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CHAPTER I 
 

I. INTRODUCTION 
 
 

A systems biology approach to understanding biological systems 
 
Organisms are made up of diverse elements (genes, proteins, and metabolites) that are 

controlled by a complex network of interactions. These individual living systems are able 

to react to stimuli, grow, develop, and reproduce over time (Stelling et al., 2004). Signal 

transduction in biological pathways or networks that associate different factors of living 

systems are not stationary, rather, they are continuously evolving to adapt to internal and 

environmental changes over time. The traditional perspective (reductionist approach) on 

biological systems has addressed the study of living organisms by focusing on isolated 

components instead of the complex system as a whole (Tavassoly et al., 2018). This 

consists of breaking a large system into different parts and identifying the connections 

between these them, with the assumption that molecular structures and their interactions 

provide enough explanation to understand the whole system (Jensen, 1998; Mayer et al., 

2012). These approaches have successfully identified and characterized biological 

systems and the availability of such multiscale information has catalyzed the formation of 

systems biology. 

Systems biology is an integrative holistic approach that connects the molecular 

components within a single biological scale and among different scales using a range of 

experimental and computational methodologies to decode information flow from genes, 

proteins, and other subcellular components of signaling, to control function (Aldridge et 

al., 2006; Ashyraliyev et al., 2009; Chen et al., 2010). A systems level understanding of 
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a biological system can be understood using four key properties: i) Systems structures, 

which include the networks of interactions and mechanisms in biochemical pathways, ii) 

System dynamics, the changes of a system’s behavior over time using dynamical analysis 

methods, iii) The control method, including mechanisms used to control cell state that can 

be modulated to provide potential targets for treatments, and iv) The design method, 

approaches used to design and construct biological systems (Kitano, 2002). The tools 

used in systems biology lead to discoveries at various scales of biological organization. 

Systems biology forms a cyclic process of: i) Experimental design, leading to new insights 

and questions in biology that are processed using, ii) Technologies, that generate data 

used to formulate conceptual ideas and models, and iii) Computation, through 

mathematical formalisms to build mechanistic understanding with new biological insights 

and hypotheses that drive back to new biological questions and experimental designs 

(Figure 1). These discoveries are basic building blocks for future advances in medicine, 

with promise of leading to precision and individualization of treatment.  

Top-down and Bottom-up approaches to studying multiscale systems  
 
Historically, systems biology has focused on studying cells, tissues, and organ systems 

as complex biological systems (Jensen, 1998). The rapid development of -omics and 

sequencing technologies has led to the uncovering of big datasets of basic components 

that form these complex systems (Ideker et al., 2001; Lander et al., 2001). In comparison, 

one way to think of systems biology is to understand the broader perspective of 

physiology. Physiology describes functions in cells, tissues and organ systems using 

largely phenomenological approaches (to describe, understand, and interpret the 

meanings of a particular study), while systems biology integrates molecular  
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Figure 1: Systems biology approach to understanding biological systems. Workflow 
of systems biology approach, from experimental design and analysis, mathematical 
modeling and analysis, and hypothesis formation and future experimental studies.  
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biology, and biochemistry of molecular components, interactions, and their dynamics to 

understand how physiological functions arise and are controlled (Tavassoly et al., 2018). 

Data integration is core to systems biology, treating the multiple components of 

interactions as a single system. This integration can be applied at a single scale (i.e. the 

cellular level) to provide new systems-level insights, but can also be used to decode 

complex phenotypes at different scales. For example, systems biology can be used to 

study the evolution of cells and cell survival from a normal cell that becomes cancerous. 

This involves interactions among molecular components at the cellular level. At the same 

time, systems biology can be used to integrate the interactions among cells that can 

develop into tumors. In this systems-level view, as the organizational level of a system 

increases, new characteristics and capabilities arise (Iyengar et al., 2012; Kitano, 2002). 

These multiscale systems can be studied using two main approaches: Bottom-up and 

Top-down, both with their respective advantages and disadvantages (Figure 2).  

Top-down systems biology is an approach to characterize cellular interactions 

using global data collected from -omics experiments in combination with modeling 

(Carrera and Covert, 2015; Karr et al., 2015). These models are often phenomenological 

and serve to discover new insights into the molecular network being studied. This 

provides a “big picture” of the system, which can be comprehensive and integrative. 

Interactions among different elements are often defined by correlation and the complexity 

of these biological systems does not always allow one to make causal (underlying) 

inferences (Bruggeman and Westerhoff, 2007). Alternatively, Bottom-up systems biology 

does not start with collection of data, but with a detailed model of a molecular network 

built based on its molecular properties (Carrera and Covert, 2015; Karr et al., 2015). This  
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Figure 2: Top-down and Bottom-up approach to systems biology. Methods used in 
Top-down and Bottom-up approaches connecting to the cyclic process of understanding 
mechanisms of multiscale systems within systems biology. 
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approach can provide mechanistic insights into how different elements work together to 

form a system. 

These molecular networks can be quantitatively studied leading to predictive 

models that can be used to identify potential targets for further investigation and 

intervention. These approaches have been integrated to further research and knowledge 

achieved by the synergistic use of models and experimental data. In addition, this 

complexity motivates the necessity towards comprehensive models of cells that can 

represent all aspects of cell biology, reflecting the dynamic and multiscale information 

and systems understanding such as gene networks, metabolic networks, and protein 

signaling networks, more commonly known as whole-cell modeling (Singla and White, 

2021). 

Whole-cell modeling approach to studying multiscale systems  
 
An integrative approach to modeling that combines diverse mathematical and 

computational tools and methods can enable the simultaneous inclusion of fundamentally 

different cellular processes and experimental measurements. Understanding how 

complex phenotypes arise from individual molecules and their interactions is a primary 

challenge in biology that these approaches are primed to tackle. Utilizing both Top-down 

and Bottom-up approaches and integrating multiscale axes of data integration, we 

progress towards whole-cell modeling, to integrate the different subdisciplines of biology 

to generate more accurate, complete models of cells (Figure 3). Whole-cell modeling 

efforts will provide new opportunities for investigating how different cellular systems work 

together, how they are dysregulated in cancer and diseases, and will provide a path for 

generating and testing new hypotheses for drugs and therapeutic targets. The first whole- 
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Figure 3: Process of whole-cell modeling. Schematic workflow to whole-cell modeling, 
including the experimental design and collection of data, building associated networks 
from experimental data, combined to incorporate into a whole-cell model.  
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cell model (Karr et al., 2018) was developed to study the life cycle of human pathogen 

Mycoplasma genitalium, which was considered a “first draft” for whole-cell modeling work. 

The goal of their work was to develop this comprehensive model in a reduced system 

before proceeding to more complex organisms. However, there were great limitations in 

the range of experimental techniques available to study this organism, and as a result, 

much of the data used to build and validate the model was obtained from other organisms 

(Karr et al., 2015; Singla and White, 2021). 

So why build whole-cell models? Whole-cell modeling integrates heterogenous 

datasets (both quantitative and qualitative), aids to identify gaps in knowledge which can 

drive hypothesis predictions that can further experimental design to predict complex 

phenotypes. This ultimately serves as a foundational platform for interpreting complex 

behaviors and facilitate discovery across a multitude of medial, research and 

biotechnological applications (Carrera and Covert, 2015). The holy grail of whole-cell 

modeling is to develop a whole cell model of human cells, detailing the multiscale levels 

across metabolites, genes, and proteins, all the way up to the complex phenotypes. 

Personalized medicine is the future direction of healthcare and systems biology serves 

as the enabling force (Figure 4). Bridging the gap between experimental studies and 

computational tools and technologies through whole-cell modeling will be the driving force 

to achieve these goals (Alyass et al., 2015; Chen and Snyder, 2012). One barrier to 

overcome is connecting numerous signaling pathways that are known to be interrelated 

through signaling crosstalk, yet the complexity of the underlying biochemistry has made 

it difficult to explain through experimental studies alone (Aldridge et al., 2006; Chen et al., 

2010; Kolczyk and Conradi, 2016).  
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Figure 4: Towards precision medicine with whole-cell modeling. The fundamental 
goal of whole-cell modeling, to identify and characterize expression profiles in humans, 
using whole-cell modeling to individualize treatment.  
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Summary and Study Aims 
 
As the field of systems biology progresses towards whole-cell modeling, and we develop 

new technologies and computational tools for studying biological systems, our current 

understanding of the cellular and molecular mechanisms that regulate cell fate decisions 

will expand. There has been a lot of progress building and encoding individual models of 

cell fate decisions in human cells including, but not limited to, cell death by apoptosis 

(Albeck et al., 2008), cell survival by NF-kappaB (Kearns et al., 2006; Metzig et al., 2020; 

Nelson et al., 2004), angiogenesis (Rohrs et al., 2020; Song and Finley, 2020), and 

pathogenesis (Mortlock et al., 2021). To address this, we take a systems biology 

approach to study two model systems, integrating both Top-down and Bottom-up 

approaches towards the whole-cell modeling effort, to build and encode two models that 

are both fundamental to cancer and disease: programmed cell death pathway, 

necroptosis (Cho, 2018; Molnár et al., 2019), and the Notch signaling pathway (Allen and 

Maillard, 2021; Aster et al., 2017). 

While it is well established that necroptosis and Notch signaling regulates a 

plethora of biological processes that affect cancer and disease, studies have also shown 

both pathways to execute cell fate decisions in a context-dependent manner. In 

necroptosis, it is well known that a core axis of modulators, RIP1-RIP3-MLKL are central 

to necroptosis. However, even when cells express these core mediators, there is 

substantial variability in their ability to under-go MLKL-mediated cell death. This is likely 

related to the plethora of modulators that tune signaling along the core necro-ptotic axis, 

and the mechanisms explaining this variability remain unclear. Moreover, the role of 

Notch signaling in SCLC is more complex due to the cell-cell communication and diversity 
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of four ligands and receptors that is hypothesized to execute in a context-dependent 

manner.  

 In Chapter II, we characterize context-dependent mechanisms of necroptosis 

signaling through a bottom-up mechanistic development of the first biochemical 

necroptosis model and identify distinct execution modes to explain cell-type specific 

responses and variability in TTD. We also establish roles for CYLD and A20 response 

differentially driven within each mode to regulate RIP1 ubiquitination towards time to cell 

death execution. In Chapter III, we explore the role of the Notch signaling pathway using 

bulk and single-cell data from SCLC human tumors and cell lines to investigate the 

differential expression of Notch ligands, receptors, and downstream targets across SCLC 

subtypes. We use a top-down data integration approach to further our development of 

our mechanistic model of Notch in SCLC. Chapter IV describes the materials and 

research methods used in the studies in Chapters II and III. Finally, Chapter V discusses 

the overall conclusions and future implications of this work.   
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CHAPTER II 
 

II. DISTINCT EXECUTION MODES OF A BIOCHEMICAL NECROPTOSIS MODEL 
EXPLAIN CELL TYPE-SPECIFIC RESPONSES AND VARIABILITY TO CELL-DEATH 
CUES 
 
The work presented in this chapter is published and adapted from (Ildefonso et al., 2022): 

Geena V Ildefonso, Marie Oliver Metzig, Alexander Hoffmann, Leonard A Harris, Carlos 

F Lopez. Distinct execution modes of a biochemical necroptosis model explain cell type-

specific responses and variability to cell-death cues. bioRxiv 2022. 

https://doi.org/10.1101/2022.02.25.481705. 
 
 

INTRODUCTION 
 

Understanding cellular response in cell death and disease 
 

Cells respond to stress in a variety of ways, ranging from activation of pathways promoting 

cell survival to eliciting programmed cell death  (PCD; Vanden Berghe et al., 2015; 

Nikoletopoulou et al., 2013; Sevimoglu and Arga, 2014). Cell death is a crucial process 

in cellular homeostasis, with over 100 billion cells dying in the human body by different 

cell death pathways each day (Belizário et al., 2015). Apoptosis has been widely 

recognized as the primary form of programmed cell death, characterized by the 

dismantling of the cell into apoptotic bodies that can be easily processed by the immune 

system (Vanden Berghe et al., 2015). Conversely, necroptosis is an alternative form of 

programmed cell death in which the cell membrane is ruptured, leading to immune 

response activation (Aldridge et al., 2009; Degterev et al., 2005). Various human 

diseases, including neurodegenerative disorders, cardiovascular diseases, infections, 

and cancer (Figure 5), have been associated with necroptosis (Vanlangenakker et al., 

2012). Induction of necroptosis is also currently being explored as an alternative anti-  
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Figure 5: Importance of necroptosis in health and disease. Necroptosis is involved in 
a verity of diseases, including neurodegenerative diseases, renal diseases, liver 
diseases, cancers, infections, cardiovascular diseases, pulmonary diseases, and joint 
diseases. 
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cancer therapy, since apoptosis resistance is a hallmark of cancer (Hanahan and 

Weinberg, 2000, 2011). 

The identification of crucial signaling and execution molecules, which are highly 

regulated, revealed that necroptosis encompasses several cell death modalities that can 

be therapeutically targeted (Basak and Hoffmann, 2008). The discovery of necroptosis 

has overturned the traditional belief that necrosis is a passive process caused by 

overwhelming stress and demonstrated that targeting necroptosis for treatment of human 

disease, such as neurodegenerative diseases and cancer is a promising avenue 

(Vanlangenakker et al., 2012). Additionally, in the case of apoptotic resistant cells, 

necroptosis has been seen as a potential "back up" form of cell death. Many questions 

concerning the crosstalk among the cell death regulators, their intracellular pathways, and 

the immunological consequences remain unanswered. Triggering necroptosis is also 

being considered as a potential anticancer treatment (Nikoletopoulou et al., 2013; Shih et 

al., 2017). Therefore, a mechanistic understanding of necroptosis execution would be 

highly desirable to accelerate progress in the field.  

 
TNF-induced necroptosis  
 
The best-characterized inducers of necroptosis are death receptor ligands, in particular, 

tumor necrosis factor (TNF; Moriwaki et al., 2015; Werner et al., 2008). TNF is a known 

master regulator of inflammation and cell death and has been at the forefront of many 

fundamental developments in cell biology that focus on the molecular interplay between 

death and survival signaling pathways (Figure 6; Liu et al., 2016; Vanlangenakker et al., 

2011a). To date, studies have explored TNF-induced necroptosis in L929 cells (Vanden 

Berghe et al., 2015; Horn and Jackson, 1972; Schulz et al., 2006), a murine fibrosarcoma 
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cell line commonly used as a necroptosis execution model (Vanlangenakker et al., 

2011a). However, other cell types including HEK293T, MEFs, HeLa, HT22, and JURKAT 

have also been shown to execute TNF-induced necroptosis (He and Ting, 2002; Lu et al., 

2013; Vanlangenakker et al., 2011a; Wright et al., 2007). In all these cell types, the core 

necroptosis execution pathway is stimulated with TNF, following downstream activation 

of complex I & II, transduced by kinase activities of receptor interacting protein kinase-1 

(RIP1), which undergoes ubiquitination, deubiquitination and downstream 

phosphorylation by receptor interacting protein kinase-3 (RIP3), eventually leading to the 

phosphorylation and activation of mixed lineage kinase domain like protein (pMLKL) and 

plasma membrane permeabilization (Zhou and Yuan, 2014a). Although many of the 

primary molecular species involved in necroptosis have been identified, including these 

core necroptosis mediators, RIP1, RIP3, MLKL, they are variably expressed by different 

cell types (He et al., 2009; Murphy et al., 2013; Vanlangenakker et al., 2012; Xu et al., 

2018).  

A recent review of TNF-induced necroptosis signaling (Samson et al., 2021) 

evaluated the chronology of signaling along the RIP-RIP3-MLKL axis and proposed that 

a network of modulators surrounds the necroptotic signaling core, tuned in a context-, cell 

type-, and species-dependent manner. For instance, even when cells express all core 

mediators of necroptosis, there is substantial variability in their ability to undergo MLKL-

mediated cell death (Murphy et al., 2013; Najafov et al., 2019; Sai et al., 2019). As 

emphasized above, this is likely due to a plethora of modulators that tune signaling along 

the core necroptotic axis. Collectively, these studies highlight that the mechanisms that 

modulate necroptosis are not conserved across all cell types.  
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Figure 6: Signaling pathways after stimulation of TNF. Upon binding to its receptor, 
TNFR1, several proteins are recruited to form complex I, including TRADD, RIP1, TRAF2, 
and cIAP. Upon ubiquitination of RIP1 by cIAP, signaling will activate the inflammation 
and survival pathway by NF-kappaB. Alternatively, if RIP1 is deubiquitinated by CYLD or 
A20, complex II is formed. The association of FADD and C8 signals towards apoptosis, 
while the recruitment of RIP3, recruits MLKL, resulting in necroptosis.   
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The molecular mechanisms that control necroptosis execution from a systems 

perspective to understanding necroptosis across cell types remains to be elucidated. This 

is not due to a lack experimental effort, but rather due to the complexity associated with 

complex regulatory signaling processes and their associated complexity underlying 

biochemical interaction networks. 

Prior studies (Choi et al., 2019; Hitomi et al., 2008; Lork et al., 2017; Moquin et al., 

2013; Sun, 2020; Vanlangenakker et al., 2011b; Wertz et al., 2004; Zhou and Yuan, 

2014b) of necroptosis also identified multiple mechanisms of ubiquitination regulation, 

including K63, K48, and M1 chains, which lead to phosphorylation of RIP1 and RIP3, 

phosphorylation and activation of cell death marker MLKL (Zhou and Yuan, 2014b), and 

plasma membrane permeabilization resulting in cell death (Samson et al., 2020). The 

K63-specific deubiquitinase CYLD (cylindromatosis lysine 63 deubiquitinase; Simonson 

et al., 2007) and the ubiquitin-editing enzyme A20 (tumor necrosis factor, alpha-induced 

protein 3; Sun, 2020) are both known to mediate deubiquitination of RIP1, which precedes 

RIP1 phosphorylation, by cleaving K63 ubiquitin chains and facilitating the formation of 

complex II (Choi et al., 2019; Hitomi et al., 2008; Lork et al., 2017; Moquin et al., 2013; 

Sun, 2020; Vanlangenakker et al., 2011b; Wertz et al., 2004). Therefore, both enzymes 

are generally considered drivers of necroptosis (Vandenabeele et al., 2010a). However, 

CYLD- and A20-driven deubiquitination of RIP1 have been paradoxically reported as pro- 

and anti-necroptotic in different cell types: some studies have shown that CYLD drives 

RIP1 deubiquitination (Kovalenko et al., 2003; Moquin et al., 2013; Simonson et al., 2007; 

Wright et al., 2007), while others have implicated A20 (Gurung et al., 2015; Lu et al., 2013; 

Wertz et al., 2004) or reported equal contributions from both enzymes (Dondelinger et al., 
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2016; Draber et al., 2015; Vanlangenakker et al., 2011a). These varying reports have led 

to unresolved controversies within the field regarding the specific molecular mechanisms 

of complex II formation and subsequent necroptotic cell death (Vanlangenakker et al., 

2012). For example,  repression of CYLD in L929 cells, a murine fibrosarcoma cell line, 

protects from TNF-induced necroptosis but, unexpectedly, A20 repression increases 

sensitivity to necroptosis (Vanlangenakker et al., 2011a). A recent time-resolved analysis 

of necroptosis rates and network components revealed an incoherent feedforward loop 

through which NF-kB and A20 counteract pro-necroptotic signaling in L929 cells (Metzig 

et al., 2020), but it remains unclear how general or cell context-dependent this regulatory 

control of necroptosis is. 

SUMMARY 
 
Here, we present, to our knowledge, the first detailed biochemical model of TNF-induced 

necroptosis. The model is derived from published literature and incorporates known 

biology obtained from decades’ worth of experimental studies (Table 1). We calibrate the 

model to experimental phosphorylated MLKL (pMLKL) time course data from TNF-treated 

mouse fibrosarcoma cells at multiple TNF doses. We then perform a dynamical systems 

analysis that identifies four modes of necroptosis signal execution. In one case, A20 and 

CYLD contribute approximately equally to RIP1 deubiquitination, such that both must be 

knocked out to delay necroptosis induction (knocking out one has no effect, since the 

signal can be rerouted through the other). In another, RIP1 deubiquitination is driven 

exclusively by CYLD, with A20 being effectively inactive. In the other two modes, either 

A20 or CYLD acts as the driver of RIP1 deubiquitination, with the other enzyme, 

counterintuitively, acting to inhibit necroptosis (consistent with the observation by 
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Vanlangenakker et al. (Vanlangenakker et al., 2011a)). We also perform sensitivity 

analyses to identify proteins and kinetic parameters that can be targeted within each 

mode to modulate pMLKL dynamics and time-to-death (TTD) by necroptosis. We find 

that, for two modes, proteins and rate constants centered around RIP1 ubiquitination 

regulation in complex I have the most significant effect on necroptosis execution. For the 

other two, potential targets include factors involved in the balance between complex II 

degradation and necrosome formation. Overall, our results show that a consensus 

pathway model of TNF-induced necroptosis can explain numerous experimentally 

observed behaviors, including conflicting and counterintuitive results from multiple studies 

involving different cell types. Following a detailed description of our proposed model, we 

present results of the parameter calibration, dynamical systems analysis, in silico 

knockout experiments, and sensitivity analyses. We conclude with a discussion of the 

broader implications of our results, including important insights into the molecular 

mechanisms of necroptosis execution and the potential for using the model to identify 

novel pro- and anti-necroptosis therapeutic targets.  
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RESULTS 
 
A biochemical model of TNF-induced necroptosis describes formation of key 
signaling complexes along the path to cell death 
 
The death receptor ligand TNF (Li and Beg, 2000), an extensively studied inducer of 

necroptosis and well-known master regulator of inflammation, has been at the forefront 

of numerous fundamental discoveries concerning the interplay between cell death and 

survival pathways (Vanlangenakker et al., 2011a). Here, we propose a detailed, 

mechanistic model of TNF-induced necroptosis based on an extensive review of the 

literature (Table 1, with references). The model comprises 14 proteins interacting via 40 

reactions (all mass action) to produce 37 biochemical species, including complex I, 

complex II, and the necrosome (Figure 7), three key macromolecular complexes along 
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Table 1: Key proteins involved in necroptosis. 

Protein Role in necroptosis Refs. 

A20  Ubiquitin-editing enzyme responsible for deubiquitinating 
RIP1 in complex I 

(Gurung et al., 2015; Wertz et al., 
2004) 

Caspase
-8  

Heterodimerizes with cFLIPL (long isoform), leading to 
cleavage and inactivation of RIP1 and RIP3 in complex II 

(Feltham et al., 2017; Micheau et al., 
2002) 

cFLIPL  Heterodimerizes with caspase-8, leading to cleavage and 
inactivation of RIP1 and RIP3 in complex II 

(Oberst et al., 2011; Tsuchiya et al., 
2015) 

cIAP1/2 Catalyzes, via its RING domains, the activating K63-linked 
polyubiquitination of RIP1 

(McComb et al., 2012; 
Vanlangenakker et al., 2011a) 

CYLD  Deubiquitinates RIP1 in either complex I or within the RIP1-
RIP3 necrosome 

(Moquin et al., 2013; Simonson et 
al., 2007) 

FADD TNFR1-interacting scaffold protein in complex II (Hsu et al., 1996a; Lawrence and 
Chow, 2005; Vandenabeele et al., 
2010a) 

LUBAC  TNFR1-interacting protein recruited by cIAP1/2 in complex I 
that promotes RIP1 ubiquitination  

(Haas et al., 2009; Vanlangenakker 
et al., 2011a) 

MLKL  Recruited to the necrosome by RIP1, where it is 
phosphorylated, leading to cell death by membrane rupture 

(Grootjans et al., 2017; Sun et al., 
2012; Wegner et al., 2017) 

Pro-
caspase-
8 

Recruited via its death effector domain to complex II and 
cleaved to yield active caspase-8 

(Feltham et al., 2017; Micheau et al., 
2002) 

RIP1 A multifunctional adaptor protein in the necrosome that 
recruits and activates RIP3 and MLKL  

(O’Donnell and Ting, 2011; 
Vandenabeele et al., 2010b; 
Vanlangenakker et al., 2011a) 

RIP3 Recruited to the necrosome by binding to and cross-
phosphorylating RIP1  

(Feng et al., 2007; He et al., 2009; 
Wegner et al., 2017) 

TNF Pleiotropic pro-inflammatory cytokine that activates 
necroptosis in the absence of caspase activity 

(Carswell et al., 1975) 

TNFR1 TNF receptor superfamily member death receptor that 
recruits RIP1 to complex 1 

(Hsu et al., 1996b; Wajant and 
Siegmund, 2019) 

TRADD TNFR1-interacting protein in complexes I and II that serves 
as a docking adaptor for the binding of RIP1 to TRAF2  

(Hsu et al., 1996b; Pobezinskaya 
and Liu, 2012) 

TRAF2 TNFR1-interacting protein that recruits cIAP1/2 to complex I, 
promoting K63-linked RIP1 ubiquitination 

(Hsu et al., 1996a; Wang et al., 
1998) 
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Figure 7: Schematic of the necroptosis execution model. The diagram is color coded 
to highlight the processes involved in formation of complex I, complex II, complex IIa, 
complex IIb, and the necrosome. Arrows are labeled with ‘RN’ or ‘RN-M’, where N and M 
correspond to reaction indices in the model. In many (but not all) cases, ‘RN-M’ denotes a 
set of reversible reactions, with N the index for the forward direction and M for the reverse. 
Created with BioRender.com. 
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the path from cell-death cue to necroptosis execution. Below, we describe in detail the 

steps involved in the formation of each complex, beginning with TNF binding to TNF 

receptor 1 (TNFR1) and ending at phosphorylation of the necroptosis cell death reporter 

MLKL. A model schematic is provided as a visual aid (Figure 7), with reactions, including 

association, dissociation, phosphorylation, ubiquitination, deubiquitination, and 

degradation, denoted as “RN,” where N is the reaction number. Note that protein synthesis 

is omitted from the model because all experiments were performed in the presence of 

cycloheximide, commonly used to sensitize cells to the action of TNF (Wallach, 1984). 

Signaling through the necroptosis pathway is initiated when the cytokine TNF binds 

to the extracellular domain of TNFR1 (R1-2), which protects TNF from degradation (R3) 

and activates the receptor by causing a conformational change in its intracellular domain 

(Van Antwerp et al., 1996; Vanlangenakker et al., 2011a; Wajant and Siegmund, 2019). 

The adaptor protein TRADD (TNFR1-associated death domain) is then recruited to the 

intracellular domain of TNFR1 (R4-5) to facilitate binding of RIP1 (unmodified; R6-7) and 

TRAF2 (TNFR-associated factor 2; R8-9) (Liu et al., 2016; Pobezinskaya and Liu, 2012; 

Zheng et al., 2006).TRAF2 recruits and binds cIAP1/2 (cellular inhibitor of apoptosis 

proteins 1 and 2; R10-11), which then add non-degradative polyubiquitin chains to RIP1 

(R12) (Zhou and Yuan, 2014b). Ubiquitinated RIP1 recruits other necessary components 

to the complex, including LUBAC (linear ubiquitin chain assembly complex; R13-14). We 

refer to the supramolecular structure, which is anchored to the cell membrane and 

composed of TNF, TNFR1, TRADD, ubiquitinated RIP1, TRAF2, cIAP1/2, and LUBAC, 

as complex I (Etemadi et al., 2015; Wallach, 1984) (Figure 7, pink). Biologically, complex 
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I is known to drive multiple pathways in addition to necroptosis, including apoptosis and 

the inflammatory NFkB pathway (Gong et al., 2019). 

Formation of complex I is followed by deubiquitination of RIP1 by the enzymes A20 

(Gurung et al., 2015; Sun, 2020) and CYLD (Kovalenko et al., 2003; Moquin et al., 2013; 

Simonson et al., 2007; Wright et al., 2007), which competitively bind to RIP1 in its 

ubiquitinated state (R15-18), causing cleavage, deubiquitination, and release in association 

with TRADD and the dissolution of complex I (R19-20). The RIP1:TRADD heterodimer then 

recruits FADD (Fas-associated protein with death domain; R21-22), initiating the formation 

of complex II, also known as the cytosolic death-inducing signaling complex (Figure 7, 

orange). Complex II can then be modified via two competing paths, one anti-necroptotic 

and one pro-necroptotic. The anti-necroptotic path involves FADD, via its death effector 

domain, mediating the recruitment of inactive Caspase 8 (C8i; R23-24) (Micheau and 

Tschopp, 2003) which subsequently binds FLIP (cellular FADD-like IL-1β-converting 

enzyme-inhibitory protein; R25-26), resulting in the complex commonly referred to as 

complex IIa (Figure 7, green) (Micheau and Tschopp, 2003; Vanlangenakker et al., 

2011a). FLIP then oligomerizes with C8i to produce active Caspase-8 (C8a; R27-28)  

(Micheau et al., 2002; Tsuchiya et al., 2015) which cleaves RIP1 for truncation (i.e., 

degradation), resulting in dissolution of the complex and release of the active C8a:FLIP 

heterodimer (Feoktistova et al., 2011; McIlwain et al., 2013) (R29) that directly inhibits 

necroptosis (R32-34).  

 
The pro-necroptotic path involves formation of complex IIb (Figure 7, blue), which 

occurs when deubiquitinated RIP1 in complex II recruits RIP3 (receptor-interacting protein 

kinase 3; R30-31), blocking C8i recruitment (R23-24). The C8a:FLIP heterodimer can then 
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be recruited to complex IIb (R32-33), which cleaves RIP1 for truncation, leading to 

dissolution of the complex (R34). Alternatively, RIP3 and deubiquitinated RIP1 can 

dissociate from complex IIb as a heterodimer (R35) (Vanlangenakker et al., 2011a). Cross-

phosphorylation of RIP3 (R36) and then RIP1 (R37), followed by recruitment of MLKL (R38-

39) (Declercq et al., 2009; Moriwaki and Chan, 2013), results in the necroptosis signaling 

complex, known as the necrosome (Figure 7, yellow) (Vanlangenakker et al., 2011a). 

Phosphorylation of MLKL (Sun et al., 2012) in the necrosome by phosphorylated RIP1 

and RIP3 is followed by release of pMLKL from the phosphorylated RIP1:RIP3 

heterodimer (R40), which is again free to bind MLKL. We assume dephosphorylation and 

degradation of the phosphorylated RIP1:RIP3 heterodimer is negligible, consistent with 

experimental reports (Cho et al., 2009). Translocation of pMLKL to the cell membrane 

(Ronan et al., 2016) then causes rapid plasma membrane rupture and inflammatory 

response due to the release of DAMPs (damage-associated molecular patterns) and 

cytokines (Pasparakis and Vandenabeele, 2015), ultimately resulting in cell death.  

Western blots and mass spectrometry enable Bayesian parameter estimation of 
the necroptosis model 
 
To explore the dynamics of our computational necroptosis model, we first calibrated it to 

experimental protein time course data using a Bayesian parameter estimation approach 

(Shockley et al., 2018). Briefly, we used L929 cells, a murine fibrosarcoma cell line that 

is a well-established model system for studying necroptosis (Vanlangenakker et al., 

2011a). Cells were treated with 100, 10, 1, and 0.1 ng/ml of TNF over 16 hours and 

pMLKL levels were estimated at multiple time points via Western blot using Bio-Rad 

(Figure 8A). To quantify initial protein abundances, used as inputs to the model, we used 

label-free mass spectrometry in untreated L929 cells for proteins C8, FADD, MLKL, RIP3,  
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Figure 8: Proteomics, parameter calibration, and quantifying time-to-death. (A) 
Western blots for phosphorylated MLKL (pMLKL) at multiple time points in L929 (murine 
fibrosarcoma) cells under 0.1–100 ng/ml TNF stimulation. Alpha tubulin (a-tub) and actin, 
used as loading controls, are shown for comparison. (B) Mass spectrometry data from 
untreated L929 cells for multiple proteins involved in necroptosis execution. Points 
represent the median of three replicates (used as input to the computational model); error 
bars span the interquartile range. (C) Simulated pMLKL time courses (plotted as 95% 
probability envelopes) for 0.1–100 ng/ml TNF stimulation (same concentrations as in A) 
based on 10,628 parameter sets obtained from Bayesian parameter estimation. The 
model was calibrated to the 100 and 10 ng/ml TNF data only (shaded regions with 
diagonal lines); time courses for the lowest TNF concentrations (shaded regions with no 
diagonal lines) amount to a simple model validation. Points correspond to the Western 
blot data in A, quantified via densitometry. Points and shaded regions are colored the 
same, based on TNF dose. (D) Illustration of the time-to-death (TTD) metric used to 
quantify cell death in silico. A hard threshold of 2,772 molecules (half the median MLKL 
level in B) was chosen to signify cell death (see Materials and Methods). MLKL: mixed 
lineage kinase domain-like protein; TNF: tumor necrosis factor.  
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TRADD, and TRAF2 (Figure 8B). All other initial protein levels (other than TNF, which 

depends on applied dose) were set to values based on biologically plausible assumptions 

(Table 2). Parameter estimation (Figure 9) was then performed using PyDREAM 

(Shockley et al., 2018), a multi-chain Monte Carlo sampling tool, with a multi-objective 

cost function that included data from the two highest TNF doses (100 and 10 ng/ml; Figure 

8C). In all, an ensemble of 10,628 parameter sets and their prior (before fitting) and 

posterior (after fitting) distribution probabilities were obtained (Figure 10), all of which 

reproduce the experimental data reasonably well (Eydgahi et al., 2013). Model 

simulations at the two lowest TNF doses (1 and 0.1 ng/ml; Figure 8C) showed good 

correspondence to experimental data, providing a simple validation of the model fits. 
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Table 2: Initial protein levels used as input to the computational model. Proteins 
shown in bold were either measured by mass spectrometry in this work or, in one case, 
based on applied dose (TNF). Initial amounts for the other proteins were obtained from 
the literature (Hua et al., 2005; Uhlén et al., 2005, 2015). 

Protein Amount 
(molecules) 

Source 

A20 9,075 Calculated 
C8 3,799 This work 
cIAP 8,986 Calculated 
CYLD 9,075 Calculated 
FADD 3,109 This work 
FLIP 3,900 Calculated 
LUBAC 7,226 Calculated 
MLKL (unmod) 5,544 This work 
RIP1 20,044 Calculated 
RIP3  10,654 This work 
TNF* 2,326  This work 
TNFR 4,800 Calculated 
TRADD 4,696 This work 
TRAF2 11,776 This work 
*100 ng/ml   
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Figure 9: Log-likelihood vs. iteration for all five Markov chains used in the Bayesian 
parameter calibration. For each chain, the first 25,000 iterations were discarded 
(considered burn-in), leaving a total of 125,000 parameter sets total, of which 10,628 are 
unique. 
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Figure 10: Distributions of parameter values from Bayesian model calibration. Both 
prior (red) and posterior (blue) distributions are shown.  
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A dynamical systems analysis identifies four distinct necroptosis execution 
modes differing by mechanism of RIP1 ubiquitination regulation 
 
We performed a dynamical systems analysis to explore the possibility that distinct “modes 

of necroptosis execution” exist within the parameter set ensemble obtained from 

Bayesian parameter estimation. The rationale is that while different parameterizations of 

the model achieve cell death at approximately equal times, they may arrive there via 

significantly different sequences of molecular events. We utilized a computational tool 

(Ortega et al., 2021) that identifies subnetworks of reactions that dominate the production 

or consumption of a target species, pMLKL in this case, at user-specified times along a 

time course. Each subnetwork is given an integer label and each time point is associated 

with a subnetwork. Thus, a continuous concentration time course is “digitized” into a 

sequence of integers, which we refer to as a “dynamical signature.” This transformation 

enables simple comparisons between time courses obtained with different parameter sets 

using standard dissimilarity metrics, such as the longest common subsequence (Studer 

and Ritschard, 2016). Applying this approach to all 10,628 parameter sets obtained from 

Bayesian parameter estimation of our necroptosis model and clustering the resulting 

dynamical signatures using a spectral clustering algorithm (Figure 11) (Rokach and 

Maimon, 2005), we obtained four distinct clusters, or modes of necroptosis execution 

(Figure 12A).  
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Figure 11: Silhouette clustering scores for determining the number of modes of 
necroptosis execution. The maximum value is for four clusters. Values were also 
calculated for 11-20 clusters and were all <0.3 (data not shown). 
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Figure 12: Four modes of necroptosis execution exhibit variability in temporal 
dynamics and differ in rate constant values and responses to CYLD and A20 
knockouts. (A) Clustering analysis of simulated time courses (100 ng/ml TNF) from 
10,628 parameter sets reveals four distinct modes of execution (M1, …, M4). Dissimilarity 
(“distance”) between dynamical signatures (digitized time courses) was quantified using 
the longest common subsequence (see Materials and Methods). (B) Simulated time 
courses (100 ng/ml TNF) of the necroptosis marker, phosphorylated MLKL (pMLKL), 
show significantly more variability in time-to-death (TTD; defined as the time at which 
pMLKL reaches its half-maximal value) in modes 1 and 2. Time courses for all parameter 
sets associated with each mode are shown. Experimental Western blot data (black 
circles; quantified from Figure 8A) is included to illustrate the model fit for each mode. 
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Interestingly, two of the execution modes exhibit significantly more variability in 

pMLKL temporal dynamics and TTD (defined in Figure 8D) across their associated 

parameter sets than the other two (Figure 12 B). This suggests the modes harbor 

fundamental differences in rate constant values that lead to differential robustness to 

parameter variations. To explore this further, we compared the distributions of rate 

constants across modes and identified eight (out of 40) with significant differences (>7.5-

fold) between the largest and smallest mean (Figure 13A; additional distributions are 

shown in Figure 14, corresponding descriptions in Table 3). We also consider distributions 

for two rate constants (P12 and P13; parameter indices correspond to reaction indices in 

Figure 7) with much smaller differences across means (~3-fold in both cases) but for 

which the model exhibits high sensitivity (discussed in the next subsection). In all, these 

10 rate constants correspond to reactions spanning the model topology, starting with the 

association of TRADD to complex I (P4), which has a somewhat increased rate in mode 

4. Further downstream, the rate constant for ubiquitination of RIP1 by cIAP (P12) is 

slightly larger in mode 1 than in the other modes. Small differences are also seen for the 

binding rate of LUBAC to complex I (P13). The rate constant for binding of A20 to 

ubiquitinated RIP1 (P15) is significantly smaller in mode 4 than in the other modes and 

somewhat smaller in mode 2 relative to modes 1 and 3. Deubiquitination of RIP1 by A20 

(P19) is significantly reduced in modes 2 and 4, while, interestingly, the rate constant for 

RIP1 deubiquitination by CYLD (P20) in mode 1 is reduced by almost the same amount 

relative to the other modes. For activation/deactivation of C8 in complex IIa, which is a 

critical step in the pathway for determining whether the cell will progress to necroptosis, 

mode 4 has both a significantly larger activation (P27) and significantly smaller  
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Figure 13: Four modes of necroptosis execution exhibit variability in temporal 
dynamics and differ in rate constant values and responses to CYLD and A20 
knockouts. (A) Variations in the values of eight rate constants (PN, where N corresponds 
to the associated reaction index in Figure 7) distinguish the four modes of execution. (B) 
Knockouts of CYLD and A20 (100 ng/ml TNF) differentially affect TTD, relative to wild 
type (WT), across the four modes (each dot corresponds to a parameter set). CYLD/A20 
double knockout inhibits cell death in all cases (TTD = ¥). The number of parameter sets 
that do not result in cell death (n¥) are included for all modes under all conditions. KO: 
knockout; DKO: double knockout. 
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Figure 14: Four modes of necroptosis execution exhibit variability in temporal 
dynamics and differ in rate constant values and responses to CYLD and A20 
knockouts. (A) Clustering analysis of simulated time courses (100 ng/ml TNF) from 
10,628 parameter sets reveals four distinct modes of execution (M1, …, M4). Dissimilarity 
(“distance”) between dynamical signatures (digitized time courses) was quantified using 
the longest common subsequence (see Materials and Methods). 
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Table 3: Parameter values and reaction descriptions. CI: complex I; RIP1-u: 
unmodified RIP1; RIP1-Ub: ubiquitinated RIP1; RIP1-dUb: RIP1 deubiquitinated; C8i: 
inactive C8; C8a: active C8; RIP1p: RIP1 phosphorylation; RIP3p: RIP3 phosphorylation; 
MLKLp: MLKL phosphorylation 

Parameter Reaction Parameter Reaction 

P1 Association of TNF to TNFR P21 Association of FADD to RIP1(dUb):TRADD 
in complex II 

P2 Dissociation of TNF:TNFR P22 Dissociation of FADD from 
RIP1(dUb):TRADD in complex II 

P3 Degradation of TNF P23 Association of inactive C8 (C8i) to FADD in 
complex IIa 

P4 Association of TRADD to complex 
I 

P24 Dissociation of C8i from complex IIa 

P5 Dissociation of TRADD from 
complex I 

P25 Association of FLIP to C8i in complex Iia 

P6 Association of RIP1-u to complex I P26 Dissociation of FLIP from C8i in complex IIa 

P7 Dissociation of RIP1-u from 
complex I 

P27 Activation of C8i:FLIP -> C8a:FLIP 
heterodimer in complex IIa 

P8 Association of TRAF2 to complex I P28 Inactivation of C8a:FLIP -> C8i:FLIP in 
complex IIa 

P9 Dissociation of TRAF2 from 
complex I 

P29 Degradation of RIP1(dUb) by C8a:FLIP in 
complex IIa 

P10 Association of cIAP to complex I P30 Association RIP3 to RIP1(dUb) in complex 
IIb 

P11 Dissociation of cIAP from complex 
I 

P31 Dissociation of RIP3 from RIP1(dUb) in 
complex IIb 

P12 Ubiquitination of RIP1-u by cIAP in 
complex I 

P32 Association of C8a:FLIP to complex IIb  

P13 Association of LUBAC to RIP1-Ub 
in complex I 

P33 Dissociation of C8a:FLIP from complex IIb 

P14 Dissociation of LUBAC from RIP1-
Ub in complex I 

P34 Degradation of RIP1(dUb) by C8a:FLIP in 
complex IIb 

P15 Association of A20 to RIP1-Ub in 
complex I 

P35 Dissociation of RIP1(dUb):RIP3 from 
complex IIb to necrosome 

P16 Dissociation of A20 from complex I P36 Phosphorylation of RIP1(p) by RIP3 in 
necrosome 

P17 Association of CYLD to RIP1-Ub in 
complex I 

P37 Phosphorylation of RIP3 by RIP1(p) in 
necrosome 

P18 Dissociation of CYLD from 
complex I 

P38 Association of MLKL to necrosome 

P19 Deubiquitination of RIP1-Ub by 
A20 to complex II 

P39 Dissociation of MLKL from necrosome 

P20 Deubiquitination of RIP1-Ub by 
CYLD to complex II 

P40 Phosphorylation of MLKL(p)  
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deactivation (P28) rate constant. The rate constant for subsequent RIP1 degradation by 

the active C8a:FLIP heterodimer to complex IIb (P34), which inhibits necroptosis, is 

somewhat smaller in mode 3 and larger in mode 4 relative to the other modes. Finally, 

the binding rate constant for MLKL to the phosphorylated RIP1:RIP3 heterodimer (P38), 

the final step in the formation of the necrosome, is somewhat increased in mode 1. These 

results clearly illustrate that significant differences exist in the values of rate constants 

across the modes of execution, despite the similarities in pMLKL temporal dynamics. 

CYLD and A20 are known regulators of RIP1 deubiquitination (Choi et al., 2019; 

Hitomi et al., 2008; Lork et al., 2017; Moquin et al., 2013; Sun, 2020; Vanlangenakker et 

al., 2011b; Wertz et al., 2004) but have been reported as both drivers and inhibitors of 

necroptosis in different cell types (Dondelinger et al., 2016; Draber et al., 2015; Kovalenko 

et al., 2003; Moquin et al., 2013; Simonson et al., 2007; Vanlangenakker et al., 2011a; 

Wright et al., 2007). To investigate the roles of CYLD and A20 in our necroptosis model, 

we performed in silico CYLD and A20 knockout (KO) experiments and compared TTD 

distributions to the unperturbed, i.e., “wild-type” (WT), case (Figure 13B). Unsurprisingly, 

in all cases CYLD/A20 double KO (DKO) prevents cell death (TTD = ¥). However, for 

single CYLD KO and A20 KO, we see highly variable responses across the four modes 

of execution. For mode 1, we see that knocking out A20 leads to a general increase in 

TTD (i.e., decrease in necroptosis sensitivity) across the parameter sets, consistent with 

A20 acting as a regulator of RIP1 ubiquitination and driver of necroptosis (Gurung et al., 

2015; Sun, 2020). Conversely, CYLD KO results in a general reduction in TTD (i.e., 

increase in sensitivity), indicating that CYLD in mode 1 counterintuitively operates as an 

inhibitor of necroptosis. We see the opposite trends in mode 2: A20 KO reduces TTD, 
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while CYLD KO leads to a general increase in TTD across the parameter sets. This result 

is consistent with observations by Vanlangenakker et al. (Vanlangenakker et al., 2011a) 

that A20 depletion can sensitize cells to death by necroptosis. In mode 3, we see that 

single KOs of A20 and CYLD have no effect on TTD. Since DKO prevents cell death in 

all cases, this reveals that A20 and CYLD both drive RIP1 deubiquitination and, hence, 

when one enzyme is knocked out signal flow diverts through the other. Finally, in mode 

4, CYLD KO leads to a general increase in TTD, like mode 2; however, A20 KO has no 

effect, as in mode 3. In all, the results of in silico KO experiments reveal distinct 

differences in the roles of A20 and CYLD in RIP1 ubiquitination regulation among the four 

model-predicted modes of necroptosis execution (summarized in Table 4). 
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Table 4: Roles of A20 and CYLD in RIP1 deubiquitination and necroptosis 
execution in the four signal execution modes. ß: decrease; Ý: increase; à: leads to; 
TTD: time-to-death. 

Mode 1  • A20 ß à TTD Ý  
• CYLD ß à TTD ß 

• A20 deubiquitinates RIP1 
• CYLD (counterintuitively) inhibits necroptosis 

Mode 2 • CYLD ß à TTD Ý 
• A20 ß à TTD ß 

• CYLD deubiquitinates RIP1 
• A20 (counterintuitively) inhibits necroptosis 

Mode 3 • CYLD ß à TTD Ý 
• A20 ß à TTD constant 

• CYLD deubiquitinates RIP1 
• A20 has no significant role in necroptosis execution 

Mode 4 • A20 ß à TTD constant  
• CYLD ß à TTD constant 
• A20 ß + CYLD ß à TTD Ý 

• Both A20 and CYLD can drive RIP1 deubiquitination 
• If one is knocked out, the signal can reroute through 

the other 
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Ubiquitination of RIP1 by cIAP in complex I and binding of LUBAC to complex I 
are global modulators of necroptosis sensitivity across execution modes 
 
Targeting necroptosis by small molecule modulators has emerged as a promising 

approach for both cancer therapy and treatment of inflammatory diseases (Wu et al., 

2020). It is of interest, therefore, to determine if modulating factors exist that are common 

across all modes of execution, which could represent novel therapeutic targets. Towards 

this end, we performed sensitivity analyses based on “representative” parameter sets for 

each mode (automatically generated by our dynamical systems analysis tool) (Ortega et 

al., 2021) over the 14 non-zero initial protein concentrations (Figure 15A) and 40 rate 

constants (Figure 16A and Figure 17). Initial protein concentrations were varied ± 20% 

around a reference set of concentrations (Table 7) used for parameter estimation; rate 

constant values were varied ± 20% around the representative parameter set for each 

mode. We then validated the results of these analyses (i.e., to confirm they are not 

specific to the representative parameter set) by performing, for all parameter sets 

associated with each mode, in silico knockdowns (KDs) by 70% and 10-fold 

overexpression (OE) for the initial concentrations (Moriya, 2015; Taxman et al., 2006) 

(Figure 15B) and by varying the rate constants values ± 10-fold (Figure 16B, 17).  

Across the four modes of execution, we see three common protein modulators of 

necroptosis sensitivity: TNF, TNFR, and MLKL (Figure 15). These are not unexpected 

(and, hence, not novel targets), since these proteins are well-known master regulators of 

TNF-induced necroptosis (Samson et al., 2021; Vercammen et al., 1997). More 

interestingly, for the rate constants, we see three common modulators across the four 

modes (Figure 16) corresponding to the association of TNF to TNFR (P1), ubiquitination 

of RIP1 by cIAP in complex I (P12), and association of LUBAC (P13) to complex I (see 
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Figure 7, pink). The former is not unexpected, given that TNF is the death-inducing 

stimulus driving necroptosis. However, the latter two are not intuitively obvious and, 

hence, are potential global targets predicted by our model. Specifically, for all four modes, 

we see that increasing the values of these two rate constants (P12 and P13) leads to a 

significant decrease in TTD (i.e., increased sensitivity to necroptosis), and vice versa. 

Note that the analyses based on the representative parameter set (Figure 16A) show only 

that TTD decreases when these two rate constant values are increased. However, by 

repeating the analyses over all parameter sets associated with each mode (Figure 16B), 

we confirm that TTD also increases (i.e., sensitivity to necroptosis decreases) when the 

rate constant values are decreased. 
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Figure 15: Sensitivity analyses and model-predicted protein targets for each mode 
of execution. (A) Changes in TTD for “representative” parameter sets of each mode. 
Black shaded regions signify decreases in initial protein concentrations; white shaded 
regions signify increases. (B) Knockdown (KD; 70%) and overexpression (OE; 10-fold) of 
potential targets identified in A for all parameter sets for each mode. The number of 
parameter sets that do not result in cell death (n¥) are included. Solid black lines = 
medians, dashed black lines = means; * p < 0.05, ** p < 0.01, *** p < 0.001 (Mood’s 
median test). 
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Sensitivities to initial protein levels and rate constant values reveal execution 
mode-dependent targets for modulating time-to-death 
 
We have shown that the four modes of necroptosis execution (Figure 12A) exhibit 

differences in variability in TTD (Figure 12), rate parameter values (Figure 13A), and 

responses to A20 and CYLD KOs (Fig. 3D). This suggests that, in addition to the global 

modulators identified above (TNF, TNFR, MLKL, P1, P12, P13; Figs. 4 and 5), each mode 

also has a unique set of factors that drive response. For mode 1, these include proteins, 

i.e., A20, cIAP, and CYLD (Figure 15–top row), and rate constants (P10, P11, P15–P19; 

Figure 16–top row and Figure 14) associated with RIP1 ubiquitination regulation in 

complex I (see Figure 7, orange). The sensitivities to A20 and CYLD are consistent with 

the results from in silico KO experiments (Figure 13B). Intuitively, we can understand 

these sensitivities as due to competitive binding between A20 and CYLD to complex I 

coupled with differences in the rate constants for RIP1 deubiquitination by A20 (P19) and 

CYLD (P20; see Figure 13A). In other words, increasing the amount of A20 leads to 

increased amounts of A20-bound complex I (and vice versa). Since the rate constant for 

RIP1 deubiquitination in mode 1 by A20 is much larger than for CYLD (Figure 13A), this 

results in a significant decrease in TTD (i.e., increase in sensitivity to necroptosis). 

Conversely, increasing the amount of CYLD leads to more CYLD-bound complex I (and 

vice versa). Since CYLD is less efficient at deubiquitinating RIP1, this results in a much 

lower overall rate of RIP1 deubiquitination and a significant increase in TTD (decrease in 

sensitivity to necroptosis). Sensitivities to rate constants associated with these processes 

(P10, P11, P15–P19) can be explained similarly.  

As in mode 1, potential targets in mode 2 include proteins, i.e., A20, CYLD, and 

LUBAC (Figure 15A, second row), and rate constants (P15–P20; Figure 16–second row 
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and Figure 14) associated with RIP1 ubiquitination regulation. The sensitivities to A20 

and CYLD, however, are reversed in their effects on TTD as compared to mode 1, i.e., 

increasing A20 increases TTD, while increasing CYLD decreases TTD. Again, these 

results are consistent with in silico KO experiments (Figure 13B) and can be understood 

in terms of competitive binding between A20 and CYLD to complex I and differences in 

rate constants for RIP1 deubiquitination by A20 and CYLD (Figure 13A). Also note that 

TTD in modes 1 and 2 are sensitive to the rate constant for TNF degradation (P3; Figure 

16–top and second rows), which is not unexpected since TNF is the stimulus driving 

necroptosis.  

For mode 3, potential targets are associated with formation of the necrosome from 

complex IIb, which immediately precedes necroptosis execution (see Figure 7, blue). 

Specifically, we see sensitivities to proteins C8, RIP1, and TRADD (Figure 15–third row), 

the latter two of which are key components of complex II, and rate constants (P2–P6; 

Figure 16–third row and Figure 14) for reactions upstream of complex II that include the 

association of RIP1 and TRADD to complex I. Intuitively, the comparatively small value 

of the rate constant in mode 3 for degradation of C8a:FLIP-bound complex IIb (P34; see 

Figure 13A) what ultimately drives these sensitivities. Modifying rates of reactions that 

contribute to complex II formation and/or the rate of binding of C8i to complex II, alters 

the balance between the rates of necrosome formation and degradation of complex IIb 

that prevents necroptosis, thus affecting TTD. Also note, in contrast to modes 1 and 2, 

the lack of sensitivity in mode 3 to variations in the initial concentrations of A20 and CYLD.  
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Figure 16: Sensitivity analyses and model-predicted rate constant targets for each 
mode of execution. (A) Changes in TTD for “representative” parameter sets of each 
mode. Black shaded regions signify decreases in rate constant values; white shaded 
regions signify increases. (B) Decreases (ß; 10-fold) and increases (Ý; 10-fold) of 
potential targets identified in A for all parameter sets for each mode. The number of 
parameter sets that do not result in cell death (n¥) are included. Solid black lines = 
medians, dashed black lines = means; * p < 0.05, ** p < 0.01, *** p < 0.001 (Mood’s 
median test). 
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Figure 17: Rate constant sensitivity analyses show no sensitivity for parameters 
P21-P40 in any mode. Values were varied in a range ± 20% around the reference 
parameter set for each mode. 
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Figure 18: Dynamics in necroptosis execution mode 4. (A) Time courses for 
ubiquitinated complex I for all parameter sets in mode 4 show that CYLD (9,075 
molecules; Table 7) is always in great excess. (B) TTD distributions over all parameter 
sets in mode 4 for CYLD knockdowns (KDs; 70%-95%) and knock out (KO), compared 
to wild-type (WT). Solid black lines = medians, dashed black lines = means; * p < 0.05, ** 
p < 0.01, *** p < 0.001 (Mood’s median test). 
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This is because, in this mode, A20 and CYLD are effectively indistinguishable enzymes, 

i.e., rate constants for binding and unbinding from complex I (P15–P18) and RIP1 

deubiquitination (P19 and P20) are virtually identical for both (Figure 13A). Thus, varying 

the concentration of one is effectively equivalent to varying the concentration of the other 

by the same amount. 

In mode 4, we see the same sensitivities as in mode 3 to varying concentrations 

of C8, RIP1, and TRADD (Figure 15–bottom row) and the rate constant for association of 

TRADD to complex I (P4; Figure 16–bottom row and Figure 14). These sensitivities can 

be understood in the same way as in mode 3, in terms of the balance between necrosome 

formation and complex IIb degradation. However, we see an additional sensitivity in mode 

4 to the initial concentration of LUBAC (Figure 15–bottom row). Interestingly, for the 

representative parameter set, this is evident for both increases and decreases in LUBAC 

concentration (Figure 15A–bottom row), but when all parameter sets are considered is 

only statistically significant for the KD experiments (Figure 16A–bottom row). Note also 

that the representative parameter set shows a sensitivity to the dissociation rate of 

LUBAC from complex I (P14; Figure 16A–bottom row) but the effect is not statistically 

significant when all parameter sets are considered (Figure 16B–bottom row). 

Furthermore, despite the results of in silico KO experiments that show RIP1 

deubiquitination in mode 4 is driven exclusively by CYLD (Figure 13B), we do not see a 

sensitivity in TTD to variations in CYLD concentration, even for a 70% KD (Figure15–

bottom row). We can explain both this result and the one-way sensitivity to variations in 

LUBAC as due to a severely dysfunctional A20 in mode 4, evident in exceedingly small 

rate constants for A20 binding to complex I (P15) and subsequent RIP1 deubiquitination 
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(P19), coupled with a comparatively large rate constant for C8 activation (P27) and small 

rate constant for C8 inactivation (P28; Figure 13A). Essentially, A20 does not compete 

with CYLD for binding to complex I (P15 ≪ P16), and since CYLD is in great excess 

relative to complex I (Figure 18A), varying CYLD concentration has little to no effect on 

TTD except for very large reductions, such as a KO (Figure 13B and Figure 18B). 

Moreover, the exceedingly fast rate of C8 activation (P28/P27 ≪ 1) leads to a rapid 

accumulation of active C8a:FLIP heterodimer, which inhibits necroptosis by binding and 

degrading complex IIb. This essentially sets a “speed limit” on the rate of pMLKL 

production, i.e., any increase in complex I concentration due to an increase in the 

concentration of LUBAC, which would be expected to decrease TTD because of the large 

excess of CYLD, is counteracted by the increased concentration of C8a:FLIP. However, 

decreasing complex I concentration by knocking down LUBAC would still be expected to 

increase TTD, as confirmed by our results. 
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Table 5: Multiple experimental studies of necroptosis in the literature can be 
associated with different model-predicted modes of execution. In the seconds 
column, the specific cell line used (if applicable) is included in parentheses. HCAC: 
human cervical adenocarcinoma; HCN: hippocampal neuron; HEK: human embryonic 
kidney; HTL: human T lymphocyte; MEF: mouse embryonic fibroblast; MFS: mouse 
fibrosarcoma. ß: decrease; Ý: increase; Û: no change. 

Reference  Cell type Quote(s) from article Interpretation 
Possible 
execution 
mode(s) 

Feoktistova et 
al. (2020) 

HCAC  
(HeLa) 

“[T]he deletion of A20 in HeLa or HaCaT 
cells had no effect on the TNF-mediated cell 
death sensitivity” 

A20 ß TTD Û 
 

M3, M4 
 

Hitomi et al. 
(2008) 

HTL 
(Jurkat) 

“[I]nhibition of CYLD expression in Jurkat 
cells also attenuated necroptosis” 

CYLD ß TTD Ý 
 

M2, M4 

Liu et al. (2014) HCN  
(HT-22) 

“RIP1 and its deubiquitinase CYLD are 
required for TNF-induced necrosis of HT-22 
cells” 

CYLD ß TTD Ý M2, M4 

Moquin et al. 
(2013) 

MEF “CYLD regulates RIP1 ubiquitination in the 
TNFa-induced necrosome, but not in the 
TNFR-1 signaling complex” 
“Although CYLD was recruited to TNFR-1 in 
a ligand-dependent manner, RIP1 
ubiquitination was not affected in CYLD-/- 
MEFs” 

CYLD ß TTD Ý M4 
(M2 
excluded; 
see text) 

Vanlangenakker 
et al. (2011) 

MFS  
(L929) 

“[W]e and others previously showed that 
CYLD repression protects L929 cells from 
TNF-induced necroptosis” 
“[W]e were surprised to find that A20 
depletion had an opposite effect and greatly 
sensitized the cells to death” 
“[W]e found that TRADD depletion in L929 
cells did not affect TNF-induced necroptosis” 

CYLD ß TTD Ý 
 
 
A20 ß TTD ß 
 
 
TRADD ß TTD 
Û  

M2 

Wertz et al. 
(2004) 

HEK  
(HEK293T)  

“Co-transfection of wild-type A20 de-
ubiquitinates RIP in HEK293T cells.” 

A20 ß TTD Ý 
 

M1 

Wertz et al. 
(2004) 

MEF “However, in the absence of A20, RIP1 will 
neither be de-ubiquitinated nor targeted for 
proteasomal degradation. Indeed, RIP 
recruited to activated TNFR1 remained 
hyperubiquitinated and was stabilized in 
A20-/- MEFs” 

A20 ß TTD Ý M1 

Wright et al. 
(2007) 

HCAC  
(HeLa)  

“RIP1 ubiquitination [was] inhibited by wild-
type (Wt) CYLD but not a catalytically 
inactive CYLD mutant (Mut)” 

CYLD ß TTD Ý M2, M4 
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Figure 19: Four modes of execution in necroptosis. Schematic depiction of each 
mode of execution identified presenting distinct differences in initial protein sensitivity 
(orange), RIP1 ubiquitination regulation by CYLD (green) or A20 (blue), inhibition (red bar 
line), and parameter sensitivity influencing pro- or anti- necroptotic responses.  
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DISCUSSION 
 
A recent review of TNF-induced necroptosis (Samson et al., 2021) described signaling 

along the RIP1-RIP3-MLKL axis in terms of at least three major compartmentalization 

events: TNFR internalization in complex I, multiprotein assembly of complexes IIa and 

IIb, and necrosome formation leading to translocation of pMLKL to the membrane. 

Importantly, the authors emphasized that cues and regulation mechanisms underlying 

these compartmentalization events are poorly understood and proposed that a network 

of modulators surrounds the necroptotic signaling core (Murphy et al., 2013; Najafov et 

al., 2019; Sai et al., 2019), tuned in a context-, cell type-, and species-dependent manner. 

The results presented here are entirely consistent with this view, i.e., a detailed kinetic 

model comprising core and complementary necroptotic signaling proteins and associated 

rate constants (Table 1 and Figure 7), calibrated to experimental data (Figure 8A–C), can 

produce cell-death dynamics via distinct execution modes (Figure 12A,B), distinguished 

by variations in rate constants (Figure 13A) and the roles of A20 and CYLD in RIP1 

ubiquitination regulation (Table 5 and Figure 13B). Moreover, model sensitivity analyses 

based on TTD (Figure 8D) revealed global and mode-specific modulators of necroptosis 

sensitivity for each mode (Figures 15 and 16). Global modulators include known effectors, 

such as TNF, TNFR, MLKL, and rate constants associated with these proteins, as well as 

two unexpected modulators: the rate constant for RIP1 ubiquitination by cIAP in complex 

I (P12) and the binding rate constant for LUBAC to complex I (P13). Mode-specific 

modulators include, for modes 1 and 2, proteins and rate constants involved in RIP1 

ubiquitination regulation (A20, cIAP, CYLD, LUBAC, P10, P11, P15–P20) and, for modes 
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3 and 4, factors regulating the balance between complex IIb degradation and necrosome 

formation (C8, LUBAC, RIP1, TRADD, P2–P6, P14, P27, P28).  

Since evading apoptosis is a hallmark of cancer (Hanahan, 2022; Hanahan and 

Weinberg, 2000, 2011), inducing necroptosis is currently being explored as a potential 

anticancer treatment (Gong et al., 2019; Meng et al., 2016; Wu et al., 2020). Moreover, 

inhibiting necroptosis is crucial for treating a variety of inflammatory diseases, including 

cardiovascular, liver, and neurodegenerative diseases (Choi et al., 2019; Vanlangenakker 

et al., 2012). Thus, improving our understanding of the molecular pathways that drive 

necroptosis is critical for identifying novel therapeutic targets against these deadly 

diseases. The detailed kinetic model of TNF-induced necroptosis proposed in this work 

represents the first successful attempt to describe contrasting, and sometimes 

counterintuitive, context-, cell type-, and species-dependent responses to cell-death cues 

using a consensus set of biochemical interactions deduced from decades of experimental 

work. This is a significant contribution that advances our knowledge of necroptosis and 

also provides a foundation for future in silico-guided drug discovery efforts. Altogether, 

the model presented in this study is a significant step towards the construction of a 

comprehensive computational model of the interconnected pathways controlling cell fate 

decisions, which could lead to the development of novel therapies against inflammatory 

diseases and cancer by enabling identification of molecular targets that shift the balance 

of fates towards either evasion or promotion of necroptosis. 
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CHAPTER III 
 

III. ELUCIDATING THE ROLE OF NOTCH SIGNALING IN SMALL CELL LUNG 
CANCER 

 
INTRODUCTION 

 
Tumor heterogeneity and molecularly characterizing the subtypes of SCLC 
 
Small Cell Lung Cancer (SCLC) has become a hot topic in the last few years given the 

aggressiveness of the disease, lack of therapeutic treatment options, and poor prognosis 

outcomes. SCLC is a high grade neuroendocrine (NE) carcinoma that has been 

characterized as a “homogeneous” disease by its histology, which generally presents as 

a carpet of small round cells with little cytoplasm (Ko et al., 2021). There have been many 

scientific advances to molecularly characterize this cancer, however the lack of effective 

biomarkers to guide treatments has remained a persistent problem (George et al., 2015; 

Ko et al., 2021). The median overall survival from extensive SCLC is less than 10 months, 

with less than 5% of patient survival after five years. The standard care of treatment for 

SCLC, which has not changed, encompasses a combination of etoposide and 

carboplatin/cisplatin chemotherapy (Sundstrøm et al., 2002). Although clinically, SCLC is 

still regarded as a single disease entity (Gazdar et al., 2017; Ko et al., 2021), preclinical 

studies from past decades identified biologically different SCLC subgroups (Figure 20).  

SCLC was originally classified into “classic” and “variant “ phenotypes in 1985 

(Carney et al., 1985), based on the in vitro and in vivo behavior of SCLC cells. The 

“classic” phenotype was associated with high expression of NE markers, and non-

adherent growth pattern in cell cultures (Gazdar et al., 1985; Schwendenwein et al., 

2021). In contrast, the “variant” phenotype was characterized by larger cells, low 
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expression of NE markers, and an adherent or loosely adherent growth pattern in vitro 

(Dora et al., 2020; Gazdar et al., 2017). In the last decade, SCLC has been recently 

classified into NE and non-NE (non-neuroendocrine) subtypes (Rudin et al., 2019; 

Wooten et al., 2019). Transcriptomic profiling has defined possible drivers of NE and non-

NE SCLC, where the classic NE subtype of SCLC has been further divided by expression 

of two transcription factors, ASCL1 (achaete-scute homologue 1) and NEUROD1 

(neurogenic differentiation factor 1), which appear to regulate distinct neuroendocrine 

gene programs (Borromeo et al., 2016a; Poirier et al., 2013). Variant non-NE SCLC 

tumors are low in ASCL1 and NEUROD1. More recently, the phenotypic heterogeneity of 

SCLC has become defined by differential expression of four key transcriptional regulators: 

NE markers, ASCL1, and NEUROD1, with non-NE markers, POU2F3 (POU class 2 

homeobox 3) and YAP1 (yes-associated protein 1; (Huang et al., 2018; Rudin et al., 2019; 

Wang et al., 2021). Furthermore, with the most recent classification of these subtypes, a 

deeper understanding of the SCLC molecular anomalies has led to a wave of novel 

targetable agents including the identification of the Notch pathway and its deregulation as 

a crucial event in SCLC tumorigenesis, disease progression and chemoresistance 

(Crabtree et al., 2016; Ireland et al., 2020; Leonetti et al., 2019).  
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Figure 20: Tumor heterogeneity in SCLC over the years. Historic classification of 
SCLC in 1985, phenotypically made up of “classic,” “variant,” and unclassified cells (left). 
Current SCLC is distinguished by four subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-
Y, characterized by key markers within each population from SCLC cells.     
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Notch signaling: cell fate control and signal integration in development 
 
The Notch signaling pathway through direct cell-to-cell communication between 

neighboring cells regulates cell proliferation, cell fate, differentiation and cell death during 

development (Hori et al., 2013). In mammalian systems, Notch activation is known to 

promote cancer development, while it can also play a tumor suppressive role (Ayaz and 

Osborne, 2014; Ntziachristos et al., 2014). The Notch signaling pathway is triggered by 

the interaction of four Notch receptors (Notch 1-4), three Delta-like ligands, DLL1 (Delta 

Like Canonical Notch Ligand 1), DLL3 (Delta Like Canonical Notch Ligand 3), DLL4 (Delta 

Like Canonical Notch Ligand 4), and two ligands of the Jagged family JAG1 (Jagged 1), 

and JAG2 (Jagged 2; Sprinzak and Blacklow, 2021). The binding of the receptor to its 

ligand can occur between different cells (trans-interaction) or within the same cell (cis-

interaction), leading to either activation or inhibition of the transducing signal, respectively 

(Miele, 2006). DLL3 is the only ligand that binds to its Notch receptor through a cis-

interaction, an uncharacteristic inhibitory effect in regulating the signaling cascade of 

interactions (Owen et al., 2019). When membrane bound receptors interact with ligands 

on an adjacent cell, two consecutive proteolytic cleavages of the receptor are initiated, 

freeing the intracellular portion of Notch to enter the nucleus and activate the transcription 

of target genes. The first cleavage (S2) by ADAM10 (A disintegrin and metalloprotease 

10) generates the substrate for the second cleavage (S3) by the g-secretase complex 

(Hori et al., 2013). The second cleavage releases the NECD (Notch extracellular domain) 

that gets endocytosed by the neighboring cell bound to its ligand while the NICD (Notch 

intracellular domain) translocates to the nucleus and forms a complex including RBPJ 

(Recombination Signal Binding Protein For Immunoglobulin Kappa J Region) and MAML1 
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(Mastermind-like transcriptional co-activator 1), stimulating transcription of target genes 

(Figure 21) (Hori et al., 2013) including but not limited to, REST (RE1 Silencing 

Transcription Factor), HES1 (Hes Family BHLH Transcription Factor 1), MYC 

(Myelocytomatosis), and HES6 (Hes Family BHLH Transcription Factor 6).  
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Figure 21: The core Notch pathway. Binding of the Delta ligand (pink) on one cell to the 
Notch receptor (green) on another cell results in two proteolytic cleavages of the receptor. 
ADAM10 (A disintegrin and metalloprotease 10, red) catalyzes the S2 cleavage, resulting 
in the release of the NECD (Notch extracellular domain) that is endocytosed into the 
neighboring cell bound to its ligand. The S2 cleavage also generates a substrate for S3 
cleavage γ-secretase (green). This proteolytic processing mediates release of the NICD 
(Notch intracellular domain), which enters the nucleus and interacts with the DNA-binding 
co-activator Mastermind like-1 (MAML1; green) and other transcription factors. 
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Role of Notch in SCLC subtype determination and plasticity 
 
During normal lung development, Notch pathway activation prevents cells from 

differentiating to a neuroendocrine fate, and promotes the trans-differentiation of 

Pulmonary neuroendocrine cells (PNECs) into non-neuroendocrine club cells (Ouadah et 

al., 2019). “Phenotypic plasticity” is the ability of a single genotype to produce more than 

one alternative form of morphology, physiological state, and/or behavior in response to 

environmental conditions (West-Eberhard, 1989, 2008). Organisms employ mechanisms 

of environmental assessment that enable behavior to be adaptively plastic, that is, 

supportive of individual reproductive success in which Notch pathway activation is 

hypothesized to play an important role. In cancer, Notch is considered to be both tumor 

suppressive and oncogenic, depending on the context (Hori et al., 2013; Ntziachristos et 

al., 2014). In SCLC, Notch1-4 are mutated in ~25% of human tumors, and a large subset 

of those mutations are inactivating (George et al., 2015). This is consistent with Notch 

acting as a tumor suppressor, as Notch signaling in SCLC has been shown to induce cell 

cycle arrest (Sriuranpong et al., 2001). Similar to normal development, Notch signaling is 

generally suppressed in NE subtypes of SCLC, which are fast growing and 

chemosensitive. Recent data from (Lim et al., 2017) showed that Notch signaling can also 

be pro-tumorigenic, by inducing a fate switch from NE to this slower-growing but 

chemoresistant non-NE subtype. Using a p53fl/fl;Rbfl/fl;Rbl2fl/fl conditional triple knockout 

(RPR2) SCLC mouse model, green fluorescent protein (GFP) was expressed from the 

endogenous Hes1 promoter to measure Notch pathway activation. Both Hes1-positive 

GFPhigh cells, which expressed non-NE and mesenchymal markers, and Hes1-negative 

GFPneg cells, which expressed NE genes, were found in the tumors. Non-NE Hes1pos cells 
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were shown to arise from an NE cell of origin, and the transition from NE to non-NE could 

be induced with Dll4. While Notch1 is expressed in some SCLC subtypes, blockade of 

just Notch2/3 was sufficient to prevent this transition. Although GFPneg cells were much 

faster growing than GFPpos cells, and thus should rapidly outcompete them in tumors, the 

presence of both cell types within individual tumors suggested association between them. 

Hes1pos cells were shown to promote the growth of NE cells, while Notch ligands such as 

Dll4 on NE cells could promote the transition to the non-NE phenotype. Consequently, 

deregulation of Notch signaling has differential effects across cell types, by either turning 

on or turning off a variety of downstream genes at early or late stages of cancer 

development (Figure 22). Notably, Hes1 is a transcriptional repressor of ASCL1, which 

has a critical function in NE cell development and differentiation of lung epithelial cells 

(Westhoff et al., 2009). ASCL1 is known for its importance in the development of normal 

PNECs, which are the precursors of SCLC tumor initiating cells. This pro-tumorigenic 

relationship between NE and non-NE cells suggests a functional role for heterogeneity in 

SCLC driven by the Notch pathway. 
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Figure 22: Notch and Small cell lung cancer subtypes. A schematic of an SCLC tumor 
in the lung, made up of ASCL1+, NEUROD1+, POU2F3+, and YAP1+ cells progressing in 
the presence of Notch pathway activation markers to tumor cell death including increased 
expression of MYC, REST, and HES1 and decrease neuroendocrine markers.  
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Notch pathway, MYC, and the SCLC-N to -Y transition 
 
Recent studies have shown that MYC (MYC Proto-Oncogene, BHLH Transcription 

Factor) may also play a role in driving SCLC phenotype transitions through activation of 

the Notch pathway. In particular, a transition from SCLC-A to -N to -Y has been shown to 

occur in a MYC-driven (p53fl/fl;Rbfl/fl; Lox-Stop-Lox [LSL]-MycT58A, RPM) mouse model of 

SCLC (Ireland et al., 2020). RPM tumors in vivo showed early-stage lesions have high 

levels of NE markers, including ASCL1, while late-stage invasive tumors are positive for 

non-NE markers such as NEUROD1, YAP1, and Notch proteins such as HES1. Single 

cell transcriptomic analysis of a time course of RPM tumor cells in vitro demonstrated that 

MYC can promote non-NE subtype evolution from earlier NE cells. Interestingly, multiple 

Notch pathway genes are MYC targets, such as Notch2, Hes1, Hes6, and Jag2. 

Consistent with this, Notch pathway genes are enriched as cells transition from SCLC-A 

to -Y, suggesting a possible role for the Notch pathway in this subtype evolution. For 

example, Dll3 and Hes6, which inhibit Notch pathway activity, were expressed early in 

the transition, while Hes1, Rest, and Notch2 increase in expression over time. Ectopic 

MYC overexpression in classic MYCL-high (NE) cell lines and RPR2 tumors induced 

variant, non-NE morphology and Notch receptor expression. The role of Notch was further 

validated by a Notch signaling inhibitor (gamma secretase inhibitor, DAPT), which 

delayed transitions from NE to non-NE subtypes in the time course, suggesting Notch 

activation is an important step in MYC-driven subtype evolution.  

Differential activity driven by diversity of Notch ligands and receptors   
 
The Notch signaling pathway regulates a diverse array of cell types and cellular 

processes and is tightly regulated by ligand binding (D’Souza et al., 2008). The diversity 
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of Notch receptors and ligands, raises the question of how downstream signaling is 

affected by the types of receptors and ligands, as well as by modulating proteins (Figure 

23; Sprinzak and Blacklow, 2021). Cellular context and tissue distribution are also added 

layers of in vivo complexity that further contribute to differences in activity and functional 

output. Several studies have attempted to quantify the affinity of various mammalian 

Notch receptors for Delta-like and Jagged ectodomain fragments using a variety of 

biochemical methods (Tveriakhina et al., 2018). There are intrinsic differences in the 

affinity of different Notch receptors for the two major Delta-like ligands, Dll1 and Dll4, with 

Notch1 favoring Dll4 by an order of magnitude and Notch2 favoring Dll1 by roughly 

threefold (Andrawes et al., 2013; Tveriakhina et al., 2018). There are also similar intrinsic 

affinity of Notch1 for both Dll1 and Jag1 (Taylor et al., 2014). In addition, cell-based and 

biochemical analysis showed that Dll1 and Dll4 differentially activate Notch1 and Notch2, 

with Notch1 activated more strongly by Dll4 and Notch2 activated more strongly by Dll1 

(Figure 23; Mohtashami et al., 2010) consistent with previous studies. Furthermore, Dll4, 

Jag1, and Jag2 have been shown to preferentially bind with Notch3 (Indraccolo et al., 

2009, Pelullo et al., 2014, Sasnauskiene et al., 2014), and Notch4 (Claxton and Fruttiger, 

2004; Pedrosa et al., 2015; Sasnauskiene et al., 2014). Potential differences in activity 

may come from the observed differences in binding affinities between receptors and 

ligands, as well as from other differences on the ligand side, including modulation of 

ubiquitination and endocytosis (Sprinzak and Blacklow, 2021). Another recent study 

investigated the differences in activity between Dll1 and Dll4 using live cell imaging to 

track the dynamics of a Notch1 transcriptional reporter in response to activation by sender 

cells containing either Dll1 or Dll4 (Nandagopal et al., 2018). Interestingly, this study found 
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that activation by Dll1-expressing cells led to a pulsed transcriptional response, while 

activation by Dll4 led to a sustained transcriptional response in the receiving cells. In 

contrast, DLL3 is the only ligand that binds and inactivates the Notch receptor pathway 

through a cis-interaction, thus promoting SCLC tumorigenesis (Leonetti et al., 2019). 

DLL3 is responsible for retaining Notch and DLL1 in the Golgi apparatus, preventing their 

localization to the cell surface and subsequent cross interactions (Chapman et al., 2011; 

Owen et al., 2019). 
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Figure 23: Diversity of receptor–ligand interactions. Schematic showing the factors 
affecting the strength of Notch signaling for different receptors, ligands, and regulator 
modifications. Differential binding is depicted by arrows, where the thickness of the arrows 
represents the binding strength (the thicknesses drawn are only schematic and do not 
necessarily represent actual binding strength). Note that DLL3 does not trans-activate 
Notch receptors.  
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Although unique ligand–receptor combinations have been identified that induce 

specific cellular responses, the molecular mechanisms underlying ligand-specific 

signaling remains an outstanding question in the field. Moreover, given the direct and 

somewhat simple signaling mechanism attributed to Notch, it is unclear how different 

Notch ligands could induce distinct signaling responses. It is important to determine if 

different ligand–Notch complexes recruit unique signaling effectors and whether the 

distinct responses involve activation of cytoplasmic and/or nuclear signaling pathways. 

Ligands have intrinsic signaling activity independent of Notch as well as their potential to 

participate in bidirectional signaling are interesting but relatively unexplored areas of 

ligand biology that warrant further investigation. The importance of Notch ligands in 

cancer and other pathological states involving aberrant angiogenesis has identified Notch 

ligands as potential and promising therapeutic targets (Lobov et al., 2007; Roca and 

Adams, 2007; Sainson and Harris, 2008; Yan and Plowman, 2007). The use of Notch 

ligands in the expansion and maintenance of stem cells for tissue 

regeneration/replacement underscores their fundamental biological importance (Dallas et 

al., 2005; Delaney et al., 2005). Finally, it is important to emphasize these emerging 

findings to continue developing Notch-based therapeutics that could be used efficiently in 

patients with immune and inflammatory diseases.  

 
Applying geometric methods to study tumor diversity in cancer  

 
Recent advances have enabled powerful methods to sort tumors into prognosis and 

treatment groups. While the ability to sort tumors is powerful and useful, there remains 

an open question of understanding, from a theoretical perspective, why tumors vary in 

the way that they do. To address this, Hausser et al. (Hausser et al., 2019) applied a 
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theory of multitask evolution, known as Pareto task inference (ParTI), to cancer. They 

reasoned that cancer is a case of intense evolution inside the body, and cancer cell 

growth and survival are conditioned on fulfilling multiple tasks, including stress resistance, 

growth, and interactions with the immune system (Hanahan, 2022; Hanahan and 

Weinberg, 2011). Each task then requires a different profile of gene expression, with the 

presumption that no tumor can be optimal at all tasks at once, because cells are limited 

in their protein production and timing of different functions (Gillies et al., 2012). Thus, the 

idea is that if cell communities that optimally manage the trade-off relevant for their 

particular niche function in the body they will outgrow and out-survive cells that are only 

suboptimal. Growth and survival are only two of the possible tasks that affect tumor cell 

fitness. This raises the question of how can we detect and understand trade-offs between 

three and more tasks and identify tasks without assuming they previously existed? Using 

the fact that tumors need to perform multiple tasks to contribute to their fitness, they found 

that trade-offs between tasks constrain tumor gene-expression to a continuum bounded 

by a polytope whose vertices are gene expression profiles, each specializing in one task 

(Cook and Wrana, 2022; Hausser et al., 2019). This approach can integrate additional 

types of molecular data into a framework of tumor diversity grounded in evolutionary 

theory. This is represented geometrically (Figure 24). Consider selection performance at 

two tasks: in this phenotypic trait space, each task has a single point that represents the 

phenotype with optimal performance for that task (archetypes). As the phenotypes 

deviate from this point, the task performance is proposed to decline following a contour 

function around the archetype. Pareto optimal phenotypes in this two-task example 

system would those spanning the line connecting the two archetypes (Figure 24A). This 
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region containing the Pareto optimal phenotypes is referred to as the “Pareto font,” and 

its geometry can extend to systems with any number of tasks (Figure 24B). “Specialist” 

phenotypes are those that prioritize performance of a single task, adopting a state with 

high similarity to an archetype. A “Generalist,” however, exhibits trade-offs to balance 

performance of multiple tasks, where its phenotype exists within the Pareto front but 

remains distant from individual archetypes (Figure 24C). A population of generalists can 

also be highly heterogeneous, with the specific performance trade-offs varying throughout 

the population. These principles of multitask optimization and Pareto optimality provide a 

framework to interpret cellular phenotypes.  
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Figure 24: Geometric properties of the Pareto front. (A) Two tasks form a line, and 
when under selection for more than one task, the Pareto front represents the phenotypes 
with optimal performance trade-offs. (B) Populations under selection for more than two 
tasks span a polytope connecting archetypes where Specialist phenotypes show bias 
towards individual tasks, while generalists exhibit trade-offs to balance performance at 
many tasks (C) Polytope with four vertices representing connecting archetypes.  
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SUMMARY 
 
Studies have shown that activation of Notch signaling during SCLC progression 

generates an unexpected level of tumor heterogeneity (Rubin et al., 2020), and that Notch 

signaling is required for the NE to non-NE fate switch (Lim et al., 2017), however the exact 

mechanism of action is not well understood. The Notch pathways is composed of ligands 

(Jagged 1 & 2 and Delta-like homologues 1 & 4) and receptors (Notch 1-4). The diversity 

of Notch ligands and receptors raises questions of how downstream signaling is affected 

by the types of receptors and ligands, as well by modulating proteins (Sprinzak and 

Blacklow, 2021). The hypothesis is that there is an underlying combinatorial complexity 

between the Notch ligands and receptors that is responsible for the diversity of responses 

that could explain the role Notch plays in SCLC. Beyond these recent findings, the 

functional interactions between Notch pathway activity and the transcriptional regulators 

defining the four subtypes of SCLC remain to be investigated. We recently applied a 

systems approach using Archetype Analysis on bulk transcriptomics data from SCLC, 

composed of NE and non-NE subtypes and found that the subtypes fit well in a 5-

dimensional polytope, proposing the vertices specialize in task trade-offs among 

specialists (A, A2, N, P, Y) and generalists cells (Groves et al., 2021). Dynamics of 

Intratumoral heterogeneity are especially relevant for SCLC, since cooperativity and 

transitions among SCLC subtypes have been postulated to underlie its recalcitrant 

features, i.e., early metastatic spread, and inevitable relapse after therapy response 

(Ireland et al., 2020; Lim et al., 2017; Rudin et al., 2019). This analysis was performed on 

numerous datasets including the bulk transcriptomics, SCLC tumors, and SCLC single 

cells to better understand SCLC heterogeneity and plasticity. Here, we expanded this 
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analysis to investigate Notch signaling within these archetypes and how pathway 

activation is regulated in specialist and generalist populations within SCLC and find that 

Notch signaling is distinctly differentiated across different scales (tumors, bulk 

transcriptomics, single cell transcriptomics) within archetype specialists and generalists.   

RESULTS 
 
SCLC tumors are composed of distinct Notch pathway expression profiles in 
specialist and generalist cells  
 
Previous studies have demonstrated that SCLC cells transition between SCLC-A (NE) 

and, SCLC-Y (non-NE) subtypes under certain perturbations, such as Notch pathway 

activation (Lim et al., 2017) and MYC hyperactivation (Ireland et al., 2020; Patel et al., 

2021). In these studies, classical neuroendocrine (NE) cells, such as SCLC-A, -A2, and -

N, acquire non-NE properties including variant morphology and expression of non-NE 

markers (such as YAP1 or POU2F3). In particular, a transition from SCLC-A to -N to -Y 

has been shown to occur in a MYC-driven (p53fl/fl;Rbfl/fl; Lox-Stop-Lox [LSL]-MycT58A, 

RPM) mouse model of SCLC (Ireland et al., 2020). RPM tumors in vivo showed early-

stage lesions have high levels of NE markers, including ASCL1, while late-stage invasive 

tumors are positive for non-NE markers such as NEUROD1, YAP1, and NOTCH proteins 

such as HES1. This study revealed the importance of Notch signaling in the NE to non-

NE transition, however, they did not examine all components of the Notch signaling 

pathway within these tumors. To understand the comprehensive role of Notch signaling 

within these RPM tumors over the 21 day time-course (Figure 25A), we investigated the 

expression of Notch ligands, receptors, downstream targets, and inhibitors (Augert et al., 

2019; Dai et al., 2013; Furuta et al., 2019; Hurtado et al., 2019; Tiberi et al., 2012; Xie et 
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al., 2012) previously shown to play inhibitory roles in Notch signaling activation. 

Importantly, with our recent classification that these SCLC cell lines and tumors comprise 

continuums of cell states with both specialists and generalists (Groves et al., 2021), we 

were interested to explore the role of Notch within these specialist and generalist cells.  
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Figure 25: Notch initiation and activation is differentially expressed within GEMM 
tumor progression. (A) UMAP of RPM time course with timepoints labeled. Days 4 and 
7 fall in the same region of the UMAP; Day 11 is mostly distinct; and Days 14-21 fall in 
the same large cluster. (B) Bulk archetype signature scores for single cells in time course. 
Days 4 and 7 are enriched in SCLC-A, -A2, and -N archetype signatures; Day 11 is 
moderately enriched for SCLC-P and -Y signatures; and a subpopulation of Days 14 to 
21 is enriched in the SCLC-Y signature. (C) Stacked bar plots show overall subtype 
composition change from (B). (D-F) Cluster maps of Notch ligands and receptors across 
time course (D), Notch downstream targets (E), and Notch inhibitors (F). (G) UMAP of 
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JAG2, NOTCH2, REST highlighting the upregulated expression in late timepoint 
generalist cells. 

The previously identified subtypes were aligned with the bulk archetypical 

signatures and found that a six-vertex polytope best fit the data, with 5 of the 6 archetypes 

enriched for SCLC signatures (Materials and Methods, Chapter IV), suggesting a multi 

optimization of tasks may have a role in this time course (Groves et al., 2021). As 

expected, there was a shift from NE subtype cells to non-NE with distinguished 

proportions of specialist and generalist cells (Figure 25B, C). Within the early timepoints 

(days 4 and 7), tumors were largely composed of specialist SCLC-A/-N, and SCLC-A2 

specialists (> 50%), thought to form a continuum of specialists and generalists near these 

NE archetypes. Interestingly, DLL4 and JAG2 are highly expressed in day 4, while DLL1 

and JAG2 are highly expressed in day 7 in comparison (Figure 25D, left). However, when 

we look closely at the fraction of cells (%) in each group, DLL1, DLL4, and JAG1 make 

up only about 20% of the cells in these timepoints, and JAG2 expression is the only ligand 

representing more than 50% of the cells in the early timepoints (Figure 25D, right) 

suggesting JAG2 could be preferentially responsible for Notch receptor activation in 

earlier timepoints. Additionally, looking at the Notch receptors, there is minimal 

expression in day 4 except for NOTCH1, while NOTCH3 and NOTCH4 are only 

expressed in day 7, with very low to no expression of NOTCH2 in the early SCLC-A/-N, 

and SCLC-A2 specialist archetypes. When we look at the fraction of cells expressing 

these Notch receptors, less than 10% of the cells across all four receptors are present in 

these tumors. Additionally, the downstream targets and inhibitors involved in Notch 

signaling including the Notch activating complex (MAML, RBPJ), and Notch targets 
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(HES1, REST) all show low expression, consistent with NOTCH 1-4 also showing low 

expression with the inability to activate its downstream targets.  

Subsequently, when examining Notch inhibitors, we see high expression of 

KDM1A (LSD1), an inhibitor of Notch signaling, recently shown to epigenetically suppress 

the expression of NOTCH1 (Augert et al., 2019), and DLL3, an inhibitory ligand of Notch, 

regulated by ASCL1 (Owen et al., 2019) in early timepoints of SCLC-A/N and SCLC-A2 

specialists providing an rationale for why Notch expression is lower in the earlier 

timepoints (Figure 25F). HES6, an inhibitor of HES1 repression of ASCL1 is also highly 

expressed in early timepoints in ASCL1+ archetypes in more than 50% of the cells, while 

HES1 expression is very low. HES6 is known to inhibit the repression of ASCL1 by HES1, 

providing a possible explanation in the early timepoints for in the decrease in Notch1-3 

and HES1 expression and high ASCL1 expression. Until recently, the molecular 

mechanisms underlying the distinction between MYC-, MYCL and MYCN- driven subsets 

of SCLC have remained unexplored. Patel et al. (Patel et al., 2021) showed that MYC 

expression is required to maintain lineage state marker, NEUROD1, in NEUROD1+ cells, 

and MYC is incompatible with ASCL1+  cells, ultimately leading to trans-differentiation to 

Neurod1 in SCLC. We see high MYCL and MYCN expression in early timepoints (Figure 

25E, left) across SCLC-A/N, -A2 specialists, however, they only make up a very small 

fraction of cells in these tumors (Figure 25E, right).  

A very small proportion of cells begin to transition into the SCLC-P/-Y specialist 

archetype in day 7, and by day 11, we see a large population of cells making up the 

SCLC-P/-Y archetype (Figure 25C). JAG2, NOTCH2, the Notch activating signaling 

complex (MAML and RBPJ) and downstream activators HES1, and REST are 
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upregulated in day 11, in total making up a little less than 50% of the cells in the SCLC-

P/-Y archetype (Figure 25D-F). This suggests JAG2 may be responsible for activating 

Notch and signaling in the transition between NE and non-NE states. SiIRT1 is highly 

expressed in day 11, possibly attributing to the lowered expression of the other Notch 

receptors. The later timepoints between days 14 and 17 show cells moving towards the 

SCLC-Y archetype, consistent with the increase in YAP1 expression found in (Ireland et 

al., 2020). Interestingly, by day 21, cells fall near a new archetype that is not enriched in 

any of the SCLC signatures, however, are enriched for MYC targets, oxidative 

phosphorylation, reactive oxygen species (ROS) pathway, and glycolysis (Groves et al., 

2021), with further research necessary to characterize this non-NE archetype. However, 

we do see expression of JAG2, NOTCH2, RBPJ, and REST in day 21, potentially playing 

a role in this specialist archetype and correlating with the enrichment of MYC targets 

(Figure 25D, E). Additionally, these genes are most highly expressed in the generalist 

population in day 21 (Figure 25G), compared to any other timepoint, suggesting Notch 

may be an additional distinguisher in this generalist population. It is important to note that 

the later timepoints are made up of less than 20% of SCLC-Y and SCLC-X specialist 

cells, and largely composed of generalist cells where Notch signaling is also shown to be 

expressed. Together, these results show that Notch activation and signaling is 

differentially expressed across NE and non-NE specialist and generalist archetypes, and 

inhibitors, HES6 and KDM1A of Notch signaling could potentially be driving the low Notch 

activation in SCLC-A/-N, -A2 specialists.  
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Enrichment of Notch ligands and downstream signaling partners in Bulk 
transcriptomics represent diverse pairing across SCLC archetypes  
  
Given that Notch ligand expression, receptors, and signaling targets and inhibitors are 

enriched differentially in each archetype, we sought to determine how Notch signaling 

and pathway expression is regulated within bulk transcriptomics compared to tumors. To 

explore these relationships between Notch signaling and SCLC subtypes, we analyzed a 

dataset of bulk RNA-sequencing on 120 human SCLC cell lines from two sources: the 

CCLE (Barretina et al., 2012), and cBioPortal (Cerami et al., 2012; Gao et al., 2013). This 

combined dataset contains cell lines with overexpression of each of the four subtypes, 

ASCL1 (NE), NEUROD1 (NE), POU2F3 (non-NE), and YAP1 (non-NE), sufficiently 

covering the relevant phenotypic space for SCLC. Interestingly, H82 cells have been 

shown to express both NE and non-NE markers (Figure 26A), however since they span 

between SCLC-N and SCLC-Y, they remain unclustered in this analysis. Using AA, we 

explain the heterogeneity in bulk transcriptomics data between five archetype vertices 

corresponding to five major SCLC phenotypes (SCLC- A, -A2, -N, -P, and -Y, Figure 26A), 

and upregulated expression of each across all of the bulk transcriptomics.  

 Interestingly, we see consistently high expression of DLL1 and JAG2 across 

majority of SCLC-A, and SCLC-A2 while DLL4 and JAG2, respectively which show lower 

expression in comparison (Figure 26B). DLL ligands have been shown to be primarily in 

ASCL1+ cells, however, we see upregulation of DLL1 in the SCLC-P archetype as well, 

while DLL4 has low to no expression in all non-NE archetypes. The specific role of JAG2 

across SCLC subtypes remains unexplored, however we see upregulation of JAG2 

across all 5 archetypes, including the H82 unclustered cells, along with high expression 

of NOTCH2 (Figure 26B). NOTCH1-3 are consistently upregulated in the non-NE  
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Figure 26: PCA and expression profiles of SCLC subtypes and Notch signaling in 
bulk transcriptomics data. (A) PCA of bulk RNA-seq on 120 cell lines showing the first 
two components. Eight cell lines labeled within each archetype were chosen for single 
cell transcriptomics. Cells are colored according to subtype clustering for ASCL1, 
NEUROD1, POU2F3, and YAP1. (B) Heat maps of Notch ligands and receptors (C), 
Notch downstream targets and (D) inhibitors. Subtypes on (B-D) are color coded 
according to (A). 
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archetypes, expectedly, however, NOTCH4 is only expressed in the SCLC-A,-A2 

archetypes, suggested NOTCH ligands and receptors may be functioning in a context-

dependent manner. The activating signaling complex with NOTCH including MAML and 

RBPJ are upregulated across all archetypes, and RBPJ is most highly expressed in all 

archetypes except SCLC-Y (Figure 26C). Previous reports have studied SCLC-A2 in the 

context of NOTCH and HES1 activation, where counterintuitively NOTCH expression is 

low, however, HES1 expression is high consistent with our findings, however, this 

mechanism remains unknown. MYC family expression is mixed across each archetype, 

MYC has highest expression specifically in SCLC-N, -P, and unclustered H82 cells while 

MYCL is highest in SCLC-A/-A2, and MYCN remains moderately low across all 

archetypes which suggesting distinct roles within each archetype also reported in 

previous studies (Figure 26C) (Brägelmann et al., 2017; Patel et al., 2021). When we 

examine the downstream inhibitors of NOTCH signaling, HES6 and KDM1A (LSD1) are 

noticeably highly upregulated across all 5 archetypes and H82 cells (Figure 26D).  

Additionally, DLL3 is moderately to highly expressed across SCLC-A/-A2/N archetypes, 

consistent with previous studies revealing the regulation of ASCL1 and DLL3 (Figure 26D) 

(Owen et al., 2019). SIRT1, which negatively regulates NOTCH is moderately expressed 

consistently across each archetype, along with BCL6 (specifically in SCLC-A/-A2) which 

could provide rationale for lower expression of NOTCH across these archetypes.   

Single cell SCLC transcriptomics reveals Notch signaling is upregulated 
distinctly in specialist cells 
 
The diversity of SCLC cell line and tumor samples has been characterized by considering 

bulk RNA-sequencing data, identifying five archetypical gene programs that are enriched 

at extremes of this phenotypic space. However, bulk RNA-seq and immunohistochemistry 
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(IHC) analyses confirm some samples are positive for more than one TF, such as tumors 

that are positive for both ASCL1 and NEUROD1 (Simpson et al., 2020; Zhang et al., 

2018). In bulk data, it is unclear if this is due to a mix of discrete NE and non-NE cells, or 

if intermediate phenotypes exist. These layers of heterogeneity suggest that single-cell 

data is valuable to fully parse subtype prevalence in SCLC cell lines and tumors. To 

investigate this heterogeneity within SCLC, we analyzed expression from a panel of 8 cell 

lines (A: CORL279, H69, A2: DMS454, DMS53, N: H524, H82, P: H1048, Y, H841) 

selected to maximally span the archetype space (Figure 27A; Materials and Methods, 

Chapter IV) (Groves et al., 2021). Applying AA to the single cell data using the archetype 

signatures from the bulk transcriptomics, we found the fall into four archetype vertices 

(SCLC-A, -A2, -N, -Y), suggesting that SCLC cells also present multi-task optimization 

within individual cells as well as population (Groves et al., 2021). It is important to note 

that SCLC-P was not found as an archetype by the cell line expressing POU2F3 (H1048), 

falling more central in the polytope (Figure 27B), and the proportion of H1048 cells are 

made up predominately of SCLC-P, along with SCLC-Y and generalist cells. There are a 

few speculations as to why an SCLC-P archetype was not found outlined in (Groves et 

al., 2021). For this analysis we will explore Notch signaling within the four identified 

archetypes and separately for H82, H1048, and CORL279 cells that were not closely 

classified into the specialist archetypes.  

 



85 
 

 
Figure 27: Notch initiation and activation is differentially expressed within single 
cell transcriptomics. (A) PCA of panel of eight cell lines from single cell transcriptomics. 
(B) PCA of Archetype specialists and generalists (SCLC-A, -A2, -N, -Y). signature scores 
for single cells in time course. (C) Stacked bar plots show overall subtype composition 
change from (B). (D-F) Cluster maps of Notch ligands and receptors across time course 
(D), Notch downstream targets (E), and Notch inhibitors (F). 
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The single-cell archetype was enriched in one of four SCLC signatures: A, A2, N, 

or Y (Figure 27B) and occupies a distinct region in archetype space, expected from the 

bulk transcriptomics (Figure 26A). While each cell line was predominately a single 

subtype, some included cells that could be classified as generalists, falling between 

multiple archetypes (Figure 27C). Within one of the two SCLC-A specialists, H69, we see 

highest expression of MYCN, along with DLL4 and RBPJ, however, the remaining ligands 

and Notch receptors have very low expression. Additionally, the Notch ligands and 

receptors in SCLC-A/-N specialist, CORL279 are highly downregulated, JAG2 is the only 

gene with moderate expression within these cells (Figure 27D), however, we see a large 

fraction of cells express KDM1A (LSD1), a direct inhibitor of Notch proving a potential 

rationale for low expression of Notch in these cells (Figure 27F). Interestingly, although 

DMS454 and DMS53 are both predominately made up of SCLC-A2 specialists (>80%) 

and previous studies have shown that DLL ligands are upregulated in ASCL1+ cells, DLL1 

and DLL4 are highly expressed in only one of the SCLC-A2 cell lines, DMS454 (Figure 

27C). DLL1 and DLL4 make up a little less than half of the fraction of cells in this cell line 

and have moderate to low expression in DMS53 cells, suggesting DLL ligand expression 

may be context-dependent within ASCL1+ cells. The remaining Notch ligands JAG1/JAG2 

and receptors (NOTCH1-3, NOTCH4 was dropped due to low read counts) make up less 

than 10% of the cells in both SCLC-A2 specialists, however, downstream targets 

including RBPJ, HES1, and MYCL are upregulated, while inhibitor, DLL3 is also 

upregulated, potentially resulting in low NOTCH expression (Figure 27D,E).  

H524, an SCLC-N specialist cell line with a small proportion of SCLC-A and 

generalist cells show no expression of any Notch ligands, receptors, or downstream 
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targets except for MYC (Figure 27D,E). These specialist cells are also highly expressed 

in KDM1A (LSD1; Figure 27F), which could be playing a role in the suppression of Notch, 

reducing the transcription of Notch ligands. Moving towards the non-NE specialists, 

largely H1048 SCLC-P/-Y specialist with a small proportion of generalist cells, are 

upregulated in NOTCH1 and NOTCH2, and downstream target REST, however, we see 

low expression of the remaining Notch ligands, including RBPJ, and MAML, the two 

genes in the transcriptionally active complex formed with Notch to activate downstream 

targets (Figure 27D,E). In contrast, H841, SCLC-Y specialists show highly expressed 

JAG2, NOTCH2, NOTCH3, and HES1, however, the transcriptional activating complex 

with RBPJ and MAML are not expressed suggesting RBPJ may be acting as a 

transcriptional repressor (Castel et al., 2013) in the absence of Notch (Figure 27D,E). The 

unclustered H82 cells from bulk transcriptomics make up a mix of NE and non-NE cells, 

a large proportion of SCLC-N, -Y, -P, and generalist cells (Figure 26A, 27C). We see low 

expression across all Notch ligands, receptors, and downstream targets except for 

upregulation of MYC (Figure 27E) which has been shown to play a role in the NE to non-

NE transition (Ireland et al., 2020). We do see highly expressed DLL3 in these cells, 

although ASCL1 is low, suggesting that DLL3 may also be regulated outside of ASCL1 

and a potential rational for low Notch expression (Figure 27F).  

A computational model of Notch signaling describes cell-to-cell communication 
along the path of SCLC subtype transitions  
 
Notch ligands (DLL1 & 4, JAG1 & 2) and receptors (NOTCH1-4) have been extensively 

studied in the context of cell development and differentiation. The main steps of the Notch 

signaling cascade are very well conserved across several organisms and include 

production and targeting of the Notch receptor to the cell membrane, ligand-receptor 
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binding, conformational rearrangement of the receptor, release of the intracellular domain 

(NICD) and downstream transcriptional regulation. Here, we propose a detailed, 

mechanistic model of cell-to-cell communication between NE and non-NE SCLC cells in 

the context of Notch signaling activation and repression (Table 6, Materials and Methods). 

The model comprises 16 proteins (ligand/receptor combinatorial binding) interacting via 

82 reactions to produce 62 biochemical species, including the ligand/receptor binding, 

Notch signaling complex activation, transcription of target genes, and transition between 

an NE and non-NE cell (Figure 28). Below, we describe in detail the steps involved in the 

ligand/receptor binding and downstream signaling activation, ending with either activation 

of target genes or inhibitors binding to repress Notch signaling and transition to an NE 

cell. A model schematic is provided as a visual aid (Figure 28).  
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Table 6: Summary of key genes involved in Notch signaling  

Gene Role in Notch signaling References 

ASCL1 Transcription factor required for proper development of PNECs and is 
essential for the survival SCLC with neuroendocrine features. 

(Baine et al., 2020; 
Borromeo et al., 2016a) 

BCL6 BCL6 triggers exclusion of the co-activator Mastermind-like 1 (MAML) 
and recruitment of SIRT1 

(Tiberi et al., 2012) 

BEND6 BEND6 binds the mammalian CSL protein CBF1 (RBPJ) and 
antagonizes Notch-dependent target activation, inhibiting of Notch 
signaling 

(Dai et al., 2013) 

DLL(1/4) Ligands are single pass transmembrane receptors and typical Notch 
activation includes direct cell-cell interaction (trans-activation). 

(Mohtashami et al., 2010) 

DLL3 Inhibitory Notch ligand that is highly expressed in SCLC. Notch 
signaling is downregulated during NE tumor growth and is inhibited by 
DLL3 expression, regulated by ASCL1. 

(Furuta et al., 2019; Owen et 
al., 2019; Xie et al., 2019) 

HES1 TF whose expression is initiated by the Notch signaling pathway, a 
repressor of cell cycle inhibitors. 

(Kageyama and Ohtsuka, 
1999; T et al., 1999) 

HES6 HES6 counteracts HES1 repression of ASCL1 activity, shown to 
antagonize functionally HES1 and relieve positive bHLH factors like 
ASCL1 from inhibition by HES1 

(Nelson et al., 2009; 
Somasundaram et al., 2005) 

JAG(1/2) Ligands are single pass transmembrane receptors and typical Notch 
activation includes direct cell-cell interaction (trans-activation). 

(Sasnauskiene et al., 2014; 
Xiu et al., 2020) 

LSD1 
(KDM1A) 

LSD1 bound to the NOTCH1 locus suppresses NOTCH1 expression 
and downstream signaling 

(Augert et al., 2019) 

MAML Mastermind-like proteins act as critical transcriptional co-activators for 
Notch signaling with RBPJ 

(Liu et al., 2015; Miyamoto 
and Weinmaster, 2009) 

MYC MYC promotes a neuroendocrine-low phenotype associated with high 
expression of NEUROD1. MYC and NEUROD1 expression are 
associated with variant SCLC 

(Ireland et al., 2020; Patel et 
al., 2021) 

MYCL MYCL and ASCL1 as key drivers of tumorigenesis in classic SCLC that 
are required for tumor growth. ASCL1 proteins were only expressed in 
MYCN- and MYCL-amplified cells 

(Brägelmann et al., 2017; 
Patel et al., 2021) 

MYCN MYCN overexpression drives SCLC chemoresistance and provide a 
therapeutic strategy to restore chemosensitivity 

ASCL1 proteins were only expressed in MYCN- and MYCL-amplified 
cells 

(Brägelmann et al., 2017; 
Dammert et al., 2019) 

NOTCH 
(1/2/3/4) 

The Notch family of type-1 transmembrane receptors consists of four 
protein paralogs (Notch1–4) in humans and mice.  

(Hori et al., 2013; Lim et al., 
2017; Meder et al., 2017) 

RBPJ Plays a crucial role in Notch-mediated gene transcription. In the 
absence of Notch activation, CSL/RBPJ acts as a transcriptional 
repressor in complex 

(Castel et al., 2013; Lake et 
al., 2014) 

REST Identified as the TF that suppresses the expression of neuronal genes, 
keeping cells in a non-NE phenotype 

(Lim et al., 2017) 

RIN1 Identified in a reporter-based cell culture assay to act as a 
transcriptional repressor complex between RBPJ and SHARP inhibiting 
Notch signaling  

(Hurtado et al., 2019) 

SIRT1 SIRT1 associates with NICD and functions as a NICD deacetylase, 
which opposes the acetylation-induced NICD stabilization 

(Xie et al., 2012) 
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Signaling through the Notch pathway is initiated via juxtracrine signaling with a 

neighboring cell that expresses one of the four Notch ligands on its surface (DLL1, DLL4, 

JAG1, JAG2) which can bind to any of the four NOTCH receptors (NOTCH1, NOTCH2, 

NOTCH3, NOTCH4). A recent review of the biophysics of Notch signaling summarized 

the binding strengths of Notch ligands to their receptors (Figure 23), and their preferential 

binding profiles. We include all combinatorial combinations of ligand and receptor binding 

pairs to encompass all possible avenues for Notch receptors to be activated. Ligand 

binding promotes two proteolytic cleavage events in the Notch receptor (D’Souza et al., 

2008). The first cleavage is catalyzed by ADAM10, and the second is mediated by g-

secretase, resulting in the release of the NECD that gets endocytosed by a neighboring 

cell, and the NICD which then translocates to the nucleus (Kopan, 2012; Liu et al., 2015). 

We model these interactions as two species initially bound in complex to form the NOTCH 

receptors (NOTCH = NECD%NICD) that can then become dissociated to form the NECD 

and NICD separately, respectively. The NICD then forms an activating transcriptional 

complex containing RPBJ and MAML, DNA-binding proteins (Lake et al., 2014; Liu et al., 

2015). This complex is crucial for any downstream signaling, modeled as three separate 

species with the requirement that RBPJ binding first, consistent with previous studies 

reporting that RPBJ is the only nuclear protein known to mediate the bulk of Notch signals 

(Castel et al., 2013), and helps recruit MAML to the complex. The NICD:RBPJ:MAML 

transcriptional complex turns on numerous target genes, including REST, MYC family 

genes, HES family genes, and synthesis of its own ligands and receptors that cycle back 

to the cleavage processes and cell to cell communication (Brägelmann et al., 2017; 

Ireland et al., 2020; Kageyama and Ohtsuka, 1999; Lim et al., 2017; T et al., 1999).  
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Inhibitors of Notch signaling are also included in the model as biologically relevant. 

These inhibitors include, BCL6, BEND6, DLL3, HES6, LSD1, SIRT1, and RIN1 (diagram 

simplified for clarity). BCL6 binds to MAML repressing its function (Tiberi et al., 2012), 

and recruits SIRT1, which negatively regulates the NICD (Xie et al., 2012). BEND6 and 

RIN1 can also bind to RPBJ and inhibit Notch target activation and signaling, and LSD1 

can inhibit the transcription of Notch gene stopping the ability for receptor synthesis 

(Augert et al., 2019). Lastly, DLL3, the only Notch ligand that negatively regulates Notch 

signaling through cis-inhibition, is positively regulated by ASCL1, in turn, repressing non-

NE cells towards NE fate (Nandagopal et al., 2019; Owen et al., 2019). We endogenously 

include expression of ASCL1, YAP1, POU2F3, and NEUROD1 in the model to account 

for NE and non-NE cell fate decisions. Increased expression of POU2F3 or YAP1 

positively regulates Notch signaling and continued cycling through activation and 

synthesis of the pathway, however, as ASCL1 or NEUROD1 increase in expression, 

synthesized NOTCH in the nucleus transforms to a “mutated” state, signaling to the 

neighboring cell to increase transcription of NE markers, including ASCL1 and NEUROD1 

to transition from non-NE to NE. Recent studies have reported that increased MYC 

activation is connected to the NE to non-NE transition along with Notch activation, we 

include transition back to a non-NE cell with increased NOTCH and MYC expression. 

This model encompasses all proposed interactions involved in the NE to non-NE 

transitions in SCLC providing a foundation for exploring mechanistic insights involved in 

SCLC progression.  
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Figure 28: Schematic of the cell-to-cell communication Notch model. The schematic 
diagram represents non-NE cell communication with NE SCLC cell. Arrows indicate 
activating interactions, dashed or bar lines represent inhibitory interactions. Non-NE cell 
regulates positive Notch activation, and increased REST, MYC, and HES1 expression. 
NE SCLC cell is upregulated in neuroendocrine markers, including ASCL1, NEUROD1, 
and DLL3. Created with BioRender.com. 
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DISCUSSION 
 
While SCLC has historically been treated as a single disease, recent studies have 

converged on the concept that SCLC is composed of at least four molecular subtypes 

with unique characteristics. Previous bioinformatic approaches classified SCLC into NE 

and non-NE subtypes (Wooten et al., 2019), suggesting that the subtypes may represent 

dynamic states of transition. More recently (Groves et al., 2021) we proposed an 

alternative, continuous view of SCLC heterogeneity based on SCLC archetypes where 

the transcriptional profile of every single cell can be evaluated based on distance from 

archetypes and graded as a specialist or generalist (i.e., a cell between archetypes A and 

Y has a generalist phenotype with a high degree of A and Y characteristics). The goal of 

this study was to understand dynamics of Notch signaling regulation within these 

subtypes since Notch activation has been shown to play a role in the NE to non-NE SCLC 

subtype transition (Ireland et al., 2020; Lim et al., 2017). We found that each of the Notch 

ligands and receptors have distinct expression profiles across each dataset, differentially 

expressed from one another and between archetypes supporting the hypothesis that 

Notch signaling is regulated in a context-dependent manner and that underlying 

combinatorial complexity between ligand and receptor pairings could contribute to the 

diversity seen in SCLC.  

 Together, these results advocate for future studies focused on the 

complexity that is involved between Notch ligands and receptors, their influence on 

downstream signaling, and regulation of SCLC. The combination of  these global -omics 

data studies allow us to identify trends across these archetypes, we move towards 

understanding the biochemical mechanism involved in Notch signaling and SCLC with 
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our computational model (Figure 28) that incorporates all of the known interactions of 

Notch signaling (Table 6), and the cell-to-cell communication between neighboring SCLC 

cells with the goal of identifying distinct pathways of signal transduction that can be 

mechanistically explained in SCLC progression.  
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CHAPTER IV 
 

IV. MATERIALS AND METHODS 
 

Necroptosis Methods 
 
Cell culture and reagents  
 
L929 cells (NCTC clone 929, L cell, L-929, derivative of Strain L) were purchased from 

the American Type Culture Collection (ATCC) and cultured in Dulbecco's Modified Eagle 

Medium (DMEM; Corning) supplemented with 10% fetal bovine serum (FBS; Omega 

Scientific), 1% L-Glutamine, and 1% penicillin/streptomycin (Thermo Fisher Scientific) at 

5% CO2 and 37°C. Mouse recombinant TNF was purchased from R&D (Cat# 410-MT-

10). 

 
Immunoblotting 
 
L929 cells (2–3 ´ 106) were grown in 10-cm dishes for 24 h followed by treatment with 

TNF (0.1, 1, 10, or 100 ng/ml) for 16h. Dead cells were removed by washing with ice cold 

phosphate-buffered saline (PBS). Remaining adherent cells were lysed using 

radioimmunoprecipitation assay (RIPA) buffer with 1% Triton X-100, protease, and 

phosphatase inhibitors. Samples were normalized for total protein concentration 

(Bradford assay, Bio-Rad), denaturated in 3´ sodium dodecyl sulfate (SDS) sample buffer 

(5 minutes at 95°C) and subjected to gel electrophoresis (4–15% Criterion™ TGX™ 

Precast Midi Protein Gel, Bio-Rad) and immunoblotting (polyvinylidene difluoride Transfer 

Membrane, Thermo Fisher Scientific). Membranes were blocked in 5% bovine serum 

albumin (BSA)/tris buffered saline with Tween® 20 (TBS-T) and incubated with the 

following antibodies: pMLKL (1:1000, Abcam, Cat# ab196436), actin (1:3000, Santa Cruz, 
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Cat# sc-1615), anti-rabbit (1:5000, Santa Cruz, Cat# sc-2004), anti-goat (1:3000, Santa 

Cruz, Cat# sc-2354). Signal was developed using chemiluminescent substrate 

(SuperSignal West Pico Plus, Thermo Fisher Scientific) and visualized with ChemiCoc 

MP imaging system (Bio-Rad). 

 
Determining initial protein concentrations 
 
Expression levels for six proteins (caspase-8, FADD, unmodified MLKL, RIP3, TRADD, 

and TRAF2) were measured in L929 cells using absolute protein quantitation mass 

spectrometry. As a negative control, cells were collected in three replicate 6-well plates 

and cell lysates were gathered, prepped for protein precipitation, pellet, and digestion in 

the Vanderbilt Mass Spectrometry Research Center (MSRC) Proteomics Core 

Laboratory. For the other eight proteins in the model, initial concentrations were estimated 

from measurements reported in the literature and the human protein atlas (Stokes and 

Lauffenburger, 2022; Uhlén et al., 2005, 2015). Concentrations were converted to units 

of molecules/cell assuming an L929 cell diameter of 15µm (Milo et al., 2009). 

 
Bayesian parameter calibration  
 
We estimated parameter values using PyDREAM (Shockley et al., 2018), a Python 

implementation of the DiffeRential Evolution Adaptive Metropolis (DREAM) method 

(Vrugt and Ter Braak, 2011). We utilized pMLKL Western blot data at the two highest 

TNF doses (100 and 10 ng/ml) and defined a multi-objective cost function, 

 

𝐶𝑜𝑠𝑡(Θ) = 	∑ ∑ !
"#!(%,')

[𝑥)(𝑡, 𝑑) − 𝑥*(𝑡, 𝑑)]"'%    (1) 
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where Q is the parameter set, xm(t,d) and xe(t,d) are model-predicted and experimentally 

measured pMLKL concentrations, respectively, at time t and TNF dose d, and s(t) = 

0.1×xe(t,d) (following previous studies; Eydgahi et al., 2013; Kochen and Lopez, 2020; 

Spencer et al., 2009). This function corresponds to the negative log of the likelihood 

(−ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛩))) in the Bayesian framework assuming the measurement errors at time 

t have a normal distribution. Using the Bayes formula, the value of the log posterior 

distribution, i.e. the probability of a parameter vector given the experimental data, for a 

particular parameter vector is defined as 

 

− ln(𝑝𝑜𝑠𝑡(𝛩)) ∝ − ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛩)) − ln (𝑝𝑟𝑖𝑜𝑟(𝛩)) 

 

where 𝑝𝑜𝑠𝑡(𝛩) is the posterior probability of parameter vector 𝛩, and 𝑝𝑟𝑖𝑜𝑟(𝛩) are the prior 

probabilities assigned to each of the parameters in the parameter vector 𝛩. PyDREAM 

samples the posterior distribution and finds probable parameter sets that fit the 

experimental data within the constraints that the network interactions and the network 

kinetics imposes. To further constraint the model, we added the requirement that 

thermodynamic cycles present in the interaction network must obey detailed balance/free 

energy conservation in the likelihood function. A parameter vector as a set of positive real 

values, one value representing each reaction rate (“R”) defined in the model used to run 

a simulation. These parameter vectors from PyDREAM represent the differences in the 

protein-protein binding affinity interactions (association and dissociation rates) within the 

molecular network. The parameter distributions refer to the frequency of occurrence of 

different values from the same kinetic parameter.  
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Parameter sampling was performed using five Monte Carlo chains, each run for 

50,000 iterations, the first 25,000 of which were considered burn-in and discarded, 

resulting in 125,000 parameter sets. Out of these, we extracted an ensemble of 10,628 

unique parameter sets. Convergence was achieved for all chains (Figure 9), assessed 

using the Gelman-Rubin test (Csete and Doyle, 2002; Vrugt, 2016). Starting positions for 

all PyDREAM chains were determined using particle swarm optimization (Marini and 

Walczak, 2015 ; PSO): we performed 100 PSO runs, of 500 iterations each, saved the 

parameter sets from the last iteration of each run, and selected the five with the lowest 

cost function values (Equation 1). Also, for all parameters, we set prior distributions in 

PyDREAM to log-normal distributions, 𝐿𝑁>𝜇 = log!+>∑ 𝑝, 5⁄-
,.! B, 𝜎" = 4B, where pi is the 

value of the parameter from the i-th PSO run. Starting rate constant values for the PSO 

runs were set to physically plausible values (Aldridge et al., 2006; Lawson et al., 2015): 

association=10-6 min-1, dissociation=10-3 min-1, ubiquitination/phosphorylation=1 min-1, 

and degradation=1 min-1 (Table 7). In all cases, simulations were performed by numerical 

integration of ordinary differential equations (ODEs) using LSODA (Petzold, 1983), as 

implemented in the Python package SciPy (Virtanen et al., 2020).  

Dynamical systems analysis methods 
 
Workflow to obtain a modes of signal execution from fitted parameter network 
dynamics 
 
Modes of signal execution were identified using PyDyNo, a Python-based software 

package for dynamical systems analysis of biochemical models with uncertain 

parameters  (Ortega et al., 2021). PyDyNo takes as input a model object as PySB (Lopez 

et al., 2013b) or SBML (Hucka et al., 2003; Keating et al., 2020) formats, an input file with 

parameter sets, and a target species (pMLKL, in our case). The algorithm builds a 
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bipartite graph from the model reaction network. This bipartite graph has a set of nodes 

that correspond to model species, and another set of nodes that correspond to reactions, 

and edges only connect species nodes with reaction nodes. This bipartite graph enables 

the identification of all reactions that produce a specific species. PyDyNo updates the 

direction of graph edges related to bidirectional reactions to indicate the net flux of the 

reaction at a specific time point. Hierarchically, the algorithm constructs a dominant 

pathway starting from the user- defined target species. For the first step, we identify the 

set of dominant reactions, i.e., those reactions which contribute most to the production of 

the target species. Dominant reactions are classified based on the instantaneous reaction 

rates; the conditions determining the dominant reactions are detailed in the following 

paragraph. We then trace back through the bipartite graph along those dominant 

reactions to the corresponding reactant species, which are added to the dominant sub-

network. For each reactant species that was added to the sub-network we determine their 

dominant reactions and trace back through the bipartite graph to the next set of reactant 

species. This procedure is continued for a pre-determined number of iterations defined 

by the user parameter depth. Once the procedure is complete, the result is a species-to-

species sub-network representing the dominant pathway over which most of the signal is 

flowing to produce the target at the current time point. Note that we have defined the 

dominant sub-networks and their construction based on production of the target species. 

Alternatively, the procedure can be formulated to define the dominant sub-networks and 

their construction based on the consumption of the target species.  
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ODE simulations are run (Petzold, 1983; Virtanen et al., 2020) for all parameter 

sets and “digitized” into a sequence of integers, termed a “dynamical signature,” based 

on “dominant” subnetworks of reactions identified at each time point. Simulating 

biochemical models with different initial protein levels or kinetic parameters may result in 

different dynamical signatures. These signatures can be compared to determine their 

level of discrepancy. We can then group sequences that have similar dominant 

subnetworks and define these groups of sequences as modes of signal execution. 

Basically, the algorithm identifies, at every time point, the subnetwork of reactions that 

contribute most to either the production or consumption (depending on user preference; 

production, in our case) of the target species and assigns to each identified subnetwork 

an integer index. Each time point is thus associated with an integer index and the entire 

simulated time course with a sequence of integers, i.e., the dynamical signature. We refer 

the reader to the original work (Ortega et al., 2021) for further details on how PyDyNo 

identifies dominant subnetworks from ODE simulations of biochemical models. We 

repeated this procedure for all 10,628 unique parameter sets obtained from PyDREAM, 

with all simulations run at the highest TNF dose (100 ng/ml) for 16h simulated time, in line 

with experimental data (Fig. 2A). Dynamical signatures were clustered using a spectral 

clustering method (Von Luxburg, 2007) with the longest common subsequence (Studer 

and Ritschard, 2016) (LCS) as the distance metric. The optimal number of clusters, i.e., 

modes of execution, was determined using a silhouette score (Rousseeuw, 1987) for 

cluster sizes between 2 and 20 (Figure 11). For each mode, a “representative” dynamical 

signature was defined as the one with the minimal sum of distances to all other 

signatures(Gabadinho et al., 2011) (i.e., the medoid). Distributions across all mode 
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combinations were analyzed for significance using the Kolmogorov–Smirnov Test (Table 

7).  

Sensitivity analyses for initial protein concentrations and rate constants 
 
We used a sensitivity analysis tool (Harris et al., 2017) available in PySB (Lopez et al., 

2013) to quantify changes in TTD, defined as the time at which pMLKL reaches a pre-

defined threshold (Figure 8D), due to changes in both initial protein concentrations and 

rate constants. Briefly, the sensitivity analysis tool varies pairs of protein concentrations 

or rate constants over a range of values relative to a reference set (in this case, [-20%, 

…, -2%, 0%, 2%, …, 20%]) and calculates the resulting changes in TTD. For each protein 

or rate constant, a “single-parameter sensitivity multiset” (Harris et al., 2017) is then 

obtained, which summarizes the range of changes in TTD due to the changes in protein 

or rate constant values and can be visualized as a boxplot (Figures 15A and 16A). 

Reference rate constants are those associated with the representative dynamical 

signatures obtained for each mode from PyDyNo (see previous subsection). For protein 

concentration sensitivities, reference concentrations are those obtained from mass 

spectrometry (Figure 8B) and the literature or human protein atlas (Stokes and 

Lauffenburger, 2022; Uhlén et al., 2005, 2015) (Table 7) and all simulations were 

performed using the reference rate constant values. Note that we defined a hard threshold 

of 2,772 pMLKL molecules to define TTD, which is half the amount measured by mass 

spectrometry (Figure 8B). We chose this, rather than, e.g., the half-maximal amount of 

pMLKL, to prevent any bias (i.e., changes in the threshold) when varying the initial amount 

of MLKL. This choice is consistent with experimental evidence that plasma membrane 
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damage accumulates until a threshold is reached, triggering cell death (Samson et al., 

2020). 

Results of the sensitivity analyses above, which used reference rate constant 

values, were then validated by performing, over the full set of rate constant values for 

each mode, in silico KD (70%) and OE (10-fold) experiments for protein concentrations 

and ± 10-fold variations for the rate constants (Figures 15B and 16B). This was critical for 

identifying results that were specific only to the reference parameter set and, hence, could 

be discounted from our analyses. Statistical significance was determined for each 

condition’s distribution across all modes analyzed using three statistical tests: 

Kolmogorov–Smirnov Test (2008) for distribution comparison, T-test (Kim, 2015) for 

mean comparison, and Mood’s median test (Virtanen et al., 2020) for median comparison 

(Tables 7-10).  
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Table 7: Combinatorial comparisons between modes to determine significance 
across each rate parameter in the necroptosis model.    

 
 

M1, M2 M1, M3 M1, M4 M2, M3 M2, M4 M3, M4 

P1 * * * * * * 
P2 0.001 * * * 0.0001 * 
P3 0.02 0.01 0.0004 * 0.003 0.001 
P4 0.006 * * * * * 
P5 0.03 * 0.001 * * * 
P6 * 0.186 * * 0.0003 0.0008 
P7 * 0.005 0.01 * 0.07 0.001 
P8 0.0002 > 0.05 0.01 * * 0.82 
P9 * * * * * * 
P10 * 0.005 * 0.0004 * 0.13 
P11 * 0.04 * * * * 
P12 * 0.0001 * * * * 
P13 * 0.025 0.0005 0.0007 * 0.0007 
P14 0.13 * 0.002 * * * 
P15 0.0001 * * * * * 
P16 * 0.0003 * 0.003 * * 
P17 * * * * * 0.02 
P18 * 0.019 * * * * 
P19 * * * * * * 
P20 * * * * 0.024 * 
P21 * 0.005 0.04 * * 0.049 
P22 0.07 0.004 > 0.05 * 0.035 0.0002 
P23 0.001 * * * * * 
P24 * 0.02 * * * 0.0003 
P25 * * * 0.015 0.001 0.003 
P26 * * * * * * 
P27 * * * 0.0018 * * 
P28 * 0.009 * * * * 
P29 * * 0.34 0.017 0.0004 0.001 
P30 * 0.0066 0.01 * * 0.001 
P31 * * * * * 0.001 
P32 * * * * * * 
P33 * 0.01 * * * 0.0005 
P34 0.012 * 0.01 * 0.04 * 
P35 * * * 0.001 0.01 0.003 
P36 * 0.0001 0.0008 * * 0.68 
P37 0.0002 * * * * * 
P38 * * * * 0.001 > 0.05 
P39 * * 0.005 * * * 
P40 * * * * * > 0.05 
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Table 8: Statistical tests comparing sensitivity analysis distributions in mode 1.  

Initial/Param KS Test T-test (mean) Mood’s Median 
Test 

*p<0.05 
**p<0.01 
***p<0.001 

A20 KD 1.03520e-74 1.5918e-33 2.9380e-12 *** 
A20 OE 1.8953e-140 2.4207e-19 7.8774e-91 *** 
cIAP KD 1.8136e-05 0.0008 4.3544e-06 *** 
cIAP OE 0.1371 0.7373 0.1871 n.s. 
CYLD KD  4.1823e-81 4.3665e-12 2.0710e-40 *** 
CYLD OE 8.9175e-135 3.1246e-116 9.7633e-36 *** 
P3 decrease 6.3652e-06 0.23163 0.00114 ** 
P3 increase 3.5829e-65 1.69913e-35 2.6008e-55 *** 
P10 decrease  3.2075e-12 7.0654e-10 2.4850e-12 *** 
P10 increase 0.1371 0.4367 0.2205 n.s. 
P11 decrease 0.1884 0.5369 0.2296 n.s. 
P11 increase 2.69428e-12 2.4622e-09 1.7888e-11 *** 
P12 decrease 0.0 0.0 0.0 *** 
P12 increase 0.0 0.0 0.0 *** 
P13 decrease 1.349e-21 1.7172e-18 4.2564e-18 *** 
P13 increase 0.00026 0.0629 0.0046 ** 
P15 decrease 4.953e-135 1.0466e-115 1.8080e-38 *** 
P15 increase 5.704e-141 3.4649e-22 7.8774e-91 *** 
P16 decrease 0.9999 0.9135 0.9062 n.s. 
P16 increase 0.9293 0.0382 0.6201 n.s. 
P17 decrease 9.3784e-142 6.4303e-27 3.3023e-90 *** 
P17 increase 1.6714e-133 1.3129e-112 2.3516e-35 *** 
P18 decrease 9.6307e-09 0.0196 2.7160e-08 *** 
P18 increase 3.1826e-13 0.0382 8.2264e-10 *** 
P19 decrease 0.2301 0.0866 0.0624 n.s. 
P19 increase 0.9999 0.6212 0.7415 n.s. 
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Table 9: Statistical tests comparing sensitivity analysis distributions in mode 2. 

Initial/Param KS Test T-test (mean) Mood’s Median 
Test 

*p<0.05 
**p<0.01 
***p<0.001 

A20 KD 7.4997e-86 2.1061e-12 9.7604e-18 *** 
A20 OE 1.2302e-126 1.4331e-142 3.3974e-26 *** 
CYLD KD 1.3967e-77 2.0629e-46 2.6768e-08 *** 
CYLD OE 7.9421e-151 2.7104e-33 1.9175e-82 *** 
LUBAC KD  7.6140e-12 6.6652e-09 9.4644e-13 *** 
LUBAC OE 0.0007 0.0016 0.0394 * 
P3 decrease 1.4594e-16 2.4214e-07 2.8901e-09 *** 
P3 increase 4.3945e-74 5.5113e-71 1.5940e-69 *** 
P12 decrease 0.0 0.0 0.0 *** 
P12 increase 0.0 0.0 0.0 *** 
P13 decrease 6.9340e-22 1.5746e-19 6.9713e-23 *** 
P13 increase 0.0007 0.0015 0.0394 * 
P15 decrease 9.3889e-153 4.2957e-54 1.2566e-81 *** 
P15 increase 1.2406e-125 3.8085e-140 9.3721e-26 *** 
P16 decrease 1.9767e-06 0.0119 1.72435e-07 *** 
P16 increase 1.0745e-08 5.0882e-06 2.9764e-08 *** 
P17 decrease 1.2302e-126 1.6897e-142 1.2203e-26 *** 
P17 increase 1.4937e-150 9.8983e-32 4.9150e-82 *** 
P18 decrease 0.2486 0.0464 0.6491 n.s. 
P18 increase 0.2609 0.0031 0.3499 n.s. 
P19 decrease 4.1713e-17 1.2320e-08 2.1749e-14 *** 
P19 increase 1.4708e-20 1.4987e-06 1.4057e-16 *** 
P20 decrease 0.04718 0.0002 0.0068 ** 
P20 increase 0.2252 0.0089 0.5655 n.s. 
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Table 10: Statistical tests comparing sensitivity analysis distributions in mode 3. 

Initial/Param KS Test T-test (mean) Mood’s 
Median Test 

*p<0.05 
**p<0.01 
***p<0.001 

C8 KD 0.8683 0.7359 0.3639 n.s. 
C8 OE 3.0349e-08 5.2554e-05 4.2363e-09 *** 
RIP1 KD 0.1340 0.0206 0.1206 n.s. 
RIP1 OE 0.0029 2.0104e-05 0.0003 ** 
TRADD KD  0.0 1.3698e-236 0.0 *** 
TRADD OE 1.0538e-113 1.2249e-95 6.8001e-77 *** 
P2 decrease 0.0211 0.1571 0.0084 ** 
P2 increase 1.6164e-10 8.6257e-09 4.5140e-08 *** 
P3 decrease 4.3928e-11 0.1162 1.2705e-09 *** 
P3 increase 6.1210e-93 9.7685e-37 1.8502e-67 *** 
P4 decrease 3.5056e-215 6.2288e-169 1.3867e-146 *** 
P4 increase 3.1778e-111 1.8375e-31 9.546e-73 *** 
P5 decrease 0.0070 0.4334 0.0011 ** 
P5 increase 0.0014 1.2829e-07 0.0095 ** 
P6 decrease 0.0026 1.7521e-06 0.0125 * 
P6 increase 0.0063 0.2966 0.0008 *** 
P12 decrease 0.0 0.0 0.0 *** 
P12 increase 0.0 0.0 0.0 *** 
P13 decrease 5.0601e-21 1.0476e-11 1.3146e-16 *** 
P13 increase 7.1901e-05 0.2262 0.0003 *** 
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Table 11: Statistical tests comparing sensitivity analysis distributions in mode 4.  

Initial/Param KS Test T-test (mean) Mood’s Median 
Test 

*p<0.05 
**p<0.01 
***p<0.001 

C8 KD 0.7435 0.4863 0.2410 n.s. 
C8 OE 1.9702e-06 0.0069 1.3637e-05 *** 
LUBAC KD 5.1460e-05 0.0718 4.9082e-06 *** 
LUBAC OE 0.0798 0.5679 0.0477 * 
RIP1 KD 0.6514 0.7076 0.1474 n.s. 
RIP1 OE 0.2394 0.0778 0.0437 * 
TRADD KD  0.0 1.5280e-90 0.0 *** 
TRADD OE 2.0240e-40 5.0538e-22 1.3349e-27 *** 
P4 decrease 6.7628e-99 3.4921e-38 2.5383e-72 *** 
P4 increase 6.4454e-39 0.0005 7.3915e-25 *** 
P12 decrease 0.0 0.0 0.0 *** 
P12 increase 0.0 9.8673e-157 0.0 *** 
P13 decrease 4.7652e-10 0.0143 1.0261e-10 *** 
P13 increase 0.1364 0.2948 0.0785 n.s. 
P14 decrease 1.0 0.5686 0.9707 n.s. 
P14 increase 1.0 0.1147 0.8261 n.s. 
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Data and computer code availability 
 
The data analyzed in these studies were performed using custom Python code, as well 

as open-source software packages and previously published software. The GitHub 

repositories used are: 

PySB: https://github.com/LoLab-VU/pysb.git 

PyDREAM: https://github.com/LoLab-VU/PyDREAM.git 

simplePSO: https://github.com/LoLab-VU/simplePSO.git 

PyDyNo: https://github.com/LoLab-VU/pydyno.git  

NERM repository: https://github.com/LoLab-VU/NERM.git 

Notch repository: https://github.com/QuLab-VU/Notch_model_SCLC.git  

Archetype Analysis: https://github.com/QuLab-VU/Groves-CellSys2021.git  

Common model development for necroptosis and notch signaling  
 
A set of mass action kinetic rules were developed to describe the interactions between 

proteins and track their concentration changes of various species over time. The 

necroptosis model is rule-based encoded in PySB, each rule encoding a different set of 

biochemical reactions in this network. PySB simplifies the error-prone task of enumerating 

equations describing interactions among multiple proteins into writing a “rule,” the notation 

which resembles that of biochemical reactions. For example, the rule of the ligand (L), 

binding to its receptor (R) is given by 

 

𝑅𝑢𝑙𝑒(‘𝐿_𝑏𝑖𝑛𝑑𝑠_𝑅/, 𝐿(𝑟	 = 	𝑁𝑜𝑛𝑒) + 	𝑅(𝑙	 = 	𝑁𝑜𝑛𝑒)	|		𝐿(𝑏	 = 	1)%𝑅(𝑏	 = 	1), 𝑘0 , 𝑘1) 
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encoding the reversible binding of this ligand binding to its receptor. ′𝐿_𝑏𝑖𝑛𝑑𝑠_𝑅′ is the 

name of the rule, 	𝐿(𝑟	 = 	𝑁𝑜𝑛𝑒) is the ligand in the unbound state, 𝑅(𝑙	 = 	𝑁𝑜𝑛𝑒) is the 

receptor in the unbound state, | indicates reversible binding, 𝐿(𝑏	 = 	1)%𝑅(𝑏	 = 	1) is the 

ligand bound to the receptor, and 𝑘0and 𝑘1 are the forward and reverse kinetic rate 

constants. The PySB framework automatically generates the Ordinary Differential 

Equations (ODEs) that define the concentration rate of change of the molecular species 

using the law of mass action kinetics (Chylek et al., 2014; Lawson et al., 2015; Le Novère 

and Endler, 2013). This law states that the rate of a chemical reaction is directly 

proportional to the concentration of reactants. PySB is open source and models are easily 

shareable, revisable, and extendable (Lopez et al., 2013). 

Notch methods: Analyses of publicly available datasets 
 
Bulk RNA-sequencing of human SCLC cell line data  
 
A total of 120 SCLC cell lines were used for analysis of Bulk RNA-sequencing, including, 

50 cell lines taken from the cancer cell line encyclopedia (CCLE) (Barretina et al., 2012), 

and 70 cell lines were taken from cBioPortal deposited by John Minna (Cerami et al., 

2012; Gao et al., 2013). Participation in the national cancer institute SCLC consortium 

provided access to the cBioPortal. The overlap of 29 cell lines between the datasets are 

denoted with a “c” for CCLE or “m” for Minna to denote the appropriate source. 

Preprocessing of these datasets was conducted as indicated in (Groves et al., 2021). All 

genes and cell lines with NAs (missing values) were removed, as well as mitochondrial 

genes, then filtered and normalized independently and then batch corrected together 

(Johnson et al., 2007; Leek and Storey, 2007). The four SCLC TF factors that define 

broad subtypes— ASCL1 (A), NEUROD1 (N), YAP1 (Y), and POU2F3 (P)— were used 
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to align the two datasets to each other. The resulting batch-corrected dataset contained 

120 samples and 15,950 genes.  

Single-cell RNA-sequencing of human SCLC cell lines  
 
From the bulk RNA-sequencing data above, eight cell lines were chosen for single-cell 

RNA-sequencing (Groves et al., 2021). Two cell lines were chosen from each 

neuroendocrine (NE) subtype: A: H69, CORL279; A2: DMS53, DMS454; N: H82, H524 

and one cell line from each non-neuroendocrine (non-NE) subtype: P: H1048; Y: H841. 

These were chosen to approximate the distributions of subtypes that are seen in the bulk 

data, largely made up of NE subtypes. The cell lines ranged in their distance from their 

“assigned” archetype to better understand intermediate samples compared to those 

closer to their respective archetype. Preprocessing of these datasets was conducted as 

indicated in (Groves et al., 2021). Filtering was performed using Dropkick (Heiser et al., 

2021), removing any cells or genes with low or no reads, then normalized, scaled, and 

the resulting dataset contained 16,108 cells and 20,446 genes. Spliced and unspliced 

reads were annotated and RNA expression dynamics of single cells were estimated by 

Velocyto (La Manno et al., 2018). SCLC human cell lines were validated by matching 

transcript abundance to the bulk RNA-seq data from CCLE. Single-cell RNA-seq counts 

were analyzed using the Python packages Scanpy (Wolf et al., 2018) and scVelo (Bergen 

et al., 2020). Velocyto generates loom files that can be used with Scanpy and scVelo for 

preprocessing and velocity calculations. Scanpy is utilized to read in the loom files as an 

AnnData object (anndata.readthedocs.io). 
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Preprocessing of mouse tumor (RPM) time-series data 
 
A six point time-course genetically engineered mouse tumor with Hyperactivation of c-

Myc (Rb1fl/fl;TP53fl/fl; Lox-Stop-Lox [LSL]-MycT58A ;RPM tumors) was preprocessed as 

indicated in from (Ireland et al., 2020). Filtering using Scanpy as indicated above, 

removed any cells or genes with low or no reads, and non-cancer populations such as 

immune and stromal cells. This resulted in 15,138 cells with 2,175 of these remaining 

cells predicted to be doublets. To ensure consistency with the original publication, these 

these potential doublets were not removed.  
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CHAPTER V 
 

V. CONCLUSIONS AND FUTURE DIRECTIONS 
 

SUMMARY 
 

Advances in high-throughput technologies that can analyze cellular systems at multiple 

levels, combined with high-speed computing resources, has facilitated a transition in the 

research paradigm toward an integrated systems biology approach. However, despite 

significant progress in the field of systems biology, there is still much to discover in the 

underlying biochemical complexity of biological systems in the context of cancer and 

disease with the goal of identifying targets for personalized therapy. The work presented 

in this dissertation was performed to advance the field’s understanding of signaling 

crosstalk within pathways that are known to regulate cell fate decisions in cancer and 

diseases, including cell death pathway, necroptosis, and the Notch signaling pathway 

using systems biology approaches. We present these findings using Top-down, and 

Bottom-up approaches in systems biology. These methodologies progress towards the 

goal of “whole-cell” modeling, which requires in depth understanding of all interconnected 

pathways from regulating cell survival, inflammation, cell death, proliferation, to learning 

how to mechanistically control cell fate decisions. 

The methods we use throughout this work are detailed in Chapter IV. We 

discussed the Bottom-up model building methodologies, PySB (Lopez et al., 2013), a 

mathematical framework for building biochemical systems, PyDREAM (Shockley et al., 

2018), a framework for model fitting, and PyDyNo (Ortega et al., 2021), a framework for 

identifying subnetworks of reactions that dominate the production or consumption of 

target species. Together, these Bottom-up approaches allowed us to model the 
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necroptosis signaling pathway in Chapter II, fit the biochemical model to experimental 

data, and identify four distinct modes of signal transduction that drive necroptosis 

execution. We then mapped back the identified modes to characterize cell types within 

each mode to show that necroptosis is tuned in a context-, species-, and cell type- 

dependent manner. We also discussed the Top-down data-driven approaches, using the 

publicly available -omics datasets from GEMM tumors (Ireland et al., 2020), bulk 

transcriptomics (Barretina et al., 2012; Cerami et al., 2012), and single cell 

transcriptomics in SCLC from our recent work (Groves et al., 2021). Additionally, using 

these Top-down approaches we were able to analyze the role of Notch signaling in SCLC 

across different biological scales in Chapter III. This included single cell gene expression 

in SCLC tumors, average gene expression across SCLC cells, and single-cell SCLC gene 

expression and identified specific Notch ligand and receptor pairings that are context-

dependent within SCLC archetypes, and two potential targetable inhibitors of Notch 

signaling, HES6, and KDM1A (LSD1).  

CONCLUSIONS 
 

Necroptosis signaling  
 
Programmed cell death has been studied for decades with a specific focus around 

apoptosis, however, in the last decade, what was originally thought to be an uncontrolled 

form of cell death (necrosis), has recently been identified as another form of programmed 

cell death, necroptosis (Seo et al., 2021; Vanlangenakker et al., 2012). In Chapter III, 

through an extensive review of the literature derived from decade’s worth of experimental 

studies (Table 1), we built the first detailed biochemical model of TNF-induced 

necroptosis (Figure 7), fit to experimental data, and obtained 10,628 parameter sets that 
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all fit our experimental data well (Figure 8). This calibration yielded parameter probability 

distributions constrained by the experimental data and enabled us to compare the kinetic 

rate parameters and the inherent uncertainty in their values. These uncertainties are 

propagated to model predictions, and it is important to understand the mechanisms 

involved in the generation of different predictions to create testable hypotheses. Taking a 

dynamical systems analysis approach, we applied the PyDyNo framework to the 

necroptosis model and found that despite the many parameter sets that fit the 

experimental data, there are only four modes of signal execution that exist in the model 

network (Figure 11). Initially, we found varied ranges of variability for pMLKL production 

which influences TTD that was observed across the four modes (Figure 12), probing our 

curiosity to determine these underlying drivers. Targeting necroptosis by small molecule 

targets has emerged as a promising approach for both cancer and inflammatory diseases 

(Wu et al., 2020). It was of interest to determine if modulating factors existed across all 

modes of execution and their potential effect on TTD, which could represent novel 

therapeutic targets. Our model sensitivity analysis (initial conditions and rate parameters) 

revealed global and mode-specific modulators of necroptosis: Modes 1 and 2 were 

regulated through interactions involved in RIP1 ubiquitination, and modes 3 and 4 were 

modulated by factors regulating the balance between complex IIb degradation and 

necrosome formation (Figures 15 and 16).  

When we statistically examined the differences across the four parameter 

distributions for each mode and each rate parameter, we identified two key parameters, 

RIP1 deubiquitination by A20 (P19) and CYLD (P20), which were interesting because in 

each mode, their distributions were in opposite directions (i.e., when P19 ­, P20 was ¯ in 
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the same mode) across both parameters. This was intriguing, particularly because both 

proteins serve as deubiquitinating enzymes in cells, yet experimental studies had 

controversial results showing CYLD in some cases driving RIP1 deubiquitination and A20 

in others. A mechanistic understanding for the experimental results remained an open 

question, so we encoded these interactions as a competitive binding for RIP1 in complex 

I to observe if the model would preferentially predict either A20 or CYLD (both with equal 

likelihood of binding) as drivers. We hypothesized that each mode may represent distinct 

differences in response to CYLD or A20 depletion, and hence, attain mode specific 

drivers. We then performed in silico KO experiments for CYLD and A20 within each mode 

(Figure 13B), revealing four distinct roles for CYLD and A20 (Table 4). Mode 1 was driven 

by A20, while CYLD counterintuitively inhibited TTD, mode 2 resulted in the inverse of 

mode 1, driven by CYLD, while A20 counterintuitively inhibited TTD, Mode 3 had the 

ability to be driven by either A20 or CYLD, and mode 4 was driven by CYLD with a 

dysfunctional role for A20 (i.e., A20KO ® no change in TTD).  

Given that numerous published experimental studies had shown that RIP1 

deubiquitination in complex I is driven by A20, CYLD, or both, depending on cell type, we 

attempted to bring a consensus to the field of necroptosis by examining these studies 

individually to determine if we could place them in the context of our four modes of 

execution. For example, Wertz et al. (Wertz et al., 2004) showed that A20 can 

deubiquitinate RIP1 in human embryonic kidney (HEK) cells and mouse embryonic 

fibroblasts (MEFs). In contrast, Feoktistova et al. (Feoktistova et al., 2020) reported that 

deletion of A20 in human T lymphocyte (HTL) cells has no effect on necroptosis 

sensitivity. Moreover, Moquin et al.  (Moquin et al., 2013) reported that RIP1 
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deubiquitination in MEFs is mediated by CYLD, but proposed it occurs in the necrosome 

rather than complex I, since knockdown of CYLD had no effect on RIP1 deubiquitination. 

Vanlangenakker et al. (Vanlangenakker et al., 2011a) showed in mouse fibrosarcoma 

(MFS) cells that RIP1 can be deubiquitinated by both A20 and CYLD but, while inhibition 

of CYLD protects cells from necroptosis, inhibiting A20, counterintuitively, increases 

sensitivity to necroptosis. They also observed no effect on necroptosis after knockdown 

of TRADD. Hitomi et al. (Hitomi et al., 2008) showed that increased CYLD expression 

reduces necroptosis in HTL cells. Similarly, Liu et al. (Liu et al., 2014) showed in 

hippocampal neurons (HCNs) that knockdown of CYLD blocks necroptosis and Wright et 

al. (Wright et al., 2007) showed that CYLD deubiquitinates RIP1 in human cervical 

adenocarcinoma (HCAC) cells.  

To reconcile these contrasting reports, we associated with each experimental 

study one or more modes of necroptosis execution identified via our model analysis 

(Table 5). Specifically, the report by Wertz et al. (Wertz et al., 2004) that A20 

deubiquitinates RIP1 in HEK cells and MEFs implies that knocking down A20 would lead 

to an increase in TTD, i.e., a decrease in sensitivity to necroptosis, which is consistent 

with mode 1 (Figure 13B). Conversely, the reports by Hitomi et al. (Hitomi et al., 2008), 

Liu et al. (Liu et al., 2014), and Wright et al. (Wright et al., 2007) all suggest that knocking 

down CYLD would increase TTD, which could be explained by either modes 2 or 4 (Figure 

13B). The report by Vanlangenakker et al. (Vanlangenakker et al., 2011a) also suggests 

that knocking down CYLD would increase TTD but, importantly, includes additional data 

that excludes mode 4 as a possibility, i.e., KD of A20, counterintuitively, increases 

sensitivity to necroptosis and TRADD KD has no effect, which are only consistent with 
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mode 2 (Figure 13B and Figure 15–second and bottom rows). The observation by 

Feoktistova et al. (Feoktistova et al., 2020) that deletion of A20 has no effect on 

necroptosis sensitivity in HCAC cells is intriguing because it is consistent with both modes 

3 and 4 (Figure 13B) and they used the same cell line (HeLa) as Wright et al. (Wright et 

al., 2007), who’s observations are consistent with modes 2 and 4 (as mentioned above). 

This could indicate that HCAC cells (or HeLa cells, specifically) operate via mode 4, since 

both studies are consistent with this mode, or that the cells in these experiments are 

operating via different modes of necroptosis execution due to differences in context, i.e., 

genetic or epigenetic variations between samples or differences in experimental 

conditions between laboratories. Finally, the report by Moquin et al. (Moquin et al., 2013) 

is particularly interesting because their observation that CYLD binds to complex I but RIP1 

ubiquitination is not affected in CYLD-deficient MEFs led them to conclude that RIP1 

ubiquitination is regulated by CYLD in the necrosome, rather than complex I. However, 

our analysis shows these observations are consistent with mode 4, in which TTD 

increases for CYLD KO (Figure 13B) but there is no effect on TTD for CYLD KD < 90% 

(Figure 15B–bottom row and Figure 18B). Thus, the results of our in silico analyses, 

based on different parameterizations of a consensus model of necroptosis, explain a 

variety of incommensurate and counterintuitive experimental observations in the literature 

and provide an alternate explanation for a result that is seemingly inconsistent with prior 

studies. 

Notch signaling in SCLC   
 
The Notch signaling pathway is known to mediate cell fate decisions (Hori et al., 2013), 

and has been shown to be both tumor suppressive or oncogenic depending on the context 
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(Aster et al., 2017; Galluzzo and Bocchetta, 2014). In SCLC, loss-of-function NOTCH 

mutations and inhibitory effects of ectopic Notch activation indicate that Notch signaling 

is tumor suppressive (George et al., 2015; Koch and Radtke, 2007). In Chapter III, we 

take a Top-down approach to globally analyze three -omics datasets including a MYC-

driven (p53fl/fl;Rbfl/fl; Lox-Stop-Lox [LSL]-MycT58A, RPM) mouse model of SCLC (Ireland et 

al., 2020), bulk transcriptomics from 120 SCLC cell lines (Barretina et al., 2012; Cerami 

et al., 2012), and single-cell transcriptomics from our current work (Groves et al., 2021). 

We find within the RPM tumors in SCLC-A/-A2 specialists, we observed elevated 

expression of the four Notch ligands, DLL1 (day 4), DLL4 (day 7), JAG1 (day 7), JAG2 

(day4) along with moderate expression of NOTCH1-3 (days 4 & 7), suggesting that Notch 

is active within ASCL1+ cells, however, due to the elevated expression of three of the 

Notch inhibitors, DLL3, HES6 (both indirect Notch inhibitors), and KDM1A (LSD1), 

NOTCH1-3 expression is reduced, while NOTCH2 shows very low expression. KDM1A 

was recently identified (Augert et al., 2019) as a direct NOTCH1 inhibitor, and inhibiting 

KDM1A rescued NOTCH1 mRNA and NOTCH1 protein. This study did not examine the 

effect of KDM1A on the other Notch receptors, however, we hypothesize that Notch 

reduction in ASCL1+ cells could be rescued with the addition of the small molecule 

inhibitor of KDM1A they discovered providing another avenue for targeting NE cells in 

SCLC. As cells transitioned between SCLC-A/-A2/N specialists (NE), and SCLC-P/-Y 

specialists (non-NE) we saw decreased expression of Notch ligands and NOTCH1-3 

receptors, moderate expression of JAG2, and increased expression of NOTCH2, RBPJ, 

HES1, REST, KDM1A, and SIRT1, previously shown to directly inhibit the NICD (Xie et 

al., 2012), providing a potential explanation for the decreased expression of the other 
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Notch receptors. A possible mechanism for the role of NOTCH in conjunction with MYC 

driving NE cells to non-NE states, is a direct connection between JAG2 binding to 

NOTCH2 effectively activating its downstream targets, even in the presence of KDM1A. 

SIRT1 and KDM1A and the Notch pathway make up about 50% of these cells, motivating 

the possibility that they may not be functioning within the same cells but combined 

account for all the cells. Most interestingly, in the later timepoints, SCLC-Y/-X specialist 

and generalist cells between days 14-21 are upregulated again in NOTCH2, RBPJ, 

HES1, and REST, however ligand expression is reducing potentiating the idea from 

(Ireland et al., 2020) that MYC and NOTCH cooperate with one another to drive SCLC 

progression in when ligand expression is reduced. An interesting note, in day 21 

generalist cells (Figure 25B), we saw most highly expressed JAG2, NOTCH2, and REST 

genes (Figure 25G), where these cells were not enriched for archetype markers. This 

could be due to AA fitting or that these genes in particular are working together with MYC 

to progress SCLC outside of the identified archetypes.  

Examining the SCLC-A/-A2 archetypes in the bulk transcriptomics (Figure 26), 

consistent with the RPM tumors we observed upregulation of the four Notch ligands, with 

the addition of DLL1 in SCLC-P, and steady JAG2 expression across all cells including 

unclustered H82 cells (Figure 26B). However, we see decreased NOTCH expression in 

SCLC-A/-A2, contrast to RPM early timepoints, with only upregulated NOTCH4 

expression in ASCL1+ cells (Figure 26B). RBPJ MYC, MYCL were also upregulated in 

SCLC-A/-A2, which could suggest that the Notch ligands could be interacting specifically 

with NOTCH4 in these cells, effectively activating downstream targets. We also see 

upregulated expression of HES6 (except SCLC-Y), and KDM1A across all archetypes 
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(Figure 26D), further confirming their importance in regulating Notch activity in SCLC. 

Hyperactivation of MYC in the RPM tumors was proposed to cooperate with NOTCH to 

progress SCLC from NE to non-NE fates, however in the bulk transcriptomics MYC and 

Notch do not appear to be correlated, except for expression of NOTCH4. Within the 

SCLC-A2 archetype, as previously noted, HES1 expression is upregulated while Notch 

expression is downregulated (Wooten et al., 2019), however, we see upregulation of 

MAML and RBPJ, which is known to form a transcriptional activation complex with Notch 

to activate downstream target genes. MAML and RBPJ may be endogenously expressed 

in these cells while Notch expression is being inhibited by the upregulated expression of 

KDM1Aor SIRT1 (Figure 26D). H82 cells have been reported to express SCLC-N and 

SCLC-Y markers, existing between subtypes, and here we see that JAG2, NOTCH2, 

MYC, HES6, and KDM1A are the only highly expressed genes in these cells surrounding 

Notch signaling (Figure 26B-D). Additionally, MAML, RBPJ, REST, MYCL, DLL3, and 

SIRT1 are moderately expressed in these cells (Figure 26C,D). A potential mechanism 

underlying these expression profiles is that Jag2 and Notch2 are highly regulated 

together, potentially in conjunction with MYC or MYCL to form a complex with MAML, and 

RBPJ which results in activation of REST, while HES6 inhibits HES1 expression, and 

SIRT1 and KDM1A are specific targets of NOTCH1,3,4 and not NOTCH2.  

As we moved towards single cell transcriptomic analysis (Figure 27A), AA 

identified four archetypes representative of SCLC-A, -A2, -N, and -Y (Figure 27B,C), 

however an SCLC-P archetype was not identified (Groves et al., 2021). DMS454 and 

DMS53 are classified as SCLC-A2 specialists, however their expression profiles 

regarding Notch signaling differed distinctly. DMS454 cells showed high expression of 
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DLL1 and DLL4, with low expression of NOTCH, while DSM53 cells had moderate to low 

expression of DLL1 and DLL4 in comparison. SIRT1 may be regulating the expression of 

NOTCH in DMS454 cells, however in DMS53 cells, increased DLL3 expression 

expectedly represses Notch signaling, yet we see increased expression of RBPJ, in the 

absence of Notch. The bulk transcriptomics also showed upregulated expression of RBPJ 

and MYCL together (Figure 27E), suggesting their expression may be correlated together, 

requiring further analysis to confirm this result. Notch expression was most upregulated 

in SCLC-Y, H841 specialist cells, with increased expression of HES1, however, 

decreased expression of Notch ligands, RBPJ, and MAML (Figure 27E). Consistently 

across each dataset we find a division between Notch receptor expression and previously 

reported regulation of Notch with RBPJ and MAML to form the active transcriptional 

complex (Castel et al., 2013; Miyamoto and Weinmaster, 2009). In the other non-NE cell 

line, H1048, SCLC-P specialist, we saw decreased expression of Notch ligands, except 

for moderate expression of JAG2, however increased expression of NOTCH1,2, and 

REST (Figure 27D,E). JAG2 may have an unexplored binding affinity for NOTCH1 or 

NOTCH2 in SCLC that can regulate Notch activation and downstream REST expression. 

H524 cells, SCLC-N specialists have overall decreased Notch ligand and receptor 

expression, MYC is the only gene highly expressed, consistent with previous studies 

reporting MYC upregulation in NEUROD1+ cells (Borromeo et al., 2016b; Patel et al., 

2021). Together, our global analyses provide rationale, explanation, and hypotheses for 

the differentially expressed Notch ligands and receptors across SCLC, supporting our 

hypothesis that the combinatorial complexity between the ligand/receptor pairings play a 

significant role in SCLC progression.  



122 
 

 
FUTURE DIRECTIONS 

 
In the remainder of this chapter, I will discuss future studies that can address questions 

developed from our findings. Several important topics remain in necroptosis, (i) 

Mechanistic regulation of necroptosis triggered by different stimuli, (ii) Small molecule 

targets for cancer treatment, (iii) Crosstalk with other cell death pathways, and (iv) MLKL 

permeabilization of the plasma membrane after phosphorylation not yet analyzed in our 

model. In Notch signaling and SCLC, (i) Tracking transition paths between tumors and 

cell lines, (ii) Mechanistic understanding of ligand/receptor combinatorial complexity, (iii) 

Small molecule targets for Notch signaling, and (iv) Crosstalk with other cell 

developmental pathways.  

 
Future directions for necroptosis  
 
Our biochemical necroptosis model was able to explain numerous contrasting and 

counterintuitive experimental results seen in different cell types, providing the first detailed 

systems understanding of necroptosis. Much work remains to determine the mechanisms 

of necroptosis crosstalk with other pathways, stimuli, MLKL permeabilization, which are 

all connected to identifying potential targets in necroptosis for cancer and disease. We 

have identified various avenues for model extension to incorporate other interactions 

known to be involved in necroptosis that we had simplified for the purpose of this study. 

For example, the model can be expanded to include additional proteins and necroptosis-

associated receptors (Zhou and Yuan, 2014b) (e.g., TNFR2, CD95, Toll-like receptors) 

and ligands (Füllsack et al., 2019; Kearney et al., 2015; Strasser et al., 2009) (e.g., LPS, 

FasL, TRAIL), which directly target complex II and necrosome formation in contrast to the 
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initial formation of complex I. In our current model, we also simplified the interactions of 

cIAP, LUBAC, and RIP1 ubiquitination involved in complex I. It would be interesting to 

include both forms of cIAP (McComb et al., 2012) (i.e., cIAP1 and cIAP2), assembly of 

the LUBAC trimer complex (Haas et al., 2009), and different RIP1 ubiquitin chains 

(Samson et al., 2021) (i.e., M1, K48, K63). Within downstream formation of complex II, 

including additional biochemical events involved in the activation of C8 (Donepudi et al., 

2003)  (e.g., binding of pro-C8 to FADD, followed by oligomerization and cleavage), will 

be very interesting as the current model has simplified the cleavage and activation steps 

involving C8 and FLIP.   

Along the RIP1-RIP3-MLKL axis we discussed, a more prominent area of study 

has focused on controlling the formation of the necrosome and MLKL permeabilization at 

the plasma membrane. The necrosome is controlled at the posttranslational level by 

phosphorylation and ubiquitination (Liu et al., 2016). Multiple studies show that during 

TNF-induced necroptosis, RIPK1, RIPK3, and MLKL relocate from the cytosol into 

discrete perinuclear clusters that are presumably necrosomes (Samson et al., 2021; 

Wang et al., 2014). In order to test in silico how small molecules impact necroptosis (Bolik 

et al., 2021; Chen et al., 2019) (e.g., ADAM17, CHIP, TAK1, necrostatins), detailing these 

interactions is very valuable. The model can also be extended to include downstream 

events involved in MLKL-mediated permeabilization of the plasma membrane (Samson 

et al., 2020; Wang et al., 2014) (e.g., Golgi-, microtubule-, and actin-dependent 

mechanisms), and most importantly, crosstalk with pro-survival (Vanden Berghe et al., 

2015; Metzig et al., 2020) (e.g., NF-kB) and other programmed cell death (L. et al., 2012) 
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(e.g., apoptosis) pathways, and connections to the immune system (Gong et al., 2019) 

(e.g., antigen-induced proliferation of T cells).  

Lastly, out of the four identified modes using the dynamical systems analysis 

framework, we were speculative as to why there was not an identified mode that was 

driven solely by A20 with no effect from CYLD. We identified two modes that are driven 

by A20 or CYLD, while their counterparts serve inhibitory roles, one mode that is driven 

by either enzyme, or the fourth mode that driven solely by CYLD, with a dysfunctional role 

for A20. This mode was most intriguing because we found there was a CYLD threshold, 

requiring more than 85% depletion of CYLD to influence TTD, while knocking out A20 

had no effect on TTD. We hypothesized that the potential fifth mode that was not identified 

did not make up enough of the rate parameters to cluster into its own mode and that it 

may have been divided across the other modes. It would be interesting to repeat the 

model calibration with more iterations to see if we obtain the same number of modes.  

 
Future directions for Notch in SCLC 
 
As clinical trials begin to assess biomarkers of SCLC subtypes and potentially enroll 

patients based on these subtypes (Brcic et al., 2019; Gay et al., 2021; Morgensztern et 

al., 2019; Schwendenwein et al., 2021), it is critical to evaluate this phenotypic 

heterogeneity and understand in the context of tumor evolution to other subtypes. DLL3 

is a pharmacological inhibitor that has been identified to increase Notch activation and 

progress SCLC towards non-NE phenotypes (Huang et al., 2019; Owen et al., 2019). 

DLL3 is also the only Notch ligand that exists to function as a cis-interaction inside cells, 

that is regulated by NE marker ASCL1 to inhibit Notch receptor activation. In addition to 

DLL3, our analysis showed and suggests that KDM1A (LSD1) inhibits NOTCH through 
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direct binding and a recent inhibitor was shown to repress this inhibitory function by LSD1 

of NOTCH and rescue NOTCH activation (Augert et al., 2019). Along with DLL3 and 

KDM1A, HES6 was upregulated across each archetype, motivating the importance of 

future studies to identify potential HES6 inhibitors with the hope of decreasing ASCL1 

expression and increased HES1 and Notch pathway activation to move SCLC cells 

towards non-NE fates.  

To determine the transition paths of cells that have upregulated expression of 

these three inhibitors in SCLC progression, it would be interesting to apply CellRank, a 

recently developed approach to analyze gene expression (RNA) velocity. This framework 

will allow us to track whether a cell has progressed along multiple archetype “lineages.” 

Within the RPM tumors, we can then approximate which cells transitioned from early 

timepoints in tumors to non-NE archetypes by day 21. CellRank can incorporate velocity 

information to fit to each timepoint and measure temporal dynamics and infer directionality 

and magnitude of gene expression change for future timepoints. It is interesting to note 

that each of these scales within SCLC biology that we examined still lack the proper 

temporal resolution to accurately track gene expression trends, and more importantly, the 

translation to proteins. Since transcription of genes occurs on the order of 10 

minutes/gene (Shamir et al., 2016), and protein translation occurs on the order of 1 

minute/protein (Shamir et al., 2016), it is highly likely that the timescale resolution over 

days is not accounting for a lot of useful information. Additionally, the absence of time 

within the bulk and single cell transcriptomics is crucial to truly determine the role that 

Notch plays in SCLC. Experimental time-course transcriptomic and proteomic studies will 

be indispensable to accurately track the progression of this lethal disease. In our most 



126 
 

recent efforts and ongoing analyses, moving forward with our mechanistic model we have 

developed to further study Notch signaling and SCLC progression, we are focused on 

including timescales to encompass transcription of genes and translation of those genes 

to proteins. This will provide us with the necessary information to determine how Notch 

ligand and receptor pairings as well as downstream activating and inhibitory events are 

contributing to the NE to non-NE cell fate decision.  

 
CONCLUDING REMARKS 

 
In conclusion, the research presented herein has provided new insights to understanding 

some of the many facets that contribute to cell fate decisions, specifically focused on 

elucidating mechanisms involved in necroptosis, and how notch signaling is involved in 

SCLC. Our work demonstrates that necroptosis is tuned in a cell type-, species-, and 

context-dependent manner driven by four distinct modes of execution. Additionally, we 

observe that the combinatorial complexity involved in the Notch ligand and receptor 

pairing has the potential to drive and determine NE to non-NE cell fates in SCLC. Taken 

together, these two pathways are fundamental to understanding a wide range of biological 

processes. Continued study of each of these signaling pathways may reveal distinct and 

novel ways to target cell or tumor death and manipulate a cells decision to commit to a 

given fate.  
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