflammation, and myelination, among other processes.179 Variants within lipid-related 

genes have been associated with both risk and resilience to AD, some of which include (but are 

not limited to) the following genes: APOE,155 ABCA1,180, 181ABCA7,182 and SORL1,183 which will 

be discussed further below. The protective SNPs identified within SORL1, ABCA7, and ABCA1 

further support a hypothesis that much of the genomic protection against AD relies on efficient 

clearance of pathology.   

ABCA1 encodes a protein of the same name (ABCA1, ATP-binding cassette transporter 

ABCA1) that mediates cholesterol efflux and APOE lipidation.184 Two variants in ABCA1, 

rs2230805 and rs2230806, were identified as protective variants via a case-control study in a 

Hungarian sample 120. Both rs2230805 and rs2230806 cause a non-synonymous amino acid change 

(p.L158L and p.R219K, respectively) and these SNPs are in strong LD (D’: 0.92; r2: 0.766).120 

There has been some debate within the literature about whether rs2230805 and rs2230806 are truly 

protective;181 however, there is evidence that the rs2230806/p.R219K variant delays the onset of 

LOAD by 1.7 years on average.108 Functional studies suggest that ABCA1 deficiency increases 

Ab deposition and exacerbates cognitive impairment in mice, especially in rodents expressing 

APOE-e4,185 so the protective effect may be mediated by increased expression of ABCA1 or a 

gain-of-function in ABCA1 protein leading to enhanced lipidation of APOE.  
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ABCA7 (ATP-binding cassette transporter, ABCA7) is also a gene within the same ATP-

binding cassette transporter family.186 A common variant in ABCA7, rs72973581 (Study MAF = 

4.3%121), results in a glycine to serine substitution at position 215 (p.G215S) and has been shown 

to reduce AD risk by roughly half.121 Though ABCA7 mediates lipid efflux and regulates lipid 

homeostasis similar to ABCA1, its protective effect appears to take a different path; ABCA7 has a 

function in phagocytosis and APP processing.186 For example, microglia from Abca7-deficient 

mice exhibit reduced capacity for phagocytosis and increased activation of b-secretase, resulting 

in higher levels of Ab40 and Ab42.187-189 

A protective variant was also identified within the SORL1 (sortillin-related receptor 1) gene, 

which is a receptor for APOE.190 More specifically, rs11218343-C is an intronic variant within 

SORL1, and the minor allele was associated with protection from AD in a genome-wide meta-

analysis of Caucasian, Japanese, Korean, and Han Chinese individuals.122 SORL1 is a member of 

the LDLR protein family as well as the vacuolar protein sorting 10 (VPS10) domain receptor 

family of proteins; it is suggested that SORL1 binds soluble Ab and directs it to lysosomes for 

eventual degradation.191 Though it is unclear how the minor allele rs11218343-C affects SORL1 

expression because it is in a non-coding region, SORL1 loss-of-function or deficiency has been 

associated with AD.192-194 Therefore, a gain-of-function may be protective against AD. In addition, 

the gene-gene interaction between APOE and SORL1 may also mediate amyloid clearance.195, 196 

Similar to potential therapeutics that aim to increase the protective potential of APOE, 

targeting ABCA1, ABCA7, and SORL1 with activators (i.e., positive allosteric modulators, partial 

agonists, agonists) or increasing their expression may mimic the protective effect of the identified 

variants.197, 198 Again, there are also ABCA1, ABCA7, and SORL1 variants that increase the risk of 

AD,180-183 emphasizing the importance of lipid homeostasis in the neuropathological progression 
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of AD. On the other hand, these protective variants suggest that lipid-mediated endocytosis and 

phagocytosis are important for amyloid clearance.  

1.3.9 Endosome and Lysosome Regulation 

As aforementioned, lipid homeostasis is also connected to cellular trafficking.199 

Dysregulation of cellular trafficking (e.g., endosomal-lysosomal pathways, among others) has 

been associated with neurodegenerative disorders including AD,200 Parkinson’s disease, and 

amyotrophic lateral sclerosis,201 and variants within trafficking genes have been identified in large-

scale GWAS and meta-analyses of AD.91-93 From APP processing202 and amyloid clearance203 to 

neurotransmission,204 maintenance of cellular trafficking could both be a cause and/or 

consequence of mechanisms protecting individuals from AD. 

RAB10 (Ras-related protein Rab-10) encodes a protein of the same name that is a small 

GTPase and a key regulator of cellular trafficking.205 The protective variant, rs142787485-G, is 

located in the 3’ untranslated region of the RAB10 gene and reduces AD risk by up to 1.7 times. 

123 Though it is unclear whether the protective effect of rs142787485-G is through reduced RAB10 

expression, mRNA levels of RAB10 are increased in AD, and there is evidence that RAB10 may 

also play a direct role in APP processing.123, 206 In support of these hypotheses, in vitro studies 

demonstrate that shRNA-mediated knockdown of rab10 in mouse neuroblastoma cells results in a 

reduction of amyloid.123 RAB10 has also been associated with the retromer complex, which 

mediates clearance of pathology.206 However, RAB10 is also involved in other cellular functions 

such as the maintenance of endoplasmic reticulum morphology, axonogenesis, and 

neurotransmitter release, making it difficult to pinpoint its exact contribution to neuroprotection.206, 

207 
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A variant in the PICALM (phosphatidylinositol-binding clathrin assembly protein, 

PICALM) locus, rs3851179-A, exhibits protection from AD in numerous studies of European-

decent (Caucasian/non-Hispanic white) participants (OR = 0.3 - 0.9).208, 209 However, it should be 

noted that this protective effect appears to be limited to APOE-e4 non-carriers.124 A clathrin-

interacting protein, PICALM plays a major role in clathrin-mediated endocytosis, which can 

facilitate neurotransmission through receptor recycling and degradation.210, 211 Variants in the 

PICALM locus have also been associated with increased risk of AD, 212, 213 though the pathogenic 

mechanisms are still unclear. Ando et al. imply that PICALM is abnormally cleaved and 

downregulated in AD brains.214 Other studies have suggested that PICALM modulates APP 

processing and Ab clearance,211 and inducible pluripotent stem cell experiments have supported 

those findings.215 Though the functional gene in the region has not been definitively demonstrated, 

these studies suggest rs3851179-A mediates protection through increased expression of PICALM 

and improved Aβ clearance, perhaps, through endocytic mechanisms.215, 216 

Though the protective effects of the RAB10 and PICALM variants appear to point toward 

APP processing and Ab trafficking and clearance, both proteins also play important roles in 

synaptic function and neurotransmission. Therefore, RAB10 and PICALM may also implicate 

additional biological pathways that help preserve synaptic function in the presence of stressors 

such as AD pathology, as expanded upon in the next section.  

1.3.10 Synaptic Dysfunction 

Synaptic dysfunction is a hallmark of AD as well as many other neurodegenerative 

disorders, and it is believed to occur even before marked neurodegeneration and downstream 

cognitive impairment.200, 217 Amyloid and tau burden are associated with synapse loss and 

dysfunction through both direct (e.g., tau-associated mitochondrial disruption) and indirect (e.g., 
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neuroinflammation) pathways.217 Synaptic plasticity is an important, biological correlate of 

learning and memory;218 therefore, processes preserving synaptic density and function (even in the 

presence of pathology) are likely to be protective. There is notable genetic evidence of such 

protection from human genetic studies. 

A transcriptional regulator, REST (restrictive element-1 silencing transcription factor), has 

been of interest with regard to neuronal development and brain aging. REST is a repressor of 

numerous genes including pro-apoptotic genes and others that mediate the cellular response to 

stress and to AD neuropathology.219 In vitro, REST deficiency results in increased cellular damage 

and cell death relative to wild type, especially in response to cellular stressors such as hydrogen 

peroxide and Ab.219 Though REST expression in older adults (aged 73 to 106) is increased when 

compared to young adults (aged 20 to 35), its expression is significantly reduced in individuals 

with mild cognitive impairment (MCI) and AD compared to controls.219 A missense variant in 

exon 4 of REST, rs3796529-T, has been associated with slower hippocampal atrophy in individuals 

with MCI.220 As REST mediates a wide array of biological processes, the effect mediated by 

rs3796529-T has not yet been confirmed. However, evidence suggests that higher levels of REST 

are beneficial due to its regulatory role in neurogenesis and neurodifferentiation as well as its 

ability to improve cellular tolerance to stress; therefore, rs3796529-T may result in a gain-of-

function or an increase of REST expression.221, 222  

BDNF (brain-derived neurotrophic factor), an important protein for neural development, 

neurogenesis, and synaptic growth,223 is a downstream target of REST.224 BDNF is also necessary 

for learning and memory,225 which is often impaired in AD; studies have suggested that BDNF is 

important for synaptic plasticity (such as long-term potentiation) in the hippocampus.225 On 

average, individuals with AD have lower circulating levels of BDNF than controls, though there 
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has been some debate within the literature.226 In support of a protective role, Weinstein et al. 

demonstrated that higher levels of peripheral BDNF decreased AD risk, with the highest levels 

reducing risk by up to two-fold.127 In addition, conditional BDNF expression in 5xFAD mice was 

able to rescue cognitive deficits and synaptic function.227 Furthermore, BDNF overexpression was 

shown to be neuroprotective against amyloid in vitro228 and was able to reduce Huntington-like 

phenotypes in mice.229 

A risk allele of BDNF has also been identified: rs6265-A or p.V66M.230, 231 In addition to 

increased risk of sporadic AD, studies suggest that p.V66M increases the severity of cognitive 

decline, hippocampal atrophy, and neuropathological burden in autosomal dominant AD.232-234 

p.V66M negatively affects the secretion of BDNF,235 which supports the hypothesis that 

therapeutics increasing the efficacy, expression, or secretion of BDNF are expected to be 

protective.  

The evidence for synaptic pathways also extends beyond human genomic discovery 

approaches. Dlgap2 (disks large-associated protein 2) was recently identified as a protective 

candidate in a novel genetically diverse mouse model of AD and confirmed in a human GWAS.128 

Proteins within the DLGAP family, such as DLGAP2, function as important scaffolding proteins 

within the post-synaptic density and have been linked to neurological and psychiatric disorders 

including schizophrenia, AD, and Parkinson’s disease.236 DLGAPs also play a role in modulating 

neuronal transmission though synaptic scaling.236 Similar to BDNF, lower levels of DLGAP2 have 

been associated with AD as well as increased cognitive decline.128 Additionally, a risk variant 

within DLGAP2 (rs6992443) was identified in a study examining the association of known 

epigenetically modified genes with LOAD.237 Together, these data suggest that higher levels of 

DLGAP2 are likely to protect synaptic function. Another protein within the DLGAP family, 
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DLGAP1 (also known as GKAP) is a nominated AD drug target on the Agora platform, which is 

a database of nominated targets for AD therapeutics, and increased expression is predicted to be 

protective, similar to DLGAP2.238 Ab has been shown to mediate the degradation of DLGAP1 

through phosphorylation by CDK5.239 Therefore, biological factors or therapeutics preventing the 

phosphorylation and/or degradation of DLGAP1 could help preserve synaptic function in the 

presence of pathology. Altogether, these variants and proteins support the idea that increased 

tolerance to cellular stress and continued maintenance of synaptic function are two interconnected 

mechanisms behind neuroprotection from AD and resilience. 

1.3.11 Immunity and Inflammation 

Neuroinflammation has been linked to overall pathophysiological changes within the brain 

during AD progression.240 Microglia, the resident immune cells of the brain, are responsible in part 

for the clearance of amyloid through phagocytosis and the activation of additional immune cells. 

When the pathological burden in the brain is insurmountable by the immune system, inflammation 

becomes chronic and damaging to neurons due to the prolonged secretion of pro-inflammatory 

cytokines and factors by microglia.240 Though many of the aforementioned protective variants 

primarily mediate amyloid clearance, variants that are able to modulate neuroinflammation (i.e., 

temper its damaging effects) are also likely to be protective. In addition, it should be noted that 

risk variants of PLCG2241 and the MS4A gene cluster242, 243 (discussed below) have been discovered. 

PLCG2 encodes phospholipase C gamma 2 (PLCg2), which is expressed in microglia and 

granule cells within the brain.244 A rare variant of PLCG2 (rs72824905-G or P522R) reduces AD 

risk by nearly two-fold.106, 245 PLCg2 is a member of the phospholipase C-gamma family, and as 

such, cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) into its products, inositol triphosphate 

(IP3) and diacylglycerol (DAG), that then propagate downstream signaling.246 Though canonical 
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phospholipid signaling serves a broad number of functions, PLCg2 has been implicated in immune 

function and is believed to be in the same signaling pathway as TREM2,106 which has been 

identified as a genetic risk factor of AD.247 The nonsynonymous amino acid change, p.P522R, 

appears to lie in a regulatory region of PLCg2 and results in a hypermorphic form of the protein 

though the biological mechanism behind its neuroprotective effect is still unclear.244 It should be 

noted, however, that increased inflammation is a double-edged sword; other gain-of-function 

mutations in PLCg2 have been associated with autoimmune disorders.248 

Similar to PLCG2, TREML2 (triggering receptor expressed on myeloid cell-like 2) is 

expressed by microglia.249, 250 rs3747742-C (p.S144G) is a protective, missense coding variant 

within the TREML2 gene.105 Another protective, intergenic SNP between neighboring genes 

TREM2 and TREML2, rs9381040, is in high LD with rs3747742 (D’: 0.86; r2: 0.67) and has a 

similar odds ratio as rs3747742 (OR=0.92 and 0.93, respectively).105 rs3747742-C has been 

associated with lower levels of baseline CSF total tau as well as a slower rate of increase in CSF 

total tau levels, though there was no association with CSF levels of phosphorylated tau (p-tau) or 

amyloid.251 In contrast, Benitez et al., demonstrate that rs3747742 and rs9381040 are both 

associated with lower levels of CSF p-tau, and their conditional analyses suggest that rs3747742 

and rs9381040 represent the same signal.105 TREML2 plays a pro-inflammatory role;249 studies 

have shown that activated microglia and inflammatory cytokines are connected to tau pathology, 

252 suggesting that rs3747742-C reduces TREML2 activity though more studies are required to 

determine the exact mechanism by which the variant confers protection.251 

Another case-control study focusing on variants within the MS4A and TREM gene clusters 

demonstrated that a set of variants within the MS4A (membrane-spanning 4A) gene cluster were 

twice as frequent in controls than in AD cases.126 Further investigation of the identified variants 
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suggested that protection is conferred through a loss-of-function of MS4A family proteins, 126 

though additional studies are needed. However, MS4A genes have been previously associated with 

AD risk.242, 243 Moreover, high levels of MS4A6A expression have been associated with elevated 

Braak scores.253 There is also evidence that the MS4A locus plays a role in modulating TREM2 

expression, particularly soluble CSF TREM2 (sTREM2) levels. A GWAS of CSF sTREM2 by 

Deming et al. suggested that protective MS4A gene cluster variants increased CSF sTREM2, which 

was associated with reduced AD risk and a delayed age-at-onset.254 Together, these data 

functionally connect the TREM2 and MS4A gene clusters and represent a potential mechanism by 

which inflammation can be modulated in the brain. 

rs1990621, a variant within the TMEM106B (transmembrane protein 106B) locus, has been 

associated with neuronal protection in individuals with neurodegenerative disorders including 

AD.255 rs1990621 is in high LD with rs3173615 (p.T185S, r2 = 0.98),255 which was identified as a 

protective variant for frontotemporal lobar degeneration (FLTD), the second most-common cause 

of dementia in older adults.256 rs1990621 is also in high LD with rs1990622 (r2 = 0.98),255 which 

has been previously linked with familial, progranulin-related FLTD.257 TMEM106B is a lysosomal 

protein that has been associated with aging and age-associated inflammation, and the risk alleles 

appear to be pro-inflammatory, perhaps through modulation of progranulin.258, 259 However, the 

mechanism behind TMEM106B-mediated protection is unclear as TMEM106B expression is 

reduced in AD brains,256 but the risk alleles increase its mRNA expression in FLTD.260 Altogether, 

TMEM106B-mediated protection from AD appears to be complex and requires further study. 

AD drug discovery efforts have begun to include targets outside of amyloid and amyloid 

processing, with an increase in immune-modulating therapeutics. As of February 2020, 3 out of 

the 18 drugs in Phase 3 clinical trials have targeted inflammation with a focus on reducing 
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neuroinflammation and increasing clearance of amyloid.64 As of November 2020, these trials were 

still ongoing. However, it is likely that the efficacy of an inflammatory-focused drug is dependent 

on the state (i.e., early/late) of disease.261, 262  

 

1.4 AIMS OF THE PROJECT  

 

 The present dissertation focuses on leveraging multiple domains of data from longitudinal 

aging studies (e.g., genomic, transcriptomic, cognitive, biomarker, neuroimaging) to identify novel 

genetic and molecular factors contributing to AD and resilience to AD. One goal of the dissertation 

is to investigate how the aforementioned data modalities can be combined to link molecular 

biology to human phenotypes and behavior and to better understand complex diseases such as AD. 

In addition, we aim to identify modulators of AD risk for the purposes of elucidating the biological 

basis of resilience to AD in addition to presenting novel therapeutic targets for AD drug discovery. 

All analyses and results within this project should be interpreted in the context of sporadic late-

onset AD. 

 One major focus of our group is on resilience to AD (described above in section 1.2), which 

is described, in part, as a phenomenon in which individuals present with sufficient quantities of 

amyloid and tau pathology to have autopsy-confirmed AD,101, 102, 263 but never experience 

cognitive impairment during late-life. Alternatively, a resilient individual could be described as 

someone who has less than expected neurodegeneration or cognitive decline given a particular 

amount of neuropathology. Therefore, we hypothesize that there are protective factors that underlie 

these individuals' resilience to pathology and other AD risk factors such as APOE-e4, which are 

related to worse outcomes.264-267 To probe this hypothesis, we leverage computational models to 
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identify novel genomic-, transcriptomic-, and network-level factors that confer protection from 

brain atrophy or cognitive decline in the presence of risk factors like pre-existing amyloid and tau 

pathology. We also hypothesize that the same computational tools used in our analyses can be 

applied independently, or in concert, to further advance therapeutic avenues for AD. 

 The proposed aims for this dissertation are as follows: Aim 1: Identify genetic variants 

that confer neuroprotection from AD pathology. AD pathology is strongly linked to 

neurodegeneration,1-3, 268-271 however, not all individuals who are biomarker positive will suffer 

from significant brain atrophy and cognitive decline. Therefore, we are interested in identifying 

common genetic variants that slow, or diminish, the relationship between neuropathology and 

brain atrophy. Leveraging genotype, neuroimaging, and CSF biomarker data from 4 longitudinal 

aging cohorts,272-275 I will perform a genome-wide association study to identify SNPs that modify 

the association between amyloid and tau measured in CSF and brain atrophy measured by 

hippocampal volume via MRI. 

Aim 2: Identify gene transcripts that confer protection from the effects of APOE-e4. 

The APOE-e4 allele is associated with increased risk of AD in addition to worse cognitive 

outcomes.276 However, there are individuals who do not experience cognitive decline despite 

carrying APOE-e4 suggesting that there are protective factors mitigating the increased risk. 

Leveraging both blood and brain transcriptomics from two well-characterized aging cohorts, I aim 

to identify genes via RNA sequencing (RNAseq) that modify the association between APOE-e4 

positivity and cognitive outcomes such as memory and executive function.  

Aim 3: Evaluate the reproducibility of Weighted Gene Co-Expression Network 

Analysis (WGCNA) and identify modules that modify APOE-e4 effects on hallmarks of AD. 

To determine whether WGCNA is a robust and reproducible computational method, I will rebuild 



 35 

a previously published gene co-expression network277 using bulk brain RNAseq and compare it to 

the original network. Then, using the same defined co-expression modules, I aim to identify novel 

functional domains that modify the relationship between APOE-e4 positivity and amyloid and tau 

burden at autopsy as well as cognition. In addition, we also leverage the PrediXcan method to 

determine whether predicted gene expression data is suitable for gene co-expression network 

generation and/or replication. 

 Altogether, the above aims should not only demonstrate the viability of each computational 

method separately as a tool by which to probe the biology of complex disorders such as AD, but 

also as methods that can be used together to link genetics to biological functions as well as for 

biomarker and novel therapeutic target discovery. Over the following chapters, we will unpack 

each aim in more detail beginning with Aim 1, in which we identify two novel loci on chromosome 

3 that interaction with CSF amyloid and p-tau, respectively on annual change in hippocampal 

volume (Chapter 2). In Chapter 3, we describe Aim 2 and implicate an innate immunity gene, 

RNASE6, in cognitive decline as well as discuss how blood transcriptomics may be used as a 

biomarker to monitor brain changes. We perform gene network-based analyses in Chapter 4; 

immune signaling and macromolecule biosynthesis are two biological processes associated with 

cognition and cognitive decline when identifying co-expression modules that modulate APOE-e4 

effects on hallmarks of AD. Finally, in Chapter 5, we offer a summary of up-and-coming research 

domains in the AD field and how they may transform therapeutics, treatment, and precision 

medicine for AD. 
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CHAPTER 2 

 

 

IDENTIFICATION OF COMMON GENETIC VARIANTS THAT MODIFY THE 

ASSOCIATION BETWEEN ALZHEIMER’S DISEASE BIOMARKERS AND 

HIPPOCAMPAL VOLUME 

 

 

Portions of this chapter are published under the title, “Exploring common genetic contributors to 

neuroprotection from amyloid pathology,” in Brain Communications. Acknowledgements and full 

funding details for this chapter can be found in Appendix B. 

 

 

 

2.1 INTRODUCTION 

 

 Canonically, the neuropathological progression of AD has been described as follows 

(Figure 1.4): amyloid abnormalities occur prior to tau abnormalities, then, amyloid and tau 

together along with other downstream biological processes (e.g., inflammation), result in 

neurodegeneration and subsequently, cognitive impairment.1-3 

Though Alzheimer's disease is typically diagnosed clinically via cognitive tests,3, 278 many 

other CNS disorders can also present with memory loss and cognitive impairment. Thus, AD can 

only be definitively diagnosed via examining brain neuropathology burden at autopsy. As 

biomarkers become more readily available and accessible to monitor brain changes over time, new 

frameworks have been developed to allow for the consideration of AD as a heterogeneous and 

dynamic disease and to improve screening for AD risk in living individuals who are clinically 

normal. One such framework is the "A/T/N system" in which the main biomarkers of AD: amyloid, 

tau, and neurodegeneration are given binary classifications (i.e., positive, or negative) such that an 

A+/T+/N+ individual has both amyloid and tau pathology as well as neurodegeneration.   
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The A/T/N system can also capture individuals with asymptomatic Alzheimer’s disease, or 

preclinical Alzheimer’s disease, in which individuals present with the neuropathological hallmarks 

of Alzheimer’s such as amyloid, tau, and/or neurodegeneration, but do not yet show clinical signs 

of cognitive impairment.100-102 Asymptomatic individuals may also be amyloid and tau positive, 

yet have no markers of neurodegeneration despite increased risk of AD. Some of these individuals 

may prove to be resilient. Modifiable risk factors that contribute to resilience have been a major 

focus of the field, including factors like educational attainment that have been leveraged as proxy 

measures in classical cognitive reserve literature.111 Resilience has also been defined in two parts: 

better than expected cognitive function given the overall level of Alzheimer’s disease pathologies 

(i.e., cognitive resilience) and less than expected brain atrophy given the level of Alzheimer’s 

pathologies (i.e., brain resilience).99 While modifiable lifestyle factors certainly contribute to such 

resilience,279, 280 there is also emerging evidence from our group and others’ that resilience is 

heritable and may have a genetic basis.107, 264-267   

One notable example is the apolipoprotein E (APOE) polymorphic alleles, as APOE-e2 

allele carriers have reduced Alzheimer’s disease risk.117, 141, 281 In addition, recent studies have 

suggested that the genetic architecture of resilience is distinct from that of clinical Alzheimer’s 

disease with only a small contribution of APOE,282 suggesting that uncovering the genetic 

architecture of resilience may provide new insight into genomic pathways of protection. 

The present analytical approach will further probe the genetic basis of resilience by 

identifying common genetic variants that modify the well-established association between 

biomarkers of Alzheimer’s disease neuropathology and downstream neurodegeneration.1-3, 283 For 

this study, we will leverage CSF biomarkers of Alzheimer’s disease neuropathology (i.e., tau, 

phosphorylated tau (p-tau), beta-amyloid (Ab42)) as well as  PET biomarkers of amyloid-β, which 
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have previously been shown to be strongly associated with downstream hippocampal atrophy.1-3, 

283, 284 In addition, we will leverage hippocampal volume measured with magnetic resonance 

imaging (MRI) as our proxy measure of neurodegeneration.285, 286  

 

 

2.2 MATERIALS AND METHODS 

 

2.2.1 Participants 

Data for mega-analysis were acquired from four longitudinal studies of aging and 

Alzheimer’s disease that include CSF biomarkers of Alzheimer’s neuropathology, genotype data, 

and neuroimaging. The studies are as follows: the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), Vanderbilt Memory and Aging Project (VMAP), Wisconsin Registry for Alzheimer’s 

Prevention (WRAP), and the Biomarkers of Cognitive Decline Among Normal Individuals 

(BIOCARD) study. Data from the Mayo Clinic Study of Aging (MCSA) was used for replication. 

Consent for each participant was acquired by each longitudinal aging study independently.  

The ADNI database (adni.loni.usc.edu) was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has 

been to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early AD. 

ADNI enrolls participants who are 55 to 90 years of age (www.adni-info.org). VMAP was 

launched at Vanderbilt University Medical Center. The study enrolls individuals with MCI, as well 

as age-, sex-, and race-matched cognitively normal counterparts. Participants are excluded if they 

are not eligible for MRI or have a history of neurological or cardiovascular disease.272 WRAP 
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began at the University of Wisconsin-Madison in 2001. WRAP enrolls individuals who are 

cognitively normal, 40 to 65 years of age, have a parental history of AD, and an increased risk for 

the disease. In 2004, WRAP began recruitment of cognitively normal individuals without a self-

reported parental history of AD.274 The BIOCARD study is currently located at Johns Hopkins 

School of Medicine. BIOCARD enrolls participants who were middle-age and cognitively intact. 

The study is enriched for individuals who had a first-degree relative with AD.287 The MCSA is a 

population-based prospective study of older adults residing in Olmsted County, Minnesota.288, 289 

Individuals have been enrolled serially starting in 2004, with multimodal clinical and biomarker 

data obtained at longitudinal visits based on study protocols.  

2.2.2 Genotyping and Quality Control Procedures 

Genotyping was performed by each study on different genotyping platforms (see Table 

2.1). Genotyping data were limited to non-Hispanic white individuals whose principal components 

(PCs) overlayed with individuals of European ancestry using the 1000 Genomes CEU reference 

panel. Quality control (QC) was performed on genotype data from each cohort separately using 

PLINK software (version 1.9b_5.2).290 Before imputation, single nucleotide polymorphisms 

(SNPs) with genotyping efficiency <95%, minor allele frequency (MAF) <1%, or deviation from 

Hardy-Weinberg equilibrium (p<1x10-6) were excluded. Furthermore, we excluded participants 

whose call rate was <99%, who exhibited an inconsistency between reported and genetic sex, or 

who exhibited excess relatedness (PI_HAT>0.25). We also removed individuals who were outliers 

based on their ancestral PCs (calculated with EIGENSOFT version 7.2.1)291 or who were statistical 

outliers in heterozygosity rate (>5 SD).  

Imputation was performed on the Michigan Imputation Server292 using the HRC r1.1.2016 

reference panel (Build 37) and SHAPEIT phasing. Imputed genetic data were further filtered for 
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imputation quality (r2>0.9) and biallelic SNPs. To create the joint dataset, we merged genotype 

data from ADNI, VMAP, WRAP, and BIOCARD, excluding multiallelic SNPs, duplicate SNPs, 

SNPs that were not present in all datasets, and SNPs with genotyping efficiency <99%. Additional 

participants were excluded for relatedness or outlying PCs, resulting in a dataset consisting of 1065 

individuals and 5,891,064 variants. 

2.2.3 MCSA GWAS Data Acquisition, QC, and Imputation 

 GWAS data for 1783 MCSA participants was acquired using DNA from peripheral blood 

samples and via the Illumina Infinium Global Screening Array-24 v2.0.  Standard SNP-level QC 

filters were applied using PLINK, including call rate ≥95%, Hardy-Weinberg Equilibrium (p≥1 x 

10-5), and MAF ≥1%.  Subject-level QC filters included call rate ≥98%, sex checks versus clinical 

data, Caucasian ancestry determined through STRUCTURE version 2.3.4, and ensuring no cryptic 

first- or second-degree relatedness (PLINK identity by descent PI_HAT<0.25).  Genome-wide 

imputation was performed with the Michigan Imputation Server using Minimac version 4-1.0.2 

and the HRC reference panel.  Following additional post-imputation QC filters including SNP call 

rate ≥95%, sample call rate ≥98%, Hardy-Weinberg Equilibrium (p≥1 x 10-6), MAF≥1%, stringent 

imputation quality measure (r2≥0.8), and removal of SNPs with duplicate or no identifying rs 

number, data was available for 6153814 SNPs and 1727 MCSA participants.293 

2.2.4 Hippocampal Volume Standardization and Slope Calculation 

MRI was performed at each study site; acquisition and processing protocols are published 

elsewhere.272, 274, 294, 295 We excluded images that failed visual QC, that were taken >90 days prior 

to CSF acquisition, or that were statistical outliers (>5 SD).  

Total hippocampal volume was harmonized across studies using a two-step procedure, and 

the standardization of all hippocampal volume measurements were based on the first MRI scan of 
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cognitively normal participants at baseline. First, raw hippocampal volume measurements were 

adjusted to remove the effects of sex and intracranial volume (ICV). All study cohorts were subset 

to individuals who were cognitively normal at the time of their first MRI scan. Using a linear 

regression, the slopes (b) of the associations between ICV, sex, and total hippocampal volume and 

the interaction between ICV and sex (ICV x sex) on total hippocampal volume in cognitively 

normal individuals, were calculated using the following model: Total Hippocampal Volume ~ ICV 

+ Sex + ICV x Sex. Hippocampal volume for all subjects was then adjusted for the above 

confounders by subtracting the mean-centered effects of ICV, sex, and ICV x sex from the total 

hippocampal volume. We performed this adjustment because ICV is associated with hippocampal 

volume, and ICV also strongly differs by sex.296  

Second, we calculated Z-scores using the mean and standard deviation (SD) of the adjusted 

volume from cognitively normal participants at baseline, resulting in our standardized 

hippocampal volume variable (Figure 2.1). Data from ADNI1 and ADNI2 were harmonized 

separately to account for differences in scanner strength (1.5T vs 3T). 

2.2.5 Mayo Clinic Study of Aging MRI 

 MRI for MCSA participants was acquired on 3T scanners (General Electric Healthcare, 

Waukesha, WI, USA) using protocols aligned with ADNI.297 Information for acquisition and 

processing has been described elsewhere.298-300  Hippocampal volume and ICV were derived using 

FreeSurfer (version 5.3). 
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Table 2.1: Summary of imputation and quality control measures performed on each genotype dataset 
    Pre-QC Pre-imputation Post-imputation 

Dataset Platform N # of 
variants N # of 

variants N # of variants 

ADNI 1 Illumina 610-Quad 757 620,901 666 536,557 666 6,577,704 
ADNI 2 Illumina OmniExpress 432 730,525 430 641,075 430 6,662,117 
ADNI WGS Illumina Omni 2.5M 

(WGS Platform) 
812 2,379,855 807 1,480,134 807 7,298,856 

ADNI 
(merged) 

(merge) 1903 7,571,217 N/A N/A 1,247 7,849,615 

BIOCARD Illumina OmniExpress 261 730,525 193 638,868 190 6,559,742 
WRAP Illumina Multi-Ethnic 

Genotyping Array 
1340 1,779,819 1198 898,220 1,198 10,499,994 

VMAP Illumina Infinium 
Expanded Multi-Ethnic 
Genotyping Array 
(MEGAEX) 

352 1,842,793 261 770,719 256 6,760,400 

Note: Since genetic data for ADNI were obtained on multiple platforms, QC and imputation were completed on each set 
separately and were merged after post-imputation filters. For these merged sets, number of samples and variants immediately 
after merging and after additional filtering for overlap and relatedness are in the "Pre-QC" and "Post-imputation" columns 
respectively.  

 

 

 
 
Figure 2.1. Density plots of hippocampal volume distribution pre- and post-standardization per study. 
The plots are colored by dataset for visualization. The density is presented on the y-axis. A) Pre-standardized 
distribution of hippocampal volumes adjusted for sex and intracranial volume (in mm3). B) Distribution of 
hippocampal volume Z-scores after standardization. All measures were centered and standardized using the 
mean and standard deviation of adjusted hippocampal volumes of cognitively normal participants. 
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2.2.6 CSF Biomarker Standardization 

CSF acquisition via lumbar puncture and biomarker quantification was performed by each 

longitudinal aging study. Acquisition and quantification protocols have been reported by each 

study.272, 274, 287, 295 

Standardized CSF tau (total tau) and p-tau values were quantified as Z-scores based on the 

mean and standard deviation of tau measurements from participants who are cognitively normal 

(Figure 2.2). 

CSF Ab42 was harmonized using a two-component Gaussian mixture model (GMM)301 

due to the bimodal nature of the data. The mean and standard deviation estimated from the 

predicted amyloid negative gaussian distribution in cognitively normal individuals was used to 

standardize all values (Figure 2.3A). We and others have published extensively on this method to 

harmonize positron emission tomography (PET) and CSF amyloid measures.301-303  

2.2.7 Amyloid Positron Emission Tomography 

To support our findings, we leveraged amyloid PET data from MCSA participants 

measured with Pittsburgh compound B ([11C]-PiB), as described elsewhere.289, 304 We also 

examined amyloid PET data from ADNI measured with Pittsburgh compound B ([11C]-PiB) and 

florbetapir ([18F]-AV-45). Additional details on acquisition and pre- and post-processing pipelines 

can be found on the ADNI website (www.adni-info.org). Mean standardized uptake value ratio 

(SUVR) values were standardized using a similar two-component GMM as aforementioned, 

following previously published methods (Figure 2.3B).301, 305   
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Figure 2.2. Density plots of CSF total tau and phosphorylated tau pre- and post-harmonization. A) Density 
plot of raw CSF total tau colored by dataset (left). Density plot after standardization (right). B) Density plot of 
raw CSF phospho-tau colored by dataset (left). Density plot after standardization (right).  Both CSF total tau and 
p-tau levels were centered and standardized using the mean and standard deviation of CSF levels of cognitively 
normal participants. The density is presented on the y-axis.  
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Figure 2.3. Density plots of normalized amyloid measures. All measures were centered and standardized 
using the mean and standard deviation of the amyloid negative gaussian distribution within study from a mixture 
model. A) Density plot of raw CSF Ab42 values colored by dataset (left). Density plot after harmonization 
(right), where the x-axis represents Z-scores. B) Left and right panels represent amyloid PET standard uptake 
value ratios pre- and post- harmonization. These density plots are colored by ligand. 
 
 

2.2.8 Statistical Analyses 

GWAS were conducted using the joint dataset (see above) with PLINK and R (version 

3.6.0). Both baseline hippocampal volume and annual change in hippocampal volume were used 

as continuous outcomes. The annual change in hippocampal volume was determined using linear 

mixed-effects regression, where the intercept and slope (time from baseline MRI scan) were 

entered as both fixed and random effects. Covariates for the GWAS included age at first MRI, sex, 
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and the first three ancestral PCs (calculated using EIGENSOFT version 7.2.1)291 to account for 

unmeasured population stratification. For computational efficiency, we extracted the hippocampal 

volume slopes from mixed-effects regression models and entered them as continuous outcomes in 

a linear regression with PLINK. The interaction term between each SNP and continuous CSF 

biomarker levels (i.e., amyloid and tau) was used to identify variants that modified the association 

between Ab42 and/or tau and annual change in hippocampal volume. All variants were tested 

using additive coding. Genome-wide significance was set a priori to p<5x10-8.306 Although this 

linear regression approach was more computationally feasible, the full linear mixed-effects model 

has multiple advantages including the estimation of both intercepts and slopes in the same model. 

For that reason, we did run the full linear-mixed effects model for all variants meeting genome-

wide significance (p<1x10-8) to ensure our results are not driven by the two-stage analytical 

approach and to have a model that aligns with the linear mixed-effects model used in our 

independent replication. Sensitivity analyses included APOE-e4 allele count, MRI scanner 

strength, and a variable for cohort as additional covariates.  

 To validate the candidate locus discovered in our primary analyses, we also tested the target 

SNP, rs62263260, using additive coding in the independent dataset from MCSA (n=808). 

Replication analyses used a mixed-effects linear regression to examine the SNP interaction with 

baseline amyloid PET standardized uptake value ratio (SUVR), against longitudinal hippocampal 

volume as the outcome and including age, sex, and ICV as covariates. In this model, ICV was 

included as an additional covariate because hippocampal volume measurements were not adjusted 

for the effect of ICV in MSCA. 

We also leveraged amyloid PET data from ADNI (n=667) testing the SNP interaction with 

standardized mean SUVR on the same hippocampal outcome. Covariates included age, sex, and 
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PET tracer. Both linear and linear mixed-effects regression models were used. Harmonization 

across tracers was completed leveraging a GMM as previously published (Figure 2.3B).307  

Finally, we used a linear regression model to assess the interaction between APOE allele 

count (e4 additive coding and e2 dominant coding due to few homozygous carriers) with CSF 

amyloid on cross-sectional and longitudinal hippocampal volume (n=1537, Table 2.2). 

 

Table 2.2: Dataset characteristics by analysis (CSF and PET) 
 

Combined CSF 

Dataseta 
CSF GWAS 

Dataset 

ADNI PET 

Total 

N 1537 1065 667 

Age at baseline 70.3±8.8 70.8±8.7 73.4±7.1 

Sex, % female 48% 47% 44% 

% APOE-e4 carriers 42% 40% 41% 

% APOE- e2 carriers 10% 10% 10% 

NC (persons) 734 490 220 

MCI (persons) 637 475 398 

AD (persons) 176 100 49 

 Combined CSF 

Dataseta 

CSF GWAS 

Dataset 

ADNI PET 

Total 

Std. CSF Aβ42 -1.31±1.7 -1.34±1.7 2.53±3.07 

Std. CSF Tau 0.49±1.5 0.49±1.4 N/A 

Std. CSF p-Tau 0.25±1.1 0.23±1.1 N/A 

Neuroimaging Measurements (MRI) 

Std. Hippocampal 

Volume 
-0.55±1.3 -0.58±1.3 -0.62±1.3 

Std. Hippocampal 

Vol. Slopes -0.13±0.1 -0.14±0.1 -0.16±0.1 

Note: Data given as mean ± standard deviation unless otherwise noted. 
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2.2.9 Functional Annotation 

Expression quantitative trait locus (eQTL) annotation was performed using the NIH 

Genotype-Tissue Expression (GTEx) Portal308 and brain cortex eQTL data from Sieberts et al. 

When assessing eQTL p-values for the 44 available tissues within GTEx, we performed Bonferroni 

correction to account for multiple comparisons (significant p<0.0011). Additional annotation 

leveraged both INFERNO (http://inferno.lisanwanglab.org/) and the Brain xQTL Serve database 

(http://mostafavilab.stat.ubc.ca/xqtl/). We also leveraged phenome-wide association study 

(PheWAS) results via the Pheweb browser (http://r2.finngen.fi/, data freeze 2) of the FinnGen 

study, a biobank project that combines genotype data from 96,499 samples with electronic health 

records from Finnish health registries. Information on their study has been reported online 

(https://finngen.gitbook.io/documentation/).   

2.2.10 Colocalization Analysis  

To examine genes in the region of the rs62263260 locus, we performed colocalization 

analysis using summary statistics from the SNP x CSF Ab42 GWAS and brain cortex eQTL data 

from Sieberts et al., (i.e., dorsolateral prefrontal cortex, temporal cortex)309 as well as eQTL data 

from GTEx v8 (i.e., tissues where rs62263260 was a statistically significant eQTL for any gene: 

esophagus muscularis, testis, brain anterior cingulate cortex BA24). Using coloc (version 3.2-1),310, 

311 we performed colocalization in a 1 Megabase (Mb) window around the lead SNP, rs62263260 

with default priors.311 All protein coding genes within that window (Chromosome 3, 123175327: 

122175327) were tested. A posterior probability greater than 80% (PP4 > 0.8) is indicative of 

colocalization.310, 311 Colocalization analyses was not performed for our p-tau result, rs116216974, 

as it was not an eQTL and is within an intergenic region. 
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2.2.11 Post-hoc SEMA5B Analyses 

To assess whether SEMA5B expression differs by AD diagnosis, we utilized summaries of 

case/control analyses from the Accelerating Medicines Partnership Program for Alzheimer’s 

(AMP-AD). Data from this project are made freely available online 

(https://agora.adknowledgeportal.org). 

Furthermore, we examined neuronal SEMA5B expression data. Pyramidal neuron 

expression data for these analyses was obtained from the NIH Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/). Additional details on brain collection, expression profiling, 

and microarray analysis are described elsewhere.312-315 Tissues include the entorhinal cortex, 

hippocampus, medial temporal gyrus, posterior cingulate cortex, primary visual cortex, and 

superior frontal gyrus. 

Repeated measures ANOVA was used to evaluate differences in SEMA5B expression in 

AD patients compared to controls across brain regions. Covariates included age, sex, and brain 

region. Post-hoc paired comparisons within each region were performed leveraging independent 

samples t-tests (one-tailed). We corrected for multiple comparisons leveraging the Bonferroni 

procedure for the six brain regions evaluated. 

2.2.12 MAGMA Pathway Analysis  

Gene and pathway analyses were conducted using MAGMA version 1.08.316 Gene test 

analyses used the SNP-wise mean model specified in MAGMA. Results were corrected for 

multiple comparisons using the false-discovery rate (FDR) procedure. Gene sets for MAGMA 

analyses leveraged data from the Gene Ontology (GO) project,317 Kyoto Encyclopedia of Genes 

and Genomes (KEGG),318-320 REACTOME,321, 322 BIOCARTA,323 and the Protein Interaction 

Database (PID)324 totaling 12,195 sets. 
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2.3 RESULTS 

 

Participant characteristics stratified by diagnosis are presented in Table 2.3. We observed 

statistically significant differences between participants in each diagnostic category as expected 

except for the average number of follow-up visits. Participants in the BIOCARD and WRAP 

studies are younger than those enrolled in ADNI and VMAP, which may partially explain 

differences in biomarker levels and hippocampal volumes (Table 2.4). Additionally, ADNI 

includes more participants that have been diagnosed with MCI and Alzheimer’s disease than in 

VMAP, WRAP, or BIOCARD. Using the composite dataset, we performed GWAS to identify 

common SNPs that modify the association between baseline CSF biomarkers (i.e., amyloid and 

tau) and baseline hippocampal volume as well as annual change in hippocampal volume. No 

significant interactions with baseline CSF total tau were identified. All suggestively significant 

loci (p<1x10-5) are displayed in Appendix B Tables B.1-6. We also expand on a study by Chiang 

et al.325 that explored whether APOE-e4 allele status modified the association between baseline 

CSF amyloid and longitudinal changes in hippocampal volume. 

2.3.1 APOE Allele Associations with Hippocampal Atrophy 

APOE results are presented in Table 2.5. As expected, APOE-e4 allele count was 

associated with lower baseline hippocampal volume (b=-0.43, p<2x10-16) and faster atrophy (b=-

0.03, p<2x10-16). Additionally, APOE-e2 carriers have greater hippocampal volume at baseline 

(b=0.25, p=0.02) and slower atrophy (b=0.02, p=0.0002) compared to non-carriers.  
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Table 2.3: Participant characteristics by diagnosis 
 NC MCI AD Totala p-value 

N 490 475 100 1065  

Age at baseline 68.4±9.3 72.5±7.3 74.5±8.4 70.8±8.7 < 0.001 

Sex, % female 53% 39% 48% 47% 0.002 

% APOE-e4 carriers 29% 47% 67% 41% < 0.001 

% APOE-2 carriers 13% 9% 3% 10% < 0.001 

Std. CSF Aβ42 -0.75±1.6 -1.70±1.7 -2.52±1.3 -1.34±1.7 < 0.001 

Std. CSF Tau 0.08±1.0 0.64±1.5 1.81±1.7 0.49±1.4 <0.001 

Std. CSF p-tau -0.03±0.9 0.37±1.1 0.78±1.2 0.23±1.1 <0.001 

Number of Visits 3.46±1.83 4.00±1.86 2.80±1.22 3.64±1.83 0.9 

Neuroimaging Measurements (MRI) 

Std. Hippocampal Volume -0.01±1.0 -0.84±1.3 -2.1±1.3 -0.58±1.3 < 0.001 

Std. Hippocampal Vol. Slopes -0.10±0.1 -0.15±0.1 0.21±0.1 -0.14±0.1 < 0.001 
Analysis of variance (ANOVA) analyses indicated significant differences (p<0.05) across diagnostic groups for 
all demographic categories except for the average number of visits. Values given are mean ± standard deviation 
unless otherwise noted. aConsists of participants from ADNI, VMAP, WRAP, and BIOCARD.  
 

 
 

2.3.2 APOE Allele Interactions with Baseline CSF Aβ42 

As seen previously by Chiang et al.,325 APOE-e4 significantly interacted with baseline CSF 

Ab42 (b=0.11, p=0.0004, Figure 2.4) on hippocampal volume such that APOE-ε4 carriers with 

higher brain amyloid burden display lower hippocampal volumes and more rapid hippocampal 

atrophy. We also observe an interaction between APOE-e2 and baseline CSF Ab42 on baseline 

hippocampal volume, though it did not survive correction for multiple comparisons. APOE-e2 did 

not interact with CSF Ab42 on longitudinal change in hippocampal volume. (Table 2.5). 
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Table 2.4: Breakdown of combined GWAS dataset by cohort 

 ADNI VMAP BIOCARD WRAP Total P-value 

N 702 126 140 97 1065 <0.001 

%Female 44% 31% 61% 65% 47% <0.001 

Age, years 73.6±7.1 73.0±6.4 60.8±7.7 61.7±5.7 70.8±8.7 <0.001 

% APOE-e4 Carriers 43% 33% 35% 38% 40% 0.059 

% APOE-e2 Carriers 10% 10% 11% 14% 10% 0.474 

Standardized Aβ42  -1.55±1.6 -1.73±2.0 -0.45±1.4 -0.55±1.4 -1.34±1.7 <0.001 

Standardized p-tau  0.29±1.1 0.22±1.1 -0.002±0.9 0.07±0.9 0.23±1.1 <0.001 

Hippocampal Volume -0.81±1.4 -0.43±1.3 0.001±1.0 0.09±1.0 -0.58±1.3 <0.001 

Hippocampal Slopes -0.15±0.8 -0.15±0.1 -0.09±0.1 -0.06±0.1 -0.14±0.1 <0.001 

Number of Visits 4.04±1.94 2.97±0.90 2.29±1.35 3.59±1.26 3.64±1.83 <0.001 

Analysis of variance (ANOVA) analyses indicated significant differences across longitudinal aging studies for 
all demographic categories except for the average number of visits. Note: Values given are mean ± standard 
deviation unless otherwise noted. 
 
 
 

2.3.3 Variant Interactions with Baseline CSF Ab42 

No significant interactions with CSF Ab42 in cross-sectional analyses were observed. In 

longitudinal analyses, we identified a novel genetic locus on chromosome 3 (rs62263260-T, 

b=0.026, p=1.46x10-8, MAF=0.12, Table 2.6) that is located within an intron of the SEMA5B gene 

(Figure 2.5A, B).  

 
 
 

 



 53 

Table 2.5: APOE-e4 and APOE-e2 associations with baseline hippocampal volume 

Predictor Outcome B SE P value 

 

Adj. r2 

 

Dr2 

APOE-e4a Baseline HV -0.43 0.05 < 2.00e-16 0.185 0 

APOE-e4 x CSF Aβ42b Baseline HV 0.11 0.03 0.0004 0.216 3.1 

APOE-e2a Baseline HV 0.25 0.10 0.0168 0.146 0 

APOE-e2 x CSF Aβ42b Baseline HV -0.13 0.06 0.0435 0.201 5.5 

APOE-e4a Longitudinal HV -0.031 0.003 < 2.00e-16 0.193 0 

APOE-e4 x CSF Aβ42b Longitudinal HV 0.0056 0.002 0.0024 0.248 5.5 

APOE-e2a Longitudinal HV 0.0236 0.006 0.0002 0.140 0 

APOE-e2 x CSF Aβ42b Longitudinal HV -0.0054 0.004 0.152 0.235 9.5 

a Model: Hippocampal Volume ~ Age + Sex + APOE 
b Model: Hippocampal Volume ~ Age + Sex + APOE x CSF Aβ42 
Abbreviations: HV, hippocampal volume; B, beta; SE, standard error; Dr2; change in r2; Adj. r2, adjusted r2 
 

 

 
 
Figure 2.4. APOE-e4 allele carriers have smaller hippocampal volumes at baseline and worse atrophy in 
the presence of high levels of brain amyloid pathology. A) A plot demonstrating how APOE-e4 allele count 
modifies the association between Ab42 and baseline hippocampal volume in a dose-dependent manner (b=0.11, 
p=0.0004). The y-axis represents baseline standardized hippocampal volume, and the x-axis represents 
standardized CSF levels of Ab42 (z-scores). Points and lines are color coded by genotype, where APOE-e4 
heterozygotes are denoted by the green line and homozygotes are red. B) APOE-e4 positivity increases the rate 
of atrophy in individuals with high brain amyloid burden (b=0.0056, p=0.0024). There appears to be no change 
between heterozygous and homozygous carriers of the e4 allele. 

BA
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Table 2.6: Variant Interactions with CSF Aβ42 

variant chromosome BP allele MAF B SE P value 

rs62263260 3 122675327 T 0.121 0.02621 0.0046 1.46e-08 

rs11707826 3 122676305 T 0.122 0.02616 0.0046 1.53e-08 

rs10934626 3 122676523 T 0.122 0.02616 0.0046 1.53e-08 

Abbreviations: BP, base pair, MAF, minor allele frequency, B, beta; SE, standard error 
 

Among participants harboring a high baseline brain amyloid burden (i.e., low CSF Ab42 

levels), minor allele (T) carriers of rs62263260 demonstrated a faster rate of hippocampal atrophy 

(Figure 2.5C). At lower brain amyloid levels, minor allele carriers of rs62263260 had slower rates 

of hippocampal atrophy. Two additional SNPs within this region reached genome-wide 

significance (Table 2.6) and are in high LD (r2>0.8) with the index SNP, rs62263260 (Figure 

2.5B). The main effect of rs62263260 was not significantly associated with longitudinal atrophy 

(p>0.1). Genome-wide significance of the rs62263260 x CSF Ab42 interaction did not change 

when using linear-mixed effects regression (b=0.03, p=3.13x10-8) as opposed to linear regression. 

2.3.4 Replication of the rs62263260 Interaction with Amyloid Load in the Mayo Clinic Study 

of Aging 

In the independent MCSA cohort where amyloid burden was assessed by [11C]-PiB PET, 

rs62263260 again displayed a significant interaction with baseline brain amyloid levels to predict 

longitudinal hippocampal atrophy (n=808, b=-0.24, p=0.0112). Presence of the minor (T) allele 

was associated with a faster rate of hippocampal atrophy among those with higher baseline 

amyloid burden (i.e., higher levels of amyloid PET and/or lower levels of CSF amyloid), and 

slower rates among those with low amyloid burden validating our initial findings in the discovery 

dataset. Similar results to MCSA were observed when leveraging amyloid PET data from ADNI 
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(n=667; b=-0.0055, p=0.0045; Figure 2.6). Linear mixed-effects regression results (b=-0.013, 

p=0.013) were largely consistent with the PET results in ADNI. 

 

  
 
Figure 2.5. Three SNPs in an intronic region of the SEMA5B gene significantly modify the association 
between baseline beta-amyloid and hippocampal atrophy. A) The Manhattan plot of the genome-wide 
association study. The threshold for genome-wide statistical significance (a=5x10-8) is indicated by the red line. 
The blue line represents the suggestive threshold for significance (a=1x10-5). B) A LocusZoom plot of SEMA5B 
and additional genes in the 1Mb region. Points are colored by LD with the top variant, where higher r2 values 
are colored in red and lower r2 values are colored in blue based off of LD calculated in non-Hispanic whites of 
European descent. The diamond represents the variant with the smallest P-value. C) A plot demonstrating how 
the index SNP, rs62263260, modifies the association between CSF Ab42 and hippocampal atrophy. The y-axis 
represents annual change in standardized hippocampal volume, and the x-axis represents standardized CSF levels 
of Ab42 (z-scores). Points and lines are color coded by genotype. Individuals harboring higher levels of baseline 
pathology exhibit worse hippocampal atrophy (b=0.026, p=1.46x10-8). D) Tissues where rs62263260 or 
rs10934626 (LD r2>0.9) is a statistically significant eQTL for the SEMA5B gene. 
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2.3.5 Sensitivity Analyses of rs62263260 

The rs62263260 x amyloid interaction results maintained genome-wide significance in 

sensitivity analyses covarying for age, sex, PC1-3, APOE-e4, and scanner strength (Table 2.7). 

When covarying for age, sex, PC1-3, and study, the significance becomes slightly attenuated 

(p=7.7x10-8).  

2.3.6 Functional Annotation of rs62263260 

The index SNP rs62263260, is a significant eQTL for the SEMA5B gene in the brain with 

associations in other tissues including the esophagus (Figure 2.5D). In addition, carriers of the 

minor allele (T) appear to have higher levels of SEMA5B expression compared to non-carriers 

(Figure 2.7, eQTL information from Sieberts et al., 2020).309  

 

 
 
Figure 2.6. A plot demonstrating how the index SNP, rs62263260, modifies the association between 
standardized baseline PET amyloid levels and hippocampal atrophy in ADNI. The y-axis represents 
baseline standardized hippocampal volume, and the x-axis represents standardized amyloid PET SUVR. Points 
and lines are color coded by genotype, where rs62263260-T heterozygotes are denoted by the green line and 
homozygotes (TT) are red. 
 
 
 
 



 57 

 

Table 2.7: Sensitivity Analyses for SNP x b-Amyloid GWAS 

Analysis variant B SE P value 

+ APOE4 count and scanner strength as 
covariates 

rs62263260 0.01617 0.002761 6.30e-09 

rs11707826 0.01615 0.00276 6.54e-09 

rs10934626 0.01615 0.00276 6.54e-09 

Linear mixed-effects regression 

rs62263260 0.03302 0.00595 3.13e-08 

rs11707826 0.03296 0.00595 3.27e-08 

rs10934626 0.03294 0.00595 3.27e-08 
 

 

 
 
Figure 2.7. Violin plots adapted from the NIH Gene-Tissue Expression (GTEx) Project showing the 
normalized expression of SEMA5B in esophageal, testicular, and brain tissue. The plots suggest that the 
minor alleles of rs62263260 and rs10934626, a SNP in the same locus, are associated with an increase in 
Semaphorin 5B expression, especially in homozygotes. These images were obtained from the GTEx Portal on 
06/15/20. In addition, the given rs62263260 SEMA5B eQTL beta from Sieberts et al., 2020 is b=0.318. The 
expression increasing allele is rs62263260-T, the minor allele.309 

 

To determine whether SEMA5B was the acting gene in the region, colocalization analysis 

was performed. rs62263260 strongly colocalized with SEMA5B expression in the esophagus 

muscularis in GTEx v8 (PP4 > 0.99). In other datasets where rs62263260 or its neighboring SNPs 

were significant eQTLs for SEMA5B, colocalization results were negative (PP3 > 80%) or 

inconclusive (Table 2.7). 

In addition, rs62263260 and SNPs in the surrounding region (i.e., rs11707826, 

rs10934626) significantly disrupted 6 transcription factor binding sites (p.fdr<0.05, Table 2.8), 
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but were not enriched for enhancer sites and were not methylation-QTLs or histone-QTLs in any 

queried database.  

 

 

 

 

2.3.7 Post-Hoc Analysis of SEMA5B Expression in Brain 

Using Agora, a publicly available database powered by the AMP-AD Consortium 

https://agora.adknowledgeportal.org/genes/(genes-router:gene-details/ENSG00000082684), we 

examined whether AD diagnosis had any effect on SEMA5B gene expression. In multiple brain 

tissues including cerebellum, prefrontal cortex, and temporal cortex, SEMA5B expression is 

Gene SNP eQTL pvalue (FDR-corrected) PP3 PP4 Best-fit SNP BP Position (hg38) Best-fit SNP.PP.H4
SEMA5B rs62263260 9.31E-07 0.9980 6.33E-05 rs2276782 3:122913049 0.8688
CCDC58 rs62263260 0.7853 0.346 0.0338 rs62263260 3:122956480 0.2711
FAM162A rs62263260 0.4372 0.175 0.106 rs10934626 3:122957676 0.3026
WDR5B rs62263260 0.3234 0.9980 8.93E-05 rs6438741 3:122562494 0.2564
KPNA1 rs62263260 0.9854 0.9980 3.32E-05 rs6771095 3:122472888 0.1279
PARP9 rs62263260 0.9930 0.9980 5.51E-05 rs9872708 3:122523960 0.0570
DTX3L rs62263260 0.8757 0.136 0.0347 rs62263260 3:122956480 0.2790
PARP14 rs62263260 0.9436 0.9980 6.01E-05 rs10804558 3:122826566 0.2284
HSPBAP1 rs62263260 0.7977 0.9980 5.83E-05 rs2276775 3:122927887 0.9914
DIRC2 rs62263260 0.0680 0.9960 0.0013 rs2276781 3:122913589 0.1711
PDIA5 rs62263260 0.8578 0.449 0.0247 rs62263260 3:122956480 0.2599
SEC22A rs62263260 0.5753 0.9970 1.31E-04 rs62263260 3:122956480 0.1934
ADCY5 rs62263260 0.9027 0.187 0.0484 rs10934626 3:122957676 0.1830
HACD2 rs62263260 0.8443 0.205 0.0353 rs62263260 3:122956480 0.2718
MYLK rs62263260 0.9457 0.139 0.0334 rs62263260 3:122956480 0.2482
CCDC14 rs62263260 0.8065 0.278 0.0363 rs62263260 3:122956480 0.2636

Gene SNP eQTL p-value (uncorrected) PP3 PP4 Best-fit SNP BP Position (hg38) Best-fit SNP.PP.H4
SEMA5B rs62263260 0.0000019 0.0020 0.9950 rs10934626 3:122957676 0.4187

Gene SNP eQTL p-value (uncorrected) PP3 PP4 Best-fit SNP BP Position (hg38) Best-fit SNP.PP.H4
SEMA5B rs10934626 0.000095 0.9890 0.0064 rs10934626 3:122957676 0.4900

Gene SNP eQTL p-value (uncorrected) PP3 PP4 Best-fit SNP BP Position (hg38) Best-fit SNP.PP.H4
SEMA5B rs62263260 0.00048 9.39E-04 0.0267 rs16833588 3:122857345 1.20E-05

Sieberts et al., 2020; AMP-AD Cortex Meta-Analysis eQTL, n=1433

GTEx v8 - Esophagus Muscularis, n=465

GTEx v8 -Brain Anterior Cingulate Cortex BA24, n=147

GTEx v8 - Testis, n=368

Table 2.8: coloc results for genes within the 1Mb region of rs62263260; only SEMA5B was 

tested in GTEx tissues because rs62263260 (or its associated SNPs) was not an eQTL for any 

other gene in GTEx. In GTEx, a significant eQTL is p<0.0011 after Bonferroni correction. 

 

Note: A posterior probability greater than 80% (PP4 > 0.8) is indicative of colocalization, whereas PP3 is the 
posterior probability that both traits are associated with two independent SNPs. 
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decreased in AD brains in comparison to controls. To ensure that the differences observed on 

Agora were not due to cell type differences in the bulk tissue, we also leveraged a laser-captured 

neuronal gene expression dataset312-315 to assess neuron-specific SEMA5B expression differences 

by diagnosis. Similar to the results seen on Agora, we observed a main effect of diagnosis on 

SEMA5B expression (F(1, 152)=17.45, p < 0.0001) whereby we observed lower expression of 

SEMA5B in AD compared to control neurons (Figure 2.8). When evaluating each region 

individually in post-hoc paired comparisons, we observed that the difference was particularly 

pronounced in the hippocampus (T(20.768)=-2.79, p=0.006). 

 
Table 2.9: Transcription factor binding sites disrupted by SNPs within the rs62263260 locus 
rsID BP R2 motif_start motif_end tf_name p.fdr 
rs2288678 122667277 0.71 122667274 122667283 ETS1(ETS) 0.003 

rs2288678 122667277 0.71 122667275 122667284 SPDEF(ETS) 0.003 

rs10934625 122671316 0.71 122671310 122671321 Nur77(NR) 0.003 

rs10934626 122676523 1 122676518 122676525 SCL(bHLH) 0.01 

rs35989119 122671081 0.71 122671077 122671084 CRX(Homeobox) 0.022 

rs2288678 122667277 0.71 122667275 122667284 ETV1(ETS) 0.033 

Abbreviations: BP, base pair; R2, measurement of linkage disequilibrium; motif_start, transcription factor motif 
start (in BP); motif_end, transcription factor motif end; p, p-value; p.fdr, FDR-corrected p-value 
 

2.3.8 Gene and Pathway Results for the SNP x CSF Ab42 GWAS 

In gene level analyses, the TOMM40 interaction with CSF Ab42 on hippocampal atrophy 

was the top result (p=1.60x10-5, p.fdr=0.28), but did not survive multiple corrections. The 

TOMM40 signal was further attenuated when covarying for APOE as expected (p.fdr=0.74).326  

Our top pathway-level results included the GO-term “regulation of double strand break 

repair” (p=3.11x10-4) but it did not survive correction. Nominally significant gene- and pathway-

level results are reported in Figure 2.9 and Appendix B Tables B.7-10. 
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Figure 2.8. Hippocampal pyramidal neurons in Alzheimer’s disease brains express less SEMA5B than 
those from cognitively normal controls. A box plot summarizing laser-captured neuronal expression of 
SEMA5B across brain regions (i.e., entorhinal cortex, hippocampus, medial temporal gyrus, posterior 
cingulate cortex, primary visual cortex, and superior frontal gyrus) in AD cases and controls such that each 
point represents a sample’s SEMA5B expression. Across regions, we observed lower expression of SEMA5B 
in AD compared to controls (F(1, 152)=17.45, p<0.0001). In post-hoc paired comparisons, the association 
was particularly pronounced in the hippocampus surviving Bonferroni correction for multiple comparisons 
(p=0.006). 
 

 

 

p=0.006*p=0.14 p=0.08 p=0.24 p=0.11 p=0.05
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Figure 2.9. Summary of nominally significant MAGMA gene- and pathway-level results for the SNP x 
CSF Ab42 GWAS. A)  A Manhattan plot summarizing chromosome and p-value for all genes tested by 
MAGMA. The threshold for nominal significance is indicated by the blue line (a=1x10-3). TOMM40 is the most 
significant result with a p-value of 1.60x10-5. B) A bar plot summarizing pathway-level results with p < 1x10-3. 
The y-axis represents the number of genes in each pathway gene set. Bars are filled according to p-value. The 
most significant pathway is “regulation of double strand break repair” (p=3.11x10-4). 
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2.3.9 Single polymorphism nucleotide interactions with baseline levels of CSF 

phosphorylated tau 

We did not observe any genome-wide significant interactions with CSF p-tau on baseline 

hippocampal volume. In longitudinal analyses, CSF p-tau levels interacted with a locus on 

chromosome 3 (rs116216974-G, MAF=0.02, b=0.05619, p=2.05x10-8) that is 39.8 kilobases 

downstream of the SATB1 gene (Figure 2.10A,B). Two other SNPs, rs115028405 and 

rs114376431, within this same region reached genome-wide significance (p=2.05x10-8), and they 

are in LD (r2>0.8) with the index SNP rs116216974 (Figure 2.10B). Minor allele carriers of 

rs114376431-G have a slower rate of hippocampal atrophy among individuals harboring greater 

levels of brain p-tau pathology (Figure 2.10C). rs114376431-G alone was not significantly 

associated with baseline hippocampal volume or longitudinal atrophy (p>0.1). Similar to 

rs62263260, rs116216974 remained significant after adding APOE-e4 count and MRI scanner 

strength as covariates to the model. However, the p-value was slightly attenuated when using a 

linear mixed-effects model (p=2.37x10-7). 

2.3.10 Functional Annotation of rs114376431 

The index SNP for our p-tau locus, rs116216974, was not reported to be an eQTL, mQTL, 

or histone-QTL. SNPs in the surrounding region (i.e., rs114376431, rs115028405) were not 

enriched for enhancer or epigenomic sites, but 7 transcription factor binding sites (TFBS) 

identified by HOMER327 were significantly disrupted (p.fdr<0.05, Table 2.9). In the FinnGen 

study, the minor allele of rs116216974-G is marginally associated with increased incidence of 

diseases of the blood and blood-forming organs (p=3.1x10-6) including ICD-10 codes for 

nutritional and hemolytic anemias, blood disorders, and immunodeficiencies.328 
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Table 2.10: Transcription factor binding sites disrupted by SNPs within the rs116216974 locus 

rsID BP R2 motif_start motif_end tf_name p.fdr 

rs79531054 18077596 0.90 18077589 18077598 HOXD13(Homeobox) 0.004 

rs79531054 18077596 0.90 18077589 18077600 TATA-Box(TBP) 0.004 

rs115028405 18342494 1 18342489 18342505 Fox:Ebox(Forkhead,bHLH) 0.004 

rs115028405 18342494 1 18342494 18342503 FOXA1(Forkhead) 0.037 

rs116341779 18421999 0.90 18421993 18422007 Bcl6(Zf) 0.037 

rs79531054 18077596 0.90 18077589 18077598 Unknown(Homeobox) 0.028 

rs115028405 18342494 1 18342494 18342505 Foxa2(Forkhead) 0.04 

Abbreviations: BP, base pair; R2, measurement of linkage disequilibrium; motif_start, transcription factor motif 
start (in BP); motif_end, transcription factor motif end; p, p-value; p.fdr, FDR-corrected p-value 
 

2.3.11 Gene and Pathway Results for the SNP x CSF p-tau GWAS 

In gene-level analyses, PLCB4 (phospholipase C beta 4) interaction with CSF p-tau on 

hippocampal atrophy was the top result (p=1.09x10-5). Additionally, our top pathway-level results 

included the GO-term “endolysosome lumen” for p-tau (p=1.13x10-4), but neither gene- nor 

pathway-level results survived correction for multiple comparisons. Nominally significant results 

are summarized in Figure 2.11 and Appendix B Tables B.11 and B.12. 
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Figure 2.10. Three SNPs on chromosome 3 significantly modify the association between CSF baseline p-
tau levels and hippocampal atrophy. A) The Manhattan plot of the genome-wide association study. The 
threshold for genome-wide statistical significance (a=5x10-8) is indicated by the red line. The blue line 
represents the suggestive threshold for significance (a=1x10-5). The labeled gene (LOC339862) is closest to the 
locus of interest. B) A LocusZoom plot of the identified locus. Our SNPs were also located downstream of the 
SATB1 gene. Points are colored by LD with the top variant, where higher r2 values are colored in red and lower 
r2 values are colored in blue. The diamond represents the variant with the smallest P-value. C) A plot 
demonstrating how our SNPs modify the association between p-tau and hippocampal atrophy (b=0.06, 
p=2.05x10-8). The y-axis represents annual change in standardized hippocampal volume, and the x-axis 
represents standardized CSF levels of p-tau (z-scores). Points and lines are color coded by genotype, where 
minor allele carriers are red. There were no homozygous carriers of the minor allele in our dataset. 
 



 65 

 

Figure 2.11. Summary of nominally significant MAGMA gene- and pathway-level results for the SNP x 
CSF p-tau GWAS. A)  A Manhattan plot summarizing chromosome and p-value for all genes tested by 
MAGMA. The threshold for nominal significance is indicated by the blue line (a=1x10-3). PLCB4 is the most 
significant result with a p-value of 1.09x10-5. B) A bar plot summarizing pathway-level results with p < 1x10-3. 
The y-axis represents the number of genes in each pathway gene set. Bars are filled according to p-value. The 
most significant pathway is “endolysosome lumen” (p=3.11x10-4). 
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2.4 DISCUSSION 

 

We identified two novel loci that modify the association between baseline CSF biomarkers 

and the annual rate of hippocampal volume decline. First, minor allele (T) carriers of rs62263260 

exhibit faster rates of hippocampal atrophy among individuals with biomarker evidence of 

amyloidosis. However, rs62263260 minor allele carriers with low amyloid burden appear to be 

protected from neurodegeneration compared to non-carriers. Importantly, we observed evidence 

of this interaction effect across PET and CSF measures of amyloidosis and replicated this 

interaction effect in an independent dataset. Moreover, our top variant is a strong eQTL for 

SEMA5B, a gene involved in synaptic pruning and axonal guidance. Second, we discovered that 

minor allele (G) carriers of rs116216974 exhibit slower rates of hippocampal atrophy in the 

presence of high CSF p-tau. 

Additionally, we replicated previous work demonstrating that APOE-e4 modifies the 

association between baseline CSF amyloid on both cross-sectional and longitudinal measures of 

hippocampal volume. Though additional studies are needed, the present results suggest that axonal 

guidance, synaptic pruning genes, DNA damage repair and endolysosomal function, along with 

APOE, may modulate the association between Alzheimer’s pathology and downstream 

neurodegeneration, providing exciting targets for future mechanistic studies. 

2.4.1 Variants on chromosome 3 drive increased susceptibility to amyloid-dependent 

neurodegeneration 

Notably, our top GWAS finding rs62263260 and the additional SNPs within the region 

have not been linked to Alzheimer’s in any previous case-control studies of clinical Alzheimer’s 

disease and Alzheimer’s risk.91, 93 It is also not significantly associated with diagnosis in our study 
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(p=0.47). As in previous studies examining Alzheimer’s disease endophenotypes as outcomes,329 

rs62263260 may be more related to the rate of disease progression than risk for the onset of clinical 

disease. 

rs62263260 is a significant eQTL for the SEMA5B gene in two independent eQTL studies 

and is colocalized with SEMA5B in esophageal tissue. Though SEMA5B expression in esophageal 

tissue is not directly linked to neurodegeneration, it should be noted that studies leveraging the 

NIH GTEx portal have suggested that genetic regulation of gene expression is conserved across 

many tissues,330, 331 thus, significant results in seemingly non-relevant tissues, such as the 

esophagus, with increased sample size (and subsequently, statistical power), could still provide 

insights into hypothetical disease processes. However, further study in highly relevant tissues (i.e., 

hippocampus) is still needed to conclusively elucidate its role in amyloid-related hippocampal 

atrophy. SEMA5B encodes semaphorin 5B (Sema5B), which is expressed in both the developing 

and adult hippocampus.308, 332-334 Proteins within the semaphorin family, including Sema5B, 

facilitate neural development, axonal growth, and synapse maintenance.335 Sema5B is being 

actively studied and is not well-characterized, but Sema5b knockout mice exhibit aberrant neuronal 

branching and axonal pathfinding defects.336-339 In contrast, overexpression of Sema5b in mouse 

hippocampal neurons resulted in a decrease in synapse number.332   

The direction of the SEMA5B association in the present manuscript is difficult to determine, 

though preliminary eQTL results suggest that the minor allele of rs62263260 is associated with 

increased expression of SEMA5B in tissues including the brain,309 esophagus, and testes (Figure 

2.7). Thus, it may be that higher expression of SEMA5B is associated with slower hippocampal 

atrophy in the absence of amyloidosis, but more rapid neurodegeneration in the presence of 

amyloid. In contrast to the eQTL direction of effect, there is evidence that SEMA5B expression is 
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downregulated in Alzheimer’s disease brains as reported by the Agora platform 

(https://agora.ampadportal.org/genes) and within our post-hoc analyses, further suggesting a 

change over the course of disease.  We hypothesize that SEMA5B expression and function may 

change as Alzheimer’s disease progresses, though further mechanistic study of SEMA5B in 

relevant brain tissues is truly needed to confirm its role and function in neurodegeneration. 

2.4.2 Variants on chromosome 3 modify the association between CSF p-tau and hippocampal 

atrophy 

A variant on chromosome 3 interacted with p-tau, though did not annotate to any gene in 

functional analyses. One hint of function came in phenome-level analyses of the SNP which 

revealed a possible link between genetic drivers of anemia and neuroprotection from p-tau, such 

that minor allele carriers of rs116216974 appear to have a higher incidence of anemia, which also 

increases risk of dementia.340-342 Given these findings, we would expect minor allele carriers of 

rs116216974 to have worse hippocampal atrophy, but instead, the minor allele was protective. 

 Nutritional anemias make up nearly one-third of all elderly anemia cases, which are 

treatable via nutritional supplementation.343 Low blood vitamin B levels and high levels of 

homocysteine have been tied to Alzheimer’s disease incidence in case-control studies, and both 

are inversely correlated. Therefore, one mechanism behind the neuroprotection we observed may 

be related to the treatment of anemia such that dietary supplementation of B-vitamin-related 

pathways may slow atrophy in the presence of Alzheimer’s disease pathology.344 However, the 

exact molecular pathways or mechanisms by which rs116216974 confers its neuroprotective 

effects are still unclear, and the connection to anemia and vitamin B is speculative. 
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2.4.3 Pathway results implicate DNA damage and repair as modifiers of amyloid-related 

brain atrophy 

 In addition to the SEMA5B results, we observed some evidence of a modifying role of DNA 

double-stranded break repair on amyloid-related hippocampal atrophy in our pathway-level results. 

DNA damage is suggested to play a large role in aging such that insurmountable damage (e.g., 

from reactive oxygen species) results in apoptosis or cellular senescence.345, 346 The relationship 

between normal aging and DNA damage is well-established, and emerging evidence supports a 

more direct role for DNA damage in Alzheimer’s disease.347 Deficiency in repair mechanisms can 

occur as a result of Alzheimer’s disease pathology (e.g., amyloid-related decreases in the DNA 

repair factor, BRCA1 (breast cancer factor 1)) and can also enhance Alzheimer’s disease pathology 

(e.g., aberrant CDK5 (cyclin-dependent kinase 5) activity).347, 348 

2.4.4 Pathway results implicate endolysosomal function as a modifier of tau-related 

neurodegeneration 

Our top pathway-level result for our CSF p-tau interaction was “endolysosome lumen.” The 

endosomal-lysosomal system is important for the internalization, recycling, and degradation of 

cellular components,349 and its dysregulation has been observed in Alzheimer’s disease. Several 

Alzheimer’s disease risk loci are implicated in endolysosomal function, (e.g., PICALM, CLU),212, 

213 and the endolysosomal network is an important clearance pathway of Alzheimer’s disease 

pathology,350 and there is increasing evidence that biological mechanisms that improve 

pathological clearance may result in a reduction of brain atrophy.215, 216, 351 
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2.4.5 APOE-e4 carriers exhibit increased susceptibility to neurodegeneration in the presence 

of amyloidosis  

APOE-e4 is the strongest genetic risk factor for late-onset Alzheimer’s disease, causing a 

2- to 3-fold increased risk of Alzheimer’s among heterozygous APOE-e4 carriers, and up to a 15-

fold increased risk among homozygous APOE-e4 carriers.142, 352 APOE-e4 increases the 

pathological deposition and aggregation of Ab in the brain – even in cognitively normal older 

adults – and has also shown evidence of independent associations with tau and cerebrovascular 

disease.149, 353  Our analyses add to existing literature suggesting that carriers of APOE-e4 exhibit 

faster hippocampal volume decline in the presence of brain amyloidosis. Interestingly, the cross-

sectional effects on baseline hippocampal volume appear to occur in a dose-dependent manner. 

However, we do not see any difference in the association between higher levels of amyloid and 

neurodegeneration in APOE-e4 heterozygotes compared to APOE-e4 homozygotes, perhaps 

suggesting the additional impact of homozygous carriership on hippocampal volume was already 

present at baseline in these cohort studies. APOE-e4 positivity has been associated with accelerated 

seeding of amyloid pathology and an earlier onset of amyloid positivity.61, 354 Furthermore, it has 

been suggested that the length of amyloid positivity correlates positively with the rate of the future 

progression of disease.61 Altogether, the results add to a growing body of literature suggesting that 

APOE contributes to the progression of Alzheimer’s disease both upstream and downstream of 

amyloidosis. 

2.4.6 Strengths and Limitations 

This study has multiple strengths including the use of harmonized CSF and PET amyloid 

values in addition to longitudinal neuroimaging data from well-characterized aging studies. We 

were also able to replicate our amyloid results in an independent cohort. In this study, as well as 
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others, we have also demonstrated that our harmonization processes are viable for increasing 

sample size, laying the foundation for future large-scale genomic discovery analyses of resilience. 

However, our study is not without limitations. Our sample was restricted to individuals 

who were highly educated, non-Hispanic white, and were free of other health comorbidities, 

limiting the generalizability of our results to additional populations. Though we were able to 

harmonize and standardize the CSF biomarker values and hippocampal volume measurements 

across cohorts, subtle differences remain possible due to differences in age and enrollment criteria 

(Table 2.4). Additionally, as some of our results are based on cross-sectional amyloid data, we 

cannot exclude that parts of our findings could be explained by the recent suggestion that APOE 

genotype could be used as a surrogate measure of time with Aβ pathology,355 i.e., that Aβ-positive 

APOE-ε4 carriers have had Aβ pathology 10-15 years longer than Aβ-positive non-carriers, and 

that they therefore are further along in the neurodegenerative phase of Alzheimer’s disease. This 

hypothesis needs to be addressed in future longitudinal studies.  

2.4.7 Conclusion 

In this study, we identified two novel loci on chromosome 3 that modify the association 

between baseline CSF Alzheimer’s disease biomarker values and hippocampal atrophy. We also 

supported previous findings that APOE-e4 was associated with baseline hippocampal volume and 

hippocampal atrophy in the presence of amyloid pathology. Our results highlight potential 

biological pathways that may be implicated in both neuroprotection from and susceptibility to 

Alzheimer’s disease pathologies including defects in axonal branching, DNA damage, and 

lysosomal function. 
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2.4.8 Future Directions 

Looking forward, further efforts to harmonize biomarker and neuroimaging data from 

additional cohorts will be needed to fully characterize the roles of the newly identified loci in 

neuroprotection from Alzheimer’s pathology. As deposition and aggregation of Alzheimer’s 

neuropathology occurs over time, it may be helpful to look at the effects of rs62263260 and 

rs116216974 using biomarker data at different timepoints. It may also be fascinating to examine 

the effects of rs62263260 and rs116216974 in early-onset AD. 

 Functional in vitro and in vivo studies examining SEMA5B function in relevant tissues will 

also help support our hypothesis that it is involved in amyloid-related neurodegeneration as well 

as elucidate its mechanism in neurodegeneration. Furthermore, additional studies are truly required 

to understand how rs116216974 is conferring its neuroprotective effects from tau pathology. 

Though rs116216974 has been connected to nutritional anemia, its mechanism of action is unclear. 

Future studies involving rs116216974 may examine the consequences of transcription factor 

binding site disruption and/or link rs116216974 to a coding gene.  
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CHAPTER 3 

 

 

 

EXAMINING TRANSCRIPTOMIC MODIFIERS OF THE APOE-e4 EFFECTS ON 

COGNITION 

 

 

Portions of this chapter are currently in press under the title, “RNASE6 is a novel modifier of 

APOE-ε4 effects on cognition,” that has been submitted to Neurobiology of Aging in February 

2022. Full acknowledgements and funding details can be found in Appendix C. 
 
 

 

 

3.1 INTRODUCTION 

 

The most common form of Alzheimer’s disease is sporadic LOAD, which is complex in 

etiology and heterogeneous in clinical presentation.7, 356 Sporadic LOAD is polygenic, and to date, 

over 40 risk loci for AD have been identified via large genome-wide association studies.92, 93, 357, 

358 One key genetic driver is APOE (apolipoprotein E), which has three common polymorphic 

alleles: ε2, ε3, and ε4. The APOE-ε4 allele is the strongest common genetic risk factor for AD.359, 

360 A single allele of APOE-ε4 can increase AD risk by up to 3 times compared to APOE-ε3, and 

two APOE-ε4 alleles can increase risk by up to 15-fold.142, 361 In addition to increased AD risk, the 

APOE-ε4 allele is associated with increased brain amyloid and tau burden,362 which ultimately 

leads to neurodegeneration and cognitive impairment.363, 364 However, many APOE-ε4 carriers 

remain cognitively normal throughout life despite the increased AD risk,276 suggesting that there 

may be neuroprotective molecular modifiers of APOE effects. For example, mutations within the 

caspase 7 (CASP7) and Klotho (KL) genes were suggested to have protective effects (e.g., reduced 

AD risk, slower cognitive decline) in APOE-ε4 carriers in comparison to non-carriers.365 In the 

brain, epigenetic modifiers of APOE-ε4 have also been observed, such as the recently described 
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epigenomic factor of activated microglia (EFAM).366 Indeed, identifying and describing APOE 

modifiers may provide critical insight into the pathophysiology of AD and provide novel targets 

for therapeutic intervention. 

The primary function of the APOE protein is lipid transport and signaling, which plays 

important roles in the brain, innate immune system, and vascular system.141, 367 Given the roles of 

APOE in both the peripheral and central nervous system, whole blood transcriptomics may provide 

an opportunity to identify novel genes and pathways that contribute to neuroprotection by 

modifying the effect of APOE. Furthermore, blood transcriptomics provide some important 

advantages over brain transcriptomics alone, particularly when seeking for modifiers of APOE 

effects. While transcriptomic signatures in blood do not perfectly mimic the brain,368, 369 many of 

the gene networks and molecular pathways that change over the course of AD are measurable in 

the blood and provide a window into relevant biological cascades such as inflammation.370 As one 

example, peripheral inflammation changes very early in AD and contributes to AD progression,371, 

372 with emerging evidence373, 374 suggesting that non-CNS inflammation is particularly relevant 

among APOE-ε4 carriers.  

Within this chapter, I will summarize how whole blood RNAseq from the Vanderbilt 

Memory and Aging Project can be used to identify modulators of APOE effects on cognition as 

well as how our findings in whole blood can be used as possible biomarkers for brain changes 

during the neuropathological progression of AD. After discovery and replication analyses, we aim 

to put our findings in a deeper biological context by considering our results within the presence of 

amyloid, tau, and inflammatory biomarkers. Thus, the analyses are as follows: 

 1.  We leverage whole blood RNAseq data from VMAP to identify genes that enhance or 

diminish the effects of APOE-e4 positivity on cognitive performance. We then extend our analyses 
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into the brain with bulk RNAseq data to assess whether results in blood show comparable effects 

within an immediately relevant tissue to AD, such as the brain. Finally, we examine our significant 

results in the context of AD by performing post-hoc analyses with both CSF and neuropathological 

measures of amyloid and tau. 

 2. As the discovery analyses identify RNASE6, an innate immunity gene, as a modifier of 

APOE-e4 effects on cognition within whole blood, we investigate the relationship between 

RNASE6 gene expression in whole blood (again, within VMAP) and both CNS and peripheral 

inflammatory biomarkers to better understand the biological mechanism behind our results. 

 
 

3.2 MATERIALS AND METHODS 

 

3.2.1 Participants  

The Vanderbilt Memory and Aging Project (VMAP) is a longitudinal aging cohort that was 

established in 2012 to investigate the relationship between vascular health and brain aging. 335 

individuals were enrolled; the study preferentially recruited participants with mild cognitive 

impairment (MCI, N=168) aged 60 and above along with matched counterparts who had normal 

cognition (N=167). Individuals with cognitive diagnoses other than MCI or normal cognition (NC), 

history of neurological disease, MRI contraindications, heart failure, major psychiatric illness, or 

systemic or terminal illness were excluded. At enrollment, participants underwent a 

comprehensive evaluation including, but not limited to, APOE genotyping, neuroimaging, 

cognitive assessment, blood draw, and optional lumbar puncture.375  

Independent data for replication were acquired from the Religious Orders Study (ROS) and 

the Rush Memory and Aging Project (MAP), known as ROS/MAP collectively. The ROS began 

in 1994 and enrolls priests and nuns from across the United States. The MAP cohort began in 1997 
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and enrolls lay persons from northeastern Illinois. Both longitudinal aging studies were launched 

to better understand risk factors for and the neurobiology of cognitive decline and dementia. Both 

studies were approved by an Institutional Review Board of Rush University Medical Center. All 

participants were without known dementia at enrollment, agree to comprehensive 

neuropsychological evaluations, and sign an Anatomic Gift Act and Repository Consent to allow 

their data to be shared.376 Additional ROS/MAP data can be requested via the AMP-AD 

(https://adknowledgeportal.synapse.org/) as well as the Rush Alzheimer’s Disease Center 

Resource Sharing Hub (https://www.radc.rush.edu/). 

3.2.2 Neuropsychological Assessment 

Composite measures for memory and executive function in VMAP were generated 

following previously described procedures.377, 378 Briefly, the memory composite leveraged data 

from the California Verbal Learning Test (2nd edition) and the Biber Figure Learning Test. The 

executive function composite score in VMAP was derived from the following tasks: Digit Span 

from the Wechsler Adult Intelligence Scale (3rd edition), Trail Making Test, Stroop Color Word 

Inhibition, and Controlled Oral Word Association. 

The global cognition variable in ROS/MAP was generated by averaging the Z-scores of 17 

neuropsychological tests across five domains of cognition (i.e., episodic, semantic, and working 

memory, perceptual orientation, and perceptual speed). This composite measurement has been 

described fully elsewhere.379 

3.2.3 RNA Extraction, Library Preparation, and Sequencing 

Vanderbilt Memory and Aging Project 

Blood draws were performed in the morning under fasting conditions. Approximately 

2.5 mL of whole blood were kept frozen at -80oC in a PAXgene tube (QIAGEN, 761115) until 
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processing 375. RNA extraction, library preparation, and RNA sequencing were performed by the 

VANTAGE Core (Vanderbilt University, TN, USA). Total RNA was extracted from whole blood 

using the QIASymphony RNA Kit (QIAGEN, 931636), and both ribosomal RNA and hemoglobin 

were depleted with the NEBNext Globin and rRNA Depletion Kit (New England BioLabs, Inc., 

E7750). Library preparation was completed using the NEBNext Ultra Directional Library Prep Kit 

(New England BioLabs, Inc., E7420) before sequencing was performed using 150 base pair (bp) 

paired end reads on an Illumina NovaSeq 6000 (Illumina), targeting an average of 50 million reads 

per sample. 

 
Religious Orders Study and Memory and Aging Project 

50 mg of frozen brain tissue were dissected and homogenized in DNA/RNA shield buffer 

(Zymo Research, R1100). RNA was extracted from the dorsolateral prefrontal cortex (DLPFC), 

posterior cingulate cortex (PCC), and head of the caudate nucleus (CN) using the Chemagic RNA 

tissue kit (PerkinElmer, Inc. CMG-1212) on a Chemagic 360 instrument. 500 ng of total RNA was 

used as input for sequencing library generation and rRNA was depleted with RiboGold (Illumina, 

20020599). A Zephyr G3 NGS workstation (PerkinElmer, Inc.) was utilized to generate TruSeq 

stranded sequencing libraries (Illumina, 20020599). Libraries were normalized for molarity and 

sequenced using 2 x 150 bp paired end reads on a NovaSeq 6000 (Illumina) targeting a total of 40 

to 50 million reads. Additional details are previously described.380-382 These data are available on 

the AMP-AD Knowledge Portal (https://www.synapse.org/#!Synapse:syn3219045). 

3.2.4 RNAseq Alignment and Quality Control 

RNAseq alignment and QC for both VMAP and ROS/MAP samples largely followed a 

previously reported procedure used by the AMP-AD Consortium.383 Alignment was performed 

using STAR (version 2.5.2b) with twopassMode set to basic.384 Reads were aligned to the Ensembl 
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(GRCh38, version 99) reference genome,385 and gene counts were computed using the 

featureCounts386 command from the Subread package (version 2.0.0). Summary metrics were 

calculated using Picard (version 2.18.27, http://broadinstitute.github.io/picard/) to evaluate sample 

quality and for later use as covariates.387  

Before QC of the VMAP whole blood RNAseq, samples with RNA integrity number (RIN) 

less than 3.0 were excluded. In addition, genes with missing gene length or GC-content were 

removed, after which all gene counts were quantile normalized using the cqn R package (version 

1.30.0) to remove technical variability due to gene length and GC-content.388 At this time, gene 

expression values greater than three standard deviations from the mean expression for each gene 

were removed. Additional samples were removed if deemed principal component outliers or if 

missing RIN, age, sex, other demographic information, or cognition data prior to batch correction. 

Expression values were adjusted for batch effects using the R package limma (version 3.40.6).389, 

390 This left 60,669 genes and 324 samples in VMAP for discovery analyses. 

QC of the bulk brain RNAseq from ROS/MAP followed the aforementioned pipeline. From 

these data, samples with RIN less than 4.0 or with post-mortem interval (PMI) greater than 24 

hours were excluded. Additional samples were removed if missing covariates or cognitive data 

resulting in a final dataset of 535 samples. 

Sensitivity analyses leveraged RNAseq data from VMAP that was additionally adjusted 

(i.e., along with quantile normalization and controlling for batch) for the following covariates 

using limma: sex, race, APOE-ε4 allele count, RIN, age, education, percentage pass-filter reads 

aligned, and percent coding, intergenic, intronic, and ribosomal bases.  
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3.2.5 Biomarker Quantification 

VMAP Cerebrospinal Fluid Biomarkers 

CSF was collected from 155 individuals enrolled in VMAP. A total of 151 individuals 

remain when samples missing covariates are removed (Table 3.1). Additional detail on lumbar 

puncture and collection is described elsewhere.375 Beta-amyloid (Ab1-42, Fujirebio, 81583), total 

tau (Fujirebio, 81579), and tau phosphorylated at threonine 181 (p-tau, Fujirebio 81581) were 

quantified using commercially available immunoassays. The CSF thresholds for pathologic 

amyloid and tau positivity are as follows: CSF Aβ1-42 less than 530 ng/L391 and CSF total tau levels 

greater than 400 ng/L.392 

 

 

Abbreviations: CSF, cerebrospinal fluid 
 

ROS/MAP Brain Neuropathological Measures 

Neuropathological outcomes included beta-amyloid (Ab), phosphorylated tau (p-tau), 

neuritic plaques, and neurofibrillary tangles (NFT). Ab and phosphorylated tau were identified via 

 
Table 3.1: Demographics of participants in VMAP who have CSF data. 

 

 VMAP VMAP CSF 

N 324 151 

Age in Years 72.9 (7.3) 72.4 (6.3) 

Memory Composite Score -0.009 (0.97) -0.012 (0.96) 

Executive Function Score 0.002 (0.91) 0.069 (0.86) 

% Male 58.0% 66.2% 

Education in Years 15.8 (2.7) 16.0 (2.8) 

% Normal Cognition 51.8% 52.3% 

# APOE-ε4 Alleles (0/1/2) 211 / 92 / 21 100 / 37 / 14 
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immunohistochemistry and quantified via image analysis. The overall amyloid level is defined as 

the mean percent of cortex occupied by Ab across eight brain regions (hippocampus, angular gyrus, 

and entorhinal, midfrontal, inferior temporal, calcarine, anterior cingulate, and superior frontal 

cortices). The overall tangle density is defined as the mean cortical density per mm2 of the same 

eight brain regions mentioned above. Neuritic plaque and NFT burden were determined by 

microscopic examination of silver-stained slides across 5 brain regions (hippocampus and 

entorhinal, midtemporal, inferior parietal, and midfrontal cortices). These neuropathological 

measures were previously characterized by ROS/MAP.376 Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) scores were used to determine amyloid positivity such that scores 

of "moderate" or "frequent" neuritic plaques were categorized as amyloid positive. Tau positivity 

was determined using Braak staging (Braak ≥ 4).42, 393, 394 

3.2.6 Statistical Analyses for Analysis 1 

All statistical analyses were performed using R (version 3.6.3, https://www.r-project.org/). 

False-discovery rate395 was used to correct for multiple comparisons in all analyses, with family-

wise a set a priori to 0.05. Both baseline and longitudinal memory and executive function scores 

were used as continuous outcome variables. Linear regression was used to assess the interaction 

between APOE-ε4 positivity (i.e., presence of at least one ε4 allele) and gene expression measured 

by RNAseq on cross-sectional memory performance. Linear mixed-effects regression tested the 

APOE interaction with gene expression on longitudinal memory, where the intercept and interval 

from baseline were entered as both fixed and random effects. Covariates in both models included 

baseline age and sex.  

Replication analyses were performed using ROS/MAP samples. Specifically, linear 

regression models were used to examine the interaction between APOE-ε4 positivity and bulk 
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brain gene expression in the DLPFC, CN, and PCC (Table 3.2) on the last global cognition 

composite score before death. Covariates included post-mortem interval (PMI), sex, and age at 

death. 

3.2.7 Sensitivity Analyses for Analysis 1 

Sensitivity analyses included models with more stringent QC for VMAP whole blood 

RNAseq data (i.e., adjusted for batch, sex, age, RIN, percentage of coding, intronic, and intergenic 

bases) to determine whether the observed results were due to technical effects. Additional 

sensitivity analyses included stratifying by cognitive diagnosis and covarying for education 

because of their effects on cognitive performance. 

 

Table 3.2: Demographics for samples from each brain region in ROS/MAP 

 DLPFC PCC  CN 

N 535 322  435 

Age at Death in Years 88.5±6.6 88.5±6.3  88.6±6.5 

Global Cognition Composite  -0.78±1.04 -0.69±1.02  -0.76±1.1 

% Male 36.8 38.5  35.4 

Education in Years 16.4±3.5 16.0±2.8  16.3±3.6 

% Normal Cognition 34.2 38.5  34.9 

# APOE-ε4 Alleles (0/1/2) 411 / 118 / 6 255 / 64 / 3  333 / 97 / 5 

 RNASE6 expression -0.04±0.85 -0.07±0.75  -0.03±0.74 

Values are given as mean ± standard deviation unless otherwise noted. Abbreviations: DLPFC, dorsolateral 
prefrontal cortex; PCC, posterior cingulate cortex; CN, head of caudate nucleus 
 
 

3.2.8 Post-hoc Biomarker Analyses  

Given the relationship between APOE and AD biomarkers, we plan to examine the 

interaction between amyloid and tau positivity and any significant gene hits on cognition to better 
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understand the biological mechanisms behind our cognitive results. For these analyses, we 

leveraged CSF measurements of amyloid and tau in VMAP and neuropathological measurements 

from ROS/MAP. Covariates for these analyses included age, sex, and PMI where relevant. Using 

similar regression models, we also investigated whether the gene x APOE-ε4 interaction had any 

effect on baseline CSF amyloid and tau levels, covarying for age and sex.  

 

3.3 ANALYSIS 1: GENE x APOE-e4 INTERACTION RESULTS ON COGNITION 

 

The characteristics of individuals from VMAP (N=324) and those from ROS/MAP who 

have DLPFC RNAseq (N=535) are presented in Table 4.3. Overall, a larger percentage of 

participants in VMAP are APOE-ε4 positive (34.8% versus 23.1%, respectively) and have normal 

cognition (51.8% versus 34.2%). VMAP participants are also younger than participants from 

ROS/MAP, on average. In contrast, a higher percentage of participants in ROS/MAP are tau and 

amyloid positive and they are more highly educated on average. It should be noted that cognition 

scores cannot be compared across studies because two different cognitive composites are used that 

are not scaled across studies. The total number of samples from each brain region in ROSMAP 

can be found in Table 3.2.  

3.3.1 RNASE6 Interacts with APOE-ε4 on Cognition  

Of the 60,669 genes tested, expression of RNASE6, ribonuclease A family member K6, 

interacted with APOE-ε4 status on baseline memory in VMAP (β=-1.16, p.fdr=0.003, 

p.unadjusted= 4.35x10-8) whereby higher RNASE6 expression in whole blood was associated with 

worse memory performance at baseline among APOE-ε4 carriers (β=-0.96, p=4.43x10-8). In 

contrast, higher levels of RNASE6 expression were nominally associated with better memory 
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among APOE-ε4 non-carriers (β=0.22, p=0.09, Figure 3.1A). We observed similar results for 

another cognitive domain, executive function (β=-0.54, p=0.008, Figure 3.1B). However, we did 

not observe any significant interactions between whole blood gene expression and APOE-ε4 

positivity on longitudinal cognition. 

 

 
Table 3.3: Comparison of participant characteristics between VMAP and ROS/MAP 

 VMAP ROS/MAPa P 

N 324 535  

Age in Yearsb 72.9±7.3 88.5±6.6 < 1x10-5 

Composite Cognition Score -0.009±0.97c -0.78±1.04d  

% Male 58.0 36.8 < 1x10-5 

Education in Years 15.8±2.7 16.4±3.5 0.02 

% Normal Cognition 51.8 34.2 < 1x10-5 

 VMAP ROS/MAPa P 

# APOE-ε4 Alleles (0/1/2) 211 / 92 / 21 411 / 118 / 6 0.0002 

% Amyloid Positive 30.4e 60.5 < 1x10-5 

% Tau Positive 43.0e 52.3 0.04 

aSamples with dorsolateral prefrontal cortex RNAseq; demographics for other brain regions can be found at 
Table 3.2; bVMAP: age at baseline, ROSMAP: age at death; cMemory composite score at baseline; dGlobal 
cognition composite score at last visit before death; eCSF measurements only available in 151 participants. 
Values are given as mean ± standard deviation unless otherwise noted. Analysis of variance (ANOVA) 
analyses were performed to assess differences between the discovery (VMAP) and replication (ROS/MAP) 
datasets.  
 

The RNASE6 x APOE-ε4 interaction on baseline memory remained significant in 

sensitivity analyses (see section 3.2 Materials and Methods) when leveraging more stringent QC 

controlling for technical variation in RNA sequencing (p=2.23x10-8, Table 3.4). The interaction 

also remained significant when stratifying by diagnosis (i.e., normal cognition or MCI) and 

covarying for education (p-values<0.00657, Table 3.4). 
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Figure 3.1. APOE-e4 allele carriers in VMAP have worse baseline cognition in the presence of higher levels 
of RNASE6 expression. A) A scatterplot demonstrating how RNASE6 expression modifies the association 
between APOE-e4 positivity and cognitive performance (β=-1.16, p=4.35x10-8). Baseline composite memory 
scores are denoted on the y-axis; and the x-axis represents quantile normalized and batch controlled RNASE6 
expression in whole blood. Points and lines are colored by APOE-e4 positivity where APOE-e4 carriers are 
denoted by the color red. B) Baseline executive function scores are denoted on the y-axis. APOE-e4 carriers 
expressing higher levels of RNASE6 also have worse baseline executive function (β=-0.54, p=0.008).   
 
 
 
Table 3.4: Sensitivity analysis results for the RNASE6 x APOE-e4 interaction on  

baseline memory 
Analysis N B SE P 

Original RNASE6 x APOE-ε4 

Interaction 

324 -1.164 0.208 4.35x10-8 

Using Strict RNAseq QC 324 -1.197 0.209 2.23x10-8 

Participants with NCa 168 -0.580 0.211 6.57x10-3 

Participants with MCIa 128 -0.867 0.278 2.30x10-3 

Including Education as a 

Covariate 

324 -1.042 0.206 7.47x10-7 

aNumber of participants with normal cognition and MCI sum to 296. Individuals with a diagnosis of AD or 
“Other” have been removed. Abbreviations: NC = normal cognition, MCI = mild cognitive impairment, B = 
beta, SE = standard error, P = p-value, QC = quality control.  
 
 

3.3.2 Replication in ROS/MAP 

Leveraging data from an independent cohort, ROS/MAP, we examined the interaction 

between RNASE6 expression in brain tissue and APOE-ε4 genotype on global cognition at the final 

A Memory Executive FunctionB
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visit prior to death. Using bulk RNAseq data from 3 distinct brain regions: DLPFC, PCC, and head 

of the CN, we observed replication of the previous interaction on memory (β=-0.35, p=0.002) in 

the DLPFC (Figure 3.2), though the observed effects were not present in the PCC or the CN (p-

values>0.3; Table 3.5). 

 
 
Table 3.5: Interaction results of RNASE6 expression and APOE-e4 positivity on global 

cognition at last visit in ROS/MAP brain regions 
Tissue N B SE P.unadjusted 

DLPFC 535 -0.349 0.11 0.002 

PCC 322 -0.167 0.18 0.36 

CN 435 -0.080 0.17 0.63 

Abbreviations: B = beta, SE = standard error, P = p-value, DLPFC = dorsolateral prefrontal cortex, PCC = 
posterior cingulate cortex, CN = head of the caudate nucleus 
 

 

 
Figure 3.2. APOE-e4 allele carriers in ROS/MAP have worse global cognition in the presence of higher 
levels of RNASE6 expression. RNASE6 expression in the dorsolateral prefrontal cortex is on the x-axis, the last 
global cognition score before death is on the y-axis. Points and lines are colored by amyloid positivity where 
amyloid positivity is denoted by the color red. RNASE6 expression modifies the association between APOE-e4 
positivity and global cognition such that higher RNASE6 expression predicts worse performance at the last visit 
before death in APOE-e4 carriers (β=-0.35, p=0.002). 
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3.3.3 Post-Hoc Analyses with Biomarkers 

Like our initial findings within VMAP, we observed an interaction with amyloid positivity 

whereby higher levels of RNASE6 in blood were associated with worse baseline memory in VMAP 

(b=-1.14, p=0.001, Figure 3.3A). We also observed a similar interaction with tau positivity 

whereby higher levels of RNASE6 were associated with worse baseline memory (b=-0.63, p=0.04, 

Figure 3.3B). Neither interaction was significantly associated with baseline executive function (p-

values>0.1). We replicated the amyloid interaction effect in ROS/MAP DLPFC leveraging an 

immunohistochemical measurement of amyloid (b=-0.26, p=0.007, Figure 3.4), though the tau 

interaction did not replicate (p=0.1).  

 

 
 
Figure 3.3. Amyloid and tau positivity drives poorer cognitive performance at baseline. A) A scatterplot 
demonstrating how RNASE6 expression modifies the association between amyloid positivity and baseline 
memory. Amyloid-positive individuals expressing higher levels of RNASE6 have worse baseline memory than 
individuals who are not amyloid-positive (b=-1.14, p=0.001). Baseline composite memory scores are denoted 
on the y-axis; and the x-axis represents quantile normalized and batch controlled RNASE6 expression in whole 
blood. Points and lines are colored by amyloid positivity where amyloid positivity is denoted by the color red. 
B) Tau-positive individuals expressing higher levels of RNASE6 also have worse baseline memory than 
individuals who are not tau-positive (b=-0.63, p=0.04). 
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Figure 3.4. Amyloid-positive individuals in ROS/MAP expressing higher levels of RNASE6 have worse 
baseline cognition. RNASE6 expression in the dorsolateral prefrontal cortex is on the x-axis, the last global 
cognition score before death is on the y-axis. Points and lines are colored by amyloid positivity where amyloid 
positivity is denoted by the color red. Higher RNASE6 expression predicts worse performance at the last 
cognitive visit before death in amyloid-positive individuals (b=-0.26, p=0.007). 

 

 

We also wanted to examine whether RNASE6 expression influenced AD biomarker levels 

in APOE-e4 carriers and non-carriers.  The main effect of RNASE6 was significantly associated 

with CSF Aβ1-42 (Figure 3.5A, b=91.8, p=0.02) such that higher RNASE6 levels in blood were 

correlated with reduced brain amyloid burden. However, when examining the RNASE6 x APOE-

e4 positivity interaction, this effect appeared to be in APOE-ε4 non-carriers only, though the 

interaction was non-significant (p=0.1, Figure 3.5A). Though RNASE6 expression alone was not 

significantly associated with CSF tau or p-tau, it significantly modified the relationship between 

APOE-ε4 and both CSF tau (b=230.1, p=0.003) and CSF p-tau (b=22.7, p=0.01) levels such that 

APOE-ε4 carriers expressing higher levels of RNASE6 in blood have increased tau pathology at 

baseline (Figure 3.5B, C). None of these effects were observed using neuropathological measures 

of amyloid and tau in ROS/MAP. 
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3.3.4 Discussion 

In this study, we observed the significant APOE4-modifying effect of RNASE6 expression, 

in both blood and brain tissues, on cognition. Specifically, APOE-ε4 carriers expressing higher 

levels of RNASE6 in whole blood had worse baseline memory and executive function performance. 

We also replicated this novel discovery in an independent sample leveraging transcriptomic data 

from the dorsolateral prefrontal cortex. In addition, we found that higher RNASE6 levels are 

associated with poorer memory performance in individuals that are amyloid-positive and/or tau-

positive in comparison to individuals who are biomarker negative (Figure 3A, B). RNASE6 also 

modifies the effect of APOE-ε4 on CSF tau and p-tau levels, such that APOE-ε4 carriers expressing 

higher levels of RNASE6 have increased CSF tau burden. 

RNASE6 is a fascinating, novel inflammatory risk factor for AD. RNASE6 protein exhibits 

antimicrobial activity.396 Overexpression of endogenous RNASE6 in mice is also associated with 

increased levels of reactive oxygen species as well as increased inflammatory factor secretion.397 

In addition, RNASE6 levels are increased in individuals with AD across several brain regions 

including the cerebellum, inferior frontal gyrus, and temporal cortex (AMP-AD Agora; 

https://agora.adknowledgeportal.org/genes/(genes-router:gene-details/ENSG00000169413). It 

has been established within the literature that immune function plays a role in cognitive decline,371, 

372, 398 and recent evidence has implicated the importance of neuroinflammation early in the AD 

cascade399 and suggests that it drives downstream neurodegeneration. Furthermore, different 

microglial pathways appear to be involved in the accumulation of amyloid and tau 

proteinopathies.400  

As RNASE6 is relatively understudied and the inflammatory and immunological systems 

are complex, we looked to alternative data sources to interpret our findings. Using publicly 
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available gene co-expression networks, we observed that RNASE6 is in a brain gene co-expression 

module with several AD genes including TREM2 and MS4A6A (AMP-AD Agora, Figure 3.6), 

which are both highly expressed in microglia.254, 401 In publicly available microglia data published 

previously, both RNASE6 and TREM2 are upregulated in an AD-associated microglial cluster.402, 

403 Together, these results strongly suggest that RNASE6 is also expressed within microglia. 

RNASE6 was also found to be upregulated in neurofibrillary tangle-bearing neurons 

suggesting that it may play a role in increasing tau pathology burden.403 However, we also observe 

a trend in which higher RNASE6 expression in APOE-ε4 non-carriers correlates to reduced brain 

amyloid burden (i.e., higher CSF Aβ1-42, Figure 3.5A). Though we cannot make any formal 

conclusions without further study, a few hypotheses can be conceptualized from this particular 

result. The first is that RNASE6 may play two distinct roles in both the neuroinflammatory-related 

clearance and deposition of AD neuropathology in APOE-ε4 carriers. Alternatively, it may be that 

neuroinflammation has been occurring longer in individuals carrying APOE-e4 due to earlier 

amyloid deposition in comparison to non-carriers.355 It has also been suggested that APOE-e4 

expressing microglia are more likely to be pro-inflammatory and have impaired clearance activity 

in comparison to APOE-e3 expressing microglia, not only suggesting that prolonged inflammation, 

but also enhanced inflammation may be partially responsible for our results.404 Finally, our results 

and others suggest that RNASE6 expression is involved in the deposition of tau neurofibrillary 

tangles. Thus, one possible hypothesis, downstream of beta-amyloid, perhaps, would be that 

increased RNASE6 expression in APOE-e4 carriers results in an increase of inflammation (via 

harmful, pro-inflammatory microglia) and tau neurofibrillary tangle burden resulting in worse 

cognitive performance (Figure 3.7). 
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It should also be noted that our significant results are restricted to cross-sectional cognitive 

performance. Although we looked at longitudinal outcomes, the RNASE6 x APOE-ε4 interaction 

on cognitive performance over time is non-significant (p.unadjusted > 0.05) in whole blood and 

brain tissue. These data suggest that RNASE6 expression in APOE-ε4 carriers may play its role 

prior to the onset of cognitive decline in contrast to directly modulating cognitive performance 

over time. However, longitudinal gene expression, cognition, and biomarker data are needed for 

further examination of RNASE6 in this context. There is substantial evidence that 

neuroinflammatory pathways may be particularly relevant among APOE-ε4 carriers (reviewed in 

373), and contribute to impaired amyloid clearance,405 enhanced gliosis,406 and enhanced brain 

cytokine levels.407 APOE-ε4 carriers also display prolonged inflammatory responses in 

comparison to non-carriers.141 If RNASE6 expression is indeed a surrogate for an immune response, 

it can be hypothesized that APOE-ε4 carriers have a higher susceptibility to inflammation than 

non-carriers and that our findings in baseline cognition may be due to prolonged inflammation, 

and consequently, increased neurofibrillary tangle deposition29 before any changes to cognition.  

As aforementioned, the report discussing EFAM and its impact on APOE-ε4366 provides 

an interesting convergence of observations from the peripheral and CNS resident immune systems; 

future work can explore whether these two factors (EFAM and RNASE6) are independently 

influencing APOE-ε4 or may synergize. In addition, future work on RNASE6 expression in 

microglia may help clarify the potential mechanistic pathway of the observed effect. It is also 

notable that another RNASE family gene, RNASE13 was previously associated with executive 

function resilience,408 suggesting that this family of proteins may be exciting targets for future 

investigation, particularly in response to pathology along an inflammatory pathway.   
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Figure 3.5. CSF biomarker levels are modulated by RNASE6 expression. A) Brain amyloid burden is 
reduced in APOE-e4 non-carriers when RNASE6 expression is high (b= 91.8, p=0.02). Baseline CSF Aβ1-42 
levels are denoted on the y-axis and whole blood RNASE6 expression is on the x-axis. CSF Aβ1-42 levels have an 
inverse relationship with brain amyloid burden such that higher CSF Aβ1-42 is indicative of lower brain amyloid 
levels. B) In contrast, CSF tau levels increase as RNASE6 levels increase in APOE-e4 carriers (b=230.1, 
p=0.003). C) CSF p-tau levels also increase as RNASE6 levels increase in APOE-e4 carriers (b=22.7, p=0.01). 
In all plots, CSF biomarker levels are denoted on the y-axis; and the x-axis represents quantile normalized and 
batch controlled RNASE6 expression in whole blood. Points and lines are colored by APOE-e4 positivity where 
APOE-e4 carriers are denoted by the color red. 

 

3.3.5 Strengths and Limitations 

This study has multiple strengths including our multi-modal discovery analyses, 

independent replication, and the use of comprehensive longitudinal cognitive data from two deeply 

characterized aging studies. Furthermore, our findings highlight the potential of blood 
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transcriptomics to identify inflammatory and/or immune factors that have additional effects on the 

brain. Blood draws are also more accessible to individuals than in comparison to other procedures 

such as lumbar punctures, making similar analyses using blood transcriptomics increasingly viable 

in larger or more diverse populations. 

However, there are limitations in our study that should be considered. The individuals in 

our sample are largely non-Hispanic white and highly educated, limiting the generalizability of 

our results. We also lack functional data to support a specific mechanism of action; it is particularly 

challenging given that the relationship between peripheral and brain RNASE6 expression is not 

well-characterized. Along with these considerations, the gene expression and pathology data used 

in our analyses are both cross-sectional; we cannot make a conclusion on how RNASE6 expression 

may affect AD neuropathology over time nor on how a diagnosis of AD may affect RNASE6 

expression longitudinally. Future work with data from both the periphery and the CNS will be 

critical to extend these exciting findings. 

 

 

Figure 3.6. RNASE6 is in a co-expression network module with TREM2 and MS4A. This figure is adapted 
from Agora (https://agora.ampadportal.org/genes). RNASE6 is highlighted in orange. Yellow circles denote 
TREM2 and genes within the MS4A cluster. 
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3.4 ANALYSIS 2: INVESTIGATING THE RELATIONSHIP BETWEEN RNASE6 AND 

OTHER INFLAMMATORY BIOMARKERS 

 

Microglia and astrocytes are the immune cells of the CNS, and they express genes such as: 

TREM2, MS4A, and HLA-DRB1. Supported by the discovery of variants within these immunity-

related genes in large GWAS and GWAS meta-analyses of AD risk,91-93, 358 neuroinflammation 

and innate immunity have been implicated in the risk and neuropathological progression of AD.  

It has been hypothesized that neuroinflammation is both beneficial and detrimental; in early 

stages, acute inflammatory events can help clear the CNS of pathology such as amyloid. However, 

chronic inflammation when pro- and anti-inflammatory signaling has been disrupted by an 

insurmountable burden of pathology, for example, has been associated with cognitive impairment 

and increased AD risk.240 

Neuroinflammation was also thought to be a response to AD pathology and 

neurodegeneration within the CNS, but it has since been suggested that neuroinflammation can 

also precede, facilitate, and worsen the neuropathological progression of AD. For example, a 

recent study by Park and Barrett demonstrate in mice that gliosis may occur prior to amyloid and 

tau deposition.409 Recent studies have also implicated peripheral inflammation in AD,372, 410, 411 

such that systemic inflammation has been associated with increased AD risk372 as well as cognitive 

decline in late life.410 

To better understand how RNASE6 relates to both peripheral inflammation and 

neuroinflammation, we wanted to examine its relationship to neuroinflammatory CSF biomarkers 

soluble TREM2 (sTREM2, triggering receptor expressed on myeloid cells 2) and YKL-40 

(chitinase-3-like 1) as well as plasma peripheral inflammatory biomarkers tumor necrosis factor 
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alpha (TNF-a), C-reactive protein (CRP), and interleukin-6 (IL-6). These preliminary analyses 

leveraged data using the same VMAP samples summarized in Table 3.1. Mean and standard 

deviation of inflammatory biomarkers have been included in Table 3.5. 

Regarding neuroinflammation, TREM2 is of particular interest because variants identified 

within the TREM2 gene have been associated with increased risk of AD. One such example is the 

R74H variant of TREM2 that increases AD risk by approximately three-fold.412 Furthermore, 

RNASE6 is in the same gene co-expression module as TREM2.  

TREM2 modulates inflammatory signaling and is involved in numerous microglial 

functions including the recruitment of microglia to amyloid plaques. sTREM2 is produced by the 

proteolytic cleavage or alternative splicing of TREM2. CSF levels of sTREM2 can be used as a 

proxy of microglial activity413, 414 and is increased in individuals with AD as well as in individuals 

with inflammatory conditions such as multiple sclerosis (reviewed in Zhong et al.,).412 Higher 

levels of sTREM2 have also been associated with increased tau pathology413, 415 and protection 

from amyloid accumulation416 and cognitive decline.417 It should be noted, however, that sTREM2 

levels are dynamic and AD stage-dependent,414, 415 and its function in AD is not well-characterized 

making it difficult to interpret whether it is truly protective or not. CSF YKL-40 is primarily 

expressed by astrocytes and has been described as a probable fluid biomarker of preclinical AD.418  

Meanwhile, plasma CRP, IL-6, and TNF-a are indicative of systemic inflammation.419-422 

CRP is a non-specific marker of inflammation, and is elevated in individuals with AD.423 Similarly, 

IL-6 and TNF-a are pro-inflammatory cytokines that show evidence of being elevated in 

individuals with AD.422 
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3.4.1 CSF and Plasma Biomarker Inflammatory Quantification 

CSF sTREM2 was quantified on site with a non-commercially available enzyme-linked 

immunoassay (ELISA). CSF YKL-40 was quantified using the Human Chitinase 3-like 1 

Quantikine ELISA Kit (R&D Systems, Inc, Minneapolis, MN). Plasma CRP, TNFa, and IL-6 

were quantified via immunoassay. Additional details on plasma and CSF collection can be found 

in section 3.3 Materials and Methods.  

3.4.2 Statistical Analyses  

All statistical analyses were performed using R (version 3.6.3, https://www.r-project.org/). 

Outliers with any biomarker levels greater than 5 standard deviations above the mean were 

removed prior to analysis. Linear regression was used to assess the interaction between APOE-ε4 

positivity (i.e., presence of at least one ε4 allele) and RNASE6 expression in whole blood on 

baseline CSF and plasma inflammatory biomarker levels (i.e., CSF sTREM2 and YKL-40, plasma 

IL-6, CRP, and TNF-a). Covariates included age and sex. We also used linear models to examine 

the association between the aforementioned biomarkers and baseline cognition (i.e., memory and 

executive function) covarying for age and sex. 

3.4.3 Summary of Preliminary Results 

 RNASE6 expression was significantly associated with baseline CSF sTREM2 levels such 

that higher levels of RNASE6 resulted in lower baseline levels of CSF sTREM2 (Table 3.6). The 

RNASE6 x APOE-e4 interaction was also significant such that higher levels of RNASE6 levels 

were associated with increased baseline levels of CSF sTREM2 in APOE-e4 carriers (Table 3.6, 

Figure 3.7). In addition, RNASE6 expression was associated with baseline levels of plasma CRP 

such that higher levels of RNASE6 resulted in lower levels of plasma CRP (Figure 3.8A). In 
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contrast, RNASE6 expression was not significantly associated with baseline CSF YKL-40 levels 

or baseline plasma IL-6, or TNF-a levels. Similarly, RNASE6 expression did not significantly 

interact with APOE-e4 positivity on the aforementioned biomarkers (Table 3.6, Figure 3.8B, C, 

D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.6: Summary of inflammatory biomarkers in VMAP  

 

 VMAP VMAP CSF 

N 321 151 

Age in Years 72.8±7.3 72.4±6.3 

Memory Composite Score -0.011±0.97 -0.012±0.96 

Executive Function Score 0.003±0.91 0.069±0.86 

% Male 57.6% 66.2% 

Education in Years 15.8±2.7 16.0±2.8 

% Normal Cognition 51.7% 52.3% 

# APOE-ε4 Alleles (0/1/2) 209 / 91 / 21 100 / 37 / 14 

CSF sTREM2 N/A 3648.5±1809.9 

CSF YKL-40 N/A 193519.0±64443.8 

Plasma CRP 2.4±3.2 N/A 

Plasma IL-6 3.6±2.7 N/A 

Plasma TNF-a 6.1±2.5 N/A 
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Table 3.7: RNASE6 main effect and RNASE6 interaction results with inflammatory biomarkers 

Predictor Outcome B SE P 

RNASE6 Main 
Effect 

CSF sTREM2 -668.67 333.76 0.047 

RNASE6 x APOE-e4 
Positivity 

CSF sTREM2 1362.23 615.02 0.028 

RNASE6 Main Effect CSF YKL-40 -20301.0 11980.5 0.092 

RNASE6 x APOE-e4 

Positivity CSF YKL-40 40187.3 22076.9 0.071 

RNASE6 Main Effect Plasma IL-6 0.037 0.38 0.92 

RNASE6 x APOE-e4 

Positivity Plasma IL-6 0.45 0.64 0.49 

RNASE6 Main 
Effect Plasma CRP -0.93 0.45 0.04 

RNASE6 x APOE-e4 

Positivity Plasma CRP 0.77 0.75 0.31 

RNASE6 Main Effect Plasma TNF-a -0.44 0.35 0.21 

RNASE6 x APOE-e4 

Positivity Plasma TNF-a 0.02 0.58 0.97 

Abbrevations: B, beta; SE, standard error; P, p-value 

3.4.4 Discussion and Future Directions 

In these preliminary analyses, RNASE6 expression in whole blood was associated with 

baseline CSF sTREM2 levels such that higher RNASE6 levels are predictive of lower baseline CSF 

sTREM2 (Figure 3.7A). RNASE6 expression also interacted with APOE-e4 positivity on CSF 

sTREM such that higher levels of RNASE6 predict higher CSF sTREM2 levels in APOE-e4 

carriers (Figure 3.7B). TREM2 is primarily expressed by microglia,424 thus suggesting that a 

deeper relationship may exist between RNASE6 function and microglial activity. This relationship 

is further supported by the co-expression of RNASE6 and TREM2 in network modules (Figure 

3.6).  
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Figure 3.7. RNASE6 expression modifies baseline CSF sTREM2 levels. A) Baseline CSF sTREM2 levels are 
reduced when RNASE6 expression in whole blood is high (b=-668.7, p=0.047). Baseline sTREM2 levels are 
denoted on the y-axis and whole blood RNASE6 expression is on the x-axis. B) In contrast, baseline CSF 
sTREM2 levels are higher when RNASE6 expression is high in APOE-e4 carriers (b=1362.2, p=0.028). Points 
and lines are colored by APOE-e4 positivity where APOE-e4 carriers are denoted by the color red. 
 
 

  

CSF sTREM in our sample is not significantly associated with baseline memory 

performance or executive function (p > 0.2), though studies have suggested that increased CSF 

sTREM2 levels are both protective against cognitive decline.416, 417, 425 It should be noted that our 

current available data is restricted to cross-sectional measurements, though CSF sTREM2 levels 

are dynamic over the course of disease limiting our ability to interpret our findings.  

RNASE6 expression was inversely associated with plasma CRP such that higher levels of 

RNASE6 predict lower levels of CRP (b=0.93, p=0.04, Figure 3.8A). Baseline CRP in our analyses 

was not associated with baseline memory or executive function (p > 0.6). As aforementioned, CRP 

is often considered a marker of systemic inflammation,426 and increased levels of plasma CRP 

have been associated with poor cognitive function.427 In contrast, plasma CRP is decreased in 

A B
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individuals with AD and in APOE-e4 carriers.428, 429 RNASE6 is upregulated following infection430 

and for host defense,431 so our results are somewhat counterintuitive.  

 CSF YKL-40, plasma IL-6, and TNF-a (Figure 3.8B, C, D) were not significantly 

associated with RNASE6, nor is the RNASE6 x APOE-e4 interaction significant on YKL-40, IL-6, 

or TNF-a. Additionally, plasma TNF-a is not significantly associated with baseline measurements 

of cognition in our sample. Baseline levels of IL-6, however, are significantly associated with 

baseline memory (b=-0.06, p=0.004) and baseline executive function (b=-0.04, p=0.01), which 

supports previous studies.432, 433 

 

3.5 CHAPTER CONCLUSION AND FUTURE DIRECTIONS 

 

 To conclude, our results suggest that RNASE6 modifies the association between APOE-e4 

positivity and cross-sectional measures of cognition. RNASE6, also known as ribonuclease A 

family member K6, is an innate immunity gene that has been implicated in antimicrobial activity396 

and pro-inflammatory factor secretion.397 Most excitingly, RNASE6 is in a gene co-expression 

network module with microglial genes TREM2 and MS4A that have been previously identified as 

AD risk loci. In addition, we found that RNASE6 expression levels are correlated with CSF 

sTREM2 levels among APOE-e4 carriers supporting the notion that RNASE6 is expressed in 

microglia and that there may be a biological interaction between RNASE6 and TREM2.  

 Gene co-expression analyses also suggest that RNASE6 may be involved in tau 

neurofibrillary tangle deposition,403 and studies examining CSF sTREM2 have also shown that it 

positively correlates with CSF total tau and p-tau levels.434, 435 Altogether, these data suggest that 
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RNASE6 and TREM2 may exist in the same biological pathways resulting in increased 

neurofibrillary tangle burden and subsequently, neurodegeneration and cognitive decline. 

In addition to supporting previous analyses implicating innate immunity in cognitive 

decline, our results suggest that data from whole blood transcriptomics can provide information 

about AD-relevant biological changes that may be occurring in the brain and provide a proof-of-

concept for how a similar analyses can be leveraged to identify blood-based biomarkers. We also 

demonstrate that network-level analyses can be useful to help interpret gene-level results in a larger 

biological context when literature is unavailable. 

As aforementioned, additional longitudinal studies examining RNASE6 function within the 

CNS and blood are necessary to understand how it is causing worse baseline cognitive 

performance.  In addition, animal studies may be of potential benefit to elucidate the relationship 

between RNASE6, microglia, and peripheral inflammation and their roles in Alzheimer’s risk and 

neuropathogenesis. 

 



 101 

 

Figure 3.8. RNASE6 expression is associated with baseline plasma CRP levels, but not other inflammatory 
biomarkers. Baseline biomarker levels are denoted on the y-axis and whole blood RNASE6 expression is on the 
x-axis. A) Scatterplot between whole blood RNASE6 expression and baseline CSF YKL-40. B) Scatterplot 
between RNASE6 expression and baseline plasma CRP. Baseline levels of CRP are lower when RNASE6 
expression is high (b=0.93, p=0.04). C) Scatterplot between RNASE6 expression and baseline plasma IL-6. D) 
Scatterplot between RNASE6 expression and baseline plasma TNF-a. 
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CHAPTER 4 

 

 

 

LEVERAGING WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS (WGCNA) 

AS A TOOL FOR AD DRUG DISCOVERY  

 

Supplemental information, full funding details and acknowledgements for this chapter can be 

found in Appendix D. 
 

4.1 INTRODUCTION 

 

Alzheimer’s disease (AD) is a complex neurodegenerative disorder that is heterogeneous 

in presentation. While familial cases of Alzheimer’s disease are often driven by autosomal 

dominant mutations in genes such as APP, PSEN1, and PSEN2,436 sporadic forms of AD can be 

considered polygenic.14-17 AD is 60 to 80% heritable,90, 437, 438 and over 40 risk loci for AD have 

been identified in large scale GWAS and meta-analyses.91-93, 358 Many of the recently identified 

loci are common variants with low effect size perhaps suggesting that numerous genes are working 

in concert along with lifestyle factors to affect an individual’s overall sporadic AD risk. 

Historically, AD and AD drug discovery research has utilized a candidate gene approach, 

which probes a set of genes determined a priori that potentially contribute to AD risk or the AD 

endophenotype of interest.85, 86 Though familial and candidate gene studies of APP, PSEN1, and 

PSEN2 as well as studies supporting the amyloid cascade hypothesis53, 54  strongly directed AD 

drug discovery efforts to amyloid, amyloid-focused therapeutics have largely failed in clinical 

trials.63-65, 67, 87  

More recently, the availability of large “-omics” datasets have allowed for a different 

perspective on AD drug discovery focusing on phenotype first to identify genes and variants of 



 103 

interest (e.g., reverse genetic approaches, genome- or exome-wide association studies), which has 

helped to diversify drug targets.64 In addition, the boon of “-omics” data permits systems biology-

based approaches that can help to probe the etiology behind a multifactorial disease such as AD.89 

 Though approaches such as genome-wide association studies have identified numerous 

novel risk loci for AD,91-93, 212, 358 linking genetic discovery to biological mechanisms remains a 

major challenge of the field. Identified variants can be in non-coding or intergenic regions making 

it difficult to assign risk variants to specific genes or functions. However, network biology methods 

along with others (e.g., eQTL studies, transcriptomic data) have emerged to help elucidate the 

functions of genetic loci.277, 381, 439-441  

Chapter 4 focuses on using a network-based approach called WGCNA (weighted gene co-

expression network analysis)439, 442 for the identification of novel mechanisms and genetic factors 

that are associated with hallmarks of AD (e.g., amyloid, tau, cognitive decline). Leveraging 

WGCNA, we will link biological function to genetic discovery in our analyses, providing insight 

into the etiology of AD. Furthermore, we believe that this approach has utility for AD drug 

discovery. Identifying targets within the context of a network will increase the chance of finding 

“druggable” targets due to the highly connected nature of the modules such that a “non-druggable” 

protein may function alongside one that is “druggable.”443 This chapter will summarize 3 different 

analyses using WGCNA as well as the data described in section 4.2 Materials and Methods. The 

analyses are as follows:  

1. To validate WGCNA as a viable and robust research tool for our group, we first 

examined the associations between pre-defined gene co-expression network modules277 generated 

from dorsolateral prefrontal cortex (DLPFC) RNA sequencing (RNAseq) from the Religious 

Orders Study and Memory and Aging Project (ROS/MAP) and AD endophenotypes such as 
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amyloid and tau burden at autopsy, cross-sectional global cognition, and annual change in 

cognition. 

 2. Next, we evaluate whether predicted gene expression values calculated via PrediXcan444 

are suitable for gene network replication and/or network building. 

3. Finally, we use the same RNAseq data and pre-defined network in Analysis 1 (above) 

to examine whether any co-expression modules interact with APOE-e4 positivity on amyloid and 

tau burden at autopsy, cross-sectional global cognition, and annual change in cognition. 

4.1.1 Introduction to Weighted Gene Co-Expression Network Analysis 

Weighted gene co-expression network analysis (WGCNA) is just one approach by which 

genes can be linked to function. In WGCNA, networks are generated from gene expression data, 

and the overall structure of the network is determined by the strength of pairwise correlations 

between genes. After network generation, hierarchical clustering is used to identify biologically 

relevant modules, which are small groups of highly connected genes that may be functioning 

together.439 The biological function of those modules can then be identified via GO-term analysis 

or via hub gene analysis, in which the most highly connected gene in the module becomes a 

surrogate for the modules’ overall function.439 

4.1.2 Introduction to Predicted Gene Expression (PrediXcan) 

 Gene expression can be altered by a variety of factors such as genetics, environment, and 

disease traits.444 In brief, the PrediXcan technique leverages reference transcriptomes from studies 

such as the NIH Genotype-Tissues Expression (GTEx) project445 to train machine learning models 

that can estimate the genetic contribution to gene expression. Additional details on the PrediXcan 

method can be found elsewhere.444 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Participants  

 Data were acquired from the Religious Orders Study (ROS) and the Rush Memory and 

Aging Project (MAP), known as ROS/MAP collectively. The ROS began in 1994 and enrolls 

priests and nuns from across the United States. The MAP cohort began in 1997 and enrolls lay 

persons from northeastern Illinois. Both longitudinal aging studies were launched to better 

understand risk factors of cognitive decline and AD. All participants are cognitively normal at 

enrollment, undergo comprehensive neuropsychological evaluations, and consent to organ 

donation at death. Genotypes and RNAseq data are also available for a subset of individuals. We 

are leveraging neuropathological data (i.e., brain amyloid plaques and tau neurofibrillary tangles) 

as well as bulk RNAseq from the DLPFC for our analyses.381, 446  

4.2.2 Cognitive Measures 

The global cognition variable was generated by averaging the Z-scores of 17 different 

neuropsychological tests across five domains of cognition (i.e., episodic, semantic, and working 

memory, perceptual orientation, and perceptual speed). This composite measurement has been 

previously calculated in ROS/MAP by our group and others.379, 447 Cognitive decline, or annual 

change in global cognition was determined for each individual using linear-mixed effects 

regression, where the fixed effect is time, and the random effect is the time interval from the last 

visit for each participant. 
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4.2.3 Neuropathology 

Neuropathological outcomes included beta-amyloid (Ab), phosphorylated tau, neuritic 

plaques, and neurofibrillary tangles (NFT), which were previously characterized by ROS/MAP.446 

Ab and phosphorylated tau were identified via immunohistochemistry (IHC) and quantified via 

image analysis. The overall amyloid level is defined as the mean percent of cortex occupied by Ab 

across eight brain regions (hippocampus, angular gyrus, and entorhinal, midfrontal, inferior 

temporal, calcarine, anterior cingulate, and superior frontal cortices). The overall tangle density is 

defined as the mean cortical density per mm2 of the same eight brain regions mentioned above. 

Neuritic plaque and NFT burden were determined by microscopic examination of silver-stained 

slides across 5 brain regions (hippocampus and entorhinal, midtemporal, inferior parietal, and 

midfrontal cortices). Only amyloid and tangle density are used in analyses. 

4.2.4 RNA sequencing and Processing 

RNA extraction from the DLPFC, library preparation, and sequencing were completed by 

ROS/MAP; additional details are described elsewhere.380 Initial data processing and quality 

control (QC) was performed following the procedure in Logsdon et al. 2019.277 QC is also 

summarized on the AMP-AD Knowledge Portal 

(https://www.synapse.org/#!Synapse:syn8456629). Alignment was performed with STAR using 

the GENCODE24 (GRCh38) reference genome and twopassMode set to Basic. Gene counts were 

also computed for each sample using STAR by using the GeneCounts option of the quantMode 

function.384 Summary metrics were calculated using Picard (http://broadinstitute.github.io/picard/) 

to evaluate sample quality and to identify covariates. 

Gene and sample quality control and normalization were performed as follows: genes 

expressing less than 1 count per million (CPM) in over 50% of samples in each diagnosis category 



 107 

(AD, Control, Other) as well as genes missing gene length data and GC content were excluded. 

Conditional quantile normalization, with the R package cqn,388 was performed to remove 

additional technical variability due to gene length and GC content. After quantile normalization, 

gene expression values that are greater than 3 standard deviations away from the mean expression 

were excluded. Sample outliers were excluded based on principal component (PC) analysis. 

Samples were also excluded if they were missing technical or clinical data (i.e., RNA integrity 

number (RIN), age, sex, etc.). After these filters, 15,582 genes in 631 samples remained. 

Expression values were further normalized by adjusting for batch, sex, age of death, post-

mortem interval, RIN, and the percentage of coding, intronic, and intergenic bases in an iterative 

manner in which expression values are adjusted for a covariate before it is included as a fixed 

effect in a linear model. Observation weights for covariates are calculated by the R package 

limma390 and the function voom.389 

4.2.5 Gene Co-expression Network Analysis 

We built gene co-expression network modules from DLPFC bulk RNAseq based on 

previously reported module definitions in Logsdon et al.,277 Module definitions from the 

publication are available on the AMP-AD Knowledge Portal 

(https://www.synapse.org/#!Synapse:syn2580853). The modules were generated using the R 

package, WGCNA.439 A total of 19 modules were defined, with a minimum module size of 100 

genes.  Additional details on replication of the published gene network be found in Appendix D. 

4.2.6 Tissue-Specific Predicted Gene Expression (PrediXcan)  

Protocols for DNA collection, processing, and genotyping have been previously reported 

by ROS/MAP.380 Genotyping was performed by ROS/MAP in four phases, and each dataset 

underwent the same QC and imputation processes individually prior to merging. All QC was 
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performed using PLINK (version 1.9b_5.2) software.290 All genotyping data were limited to 

individuals of European decent. SNPs with genotyping efficiency <95%, minor allele frequency 

<1%, or deviation from Hardy-Weinberg equilibrium (p<1x10-6) were excluded prior to 

imputation. Participants whose call rate was <99%, who had a reported versus genetic sex 

inconsistency, or who exhibited relatedness to another sample (PI_HAT > 0.25) were excluded in 

addition to individuals whose ancestral PCs were outliers when calculated with EIGENSOFT 

version 7.2.1.291  

Imputation was performed on the Michigan Imputation Server using the HRC r1.1.2016 

reference panel (build 37, assembly 19) and SHAPEIT phasing.292 After imputation, genotype data 

were further filtered for imputation quality (R2>0.9). Multiallelic and duplicate SNPs were 

removed prior to SNP filtering using the same thresholds as aforementioned, after which all 

genotyping datasets were merged. Non-overlapping SNPs and PC outliers were removed, resulting 

in a final dataset containing 2192 samples and 5,187,865 variants.  

 Tissue-specific predicted gene expression profiles were quantified using the PrediXcan 

method.444 Briefly, models were built using elastic net regression to impute tissue-specific gene 

expression profiles from genotype data. To predict expression in ROS/MAP, we used expression 

models generated from the transcriptome data of CommonMind Consortium, which includes 

DLPFC RNAseq for 980 individuals from multiple sites including the Mount Sinai Brain Bank, 

University of Pennsylvania Brain Bank, University of Pittsburgh Brain Bank, and the National 

Institutes of Mental Health Brain Collection Core.448 Prediction models and source code for the 

PrediXcan method are freely available online (https://github.com/hakyimlab/PrediXcan,  

http://predictdb.org/).  



 109 

Prior to analyses, genes whose expression was predicted with an R2 < 0.8, had 0 variance, 

had greater than 90% values of 0, or were outliers greater or less than 5 standard deviations of the 

mean were removed from the dataset. In addition, individuals missing covariates or outcomes of 

interest as well as individuals who were also present in our DLPFC RNAseq sample were removed 

from the predicted expression sample leaving a total of 760 participants and 7,245 genes (Table 

4.1). 

4.2.7 Functional Annotation 

For module associations that replicated when using predicted gene expression values, hub 

gene analyses were performed with WGCNA (version 1.68) to better understand the biological 

function of the module. The network structure and hub genes were estimated using the following 

parameters: power=13, networkType = signed, corFnc = “cor” (parameter for Pearson correlation). 

Additionally, gene set enrichment was performed with the R package gprofiler2 (version 0.2.1)449 

with default parameters. GO: Biological Process (GO:BP, biomaRt releases/2021-12-15)450 was 

used as the annotation source. 

4.2.8 Note on Statistical Analyses 

Each analysis will have its own section summarizing the statistical analyses specific to that 

analysis 
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4.3 ANALYSIS 1: LOGSDON ET AL., 2019277 MODULE ASSOCIATIONS WITH 

HALLMARKS OF AD 

 

4.3.1 Statistical Analyses 

 All statistical analyses were performed in R (version 3.6.1, https://www.r-project.org/). 

Prior to calculating the module eigengenes (i.e., the first principal component), any missing gene 

expression values were imputed using k-nearest-neighbors (kNN) imputation via the R package, 

impute (version 1.58.0).451 The number of neighbors used for imputation was 10. Module 

eigengenes were scaled and zero-centered. Using the eigengenes from 19 reported AD co-

expression modules,277 we performed linear regression analyses assessing the association between 

the eigengenes and cross-sectional global cognition at the last visit before death, cognitive decline, 

and immunohistochemical measurements of amyloid and tau. Covariates included age of death, 

sex, education, and post-mortem interval. Correction for the number of modules was completed 

using Bonferroni correction (p < 0.003). 

Our replication analyses leveraged predicted gene expression values in ROS/MAP 

generated using the PrediXcan method in the ROS/MAP cohort. Again, missing gene expression 

values were imputed using kNN and module eigengenes were scaled and centered. Using the 

previous module definitions described above, we performed linear regression analyses assessing 

the association between the eigengene of these modules and the aforementioned hallmarks of AD 

(i.e., cognitive decline, AD neuropathology) covarying for age of death, sex, education, and post-

mortem interval.  
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4.3.2 Participant Demographics 

 Participant characteristics are presented in Table 4.1. Overall, participants in the discovery 

dataset were younger, had a shorter post-mortem interval, and had less neuropathology on average 

than participants in the replication dataset. It should also be noted that there are fewer genes 

available when using predicted expression values, as poorly predicted genes were removed prior 

to analyses. 

4.3.3 Module association with AD hallmarks 

Using bulk RNAseq data of the dorsolateral prefrontal cortex from ROS/MAP (n=625), 

We also identified 18 new associations with amyloid, tau, baseline global cognition, and annual 

change in global cognition across 10 unique modules using the module definitions reported by 

Logsdon et al., (Table 4.2, Figure 4.2). It should be noted that the module assignment colors are 

largely arbitrary and assigned by WGCNA, except for the “grey” module. The grey module 

contains genes that were not assigned to any other module; it contains genes that are not “co-

expressed.” 

4.3.4 Predicted gene expression module association with AD hallmarks 

Using genotype data from ROS/MAP, we calculated predicted expression using the 

PrediXcan method along with the reference transcriptome from the CommonMind Consortium.448 

Leveraging the previously published module definitions, we were able to replicate the “grey60” 

module association with cognitive decline (b=0.002, 1.21x10-5) and IHC tau burden (b=-0.11, 

p=2.54x10-4) at autopsy (Figure 4.2). When using the module eigengene value as a proxy for all 

gene expression within a module, higher gene expression in the grey60 module predicts less brain 

tau burden and slower cognitive decline when using bulk DLPFC RNAseq data and predicted gene 
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expression values (Figure 4.3). No novel associations were identified when using predicted 

expression data.  

 

Table 4.1: Summary of participant demographics for WGCNA analyses 

 Discovery Replication 

 ROS/MAP 

DLPFC RNAseq 

ROS/MAP 

Predicted Expression 

N 625 760 

%Female 64% 69% 

Age at death, years 88.7±6.6 90.2±6.3 

Education, years 16.4±3.6 16.2±3.6 

PMI, hours 7.35±4.8 10.5±9.6 

Amyloida 1.66±1.2 1.70±1.1 

Neuritic plaquesb 0.70±0.5 0.79±0.5 

Tanglesa 2.15±1.3 2.43±1.5 

Neurofibrillary 

tanglesb 
0.66±0.4 0.72±0.4 

Cognitive declinec  -0.12±0.1 -0.12±0.1 

Genes Passing QC 15,882 7,245 

 
 
Analysis of variance (ANOVA) analyses were used to identify significantly different characteristics between 
groups. Boldfaced values represent variables that are significantly different (p<0.001) between groups.  Values 
given are mean ± standard deviation unless otherwise noted. aPathology was quantified via 
immunohistochemistry. b Plaques and tangles were quantified via silver staining. cCognitive decline was 
calculated via linear mixed-effects regression models where the fixed effect was time, and random effects were 
time between visits for each participant. Abbreviations:  DLPFC, dorsolateral pre-frontal cortex; PMI, post-
mortem interval, QC=quality control 

 

4.3.5 Grey60 module hub gene and GO-term analysis 

As grey60 was the only module that replicated using both observed and predicted 

expression, we performed both hub gene and GO-term analysis for the module. A “hub gene” 

describes a gene with high connectivity within the module. The most intra-connected gene for the 

grey60 module is PAPOLA (Figure 4.4), poly(A) polymerase alpha and the most significant 

GO:BP term is, “cellular response to stress” (p=4.01x10-5). 
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Table 4.2: Summary of modules that are associated with hallmarks of AD 
Module Color outcome BETA SE P 
red amyloid -0.048 0.012055 8.69x10-5 

grey60 amyloid -0.067 0.019134 4.57x10-4 

black amyloid -0.05 0.014568 6.80x10-4 

grey amyloid 0.0212 0.006877 1.59x10-3 

black tau -0.114 0.026325 1.62x10-5 

pink tau -0.131 0.030269 1.78x10-5 

brown tau 0.0693 0.016171 2.09x10-5 

green tau -0.0976 0.023045 2.65x10-5 

lightcyan tau -0.136 0.034869 1.01x10-4 

greenyellow tau -0.122 0.031621 1.25x10-4 

grey60 tau -0.127 0.034747 2.78x10-4 

blue tau -0.054 0.016253 9.46x10-4 

grey60 cross_cog 0.0180 0.00490985 2.80x10-4 

black cross_cog 0.0137 0.00384382 3.90x10-4 

brown cross_cog -0.007 0.00229648 2.37x10-3 

Module Color outcome BETA SE P 

grey60 long_cog 0.002 0.00045611 2.08x10-5 

black long_cog 0.0014 0.00034653 3.76x10-5 

brown long_cog -0.0008 0.0002141 5.09x10-4 

Significant p-values after Bonferroni correction are p < 0.003. Abbreviations: SE, standard error; cross_cog, 
global cognition at last visit before death; long_cog, annual change in global cognition. 
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Figure 4.1. Summary of novel module associations with hallmarks of AD. Green is indicative of significance 
when using RNAseq data to build modules. Yellow is indicative of significance in both discovery and replication 
(i.e., predicted expression) datasets. 
 

 

Figure 4.2. Higher expression of genes in the grey60 module are protective against tau burden and 
cognitive decline. A) A scatterplot exhibiting the association between the grey60 module eigengene and tau 
(b=-0.127, p=2.78x10-4). The x-axis denotes the grey60 module eigengenes for each participant in the sample, 
and the y-axis denotes the immunohistochemical measurement of tau in the brain at autopsy. B) A scatterplot 
exhibiting the association between grey60 and cognitive decline (b=0.002, p=2.08x10-5). The y-axis denotes the 
annual change in global cognition calculated with linear mixed-effects regression models. 
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Figure 4.3. Network diagram of the grey60 module. A network diagram showing the hub gene, PAPOLA, in 
yellow, and the top 100 edges of the network. 
 

4.3.6 Discussion 

 In these analyses, we have validated WGCNA as a robust and reproducible method by 

rebuilding a previously published gene co-expression network.277 Full details on reproducing the 

network are available in Appendix D. In addition, we have also identified a module, grey60, that 

is associated with both tau burden and cognitive decline. In summary, higher expression of genes 

within the module predict lower tau burden at autopsy and slower cognitive decline (Figure 4.3). 

We have also replicated these associations using the predicted expression values of genes assigned 

to the grey60 module generated via the PrediXcan method444 and the reference transcriptome of 

the CommonMind Consortium.448 

 The hub gene of the grey60 module is PAPOLA, which encodes a protein named poly(A) 

polymerase alpha. PAPOLA protein serves to poly-adenylate the 3’ end of pre-mRNA. 

Polyadenylation subsequently stabilizes the mRNA and increases translocation of the mRNA from 
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the nucleus to the cytoplasm.452 PAPOLA has never been classified a risk gene for AD, but 

evidence on Agora (AMP-AD) suggests that it is upregulated in AD brains compared to controls 

(https://agora.adknowledgeportal.org/genes/(genes-router:gene-details/ENSG00000090060). In 

addition, upstream regulators of PAPOLA have also been linked to APP.453 It is well supported 

that transcriptional regulation and gene expression are changed during Alzheimer’s disease,454-457 

though it is unclear exactly what role PAPOLA is playing in our results and in disease. “Cellular 

response to stress” is the GO-term most associated with the grey60 module, which is 

understandable given the context of aging and AD.  However, it is quite general, limiting our 

ability to pinpoint a specific mechanism or function. In the future, differential expression studies 

examining PAPOLA and its downstream effects may be useful to elucidate a more specific 

biological mechanism in the context of AD. These future studies may also help to uncover a novel 

therapeutic target for AD that is co-expressed with PAPOLA but is less ubiquitously expressed 

overall. 

 

4.4 ANALYSIS 2: EVALUATION OF PREDICTED GENE EXPRESSION AS A TOOL 

TO GENERATE AND REPLICATE GENE CO-EXPRESSION NETWORK ANALYSES 

 
  

Transcriptomic datasets are often limited in sample size, especially in cohorts such as 

ROS/MAP where brain donation only occurs at death. Genomic datasets often have increased 

sample size in comparison to brain transcriptomic datasets because sample collection is less 

invasive for participants. Due to these limitations, we were interested in applying an emerging 

technique that leverages only genotype data to provide a proof-of-concept for how transcriptomic 

reference panels can be leveraged to apply gene co-expression networks in the context of genome-
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wide association analyses. More specifically, we wanted to evaluate whether predicted expression 

from the frontal cortex was suitable for generating gene co-expression networks with increased 

sample size. For this study, we leveraged predicted expression values from ROS/MAP using the 

CommonMind Consortium reference transcriptome and the PrediXcan method for prediction (See 

section 3.3.6 in Materials and Methods). The sample used for this study was the same as the 

replication sample described above (Table 4.1). 

4.4.1 Network generation and evaluation 

 The gene co-expression network was generated using WGCNA (version 1.68) in R (version 

3.6.1). Prior to hierarchical clustering and module assignment, sample outliers were removed. In 

addition, genes whose expression was predicted with an R2 < 0.8, had 0 variance, had greater than 

90% values of 0, or were outliers greater or less than 5 standard deviations of the mean were 

removed from the dataset. The network was generated using the following function and 

parameters: 

bwnet = blockwiseModules(datExpr, maxBlockSize = 8000, power = 7, networkType = "signed", 

TOMType = "signed", replaceMissingAdjacencies = TRUE, minModuleSize = 30, 

reassignThreshold = 1e-10, mergeCutHeight = 0.15, numericLabels = TRUE, saveTOMs = 

TRUE, saveTOMFileBase = "power7_pearson_cor_test2", verbose = 5) 

 
After generating the topology overlap matrix (TOM) with the blockwiseModules function, 

we merged any modules with a threshold of 0.15 (i.e., modules with eigengenes that are correlated 

with an r > 0.85 are merged). When examining the network generated with predicted expression 

data, most of the genes were assigned to the “grey” module, and co-expression was extremely low 

between genes with pair-wise Pearson correlations < 0.045 (Figure 4.5) suggesting that predicted 

expression values are not suitable for generating networks for co-expression analyses. 
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Figure 4.4. Dendrogram of network created with predicted expression values. Height is a measurement of 
dissimilarity (1 – correlation). The x-axis denotes the colors for assigned modules. An assignment of “grey” 
suggests that a gene cannot be assigned to another module due to low co-expression. 
 
 

4.4.2. Modularity is not maintained when using predicted expression values 

Due to our observations after attempting to generate a gene network with predicted 

expression values, we wanted to examine the “modularity” within the grey60 module (see section 

4.3.4). We used percent variance explained by the first principal component, or module eigengene, 

of a module as a proxy for modularity. In addition, we performed linear regression analyses to test 

the association between all genes assigned to grey60 and cognitive decline. For computational 

efficiency, cognitive decline, or annual change in global cognition was determined for each 

individual within the sample using linear-mixed effects regression, where the fixed effect is time, 

and the random effect is the time interval from the last visit for each participant.  
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When comparing RNAseq to predicted expression, we observe that the variance explained 

by the module eigengene is very low when using predicted expression to build the pre-defined 

module (Figure 4.6A, B). It should be noted, however, that some of the individual gene 

associations with cognitive decline remain significant when using either RNAseq or predicted 

expression (Figure 4.6C, D).  

4.4.3 Discussion 

In Analysis 1, we observed that the grey60 module generated with predicted expression 

values appears to replicate the association results of the transcriptome-generated grey60 module 

with cognitive decline. Due to our observations in this analysis (#2), however, it can be 

hypothesized that the predicted-grey60 module replication may be spurious due to the low 

percentage of variance explained by the module eigengene. Some of the individual predicted gene-

trait associations with cognitive decline remained significant (Figure 4.5D), thus, the module 

replication may have been driven by these few genes and additional analyses can be completed to 

test this prediction. 

We also determined that predicted expression cannot be used to create gene co-expression 

networks de novo due to poor correlation structure between genes. One possible reason for this 

may be that PrediXcan uses only cis-eQTLs for prediction.444  However, gene expression can be 

influenced by both cis-eQTLs, which act on local genes (typically within 1 Megabase) and trans-

eQTLs that can act on more distant genes as well as those on other chromosomes.458 Studies posit 

that trans-eQTLs play a role in co-regulation and co-expression of numerous genes459, 460. 

Therefore, it is likely that we have removed most of the underlying network structure when using 

predicted expression to create a co-expression network. 
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Within the context of gene co-expression network analysis, I propose that predicted 

expression data be used with caution. Though we observed that it can recapitulate aspects of 

network analyses, it cannot be used to generate entire networks or to fully replicate modules. 

Instead, the use of predicted expression data should be limited to replication of single gene-trait 

associations. Interestingly, PAPOLA, the hub gene of grey60 is not significantly associated with 

cognitive decline when using RNAseq or predicted expression data (Figure 4.5C, D) which 

suggests that the most interconnected gene within a module may not always be the gene that is 

most associated with the phenotype of interest.461 

 

 

 

Figure 4.5. Modularity is not maintained when using predicted expression. A, B) The module eigengene 
more variance (0-50%) when calculated with RNAseq than it does when calculated with predicted expression 
values (0-2%). C) Genes within grey60 drive the module association with cognitive decline. Red = p.fdr < 0.05, 
green = genes also exhibiting significance in predicted expression. D) The gene-trait association exhibits a 
similar pattern as in RNAseq when using predicted expression values. The points in red are those with p < 0.05. 
The module association in both datasets is driven highly associated genes. Dotted line represents p=0.05. 
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4.5 ANALYSIS 3: EXAMINING LOGSDON ET AL., 2019277 MODULE INTERACTIONS 

WITH APOE-e4 POSITIVITY ON HALLMARKS OF AD 

 
 

APOE-e4 is the greatest genetic risk factor for AD, and even the presence of a single e4 

allele can result in a 3-fold increase in risk for disease.138-141 In addition to increased AD risk, 

APOE-e4 has been linked to negative outcomes such as increased brain amyloid deposition,141 

increased synaptic loss,462 exacerbated tau pathology,362, 463 and cognitive decline.464, 465 However, 

many APOE-ε4 carriers remain cognitively normal throughout life despite the increase in AD 

risk,276 suggesting that there are protective factors able to modulate APOE-e4 effects. Furthermore, 

studies demonstrate that APOE-e4 carriers have different transcriptional profiles than non-carriers 

suggesting that there may be biological pathways in the neuropathological progression of AD that 

APOE-e4 carriers are more or less susceptible to in comparison to non-carriers.466-468 Therefore, 

we hypothesize that using a systems biology approach such as WGCNA will not only help to 

identify individual genes that modify the effects of APOE-e4, but also co-expressed genes or 

biological functions that modify APOE-e4. 

Again, leveraging the network published by Logsdon et al., 2019,277 we wanted to examine 

whether any modules modified the relationship between APOE-e4 positivity and amyloid and tau 

burden at autopsy, cross-sectional cognition, or cognitive decline. This analysis used ROS/MAP 

DLPFC RNAseq, and the sample used for this analysis is the same as the discovery sample 

described in Table 4.1.  

4.5.1 Statistical Analyses 

 This analysis utilized the same principal components calculated in the statistical analyses 

described in section 4.3.1. Using the eigengenes from 19 reported AD co-expression modules,277 
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we performed linear regression analyses assessing the interaction between the module eigengene 

and APOE-e4 positivity (i.e., presence of at least one e4 allele) on cross-sectional global cognition 

at the last visit before death, cognitive decline (calculation described in section 4.2.2), and 

immunohistochemical measurements of amyloid and tau (described further in section 4.2 

Materials and Methods). Covariates included age of death, sex, education, and post-mortem 

interval. Correction for the number of modules was completed using Bonferroni correction (p < 

0.003). We then performed hub gene analysis and GO-term analysis on any significant module 

interactions. 

4.5.2 Four modules interact with APOE-e4 positivity on cross-sectional cognition 

 We identified four co-expression network modules that modify the association between 

APOE-e4 positivity and cross-sectional cognition at the last visit prior to death (Table 4.3). There 

were no other significant module interactions with any other tested outcome (i.e., amyloid, tau, 

cognitive decline).  

 Lower expression of genes within the purple and the cyan modules are associated with 

worse cross-sectional cognition in APOE-e4 carriers, whereas increased expression of genes 

within the salmon and magenta modules are associated with worse cross-sectional cognitive 

performance in APOE-e4 carriers (Figure 4.6). 

 

Table 4.3: Significant module x APOE-e4 

interactions on cross-sectional cognition 
Module 

Color 

BETA SE P 

purple 0.036 0.0081 1.16x10-5 

cyan 0.031 0.0099 1.49x10-3 

salmon -0.036 0.0101 3.95x10-4 

magenta -0.031 0.0097 1.60x10-3 
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4.5.3 Hub gene and GO-term analysis 

 Hub genes and GO-terms for the purple, salmon, cyan, and magenta modules were 

identified following the procedure described in section 4.2.7. The hub gene and most significant 

GO:BP term for each module is summarized in Table 4.4. 

 

Table 4.4: Results of hub gene and GO-term analyses for the purple, cyan, salmon, and magenta 

modules 

Module Color Hub Gene GO-term ID Term Name P-value 

Purple YBX3 GO:0048518 Positive regulation of biological process 1.59x10-26 

Cyan LAPTM5 GO:0002376 Immune system process 1.16x10-50 

Salmon RTF1 GO:0009059 Macromolecule biosynthetic process 4.50x10-5 

Magenta ATP2B1 GO:0043412 Macromolecule modification 1.67x10-4 

 

4.5.4 Discussion 

 Leveraging a pre-defined gene co-expression network, we identified 4 unique module 

interactions with APOE-e4 positivity on global cognition. When using eigengene values as a proxy 

for gene expression of all genes within a specific module, we observe that lower expression of 

genes within the purple and cyan modules result in worse cross-sectional cognitive performance 

in APOE-e4 carriers. In contrast, higher expression of genes within the salmon and magenta 

modules are associated with worse cognition in APOE-e4 carriers. When examining each hub 

gene's interaction with APOE-e4 positivity, we observed inconsistency between the gene-trait 

association and the previously observed module-trait associations. 

 The hub gene of the purple module is YBX3, Y-box binding protein 3 (YB-3). YB-3 is a 

part of a family of Y-box binding proteins (YB) that bind both DNA and RNA and interact with 

almost all mRNA.469, 470 The functions of YB proteins are extremely broad, and the most studied 

member of the protein family, YB-1, has been implicated in cell differentiation, stress response, 
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and translational control.469  YB-3 is a transcriptional regulator that is believed to be negatively 

regulated by YB-1 and appears to have a redundant function in the absence of YB-1.471 In addition, 

YB-3 appears to play a role in amino acid homeostasis and the translation of solute carrier 

transporters.472  

 

 

Figure 4.6. Four unique modules interact with APOE-e4 positivity on cross-sectional cognition. Points and 
lines are colored by APOE-e4 positivity where APOE-e4 carriers are denoted by the color red. A, B) Lower 
eigengene values in the purple and cyan modules result in worse global cognition at the last visit before death in 
APOE-e4 carriers. C, D) Higher eigengene values in the salmon and magenta modules results in worse cognitive 
performance in APOE-e4 carriers. 
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  It is almost fitting that the most significant GO-term for the purple module is “positive 

regulation of biological process,” which is equally broad in nature. The given definition of 

“positive regulation of biological process,” is “any process that activates or increases the frequency, 

rate, or extent of a biological process. Biological processes are regulated by many means; examples 

include the control of gene expression, protein modification or interaction with a protein or 

substrate molecule.” Therefore, interpretation of this module is difficult without further analysis. 

 Sources also suggest that YB-3 is a transcriptional repressor and a negative regulator of 

cell death473, so a downregulation of YBX3 expression consistent with the purple module eigengene 

may result in the effects we observe in APOE-e4 carriers (i.e., dysregulated cellular death resulting 

in cognitive impairment). Additionally, in vitro studies demonstrated that APOE-e4 expression 

encourages cellular death in cultured neurons,474, 475 supporting this hypothesis.  

 Paradoxically, YBX3 is upregulated in multiple regions within AD brains 

(https://agora.adknowledgeportal.org/genes/(genes-router:gene-details/ENSG00000060138) in 

comparison to controls, which weakens this hypothesis. Though recent studies indicate that stress 

granules, riboprotein complexes that form as a response to environmental stressors, are becoming 

of interest in neurodegenerative disorders like AD. The presence of APOE-e4 appears to accelerate 

stress granule formation in studies using a cerebral organoid.462, 476 Although YB-3 has not been 

previously identified in studies of AD risk, it has been found within stress granules which may 

play a role in our results.469, 476  

LAPTM5 (lysosomal-associated transmembrane protein 5), is the hub gene of the cyan 

module. LAPTM5 is expressed in primarily in immune cells,477 including microglia,478, 479 and is 

thought to facilitate the transport of receptors to lysosomes,480 phagocytosis,479 and the positive 

regulation of pro-inflammatory signaling pathways.477 Previous studies have identified LAPTM5 
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as a potential risk gene for AD,481, 482 and co-expression network analyses have linked it to other 

AD-related genes, TREM2 and TYROBP.478, 479, 483 Furthermore, Laptm5 expression is positively 

correlated with amyloid deposition in APOE-e4-expressing mice that were fed a high-fat diet,484 

and it is upregulated in mice when amyloid plaque load is heavy481, which is consistent with what 

is observed in human AD brains on Agora (https://agora.adknowledgeportal.org/genes/(genes-

router:gene-details/ENSG00000162511). Though LAPTM5's mechanism of action in AD is not 

fully characterized, these data suggest that it may play a function in amyloid clearance or the 

regulation of microglia in response to amyloid.481  

In our results, we observe poorer cognition among APOE-e4-carriers expressing lower 

levels of LAPTM5. Therefore, one possible hypothesis that LAPTM5 is unable to facilitate amyloid 

clearance in APOE-e4-carriers, and individuals expressing lower levels have increased 

susceptibility to APOE-e4-associated risk and amyloid. In contrast to the purple module, the most 

significant GO-term of the cyan module is “immune system process,” which is congruent with 

LAPTM5’s biological function and continues to support previous work implicating 

neuroinflammation in cognitive decline among both APOE-e4 carriers and non-carriers. 

RTF1, RNA polymerase-associated protein, is the hub gene of the salmon module. As its 

protein name describes, RTF1 plays roles in activating gene transcription and histone 

modification.485 When domains of RTF1 are deleted or mutated, defects in transcription can 

occur.485  In a recent differential expression study examining gene expression data from AD cases 

and controls, RTF1 was identified as a downregulated gene within the hippocampus and entorhinal 

cortex.486 As transcriptional changes are evident within aging and AD,486-488 it is perhaps 

unsurprising that a transcription-related gene would be associated with AD endophenotypes. 

However, our results insinuate that increased expression of RTF1 in APOE-e4 carriers results in 
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worse cognitive performance. As APOE genotype can affect transcriptional profiles alone, an 

interaction with RTF1 may suggest that complex transcriptional changes are driving our results. 

However, further examination of genes within the salmon module will be necessary for a more 

detailed biological interpretation. 

The most significant GO-term for the salmon module is, “macromolecular biosynthetic 

process,” which is defined as, “the chemical reactions and pathways resulting in the formation of 

a macromolecule, any molecule of high relative molecular mass, the structure of which essentially 

comprises the multiple repetition of units derived, actually or conceptually, from molecules of low 

relative molecular mass,” which is broad and could refer to the synthesis of mRNA transcripts or 

production and aggregation of beta-amyloid, which are both modulated by APOE genotype 

warranting further study. 

ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) is the hub gene of the magenta 

module. Its function is important for calcium homeostasis; it maintains low intracellular calcium 

concentration after signaling.489 ATP2B1 is widely expressed throughout the body 

(https://www.proteinatlas.org/ENSG00000070961-ATP2B1),490 and is expressed in neurons.491 

Though it has not been previously associated with AD in any genome-wide association study, 

ATP2B1 has been previously identified in a network analysis of AD492 as well as in a mouse study 

examining the consequences of amyloid pathology on gene expression.493 Calcium dysregulation 

has been hypothesized to contribute to AD and brain aging, and APOE-e4-mediated neurotoxicity 

has been attributed, in part, to calcium dysregulation suggesting that that ATP2B1 will be an 

interesting candidate for further study.494, 495 Our results demonstrate that an increase in ATP2B1 

expression in APOE-e4 carriers is detrimental to cognitive performance, such that APOE-e4 

carriers may be particularly susceptible to changes in calcium homeostasis. However, ATP2B1 
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expression is downregulated approximately 9-fold in APOE-e3/e4 individuals with AD in 

comparison to e3/e3 controls.496 One possibility for this paradox may be that ATP2B1 expression 

is decreased in individuals with AD due to significant neurodegeneration. 

“Macromodule modification” is the most significant GO-term for the magenta module, and 

its definition is “the covalent alteration of one or more monomeric units in a polypeptide, 

polynucleotide, polysaccharide, or other biological macromolecule, resulting in a change in its 

properties.” Post-translational modifications are of particular importance to biology and to AD. 

For example, neurofibrillary tangles are the result of post-translational hyperphosphorylation of 

tau.40, 45, 497 Thus, further dissection of this module is of particular interest for future investigation. 

 

4.6 CHAPTER CONCLUSION 

  

 In conclusion, we confirmed the robustness and reproducibility of gene co-expression 

network generation and analysis with WGCNA by re-creating the network published by Logsdon 

et al., in 2019 in section 4.3.277 Using the pre-existing module definitions provided by Logsdon et 

al.,277 and AMP-AD, we also identified 18 novel associations across 10 unique modules with brain 

amyloid and tau burden at autopsy, global cognition at the last visit prior to death, and cognitive 

decline which served as a proof-of-concept for our future analyses using WGCNA. The grey60 

module, which was enriched for genes involved in "cellular response of stress," was of particular 

interest for this set of analyses because we were able to replicate our associations with tau burden 

and cognitive decline with predicted expression data. When using the module eigengene as a proxy 

for gene expression of genes within grey60, our results demonstrated that higher levels of genes 

within the module were protective against tau burden and cognitive decline. Unfortunately, after 
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further evaluating the utility of PrediXcan and predicted expression for gene co-expression 

network analyses in section 4.4, we discovered that predicted expression data is not a viable option 

for network generation or full replication of network analyses though it is suitable for 

recapitulating single gene-trait associations. 

 In section 4.5, we identified 4 novel module interactions with APOE-e4 positivity on cross-

sectional cognition using the same, previously described network.277 In these analyses, we found 

that lower expression of genes within the purple and cyan modules were associated with worse 

cross-sectional cognition in APOE-e4 carriers and that higher expression of genes within the 

salmon and magenta modules were associated with worse cognition in APOE-e4 carriers. The hub 

genes of these modules were YBX3, LAPTM5, RTF1, and ATP2B1 which implicated stress 

granules, lysosomal regulation, histone modification, and calcium homeostasis in susceptibility to 

APOE-e4-mediated cognitive impairment. In our results, higher expression of YBX3 and LAPTM5 

may be beneficial among APOE-e4 carriers, whereas the opposite is true of RTF1 and ATP2B1 

expression. We found no significant interactions on longitudinal cognition, again, insinuating that 

the biological effects are imparted prior to decline. As such, genes within the identified modules 

may present as suitable therapeutic targets for AD prevention rather than AD treatment once 

cognitive impairment occurs. 

Though the analyses within this chapter have demonstrated that annotation for network 

modules can be broad or abstract, systems-based approaches are powerful tools for linking a single 

gene to a broader function because they take complex interactions into consideration. For example, 

the directionality of some of our module interactions are inconsistent with prior literature 

investigating the aforementioned hub genes as candidate genes. Evidence also suggests that the 

hub gene of a module, though useful in interpreting biological function, may not necessarily be 
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the gene that is most associated with the outcome of interest.461 However, biological interactions 

between multiple genes within the module may ultimately drive our observed results though 

replication, further assessment of the co-expression modules, and alternate network-based 

approaches are necessary to truly validate this idea.  

4.6.1. Future Directions 

Future directions for these analyses involve performing hub gene and GO-term analysis for 

the other modules (Table 4.2) that were significantly associated with amyloid, tau, and cognition. 

The biological mechanisms of the grey60, purple, salmon, cyan, and magenta modules should also 

be further studied as the associated GO-terms were extremely broad. As those modules all contain 

over 100 genes each, it may be of interest to re-cluster them to get smaller modules with more 

specific biological annotations. In addition, the Logsdon et al., 2019277 gene network should be 

evaluated for associations with resilience to AD as an alternative mechanism for discovering novel 

targets for AD drug discovery.99, 282  

Finally, additional gene co-expression networks should be built in other distinct brain 

regions including the posterior cingulate cortex and the caudate nucleus now that additional 

RNAseq data from ROS/MAP is publicly available on AMP-AD. These networks can be used to 

evaluate region-specific transcriptome changes in the context of AD and resilience to AD. Finally, 

analyses should also examine the viability and utility of module-quantitative trait loci to further 

investigate using network analysis in the context of genome-wide association analyses.498 
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CHAPTER 5 

 

 

 

CONCLUDING REMARKS 

 
 

 

Portions of this chapter are published under the title, “Protective Genes and Pathways in 

Alzheimer’s Disease: Moving Towards Precision Interventions,” in Molecular Neurodegeneration. 

 

 

 

 In this dissertation, we began by examining a single polymorphism, before moving onto a 

single gene, and finally, to a network of interacting genes that can influence AD risk. The 

overarching goal of this dissertation was to utilize these three biological "levels" of human data to 

identify genetic and molecular modifiers of AD risk. There are strengths and limitations to each 

"level" of analysis described herein, but it is important to note that they are all biologically 

connected and can be used independently or jointly to better understand AD biology, to identify 

new therapeutic targets, and to propose novel biomarkers for AD. 

 Each analytical chapter also leveraged interaction models to identify factors that would 

enhance or diminish the relationships between AD risk and AD endophenotypes. In other words, 

we utilized statistical models to help us identify factors that could prevent brain atrophy or 

cognitive decline even in the presence of amyloid and/or tau pathology or an APOE-e4 allele. 

Hence, the rationale behind this project largely relies on the idea of resistance and resilience to 

AD.  

 Overall, investigating AD from the perspective of resistance and resilience provides a 

unique perspective not only on the disease itself, but also for future therapeutics. To date, 

therapeutics in the Alzheimer’s space have largely focused on reducing pathology (particularly 
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amyloid) that already exists within the CNS, however, any neurodegeneration that has already 

occurred remains after treatment, potentially impacting trial endpoints.63-65, 87  

 Examining resistance and resilience for AD drug discovery provides an opportunity to 

hijack pre-existing biological pathways that are protective even in the presence of pre-existing 

pathology or neurodegeneration. Subsequently, therapeutics resulting from resilience research 

would have a therapeutic window that is less disease-stage dependent. Additionally, these 

therapeutics could also be catered to a patient’s genetic profile (e.g., APOE-e4 positivity), which 

could uncover new possibilities for the future of precision medicine. 

In summary, Chapter 1 describes Alzheimer’s disease, the current therapeutic landscape 

for AD, and the ideas of resistance and resilience. In Chapter 2, we performed a genome-wide 

association study to  identify two novel loci on chromosome 3 that interact with baseline levels of 

CSF Ab42 and CSF p-tau, respectively. We also implicate axonal guidance, synaptic pruning 

genes, DNA damage repair, and endolysosomal function in the neuropathological progression of 

AD.  

Briefly, minor allele (T) carriers of rs62263260 exhibit faster rates of hippocampal atrophy 

among individuals with CSF biomarker evidence of amyloidosis. Excitingly, this result was 

replicated independently using an alternative measurement of amyloid burden, amyloid PET. 

rs62262360 is a robust eQTL for SEMA5B in tissues including the esophagus, testes, and more 

importantly, the brain. In two independent datasets, evidence suggested that carriers of the T-allele 

express higher levels of SEMA5B within the brain than non-carriers, which we hypothesize 

increases susceptibility to amyloid-mediated hippocampal atrophy. 

Second, we discovered that minor allele (G) carriers of rs116216974 exhibit slower rates 

of hippocampal atrophy in the presence of high CSF p-tau. Unfortunately, rs116216974 was not 
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an eQTL for any gene limiting our ability to interpret our results and to better understand 

rs116216974's protective mechanism of action. Though variant-level analyses have their own 

benefits, linking a SNP to function can be difficult without determining the acting gene within the 

region. Thus, gene-level analyses follow. 

In Chapter 3, we identified RNASE6 (ribonuclease A family member K6), which modifies 

the interaction between APOE-e4 positivity and baseline cognition such that APOE-e4 carriers 

expressing higher levels of RNASE6 have worse cognitive performance at baseline. This chapter 

further implicates neuroinflammation and innate immunity as potential drivers of cognitive decline 

as well as demonstrates the utility of whole blood transcriptomics for monitoring of brain changes 

during aging and the progression of AD. As RNASE6 is an immune-related gene that is not well-

characterized within the literature, we utilized publicly available gene co-expression network 

analyses to help provide an interpretation of our RNASE6 x APOE-e4 positivity result. 

In Chapter 4, we rebuilt a previously published co-expression network to assess the 

reproducibility of gene co-expression network analysis and the WGCNA method. Using the pre-

defined network, we identified novel associations with hallmarks of AD including amyloid and 

tau burden at autopsy and cognitive decline. We then replicated the grey60 module's association 

with tau and cognitive decline using predicted expression data generated via the PrediXcan method, 

after which we determined that predicted expression data is not suitable for de novo gene co-

expression network generation or module replication due to a lack of a correlation structure 

between genes. Finally, we identify 4 unique module interactions with APOE-e4 positivity on 

cross-sectional cognitive performance at the last visit prior to death that result in worse cognitive 

performance in e4 carriers. These modules connect immune function, responses to cellular stress, 
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transcriptional regulation, and calcium homeostasis to cognitive decline and provide a potential 

pathway to identify preventative therapeutic targets for AD. 

Altogether, these chapters support the idea that -omic data and computational tools can be 

used to identify factors that are protective in the presence of AD risk, to better understand the 

etiology of AD, as well as to facilitate drug discovery efforts.  

Finally, we offer additional perspectives on how the AD field can rapidly advance towards 

precision therapeutics. First, there is a pressing need for large genomic studies that integrate 

detailed metrics of neuropathology, neurodegeneration, and cognitive decline. For example, our 

group has recently quantified a continuous measure of cognitive resilience by integrating 

established measures of amyloid pathology and harmonized measures of cognition.282 Using these 

data, we identified variants upstream of the gene, ATP8B1 (ATPase phospholipid transporting 

8B1), that were associated with increased susceptibility to amyloid.282 ATP8B1 is an interesting 

candidate that encodes a protein by the same name that is important for modulating phospholipid 

composition within cellular membranes as well as maintaining bile acid homeostasis. Notably, 

deleterious variants were recently identified in another gene within the same family, ATP8B4 

(ATPase phospholipid transporting 8B4), via whole-exome sequencing,499 suggesting this family 

of flippases may be highly relevant to AD risk and progression. Although our study was the largest 

GWAS of resilience completed to date, we remained vastly underpowered to fully delineate the 

genetic architecture of resilience, highlighting the need for large-scale collaborative efforts to 

expand sample sizes and identify new signals. It is also notable that we did not observe a genetic 

correlation between clinical AD and resilience to AD, suggesting that genetic analyses exploring 

the downstream consequences of pathology will uncover novel molecular contributors to AD risk 

and protection. 
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In addition to the discovery of numerous common AD risk variants with low effect sizes, 

the failure of numerous anti-amyloid drugs in clinical trials have demonstrated that there is no 

singular variant, gene, or mechanism behind sporadic AD. Polygenic risk scores (PRS) that take 

the complexity of sporadic AD into account could be a useful way to predict an individual’s overall 

risk for disease. Recent studies have demonstrated the ability of PRS to predict AD with accuracy 

up to 84%.13 PRS also present an exciting future for precision medicine as more genetic data are 

acquired and more risk loci are identified. Similar to PRS, a variant or gene with smaller effect 

size is unlikely to provide complete protection from AD on its own. As such, a “polygenic 

resilience score” combining both common and rare variants could not only help to predict 

individuals who are resilient from AD but could also provide new opportunities for AD drug 

discovery in the form of polypharmacology and/or pharmacogenetics.  

One major limitation of this dissertation is that the data used for analyses primarily comes 

from non-Hispanic white individuals. Overall, less than 30% of all published GWAS studies have 

focused on minority populations (e.g., individuals of African, Latin, or Hispanic descent), and in 

turn, most of what is known currently about AD genetic architecture is based on studies focusing 

on non-Hispanic white individuals.500 As a result, the information can only be generalized to the 

non-Hispanic white population, which is likely to present scientific, public health, and ethical 

issues that need to be addressed in the coming years.  

For example, a recent study discovered that Black individuals were 35% less likely to be 

diagnosed with AD in comparison to non-Hispanic white individuals despite having increased AD 

risk.501 Furthermore, the same study suggested that there are racial differences in symptom 

presentation 501 highlighting a major need to address disparities in cohort enrollment, community 

engagement and outreach, and scientific research. 
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In addition to clinical presentation, factors of AD risk and resilience can also vary across 

populations. For example, some studies have shown that APOE-e4 alleles confer less AD risk in 

individuals of African descent than in non-Hispanic white individuals.502, 503 However, African 

Americans are at increased risk of AD overall when compared to non-Hispanic whites.504, 505 

Though environmental differences between racial and ethnic groups (e.g., income, stress, 

discrimination) contribute to the pathogenesis of AD, a better understanding of the genetic 

architecture of AD in under-represented minority populations is scientifically and ethically critical 

to advance the field and enable personalized interventions. 

Excitingly, emerging analyses within the past few years have not only identified novel AD 

risk loci in minority populations,506 but also have supported that risk loci in non-Hispanic white 

populations may not confer the same risk in groups of different race and ethnicity.502, 507 Similar 

studies have also identified AD protective variants. Some notable examples are: rs75002042 

(OR=0.61), which is an intronic variant in the gene FBXL7 (F-box/LRR-repeat protein 7); it was 

identified in a case-control study of Caribbean-Hispanic individuals,508 and LRIG1 (Leucine Rich 

Repeats and Immunoglobulin Like Domains, OR=0.54, rs2280575), which was discovered in an 

East Asian sample.509 These findings, along with others, represent exciting advancements not only 

for minority populations but also for AD research. 

Third, there is a growing literature on the genomics of educational attainment and cognitive 

performance that is relevant to cognitive reserve and protection from AD. In fact, educational 

attainment and cognitive performance are heritable510-512-- genetic differences can account for as 

much as 60% of the variation in educational attainment513 and 70% of the variation in general 

cognitive ability,514, 515 which can be apparent even in early-life. Data from studies such as the Nun 

Study have demonstrated that early-life linguistic ability is associated with AD neuropathology 
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and cognitive changes in late-life 279. Furthermore, early-life cognitive enrichment (ELCE) was 

recently associated with slower age-related cognitive decline and late-life neuropathology,516 

suggesting that intervention on modifiable risk factors at a young age affects performance in old 

age. The fact that much of the cognitive benefits of ELCE were independent of AD neuropathology 

suggests there are distinct and complex pathways that promote resilience (i.e., pathology-related 

versus pathology-independent).517 Fully encompassing the genetic architecture of cognitive ability 

into our models of AD resilience will be critical as we move to better understand the molecular 

pathways that protect against AD. 

Fourth, AD is a disease of aging, and the strongest genetic risk factor for the disease 

(APOE) has a robust association with longevity.518, 519 Far more work integrating the genetic 

architecture of longevity related traits into our models of AD are needed to better understand how 

these pathways intersect. For example, telomere length is strongly associated with life span, and 

shortened telomeres are indicative of cell aging.520 In 2020, a drug to lengthen telomeres through 

transduction of human TERT (telomerase reverse transcriptase) was in Phase I clinical trials.64 

However, the direction of telomere effects, the relevant cell types, and changes over the course of 

age and disease remain poorly understood, providing a critical knowledge gap for future work.521 

Similarly, disentangling the effects of longevity genes on survival from the effects on 

neuropathological burden and age-related cognitive decline will be critical to better understand 

and prioritize molecular pathways that contribute to longevity and AD. 

Finally, there is an incredible opportunity to advance our understandings of protection by 

focusing on the notable heterogeneity in the neuropathological presentation and clinical 

manifestation of the disease across sexes. Nearly two-thirds of diagnosed AD cases are women505, 

522 and APOE-e4 is more strongly associated with clinical AD523 and measures of tau.524 Moreover, 
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AD neuropathology is more likely to clinically manifest as clinical dementia in women than in 

men.525, 526 There is now emerging work implicating sex-specific genomic and transcriptomic 

signatures of AD in humans, and work in mouse models has implicated the important contribution 

of both gonadal hormone and X-chromosome effects on conferring risk and resilience to AD in a 

sex-specific manner. Yet, the vast majority of studies of protection in AD have not integrated sex-

specific models, and the degree to which the molecular contributors to resilience differ by sex 

remains poorly understood.524, 525, 527-532 Further exploration into sex differences in biological 

mechanisms driving resilience to AD could present a turning point for precision medicine by 

clarifying whether the best target pathway for intervention varies by age, biomarker status, genetic 

background and sex.533 

In conclusion, sporadic AD presents immense therapeutic challenges due to the 

heterogeneity in the neuropathological presentation, age of onset, rate of decline, and clinical 

manifestation of disease. However, this same heterogeneity provides an exciting opportunity to 

characterize the specific molecular context in which neuroprotection is observed. The powerful 

stories of protection in even a single high-risk patient can transform our molecular understanding 

of a disease. The new identification of a protected autosomal dominant mutation carrier (i.e., 

APOE3ch) has provided exciting new directions for AD therapeutics, and we must find a way to 

identify such incredible stories of resilience in sporadic AD that surely are hiding in our ever-

expanding cohort studies of aging and AD. We anticipate that multi-omics and computational 

biology will continue to be a part of that story. 
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A.3 APPENDIX TABLES 

 
 

Full supplemental table including CPRA can be found here: 
https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-021-00452-5. 

 
Table A.1: Table of all protective SNPs identified up to 2020. 

 
Study DOI/PMID Gene rsID 

AlmeidaJFF 2018 https://doi.org/10.1007/s12031-018-1045-y MS4A6A rs610932 

AlmeidaJFF 2018 https://doi.org/10.1007/s12031-018-1045-y CLU rs11136000 

Andersson 2016 https://dx.doi.org/10.3233%2FJAD-160319 SORT1 rs17646665 

Anvar 2015 https://doi.org/10.1016/j.jns.2015.09.344 IL16 rs4072111 

Arboleda-Velasquez 
2019 

https://doi.org/10.1038/s41591-019-0611-3 APOE rs121918393 

Ayers 2016 https://doi.org/10.1186/s12864-016-2725-z CASP7 rs10553596 

Babenko 2018 https://dx.doi.org/10.1186%2Fs12868-018-0413-4 APOE rs769449 

Bao 2016 https://doi.org/10.12659/MSM.895622 CD33 rs3865444 

Bao 2016 https://doi.org/10.12659/MSM.895622 TOMM40 rs157580 

Belloy 2020 https://doi.org/10.1001/jamaneurol.2020.0414 KL rs9536314, 
rs9527025 

Benedet 2018 https://doi.org/10.1212/NXG.0000000000000216 CYP2C19 rs4388808 

Benitez 2014 https://doi.org/10.1016/j.neurobiolaging.2013.12.010 TREML2 rs3747742 

Bertram 2005 https://doi.org/10.1136/jmg.2004.024596 TFCP2 rs4438107 

Bertram 2007 https://doi.org/10.1038/ng1934 ACE rs1800764 

Bertram 2007 https://doi.org/10.1038/ng1934 ACE rs4291 

Bertram 2007 https://doi.org/10.1038/ng1934 ACE rs4343 
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Study DOI/PMID Gene rsID 

Bertram 2007 https://doi.org/10.1038/ng1934 APOE rs405509 

Bertram 2007 https://doi.org/10.1038/ng1934 APOE rs440446 

Bertram 2007 https://doi.org/10.1038/ng1934 APOE rs449647 

Bertram 2007 https://doi.org/10.1038/ng1934 CHRNB2 rs4845378 

Bertram 2007 https://doi.org/10.1038/ng1934 GAPDHS rs12984928 

Bertram 2007 https://doi.org/10.1038/ng1934 GAPDHS rs4806173 

Bertram 2007 https://doi.org/10.1038/ng1934 IDE rs2251101 

Bertram 2007 https://doi.org/10.1038/ng1934 MTHFR rs1801131 

Bertram 2007 https://doi.org/10.1038/ng1934 PRNP rs1799990 

Bertram 2007 https://doi.org/10.1038/ng1934 PSEN1 rs165932 

Bertram 2007 https://doi.org/10.1038/ng1934 TFAM rs2306604 

Bian 2008 https://doi.org/10.1007/s12031-008-9036-z NQ01 rs1800566 

Bian 2008 https://doi.org/10.1007/s12031-008-9036-z NQ01 rs1800566 

Boada 2012 https://doi.org/10.1016/j.neurobiolaging.2010.06.016 ESR1 rs3844508 

Boiocchi 2015 https://doi.org/10.2174/1567205012666151027130635 HSP70 rs1043618 

Boiocchi 2015 https://doi.org/10.2174/1567205012666151027130635 HSP70 rs1061581 

Bratosiewicz-Wasik 
2018 

https://doi.org/10.1016/j.neulet.2018.07.010 APOE rs449647 

Bruunsgaard 2004 https://doi.org/10.1111/j.1532-5415.2004.52369.x TNF rs1800629 

Bufill 2015 https://doi.org/10.1097/WAD.0000000000000002 RELN rs528528 

Bufill 2015 https://doi.org/10.1097/WAD.0000000000000002 PLK2 rs15009 

Bufill 2015 https://doi.org/10.1097/WAD.0000000000000002 PLK2 rs702723 

Burfiend 2017 https://doi.org/10.1016/j.trci.2017.05.001 AQP4 rs9951307 
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Study DOI/PMID Gene rsID 

Burfiend 2017 https://doi.org/10.1016/j.trci.2017.05.001 AQP4 rs3875089 

Carrasquillo 2015 https://doi.org/10.1016/j.neurobiolaging.2014.07.042 PICALM rs3851179 

Carrasquillo 2017 https://doi.org/10.1016/j.jalz.2016.10.005 TREM rs9357347 

Cascalheira 2015 https://doi.org/10.1177/0004563214561770 TCN2 rs1801198 

Chagnon 1999 https://doi.org/10.1002/(SICI)1096-8628(19990702)85:1%3C20::AID-
AJMG6%3E3.0.CO;2-K 

mitochondri
a 

rs2853517 

Chagnon 1999 https://doi.org/10.1002/(SICI)1096-8628(19990702)85:1%3C20::AID-
AJMG6%3E3.0.CO;2-K 

mitochondri
a 

rs193303002 

Chang 2016 https://doi.org/10.18632/oncotarget.8176 HMGCR rs3846662 

Chapuis 2009 https://doi.org/10.1038/mp.2009.10 IL-33 rs7044343 

Chen 2008 https://doi.org/10.1016/j.brainres.2007.10.054 CETP rs2303790 

Chen 2016 https://doi.org/10.1007/s10072-016-2579-9 PTGS2 rs20417 

Chen 2017 https://doi.org/10.1111/jgs.14537 ESR2 rs4986938 

Chen 2017 https://doi.org/10.1111/jgs.14537 ESR2 rs867443 

Chen 2018 https://doi.org/10.12659/MSM.907809 EGFR rs730437 

Chen 2018 https://doi.org/10.12659/MSM.907809 EGFR rs1468727 

Chen 2020 https://doi.org/10.3233/jad-191214 SLAMF1 rs13374761 

Chou 2016 https://doi.org/10.1186/s13195-016-0222-x SORL1 rs1784933 

Christopher 2017 https://doi.org/10.1002/ana.25094 PPP4R3A rs2273647 

Combarros 2008 https://doi.org/10.1007/s00702-008-0028-5 CYP19A1 rs1062033 

Combarros 2008 https://doi.org/10.1007/s00702-008-0028-5 IL10 rs1800896 

Cong 2011 https://doi.org/10.1016/j.neurobiolaging.2009.01.001 ADAM9 rs7006414 

Cong 2020 https://doi.org/10.1016/j.neurobiolaging.2020.07.005 ERC1 rs2968869 

Correia 2009 https://doi.org/10.1016/j.neulet.2009.03.088 HFE rs1800562 
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Study DOI/PMID Gene rsID 

Cui 2012 https://doi.org/10.1016/j.jocn.2011.08.036 IDE rs4646958 

Cui 2012 https://doi.org/10.1016/j.jocn.2011.08.036 IDE rs1887922 

Curtis 2020 https://doi.org/10.1111/ahg.12375 TIAF1 rs73986791  

Curtis 2020 https://doi.org/10.1111/ahg.12375 NDRG2 rs199616382  

Dai 2018 https://doi.org/10.1159/000492536 CHI3L1 rs4950928 

DosSantos 2017 https://doi.org/10.1007/s12031-017-0928-7 CD33 rs3865444 

Dumitrescu 2020 https://doi.org/10.1093/brain/awaa209 ATP8B1 rs2571244 

Ezquerra 1997 https://doi.org/10.1016/S0304-3940(97)00328-5 PSEN1 rs165932 

Feher 2018 https://doi.org/10.1016/j.neulet.2017.11.027 ABCA1 rs2230805 

Feher 2018 https://doi.org/10.1016/j.neulet.2017.11.027 ABCA1 rs2230806 

Finckh 2003 https://doi.org/10.1007/s10048-003-0157-9 PLAU rs2227564 

Fiocco 2010 https://doi.org/10.1212/WNL.0b013e3181d9edba COMT rs4680 

Fu 2009 https://doi.org/10.1002/gps.2196 CYP46A1 rs3742376 

Funalot 2004 https://doi.org/10.1038/sj.mp.4001584 ECE-1 rs213045 

Galimberti 2004 https://doi.org/10.1016/j.jns.2004.07.005 CCR2 rs1799864 

Gao 2016 https://doi.org/10.18632/oncotarget.7945 ZCWPW1 rs1476679 

Ghani 2016 https://doi.org/10.1016/j.neurobiolaging.2016.03.009 MS4A locus NA 

Gongzalez 2014 https://doi.org/10.1016/j.medcli.2013.07.031 COX2 rs20417 

He 2006 https://www.ncbi.nlm.nih.gov/pubmed/16863614 PON1 rs662 

He 2010 https://doi.org/10.1007/s10072-009-0199-3 IL6 rs1800796 

Hua 2013 https://doi.org/10.3109/00207454.2013.784286 IL6 rs1800795 

Jamieson 2005 https://doi.org/10.1016/j.neulet.2004.10.038 SLC11A2 rs407135 
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Study DOI/PMID Gene rsID 

Janicki 2013 https://doi.org/10.1159/000343074 CYP19 rs4775935 

Janicki 2013 https://doi.org/10.1159/000343074 CYP19 rs727479 

Janicki 2013 https://doi.org/10.1159/000343074 CYP19 rs6493495 

Janicki 2013 https://doi.org/10.1159/000343074 CYP19 rs11070843 

Janicki 2014 https://doi.org/10.1159/000355559 ESR1 rs6902771 

Janicki 2014 https://doi.org/10.1159/000355559 ESR1 rs3853250 

Janicki 2014 https://doi.org/10.1159/000355559 ESR1 rs4870056 

Janicki 2014 https://doi.org/10.1159/000355559 ESR1 rs2234693 

Janicki 2014 https://doi.org/10.1159/000355559 ESR1 rs9340799 

Janicki 2014 https://doi.org/10.1159/000355559 ESR1 rs9322332 

Ji 2015 https://www.ncbi.nlm.nih.gov/pubmed/26770425 MS4A6A rs610932 

Ji 2015 https://www.ncbi.nlm.nih.gov/pubmed/26770425 GAB2 rs2373115 

Ji 2015 https://www.ncbi.nlm.nih.gov/pubmed/26770425 GAB2 rs4945261 

Jiang 2017 https://doi.org/10.1007/s12035-016-9706-8 TREML2 rs3747742 

Jiao 2015 https://doi.org/10.1371/journal.pone.0144898 BIN1 rs744373 

Jiao 2015 https://doi.org/10.1371/journal.pone.0144898 MS4A rs1562990 

Jiao 2015 https://doi.org/10.1371/journal.pone.0144898 EXOC3L2 rs597668 

Jiao 2015 https://doi.org/10.1371/journal.pone.0144898 HLA-DRB5/DRB1 rs9271192 

Jiao 2015 https://doi.org/10.1371/journal.pone.0144898 TOMM40 rs11556505 

Jiao 2015 https://doi.org/10.1371/journal.pone.0144898 TOMM40 rs157581 

Jin 2009 https://doi.org/10.3233/DMA-2009-0665 ECE-1 rs213045 

Jonsson 2012 https://doi.org/10.1038/nature11283 APP rs63750847 
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Study DOI/PMID Gene rsID 

Jun 2016 https://doi.org/10.1038/mp.2015.23 KANSL1-MAPT rs2732703 

Jun 2017 https://doi.org/10.1016/j.jalz.2016.12.012 TSPOAP1 rs2632516 

Jun 2017 https://doi.org/10.1016/j.jalz.2016.12.012 NFIC rs9749589 

Keage 2010 https://doi.org/10.1093/ageing/afp210 ACE rs4343 

Kero 2013 https://doi.org/10.1016/j.neurobiolaging.2012.09.017 APP rs63750847 

Khoshbakht 2015 https://www.ncbi.nlm.nih.gov/pubmed/26306153 IL6 rs11556218 

Khoshbakht 2015 https://www.ncbi.nlm.nih.gov/pubmed/26306153 IL6 rs4778889 

Kok 2011 https://doi.org/10.1186/1742-2094-8-96 CRP rs2794521 

Koutroumani 2013 https://doi.org/10.1016/j.jns.2013.02.003 ADRA2B NA 

Kunkle 2018 https://doi.org/10.1101/294629 INPP5D rs10933431 

Kunkle 2018 https://doi.org/10.1101/294629 ZCWPW1/NYAP1 rs12539172 

Kunkle 2018 https://doi.org/10.1101/294629 EPHA1 rs11762262 

Kunkle 2018 https://doi.org/10.1101/294629 CLU rs9331896 

Kunkle 2018 https://doi.org/10.1101/294629 SPI1 rs3740688 

Kunkle 2018 https://doi.org/10.1101/294629 MS4A2 rs7933202 

Kunkle 2018 https://doi.org/10.1101/294629 PICALM rs3851179 

Kunkle 2018 https://doi.org/10.1101/294629 SORL1 rs11218343 

Kunkle 2018 https://doi.org/10.1101/294629 SLC24A4-RIN3 rs12881735 

Kunkle 2018 https://doi.org/10.1101/294629 CASS4 rs6024870 

Kunkle 2018 https://doi.org/10.1101/294629 ADAM10 rs593742 

Kunkle 2018 https://doi.org/10.1101/294629 IQCK rs7185636 

Kunkle 2018 https://doi.org/10.1101/294629 ADAMTS1 rs2830500 
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Study DOI/PMID Gene rsID 

Kwiatkowski 2016 https://doi.org/10.1159/000444643 LIG1 rs20579 

Lalli 2015 https://doi.org/10.1038/mp.2015.131 CCL11 rs9909184 

Lambert 2000a https://doi.org/10.1093/oxfordjournals.hmg.a018918 TFCP2 rs13463 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 EPHA1 rs11771145 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 CLU rs9331896 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 MS4A6A rs983392 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 PICALM rs10792832 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 CD33 rs3865444 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 SLC24A4-RIN3 rs10498633 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 DSG2 rs8093731 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 MEF2C rs190982 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 NME8 rs2718058 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 ZCWPW1/NYAP1 rs1476679 

Lambert 2013 http://dx.doi.org/10.1038/ng.2802 CASS4 rs7274581 

Landgren 2012 https://doi.org/10.1007/s00702-012-0823-x ARC rs10097505 

Landgren 2012 https://doi.org/10.1007/s00702-012-0823-x ARC NA 

Leduc 2015 https://doi.org/10.1038/mp.2014.81 HMGCR rs3846662 

Li 2013 https://doi.org/10.1111/cns.12062 LRRK2 rs33949390 

Li 2019 https://doi.org/10.1007/s00401-019-02066-0 TMEM106B rs1990621 

Lin 2012 https://doi.org/10.1007/s11033-011-1072-z HFE rs1799945 

Liu 2014a https://doi.org/10.1007/s12017-013-8250-1 CLU rs11136000 

Liu 2014a https://doi.org/10.1007/s12017-013-8250-1 CLU rs11136000 
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Liu 2015 https://doi.org/10.3109/01677063.2015.1099651 NTF-3 rs6489630 

Liu 2016 https://doi.org/10.1155/2016/9418163 CHAT rs2177369 

Liu 2017 https://doi.org/10.1038/ng.3766 SPPL2A rs59685680 

Logue 2018 https://doi.org/10.3389/fnins.2018.00592 F5 rs2027885 

Logue 2018 https://doi.org/10.3389/fnins.2018.00592 KIAA0196 rs7817741 

Logue 2018 https://doi.org/10.3389/fnins.2018.00592 KIAA0196 rs2272729 

Logue 2018 https://doi.org/10.3389/fnins.2018.00592 PTK2B rs115828696 

Logue 2018 https://doi.org/10.3389/fnins.2018.00592 SORL1 rs3862606 

Logue 2018 https://doi.org/10.3389/fnins.2018.00592 PILRB rs11284139 

Luedecking-Zimmer 2003 https://doi.org/10.1002/ajmg.b.10026 LSF rs13463 

Luo 2015 https://doi.org/10.1016/j.jns.2015.10.053 PTSG2 rs20417 

Lupton 2014 https://doi.org/10.3233/JAD-131121 ABCA1 rs371168450, rs9282543, rs33918808 

Lv 2008 https://doi.org/10.1016/j.neurobiolaging.2006.10.001 APP rs466433 

Lv 2008 https://doi.org/10.1016/j.neurobiolaging.2006.10.001 APP rs364048 

Ma 2009 https://doi.org/10.1016/j.neulet.2009.04.048 NCSTN rs10752637 

Ma 2012 https://doi.org/10.1016/j.neurobiolaging.2010.05.018 PIN1 rs2287839 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 BCKDK rs889555 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 PILRA rs1859788 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 TOMM40 rs157580 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 PICALM rs10792832 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 CLU rs4236673 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 SORL1 rs11218343 
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Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 MS4A rs11605427 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 ADAM10 rs593742 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 CASS4 rs6069736 

Marioni 2018 https://doi.org/10.1038/s41398-018-0150-6 ACE rs6504163 

Martinez-Mir 2013 https://doi.org/10.3233/JAD-122257 NRXN3 rs17757879 

Martiskainen 2017 https://doi.org/10.1002/ana.24969 APP rs63750847 

Milind 2020 https://doi.org/10.1371/journal.pgen.1008775 TMEM106B rs1990620 

Minoretti 2006 https://doi.org/10.1016/j.neulet.2005.08.047  TLR4 rs4986790 

Miron 2018 https://doi.org/10.1016/j.jalz.2017.12.004 CDK5RAP2/TLR4/DBC1 rs4837766 

Montesanto 2016 https://doi.org/10.3233/JAD-150993 UCP5 rs9472817 

Moraes 2013 https://doi.org/10.1159/000350368 IL6 rs1800795 

Moraes 2013 https://doi.org/10.1159/000350368 IL10 rs1800896 

Mukherjee 2012 https://dx.doi.org/10.1007%2Fs11682-012-9184-1 RNASE13 rs3748348 

Nho 2015 https://doi.org/10.1002/ana.24349 REST rs3796529 

Olgiati 2011 https://doi.org/10.4061/2011/832379 CLU rs11136000 

Olgiati 2011 https://doi.org/10.4061/2011/832379 PICALM rs3851179 

Olgiati 2011 https://doi.org/10.4061/2011/832379 TNK1 rs1554498 

Olgiati 2011 https://doi.org/10.4061/2011/832379 LDLR rs5930 

Olgiati 2011 https://doi.org/10.4061/2011/832379 CHRNB2 rs4845378 

Olgiati 2011 https://doi.org/10.4061/2011/832379 CCR2 rs1799864 

Pan 2014 https://doi.org/10.1177/1533317514534760 ESR1 rs9340799 

Pan 2014 https://doi.org/10.1177/1533317514534760 ESR1 rs2234693 
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Perry 2008 https://doi.org/10.1016/j.neurobiolaging.2006.10.017 HBG2 rs7482144 

Poduslo 2010 https://doi.org/10.1002/ajmg.b.30963 LRP1B rs6732847 

Ren 2016 https://doi.org/10.1016/j.neulet.2016.03.021 LPL rs328 

Ridge 2017 https://doi.org/10.1186/s13073-017-0486-1 SAR1A rs7653 

Ridge 2017 https://doi.org/10.1186/s13073-017-0486-1 RAB10 rs142787485 

Santos-Reboucas 2017 https://doi.org/10.1007/s12017-017-8444-z PICALM rs3851179 
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B.3 APPENDIX TABLES 
 

Due to size, some tables within the Appendix will be abridged. Full tables will be available at Brain Communications and are also 
available by request. 

Table B.1: Top 20 suggestively significant (p < 1x10-5) SNPs in the SNP x CSF Ab42 GWAS on baseline hippocampal volume. 

Abbreviations: CHR, chromosome; A1, minor allele; SE, standard error; L95, lower 95% confidence interval, U95, upper 95% CI. 
CHR SNP A1 N Beta SE L95 U95 P 

8 rs11135840 A 1065 0.1549 0.03111 0.09396 0.2159 7.42E-07 
8 rs7017203 C 1065 0.1549 0.03111 0.09396 0.2159 7.42E-07 
6 rs2185921 A 1065 -0.3096 0.06242 -0.432 -0.1873 8.21E-07 
8 rs9314297 G 1065 0.1539 0.03114 0.09289 0.215 8.96E-07 
6 rs77207148 A 1065 -0.3101 0.06289 -0.4333 -0.1868 9.52E-07 
6 rs74419807 C 1065 -0.3101 0.06289 -0.4333 -0.1868 9.52E-07 
6 rs79140486 A 1065 -0.3101 0.06289 -0.4333 -0.1868 9.52E-07 
20 rs768875 G 1065 -0.2005 0.04102 -0.2809 -0.1201 1.18E-06 
20 rs1624243 T 1065 -0.2005 0.04102 -0.2809 -0.1201 1.18E-06 
20 rs562596 C 1065 -0.2005 0.04102 -0.2809 -0.1201 1.18E-06 
20 rs845710 G 1065 -0.2005 0.04102 -0.2809 -0.1201 1.18E-06 
20 rs439580 C 1065 -0.2005 0.04102 -0.2809 -0.1201 1.18E-06 
20 rs550630 T 1065 -0.1992 0.04102 -0.2796 -0.1188 1.38E-06 
20 rs552504 T 1065 -0.1988 0.04102 -0.2792 -0.1184 1.45E-06 
5 rs1564800 A 1065 0.1775 0.03717 0.1046 0.2504 2.05E-06 
20 rs1884197 T 1065 -0.1924 0.041 -0.2728 -0.112 3.06E-06 
19 rs283815 G 1065 0.157 0.03382 0.09068 0.2233 3.90E-06 
6 rs116083533 A 1065 -0.2904 0.06259 -0.413 -0.1677 3.94E-06 
8 rs2320782 T 1065 0.1455 0.03146 0.08381 0.2071 4.23E-06 
17 rs7220473 T 1065 -0.1558 0.03383 -0.2221 -0.08953 4.60E-06 
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Table B.2: Top 20 suggestively significant (p < 1x10-5) SNPs in the SNP x CSF Ab42 GWAS on annual change in hippocampal volume. 

Abbreviations: CHR, chromosome; A1, minor allele; SE, standard error; L95, lower 95% confidence interval, U95, upper 95% CI. 

 
CHR SNP A1 N Beta SE L95 U95 P 

3 rs4677869 T 1065 0.01559 0.00283 0.01005 0.02114 4.50E-08 
3 rs2288678 G 1065 0.01602 0.002949 0.01024 0.0218 6.90E-08 
3 rs11706210 C 1065 0.01546 0.002938 0.009697 0.02122 1.74E-07 
3 rs11707039 A 1065 0.01546 0.002938 0.009697 0.02122 1.74E-07 
3 rs4677982 C 1065 0.01507 0.002929 0.009331 0.02081 3.17E-07 
3 rs4677983 A 1065 0.01494 0.002923 0.009213 0.02067 3.79E-07 
3 rs4677984 T 1065 0.01494 0.002923 0.009213 0.02067 3.79E-07 
3 rs4677870 C 1065 0.01494 0.002923 0.009213 0.02067 3.79E-07 
3 rs35989119 C 1065 0.01484 0.002925 0.009106 0.02057 4.62E-07 
3 rs10934625 C 1065 0.01483 0.002925 0.0091 0.02057 4.67E-07 
1 rs113393658 A 1065 -0.02517 0.005098 -0.03517 -0.01518 9.18E-07 
1 rs146752822 A 1065 -0.02517 0.005098 -0.03517 -0.01518 9.18E-07 
1 rs12132798 G 1065 -0.02517 0.005098 -0.03517 -0.01518 9.18E-07 
1 rs12123296 T 1065 -0.02508 0.005099 -0.03507 -0.01508 1.01E-06 
1 rs12126534 A 1065 -0.02508 0.005099 -0.03507 -0.01508 1.01E-06 
1 rs112735413 A 1065 -0.02508 0.005099 -0.03507 -0.01508 1.01E-06 
1 rs75410548 C 1065 -0.02508 0.005099 -0.03507 -0.01508 1.01E-06 
1 rs76992333 T 1065 -0.02508 0.005099 -0.03507 -0.01508 1.01E-06 
1 rs77107095 A 1065 -0.02476 0.00504 -0.03464 -0.01488 1.04E-06 
1 rs112636864 A 1065 -0.02476 0.00504 -0.03464 -0.01488 1.04E-06 
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Table B.3: Top 20 suggestively significant (p < 1x10-5) SNPs in the SNP x CSF p-tau GWAS on baseline hippocampal volume. 

Abbreviations: CHR, chromosome; A1, minor allele; SE, standard error; L95, lower 95% confidence interval, U95, upper 95% CI. 

 
CHR SNP A1 N Beta SE L95 U95 P 

7 rs2005751 T 1065 0.2868 0.05847 0.1722 0.4014 1.08E-06 
4 rs2732177 A 1065 -0.2672 0.05579 -0.3765 -0.1578 1.91E-06 
4 rs2732176 G 1065 -0.2672 0.05579 -0.3765 -0.1578 1.91E-06 
4 rs2627722 T 1065 -0.2659 0.05581 -0.3753 -0.1565 2.15E-06 
4 rs2627679 T 1065 -0.2665 0.05602 -0.3763 -0.1568 2.22E-06 
4 rs2732200 G 1065 -0.2665 0.05602 -0.3763 -0.1568 2.22E-06 
4 rs2627678 A 1065 -0.2665 0.05602 -0.3763 -0.1568 2.22E-06 
7 rs2008810 C 1065 0.2841 0.05976 0.167 0.4012 2.27E-06 
4 rs2627677 G 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2627676 G 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2627675 C 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2732199 A 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2627672 G 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2732198 T 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2732197 C 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2732195 T 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs2732194 T 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs17013031 A 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs17013033 G 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
4 rs17013036 C 1065 -0.2662 0.05601 -0.376 -0.1564 2.29E-06 
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Table B.4: Top 20 suggestively significant (p < 1x10-5) SNPs in the SNP x CSF p-tau GWAS on annual change in hippocampal volume. 

CHR SNP A1 N Beta SE L95 U95 P 
3 rs114106809 T 1065 0.05861 0.01085 0.03735 0.07988 8.14E-08 
3 rs75600480 A 1065 0.058 0.01079 0.03685 0.07915 9.46E-08 
3 rs78673878 C 1065 0.05904 0.01108 0.03733 0.08075 1.20E-07 
3 rs79531054 G 1065 0.06429 0.01208 0.04062 0.08797 1.25E-07 
3 rs73173513 C 1065 0.05882 0.01107 0.03712 0.08053 1.33E-07 

19 rs77655458 T 1065 0.02202 0.004593 0.01302 0.03102 1.86E-06 
19 rs79317238 A 1065 0.02202 0.004593 0.01302 0.03102 1.87E-06 
19 rs77643967 T 1065 0.02202 0.004593 0.01302 0.03102 1.87E-06 
19 rs16992410 G 1065 0.02202 0.004593 0.01302 0.03102 1.87E-06 
19 rs75916762 A 1065 0.02202 0.004593 0.01302 0.03102 1.87E-06 
19 rs79980542 C 1065 0.02202 0.004593 0.01302 0.03102 1.87E-06 
19 rs74715939 A 1065 0.02191 0.0046 0.01289 0.03092 2.17E-06 
19 rs141742577 C 1065 0.02204 0.004631 0.01296 0.03112 2.21E-06 
3 rs62238463 G 1065 0.03176 0.006679 0.01867 0.04485 2.25E-06 

19 rs11672696 T 1065 0.02184 0.004595 0.01283 0.03084 2.30E-06 
19 rs77753384 G 1065 0.02185 0.004599 0.01283 0.03086 2.31E-06 
19 rs78879389 A 1065 0.02184 0.004598 0.01283 0.03085 2.31E-06 
19 rs75856878 T 1065 0.02184 0.004598 0.01283 0.03085 2.31E-06 
19 rs76243172 A 1065 0.02184 0.004598 0.01283 0.03085 2.31E-06 
19 rs76614870 T 1065 0.02184 0.004598 0.01283 0.03085 2.31E-06 
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Table B.5: All suggestively significant (p < 1x10-5) SNPs in the SNP x CSF tau GWAS on baseline hippocampal volume. 
 

CHR SNP A1 N Beta SE L95 U95 P 
2 rs6435166 T 1065 -0.1996 0.04198 -0.2818 -0.1173 2.27E-06 
5 rs254028 C 1065 -0.2035 0.0431 -0.288 -0.119 2.65E-06 

19 rs4806251 T 1065 -0.3142 0.06663 -0.4447 -0.1836 2.74E-06 
5 rs254026 C 1065 -0.1983 0.04227 -0.2812 -0.1155 3.06E-06 

19 rs8105294 A 1065 -0.3099 0.06632 -0.4399 -0.18 3.34E-06 
5 rs173825 C 1065 -0.1974 0.0423 -0.2803 -0.1145 3.45E-06 
5 rs453632 T 1065 -0.2018 0.0434 -0.2869 -0.1168 3.73E-06 

19 rs10405023 C 1065 -0.3082 0.06638 -0.4383 -0.1781 3.87E-06 
16 rs9927279 G 1065 -0.1717 0.03702 -0.2443 -0.09919 3.94E-06 
10 rs10786273 A 1065 -0.323 0.06965 -0.4595 -0.1865 3.96E-06 
6 rs13437308 T 1065 -0.2283 0.04931 -0.325 -0.1317 4.10E-06 
5 rs33820 A 1065 -0.1959 0.04276 -0.2797 -0.112 5.20E-06 

13 rs4377014 T 1065 -0.1565 0.03432 -0.2237 -0.0892 5.73E-06 
13 rs2475538 T 1065 -0.1563 0.03433 -0.2236 -0.08902 5.91E-06 
13 rs3011022 C 1065 -0.1563 0.03433 -0.2236 -0.08902 5.91E-06 
13 rs61946436 G 1065 -0.1572 0.03463 -0.2251 -0.08933 6.28E-06 
13 rs326508 A 1065 -0.1552 0.03427 -0.2223 -0.08799 6.64E-06 
13 rs326507 T 1065 -0.1552 0.03427 -0.2223 -0.08799 6.64E-06 
6 rs11967828 T 1065 -0.2196 0.04872 -0.3151 -0.1241 7.31E-06 
6 rs7762227 C 1065 -0.2194 0.0487 -0.3148 -0.1239 7.38E-06 
6 rs6925949 A 1065 -0.22 0.04886 -0.3157 -0.1242 7.47E-06 
6 rs9501991 A 1065 -0.2175 0.04859 -0.3127 -0.1223 8.43E-06 
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Table B.6: Top 20 suggestively significant (p < 1x10-5) SNPs in the SNP x CSF tau GWAS on annual change in hippocampal 
volume. 
 

CHR BP A1 N Beta SE L95 U95 P 
9 130164818 T 1065 0.01505 0.002898 0.009374 0.02073 2.45E-07 
9 130242166 A 1065 0.0152 0.002951 0.009412 0.02098 3.12E-07 
9 130248885 T 1065 0.013 0.002542 0.008016 0.01798 3.76E-07 
9 130238024 T 1065 0.01312 0.002578 0.008073 0.01818 4.20E-07 
9 130238540 A 1065 0.01312 0.002578 0.008073 0.01818 4.20E-07 
9 130249144 C 1065 0.01312 0.002578 0.008073 0.01818 4.20E-07 
9 130257205 G 1065 0.01312 0.002578 0.008071 0.01818 4.21E-07 
9 130240980 A 1065 0.01495 0.002948 0.009174 0.02073 4.65E-07 
9 130241822 T 1065 0.01495 0.002948 0.009174 0.02073 4.65E-07 
9 130246660 T 1065 0.01495 0.002948 0.009174 0.02073 4.65E-07 
9 130255810 C 1065 0.01495 0.002948 0.009171 0.02073 4.67E-07 
9 130266566 A 1065 0.01314 0.002592 0.008059 0.01822 4.71E-07 
1 221831337 C 1065 -0.01629 0.003255 -0.02267 -0.009909 6.58E-07 
1 221854085 T 1065 -0.01618 0.003247 -0.02255 -0.009819 7.27E-07 
1 221854205 A 1065 -0.01618 0.003247 -0.02255 -0.009819 7.27E-07 
1 221855326 C 1065 -0.0162 0.003255 -0.02258 -0.009824 7.48E-07 
1 221833258 C 1065 -0.01616 0.003247 -0.02253 -0.0098 7.50E-07 
1 221833607 C 1065 -0.01616 0.003247 -0.02253 -0.0098 7.50E-07 
1 221833685 C 1065 -0.01616 0.003247 -0.02253 -0.0098 7.50E-07 
1 221833729 C 1065 -0.01616 0.003247 -0.02253 -0.0098 7.50E-07 
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Table B.7: Top 20 MAGMA gene associations using summary statistics from SNP x CSF Ab42 GWAS on annual change in 
hippocampal volume. 
 
GENE CHR START STOP NSNPS NPARAM N ZSTAT P p.fdr 

TOMM40 19 45394477 45406946 27 4 1065 4.1584 1.60E-05 0.27952691 
LOC101060400 17 46712166 46724875 37 7 1065 3.8579 5.72E-05 0.49866435 
USH2A 1 215796236 216596738 1692 156 1065 3.6109 0.00015256 0.56229784 
DPYD 1 97543299 98386615 1574 127 1065 3.5775 0.00017343 0.56229784 
HOXB9 17 46698518 46703835 14 3 1065 3.5736 0.00017605 0.56229784 
PACS1 11 65837747 66012218 225 13 1065 3.5489 0.00019344 0.56229784 
APOE 19 45409039 45412650 4 2 1065 3.4169 0.00031675 0.78920525 
CDK5RAP3 17 46047894 46059152 28 4 1065 3.2917 0.00049798 0.82081371 
MBTPS1 16 84087368 84150517 225 24 1065 3.2829 0.0005138 0.82081371 
NRL 14 24547902 24584223 27 6 1065 3.2798 0.00051942 0.82081371 
COBL 7 51083909 51384515 480 38 1065 3.278 0.00052272 0.82081371 
ISM1 20 13202418 13281297 202 24 1065 3.2419 0.00059376 0.82081371 
HOXB3 17 46626232 46667634 79 14 1065 3.2333 0.00061181 0.82081371 
HOXB13 17 46802125 46806111 7 4 1065 3.1058 0.0009488 0.84276115 
CAPN10 2 241526133 241538526 49 5 1065 3.1003 0.00096669 0.84276115 
PPA1 10 71962586 71993667 97 12 1065 3.0624 0.0010979 0.84276115 
IL12RB2 1 67773047 67862583 199 14 1065 3.0573 0.0011165 0.84276115 
LTBR 12 6484534 6500737 6 2 1065 3.0522 0.0011358 0.84276115 
DCAF11 14 24583906 24594451 14 2 1065 2.9967 0.0013644 0.84276115 
YIF1A 11 66052051 66056638 5 2 1065 2.9663 0.001507 0.84276115 
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Table B.8. Top 20 MAGMA gene associations using summary statistics from SNP x CSF Ab42 GWAS on annual change in 
hippocampal volume when including APOE4 status as a covariate in the GWAS. 
 
GENE CHR START STOP NSNPS NPARAM N ZSTAT P p.fdr 

DPYD 1 97543299 98386615 1574 127 1058 3.919 4.45E-05 0.7432733 
LOC101060400 17 46712166 46724875 37 7 1058 3.5103 0.00022376 0.7432733 
MICU3 8 16884747 16980148 234 23 1058 3.4812 0.00024961 0.7432733 
PACS1 11 65837747 66012218 225 13 1058 3.4777 0.00025283 0.7432733 
COBL 7 51083909 51384515 480 38 1058 3.431 0.00030067 0.7432733 
OR10H2 19 15838834 15839862 5 2 1058 3.4288 0.0003031 0.7432733 
USH2A 1 215796236 216596738 1692 156 1058 3.3874 0.00035276 0.7432733 
HOXB9 17 46698518 46703835 14 3 1058 3.331 0.00043267 0.7432733 
ISM1 20 13202418 13281297 202 24 1058 3.3236 0.00044424 0.7432733 
TLDC1 16 84509966 84538366 151 21 1058 3.3122 0.00046289 0.7432733 
ACD 16 67691415 67694718 4 2 1058 3.2379 0.00060204 0.7432733 
HOXB3 17 46626232 46667634 79 14 1058 3.1576 0.00079542 0.7432733 
FIZ1 19 56102737 56110893 10 3 1058 3.1311 0.00087088 0.7432733 
NRL 14 24547902 24584223 27 6 1058 3.1308 0.00087153 0.7432733 
CAPN10 2 241526133 241538526 49 5 1058 3.1189 0.00090762 0.7432733 
TOMM40 19 45394477 45406946 27 4 1058 3.1069 0.00094531 0.7432733 
DCAF11 14 24583906 24594451 14 2 1058 3.0864 0.0010129 0.7432733 
IL12RB2 1 67773047 67862583 199 14 1058 3.0697 0.0010714 0.7432733 
SPNS2 17 4402129 4443228 54 7 1058 3.0502 0.0011433 0.7432733 
VILL 3 38032217 38048676 41 5 1058 3.0365 0.0011967 0.7432733 
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Table B.9: Top 20 MAGMA pathway associations using summary statistics from SNP x CSF Ab42 GWAS on annual change in 
hippocampal volume. 
 
 

FULL_NAME BETA BETA_STD SE P p.fdr 
GO_REGULATION_OF_DOUBLE_STRAND_BREAK_REPAIR 0.35356 0.020355 0.1033 0.00031104 0.4851339 

GO_NEGATIVE_REGULATION_OF_CELL_CYCLE_PHASE_TRANSITION 0.19246 0.02148 0.05654 0.00033282 0.4851339 

GO_TUBE_CLOSURE 0.31393 0.021863 0.093128 0.00037544 0.4851339 

GO_HEMATOPOIETIC_PROGENITOR_CELL_DIFFERENTIATION 0.23309 0.021665 0.069213 0.00037995 0.4851339 

GO_SCF_DEPENDENT_PROTEASOMAL_UBIQUITIN_ 
DEPENDENT_PROTEIN_CATABOLIC_PROCESS 

0.3073 0.021149 0.091365 0.00038574 0.4851339 

GO_CELLULAR_RESPONSE_TO_PROSTAGLANDIN_STIMULUS 0.70559 0.024469 0.21046 0.0004012 0.4851339 

REACTOME_DEGRADATION_OF_BETA_CATENIN_ 
BY_THE_DESTRUCTION_COMPLEX 

0.32417 0.021493 0.0981 0.00047676 0.4851339 

GO_POSITIVE_REGULATION_OF_MICROGLIAL_CELL_MIGRATION 1.0484 0.017749 0.31811 0.00049201 0.4851339 

GO_STAT_FAMILY_PROTEIN_BINDING 0.84409 0.016908 0.25622 0.00049422 0.4851339 

GO_POSITIVE_REGULATION_OF_VIRAL_ENTRY_INTO_HOST_CELL 0.78362 0.017797 0.23979 0.00054289 0.4851339 

GO_NEURON_PROJECTION_MAINTENANCE 0.78012 0.017717 0.23934 0.00055924 0.4851339 

GO_CELLULAR_RESPONSE_TO_PROSTAGLANDIN_E_STIMULUS 0.80314 0.023544 0.24691 0.00057275 0.4851339 

GO_MITOTIC_DNA_INTEGRITY_CHECKPOINT 0.25977 0.019418 0.080063 0.00058948 0.4851339 

BIOCARTA_FBW7_PATHWAY 0.80906 0.018375 0.25093 0.00063294 0.4851339 

GO_CENTRAL_ELEMENT 1.0939 0.021911 0.34042 0.00065733 0.4851339 

GO_PROTEIN_KINASE_ACTIVITY 0.11181 0.019297 0.03513 0.00073108 0.4851339 

BIOCARTA_SKP2E2F_PATHWAY 0.76947 0.01842 0.24196 0.00073737 0.4851339 

REACTOME_SCF_SKP2_MEDIATED_DEGRADATION_OF_P27_P21 0.34028 0.019251 0.1075 0.00077573 0.4851339 

GO_RESPONSE_TO_PROSTAGLANDIN_E 0.65028 0.022009 0.2059 0.00079532 0.4851339 

GO_ASTROCYTE_CELL_MIGRATION 0.90855 0.019455 0.28803 0.00080588 0.4851339 
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Table B.10: Top 20 MAGMA pathway associations using summary statistics from SNP x CSF Ab42 GWAS on annual change in 
hippocampal volume when including APOE4 status as a covariate in the GWAS. 

 

FULL_NAME BETA BETA_STD SE P p.fdr 
BIOCARTA_FBW7_PATHWAY 0.93096 0.021143 0.25383 0.00012279 0.46831349 

BIOCARTA_SKP2E2F_PATHWAY 0.89436 0.02141 0.24475 0.0001294 0.46831349 

GO_PROTEIN_KINASE_ACTIVITY 0.1268 0.021884 0.035536 0.00018032 0.46831349 

GO_NEGATIVE_REGULATION_OF_ 
CELL_CYCLE_PHASE_TRANSITION 

0.20093 0.022425 0.057196 0.00022213 0.46831349 

GO_HEMATOPOIETIC_PROGENITOR_CELL_DIFFERENTIATION 0.24015 0.022322 0.070017 0.00030274 0.46831349 

GO_REGULATION_OF_STEM_CELL_DIFFERENTIATION 0.27861 0.021553 0.081473 0.00031438 0.46831349 

REACTOME_G2_PHASE 0.88217 0.014935 0.25969 0.00034151 0.46831349 

GO_POSITIVE_REGULATION_OF_MICROGLIAL_CELL_MIGRATION 1.0915 0.018479 0.3218 0.00034792 0.46831349 

GO_POSITIVE_REGULATION_OF_VIRAL_ENTRY_INTO_HOST_CELL 0.81558 0.018523 0.24258 0.0003876 0.46831349 

GO_NEGATIVE_REGULATION_OF_PROTEIN_ 
LOCALIZATION_TO_CELL_PERIPHERY 

0.49089 0.018198 0.14605 0.00038915 0.46831349 

GO_G1_DNA_DAMAGE_CHECKPOINT 0.35066 0.020702 0.10553 0.00044638 0.46831349 

GO_MITOTIC_DNA_INTEGRITY_CHECKPOINT 0.26838 0.020061 0.080993 0.00046162 0.46831349 

REACTOME_SYNDECAN_INTERACTIONS 0.53621 0.020688 0.16497 0.00057743 0.50657753 

GO_ASTROCYTE_CELL_MIGRATION 0.94636 0.020264 0.29138 0.00058256 0.50657753 

GO_NEGATIVE_REGULATION_OF_MITOTIC_CELL_CYCLE 0.1574 0.019956 0.049514 0.00074088 0.53250858 

GO_KINASE_ACTIVITY 0.1007 0.019534 0.031702 0.00074698 0.53250858 

REACTOME_HEME_BIOSYNTHESIS 0.76593 0.018335 0.24331 0.00082359 0.53250858 

REACTOME_CYCLIN_A:CDK2_ASSOCIATED_EVENTS_AT_S_PHASE_ENTRY 0.2707 0.018406 0.086344 0.00086033 0.53250858 

GO_NEGATIVE_REGULATION_OF_PROTEIN_ 
LOCALIZATION_TO_MEMBRANE 

0.41975 0.016805 0.13744 0.0011303 0.53250858 

REACTOME_TRANSCRIPTIONAL_REGULATION_BY_RUNX2 0.2563 0.020107 0.083963 0.0011365 0.53250858 
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Table B.11. Top 20 MAGMA gene associations using summary statistics from SNP x CSF p-tau GWAS on annual change in 
hippocampal volume. 

 

GENE CHR START STOP NSNPS NPARAM N ZSTAT P p.fdr 
PLCB4 20 9049357 9461463 666 63 1065 4.0521 2.54E-05 0.44258282 
LRSAM1 9 130213765 130265780 104 12 1065 3.8749 5.33E-05 0.4508096 
HDGFRP2 19 4472255 4502223 84 8 1065 3.7809 7.81E-05 0.4508096 
HEATR3 16 50099881 50139392 92 6 1065 3.6975 0.00010888 0.4508096 
MIPEP 13 24304328 24463587 356 22 1065 3.5303 0.00020753 0.4508096 
SEC61B 9 101984570 101992901 14 1 1065 3.5058 0.00022765 0.4508096 
ANTXR1 2 69240276 69476459 473 61 1065 3.4694 0.00026083 0.4508096 
OR8B2 11 124252298 124276648 46 3 1065 3.4654 0.00026467 0.4508096 
EPB41L4B 9 111934254 112083021 249 35 1065 3.4487 0.00028163 0.4508096 
TRAPPC4 11 118889241 118894384 17 2 1065 3.4354 0.00029583 0.4508096 
PABPC1 8 101715144 101734969 20 3 1065 3.3614 0.00038772 0.4508096 
EPB41L5 2 120770604 120936697 225 9 1065 3.3598 0.00039004 0.4508096 
NCLN 19 3185875 3209573 72 6 1065 3.3587 0.00039153 0.4508096 
CDKN1C 11 2904448 2907063 1 1 1065 3.3295 0.000435 0.4508096 
PIGG 4 492989 533320 113 5 1065 3.3136 0.00046058 0.4508096 
TOX 8 59717977 60031767 608 61 1065 3.3012 0.00048144 0.4508096 
EBF3 10 131633496 131762546 76 18 1065 3.2988 0.00048554 0.4508096 
SLC37A4 11 118895061 118901616 9 2 1065 3.2739 0.00053032 0.4508096 
AOAH 7 36552549 36764154 489 57 1065 3.2617 0.00055381 0.4508096 
VGLL2 6 117586721 117594728 17 2 1065 3.2535 0.00056988 0.4508096 
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Table B.12. Top 20 MAGMA pathway associations using summary statistics from SNP x CSF p-tau GWAS on annual change in 
hippocampal volume. 
 
 

FULL_NAME BETA BETA_STD SE P p.fdr 
GO_ENDOLYSOSOME_LUMEN 1.302 0.022042 0.3531 0.00011375 0.77298813 

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 0.19631 0.02476 0.05365 0.00012699 0.77298813 

GO_GLUTAMINE_TRANSPORT 1.0037 0.018613 0.28924 0.00026084 0.84970462 

GO_REGULATION_OF_CARTILAGE_DEVELOPMENT 0.40241 0.023366 0.11777 0.00031737 0.84970462 

GO_L_GLUTAMINE_TRANSMEMBRANE_TRANSPORTER_ACTIVITY 1.0217 0.017298 0.30174 0.00035526 0.84970462 

REACTOME_GLUCAGON_TYPE_LIGAND_RECEPTORS 0.51322 0.020178 0.15363 0.00041878 0.84970462 

GO_VESICLE_TARGETING 0.28065 0.019545 0.086155 0.00056308 0.8708044 

REACTOME_TRANSPORT_OF_BILE_SALTS_AND_ 
ORGANIC_ACIDS_METAL_IONS_AND_AMINE_COMPOUNDS 

0.30527 0.021009 0.096323 0.0007658 0.8708044 

GO_DRUG_TRANSMEMBRANE_TRANSPORT 0.31868 0.020854 0.1014 0.00083845 0.8708044 

REACTOME_METABOLISM_OF_ANGIOTENSINOGEN_TO_ANGIOTENSINS 0.73571 0.021567 0.23537 0.00088847 0.8708044 

GO_GLIAL_CELL_FATE_SPECIFICATION 1.3925 0.023575 0.44934 0.00097265 0.8708044 

GO_ALANINE_TRANSPORT 0.84677 0.020271 0.2738 0.00099367 0.8708044 

GO_SPLICEOSOMAL_CONFORMATIONAL_CHANGES_TO_ 
GENERATE_CATALYTIC_CONFORMATION 

1.0782 0.018253 0.34885 0.0010003 0.8708044 

GO_INTRINSIC_COMPONENT_OF_PLASMA_MEMBRANE 0.07221 0.020453 0.023676 0.0011463 0.8708044 

GO_REGULATION_OF_SYSTEMIC_ARTERIAL_ 
BLOOD_PRESSURE_BY_HORMONE 

0.48269 0.021292 0.15862 0.0011731 0.8708044 

GO_METHYLTRANSFERASE_COMPLEX 0.23789 0.018403 0.078979 0.0012994 0.8708044 

GO_ADAPTATION_OF_SIGNALING_PATHWAY 0.65069 0.019075 0.21696 0.0013558 0.8708044 

GO_GOLGI_VESICLE_BUDDING 0.28021 0.018091 0.09346 0.0013601 0.8708044 

GO_REGULATION_OF_PROTEIN_KINASE_C_ACTIVITY 1.4651 0.022186 0.49138 0.0014361 0.8708044 

REACTOME_ADP_SIGNALLING_THROUGH_P2Y_PURINOCEPTOR_12 0.52123 0.017641 0.17548 0.0014899 0.8708044 
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APPENDIX C 
 

 
 

This serves as the Appendix for CHAPTER 3: 
 

 
 

EXAMINING TRANSCRIPTOMIC MODIFIERS OF THE APOE-e4 EFFECTS ON 
COGNITION 

 
 
 

C.1 ACKNOWLEDGEMENTS 

 

 
 The results published here are in whole or in part based on data obtained from Agora and 

the AD Knowledge Portal (https://adknowledgeportal.org), which are supported by the NIA-

funded AMP-AD consortium that shares evidence in support of AD target discovery. 

 

 

C.2 FUNDING SOURCES 

 
 
 
This research was supported in part by grants K01AG049164, K24AG046373, 

R21AG059941, R01AG059716, R01AG034962, R01HL111516, R01NS100980, R01AG056534, 

RF1AG15819 from the Intramural Research Program, the National Institute on Aging, the 

National Institutes of Health, the Vanderbilt University Advanced Computing Center for Research 

and Education (ACCRE) instrumentation grant (S10OD023680), the Vanderbilt Institute for 

Clinical and Translational Research (VICTR) grant (UL1TR000445, UL1TR002243), and the 

Vanderbilt Memory & Alzheimer's Center. 



 168 

Additional study data were provided by the Rush Alzheimer’s Disease Center, Rush 

University Medical Center, Chicago. Data collection was supported through funding by NIA 

grants P30AG010161 (ROS), R01AG015819 (ROSMAP; genomics and RNAseq), 
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APPENDIX D 
 

 
This serves as the Appendix for CHAPTER 4: 

 
 

LEVERAGING WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS (WGCNA) 
AS A TOOL FOR AD DRUG DISCOVERY  
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Additional study data were provided by the Rush Alzheimer’s Disease Center, Rush 

University Medical Center, Chicago. Data collection was supported through funding by NIA 
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grants P30AG010161 (ROS), R01AG015819 (ROSMAP; genomics and RNAseq), 

R01AG017917 (MAP), R01AG030146, R01AG036042 (5hC methylation, ATACseq), 
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(University of Trento), Mette A. Peters, Solveig Sieberts (Sage Bionetworks), Thomas Lehner, 

Stefano Marenco, Barbara K. Lipska (NIMH). 
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D.3 SUPPLEMENTAL METHODS 

 

D.3.1 Generation of the gene co-expression network published by Logsdon et al., 2019.
277

 

 The main goal of this analysis was to determine whether or not we could recreate a 

previously generated gene network prior to using WGCNA for alternate analyses. Processing and 

quality control (QC) of bulk RNA sequencing (RNAseq) from the dorsolateral prefrontal cortex 

(DLPFC) followed the procedure described within the publication. Logsdon et al., leveraged the 

weighted gene co-expression network (WGCNA) R package.439, 442, 534, 535 Though not specified, 

the authors appeared to have used the method published by Parikshak et al., in 2013.536 Code for 

the method can be obtained online at: 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/developingcortex/. Using the follow 

parameters: soft power = 13, deepsplit = 2, and mergeCutHeight = 0.15, with a minimum module 

size of 100, we were able to obtain nearly an identical network to Logsdon et al (See Figures D.1 

and D.2). Though it is not 100% identical, we believe that WGCNA is able to yield robust and 

reproducible results. 
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Figure D.1. Heatmap demonstrating correspondence of our network modules and the 

previously published Logsdon modules. 

 

 

The modules we generated are listed on the y-axis, and the previously published modules are on 
the x-axis.  Coloration of the heatmap is indicative of percentage overlap between the two networks 
such that a darker red color means more overlap. As demonstrated, we have a significant amount 
of overlap between both networks.  
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Figure D.2. Histogram demonstrating the highest % of gene overlap in each module between our 
network and the Logsdon network. 
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