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Chapter 1

Introduction

The Human Experience of Communication.

Communication provides an outlet for expressing what one has experienced and perceived,
and is important for transmitting information between entities, especially within social animals like
humans (Hauser, 1996). In human societies, language and music may utilize different symbols
(speech vs notes), but they are both ubiquitous forms of acoustic communication (Ujfalussy, 1993).
In the speaking world, we are familiar with using language as a mode of getting information across,
much like this document! Similarly, music has also been central to several socio-cultural forms of
communication like drummed languages and whistled languages (Meyer, 2015; Seifart et al., 2018;
Tang, 2007); and has been shown to aid in several forms of therapy (Aalbers et al., 2017; Geist et al.,

2008; R. L. Gordon, Fehd, et al., 2015).

Rhythm: The Intersection of Music and Language.

One parameter that plays a role in effective expression in both music and language is thythm
(Jackendoff, 2009; Molino, 2000; Patel, 2003). Rhythm is a pattern of sounds, that in music induces a
regular pulse (Patel, 2003). The perception of regular beat and rhythm are important for both music
and language (Besson & Schon, 2012; Sleve, 2012). It is the thythm that distinguishes a waltz from a
foxtrot, or a peppy dance number from a romantic ballad.

In spoken language, acoustic signals, like stress, intonation, loudness, phrasal pauses, and
pitch are perceived as rhythmic and collectively contribute to what is known as prosody (Fitch, 2013;
Kotz et al., 2018), though prosodic rthythm may not necessarily adhere to the isochronous meter we

usually perceive in musical rhythms (Brown et al., 2017; Nolan & Jeon, 2014). These prosodic cues



in spoken language, (much like musical rhythm) help resolve ambiguities, and provide vital
information such as context, emotion, and tone (Besson & Schon, 2012; Bryant, 2010; Hellbernd &
Sammler, 2016; Slevc, 2012). Changes in prosody, conveys information about social context, tone,
emphasis, and nuanced emotional states (Coutinho & Dibben, 2013; Tzeng et al., 2018). Awareness
of the prosody of a language, has been shown to be present at birth (Nazzi et al., 1998) and used by
children as young as 6 months old to distinguish between two languages that follow inherently
different prosodic rules (Nazzi et al., 2000). Toddlers are sensitive to prosodic changes (Soderstrom
et al., 2003), and altering the prosody of sentences affects grammatical processing (Schmidt-Kassow
& Kotz, 2009). Moreover, prosodic cues have been shown to be important in helping toddlers
acquire the meaning of novel words in relation to their syntactic use (de Carvalho et al., 2017, 2019),
and sensitivity to prosody also predicts children’s reading ability (Holliman et al., 2010). The reliance
on prosodic cues is most evident when processing complex sentences (i.e., sentences with multiple
clauses), since it is prosodic cues like pauses, lengthening of prosodic boundaries, and changes in
intonation that aid our ability to parse information from such sentences (Frazier et al., 2000;
Hawthorne & Gerken, 2014).

Given that ‘rhythm’ is a feature that can be perceived in both music and language, it is
intriguing to consider whether there is a domain general effect of rhythm processing on both music
and language. That is people who are sensitive to rhythm overall, show increased performance on
both musical tasks and language tasks, indicating an overlap in processing of musical rhythms and
complex syntax (Fedorenko et al., 2009). This ability to leverage rthythm would prove useful for
effective processing of music and language, since both musical rhythm and grammar, particularly
grammatical syntax, follow a temporal hierarchy that unfolds over time (Asano et al., 2021). By
meta-analysing neural imaging studies Heard and Lee (2020) demonstrated that regions of the brain

involved in hierarchical processing (the left supplementary motor area, left inferior frontal gyrus and



the bilateral insula), are utilised during musical rthythm and syntax processing tasks. Neural correlates
of rthythm entrainment have also been shown to predict children’s expressive grammar abilities
(Persici et al., in revision), and conversely people with amusia were shown to struggle with
grammatical syntax processing (Sun et al., 2018). Using behavioural approaches to fully explore the
relationship between musical rhythm and grammar will provide much needed insight into the
association between musical rhythm sensitivity and grammatical syntax processing, at the phenotypic

level, which can then be leveraged to understand the underlying biology of this association.

Phenotypic Correlations between Musical Rhythm and Grammar.

There is growing evidence in the literature which shows that measures of music rhythm
perception are correlated with individual differences in performance on linguistic tasks. Musicians
and children with musical training have demonstrated heightened ability to distinguish similar
sounding syllables in speech (Chobert et al., 2014; Strait et al., 2014, 2015), enhanced reading skills,
and pitch discrimination (Moreno et al., 2009) compared to children without musical training. A
study by Lagrois (2019) indicated that adults who exhibit less accurate musical synchronization also
find it hard to identify beats in speech and song. Lundetra and Thomson (2018) have also shown
that literacy skills concerning reading and grammar at Grade 1 (6 years old) were positively
correlated with their performance on a rhythmic tapping task. Another study from 2019 showed that
performance on a rhythm perception task was positively correlated with performance on a sentence
repetition task (Politimou et al., 2019). More accurate synchronization to beat in pre-schoolers (4-
year-olds) was positively correlated to their reading skills (Woodruff Carr et al., 2014). Findings from
our lab have further bolstered rhythm-grammar links by demonstrating robust associations between
rhythm perception and grammar. Gordon, Shivers et al. (2015) showed that musical rhythm is

positively correlated with expressive grammar, and this association is maintained even after



controlling for IQ) and socio-economic status, and this finding was expanded with observations that
musical rhythm sensitivity is correlated with expressive complex syntax (R. L. Gordon, Jacobs, et al.,
2015).

Of note, studies have also found that actively listening to regular rhythms improves
performance on tasks measuring phonological accuracy and grammatical judgement (Cason et al.,
2015; Chern et al., 2018; Ladanyi et al., 2021). Auditory stimulation with rhythmic patterns has also
been shown to aid in speech production in adults (Falk et al., 2017; Zhang & Zhang, 2019).
Rhythmic priming studies which involve temporary improvement grammar task performance, like
the ones listed above, show rhythm-grammar correlations at the trait level, while cohort studies that
look at individual differences in rhythm sensitivity and grammar abilities (Y. S. Lee et al., 2020;
Swaminathan & Schellenberg, 2019), demonstrate stable, state-level correlations. Complementary
evidence from both types of studies further proves that there is a deeper biological influence tying

musical rhythm sensitivity and grammar together.

Genetic Influences Underlying Rhythm and Grammar Phenotypes.

Throughout plant, animal and insect evolution, phenotypic correlations have been proven to
be markers of underlying genotypic correlations — that is when two phenotypes co-occur, there is a
higher chance that the genes influencing those two phenotypes are also correlated (Cheverud, 1988).
In the biological field this is known as Cheverud’s conjecture and has been successfully
demonstrated in the animal kingdom through an experimental study in grasshoppers (Roff, 1995),
and also in plants using a meta-analytic approach (Waitt & Levin, 1998).

In humans, studying genetic correlations tends to involve sophisticated statistical
approaches, because i. the human genome is large, and ii. most human traits are complex traits, i.e.,

they are influenced by several genes. It was only after the advent of statistical genetic methods like



genome wide association studies (GWAS), that research into common complex human traits was
made possible. Briefly, GWAS involves analysis of the overall effect of > 100,000 commonly
occurring genetic variants across the genome, to identify those variants that are associated with a
phenotype of interest (Uffelmann et al., 2021). Over the past 15 years, thousands of GWAS’ have
been conducted on hundreds of phenotypes of interest, in millions of people. This collection of data
is extremely valuable for meta-analytic approaches such as the one used by Sodini et al., (2018), to
demonstrate the validity of Cheverud’s conjecture in human traits. This study leveraged large-scale
GWAS summary statistics for several traits from the UK Biobank, calculated genetic correlations
between traits, and showed that these genetic correlations could predict phenotypic correlations of
those same traits in an independent sample. Subsequent findings by Watanabe et al. (2019) confirm
that substantial pleiotropy is common across a large number of complex traits.

With the understanding that music rhythm and grammar skills are phenotypically correlated,
one possible reason for this observed association might lie in shared genetic architecture or
pleiotropy between these two traits (Ladanyi et al., 2020). Pleiotropy occurs when there is an overlap
between genetic variants and genes that influence two traits, in our case musical rhythm and
language phenotypes. That is and overlapping set of genes are responsible for driving two different
phenotype and are the reason why the traits show phenotypic associations. The effect of the shared
genetic architecture can be exerted via neural endophenotypes like neuro-biological signalling or
developmental cascades, and neural pathways that are responsible for processing both language and
musical rhythm (Nayak et al., under review). Thus, studying the underlying genetics of musical
rhythm and language will better our understanding of how these skills are regulated and dependent
on each other.

One way of demonstrating that a trait is influenced by genetic variation, is to study its

heritability. Heritability of a trait is the amount of observed phenotypic variation in a trait that can



be explained by genetic variation within individuals. Twin and family-based studies have elucidated
the heritability of musicality and language related traits. Musical accomplishment, ability to
discriminate pitch, thythm and melodies has shown moderate heritability (0.4-0.7) in twins (Drayna
et al.,, 2001; Hambrick & Tucker-Drob, 2014; Seesjirvi et al., 2016; Ullén et al., 2014). Studies have
also shown moderate heritability for musical skills, after adjusting for environmental factors (hours
of practice, music exposure) indicating a role for genetics (Hambrick & Tucker-Drob, 2014; Mosing
et al., 2014). Similar approaches for assessing language-related abilities point to heritability of
phonology, semantics, pragmatics, grammar, and spelling, (Dale et al., 2010; Hayiou-Thomas et al.,
2000; Rice et al., 2014) as well as heritability of reading, literacy and numeric skills between siblings
and parents (Grasby et al., 2016; Luciano et al., 2013; Smith et al., 2019). So far, the work to
elucidate the genetic architecture of musical and language traits has been sequestered within these
individual fields. Recent twin-based research has started to consider cross-trait genetic approaches
and has successfully demonstrated that musical aptitude and engagement are phenotypically
correlated with verbal ability with results suggestive of shared familial influences (Gustavson et al.,
2021; Wesseldijk et al., 2021).

Studies on the heritability of grammar and musical rhythm have not only established that
there is indeed a substantial genetic component that influences individual variation in musicality
traits (like thythm) and language traits (like grammar), but also that these traits are
polygenic/complex in nature (Gingras et al., 2015; Honing et al., 2015; Kornilov et al., 2016;
Luciano et al., 2013). Evidence for the polygenicity of these traits also comes from the wide
spectrum of individual variation observed in the phenotypes that measure musical rhythm and
grammar. However, large scale, population-based GWASs that can be leveraged to explore
polygenic architecture and pleiotropy; on musicality traits and language ability are hard to conduct

and have started to pick up pace recently (Doust et al., 2021; Eising et al., 2021). Armed with GWAS



data, a way to seek answers to the shared polygenic architecture between musical rhythm and
language is to conduct cross-trait genetic analyses like polygenic scoring, LD score regression and
bivariate genome-wide complex trait analysis (GCTA), to name a few (Nayak et al., under review). I
have used polygenic score methods in this dissertation to attempt to unravel the pleiotropic nature
between musical thythm and language skills. It is important to note, that language encompasses a
whole array of components, which include morpho-syntax, phonology, semantics, and pragmatics.
Grammar, vocabulary, reading skills, and speech are also essential aspects of language, that aid in
appropriate usage of a given language for communication. While we may study each component
individually, (for e.g., the focus in this dissertation is on expressive grammar), they are simply a way

to access the roots of language as a neurobiological process.

Genetics of Rhythm and Grammar in the Context of a Communication Disorder.

The phenotypic variation in people’s skills in musical rhythm and grammar abilities also
comes into play when considering children with language impairments. Expanding on the
phenotypic associations seen between musical rhythm sensitivity and grammar task performance, in
a typically developing population, (R. L. Gordon, Shivers, et al., 2015; Y. S. Lee et al., 2020;
Lundetre & Thomson, 2018), when we consider that musical rhythm and grammar abilities lie on a
continuous spectrum, these associations can also be expected to occur in the atypically developing
population. The Atypical Rhythm Risk hypothesis (Ladanyi et al., 2020) posits that children with
atypical (impaired) music rhythm skills are more likely to have developmental speech and language
disorders (R. L. Gordon, Jacobs, et al., 2015; Wieland et al., 2015). Evidence for the associations
between impaired music rhythm skills and speech/language disorders has been well documented.
Studies have found that impairments in beat synchronisation, musical rhythm perception and

production co-occur in children with developmental dyslexia, stuttering, attention deficit hyperactive



disorder (ADHD), and Developmental Language Disorder (DLD) (Cortiveau & Goswami, 2009;
Flaugnacco et al., 2014; Puyjarinet et al., 2017; Wieland et al., 2015).

The Music Cognition Laboratory is particularly interested in Developmental Language
Disorder (DLD), also known as Specific Language Impairment (SLI). DLD is a disorder that
manifests itself as delays in grammar and vocabulary development and affects up to 7% of the
population (Bishop et al., 2017; McLeod & Harrison, 2009; Tomblin et al., 1997). Symptoms
include delay and difficulty in acquiring spoken language and issues with morpho-syntax, and
receptive and/or expressive language, without the presence of other biological developmental or
intellectual disabilities, cerebral trauma, or abuse (Bishop et al., 2016; Kambhi, 1998; Lancaster &
Camarata, 2019; Simms & Jin, 2015; Stark & Tallal, 1981). Studies on children with DLD/SLI show
less accurate music and beat perception and synchronization to a regular beat (tapping) (Cumming et
al., 2015; Sallat & Jentschke, 2015). Further, studies have also demonstrated that children with DLD
have impaired rhythm production (Corriveau & Goswami, 2009), auditory stress perception
(Richards & Goswami, 2015), melodic perception (Sallat & Jentschke, 2015), and auditory working
memory (Cumming et al., 2015). Of note, children with DLD demonstrated improved grammatical
judgements after listening to regular rhythmic primes (Ladanyi, et al., 2021; Przybylski et al., 2013),
lending credence to the functional overlap of rhythm and grammar. These observations tie into the
Atypical Rhythm Risk hypothesis, which also predicts that genetic markers of impaired musical
rhythm are enriched in children with DLD versus typically developing peers.

Genetic studies of DLD have demonstrated that DLD is moderately heritable (0.4 — 0.7
concordance in twins) and tends to run in families (Kornilov et al., 2016; Kovac et al., 2001).
Molecular studies DLD are ongoing and have uncovered several genes that might influence speech
and language (Deriziotis & Fisher, 2017; Evans et al., 2015; Graham & Fisher, 2013; Newbury et al.,

2002). A recent GWAS of language and reading traits on 34,000 people conducted by the Gen-Lang



Consortium, found 4 new potential candidate genes that could be related to reading abilities (Eising
et al., 2021). Delving into the underlying genetics of language impairment and rhythm might explain
the common biology that exerts important influences over these two abilities. Exploring the
relationship between musical rhythm sensitivity and language abilities in an atypical population is key
to understanding the developmental impact of musical rhythm processing on language acquisition.
Such studies will also help lay the foundation for developing better screening and intervention for

developmental language disorders.

Overview of Dissertation Studies

Music and language are two unique skills that help humans communicate. Evidence from the
tield points to the underlying role that rhythm plays in grammar abilities, and the heritability of both
rhythm and grammatical skills. This dissertation aimed to use phenotypic and genotypic associations
to probe the relationship between of musical rhythm sensitivity and grammar abilities. In Chapter 2,
I used a phenotypic individual differences approach to study the relationship between musical
rhythm and expressive grammar (Figure 1.1A). This study harnessed experimental measures for
rhythm and grammatical task performance from a sample of 132 typically developing children to
explore the associations and possible mediatory role of prosodic sensitivity or working memory,
between the measures of rhythm and grammar. This approach was an extension of previous studies
in the lab and is strengthened by the relatively substantial sample size for a developmental cohort.
By examining the effects of mediation between variables, we hoped to advance the understanding of
the underlying mechanism by which rhythm affects grammatical performance.

I also explored the rhythm-grammar dynamic from a genetic approach in Chapter 3, using
the same cohort of typically developing children as in Chapter 2, and several children with DLD.

This study attempted to understand if the polygenic scores of self-reported beat synchronisation,



which represent one important dimension of rhythm sensitivity, are predictive of individual
differences grammatical task performance (Figure 1.1B). We hypothesized that higher polygenic
score for thythm would be positively correlated with grammar task scores, and with musical rhythm
task scores. This approach would yield valuable insight into the possible shared genetics and
neurobiology of rhythm and grammar. By testing the phenotypic and genotypic associations
between rhythm and grammar, this study will help us understand the landscape of language abilities
and the factors that influence them.

Finally, in Chapter 4, I considered the association between musical rhythm sensitivity and
grammar through the lens of a communication disorder, to test the atypical thythm risk hypothesis. I
utilised a polygenic approach to explore whether the genetic risk of rhythm impairment can be used
to predict developmental speech and language disorder status (Figure 1.1C). I hypothesized that
lower polygenic scores for rhythm (higher risk for rhythm impairments) would be directly correlated
with occurrence of DLD. This approach will help us in identifying high risk phenotypes indicative of
language disorder before language emergence and will lay the framework for further studies aimed at
studying the neuro-developmental pathways that influence rhythm and language acquisition
especially in the context of language impairments.

In summary, expanding phenotypic and genetic studies into the individual differences in
rhythm and grammar skills, using larger cohorts, could eventually lead to better understanding of the

shared biology between these traits.

10



Figure 1.1: Schematic Depicting the Hypotheses and Expected Associations for Each Aim
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Note. For Chapter 2 (aim 1), I will focus on the phenotypic correlations between rhythm and
grammar phenotypes in a typically developing population (A), and we expect results to show that
there is a direct correlation between the two phenotypes. Part (B) pertains to Chapter 3 (aim 2),
where I will still look at individual differences in grammar task performance, and the genetic
influences behind rhythm perception. Again, we expect a positive correlation between rhythm
polygenic score and grammar task performance scores. Part (C) of the figure focuses on atypical
language development in DLD and the correlation between DLD status and risk of rhythm
impairments and is the focus of the work conducted in Chapter 4 (aim 3). We expect there to be a
negative correlation between typical thythm and DLD status.
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Chapter 2
Individual Differences in Musical Rhythm and Grammar Skills in Typically Developing

School Children.

Introduction

There are a growing number of studies showing a correlation between musical rhythm
petception and speech/language skills, including grammar (R. L. Gordon, Shivers, et al., 2015; Y. S.
Lee et al., 2020; Politimou et al., 2019; Swaminathan & Schellenberg, 2019). Gordon et al. (2015)
demonstrated that children (primary school-aged) who were more accurate at distinguishing between
musical rhythm sequences, also performed more accurately on tasks probing expressive grammar
skills, despite the fact that the testing paradigms used differed from each other in their task demands
and material. This finding was extended by Swaminathan and Schellenberg (Swaminathan &
Schellenberg, 2019), who showed a strong association between musical beat perception and
receptive grammar with a larger sample size of ~100 school-aged children and a grammatical
comprehension task; and the Politimou et al. (2019). study which showed that rhythm perception
was associated with performance on a sentence imitation task (which encompasses both the
receptive and expressive nature of grammar) in pre-schoolers. Moreover, Lee et al. (2020) also found
a correlation between rhythm discrimination and receptive grammar in a wider age range of
participants (7—17-year-olds), while controlling for working memory, age, and musical training.

Further behavioural investigations into the rhythm-grammar relationship are important
because such studies could provide insight into mediating mechanisms, which in turn can inform us
about overlap between how music and language might be processed and decoded. This
understanding of this relationship is also important in the context of atypical language development.

Disorders that affect the use of language and hamper communication have long-term negative
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impacts on quality of life, economic outcomes, and mental health (Conti-Ramsden et al., 2018; Eadie
et al., 2018). Children with developmental disorders of reading and communication (e.g.,
developmental dyslexia, developmental language disorder, stuttering) are known to struggle with
rhythmic tasks (like rhythm production, discrimination, and synchronization) (Corriveau &
Goswami, 2009; Cumming et al., 2015; Sallat & Jentschke, 2015). Impaired sensitivity to musical
rhythm perception also seems to be associated with atypical language development (Ladanyi et al.,
2020), and a better understanding of the role of thythm in grammar might be instrumental in
providing new perspectives into studying language disorders. It is interesting to note that rhythmic
priming experiments, where participants actively listen to regular rhythmic sequences prior to a
grammar-based task, have shown that listening to regular rhythms enhances the performance of the
listener in a sentence imitation task that measures phonological accuracy (Cason et al., 2015), and
also in grammaticality judgement tasks (Chern et al., 2018; Ladanyi et al., 2021). This observation is
valid for both typically developing participants and those with language disorders (Cason et al., 2015;
Ladanyi et al., 2021; Przybylski et al., 2013). The convergence of evidence of associations between
rhythm and grammatical skills at both the trait (stable correlations over time) and state level
(transient improvement in skills) provides further corroboration for overlapping processing of both
rhythm and grammar.

This groundwork demonstrating the correlation between rhythm and grammar task
performance, in the typical and atypical populations, has led to the question of what underlying
cognitive and biological mechanisms might account for such a relationship. In order to dissect the
relationship between rhythmic and grammatical skill, the current study had two goals: first, we
evaluated the associations between music rhythm perception and expressive grammar; and second,
we examined the role of working memory and prosodic sensitivity as potential mediators, with 1Q) as

a covariate, of the association between rhythm and grammar, using a mediation model. In addition
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to an overall measure of expressive language, we also used a complex syntax sub-score from the
grammar test (R. L. Gordon, Jacobs, et al., 2015). Complex syntax refers to sentences constructed
using multiple clauses, that can either be linked with connectors or be embedded (Frizelle et al.,
2018). When parsing such sentences, children appear to use prosodic cues to process multiple
clauses in the sentence. Since prosodic sensitivity is measured in our study, using complex syntax as
an additional outcome would be another way to understand its specific role in mediating the rhythm-
grammar link.

The first mediator we considered is thus prosodic sensitivity. In music, thythm is
represented by temporal patterns of sounds organized around the “beat” or pulse of a piece of
music, while in language it is captured by speech prosody, i.e., intonational and stress patterns of
syllables, the lengthening and pausing during and of phrases, and the loudness and pitch of speech
(Boutsen, 2003; Bryant, 2010; Hellbernd & Sammler, 2016). These patterns are perceived as the
rhythmic components of speech, though prosody may not necessarily adhere to the isochronous
meter we usually experience in musical rhythm (Brown et al., 2017; Nolan & Jeon, 2014). Prosody
plays a crucial role in early language acquisition and lexical development: for example, de Carvalho et
al. (2017, 2019) demonstrated that prosodic boundaries, which in sentences generally reflect the
sentences’ syntactic structure, are leveraged by toddlers to learn the syntactic function of novel
words. Five-month-old children can distinguish between their native and similar timed language, but
not between two unknown languages which follow similar rhythmicity (Nazzi et al., 2000). Studies
have also shown that the prosody of sentences affects grammatical processing (Schmidt-Kassow &
Kotz, 2009) and facilitates word learning in toddlers (de Carvalho et al., 2019). Sensitivity to prosody
is also important for syntactic parsing and lexical access in addition to decoding nuanced emotions,
tone, context, emphasis, and semantics (Coutinho & Dibben, 2013; de Carvalho et al., 2017;

Hellbernd & Sammler, 2010).
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Prosody also interfaces with musicality, with musical training also associated with increased
prosodic sensitivity (Moreno, 2009; Swaminathan & Schellenberg, 2019; Zioga et al., 2016). Torppa
et al. (2019) found that children who are musically engaged also show improved performance on
tasks that measure stress pattern awareness in speech. Because people who have higher sensitivity to
musical rhythm also have enhanced sensitivity to prosodic cues (Hausen et al., 2013; Torppa et al.,
2019), children’s concomitant enhanced grammatical performance, could be attributed to their
domain general rhythm perception ability. This attunement to rthythm might give these children an
advantage in accessing the syntactical nature of grammar thus allowing prosody to play a mediatory
role in how rhythm and grammar are processed (Heffner & Slevc, 2015).

The other mediator we explored is working memory. Working memory is a multi-
component system that is primarily employed during task/goal-otiented activities and involves
storage of relevant information (verbal or non-verbal), and cognitive manipulation and processing of
the stored information to complete said task (Miyake et al., 2000). When required, it can also transfer
information received during the task to long-term storage, and thus plays an important role in
learning (Chai et al., 2018). Working memory ability is correlated with performance on rhythmic
synchronization tasks (Ireland et al., 2019), prosodic sensitivity (Torppa et al., 2014), the ability to
distinguish between prosodically deviant sentences (Stepanov et al., 2020), and also with sensitivity
to morphosyntactic and grammatical violations (Marton et al., 2011; Zhou et al., 2017). Further, just
as for prosody, musical ability and training have been shown to correlate with higher working
memory spans (Bailey & Penhune, 2010; Hansen et al., 2013). Given that working memory interacts
with rhythm, grammar, and prosodic abilities, we hypothesized that it could play a mediatory role
between rhythm and grammar processing and is thus included in our mediation model.

Some of the paradigms from the original study of N=25, 6-year-old children (R. L. Gordon,

Shivers, et al., 2015) were used here in a larger sample (N = 132) of typically developing children

16



between the ages of 5-7. We then used structured equation modelling (path model) to dissect the
role of prosodic perception, working memory, and non-verbal 1QQ, as mediating cognitive

mechanisms in how musical rhythm task performance correlates with grammar skills.

Methods
Participant Recruitment

Children (N = 150) between the ages of 5-7 were recruited from several sources in the
Middle Tennessee community such as libraries, museums, research mailing lists through Vanderbilt
University, and schools, and were screened for the study. The study protocol was approved by the
Institutional Review Board of Vanderbilt University. All participants and their parents gave verbal
assent and written informed consent respectively, in accordance with established protocols. Children
were invited for one in-depth, on-campus screening visit, and those who were eligible were invited
back for one-two additional study visits on-campus. Families were compensated with a gift card and
small toy per visit. Details of screening measures and language characterisations used to determine
eligibility for the study are detailed below. Screening took place by trained research staff under the
supervision of Speech-Language Pathologist (SLP) staff.

From the 150 participants that were screened, 2 participants were considered ineligible due
to repeated failed hearing screenings, while 7 were “lost-to-follow-up” and did not return for further
testing; thus 141 participants completed the behavioural assessments of the study. A further 9
participants were excluded from analysis, due to the following reasons: speakers of dialects other
than Standard American English (n=3), 2nd -language immersion program at school (n=1),
difficulties in understanding and/or completing the tasks (n=1), failure to meet TD language criteria
on assessments (n=3), and technical errors during administration of computer assessments (n=1).

Thus N = 132 (aged 5;5 — 7;11, mean = 6;5 years, SD = 10 months, 76 females) qualified for the full
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study. The review process from recruitment, screening and eligibility determination is visualized in

below in Figure 2.1

Figure 2.1: Study Envolment Pipeline for Participants

N = 150
Screening and n=2
Language ——————————» Ineligible to
Characterization continue
Visit
n="7
| Lost to follow up
Y
n=141
C(()jr;plete? n=9
Ia:guzl::;)(:en:n d - Excluded from
thythm analysis
measures
Y
N =132
Included in
analysis

Note. This figure encapsulates the review pipeline for participant inclusion, from screening to final
analysis. All decisions to exclude participants based on eligibility were made by SLPs after review of
the participants’ screening measurements and assessments.
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Screening and Language Characterization
Hearing Screening

Using headphones, each child listened to a series of 20dB pure-tones presented 3 times at
1000, 2000 and 4000 Hz in each ear respectively (18 tones in total; 9 in each ear; 3 at each
frequency). To pass, participants needed to correctly identify two out of three presentations at each
frequency, in both ears. If a child failed a hearing screening due to allergies/infections, they were

invited back for a second screening, which if they passed, allowed them to continue in the study.

Nonverbal 1Q

To rule out cognitive disabilities in participants, the PTONI (Primary Test of Non-Verbal
1Q Ehrler & McGhee, 2008) was administered to assess age-normed nonverbal IQ. In the PTONI
participants are asked to determine which picture does not belong in a series of pictures. Participants
needed a standardized score >= 78, which is indicative of absence of intellectual disabilities, to
qualify for the study. Of the 132 total participants, n==8 participants had invalid administration for
the PTONI, (due to incorrectly established basal scores, child shyness, or inattention); however,
study eligibility was established through a combination of clinical judgments and above criterion
performance on the pertinent subtests of the TOLD P-4 (see Language Screening for details). These

scores rule out global intellectual disability, even when a PTONI score was not available (Camarata

& Swisher, 1990).

Language Screening
The TOLD-P:4 (Test of Language Development - Primary, 4th edition; Newcomer &

Hammill, 2008 ) and the TEGI (Test of Early Grammatical Impairment; Rice & Wexler, 2001) were

used to assess language eligibility and rule out language disorders. To assess typical language
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development, we used three subtests from the TOLD-P:4, namely Sentence Imitation (SI), Picture
Vocabulary (PV) and Morphological Completion (MC). In the SI task, SLPs would read out a
sentence, and participants were asked to repeat the sentence word for word. There were 38
sentences in this test with increasing syntactical complexity from first to last, with 2 practice
sentences at the start. In the PV test, participants were shown 4 pictures, and asked to point to one
of four pictures in response to a question. For example, they were shown a panel of pictures
portraying a book, dog, ball, and a baby and asked to “point to baby”. The final subtest is the MC
test. It had 38 sentences in which children were asked to complete a sentence where the last word of
the sentence is missing. The sentences are designed to elicit responses that require the use of
particular expressive morphology in order to be considered correct. Because these subtests assess
expressive and receptive syntax, receptive vocabulary, and expressive morphology respectively, they
effectively capture language impairments, if present. We also used the phonological probe from the
TEGI to rule out speech and/or phonological impairments that may intetfere with accurate
assessment of morphosyntax.

Children who failed the phonological probe of the TEGI (raw score of 12 or below) were
excluded from study participation. Children with signs of language impairment indicated by below
average scaled scores on any one of the specific TOLD subtests (scaled score < 8 for either SI, PV,
or MC) were not eligible to continue, and were referred to another study for children with language
impairment. One participant scored below criterion on the SI subtest for the TOLD P-4 due to non-
compliance. However, their average performance on the PTONI, SLP expert opinion based on
holistic review of other tests, and observations during the assessments verified normal language
development allowed them to be included in the study. All standardized language testing and
decisions to include or exclude participants based on scores were overseen by SLP research staff.

Language characterization was performed for eligibility and group assignments, whereas expressive
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grammar, the phenotype of interest for the individual differences analysis, was measured with the

SPELT-3 (described below).

Behavioural Assessments for Individual Differences Analyses
Grammar

Expressive grammar was measured with the Structured Photographic Expressive Language
Test-3 (SPELT-3) (Dawson et al., 2003). Participants were shown a series of pictures and asked
questions that elicit responses requiring specific grammatical construction (e.g., relative clauses,
possessive pronouns). The raw scores from this assessment were used as the outcome measure of

expressive grammar skills for the phenotypic correlations, while controlling for age.

Rhythm Phenotypes

Musical Rhythm (BBA). Musical rthythm perception was measured using and the
children’s version of BBA (Beat-based Advantage) test (R. L. Gordon, Shivers, et al., 2015; Wieland
et al., 2015), which has been adapted from the original adult version of the task implemented by
Grahn and Brett (2009), both of which use auditory stimuli developed by Povel and Essens (1985).
The children’s BBA is a computer-based test developed and presented via E-Prime v2.0 Professional
(Psychology Software Tools, Inc.) on a laptop. The sounds were presented over external speakers
connected to the laptop and calibrated to 70dB. The BBA was presented as the “Drummer” game
show in Figure 2.2 (where there are three parties involved — Randy-Drummer, Sandy-Same and
Doggy-Different (R. L. Gordon, Shivers, et al., 2015). During the task, participants were asked to
listen to 3 standard rhythms, played sequentially. The first two rhythms were identical and played by
Randy-Drummer, while the third and final rthythm could be the same as the first two (thus played by

Sandy-Same who copies Randy-Drummer), or different (played by Doggy-Different). Participants
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were asked to determine with the third rhythm was played by Sandy-Same or by Doggy-Different
and tested rhythm discrimination. This task employed simple and complex rhythms (half the trials
each). The same stimulus corpus and visual representation was used here as in Gordon et al. (R. L.
Gordon, Shivers, et al., 2015) such that rthythms were 25% faster than in the other work in adults
(McAuley et al., 2000).

The BBA had four practice trials (2 simple and 2 complex — each with a same/different
variation) followed by 28 test trials, divided into 14 simple and 14 complex rhythms, with each
rhythm type further subdivided into 7 “same” and 7 “different” trials. The rhythms heard in the
practice trials were excluded from the test trials. Cotrect/incorrect feedback was provided only in
the practice stage. For analyses, we calculated the d” separately for simple and complex rhythms, and

then averaged them for an overall BBA d” score.

Figure 2.2: Illustration of the Drummer Game: BBA Task and Visual Stimuli Shown to
Participants

Randy Drummer plays the same
rhythm twice

Doggy Different plays a deviant
rhythm

Sandy Same copies Randy

Which one played the third rhythm?

Note. For each trial, children heard a standard rhythm repeated 2 times, followed by a third rhythm
which would either be the same as the first, or different. Participants were asked to choose between
“Sandy Same” and “Doggy Different” with a clicker to indicate if they thought the third rhythm was
the same as the first two or different.
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Prosody Perception. Prosodic sensitivity was measured with the Prosody-Matching task
(adapted from Soman, 2017), which tests sensitivity to intonational fluctuations in speech. The task
was presented through the “Astronaut” game, via E-Prime using the same computer and speaker
setup as for the BBA. The task was a forced-choice ABX discrimination task that required children
to match the prosody of a low-pass speech filtered sentence to one of two non-filtered, normal
speech sentences. The unfiltered sentences were spoken by either the red astronaut or the blue
astronaut in the visual (Figure 2.3), while the low-pass (400Hz) filtered speech was attributed to their
green alien friend. Children were told that the astronauts and their green alien friend were playing a
copycat game. The alien was trying to copy what one of the astronauts was saying, but “it's hard to
hear in outer space”; and it was the child’s job to determine which astronaut the alien was copying.

The children were presented with the first unfiltered sentence (Stimulus A), and then a
second sentence (Stimulus B). Stimulus A was spoken by one of the astronauts — either red or blue
(the order is switched for successive participants), and then a second sentence spoken by the other
astronaut. Stimulus A is always a declarative sentence, and the second utterance (Stimulus B) is a
modified version of Stimulus A — it is either a shorter version of the first declarative sentence, has an
alternative pausing schema, or adds interrogative intonation to the sentence. Both Stimulus A and B
are presented in normal, unaltered speech. An example of the stimuli is provided below:

Stimulus A - Declarative sentence: “The boy is pouring juice in the glass.”

Stimulus B - One of the following modified conditions:

1. Short version: “The boy is pouring juice.”
2. Alternative pausing: The boy is pouting // juice in the glass.”
3. Interrogative intonation: “The boy is pouring juice in the glass?”
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The third phrase the participants heard (Target X), is the voice of the green alien, and is the
400 Hz filtered version of either Stimulus A or B. Thus, Target X (the green alien) is mimicking
either Stimulus A or B (one of the astronauts).

The task had a total of 24 trials (12 trials mimicking one of the normal speech sentences, and
12 trials the second) which were presented to the participants in random order. Similar signal
detection theory analysis was used to calculate the d’, which was then z-scored and used as a

measure of prosodic sensitivity.

Figure 2.3: Illustration of the Astronaut Game: Prosody Matching Task and Visual Stimuli

Stimulus A: Stimulus B: Target X:
“The boy is pouring juice in “The boy is pouring juice.” Low pass filtered version
the glass.” of Aor B

Note. For each trial, two normal-speech stimuli A and B (astronauts) were presented, followed by
one of those two sentences low-pass filtered through 400 Hz (Target X). Participants were asked to
identify which astronaut the alien was imitating
Verbal Working Memory

The forward digit span subtest of the KABC-II (Kaufman Assessment Battery for Children,

second edition) (Singer et al., 2012), was used to measure verbal working memory, which was

positively correlated with rhythm perception and with grammar task performance in earlier work
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(Meinz & Hambrick, 2010; Talamini et al., 2017). The raw scores from the test were z-scored and

used for analysis.

Analysis Plan

All data were analysed using R software environment (R Core Team, 2021), the tidyverse R
package (Wickham et al., 2019), and the lavaan package (Rosseel, 2012). Using lavaan, a structured
equation model (SEM)/path model was used to examine the possible mediation of the music
rhythm — grammar relationship through prosodic perception or working memory, with missing
values excluded in a list-wise manner. Prosodic perception and working memory served as possible
mediators, with IQ) and age as covariates. As shown in Figure 2.4, we evaluated two possible
mechanisms of mediation — one through prosodic perception (path BC), and the other through
working memory (path DE). This path model was fully identified, hence model fit indices were not
considered.

For both the path model and correlation analyses, we used raw scores for all our measures
(SPELT-3, KABC-II, Prosody Matching, BBA), except for non-verbal I1Q), where we used the age-
normed PTONI scores. For the measures which used raw scores, we first z-scored, then regressed
the z-scores on age, and used the residuals as the final input values in the analyses. For the PTONI
standard scores, we z-scored the available scores, and then used these z-scores in our analyses.
Though the SPELT-3 is a standardised test, with age normed scores available, since we used the
SPELT-3 scores as an outcome measure of expressive grammar ability within our sample rather than
as a measure of ranking/standing within the general age group of the patticipants, we used raw
scores (age-controlled) in our analysis. However, we used PTONI standard scores, since the PTONI
was used to control for possible effects of non-verbal 1Q) in our models, while the SPELT-3 was an

outcome measure.
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Figure 2.4: Path Model for Mediation Analysis of Rhythm Sensitivity and Grammar Performance

Prosody
Perception \
° C\
X
Musical { Grammar
Rhythm A »| (SPELT-3)
Sensitvity Performance
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Working /

Memory

Note. This path model examines the relationship between musical rhythm sensitivity (predictor) and
grammar performance (outcome), and the possible mediators (working memory capacity and
prosody perception) that might play a role in this correlation. Path A is the direct effect from rhythm
to grammar, while paths BC and DE constitute the mediation effects through prosody perception
and working memory respectively. Path X depicts the residual correlation between prosody
perception and working memory.

Results

Sample Characteristics

We screened 150 participants for this study from which, n=132 (aged 5;5 — 7;11, mean = 6;5
years, SD = 10 months, 76 females) met the complete eligibility criteria for our study based on their
various assessment scores and holistic review of screening measures by Speech-Language
Pathologists (SLPs) and constitute the final dataset. Eligibility for the current study was dependent
on participants having normal hearing, typical non-verbal cognitive ability, typical language
development, an absence of major neurodevelopmental disorders or conditions (e.g., autism
spectrum disorder, brain injury, cerebral palsy), and English being the primary language spoken at

home. We also assessed children’s musical experience (MES) using the same parent questionnaire as
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Gordon et al. 2015 (R. L. Gordon, Shivers, et al., 2015). The descriptive statistics of all the eligible
participants (N = 132) including age, socioeconomic status, and musical experience score is
tabulated in Table 2.1 below. During the screening visit, parents were also asked to fill in a
demographic questionnaire, from which we used mother’s highest level of education as a proxy for

socioeconomic status (SES).

Table 2.1: Demographics and Assessment Scores of the Cohort

Sample Characteristics N Mean SD SE Range Skew Kurtosis
Age (years) 132 653 084 007 507-817 0.21 -1.20
PTONI standard score 124 120.55 1936 1.74 80-150 -0.36  -1.02

Picture vocabulary (scaled score) 132 1289 218 0.19 5-17 -0.94 1.25
Sentence Imitation (scaled score) 131 1265 212 0.19 8-17 -0.03  -0.74
Morphological completion (scaled

score) 132 1286 1.84 0.16 6-17 -0.63 0.57
Socioeconomic status (SES) 132 7.50 1.00  0.09 5-9 -0.02  -0.72
Musical experience (MES) 131 1.09 1.01 0.09 0-4 0.79 0.10

Note. This table summarises the demographic characteristics and scores of the screening measures
employed in the study. The picture vocabulary, sentence imitation and morphological completion
scores provide age-normed scaled scores for the cohort. A questionnaire was used to assess the
musical engagement and calculate a musical experience score, and the highest level of maternal
education was used as a proxy for socioeconomic status. The age-normed standard scores of the
PTONI are reported for the non-verbal IQQ measure. PTONI = Primary Test of Non-Verbal 1Q.
Individual differences analysis.

We used an expressive grammar test, a thythm task, a prosody sensitivity task, and a verbal
working memory test as the behavioural assessments for the individual differences analyses.
Expressive grammar was measured with the Structured Photographic Expressive Language Test-3
(SPELT-3, Dawson et al., 2003), while verbal working memory was assessed with the forward digit
span of the KABC-II(Kaufman Assessment Battery for Children, second edition, Singer et al., 2012).

Musical rhythm perception was measured using the children’s version of BBA test (Beat-based

Advantage, R. L. Gordon, Shivers, et al., 2015; Wieland et al., 2015). The BBA is a computer-based
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task, in which participants are asked to identify which rhythms are same and which are different
from a pair of rhythms presented over speakers. Finally, the computer-based Prosody-Matching task
which is a forced choice ABX sentence prosody matching test was used to probe prosodic
perception, in which participants had to match a low-pass filtered speech sentence to one of two
non-filtered sentences.

The descriptive statistics of the outcome measures (viz. SPELT-3, KABC-II, BBA, and
Prosody Matching) are summarized in Table 2.2. From the 132 participants that completed all study
visits and assessments, n = 103 participants had valid and complete data for all the tasks and
assessments. For the computer-based assessments (BBA and Prosody Matching), n = 23 participants
(individual test missingness is: n = 11 for BBA, n = 14 for Prosody Matching) did not have useable
data for one or more of the tests either due to technical errors, program malfunctions, or

participant’s inability to understand or attend to the behavioural task.

Table 2.2: Descriptive Statistics of Behavioural Outcome Measures

Variable Name N Mean SD SE Range Skew Kurtosis
SPELT-3 standard score 132 113.13 6.66 0.58 90-126 -0.78 1.06
SPELT-3 raw score 132 46.06 3.80 0.33 35-53 -0.77 0.22
SPELT-3 complex syntax sub-
score 132 0.79  0.13 0.01 0.42-1 -0.63 -0.004
BBA d' 121 099 0.85 0.08 -1.20-2.73 0.12 -0.64
Prosody Matching d' 118 179  0.78 0.07 0.13-328 -0.40 -0.39
KABC-II number recall raw
score 132 936  2.02 0.18 5-16 0.06 0.37

Note. Descriptive statistics for behavioural outcome measures show the age-normed standard scores
and the raw scores for the expressive language test. The complex syntax sub-score is a non-scaled
raw score. The d’ calculated using signal detection is reported for the BBA and Prosody Matching
tests. The non-scaled raw score of the forward digit span subtest of the KABC-II is used. SPELT-3
= Structured Photographic Expressive Language Test-3; BBA = Beat-Based Advantage; KABC =
Kaufman Assessment Battery for Children.
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Correlations

Correlations between all measures (controlling for age) are displayed in Table 2.3. For the
correlation we first z-scored the raw scores for SPELT-3, BBA, Prosody Matching, KABC-II,
Musical experience score (MES), and socio-economic status score (SES), then regressed age from all
the variables, and used the residuals from the age-controlled regression for pairwise correlation. For
1Q we used z-scored standard scores of the PTONI and used these in the correlation. Since musical
MES and SES did not correlate significantly with the prosodic perception, grammar, or rhythm
measures, they were not included in further analyses. Individual BBA (r = 0.41, p < 0.001) and
Prosody Matching (r = 0.25, p = 0.000) scores were both significantly and positively correlated with
expressive grammar (SPELT-3) scores. Prosody Matching scores were also positively correlated with
rhythm perception BBA scores (r = 0.32, p < 0.001). Further, we also computed a complex syntax
sub-score from the SPELT-3 using the items groupings as described in Gordon et al. (2015). Since
complex syntactical ability has been demonstrated to be strongly correlated with musical rhythm
sensitivity in their studies and parsing musical rhythm sequences and linguistic sentences both might
tap into domain-general perception abilities, this metric was explored in the associations. In our
sample, BBA scores are also positively correlated with complex syntax sub-scores (r = 0.26, p =

0.003). Scatter plots for the relevant individual correlations are shown in Figure 2.5 A-D.
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Table 2.3: Pearson Correlation Matrix of all Variables Used in the Correlation and Path Model
Analysis

Variable 1 2 3 4 5 6 7

1. SPELT-3 raw score -
2. SPELT-3 complex syntax

sub-score 0.72%* -

3. BBA 0.41%¢  0.26%* -

4. Prosody Matching 0.25%  0.15 0.32** -

5. PTONI standard score 0.27%  0.21* 033 (.24* -

6. KABC-II number recall raw

score 0.21* 010 0.33%x  027* 0.30%F -

7. SES 0.08  -0.01 0.03 0.11 0.10 0.21* -
8. MES 0.01 -0.19¢ -0.06 0.07 -0.10 0.05 0.18*

Note. This table summarises the Pearson correlation matrix of all variables used in the correlation
and path model analysis. Except for the PTONI age-normed standard scores (which are the z-
scored standard scores), the raw scores of all other variables were z-scored and then regressed on
age, and the residuals were used in the correlation matrix. Values are correlation r values for each
pair of variables. Missing values were excluded in a pair-wise manner. SPELT-3 = Structured
Photographic Expressive Language Test; BBA = Beat-Based Advantage; PTONI = Primary
Measure of Non-Verbal 1Q; KABC = Kaufman Assessment Battery for Children; SES =
Socioeconomic Status; MES = Musical Experience Score.

* indicates p < 0.05, and ** indicates p < 0.001
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Figure 2.5: Scatterplots for Outcome Measures
A B
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Note. Scatterplots showing the correlations between (A) expressive grammar (SPELT-3) scores and
musical rhythm perception (BBA) scores (n = 121); (B) expressive grammar and prosody perception
(Prosody Matching) scores (n = 118); (C) Complex Syntax (CS) scores and musical rhythm
perception (n = 121); and (D) musical rhythm perception and prosody perception (n = 109). Age is
controlled for in all plots.
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Mediation Analysis

We used a fully identified path model to investigate the possible mediation of prosodic
perception or working memory in the rthythm-grammar correlation, displayed in Figure 2.6 (n =
109). In this model, we controlled for age by using residualised variables for all measures (i.e.,
regressing all z-scored raw measure scores on age and saving residualised scores prior to analysis, as
described for the simple correlations above). As shown in Figure 2.6, the direct path from musical
thythm petrception to expressive grammar task performance was significant (Path A; B = 0.41, p <
0.001), even when accounting for prosodic perception and working memory. The indirect effects of

musical thythm petrception on grammar through prosodic petception (Path BC; 3 = 0.02) and

working memory (Path DE; B = 0.01) were small and non-significant. Thus, musical thythm
perception was correlated significantly with expressive grammar skills, and this correlation was not
mediated by either prosodic perception or working memory. The residual correlation between
prosodic perception and working memory was also significant (Path X, B = 0.20, p = 0.037).

We also conducted the same path analysis by covarying for non-verbal IQ from all measures
in the model (n = 103). We used the z-scored standard scores from the PTONI as the measure for
1Q, while all other variables were the age-residualised raw scores. As shown in Figure 2.7 although
1Q was significantly correlated with musical rhythm perception and working memory, the primary
results of the model remain unchanged. That is, the direct path between musical rthythm perception
and expressive grammar remained significant ( = 0.38, p < 0.001), while the indirect paths through
prosodic perception and working memory were non-significant.

We also performed similar path analyses (controlling for age, as previously described), to
investigate the association between musical rhythm perception as the predictor and complex syntax

task performance as the outcome, displayed in Figure 2.8. We hypothesized that since complex
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syntax and musical rhythm follow an inherent hierarchy that unfolds over time, processing both
complex syntax and rhythm might employ shared processing pathways evident in their behavioural
output. Our analysis showed that the association between rhythm perception and complex syntax
was positive and significant (f = 0.27, p = 0.007) in our path model (Fig 2.8 A). Further, in Figure
2.8 A, the direct association between rhythm perception and complex syntax, remained significant,
and the indirect mediating pathways through prosodic perception (B = 0.02) and working memory
(B = 0.06) wete non-significant. Similar results wete obsetved when we included non-verbal IQ as a
covariate in the path model (Figure 2.8 B), showing that complex syntax, much like expressive
grammar in the previous path model (Fig 2.8A), was positively and significantly correlated with
petformance on the musical thythm task (B = 0.25, p = 0.018), and this correlation was not

mediated either by prosody perception or working memory, and neither explained by non-verbal 1Q.

Figure 2.6: Path Analysis Model of Associations between Musical Rhythm Perception and
Expressive Grammar

Prosody
Perception
0.32* 0.07
0.20*

Musical { Expressive
Rhythm 0.41** > Grammar
Sensitvity Performance
\() Py 0.04

Working
Memory

Note. The path analysis model shows the associations between musical rhythm perception,
expressive grammar task performance, prosody perception and working memory, while controlling
for age (n = 109). Age-regressed residuals of the z-scored raw scores were used for all measures. We
found that though the relationship between musical rthythm sensitivity and expressive grammar task
performance is positive and significant, it is not explained by prosodic sensitivity or working
memory. The model uses list-wise exclusion for missing values. The $ for each pair of variables is
indicated on the path. Solid lines indicate a significant relationship.

* signifies p < 0.05, while ** signifies p < 0.001.
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Figure 2.7: Path Analysis Model for Musical Rhythm Perception and Expressive Grammar,
Controlling for Non-Verbal 1Q

Non Verbal IQ

(PTONI

Standard
Score)
0.11
0.32* 0.18
0.23*
Prosody
Perception
O . 28* 0 .06
0.20*

Musical I Expressive
Rhythm 0.38** »| Grammar
Sensitvity Performance
\O gt 0.02

Working
Memory

Note. This figure depicts the path model for music rhythm perception and expressive grammar,
prosody perception and working memory as mediators, with IQ) as a covariate (n = 103). Age was
partialled out from all variables (except 1Q), by creating residualised scores of age against the z-
scored, raw scores of variables. Z-scored standard PTONI scores were used as the measure of 1Q).
Missing values were excluded in a list-wise fashion. The 3 for each pair of variables is indicated on
the path. Solid lines indicate a significant relationship.

* signifies p < 0.05, while ** signifies p < 0.001.
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Figure 2.8: Path Analysis Model for Musical Rhythm Perception and Complex Syntax

A
Prosody
Perception
0.32* 0.05
0.20*
Musical { Complex
Rhythm 0.27* -
Sensitvity Sy
Working
Memory
B
Non Verbal IQ
(PTONI)
0.12
0.32* 0.16
0.20*
Prosody
Perception
0.27* 0.03
0.20*
Musical
Rhythm [ 0.25 > Qmplex
Sensitvity \ Y
\0.27** o0l
Working
Memory

Note. (A)This figure (n = 109) depicts the path model for musical rhythm perception and complex
syntax, prosody perception and working memory as mediators. Residualised scores were created by
partialling age from z-scored raw scores of all variables. The age-residualised scores were used in the
path model. We find that the relationship between musical rhythm sensitivity and complex syntax
task performance is non-significant. Solid lines indicate a significant relationship. * signifies p < 0.05,
while ** signifies p < 0.001.

(B) Path analysis model for musical rthythm perception and complex syntax, controlling for 1Q

(n = 103). Residualised scores were created by partialling age from the z-scores of all variables,
except for 1Q. For IQ we used z-scored standard PTONI scores. The age-regressed residual scores,
and z-scored PTONI standard scores were used in the path model. The $ for each pair of variables
is indicated on the path. Even by controlling for 1Q), the relationship between musical rhythm and
complex syntax remains non-significant. Solid lines indicate a significant relationship. * signifies p <
0.05, while ** signifies p < 0.001.
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Discussion

In light of prior findings of associations between rhythm and grammatical task performance
(R. L. Gordon, Shivers, et al., 2015; Y. S. Lee et al., 2020; Politimou et al., 2019; Swaminathan &
Schellenberg, 2019), we explored the behavioural correlation between musical rhythm perception
and expressive grammar and investigated potential mediating factors that might be influencing and
directing this relationship. Extending findings from prior work (R. L. Gordon, Shivers, et al., 2015;
Swaminathan & Schellenberg, 2019), we demonstrated a positive correlation between musical
rhythm perception and expressive grammar skills here in a sizeable sample of 132 school-aged (5-7-
year-old) children. We also found that prosodic perception is positively correlated with musical
rhythm perception (r = 0.32, p < 0.001), and with expressive grammar (r = 0.25, p = 0.006). The
importance of prosodic sensitivity in the context of language has been elaborated in studies which
showed that prosodic cues play an important role in early language acquisition (Langus et al., 2017),
and impact literacy skills in children (Holliman et al., 2010). Changing the prosodic cues evident in a
sentence also affects neural processing of grammatical structure (Schmidt-Kassow & Kotz, 2009),
again indicating that prosodic skills are important for spoken language development and literacy
(Francois et al., 2013; Moreno et al., 2009).

We then explored the possibility that sensitivity to prosody is the factor that is mediating the
associations between rhythm and grammatical skills. Prosodic cues mark phrasal boundaries, and
these cues are used by adult listeners to parse complex sentences and comprehend them (Frazier et
al., 2006; Speer & Ito, 2009), and leveraged by children in parsing syntax but also to learn the
meaning of novel words (de Carvalho et al., 2017, 2019). Previous studies have explored the
correlation between prosodic sensitivity and reading and literacy skills (Groen et al., 2019) as well as
musical rhythm sensitivity (Hausen et al., 2013), showing that there is a direct correlation between

performance on prosodic tasks, reading comprehension, and music rhythm perception skills. Given
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the interaction between prosody and rhythm perception and prosody and language comprehension,
we proposed that prosodic perception acts as the intermediary process that ties together musical
rhythm perception and grammar.

To study this, we used a path model that factored in prosodic perception as a mediator. We
used working memory as a second mediator, since working memory also plays a role in performance
on music and grammar tasks (D’Souza et al., 2018; Ireland et al., 2019; Zhou et al., 2017). The
associations between rhythm and grammar skills could simply be driven by variable memory capacity
(language and rhythm tasks could be confounded by working memory demands), or because
processing the hierarchy of rhythm in music and syntax in language might rely on similar working
memory functionality. Using working memory as another mediator, would thus also help us gain
some insight into the behavioural mechanisms that drive the rhythm-grammar link.

From our mediation analyses, in the path models (Figures 1.6 and 1.7) we see that the
associations between music rhythm and grammar measures remained significant and are not
accounted for by sensitivity to prosody, nor by working memory. Both prosodic perception and
working memory were independently and significantly correlated with musical rhythm perception,
but not with expressive grammar. Using non-verbal IQ) and age as covariates did not impact these
associations, indicating that the rhythm-grammar link is not driven by prosodic sensitivity, working
memory, or 1Q.

Furthermore, in our study, path modelling with complex syntax sub-scores demonstrated
similar results as for overall grammatical skill as the outcome: there was a significant direct effect of
rhythm discrimination on complex syntax, and this relationship was not mediated by prosody
perception nor working memory. In line with previous findings of musical rhythm variables
predicting children’s individual differences in complex syntax skill (R. L. Gordon, Jacobs, et al.,

2015; Persici et al., in revision) and adults’ years of musical experience predicting attainment of long-
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distance syntactic dependencies in an artificial language learning paradigm (Brod & Opitz, 2012), we
thus found converging evidence for an association between mastery of complex multiclausal
syntactic structure and musicality variables.

These cross-sectional results should not be interpreted as a causal role of musical thythm on
grammar. While our study upholds previous observations that rhythm and grammar performance
are indeed correlated, we do not delve into the neural, biological, or genetic mechanisms that are
responsible for this association. The path model employed here included grammar as the dependent
variable to parse its covariance with musical rhythm into 3 paths (one direct association and 2
indirect associations). Although our findings suggest that working memory, prosodic perception, and
1Q do not drive the association between music rhythm and grammar, other study designs will be
necessary to unpack any potential longitudinal or (bi)directional associations between them.

A particular limitation is that in our application of the structural model to our data, we could
not construct latent variables for our measures. Inclusion of latent variables would have reduced the
measurement errors present in the study measures and allowed us to create variables that capture
individual differences with reduced error margins. Future studies should include multiple correlated
measures for each construct that test various aspects, like testing rhythm production, perception,
and imitation for a “rhythm” construct. This will likely tap into the abilities of participants on the
broader construct, rather than focussing on performance on a single task.

Furthermore, our Prosody Matching task investigates the sensitivity of participants to
prosodic cues signifying syntactic structure, like intonations that signify when a question is being
asked or phrasal lengthening to indicate pauses. This test thus may not capture speech-rhythm, but
rather capture prosodically directed sentence-level syntactic processing that affects the relationship
of the constituents of the phrase. Including measures of speech-rhythm (tasks concerning

identification of stressed syllables, or repetition of nonsense syllable rhythms) will help us better
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parse the effects of prosodic sensitivity on the associations between rhythm-grammar task
performance. Similarly for the outcome measure, we have used expressive grammar abilities, though
prior research has shown similar results with receptive grammar measures as well. In children aged
7-17 years, Lee et al (Y. S. Lee et al., 2020) demonstrated that participants with better performance
on the rhythm task also had higher scores on the receptive grammar test. Grammatical syntactic
processing is a complex, multi-layered neurobiological function, and studying various facets will help
specify the role of rhythmic perception in the various aspects of grammar performance.

Another caveat is that our study only looked at monolingual speakers of American English.
Studies have shown that bilingual participants also show associations between musicality and
language skills (Y. S. Lee et al., 2020; Liu & Kager, 2017; Stepanov et al., 2018), and studies going
forward will have more inclusive criteria with bilingualism as a covariate (Swaminathan &
Schellenberg, 2019).

From the literature and from our study we observe that musical rhythm sensitivity has
significant implications for development of grammatical skills, such that children who are more
sensitive to rhythm have an advantage during language learning, though the processes underlying
this relationship are not well understood. Rhythm and language are often studied as two separate
domains(Kotz et al., 2018), though they share several similarities including but not limited to
structure (presence of phrasing), timing (pauses and rests) and stress (duration of beats and syllables)
(Boll-Avetisyan et al., 2017; Patel, 2003). However, empirical studies provide evidence that
considering music and language as separately as we do, might not be reflective of their
developmental or cognitive origin. Of note, new-born children can successfully distinguish between
languages that follow separate rhythmic rules. Even though their language’ as an ability cannot be
tested, they are able to tell apart English (stress-timed) from Japanese (mora-timed), but not English

and Dutch, both of which are stress-timed (Nazzi et al., 1998), showing a dependence on the
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‘rhythm’ of the language even at such an early age. At 6 months, this ability to use their prosodic
sensitivity to discriminate becomes nuanced, with children being able to distinguish between British-
accented English and the American-accent, when one of these dialectical accents is native to them,
though they still cannot distinguish between two syllable-timed languages or two stress-timed
languages, if both are foreign to their ears (Nazzi et al., 2000). This inherent speech prosody is also
leveraged by infants during language and especially syntactical learning (de Carvalho et al., 2019;
Soderstrom et al., 2003). The association between rhythm perception and language becomes more
directly measurable in older children. In the Politimou et al.(2019) study, pre-schoolers who had
better rhythm perception and production skills also performed better at a sentence imitation task
(which taps into both receptive and expressive grammar and syntax). In addition, Lundetre and
Thompson (2018) demonstrated in their study of school aged children that performance on a task
that required participants to tap to a rhythm was positively associated the children’s reading and
spelling performance in school. Taken together these observations suggest that early language and
music development might be entangled, language development to some extent utilizes rhythmic
perception, and the domain specificity and nuanced processing of these stimuli develops over time
(Brandt et al., 2012).

While neural processing of language and music shows some lateralisation, evidence from
neuroimaging studies indicate that there is marked overlap in neural regions responsible for
generation and processing of rhythm and speech (Brown et al., 2006; Heard & Lee, 2020; Peretz et
al., 2015). Both musical rhythm and grammar are ordered in a temporally progressing hierarchy
(Brennan & Hale, 2019; Frank et al., 2012; Lerdahl, 2015; Lerdahl & Jackendoff, 1983). Considering
these parallels in organization, there could be shared mechanisms at play that are responsible for

processing both music and grammar (Patel, 2012; Patel & Iversen, 2007).
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The standardised tests and behavioural tests used in our dataset have been validated by
several other studies in various populations, giving credence to their ability to measure the
constructs they were intended to capture. I believe that our dataset has been deeply phenotyped for
rhythmic sensitivity (both musical and prosodic), expressive grammar and working memory. Further,
our sample of 132 children is a sizeable sample, that would be effective at capturing individual
differences, whereas previous studies used smaller samples. The robust significant correlations seen
between our individual outcome and predictive measures are in line with previous literature and
provide further evidence that our measured constructs are defensible and rational measures. Bearing
this in mind, the lack of mediation by prosodic sensitivity or working memory, can be a signal of
underlying mediating mechanisms that were not measured, but influence the association between
musical rhythm and grammar.

Because prosodic perception, working memory, and 1Q did not account for the associations
between musical thythm perception and expressive grammar, the question then arises: what other
mechanisms might drive this effect? One cognitive pathway that might feature in this relationship is
hierarchical processing. Hierarchical processing helps to break down a complex, stratified system
into its individual components (Fitch & Martins, 2014). With hierarchical processing the higher
complex action or sentence can modulate the process in the lower levels of sentence
structure/action over time. Hierarchical structures are applicable to both music rthythm and
grammar (in our case syntax). Like rhythm, the grammatical structure of language, especially syntax,
follows a hierarchical structure that unfolds over time (Brennan & Hale, 2019; Fitch & Martins,
2014; Patel, 2003). Disruptions in the underlying rhythmic patterns of music cause expectancy
violations in the hierarchy of the music, just like how violation of the syntactic rules may ambiguate
the listener’s grammatical expectancy of the sentence. Studies have shown that there is a hierarchy of

processing when listening to spoken language, with different regions being responsible for different
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levels of processing the parts of grammar (like phrasal syntax or morphemes) within a sentence to
parse and process what we are hearing (Davis & Johnsrude, 2003; Gaskell & Marslen-Wilson, 1997).
Further, imaging studies have indicated that certain brain regions like the Broca’s and Wernicke’s
(which are typically involved in language processing) and BA44, 41 and 47, inferior frontal gyrus and
bilateral insula (Bidelman et al., 2013; Davis & Johnsrude, 2003; Jeon, 2014; Koelsch et al., 2002) are
activated not only during grammar tasks like sentence processing, but also during music tasks like
rhythm, beat, and pitch perception, with some of these regions also observed to be involved in
processing hierarchical information (R. L. Gordon, Jacobs, et al., 2015; Heard & Lee, 2020; Jeon,
2014).

Another possible answer to the cross-trait relationship between rhythmic perception and
grammatical skills could lie in shared genetics (Peretz, 2009; Wesseldijk et al., 2021). Studies have
shown that traits that are linked phenotypically are influenced by genes that are correlated, i.e., an
overlapping set of genes (Cheverud, 1988; Sodini et al., 2018). Pleiotropy, where the same set of
genes influence both phenotypes, usually through a common neural pathway, or through a common
neural molecular signalling pathway (neural endophenotypes), can be explored through several
different types of genetic analyses (like genome-wide studies and cross-trait polygenic risk scores; see
Ladanyi et al., 2020). Developmental observations in music and language further support the case
for common genetic influences on these traits. Both rhythm and language are perceived acoustically
first, and though as adults we consider them dichotomous modules, as children this difference might
not be as evident (McMullen & Saffran, 2004). Studies with infants have demonstrated that infants
as young as 7-months-old, show a preference for previously heard passages of music and words as
compared to novel words (Saffran et al., 2000). Infants also show enhanced rhythmic processing and
speech tracking when infant directed conversation is more song-like (sing-song) as compared to

speech-like (Kalashnikova et al., 2018; Leong et al., 2014). Interestingly, rate of language acquisition
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in children can be predicted by the “melodic complexity” of their cries. Infants whose cries show
lower complexity than their peers, have delayed language skills as toddlers (Wermke et al., 2007,
2021; Wermke & Mende, 2009). Put together with evidence from studies in infants on language
discrimination, development of rhythm and grammar might be concomitant rather than sequential
(Brandt et al., 2012).

Our study in school-aged children study adds to the growing literature in music cognition
that demonstrates the association between individual differences in musical rhythm perception and
expressive grammatical skill. This study replicates the finding that there is a positive correlation
between rhythm and grammar performance, but interestingly this relationship is independent of
working memory and IQ), is not simply driven by sensitivity to prosody but rather is truly a cross-
domain interaction. These results could indicate interesting underlying common biological and
genetic mechanisms that drive the rhythm-grammar links, and future studies could focus on studying

these cryptic underlying causes for this relationship either through behavioural or genetic methods.
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Chapter 3
Genetic Associations Between Musical Rhythm Perception and Grammar Performance in

Typically Developing Children Using Polygenic Approaches.

Introduction

The evolution of language in the human species sets us uniquely apart from our non-human
primate cousins. We see that communication and the use of language as a tool for communication
are an innate part of human activity and might even have a deep-rooted genetic component. Studies
have shown that even when speaking is not a possibility (i.e., in very young infants), there still exists
a mode of verbal communication, through cooing and babbling, with differences in complexity of
cries being indicative of future language development (Brandt et al., 2012). Children are able to
readily learn languages they are exposed to without formal direction and training (Graham & Fisher,
2013), and also show spontaneous creation of structured language (sign languages), when there are
no other modes of communication available (Nicaraguan sign language, see Maclaughlin et al., 1995).
This evidence may point to the use and development of language to be an essential part of the
human experience.

The first evidence for the genetic basis of language came from the study that showed
mutations in FOXP2 to be singulatly responsible for a patticular type of familial speech/language
disorders (Lai et al., 2001). This landmark study was followed by several others, which showed the
involvement of genes in varied inherited speech and language disorders like ROBO7,

CNTNAP2, DCDC2, KILAA0319 to name a few (Graham & Fisher, 2015). The clear observation
that came from these studies was that language is not a mono-genic trait but is a complex trait with
several genes that contribute to the development of language. With the advent of population-wide

genetic methods like GWASs, the same efforts were made to identify genes contributing to common
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language disorders, as well as unravelling the underlying genetic architecture of language. A GWAS
is a study used to probe the effect of millions of common variants or single nucleotide
polymorphisms across several thousand genomes to identify those common variants which
contribute to the most to the observed phenotypic variability of the trait. Results from these
population-based studies have further strengthened the fact that language is highly polygenic, with a
complex genetic make-up. Two recent language-related GWAS’, one of 51,800 people with
developmental dyslexia (Doust et al., 2021) and the other of 34,000 people that looked at reading
and language traits (Eising et al., 2021), have demonstrated the polygenic nature of language. Eising
et al. (2021) found evidence of shared genetic architecture between language and reading traits, and
other cognitive abilities — in line with previous research. Similarly, the dyslexia study found 42
significantly associated loci, 17 of which showed pleiotropy with cognitive traits as well, again
indicative of the polygenic architecture of language and language-related abilities.

Much like language, musicality, and rhythm (the phenotype under consideration here), are
also complex genetic traits. Evidence for the genetic basis of musicality and rhythm comes from
several twin studies which have demonstrated that varied aspects of music like sensitivity rthythm,
pitch and melodies is moderately heritable (0.4-0.8)(Drayna et al., 2001; Seesjirvi et al., 2016; Ullén
et al., 2014). Further, Mosing et al (2014) and Hambrick & Tucker-Drob (2014) found that hours of
practice is not the only contributing factor to musical skills, and there is a gene x environment
interaction that not only drives music skills, but also other behaviours (like music engagement and
propensity to practice) that might contribute to increased heritability of musicality. In recent years
population and medical record-based studies have played a role in identifying the genetic and
phenotypic architecture of beat/rhythm perception in humans (Niarchou et al., in press; Niarchou et

al., 2021).

45



The Niarchou et al., (2021) study is the largest GWAS of a musicality trait and queries the
trait of “beat synchronization,” with the results (69 genome-wide significant loci) highlighting the
polygenic architecture of rhythm. I used this well-powered GWAS as the study that informed the
polygenic score model. This study had 606,825 individuals of European ancestry who participated in
research with personal genomics company 23andMe, Inc, and answered the question ‘Can you clap
in time with a musical beat?” Because the trait under study was a self-reported trait, the authors also
conducted validation studies in an independent sample to verify the sensitivity of the self-report.
They showed that self-reported ability to clap to a musical beat is positively and significantly
correlated with a beat perception measure (higher sensitivity to musical rhythm), a beat
synchronisation test (lower asynchrony in beat synchronisation), and a musical sophistication
questionnaire. These validation studies showed that generally, people who responded ‘yes’ to the
question ‘can you clap in time with a musical beat’, do not have rhythm impairment, thus indicating
that the self-report beat synchronisation trait is a believable measure of beat ability.

Taking a step back, in Chapter 1 we demonstrated phenotypic correlations between musical
rhythm sensitivity and expressive grammar ability. Based on these observations we can hypothesize
that the behavioural links we see between musical rhythm sensitivity and grammar ability might be
explained by genetic pleiotropy (Ladanyi et al., 2020; Nayak et al., under review). Often in the animal
and plant kingdoms, when phenotypes/ traits are correlated, there is a greater chance that the
genotypes associated with the traits are also associated (Cheverud, 1988; Sodini et al., 2018) Given
that there is a robust and replicable correlation between music rhythm perception and grammar
phenotypes, we can possibly investigate the genetic correlations between these traits using cross trait
approaches.

Because both rhythm and grammar are polygenic traits, the genetic variants that drive these

phenotypes are widely distributed across the genome. When considering such traits, family-based or
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gene-based studies do not sufficiently capture the variability both genetic and phenotypic, and more
sophisticated population-based approaches are required. However, it may be a considerable
challenge to acquire the extensive sample sizes (sometimes in the millions) required to carry out
these genome wide studies. Cross-trait genetic approaches are another way to leverage available
population data on one trait to query the genetic influences behind a related or co-morbid trait. For
several psychiatric traits, cross trait approaches have been instrumental in unearthing overlapping
comorbidities and yielding unexpected insights into how much shared genetic architecture lies
beneath commonly co-occurring neural traits (Amare et al., 2018; Bulik-Sullivan & Neale, 2015)
Such polygenic approaches are thus also well suited to probing the possible genetic overlap between
music rhythm and grammar abilities.

In this study we used polygenic score (PGS) analysis to investigate the genetic influences
which might influence in part both music rthythm perception and grammar performance. We used a
recently published population wide study of beat synchronisation (Niarchou et al., in press) to

generate rhythm polygenic scores (PGS-R) for our sample of school-aged children.

Methods

Participants

The participant cohort for this analysis is made up of children with typical language
development and atypical language development, particularly developmental language disorder
(DLD). Children with typical language development came from two separate studies. n = 132 were
the same participants whose phenotypic data was used in the path analysis in Chapter 2. As part of
our IRB approved data collection protocols, we also collected genetic data from these 132
participants during one of their two study visits. A further n = 25 typically developing (TD)

participants who were part of a previously published study (R. L. Gordon, Shivers, et al., 2015) were

47



recontacted and requested to schedule a visit so that we could collect their genetic data and increase
our pool of participants for genetic analyses. Of the 25, 8 participants were willing to participate, and
submitted their genetic samples. DLD participants were recruited as part of a larger study conducted
in our lab, that explored similar associations between rhythm and grammar, but in children with
DLD. Again, as part of IRB approved protocols, we collected genetic data from n = 21 DLD
participants during their planned study visits. Thus, we had a total of N = 161 participants with
genetic data that are included in this aim. Figure 3.1 encapsulates the various cohorts from which the

participants were drawn

Figure 3.1: Pipeline of Participants used in Chapter 3

Larger study
collecting rhythm
and grammar
measures in

laboratory
21DLD 8TD
132 TD language (phenotyped;
(from Aim 1) Impairment Gordon et al
(meet eligibility 2015)
criteria)
\
o Total >
' N =161 i
\

Genotyped in 2
batches
2016/2020

Note. This figure illustrates the various studies from which the participants for Chapter 3 were drawn
from. TD = Typically developing, DLD = Developmental Language Disorder
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Screening and language characterisation of participants for group assignment (TD vs DLD)
was carried out by SLP research staff. Language characterisation to identify impairments and assess
language development was performed using the TOLD-P:4 and the phonological probe of the
TEGI as described in Chapter 2. PTONI scores were used to rule out cognitive impairments in
participants (see Chapter 2). All group assignments were determined by SLP staff, based on a
combination of participant scores, and SLP opinion based on review of other assessments used in
the various studies from which the participants were drawn. Although we have classified participants
as TD and DLD, this study is not a between group study, but a study of individual differences of the
genetic influences of rhythm and grammar, since we have continuous phenotypic scores on each
individual. By using both TD and DLD participants we aimed to capture the widest range of

individual differences across the spectrum of rhythm and grammar task performance abilities.

Phenotypes
Grammar

For both grammar phenotypes, based on observations from studies in the lab (R. L. Gordon,
Shivers, et al., 2015), external studies (Politimou et al., 2019; Swaminathan & Schellenberg, 2019),
and results presented in this dissertation (Chapter 2), I hypothesized that higher PGS-R would be
associated with better scores on the grammar tasks.

SPELT-3. Expressive grammar was measured with the Structured Photographic Expressive
Language Test-3 (SPELT-3, Dawson et al., 2003). Participants were shown a series of pictures and
asked questions that elicit responses requiring specific grammatical construction (e.g., relative
clauses, possessive pronouns). The raw scores from this assessment were used as the outcome

measure of expressive grammar skills. We used raw SPELT-3 scores since we are using age as a
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covariate in the regression model and are using the SPELT-3 scores as an outcome measure and not
as a diagnostic measure for language characterisation.

TOLD-P:4 Sentence Imitation (SI) Subtest. In the SI task, SLPs would read out a
sentence, and participants were asked to repeat the sentence word for word. There were 38
sentences in this test with increasing syntactical complexity from first to last, with 2 practice
sentences at the start. Since SI requires both the understanding (receptive) and production

(expressive) of syntax, SI scores were used as on outcome measure in this analysis.

Rhythm

Entrainment Region (ER). Entrainment Region is defined the range of tempi to which
someone can show attentional entrainment (McAuley et al., 2006). We used a Tapping (thythm
production) task with participants to estimate their ER (See Ladanyi et al., in revision). The task was
presented using an iPad and children were instructed to tap on the iPad with just one finger, first at
the speed that is just right’ for them, then as slowly as they can like a snail, and finally as fast as they
can like a race car. Entrainment region was estimated using the difference between a participant’s
slowest speed of tapping and fastest speed of tapping divided by their just right’ speed of tapping.
Entrainment region hypothesis from McAuley et al (2000), posits that the width of the ER is
narrower eatlier in life, widens until adulthood and narrows during the later stages of life. If we were
to consider, individual differences in ER, a wider entrainment region (higher ER score) would
indicate that a person is able to recognise regularly presented auditory information in very slow
frequency tempi and in very fast tempi as well. A recent study has shown that children with wider
ER have better performance on a rhythm perception task that requires children to identify rhythms

as being ‘same’ or ‘different’ from each other (Ladanyi et al., in revision). For entrainment region, I
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hypothesized that higher PGS-R would be associated with wider entrainment regions, and thus with
higher ER scores.

BBA. Musical rhythm perception was measured using and the children’s version of BBA
(Beat-based Advantage) test (R. L. Gordon, Shivers, et al., 2015; Wieland et al., 2015). For analyses,
we calculated the d” separately for simple and complex rhythms, and then averaged them for an
overall BBA d’ score, which was used in the analysis. See chapter 2 for details regarding the BBA
experiment and d’ calculations. As with ER, I again hypothesized a positive correlation between

BBA d” and PGS-R.

Genetic Data Collection

We collected 2ml of saliva from N = 161 TD and DLD children using DNA Genotek’s
Oragene-Discover OGR-500 kits. During one of the two study visits, we asked the children to
carefully salivate into the collection tube, after ensuring that they had not eaten food, or had a drink
of water for at least an hour before saliva collection. A similar protocol was followed for the
children who were invited back only for saliva collection. On collection of saliva, the kits were
submitted to Vanderbilt’s VANTAGE (Vanderbilt Technologies for Advanced Genomics)

genotyping and biobanking core.

Genotyping

At VANTAGE, DNA was extracted from the saliva samples, and genotyped using the
[lumina Infinium® MEGA"™. The Expanded Multi-Ethnic Genotyping Array was developed to
provide comprehensive coverage of single nucleotide polymorphisms (SNPs) across European, East
Asian, and South Asian populations. During participant recruitment we strived to include

participants from a wide range of genetic ancestries and socioeconomic statuses to capture the
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widest possible phenotypic variation of the measures under study. The ability to retain and use data
across as many genetic ancestries as possible was a goal during my genetic analyses. The data for this
study was genotyped in two batches; going forward referred to as Batch2020 and Batch2016. Post
genotyping, the VANTAGE lab conducted primary quality control (QC) on the data, biobanked the

DNA, and securely transferred the raw files and well as the plink compatible data to us.

Quality Control

The data received from VANTAGE underwent stringent quality control to prune variants
and samples with low quality data. The data was subject to QC, then imputed and analysed in two
ways — one that included only those participants of European ancestry, and the second with
participants of European and non-European ancestry together.

Twenty-nine of the participants were genotyped in Batch2016, while the remaining 132
participants were genotyped in Batch2020 along with N = 208 samples from another study
(discussed in Chapter 4). Batch2020 was subject to the following first pass QC in PLINK
(Batch2016 underwent the same QC, and differences are noted in parentheses): removal of duplicate
variants and indels, SNP filtering at a call rate of < 0.90 (< 0.80 for Batch2010), individual filtering
at a call rate of < 0.80 (< 0.80 for Batch2016) updating ids to rsID names using VANTAGE’s
documentation, removal of rsID duplicates using plink2, filtering for heterozygous samples | FHet |
> 0.2 (samples that did not meet heterozygosity constraints in Batch2016 were simply flagged at this
stage), flagging sex discrepancies (at this stage sex discrepant participants were not omitted from
either batch), and finally SNP filtering for Hardy-Weinberg Equilibrium violations at p <10 Next,
I used PRIMUS to perform a principal component analysis (PCA) to calculate principal components
(PC) and assign genetic ancestries to the participants, and further split both the batches based on

these PCs and assigned them to one of three ancestral groups (viz. European, African-American,
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Hispanic, South Asian, and East Asian). Since the populations of East-Asian and South-Asian
ancestries was very small in number in both the batches (n = 1 each of South-Asian and East Asian
in Batch2016, and n = lof South Asian ancestry, no East Asian ancestry in Batch2020) these
samples were dropped from further analyses. For each ancestral group, I performed MAF filtering
to remove SNPs with minor allele frequencies < 0.05, and SNP filtering for Hardy-Weinberg
Equilibrium violations at p < 10°™.

After performing preliminary SNP and sample level quality control and filtering, I merged
the study participants that remained from Batch2016 (n = 24) and the study-relevant samples from
Batch2020 (n = 129). To do this, I merged Batch2020 with Batch2016, first with just the participants
with European ancestry (combined n = 130), and then with participants of European, African-
American, and Hispanic ancestry (combined n = 153). Since the two batches, Batch2016 and
Batch2020, for the participants were so disparate in numbers (n = 24 and 129 respectively), I did not
check for batch effects at this stage. After merging the batches, for both the European ancestry and
mixed ancestry analyses, I conducted stringent QC on the complete dataset that involved SNP and
individual sample filtering at < 0.95, MAF filtering for the complete dataset at > 0.05, heterozygosity
filtering at |FHet| > 0.2, and clarifying sex discrepancies, where samples with inconsistent or
indeterminate sex classification were pruned out. I further pruned for relatedness by removing
individuals with IBD pihat >= 0.125 (i.e., excluding third-degree relatives), and a final SNP filtering
was conducted based on Hardy-Weinberg Equilibrium violations of p > 10, leaving a combined n
= 135, in the dataset with combined ancestries, and n = 116 in the European-only sub-set.

After stringent QC, the data was imputed to the HRC hg19 panel using Minimac 4 on the
Michigan Imputation Server. The array build for my dataset was on the hgl9 panel. For both the
mixed-ancestry and European-only ancestry datasets I used the following parameters for imputation:

HRC r1.1 2016 (GRCh37/hg19) as the reference panel, R* filtering > 0.001, Eagle 2.4 phased

53



output. Post-imputation filtering of MAF <= 0.05, R* >= 0.7 was conducted, and finally conversion
of dosage to hard calls was done using default PLINK settings. The plink binary files were used for

generation of polygenic scores.

Rhythm Polygenic Score

For the rhythm polygenic analysis, I used a well-powered genome-wide association study
(GWAS) which had 606,825 individuals of European ancestry who participated in research with
personal genomics company 23andMe, Inc. (Niarchou et al., in press). Participants who had
consented to participant in research with 23andMe, answered the question “Can you clap in time
with a musical beat”? All participants provided informed consent in accordance with 23andMe’s
protocol, which was reviewed by an external IRB, the Ethical & Independent Review Services. It is
the largest GWAS of a musicality trait and queries the trait of “beat synchronization,” with the
results (69 genome-wide significant loci) highlighting the polygenic architecture of thythm. Though
this GWAS was conducted on a self-reported trait, the authors conducted several validation studies
to show that self-reported evaluations of beat synchronisation are correlated with (measured) ability
to tap to a musical beat, rhythm perception task performance, a multi-item rhythm questionnaire,
and with Goldsmith’s musical sophistication scale, thus successfully demonstrating that the self-
report is indeed capturing rhythm abilities.

Using the Beat synchronization (thythm) GWAS summary statistics as the primary trait
GWAS, I used the PRS-CS software (Ge et al., 2019) to generate a polygenic model of rhythm. PRS-
CS is a python-based software that uses continuous shrinkage to estimate SNP effect sizes based on
GWAS summary statistics and an external reference panel that accounts for linkage disequilibrium.
Application of PRS-CS requires three separate inputs: i. the GWAS summary statistics of the trait of

interest ii. the external LD reference panel matched to the ancestry of the trait GWAS (since the
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Rhythm GWAS was conducted in a European-only population, I used the European LD reference
panel built based on the 1000 Genomes Phase 3 samples available on the PRS-CS GitHub), and iii.
the target sample for which polygenic scores are to be assigned (imputed plink files of the n = 135
mixed ancestry samples or n = 116 European ancestry samples collected in our lab with rhythm and
grammar phenotypes).

To build the polygenic rhythm model for my target, sample I used the default parameters for
PRS-CS. Once the polygenic model was constructed, I applied this model to my sample and
generated a rhythm polygenic score (PGS-R) for each of the participants in my target sample.
Polygenic scores are the weighted sum of each individual’s SNPs, based on the effect size of those
SNPs in a primary GWAS. Since the GWAS is a measure of ability of beat synchronisation, the
PGS-R is a score of ‘good rhythm’, i.e., a higher polygenic score corresponds to increased ability of

beat synchronisation and vice-versa.

Linear Regressions of PGS-R with Measured Rhythm and Grammar Phenotypes

I performed linear regression analysis using the PGS-R as the independent variable and the
rhythm and grammar phenotypes (viz. BBA, Entrainment Region, expressive grammar (SPELT-3),
and SI) as the dependent variables to test the associations between genetic rhythm ability and
measured rhythm and grammar task performance. Sex, age, and the first 10 PCs were used as
covariates. For this analysis, I z-scored (standardised) all variables: the PGS-R scores, PC values, age,
raw SPELT-3 scores, raw SI scores, BBA d’ and entrainment region scores, prior to building the
regression models. Of the 135 samples that survived QC, we had complete SPELT-3 (expressive
grammar outcome measure) for N = 131 samples (aged 5;5 — 7;11, mean = 6;5 years, SD = 10.2

months, 70 females) which were then used in the PGS analysis. Sample characteristics of the
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grammar and rhythm phenotypes and demographics of the participants are described in Table 3.1

Table 3.1: Demographics, Sample Characteristics, and Descriptive Statistics of Behavioural
Outcomes for PGS analysis

Variable Name N  Mean SD SE Range Skew  Kurtosis
Age 131 6.49 0.85 0.07 5.07 - 8.17 0.29 -1.17
PTONI standard scores 124 11710 20.26 1.82 78 - 150 -0.19 -1.19
SPELT-3 standard scores 131 110.66 11.05 0.97 65 —-126 -1.97 4.86
SI scaled scores 121 12.03 2.68 0.24 5-17 -0.50 -0.17
SPELT-3 raw scores 131 44.72 628 0.55 15-53 -2.18 6.39
SI raw scores 121 22.60 726 0.66 6-36 -0.30 -0.64
BBA d' 115 092 0.84 0.08 -1.20-2.73 0.17 -0.66
Entrainment Region scores 102 3.21 255 023 032-16.53 2.45 7.64

Note. Demographics, sample characteristics, and descriptive statistics for behavioural outcome
measures for the polygenic analysis are shown in this table. SPELT-3 = Structured Photographic
Expressive Language Test-3; BBA = Beat-Based Advantage; PTONI = Primary Test of Non-Verbal
Intelligence; SI = Sentence Imitation.
Results

Our hypothesis for these analyses is based on the positive associations between musical
rhythm perception and grammar performance observed in Chapter 2, and in several other studies.
We predicted that PGS-R would be positively associated with BBA scores, ER scores, and with the
grammar measures. However, as seen in Table 3.2 and 3.3 we observed non-significant correlations
between our outcome measures and the rhythm PGS, for both the European-only subset (n =110)
and for all genetic ancestries combined (n = 135). We believe that though our data is richly
phenotyped, we did not have the power to detect the genetic effect of rthythm, simply due to our

small sample size.
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Table 3.2: Linear Regression Results for Rhythm PGS and Outcome Measures, in Participants of
European Ancestry

Measure B p value 95% Confidence Interval
SPELT-3 Raw score -0.02 0.85 [-0.19 0.16]
Sentence Imitation score 0.06 0.51 [-0.13 0.25]
BBA & 0.09 0.34 [-0.10 0.28]
Entrainment Region -0.13 0.22 [-0.33 0.08]

Note. This table summarises the results of the linear regressions to test the association of polygenic
rhythm score with various rhythm and grammar outcome measures, while using age, gender, and 12
principal components as covariates in the regression model, in all participants of European ancestry
(n = 116). The outcome measures and PGS were normalized prior to analyses. BBA = Beat-Based
Advantage; SPELT = Structured Photographic Expressive Language Test.

Table 3.3: Linear Regression Results for Rhythm PGS and Outcome Measures in Participants of
European and Non-European Ancestry

Measure B p value 95% Confidence Interval
SPELT-3 Raw score 0.04 0.66 [-0.78 0.31]
Sentence Imitation score 0.04 0.68 [-0.14 0.22]
BBA & 0.11 0.25 [-0.08 0.30]
Entrainment Region -0.10 0.27 [-0.29 0.08 ]

Note. This table summarises the results of the linear regressions to test the association of polygenic
rhythm score with various rhythm and grammar outcome measures, while controlling for age,
gender, and 12 principal components as covariates in the regression model, in participants of
European and non-European ancestry (n = 135). The outcome measures and PGS were normalized
prior to analyses. BBA = Beat-Based Advantage; SPELT = Structured Photographic Expressive
Language Test.
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Discussion

In our current sample we have observed phenotypic correlations between music rhythm
perception and grammar task performance. However, we did not find significant associations
between musical rthythm perception polygenic score and grammar task performance, which would
have helped start to unpack the complex nature of the genetics of language. While we do see trends
in the expected direction with higher rhythm polygenic scores corresponding with higher
performance on grammar tasks, these correlations are not statistically significant.

One major contributing factor in this analysis might be the small sample size of the tested
cohort. While the language variables of the sample were extensively phenotyped and characterised,
the effective sample size might prevent detection of the expected correlation between the genetic
contribution to rhythm and grammar task performance phenotype. Even in the rhythm perception
GWAS which was used to generate the polygenic scores in our target sample, the heritability in a
large sample of over half a million people was estimated to be 13 - 16% (Niarchou et al., in press).
Twin and family-based studies have estimated the heritability of music related phenotypes to be
between 0.2 — 0.8 (Nayak et al., under review). Similarly, language-based traits have also been shown
to be moderately heritable — between 0.2 — 0.8 (Bishop & Hayiou-Thomas, 2008; Rice et al., 2018).
When investigating cross trait associations between rhythm and grammar, it is thus likely that the
moderate heritability of both these traits is not captured by small sample sizes such as in this study,
given their extensive polygenic architecture.

Another possible reason why our analyses were not significant could be because the trait
used in the GWAS, ‘beat synchronisation’, overlaps with but is not identical to rhythm perception.
Though the rhythm perception test was used to validate the beat synchronisation self-reported trait,
the GWAS and the validation studies were conducted in adults. Our target population consists of

school-aged children between 5-8 years, and the overlap between the cognitive processes involved in
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beat synchronisation and rhythm perception might not be as similar in developing children. As a
result, the shared genetic architecture of the traits might not be as evident.

Moving forward, work should focus on building larger sample sizes for each individual trait
— rthythm perception (including other music related traits), as well as grammar (and other language
related traits). Larger sample sizes would not only enable the parsing of the complex genetic
architecture of each individual trait under study but will also aid cross-trait genetic discoveries, like
the one hypothesized in this chapter. Such studies will also help unravel the genetic influences
driving the co-occurrence of traits by using a heritability and LD-score regression approach. Having
deeply genotyped and sequenced genetic information would also be advantageous for considering
fine-mapping and functional genomic approaches, which will yield further insight into the possible
biological mechanisms driving the associations between musical rthythm perception and grammar

task performance.
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Chapter 4
Exploring Cross-Trait Genetic Associations between Atypical Speech and Language

Phenotypes, Rhythm Impairments, and Other Comorbidities.

Introduction

Developmental Language Disorder (DLD) is a commonly occurring (up to 7% prevalence)
paediatric communication disorder characterised by difficulty in effectively learning and utilizing
language, especially grammar, with males being at a slightly higher risk than females (1.33:1 ratio of
males to females diagnosed with DLD) (Norbury et al., 2016; Simms & Jin, 2015; Tomblin et al.,
1997). Weaknesses in language development in children with DLD include difficulty in syntax use,
vocabulary, word finding, semantics, immature grammar formation, poor lexicon, inability to
effectively follow ideas and tasks, and slower verbal learning and memory in receptive and/or
expressive language domains (Bishop et al., 2016; Lancaster & Camarata, 2019). DLD is said to
occur independent of external trauma, neurodegeneration, abuse or brain damage, and children with
DLD are phenotypically distinguishable from patients whose language capabilities are affected by
alternative phenotypes, including, but not limited to, hearing loss, autism, cerebral palsy, and other
known neurodevelopmental disorders(Bartak et al., 1975; Bishop, 2017; Kambhi, 1998; Stark & Tallal,
1981).

DLD is primarily a disorder that affects language, and the associations between musical
rhythm and language are also applicable to DLD, such that with evidence from literature points to
impairments in rhythm production and perception being prominent in DLD (Corriveau &
Goswami, 2009; Przybylski et al., 2013). Studies have demonstrated that children with DLD perform
below children with typically developing language on several tasks that test musical rhythm such as

tapping to a beat, recognising rhythm in music and speech, and rhythm discrimination. It is also
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important to note that such rhythm impairments are also commonly seen in other disorders that
affect language like dyslexia, thus strengthening the link between rhythm and grammar (for a
detailed review see Ladanyi et al., 2020).

The complexity of DLD is evidenced by how varied the overall DLD phenotype, trajectory
and outcomes are in the clinical population. Based on developmental criteria, language and speech
usually develops during the toddler/pre-school stage (Feldman, 2005), and identification of
delayed/impaired language can be conducted at this age. Longitudinal studies of DLD, in the past
and present, have demonstrated that from a cohort of preschool-aged late talkers (ages 3 V2 - 4),
some children will show some resolution of their reading and oral skills by the age of 52 -6
(Bishop & Adams, 1990; Bishop & Edmundson, 1987; Law et al., 2008; Miniscalco et al., 2007;
Snowling et al., 2016). In contrast, those who still struggled with language at age 5.5 continued to
show hampered linguistic capabilities including but not limited to oral grammar and vocabulary well
into their adolescence (Snowling et al., 2016; Stothard et al., 1998), thus resulting in a consistently
impaired language and literacy trajectory across their lifespan (Elbro et al., 2011; Whitehouse et al.,
2009).

To complicate matters further, DLD diagnoses are often accompanied by several other
comorbidities. Children diagnosed with DLD showed 61% of exhibited comorbidities within the
domain of psychiatric and neurodevelopmental disorders (Westerlund et al., 2002). Attention deficit
hyperactivity is a commonly co-occurring disorder that affects children with language impairment,
and further impacts educational trajectories (Beitchman et al., 1996; Helland et al., 2014; Mueller &
Tomblin, 2012; Sciberras et al., 2014). Other studies have also found that children with DLD face
issues with mathematical and reading tasks, indicating an overlap with developmental dyslexia and
dyscalculia (Manor et al., 2001; Morsanyi et al., 2018; Newbury et al., 2011; Pennington & Bishop,

2009). On the social side of the scale, children with DLD find it difficult to initiate and maintain
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friendships, due to social reticence as a result of inability to communicate with peers, as evidenced
by increased co-occurrence of conduct and mood disorders with DLD, stunting social development,
(Beitchman et al., 1996; Fujiki et al., 2001; Van Daal et al., 2007), further demonstrating that DLD is
not limited to its language phenotype. The negative outcomes associated with DLD can extend well
beyond childhood. Adults who were diagnosed with DLD as children will often show continued
impairments in their cognitive profiles (including higher rates of schizotypal features) well into
adulthood which contribute to including low verbal 1Q), persistent literacy delays, higher rates of
unemployment, poor social adaptability (Clegg et al., 2005; Elbro et al., 2011; Snowling et al., 2000).

Given this broad psycho-social profile of DLD and its associated comorbidities which result
in life-long socio-economic pitfalls, the timely identification and provision of intervention for DLD
is critical and essential. Although a prevalent disorder, DLD is often underdiagnosed with only "4 of
the clinical population receiving a formal diagnosis (McGregor, 2020; Tomblin et al., 1997). The
CATALISE (Bishop et al., 2016, 2017) study noted that it has been difficult to successfully identify
key risk factors for DLD, since previous studies focussed only on the language impairment
phenotype (Volkers, 2018b, 2018a) with highly specific selection criteria resulting in very small
sample sizes. The restriction to identifying only the language related impairments does not allow for
the proper overall characterization of the risk factors and comorbidities associated with this
disorder, and a broader definition would aid in identifying at-risk children who would benefit from
language intervention (Bishop, 2017; McGregor, 2020).

One approach to better understand the medical phenotype of DLD is to take a population-
based approach (Raghavan et al., 2018; The National Academies of Sciences, Engineering, and
Medicine, 2016). Data mining algorithms using electronic health records (EHRs) are useful in large-
scale population-wide studies to classify actiology and comorbidities (Casey et al., 2016). Identifying

DLD cases in existing epidemiological data sets and medical records permits us to capitalise on the
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broader definition of DLD and explore associated comorbidities, thus enabling us to tap into the
underlying biology of DLD in clinically relevant manner. Using comorbidities to create a phenotypic
profile of DLD in electronic data can help identify an “at risk” population, that should then receive
high priority in terms of diagnosis, intervention, and attention from clinicians.

We created a phenotyping algorithm called, "Automated Phenotyping Tool for identifying
DLD” (APT-DLD) cases in health systems data, to classify DLD cases within Vanderbilt University
Medical Center’s (VUMC’s) de-identified EHR database (Walters et al., 2020). While efficient and
holistic diagnosis of DLD by SLPs is valuable for diagnosis and provision of intervention and
therapies to patients, APT-DLD is primarily a research tool that enables the quick classification of
DLD cases in EHR databases. This algorithm allows for identification of DLD patients with a
positive predictive value (PPV) of 95%. Additionally, since APT-DLD does not utilize language
processing or key-terms and only relies on ICD codes (International Classification of Diseases) and
dates of these ICD codes, access to diagnostic notes and laboratory results are not required, making
it easy to deploy in any EHR with ICD code data. ICD codes are a set of alpha-numeric codes that
are used by medical professionals to document the health concerns in EHRs.

We applied APT-DLD to two research databased housed at Vanderbilt University Medical
Center’s - Synthetic Derivative (SD) which consists of de-identified EHRs, and the SD’s biobank
system (BioVU). EHRs in the SD are associated with their de-identified medical records that include
ICD codes, notes, lab reports and relevant demographic information, while EHRs in BioVU have an
additional layer of information in the form of their biological data. With APT-DLD we can mine
EHR databases, giving us access to a larger sample of people who have a profile that is convergent
with DLD. These types of data — phenotype only (as found in the SD) and genetic data (found in
biorepositories like BioVU) can be used to conduct enrichment analyses to identify the medical

profiles of complex disorders and how they differ from controls as well as genetic analyses to

63



explore within-trait and cross-trait associations to better understand the genetic architecture of
DLD.

Using the DLD cases classified from BioVU using APT-DLD, we sought to understand
DLD’s polygenic nature using cross-trait genetic analyses, for Aim 3a of this chapter. Generally,
traits that show phenotypic association can be influenced by underlying shared genetics — a
phenomenon known as pleiotropy (Solovieff et al., 2013; Watanabe et al., 2019). In the case of
musical rhythm and language, we first tested the predictions of the Atypical Rhythm Risk
Hypothesis via a polygenic approach. We used a rhythm polygenic score (PGS-R) derived from the
beat synchronization GWAS (see Chapter 3 for details) to ascertain if risk for rhythm impairments
would be associated with the presence of DLD. That is, when comparing PGS-R of DLD cases and
their matched controls, the cases would have lower PGS-R (i.e., impaired beat synchronization
abilities) as compared to the controls.

Further, with the DLD cases identified from the SD, which only have phenotype
information, we employed a phenotype enrichment algorithm to identify related comorbidities that
are enriched in the DLD population as compared to matched controls (Shaw et al., in preparation).
The most significantly associated groups were language and developmental phenotypes, auditory
phenotypes, weight and nutrition phecodes, colorectal phenotypes, conduct and social disorders,
motor co-ordination errors, atopic disorders, and pulmonary phenotypes. Using these phenotypically
associated comorbidities we created a list of curated traits, identified existing large-scale GWAS’ of
these traits, and investigated possible cross-trait genetic associations for Aim 3b. This strategy helps
us bring together complementary methods to paint a clearer picture of the complex genetic aetiology
of DLD.

Finally, we tested the Atypical Rhythm Risk Hypothesis in a third cohort that captured a

broader spectrum of speech and language symptoms, for Aim 3c. Given that atypical rhythm is
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observed in several other developmental disorders as well including dyslexia, stuttering, ADHD, and
developmental co-ordination disorder (Ladanyi et al., 2020), we used a broader definition to identify
possible instances of developmental speech and language problems from the eMERGE database.
Using EHRs from emerge that meet out criteria for speech-language disorder symptoms and their
matched controls, we used a polygenic approach to test the correlation between genetic risk of
rhythm impairment and presence of speech and language symptoms. We expect higher risk of
rhythm impairment (lower PGS-R) to be predictive of speech-language symptoms.

The current study thus has 3 sub-aims: 3a. testing the predictions of the Atypical Rhythm
Risk Hypothesis with DLD, 3b. investigating cross-trait polygenic associations between DLD and
associated comorbidities and 3c. testing the predictions of the Atypical Rhythm Risk hypothesis in a

sample of EHRs with indications of speech and language symptoms.

Methods

Aim 3a. Testing the Atypical Rhythm Risk Hypothesis in a DLD cohort
Cohort Selection using APT-DLD

We created an automated phenotyping algorithm called APT-DLD (Automated Phenotyping
Tool for identifying DLD), which is an electronic health record (EHR) data mining algorithm which
relies on six language disorder ICD codes, a small set of exclusion criteria, and the dates of these
codes to classify the DLD status for a patient (Walters et al., 2020). APT-DLD uses both ICD-9 and
ICD-10 codes to inform its classification system. The algorithm was developed to mimic the
classification results that the manual chart review of these EHRs, by an SLP clinician would yield.
The target population for this technique includes paediatric records from EHR systems with ICD 9
and 10 indicators of DLD. Because we proposed exploring the genetic architecture of DLD via

polygenic score analysis, we focused on identifying EHRs with available genetic data, and applied
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APT-DLD to BioVU, Vanderbilt University Medical Centre’s biobank. Ethical use of the genetic
and EHR data reported in the current dissertation in Chapter 4 is covered by an approved
institutional review board exemption (application no. 150643), and all users working with these data
filed data use agreements with the institution that set forth policies and procedures that protect the
integrity and confidentiality of the data.

Cases. The application of APT-DLD to an EHR system involves two steps. The first is a
‘Broad Search’ which uses a combination of six speech and language related ICD 9 and 10 codes as
primary inclusion criteria, another set of ICD codes relating to hearing loss, intellectual disabilities,
and chromosomal abnormalities as the exclusion criteria, and an age filter to identify a paediatric
sample of EHRs. This broad search identified 973 paediatric EHRs that met all the criteria.

The second step involves the application of code filters that use the presence of certain ICD
codes in the EHRs to classify them into 2 major categories: DLD cases and cases with language
symptoms not consistent with DLD. From the 973 EHRs identified as potential DLD cases, 469
EHRs were classified by APT-DLD as DLD cases. An overview of APT-DLD is presented in

Figure 4.1.
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Figure 4.1: Overview of the Phenotyping Algorithm APT-DLD
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Note. This figure summarises the major components and processes of applying the APT-DLD

algorithm to an EHR database.

Controls. Up to 5 controls were selected for each case from a pool of 80,000 genotyped

BioVU EHREs, for a total of 2065 controls (number of cases available for control selection is 413; see

section on genotyping for details). Controls were matched to the identified case-set based on genetic

similarities derived from PCs from ancestry assighment, sex, and age (within 5 years of the matched

case). Control matching was conducted using a python-based control matching software developed

by D. Shaw. Table 4.1 tabulates the self-reported demographics of the 413 DLD cases and 2065

matching controls.
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Table 4.1: Demographic Characteristics of the DLD Cases and Matched Controls from BioVU

Variable Category Cases Controls
Race
Caucasian 219 (53%) 1,198 (58%)
African American 97 (23%) 420 (20%)
Asian 13 (3%) 62 (3%)
American Indian 0 (0%) 6 (0.3%)
Unknown 5 (1%) 341 (17%)
Other 5 (1%) 34 (2%
Multiple Race 0 (0%) 4 (0.1%)
Ethnicity
Hispanic/Latino 74 276 (13%)
Non-Hispanic 339 1,549 (75%)
Unknown 0 240 (12%)
Gender
Male 280 1,400 (68%)
Female 133 0665 (32%)
Total N 413 2,005

Note. The table shows the number of EHRs from BioVU per self-reported race, ethnicity and gender
group in the cases and controls. Percentages are denoted in parentheses.
Genotyping

Of the 469 EHRs classified as DLD cases, 413 had useable genetic data as determined by
BioVU. 205 of these 413 samples were previously genotyped at BioVU as part of a larger genetic
effort. The Music Cognition Lab further requested genotyping of the remaining 208 DLD EHR
samples. These 208 samples were genotyped in Batch2020 along with the 132 samples from Chapter
3. All genotyping efforts at Vanderbilt are carried out by VANTAGE, where the biobanked DNA of
the EHRs is genotyped using the Illumina Infinium® MEGA®. The Expanded Multi-Ethnic
Genotyping Array was developed to provide comprehensive coverage of SNPs across European,
East Asian, and South Asian populations. As a result, we can include multiple genetic ancestries in
our analysis. Post genotyping, the VANTAGE lab conducted primary quality control (QC) on the

data and securely transferred the raw files and well as the plink compatible data to us.
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Quality Control of Genetic Data

The data received from VANTAGE underwent stringent quality control to prune variants
and samples with low quality data. The data was subject to QC, then imputed and analysed in two
ways — one that included only those participants of European ancestry, and the second with
participants of European and non-European ancestry together.

As with the QC for Chapter 3, the QC for the DLD EHRs was also carried out in two
batches, Batch2020 and BatchVGI. Batch2020 contained the 208 DLD EHRs that were additionally
genotyped, while BatchVGI which contained the remaining 205 DLD cases and the matching 2065
controls for the entire DLD case-set (n = 2270), was genotyped previously as part of a larger effort
at the Vanderbilt Genetic Institute to spearhead genetic discoveries in BioVU. The thresholds used
for the QC of Batch2020 are described in Chapter 3, and for ease of reference are included in
parentheses in this description. BatchVGI was subject to the following first pass QC in PLINK:
removal of duplicate variants and indels, SNP filtering and individual filtering at a call rate of < 0.90
(SNP filtering call rate < 0.90, and sample missingness threshold < 0.80 for Batch2020), updating
ids to rsID names using VANTAGE’s documentation, removal of rsID duplicates, flagging
heterozygous samples (| FHet| > 0.2 filtering for Batch2020), flagging sex discrepancies (at this
stage sex discrepant participants were not omitted from either batch), and finally SNP filtering for
Hardy-Weinberg Equilibrium violations at p <10™. Next, I used PRIMUS to perform a PCA,
calculate PCs, and assign genetic ancestries to the participants. I further split both the batches into
their ancestral groups based on these PCs (viz. European, African-American, Hispanic, South Asian,
and East Asian). From BatchVGI, there were n = 1294 samples of European ancestry (106 from
Batch2020), 542 of African American (56 in Batch2020), 191 of Hispanic (28 in Batch2020), 197 of
South-Asian (15 in Batch2020) and 46 of East Asian ancestry (2 in Batch2020). Since the population

of East-Asian ancestry was small in both the batches, these samples, and their matched controls
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were dropped from further analyses. For each ancestral group I performed ancestry specific MAF
filtering to remove SNPs with minor allele frequencies < 0.05, and SNP filtering for Hardy-

Weinberg Equilibrium violations at p < 10"

. Finally, I removed the participants relevant to Chapter
3 analyses (n = 130) from Batch2020 and kept only the 205 DLD EHRs. Similarly, after primary QC
on the BatchVGI sample I had n = 2224 DLD EHRs that were included for further analyses.

Prior to merging the DLD EHRs from Batch2020 and BatchVGI, I ran a small GWAS
using genotyping batch as the ‘trait’ of study to identify any batch related effects in only the cases
from the two batches. Batch2020 had all 205 DLD cases, while BatchVGI had retained 200 DLD
cases after first pass QC. I merged only the case-set from both the batches, filtered for variant and
sample missingness at a call rate of < 0.95, an additional MAF filtering to remove SNPs with minor
allele frequencies < 0.05, removal of sex discrepancies, removal of related samples (IBD pruning for
pihat >= 0.125) and a final SNP filtering conducted based on Hardy-Weinberg Equilibrium
violations of p > 10™". T performed a GWAS on these 398 remaining samples, with batch as the

phenotype (Fig. 4.2 shows the qg-plot and the Manhattan plot for the batch GWAS), and identified

SNPs with a p value < 107, since these SNPs might be associated with the genotyping batch.
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Figure 4.2: QQ Plot and Manhattan Plot for Testing the Effect of Genotyping Batch
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Note. This figure highlights the results of the GWAS’ conducted to test for genotyping batch effects.
The QQ plotin (A) shows the deviation from the expected p values of the significant SNPs and the
Manhattan plot (B) shows the chromosomes with the SNPs most significantly associated with
genotyping batch. The red line in Fig 4.2 (B) indicates genome-wide significance after Bonferroni
correction, which is set at 5 x 10, while the black line indicates genome-wide significance of 5 x 107

I then merged the study participants that remained from Batch2020 (n = 205) and the study
relevant participants from BatchVGI (n = 2224), for a combined sample size of 2429. After
merging, I filtered the batch-associated SNPs from the merged files since we wanted to be certain to
include only those SNPs that will not be influenced by variation in genotyping. This was followed by
a stringent variant and sample filtering at a call rate of < 0.95, MAF filtering at a call rate < 0.95,
filtering for heterozygous samples |FHet| > 0.2, pruning samples with discrepant sex, filtering for
relatedness (pihat >= 0.125), and a final SNP filtering to remove variants with Hardy-Weinberg

", Next, I matched the controls to the remaining cases, and

Equilibrium violations of p > 10°
removed those controls that did not have a matching case in the sample. There were no unmatched

cases, and each case had at least 1 matched control. This final sample had 398 cases (of the original

413 DLD cases) and 1960 matched controls (of the 2065 matched controls).
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After stringent QC, the data was imputed to the HRC hg19 panel using Minimac 4
on the Michigan Imputation Server. The array build for my dataset was on the hg19 panel. I used the
following parameters for imputation: HRC r1.1 2016 (GRCh37/hg19) as the reference panel, R*
filtering > 0.001, Eagle 2.4 phased output. Post-imputation filtering of MAF <= 0.05, R* >= 0.6
was conducted, and finally conversion of dosage to hard calls was done using default PLINK

settings. The plink binary files were used for generation of polygenic scores.

Polygenic Scorve Generation

Using the ‘Rhythm’ GWAS summary statistics as the primary trait GWAS, I used the PRS-
CS software (Ge et al., 2019) to generate a polygenic model of rhythm. I then applied this polygenic
model to the DLD cases and controls, to generate a PGS-R for each sample. For details of the PGS
generation please refer to Chapter 3. The distribution of the PGS-R of the sample separated by the
ancestries shows that the distributions are similar, and there are no outlier groups by ancestry. The

PGS-R distributions are plotted in Figure 4.3.
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Figure 4.3: Distribution of Rhythm Polygenic Scores of DLD Cases and Controls
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Note. Figure 4.3 depicts the distribution of rhythm polygenic scores of all the DLD cases and
controls in our cohort, grouped by ancestry. AFR = African-American ancestry, EUR = European
ancestry, HIS = Hispanic ancestry, SAS = South Asian ancestry.
Logistic Regression to test the association of PGS-R with DLD status

I performed a logistic regression analysis using the PGS-R as the independent variable and
the DLD status (case vs control) as the dependent variable to test the associations between genetic
risk of rhythm impairment and DLD status. Sex and the first 10 PCs were used as covariates. For
this analysis, I z-scored (standardised) the following variables: the PGS-R scores (z-scored within
each ancestry group), and the PC values, prior to building the regression model. Based on the
observation that children with DLD have rhythm impairments, we hypothesized that genetic risk of

rhythm impairments would be associated with DLD cases, rather than with controls. That is, DLD

cases would have lower PGS-R as compared to the controls.
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Heritability of DLD in EHRs classified by APT-DLD.

Though the sample size of DLD EHRs determined from BioVU by APT-DLD is quite
small to conduct a well-powered GWAS to study identify genetic variants associated with DLD, we
used the Genome-based restricted maximum likelihood (GREML) analysis from the Genome-wide
Complex Trait Analysis Tool (GCTA) to calculate the SNP-based heritability of DLD in BioVU
(Yang et al., 2011). SNP-based heritability is the proportion of variance in the phenotype that is
explained by all the SNPs. Estimating heritability can help us better understand the extent to which
genetic variation influences the measured phenotype. GREML analysis occurs in two steps — the
first is the calculation of a genetic relationship matrix (GRM) which estimates the relatedness
between in the individuals based on the SNPs. The second step is the calculation of the SNP-based
heritability from the GRM. Thus, the SNPs used to calculate the GRM are used to inform the
genetic variance. I used a 7% DLD prevalence (Tomblin et al., 1997), sex, and the top 3 PCs as

covariates during the GREML analysis.

Aim 3b. Testing Cross-Trait Genetic Correlations using Results from Phenotype
Enrichment Analysis
Phecode Enrichment Analysis to ldentify Comorbid Phenotypes

Cohort Selection Using APT-DLD. In addition to applying APT-DLD to BioVU, we also
classified a cohort of DLD cases that contained exclusively phenotypic data by applying APT-DLD
to the Synthetic Derivative (SD). The SD is the EHR system at Vanderbilt University Medical
Centre which contains over 3.1 million records. EHR information in the SD includes a de-identified
patient ID, demographic information like age, sex, ethnicity, and clinical information including
medications, lab values, test results, procedural and surgical codes, and ICD9 and 10 diagnostic and

billing codes.
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Cases. Application of the Broad Search of the APT-DLD algorithm helped select a pool of
13,652 paediatric EHRs, that met all the Broad Search criteria. Application of the APT-DLD code-
filters finally classified 6013 EHRs as DLD cases. This case set of 6013 patients were then mapped
to their phecodes exclusively from the ICD-9 codes in their EHR (excluding ICD-10 records).

Controls. We selected controls from a pool of 700,000 patients with available demographic
and phecode record sets (phecode records were similarly only mapped from ICD-9 records)
randomly selected from the SD. Controls were selected to match the identified case-set, based on
ethnicity, race, age (within 5 years of matched case), and number of clinical visits (control clinical
visit count must be within 20 visits of matched case). Up to five controls were selected for each case.
Cases unable to be matched to a single control based on above criteria were removed from this
study. Following control selection, 5273 cases and 26,353 controls were selected for the phecodes
enrichment analysis. Control selection was conducted using the python-based control matching

software developed by D. Shaw.

Phenotype Enrichment Results. Using the Phecode-enrichment algorithm (Pruett et al.,
2021) developed by the Below Lab, we ran a large-scale comorbidity analysis in this large sample of
classified DLD cases and controls from the SD, to assess phecodes/phenotypes that are more
enriched in the DLD population as compared to matched controls. This methodology is useful for
exploring replication of previously described DLD comorbidities and as well as identification of
novel phenotypic associations. Through the comorbidity analysis, we identified 37 unique phecodes
enriched in our DLD cohort as compared to their matched controls. The phecode enrichment
analyses were conducted by D. Shaw, and the manuscript elucidating the results from this study is

under preparation (Shaw et al., in preparation).
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GWAS Selection

Using the phecodes identified via the phenotype-enrichment analysis, and through a
literature survey of comorbidities associated with DLD, I curated list of traits that are known
comorbidities of DLD. Using this list of traits, I identified well-powered, publicly available GWAS
summary statistics related to these traits in order to conduct cross-trait PGS analyses with our DLD
cohort identified from BioVU. This method is designed to explore the possibility of shared genetic
variation between DLD and other traits. The traits used for this analysis are tabulated below in

Table 4.2.
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Table 4.2: Details of the GWAS’ Used in the Cross-Trait Analysts

GWAS name Phenotype N PMID/Link Phenotype coding in
Measured (GWAS) primary GWAS
Depressive Depressive 1,067,913 30643256 Higher score
symptoms Symptoms indicates increased
depressive symptoms
Anxiety/tension  Anxiety (ot 270,059 30867560 Higher score
anxious indicates more
symptoms) anxiety
ADHD Attention 55,374 30478444 Positive scotre
Deficit indicates presence of
Hyperactivity ADHD
Disorder
Insomnia Insomnia 386,533 30804565 Positive score
indicates presence of
insomnia
Educational Number of 766,345 30038396 Higher score stands
attainment (EA) years of for more years of
schooling schooling
Processing Reaction time 330,024 32895543 Higher score
speed (perceptual indicates worse
motor speed) performance
Usual Walking ~ Usual walking 384,081 31427789 Higher score signifies
Pace pace faster walking pace
Musculoskeletal — Grip strength 359,729 http://www.nealelab.is/uk- Higher score signifies
strength of right hand biobank greater grip strength
Genotyping and QC

The genotyping and QC for the DLD cases and matched controls is described in the

methods for Aim 3a.
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Polygenic Score Generation

Using the GWAS summary statistics for each of the traits in Table YYY above as the
primary trait GWAS’, I used the PRS-CS software (Ge et al., 2019) to generate a polygenic model of
each individual trait. I applied the polygenic models of each trait to the DLD cases and controls, to
generate a separate PGS for each sample for each trait. For details of the PGS generation please
refer to Chapter 3. I also ensured that the distributions of each of the PGSs for the sample are not

affected by outliers.

Analysis

I performed a series of logistic regression analysis using the various PGSs as the independent
variable and DLD status (case vs control) as the dependent variable to test the associations between
genetic risk of DLD-associated comorbidities and presence of DLD. Sex and the first 10 PCs were
used as covariates. For this analysis, I z-scored (standardised) the following variables: the PGS scores
(z-scored within each ancestry group) and the PC values, prior to building the regression model.
After generation of the PGSs for each trait, I plotted the distribution of the scores grouped by
genetic ancestry to ensure there were no ancestry-dependent outliers. These exploratory cross-trait
analyses could yield insight into the overlapping genetic architecture between the comorbidities of

DLD and DLD itself.

Aim 3c. Using the Atypical Rhythm Risk Hypothesis to Predict Prevalence of Speech-
Language Symptoms
Cohort Selection tn eMERGE using 1CD inclusion and exclusion codes.

The eMERGE (Electronic Medical Records and Genomics) network is a consortium

organized and funded by the National Human Research Institute, between the EHR and
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biorepositories of 12 medical and academic research across the United States. This network was
founded for the express purpose of combining EHR and biorepository resources to allow
collaborating researchers to conduct high-throughput genetic and phenotype-based studies.
eMERGE Phase III data grants access to the de-identified medical records and genetic information
of 105,008 participants. Collaborators receive eMERGE samples with imputed genotyped variants in
VCF files by chromosomes (imputed to HRC 1.1 b37/hg19), PCA results with ancestry assighment,
IBD results, imputed R* metrics, demographic files, and medical records in the form of ICD 9 and
10 codes for every eMERGE participant. We applied APT-DLD to the eMERGE database and
sought to increase the size of our DLD sample. However, there is an abundance of adult EHRs as
compared to paediatric EHRs in eMERGE and further, several eMERGE paediatric records are
genotyped for disorders that were part of our exclusion criteria. As a result, we could not classify
sufficient DLD EHRs from eMERGE. We decided to expand our definition to include paediatric
EHRs that have symptoms of all types of speech and language disorders and explore the polygenic
architecture of speech-language symptomology.

Cases. We used a combination of 25 ICD codes as inclusion criteria and 94 ICD codes as
exclusion criteria to select a pool of possible cases to which I then applied an age filter to exclude
non-paediatric records who received an inclusion code after the age of 18. Thus, we identified a set
of 3241 paediatric cases that met the broadest definition of developmental speech language

symptoms. Table 4.3 lists the complete inclusion and exclusion criteria for cases.
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Table 4.3: List of ICD 9 and 10 Codes used as Inclusion and Exclusion Criteria for eMERGE

Cases
ICD Code ICD Flag Code Description
315.0 9 Developmental reading disorder
315.00 9 Developmental reading disorder, unspecified
315.01 9 Alexia
315.02 9 Developmental dyslexia
315.09 9 Other specific developmental reading disorder
315.2 9 Other specific developmental learning difficulties
315.3 9 Developmental speech or language disorder
315.31 9 Expressive language disorder
315.32 9 Mixed receptive-expressive language disorder
315.34 9 Speech and language developmental delay due to hearing loss
315.35 9 Childhood onset fluency disorder
315.39 9 Other developmental speech or language disorder
315.4 9 Developmental coordination disorder
F81.0 10 Specific reading disorder
F81.89 10 Other developmental disorders of scholastic skills
F81.81 10 Disorder of written expression
F80.1 10 Expressive language disorder
F80.2 10 Mixed receptive-expressive language disorder
F80.4 10 Speech and language development delay due to hearing loss
F80.81 10 Childhood onset fluency disorder
F80.0 10 Phonological disorder
F80.89 10 Other developmental disorders of speech and language
F82 10 Specific developmental disorder of motor function
H93.25 10 Central auditory processing disorder
R48.0 10 Dyslexia and alexia
Q90 10 Down syndrome
Q90.0 10 Trisomy 21, nonmosaicism (meiotic nondisjunction)
Q90.1 10 Trisomy 21, mosaicism (mitotic nondisjunction)
Q90.2 10 Trisomy 21, translocation
Q90.9 10 Down syndrome, unspecified
Q91 10 Trisomy 18 and Trisomy 13
Q91.0 10 Trisomy 18, nonmosaicism (meiotic nondisjunction)
QI1.1 10 Trisomy 18, mosaicism (mitotic nondisjunction)
Q91.2 10 Trisomy 18, translocation
Q91.3 10 Trisomy 18, unspecified
Q91.4 10 Trisomy 13, nonmosaicism (meiotic nondisjunction)
Q91.5 10 Trisomy 13, mosaicism (mitotic nondisjunction)
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QI1.6
Q91.7

Q92

Q92.0
Q92.1
Q92.2
Q92.5
Q92.6
Q92.61
Q92.62
Q92.7
Q92.8
Q92.9

Q93

Q93.0

Q93.1
Q93.2
Q93.3
Q93.4
Q93.5
Q93.7
Q93.8
Q93.81
Q93.88
Q93.89
Q93.9

Q95
Q95.0

Q95.1
Q95.2
Q95.3
Q95.5
Q95.8
Q95.9

Q96
Q96.0

10
10

10

10
10
10
10
10
10
10
10
10
10

10

10

10
10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10

Trisomy 13, translocation
Trisomy 13, unspecified
Other trisomies and partial trisomies of the autosomes, not
elsewhere classified
Whole chromosome trisomy, nonmosaicism (meiotic
nondisjunction)
Whole chromosome trisomy, mosaicism (mitotic nondisjunction)
Partial trisomy
Duplications with other complex rearrangements
Marker chromosomes
Marker chromosomes in normal individual
Marker chromosomes in abnormal individual
Triploidy and polyploidy
Other specified trisomies and partial trisomies of autosomes
Trisomy and partial trisomy of autosomes, unspecified
Monosomies and deletions from the autosomes, not elsewhere
classified
Whole chromosome monosomy, nonmosaicism (meiotic
nondisjunction)
Whole chromosome monosomy, mosaicism (mitotic
nondisjunction)
Chromosome replaced with ring, dicentric or isochromosome
Deletion of short arm of chromosome 4
Deletion of short arm of chromosome 5
Other deletions of part of a chromosome
Deletions with other complex rearrangements
Other deletions from the autosomes
Velo-cardio-facial syndrome
Other microdeletions
Other deletions from the autosomes

Deletion from autosomes, unspecified
Balanced rearrangements and structural markers, not elsewhere
classified

Balanced translocation and insertion in normal individual
Chromosome inversion in normal individual
Balanced autosomal rearrangement in abnormal individual
Balanced sex/autosomal rearrangement in abnormal individual
Individual with autosomal fragile site
Other balanced rearrangements and structural markers
Balanced rearrangement and structural marker, unspecified
Turnet's syndrome
Karyotype 45, X
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Q96.1
Q96.2
Q96.3

Q96.4
Q96.8
Q96.9

Q97
Q97.0
Q97.1
Q97.2
Q97.3
Q97.8
Q97.9

Q98
Q98.0

Q98.1
Q98.3
Q98.4
Q98.5
Q98.6
Q98.7
Q98.8
Q98.9
Q99
Q99.0
Q99.1
Q99.2
Q99.8
Q99.9
758
758
758.1
758.2
758.3
758.31
758.32
758.33
758.39

10
10
10

10
10
10

10
10
10
10
10
10
10

O O O O O O O O Y

Karyotype 46, X iso (Xq)
Karyotype 46, X with abnormal sex chromosome, except iso (Xq)

Mosaicism, 45, X/46, XX or XY
Mosaicism, 45, X/other cell line(s) with abnormal sex
chromosome

Other variants of Turner's syndrome

Turnet's syndrome, unspecified
Other sex chromosome abnormalities, female phenotype, not
elsewhere classified

Karyotype 47, XXX
Female with more than three X chromosomes
Mosaicism, lines with vatious numbers of X chromosomes
Female with 46, XY karyotype
Other specified sex chromosome abnormalities, female phenotype

Sex chromosome abnormality, female phenotype, unspecified
Other sex chromosome abnormalities, male phenotype, not
elsewhere classified

Klinefelter syndrome karyotype 47, XXY
Klinefelter syndrome, male with more than two X chromosomes
Other male with 46, XX karyotype
Klinefelter syndrome, unspecified
Karyotype 47, XYY
Male with structurally abnormal sex chromosome
Male with sex chromosome mosaicism
Other specified sex chromosome abnormalities, male phenotype
Sex chromosome abnormality, male phenotype, unspecified
Other chromosome abnormalities, not elsewhere classified
Chimera 46, XX /46, XY
46, XX true hermaphrodite
Fragile X chromosome
Other specified chromosome abnormalities
Chromosomal abnormality, unspecified
Chromosomal anomalies
Down's syndrome
Patau's syndrome
Edwards' syndrome
Autosomal deletion syndromes
Cri-du-chat syndrome
Velo-cardio-facial syndrome
Other microdeletions

Other autosomal deletions
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758.4 9 Balanced autosomal translocation in normal individual
758.5 9 Other conditions due to autosomal anomalies
758.6 9 Gonadal dysgenesis

758.7 9 Klinefelter's syndrome

758.8 9 Other conditions due to chromosome anomalies
758.81 9 Other conditions due to sex chromosome anomalies
758.89 9 Other conditions due to chromosome anomalies
758.9 9 Conditions due to anomaly of unspecified chromosome

Note. ICD = International Classification of Diseases

Controls. To select controls, we first identified a large cohort of possible controls which
met the following criteria: i. absence of speech and language symptoms, ii. absence of the 94 ICD
exclusion codes iii. absence of a secondary list of 87 ICD exclusion codes (Table 4.4). We
ascertained a cohort of 82617 EHRs from which we selected matched controls for our cases.
Control matching was performed using a python-based software developed by D. Shaw from the
Below Laboratory. Controls were matched on assigned sex, assigned genetic ancestry, and site of
genotyping. We identified 9307 matched controls, with 44 cases that could not be matched to

controls. Demographic information for the cases and controls is shows in Table 4.5
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Table 4.4: List of ICD 9 and 10 Codes used as Control Specific Exclusion Criteria for e MERGE

Cases
ICD Code  ICD Flag Code Description
F70 10 Mild intellectual disabilities
F71 10 Moderate intellectual disabilities
F72 10 Severe intellectual disabilities
F73 10 Profound intellectual disabilities
F78 10 Other intellectual disabilities
F79 10 Unspecified intellectual disabilities
H90 10 Conductive and sensorineural hearing loss
H90.0 10 Conductive hearing loss, bilateral
Conductive hearing loss, unilateral with unrestricted hearing on the
H90.1 10 contralateral side
Conductive hearing loss, unilateral, right ear, with unrestricted hearing
H90.11 10 on the contralateral side
Conductive hearing loss, unilateral, left ear, with unrestricted hearing
H90.12 10 on the contralateral side
H90.2 10 Conductive hearing loss, unspecified
H90.3 10 Sensorineural hearing loss, bilateral
Sensorineural hearing loss, unilateral with unrestricted hearing on the
H90.4 10 contralateral side
Sensorineural hearing loss, unilateral, right ear, with unrestricted
H90.41 10 hearing on the contralateral side
Sensorineural hearing loss, unilateral, left ear, with unrestricted
H90.42 10 hearing on the contralateral side
H90.5 10 Unspecified sensorineural hearing loss
H90.6 10 Mixed conductive and sensorineural hearing loss, bilateral
Mixed conductive and sensorineural hearing loss, unilateral with
H90.7 10 unrestricted hearing on the contralateral side
Mixed conductive and sensorineural hearing loss, unilateral, right ear,
H90.71 10 with unrestricted hearing on the contralateral side
Mixed conductive and sensorineural hearing loss, unilateral, left ear,
H90.72 10 with unrestricted hearing on the contralateral side
H90.8 10 Mixed conductive and sensorineural hearing loss, unspecified
Conductive 