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CHAPTER 1

Introduction

The Universe consists of structures of a wide variety of physical sizes. Over the last few

decades, astronomers have succeeded in extensively cataloging this structure, both at the

(relatively) small scales of stars within our galaxy and at the large scales of clusters and

super-clusters of galaxies. At these largest scales, matter is distributed into a cosmic web of

elongated filaments, connecting nodes, empty voids, and colossal walls. One of the goals of

cosmology is to describe how the large-scale structure of the Universe formed and evolved

into what we see today.

The dominant cosmological model, ΛCDM, posits that stars, gas, and all other directly

observable matter only comprise ∼ 1/6 of the total mass in the Universe. This matter,

referred to as “baryonic” matter, interacts through gravity, as well as through nuclear and

electromagnetic forces. Electromagnetic interactions enable astronomers to directly ob-

serve (via telescopes and other astronomical tools) this type of matter in the Universe. In

ΛCDM, the majority of the mass in the Universe (∼ 5/6) is dark matter, which only inter-

acts strongly through gravity and thus cannot be directly observed. Despite being unobserv-

able, however, the existence of dark matter has been indirectly inferred from observations

of baryonic matter (e.g., rotation curves of galaxies; Rubin et al., 1980).

Dark matter plays a crucial role in the formation of structure in the Universe. At the

largest physical scales, the formation of structure is dominated by gravitational interac-

tions between massive bodies. Because dark matter makes up the majority of the mass, it

is primarily responsible for the formation of large-scale structures we observe today. In

ΛCDM, dark matter effectively serves as the skeleton of the cosmic web, with galaxies

forming and evolving in high density, gravitationally bound regions of dark matter called

“halos.” Understanding the precise way in which galaxies occupy dark matter halos, or the
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“galaxy-halo connection,” is an important area of research at the intersection of cosmology

and galaxy formation theory.

In this dissertation, I present efforts to better understand the galaxy-halo connection

through the use of a statistical model applied to cosmological N-body simulations. Em-

ploying this model, I constrain the galaxy-halo connection when fit to observational data of

the clustering of galaxies in the Universe. Additionally, I perform a thorough investigation

of the systematic and statistical errors present in this modeling procedure. By attempting

to minimize said errors, this work pushes modeling of small-scale (. 20 h−1Mpc) galaxy

clustering into the accurate regime, where we can test the validity of a given cosmological

model. This work elucidates important features of the galaxy-halo connection and serves as

a significant statistical advancement in studies which attempt to constrain the galaxy-halo

connection through measurements of galaxy clustering.

1.1 ΛCDM and the Growth of Structure

The Big Bang is the predominant cosmological theory explaining the origin and subse-

quent evolution of the Universe. Approximately 13.8 billion years ago, the Universe was

very dense, hot, and nearly isotropic, with momentary inhomogeneities in density occur-

ring as a result of quantum fluctuations. In a homogeneous Universe, the formation of

structure is impossible. However, shortly after the Big Bang, the Universe began a period

of rapid exponential inflation, growing extraordinarily in size. At the moment inflation be-

gan, quantum fluctuations in the density field were effectively frozen in place. The physical

scale of these fluctuations grew during inflation, resulting in a macroscopic inhomogeneous

density field and setting the stage for the future growth of structure.

After the period of inflation, the Universe continued to expand, albeit at a slower rate.

This subsequent evolution of the Universe is best understood within the context of Λ cold

dark matter (ΛCDM), the cosmological parameterization describing the makeup of the Uni-

verse. In ΛCDM, the Universe consists of three main components: dark energy, dark mat-
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ter, and ordinary baryonic matter. These components account for, respectively, ∼69, 26,

and 5% of the mass-energy of the Universe (Planck Collaboration et al., 2020). Dark energy

is a kind of negative pressure, responsible for the accelerated expansion of the Universe.

Baryonic matter is the ordinary matter that interacts through gravity as well as nuclear and

electromagnetic forces, the last of which allows its direct observation. In contrast, dark

matter is a form of mass that only interacts strongly through gravity and thus has not been

directly observed.

The initial perturbations in the density field of the Universe continued to grow into

larger and larger structures through the gravitational attraction of the matter components of

the Universe. Because dark matter accounts for the majority of the mass in the Universe,

it dominated the growth of structure compared to baryonic matter. Eventually, dark matter

located in the initial overdensities from inflation pooled together into gravitationally bound

regions known as “dark matter halos,” regions with density∼ 200 times the mean density of

the Universe. It is in these dense halos that baryonic matter came together through gravity

to form galaxies.

The ΛCDM model and subsequent growth of structure described in this section serve

as a vital foundation for the work presented in this dissertation. Today, ΛCDM is widely

accepted as a concordance cosmological model, strongly supported by its ability to explain

many observational phenomena, including the cosmic microwave background (Planck Col-

laboration et al., 2020), the spatial distribution of galaxies on large scales (Eisenstein et al.,

2005), and the accelerated expansion of the Universe inferred from observations of Type

Ia Supernovae (Riess et al., 1998; Perlmutter et al., 1999). For purposes of understanding

the work presented in this dissertation, the key takeaways from this introductory section

are that dark matter dominates the formation and growth of structure in the Universe and

that galaxies form and evolve in dense, gravitationally bound regions of dark matter called

“halos.”
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1.2 Galaxy Redshift Surveys

The work presented in this dissertation involves comparisons of physical models to ob-

servational data obtained from galaxy redshift surveys. In this section, I provide some

important background on the data obtained from these surveys and how this data can be

processed in order to prepare it for comparisons to our model.

1.2.1 SDSS and Galaxy Clustering

In the past forty years, astronomers have developed a detailed map of the locations of galax-

ies in our Universe. This work has been done primarily through galaxy redshift surveys,

starting with the Center for Astrophysics (CfA) galaxy redshift survey (Huchra et al., 1988)

which cataloged the positions of ∼ 15,000 galaxies. More recently the Sloan Digital Sky

Survey (SDSS; York, 2000) has created a high-precision map of the density field of the Uni-

verse, with spectroscopic redshifts for∼ 1 million galaxies. As shown in Figure 1.1, SDSS

revealed with great detail the cosmic web structure in which galaxies live. One can see

from this figure that galaxies tend to cluster together, as opposed to being more uniformly

distributed.

One way to characterize the structure revealed by spectroscopic surveys is through the

use of so-called “galaxy clustering” measurements. A commonly used galaxy clustering

measurement is the two-point auto-correlation function (2PCF). The 2PCF gives the num-

ber of excess galaxy-galaxy pairs compared to a random distribution of points, as a function

of physical separation. Because galaxies form and evolve in dark matter halos, measure-

ments of galaxy clustering probe not only the spatial distribution of galaxies but also the

underlying density field of the Universe.

Depending on the scale at which a galaxy clustering measurement is made, it can serve

as a probe of different physical phenomena. On scales ∼ 100 h−1Mpc, measurements of

galaxy clustering reveal the baryon acoustic oscillation signature, which can be used to

probe dark energy and the accelerated expansion of the Universe (Weinberg et al., 2013).
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Figure 1.1: The structure of the Universe as revealed by the Sloan Digital Sky Survey.
Earth is located at the center of the slice. Each point is a galaxy, and the color of each
point corresponds to the (g-r) color of the galaxy. (Image Credit: M. Blanton and SDSS;
https://www.sdss.org/science/orangepie/)

On smaller scales that are still & 1 h−1Mpc, the 2PCF probes pairs of galaxies in separate

halos, while on even smaller scales (. 1 h−1Mpc), the 2PCF probes the distribution of

galaxies within the same halo (Sinha et al., 2018). These “small-scale” regimes are where

both our cosmological model and all of the complex baryonic physics of galaxy formation

and evolution leave a signature on measurements of galaxy clustering.

With the advent of galaxy redshift surveys, astronomers have access to a highly de-

tailed spatial maps of galaxies in the Universe. SDSS in particular has provided high-

precision measurements of galaxy clustering down to small physical scales, against which

astronomers can test both cosmological models and models of galaxy formation and evo-

lution.

1.2.2 Volume-limited Samples

In SDSS, galaxies are observed to a limiting r-band magnitude of ∼ 17.77. Less luminous

galaxies can thus only be observed out to a redshift corresponding to the survey’s flux

5



limit, resulting in a luminosity-dependent incompleteness in SDSS. One way to handle this

incompleteness is to construct volume-limited samples from the parent sample of SDSS

galaxies.

A volume-limited sample consists of all galaxies brighter than some luminosity thresh-

old in a particular band (e.g., Mr < −21). This luminosity threshold corresponds to a

redshift limit, zmax, beyond which a galaxy of this luminosity cannot be observed given

the survey’s flux limit. In addition to the cut in luminosity, all galaxies with redshifts

greater than zmax are excluded from the sample. Retaining only said galaxies ensures that

the volume-limited sample is complete for galaxies brighter than the specified luminosity

threshold.

1.3 Simulating the Universe

Analytic models (e.g., 2LPT; Scoccimarro, 1998; Crocce et al., 2006) are not successful

at predicting the nonlinear growth of structure, particularly at small physical scales, from

early times to today. Accurate modeling of the spatial distribution of galaxies at small

physical scales instead requires the running of cosmological N-body simulations. These

simulations evolve an initial distribution of particles in the early Universe to today through

force calculations at highly-resolved time steps, resulting in a much more accurate predic-

tion of the density field (Springel et al., 2005).

One flavor of cosmological simulation is a hydrodynamic simulation, in which all of

the relevant physics, including gravity, expansion, and baryonic effects, are present (e.g.,

Vogelsberger et al., 2014a). Hydrodynamic simulations produce a catalog of galaxies, the

distribution of which can be directly compared to that of galaxies in the Universe. Because

of the complexity of the equations governing baryonic physics, however, hydrodynamic

simulations often have several subgrid prescriptions which produce the macroscopic effects

of baryonic physics without explicitly modeling the finer details (e.g., Springel, 2010). In

practice, this equates to a large number of knobs, each of which must be set (based on
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Figure 1.2: The cosmic-web structure revealed by the Millenium dark-matter-only simu-
lation (Springel et al., 2005). All points are dark matter particles, with lighter coloring
indicating higher density.

physically motivated assumptions) prior to running a hydrodynamic simulation. The cor-

rect values for these parameters are generally unknown, adding a layer of uncertainty to

the model when making comparisons to observational data. This problem is exacerbated

by the fact that running a cosmological hydrodynamic simulation is generally quite com-

putationally expensive, making comprehensive exploration of unknown galaxy physics in

a cosmological setting prohibitively difficult.

An alternative approach is to run a cosmological simulation in which the only matter

present is dark matter (Springel, 2005). These “dark matter only” (DMO) simulations are

far less computationally expensive because dark matter only interacts through gravity. Far

fewer assumptions go into DMO simulations than go into their hydrodynamic counterparts.

Thus, by running a DMO simulation instead of a hydrodynamic one, we can avoid making

incorrect assumptions about the physics of galaxies. The dark matter in these simulations

is distributed into a cosmic web-like structure reminiscent of how galaxies are distributed

in the Universe (Figure 1.2).

Unfortunately, as there are no galaxies in the output of a DMO simulation, we cannot
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directly compare the output of these simulations to observations of galaxy clustering. After

running a DMO simulation, a halofinding algorithm (e.g., Lacey and Cole, 1994; Behroozi

et al., 2013) can be applied in order to identify dark matter halos. While the clustering

of these dark matter halos cannot be directly compared to the clustering of galaxies, this

problem can be bypassed with a prescription for how galaxies occupy dark matter halos,

i.e., the galaxy-halo connection.

1.4 Modeling the Galaxy Halo Connection

We can bypass our ignorance of galaxy physics via the use of so called “halo models.”

These models assume that the clustering of galaxies can be fully described by (i) the clus-

tering of their host halos and (ii) the way in which galaxies occupy these halos. While

the first piece can be accurately predicted by DMO simulations, halo models provide a

statistical description of the second piece, i.e., the galaxy-halo connection.

One flavor of the halo model is the Halo Occupation Distribution (HOD), which speci-

fies via a few parameters the probability that a halo of mass M contains N galaxies (above

some luminosity threshold) and provides a prescription for the distribution of galaxies

within a halo (Berlind and Weinberg, 2002; Berlind et al., 2003). The standard form of

the HOD (Zheng et al., 2005) contains at most five free parameters that specify the mean

occupation number of galaxies and assumes that galaxies trace the dark matter inside ha-

los. By applying the HOD to directly populate dark matter halos in a DMO simulation,

we can produce a catalog of galaxies which can be compared to observational data using

measurements of small-scale galaxy clustering.

If the HOD model has sufficient flexibility, variation of its parameters should be able

to account for any impact baryonic physics has on the clustering of galaxies. For the work

in this dissertation, the motivation for employing a ΛCDM + HOD modeling procedure is

twofold. First, constraining these parameters when fitting to observational data provides

a useful empirical measurement against which we can test competing theories of galaxy
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formation and evolution. Second, if the HOD does indeed marginalize over hydrodynamic

effects, then this procedure can be used to test an assumed cosmological model against

observational data, a test that is free from finely tuned assumptions about baryonic physics.

1.5 Summary

In this chapter, I have provided background information critical to understanding the re-

mainder of this document. In Chapter 2, I reproduce a published work in which the statis-

tical HOD model described in this chapter is applied to constrain the clustering of SDSS

galaxies. This analysis involves extensive exploration and minimization of the systematic

and statistical errors present in the modeling procedure, resulting in one of the most robust

tests of ΛCDM + HOD to date. There are, however, several tests of this modeling proce-

dure which were alluded to but not explicitly included in this publication. In Chapter 3, I

present as an addendum to this work a number of statistical tests which studies of this kind

should take into consideration. Finally, in Chapter 4, I provide a brief summary and some

remarks on the future projects enabled by the work presented in this dissertation.

9



CHAPTER 2

Toward Accurate Modeling of Galaxy Clustering on Small Scales: Constraining the

Galaxy-Halo Connection with Optimal Statistics

This chapter was previously published in February 2022 edition of The Astrophysical Jour-

nal (Szewciw et al., 2022) and is reproduced here, with minor formatting changes, with the

permission of the publisher and my co-authors, Gillian D. Beltz-Mohrmann, Andreas A.

Berlind, and Manodeep Sinha.

Applying halo models to analyze the small-scale clustering of galaxies is a proven

method for characterizing the connection between galaxies and their host halos. Such

works are often plagued by systematic errors or limited to clustering statistics which can be

predicted analytically. In this work, we employ a numerical mock-based modeling proce-

dure to examine the clustering of SDSS DR7 galaxies. We apply a standard halo occupation

distribution (HOD) model to dark-matter-only simulations with a ΛCDM cosmology. To

constrain the theoretical models, we utilize a combination of galaxy number density and

selected scales of the projected correlation function, redshift-space correlation function,

group multiplicity function, average group velocity dispersion, mark correlation function,

and counts-in-cells statistics. We design an algorithm to choose an optimal combination

of measurements that yields tight and accurate constraints on our model parameters. Com-

pared to previous work using fewer clustering statistics, we find significant improvement in

the constraints on all parameters of our halo model for two different luminosity-threshold

galaxy samples. Most interestingly, we obtain unprecedented high-precision constraints

on the scatter in the relationship between galaxy luminosity and halo mass. However, our

best-fit model results in significant tension (> 4σ ) for both samples, indicating the need

to add second-order features to the standard HOD model. To guarantee the robustness of
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these results, we perform an extensive analysis of the systematic and statistical errors in our

modeling procedure, including a first-of-its-kind study of the sensitivity of our constraints

to changes in the halo mass function due to baryonic physics.

2.1 Introduction

One of the great strengths of ΛCDM is its accurate predictions of the large-scale density

field of the Universe today. It is common to quantify this density field through statisti-

cal measurements of the clustering of galaxies. ΛCDM is highly successful at predicting

galaxy clustering on large physical scales where galaxies are simple tracers of the underly-

ing matter density field. On small scales (. 10 h−1Mpc), however, the spatial distribution

of galaxies is affected not only by our cosmological model but also by all of the poorly

understood physics of galaxy formation and evolution.

We can bypass our ignorance of galaxy physics via the use of so called “halo models,”

which are motivated by our understanding that galaxies form and reside in gravitationally

bound, virialized regions of dark matter known as halos (e.g., Neyman and Scott, 1952;

Peebles, 1974; McClelland and Silk, 1977; Scherrer and Bertschinger, 1991; Jing et al.,

1998; Benson et al., 2000; Ma and Fry, 2000; Peacock and Smith, 2000; Seljak, 2000;

Scoccimarro et al., 2001; Sheth et al., 2001; White et al., 2001; Cooray and Sheth, 2002).

These models assume that the clustering of galaxies can be fully described by (i) the clus-

tering of their host halos and (ii) the way in which galaxies occupy these halos. The first

piece can be accurately predicted by ΛCDM via cosmological N-body simulations of dark

matter only (i.e., gravity only). The second piece can be described by a halo model, which

provides a statistical description of how galaxies occupy halos (i.e., the galaxy-halo con-

nection).

A key ingredient of the halo model is the Halo Occupation Distribution (HOD), which

specifies via a few parameters the probability that a halo of mass M contains N galaxies

(above some luminosity threshold) and provides a prescription for the distribution of galax-
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ies within a halo (Berlind and Weinberg, 2002; Berlind et al., 2003). The standard form of

the HOD (Zheng et al., 2005) contains at most five free parameters that specify the mean

occupation number of galaxies and assumes that galaxies trace the dark matter inside halos.

Constraining these parameters when fitting to observational data provides a useful empir-

ical measurement against which we can test competing theories of galaxy formation and

evolution.

Several studies which use this procedure produce fits which, if taken at face value,

would result in ruling out the ΛCDM + HOD model (e.g., Zehavi et al., 2011). The errors

used in these studies are typically derived via the jackknife method, which has been shown

to produce biased results (Norberg et al., 2009). Meanwhile, spectroscopic surveys such

as the Sloan Digital Sky Survey (SDSS; York et al., 2000) are providing increasingly high

precision measurements of galaxy clustering at a wide range of physical scales. If we wish

to take advantage of the information present at small scales to constrain the galaxy-halo

connection, it is imperative that we carefully understand and minimize the uncertainty in

our modeling procedure.

Recently, Sinha et al. (2018) (S18, hereafter) developed a numerical mock-based mod-

eling procedure that significantly improved the accuracy of HOD modeling. They com-

pared the clustering of SDSS galaxies to a ΛCDM + HOD model, measuring the projected

correlation function, group multiplicity function, and galaxy number density. Carefully

controlling for systematic errors allowed them to interpret the goodness of fit of their model.

They found that their best-fit HOD model was unable to jointly fit the clustering statistics,

revealing significant tension between SDSS galaxies and their ΛCDM + HOD model. Be-

cause this tension did not exist when they considered only measurements of the projected

correlation function (as is done in many studies), S18 demonstrated the value of adding

additional statistics in small-scale clustering analyses.

Motivated by these findings, in this work we extend the procedure used in S18 in order

to maximize the return from spectroscopic surveys. We do so with two main goals in
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mind: to tighten the constraints on our adopted five-parameter HOD model and to increase

the tension found in S18. To accomplish these goals, we include in our analysis the same

clustering statistics used in S18 (galaxy number density, projected correlation function, and

group multiplicity function) as well as four additional clustering statistics: redshift-space

correlation function, group velocity dispersion, mark correlation function, and counts-in-

cells statistics. The fully numerical modeling procedure built by S18 allows us to accurately

model all of these clustering statistics without having to rely solely on analytic predictions

(which would limit us to two-point statistics) as is done in most studies.

This work can be seen as the second in a series of several works attempting to model

the clustering of SDSS galaxies to constrain the galaxy-halo connection. Ultimately, our

goal is to expand our HOD model to include features like assembly bias (Gao et al., 2005;

Wechsler et al., 2006; Croton et al., 2007; Pujol and Gaztañaga, 2014; Hearin et al., 2016;

Pujol et al., 2017; Artale et al., 2018; Salcedo et al., 2018; Xu and Zheng, 2020; Zehavi

et al., 2018; Bose et al., 2019; Contreras et al., 2019; Padilla et al., 2019; Wang et al., 2019;

Zentner et al., 2019; Salcedo et al., 2020; Hadzhiyska et al., 2020, 2021b; Montero-Dorta

et al., 2021), spatial bias (Watson et al., 2012; Piscionere et al., 2015), and velocity bias

(Guo et al., 2015b,a). However, in order to constrain these extra features, it is crucial that

we first incorporate clustering statistics into our modeling procedure that are sensitive to

these biases. Thus, in this work, as we add clustering statistics to heighten the tension

found in S18, we do so keeping in mind the ability of each statistic to constrain extended

features of the HOD model.

The projected correlation function has been utilized in many galaxy clustering studies

(e.g., Zheng et al., 2007; Zehavi et al., 2011; Leauthaud et al., 2012; Coupon et al., 2015)

and could potentially be used to constrain assembly bias in future work (Zentner et al.,

2014, 2019; Vakili and Hahn, 2019). A few studies have used the redshift-space correlation

function (e.g., Tinker et al., 2006b; Parejko et al., 2013; Guo et al., 2015a; Beltz-Mohrmann

et al., 2020), which is sensitive to the velocity assumptions in our HOD model and thus
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could be used to investigate velocity bias. Even fewer studies have incorporated other

clustering statistics, like the mark correlation function, which is sensitive to assembly bias

(e.g., Zu and Mandelbaum, 2018); the group multiplicity function, which is sensitive to

both high-mass occupation (e.g., Zheng and Weinberg, 2007; Sinha et al., 2018) and spatial

bias (e.g., Beltz-Mohrmann et al., 2020); the group velocity dispersion, which must be

sensitive to velocity bias; or counts-in-cells statistics, which are sensitive to assembly bias

(e.g., Tinker et al., 2006a; McCullagh et al., 2017; Walsh and Tinker, 2019; Wang et al.,

2019; Beltz-Mohrmann et al., 2020).

Although the HOD model that we use in this work does not include exotic features,

these new clustering statistics can still provide significant constraining power for our cur-

rent model. In this work we use an optimal combination of these statistics on various scales

to extract more clustering information from the SDSS survey than in all previous studies.

Additionally, we greatly improve the accuracy of our modeling procedure compared to S18

and perform an extensive analysis of both the statistical and systematic errors present in

our procedure, further pushing galaxy clustering analysis into the accurate regime. These

improvements will allow us to tighten our constraints on the model and more robustly char-

acterize the tension found in S18.

We discuss our observational data in Section 2.2, our clustering statistics in Section 2.3,

our simulations and mock galaxy catalogs in Section 2.4, and our modeling procedure in

Section 2.5. In Section 2.6 we discuss our selection process for the measurements with the

most constraining power. We discuss our results in Section 2.7 and provide conclusions

in Section 2.8. Finally, in the appendices we provide a detailed analysis of the accuracy

of several components of our modeling procedure, including our fiber collision correction

(Appendix 2.10.1), our model estimation (Appendix 2.10.2) and covariance matrix (Ap-

pendix 2.10.3), and the ability of our procedure to recover the correct HOD parameters of

mock galaxy catalogs (Appendix 2.10.4).
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Table 2.1: The columns list (from left to right): the absolute magnitude threshold of each
sample at z = 0.1; the minimum, maximum, and median redshifts, respectively; the effec-
tive volume of each sample (corrected for incompleteness); and the galaxy number density
of each sample.

Mlim
r zmin zmax zmedian Veff ng

(h−3Mpc3) (h3Mpc−3)
−19 0.02 0.07 0.0562 6,087,119 0.01463
−21 0.02 0.158 0.1285 67,174,396 0.00123

2.2 Observational Dataset

In this work, we make use of the seventh data release (DR7; Abazajian et al., 2009) of

the Sloan Digital Sky Survey (SDSS; York et al., 2000). Specifically, we utilize the large

scale structure samples from the NYU Value Added Galaxy Catalog (NYU-VAGC; Blanton

et al., 2005). As in S18, we use a parent sample of over 500,000 galaxies covering the

northern footprint of SDSS (see S18 for more details). The absolute magnitudes of these

galaxies have been k-corrected to rest-frame magnitudes at redshift z = 0.1 (Blanton et al.,

2003) but, unlike in S18, have not been corrected for passive luminosity evolution. We find

that, when comparing volume-limited samples constructed with and without the passive

luminosity correction, the number density of the sample without the correction is closer to

being constant in redshift. Therefore, we do not include this correction.

From this parent sample, we construct two volume-limited subsamples, each complete

down to a specified r-band absolute magnitude threshold. To construct these samples, we

first choose redshift limits, zmin and zmax. For both samples, we adopt a zmin of 0.02 so that

the redshift-space distortions are small compared to cosmological redshifts. We choose a

value of zmax such that the redshifted spectra of all galaxies with our limiting absolute mag-

nitude would still fall within the redshift survey’s apparent magnitude and surface bright-

ness limits if placed at zmax. Our low-luminosity sample is complete down to an r-band

absolute magnitude of −19 in the redshift range 0.02− 0.07, while our high-luminosity

sample is complete down to an r-band absolute magnitude of −21 in the redshift range

0.02− 0.158. We refer to our two samples as “−19” and “−21” henceforth. The redshift
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limits, median redshift, effective volume, and number density of these two samples are

listed in Table 2.1. These values are slightly different than those used in S18.

Throughout this paper, we adopt a flat ΛCDM cosmological model with Ωm = 0.302.

When calculating comoving distances and absolute magnitudes of SDSS galaxies, we set

h = 1. Thus, comoving distances have units of h−1Mpc, and reported absolute magnitudes

are actually Mr +5logh1.

2.3 Clustering Statistics

Many studies which use clustering statistics2 to constrain the galaxy-halo connection (e.g.,

Zehavi et al., 2011) focus on analytic predictions of these measurements. Such studies

are limited to employing only those clustering statistics for which analytic predictions are

possible. Given the difficulty in writing down the analytic form of an arbitrary clustering

statistic, as well as the need to consider the impacts of survey geometry and incomplete-

ness, this limitation unnecessarily excludes many clustering statistics with potentially use-

ful information for the galaxy-halo connection. One of the key advantages of employing

a numerical modeling procedure is that clustering statistics can be measured in identical

ways on both the SDSS galaxies and on mock galaxy catalogs generated according to our

model. Such a procedure thus allows us to make apples-to-apples comparisons between the

data and our theoretical model, allowing us to employ any arbitrary clustering statistic with

the knowledge that any systematic errors (e.g., edge effects) are reflected the same way in

both the model and the data.

Berlind and Weinberg (2002), and more recently S18 and Hadzhiyska et al. (2021a),

demonstrate that different clustering statistics are sensitive to different combinations of

HOD parameters, and that analyses involving several different galaxy clustering statistics

have the most power to constrain galaxy bias within an HOD framework. In their analysis,

S18 employ the galaxy number density, the projected correlation function, and the group
1Throughout this paper, log refers to log10.
2We refer to a type of measurement (e.g., wp(rp)) as a “clustering statistic” and a measurement in a specific

bin (e.g., wp(rp ∼ 0.3 h−1Mpc)) as an “observable.”
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multiplicity function. With the aim of increasing the precision of the S18 results, we utilize

four additional clustering statistics in this work: the redshift-space correlation function,

the average group velocity dispersion, the mark correlation function, and counts in cells

statistics. We choose these new clustering statistics for their potential ability to constrain

models beyond the standard HOD (i.e., those that include assembly bias, spatial bias, and

velocity bias), which we intend to explore in future work. All of our clustering statistics

(other than galaxy number density) are described below.

2.3.1 The projected correlation function: wp(rp)

In general, a correlation function is the excess number of galaxy pairs above that which

is expected for a random distribution of points, as a function of pair separation. Widely

used in studies of galaxy clustering (e.g., Zehavi et al., 2011, S18), the projected correla-

tion function aims to remove the effect of redshift-space distortions by first counting pairs

of galaxies in bins of their line-of-sight and projected components, π and rp, and then

integrating over π:

wp(rp) = 2
∫

πmax

0
ξ (rp,π)dπ. (2.1)

We use the Zehavi et al. (2002) definitions of rp and π , and we count pairs of galaxies in

14 evenly spaced logarithmic bins of projected separation rp between 0.1 and 20 h−1Mpc.

We then integrate out to πmax of 40 and 80 h−1Mpc for the −19 and −21 samples, re-

spectively. We calculate ξ (rp,π) with the Landy-Szalay estimator (DD− 2DR+RR)/RR

(Landy and Szalay, 1993), where DD, DR, and RR are the normalized numbers of data-data,

data-random, and random-random pairs, respectively. We use the publicly available COR-

RFUNC (Sinha and Garrison, 2019; Sinha and Garrison, 2020) to compute our projected

correlation function.
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2.3.2 The redshift-space correlation function: ξ (s)

The redshift-space correlation function ξ (s) is the excess number of galaxy pairs above that

which is expected for a random distribution of points, as a function of redshift-space (i.e.,

not projected) pair separation s. Because the redshift-space distortions of galaxies depend

on their velocities, measuring ξ (s) will allow us to investigate the assumption that galaxies

trace the velocity distribution of dark matter within their halo. To compute ξ (s), we once

again use CORRFUNC and the Landy-Szalay estimator, counting pairs in the same bins of

separation as those used for wp(rp) (but not projected).

2.3.3 The group multiplicity function: n(N)

The group multiplicity function is the number density of galaxy groups as a function of

the number of galaxies (“richness”) in the group, n(N) (e.g., Berlind and Weinberg, 2002).

We use the Berlind et al. (2006) friends-of-friends algorithm to identify groups: galax-

ies are linked together if their projected and line-of-sight separations are both less than

a corresponding linking length. We adopt the Berlind et al. (2006) linking lengths of

b⊥ = 0.14 and b‖ = 0.75, which are given in units of the mean inter-galaxy separation

n−1/3
g , where ng is the sample number density. For the −21 sample, we measure groups

in the following five (inclusive) bins of N : (5−6),(7−9),(10−13),(14−19),(20−27).

For the −19 sample, we measure groups in the following seven (inclusive) bins of N :

(5− 6),(7− 9),(10− 13),(14− 19),(20− 32),(33− 52),(53− 84). These are the same

bins as those used in S18, with the exception of the largest bin in S18 for each sample,

which is excluded from this analysis.

2.3.4 Average group velocity dispersion: σv(N)

We also measure the average velocity dispersion of galaxy groups as a function of richness,

σv(N). The velocity of each galaxy in the group is first computed by subtracting the veloc-

ity of the entire group (we only consider line-of-sight peculiar velocities). For each galaxy

group, we then calculate the group velocity dispersion. Lastly we find the average group
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velocity dispersion of all groups within a particular richness bin (e.g., groups containing

10−13 galaxies). We use the same richness binning as in the group multiplicity function.

Like ξ (s), measuring σv(N) also probes the assumption that galaxies trace the velocities of

the underlying dark matter particles within the halo.

2.3.5 The mark correlation function: mcf(s)

The mark correlation function, mcf(s), is given by

mcf(s) =
MM(s)
DD(s)

, (2.2)

where DD(s) is the number of galaxy-galaxy pairs as a function of redshift-space separation

s, and MM(s) is the sum of a weighted pair-product of the same galaxy-galaxy pairs. Both

DD and MM are normalized by, respectively, the total number of galaxy-galaxy pairs and

the sum of the product of weighted galaxy-galaxy pairs, at all separations.

To compute mcf(s), we must first assign a weight (or “mark”) to each galaxy. Motivated

by Salcedo et al. (2018), who found that secondary bias of halos can be explained by a

halo’s distance to a massive neighbor, we choose as our mark the distance from a galaxy to

the geometric center of the nearest galaxy cluster. If the galaxy is located within a cluster,

then we take the distance to that cluster’s geometric center. To choose the minimum number

of galaxies to be considered a “cluster,” we take the best-fit HOD parameters from S18 and

determine the average integer number of galaxies that would be placed in a halo of mass

1014 h−1M� according to Equations 2.3 and 2.4 (see Section 2.4.2). With this definition,

to be considered a cluster, a galaxy-group must contain 15 and three galaxies for the −19

and −21 samples, respectively. For our purposes, whether or not this definition accurately

weights each galaxy by its distance to the nearest cluster is irrelevant. Ultimately, we only

care whether or not this statistic contains information that can be used to constrain our

model, a question we explore in Section 2.6. We again make use of CORRFUNC to compute

mcf(s).
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2.3.6 Counts in cells: PN(R)

Counts-in-cells statistics measure the probability of finding a given number of galaxies

within a randomly placed finite region (e.g., a sphere) as a function of region size (e.g.,

radius). One special case of this is the void probability function (VPF), which measures

the probability of finding no galaxies in a random region of space. Another variation of

counts-in-cells is the “singular probability function,” (SPF) or the probability of finding

exactly one galaxy in a randomly placed region.

Tinker et al. (2006a) and more recently McCullagh et al. (2017) and Wang et al. (2019)

found that, in contrast to the projected correlation function, the VPF is sensitive to environ-

mental variations of the HOD, and thus could be used to rule out certain HOD models. We

measure counts-in-cells (both the VPF and the SPF) in spheres of evenly spaced bins with

radii of 2, 4, 6, 8, and 10 h−1Mpc. We again make use of CORRFUNC to compute VPF and

SPF.

2.4 From Simulations to Mock Galaxy Catalogs

2.4.1 Simulations and halo catalogs

In this work we make use of dark matter only (DMO) cosmological N-body simulations

from the Large Suite of Dark Matter Simulations project (LasDamas; McBride et al., 2009).

These simulations were run on the Texas Advanced Computing Center’s Stampede super-

computer using the public code GADGET-2 (Springel, 2005). We generate power spec-

tra and initial conditions with CMBFAST (Seljak and Zaldarriaga, 1996; Zaldarriaga et al.,

1998; Zaldarriaga and Seljak, 2000) and 2LPTIC (Scoccimarro, 1998; Crocce et al., 2006),

respectively. All simulations were run with the following cosmological parameters (Planck

Collaboration et al., 2014): Ωm = 0.302, ΩΛ = 0.698, Ωb = 0.048, h = 0.681, σ8 = 0.828,

and ns = 0.96. In particular, we run two sets of simulations: one to mimic the SDSS −19

sample (which we call Consuelo), and another to mimic the SDSS −21 sample (which we

call Carmen). Starting from z = 99, we run Consuelo to z = 0.054, and we run Carmen
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Table 2.2: The columns list (from left to right): what each simulation is used for, the abso-
lute magnitude threshold of the corresponding SDSS sample, the name of the simulation,
the seeds used, the (comoving) boxsize in h−1Mpc, number of particles, mass resolution in
h−1M�, (comoving) force softening in h−1kpc, and the number of simulations.

Use Sample Simulation Seeds Lbox Npart mpart ε Nsim

Matrix −19 Consuelo 4001 - 4100 420 14003 2.26×109 8 100
Matrix −21 Carmen 2001 - 2100 1000 11203 5.97×1010 25 100
MCMC −19 ConsueloHD 4002, 4022 420 22403 5.53×108 5 2
MCMC −21 CarmenHD 2007, 2023 1000 22403 7.46×109 12 2

to z = 0.132, which are roughly the median redshifts of the SDSS −19 and −21 samples,

respectively3.

For each sample, we run two high-resolution simulations and 100 low-resolution simu-

lations. We use the high-resolution simulations to estimate the model observables and the

low-resolution simulations to construct a covariance matrix representing cosmic variance

(see Section 2.5). Each of the low-resolution simulations differs in the phases of the density

modes of the power spectrum, which is controlled by a seed supplied to 2LPTIC. The seeds

used for the high-resolution simulations were chosen from the 100 low-resolution seeds to

minimize the cosmic variance error in our model (see S18 for more details). The details of

these simulations are given in Table 2.2.

We identify halos using a spherical over-density (SO; Lacey and Cole, 1994) algorithm

using the ROCKSTAR phase-space temporal halo finder (Behroozi et al., 2013). We find

halos using the Mvir halo definition, where the halo density depends on both cosmology

and redshift, as given by Bryan and Norman (1998). Throughout this paper, all masses are

in units of h−1M�.

2.4.2 Building mock galaxy catalogs

We can construct mock galaxy catalogs by directly populating the dark matter halos from

our simulations. This population is performed via the Halo Occupation Distribution (HOD).

3These values are the median redshifts of the SDSS samples in S18. Our median redshifts (Table 2.1)
differ slightly due to changes in how we process SDSS (see Section 2.2).
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Specifically, the form of the HOD we use is the “vanilla” model used by S18 and previously

Zheng et al. (2007). In this form of the HOD, the population statistics of dark matter halos

depend only on halo mass, with central and satellite galaxies treated separately (Kravtsov

et al., 2004; Zheng et al., 2005).

For a halo of mass M, the average number of central galaxies is given by

〈Ncen〉=
1
2

[
1+ erf

(
logM− logMmin

σlogM

)]
. (2.3)

Within the error function, there are only two parameters, Mmin and σlogM, which control the

population statistics for central galaxies. Mmin is the mass at which approximately half of

the halos host a central galaxy, while σlogM dictates how rapidly the central population goes

to zero with decreasing mass. When we consider whether or not to assign a central galaxy

to a specific halo of mass M, we draw a random number R from a uniform distribution on

the interval [0,1). If R < 〈Ncen〉, then a galaxy is assigned. This central galaxy is placed at

the halo center and given the mean velocity of the halo.

If we have placed a central galaxy in a halo of mass M, then the mean number of satellite

galaxies is given by

〈Nsat〉= 〈Ncen〉×
(

M−M0

M1

)α

. (2.4)

The exact number of satellite galaxies we place in a specific halo of mass M is determined

by drawing from a Poisson distribution with a mean 〈Nsat〉. While there is a dependence

on 〈Ncen〉 (and thus on Mmin and σlogM), the satellite population statistics are primarily

governed by three parameters: M1, α , and M0. More intuitively, halos of mass M1 on

average host one satellite galaxy, while α dictates how rapidly halo occupation increases

with increasing halo mass. The parameter M0 technically sets the halo mass below which

we do not find any satellite galaxies, but in practice this parameter has not been well-

constrained in studies which use luminosity samples similar to our own (e.g., Guo et al.,

2015a, S18). After we choose the exact number of satellite galaxies in a specific halo, each
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satellite is given the position and velocity of a randomly chosen dark matter particle in the

halo.

Once we populate our dark matter halos with galaxies, we must build realistic mock

galaxy catalogs that resemble our SDSS samples of interest. To do this, we first need

to transpose the mock galaxies from Cartesian to spherical coordinates by positioning an

observer at the center of the box and converting the positions of the galaxies into RA, DEC,

and comoving distances. Due to the smaller volume of the SDSS sample, we are able to

carve out four independent mock galaxy catalogs from each simulation box. We then need

to incorporate the same systematic effects that plague our observational dataset, such as

redshift-space distortions, sample geometry, and incompleteness.

To introduce redshift-space distortions, we determine the line-of-sight peculiar veloci-

ties of the galaxies and calculate the redshift as 1+z=(1+zcosmological)(1+zdoppler), where

zcosmological is the cosmological redshift and zdoppler is the redshift due to the radial peculiar

velocity. We then eliminate any mock galaxies outside the redshift limits or sky footprint of

our SDSS sample. This procedure ensures that any effect on measured clustering statistics

due to sample geometry are present in both the mock galaxies used in our model and in the

SDSS data.

2.4.3 Correcting for fiber collisions

In SDSS, spectroscopic fibers cannot be placed closer to each other than the diameter of

the fiber plugs (55′′). This limitation results in approximately 7% of targeted galaxies lack-

ing a spectroscopically measured redshift due to their proximity to a neighboring galaxy.

Modeling these fiber collisions is difficult primarily because it requires a simulation with a

large enough volume and a high enough resolution to reproduce the flux-limited footprint

of SDSS. Instead of incorporating fiber collisions into our model, we choose to make a cor-

rection to the SDSS data. It should be noted that this is the one case where we necessarily

diverge from our general modeling philosophy – instead of incorporating this systematic
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error into our generative model, we attempt to remove it from the SDSS data.

To accomplish this task, we first apply the nearest neighbor correction to galaxies lack-

ing a spectroscopic redshift (Zehavi et al., 2002). We then estimate the error in measured

clustering statistics from using only the nearest neighbor correction and adjust our mea-

surements accordingly. Our full procedure is detailed in Appendix 2.10.1, but we provide

a brief summary here. We utilize the SDSS plate overlap regions to estimate the error

in our clustering statistics that results from applying this nearest neighbor correction. In

overlap regions, we have spectroscopic redshifts for many galaxies that are within 55′′ of

a neighboring galaxy. These regions thus allow us to investigate the impact of applying

the nearest neighbor correction. Briefly, we find that the nearest neighbor correction alone

is not sufficient for many of the clustering statistics we use. Thus, we choose to adjust

the values of our observables to account for this error. We use the adjusted observables in

our analysis of SDSS (Section 2.7). We provide both the original nearest neighbor SDSS

observables and the adjusted observables in the machine-readable format, available online

from the publisher.

2.5 Summary of Modeling Procedure

Our main goal in this work is to constrain the galaxy-halo connection. To achieve this end

we implement a fully numerical modeling methodology, based on and adapted from S18.

We summarize the procedure here, as well as highlight a few key differences from S18.

To employ our numerical modeling procedure, we utilize the Texas Advanced Comput-

ing Center’s Stampede2 supercomputer. We use a Markov Chain Monte Carlo (MCMC) al-

gorithm to explore the HOD parameter space. In particular, we developed a C-implementat-

ion of the popular affine-invariant sampler EMCEE (Foreman-Mackey et al., 2013), which

we call EMCEE IN C4.
4https://github.com/aszewciw/emcee in c Our decision to use EMCEE IN C was made to meet the software

restrictions of the Stampede2 supercomputer. We have verified that EMCEE IN C performs identically to
EMCEE.
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An MCMC (or “chain”) involves probabilistic sampling of an unknown posterior dis-

tribution of parameter values given some assumed prior distribution. We employ flat prior

distributions on the same parameter ranges given in S18. At each HOD point we sample,

we must evaluate the likelihood that this HOD model could have generated a dataset with

the same clustering as SDSS. Given a K-dimensional vector D of observables measured

on the SDSS dataset and a corresponding vector M of the same observables for an HOD

model (“model observables” hereafter), this likelihood is given by

L (D|M) =
exp(−1

2(D−M)C−1(D−M)T )√
(2π)Kdet(C)

, (2.5)

where C is the K-dimensional covariance matrix of these observables representing cosmic

variance (see Equation 2.6). Ignoring the factor of −1/2, the term within the exponential

is χ2.

In the context of a numerical modeling methodology, ideally we would obtain the ob-

servable vector M by first populating a large number of high-resolution DMO simulations

with galaxies according to our set of HOD parameters. From these populated simulation

boxes, we would then carve out SDSS-like mock galaxy catalogs, measure all observables,

and find the average value of each observable across all mocks. In practice, we need to

populate halos in a large enough volume in order to yield a cosmic variance error in M

that is sufficiently smaller than the uncertainty in D so as not to dominate the overall error

budget. As discussed in Section 2.4.1, S18 found that two boxes were sufficient to accom-

plish this task for an analysis using ngal, wp(rp), and n(N). We continue forward with this

approach using the same boxes as S18 and investigate the cosmic variance error in M for

the expanded set of clustering statistics we use.

For each HOD point we explore in the MCMC, we directly populate the halos in these
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Table 2.3: Shown here are the methods for calculating the clustering statistics for the −19
and−21 samples. For each sample, there are two simulations: 4002 and 4022 for−19, and
2007 and 2023 for −21. From each box we can create 4 mocks. Therefore, each statistic
was either calculated on one box (e.g., Box 4002, or B-02), 4 mocks (e.g., M-22), two
boxes (e.g., B-02, B-22), or 8 mocks (e.g., M-02, M-22).

Statistic −19 Method −21 Method
ngal B-02 B-07

wp(rp) B-02 B-07
ξ (s) B-02, B-22 B-23
n(N) M-22 M-07, M-23
σv(N) M-02, M-22 M-07, M-23
mcf(s) M-02, M-22 M-07, M-23
PN(R) B-02, B-22 M-07, M-23

two boxes5. We have a choice as to whether to measure each clustering statistic either

on the full box(es) or on mock galaxy catalogs carved out from these boxes (see Sec-

tion 2.4.2). The goal is to measure each statistic in a way that yields model observables

closest to the ideal case described above (i.e., mean of many mocks). Briefly, utilizing

the two low-resolution counterparts to our high-resolution boxes, we compare different

methods of measurement and choose the method for each clustering statistic that produces

model observables closest to the mean measurement across 400 low-resolution mocks. We

describe our full procedure in Appendix 2.10.2. We summarize the results of this test in

Table 2.3, where, for each sample, we indicate whether we choose to measure each cluster-

ing statistic on a box (B) or on mocks (M) and which box(es)/mock(s) are used (see table

description for more details).

We take one last step when estimating the model observables in our chains. For a

given HOD, the process of populating dark matter halos with galaxies is stochastic (see

Section 2.4.2) and is controlled with a “population seed.” For a fixed HOD, varying this

population seed primarily affects the number of centrals/satellites assigned to each halo and

5To meet the memory requirements of the Stampede2 compute nodes, we use downsampled versions of
these boxes in which we only keep a randomly selected 5% of the dark matter particles in each halo. This still
leaves ample particles on which to place satellites (∼ 500 times more particles than satellites on average).
Thus, downsampling results in no loss of accuracy.
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can lead to significant differences in measured clustering statistics (see Appendix 2.10.2

and Figure 2.14). Even when using a fixed population seed, a slight change in HOD can

also lead to significant differences in measured clustering statistics. Such differences do not

arise from an actual difference in the likelihoods of these two different models but rather

from the noise in how we are estimating the model observables. To reduce this noise, for

each HOD point in our chain, we populate our simulation boxes four times, using four fixed

population seeds. We then measure the observables (in the way given in Table 2.3) on each

of these four resultant galaxy catalogs. We use the average of these four measurements as

our model observables.

Similar to the model observables M, ideally we would obtain the covariance matrix

C using a large number of high-resolution mock galaxy catalogs. Because of the high

computational cost associated with running many high-resolution DMO simulations, we

instead construct the covariance matrix from 400 mock galaxy catalogs built from 100

low-resolution boxes, all populated according to a set of fiducial HOD parameters (see

Sections 2.6 and 2.7). The elements of the covariance matrix are given by

Ci j =
1

N−1

N

∑
1
(yi− yi)(y j− y j). (2.6)

Here, the sum is taken over the N = 400 mocks. The values yi and y j are the ith and jth

observables measured on each mock and thus vary in the sum. The values yi and y j are the

mean values of the ith and jth observables, respectively, and thus are fixed in the sum. Each

diagonal element, Cii, of the matrix is simply the variance among 400 mocks for observable

i. In this paper, we refer to
√

Cii as the “cosmic variance uncertainty” of observable i. For

simplicity, we denote the cosmic variance uncertainty of an arbitrary observable as σobs.

There are three important differences between the covariance matrices we use and those

used in S18. First, we use twice the number of mocks as S18, resulting in less noise in our

covariance matrix. Second, the low-resolution boxes we use to construct the matrix all
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have the same cosmology and halo definition as the high-resolution boxes we use to obtain

our model observables. This is not the case in many of the chains run in S18. Third,

instead of using the raw covariance matrix produced by these 400 mocks, S18 rescale the

elements of the covariance matrix by the ratio of SDSS to mock measurements (see S18 for

more details). When evaluating L (D|M), however, the covariance matrix represents the

variation in clustering statistics calculated on different mock realizations generated by the

same set of HOD parameters. Therefore, we instead simply use the raw covariance matrix

in our likelihood calculation and do not rescale its elements. While we view all three of

these points as improvements to the modeling procedure, we do not quantify their impact.

In addition to these changes, we investigate sources of noise in our covariance matrix

in Appendix 2.10.3. We examine only the noise in the cosmic variance uncertainty of

each observable, ignoring off-diagonal elements of the matrix. To summarize, for the −19

sample, the major source of noise is due to the number of mocks we use, which gives an

error of ∼3.5% on all values of σobs. For a few observables, the largest source of noise is

due to our choice to use a fiducial matrix instead of re-building the matrix for each set of

HOD parameters we evaluate in the chain. Still, this error is at worst only 10%. For the

−21 sample, the largest source of noise comes from using low-resolution mocks instead of

high-resolution mocks to build our matrices. In the worst case, we find that we overestimate

the errors by ∼15% for several small scales of wp(rp) and ξ (s). We do not make any

corrections to our matrix to account for this discrepancy, believing that overestimating our

errors will lead to more conservative posterior results.

While the tests in Appendix 2.10.3 quantify the error in the elements of the covariance

matrix, it is a much more difficult task to quantify the joint impact of these errors. In

particular, we wish to know how these errors affect our constraints on SDSS. In general,

using more observables will produce tighter constraints, but this improvement occurs at

the cost of more noise in the covariance matrix and thus in the resulting constraints. We

therefore seek to obtain a set of observables that provide both tight and reliable constrains,
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a task we address in the following section.

2.6 Optimization Algorithm

From our set of N observables, we seek to find the subset of size K ≤ N that gives the

tightest constraints on our HOD parameters, while still being robust with respect to the

systematic errors in our modeling procedure. Because we do not know what an accept-

able value for K is, exploring all combinations quickly becomes an impossible task. With

N = 63, as in our −21 sample, N choose K for K : 1→ N represents ∼ 1019 unique combi-

nations! Therefore, we design and implement an algorithm that is an approximation of this

task.

The algorithm we implement orders our N observables by joint constraining power.

When choosing the Kth observable, we pick the one that, when combined with our K− 1

previously chosen observables, produces the tightest constraints on our HOD parameters.

Once the order is created, we analyze the reliability of our constraints for different values

of K. This analysis leads to a choice of K observables which we utilize in an MCMC to

constrain the HOD of our SDSS volume-limited samples. In the following subsections, we

describe our algorithm, its raw results, and our choice of observables.

2.6.1 Algorithm design

The first step in our algorithm is to set up a grid of HOD parameters which we will use to

explore the constraining power of different combinations of observables. Because some of

our parameters are strongly correlated (e.g., logMmin and σlogM), a uniformly-spaced grid

contains a large number of unrealistic HOD parameter combinations. Therefore, to set up

a grid we perform the following steps:

1. Choose a fiducial set of HOD parameters.

2. Using these parameters, create a high-resolution fiducial mock galaxy catalog.

3. Measure ngal and wp(rp ∼ 0.3 h−1Mpc) on this mock.
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4. Run an MCMC with this mock’s observables as the “data.” For each HOD point:

• Calculate and record all N model observables. (See Section 2.5 for a description

of how model observables are calculated.)

• Evaluate likelihood Linit using only ngal and wp(rp ∼ 0.3 h−1Mpc).

This procedure produces an initial non-uniform grid of fairly reasonable HOD points

which could have generated our fiducial mock. We choose to perform this analysis on a

mock galaxy catalog for two reasons. First, we wish to know whether a chain run with

a specific set of observables is able to recover the true HOD, which is not something we

can determine with SDSS. Second, we wish to choose observables based on their universal

constraining power. By using a mock galaxy catalog, we avoid choosing observables that

are over-fit to SDSS. We are, however, potentially over-fitting to this particular mock galaxy

catalog. Therefore, we perform steps 2-4 for four different mock galaxy catalogs. These

mocks have the same HOD and only differ due to cosmic variance. Thus, we construct four

different grids which we use to explore the constraining power of different combinations

of observables.

For a given mock/grid, we quantify the constraining power of wp(rp∼ 0.3 h−1Mpc) and

ngal by measuring the standard deviation of HOD values of each parameter. We call this

initial constraint σpar,init. We wish to examine how different combinations of observables

can improve upon the initial constraints. To do so, we utilize the fact that the value of Linit

at a particular point in HOD-space is proportional to the density of points in the grid at that

location. Because we measure all N observables when constructing the grid, for each HOD

point we can compute a likelihood LK using any arbitrary set of K observables and the

appropriate K by K covariance matrix. We can then assign each point in the grid a weight

LK/Linit. The weight assigned to each HOD point is proportional to the density of points

we would have at this location if we had we run a chain on this mock using this set of K

observables. Computing a weighted standard deviation σpar,K for each parameter gives an

estimate of the constraints from said chain. This process, known as “importance sampling,”
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thus provides a way of estimating the constraining power of an arbitrary combination of K

observables.

We use importance sampling to order our N observables by their cumulative constrain-

ing power. In short, we choose observables, one at a time, always choosing the observable

that, when combined with the previously chosen observables, best constrains all parameters

of interest. To choose the Kth observable, we perform the following steps:

1. From the N− (K−1) observables not yet chosen, pick a “trial observable.”

2. In one of the four grids, using this trial observable and the K− 1 previously chosen

observables, compute a likelihood LK for each point.

3. Weight each point in the grid by LK/Linit.

4. Compute a weighted standard deviation, σpar,K , for each HOD parameter.

5. Add in quadrature the fractional reduction in the constraints on each parameter ach-

ieved by including this observable: Mgrid = ∑par

(
σpar,K

σpar,K−1

)2

.

6. Repeat steps 2 - 5 for each of the grids. Add the values of Mgrid to get the metric M

for this trial observable.

7. Repeat steps 1 - 6 for each of the N− (K−1) possible trial observables.

8. Choose the trial observable with the lowest value of M.

Once the Kth observable is chosen, we move on to choose the (K + 1)th until all N

observables have been ordered. The metric M always compares the improvement in con-

straints when going from K−1 to K observables. This metric rewards observables which

constrain parameters that have not already been well-constrained by the first K−1 observ-

ables. Additionally, by minimizing the sum of Mgrid across multiple grids, the choices we

make are more robust to the peculiarities of a specific mock due to cosmic variance.

In principle, this procedure could be used to order all observables from K = 1 to K = N.

In practice, however, we make the decision to start with ngal and wp(rp ∼ 0.3 h−1Mpc) and

only choose observables from K = 3 to K = N. In general, importance sampling works

well when the target distribution is close to or contained within the initial distribution.
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This criteria is met when choosing the third observable but is not always true when we

attempt to choose the first or second. Our choice to build the initial grid using ngal and

wp(rp ∼ 0.3 h−1Mpc) thus affects all successive choices of observables. We assume that

ngal will be included in any clustering analysis, given the low computational cost and high

information content. Thus, including it in the construction of this grid seems reasonable.

We first attempted to create our grid using only ngal, but this grid contained HOD points

very unlike SDSS, particularly in the satellite parameters. In preliminary analysis, we

found that wp(rp ∼ 0.3 h−1Mpc) is particularly good at constraining the satellite parame-

ters. Thus, we include it to acquire a more reasonable starting grid of HODs.

Importance sampling works if the grid contains a sufficient number of points in the

region of the target distribution. As we go to higher values of K, the target distributions

occupy a smaller region in HOD space, and the density of our grid can become an issue.

Ideally, each time we choose a new observable, we would construct a new grid by running

a new chain with the already chosen observables. This denser grid would then be used

to choose the next observable. Such a procedure would minimize the error in importance

sampling but has a high computational cost. We make the decision to build a denser grid

whenever the importance sampling procedure produces noisy posterior distributions, which

we determine by visual inspection. We note at which number of observables we make the

decision to construct denser grids in the following section.

2.6.2 Ordering of observables

We apply the algorithm outlined in the previous section to order the observables according

to their potential constraining power. We perform this procedure (separately, for each sam-

ple) on mocks constructed using HODs appropriate for the −19 and −21 SDSS volume-

limited samples. The fiducial HOD parameters we use in building the grids are given in

Table 2.4. These parameters are the best-fit HOD values from a chain run on SDSS using
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Figure 2.1: Projected constraints (1-σ ) on four of our HOD parameters as we increase the
number of observables. The constraints for the −19 and −21 mocks are shown in blue
and red, respectively. The order of the observables is determined by our algorithm and is
shown in Table 2.5. Each dashed line gives the projected constraints from one of our grids
while the solid line shows the average of all four grids. For comparison, the constraints on
our SDSS samples from a chain run using ngal, wp(rp), and n(N) (as was done in S18) are
shown with dotted horizontal lines.
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Table 2.4: Unless otherwise noted, we use these fiducial HOD parameters to construct the
covariance matrices and mocks we use throughout this paper.

Mlim
r logMmin σlogM logM0 logM1 α

−19 11.54 0.22 12.01 12.74 0.92
−21 12.72 0.46 7.87 13.95 1.17

only ngal, wp(rp), and n(N) and thus constitute reasonable parameter values for SDSS6. For

each sample, we construct both the mocks and the covariance matrix from these HODs.

For the −21 mocks, the value of logM0 is too low to have any impact on the mathe-

matical form of our HOD. For the −19 mocks, however, logM0 is large enough to have a

significant impact on halo occupation. Therefore, we decide to simultaneously optimize

using all five parameters for the −19 mocks but ignore logM0 when optimizing the −21

mocks (i.e., in our calculation of Mgrid).

In Figure 2.1, we present the results of our algorithm for four of the five HOD param-

eters (excluding logM0). The dashed/solid lines show, for our −19 (blue) and −21 (red)

mocks, the estimated posterior constraints (weighted standard deviations) on each parame-

ter as we increase the number of observables in the order chosen according to our algorithm.

Each dashed curve gives the estimated constraint obtained from one of the grids (mocks),

while the solid curve gives the average constraint. The horizontal dotted lines show the

constraints achieved on our SDSS volume-limited sample when we only use ngal, wp(rp),

and n(N) (NWG, hereafter), as was done in S18 (see Section 2.7).

In Figure 2.1, we can see that our average projected constraints are tighter than the

NWG constraints for all parameters by the time we reach∼ 10 observables. Thus, we need

only half as many observables as are used in the NWG chain to obtain the same constraining

power. For many of the parameters (e.g., −21 central parameters), we are outperforming

the NWG constraints with even fewer (∼ 5) observables. These results highlight the strong

constraining power that comes from combining various scales of multiple clustering statis-

6These values are the best-fit parameters for a chain run using the unadjusted SDSS observables (see
Appendix 2.10.1). They are slightly different than the best-fit values reported in Table 2.7.
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Figure 2.2: Projected constraints on logM0 for the −19 mocks. The lines and observable
order are the same as in Figure 2.1. We are unable to constrain logM0 for the −21 mocks
and therefore do not include it.

tics.

Comparing the two samples, we project tighter constraints on three of the parameters

for the −21 mocks compared to the −19 mocks, with α as the only parameter better con-

strained for −19. As can be seen by the horizontal dotted lines, this trend is also true

when constraining SDSS using only ngal, wp(rp), and n(N). Additionally, the projected

constraints are all quite similar among the four mocks for −21, while there is a greater

dispersion among the−19 mocks, particularly for logMmin and σlogM. Because the fiducial

value of σlogM in the −19 mocks (0.22) is closer to zero than in the −21 mocks (0.46), the

posterior contours are often cut off by our flat prior lower bound (σlogM cannot be nega-

tive). This results in the shapes of the contours having more variety between the four mock

realizations, affecting both logMmin and σlogM due to their correlation.

Remarkably, we are also able to obtain tight constraints on logM0 for the −19 mocks

using a collection of . 10 observables. We show this result in Figure 2.2, which has the

same format as Figure 2.1 but excludes the −21 results. When using only ngal, wp(rp),

and n(N), logM0 is almost entirely unconstrained. With the availability of the clustering

statistics we introduce in this paper, our algorithm very quickly selects observables which

constrain logM0.

At the end of Section 2.6.1, we describe how we construct denser grids whenever we
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Table 2.5: The type of clustering statistic and the bin number (1-indexing) for the first 15
observables chosen (in order) for each sample. Note that the first two observables were
fixed. The full order can be obtained online from the publisher in the machine-readable
format.

Mlim
r Number Clustering Statistic Bin

1 ngal
2 wp(rp) 2
3 wp(rp) 4
4 VPF(R) 3
5 wp(rp) 8
6 ξ (s) 1
7 n(N) 3

−19 8 ξ (s) 5
9 n(N) 2

10 n(N) 4
11 n(N) 1
12 SPF(R) 4
13 ξ (s) 13
14 mcf(s) 14
15 ξ (s) 6
1 ngal
2 wp(rp) 2
3 ξ (s) 8
4 wp(rp) 4
5 mcf(s) 9
6 wp(rp) 1
7 ξ (s) 9

−21 8 mcf(s) 7
9 ξ (s) 4

10 ξ (s) 7
11 mcf(s) 10
12 ξ (s) 1
13 wp(rp) 14
14 n(N) 1
15 SPF(R) 4
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Figure 2.3: Projected constraining power of each individual clustering statistic (+ngal). The
height of each smaller vertical bar shows the projected constraints on one mock, while the
larger open bar shows the average constraint across all four mocks. The vertical axes and
colors are the same as in Figure 2.1.
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deem it necessary. For both samples, we choose observables 3− 5 using our K = 2 grid

(constructed with just ngal and wp(rp ∼ 0.3 h−1Mpc)). After choosing observable 5, the

posterior contours arising from importance sampling appear to be noisy. We thus recon-

struct denser grids for both samples using the first five observables (K = 5 grids). For−21,

we use these K = 5 grids to choose observables 6− 63. For −19, constraining logM0 no-

tably has a significant impact on the allowable region of logMmin and logM1, which are

both anti-correlated with logM0. Once we begin to obtain tight constraints on logM0, the

density of our grid is again no longer sufficient. Therefore, for −19, we only use the K = 5

grid to choose observables 6−8 and switch to an even denser grid at K = 8. We then use

this K = 8 grid to choose observables for all larger values of K.

In Table 2.5, we show the order in which the first 15 observables are chosen for each

sample. We indicate the clustering statistic and the bin number, where Bin 1 is the smallest

bin of the corresponding clustering statistic. The full order can be obtained online from the

publisher in the machine-readable format. Several small and intermediate (. 1 h−1Mpc)

scales of wp(rp) and ξ (s) are chosen early for both samples. While these scales are highly

correlated and thus provide similar information, their joint constraining power is apparently

strong enough to justify their inclusion. Indeed, we can tell from Figure 2.2 that most of

the constraining power on logM0 for −19 comes from observables 6− 8, which include

two small scales of ξ (s). For −19, among the first 15 observables are four scales of n(N),

while only one scale is found among the first 15 choices for −21. This statistic is sensitive

to the satellite population and therefore may be more relevant for −19, which has a higher

satellite fraction. On the other hand, for −21, we find four scales of mcf(s) among the first

15 choices, while finding only one scale for −19.

While commenting on the precise reasons for the choice of each observable is beyond

the scope of this paper, we wish to get a general picture of the ability of each individual

clustering statistic to constrain each HOD parameter. To estimate the results of running

a chain with only one clustering statistic (e.g., mcf(s)), we perform a task very similar
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to the one described in Section 2.6.1. Using the sparsest (K = 2) grids, we weight every

point in our grid by Lstat/Linit, where Lstat is the likelihood calculated using all scales of

one clustering statistic and Linit is the likelihood calculated using only ngal and wp(rp ∼

0.3 h−1Mpc). We then importance sample the grid to estimate the constraints on each HOD

parameter that would be obtained from running a chain with this clustering statistic.

We show the results of this test in Figure 2.3. Like in Figure 2.1, each panel shows

the estimated constraints on a different HOD parameter, with constraints for −19 and −21

shown in blue and red, respectively. The height of each smaller, filled bar shows the con-

straints on an individual mock when using the clustering statistic7 indicated on the horizon-

tal axis, while the empty vertical bar shows the average constraint across all four mocks.

We choose to treat VPF(R) and SPF(R) as one statistic (PN(R)) in this figure.

For the central parameters, logMmin and σlogM, it is notable that no one clustering statis-

tic does a particularly good job of constraining the −19 mocks. Contrast this with the −21

mocks, where ξ (s) and mcf(s) (as well as wp(rp) and PN(R) to a lesser extent) each alone

provide very tight constraints. In Figure 2.1, however, we see that the achievable con-

straints on logMmin for −19 and −21 are quite similar. This highlights the advantage of

using a variety of clustering statistics measured at different scales.

For both samples, we see that wp(rp) and ξ (s) provide excellent constraints on the

satellite parameters, logM1 and α . We can thus see why so many scales of these observables

are chosen early for both −19 and −21. For logM1, it is notable that mcf(s) again provides

extremely tight constraints for−21 but not for−19, further illustrating why so many mcf(s)

scales are chosen early. Similarly for α , n(N) provides better constraints for −19 than for

−21, illustrating why more scales are chosen for that sample.

We should caution that the results presented in Figure 2.3 are estimates. As we have

already mentioned, importance sampling works well if the grid has a sufficient density of

points in the neighborhood of the target distribution. Because we are using our sparse K = 2

7For each statistic, we include ngal in the calculation of Lstat. Thus, these are the estimated constraints for
each clustering statistic plus ngal.
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grids, this condition is not generally met for the results shown in Figure 2.3. This fact is

reflected by the large variation from mock to mock for a given statistic (e.g., ξ (s) for−19).

We only show this figure to provide some qualitative insight into the order of observables

presented in Table 2.5.

Looking again at Figures 2.1 and 2.2, we can see that by ∼ 20 observables, the con-

straints on virtually all parameters begin to asymptote. There is still, however, a slight

improvement in the constraints beyond 20 observables. From these figures alone, however,

we do not have a handle on the noise present in each of these estimates of our constraints.

It is thus difficult to gauge how much information we gain as we increase the number of

observables. We address this point in the following section.

2.6.3 Choosing an optimal set

In Figure 2.1, we see that using more observables always improves the constraints on our

HOD parameters. Using more observables also adds more elements to the covariance ma-

trix. All elements of the covariance matrix contain some noise because we calculate them

using a finite number of mocks. In principle this noise would disappear if we had an infi-

nite number of mocks, but in practice we have only 400. Because calculating a likelihood

involves an inversion of the covariance matrix (see Equation 2.5), any noise in the matrix is

propagated into the likelihood. Using more observables introduces more noise into the cal-

culation of a likelihood and thus into the posterior results of an MCMC. Therefore, as we

increase the number of observables, there is a trade-off between the increase in constraining

power and the added noise in these constraints.

We wish to know, given a particular set of K observables, how our constraints would

change if we were to estimate the covariance matrix using a different set of 400 mocks. We

design a test to estimate this “error” in our constraints for different values of K. We show

the results of this test in Figure 2.4. As in previous figures, the −19 and −21 samples are

plotted in blue and red, respectively. The dark solid lines show the grid-averaged estimated
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constraint (i.e., the same lines as are in Figure 2.1), while the shaded region shows our

estimate of the error in these constraints. To estimate this error, we perform the following

steps for each of our grids and for each ordered subset of K observables:

1. Treating the K by K covariance matrix as a multivariate Gaussian, randomly sample

400 points from this distribution.

2. From these 400 points, construct a new “resampled” covariance matrix.

3. Compute a new likelihood LK for each point in the grid8. In this calculation, use the

resampled K-dimensional covariance matrix.

4. Importance sample the grid, weighting each point by LK/Linit (see Section 2.6.1 for

description of Linit).

5. Re-calculate the weighted posterior standard deviations, σpar,resamp, of each HOD

parameter.

6. Repeat steps 1−5 100 times, yielding 100 values of σpar,resamp for each HOD param-

eter.

7. For each parameter, compute an error δ (σpar) by taking the standard deviation of

these 100 values of σpar,resamp.

Performing these steps for each of our four grids yields four estimates of δ (σpar) for

each HOD parameter as we increase K. For each value of K, we choose the largest value

of δ (σpar) among these four estimates as our error9.

As expected, we see in Figure 2.4 that δ (σpar) increases as we increase the number of

observables. We wish to choose a value of K where both the constraint (σpar) and the error

on the constraint (δ (σpar)) are small. To accomplish this task, we employ the “one standard-

error rule”: we choose the lowest value of K such that the constraint at this value is within

one standard error of the constraint at all higher values of K. We have to simultaneously

meet this condition for all parameters of interest to us, which pushes us to higher values of
8We use the most dense available grid for each value of K.
9We also explore taking the average error among the four grids. The choice makes very little difference

so we opt for the more conservative approach (i.e., larger errors).
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Figure 2.4: Our method for choosing how many observables to use. Each solid line shows
the average mock constraint (1-σ ) from Figure 2.1, and the shaded region shows our esti-
mate of the uncertainty (inner 68%) in our constraints. The dot and dashed line indicate the
number of observables we decide to use and the projected constraints for each parameter.
We only show results here for ≥ 6 observables. (See text for more details.)
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K than are necessary for some parameters. Coincidentally, for both samples, this happens

to be the same number: K = 36. We mark this value of K in Figure 2.4 with a dot. We

also indicate the estimated constraining power for K = 36 with a horizontal dashed line.

Although not shown here, logM0 is also taken into account when choosing K for the −19

sample.

In choosing a value of K, we have focused solely on the constraining power achievable

by using a particular combination of observables. The other critical requirement of our set

of observables is that, when used in an MCMC, the true HOD parameters used to construct

our mock catalogs should lie somewhere inside of our posterior contours. Where exactly

these parameters lie depends on the cosmic variance of the dataset on which a chain is run

and thus will differ for each of our four mocks. Testing whether any bias exists for a given

set of observables, therefore, is a far greater challenge. Instead, we choose to just visually

inspect whether or not the true HOD parameters lie within the 95% posterior probability

region for each of our HOD parameters. We find that for our K = 36 observables, this

condition is met for all mocks in both samples. In Appendix 2.10.4, we go one step beyond

importance sampling and run a full MCMC on one mock from each sample, using our

K = 36 observables. We again find that the true HOD parameters are recovered for both

samples.

We highlight the variety of observables chosen by our algorithm in Figure 2.5. We

show measurements of all scales of each clustering statistic (excluding ngal) for our two

volume-limited SDSS samples. The observables we ultimately choose are indicated with

solid points. We also provide a shaded region to indicate the size of the cosmic variance

uncertainty used in our analysis, which represents the variance associated with our process

of generating SDSS-like mocks.

The degree of correlation between any two observables i and j is given by the correla-

tion coefficient,

Ri j =
Ci j√
CiiC j j

, (2.7)
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Figure 2.5: We show here the SDSS measurements of the observables we use in our analy-
sis, with each panel showing measurements for a different clustering statistic. For the −19
(blue) and−21 (red) samples, the solid lines give the SDSS measurements on all scales we
consider using of each clustering statistic. The points mark the scales we ultimately choose
to use in our analysis (see Section 2.6.3). We also use galaxy number density, which is not
shown here. For illustrative purposes, we show the cosmic variance uncertainty from our
400 mocks with the shaded region centered on the SDSS measurements.
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where Ci j is an element of the covariance matrix as defined in Equation 2.6. Figure 2.6

shows the correlation matrices for the −19 and −21 samples. On both axes the observ-

ables are placed in the order in which they are chosen according to our algorithm (listed in

Table 2.5). We only show the 36 observables we use in our analysis, excluding all others.

The shading of a particular cell represents the degree of correlation between an observable

on the x-axis and the corresponding observable on the y-axis.

The most remarkable feature of Figure 2.6 is that both matrices are extremely diagonal,

particularly when compared to those of S18. By using our algorithm, we generally avoid

choosing highly correlated observables which contain redundant information. Looking

deeper, the observables for the −19 sample exhibit a higher degree of correlation than the

corresponding observables for the −21 sample. This is true in general and not just for the

observables chosen here. Still, we can see that several highly correlated observables are

chosen early for both samples, particularly for −19. While this is not what we anticipated,

it is clear that these correlated observables contain enough joint constraining power to be

selected by our algorithm.

In this section, we have established a framework for selecting optimal observables that

can be used to constrain the clustering of SDSS galaxies for a given HOD model. While

this set of observables is specifically optimized to the HOD model employed in this work,

this procedure could be repeated if we make any changes to our HOD model (e.g., adding

assembly bias) in the future. In the next section, we use our chosen observables to constrain

and test our standard HOD model against our two SDSS volume-limited samples.

2.7 Results

2.7.1 SDSS results

With a set of 36 optimal observables chosen to produce tight and reliable constraints, we

run an MCMC to constrain the HOD for each of our two volume-limited SDSS samples.

We refer to these chains as the “OPT” chains henceforth. We wish to compare the results of
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Figure 2.6: Correlation matrices for our−19 and−21 samples, built from 400 mock galaxy
catalogs constructed using the fiducial parameters listed in Table 2.4. Observables are
placed in the order in which they are chosen by our algorithm (see Section 2.6.3). We show
only the first 36 observables (i.e., those which we use in our analysis).

these OPT chains to those of S18. Because we have altered the SDSS dataset (Sections 2.2

and 2.4.3) and details of the modeling procedure (Section 2.5), a direct comparison is not

appropriate. Therefore, we also run chains using only ngal, wp(rp), and n(N), as was done

in S18, and refer to these chains as “NWG.” For each sample, we use the same HOD to

construct the covariance matrix for both the OPT and NWG chains. The parameters we use

to construct this matrix are given in Table 2.4.

All chains were run on the Texas Advanced Computing Center’s Stampede2 super-

computer using 272 KNL CPUs spread across four compute-nodes. Each chain was run

using 542 walkers for ∼1000 iterations and thus involved ∼500,000 total HOD model

evaluations. For the OPT chains, each parameter evaluation took approximately five CPU-

minutes, and thus a full chain took ∼45,000 CPU-hours (or ∼650 node-hours). We de-

termine that a chain has converged when the probability distribution of each parameter

stabilizes, which occurs after ∼200 iterations.

The joint parameter constraints resulting from these chains are shown in Figure 2.7. The
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left and right panels show the constraints on the −19 and −21 samples, respectively. The

top panels show σlogM vs. logMmin while the bottom panels show α vs. logM1. The blue

contours show the constraints achieved in the NWG chains, while the red contours show

our results when running the OPT chains. The shading shows the 68 and 95% probability

regions.

It is clear from Figure 2.7 that we achieve significantly tighter constraints on the joint

distributions of all HOD parameters in the OPT chains compared to the NWG chains. With

these tighter constraints, we demonstrate the power of combining an assortment of clus-

tering statistics measured at various physical scales. As a result, we can now detect a

significant difference in the values of σlogM between the two samples, with the−21 sample

having a higher value than the −19 sample. This result is to be expected, given that the

value of σlogM can roughly be interpreted as the scatter in halo mass at fixed luminosity,

which is generally greater for more luminous galaxies (Behroozi et al., 2010). However,

several previous HOD modeling works that rely on clustering (e.g., Sinha et al., 2018; Zent-

ner et al., 2019), have not successfully detected this distinction in σlogM between different

luminosity samples. Moreover, the few studies that have found that σlogM generally in-

creases with luminosity (Zehavi et al., 2011; Guo et al., 2015a) did not have tight enough

constraints to detect this difference to the level of significance that we achieve in this work.

In the NWG chains (and the chains in S18), logM0 is entirely unconstrained for both

samples. Using our chosen set of observables, however, we are able to obtain tight con-

straints on logM0 for the −19 sample. In Figure 2.8, we show the joint constraints on

logM0 and logM1 for the −19 OPT chain. We exclude the results for the NWG chain,

where the contours extend all the way down to the lower prior bound on logM0 at a value of

6. This parameter is anti-correlated with both logM1 and logMmin (not shown). Our ability

to constrain logM0, thus, affects the allowable values of these two parameters.

In Table 2.6 we present the marginalized constraints on each parameter for the NWG

and OPT chains. For each sample, we give the median parameter values as well as the upper
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Figure 2.7: Results of our chains run on SDSS volume-limited samples. The left and right
panels show results for the −19 and −21 samples, respectively. The blue contours are
obtained from running a chain only using ngal, wp(rp), and n(N) (NWG). The red contours
are the results when using the set of observables we choose in Section 2.6.3 (OPT).
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Table 2.6: Marginalized constraints on SDSS for each chain shown in Figure 2.7. We
present the median parameter values along with upper and lower limits corresponding to
the 84 and 16 percentiles respectively. We also provide the ratio of constraints (inner 68
percentile range) of the NWG chain to the OPT chain. These numbers indicate the factor
by which we have improved our constraints.

Mlim
r HOD Parameter NWG Constraint OPT Constraint Constraint Ratio
−19 logMmin 11.597+0.124

−0.055 11.442+0.016
−0.015 5.774

σlogM 0.289+0.293
−0.192 0.106+0.074

−0.065 3.489
logM0 10.385+1.519

−2.935 11.674+0.089
−0.094 24.339

logM1 12.803+0.046
−0.058 12.691+0.028

−0.029 1.825
α 0.969+0.028

−0.047 0.954+0.019
−0.019 1.974

−21 logMmin 12.694+0.071
−0.058 12.748+0.015

−0.015 4.300
σlogM 0.391+0.150

−0.201 0.517+0.029
−0.029 6.052

logM0 9.220+2.136
−2.183 9.015+2.017

−2.036 1.066
logM1 13.941+0.021

−0.024 13.919+0.014
−0.014 1.607

α 1.195+0.051
−0.057 1.088+0.031

−0.033 1.688

and lower limits corresponding to the 84 and 16 percentile parameter values. To summarize

the level of improvement, we divide the range of the inner 68% of parameter values for

the NWG chain by the corresponding range for the OPT chain. We report this result in

Table 2.6 in the column labeled “Constraint Ratio.” This ratio gives the factor by which we

shrink the marginalized constraints when using our set of chosen observables, compared

to using just the S18 observables. As was evident in Figure 2.7, we see improvement in

the constraints on every parameter. For both samples, we can see a particularly strong

improvement in the constraints on the central parameters, logMmin and σlogM, and a weaker

improvement for the satellite parameters, logM1 and α . The greatest improvement is for

logM0 in the −19 sample, again reflecting the fact that this parameter is unconstrained

when using only ngal, wp(rp), and n(N).

In addition to tightening the constraints on our HOD parameters, we have also signifi-

cantly heightened the tension between our model and SDSS. In Table 2.7, for each chain,

we provide the best-fit HOD parameters and their associated χ2, degrees of freedom, and

p-values. For the NWG chains, the p-values of the best-fit points suggest that our model
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Table 2.7: Best-fit HOD parameters from all chains shown in Figure 2.7. We also indi-
cate the goodness of fit of each parameter combination with a χ2, the number degrees of
freedom (d.o.f), and a p-value.

Mlim
r Chain logMmin σlogM logM0 logM1 α χ2 d.o.f. p-value
−19 NWG 11.552 0.229 12.107 12.707 0.905 18.083 17 0.384

OPT 11.445 0.099 11.651 12.703 0.958 77.770 31 6.8 ·10−6

−21 NWG 12.691 0.377 12.075 13.938 1.191 20.577 15 0.151
OPT 12.728 0.467 9.015 13.929 1.112 72.539 31 3.5 ·10−5

Figure 2.8: Constraints on logM0 and logM1 for the −19 sample, using the set of observ-
ables we choose in Section 2.6.3. Unlike the S18 results, we are able to obtain very tight
constraints on logM0, which has a significant anti-correlation with logM1.
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Figure 2.9: Residual measurements of our −19 (top) and −21 (bottom) SDSS volume-
limited samples (D) compared to the best-fit HOD model (M) from our OPT chains. Each
clustering statistic is given a different color and is labeled on the x-axis. We show the
value χobs = (D−M)/σobs for all observables. The larger, darker points indicate those
observables we actually use in our chains. Deviations from zero thus indicate that, ignoring
any correlations, an observable has a strong individual contribution to the overall value of
χ2.

is sufficient to describe the clustering of SDSS. For the OPT chains, however, the p-values

indicate that our model is unable to accurately match the clustering of SDSS10. We find

significant tension of 4.5 and 4.1 σ for the −19 and −21 samples, respectively.

To explore this tension further, we wish to identify which observables are contributing

the most to the high value of χ2 for each sample. In Figure 2.9, for each observable, we

show the value χobs = (D−M)/σobs, where D is the measurement on SDSS, M is the best-

fit model measurement, and σobs is the cosmic variance uncertainty. For each clustering

10Our result is contrary to that of S18, who found 2.3 σ tension for the−21 sample. This discrepancy could
be due to any one of several improvements we make to the modeling procedure (Section 2.5) or processing
of SDSS (Sections 2.2 and 2.4.3).
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statistic, indicated with a color-coded label, we show χobs values for all observables. We

indicate with larger, darker points those observables that are actually used in our analysis

and thus contribute to the overall χ2 value. Because many of the observables are correlated,

the overall χ2 value is not just the sum of squares of these values, but we can still make

some general conclusions about which observables are contributing the most to our high

χ2 values. For the −19 sample, notably both ngal and small scales (. 1 h−1Mpc) of ξ (s)

are quite poorly fit. With the exceptions of wp(rp) and mcf(s), some scales of all other

clustering statistics seem to contribute significantly to the tension as well. For −21, while

ngal is well-fit, all other clustering statistics appear to be poorly fit on at least one scale.

Overall, it is clear that the tension arises due to the inability of our five-parameter model to

jointly fit all of these observables.

These results suggest that extensions to the HOD may be necessary in order to match the

clustering of SDSS. If our model requires additional features (e.g., assembly bias, velocity

bias) which are not included in our five-parameter HOD, then our posterior results may

have significant systematic errors (Zentner et al., 2014). In particular, such errors may be

exacerbated in the case of the OPT chains where we include clustering statistics which are

sensitive to effects beyond those included in our form of the HOD. Attempting to fit to

the measurements of clustering statistics on SDSS with an inadequate model may cause a

bias in our posterior results. Indeed, looking again at Figure 2.7, this effect may explain

the offsets we observe between several of the parameter constraints of the NWG and OPT

chains. Without including these additional features in our HOD, however, we cannot verify

this assertion.

We also consider the impact of our decision to adjust our observational data in order

to account for the errors due to our use of the nearest neighbor correction (Section 2.4.3).

Particularly, we wish to know how this treatment affects our posterior results and general

conclusions about the success of our five-parameter HOD model. Therefore, using the OPT

observables, we also run chains on the unadjusted datasets for each sample and compare
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the results to our chains on the adjusted datasets. For −19, we find shifts in the median

parameter values of .1σ and .2σ for central and satellite parameters, respectively. Addi-

tionally the p-value of the best-fit HOD point is even lower for the unadjusted chain. For

−21, we find the opposite trends: shifts in the median parameter values of .2σ and .1σ

for central and satellite parameters, respectively. The p-value of the best-fit HOD point is

slightly larger, but this change is only enough to decrease the tension from 4.1 to 3.5 σ .

Thus, our treatment of fiber collisions has little impact on the general conclusions we draw

about the ability of our five-parameter HOD to match the clustering of SDSS.

Before continuing, we address one last final detail concerning our results. When run-

ning an MCMC, we are assuming that our fiducial matrix is not too dissimilar from the

matrices we would construct from each HOD point in our chain. The HOD parameters we

use to construct our fiducial matrix, however, are far from the locations of our posterior (2

σ ) contours for both the −19 and −21 OPT chains. We consider performing an iterative

procedure in which we reconstruct the covariance matrix from the best-fit HOD point of the

OPT chain and then re-run the OPT chain with this new matrix. This procedure could be re-

peated until some sort of convergence criteria is met. To gauge whether or not this method

is necessary, in Appendix 2.10.4, we test whether two chains run on the same mock galaxy

catalog, but differing in the HOD used to construct the matrix, produce similar posterior

results. We find that the results are largely similar and thus do not perform any iteration for

our SDSS results.

2.7.2 Modifying the halo mass function

The use of the HOD framework as we have applied it is predicated on an assumption that

our dark matter only simulations produce the correct halo mass function (HMF). Hydro-

dynamic effects, however, can alter the masses of dark matter halos (e.g., Vogelsberger

et al., 2014b; Schaller et al., 2015; Springel et al., 2018; Beltz-Mohrmann et al., 2020;

Beltz-Mohrmann and Berlind, 2021). By not including baryonic physics, our simulations
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Figure 2.10: Results of chains run on SDSS using halo catalogs with masses modified
according to the prescriptions of BM21. The shifts in logMmin and logM1 can be understood
by considering the global number density, while the shifts in σlogM and α are in general
more complex (see main text for more details).
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potentially have incorrect HMFs compared to that of the real Universe.

Beltz-Mohrmann and Berlind (2021) (BM21 hereafter) investigate the differences in

HMFs between matched DMO and hydrodynamic simulation boxes in EAGLE, Illustris,

and IllustrisTNG (TNG hereafter). For halos at z = 0, they find that in each simulation,

stellar feedback generally reduces the masses of low mass halos (. 1011 h−1M�), while

AGN feedback generally reduces the masses of high mass halos (between 1012 and 1013

h−1M�) compared to their DMO counterparts. However, the exact effect that feedback has

on the halo masses differs dramatically from one simulation to the next.

Based on each of these simulations, BM21 identify formulae that can be used to “cor-

rect” the masses of halos from a DMO simulation in order to reproduce the HMF from a

given hydrodynamic simulation. They provide these corrections for several different red-

shifts and halo definitions. In this work, we apply the z = 0, Mvir corrections to modify the

masses of the halos in our DMO simulations. We then re-run our OPT SDSS chains three

times, using halos modified according to the prescriptions for EAGLE, Illustris, and TNG.

(With these prescriptions, halo radii and density profiles are not modified.) In each of these

chains we use the same covariance matrix as in the previous section with parameters listed

in Table 2.4.

We show the results of these chains in Figure 2.10, with the same general format as

Figure 2.7. In each panel, the EAGLE results are shown in orange, Illustris in blue, and

TNG in green. “DMO” (red) refers to the chains run using the original halos (replicated

from Figure 2.7). For both samples, we see that some of the HMF modifications produce

significant shifts in the median values of the HOD parameters. These shifts occur in order

to maintain the same occupation numbers after the mass corrections. For the −21 sample,

we see significant shifts in logMmin and logM1 and smaller shifts in σlogM and α . For the

−19 sample, we see significant shifts in all parameters except σlogM.

In the −21 sample, we can see large decreases in the values of logMmin and logM1

in the Illustris chain. These shifts are due to the fact that the Illustris correction reduces
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the masses of all halos above 1012h−1M� by &15%. The EAGLE and TNG corrections

only slightly reduce the masses of halos between 1012 and 1013h−1M� but have little to no

impact on the highest mass halos. This explains the slight decrease in logMmin and the lack

of change in logM1 for these chains.

In the −19 sample, we can see a large decrease in the value of logMmin in the EAGLE

chain but little change in the Illustris and TNG chains. This effect is because the EAGLE

correction reduces the masses of halos between 1011 and 1012h−1M� by up to 20%, while

the Illustris and TNG corrections have little impact in this regime. Like in the −21 sam-

ple, the Illustris correction leads to the biggest change in the value of logM1. Unlike −21,

however, we see some shifts in logM1 for EAGLE and TNG because we are in a regime in

which the halo masses are slightly reduced by these corrections. Perhaps the most signif-

icant result of Figure 2.10 is that there is no shift in the value of σlogM for the -19 sample

and very little shift for the -21 sample. Thus, our claim in Section 2.7.1 concerning the

detectable difference in σlogM between the two samples holds even when considering the

impact of baryons on the HMF.

While the changes in logMmin and logM1 are fairly straightforward, the small changes

in α in both samples (and in σlogM in the −21 sample) are more difficult to intuit. This

demonstrates the fact that the halo mass corrections in BM21 are not simple parameter

shifts but complex functions of mass that impact all of our HOD parameters.

Regardless of the reasons for the observed shifts, with the increased constraining power

afforded by our numerical approach, the differences in recovered HOD parameter values

are generally not robust with respect to the uncertainty in the HMF due to baryonic physics.

We certainly do not believe that these three hydrodynamic simulations capture the full

uncertainty in baryonic physics or that any of them necessarily result in more accurate

HMFs than are produced by DMO simulations. This exercise is simply meant to emphasize

that our HOD parameter constraints are subject to baryonic effects.

Despite the observed changes in the posterior contours, the tension that we find between

56



SDSS and our best-fit HOD model remains largely unchanged for both samples. In the -

19 sample, the tension that we find between SDSS and our best-fit HOD model applied

to DMO simulations (4.5 σ ) remains the same after the Illustris correction, and increases

slightly (to 4.6 σ ) after the EAGLE and TNG corrections. In the -21 sample, the original

tension (4.1 σ ) remains the same after the Illustris correction, increases slightly (to 4.2 σ )

after the EAGLE correction, and decreases slightly (to 3.9 σ ) after the TNG correction. In

any case, we can conclude that the tension that we find between SDSS and our standard

HOD model is not significantly reduced or exacerbated by the halo mass corrections we

employ here.

In this section, we have only demonstrated the effects of correcting the mass function

for the simple five-parameter HOD we use in this work. As we look to constrain additional

features of the galaxy-halo connection (e.g., assembly bias) in the future, we must continue

to consider the impact of baryonic physics on our posterior results.

2.8 Conclusions

In this work, we explore the ability of a variety of clustering statistics to jointly constrain

the connection between galaxies and the dark matter halos in which they live. We develop

an algorithm to choose a set of “optimal” observables based on estimates of their joint

constraining power. We choose these observables from a superset of multiple scales of the

projected correlation function, the redshift-space correlation function, the group multiplic-

ity function, the group velocity dispersion, the mark correlation function, and counts-in-

cells statistics. In particular, for two different volume-limited SDSS samples, we employ

a Markov Chain Monte Carlo (MCMC) method to constrain a simple five-parameter halo

occupation distribution model for connecting galaxies to dark matter halos. We also ex-

plore how robust our results are with respect to the influence of baryonic physics on the

halo mass function. Our main results are summarized below:

• Compared to a similar analysis using only ngal, wp(rp), and n(N), when using our
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chosen set of observables, we are able to achieve tighter constraints on all HOD

parameters for both the −19 and -21 SDSS volume-limited samples. Specifically,

we tighten the constraints on the central parameters (logMmin and σlogM) by factors

of ∼5.8 and ∼3.5 for the −19 sample and ∼4.3 and ∼6.1 for the −21 sample. We

tighten the constraints on the satellite parameters (logM1 and α) by factors of ∼1.8

and ∼2.0 for the −19 sample and ∼1.6 and ∼1.7 for the −21 sample. The fifth

parameter, logM0, is unconstrained when using ngal, wp(rp), and n(N) but is well-

constrained for the−19 sample when using our chosen observables. (See Figures 2.7

and 2.8, as well as Table 2.6.)

• Our tighter constraints have yielded high precision measurements of σlogM for the

−19 and −21 samples, an informative parameter which quantifies the scatter in halo

mass at fixed luminosity and is related to the scatter in the stellar-to-halo mass rela-

tion (see Figure 2.7 and Table 2.6). In particular, we can clearly distinguish between

the low and high scatter for the -19 and -21 samples, respectively.

• For the −19 sample, we find a significant shift in the posterior distributions when

using our chosen observables, compared to when we use only ngal, wp(rp), and n(N).

This shift may be because we incorporate in our modeling procedure new clustering

statistics that depend on additional HOD features not included in our five-parameter

model, such as assembly bias, velocity bias, etc. (see Figure 2.7).

• We find substantial tension between SDSS and our best-fit HOD model. This tension

is slightly stronger for the −19 sample (4.5 σ ) than for −21 (4.1 σ ). This is in

contrast to when we use only ngal, wp(rp), and n(N) to constrain the model, which

exhibits no tension. Our inability to jointly match the clustering of SDSS suggests

the need for a more flexible HOD model. (See Table 2.7.)

• We find that our joint and marginalized constraints are affected by the impact of

baryonic physics on the masses of dark matter halos. The prescriptions of Beltz-

Mohrmann and Berlind (2021) which we use to modify our halo masses, according
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to the hydrodynamic physics of EAGLE, Illustris, and IllustrisTNG, have varying

degrees of impact on logMmin, logM1, and α for the two samples, though σlogM

appears relatively stable, particularly for -19 (See Figure 2.10.)

These results demonstrate the power of our numerical modeling methodology to con-

strain the galaxy-halo connection. By directly populating dark matter simulations and carv-

ing out realistic mock galaxy catalogs, we are able to measure clustering statistics in the

exact same way on both our SDSS dataset and our model, allowing us to employ less

widely used clustering statistics. Further, by choosing a combination of different physi-

cal scales for each clustering statistic, we avoid using observables which introduce more

noise than information into our posterior results. Using this numerical approach, we are

also able to quantify and minimize the error associated with both our model observables

(Appendix 2.10.2) and our covariance matrix (Appendix 2.10.3). We are also able to verify

that an MCMC run on a mock galaxy catalog using our chosen set of observables is able to

recover the true HOD parameters (Appendix 2.10.4), suggesting that the remaining error in

our methodology has little impact on our posterior results.

Potentially the largest source of error in this work is our treatment of fiber collisions

(Appendix 2.10.1). Lacking an accurate model of fiber collisions, we instead decide to

adjust our SDSS measurements to account for the error arising from only using nearest

neighbor corrections. While we believe that our estimation of this error and use of the

resulting adjusted measurements are an improvement over nearest neighbor, this approach

still may not yield accurate clustering statistics. Unfortunately, there is no way to verify

its accuracy without actually obtaining the redshift of every galaxy in SDSS. To get some

handle on the impact of our treatment of fiber collisions, however, we also run an MCMC

using the unadjusted SDSS measurements. We find that the results have little impact on

our general conclusions (see Section 2.7.1).

Overall, compared to S18, we have succeeded in both achieving tighter constraints on

the parameters of our HOD model and in heightening the tension between our model and
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SDSS. The failure of our five-parameter HOD model to fit the clustering of SDSS for both

of volume-limited samples we explore suggests that the assumptions of the standard HOD

model may be incorrect, a result in line with several recent works. For instance, halo

occupation may depend on secondary properties of the halo, such as age or concentration,

in addition to mass (i.e., there may be assembly bias; Zentner et al., 2014, 2019; Vakili

and Hahn, 2019; Beltz-Mohrmann et al., 2020; Hadzhiyska et al., 2020). Additionally, the

number of satellite galaxies in a halo of a given mass may not follow a Poisson distribution

(Boylan-Kolchin et al., 2010; Mao et al., 2015; Jiménez et al., 2019). Finally, central

galaxies may not always reside at the center of the halo and move with the mean velocity

of the halo (i.e., there might be central spatial and/or velocity bias), and satellite galaxies

may not trace the spatial and velocity distribution of the dark matter (i.e., there might be

satellite spatial and/or velocity bias; Van den Bosch et al., 2005; Watson et al., 2012;

Piscionere et al., 2015; Guo et al., 2015b,a; Beltz-Mohrmann et al., 2020). In the case of

splashback galaxies, satellites may even exist well outside the radius of their halo (e.g.,

Wetzel and White, 2010; Sinha and Holley-Bockelmann, 2012).

In the future, we intend to apply our updated modeling methodology (including our

algorithm for choosing observables, treatment of fiber collision errors, and halo mass func-

tion corrections) to an expanded HOD model including these additional features. In doing

so, we hope to further our understanding of the galaxy-halo connection by exploring its

more subtle aspects. An additional possibility that could be responsible for some of the

tension that we find is that the cosmological model that we assume in our analysis is in-

correct. Fully exploring the cosmological parameter space with our mock-based numerical

model is computationally challenging. Nevertheless this research direction is worth pur-

suing because the high precision that comes from multiple clustering statistics could yield

interesting cosmological constraints that are independent from those on larger scales.
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2.10 Appendices

2.10.1 Fiber Collisions

In this section, we estimate the error in our clustering statistics that results from applying

the nearest neighbor correction to SDSS. To do so, we make use of the SDSS plate overlap

regions. In an overlap region, the same portion of sky is targeted with two (or more)

spectroscopic plates. Approximately 1/3 of the SDSS footprint consists of overlap regions,

and thus we have spectra for ∼ 1/3 of galaxies that would otherwise be lost due to fiber

collisions. We apply the nearest neighbor correction to galaxies in the overlap regions,

effectively pretending some of these galaxies were missed due to fiber collisions. We then

examine the resulting impact on our clustering statistics.

For each luminosity threshold, we first construct a baseline fiducial volume-limited

sample as described in Section 2.2. We treat this fiducial sample as an ideal case, pretend-

ing that all of the redshifts were spectroscopically obtained. In constructing this fiducial

sample we must decide how to treat the galaxies in SDSS which lack spectroscopic red-

shifts. We choose to assign to these galaxies the redshift of their nearest neighbor. We

are thus effectively pretending that the nearest neighbor redshifts are the “correct,” spectro-
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scopic redshifts11.

Next, we construct modified samples in which we apply the nearest neighbor correction

to a fraction of galaxies in the overlap regions. We identify a galaxy as belonging to the

overlap regions if both of the following conditions are met: (i) it is within 55′′ of another

galaxy and (ii) spectroscopic redshifts were obtained for both galaxies12. To construct our

modified samples, we first identify friends-of-friends groups of galaxies, considering only

those galaxies in the overlap regions. Galaxies are linked together as part of a group if their

angular separation is less than 55′′.

We next decide whether each galaxy in the group will either keep its own spectroscopic

redshift or receive a nearest neighbor correction. We call a galaxy which is selected at this

stage to keep its own redshift a “hit” and one which is not a “non-hit.” For each collision

group, we maximize the number of galaxies which could have received spectroscopic fibers

from only one plate. If there exists more than one possible set of galaxies meeting this

condition (e.g., a group of only two galaxies), then we randomly choose one of these sets

and designate the galaxies in this set as hits. The non-hits still may or may not be assigned

their spectroscopic redshifts, as we’ll soon discuss.

We wish to investigate the impact of the nearest neighbor correction as we increase the

fraction of galaxies affected by it. We therefore only assign a nearest neighbor correction

to a fraction of the non-hits. We consider fractions of 1/4, 1/2, and 1. For fractions of 1/4

and 1/2, we randomly re-designate said fraction of non-hits as “misses.” The remaining

non-hits are then re-designated as hits. All hits keep their spectroscopic redshifts, while

the misses are assigned the redshift of their nearest neighbor (which must be selected from

among the hits). For a fraction of 1, all non-hits are designated misses. After assigning

a galaxy a new redshift, we recompute this galaxy’s k-correction using KCORRECT V4 3

11We repeated this test instead dropping the galaxies without spectroscopic redshifts, and the results did
not change.

12Strictly speaking, these galaxies might not all be in SDSS plate overlap regions. In the parent sample we
use, redshifts for some galaxies are obtained from other surveys. This distinction, however, does not matter
for purposes of the test we describe.
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(Blanton and Roweis, 2007) and absolute magnitude.

For each fraction we consider (1/4, 1/2, 1), we build 100 modified parent samples.

Each parent sample is different due to the randomness associated with choosing hits and

misses. Finally, we construct one−19 and−21 modified volume-limited sample from each

modified parent sample. These samples differ from our fiducial cases because we have

modified the redshifts and absolute magnitudes of many of the galaxies. Some galaxies

which previously made our sample cuts may be dropped in the new samples and vice versa.

We compute clustering statistics on each of these modified samples and compare the results

to the fiducial case.

In Figure 2.11, we show the results of this test for our two volume-limited samples

(−19 in blue and −21 in red) for one observable: ξ (s) on a scale of ∼ 0.4 h−1Mpc. The

x-axis is the fraction of galaxies in the total sample to which we reassign a nearest neigh-

bor redshift. For example, when we apply the nearest-neighbor correction to half of the

non-hits, this results in a modified −21 sample in which approximately 1.7% of the total

galaxies receive the correction. The y-axis is the measurement of ξ (s) on one sample di-

vided by the measurement on the fiducial sample. Each small point is the result for one of

the modified samples, while the large points are the mean taken across samples of equal

correction fraction. Errors in the mean are plotted but are smaller than the point size. We

also show the point (0,1) in which no galaxies receive the correction (i.e., the fiducial case).

We can see in Figure 2.11 that the error in ξ (s∼ 0.4 h−1Mpc) increases linearly as we

increase the fraction of galaxies affected by fiber collisions. We estimate this relationship

by fitting a line to the means, including the point (0,1) when fitting. This relationship is

shown for both samples with the solid lines in Figure 2.11. Our actual SDSS volume-

limited samples, however, contain a higher fraction of galaxies affected by fiber collisions

than we can approximate using overlap regions. When building our modified samples,

applying the nearest neighbor correction to 100 percent of the non-hits produces −19 and

−21 samples in which approximately 2.3 and 3.2 percent of galaxies receive the correction,
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Figure 2.11: The estimated error in ξ (s ∼ 0.4 h−1Mpc) due to using the nearest neighbor
correction to handle fiber collisions. The measurement ξfid is made on a fiducial SDSS
sample to which nearest neighbor corrections have been applied. We treat this sample as if
redshifts for all galaxies (including the ones which received the nearest neighbor correction)
were spectroscopically obtained. The measurement ξNN is made on a modified version
of the fiducial sample to which we additionally apply the nearest neighbor correction to
galaxies in the SDSS plate overlap regions, reassigning their redshifts. We give ξNN/ξfid
as a function of the fraction of galaxies in the overall sample to which we have reassigned
nearest neighbor redshifts. Thus, this fraction for the fiducial sample is zero. The small
points represent different realizations of which galaxies receive the correction, while the
large points give the mean for a fixed fraction. We fit a line to the means (solid line) and
extrapolate (dashed line) to estimate the error for our actual SDSS catalogs (star). Results
are shown for −19 and −21 in blue and red, respectively. We perform this same procedure
for all of our observables, for both samples. (See text for more details.)
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Figure 2.12: Comparison between the original SDSS measurements and the adjusted mea-
surements which account for the error due to using the nearest neighbor correction to handle
fiber collisions. We show results for both the -19 (top) and -21 (bottom) volume-limited
samples. Each clustering statistic is indicated on the x-axis with a color-coded label. For
each observable, the y-axis gives the difference between DNN, the unadjusted measurement
on the SDSS catalog (which employs nearest neighbor corrections), and Dadjust, the ad-
justed measurements we use in our analysis. We plot this difference in units of the cosmic
variance uncertainty, σobs. The y-axis thus can be viewed as what happens to the measure-
ment of an observable when we apply nearest neighbor corrections in lieu of having the
actual redshifts of all galaxies. The larger points mark the observables we use in our chains
on SDSS (Section 2.7.1).
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respectively. In SDSS, however, approximately 5.4 and 7.7 percent of galaxies actually

receive the correction for −19 and −21, respectively. To estimate the error for our SDSS

samples, we extrapolate the linear fit to the appropriate fraction. We show this extrapolation

with a dashed line in Figure 2.11 and mark the corresponding value of ξ/ξfid with a star.

We call this value cadjust.

Remarkably, the relationship between the error in an observable and the fraction of

galaxies affected by fiber collisions is linear for all the observables we consider. We per-

form the linear fit and extrapolation described above to obtain a value of cadjust for each

observable. This value is an estimate of the ratio of the measurement of an observable in

our SDSS sample (given the fraction of galaxies which did not receive spectroscopic fibers

and thus required the nearest neighbor correction) to the measurement we would make if

we had spectroscopic redshifts for all galaxies. Therefore, we can multiply the value of

an observable measured on the fiducial SDSS sample by 1/cadjust to obtain an adjusted

measurement.

In Figure 2.12, we show the effect that fiber collisions have on the clustering statistics

we use in our analysis. For each observable we take the difference between the measure-

ment on SDSS before adjusting the observables (DNN) and the measurement after adjusting

the observables (Dadjust). We divide this quantity by the cosmic variance uncertainty and

plot the result in Figure 2.12. Results are shown for −19 in the top panel and −21 in the

bottom. Each point corresponds to a specific observable, indicated on the x-axis. We in-

dicate the observables we use in our analysis with larger, darker points (see Sections 2.6

and 2.7). In general, the nearest neighbor correction works better for the −19 sample than

it does for −21. This may be due to the higher fraction of galaxies which received the

correction in −21 compared to −19. Although the correction does well for ngal, wp(rp),

and VPF(R), it is inadequate for the small scales of ξ (s) and several scales of n(N), σv(N),

mcf(s), and SPF(R).

The results of this test indicate that a failure to adjust the clustering statistics mea-
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sured on SDSS catalogs that use nearest neighbor corrections can result in significant errors

(∼ 1− 4 σobs) for many of our observables. Therefore, in this paper, we use the adjusted

measurements for all observables. We provide both the original nearest neighbor mea-

surements and the adjusted measurements in the machine-readable format, available online

from the publisher. We do not claim that using these adjusted measurements is a complete

solution to the issue of fiber collisions. It is simply the best solution we could establish,

given the clustering statistics we wish to use in this paper. The assumptions of this test

certainly warrant more exploration in future work, but our present goals are not to estab-

lish a complete method for dealing with fiber collisions. In any case, in Section 2.7.1 we

perform our analysis on the SDSS datasets with and without the adjustments. While there

are some shifts in the posterior results, our general conclusions about the goodness of fit of

our five-parameter HOD model do not change.

2.10.2 Accuracy of Model Observables

In this work, we expand the methodology of S18 using four additional clustering statistics:

the redshift-space correlation function ξ (s), the mean group velocity dispersion σv(N), the

mark correlation function mcf(s), and counts-in-cells PN(R). For each of these clustering

statistics, we must decide on the most accurate way to measure the model observables

(see Section 2.5). The ideal numerical measurement of the model observables is the mean

measurement across many high-resolution mock galaxy catalogs constructed from the same

HOD and differing only due to cosmic variance. Obtaining such a large suite of high-

resolution simulations and using them to explore a large number of HOD points in an

MCMC both have a prohibitively high computational cost. We instead have just two high-

resolution boxes which we use to estimate the model observables. Still, we have a choice

to measure each clustering statistic using either full boxes or mocks carved out from the

boxes. Additionally we may use just one box or both boxes. We explore this choice in this

section.

68



While using more volume results in more precisely measured model observables, these

measurements may also be more biased (i.e., further from the desired mean than the mea-

surements made on a smaller volume). Because we do not have a large number of high-

resolution simulations, we cannot use our high-resolution boxes to test how close a given

method of measurement is to the mean measurement across many mocks. The closeness

of a given box’s measurements to the desired mean measurements is driven by the cosmic

variance error of that box. While the measurements themselves are affected by resolution,

we do not expect that the cosmic variance of a box is affected by resolution. Therefore, we

can use our suite of 100 low-resolution simulation boxes (two of which have the same initial

condition seeds and thus the same large-scale density modes as our high-resolution boxes)

to determine the most appropriate method for measuring each clustering statistic. We as-

sume that the results of this test would be the same if we had a set of 100 high-resolution

boxes with the same seeds as our low-resolution boxes.

To make this choice, we first select a fiducial HOD13 and populate each of our 100

low-resolution boxes with galaxies. From these boxes we create 400 mock galaxy cata-

logs and measure each of our clustering statistics on these mocks. We use the term “true

mean” to refer to the mean measurement of an observable across these 400 mocks. We next

consider different estimations of the model observables using the two boxes for which we

have high-resolution counterparts (see Table 2.2). For all clustering statistics, we consider

(1) the mean measurement of four mocks from box 1, (2) the mean measurement of four

mocks from box 2, and (3) the mean measurement of eight mocks from both boxes. For

ngal, wp(rp), ξ (s), and PN(R), we also consider (4) the measurement on box 1, (5) the mea-

surement on box 2, and (6) the average of these two measurements. We do not consider box

measurements for n(N), σv(N), and mcf(s) because these statistics all depend on galaxy

group identification, a process which is affected by survey geometry (Berlind et al., 2006;

Campbell et al., 2015). When we measure statistics on a full box, we first distort galax-

13Here, we show results using the HOD parameters in Table 2.4. We have repeated this test using different
HOD parameters, and the results do not change.
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Figure 2.13: The accuracy of six different estimates of SPF(R) on a scale of 2 h−1Mpc for
the Consuelo boxes. The black histogram shows the distribution of measurements on 400
low-resolution mock galaxy catalogs all created with the same HOD, and the black dashed
vertical line shows the mean of this distribution. The colored points show estimates of this
mean when using fewer boxes/mocks, as is indicated in the legend. The error bar on these
points comes from the stochasticity of the process of populating dark matter halos. All
measurements are standardized using the mean and standard deviation of the 400 mocks.

ies along the z-direction using the distant-observer approximation. Once we have each of

our estimates of the model observables, we compare them to the “true mean” in order to

determine the most appropriate method of measurement.

This test is illustrated for one observable, SPF(R) on a scale of 2 h−1Mpc, for the −19

sample in Figure 2.13. The black histogram shows measurements of SPF(R) on 400 mocks,

while the vertical black line shows the “true mean.” Each measurement xobs in this plot is

standardized via the equation xstd =
xobs− xobs

σobs
, where xobs and σobs are the mean and

standard deviation of measurements across 400 mocks, respectively. The estimates using

boxes and mocks are shown with the multi-colored dots, as is indicated in the legend. Each
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Figure 2.14: The standardized error in our estimates of the model, after choosing a mea-
surement method for each clustering statistic. The top and bottom panels show the model
deviation for the −19 and −21 samples, respectively. Each clustering statistic is given a
different color, as is indicated on the horizontal axis. The error bar associated with each
point comes from the stochastic population process and reflects the precision of the model
estimate. The more opaque points are the observables we ultimately use in our analysis
(see Section 2.6.3).

time we populate a halo catalog with galaxies, the exact numbers of galaxies in each halo

and the placement of these galaxies can vary (see Section 2.4.2), resulting in a stochastic

scatter associated with each estimate of the model observables. In practice, this process is

controlled by a random number generator and is seeded with a “population seed.” To get

a handle on this scatter, we repopulate each of our two low-resolution boxes 100 times,

each time using a different population seed. We then recalculate our estimates of the model

100 times. Lastly, we standardize each of these 100 measurements by subtracting xobs and

dividing by σobs. For each type of estimate, we show the mean and standard deviation of

these 100 measurements in Figure 2.13, with vertical offset added for display purposes.
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Standardizing allows us to easily compare and interpret the accuracy of model estimates

across all of our observables. For example, we can see in Figure 2.13 that using the 4002

mocks to estimate this scale of SPF(R) results in an estimate that is∼ 1 σobs (i.e., the cosmic

variance uncertainty) lower than we desire, while using the 4022 mocks produces a much

more accurate estimate. Naively, if given the choice of averaging measurements from eight

mocks or from four mocks, we would choose to average eight mocks. However, we can

see from this plot that the 4002 mocks happen to be outliers for this particular observable.

Thus, including them as part of the eight-mock average results in a more biased model

observable than just using the four mocks from box 4022. On this standardized scale, we

will refer to the difference between an estimate and zero as the “model deviation” and the

associated scatter as the “model scatter.”

Looking at Figure 2.13, there are several good choices for how to measure this specific

scale of SPF(R). To maintain some simplicity in our methodology, however, we choose

one form of measurement per clustering statistic (not per observable). Thus, we must take

into account how a given method performs for all scales of a clustering statistic. We treat

VPF(R) and SPF(R) as one clustering statistic when making this choice. While we cer-

tainly desire precise estimates of the model observables (small model scatter), our priority

is to choose estimates that are accurate (small model deviation) across all scales. We make

this choice simply by visually comparing the different methods as opposed to establishing

any sort of comparison metric. We summarize the ultimate choices we make for how to

measure each clustering statistic in Table 2.3 (see Section 2.5 for a description).

In Figure 2.14 for each observable we show the model deviation, given our choice of

how to measure said observable. We show results for the −19 sample in the top panel and

for the −21 sample in the bottom. The different clustering statistics are assigned different

colors as indicated by the label on the x-axis. Each point represents a clustering statistic

measured at a different scale, ordered in increasing physical size. The more opaque points

represent the observable we use in our analysis. For example, the dark green points in both

72



panels show the different scales of n(N). For the −19 sample we can see that the smallest

scale has a model deviation of about -0.25 σobs. Thus, we expect our estimate of the model

observable to be about 0.25 σobs lower than it should be on average. The scatter14 in this

estimate is about 0.2 σobs, meaning that our estimate of this model observable is between

0.05 and 0.45 σobs lower than it should be for 68% of the HOD points we evaluate in our

MCMC. We display the observables we use in our final SDSS analysis (Section 2.7.1) in

bold.

While we could cull observables by establishing thresholds for model deviation and

scatter, we do not know what impact these errors have when they are included in a chain.

Establishing any sort of cutoff then seems rather arbitrary, especially when considering

that the model deviation is generally small (. 0.5 σobs for almost every observable). We

are content to quantify this error and choose methods of measurement that minimize its

effects. In any case, in Appendix 2.10.4 we show that we are able to recover the correct

HOD when running a chain on a mock galaxy catalog using the same observables we use

in our SDSS analysis (Section 2.7.1). This result suggests that the model deviations shown

in Figure 2.14 do not significantly affect the locations of our posterior results.

2.10.3 Errors in Covariance Matrix

While using two high resolution boxes is sufficient for estimating the model observables,

the covariance matrix requires many mock galaxy catalogs. Approximate methods, such as

jackknifing and bootstrapping, have been shown to produce biased results (Norberg et al.,

2009). We follow the approach of S18 in using many low-resolution mock galaxy catalogs

to create a covariance matrix. While we have made efforts to improve the covariance

matrices we use compared to S18 (see Section 2.5), our covariance matrices have four

identifiable sources of error:
14As we discuss in Section 2.5, for a given HOD point, we repeat the population process four times (each

time using a different population seed) and average the measurements across these populations. This process
produces a scatter that is only half as large as what is shown in Figure 2.14 for all observables.
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1. The limited number of mocks.

2. The stochastic variation due to population seed.

3. The use of a fixed fiducial HOD.

4. The resolution of the simulations.

We discuss the relative importance of the first three of these points in Appendix 2.10.3.1

and the last in Appendix 2.10.3.2. We examine the noise only in the cosmic variance

uncertainty σobs of each observable, ignoring off-diagonal elements of the matrix.

2.10.3.1 Comparing relative errors

Assuming Gaussian errors, for a sample of size N and true standard deviation σ , the error

in a calculation of the sample standard deviation is σ/
√

2N. For N = 400 mocks, this gives

a fractional error of ∼0.035. We have verified that the distribution of mock measurements

for all observables we consider is roughly Gaussian and so this fractional error holds for all

values of σobs.

The elements of our covariance matrix have an additional error due to the stochastic

process of populating dark matter halos, which is controlled by the “population seed.”

Using a different population seed will produce a different matrix. To quantify this error,

using our fiducial HOD we remake our 400 mocks 100 different times with 100 different

population seeds. This gives us 100 estimates of σobs. For a particular observable, the

fractional error in σobs is given by

δ (σobs) =

√√√√ 1
100

100

∑
i=1

(σobs,i−σobs)2

/
σobs, (2.8)

where σobs,i is the ith estimate of the standard deviation of this observable and σobs is the

average of 100 estimates of the standard deviation of this observable.

Lastly, there is an error stemming from our decision to not vary the matrix when we

consider new HOD parameters in our chain. Ideally, each time we evaluate a new set of
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HOD parameters, we would reconstruct the covariance matrix from 400 mocks built using

those HOD parameters. Because building and measuring clustering statistics on 400 mocks

for the ∼500,000 HOD points we evaluate in a chain is computationally infeasible, we

instead keep our covariance matrix fixed. To investigate the error we are making in using

a fixed matrix, we calculate the fractional error δ (σobs) again. This time, however, instead

of varying the population seed while keeping HOD fixed, we build 100 different matrices,

each with a different HOD. To choose the 100 HODs, we randomly sample points from

our OPT chains (see Section 2.7.1). A broader range of HODs would likely give us a

broader error, but we only care about this error insofar as it affects our results. Thus we

only consider the range of HODs explored in our analysis.

In Figure 2.15, we show these three contributions to the fractional error in σobs. The

format of this figure is similar to Figure 2.14, with clustering statistics assigned different

colors and each bar representing a different scale, ordered in increasing physical size. The

height of the open bar gives the fractional error in σobs due to not varying HOD, while

the filled bar gives the error due to the stochastic population process. The Poisson noise

associated with the number of mocks we use is the same for all observables and is indicated

with the horizontal dashed line. The clustering statistics we use in our SDSS analysis

(Section 2.7.1) are indicated with greater opacity in the shaded bars.

The fractional errors in σobs are all smaller than 10% for both samples. For most ob-

servables, the dominant contribution to the noise is the number of mocks we use when

constructing the matrix. A few scales of observables (e.g., small scales of wp(rp)) show an

exception to this trend, with the dominant error being due to not varying HOD. For many

observables (e.g., mcf(s)), there appears to be an “equal” contribution from all sources of

noise. It is worth noting that the HOD error effectively contains the stochastic population

error because we choose to supply unique population seeds for each HOD15. Therefore, in

15The way our population process works, even if we supply the same seed, different HODs require the
generation of different amounts of random numbers, which affects the random number sequencing. Thus, we
simply choose to supply different random numbers.
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Figure 2.15: The fractional error in the cosmic variance uncertainty due to various pro-
cesses. The horizontal line gives the shot noise due to using only 400 mocks to construct
the matrix. The height of the hollow vertical bars shows the error from reconstructing
the matrix from 100 different HODs, while the height of the filled vertical bars shows the
error from varying the “population seed” (i.e., the seed which controls the numbers of cen-
trals/satellites assigned to each halo) 100 times. The clustering statistics are colored and
ordered in the same way as in Figure 2.14. The more opaque bars show the observables we
actually use in our analysis. For both samples shot noise is the dominant source of error for
most observables, though the error from not varying HOD is dominant for many scales.
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instances where these two errors appear equal, the stochastic population error may in fact

be dominant.

2.10.3.2 Resolution effects

An assumption in our modeling procedure is that our covariance matrix is not significantly

affected by resolution. In other words, we assume that, if we were to build the same covari-

ance matrix using 400 high resolution mocks, the differences in matrices would be small.

We cannot accurately test this assumption without actually having the 100 high-resolution

boxes, which would negate the need to test the assumption. However, what we do have is

a matching set of two low-resolution and high-resolution boxes. These boxes are identical

in their density fields and only differ in resolution. We can therefore use these boxes to test

the impact of resolution on our matrix.

To test the effect of resolution, we first divide each box into 27 equal-volume sub-

boxes. In the cases of both samples, the volume of each of these sub-boxes is about half

the volume of SDSS. With two seeds, this gives us 54 low-resolution and 54 matching

high-resolution sub-boxes. Using a fiducial HOD (Table 2.4), we populate each of these

sub-boxes with galaxies and measure clustering statistics. For each observable, we compute

a high-resolution standard deviation (σHD) and a low-resolution standard deviation (σLR)

across the 54 sub-boxes.

As discussed in Appendix 2.10.2, the process of populating dark matter halos is stochas-

tic and is controlled by a “population seed.” This stochasticity introduces noise into any

single calculation of the quantity σLR/σHD. Therefore, we repeat the population process

of both low-resolution and high-resolution sub-boxes with 100 different population seeds.

We measure clustering statistics for each of these 100 sets of 54 sub-boxes and get 100

measurements of σLR and σHD for each observable. We then average to eliminate noise

due to this stochasticity.

In Figure 2.16, we show the results of this test for both−19 (top) and−21 (bottom). As
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Figure 2.16: The error in the cosmic variance uncertainty due to resolution. For each
observable we calculate the standard deviation across 54 matched high (“HD”) and low
(“LR”) resolution “sub-boxes.” This process is repeated 100 times while varying the “pop-
ulation seed” to create a distribution for high and low resolution values of σ . We show here
the ratio of means of these distributions. Error bars (barely visible) show the propagation
of the errors in the mean of these two distributions.
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in previous figures, different clustering statistics are assigned different colors as indicated

by the labels on the x-axis. Each point represents a clustering statistic measured at a differ-

ent scale, ordered in increasing physical size. For each observable we plot the mean of the

100 values of σLR divided by the mean of the 100 values of σHD. We henceforth refer to

this ratio as the “resolution error.” The error bar (barely visible) associated with each point

is found via propagation of the errors in the means of the two distributions. The optimal

observables we use in our analysis (Section 2.7) are indicated with greater opacity.

For the −19 sample, all observables have a resolution error smaller than 6%. For the

−21 sample, the resolution errors are larger, but most errors are still less than 10%. The

observables most affected by resolution are the small scales of wp(rp) and ξ (s) in the −21

sample, which show a 10−20% error. The larger resolution error in the−21 sample is due

to the fact that halos of mass Mmin (1012.72 h−1M�) in Carmen have fewer particles than

halos of mass Mmin (1011.54 h−1M�) in Consuelo. Furthermore, the larger value of σlogM

in Carmen leads us to place galaxies in even lower mass halos that are even less resolved.

While the resolution error appears in general to be more significant than the errors discussed

in Appendix 2.10.3.1, we emphasize that overall these errors are quite small and likely have

very little impact on our analysis.

Given this result, we do not make any attempts to correct for the resolution error. We are

in general against adding complexity to our modeling procedure unless it seems necessary

and well-motivated. Ultimately our covariance matrix is built from mocks which have a

different volume and geometry than the sub-boxes we use to test resolution. We are not

confident that, given these differences, the results of this test would be the same in the case

of SDSS-like mocks. Additionally, larger cosmic variance uncertainties result in lower χ2

measurements and in general make it more difficult to rule out incorrect models. If, as this

tests suggests, we are using larger cosmic variance uncertainties, then the results of our

MCMC will allow a greater space of HOD parameters. We are content to have artificially

broad constraints, as opposed to making a correction that might result in artificially tight
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constraints.

Ultimately, we are concerned with what impact the resolution errors will have on the

results of our chains. In Appendix 2.10.4 we show that we are able to recover the correct

HOD when running a chain on a mock galaxy catalog using the same observables we use

in our SDSS analysis (Section 2.7.1). This result suggests that the errors in the matrix due

to resolution and the processes discussed in Appendix 2.10.3.1 do not have a detectable

impact on the locations of our posterior results.

2.10.4 Mock chains

After choosing the set of observables for our SDSS chains, we also used the process of im-

portance sampling to conclude that we could reasonably recover the true HOD parameters

when running a chain on a mock galaxy catalog (see end of Section 2.6.3). Still, because all

importance-sampled chains contain some noise, we desire a more robust test of the ability

of a chain run using our chosen set of observables to recover the true HOD parameters.

In this section we explicitly test whether we can recover the true HOD parameters when

running a chain on a mock galaxy catalog. We also investigate the effect that changing the

HOD used to build our fiducial covariance matrix has on our posterior results.

To perform this test, we run an MCMC on a mock galaxy catalog using the same set of

observables we use in our SDSS OPT chains. We construct both−19 and−21 mock galaxy

catalogs from the best-fit HOD values of the SDSS OPT chains16. We use these HODs (Fid

2 in Table 2.8) so that our mock has clustering similar to that of SDSS. When running this

MCMC, we use the same covariance matrices we used in our SDSS OPT chains (Fid 1 in

Table 2.8). These choices are made so as to best replicate the OPT chains of Section 2.7.1

but in the case where we know the true HOD parameters.

In Figure 2.17 we show the results of this test with the green contours (labeled Fid 1 in

reference to the matrix). This figure has the exact same general formatting as Figures 2.7

16For this test, we use the best-fit points from the chains run using unadjusted SDSS observables (see
Appendix 2.10.1).
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Table 2.8: For each sample, we run two chains on a mock galaxy catalog generated using
the HOD parameters given by Fid 2. In one of these chains, we construct our covariance
matrix using Fid 1, and in the other we construct our matrix using Fid 2.

Name Mlim
r logMmin σlogM logM0 logM1 α

Fid 1 −19 11.54 0.22 12.01 12.74 0.92
−21 12.72 0.46 7.87 13.95 1.17

Fid 2 −19 11.44 0.09 11.91 12.66 0.93
−21 12.79 0.58 7.03 13.92 1.14

and 2.10. The cross-hairs indicate the true HOD of the mock galaxy catalog. We can see

that, for both -19 and -21, the true HOD lies inside the joint 68% probability region for both

central and satellite parameters. Where exactly the truth should lie is heavily dependent on

the cosmic variance of the mock galaxy catalog. Thus, an offset of the middle of the

contours from the truth, such as we observe here, is completely within reason. Therefore,

we conclude that when using our set of optimal observables, we are able to recover the true

HOD parameters.

In Section 2.7.1, we noted that the HOD used to construct the fiducial covariance matrix

was far from the location of our posterior constraints. To investigate what impact this has,

we also run (for both −19 and −21 mocks) a second chain in which we use a covariance

matrix constructed from the same HOD as the mock galaxy catalog (Fid 2). These results

are shown in Figure 2.17 with the purple contours (labeled Fid 2). When comparing chains

run on the same mock but with different matrices (i.e., purple and green contours), there are

very minor differences in the posterior results. Critically, the shifts seen for all parameters

are not enough to affect the recovery of the true HOD parameters. We considered per-

forming an iterative procedure in which we would reconstruct the covariance matrix from

the best-fit HOD parameters from the OPT chain and then rerun the OPT chain using this

matrix. In light of these results, we conclude that this iterative procedure is unnecessary

and that our choice of fiducial HOD has little impact overall on our posterior results.

Additionally, we check whether our model is able to fit the clustering of the mocks and

find that this is indeed the case. In all of these chains, the p-value of the best-fit HOD point
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Figure 2.17: Similar to Fig. 2.7, except that these chains are run on mock galaxy catalogs
instead of the SDSS. The left and right panels show results for the −19 and −21 mocks,
respectively. Both the green contours and the purple contours come from chains run on the
same mock galaxy catalog using the same observables as in our OPT SDSS chains. For the
“Fid 1” chain (green), the HOD used to make the covariance matrix is not the same HOD
used to generate the mock. For “Fid 2” (purple), the matrix and mock are made using the
same HOD. The cross-hairs mark the true HOD parameters of the mock galaxy catalog.
We are able to recover the true HOD when using our OPT observables, and the difference
in covariance matrix has little impact on the results. The HOD parameters for sets Fid 1
and Fid 2 are given in Table 2.8.
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is between 0.74 and 0.94. Compare this with the SDSS OPT results, where the p-values

of the best-fit point indicate that our model is unable to jointly fit the clustering of SDSS.

These results suggest that the tension we find in Section 2.7 is real and not an artifact of

our modeling procedure.
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CHAPTER 3

Extra Considerations

In the previous chapter, I presented a procedure for constraining a simple five-parameter

HOD model when applied to SDSS galaxies. This work included extensive exploration

and minimization of the stochastic and systematic errors present in the modeling proce-

dure. The results presented in the previous section highlight the most important results

found during this work, results which are published in The Astrophysical Journal (Szew-

ciw et al., 2022). However, the exploration and tuning of our model extended far beyond

what has been highlighted so far. Therefore, in this chapter, I present both generalizations

of tests performed in Chapter 2 and new tests which were not included in Szewciw et al.

(2022). In Section 3.1, I present a generalization of the fiber collision tests performed in

Appendix 2.10.1. In Section 3.2, I present a generalization of the tests of model observ-

ables performed in Appendix 2.10.2. In Section 3.3, I explore the effect of stochastic noise

in our modeling procedure. In Section 3.4, I explicitly explore the effect that the error in

our model observables has on our MCMC results. Finally, in Section 3.5, I provide some

concluding remarks.

3.1 Fiber Collisions Revisited

In Section 2.4.3 and Appendix 2.10.1, we discuss our treatment of fiber collisions in SDSS.

In short, instead of attempting to incorporate fiber collisions in our modeling procedure,

we estimate the error in our SDSS measurements due to only using the nearest neighbor

correction (henceforth, the “NN error”). We then adjust the values of our SDSS observables

to account for the NN error. This procedure assumes a linear relationship between the NN

error in an observable and the fraction of galaxies requiring the NN correction. While we

show this linear relationship in Figure 2.11 for one observable, in this section we show that

it holds for all observables.
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Figure 3.1: Estimated errors from using only the nearest neighbor correction to handle fiber
collisions for each observable we consider for the -21 sample. Each panel gives the result
for a different observable indicated in the top of the panel, and observables of the same
clustering statistic are shown with the same color. The format of this figure is the exact
same as Figure 2.11.
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Figure 3.2: Same as Figure 3.1 but for the -19 sample
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In Figures 3.1 and 3.2, we show the NN errors for all observables for the -21 and -

19 samples, respectively. Each panel gives results for a different observable as labeled in

the top left of each panel. Observables of the same clustering statistic are assigned the

same color. These panels have the same exact format as Figure 2.11, and we refer readers

to that figure for a more complete description. Briefly, the solid points give the average

estimated NN error as we vary the fraction of galaxies in the volume-limited sample which

did not have spectroscopic redshifts and thus required the the NN correction. This average

is taken across 100 realizations in which, for a given fraction, we vary which specific

galaxies require the NN correction. Each realization is shown with a smaller, transparent

point (often barely visible due to small scatter). We obtain these estimates using the SDSS

plate overlap regions as described in Appendix 2.10.1. The solid line is a linear fit to the

averages, which we extrapolate (colored dashed line) to obtain a NN error for SDSS, given

the fraction of NN-corrected SDSS galaxies in each volume-limited sample.

For almost every single observable, the relationship between the mean NN error and

the NN fraction is highly linear, supporting our extrapolation and method of adjusting the

SDSS measurements. There are some cases (e.g., large scales of n(N) for -19) where the

linear fit does not look appropriate, but these cases are quite rare. Particularly in cases

where the adjustment is large relative to cosmic variance (e.g., small scales of ξ (s)), the

trend is remarkably linear. Overall, our treatment of fiber collisions is a well-motivated

solution to a very difficult problem plaguing all studies of this kind.

3.2 Measuring Model Observables

In Section 2.5 and Appendix 2.10.2, we discuss our method for measuring the model ob-

servables. We provide an example of how we make this choice in Figure 2.13, a fuller

characterization of the errors in Figure 2.14, and a summary of our choices in Table 2.3. In

this section, we provide a more explicit comparison of the different methods for measuring

the model observables and discuss the rationale for our choices.
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Figure 3.3: In the top left panel, the black histogram shows measurements of ngal from 400
low resolution mocks, populated with the same HOD, while the vertical dashed line shows
the mean, and the shaded region marks the cosmic variance uncertainty, σobs. Each of the
six points shows a different estimate of the mean, using fewer boxes or mocks, as described
in Appendix 2.10.2. The quality of each method can be described by the model deviation,
defined in Appendix 2.10.2. The remaining panels show the model deviation as a function
of physical scale, for each clustering statistic. The shaded region shows the uncertainty due
to stochastic population, or the “model scatter” (see text and Appendix 2.10.2)

.
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Figure 3.4: Same as Figure 3.3 but for the -21 sample.
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In Figures 3.3 and 3.4, for the -19 and -21 samples, respectively, we show the model

deviation for the different possible methods of measuring each clustering statistic. We

define and discuss “model deviation” in Appendix 2.10.2. Briefly, we are comparing the

measurement we make using a specific method to the ideal measurement we would make if

we had many high-resolution SDSS-like mocks, with zero deviation representing the ideal

measurement.

In the upper left panel, we show the results for ngal in a slightly different format that may

help elucidate what model deviation entails. The black histogram gives ngal measurements

on 400 low-resolution mocks all populated using the same HOD parameters. The dashed

vertical line gives the mean, while the shaded region shows the cosmic variance uncertainty,

σobs. Each of the six different points gives an estimate of this model observable (ngal) that

we can make using the low-resolution counterparts to our high-resolution boxes. These

methods are indicated in the legend and described more fully in Appendix 2.10.2. We

wish for this measurement to be close to the mean of 400 mocks. The model deviation is

the difference between the estimate and the mean divided by σobs (half of the full shaded

region).

The solid, dashed, and dotted lines in the remaining seven panels all show the model

deviation for every observable we use. The clustering statistic is indicated in the upper left

of the panel, while each bin is indicated on the x-axis. Note that, for n(N), σv(N), and

mcf(s), we do not consider measurements on the box, as discussed in Appendix 2.10.2.

The y-axis gives the model deviation in units of σobs, the cosmic variance uncertainty. The

shading around each line shows how much each estimate can vary (one standard deviation)

due to the stochastic process of populating halos. We call this the “model scatter,” and

discuss it in more detail in Appendix 2.10.2.

When choosing a method, we prioritize having low model deviation over low model

scatter. Essentially, we prefer an unbiased estimate with large stochastic noise over a bi-

ased, low-noise measurement. If two choices have similar model deviation, then we choose
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the method with low scatter. Additionally, we wish to only have one method of measure-

ment per clustering statistic. This is mainly to limit the complexity of the code, as having

different methods for different scales of the same clustering statistic is quite complex. Due

to this limitation in particular, we do not always choose the “best” method for a given scale.

An example of this can be seen with σv(N) for the -19 sample, when comparing the “M-22”

and the “M-02, M-22” methods. The former seems to perform better for the smaller scales,

while the latter performs better at (most) of the larger scales. In this case we opt for the

“M-02, M-22” option, partly because of the lower model scatter.

While we could have established a metric to aid us in this choice, no single metric we

considered perfectly identifies the best method from among the choices. Thus, we ulti-

mately choose each method based on visual inspection of Figures 3.3 and 3.4, with the

considerations described in the previous paragraph. The summary of our choices is pro-

vided in Table 2.3 and the associated model deviations are in Figure 2.14. In the following

two sections, we examine the impact that the model scatter and model deviation have on

our results.

3.3 Reducing Stochastic Noise in the Model

In Section 2.5, we mention that when calculating the model observables, we average mea-

surements across four different “population seeds.” In this section, we provide justification

for this choice as well as a discussion of its impact on our results.

From Figures 3.3 and 3.4, we can see that, when making a measurement of the model

observables, there is a certain amount scatter associated with this measurement due to the

stochastic process of populating dark matter halos. This scatter can have an important ef-

fect when running an MCMC. The ability of a measurement to constrain HOD parameters

depends on the response in the value of the measurement to small changes in a parameter

value. Observables which vary greatly with respect to changes in a parameter value will

generally have greater constraining power. However, due the stochastic population pro-
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Figure 3.5: Investigating the impact of our stochastic population process on our largest
bin of n(N) for the -19 sample. While keeping other HOD parameters fixed, we vary
the value of logM1 along a line around the median HOD parameters of our chain (see
Table 2.6). The maroon, dotted line gives the value of this bin of n(N) we calculate if
we populate our boxes only once. The cyan straight line is a linear fit to the maroon line
and represents an approximation of the “ideal” measurement. The cyan shaded region
shows the cosmic variance uncertainty about this fit line. The red, solid line gives the
value n(N) if we populate dark matter halos four times (using different random seeds)
and average the results. This reduces the noise by a factor of two, providing a more precise
measurement compared to the single population case. In our MCMCs, we average statistics
over four populations, leading to a higher acceptance fraction and thus a better sampling of
the posterior contours.

cess, slight changes in an HOD parameter can result in a noisy response for a particular

observable.

We illustrate this in Figure 3.5, where we show the response of a bin of n(N) to changes

in a single HOD parameter, logM1, for the -19 sample. Keeping all other HOD parame-

ters fixed, we vary logM1 across the range shown in this figure. This range represents

∼ 2σ(logM1) (i.e., the marginalized constraint) on either side of the median value of logM1

from our OPT chains (Table 2.6). For each set of HOD parameters, the dotted maroon line

gives the value of n(N = 53−85), the largest bin we consider, when calculated according
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to the prescription we use in our modeling procedure (see Table 2.3). For this line, we

populate the dark matter halos in our simulations once, with a single random number gen-

erator seed controlling the population. For small changes in HOD parameters, the random

numbers associated with how many galaxies are assigned to each specific halo and with

where each galaxy is placed in said halo (in the case of satellites) are different, causing the

scatter seen in this line.

To better characterize the noise present here, we show with the cyan line a linear fit to

the maroon line. This fit line approximates the trend in n(N = 53−85) if we average over

the stochastic population process. The cyan shaded region shows the cosmic variance un-

certainty, σobs, centered on the fit line. While we expect variation in this model observable

from Figure 2.14, what becomes clear in this figure is that, when considering the range of

HOD points we explore in our OPT chain, the true physical variation in n(N = 53− 85)

can be significantly masked by the stochastic noise.

Though not shown, the issue discussed here holds for many of the observables we use

in our analysis, creating noise which propagates into the likelihood function and affects our

posterior results. In an MCMC, when sampling HOD points from the posterior distribution,

a walker at a given HOD point moves to a new proposed HOD point with a probability

based on the relative likelihoods of the two points (see Section 2.5 for more details). If a

walker moves to the proposed HOD point, then this step is “accepted.” Any noise present in

the calculation of the likelihood can thus affect this posterior sampling. One way to evaluate

whether the posterior distribution is being properly sampled is to calculate the acceptance

fraction, which, as it sounds, is simply the fraction of proposed steps which are accepted.

If the posterior distribution is being properly sampled, as a rule of thumb, the acceptance

fraction should be ∼ 20− 50% (Foreman-Mackey et al., 2013). When running our OPT

chains with a single population seed, however, the acceptance fraction is only ∼ 4− 7%.

We believe this low acceptance is caused by walkers settling on HOD points which have

artificially higher likelihoods than neighboring HOD points due to stochastic noise. As a
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result, the probability of moving away from these spurious high-likelihood points is lower

than it would be were the noise not present.

A straightforward way to reduce the model scatter would be, for each HOD point, to

populate our dark matter halos many times, compute clustering statistics, and average over

the stochasticity. In a chain, performing N populations increases the computational time by

a factor of N. To keep each chain at a reasonable computational cost, we decide to average

the value of each model observable across four populations. This reduces the model scatter

in every observable by a factor of 1/2. We show this in Figure 3.5 with the solid red line,

where values of n(N) are averaged over four populations.

Implementing this change in our chains increases the acceptance fraction from ∼ 4−

7% to ∼ 21− 28%, in line with the guidelines of EMCEE. Notably, the locations of the

posterior contours and the marginalized constraints are essentially unchanged, which makes

sense given the stochastic nature of the scatter. Where averaging over four populations does

have an impact, however, is in the p-value of the best-fit HOD point. We find that averaging

over four populations increases the tension by 0.5− 1σ , which, in principle, could affect

conclusions about the validity of the ΛCDM + HOD model1. This result supports our

previously stated hypothesis that walkers settle into HOD points that have artificially high

likelihoods due to stochastic noise.

Ultimately, we have not succeeded in eliminating the stochastic noise in our modeling

procedure but have reduced it considerably to a level where the acceptance fraction of our

chains suggests proper sampling of the posteriors. This reduction, however, does come at

the expense of increased computational cost. As a final note, we acknowledge that, given

that we are averaging over four population seeds, we are effectively populating eight boxes.

If we were to actually populate eight boxes, each of which differs due to cosmic variance,

we could not only reduce the model scatter but also the model deviation (discussed in the

previous section). Doing so would require a re-evaluation of the best way to measure the

1In our case, the model is strongly ruled out even before this increase in tension.
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model observables for each clustering statistic but could even further improve the accuracy

of this procedure. Nonetheless, the model deviation we have measured has little impact on

our results, a point we discuss in the next section.

3.4 Model Deviation in an MCMC

As described in Section 3.2 and elsewhere in this dissertation, we choose a method for

measuring our model observables that minimizes the “model deviation,” (i.e., the error in

the model observables). In Figure 2.14, we show the model deviation for every observable

we explore in this dissertation. In our chains, however, we do not attempt to correct for this

error in any way. In this section, we explore what impact the model deviation has on our

results.

The model deviation can be viewed as a biased error in the model observables. This

error exists for all HOD points we explore in our chains. To correct for this error, we

subtract from each model observable of all HOD points in our chain the quantity MD ·σobs,

where MD is the model deviation for a given observable and σobs is the cosmic variance

uncertainty of that observable. This effectively removes the model deviation, yielding an

estimate of a given model observable that is closer to the “ideal measurement,” the mean of

400 mocks, than the estimate we use in our chains. We then recalculate likelihoods for each

point in our OPT chain using these corrected model observables, while keeping everything

else (e.g., matrix, data, optimal observables) the same. After doing so, we importance

sample the chain as described in Section 2.6 to get new results that represent our estimate

of a chain run with no model deviation in the model observables.

We show the results of this test in Figure 3.6. The format of this figure is the same

as Figure 2.7, so we refer the reader there for a full description. Our original OPT results

are shown with the red contours, while the new importance sampled results are shown in

blue (labeled “Model Dev.”). It is abundantly clear that attempting to correct for the model

deviation has essentially no impact on the posterior results presented in Chapter 2.
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Figure 3.6: Examining the impact of the error in our model observables on our MCMC
results. The red contours show our main results from our OPT chains. The blue contours
(Model Dev.) show our estimate of the results if we were to correct model observables for
the model deviation, i.e., the error in our estimate of the model observables. We obtain this
estimate via importance sampling the OPT chain, as described in the text. As can be seen,
the error in our model observables has effectively no impact on our results. (Note: This
figure has the same format as Figure 2.7. See that figure caption for more details.)
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Additionally, we examine what impact the model deviation has on our best-fit p-value

and on our conclusion that our model does not fit the observational data. In the “Model

Dev.” chains, while the HOD parameters of the best-fit points do change slightly compared

to the OPT chains, the overall goodness of fit is effectively unchanged. As in our main anal-

ysis, for both samples the tension is > 4σ . Thus, the results of Section 2.7 and conclusions

in Section 2.8 are unaffected by the model deviation.

3.5 Summary

In this chapter, I have presented work that serves as an extension to the results in Chap-

ter 2. The first two sections serve as generalizations of the tests performed in Chapter 2,

while the latter two are new tests, not explicitly shown in that chapter. While the material

presented in this chapter was not included in the published version of the work in Chap-

ter 2, it nonetheless contains important results that offer further support for the mock-based

numerical modeling methodology we have developed and applied in this dissertation.
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CHAPTER 4

Summary and Future Work

In this final chapter, I provide a high level summary of the work presented in this disserta-

tion, followed by a discussion of potential future projects that serve as a logical extension

to the procedure we have developed.

4.1 Summary

In this dissertation, I have presented work which seeks to better understand the galaxy-

halo connection through analysis of small-scale galaxy clustering. More specifically, I

use a combination of clustering statistics measured on various physical scales to constrain

a particular parameterization, the halo occupation distribution (HOD), of the galaxy-halo

connection. By employing a numerical mock-based modeling methodology, we are able

to include clustering statistics which are less common in studies of galaxy clustering. We

are also able to characterize and minimize the errors present in the established procedure,

pushing modeling of small-scale galaxy clustering further into the accurate regime, where

our assumed cosmological model can be tested against observational data. We choose a

set of “optimal” observables based on estimates of their joint constraining power and apply

them to constrain the HOD when fit to two different volume-limited SDSS samples. Using

this optimal set, we are able to achieve tighter constraints on all HOD parameters for both

samples when compared to similar studies (e.g., Sinha et al., 2018; Guo et al., 2015a;

Zehavi et al., 2011). Ultimately, we find significant tension between our best-fit HOD

model and both SDSS volume-limited samples we consider.
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4.2 Future Work

4.2.1 Expanding the HOD

The failure of our five-parameter HOD model to fit the clustering of SDSS suggests a

need for a more flexible HOD model. The HOD model can be afforded more flexibility

by adding free parameters which relax a few of the physical assumptions. As discussed

in Section 2.8 and elsewhere in this dissertation, commonly explored extensions to the

standard HOD include secondary bias (halo occupation is not determined only by halo

mass), spatial/velocity bias (galaxies are not simple tracers of the dark matter), and non-

Poisson satellite occupation.

The most immediate extension to the work presented in this dissertation is to apply our

modeling methodology to an expanded HOD model which includes these additional fea-

tures. This would further our understanding of the galaxy-halo connection and allow us to

more properly marginalize over galaxy physics when testing the ΛCDM + HOD against

observational data. In fact, secondary bias has already been integrated into our modeling

procedure and is being explored in Beltz-Mohrmann et al. (2022, in preparation). Prelim-

inary results indicate some relief of the tension we found in Chapter 2, but the remaining

tension suggests a need for even more freedom in the HOD.

4.2.2 Cosmological Parameter Exploration

A more ambitious extension of this project would be to vary both the HOD parameters and

our cosmological parameters simultaneously in an MCMC. In this work, we keep our cos-

mological parameters fixed at the Planck best-fit values while exploring HOD space. Some

of the tension that we find may not necessarily be due to an incorrect form of the HOD but

rather to this “fixed cosmology” assumption. Varying the HOD plus cosmology in a chain,

however, is an extreme computational challenge. Ideally, for each point in a chain, we

would run new cosmological simulations before applying our modeling procedure. Doing

so is prohibitively computationally expensive, and thus exploring cosmology in an MCMC
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requires an alternative approach.

One option that in principle could be combined with our modeling methodology is to

modify the output of a simulation run with one set of cosmological parameters to mimic

that of a simulation run with a different set of parameters (Angulo and White, 2010; Contr-

eras et al., 2020). To combine such a procedure with our modeling methodology, we could

set up a grid of already run cosmological simulations that could be modified to accurately

reproduce the output of a simulation run with any cosmological parameters we wish to

explore in an MCMC. More specifically, we would need to be able to accurately repro-

duce clustering statistics for any ΛCDM + HOD point explored in the MCMC. While this

type of study is a remarkable computational and statistical challenge, this is ultimately a

research direction worth pursuing, one which could yield cosmological constraints that are

independent from those on larger scales.

4.2.3 Future Redshift Surveys

The main challenge of modeling small-scale galaxy clustering is maintaining the level of

accuracy required by the ever-improving measurements obtained from galaxy redshift sur-

veys. The upcoming Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration

et al., 2016; Levi et al., 2019) will provide redshift measurements for ∼ 20 times as many

galaxies as SDSS, yielding even more precise measurements of galaxy clustering. In this

dissertation, we have provided results of extensive tests designed to ensure that our model

is as accurate as possible. For future works which attempt to constrain the galaxy-halo con-

nection when fitting to DESI, these sorts of tests will become even more critical in order to

maintain a sufficiently accurate modeling procedure.
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N., Popa, L., Poutanen, T., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. L., Rachen,
J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi,
S., Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rowan-Robinson, M.,
Rubiño-Martı́n, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G.,
Scott, D., Seiffert, M. D., Shellard, E. P. S., Spencer, L. D., Starck, J. L., Stolyarov, V.,
Stompor, R., Sudiwala, R., Sunyaev, R., Sureau, F., Sutton, D., Suur-Uski, A. S., Sygnet,
J. F., Tauber, J. A., Tavagnacco, D., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M.,
Tucci, M., Tuovinen, J., Türler, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent,
B., Vielva, P., Villa, F., Vittorio, N., Wade, L. A., Wandelt, B. D., Wehus, I. K., White,
M., White, S. D. M., Wilkinson, A., Yvon, D., Zacchei, A., and Zonca, A. (2014). Planck
2013 results. XVI. Cosmological parameters. A&A, 571:A16.

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi,
C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Ben-
abed, K., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J.,
Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Car-
doso, J. F., Carron, J., Challinor, A., Chiang, H. C., Chluba, J., Colombo, L. P. L., Com-
bet, C., Contreras, D., Crill, B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille,
J., Delouis, J. M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A.,
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