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CHAPTER 1

Introduction

1.1 Overview

In analyzing a dynamic multi-physics system, both the computational effort and the accuracy of

the system model in predicting the system response present challenges. The challenges become even

greater in the case of nonlinear behavior, in systems as different as gas turbine engines and additive

manufacturing processes, where the output (system response or product properties, respectively) is

governed by a coupled multidisciplinary system of equations (fluid mechanics, heat transfer, and

structural mechanics), and whose analysis requires great computational effort. Directly measuring

the true response of a complex engineering system for many input realizations by conducting exper-

iments is not affordable, thus computational models are used to analyze the system of interest for

a variety of input realizations. However, the computational model is often an incomplete represen-

tation of the complex physical system, thus the system response prediction is affected by multiple

heterogeneous sources of uncertainty. Therefore it is important to quantify the uncertainty in the

predictions from computational models.

Uncertainty quantification (UQ) can be categorized into two problems; the forward problem

and the inverse problem. In the forward problem, the uncertainty regarding the model inputs,

model parameters, and model errors is propagated and aggregated to compute the uncertainty in

the output. Whereas, in the inverse problem, model calibration is performed using the available

set of measurements. Both of these problems typically require a large number of model runs.

Furthermore, in a complex system the quantity of interest (QoI) is often a multivariate output

that is a field quantity (exhibits spatial dependence) and/or a stochastic process (exhibits temporal

dependence), which makes it challenging to map the set of model inputs to the output. Therefore,

an inexpensive surrogate of the original physics model becomes necessary to perform the forward

and inverse analyses. The inexpensive surrogate model also helps to carry out other analyses such

as probabilistic diagnosis and prognosis and risk analysis to support the decision making.

The surrogate model can be developed through machine learning (ML) techniques, using data

generated from three sources: (1) physics model runs, (2) experiments, or (3) combination of both

physics model runs and experiments. In this work, surrogate model construction using all three

options will be explored. The surrogate models are physics-informed in different ways for predicting
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the QoI while ensuring consistency with physical laws. Three different strategies are explored for

incorporating physics knowledge into ML models: (1) incorporate physics constraints within the loss

function used in training the ML models, (2) use physics model outputs as additional inputs to

the ML model trained with experimental data, and (3) pre-train an ML model with physics model

input-output and then update it with experimental data. The first step of pre-training using data

generated by the physics model can be thought of as similar to a lower fidelity model, and the second

step of improving the pre-trained model (either by parameter updating or by adding a discrepancy

term) can be thought of as similar to incorporating higher fidelity data (experimental data, in this

case) to improve the model. Thus the third strategy can also be used for constructing surrogate

models using physics models of different fidelity.

In this study, we expand the surrogate modeling methodology to multi-physics dynamic prob-

lems with high-dimensional spatio-temporal output, where the output QoI is also time-dependent.

For high-dimensional applications, the surrogate modeling techniques in the literature have investi-

gated efficiency improvement by reducing the dimensionality in both the input and output spaces.

Dimension reduction in the output space has been typically performed using the principal directions

in the output data matrix (e.g., principal components analysis (PCA), or singular value decompo-

sition (SVD)) [1–6]. To address the challenge introduced by the high-dimensionality of spatially

and temporally varying outputs, a data compression method is first employed to convert the high-

dimensional output into low-dimensional latent space. ML models are then constructed for each key

feature in the latent space. For input dimension reduction, several methods have been proposed,

such as the proper orthongonal decomposition (POD) [7] and projecting inputs to an orthogonal ba-

sis like the truncated Karhunen-Loeve expansion [8], or a combination of both strategies (e.g., sparse

pseudospectral approximation) [9, 10]. Sparse grids [11] and active subspace transformation of the

dataset’s gradient space [12, 13] are some of the other existing methods that are suitable for input

dimension reduction in the case of dependent variables, where there is correlation to exploit. Recent

efforts have focused on gradient-based techniques to increase the capability of surrogate models to

very large input and outputs dimensions involving multivariate outputs, such as the PCAS method

[14, 15] that extend the applicability of active subspace methods.

Often the available resources are limited to obtain an adequate amount of training data. There-

fore, it is important to construct an accurate surrogate model with the fewest possible experiments

or computer simulations. A design of experiments (DoE) [16] approach, which refers to the selection

of the inputs at which to conduct these experiments, becomes crucial for sufficiently accurate model

construction with minimum computational or experimental cost. One of the most popular DoE
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approaches is space-filling methods [17], that covers the input space uniformly without considering

the physics information. An alternative DoE approach is the adaptive DoE, which uses the physics

information represented by the surrogate model, to sequentially add new training points that are

sampled in regions of high interest. This work focuses on adaptive selection of input samples where

an initial experimental design is extended sequentially by considering both the physics of the prob-

lem of interest and the exploration of the entire design space to improve the model performance

within the available resources.

Once an adequately satisfactory surrogate model is constructed, this work develops an approach

that fuses multi-source information for Bayesian calibration of multi-physics models with multi-level

data that contain both local and shared parameters. The direct use of all the data simultaneously

for Bayesian calibration is not practical, especially when there exists multiple types of measurement

data from multiple components at different levels [18, 19]. A segmented approach is pursued in this

work to integrate expert knowledge and measurements from multiple domains at different levels of

the network to support model calibration.

The effects of different sources uncertainty propagate through the physics-based or ML models

to the optimization framework, which causes uncertainty in the output QoI. These heterogeneous

sources of uncertainty need to be accounted for while optimizing the process design. It is desirable

to reduce the epistemic uncertainty by using available information such as experimental data, which

reduces the uncertainty propagated to the prediction. Model calibration is performed to reduce the

epistemic uncertainty with available measured data. In order to reduce the dimension of model

calibration, non-important uncertainty sources that are identified using sensitivity analysis can be

fixed. Global sensitivity analysis (GSA) aims to quantify the effects of input random variables (or

combinations thereof) on the variance of the response of a physical or mathematical model [20–23].

The sensitivity analysis needs to consider both aleatory and epistemic uncertainty sources. However,

sensitivity analysis that include the contribution of both aleatory and epistemic uncertainty such as

model error is not well-established [24, 25]. The predictions improved beyond that of physics models

or ML models alone and the variability of prediction is reduced by using physics-informed machine

learning (PIML) models, thus the confidence in the sensitivity analysis results is increased.

Ultimate, the purpose of uncertainty quantification in the system response prediction is to sup-

port decision-making under uncertainty. For example, in additive manufacturing (AM), the necessity

to design the manufacturing process parameters with a rigorous understanding of where variability

comes from and how to reduce the variability has gained considerable attention. The traditional way

is to use a physical experiment-based trial-and-error approach for establishing a relationship between
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the process parameters and the QoI. In a trial-and-error approach, the physical process is repeated

multiple times with different process parameter combinations to achieve the desired QoI; this is ex-

pensive and time-consuming. Moreover, this trial-and-error approach needs to be implemented every

time a new design is needed. Therefore, in recent years, research efforts have focused on model-based

methods for optimizing the process parameters. The use of physics-based or ML models instead of

physical experiments would be more economical in exploring a wide range of process parameter set-

tings and their effects on the product quality. Achieving the desired material properties and product

quality in AM processes has been studied using trial-and-error experiments as well as process models

(either physics-based or ML models) [26–33]. In this research, both physics-based and ML models

are used for AM process parameter optimization under uncertainty, considering both single- and

multi-objective formulations.

1.2 Research Objectives

The research efforts in this dissertation are divided into four objectives:

1. Machine learning using both physics knowledge and experimental data

2. Adaptive surrogate modeling for high-dimensional spatio-temporal output

3. Multi-level information fusion for model calibration

4. Decision-making under uncertainty

The overall goal of this research is to develop comprehensive machine learning and optimiza-

tion models under uncertainty for reducing computational effort while maintaining accuracy. To

do this, we first developed several physics-informed and hybrid machine learning models for bond

quality and porosity predictions of fused filament fabrication (FFF) parts using physics constraints,

physics-based models, and experimental data. The developed physics-informed machine learning

(PIML) strategies and their combinations are then investigated for global sensitivity analysis (GSA)

using both physics knowledge and experimental data. Physics knowledge and experimental obser-

vations are fused in order to maximize the accuracy of sensitivity estimates. Afterwards, an efficient

surrogate modeling technique is developed for high-dimensional time-dependent systems with spatio-

temporal output and demonstrated for a gas turbine engine rotor. Since 3D finite element models

(FEM) for thermo-mechanical systems are computationally expensive, we develop an adaptive sam-

pling strategy that is aimed at reducing the number of computer simulations, thus reducing the cost

and time. Next, a Bayesian methodology is developed to fuse information from heterogeneous sources
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and account for uncertainties in modeling and measurements for time-dependent multi-component

systems. The last objective is developed in the context of additive manufacturing, where the process

model error is quantified and included in the process parameter optimization.

1.3 Organization of the Dissertation

The subsequent chapters of this thesis will be devoted to the objectives mentioned above.

Chapter 2 provides background information on the physics-based models for simulating the Fused

Filament Fabrication (FFF) process and several state-of-the-art ML algorithms, including: (1) Gaus-

sian process (GP) surrogate modeling, (2) deep neural network (DNN), and (3) Bayesian neural net-

work (BNN). BNN is introduced as a generic means to characterize model prediction uncertainty.

Next, variance-based global sensitivity analysis (GSA) is introduced to assess the contribution of

each random variable to system-level variability.

Chapter 3 develops several physics-informed machine learning (PIML) models for bond quality

and porosity predictions of fused filament fabrication (FFF) parts using physics constraints, physics-

based models, and experimental data, thus helping the ML model to produce more accurate and

physically meaningful results. Three types of strategies are explored to incorporate physics con-

straints and multi-physics FFF simulation results into a deep neural network (DNN), thus ensuring

consistency with physical laws: (1) incorporate physics constraints within the loss function of the

DNN, (2) use physics model outputs as additional inputs to the DNN model, and (3) pre-train a DNN

model with physics model input-output and then update it with experimental data. These strate-

gies help to enforce a physically consistent relationship between bond quality and tensile strength,

thus making porosity predictions physically meaningful. Eight different combinations of the above

strategies are investigated. The results show how the combination of multiple strategies produces

accurate ML models even with limited experimental data.

Chapter 4 proposes an approach for information fusion and machine learning for sensitivity anal-

ysis using both physics knowledge and experimental data, while accounting for model uncertainty.

Variance-based sensitivity analysis is used to quantify the relative contribution of each uncertainty

source to the variability of the output quantity. Two types of ML models were considered, namely,

GP and DNN models. Several PIML strategies that were developed in Chapter 3 are used to esti-

mate the Sobol’ indices. The results show that the application of PIML strategies to both GP and

DNN enables accurate Sobol’ index computations even with smaller amounts of experimental data

while producing physically meaningful results.

Chapter 5 investigates methods for adaptive surrogate model building for multivariate spatio-
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temporal output. A cross-validation strategy is used to identify the most accurate surrogate model

in the lower dimensional space. Once the most accurate surrogate model type is identified for

the problem of interest, the prediction error in the original space is evaluated with different error

metrics. A novel adaptive sampling technique, which combines exploration and exploitation for

adaptive learning in multi-physics dynamic systems with high-dimensional spatio-temporal outputs,

is introduced to improve the surrogate model accuracy with the fewest possible runs of the expensive

physics-based model. The effectiveness of the proposed methodology is further demonstrated for

a turbine blade example using a time-dependent multi-physics dynamic system model with high-

dimensional spatio-temporal outputs.

Chapter 6 formulates a multi-level Bayesian calibration methodology for a multi-component

system. Multi-level Bayesian calibration is performed to estimate local and global parameters using

experimental data that is obtained at different time instances of different system components. The

multi-level Bayesian calibration is pursued in two directions: (1) Offline Bayesian calibration, and

(2) Online Bayesian calibration. In the former strategy, the calibration is performed offline using

data that is collected over multiple time steps. In the latter strategy, the calibration is performed in

real-time as new measurements are obtained at each time step. The updated model is improved with

the accumulation of new data. Expert knowledge and experimental data in different levels of the

network enable the calibration process in an efficient manner even with insufficient data. Analysis

models and observation data for the thermo-mechanical behavior of gas turbine engine blades are

used to analyze the effectiveness of the proposed approach.

Chapter 7 presents an optimization framework for decision-making under uncertainty, and demon-

strates it for process parameter optimization in additive manufacturing, specifically fused filament

fabrication (FFF). The multi-objective optimization under uncertainty is pursued in two directions:

(1) Single quantity of interest (QoI), and (2) Two quantities of interest (QoIs). The proposed

framework is composed of four elements: (1) Experiments are conducted in the laboratory to print

parts with varying process parameters, and data is collected to measure quality characteristics of

the parts. (2) Physics-based or data-driven ML models are constructed. (3) The models are then

used to find the optimal process parameters, and several multi-objective problem formulations are

investigated for robust design optimization (RDO). Uncertainty in the prediction model (including

model error) and input variability are considered in the optimization. (4) Finally, Pareto surfaces

are constructed to estimate the trade-offs between the objectives. The effectiveness of the proposed

methodology is validated by manufacturing the parts at optimal settings and demonstrating the

quality improvement.
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The conclusions and suggestions for future research are presented in Chapter 8.
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CHAPTER 2

Background

This chapter first introduces dimension reduction techniques, then describes several machine

learning techniques that are extensively used in the literature. Next, we briefly review uncertainty

quantification, global sensitivity analysis and fused filament fabrication (FFF). Following this struc-

ture, two dimension reduction techniques are defined in Section 2.1. Afterwards, the basic concept

of Gaussian process (GP) surrogate modeling is introduced in Section 2.2.1. In parallel, two deep

learning algorithms: deep forward neural network and Bayesian neural network, as a generic means

to characterize the prediction uncertainty of neural networks, are introduced in Sections 2.2.2 and

2.2.3. In Section 2.3, we briefly review Bayesian calibration, particle filter and Bayesian network. In

Section 2.4, we describe global sensitivity analysis to measure the contribution of a random variable

to the system-level variability. Finally, Section 2.5 defines the fused filament fabrication (FFF)

additive manufacturing (AM) process and the coupled multi-physics models used to describe the

FFF process.

2.1 Dimension Reduction

2.1.1 Singular Value Decomposition (SVD)
Singular value decomposition (SVD) is a generalized eigen-decomposition technique and multi-

variate statistical method for describing a large amount of high-dimensional data by mapping to
a low-dimensional latent space [34]. SVD is applicable to non-square matrices and can be used to
handle the spatial correlation of the response. Given ns data points (i.e., total number of nodes)
over the spatial domain Ω for nt time domain realizations and for nd realizations of design domain
(i.e., training points), a data matrix for the k-th output can be written as

Dk = [Dk(ti,θ1),Dk(ti,θ2), . . . ,Dk(ti,θnd )]
T

=



Dk(ti,s1,θ1) Dk(ti,s1,θ2) . . . Dk(ti,s1,θnd )

Dk(ti,s2,θ1) Dk(ti,s2,θ2) . . . Dk(ti,s2,θnd )

...
...

. . .
...

Dk(ti,sns ,θ1) Dk(ti,sns ,θ2) . . . Dk(ti,sns ,θnd )



T

(2.1)

where Dk(ti,θ j) = [Dk(ti,s1,θ j),Dk(ti,s2,θ j), . . . ,Dk(ti,sns ,θ j)] is the i-th temporal location of the j-

th realization for the k-th field response, ti represents the i-th temporal location and θ stands for

different realizations in the design domain.

The response S of the original physics-based model can be collected at the training points as
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follows:

S = [D1,D2, . . . ,Dnk ]
T (2.2)

where nk is the total number of physics model outputs.

This large amount of high-dimensional response can be mapped to a low-rank approximation

by using SVD as S = UMVT , where U is a (nt × nd)× ns matrix, V is a ns × ns orthogonal matrix

and M is a ns × ns rectangular diagonal matrix with non-negative real numbers λ = [λ1,λ2, . . . ,λr],

r =min((nt ×nd),ns) in the diagonal. The diagonal elements λ of M are called singular values and are

arranged in descending order. The number of important features q(q ≤ r) to be used to reconstruct

the data matrix are determined based on the magnitudes of the singular values. The original data

matrix S can be reconstructed as S̃ by using the first q largest singular values

S(ti,θ j)
T ≈ S̃(ti,θ j) =

q

∑
p=1

ξp(ti,θ j)Vp, (2.3)

∀i = 1,2, . . . ,nt ; j = 1,2, . . . ,ns,

where S(ti,θ j)
T is the (i× j)-th row of S, ξp(ti,θ j) is the element of ξ = UM at (i× j)-th row and

p-th column, and Vp is the p-th important feature vector used to approximate S.

It is not only computationally expensive but also memory intensive to directly perform deter-

ministic SVD on a large matrix. Thus, the randomized SVD (rSVD) algorithm, which avoids the

high computational cost while not sacrificing accuracy, is used to obtain a low-rank approximation

of this large response matrix [35].

2.1.2 Randomized SVD (rSVD)

The randomized SVD (rSVD) method [35] maps the original data matrix onto a small random

subspace. Thus, the most important characteristics of the original matrix S are condensed into a

small randomized subspace to obtain an approximate matrix decomposition while avoiding the high

computational cost inherent in deterministic SVD.

The main computational operations in rSVD are matrix-matrix multiplications, QR decomposi-

tion and SVD on small matrices. More specifically, the rSVD involves five main components: (1)

constructing a random matrix; (2) projection of the original data matrix with the random matrix;

(3) QR decomposition of the resulting matrix; (4) multiplying the original data matrix with the

resulting orthogonal basis; and (5) deterministic SVD on resulting matrix.
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In order to obtain a low-rank, say rank r (r << N), approximation of a matrix X ∈ FM×N ,

X ≈ UrΣrV′
r (2.4)

the target dimension, i.e., the first r pairs of singular value and singular vectors, can be obtained

with the following steps. First, a random projection matrix P ∈ RN×r is used to get an orthonormal

basis for the data matrix X,

Z = XP, (2.5)

where Z ∈RM×r is a much smaller matrix (r << N) than X and approximate the column space of X

with high probability due to the randomness of P. Then, a QR decomposition, which is normally

employed to compute the SVD, of Z can be obtained:

Z = QRQR, (2.6)

where Q ∈ RM×r and RQR ∈ Rr×r. Then, the data matrix X is projected onto the subspace Q and

SVD is performed on the projection Y ∈ Rr×N to obtain Σr and VT
r :

Y = QT X,

Y = UY ΣrVT
r . (2.7)

The matrices Σr and VT
r in Eq. (2.7) are the same for X since Q approximates the column space of

X [35]. Thus, the r left singular vectors Ur ∈ RM×r of X is

Ur = QUY . (2.8)

A lower dimensional representation (dimension r) in place of the original data (dimension N) can

be taken as

X̂LD = UrΣr, (2.9)

Randomized SVD is also a linear mapping like the basic SVD. Since Z is of a much smaller size

compared to X and the basis Q is low rank, the QR decomposition in Step (3) and the deterministic

SVD in Step (5) are not time consuming. This makes randomized SVD a powerful tool when dealing

with larger data matrix. The time complexity of rSVD is O(MNlog(r)+(M+N)r2).
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2.2 Machine Learning (ML)

2.2.1 Gaussian Process (GP) Surrogate Modeling

A Gaussian process (GP) surrogate model (or Kriging) [36] approximates a response function

y = G(x) over the domain of input x as a Gaussian random process with a mean function m(x) and

a covariance function k(x,x′), which describes the deviation of the model from the trend

y(x)∼ G P
(
m(x),k(x,x′)

)
. (2.10)

Given a set of training data {XT ,YT} and the input XP, where prediction is desired, the con-

ditional probability distribution of the output YP follows a multivariate Gaussian distribution [36]

as

YP|XP,XT ,YT ∼ N (µ,Σ) (2.11)

µ = m(XP)+ΣPT (ΣT T +σ2
obsI)

−1(YT −m(XT )
)

Σ = ΣPP −ΣPT (ΣT T +σ2
obsI)

−1ΣT
PT

where µ is the mean vector of the prediction YP conditioned on the training data, and Σ is the

conditional covariance matrix of YP; ΣPT is the covariance matrix between the prediction data XP and

each of the training points {XT = x1,x2, ...,xn}; ΣT T is the n×n covariance matrix of the training data;

ΣPP is the unconditional covariance matrix of YP; σ2
obs is the variance of observation/measurement

error (also called noise variance), and I is the identity matrix.

The mean function m(·) could be constant, linear or a non-linear function depending on the prob-

lem [26, 36–38]. The covariance function k(·) can be formulated by using a covariance function based

on the desired properties (order of continuity, stationary/non-stationary, isotropic/anisotropic). A

squared exponential correlation function with separate length scale parameters li for each input

dimension has often been used in the literature:

k(x,x′) = σ2
f exp

[
−

M

∑
i=1

(xi − x′i)
2

2li

]
+σ2

obsδ (x,x
′) (2.12)

where σ2
f is the signal/process variance and defines the maximum allowable covariance, and δ (x,x′)

is the Kronecker delta function. Other correlation functions are also available in the literature, such

as linear, exponential, Matérn functions [36, 37, 39].

The hyperparameters of the GP model considering a zero mean function, i.e., Λ = {l,σ f ,σobs},
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are inferred from the training data. A common method is to maximize the log marginal likelihood

function, which is defined as

log p(YT |XT ;Λ) =−1
2

YT (ΣT T +σ2
obsI)

−1YT − 1
2

log|ΣT T +σ2
obsI|−

n
2

log2π. (2.13)

2.2.2 Deep Neural Network (DNN)

In recent years, due to the confluence of advanced sensing and imaging techniques, big data

processing techniques, enormous computational power and the internet, rapid advances are being

made in developing sophisticated data-driven machine learning models, particularly neural networks.

A deep neural network (DNN) is composed of multiple hidden layers and has four major components:

neuron, activation function, cost function, and optimization. Figure 2.1 shows a neural network

consisting of three inputs, two hidden layers, each having four neurons, and two output neurons.

The values of various input variables of a particular neuron are multiplied by their associated weights,

then the sum of the products of the neuron weights and the inputs are calculated at each neuron.

The summed value is passed through an activation function that maps the summed value to a fixed

range before passing these signals on to the next layer of neurons.

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ� Hidden Layer ∈ ℝ� Output Layer ∈ ℝ²

Figure 2.1: A fully connected deep neural network (DNN) with two hidden layers

The predictions of the DNN after forward propagation, Ŷ, are compared against the observa-

tions, Yobs, by defining a loss function (e.g., root mean squared error (RMSE); LRMSE(Yobs, Ŷ) =√
∑n

i=1(yobs,i − ŷi)2/n), which measures how far off the predictions are from the observations for the n

training samples. Backpropagation algorithms are employed to keep track of small perturbations to

the weights that affect the error in the output and to distribute this error back through the network

layers by computing gradients for each layer using the chain rule. In order to minimize the value

of the loss function, necessary adjustments are applied at each iteration to the neuron weights in
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each layer of the network. These procedures are performed at each iteration until the loss function

converges to a stable value.

2.2.3 Bayesian Neural Network (BNN)

In the Bayesian context, the distributions of the model parameters (neuron weights w) that are

most likely to generate the observed data are inferred. A prior distribution over the neuron weights

p(w) is defined, and a likelihood function p(Y|X,w) is defined to represent the probability of gener-

ating the observed data given model parameters. Bayesian neural network (BNN) implementations

so far have used Gaussian prior distributions p(w =N (0,I )) to replace the deterministic network’s

weight parameters [40–42], thus representing the epistemic uncertainty in the DNN model. Fol-

lowing Bayes’ theorem, a posterior distribution over the model parameters given the training set

{X,Y}= {{x1, ...,xN},{{y1, ...,yN}} is defined by

p(w|X,Y) =
p(Y|X,w)p(w)

p(Y|X)
. (2.14)

After inferring the posterior distributions of p(w), the predictive distribution of the model output

for a new input x∗ is

p(y∗|x∗,X,Y) =
∫

Ω
p(y∗|x∗,w)p(w|X,Y)dw. (2.15)

The posterior distribution of model parameters p(w|X,Y) cannot be evaluated analytically over the

whole parameter space Ω due to the highly non-linear behavior in the neural network caused by

the non-linear activation functions and their combinations across multiple hidden layers. Thus, it

becomes difficult to perform exact analytical inference in BNNs.

Several approximate inference techniques are available to infer the posterior distribution p(w|X,Y),

such as variational inference [43], Approximate Bayesian Computation [44], Markov Chain Monte

Carlo (MCMC) [45], and Particle Filter [46] methods. Markov Chain Monte Carlo (MCMC) can

be a more accurate technique than the other methods, but it is computationally too expensive. It

would not be affordable to perform MCMC to estimate posterior distributions of the deep neural

network model parameters (i.e., weights) since there are usually a large number of parameters in

the model. Variational inference (VI) fits a simple and tractable distribution qθ (w) to the poste-

rior, parametrized by a variational parameter θ [43]. This approximates the intractable problem by

optimizing the parameters of qθ (w). The accuracy of the variational distribution is often measured

by the Kullback-Leibler (KL) divergence between the approximate distribution qθ (w) and the true

model posterior p(w|X,Y).
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Gal and Ghahramani [47] showed that Monte Carlo (MC) dropout is equivalent to performing

approximate VI; the former infers the posterior by performing dropout not only while training a

model but also during prediction. In MC dropout, randomly chosen neurons are temporarily removed

from the network along with their connections. Next, the gradients of neuron weights are calculated

on each smaller neural network and these gradients are then averaged over the training sets to obtain

the weights of overall network. The construction of BNNs with MC dropout builds on the concept

of dropout as regularization on neural networks. However, in contrast to standard neural networks,

MC dropout performs dropout and generates random samples following a Bernoulli distribution for

each neuron in the input and hidden layers during prediction. The dropout is applied to the neuron

that takes the value 0 with a given dropout probability pd . The outputs of the network are predicted

using the collection of generated random samples from the posterior predictive distribution and the

uncertainty in the prediction is quantified. The computational effort for the construction of BNNs

with MC dropout is comparable to the standard neural networks. Moreover, the simplicity of the

MC dropout strategy provides an efficient way of Bayesian inference to quantify the model prediction

uncertainty in a variety of neural networks, such as DNN, convolutional neural network (CNN), and

recurrent neural network (RNN).

2.3 Uncertainty Quantification

The output of any model is affected by various sources of uncertainty. The uncertainty sources can

be aleatory (natural variability) or epistemic (lack of knowledge). Epistemic uncertainty is caused by

insufficient knowledge or information about the model and data. If limited data is available, there

is epistemic uncertainty in the model prediction. Aleatory uncertainty is caused by the natural

variability in the process, leading to variability in the process output QoI. When multiple models

are used to predict the system behavior, the uncertainty propagates from each model to another

as a function of model coupling. Uncertainty quantification (UQ) is an important step toward

quantifying and reducing these heterogeneous sources of uncertainty. UQ is a process of quantifying

and investigating the effects of these different uncertainty sources on the QoIs.

UQ can be performed in two ways: the forward problem and the inverse problem. In the forward

problem, model errors and the uncertainty related to the model inputs and parameters are propa-

gated to compute the uncertainty in the output. On the other hand, model calibration is performed

using the available measurement data in the inverse problem. Several model calibration techniques

are available in the literature (e.g., least squares, maximum likelihood estimation, and Bayesian

estimation). Bayesian methods provide a convenient framework for combining prior beliefs about
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parameters with current evidence gained from data [48, 49]. In the inverse problem, unmeasured

inputs or model parameters can be estimated using Bayesian inference, given observations of the

outputs. As a result, they help the inference of unknown parameters by using the observed data

on quantities affected by the unknown parameters. The inverse problem is an essential part of

uncertainty quantification and reduction and in achieving the desired level of prediction confidence.

Consider a physics model G(·) that maps input variables X and model parameters θm to the

numerical model output Ym:

Ym(X) = G
(
X; θ m(X)

)
(2.16)

Let nD be the number of collected observation data Yobs from experiments with input variable

settings x(1), ...,x(nD), where x(i) is the input variable setting for the ith experiment. The difference

between observations Yobs and the true response of the system Ytrue is attributed to measurement

error εobs, which is often treated as a zero-mean Gaussian random variable with variance σ2
obs

Yobs(X) = Ytrue(X)+ εobs(X). (2.17)

The physics model prediction is inaccurate due to missing physics or due to other approximations.

Thus, an additive uncertainty model with a model discrepancy term δ (X) as a function of model

inputs is introduced as shown in Fig. 2.2 to capture the difference between Ym and the true response

of the system Ytrue [50]:

Ytrue(X) = Ym(X)+δ (X) (2.18)

Combining Eqs. (2.17) and (2.18), the overall prediction Ypred that accommodates various errors

can be written as

Ytrue(X) = Yobs(X)− εobs(X) = Ym(X)+δ (X) (2.19)

Ypred(X) = Ym(X)+δ (X)+ εobs(X)

A common approach to estimate the discrepancy term δ (X) is the one formulated by Kennedy

and O’Hagan [50], which is applicable in the context of Bayesian calibration (see Section 2.3.1). The

discrepancy term can be expressed in multiple ways, such as constant, Gaussian random variable

with unknown parameters (either input-dependent or not), or Gaussian process (either stationary or

non-stationary) [51]. The hyperparameters of the discrepancy term are then estimated along with
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Figure 2.2: Relating model output to observation data

the physics model parameters using Bayesian calibration [26].

2.3.1 Bayesian Calibration

The unknown model parameters ψ and errors can be estimated using the experimental data,

which contain measurement error εobs, through Bayesian calibration. The purpose of Bayesian

model calibration is to use observation data Yobs to estimate the posterior distributions of unknown

parameters such as model parameters, measurement error and the model discrepancy term δ (if

applicable). The measurement error εobs is commonly represented as a zero-mean Gaussian random

variable with an unknown variance σ2
obs, i.e., εobs ∼ N(0,σ2

obs). The model discrepancy δ can be

formulated in various ways depending on the problem and can be a function of the input or any

other parameter [51, 52]. δ may be modeled as a constant bias term, or a random variable with

either fixed or input-dependent mean and variance, or even a random process [26, 38, 53, 54]. When

the model parameters ψ are uncertain, the calibration parameters Θ = [ψ,∆,σobs] where ∆ denotes

the parameters of δ . Based on Bayes’ theorem, the joint distribution of the calibration parameters

is given by

f (Θ|Yobs) =
f (Yobs|Θ) f (Θ)∫

f (Yobs|Θ) f (Θ)dΘ
(2.20)

where Yobs is the observation data, f (Yobs|Θ), f (Θ), and f (Θ|Yobs) are the likelihood function, joint

probability density function (PDF) of Θ, and the joint posterior PDF.

Bayesian model calibration is often performed using Markov chain Monte Carlo (MCMC) sam-

pling algorithms (such as Metropolis-Hastings [55], Gibbs [56], slice sampling [57]) or Particle Filter

(PF) [46] since the integral in the denominator of Eq. (2.20) makes numerical integration intractable

for increasing dimension of calibration quantities [58].

2.3.2 Particle Filter

Particle filter (PF) [46] is a generic approximate algorithm to track the evolution of the state

variables in a dynamic Bayesian network (DBN). A Bayesian network (BN) is a directed acyclic
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graph model that represents the joint distribution of a set of random variables and uncertainty in

the field of interest. The BN can be extended to a DBN to track a time-dependent system whose

states evolve over time, which can be realized as a series of time-independent static BNs. In the

literature, PF is also referred as “survival of the fittest”, in which a particle with higher weight that

is defined based on likelihood is likely to be re-sampled. Whereas, a particle with lower weight is

likely to be discarded. PF can be applied to both discrete and continuous DBNs.

Assume that the state variables at time t, Xt evolve from the state variables at previous time

t −1, Xt−1 through a nonlinear state function f : Rnx → Rnx :

Xt = f (Xt−1,vt−1) (2.21)

where vt−1 is the process noise in the state function, the capital letters denote random variables.

The measurement Zt ∈ Rnz is obtained using the measurement function h ∈ Rnz×nz

Zt = h(Xt ,nt) (2.22)

where nt ∈ Rnz is the measurement noise.

The most basic PF algorithm to track the evolution of the state variables and measurement is

sequential importance sampling [46], in which the joint posterior distribution at time t is defined by

p(X0:t |Z1:t). Weights are associated with each particle (i.e., {xi
0:t ,w

i
t}N

t=1) to approximate the joint

distribution

p(X0:t |Z1:t)≈
N

∑
i=1

wi
tδxi

0:t
(2.23)

where δxi
0:t

is a delta function at xi
0:t , the lower-case letters denote particles and the superscript i

indicates that it is the ith particle.

A proposal density is used to sample the ith particle at time t xt
i of the state variable Xt based

on the current state Xi
0:t−1 and the measurement Z1:t

Xi
t ∼ q(Xt |Xi

0:t−1,Z1:t). (2.24)

The initial weight for each particle is equal, i.e., 1/N and the initial state are sampled from the

joint prior distribution. The updated importance weights for each particle is given by

wi
t ∝ wi

t−1
p(Zt |Xi

t)p(Xi
t |Xi

t−1)

q(Xi
t |Xi

t−1,Zt)
. (2.25)
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A common problem of PFs is degeneracy, in which the performance of the filter deteriorates after

some time steps and importance weights are unevenly distributed, i.e., only a few particles have

significant weights, but most other particles have negligible weights. A measure of degeneracy is the

effective sample size [59] Ne f f = 1/∑N
i (w

i
t)

2. The effect of degeneracy is explained by Ne f f . Smaller

values of Ne f f indicate severe degeneracy.

This degeneracy problem can be overcome with the re-sampling procedure by multiplying parti-

cles with significant weights while discarding low weighted particles (referred to Sampling-Importance

Re-sampling, SIR [46]) to force particles to areas of high likelihood. Re-sampling is performed when

Ne f f falls below a user-defined threshold. The simplest strategy for re-sampling is to generate a

new set based on the discrete approximation given in Eq. (2.23), and the weights are reset to

wi
t = 1/N again and thus become uniform. The SIR algorithm 1) takes the state transition distribu-

tion p(Xt |Xi
t−1) as the proposal density distribution q(Xt |Xi

0:t−1,Z1:t), and 2) conducts re-sampling

at each iteration, which reduces Eqs. (2.24) and (2.25) to

Xi
t ∼ p(Xt |Xi

t−1), (2.26)

wi
t ∝ p(Zt |Xi

t). (2.27)

Although the re-sampling strategy can reduce the effects of degeneracy, it may also lead to the

problem of sample impoverishment. Sample impoverishment can be viewed as highly concentrated

particles, while the sample degeneracy is the result of widely distributed particles. As the particles

with higher weights are selected multiple times and the particles with lower weights are discarded,

sample diversity is not maintained. This phenomenon, known as sample impoverishment [46] be-

comes apparent when the system is noise-free or has a very small process noise. Therefore, the

process noise in Eq. (2.21) plays a crucial role by giving particles the opportunity to move in space

stochastically.

In most applications, the model of interest depends on unknown static parameters that need to

be estimated from the data. In the case of parameter estimation, the sample impoverishment can

be avoided by perturbing the re-sampled particles to be used at the next time step [60, 61]. SIR

particle filtering estimates the posterior distribution of parameters via re-sampling and parameter

perturbation to avoid degeneracy and sample impoverishment respectively.
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2.3.3 Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph (DAG) representation of a multivariate

distribution, consisting of nodes and arcs, where nodes represent the random variables in the system

and arcs (directed edges between nodes) are associated with conditional probabilities relating the

nodes. In other words, a BN decomposes the joint probability distribution of a set of variables into

a set of conditional and marginal probabilities [62]. Given random variables X = {X1,X2, ...,Xn}, the

joint probability of these variables is expressed through a BN as

Pr(X) = Πn
i=1Pr(Xi|ΠXi) (2.28)

where ΠXi denotes the set of parent nodes of Xi and Pr(Xi|ΠXi) represents the conditional probability

distribution of Xi, given its parent nodes. If Xi has no parent nodes (i.e., Pr(Xi|ΠXi) = Pr(Xi) , then

Xi is a root node and is defined by a marginal distribution.

2.4 Global Sensitivity Analysis (GSA)

Consider a deterministic real integrable one-to-one system response function Y = f (X), where

f (·) is the computational model, X = {X1, ...,Xk} are mutually independent model inputs, and Y is

the model output. As shown in [63], the variance of Y can be decomposed as

V (Y) =
k

∑
i

Vi +
k

∑
i1

k

∑
i2=i1+1

Vi1i2 +
k

∑
i1

k

∑
i2=i1+1

k

∑
i3=i2+1

Vi1i2i3 + ...+V12...k (2.29)

where Vi is the variance of Y due to Xi alone, and Vi1...ip(p ≥ 2) indicates the variance of Y caused

by the interaction of {Xi1 , ...,Xip}.

The Sobol’ indices are defined by dividing both sides of Eq. (2.29) with V (Y)

1 =
k

∑
i

Si +
k

∑
i1

k

∑
i2=i1+1

Si1i2 +
k

∑
i1

k

∑
i2=i1+1

k

∑
i3=i2+1

Si1i2i3 + ...+S12...k (2.30)

where Si is the first-order or main effects index that assesses the contribution of Xi individually to

the variance of the output Y without considering interactions with other inputs. The higher-order

indices Si1...ip(p ≥ 2) in Eq. (2.30) measure the contributions of the interactions of {Xi1 , ...,Xip}.

The first-order index Si is defined as follows:

Si =
Vi

V (Y)
=

VXi(EX−i(Y|Xi))

V (Y)
(2.31)
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where X−i are all the model inputs other than Xi.

The overall contribution of Xi considering an individual input and its interactions with all other

inputs is measured by the total effects index ST
i :

ST
i = 1− V−i

V (Y)
=

VX−i(Exi(Y|X−i))

V (Y)
. (2.32)

The computation of Si analytically is nontrivial since EX−i(·) requires multidimensional integrals.

A straightforward model-based approach to estimate Sobol’ indices is to use a double-loop Monte

Carlo simulation (MCS) [63]. In order to reduce the cost associated with the double-loop MCS,

analytical, spectral and efficient sampling-based methods have been developed. The methodology

developed by Sudret [64] approximates the original physics model by a polynomial chaos expansion

(PCE) model and estimates the Sobol’ indices by using the PCE coefficients. Chen et al. [65]

proposed analytical formulas to compute Sobol’ indices using a GP surrogate model with input

variables that follow normal or uniform distributions. The improved FAST method [66] combines

the classical FAST method [21] with random balanced design [67] for generating samples to evaluate

Sobol’ indices. One of these approaches of particular relevance to this dissertation is to replace the

original computational model by a surrogate model and use this surrogate model in GSA [68–72].

2.5 Fused Filament Fabrication (FFF)

This section describes the two coupled multi-physics models (thermal model and polymer sinter-

ing model) that predict the bond formation between adjacent filaments and the mesostructure of the

printed part. The porosity and bond quality of an FFF part is dependent on the temperature history

of filaments. Thus, it is important to predict the temperature evolution of filaments to estimate the

final mesostructure of the printed part. The thermal model, based on the work by Costa et al. [73],

is used to predict the temperature evolution of filaments considering the material properties, part

geometry, and process parameters. The output of the heat transfer model (temperature) is input

to the sintering model to predict the porosity and bond quality. A new method is then developed,

which considers realistic filament geometry, and allows the filament geometry to change during the

printing process, to compute the rate of polymer sintering and the final mesostructure of the printed

part using the predicted temperature evolution of each filaments. Thus the mapping from input to

output is a multi-physics model, i.e., models of two physical phenomena (heat transfer and sintering)

are combined to predict the porosity and bond quality.
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Figure 2.3: Schematic of FFF

2.5.1 FFF Temperature Modeling

Fused filament fabrication (FFF) (also known as fused deposition modeling or FDM®) is an

AM technology based on material extrusion for manufacturing polymer and plastic parts. The

continuous strand of material is pushed through a heated nozzle and deposited as a molten extruded

thin filament onto the build plate in a predefined path to form the part in the desired shape. The

schematic of the FFF process is shown in Fig. 2.3.

In FFF, each filament is subjected to the same heat transfer mechanism with different boundary

conditions depending on thermal conditions such as environment, build plate and extrusion temper-

ature, as well as the part geometry, material properties and deposition sequence. Recently, Costa

et al. [73] developed an analytical solution for the transient heat transfer during the print process in

FFF. The temperature prediction model considers conduction heat transfer with the build plate and

adjacent filaments based on the fraction λi of filament perimeter that is in contact, and convection

heat transfer with the environment. The deposition of filaments is modeled gradually by joining

elementary lengths that are associated with a given deposition time. Axial and radial heat conduc-

tion are neglected due to the low thermal conductivity of polymers and small filament radius [73].

Thus, after these assumptions the mathematical energy balance for an elementary length dz can be

written as:

ρCA
∂Tm(z, t)

∂ t
dz =−

[
hconvAconv

m
(
Tm(z, t)−TS

)
+

n

∑
i=1

hiAi
m
(
Tm(z, t)−T i

m
)]

, (2.33)
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where ρ, C, hconv, and hi are the material properties of the polymer and assumed to be temperature-

independent. The parameter hconv is the convective heat transfer coefficient, hi represents the con-

duction heat transfer coefficient, ρ and C are the density and specific heat capacity of the material,

Tm is the temperature at a specified cross-section z = zcut of the m-th filament (m ∈ {1, ...,N}, where

N is the total number of deposited filaments) at deposition time instant t, T i
m represents the temper-

ature of the adjacent filament or build plate at contact i (i ∈ {1, ...,n}, where n is the total number

of contact surfaces of a filament including the contact with the build plate) of the m-th filament or

the build plate, TS is the surrounding environment temperature, and A represents the cross-section

area of a filament. Aconv
m = Pm

(
1−∑n

i=1 ω i
mλi
)

dx is the area of the m-th filament that is in contact

with the environment, Ai
m = Pmω i

mλi dx is the area of contact i for the m-th filament as shown in

Fig. 2.4, where Pm is the filament perimeter, λi is the fraction of Pm that is in contact with another

filament or with the build plate, and ω i
m is a variable, which equals unity if the m-th filament has

the i-th contact, and zero otherwise.

(a) (b)

Figure 2.4: Possible contact areas of a filament in the: (a) first layer and (b) remaining layers

The analytical solution of Eq. (2.33) can be obtained using the characteristic polynomial method

[74]:

Tm(z, t) = ϕ1 exp
[

Pmχ
(
ω1

m, ...,ωn
m
)

αA

(
t − tm(z)

)]
+ψ

(
ω1

m, ...,ωn
m
)
, (2.34)

where ϕ1 = Tm(tm(z))−ψ
(
ω1

m, ...,ωn
m
)
, Tm(tm(z)) is the temperature of the m-th filament at instant

tm(z) at which an elementary length z of the m-th filament is deposited and starts to cool down or

contact with an adjacent filament or the build plate. A more detailed description of the derivation

of temperature evolution can be found in Costa et al. [73]. The functions that are influenced by the
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contacts χ and ψ are defined as:

χ
(
ω1

m, ...,ωn
m
)
= hconv

Aconv
m

Pmdz
+

n

∑
i=1

hi
Ai

m

Pdz
,

ψ
(
ω1

m, ...,ωn
m
)
=

hconv
Aconv

m
Pmdz TS +∑n

i=1 hi
Ai

m
Pmdz T i

m

χ (ω1
m, ...,ωn

m)
. (2.35)

2.5.2 Bond Formation Modeling

This subsection develops a new method to compute the rate of polymer sintering and the final

mesostructure of the printed part. The sintering process is defined as the coalescence of particles,

in which two particles of molten polymer form a homogeneous melt, under the action of surface

tension [75]. The sintering process for amorphous polymers is driven by the surface tension force

since the mechanism is considered a Newtonian viscous flow [76].

A Newtonian sintering model for polymers was initially developed by Frenkel et al. [77] to predict

the rate of polymer sintering. Pokluda et al. [75] developed a closed-form equation to predict the

bond formation between two spherical particles based on the work balance of viscous dissipation

and surface tension. Bellehumeur et al. [78] applied the model proposed by Pokluda et al. [75]

to FFF for predicting the sintering between adjacent filaments as a nonlinear function of time,

temperature-dependent surface tension Γ(T ) and viscosity η(T ), and an initial particle radius. The

model has limitations related to the mesostructure of the filaments; specifically, the geometry of the

filaments is assumed constant during the printing process. Based on the above discussion, in this

paper we propose a new sintering model, which considers realistic filament geometry (similar to the

one proposed by Garzon et al. [79]) and also accounts for the change in the mesostructure of the

filaments during the printing process.

h0

h0/2

w

a0

w

h(t) a(t)

h(t)cos(�(t))/2

h(t)/2
d(t)

O

A

Figure 2.5: Evolution of neck diameter during sintering process

The sintering process is simulated by considering two symmetrical adjacent filaments. In this

work, all filaments are assumed to undergo the same sintering process by neglecting the effect

of location. The cross-section geometry of a filament is composed of a rectangle with an initial
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width a0 and two half circles with a radius of h0/2 at initial time t = 0 as proposed by Garzon

et al. [79]. At t = 0, adjacent filaments have one contact point between them (see Fig. 2.5). The

width of the rectangle a(t) evolves in time, together with h(t) such that width of each filament

w = a0 + h0 = a(t) + h(t)cos(θ(t)) stays constant. The layer height h(t) is assumed to evolve in

time based on the experimental observations, in which the average layer height for FFF parts has

decreased more than the average width of filaments (see Fig. 2.6). During the sintering process, the

width and length of each filament (w and L) are assumed to be constant. The coalescence between

these two half circles forms the sintering angle θ(t) and neck diameter d(t).

0.63 mm
0.77 mm

Figure 2.6: Cross-sectional geometry of an FFF part printed with an extrusion temperature 240◦C,
speed 42 mm/s, initial layer height 0.7 mm, filament width 0.8 mm, filament length 35 mm, 6 number
of layers and 15 filaments per layer

In order to calculate the change in the filament geometry during the sintering process, the law

of conservation of mass is expressed for two adjacent filaments that are assumed to have constant

density:

2L

(
π
(

h0

2

)2

+h0a0

)
= 2L

(
π
(

h(t)
2

)2

+h(t)a(t)−2δA

)
, (2.36)

where 2δA = 2(h(t)/2)2(θ(t)− sin(2θ(t))) is the area of intersection between two filaments as shown

in Fig. 2.5.

Thus, the evolution of layer height is obtained as

h(t) =
−2w+

√
Q

π −2θ + sin(2θ)−4cos(θ)
, (2.37)
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where

Q = h2
0π2 −2h2

0πθ +h2
0π sin(2θ)−4h2

0π cos(θ)−4h2
0π

+8h2
0θ −4h2

0 sin(2θ)+16h2
0 cos(θ)+4h0πw

−8h0θw+4h0wsin(2θ)−16h0wcos(θ)+4w2. (2.38)

The work done by surface tension is defined as

WS =−Γ(T )
dS
dt

, (2.39)

where S is the total surface of the filaments that undergo sintering process and is given as

S(t) = h(t)4
(
−θ +

sin(2θ)
2

)
+h(t)2π +2h(t)Lπ

−4h(t)Lθ +4h(t)a(t)+4La(t). (2.40)

Thus, applying the chain rule on Eq. (2.40), the work done by surface tension is obtained as

WS = Γ(T )h(t)
(
2h(t)3 sin2 (θ)+4L

)
θ ′. (2.41)

The work done by the viscous forces for a Newtonian fluid can be expressed as

Wν =
∫ ∫ ∫

V
η(T )∇u : (∇u+∇uT )dV, (2.42)

V being the volume of the sintering system, and ∇u the gradient of velocity and is expressed as

∇u =


ε̇1 0 0

0 ε̇2 0

0 0 ε̇3

 . (2.43)

where ε̇i is the strain rate in ith direction.

Assuming the deformations in width and length are negligible w.r.t. deformations in height,

ε̇2 = ε̇ is approximated by

ε̇ =
∂ux(A)

∂x
≈ ux(A)−ux(O)

OA0
=

d
dt h(t)

h0
. (2.44)
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Consequently, the work done by the viscous forces can be defined as follows

Wν =
∫ ∫ ∫

V
2η(T )ε̇2dV (2.45)

=
2Lη(T )h(t)2 (h0π −4h0 +4w)sin2 (θ)

h0 cos2 (θ)
θ ′′. (2.46)

The evolution of the sintering angle θ(t) is then obtained by equating the work done by surface

tension and the viscous forces under the assumption that θ ′ is always positive [75]:

dθ(t)
dt

=
Γ(T )h0

(
h(t)3 + 2L

sin2 (θ(t))

)
cos2 (θ)

Lh(t)η(T )(h0π −4h0 +4w)
. (2.47)

The evolution of neck diameter d(t) with time is then computed as

d(t) = h(t)sin(θ(t)), (2.48)

The porosity can be expressed using the geometry of the mesostructure shown in Fig. 2.5, where

the shaded grey region is the filled area and blue region is the void area. Thus, the evolution of

porosity ϕ(t) is calculated as

ϕ(t) =
h2 cos(θ)−

( h
2

)2 [π − (2θ − sin(2θ))
]

h2 cos(θ)+ha
. (2.49)

The proposed modeling approach is an improvement upon the previous work on sintering models

by Pokluda et al. [75] and Gurrala et al. [80], because (i) it considers a realistic filament geometry

based on our experiments, and (ii) it accounts for changes in the filament geometry during the

printing process. This proposed methodology still makes assumptions about the bonding process

and sintering is not the only physical phenomenon that takes place during the bond formation. Thus,

physics-informed machine learning (PIML) models are studied in Chapter 3 to further enhance the

prediction accuracy.

2.6 Summary

This chapter described the physics-based models and machine learning algorithms used later in

the dissertation. A Bayesian neural network (BNN), which is used in Chapter 7, is introduced as

a generic framework to quantify model prediction uncertainty. The basic concepts of uncertainty

quantification (UQ) techniques are reviewed in Section 2.3. Global sensitivity analysis introduced in
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Section 2.4 is used in Chapters 4 and 7 to quantify the relative contribution of each random variable

on the system-level variability. Bayesian calibration techniques are used in the later chapters of the

dissertation. In Chapter 3, the physics models are used to generate training data, then deep neural

networks are trained to predict the part quality. The physics-based and ML models are integrated

in an innovative manner to better capture the dynamics of the AM process. In Chapter 5, adaptive

surrogate modeling techniques are investigated. In Chapter 4, Gaussian process (GP) and deep

neural network (DNN) are used to develop physics-informed machine learning (PIML) models to

predict the output quantity of interest (QoI), and the uncertainties in these models are included

in global sensitivity analysis. In Chapter 6, multi-level information fusion for model calibration is

investigated using the available measurement data. In Chapter 7, some of the UQ techniques are

used to study the process parameter optimization under uncertainty.
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CHAPTER 3

Machine Learning using both Physics Knowledge and Experimental Data1,2

3.1 Introduction

Physics-based models do not require large amounts of data, but are generally limited by their

computational complexity or incomplete physics. In contrast, ML models appear promising for

complex systems that are not fully understood or represented with simplified relationships, given

adequate quality and quantity of data. However, ML models represent the complex physics without

taking into account any physical laws and thus can produce results that are inconsistent with physical

laws. This chapter investigates different strategies to enhance the experimental data-driven ML

models by incorporating the physics knowledge, and illustrates them for additive manufacturing

(AM).

Achieving the desired material properties and product quality in AM processes has been studied

using trial-and-error experiments as well as process models (either physics-based or ML models). In a

trial-and-error approach, the AM process is repeated multiple times with different process parameter

combinations to achieve the desired microstructure and properties of the manufactured parts; this

is expensive and time-consuming. Moreover, this trial-and-error approach needs to be implemented

every time a new design needs to be manufactured. Therefore, in recent years, research efforts have

focused on model-based methods for optimizing the AM process parameters.

Several physics-based models have been developed depending on the AM process category and

the quantity of interest (QoI) [81]. Costa et al. [73] proposed an analytical solution for transient

heat transfer during the printing process in fused filament fabrication (FFF). Different models have

been proposed in the literature to study polymer sintering [75, 77, 79, 82]. Many of these models

are parametric representations of complex physical processes based on various approximations. The

parameters of such physics-based models, as well as the model errors need to be calibrated for each

AM process using available observation data to reduce the uncertainty in the model predictions [26,

32, 51]. Due to the complex physics of the AM process, a different model is needed for each sub-stage

or phenomenon in the manufacturing process in order to accurately predict the QoI. Further, physics

models with reasonable fidelity and accuracy require tremendous computational effort; as a result,

the use of physics-based modeling in AM of realistic products has been challenging and limited.
1Adapted with permission from: Kapusuzoglu, B., & Mahadevan, S., “Physics-Informed and Hybrid Machine

Learning in Additive Manufacturing: Application to Fused Filament Fabrication,” JOM, vol. 72, no. 12, 2020..
2© 2020 by The Minerals, Metals & Materials Society
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Recently, several studies have used the available AM experimental data to build black-box ML

models. In addition, with increased computing power, deep learning has become a prominent tool for

solving classification and regression problems. In the context of AM, Khanzadeh et al. [83] compared

supervised machine learning approaches to classify melt pools to predict porosity. Artificial neural

network has been used to predict the geometry of a single bead in wire and arc additive manufacturing

from the wire-feed rate and travel speed [28]. Kwon et al. [84] investigated the convolutional neural

network (CNN) to predict laser power from melt pool images. Zhang et al. [85] used a CNN model

to perform in-process porosity monitoring of laser-based AM processes.

In the context of physics-informed machine learning Karpatne et al. [86] proposed the combined

use of physics-based and ML models to achieve more accurate and physically consistent predictions

by leveraging the advantages of each method. In order to make ML models consistent with physical

laws, Karpatne et al. [86] incorporated physical constraints into the loss function of ML models.

Another method that is also implemented by Karpatne et al. [86] to combine physics-based and

ML models is to use the physics-based model outputs as additional inputs in an ML model along

with other inputs. Jia et al. [87] used synthetic data generated by executing physics-based models

for multiple input combinations to pre-train the ML model in order to leverage the knowledge

embedded in physics-based models. These general ideas have been explored in multiple engineering

applications, such as geoscience, fluid dynamics, and thermodynamics, and this paper investigates

these ideas for additive manufacturing.

The investigation of physics-informed machine learning (PIML) models for the prediction of AM

part quality is the first objective of this dissertation. Therefore, this chapter investigates several

physics-informed and hybrid machine learning strategies that incorporate physics knowledge in ex-

perimental data-driven deep learning models for predicting the bond quality and porosity of FFF

parts, thus helping the ML model to produce more accurate and physically meaningful results. Fused

filament fabrication (FFF), an extrusion-based deposition technique as shown in Fig. 2.3, is a widely

used AM process. The bond quality between adjacent filaments and layers strongly affects the me-

chanical properties of FFF-produced parts. Thus, it is important to predict the bond formation, and

therefore the mechanical properties of the manufactured part accurately. Although physics-based

models predicting the temperature evolution, bond formation and mesostructure evolution of FFF

parts are based on physical laws, they introduce bias due to incomplete representation of the com-

plex physical process by approximating the reality. In addition, these models contain a significant

number of model parameters that need to be calibrated using experimental data [26]. On the other

hand, ML models are not aware of physical laws, which may result in physically inconsistent model
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predictions. However, they can extract complex physical relationships from available data. Thus,

physics-based models and ML models can be integrated in an innovative manner to better capture

the dynamics of the AM process.

In this chapter, the goal is to enhance the experimental data-driven ML models for AM by incor-

porating the physics knowledge, thus helping the ML model to produce more accurate and physically

meaningful results. Three types of strategies are explored to incorporate physics constraints and

multi-physics FFF simulation results into a deep neural network (DNN), thus ensuring consistency

with physical laws: (1) incorporate physics constraints within the loss function of the DNN, (2) use

physics model outputs as additional inputs to the DNN model, and (3) pre-train a DNN model with

physics model input-output and then update it with experimental data. These strategies help to

enforce a physically consistent relationship between bond quality and tensile strength, thus making

porosity predictions physically meaningful. Eight different combinations of the above three strategies

are explored, and their performance in porosity and bond quality prediction of the FFF-produced

parts is examined.

In summary, several physics-informed and hybrid machine learning models are developed for

porosity and bond quality prediction of FFF parts using physics constraints, physics-based model,

and experimental data, using the three strategies mentioned above. Next, an enhanced physics-based

model is developed to account for realistic filament geometry and the change of geometry during the

printing process (see Section 2.5.2). Lastly, the proposed models are trained and evaluated using

laboratory experiments where FFF parts are printed with varying input conditions, and data is

collected to measure the quality characteristics (bond quality, porosity) of the parts.

3.2 Proposed Methodology

This section develops the proposed physics-informed machine learning (PIML) approaches to

predict the bond formation and mesostructure in FFF-produced parts. The methodology is appli-

cable to any AM process with corresponding data and physical laws for the prediction QoI. The

three components of the methodology are: (a) Physics-based models, (b) Experiments, and (c)

Construction of PIML models.

3.2.1 Physics-Informed Machine Learning (PIML) for Additive Manufacturing

Although physics-based models predicting the temperature evolution, bond formation and mesostruc-

ture evolution of FFF parts are based on physical laws, they introduce bias due to incomplete rep-

resentation of the complex physical process by approximating the reality. In addition, these models
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contain a significant number of model parameters that need to be calibrated using experimental

data [26]. On the other hand, ML models are not aware of physical laws, which may result in

physically inconsistent model predictions. However, they can extract complex physical relationships

from available data. Thus, physics-based models and ML models can be integrated in an innovative

manner to better capture the dynamics of the AM process.

In PIML models, physics knowledge and data are sought to be integrated in a synergistic manner

by leveraging the complementary strengths of both models [86]. Thus, the goal is to improve the

predictions beyond that of physics-based models or ML models alone by coupling physics-based

models with ML models. In the following, three different strategies to combine physics knowledge

and ML models are pursued: (1) incorporate physics constraints within the loss function of the

DNN, (2) use physics model outputs as additional inputs to the DNN model, and (3) pre-train a

DNN model with physics model input-output and then update it with experimental data.

3.2.1.1 Physics-Informed Loss Functions

A direct strategy to improve ML model predictions is by including physics-based loss func-

tions [86]. Consider a PIML model with inputs X and outputs Ŷ trained using physical laws that

are incorporated as constraints into the loss function:

L = LDNN(Y ,Ŷ )+
M

∑
k=1

λphy,kLphy,k(Ŷ ), (3.1)

where LDNN is the regular training loss of a DNN that evaluates a supervised error (e.g., root mean

squared error (RMSE); LDNN(Y ,Ŷ ) =
√

∑n
i=1(Yi − Ŷi)2/n), which measures how far off the predictions

Ŷ are from the observations Y for the n training samples, and Lphy,k is the k-th physics-based loss

function, whose contribution is controlled by a hyperparameter λphy,k and M is the total number of

physics-based loss functions. The inclusion of Lphy,k ensures physically consistent model predictions

(the second term of Eq. (3.1) means physical inconsistency) and can decrease the generalization

error even when there is a small amount of training data [86]. In addition, Lphy,k does not require

experimental observations; the data obtained from the physics model is used to evaluate physics-

based loss functions.

In this work, we enforce five different physics-based loss functions (i.e., five separate physical

relationships, Lphy,k(Ŷ ), where k = {1,2,3,4,5} and Ŷ = (Ŷ1,Ŷ2) are the overall dimensionless neck

diameter (i.e., overall bond quality) and porosity predictions of FFF parts, respectively). These loss
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functions are defined as follows:

Lphy,1(Ŷ ) =
1
N

N

∑
i=1

ReLU(−Ŷ1,i),

Lphy,2(Ŷ ) =
1
N

N

∑
i=1

ReLU(Ŷ1,i −dmax),

Lphy,3(Ŷ ) =
1
N

N

∑
i=1

ReLU(−Ŷ2,i),

Lphy,4(Ŷ ) =
1
N

N

∑
i=1

ReLU(Ŷ2,i −ϕ0,i),

Lphy,5(Ŷ ) =
1
N

N

∑
i=1

ReLU(∆i), (3.2)

where the first four loss functions consider the physical violations related to the overall dimensionless

neck diameter and porosity across N samples and the fifth loss function represents the physical

relationship between the mechanical properties and neck diameter. The physical inconsistencies

in the model predictions are evaluated using these physics-based loss functions. In the first and

third loss functions, negative values of neck diameter and porosity are treated as physical violations.

The second loss function evaluates physically inconsistent dimensionless neck diameter predictions

which are greater than the maximum dimensionless neck diameter dmax = 1. The fourth loss function

penalizes the model when porosity predictions Ŷ2,i are greater than the initial porosity ϕ0,i of ith part.

This is based on the physics knowledge that the total void area decreases as the sintering process

takes place. The fifth physics-based loss function exploits the monotonic relationship between bond

quality and tensile strength of FFF-produced parts. This loss function is constructed by computing

the difference in the sorted dimensionless neck diameter predictions, Ŷ1,sorted, and dimensionless

neck diameter predictions corresponding to sorted tensile strength estimates (σT S(Ŷ2,sorted,ξ )), Ŷ
′
1,i,

i.e., ∆i = Ŷ1,sorted,i − Ŷ
′
1,i. The maximum stress for longitudinal raster orientation, σT S(Ŷ2,ξ ) with

ξ = {σ01,σ02,Cσ} being the material parameters, is computed according to the analytical expression

proposed in Garzon et al. [79] using the porosity predictions:

σT S = σ01

[
exp
(
(1− Ŷ2)

Cσ nl
)
− Ŷ2

]
+σ02(1− Ŷ2), (3.3)

where nl is the number of layers of FFF parts. The tensile strength is constrained when porosity is

equal to 0, i.e., σT S =σ01e+σ02. The overall average neck diameter and tensile strength are positively

correlated, and tensile strength increases monotonically with neck diameter. Whereas, porosity and

tensile strength are negatively correlated (as are porosity and neck diameter). More specifically,
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the model predictions (Ŷ1,i,Ŷ2,i) and (Ŷ1,i+1,Ŷ2,i+1) corresponding to ith and (i+1)th FFF parts can

be used to estimate σT S,i and σT S,i+1. If σT S,i+1 is greater than σT S,i — meaning (i+1)th part has

less voids than ith part (Ŷ2,i+1 < Ŷ2,i)—then Ŷ1,i+1 should be greater than Ŷ1,i as well by exploiting a

key monotonic physical relationship between porosity and tensile strength of FFF-produced parts.

Thus, with the inclusion of these physics-based penalty functions, the neck diameter and porosity

predictions are ensured to be physically meaningful.

3.2.1.2 Physics Model Output as Additional ML Model Input

A physics-based model f phy : X → Ŷ phy can be used to predict the QoI, where Ŷ phy are predicted

estimates of the true response of the system Y . A straightforward approach to combine physics-based

and ML models is to use physics model output Ŷ phy (at the experimental inputs) as additional input

along with inputs X ; i.e., f hyb : Xhyb = [X ,Ŷ phy
]→ Ŷ hyb.

Adding the physics output as an extra input to the DNN model (which is trained using experi-

mental data) is information fusion, where the physics model is an additional source of information

that is consistent with physics (i.e., when the physics model satisfies the constraints mentioned in the

previous subsection). The resulting DNN model can be thought of as a hybrid model that uses the

experimental data to correct the output of the physics model which is an incomplete representation

of the actual physics.

3.2.1.3 Pre-trained PIML Model

In AM, especially in the FFF process with not a high-quality printer, parts have significant

variability in quality. There is also uncertainty in measurement and lack of data due to the high cost

associated with conducting experiments. Thus, data of adequate quality and quantity is important

for good quality model predictions in AM.

In order to leverage the complex physical knowledge inherent in the physics-based models, syn-

thetic data can be generated for multiple input combinations using physics-based models. The

synthetic data can be used to train a ML model, which is used as the initial model to be updated

with experimental data. The transfer of physical knowledge using a pre-trained ML model can

prevent poor initialization due to lack of knowledge of initial choice of ML model parameters prior

to training. This allows the pre-trained ML model to be fine-tuned even with limited observed

data. In addition, it has been shown that using synthetic data from even imperfect physics mod-

els with uncalibrated model parameters can still reduce the amount of experimental training data

needed [87].
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More importantly, the pre-training can use a large amount of training data (with multiple input

parameter combinations) over a wide range of values, which is not possible in experiments that

could be expensive; as a result, the pre-training may help the eventual ML model to have wider

generalization beyond experimental data. This is also an important distinction of the pre-training

strategy from the second strategy. Both strategies use the physics model, but in the second strategy,

the physics model is only used to provide outputs corresponding to the experimental inputs, whereas

in the current pre-training strategy, the physics model is used to provide outputs corresponding to

a much larger set of inputs. In the numerical example in Section 3.3, the pre-training strategy

exercises the physics model over 1525 input combinations, whereas the second strategy above only

employs the physics model over 39 experimental input combinations. However, the advantage of

the pre-training strategy in using a larger input data set (for physics model runs) compared to the

experiments becomes limited if the physics model is computationally expensive.

In this work, the ML model is pre-trained using the outputs of an uncalibrated coupled multi-

physics model (i.e., neck diameter and porosity). Further, the transfer of learned physical knowledge

is shown to be valuable even when the input parameters of the synthetic data generated are quite

different than the experimental observations. Once the ML model is pre-trained, it is fine-tuned

using limited experimental observations. This helps to learn a 3D printer-specific physical process

faster and with less samples.

The three proposed strategies to predict the QoIs are shown in Fig. 3.1. Figure 3.1(a) shows the

first method, where the physical knowledge is included through constraints within the loss function

of a DNN trained with experimental data. Figure 3.1(b) shows the second method, where the

outputs of the physics model are additional inputs to the DNN model. Figure 3.1(c) shows the third

method, where a DNN model is pre-trained with data generated using the physics-based model and

then updated using experimental data. The proposed PIML strategies can be applied to any AM

process by leveraging the physical constraints or physics-based models.

3.2.1.4 Combination of PIML Strategies

Based on the proposed three strategies to incorporate physics knowledge into the ML model,

eight separate ML models can be constructed:

1. DNN

2. DNNLphy

3. DNNhyb

4. DNNupd

5. DNNhyb,Lphy

6. DNNupd,hyb
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Figure 3.1: PIML strategies: (a) incorporate physics constraints within the loss function of the
DNN, (b) use physics model outputs as additional inputs to the DNN model, and (c) pre-training a
DNN model with physics model input-output and updating it with experimental data

7. DNNupd,Lphy 8. DNNupd,hyb,Lphy

In model 1, a deep neural network DNN is trained using only experimental data. The inputs X

for this basic DNN model are the process parameters, printer extrusion temperature, speed, layer

height, filament width, length, number of layers, and number of filaments per layer; and the outputs

are overall dimensionless neck diameter and porosity. These inputs and outputs are the same as

those used in the physics-based model f phy. Model 2 (DNNLphy) pursues the first strategy: physical

knowledge related to the FFF process is included through constraints within the loss function of the

DNN as shown in Eq. (3.1). Model 3 pursues the second strategy: a hybrid physics-based neural

network DNNhyb is trained using the outputs Ŷ phy of f phy as extra inputs in addition to X , i.e.,

Xhyb = [X ,Ŷ phy
]. Model 4 (DNNupd) pursues the third strategy, where the weights and biases (model

parameters) of all the layers excluding the input layer of the pre-trained network f pre (which is

trained with the coupled multi-physics model input-output described in Section 3.2.1.3) are used as

initial parameters for the DNN model and these parameters are updated with experimental data.

The architecture of the pre-trained model and the updated models (Model 4, 6, 7, and 8) is

the same (except the input layer which changes with different numbers of inputs). The rest of the

models (5-8) represent the combinations of the three strategies. Models 5, 6, and 7 each combine any

two of the three strategies, whereas model 8 combines all three strategies. Model 5 (DNNhyb,Lphy)

combines the use of physics model outputs as additional inputs and the incorporation of physics
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constraints Lphy within the loss function of the DNN. Model 6 (DNNupd,hyb) combines second and

third strategies, where the optimized model parameters of f pre are used as the initial values and the

outputs Ŷ phy of f phy are included as additional inputs. DNNupd,hyb has the same number of inputs

as DNNhyb (i.e., both include the physics model output as additional input) and uses the optimized

model parameters of all the layers excluding the input layer of f pre as initial parameters before

updating with experimental data. Model 7 (DNNupd,Lphy) combines first and third strategies. The

model parameters obtained from f pre are updated using the experimental data by minimizing the

augmented loss function shown in Eq. 3.1. Model 8 (DNNupd,hyb,Lphy) combines the use of physics

model outputs as additional inputs to the updated DNN model DNNupd (which results in DNNupd,hyb)

and the physics constraints Lphy are incorporated within the loss function of DNNupd,hyb.

3.3 Numerical Example

In this section we demonstrate the implementation of the proposed methodology to FFF-produced

parts, and investigate the performance of eight PIML models described in Section 3.2.1.4. The results

show that the proposed PIML models are capable of achieving physically meaningful and accurate

model predictions, and require a smaller number of experiments.

3.3.1 Problem Setup

First, data is collected from laboratory experiments in order to build the prediction models for

the QoI using ML techniques. The shape of the part is conceptualized, a CAD model is visualized,

and then sliced in a slicing software using the defined FFF process parameters and printing path.

The print quality depends on the adhesion of the first layer with the build plate [26]. Thus,

several measures are needed to ensure proper adhesion. For example, the printing environment is

modified by adding an enclosure to the 3D printer to isolate the printing environment from external

effects. Kapton tape is used on the glass build plate to enhance the adhesion of Acrylonitrile

butadiene styrene (ABS) with the build plate. After these modifications, the part is printed and

then measured with appropriate monitoring techniques.

A commercial material Ultimaker Black ABS was extruded from an Ultimaker 2 Extended+

3D printer to manufacture parts with unidirectionally aligned filaments. Using Latin hypercube

sampling, 20 sets of process parameters are generated. The ranges considered for the variables are

printer extrusion temperature Te: (210◦C - 260◦C), and extrusion speed Se: (15 mm/s - 46 mm/s).

Since the values of material properties ξ do not affect the outcome of Lphy,5(Ŷ ), the values calibrated

by Garzon et al. [79] are used. All specimens were sectioned at the midpoint zcut = L/2 (since
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the statistical properties of QoIs along the length of the specimens were constant) to analyze the

mesostructural feature of interest with the use of microscopy images processed through the ImageJ

software [88]. The collected experimental data is subsequently used to create DNN prediction models.

For the physics-based models, the surface tension of ABS P400 at 240◦C is assumed 0.029 N/m as

reported by Bellehumeur et al. [78] with a temperature dependence ∆Γ(T )/∆T =−γ N/m · K, where

the model parameter γ = 0.00345. The temperature dependent material viscosity η(T ) is given by

η(T ) = ηr exp[−β (T −Tr)], where the material viscosity at the reference temperature (Tr = 240◦C)

is η(T = Tr) = ηr = 5100 Pa · s, β = 0.056 as selected by Sun et al. [89]. The build plate temperature

was constant and set to 110◦C.

3.3.2 Model Training and Prediction

The eight DNN models were implemented using the Keras package [90] with Tensorflow backend.

The pre-trained model, f pre, is first trained with physics model input-output data consisting of 1525

input parameter combinations over a range of experimental values, i.e., (210◦C ≤ Te ≤ 260◦C, 15

mm/s ≤ Se ≤ 46 mm/s ), and then updated for different combinations of the proposed strategies

using observed data. (Note that in contrast only 39 physical experiments with 20 unique input

parameter combinations are available, see Fig. 3.2). The input data of the training and test sets

are normalized prior to the training of the DNN models (the output quantities are dimensionless

and between 0 and 1), and the hyperparameters of these models are tuned with grid search (λphy =

0.3,0.3,0.15,0.15,0.008). Fully-connected DNN models with 2 hidden layers and 10 neurons in each

hidden layer are constructed and the weights of all neurons in these models are uniformly randomly

initialized between 0 and 1. L1 and L2 regularizers are used as a penalty term to avoid overfitting.

The Rectified Linear Unit (ReLU) activation function and Adam optimizer are used to perform

stochastic gradient descent in learning the model parameters.

The number of epochs for the convergence of training is approximately the same for each model

except f pre, which converges in 40 epochs. The computation time for training of each model is on

average 15 sec using a desktop computer (Intel® Xeon® CPU E5-1660 v4@3.20GHz with 32 GB RAM

and GPU NVIDIA Quadro K620 with 2 GB).

3.3.3 Model Performance

In order to measure the accuracy of the trained DNN models, the model predictions of the test

data are compared with the observed overall neck diameters and porosity. Each model is trained

30 times and compared against the FFF experimental data not used for training (i.e., data from
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Figure 3.2: Design of experiments for physics-based simulations and experiments

19 parts) to evaluate the mean and standard deviation of RMSE and physical inconsistency. The

effect of the training data size on the RMSE of different models is shown in Table 3.1. Here, the

models are trained with 4, 6, 8, 10, and 20 experimental data points (i.e., 20%, 30%, 40%, 50%,

and 100% of the available training data). The RMSE values of the coupled-physics model based on

the sintering model developed by Gurrala et al. [80] and the new proposed one are 0.173 and 0.112,

respectively, which are larger than the ML models due to the approximations used to represent the

FFF process and bias in the model. The mean RMSE value of f pre, which is trained with physics

model input-output data consisting of 1525 input parameter combinations is 0.362. The RMSE

value of f pre is greater than the RMSE of f phy because the pre-trained model is an approximation of

the physics model, which causes uncertainty and bias. The RMSE of the basic DNN model is about

0.025 when we use all the parts in the training set. The RMSE of the basic DNN model is better

than f pre and f phy because experimental data is directly used as the training data for the basic DNN

model, whereas f pre and f phy use the approximate physics model to generate either pre-training data

or additional input to the ML model.

The physics-based loss functions allow DNNLphy and DNNhyb,Lphy to achieve physically meaningful

results with a lower value of average RMSE than DNNhyb and improve the generalization perfor-

mance. The DNNhyb model performs similar to DNN, which shows that the physics model outputs do

not improve the learning process significantly. The DNNupd and DNNupd,hyb models achieve a similar

performance improvement as the DNN models that include physics-based loss functions. However,

the models without physics constraints produce physically inconsistent results as shown in Table 3.1.

The results show that pre-training the PIML model improves the performance, and the improvement
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Table 3.1: Effect of different amounts of training data on the RMSE of different ML models

Mean Physical
Model 20% 30% 40% 50% 100% Inconsistency

f phy - - - - 0.112 0.000
1. DNN 0.101(±0.022) 0.084(±0.018) 0.044(±0.017) 0.028(±0.004) 0.025(±0.005) 0.201
2. DNNLphy 0.055(±0.017) 0.050(±0.011) 0.025(±0.005) 0.024(±0.007) 0.021(±0.005) 0.000
3. DNNhyb 0.098(±0.021) 0.078(±0.024) 0.044(±0.016) 0.028(±0.007) 0.024(±0.005) 0.195
4. DNNupd 0.058(±0.012) 0.049(±0.011) 0.026(±0.005) 0.025(±0.005) 0.020(±0.005) 0.133
5. DNNhyb,Lphy 0.059(±0.018) 0.041(±0.012) 0.026(±0.004) 0.023(±0.004) 0.020(±0.005) 0.000
6. DNNupd,hyb 0.057(±0.014) 0.047(±0.011) 0.026(±0.003) 0.026(±0.005) 0.024(±0.006) 0.134
7. DNNupd,Lphy 0.054(±0.011) 0.045(±0.013) 0.026(±0.003) 0.025(±0.005) 0.021(±0.005) 0.000
8. DNNupd,hyb,Lphy 0.053(±0.013) 0.040(±0.010) 0.025(±0.004) 0.023(±0.004) 0.018(±0.003) 0.000

is relatively larger as the amount of observed data gets smaller. Additionally, the models that are

pre-trained (DNNupd and DNNupd,hyb) reach a physically more consistent initialization when they are

updated with experimental data even without using physics constraints, compared to models that

are not pre-trained, DNN and DNNhyb. The combination of all strategies (DNNupd,hyb,Lphy) allows

the model to get closest to the ground truth.

The prediction accuracy (w.r.t. neck diameter and porosity) of different models trained with

100% of the experimental data is shown in Fig. 3.3. The x and y-axis represent the physical incon-

sistency and the mean and standard deviation of RMSE, respectively. Figure 3.3 shows that models

with physics-based loss functions produce physically consistent results. The incorporation of the

physics knowledge using either the first or third strategy enables the models 2, 4-8 to generalize to

configurations unseen in the training set.
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Figure 3.3: Performance and physical inconsistency of proposed models

In order to further analyze the improvement in model predictions, the predicted dimensionless

overall neck diameter and porosity for the test set that comprises 19 FFF parts are visualized in
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Fig. 3.4. Porosity predictions of model 1 (DNN) have large physical inconsistency (Fig. 3.4(a)). For

instance, the blue triangle with the lowest porosity prediction has a negative value (i.e., (Ŷ1,Ŷ2) =

(0.52,−0.025)). Model 2 (DNNLphy) predictions are physically consistent due to enforced physics con-

straints, but model 3 (DNNhyb) predictions also do not follow a monotonic decreasing relationship.

Model 4 and 6 (DNNupd and DNNupd,hyb) have some physically inconsistent predictions. Figure 3.4(b)

shows that DNNhyb,Lphy , DNNupd,Lphy and DNNupd,hyb,Lphy produce physically consistent model pre-

dictions, i.e., porosity and neck diameter predictions follow a monotonically decreasing relationship.
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Figure 3.4: Comparison of model prediction with test data: (a) for the first 4 models, and (b) for
the last 4 models

3.4 Summary

In this chapter, three strategies for physics-informed machine learning (PIML) are investigated

for predicting the quality-related metrics of FFF-produced parts. First, a physics-based sintering

model is developed to predict the overall average neck diameter and porosity of FFF parts using

the temperature evolution of filaments, material properties, part geometry, and process parameters

as inputs. The developed sintering model offers two improvements over existing models: (i) consid-

eration of realistic filament geometry, and (ii) allowing the filament geometry to change during the

printing process. Next, several PIML models are developed to predict the bond quality and poros-

ity of FFF parts by leveraging three strategies for incorporating physics knowledge into the DNN

model: (1) physics-based loss functions, (2) using the outputs of the coupled multi-physics model as

additional inputs to the DNN, and (3) pre-training a DNN with data generated using physics-based

model and then updating it with experimental data. The physics-based loss functions exploit the

relationship between bond quality and tensile strength of the FFF parts.
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The numerical results show that the incorporation of physics knowledge not only improves the

prediction accuracy while producing physically meaningful results but also allows accurate model

predictions even with smaller amounts of experimental data. Thus, the proposed approach helps

to fill the physics knowledge gap in the ML model while leveraging the capability of ML to extract

complex process-material-geometry relationships in AM, and correcting for the approximation in

the physics-based model.
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CHAPTER 4

Sensitivity Analysis with Hybrid Machine Learning Models1,2

4.1 Introduction

When computational models (either physics-based or data-driven) are used for the sensitivity

analysis of engineering systems, the sensitivity estimate is affected by the accuracy and uncertainty

of the model. In high dimensional problems, even the use of a surrogate model for global sensitiv-

ity analysis (GSA), which repeatedly executes the code by suppressing some variables and running

through the range of other variables, may be computationally demanding since the number of ex-

ecutions of the code increases rapidly with the number of inputs [91–94]. This objective considers

GSA for situations where both a physics-based model and experimental observations are available,

and investigates physics-informed machine learning (PIML) strategies to effectively combine the

two sources of information in order to maximize the accuracy of the sensitivity estimate even with

smaller amounts of experimental data.

The uncertainty sources affecting model prediction include (a) epistemic uncertainty due to lack

of knowledge (arising from either data or model inadequacies), and (b) aleatory uncertainty due to

the inherent variability in the system properties or the external inputs. Global sensitivity analysis

(GSA) [20] aims to provide a quantitative assessment of the relative contribution of each uncertainty

source to the uncertainty in the model response [21–23]. Much of the GSA literature has focused

on variability in the inputs and their effects on output variability; the extension of GSA to include

epistemic uncertainty sources (data, model) is recent and sparse [91, 95–98]. Model outputs can

have uncertainty even for a fixed input when there exists model uncertainty.

Expanding GSA to consider both aleatory and epistemic uncertainty sources is beneficial in

supporting resource allocation decisions. If the contribution of epistemic uncertainty is found to be

significant, then it may be valuable to collect more data or refine the physics model to reduce the

epistemic uncertainty and thus its contribution to the output uncertainty. Several GSA studies have

developed auxiliary variable-based approaches to include both aleatory and epistemic uncertainty

sources at a single level instead of using nested simulations, thus achieving both computational

efficiency and direct ranking of the different sources of uncertainty to support resource allocation
1Adapted with permission from: Kapusuzoglu, B., & Mahadevan, S., “Information fusion and machine learning for

sensitivity analysis using physics knowledge and experimental data,” Reliability Engineering & System Safety, vol.
214, no. 107712, 2021.

2© 2021 by Elsevier Ltd.
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decision-making. The auxiliary variable is used to transform one-to-many input-output mapping

to one-to-one mapping, thus facilitating the computation of Sobol’ indices for both aleatory and

epistemic sources [95]. This idea is expanded in [96] to include several epistemic sources, such

as input statistical uncertainty, surrogate model error, physics model discrepancy, and numerical

solution error, and to systems with time series inputs and outputs.

When the model is computationally expensive, it is often replaced with a surrogate model to fa-

cilitate the estimation of Sobol’ indices, since such computation requires many input-output samples

from the model; the surrogate model introduces additional uncertainty. Several types of surrogate

models are used in the literature, e.g., polynomial chaos expansion (PCE), Gaussian process (GP)

regression, neural networks, etc., to train a parametric relationship between the inputs and the out-

puts. The quality and quantity of the training data affect the accuracy of these surrogate models,

which directly affects the uncertainty in the model output [91, 97, 98]. Thus, it is important to

also include the contribution of surrogate model uncertainty to the output uncertainty in GSA. In

Le Gratiet et al. [91] for example, the Gaussian process surrogate model uncertainty is included in

the Sobol’ index estimates using multiple realizations of the GP model prediction, which helps to

construct prediction intervals for the Sobol’ index estimates.

Three scenarios of model and data availability can be considered for GSA: (1) use of a physics-

based computational model alone, (2) use of available input-output data alone (either from experi-

ments or previous simulations), or (3) use of both physics model and available experimental data. A

straightforward model-based approach to estimate Sobol’ indices is to use a double-loop Monte Carlo

simulation (MCS) [63]. In order to reduce the cost associated with the double-loop MCS, analytical,

spectral and efficient sampling-based methods have been developed. The methodology developed

by Sudret [64] approximates the original physics model by a PCE and estimates the Sobol’ indices

by using the PCE coefficients. Chen et al. [65] proposed analytical formulas to compute Sobol’ in-

dices using a GP surrogate model with input variables that follow normal or uniform distributions.

The improved FAST method [66] combines the classical FAST method [21] with random balanced

design [67] for generating samples to evaluate Sobol’ indices.

In some problems, input-output data may be already available instead of having to simulate a

physics model expressly for the purpose of GSA. Such data may be available from experiments, or

real-world observations, or Markov Chain Monte Carlo (MCMC) sampling during Bayesian model

calibration, or MC sampling during reliability analysis, etc. In such cases, data-driven methods have

been proposed to directly compute the Sobol’ indices based on available input-output samples instead

of simulation runs of the physics model. A GSA method based on ANOVA using factorial design of
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experiments is developed by Ginot et al. [99]. The proposed method results in same values as the

Sobol’ index since the variance decomposition used in the Sobol’ index estimations is same as the one

used in the classical ANOVA [100]. In high dimensional problems, even the use of a surrogate model

for GSA, which repeatedly executes the code by suppressing some variables and running through the

range of other variables, may be computationally demanding since the number of executions of the

code increases rapidly with the number of inputs [91–94]. The computational cost of most sample-

based methods is proportional to the number of model inputs. Li and Mahadevan [101] proposed a

modularized method, which has a computational cost that is not proportional to the model input

dimension, to estimate the first-order Sobol’ indices based on stratification of available input-output

samples. DeCarlo et al. [102] proposed an importance sampling approach by introducing weights to

different data points to estimate Sobol’ indices from available data using Sobol’ sequences to reduce

the number of simulations; this method computes both first-order and higher order indices, and is

able to include correlated inputs. Approximations to the joint probability distribution of inputs and

outputs such as multivariate Gaussian, Gaussian copula, and Gaussian mixture have recently been

found to give rapid estimation of Sobol’ indices [92].

The third scenario is of interest in this chapter, where both a physics-based model and some

experimental or real-world data are available. One option, if adequate data is available, is to simply

build a regression or machine learning (ML) model based on the observation data, and use this model

to perform GSA. Multiple recent studies have pursued data-driven ML models in situations where

abundant experimental data or real-world observations are available due to advances in modern

sensing techniques. Generally, the construction of data-driven ML models does not require in-depth

knowledge of the complex physics inherent in the physical process. ML models can learn complex

systems using available observations, but the accuracy of these models depends on the quality and

quantity of the data. If the available data is sparse, then the complexity of the process may not

be fully captured. Further, since purely data-driven ML models do not explicitly consider physical

laws, they can produce physically inconsistent results. In such cases, incorporating physics knowledge

within ML models may improve the accuracy and efficiency of GSA computations. The combined use

of physics-based and ML models has been shown to achieve more accurate and physically consistent

predictions by leveraging the advantages of each method [86, 87, 103, 104].

In this chapter, we incorporate physics knowledge into the ML models to better capture the

physics of the process by leveraging physical laws while improving the generalization performance

of data-driven models. Two types of strategies are considered for incorporating physics knowledge

within ML models: (1) incorporating loss functions in the ML model training to enforce physics
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constraints, and (2) pre-training the ML model with data generated by the physics model and then

updating it with experimental data. Note that the first strategy does not use the physics model

but only constraints for the output to obey physical requirements; whereas, the second strategy

explicitly uses the physics computational model. Two types of ML models are considered in this

chapter, namely, Gaussian process (GP) and deep neural network (DNN). These two models are

selected in order to represent two different kinds of available ML techniques; the GP model is one of

the surrogate models commonly used in uncertainty quantification (UQ) studies, and DNN belongs

to the emerging class of deep learning algorithms revolutionizing the field of artificial intelligence,

spurred by recent advances in sensing, communication and computational resources. Four different

physics-informed machine learning (PIML) models are developed for each type (i.e., GP or DNN)

to predict the output quantity of interest (QoI), through combinations of the two strategies. The

resulting GSA procedure incorporates the effect of uncertainty in the ML or PIML model, and the

various models and strategies are compared in terms of accuracy and uncertainty in the GSA results

and their computational demand.

In summary, the contributions of this chapter are as follows:

• Physics knowledge and experimental observations are fused in order to maximize the accuracy

of sensitivity estimates.

• Two PIML strategies and their combinations are investigated for global sensitivity analysis

using both physics knowledge and experimental data.

• Four different models are built for each of GP and DNN, and the uncertainties in these models

are included in the Sobol’ indices computation.

• The accuracy, uncertainty and computational effort of GSA with different options for the ML

and PIML models are evaluated and compared.

4.2 Proposed Methodology

PIML models seek to incorporate physics knowledge or constraints within the data-driven ML

models. When a mechanistic, physics-based model is also available, complementary strengths of

both mechanistic and ML models can be leveraged in a synergistic manner [103]. In the latter case,

the aim is to improve the predictions beyond that of physics-based models or ML models alone by

coupling physics-based models with ML models. Thus two different strategies that are developed in

Chapter 3 to combine physics knowledge and ML models can be considered: (1) incorporate physics
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constraints in the ML models, and (2) pre-train and update the ML models using physics model

input-output and experimental data, respectively.

The two proposed strategies to predict the QoI are shown in Fig. 4.1. Figure 4.1(a) shows the

first method, where the physical knowledge is included through constraints within the loss function

of an ML trained with only experimental data. Figure 4.1(b) shows the second method, where an

ML model is first trained with data generated using the physics-based model and then updated using

experimental data. Figures 4.1(c) and 4.1(d) show the trained ML model predictions (Ŷ ) for the

two proposed strategies, respectively. The proposed PIML strategies can be applied to any physical

system by leveraging the related physical constraints or physics-based models.

(a) (b)

Extra loss terms

Enforcing physics 

constraints:

Training

𝐗obs, 𝐘obs ML

Prediction

(c) (d)

ℒphy
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Pre-training:

Updating:

𝐗obs, 𝐘obs

𝐗 MLupd ෡𝐘

Figure 4.1: PIML strategies: (a) incorporating physics-based loss functions in the ML models to
enforce physics constraints, (b) pre-training an ML model with physics model input-output (Xphy,
Yphy) and updating it with experimental training data (Xobs, Yobs), (c) the trained ML model
prediction (Ŷ), (d) updated ML model prediction (Ŷ)

The proposed methodology for sensitivity analysis, using both physics knowledge and experi-

mental data, consists of the following steps:

1. Implementation of PIML strategies in ML models

2. Variance quantification in ML model prediction

3. Sobol’ indices computation with ML model prediction variance

The following subsections describe these steps in detail.
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4.2.1 Implementation of PIML Strategies in ML Models

Based on the proposed two strategies to incorporate physics knowledge into the ML model, four

separate ML models can be constructed for each type of surrogate model considered here (i.e., GP

and DNN):

1. GP

2. GPLphy

3. GPupd

4. GPupd1,Lphy

5. DNN

6. DNNLphy

7. DNNupd

8. DNNupd,Lphy

These different models cover the following options: model trained with experimental data alone,

models trained with PIML strategies 1 or 2 alone, and models trained with both PIML strategies

together. The implementations of PIML strategies 1, 2, and their combination are different for the

GP models vs. the DNN models. Models 5-8 are developed earlier in Chapter 3. Therefore, the

following subsection only describe how the PIML strategies can be implemented for GP surrogate

models.

4.2.1.1 Implementation of PIML in GP Models

In Model 1, denoted as GP, only experimental observations are used for training. The hyperpa-

rameters of the GP model (process variance, correlation length scale along each input dimension, and

trend function coefficients, and also measurement error variance if unknown) are optimized during

training by maximizing the log marginal likelihood function shown in Eq. (2.13). In calculating the

likelihood, the difference between the true response of the system Ytrue and the observed response

Yobs is attributed to the observation error εobs, which is often treated as a zero-mean Gaussian

random variable with variance σ2
obs.

Model 2, denoted as GPLphy , incorporates the first PIML strategy by enforcing physics constraints

during the optimization of the GP model hyperparameters. More specifically, the physics constraints

are included during the maximization of the log marginal likelihood function (Eq. (2.13)) while

inferring the hyperparameters of the GP model. Thus, the training of Model 2 is achieved by

maximizing the function in Eq. (4.1):

LGP = log p(Yobs|Xobs;Θ)−λphyLphy(Ŷ), (4.1)
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where Ŷ is the GP model prediction. Note that since LGP is to be maximized, the second term

corresponding to the physics constraint has a negative sign. Gaussian process modeling under

constraints has been studied in the literature [105–109]. Veiga et al. [106] developed a framework

that incorporates bound, monotonicity and convexity constraints in GP modeling. Golchi et al. [107]

developed a Bayesian approach to GP modeling that incorporates the monotonicity constraint. The

need to obtain the monotonicity information at each of the points in the derivative input set can

slow down the computation as the input dimension increases since the size of the covariance matrix

depends on the input dimension. This chapter does not use the methods described above. Instead,

the chapter proposes a different method that penalizes violations of the physics constraints by

introducing a regularization term in the likelihood function. This appears to be the first study to

apply the penalty approach to the likelihood function of the GP model. Further, the computational

effort of the proposed method (i.e., the calculation of the regularization term) does not increase with

the problem size since the regularization term does not need the inverse of the covariance matrix.

The current work considers two different approaches for the second PIML strategy. Both ap-

proaches use a pre-trained model, obtained using the physics model input-output data. In the

first approach, the model parameters are updated using the experimental data; and in the second

approach, a discrepancy correction term is added to the pre-trained model. The first step of pre-

training using data generated by the physics model can be thought of as similar to a lower fidelity

model, and the second step of improving the pre-trained model (either by parameter updating or

by adding a discrepancy term) can be thought of as similar to incorporating higher fidelity data

(experimental data, in this case) to improve the model. Various multi-fidelity modeling strategies

with different combinations of the low- and high-fidelity models have been studied in the literature,

such as filtering, fusion, and adaptation [110]. The discrepancy correction approach pursued here

adopts the simplest strategy, namely, additive correction, where a model discrepancy term is added

to the low-fidelity model [111]:

fHF(X) = fLF(X)+δ (X;θδ ) (4.2)

where fHF(·) and fLF(·) are the high and low fidelity models, respectively, X is the input to the

model, and θδ are the parameters of the discrepancy correction term. The correction term can be

obtained using any suitable surrogate modeling technique.

Model 3, denoted as GPupd, pursues the first approach of the second PIML strategy, where a GP

model is pre-trained using the coupled multi-physics model input-output and then updated with

experimental data. Then, the model parameters of this pre-trained network are updated using the
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experimental data.

An alternative approach, denoted as GPMF, pursues the second approach of the second PIML

strategy, i.e., it pre-trains a GP surrogate model with data generated from the physics model,

then improves the surrogate using experimental data. When the physics model is computationally

expensive, it is replaced by a cheaper surrogate model. In Model 3, a GP surrogate model is used

to approximate the original physics model. The accuracy of the surrogate model prediction depends

on the quality and quantity of the training data generated by the original physics model. Following

the procedure described in Section 2.3, the surrogate model error (εδ (X)) can be incorporated as

follows:

Ym(X) = Ŷm(X)+ εδ (X), (4.3)

where Ŷm is the surrogate model prediction.

A simple situation is considered in this section. There is no calibration of the physics model

parameters here; only the discrepancy term is needed. (In other words, the physics model parameters

are already established). In that case, the model discrepancy can be evaluated for different input

values of experimental tests and realizations of observation errors as follows:

δ (X) = Yobs(X)− εobs(X)− Ŷm(X)− εδ (X). (4.4)

Moving the surrogate model error εδ (X) to the left-hand side, we can express the difference

between the actual response and GP model prediction as

δ̂ (X) = δ (X)+ εδ (X) = Yobs(X)− εobs(X)− Ŷm(X). (4.5)

In this work, a second GP model is trained for δ̂ (X) in terms of the inputs. Thus two GP models

are trained in Model 3. The first GP model is constructed using the physics model input-output

data, and predicts Ŷm. The second GP model is constructed using the experimental data and the

corresponding surrogate model predictions, and predicts δ̂ (the difference between the surrogate

model prediction and actual system response).

The GP model for the model discrepancy captures the combined contribution of measurement

error, physics and surrogate model errors for a given prediction. Thus, the predictions of the first

GP model (pre-trained) are corrected with the second GP model predictions (δ̂ ) representing the
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model discrepancy term and can be written as

Ŷ(X) = Ŷm(X)+ δ̂ . (4.6)

Model 4, denoted as GPupd,Lphy , combines both PIML strategies for GP, where the optimized

model parameters of the pre-trained model based on the physics model input-output are used as the

initial values. The pre-trained model is corrected with δ̂ and the physics constraints are enforced

within the correction. The first GP model is trained using the input-output samples from the physics

model to predict Ŷm. Then, using the experimental data, the second GP model is constructed by

enforcing the physics constraints during the optimization of its hyperparameters. These model

parameters are updated using the experimental data by minimizing the augmented loss function

shown in Eq. (4.1) which consists of both the training loss function and the physics constraint loss

terms. The prediction of the updated model is Ŷ, given by the sum of the predictions of the two

GP models.

4.2.2 Variance of GP and DNN Prediction

In general, every surrogate model has uncertainty in prediction, whether acknowledged or not.

In the GP models, the prediction at a given input is expressed by a normal distribution with a mean

and variance. In order to quantify the uncertainty in the GP prediction, we can sample multiple

realizations of the Gaussian process. Note that this only captures the variance of the GP prediction,

not the bias, which can be evaluated by comparing against validation data.

In the DNN models, the estimates of the model parameters (neuron weights w) have uncertainty,

and this uncertainty depends on the available training data. When the neural network parameters

are represented using distributions (to reflect the epistemic uncertainty) instead of deterministic

values, the model is referred to as a Bayesian neural network (BNN) [40–42] (see Section 2.2.3).

The sensitivity estimate results depend on the dropout rate. The main reason for this is that the

model is regularized and it underfits the data as it is over-regularized. Further, both the accuracy

and uncertainty of the sensitivity estimates also depend on the number of training epochs, and the

architecture of the network. If the model is not fully trained, it will also result in underfitting,

leading to larger bias and variance in the prediction.
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4.2.3 Sobol’ Indices Computation with Model Uncertainty

This section discusses the incorporation of ML model prediction variance within the estimation

of Sobol’ indices using the GP and DNN models.

When the training data is noise-free, the GP predictions at the training points have zero variance

and at other points the variance is non-zero. The prediction at any point is given by a normal

distribution with a mean and variance. This prediction uncertainty can be captured by sampling

multiple realizations of the GP model, which can then be used in GSA. The model uncertainty

pertaining to the GP model is propagated to the Sobol’ index calculations using the following

estimator (see [91]):

SGP
m =

VXi

(
EX
[
yP(X)|X′])

V
(
yP(X)

) ≈
1
m ∑m

k=1 yP(Xk)yP(X′
k)−

1
m ∑m

k=1 yP(Xk)∑m
k=1 yP(X′

k)

1
m ∑m

k=1 yP(Xk)2 −
[ 1

m ∑m
k=1 yP(Xk)

]2 , (4.7)

where yP(X) is a realization of the predictive distribution shown in Eq. (2.11) trained using experi-

mental data, and Xk and X′
k are the kth samples of the random vectors X and X′.

The distribution of SGP
m can be computed by sampling NZ realizations from the Gaussian predictive

distribution YP(X) numerically using Algorithm 1.

Algorithm 1 Estimation of the distribution of SGP
m using GP models

1: Generate two samples Xk and X′
k (k = 1, . . . ,m) of the random vectors X and X′.

2: for p = 1,2, . . . ,NZ do

3: Sample a realization yP(x) of YP(X) with x = {(xk)k=1,...,m,(x′k)k=1,...,m}.

4: Compute ŜGP
m,p using Eq. (4.7).

5: end for

return (ŜGP
m,p)p=1,2,...,NZ .

The output of Algorithm 1 (ŜGP
m,p)p=1,2,...,NZ is a sample of size NZ , where m is the number of Monte

Carlo samples. Thus, the mean and variance of sensitivity estimates obtained using the GP models

are defined as follows, respectively:

µSGP
m

=
1

NZ

NZ

∑
p=1

ŜGP
m,p, (4.8)

σ2
SGP

m
=

1
NZ

NZ

∑
p=1

(ŜGP
m,p −µSGP

m
)2.

A similar approach can be implemented in the DNN models with the use of MC dropout (with a
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chosen dropout rate). However, in contrast to the GP models, where we sample from a multivariate

normal distribution to quantify the uncertainty in the Sobol’ index estimates, the sampling imple-

mentation is different in the DNN models. In the DNN models, we randomly set units of the network

to zero and generate predictions using the remaining units of the network as shown in Algorithm 2.

The neuron weights can be drawn from the approximate posterior ŵ ∼ qθ (w) to obtain the model

outputs of a DNN with MC dropout denoted as G ŵ(X) = Ŷ, where Ŷ is the predictive mean,

The predictive posterior given in Eq. 2.15 can be defined as follows:

p(Ŷ|X̂,XT ,YT ) = N (Ŷ;G ŵ(X),σ2I) (4.9)

where σ2 = (2Nλ )/((1− pd)l2) is the noise term [47], l being the prior length-scale, and λ is the

regularization strength used in typical loss functions. Dropout can be interpreted as a variational

Bayesian approximation and the minimization objective is defined by [112]

L (θ , pd) =− 1
N

N

∑
i=1

log p(Ŷi|G ŵ(Xi))+
1− pd

2N
||θ ||2 (4.10)

where θ is the set of distribution’s parameters to be optimized (i.e., weights of the network).

The predictive mean and predictive uncertainty are estimated by collecting the results of stochas-

tic forward passes through the model. The mean prediction of the model with Nd samples can be

approximated by

E(Y)≈ 1
Nd

Nd

∑
t=1

G ŵ(X), (4.11)

and the variance of the prediction is estimated by

Var(Y)≈ σ2 +
1

Nd

Nd

∑
t=1

G ŵ(X)T G ŵ(X)−E(Y)TE(Y). (4.12)

Similar to Eq. (4.7), the uncertainty in the DNN model can be propagated to the sensitivity

calculations using the following estimator:

SDNN
m =

1
m ∑m

k=1 G ŵ(Xk)G
ŵ(X′

k)−
1
m ∑m

k=1 G ŵ(Xk)∑m
k=1 G ŵ(X′

k)
1
m ∑m

k=1 G ŵ(Xk)2 − 1
m ∑m

k=1(G
ŵ(Xk))2

, (4.13)

where G ŵ(X) denotes the deep neural network (DNN) with MC dropout and all the other terms

have the same definition as Eq. (4.7). The model uncertainty is propagated to the calculation of

the sensitivity estimates by directly using the results based on stochastic forward passes through a
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dropout-reduced DNN instead of the predictive mean and predictive uncertainty.

Algorithm 2 Estimation of the distribution of SDNN
m using DNN models with MC dropout.

1: Generate samples Xk and X′
k (k = 1, . . . ,m) of the random vectors X and X′.

2: for p = 1,2, . . . ,Nd do

3: Perform a stochastic forward pass through the network G ŵ(X) using MC dropout and calcu-

late the model prediction Ŷ = G ŵ(X).

4: Compute ŜDNN
m,p using Eq. (4.13).

5: end for

return (ŜDNN
m,p )p=1,2,...,Nd .

The output of Algorithm 2 (ŜDNN
m,p )p=1,2,...,Nd is a sample of size Nd . Thus, the mean and variance

of sensitivity estimates obtained using DNN models are defined as follows, respectively:

µSDNN
m

=
1

Nd

Nd

∑
p=1

ŜDNN
m,p , (4.14)

σ2
SDNN

m
=

1
Nd

Nd

∑
p=1

(ŜDNN
m,p −µSDNN

m
)2.

In summary, two types of PIML strategies (developed in Chapter 2) are implemented in two types

of ML models (GP and DNN), in order to evaluate the accuracy and uncertainty of the sensitivity

estimates in GSA. Eight different PIML models are developed by leveraging the two PIML strategies.

The accuracy of these models can be assessed by comparison against validation data, whereas the

variance of the sensitivity estimates can be quantified using Algorithms 1 and 2 and Eqs. 4.7 to 4.14.

The different models have different training strategies and different numbers of parameters, both

of which will affect the accuracy and uncertainty of the sensitivity estimates. These differences are

assessed in detail in the next section.

4.3 Numerical Example

4.3.1 Training Details of the ML Models

The output QoI is the porosity of the printed part, and the inputs are two process parameters,

namely nozzle temperature and speed. The problem setup is described in Section 3.3.1. Models

of two physical phenomena (heat transfer and sintering models that are defined in Section 2.5) are

combined to predict the porosity given the values of two process parameters: nozzle temperature

and nozzle speed. Thus, porosity values are obtained using both experiments and physics models.
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The basic ML models, namely Model 1 (for GP) and Model 5 (for DNN) are simply trained

with the 39 sets of process inputs (temperature and speed) and output (porosity). In the training of

Model 2 (GPLphy) and Model 6 (DNNLphy), we impose two physics constraints (i.e., two separate loss

function terms, Lphy,k(Ŷ), where k = {1,2} and Ŷ is the porosity prediction). The corresponding

loss function terms are defined as

Lphy,1(Ŷ) =
1
N

N

∑
i=1

ReLU(−Ŷi),

Lphy,2(Ŷ) =
1
N

N

∑
i=1

ReLU(Ŷi −ϕ0,i), (4.15)

considering physics violations related to the porosity in all the N samples. In the first loss function,

a negative value of porosity is treated as a physics violation. The second loss function penalizes the

model when the predicted final porosity Ŷi is greater than the initial porosity ϕ0,i of the ith part. This

is based on the physics knowledge that the total void area decreases as the bond formation takes

place. Thus, the porosity predictions are ensured to be physically meaningful with the inclusion of

these physics-based penalty terms.

The overall “loss” function of the GP model is

LGP = LGP −λ GP
phy,1Lphy,1(Ŷ)−λ GP

phy,2Lphy,2(Ŷ). (4.16)

Note that the GP model parameters are obtained by maximizing the above function.

The overall loss function of the DNN model is

LDNN = LDNN +λ DNN
phy,1Lphy,1(Ŷ)+λ DNN

phy,2Lphy,2(Ŷ). (4.17)

Note that the DNN model parameters are obtained by minimizing the above function.

In Model 3 (GPupd) and Model 7 (DNNupd), the ML models are pre-trained using the multi-

physics model input-output. The pre-trained ML models are then updated using the experimental

data. The training data for pre-training consists of 1310 input parameter combinations over a range

of experimental values, i.e., (210◦C ≤ T ≤ 260◦C, 15 mm/s ≤ S ≤ 46 mm/s ). Note that there are

only 39 physical experiments available; this is one of the advantages of the pre-training/updating

strategy, where the pre-training can be over a much larger set of input combinations, thus improving

the generalization performance of the updated model. The input data are normalized prior to the

training of the ML models (i.e., the output quantity porosity is dimensionless and between 0 and 1).
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Model 4 (GPupd,Lphy) combines both PIML strategies for GP, and consists of two GP models: (i)

the first GP model is trained using the physics model input-output samples consisting of 1310 input

parameter combinations; and (ii) the second GP model is built for the discrepancy between the first

GP model prediction and the actual system response using the experimental data, by maximizing

the function shown in Eq. (4.16) to optimize the hyperparameters of the second GP model.

Model 8 DNNupd,Lphy , which is a combination of the two PIML strategies, uses the DNN model

parameters trained using the physics model input-output as the initial values. Then, during the

updating phase with the experimental data, these parameters are updated by minimizing the loss

function shown in Eq. (4.17).

The four GP models (Models 1 to 4) were implemented using Python. The optimization of the

hyperparameters were performed using the scikit-optimize package. The multipliers of the physics

constraint terms of models 2 (GPLphy) and 4 (GPupd,Lphy) were chosen as (λ GP
phy,1,λ

GP
phy,2) = (50,50) based

on a cross-validation test. The Automatic Relevance Determination (ARD) squared exponential

function [37] was used as the covariance function for all the GP models.

The four DNN models (Models 5 to 8) were implemented using the Keras package [90] with

Tensorflow in the backend. The hyperparameters of each model were tuned with grid search and the

multipliers of the physics constraint terms in Model 6 (DNNLphy) and Model 8 (DNNupd,Lphy) were

chosen as (λ DNN
phy,1 ,λ

DNN
phy,2) = (0.01,0.01) based on a cross-validation test. Fully-connected DNN models

with 2 hidden layers and 5 neurons in each hidden layer were constructed. The Rectified Linear Unit

(ReLU) activation function and Adam optimizer were used to perform stochastic gradient descent

for 300 epochs in learning the model parameters. The dropout rate for the DNN models was chosen

to be 0.05, for reasons as explained below.

4.3.2 Comparison of Computational Effort

The computational costs of different models for training and estimation of Sobol’ indices based

on 5000 MC samples with a fixed number of experimental data (n= 39) is given in Table. 4.1. Among

the GP models, the time it takes for training as well as computation of Sobol’ indices using Models

2-4 is significantly greater than Model 1. The reason for the difference between the training time

of GP and GPupd is the pre-training phase, where a large amount of physics input-output samples

used. Whereas, the difference between the training time of GP and GPLphy is due to the inclusion

of physics constraints, which makes it harder for the optimization to find optimal hyperparameters.

Interestingly, the training time for the DNN models ranges from 20 to 55 sec on the same desktop

computer as used for the GP model (Intel® Xeon® CPU E5-1660 v4@3.20GHz with 32 GB RAM and
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GPU NVIDIA Quadro K620 with 2 GB). Among the DNN models, the reasons for the increased

training time of models 6-8 compared to Model 5 are the same as for the GP models. The Sobol’ index

estimations based on 5000 samples take approximately 1-2 minutes for the DNN models (models

5-8), whereas the GP predictions take much longer because the covariance matrix needs to be stored

and inverted.

Table 4.1: Computational effort of eight models for training and estimation of first-order and total
effect Sobol’ indices using 5000 MC samples with n = 39 number of observations

Models Training [in minutes] Sobol’ indices calculation [in minutes]
1. GP 1 3
2. GPLphy 2 5
3. GPupd 3 7
4. GPupd,Lphy 3 8
5. DNN .3 1
6. DNNLphy .7 2
7. DNNupd .5 2
8. DNNupd,Lphy 1 2

4.3.3 Comparison of Accuracy

In order to compare the accuracy of the eight different models, the models are trained with

different amounts of experimental observations (n = (5,10,15,20,30)), and the remaining 9 observa-

tions are used to compute the errors; the root mean square error (RMSE) based on the 9 validation

samples is reported as the accuracy measure for comparison. The mean and one standard deviation

RMSE values for the four GP models and the four DNN models are shown in Tables 4.2 and 4.3

respectively, for different values of n. To further validate the accuracy of the models, the data

set is divided into two subsets for cross-validation; k-fold cross-validation is performed by splitting

the data set into sets for model training and cross-validation, and these sets are selected randomly

k = 10 different times. The average cross-validation accuracy of the models over the 10 folds (random

shuffles) is assessed by evaluating the average RMSE (see Table 4.4).

The results in Tables 4.2, 4.3 and 4.4 show that the use of PIML strategies in DNN models

improves the performance, and the improvement is relatively larger as the amount of observed data

n gets smaller. For n=20 and n=30, the basic DNN model is as accurate as the DNN models with

the PIML strategies; whereas for smaller values of n, the DNN models with the PIML strategies

are significantly more accurate. This clearly indicates the benefit of PIML over basic ML for the

DNN models. However, the GP models incorporating PIML strategies do not show significant

improvement. This is because the GP models have a much smaller number of parameters compared
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Table 4.2: Effect of different amounts of training data on the RMSE of the GP models

Model n = 5 n = 10 n = 15 n = 20 n = 30

1. GP 0.020(±0.004) 0.026(±0.005) 0.021(±0.001) 0.021(±0.002) 0.020(±0.001)
2. GPLphy 0.019(±0.004) 0.026(±0.004) 0.024(±0.004) 0.021(±0.002) 0.019(±0.001)
3. GPupd 0.021(±0.003) 0.028(±0.003) 0.020(±0.001) 0.020(±0.001) 0.019(±0.001)
4. GPupd,Lphy 0.021(±0.005) 0.023(±0.003) 0.022(±0.003) 0.020(±0.002) 0.019(±0.001)

Table 4.3: Effect of different amounts of training data on the RMSE of the DNN models

Model n = 5 n = 10 n = 15 n = 20 n = 30

5. DNN 0.027(±0.007) 0.017(±0.009) 0.019(±0.006) 0.013(±0.003) 0.013(±0.003)
6. DNNLphy 0.017(±0.007) 0.015(±0.008) 0.014(±0.005) 0.014(±0.003) 0.013(±0.002)
7. DNNupd 0.014(±0.002) 0.009(±0.002) 0.014(±0.001) 0.013(±0.001) 0.013(±0.001)
8. DNNupd,Lphy 0.014(±0.002) 0.009(±0.001) 0.014(±0.001) 0.014(±0.001) 0.013(±0.001)

to the DNN models, and the achievable accuracy of any ML model is constrained by the number of

model parameters (in addition to model form).

In addition to the increased number of parameters, the DNN models have additional advantages

in terms of training epochs and dropout rate that affect the prediction accuracy. As mentioned

earlier, the optimum number of training epochs was found to be 300. Regarding dropout rate, the

RMSE values (based on 9 validation samples) of DNN models with MC dropout for different dropout

rates are shown in Fig. 4.2. The lowest RMSE values for all four models are obtained between 0.005-

0.05. On the other hand, the Sobol’ index estimates were found to be similar within this range of

dropout rate, for each of the four DNN models. Therefore, a dropout rate of 0.05 was chosen for the

reporting of GSA results, since a higher dropout rate results in smaller sub-networks, therefore a

smaller number of parameters and faster training. By comparing Tables 4.2 and 4.3, it is seen that

at the dropout rate of 0.05, the DNN models are more accurate compared to the GP models.

The Sobol’ indices estimates obtained using the two approaches of the second PIML strategy are

compared in Figs. 4.3 and 4.4. The results show that both approaches converge to similar first-order

and total effect sensitivity index estimates. Thus, in the rest of the chapter the first approach of the

second PIML strategy is used for both GP and DNN models, i.e., GPupd and DNNupd.

Table 4.4: Tenfold cross-validation average RMSE results of GP and DNN models

Models
1. GP 2. GPLphy 3. GPupd 4. GPupd,Lphy 5. DNN 6. DNNLphy 7. DNNupd 8. DNNupd,Lphy

n = 39 0.021(±0.002) 0.020(±0.002) 0.020(±0.001) 0.019(±0.002) 0.015(±0.004) 0.013(±0.004) 0.013(±0.003) 0.013(±0.003)
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Figure 4.2: RMSE values of DNN models with varying dropout rates

Figure 4.3: First-order sensitivity index estimators for (a) nozzle temperature, and (b) nozzle speed,
using two different pre-training and updating approaches for GP

Figure 4.4: Total effect sensitivity index estimates for (a) nozzle temperature, and (b) nozzle speed,
using two different pre-training and updating approaches for GP
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4.3.4 GSA Results using GP Models

The Sobol’ index computations with the GP models (1-4) are based on 5000 MC samples and 100

realizations of the Gaussian process. The effect of the number of experimental observations (used to

train the GP models) on the first-order Sobol’ index estimates from the four GP models is illustrated

in Fig. 4.5. And the total effect Sobol’ index estimates from the GP models for different numbers

of experimental training data are shown in Fig. 4.6. The mean values of sensitivity estimates based

on the GP model predictions are denoted with solid dots at a given number of observations n. The

sensitivity results are reported for two input variables, nozzle temperature and nozzle speed; the

output quantity of interest is porosity.

The 95% prediction intervals are represented with bars above and below the solid dots for the

corresponding model. The bounds in the sensitivity estimates are calculated using the mean pre-

dictions based on the 100 realizations of the GP models. As expected, the prediction intervals

decrease as increasing amounts of experimental data are used to train the GP models. Further,

all four models converge to similar first-order and total effect sensitivity estimates for both printer

nozzle temperature and speed. The relative individual contribution (at n=39) of nozzle speed to the

variance of the porosity (≈ 0.65) is greater than that of the nozzle temperature (≈ 0.25) and their

sum is ≈ 0.9. And the sum of their total effect indices (which capture parameter interactions) is

slightly above 1.0, indicating that the interaction effect is small.

Figure 4.5: First-order sensitivity index estimates for (a) nozzle temperature, and (b) nozzle speed,
using the GP models

For further clarity regarding uncertainty, numerical values of the prediction bounds of first-order

sensitivity estimates of nozzle temperature obtained using 100 realizations of the GP models are

shown in Table 4.5. The results indicate that prediction intervals obtained using the PIML models
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Figure 4.6: Total effect sensitivity index estimates for (a) nozzle temperature, and (b) nozzle speed,
using the GP models

3 and 4 (GPupd and GPupd,Lphy) converge to the bounds obtained using 39 number of observations for

training the models faster than the first two models. Note that the upper 95% bound for Model 2

(GPLphy) converges to its final value (0.33) within 10 experimental observations.

Table 4.5: First-order sensitivity estimate prediction bounds of nozzle temperature for different
amounts of experimental training data, using the GP models

Models Lower 95% confidence limit Upper 95% confidence limit
n=5 n=10 n=20 n=30 n=39 n=5 n=10 n=20 n=30 n=39

1. GP 0.00 0.08 0.13 0.20 0.19 0.37 0.25 0.34 0.35 0.33
2. GPLphy 0.00 0.00 0.05 0.16 0.18 0.55 0.33 0.43 0.34 0.33
3. GPupd 0.03 0.14 0.10 0.16 0.17 0.77 0.33 0.34 0.31 0.29
4. GPupd,Lphy 0.06 0.11 0.14 0.18 0.20 0.71 0.38 0.34 0.31 0.32

4.3.5 GSA Results using DNN Models with MC Dropout

The Sobol’ index computations with the DNN models (5-8) are based on 5000 MC samples and

100 stochastic forward passes through the networks. The calculated first-order sensitivity estimates

of temperature and speed, ST and SS respectively, for different numbers of experimental observations

(training data) n = (5,10,20,30,39) are shown in Fig. 4.7. The distributions of sensitivity estimates

are obtained using MC dropout predictions based on 100 stochastic forward passes through the net-

works for different number of observations. The mean values of sensitivity estimates are represented

with solid dots and the 95% bounds are denoted with bars above and below the solid dots for the

corresponding model. Similarly, the calculated total effect sensitivity estimates ST and SS for differ-

ent values of n are illustrated in Fig. 4.8. Similar to the GP results, the difference between the total

effect and first-order indices of process inputs is negligible, which indicates that their interaction is
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not significant.

Figure 4.7: First-order sensitivity index estimators for (a) nozzle temperature, and (b) nozzle speed,
using DNN models with MC dropout

Figure 4.8: Total effect sensitivity index estimators for (a) nozzle temperature, and (b) nozzle speed,
using DNN models with MC dropout

All DNN models converge to similar first-order and total effect sensitivity estimates for both

inputs, and these values are consistent with the results obtained using GP models. For this problem

with two inputs and one output, 39 experimental observations appear adequate to train even the

basic DNN model to achieve similar performance as the other physics-informed models; in fact, the

results are similar even at 20 observations. However, the superior accuracy of the physics-informed

models becomes apparent if only a small number of experiments are available, say n = 5 or n = 10,

as shown in Table 4.3 and discussed earlier in Section 4.3.3.

For further clarity regarding uncertainty, numerical values of the prediction bounds of first-order

sensitivity estimates of nozzle temperature obtained using 100 forward passes through the DNN

models are given in Table 4.6. The results show that prediction intervals obtained using all models
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show a similar trend. The 95% bounds for all models are significantly narrower than the ones

obtained using the GP models. The uncertainty in the sensitivity estimates due to the DNN models

is almost negligible when more than 10 number of observations are used to train the models.

Table 4.6: First-order sensitivity estimate prediction bounds of nozzle temperature for different
amounts of experimental training data, using the DNN models

Models Lower 95% confidence limit Upper 95% confidence limit
n=5 n=10 n=20 n=30 n=39 n=5 n=10 n=20 n=30 n=39

5. DNN 0.45 0.22 0.17 0.23 0.30 0.50 0.23 0.18 0.25 0.32
6. DNNLphy 0.52 0.18 0.15 0.17 0.22 0.59 0.19 0.17 0.18 0.24
7. DNNupd 0.78 0.30 0.12 0.22 0.25 0.81 0.32 0.15 0.24 0.27
8. DNNupd,Lphy 0.78 0.29 0.10 0.18 0.22 0.82 0.33 0.12 0.21 0.25

The 95% prediction intervals (upper limit-lower limit) decrease as increasing amounts of experi-

mental data are used to train the DNN models. However, the prediction intervals obtained using the

DNN models are much smaller than the ones obtained using the GP models since the DNN models

has more degrees of freedom that can be optimized. For example, for n = 39, the prediction interval

width is 0.02-0.03 for the DNN models, whereas it is 0.12-0.15 for the GP models. In addition to

the larger number of parameters, the number of training epochs, which is the number of complete

passes through a batch of training dataset, is optimized for the DNN models, thus maximizing

their prediction accuracy. The prediction accuracy is further improved by choosing the appropriate

dropout rate as discussed earlier. The number of parameters to be learned reduces with the use

of dropout, which helps with regularization and prevents ill-conditioning. Further, the number of

training epochs is also observed to affect both the accuracy and uncertainty of the sensitivity esti-

mates. It was found that at a smaller number of epochs, the model was not fully trained resulting

in underfitting, leading to larger bias and variance in the prediction. As the number of epochs was

increased, both the bias and the variance were reduced.

The results of the numerical example could be summarized as follows:

• The GP models required more computational effort than the DNN models, both in training

and prediction.

• The DNN models were able to achieve higher accuracy and lower uncertainty in prediction,

due to the optimization of dropout rate and number of training epochs.

• The physics-informed ML models are able to achieve higher prediction accuracy than the basic

ML models, especially when the amount of available experimental data is small.

Overall, the DNN models gave higher accuracy and lower uncertainty in the GSA results than
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the GP models, and also required less computational effort both in training and prediction.

4.4 Summary

This chapter extended the methodologies for information fusion and machine learning to sen-

sitivity analysis using both physics knowledge and experimental data, while accounting for model

uncertainty. Variance-based sensitivity analysis is used to quantify the relative contribution of

each uncertainty source to the variability of the output quantity. Two types of ML models were

considered, namely, GP and DNN models. Several PIML models were developed by leveraging two

strategies for incorporating physics knowledge into ML models: (1) incorporating physics constraints

within the loss functions used in training the ML models, and (2) pre-training an ML model with

simulation data and then updating it with experimental data. The first strategy does not use the

physics model, whereas the second strategy does.

The calculation of the Sobol’ indices with the GP model simply uses the proposed estimator

(Eq. 4.7). On the other hand, with respect to the DNN model, we use the Monte Carlo dropout

strategy to compute prediction bounds on the Sobol’ indices; previous work in this regard has

only considered prediction bounds of the model output. Prediction bounds are computed for the

sensitivity index estimates to account for the model uncertainty in the trained models, and the

accuracy and computational effort of the various PIML models are compared.

The results show that the application of PIML strategies to both GP and DNN enables accurate

Sobol’ index computations even with smaller amounts of experimental data while producing physi-

cally meaningful results. Thus, the proposed approach helps to fill the physics knowledge gap in the

ML models while estimating the Sobol’ indices, by correcting for the approximation in the physics-

based models. The numerical examples show that training the GP models and estimating the Sobol’

indices require more computational effort than the DNN models. The uncertainty regarding the

sensitivity estimates obtained using the DNN models is smaller than the results obtained using the

GP models. In the numerical examples, the DNN models are found to be more accurate compared

to the GP models. The higher accuracy, lower uncertainty, and lower computational effort of the

DNN models is attributed to their flexibility in terms of number of parameters, training epochs and

dropout rate.
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CHAPTER 5

Adaptive Surrogate Modeling for High-Dimensional Spatio-Temporal Output1

5.1 Introduction

Chapter 3 discussed time-independent response prediction; even though the process model it-

self was dynamic, the quantity of interest (QoI) was time-independent. The current chapter fo-

cuses on time dependent outputs, where the prediction is not a single value, but a series of values

varying over time. The developed methods are illustrated for thermo-mechanical analysis (with

spatio-temporal, multivariate output) of a gas turbine blade, but the investigated concepts, such as

dimension reduction, surrogate modeling, adaptive sequential sampling etc., are also applicable to

other time-dependent systems.

Engineering analyses such as design optimization, uncertainty quantification, reliability assess-

ment, and system health diagnosis and prognosis often require techniques that require multiple runs

of the physics model. The construction of an accurate surrogate model requires adequate amount of

training data that can be generated by evaluating the physics-based model at multiple settings in the

input space. For nonlinear systems with high-dimensional output, such repeated evaluations pose

significant challenge w.r.t. computational resources and time, thus motivating the minimization of

the number of training runs of the expensive physics-based model.

Several types of surrogate models are used in the literature, e.g., polynomial chaos expansion

(PCE) [70], Gaussian process (GP) regression [36], support vector regression (SVR) [113], deep neu-

ral networks (DNNs), etc. The first two approaches PCE and GP are computationally demanding in

high-dimensional applications. More specifically, estimation of coefficients of a PCE and computing

the inverse of the covariance matrix becomes challenging in large dimensions despite recent develop-

ment of sparse grids [114, 115] and basis adaptive methods [116, 117]. For GP surrogate modeling,

in addition to the issue of computing the inverse of the covariance matrix, the number of tuning

parameters associated with the correlation function also increases with the dimension, thus limiting

the applicability of GPs in high-dimensional applications. As for SVR and DNN and other machine

learning models, the accuracy is dependent on the quality and quantity of the training data, which

is often limited if the physics model runs are expensive.

Several studies on surrogate modeling techniques have addressed high-dimensional output by
1Adapted with permission from: Kapusuzoglu, B., Mahadevan, S., Matsumoto, S., Miyagi, Y., & Watanabe, D.,

“Adaptive Surrogate Modeling for High-Dimensional Spatio-Temporal Output,” (under review), 2022.
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mapping the output to the space of principal directions, where the top few components capture

most of the variance in the output, using principal components analysis (PCA) [1, 118], or singular

value decomposition (SVD)) [2, 5, 6]. Co-Kriging [119] has also been used for multivariate outputs,

but it can be computationally demanding for high-dimensional field quantities [120]. PCA and SVD

are also challenging for very high-dimensional problems since they require large storage and memory

for the large covariance matrix. On the other hand, randomized SVD (rSVD) [35, 121–123] offers an

efficient way to approximate the dominant singular components in high-dimensional applications,

thus allowing for a scalable architecture for modern “big data” applications.

If the surrogate model is constructed in a low-dimensional space, in addition to the surrogate

model error in the low-dimensional space, there is also reconstruction error in translating the sur-

rogate model prediction to the high-dimensional original space. Thus, errors need to be quantified

in a systematic and useful manner to assess the quality of the surrogate model. However, often

the available resources prevent obtaining a large amount of training data when the original model

is computationally expensive. Therefore, it is important to construct an accurate surrogate model

with the fewest possible experiments or computer simulations. In general, design of experiments

(DoE) methods can be classified as being non-adaptive or adaptive. The adaptive DoE techniques

consider the physics of the system (as indicated by the previously sampled training points) while

sampling new training points. Examples of non-adaptive DoE methods are the full factorial [124],

Latin hypercube [17], orthogonal array [125], minimax and maximin-distance designs [126], where

the focus is on coverage of the input space and not the physics of the input-output relationship. As

a result, the non-adaptive DoE methods may under/oversample and waste computational resources.

Whereas, in sequential adaptive sampling, the information obtained from the previous samples is

used to populate new samples in regions of high interest, e.g., where the underlying function is

highly nonlinear or exhibits abrupt changes and the surrogate model accuracy is poor. Moreover,

with adaptive sampling it is possible to stop the computationally expensive sampling process as soon

as the surrogate model accuracy reaches an acceptable level.

Two components are essential in identifying additional sampling points to improve the surrogate

model: (1) quantification of surrogate model error, and (2) decision criterion or learning function

to identify the additional sampling points. Several approaches have been proposed in the literature

to address both components. For example, cross-validation (CV) methods use estimates such as

Leave-One-Out (LOO) CV errors [127, 128] and new training points are located in the region of the

maximum value of the CV error. Adaptive approaches based on cross-validation variance (CVV)

select new samples based on the predicted maximum value of the CVV among candidate future sam-
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ples [129, 130]. Hombal and Mahadevan [39] proposed selecting training points that focus on mini-

mizing the bias in the prediction. The LOO error-based Accumulative Error (ACE) approach [128]

uses a weighted combination of LOO errors. Another method is the MSE method [127, 131] which

chooses the next training point based on the maximum value of the estimated mean squared error in

the response predicted by a GP surrogate model. The Cross-Validation Voronoi (CVVor) is based

on the combination of a cross-validation exploitation with a distance-based exploration, in which a

Voronoi tessellation is employed to divide the whole input space into a set of Voronoi cells [132]. The

maximin scaled distance (MSD) method [127] is another common method, which is a modification

of maximin distance-based sampling that assigns weights to the important variables by using the

available information. The Expected Improvement (EI) method uses geometry-based exploration

and exploitation based on the variance of the prediction. The main goal of EI is to predict the global

minimum value of the response accurately [133]. Another geometry-based exploitation method is

Local Linear Approximation (LOLA)-Voronoi, which is a discontinuous adaptive sampling approach

based on an exploitation feature with gradient estimation and exploration given by the volume of

Voronoi tessellation cells [134]. Adaptive methods using query-by-committee-based exploration such

as Mixed Adaptive Sampling Algorithm (MASA) [135] are studied in the literature, where new sam-

ple point is found by combining a local exploitation contribution based on Query by Committee

(QBC) fluctuation and a global exploration based on distance.

Adaptive sequential sampling design (also referred to as active learning [136, 137]) has also been

investigated for reliability analysis, i.e., for the estimation of probability of failure; the focus of

such studies has been accurate surrogate modeling of the limit state, often formulated as g() = 0,

which is the boundary between regions of success and failure. The efficient global reliability analysis

(EGRA) [138] method combines efficient global optimization (EGO) [133] with a learning function

to adaptively select training points, in the context of Gaussian process (GP) surrogate modeling of

the limit state. Another active learning method for reliability analysis is AK-MCS [139] that uses

another learning function to adaptively select new training points for the GP model improvement. In

order to improve the speed of convergence of the AK-MCS method, a widely used learning function

U was proposed, resulting in the AK-MCS + U method [140]. Based on the AK-MCS + U method,

Hu and Mahadevan [141] proposed an enhanced surrogate model-based reliability analysis method

based on global sensitivity analysis to further improve the computational efficiency. All of the above-

mentioned methods focus on approximating only the limit state g() = 0, whereas our concern in this

chapter is with a general prediction model, i.e., predicting the output accurately over the entire

input space.
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Overall, the limitations of existing surrogate modeling methods can be summarized as follows:

(a) looking at a single limit state instead of the entire input space, (b) considering only scalar

output, and (c) inability to handle high-dimensional systems. In order to address these limitations

an adaptive surrogate modeling strategy is developed in this chapter to predict the high-dimensional

spatial and temporal output quantities of interest (QoIs).

The proposed approach addresses two challenges: high-dimensionality of the output and adaptive

selection of training runs for the surrogate model. For dimension reduction, the commonly used SVD

is not feasible for very high-dimensional problems due to the need to store and invert very large

correlation matrices. Instead, the method of randomized singular value decomposition (rSVD) [35]

is found to be effective for problems with very high-dimensional output, and is used to identify the

important features in the output space to give a lower dimensional representation of the original QoIs.

These important features are then used to construct the surrogate model in the low dimensional

space. Subsequently, the trained model is used to predict the QoIs in the original space. Error

analysis is performed both in the lower dimensional latent space and the high dimensional original

space. This helps to quantify the contributions of surrogate model error and reconstruction error

separately. This lays the foundation for adaptive improvement of the surrogate model. A novel

approach that combines the ideas of exploration and exploitation for adaptive training point selection

was developed in a manner that is applicable to time-dependent multi-physics dynamic problems

with high-dimensional spatio-temporal outputs.

The important contributions of this chapter can be summarized as (1) Dimension reduction for

high-dimensional spatio-temporal outputs; (2) Surrogate model error quantification in two spaces;

and (3) New sequential sampling technique for adaptive surrogate model improvement for multivari-

ate spatio-temporal data.

5.2 Proposed Methodology

The proposed methodology aims to efficiently construct a surrogate model for high-dimensional

spatio-temporal response prediction. In this section, we first discuss dimension reduction to obtain a

lower dimensional representation, features, where we adapt the rSVD method for high-dimensional

spatio-temporal output using a two-step mapping strategy. Next, we investigate multiple options for

surrogate modeling and select the best surrogate model for a multivariate output. This is achieved

by performing a cross-validation analysis for each multivariate surrogate model constructed in a

low-dimensional space for the important features. Following this, we develop the adaptive sampling

strategy for identifying additional training points to improve the surrogate model, by combining
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exploitation and exploration. Thus the proposed overall methodology consists of four steps:

1. Dimension reduction (two-step mapping)

2. Surrogate model construction

3. Surrogate model error quantification (through cross-validation)

4. Adaptive training point selection

The following subsections describe these steps in detail.

5.2.1 Dimension Reduction

The rSVD method described in Section 2.1.2 is extended in this work for dimension reduction.

The following additional steps are proposed to adapt this method for a high-dimensional spatio-

temporal output, in a manner that facilitates surrogate model construction.

A two-step dimension reduction approach is employed to to identify the important features in

the output space to give a lower dimensional representation of S. The dimension of the output

data matrix S ∈ R(nt×nd)×ns has a large number of features and it has more features (columns)

than observations (rows). Thus, in the first step of the two-step approach the original features of the

output data matrix can be reduced using rSVD to a smaller subset of features that are most relevant

to the prediction problem. The result is matrix I(1) ∈ R(nt×nd)×n1 with a lower rank n1 that is said

to approximate the original spatio-temporal output S. Let us denote the truncated singular value

matrix, eigenvector matrix, and orthogonal matrix obtained using n1 important features as U(1) ∈

R(nt×nd)×n1 , Σ(1) ∈ Rn1×n1 , V(1) ∈ Rn1×n1 . The compressed form of I(1) is I(1) ≈ U(1)Σ(1)(V(1))T . The

resulting matrix I1 still has time-dependency. Therefore, in the second step of the two-step approach

the time-dependency needs to be removed. When rSVD is performed twice on the transformed

version of matrix I(1), i.e., I(1)′ ∈Rnd×(n1×nt ), the columns of this low-rank matrix I(2) would represent

the important features (i.e., the number of features n2 to build the surrogate model) and the rows

represent the model parameters of FEM simulations. Thus, we obtain I(2) ≈ U(2)Σ(2)(V(2))T , where

U(2) ∈ Rnd×n2 , Σ(2) ∈ Rn2×n2 , V(2) ∈ Rn2×(n1×nt ).

The accuracy of the above two-step dimension reduction needs to be evaluated. To do this, the

low-rank approximated matrix I(2) in the second feature space is mapped to the original space (i.e.,

first it is mapped to the first feature space and then mapped to the original space). The recon-

struction accuracy is quantified using root mean square error (RMSE). The RMSE value decreases

with the number of important features used to approximate the original matrix S. The number of
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important features is chosen based on the reconstruction accuracy and the percentage of variance

explained by the top few singular vectors and singular value pairs. The proposed two-step dimen-

sion reduction approach is used in the numerical example in Section 5.5. Next, the surrogate model

construction described in Section 5.2.2 is performed in the second low-dimensional space using the

important features ξ (2) = U(2)Σ(2).

5.2.2 Surrogate Model Construction

Any of the available surrogate modeling techniques mentioned earlier (e.g., PCE, GP, SVR, DNN

etc.) can be used to construct the surrogate model. In addition to these techniques, other prominent

machine learning algorithms based on boosting (which is one of ensemble learning algorithms) are

also available for improving the performance of a simple machine learning model. This paper explores

several of them such as Light Gradient Boosting Machine (lightGBM) [142], Extreme Gradient

Boosting (XGBoost) [143], Categorical Boosting (CatBoost) [144], and random forest (RF) [145].

Gradient Boosting Decision Tree (GBDT) is a relatively new decision tree-based ensemble learner.

LightGBM, XGBoost, and CatBoost are different variations of gradient boosting methods. The

main difference between these techniques is how they build the decision tree.

A tree-based regression technique known as extremely randomized tree regressor or simply Extra-

Trees regressor [146] is found to give the best performance in the numerical example (Section 5.5),

based on comparing the k-fold cross validation error results for various techniques. Tree-based

ensemble methods randomly construct more than one decision tree to achieve an increase in the

generalization performance. For example, random forest (RF) regression [145] trains the trees with

bootstrap samples for each candidate split based on randomly selected subset of the features. The

main idea behind Extra-Trees is to randomly create a number of different trees with randomly

chosen features. The randomization helps to achieve a greater reduction in the variance of the

model prediction, compared with other ensemble methods like RF [145]. The main differences

between the Extra-Trees algorithm and RF regression are: (a) Extra-Trees randomly splits nodes

using a random subset of the features selected at every node, rather than the best split used in

RF; and (b) RF applies the bagging procedure to iteratively generate sub-training sets (bootstrap

samples) with replacements, while Extra-Trees uses all the training samples to construct each tree

with varying numbers of parameters.
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5.2.3 Surrogate Model Error Quantification

The surrogate model prediction error is used to inform about areas with the highest error. The

Leave-One-Out Cross-Validation (LOOCV) method is a special case of the k-fold cross-validation

(CV), with k = N. For each observation i ∈ [1,N], a separate surrogate model M−i is trained on N−1

observations consisting of the reduced set D−i = D\(xi,yi). The surrogate model accuracy is then

evaluated on the test point xi. The spatio-temporal physical quantities are predicted for the test

data using the surrogate model trained in the latent space, where high-dimensional spatio-temporal

outputs are projected to. The surrogate model outputs in the feature space are then mapped to the

original space (reconstruction) to evaluate the surrogate model accuracy in the original space.

Different error metrics are suitable in different situations. For example, an engineer may be more

interested in the relative error of creep damage response in the regions where strong creep behavior

is expected since a small amount of change can lead to detrimental effects. Whereas the engineer is

less interested in the relative error of the predicted response in regions where weak creep behavior

(i.e., physical quantities are close to zero) is dominant. Thus, for this purpose, two error metrics

are calculated using LOOCV, namely mean absolute error (MAE) and relative mean absolute error

(rMAE). The MAE metric is defined as follows:

MAE j =mean(AE j)=
1

ntime

ntime

∑
i
|Si, j − Ŝi, j| (5.1)

where the subscript j refers to the jth FEM node (e.g., MAE j is the mean absolute error of jth node,

where the mean is taken across time for each spatial location). The main challenge of the MAE

metric is the identification of thresholds. Moreover, the MAE metric is scale-dependent. In order to

address such limitations, the relative mean absolute error (rMAE) metric that is scale independent

and less sensitive to outliers is investigated. The rMAE metric is defined as follows:

rMAE=
MAE

mean|S− S̄|
(5.2)

where S̄ is the mean of the time series output at each spatial location. An advantage of this method

is its interpretability. For example, rMAE measures the possible improvement of the proposed model

relative to the benchmark model (i.e., the denominator of Eq. (5.2)). When rMAE is less than 1,

the proposed model is better than the benchmark model, and when the value of this error metric is

greater than 1, then the proposed model is worse than the benchmark model. The only circumstance

under which rMAE would be infinite or undefined is when all historical observations are equal (i.e.,
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static problem).

For each node in the FEM model, the error metrics are evaluated based on the LOOCV predic-

tions. Note that the surrogate model predicts features in the low-dimensional latent space, which

are then mapped to the original space to evaluate the error metrics for the spatio-temporal physical

outputs. Then, PNMAE, the percentage of nodes having MAE values greater than some threshold

value, and PNrMAE, the percentage of nodes having rMAE values greater than one, are calculated

for the current training points using LOOCV. However, there is no way to assess these metrics for

points not in the current design, i.e., unobserved points (or candidate new points, xc). Therefore,

additional surrogate models are built to learn the relationship between the training points and the

corresponding LOOCV prediction error metrics in the original space. In this study, Gaussian process

(GP) surrogate models are used (allowing the use of Expected improvement (EI) [133]) to predict

ePNMAE and ePNrMAE for unobserved points. These GP models are developed using the initial training

points. As new points are added to the design D , the training data used to train these GP models

are updated.

5.2.4 Proposed Adaptive Sample Selection Method

First, the approach generates an initial design. The initial design is chosen using a space-filling

criterion with a given initial number of points. In this work, we use maximin Latin hypercube

sampling (LHS) [147–149], though any other space-filling metric can be used, to generate initial

training points that cover the input space uniformly. Based on this initial design, the LOOCV error

eLOOCV is calculated for each point in the design space by building a surrogate model each time

leaving one point out. A secondary GP surrogate model is constructed for eLOOCV to predict eLOOCV

for candidate points for additional samples.

A straightforward approach is to simply use the LOOCV error for adaptive sampling, i.e., exploit

regions with high prediction error to select new training points. However, a purely exploitation-

based approach can result in clustered samples in the input space. In order to avoid this problem,

an exploration strategy based on a space-filling criterion can be added to spread the new samples

over the entire input domain while exploiting the regions of interest.

Thus two strategies, namely exploitation and exploration, are combined here for surrogate model

improvement through adaptive selection of additional training points. Exploration aims to discover

regions of the input space not covered in previous training points in order to obtain knowledge

of the response over the entire design space; thus exploration does not use the simulation outputs

for the previous training points. Whereas exploitation uses the output information gained from
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previous training points to identify high-interest subregions to generate new samples in the vicinity

of these regions. These subregions can be associated with large prediction error, significant non-linear

behavior, discontinuity, etc. New samples can be added in the region of interest depending on the

aim of the analysis to build a surrogate model that predicts the response accurately in the exploited

high-interest regions. Instead of considering these strategies individually, it can be beneficial to

consider them together in hybrid adaptive learning to leverage both of their strengths, such that

exploration adds points from previously unexplored regions (geometry-based) and exploitation adds

points in regions of interest pertaining to surrogate model accuracy (physics-based).

5.2.4.1 Space-Filling Criterion

A space-filling criterion is used to avoid the clustering of samples that could occur in a purely

exploitation-based approach and ensure uniform coverage of the design space. The space-filling

criterion used in this work is based on Euclidean distance, specifically the maximin distance, wherein

the minimum non-zero distance dmin of a candidate point from all other points in the current set of

training points is computed. A candidate point (xc) with the maximum of these minimum distances

is selected as the new training point from x∗. Thus, the exploration strategy is given by:

xc = argmax
x∗∈X

(dmin)

dmin = min
xi∈X
x∗∈X

||xi −x∗|| (5.3)

5.2.4.2 Expected Improvement

In order to overcome the overexploitation problem, which could cause new samples to be clustered

in regions with large mean LOOCV prediction error, a well-known approach is to use the Expected

improvement (EI) [133] function, which helps to trade-off between exploitation and exploration. It

can be expressed as

EI(x) =


(y∗−µ(x))Φ(u)+σ(x)ϕ(u), if σ(x)> 0.

0, if σ(x) = 0.
(5.4)

where u = (y∗−µ(x))/σ(x), y∗ being the current best solution chosen from among the true function

values at the training points and ϕ()̇ and Φ()̇ represent the PDF and CDF of the standard normal

distribution, respectively. EI is a non-negative, parameter-free function and is zero at the training

points.
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5.2.4.3 Proposed Learning Function

Combining the EI function defined in Section 5.2.4.2 and the space-filling criterion described in

Section 5.2.4.1, a point with the largest expected improvement EIPNMAE (i.e., expected improvement

based on PNMAE) and EIPNrMAE (i.e., expected improvement based on PNrMAE) and the maximum

dmin is selected as the new sample point. Thus, a learning function that facilitates the active learning

process is proposed here as:

L (x) = (β1EIPNMAE +β2EIPNrMAE)
θ × (dmin(x))γ (5.5)

where β1,β2 ∈ [0,1] control the relative contributions of EIPNMAE and EIPNrMAE respectively, and

α,γ ∈ [0,1] are used to control the trade-off between exploitation and exploration respectively. (Other

mathematical formulations of the learning function using these metrics are also possible). In this

formulation of the learning function, EI provides both exploitation and exploration based on the

mean and variance of the prediction error, whereas the space-filling criterion only provides geometry-

based exploration. The two extreme cases, α = 0 and α = 1, respectively denote that exploitation

is not considered and exploitation is considered. Exploration of the input space is controlled by γ.

When γ = 0, the minimum Euclidean-distance is not considered (i.e., no exploration), whereas the

larger the γ value is, the higher the weight of the exploration term. Note that L provides a trade-off

between the space-filling criterion, which avoids clustering, and the largest estimation of prediction

error.

The parameters of the learning function can be estimated by using an algorithm similar to the

Expectation-Maximization (EM) algorithm [150]. We have 2 sets of parameters. First, we fix the

first set {β1,β2} and compute the second set {α,γ} in one step. Then, we compute the first set based

on the computed values of the second set in the previous step. These two steps are repeated until

the maximum change in the parameter estimates between consecutive iterations does not exceed a

convergence criterion.

The new sample point xc that results in the maximum learning function value Lmax is identified

as follows:

Lmax = max
x∗∈X

[L (x∗)]

xc = argLmax (5.6)

Note that the evaluations of candidate points using the proposed method are computationally
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inexpensive since these evaluations are based on the current surrogate model, not the original ex-

pensive physics model.

5.2.4.4 Stopping Criteria

The computational resource limit (i.e., number of training points, N), and the LOOCV error

can be used as the stopping criteria. The latter criterion is used to evaluate the surrogate model

performance on the test set. The surrogate model accuracy is evaluated as new samples are added to

the design based on the proposed adaptive sampling approach. If the LOOCV error metrics ePNMAE

and ePNrMAE achieve an acceptable value, then stop adding new points. In this work, both the

computational resource limit and surrogate model accuracy are used as the stopping criteria. The

detailed sequence of steps of the proposed adaptive learning approach is outlined in Algorithm 3.

Algorithm 3 Identifying new training points for adaptive improvement of the surrogate model
Input: D
Output: xc

1: Generate an initial design using maximin LHS
2: procedure Output Dimension Reduction
3: Construct the data matrix, S
4: Perform a two-level rSVD on the matrix S to obtain important features
5: end procedure
6:
7: procedure Leave-One-Out Cross-Validation (LOOCV)
8: Split the design set D into k disjunct sets Di, i = 1, . . . ,k, with k = N (LOO)
9: for i = 1 to N do

10: Train an Extremely Randomized Trees machine learning model M−i with N −1 features
consisting of the reduced set D−i = D\(xi,yi).

11: Calculate ePNMAE and ePNrMAE for the current training points in the reduced set D−i:
12: ePNMAE = % of nodes having MAE ≥ 2.5e-4
13: MAE j =mean(AE j)= 1

ntime
∑ntime

i |Si, j − Ŝi, j|
14: ePNrMAE = % of nodes having rMAE ≥ 1
15: rMAE= MAE

mean|S−S̄|
16: end for
17: end procedure
18:
19: procedure Adaptive Learning
20: while Average PNrMAE ≤ 15% or N ≥ 66 do
21: Construct GP models for ePNMAE and ePNrMAE (LOOCV errors) to make predictions

êPNMAE and êPNrMAE for candidate points
22: Define the learning function:
23: L = [(β1EIPNMAE +β2EIPNrMAE)

α × (dmin(x∗))γ ]
24: Sample a large set of random points from the design space and evaluate L for these

points
25: Identify the largest learning function value; Lmax = max

x∗∈X
L (x∗)

26: Choose the new training point xc that results in Lmax, i.e., xc = argLmax.
27: end while
28: end procedure
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5.3 Summary of Methodology

The proposed methodology for adaptive surrogate modeling with high-dimensional spatio-temporal

output as shown in Fig. 5.1 consists of the following steps:

1. Construct the output data matrix S based on the available simulations where each row repre-

sents a time instant corresponding to one FEM run, and the columns represent multiple spatial

locations of multiple output quantities for that FEM run;

2. Perform the two-step dimension reduction approach explained in Section 5.2.1 to find the lower

dimensional representation I(2);

3. Build a surrogate model for each feature vs. process inputs in the feature space;

4. For the test set points, project the surrogate model prediction in the feature space back to the

original space to obtain the predictions in the original space, Ŝ;

5. Use cross-validation to evaluate the surrogate model accuracy in the original space;

6. If the accuracy of the surrogate model is not acceptable, then use the proposed adaptive se-

quential sampling based on the learning function given in Section 5.2.4.3 to propose additional

training points for the surrogate model;

7. Repeat steps 1 to 6 until the model accuracy reaches an acceptable value or until the compu-

tational resource limit reached.

5.4 Evaluation of Proposed Approach using Benchmark Problems

In this section, the proposed adaptive sampling technique is compared to several existing tech-

niques described in Section 5.1 (i.e., EI, CVV, LOLA, MSD, MASA, CVVor). To provide a fair

comparison, the performance of each sampling technique in accurately capturing seven benchmark

test functions of different complexity is analyzed (see Appendix A.1). Normalized root mean square

error (NRMSE = RMSE/(ymax −ymin), where RMSE =
√

∑n
i=1(yi − ŷi)2/n) is first computed for each

fold of LOOCV, followed by the computation of the average LOOCV error, by taking the average

across all the LOOCV folds. This average LOOCV error is used to assess the performance of all the

adaptive sampling techniques.

Adaptive sampling techniques with higher exploitation component are strongly dependent on the

size of the initial sample. A few empirical formulas have been proposed in the literature for choosing

the initial sample size [133, 151]. In this work, the number of samples included in the initial design
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Figure 5.1: Schematic describing the proposed procedure for surrogate model construction with
high-dimensional field data using rSVD

(m) is chosen based on the rule m = 10n [133], where n is the dimension of the input space. For

each two-dimensional test function in Appendix A.1, an initial training set consisting of 20 points is

generated using maximin LHS and used to start all the adaptive sampling techniques. The positions

of the 20 initial sample points are shown by black dots in Figs. 5.3 and 5.4. In order to have a fair

comparison between the proposed method and the existing adaptive sampling techniques, a Gaussian

process (GP) regression model is built with the exact same properties in each fold of LOOCV-based

techniques. Then the number of training points is increased up to 45 by adding a new point in

each step for each adaptive sampling technique, following each technique’s procedure. The NRMSE

results for different sampling techniques for 45 total samples are shown in Fig. 5.2 for different

benchmark functions. For illustration purposes, the adaptively selected samples are highlighted by

red dots (larger points indicate a sample very close to a neighboring point) and the corresponding

surrogate model accuracy in terms of NRMSE are shown as contours in Figs. 5.3 and 5.4 for the

Branin and Schwefel functions in Appendix A.1 respectively, for each sampling technique.

The Expected Improvement Cross-Validation (EICV) and Space-Filling Expected Improvement

Cross-Validation (SFEICV) techniques are special cases of the proposed method; these two methods

are compared against other adaptive improvement methods in this section. In EICV, γ = 0, therefore
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(b) Goldstein & Price function(a) Branin�s function

(c) Sasena�s function (d) Alpine function

(g) Schwefel function

(e) Modi�ed Meckesheimer �s function (f) Modi�ed Jin�s function

Figure 5.2: Evolution of the NRMSE from the initial surrogate model (20 samples) to the final
surrogate model (45 samples) using different adaptive sampling techniques, for the seven benchmark
functions in Appendix A.1

the weighted minimum Euclidean distance is not considered (i.e., no additional exploration other

than the exploration already inherent in EI). Whereas in SFEICV both θ and γ equal 1, thus the

weight of exploration is higher. (Note that two separate GP models are constructed for EICV and

SFEICV, where the first GP model is to predict the original output QoI, and the second GP model
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Figure 5.3: Adaptively selected training point locations for the Branin’s function and the final
surrogate model accuracy in terms of NRMSE are plotted in contours (Black dots: initial 20 samples,
Red dots: additional 25 samples)

Figure 5.4: Adaptively selected training point locations for the Schwefel function and the final
surrogate model accuracy in terms of NRMSE are plotted in contours (Black dots: initial 20 samples,
Red dots: additional 25 samples)

is to predict the LOOCV error as described in Section 5.2.4).

An issue with some techniques with the exploitation component is that they may focus on

insignificant features with respect to the problem of interest. This problem appears for EI, where it

is originally designed [133] to estimate the minimum of the response surface as shown in Figs. 5.3(c)

and 5.4(c). EI can over-exploit in many situations, such as when it hits a local optimum (see Figs.

5.3(c) and 5.4(c)). When this is the case, EI cannot capture the proper behavior of the entire function
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and its performance becomes highly dependent on the initial dataset. In most complex engineering

problems, the initial dataset is limited, thus it is important to select an adaptive technique such

as the proposed EICV that does not focus on insignificant features of the problem and exploits

the regions of interest. The gradient estimation approach used in Local Linear Approximation

(LOLA)-Voronoi gets increasingly complex as the problems become high-dimensional and complex.

The performance of LOLA is also not as good as EICV (see Figs. 5.2(a)-(g)), which is a more

robust and computationally efficient technique for high-dimensional problems. It should be noted

that all adaptively selected samples (i.e., red dots in Figs. 5.3 and 5.4) using the LOLA technique

are in regions where the initial surrogate model error was already low. This behavior of the LOLA

technique can be observed in Fig. 5.3(e). The computational complexity of Mixed Adaptive Sampling

Algorithm (MASA) depends on the number of committee members (e.g., in the context of GP

models, committee members could be autocorrelation functions). In these test problems, three GP

models with different autocorrelation functions (Matérn, squared exponential kernel with a different

correlation length for each coordinate, and squared exponential kernel with same correlation length

in all coordinates) are considered as committee surrogates (e.g., GP models based on different

autocorrelation functions). MASA shows a higher emphasis on exploration (see Figs. 5.3(g) and

5.4(g)) and is not as dependent on the initial sample size as some other methods such as EI and

MSD. The Maximin scaled distance (MSD) method performs poorly because the method is not

capable of exploiting as much as the other methods (as seen in Figs. 5.2, 5.3 and 5.4). SFEICV is

almost as good as MASA and MSD at exploring the design space (see Figs. 5.3(b) and 5.4(b)), and

it can also exploit the regions where there is high prediction error due to local non-linearity (note

the additional samples selected on the bottom left corner in Fig. 5.3(b)).

It should be noted that Cross-Validation Voronoi (CVVor) and EICV yield the most complete

performance and best accuracy across all the investigated test cases (see Fig. 5.2). They achieve

the smallest NRMSE values, close to zero for all test functions, with the updated surrogate model

(i.e., updated with 25 samples). An important difference between these adaptive techniques is the

computational effort. The computational effort required by methods based on the LOOCV error such

as CVVor or EICV is relatively higher, especially as the dimensions increase. However, they yield

reliable results and require less development and user-knowledge. Depending on the complexity

and dimension of the problem, the SFEICV technique may be useful in the first few adaptively

selected samples, but as more samples are collected, the EICV method becomes more promising.

This can be seen in Figs. 5.2(a)(d)(e)(f) where SFEICV yields similar NRMSE values to EICV after

10 adaptively selected training points, i.e., 30 total training points, whereas, EICV results in better
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improvement in the surrogate model accuracy after 30 samples.

It should be noted that Cross-Validation Voronoi (CVVor) and EICV yield the most complete

performance and best accuracy across all the investigated test problems (see Fig. 5.2). They achieve

the smallest NRMSE values, close to zero for all test functions, with the updated surrogate model

(i.e., updated with 25 samples). An important difference between these adaptive techniques is the

computational effort. The computational effort required by methods based on the LOOCV error such

as CVVor or EICV is relatively higher, especially as the dimensions increase. However, they yield

accurate results and require less development and user-knowledge. Depending on the complexity

and dimension of the problem, the SFEICV technique may be useful in the first few adaptively

selected samples, but as more samples are collected, the EICV method becomes more promising.

This can be seen in Figs. 5.2(a)(d)(e)(f) where SFEICV yields similar NRMSE values to EICV after

10 adaptively selected training points, i.e., 30 total training points, whereas, EICV results in better

improvement in the surrogate model accuracy after 30 samples.

Note that two separate GP models are constructed in EICV and SFEICV (which are special cases

of the general method proposed in Section 5.2.4.3), thus they require more computational effort than

the other adaptive sampling techniques that are not based on the LOOCV error. However, they do

not require the tessellation of the input space into Voronoi cells, which also requires high effort, as

in CVVor and LOLA. In addition, the accuracy of EICV and SFEICV is better or comparable to

the other methods for different benchmark functions.

5.5 Engineering Application

A simplified gas turbine engine blade model is studied in this section to demonstrate the proposed

surrogate modeling approach for an engineering application with high-dimensional spatio-temporal

output. Six output quantities from the physics model (creep equivalent strain (CEEQ), creep damage

(Dc), von Mises stress (Mises), and displacements in x, y, and z directions) are of interest, as shown

in Table 5.1; these are available at a large number of spatial and temporal points. The input

space is four-dimensional and consists of turbine blade coating thickness (TBC thickness), turbine

output rate (T1T rate), and transient and constant creep rates. The ranges of the inputs are: TBC

thickness [2/3*nominal,4/3*nominal], T1T rate [80*nominal,100*nominal], transient and constant

creep rate [-3σ ,3σ ]. These model inputs are considered as uncertain. The boundary conditions are

assumed to be known with certainty. The total number of nodes is 29,374 for each output quantity

of interest (QoI) and the total number of time steps is 54. Thus, the problem has over 176,244

spatial dimensions (i.e., 29,374 × 6) in the output space for a single FEM simulation. Considering
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also the temporal dimension, the problem dimension is over 9,000,000 (i.e., 176,244 × 54) just for a

single FEM simulation.

Table 5.1: Physics model input and output parameters

Input Values

TBC thickness 2
3× nominal to 4

3× nominal
T1T rate 80 × nominal to 100 × nominal
Transient creep rate -3σ to 3σ
Constant creep rate -3σ to 3σ
Output Nomenclature

Creep equivalent strain CEEQ
Creep damage Dc
Von Mises stress Mises
X displacement X
Y displacement Y
Z displacement Z

5.5.1 Generation of Initial Training Data

The initial surrogate model is built with 46 training points (from 46 FEM runs). Prior to this

study, nine initial input settings had been generated using Taguchi L9 orthogonal design [152] for

exploratory analysis. To this set of 9 points, we added 37 points, generated using maximin Latin

hypercube sampling (LHS). These 46 sets of inputs and the corresponding FEM outputs are then

used to build the initial surrogate model.

In order to obtain the maximin LHS for the 4-dimensional input space, 100 LHS designs are

generated. Based on the spread of the training points in the design space, the design with the

highest spatial coverage is selected as the optimum. To quantify how spread out the points are in

each design set, the sum of pair-wise Minkowski distances when p = 1 within the set is selected as a

metric. For two row vectors, x ∈ Rn and y ∈ Rn in the matrix, the Minkowski distance is defined as:

d(x,y) =
( n

∑
i=1

|xi −yi|p
)(1/p)

. (5.7)

The higher the d(x,y) is, the higher the occupancy rate (coverage) in the design space. The sum of

the pair-wise Minkowski distances was calculated for each LHS design and the optimum design is

selected to give the 37 additional training points for the initial surrogate model.

5.5.2 Dimension Reduction of the Output Space

Based on the correlation analysis, CEEQ and Dc are found to be perfectly correlated with each

other at all time steps [153]. Similarly, Y and Z displacements are negatively correlated, and the

correlation becomes more significant at higher time steps. In order to take this correlation between
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the output QoIs into account and improve the computational efficiency, dimension reduction of the

original output matrix is performed using rSVD for all 6 QoIs and then a single surrogate model,

Extra-Trees regressor, is built to predict multivariate time series for all 6 QoIs. To be able to

jointly predict the QoIs at each time step for untested configurations, the output data matrix S is

constructed as follows:

S = [D1D2D3D4D5D6](ntime×nsim)×(nnodes×nQoI) (5.8)

where Di ∈ Rntime×nnodes , i = (1,2, ...,nQoI) is the ith QoI data matrix.

The matrix S ∈ R(nsim×ntime)×(nnodes×nQoI) is constructed such that the number of rows is equal to

the total number simulations (nsim) times the total number of time steps of each simulation (ntime),

and the number of columns is equal to number of nodes (nnodes) times the total number of QoIs

(nQoI). For example, for the final surrogate model we have output data for 66 simulations and the

output data matrix S(54×66)×(29374×6) consists of approximately 629 million data points.

The reconstruction accuracy is evaluated using RMSE. The percentage of variance explained

by the top 50 and 20 features in the first and second feature spaces, respectively, is 99% and the

RMSE value for reconstruction error is approximately 0.0006, which is small compared to the average

magnitude of the predicted quantities (0.01).

5.5.3 Surrogate Model Construction and Cross-Validation

After the important features are identified, several types of surrogate models are investigated as

discussed in Section 5.2.2 and based on the cross-validation results given in Table. 5.2, the Extra-

Trees regressor is observed to give the best results with an average RMSE value of 0.10513 (15%

better than the next best model). The LOOCV error is used to evaluate the surrogate model

accuracy. The inputs to the surrogate model are TBC thickness, T1T rate, transient and constant

creep rates and the outputs of the surrogate model are the top 20 important features.

Table 5.2: 7-fold cross-validation results in terms of RMSE

Model
Fold # Extra-Trees LightGBM XGBoost CatBoost DNN GP

1 0.1722 0.2029 0.1823 0.1780 0.2102 0.2205
2 0.1885 0.2146 0.2113 0.1843 0.2243 0.2315
3 0.1329 0.1829 0.1732 0.1362 0.1856 0.1795
4 0.1090 0.1257 0.1219 0.1155 0.1351 0.1583
5 0.1123 0.1286 0.1199 0.1136 0.1209 0.1348
6 0.1039 0.1273 0.1166 0.1065 0.1385 0.1421
7 0.1426 0.1835 0.1462 0.1503 0.1857 0.1812
Average 0.1373 0.1665 0.1531 0.1406 0.1714 0.1782

For illustration purposes, the predicted feature values versus the actual feature values are shown
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in Fig. 5.5 for FEM run 23. Note that the pairs of observations and predictions are close to the 45-

degree line, showing good agreement. The R2 and RMSE values of the predictions shown in Fig. 5.5

are 0.97 and 0.45 (small error compared to the actual feature values), respectively. Figure 5.6 shows

actual Feature 1 vs. the input parameters TBC thickness and T1T rate. Although the general

trend shows a decrease of Feature 1 values with an increase in TBC thickness, there are still small

Feature 1 values across all values of TBC thickness. Feature 1 values increase as T1T rate increases,

indicating a possible quadratic relationship. From the physics of the problem, it is known that T1T

values greater than 90 result in strong creep cases (i.e., large CEEQ and Dc values) and Feature 1

values corresponding to these cases are significantly larger than Feature 1 values corresponding to

the weak creep cases (i.e., T1T < 90). Moreover, the correlations between the model inputs and the

top 5 important features are computed (not shown in the chapter due to space limitation), and the

most significant correlation is found to be between T1T rate and Feature 1, with a value of 0.85.

Figure 5.5: Predicted vs. observed values of important features for FEM run 23
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Figure 5.6: Actual Feature 1 values vs. TBC thickness and T1T rate

5.5.4 Adaptive Surrogate Modeling

Next, the training points corresponding to additional FEM runs (47-66) are adaptively selected

based on the proposed methodology of adaptive training point selection. These runs are completed

in 4 batches (see Fig. 5.7). The first batch is FEM 47-56, the second batch is FEM 57-60, the third
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batch is FEM 61-62, and the fourth batch is FEM 63-66. From the surrogate model improvement

point of view, it is more desirable to select one training point at a time. However, this is not possible

in industrial settings due to the fact that running a single FEM model at each step is inefficient

use of human and computational resources. A more efficient strategy in this application was to run

between 2 and 10 FEM models at the same time. Thus, multiple new training points were proposed

in each batch where the number of points for each batch is chosen based on error quantification,

space filling, as well as expert opinion regarding inputs of interest. The simplest strategy would

be to rank the candidate points and select the desired number of best points. However, this is

not ideal since it does not consider the information overlapping of the new points in that batch,

which can lead to clustered batch points [154]. (This is because the space-filling component of the

learning function in Section 5.2.4.3 only gives the score for each single candidate point in terms of its

distance from the existing points; whereas when we consider multiple points in a batch, we also have

to consider the distances among them). In our case, we select the new training points in each batch

by considering how informative and diverse they are [154], from the perspectives of both geometry

and physical behavior. This way not only are the new points sampled in the regions of interest but

they are also far away from each other. For example, in the second batch, among the 10 candidate

points considered, only four (57-60) were selected that satisfied the criteria of informativeness and

diversity. Similarly, in the third and fourth batches, only two points each were selected for the same

reasons.

The first batch of new training points are selected by performing the proposed methodology

described in Algorithm 3 on the previous 46 FEM runs, and the second batch of new training points

are obtained by doing the same analysis on the previous 56 FEM runs (i.e., 46 initial points plus

10 points from the first batch of additional training points), and so on. For most of the adaptively

sampled points, i.e., FEM 47-61, and 63, the parameters of the learning function are estimated by

using the two-step algorithm described in Section 5.2.4.3. Most of these samples are from regions

where the absolute error has high values (i.e., physical quantities take medium to high values,

which is of interest to the analyst in this case). However, for the problem of interest it is also

equally important to be able to accurately predict physical quantities that are close to zero. (For

example, in the gas turbine engine, some input values might lead to low creep; such cases could be

quickly screened and ignored in further detailed analysis). Thus, for a few of the adaptively selected

additional samples such as FEM 62, 64, 65 and 66, the parameters of the learning function shown in

Eq. (5.5) are chosen as unity to give equal weight to all metrics in order to facilitate choosing more

diverse training points, including from regions where the relative error is higher, within each batch
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(e.g., FEM 64 and 65).
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Figure 5.7: Initial FEM training data and adaptively selected additional samples

The surrogate model prediction accuracy is further analyzed in the original space by mapping

the surrogate model predictions in the features space back to the original space. As discussed earlier,

the percentage of nodes having MAE > threshold (PNMAE) and the percentage of nodes having

rMAE > unity (PNrMAE) are defined for error analysis. The threshold value of 0.00025 is chosen

based on expert opinion. The accuracy of the final surrogate model is shown in Fig. 5.8 using the

two error metrics PNMAE and PNrMAE in a two-dimensional space, i.e., TBC thickness vs T1T

rate. The error metrics have different values in different regions. For example, the absolute error

metric, PNMAE, has smaller values in the bottom half region, where the physical quantities are

close to zero, and has larger values in the top left region, where the physical quantities take medium

to high values. Whereas, the relative error of the predicted creep response, PNrMAE, has greater

values in regions where weak creep behavior is dominant. This is caused by dividing with a very

small number. Since the physical quantities are close to zero in weak creep regions (i.e., the bottom

half region T1T < 90) the denominator of Eq. (5.2) would be close to zero.

The final surrogate model predictions after 66 training points at an important node (id 5057:

hot spot, based on analyst’s knowledge) are compared against the FEM results of run 36, where

high creep damage is observed, as shown in Fig. 5.9. It is observed that the predictions are in good

agreement with the FEM results at all time steps (similar trends in some cases if not actual values),

which reflects the effectiveness of the proposed methodology.

The LOOCV results are shown in Table 5.3 using three different error metrics. In order to have

a fair comparison, the improvement in the surrogate model accuracy is assessed on the same data

set (i.e., first 46 and 56 FEM runs). The columns of Table 5.3 represent the average LOOCV error

values on the first 46 and 56 FEM runs. In general, the accuracy of the surrogate model is observed
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Figure 5.8: Final surrogate model prediction accuracy in the original space for leave-one-out FEM
runs
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Figure 5.9: Final surrogate model prediction compared against FEM run 36 at node 5057

to improve with each batch of adaptively selected samples. The average RMSE value, which is

obtained by averaging the RMSE values obtained for each LOOCV fold, decreases with each new

batch of adaptively selected training points. For example, it decreases from 0.00254 to 0.00222 with

the addition of 10 new adaptively selected training points (samples 47-56) based on the LOOCV on

the first 46 FEM runs. Similarly, PNMAE and PNrMAE values decrease as we include adaptively

selected training points during the surrogate model construction process.

The number of training points N and the surrogate model accuracy are used as stopping crite-

ria. The sequential adaptive sampling procedure is stopped after 66 training points, N = 66. The

adaptively improved surrogate model does not successfully reach the desired level of accuracy of
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Table 5.3: Average leave-one-out cross-validation (LOOCV) results in PNMAE, PNrMAE, and
RMSE

FEM runs Avg. PNMAE of Avg. PNMAE of Avg. PNrMAE of Avg. PNrMAE of Avg. RMSE of Avg. RMSE of
considered first 46 FEM runs first 56 FEM runs first 46 FEM runs first 56 FEM runs first 46 FEM runs first 56 FEM runs

FEM 1-46 27.9 - 19.3 - 0.00254 -
FEM 1-56 26. 30.8 16.6 18.2 0.00222 0.00278
FEM 1-60 26.5 29.8 17.6 18.0 0.00223 0.00271
FEM 1-62 24.8 28.2 16.1 16.5 0.00206 0.00251
FEM 1-66 25.0 27.9 15.8 15.9 0.00195 0.00235

average PNrMAE ≤ 15% (chosen based on expert opinion). However, the average PNrMAE value

is 15.8% after 66 training points (for the first initial 46 FEM runs), which suggests that with a few

more FEM runs the desired level of accuracy could be reached. In addition to the average PNrMAE

value being distinctly close to the desired level of accuracy, the PNMAE and RMSE values are also

acceptable for the analyst after 66 training points. All calculations except the FEM simulations are

performed on a single desktop computer with an Intel 8-core CPU with a 3.00 GHz base frequency

and 8 GB memory.

5.6 Summary

This chapter developed an approach for adaptive surrogate model construction in engineering

problems with high-dimensional spatio-temporal output. The important features are obtained by

performing a two-level dimension reduction using rSVD to map the original high-dimensional spatio-

temporal output to an uncorrelated space. Cross-validation error is used to identify the most ac-

curate surrogate model type. Once the most accurate surrogate model type is identified for the

problem of interest, the prediction error in the original space is evaluated using LOOCV with dif-

ferent error metrics (i.e., PNMAE and PNrMAE). The subsequent adaptive sampling technique

combines exploration and exploitation for adaptive improvement of surrogate model accuracy with

the fewest possible runs of the expensive physics-based original model. The proposed adaptive sam-

pling technique is compared with some of the existing adaptive schemes (Section 5.4). The proposed

method yields very good results across all investigated test cases. The effectiveness of the proposed

methodology is further demonstrated for a turbine blade example, using a time-dependent multi-

physics dynamic system model with high-dimensional spatio-temporal outputs. It is observed that

the adaptively improved surrogate model reaches an acceptable level of accuracy using the proposed

strategy.
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CHAPTER 6

Multi-Level Information Fusion for Model Calibration1

6.1 Introduction

In most cases, the model parameters are not well-known, and model predictions may not agree

with observational data. Thus, model calibration needs to be performed to determine the values of

unknown parameters by requiring the model outputs to match experimental data. Several model

calibration techniques are available in the literature (e.g., least squares, maximum likelihood es-

timation, and Bayesian estimation). The output of any model is affected by various sources of

uncertainty. Bayesian methods provide a convenient framework for combining prior beliefs about

parameters with evidence gained from data [48, 49]. For highly coupled multi-physics systems with

sparse data and many model parameters, the heterogeneous sources of uncertainty and their rela-

tionships need to be organized in a systematic manner to facilitate effective use of available data.

Bayesian networks (BNs) provide such a systematic approach, and represent the relationships be-

tween model inputs and outputs, uncertainty sources, and data [18, 19]. BNs can facilitate analyses

in both forward and inverse directions. The uncertainty in the outputs can be estimated using for-

ward propagation through the BN, given the uncertainty about various inputs, model parameters,

and model errors. In the inverse problem, unmeasured inputs, system states, or model parameters

can be estimated using Bayesian inference, given observations of some of the inputs and outputs. In

general, they enable the inference of unmeasured quantities in a system model by using the observed

data on measured quantities.

Uncertainty quantification (UQ) seeks to quantify and reduce the uncertainty arising from multi-

ple, heterogeneous sources. UQ has two directions: the forward problem and the inverse problem. In

the forward problem, model errors and the uncertainty related to the model inputs and parameters

are propagated to compute the uncertainty in the output. In the inverse problem, model calibration

(i.e., estimation of uncertain model parameters and errors) and system diagnosis (i.e., estimation

of uncertain system states and errors) are performed using the available measurement data. The

inverse problem is an essential part of uncertainty quantification and reduction and in achieving the

desired level of prediction confidence.

In Bayesian calibration, prior and posterior beliefs about the calibration quantities can be rep-
1Adapted with permission from: Kapusuzoglu, B., Mahadevan, S., Matsumoto, S., Miyagi, Y., & Watanabe, D.,

“Multi-Source Information Fusion for Multi-Component Dynamic System using Multi-Level Bayesian Calibration,”
(under review), 2022.
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resented as probability density functions [155]. Several studies have addressed the use of Bayesian

calibration frameworks for UQ and prior selection in model calibration [50, 51]. Li and Mahadevan

[156] used Bayesian inference to quantify the uncertainty from the lower-level models to the predic-

tion of the system level. Mullins and Mahadevan [157] address the role of calibration and validation

in multi-level uncertainty integration for hierarchical systems. There are several recent studies using

Bayesian networks (BNs) [156–158] for model calibration. Sankararaman and Mahadevan [159] pro-

posed a methodology to integrate model verification, validation, and calibration using BNs. They

have extended the application of the method to the system with multi-level models sharing common

calibration parameters. A BN was proposed by Hu and Mahadevan [160] to aggregate heterogeneous

sources of information and to quantify the uncertainty in the quantity of interest (QoI). Nannapa-

neni and Mahadevan [158] also used a Hierarchical Bayesian network (HBN) as a mathematical

framework for the aggregation of uncertainty from multiple sources to quantify the uncertainty.

Engineering analyses are often done in the presence of uncertainty due to the insufficient quality

and quantity of available data. The information is typically sparse in realistic systems, and data

might be collected at different time instances for different system components. When multiple models

are used to describe system behavior (either multi-physics or multi-level), some unknown parameters

are shared across multiple component models whereas some other unknown parameters are local to

a given component. Also, some physical quantities might be measured for a single-component and

some other quantities for multiple components. In addition, the different measurements might be

available at different time instants, not all at the same instants. The calibration of model parameters

in situations where the models have complicated couplings between them and are based on different

physics is not straightforward. Simultaneous Bayesian calibration of all the model parameters can

be computationally prohibitive. The existing research has focused mostly on the analysis of physical

systems with single-level data, not involving multi-level heterogeneous data. A segmented approach

for model calibration has been studied earlier for multi-physics problems [18, 19]. In this work,

the segmented approach is extended to multi-level transient systems, in the presence of sparse

experimental data for different system components at different time instants.

This chapter develops an approach that fuses multi-source information for offline and online

Bayesian calibration of multi-physics models with multi-level data. Specific contributions are made

in the following steps: (1) A BN is constructed in a hierarchical manner from component-level to

system-level. (2) A particle filter (PF) algorithm, which is commonly used for state estimation in

dynamic systems, is adopted in this paper for Bayesian inference of static model parameters. (3)

Multi-level Bayesian calibration of model parameters is performed by integrating experimental data
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for different components at different time instants. The calibration is pursued in two directions:

offline and online. In the offline strategy, the calibration is performed using data that is collected

over multiple time steps. In the online strategy, the calibration is performed in real-time as new

measurements are obtained at each time step, thus continuously updating the model. Expert knowl-

edge and physical measurements at different levels of the network enable effective calibration even

with insufficient data.

6.2 Proposed Methodology

In many practical engineering systems accurately estimating the remaining useful life and real-

time system response has been a challenge due to the complexity and uncertainty in service envi-

ronments and multidisciplinary mechanisms. Several computationally expensive simulation model

(FEM) runs with varying model parameters needs to be performed to quantify the effect of multiple

uncertainty sources on the QoI. Finite element analysis of a large structure provides many output

quantities (e.g., stresses and deformations along several degrees of freedom) at numerous locations.

Surrogate models need to be constructed to replace these computationally expensive simulation

models. When the output of the physics-based model is high-dimensional and spatio-temporal as in

the problem of interest, the direct use of all the data simultaneously for Bayesian calibration is not

practical.

The proposed methodology aims to develop an efficient Bayesian calibration approach in time-

dependent systems through multi-source information fusion. Multiple types of measurement data

from multiple components at different time instants are considered. A HBN approach is used to

integrate expert knowledge and measurements from multiple domains at different levels of the net-

work. Two strategies are investigated: offline calibration and online calibration. The information

fusion at different levels is presented for both strategies and the differences are highlighted.

6.2.1 Bayesian Calibration with Multiple Types of Data

The measurement data Dobs, for Bayesian calibration can be available for different components

at different time instants and spatial locations in a multi-component system. Some of the model pa-

rameters can be local ψlocal (i.e., a unique value for each component) and others can be global ψglobal

(i.e., a common value across components). Simultaneous calibration of all unknown parameters Θ

can be computationally prohibitive with multi-component, asynchronous data without the use of

a modular Bayesian calibration approach. Therefore an efficient methodology is proposed here to

perform multi-level Bayesian calibration by fusing different data types from multiple components.
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The proposed multi-level calibration approach leverages a hierarchical Bayesian network (HBN)

where some nodes in a BN may represent another lower-level BN as shown in Fig. 6.1. Some of the

nodes in the lower-level BN can also represent further lower-level BNs, thus any number of levels

are possible. The inverse problem of Bayesian calibration is achieved by passing the information

upstream from the data nodes (solid squares) to the calibration quantities. The data in each lower-

level BN (i.e., d(1)
1 and d(1)

2 ) is used to estimate the posterior distributions of the nodes in the

lower-level BN (e.g., R(1)
1 , R(1)

2 , · · · , R(1)
7 ). During calibration of the nodes in the higher-level BNs,

the posterior distributions of the lower-level nodes are used as prior distributions to re-calibrate the

nodes that go into higher-level BNs (i.e., R(2)
1 and R(2)

2 ). If necessary, the remaining nodes in the

lower-level BNs can also be re-calibrated by passing the information down the hierarchy. Thus, we

are able to incorporate all the available information into the calibration strategy and maximize the

computational efficiency.

Level 2

Level 1

𝑅1
(1)

𝑅2
(1)

𝑅3
(1)

𝑅5
(1)

𝑅7
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Level 1

𝑑1
(1)

𝑑2
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𝑅6
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𝑅4
(1)

𝑑2
(1)

𝑅3
(2)

𝑅1
(2)

𝑅2
(2)

Figure 6.1: A simple hierarchical Bayesian network

The above development of the approach is under a static Bayesian framework. Extension to a

dynamic BN with time-dependent system parameters is given in Fig. 6.2. The subscripts t −1 and

t denote the time instants and the nodes in the dynamic Bayesian network (DBN) are connected

by arrows that represent conditional probability distributions or deterministic functional relations.

In addition to the dynamic nodes for which the states change over time (e.g., node B, C, D, E),

there can also be static nodes that are included at all time instances (e.g., node A). The situation

considered in the numerical example in Section 5.5 is simpler. Since the numerical example does not
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include any time-dependent uncertain system states, there is no calibration of the dynamic system

states using the PF algorithm described in Section 2.3.2; only the estimation of static parameters.

𝐵𝑡−1
(1)

𝐶𝑡−1
(1)

𝐸𝑡−1
(1)

𝐷𝑡−1
(1)

𝑑𝑡−1
(1)

𝐴

𝐵𝑡
(1)

𝐶𝑡
(1)

𝐸𝑡
(1)

𝐷𝑡
(1)

𝑑𝑡
(1)

Time instant 𝑡 − 1 Time instant 𝑡

Level 2

Level 1

𝐺𝑡−1
(2)

𝐹𝑡−1
(2)

𝐻𝑡−1
(2)

𝑑𝑡−1
(2)

𝐺𝑡
(2)

𝐹𝑡
(2)

𝐻𝑡
(2)

𝑑𝑡
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Figure 6.2: A simple hierarchical dynamic Bayesian network

Given all unknown parameters Θ, let Θ1 and Θ2 denote the calibration parameters, and let

DBN1 and DBN2 represent the data available on the lower-and higher-level BNs, respectively. We

consider two cases: (1) the available data DBN1 and DBN2 are independent, or (2) there is a one-

to-one correspondence between them. Assuming DBN1 and DBN2 are independent, the posterior

distributions Π(Θ1,Θ2|DBN1 ,DBN2) can be obtained as

Π(Θ1,Θ2|DBN1 ,DBN2) ∝ L(DBN1 ,DBN2 |Θ1,Θ2)Π(Θ1,Θ2) (6.1)

∝ L(DBN1 |Θ1)L(DBN2 |DBN1 ,Θ1,Θ2)Π(Θ1)Π(Θ2)

∝ L(DBN1 |Θ1)Π(Θ1)L(DBN2 |Θ1,Θ2)Π(Θ2)

where the first two terms in the last expression denote the posterior distributions of Θ1, Π(Θ1|DBN1),

using the lower-level data DBN1 . The posterior distributions of Θ1 are then used as prior distributions

to obtain the posterior distributions of Θ1 and Θ2 using the higher-level data DBN2 . Since DBN1

and DBN2 are assumed to be independent, the likelihood term L(DBN2 |DBN1 ,Θ1,Θ2) simplifies to

L(DBN2 |Θ1,Θ2). In other words, the posterior distributions obtained in the lower-level BNs using

data in that level are propagated as priors to the higher-level BN for re-calibration using the higher-

level data DBN2 .

In the second case, the data DBN1 and DBN2 are assumed to have a one-to-one correspondence
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(i.e., there exit a corresponding DBN1 for a given DBN1), then the posterior distribution is given as

Π(Θ1,Θ2|DBN1 ,DBN2) ∝ L(DBN1 ,DBN2 |Θ1,Θ2)Π(Θ1,Θ2) (6.2)

∝ L(DBN1 |Θ1)L(DBN2 |DBN1 ,Θ1,Θ2)Π(Θ1)Π(Θ2)

∝ L(DBN1 |Θ1)Π(Θ1)L(DBN2 |DBN1 ,Θ2)Π(Θ2)

where the likelihood term L(DBN2 |DBN1 ,Θ1,Θ2) simplifies to L(DBN2 |DBN1 ,Θ2) since R(2)
3 is indepen-

dent of Θ1 when DBN1 is known. The first two terms provide the posterior distributions of Θ1 using

DBN1 similar to the previous case, and the last two terms provide the posterior distributions of Θ2

using DBN1 and DBN2 . Thus, the final posterior distributions of Θ1, Θ2 can be obtained in one shot

separately, whereas a two-step approach is used in the earlier case described in Eq. (6.2.1) to ob-

tain the posterior of Θ1: Step 1: Calibrate using only DBN1 ; Step 2: Use the posterior from step

1 to re-calibrate together with Θ2 using DBN2 . The above approaches can be extended to calibrate

hierarchical DBNs with multiple levels.

The segmented calibration strategy discussed in [19] uses a static BN with multiple sources of

calibration data. However, this strategy is only effective when data are available for each calibration

segment. Since in multi-component dynamic systems one data source is often used to calibrate

multiple sources of uncertainty, the strategies investigated here allow to quantify model error and

calibration quantities within multi-level transient systems.

6.2.2 Offline and Online Multi-Level Bayesian Calibration

In this work, the multi-level Bayesian calibration is pursued in two directions: Offline and Online

(see Algorithm 4). In the former strategy, the calibration of all parameters is performed at once

using all the data, with data on different components that are collected at different time steps. In

the latter strategy, the calibration is performed in real-time as measurements are obtained at each

time step. In the offline strategy, ψglobal are fixed at their priors and ψlocal are calibrated for each

system component using measurements at each time step and the posterior distributions from this

calibration are then used as prior distributions to calibrate the global parameters while fixing the

non-global parameters at their posterior estimates from the previous iteration step. Whereas in the

online strategy, the same procedure is performed only at the time step where measurements are

taken. The posteriors obtained from this data type are propagated in time and used as priors to

further update the parameter estimates using additional data. As new measurements are taken,

the real-time calibration is performed and unlike the offline strategy different data types are used
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sequentially to update the parameters at the current time step in the online calibration strategy.

The calibration strategy as described in Algorithm 4 consists of the following general steps:

1. First assume priors for the parameters to be calibrated (both local and global parameters);

2. Next, data collected from multiple components is used to calibrate both ψlocal and ψglobal in

an iterative manner until convergence;

3. More specifically, first the global parameters are fixed at their priors and the local parameters

are calibrated for each sample;

4. Then, the local parameters are fixed at their posterior distributions to calibrate ψglobal ;

5. Steps 3 and 4 are then repeated until convergence, i.e., until the change in the mean and

variance of the posterior distribution of ψglobal is smaller than a set threshold. (This is similar

to the well-known expectation maximization (EM) algorithm [150]);

6. The posterior distributions obtained in step 5 are used as priors for the calibration of ψlocal

corresponding to the component, where data is available.

The main difference between the offline and online strategies is that the offline strategy has

access to complete measurement history. This allows the use of all available multi-component data

for calibration (lines 2-8 in Algorithm 3). Whereas, in the online strategy the multi-component data

is fed into the calibration strategy in real-time (lines 15-20 in Algorithm 3). This can lead to a

different convergence behavior between the offline and online strategies since the iterative procedure

performed to calibrate the parameters using multi-component data is dependent on the data that is

fed into the calibration strategy.

The proposed methodology consists of five main components: (1) Collection of simulation data

and dimension reduction, (2) Surrogate model construction for fast system output prediction, (3)

Collection of experimental data, (4) Information fusion to calibrate the unknown parameters and up-

date the surrogate model with real-time monitoring data and model discrepancy, and (5) Prediction

of the real-time QoIs using the calibrated system model. In the next section, we demonstrate the

effectiveness of the proposed methodology for a high-dimensional thermo-mechanical system with

spatio-temporal output.
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Algorithm 4 Multi-level Bayesian calibration pseudo code:
(A) Offline calibration, and (B) Online calibration
Given: Dobs
Output: Posterior estimates of Θ

1: procedure (a) Offline Calibration
2: for i = 1 to ntime do ▷ Multi-component data
3: while (Change in posteriors of ψglobal > threshold) do
4: Fix ψglobal at their priors
5: Calibrate ψlocal
6: Fix ψlocal at their posterior estimates and calibrate ψglobal
7: end while
8: end for
9: for i = 1 to ntime do ▷ Single-component data

10: Re-calibrate both ψlocal and ψglobal
11: end for
12: end procedure
13:
14: procedure (b) Online Calibration
15: for i = 1 to ntime do
16: while (Change in posteriors of θglobal > threshold) do ▷ Multi-component data
17: Fix ψglobal at their priors
18: Calibrate ψlocal
19: Fix ψlocal at their posterior estimates and calibrate ψglobal
20: end while
21: Re-calibrate both ψlocal and ψglobal ▷ Single-component data
22: end for
23: end procedure

6.3 Numerical Example

6.3.1 Introduction to the Problem

A simplified gas turbine engine blade model is studied in this section to demonstrate the proposed

surrogate modeling and calibration techniques for high-dimensional spatio-temporal output. The

field response outputs (i.e., quantities of interest, QOIs) of the FEM runs are equivalent creep

strain (CEEQ), creep damage (Dc), von Mises stress, displacement in x, y, and z directions; these

are available at a large number of spatial and temporal points. The four-dimensional input for

the surrogate model consists of turbine blade coating thickness (TBC thickness), turbine output

rate (T1T rate), transient creep rate, and constant creep rate, as shown in Table 6.1. The ranges

of the inputs are: TBC thickness [2/3*nominal,4/3*nominal], T1T rate [80*nominal,100*nominal],

and transient and constant creep rates [-3σ ,3σ ]. The boundary conditions of the FEM model are

assumed to be known with certainty. The four surrogate model inputs (i.e., calibration quantities)

are considered as uncertain. The total number of spatial locations of the FEM model is over 27,000

for each output QoI and the total number of time steps is 54. Thus, for each QoI, a single FEM
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simulation gives a vector with over 1,458,000 spatio-temporal quantities.

Table 6.1: Surrogate model input parameters and ranges

Input Values

TBC thickness 2
3× nominal to 4

3× nominal
T1T rate 80 × nominal to 100 × nominal
Transient creep rate -3σ to 3σ
Constant creep rate -3σ to 3σ

6.3.2 Bayesian Parameter Calibration

We use the particle filter (PF) algorithm to compute the posterior distributions of X = [TBC

thickness, T1T rate, α, γ] as shown in Fig. 6.3. A uniform distribution is chosen as the prior

distribution for each parameter of X.

Initialize particles

X randomly drawn from priors  

Surrogate model is 

trained with all 

available FEM runs

Predicted QoIs at all 

nodes

Likelihood

Predicted features

Use the predicted QoI at 

measured locations for 

likelihood calculation

Posterior samplesUpdate weights

Yes

NoWeights 

degenerated?

Resample

Next 

time step

Priors:

𝑥1~ U(2/3, 4/3)

𝑥2~ U(80, 100)

𝑥3~ U(-3, 3)

𝑥4~ U(-3, 3)

Figure 6.3: Flowchart describing the steps of particle filter algorithm

The developed surrogate model in Chapter 5 through adaptive selection of additional training

points is used in this work to calibrate the model parameters. In sequential updating using the

PF method, for each proposed X, the important features are calculated using the corresponding

surrogate model that is trained with 66 FEM runs. The physical quantities in the original space

are subsequently calculated by performing an inverse projection of the important features onto

the original space. The likelihood function shown in Eq. (2.20) is calculated while considering a
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stochastic observed measurement error εobs that is represented as a zero-mean Gaussian random

variable with an unknown variance σ2
obs, i.e., εobs ∼ N(0,σ2

obs).

There are over 27,000 spatial locations for each QoI (i.e., FEM nodes) and there are total of 54

time steps. However, the measurement data is significantly sparse. We perform multi-level Bayesian

calibration using different types of measurement data as described in Fig. 6.4 to make use of all

the data. We have single-blade (single-component) data and multi-blade (multi-component) data.

Elongation at the blade tip is available for 100 blades, and x, y, z displacement data is only available

for a single blade (i.e., blade ID 01). Both elongation at the blade tip and x, y, z displacement

data are collected at the same three time instants. These data types have measurements at three

time instances. For example, the elongation data at the blade tip (i.e., Node ID 31933) is collected

from 100 blades and only at three time instants. The 3D deformation data is obtained at the same

three time instants at 6448 different spatial locations for blade ID 01. We have CEEQ data only

for three blades. CEEQ measurements are obtained by destructive testing, which is different from

collecting displacement data with a laser scanner (non-destructive). After the destructive testing of

a blade, another blade will be installed as replacement. Thus, CEEQ data for a single blade is only

available at one time instant and at a single spatial location (i.e., Node ID 5057) as shown in Table

6.2. Therefore, the amount of data coming from CEEQ measurements is even more limited, CEEQ

values at a single spatial location for three time steps, (i.e., three measurement values for each blade

compared to ≈ 27,000 × 54 surrogate model predictions). Furthermore, the two creep parameters

α and γ are not strongly correlated to the QoIs. Thus the uncertainty regarding these parameters

is not reduced with the limited available data. Because of all these reasons, the posterior estimates

obtained using CEEQ measurements are not shown since the available CEEQ measurements are

very sparse (i.e., the uncertainty regarding local parameters is not reduced significantly).

Table 6.2: Experimental data

Time instants
Data type t1 t2 t3

Elongation at the blade tip (Node ID 31933) blade ID 01-100 blade ID 01-100 blade ID 01-100
XYZ (at 6448 different spatial locations) blade ID 01 blade ID 01 blade ID 01
CEEQ (Node ID 5057) blade ID 28 blade ID 82 blade ID 99

The multi-level Bayesian calibration approach is implemented along the following steps: (1)

Assume priors for the four parameters to be calibrated, where three of them Θlocal = {TBC thickness,

α, γ} are local parameters, i.e., unique to each blade, and Θglobal = {T1T} is a global parameter

across all blades. (2) Use multi-blade data, i.e., tip elongation of 100 blades to calibrate Θlocal

and Θglobal in an iterative manner as explained in Section 6.2.2 and shown in Fig. 6.4(b). (3) Use
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Figure 6.4: (a) Multi-level Bayesian network and (b) Offline calibration in multi-component system

the posterior distributions obtained in the above step as priors to re-calibrate Θlocal (3 parameters

that are local to blade ID 01) using the single-blade 3D deformation data of blade ID 01 shown in

Fig. 6.4(b). (4) Use the posterior distributions of Θlocal and Θglobal obtained from the second step

(using the multi-blade data) as priors for re-calibrating all parameters using CEEQ measurements

of blade ID 28, 82, and 99 at three unique time instances (see Table 6.2).

Two options of multi-level Bayesian calibration are pursued: offline and online. In the former

strategy, the calibration is performed all at once, using all the data that is collected at multiple time

steps. In the latter strategy, the calibration is repeated in real-time as measurements are obtained

at each time step. The resulting posterior distributions of parameters based on the offline Bayesian

calibration corresponding to blade ID 90 obtained by using the multi-blade measurement field data

(i.e., elongation at the blade tip) are shown in Figs. 6.5 and 6.6. The posterior distributions of

parameters corresponding to blade ID 01 obtained by using the 3D deformation data based on the

offline Bayesian calibration are given in Figs. 6.7 and 6.8.
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The true values of TBC thickness, α and γ are unknown, and the true value of T1T rate is not

exactly known but based on expert opinion it is expected to be in the range [0.97, 1.0], respectively,

for all samples (since it is a shared parameter). The results with an input-output dependent model

discrepancy term (δ ∼ N(µ(x,y,θ),σ(x,y,θ)), with µ(x,y,θ) = y(θ 1 − θ 2x), see Section 2.3.1) are

plotted together with results that do not consider model discrepancy (labeled as Posterior without

δ ) but only consider measurement error εobs. In the presence of insufficient amount of experimental

data and non-informative prior knowledge about the uncertainty sources in the engineering system,

it may be difficult to distinguish between the effects of the model parameters and model discrepancy

as the number of parameters that need to be estimated becomes large; this problem is referred to as

non-identifiability [51, 161]. Hence, we assume a constant value for the standard deviation of model

discrepancy (i.e., σ(x,y,θ) = σ = 1×10−5) based on the analysis of surrogate model predictions and

measurement data. The inclusion of model discrepancy allows to have slightly sharper posterior dis-

tributions for the calibration parameters as additional single-component data is used re-calibration.

This can be seen in Figs. 6.7, 6.8.
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Figure 6.5: Posterior distributions of model parameters using elongation data at the blade tip (blade
ID 90), using offline Bayesian calibration

The calibrated prediction is verified with measurement data. Some of the measurements are

not used to calibrate the parameters. Hence, the calibrated system model predictions are verified

at these unused measurement data. The mean values and standard deviations of the calibrated

parameters, which are obtained from the weights of particles representing samples from the joint
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Figure 6.6: Posterior distributions of noise standard deviation and model discrepancy hyperparam-
eters using elongation data at the blade tip (blade ID 90), using offline Bayesian calibration
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Figure 6.7: Posterior distributions of model parameters using 3D deformation data of blade ID 01,
using offline Bayesian calibration

distribution, are used to propagate the uncertainty through the surrogate model. The displacement

predictions obtained using the calibrated parameters are compared against the measurements at

Node ID 6448 to validate the calibration strategy.
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Figure 6.8: Posterior distributions of noise standard deviation and model discrepancy hyperparam-
eters based on 3D deformation data of blade ID 01, using offline Bayesian calibration

The calibrated surrogate model predictions of the offline Bayesian calibration are compared

against the measurement data in Figs. 6.9 and 6.10. The blue squares denote the mean surrogate

model predictions. The light blue shaded region represents the surrogate model predictions at the

mean plus or minus one standard deviation of the calibrated parameters (µ ±σ). Similarly, the

red error bar indicates the surrogate model predictions at the mean plus or minus one standard

deviation of the calibrated parameters plus the measurement error (µ ±σ + εobs) in Figs. 6.9(a)

and 6.9(b) and model discrepancy (µ ±σ + εobs) in Figs. 6.10(a) and 6.10(b). The measurements

at each time step are within the prediction bounds obtained using the posterior estimates of the

calibrated parameters, demonstrating the effectiveness of the proposed method.

The posterior distributions of parameters based on the online Bayesian calibration are shown

in Figs. 6.11, 6.12, 6.13, and 6.14 for calibration with different types of measurement data. The

calibrated surrogate model predictions are compared against the measurement data as shown in

Figs. 6.15 and 6.16 to assess the performance of the proposed online strategy.

The offline strategy, in which data at all time steps are used at once to calibrate the model

parameters, is able to capture slightly more information. Thus, when we compare Figs. 6.7 and

6.8 with Figs. 6.13 and 6.14, we observe that the posterior distributions obtained using the offline

strategy significantly sharper. Also note that the single-blade data type has measurements available
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(b)(a)

Figure 6.9: Prediction ŷ at the mean and plus or minus one standard deviation of the calibrated
parameters using the elongation at the blade tip data of blade ID 90, using offline Bayesian calibra-
tion: (a) Without model discrepancy, (b) With model discrepancy

(b)

(a)

Figure 6.10: Prediction ŷ at the mean and plus or minus one standard deviation of the calibrated
parameters using the 3D deformation data of blade ID 01, using offline Bayesian calibration: (a)
Without model discrepancy, (b) With model discrepancy

only for one blade, thus the information gain is smaller compared to the multi-blade data type where

there are multiple pieces of data. Based on the results, it seems more reasonable to perform the

offline calibration strategy to capture as much information as possible in the first level calibration

(i.e., iterative multi-component calibration), so that the posterior distributions of local parameters

would be sharper after the second level calibration (i.e., single-component calibration such as: CEEQ
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Figure 6.11: Posterior distributions of model parameters using elongation data at the blade tip
(blade ID 90), using online Bayesian calibration
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Figure 6.12: Posterior distributions of noise standard deviation and model discrepancy hyperparam-
eters using elongation data at the blade tip (blade ID 90), using online Bayesian calibration

and 3D deformation). On the other hand, in many applications online calibration is crucial in iden-

tifying any changes in real-time. Moreover, the online calibration shows significant computational

improvements in parameter estimation and prediction. The computational times of the entire offline
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Figure 6.13: Posterior distributions of model parameters using 3D deformation data of blade ID 01,
using online Bayesian calibration
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Figure 6.14: Posterior distributions of noise standard deviation and model discrepancy hyperparam-
eters based on 3D deformation data of blade ID 01, using online Bayesian calibration

and online calibration (i.e., multi-level calibration using different types of measurement data) with

10,000 particles are approximately 48 and 27 minutes on a desktop with an Intel 8-core CPU with

a 3.00 GHz base frequency and 8 GB memory, which includes surrogate model predictions for each
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Figure 6.15: Prediction ŷ at the mean and plus or minus one standard deviation of the calibrated
parameters using the elongation at the blade tip data of blade ID 90, using online Bayesian calibra-
tion: (a) Without model discrepancy, (b) With model discrepancy

(b)

(a)

Figure 6.16: Prediction ŷ at the mean and plus or minus one standard deviation of the calibrated
parameters using the 3D deformation data of blade ID 01, using online Bayesian calibration: (a)
Without model discrepancy, (b) With model discrepancy

particle at each time step where measurements are taken.

6.4 Summary

This chapter presented a Bayesian calibration framework for time-dependent multi-component

systems. The proposed framework fuses multi-physics models with sensor data, and considers dif-

ferent uncertainty sources. The main components of the proposed framework are the development
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of the offline and online Bayesian calibration strategies for multi-source information fusion, calibra-

tion of uncertain parameters, uncertainty reduction and handling of variables for the system level

prediction.

A surrogate model is first built to replace the expensive physics-based FEM for faster calibration;

this surrogate model is built to produce a very high-dimensional output of multiple QoIs over a large

number of spatial locations and time instants. Once the surrogate model is considered satisfactory,

we perform Bayesian calibration to infer model parameters and the model discrepancy term based on

measurement data. A multi-level Bayesian calibration approach is investigated using a Hierarchical

Bayesian Network (HBN) by fusing different data types from different components at different time

steps. This approach helps to incorporate all the available information into the calibration strategy.

The uncertainty regarding local parameters is reduced by using different types of information at

multiple levels. Hence, the multi-source information fusion enhances the uncertainty reduction in

the unknown parameters.

The important features of the calibration approach can be summarized as follows:

• The unknown parameters are calibrated with multi-component data using the iterative strategy

described in Section 6.2.2.

• When there exist local parameters (i.e., component-level) and global/shared parameters (i.e.,

system-level), these parameters are calibrated multiple times as the posteriors from the lower-

level calibration is used as the priors for the higher-level calibration.

• The local parameters corresponding to the component where data is available are re-calibrated

using the single-component data.

Both offline and online calibration strategies were investigated. The offline strategy, where the

multi-component calibration (i.e., the lower-level BN) performed with data from all time steps (unlike

the online strategy), converges to sharper posterior distributions. Since the posterior estimates

obtained at the lower-level BNs are used as priors at the higher-level BNs, the posterior distributions

of local parameters at the higher-level BNs are sharper.
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CHAPTER 7

Decision-Making under Uncertainty

7.1 Introduction

A large system is often designed to meet multiple objectives, which in many cases are conflicting

with each other. In order to improve the system performance, the conflicting objectives need to

be balanced through multi-objective optimization. Also, since system variability is a major concern

and there is model uncertainty in the predicted quantity of interest (QoI), it is necessary to optimize

the process parameters for multiple objectives while also considering these uncertainty sources. This

objective develops a framework for optimizing process parameters under uncertainty and investigates

whether the limitations of physics-based models and single-objective optimization could be overcome

using ML models and a multi-objective optimization approach.

The introduction of system models (either physics-based or data-driven) introduces several

sources of uncertainty such as model parameter uncertainty, input uncertainty, model error, etc.,

which is then propagated to the QoI predicted by the model [26, 32, 38]. Data-driven models are

created with data collected from experiments. The uncertainty in the measurement process from in-

struments, human error, etc. needs to be considered. It is also important to select the optimal model

and tuning parameters of the model (e.g., number of layers and units in a deep neural network), and

avoid data overfitting. Often the amount of data available to construct the data-driven model is lim-

ited, leading to uncertainty in the model prediction. Therefore, it is necessary to consider the model

uncertainty for an accurate and reliable prediction model. The presence of input uncertainty and

model uncertainty introduces uncertainty in the prediction of the model outputs. Such stochastic

optimization formulation often suffers from intensive computational effort since optimization under

uncertainty requires an extra loop of uncertainty quantification (UQ) in each optimization iteration.

Thus, surrogate modeling techniques, which replace the expensive physics code with an inexpensive

model for UQ, are often used for optimization under uncertainty.

A generic formulation of deterministic multi-objective optimization for nob j objectives may be

written as:
minimize

x

{
f1(x,p), ..., fnob j(x,p)

}
subject to gi(x,p)≤ 0, i = 1,2, ...,ncon

lbx ≤ x ≤ ubx

(7.1)
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where x and p are the design and non-design variables, gi, i = 1,2, ...,ncon represent the ncon deter-

ministic constraints, and lbx and ubx are the lower and upper bounds for the design variables x.

The solutions of multi-objective optimization are usually characterized by a Pareto front, which is a

series of designs describing the trade-off among different objectives. To construct the Pareto front,

four approaches have been studied in the literature: weighted sum, constraint-based methods, goal

programming, and genetic algorithm. The decision maker can choose the appropriate design based

on the preferences on the objectives [162].

Optimization under uncertainty can be pursued in two directions: (1) robust design optimization

(RDO) [163], and (2) reliability-based design optimization (RBDO) [164]. In RDO, both the mean

and the variability of the objective function are optimized (since minimizing the variability makes

the objective insensitive to variations of the input variables and parameters), and the constraints are

satisfied within specified uncertainty bounds. On the other hand, in RBDO, a desired target level of

reliability is maximized (i.e., probability of satisfying a desired threshold of performance or quality)

by optimizing the decision variables, or a cost function is minimized while satisfying a reliability

constraint.

Consider the case where the objective is to minimize a function f (x,p) with design variables

x = [xd ,xθ ] and non-design variables p = [pd ,pθ ], where xd ,pd are deterministic variables, and xθ ,pθ

are stochastic design and non-design variables respectively. The single objective RDO formulation

using weighted sum approach can be written as

minimize
x∈Rnx

w1 µ f (x,p)+w2 σ f (x,p);

subject to lbg +kcσgg(x,p)≤ g(x,p)≤ ubg −kcσgg(x,p),

lbx ≤ x ≤ ubx

(7.2)

where µ f (·) and σ f (·) are the mean and standard deviation of f , 0 ≤ w1,w2 ≤ 1 are the weights

representing the relative importance of each objective function, Rnx represents the design space,

lbx,ubx represent the lower and upper bounds for the design variables, g(x,p) is the vector of in-

equality constraints, and lbg,ubg represent the lower and upper bounds of the constraints. For

stochastic constraints, the feasible region is reduced by kcσg in each direction where kc is a vector

of user-defined constants based on the design requirements and σg is the vector of standard devi-

ations of the constraints [163]. For a deterministic constraint, kcσg = 0. Note that in this work,

the optimization needs to consider multiple objectives, considering multiple QoIs. The same ap-

proach in the above equation can be extended for nob j objectives by assigning corresponding weights
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w1,w2, · · · ,wnob j to the objective functions. Depending on the design variables and constraints, the

optimization problem discussed above can be solved using a suitable global optimization algorithm.

A brute-force optimization may be adequate for optimization problems with small number of design

variables with small ranges. However, when the design space cannot be as easily explored, other

optimization techniques such as genetic algorithm [165], simulated annealing [166], particle swarm

[167], Non-dominated Sorting Genetic Algorithm II (NSGA-II) [168], etc. can be employed.

7.2 Single Physical Quantity of Interest1,2

Many previous studies on process optimization in AM have employed a design of experiments-

based trial-and-error approach to determine the effect of different process parameter settings on the

QoI such as part strength, residual stress, surface roughness etc. [89, 169–171]. The experiment-

based approach is problem-specific, and cannot be used as a general-purpose process design method

for different materials and part geometries. Therefore, there is a need to use a process model

(either physics-based or data-driven) that optimizes the process parameters for better overall part

quality without running multiple economically expensive physical experiments, and also includes the

uncertainty in the model prediction. The models used to predict the QoI are affected by various

sources of uncertainty and error. This affects process optimization and process control decisions.

Thus, it is critical to identify and quantify the effects of the uncertainty and error sources in order

to improve the overall quality of FFF products. This chapter develops a framework for optimizing

process parameters under uncertainty that maximizes the filament bond quality of FFF printed

parts.

The quality of an additively manufactured part is related to the process parameters such as printer

nozzle temperature, nozzle speed, layer width, layer height etc. The process parameters can be more

easily controlled than other factors such as the material properties of the raw material. The effect of

process parameters on the QoI has been studied extensively. Armillotta et al. [172] investigated the

effect of included angle, inclination, and incidence angle on the edge quality of FFF parts. Chacón

et al. [173] analyzed the effect of different process parameters on the mechanical properties of the

printed parts. The relationship between dimensional accuracy and infill percentage, infill pattern,

layer thickness, and extrusion temperature is studied by Alafaghani and Qattawi [174] using Taguchi

design of experiment method. These studies use a problem-specific experiment-based trial-and-error

approach to select the process parameters. This approach is inefficient and costly. In addition, the
1Adapted with permission from: Kapusuzoglu, B., Sato, M., Mahadevan, S., & Witherell, P., “Process Optimization

Under Uncertainty for Improving the Bond Quality of Polymer Filaments in Fused Filament Fabrication,” ASME. J.
Manuf. Sci. Eng., vol. 143(2), no. 021007, 2021.

2© 2020 by ASME
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experimental results are not generalizable to a different experimental setting, component, or design

and the trial-and-approach cannot be used to make decisions for unexplored scenarios.

The focus of this section is to develop a framework for optimizing process parameters under

uncertainty that maximizes the filament bond quality of FFF printed parts. The overall bond

length is the decision criterion we use for optimization; greater overall bond lengths signify lesser

void area (thus better bonding) in an average sense. We only consider stage 1 and 2 shown in Fig. 7.1

to predict the overall bond length. Stage 3 is not considered in the bond formation modeling. Other

alternative criteria could also be used within this framework, such as reducing the void area. Note

that the focus of this chapter is not to improve the process, but to make optimum use of the

existing process. In this context, the proposed methodology leverages the transient heat transfer

model and sintering neck growth model for cylindrical filaments proposed by Costa et al. [175] and

Gurrala et al. [80], respectively. It quantifies the uncertainty in the coupled multi-physics model

prediction, and determines the optimal process parameters through model-based optimization under

uncertainty to improve the bond quality at each layer to overcome poor intra-layer and inter-layer

bonding. Variance-based sensitivity analysis based on Sobol’ indices is used to quantify the relative

contributions of different uncertainty sources to the uncertainty in the bond quality. The uncertainty

in the coupled multi-physics model prediction is quantified by constructing a Gaussian process (GP)

surrogate model to compute and include the model discrepancy within the optimization. Physical

experiments are conducted for calibration and validation of the physics model, and also for validation

of the optimum solution.

2a
0

(1)

2y

2a
(2) (3)

Figure 7.1: The bond formation process between two filaments: (1) initial surface contact; (2)
wetting or neck growth; (3) molecular diffusion and randomization across the cross-section of two
FFF extruded filaments

In summary, the contributions of this section are as follows:

1. Development of a Bayesian methodology to quantify the uncertainty in the neck growth pre-

diction.

2. Construction of a GP surrogate model for efficient computation of model error, in order to

incorporate model error in process parameter optimization.
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3. Evaluation of the relative contributions of various uncertainty sources to the uncertainty in

the model output.

4. Development of a computational framework for process parameter optimization under uncer-

tainty in order to maximize the bond quality between extruded polymer filaments in FFF.

7.2.1 Proposed Methodology

The proposed methodology for process parameter optimization under uncertainty consists of the

following steps:

1. Uncertainty quantification in FFF product bond quality

2. Probabilistic sensitivity analysis

3. Surrogate modeling of physics model discrepancy

4. Process parameter optimization under uncertainty

5. Physical experiments for model calibration and validation

The following subsections describe these steps in detail.

7.2.1.1 Uncertainty Quantification in FFF

In this subsection, several uncertainty sources in FFF are identified and methods to quantify

them are discussed. The heat transfer and sintering neck growth models used in this section have

their own model inputs, parameters, and errors. Some of these model inputs, parameters, and er-

rors are deterministic while others are uncertain. The uncertainty sources can be aleatory (natural

variability) or epistemic (lack of knowledge). The input values used in the heat transfer model (the

thickness, width and length of filaments, printer nozzle temperature and extrusion speed) may not

be the same as the actual value, thus introducing uncertainty regarding the input to the bond length

model. Of the above parameters, the printer nozzle temperature is assumed to vary across printed

parts. The temperature of the filaments immediately after being extruded was found to be signifi-

cantly lower than the specified printer nozzle temperature. This variation in the temperature of the

filament as it leaves the nozzle tip is included in the heat transfer model. Moreover, the heat transfer

model is also affected by model parameter uncertainty, which is considered epistemic uncertainty

(i.e., they have fixed values which are unknown), such as density, specific heat capacity, convective

heat transfer coefficient, and fractions of filament perimeter that is in contact with another filament
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or with the build plate. Thus, the uncertainty in the printer nozzle temperature and model param-

eters of the heat transfer model introduces uncertainty in the temperature history of the interfaces.

The uncertainty in the output of the heat transfer model further propagates to the output quantity

of interest through the sintering neck growth model. In addition, the uncertainty regarding the

model parameters of the sintering model (such as surface tension, and material viscosity) introduce

additional uncertainties in the quantity of interest. Both models also have errors since they have

various assumptions, and are not perfect representations of the actual physics. Thus, the bond

length predictions have uncertainty due to the propagation of the effects of these different uncer-

tainty sources. The unknown model parameters and errors can be estimated using the experimental

data, which contain measurement noise/observation error, through Bayesian model calibration.

7.2.1.1.1 Model Calibration under Uncertainty

As discussed in Section 2.3, the model predictions are affected by model errors due to missing

physics or approximations. Therefore, a model discrepancy term δ (X) as a function of model in-

puts (one of the main features of the Bayesian calibration framework developed by Kennedy and

O’Hagan [50]) can be introduced as shown in Fig. 2.2 to capture the disagreement between the true

system response and the model prediction. Input variables X are measurable quantities and chosen

by the experimenter. These can be considered deterministic or stochastic with known probability

distributions due to natural variability (aleatory) or measurement error. Whereas, model parameters

are uncertain due to lack of knowledge (epistemic) since θ m take some unknown deterministic values

during the experiment. The purpose of Bayesian model calibration is to use observation data Yobs

to estimate the posterior distributions of θ m and other unknown quantities such as parameters of

observation error and the discrepancy term as discussed in Section 2.3. Kennedy and O’Hagan [50]

employ a probabilistic relationship between the predictions and observations, which incorporates

both model parameters and a discrepancy function. Note that the discrepancy function is not ob-

servable from the observation data, since the true values of model parameters are unknown. The

model discrepancy function is treated as a Gaussian process (GP). The hyperparameters of the GP

(including the coefficients of the trend function) can be estimated along with physics model param-

eters using a Bayesian approach. However, in the presence of insufficient amount of experimental

data and non-informative prior knowledge about the uncertainty sources in the engineering system,

it may be difficult to distinguish between the effects of the model parameters and model discrepancy;

this problem is referred to as non-identifiability [51, 161] when the number of parameters and hy-

perparameters that need to be estimated becomes large when the model discrepancy term is treated
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as a GP.

Two strategies are pursued here for improving the identifiability: (1) performing sensitivity anal-

ysis to identify the most important physics model parameters as described in Section 2.4, and (2)

ignoring the discrepancy term during the calibration step and building a surrogate model for the dis-

crepancy (i.e., the difference between the calibrated model prediction and actual system response),

as described in Section 2.2.1.

First, the physics model parameters that have the most significant contribution to the uncertainty

in the model output during the entire printing process are calibrated without including the model

discrepancy term. The joint posterior distribution of θ m can be computed using Bayes’ theorem

(see Eq. (2.20)). Bayesian model calibration is often performed using Markov chain Monte Carlo

(MCMC) sampling algorithms (such as Metropolis-Hastings [55], Gibbs [56], or slice sampling [57])

since the integral in the denominator of Eq. (2.20) makes numerical integration intractable for

increasing dimension of calibration quantities [58]. The Metropolis-Hastings algorithm is used in

this chapter.

Next, a GP surrogate model is constructed as discussed in Section 2.2.1 for the model discrepancy.

A set of additional experiments can be conducted to obtain training data for building a surrogate

model such as GP model in order to estimate the model discrepancy at any input value x. (Note that

two sets of experimental data are used: the first set for calibrating the physics model parameters

and the second set for building the surrogate model of model discrepancy. This two-step approach

was possible in this study since the experiments were inexpensive and fast; if it is not possible to

conduct two sets of experiments, then simultaneous calibration of physics model parameters and GP

hyperparameters will need to be pursued, with appropriate assumptions and sensitivity analysis to

reduce the number of calibration quantities and achieve identifiability). The training data of the GP

model for the model discrepancy can be evaluated for different input values of experimental tests

and realizations of observation errors by comparing model predictions against experimental data

yD(x)

δ (x) = yD(x)+ εobs −ym(x). (7.3)

The GP model (δGP(x)) for the model discrepancy captures the combined contribution of model

form and measurement error for a given bond length. Thus, the corrected prediction of the physics-

based model ypred can be written as

ypred(x) = ym(x)+δGP(x). (7.4)
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Two cases with different inputs and model functions are considered in this section, namely cases

A and B. The inputs to the sintering neck growth model, temperature profiles of the extruded

filaments, are predicted using the heat transfer model in case A, whereas, measured temperature

data from experiments are used as the inputs to the neck growth model in case B. G
(
x; θ m(x)

)
represents (a) the coupled physics-based heat transfer and sintering neck growth models for case

A and (b) sintering neck growth model, which can be evaluated using a numerical technique such

as 4th order Runge-Kutta method, for case B (see Fig. 7.2). In these cases, the physics model is

inexpensive to evaluate, thus a surrogate model has not been built for the model G
(
x; θ m(x)

)
.
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Figure 7.2: Flowchart of the simulation models for (a) Case A and (b) Case B

7.2.1.2 Process Optimization under Uncertainty

The optimal design point that satisfies design criteria and a specified level of reliability is of great

interest in many engineering applications. In this section, the focus is on selecting the optimum values

of process parameters that maximize the bond lengths between filaments and between layers. The

AM process optimization under uncertainty can be pursued in two directions: (1) reliability-based

design optimization (RBDO) [164], and (2) robust design optimization (RDO) [163]. In RBDO, the

decision variables are optimized to either maximize or achieve a desired target level of reliability

(i.e., probability of satisfying a desired threshold of performance or quality). In RDO, the decision

variables are optimized such that the variability of the objective function is minimized, and the

constraints are satisfied within specified uncertainty bounds. The approach of robustness-based

design optimization (RDO) is used to maximize the overall bond quality. The robustness of the

objective function can be achieved by simultaneously optimizing the mean and variance; thus, this

is a bi-objective problem. Monte Carlo sampling is used to compute the mean and variance of
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the objective function (the mean bond length of a layer) in the probabilistic optimization process.

An efficient sampling-based method Latin hypercube sampling is used to simulate the uncertain

parameters.

The robust design optimization problem can be formulated as follows:

minimize
d∈Rnd

{
E(yo(d)),V (yo(d))

}
;

subject to
{

E(yc(d)),V (yc(d))
}
≤ 0, c = 1,2, ...,nc;

di,lb ≤ di ≤ di,ub, i = 1,2, ...,nv,

(7.5)

where the objective function and constraints are expressed as functions of expectation E(·) and

variance V (·) of objective function yo and constraints yc, respectively; the vector of design variables

d can be either deterministic parameters or mean/standard deviation of the design parameters, nc

and nv are the number of constraints and design variables, respectively. The i-th design variable di is

constrained by its lower bound di,lb and upper bound di,ub. The RDO problem becomes bi-objective

by adding the variance of the performance function to the expected value of the objective function,

and a weighted sum method can be used to assign proportional weights for the aggregation of the two

objectives according to their importance [176]. The aggregation formulation is given by Eq. (7.2).

The nested bi-objective robustness-based design optimization (RDO) problem can be converted

into a single objective formulation, using a weighted sum approach, as:

minimize
x∈Rnx

w1F1 +w2F2

subject to xlb ≤ x ≤ xub

(7.6)

where weighting coefficients w1,w2 > 0 represent the relative importance of two objectives. F1 =

−µµBL,i +σµBL,i represents the mean and standard deviation of the average bond length predictions

µBL for layer i, and F2 = µσBL,i +σσBL,i represents the mean and standard deviation of the standard

deviation of the bond length predictions σBL for layer i, i∈ {1, ...,M}. M is the total number of layers,

x are the design variables (printer nozzle temperature and printer extrusion speed for each layer i),

and xlb ≤ x ≤ xub represents the lower and upper bounds for the design variables. The weighted

sum approach is a convex combination of two different objectives, F1 and F2. The solution of the

optimization problem approximates the Pareto front by changing the weights of each objective. The

Pareto front maps the relation between these two objective functions. The negative of the mean

value of mean bond lengths at each layer is minimized while minimizing the deviation of mean bond
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lengths at each layer with the use of function F1. The function F2, which is a convex combination

of the mean and standard deviation of the deviation of bond lengths at each layer, is minimized

simultaneously with F1. In other words, the overall bond quality (the mean value of bond length

for a part) is maximized, while minimizing the variations in the quantity of interest (bond lengths

between filaments) using the functions F1 and F2 respectively.

7.2.1.3 Experimental Work

A commercial material, Ultimaker Black ABS, was used in the experiments. A unidirectional

and aligned building strategy was adopted at a specified printer nozzle temperature and extrusion

speed. Two different options for the deposition sequence of the filaments were considered, as shown

in Fig. 7.3. In Fig. 7.3a, the filaments are sequenced from left to right in all the layers. In Fig. 7.3b,

the filaments are sequenced from left to right in odd numbered layers and from right to left in even

numbered layers. The filament numbers in the two figures correspond to the two deposition sequence

options.

L
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cut

y

x

z

(a)

L

z
cut

y

x

z

(b)

Figure 7.3: Deposition sequence of unidirectional 90 filaments: (a) from left to right for all the layers
and (b) from left to right in odd numbered layers and from right to left in even numbered layers

Multiple rectangular-shaped specimens were produced with the same geometry but different

combinations of process parameter values. For each specimen, the temperature distribution at the

top of each layer during deposition was monitored using an infrared thermography camera. Thermal

images were recorded with a specified frequency until all filaments were deposited. The neck growth

between the filaments and the total void area of the parts were identified at a specified cross-section

with the use of microscopy images processed through the ImageJ software [88]. The statistical

properties of the neck growth along the length of the specimens were constant. Therefore, all

specimens were sectioned at the midpoint to analyze the mesostructural feature of interest only at

that cross-section.
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7.2.1.4 Numerical Example

The experimental setup used to build rectangular acrylonitrile butadiene styrene (ABS) amor-

phous polymer specimens of length 35 mm, width 12 mm, and thickness 4.2 mm is shown in Fig. 7.4.

The specimens were created on an Ultimaker 2 extended+ printer, which is within an enclosure to

reduce the part variability; a commercial material, Ultimaker Black ABS, was used. Air flow was

not considered because we enclosed the printer to prevent the occurrence of airflow. All parts were

printed through a nozzle with 0.8 mm diameter. The build plate temperature was constant and set

to 110◦C and the environment temperature is assumed to be 70◦C. The extrusion rate and vertical

position of the nozzle were adjusted by the printer to be able to produce each filament with 0.8 mm

width and 0.7 mm height.

Figure 7.4: The experimental setup

The surface temperature profiles of extruded filaments were monitored using an infrared ther-

mography camera as shown in Fig. 7.4. The extrusion of the next layer prevents the camera from

monitoring the temperature profiles of the previous layers. Due to the inability to obtain tempera-

ture data of the filaments below the top layer, we could only predict the quality of the intra-layer

bonding using temperature profiles of extruded filaments within that layer. Thermal images were

recorded with a frequency of 10 Hz until the deposition of all filaments was completed.

All specimens used in this study are produced with unidirectional filaments to enhance the

effects of process parameters on the bond quality between adjoining filaments. Each filament of

the rectangular part is deposited at a specified printer nozzle temperature Tn and extrusion speed

vp. The temperature evolution of the interfaces, and the neck growth between the filaments (the

mesostructural feature of interest), are predicted at zcut = L/2 as shown in Fig. 7.3. The process

parameters and material properties used in this work are presented in Table 7.1. The specific heat
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capacity and density of the material are calibrated together as a single term α = ρC, where ρ and

C are density (kg/m3) and specific heat capacity (J/kg ◦C) respectively. The analysis assumes

temperature dependent material properties such as material viscosity η and surface tension Γ. The

surface tension of ABS P400 at 240◦C is 0.029 N/m as reported by Bellehumeur et al. [78] with

a temperature dependence ∆Γ/∆T = −γ N/m · K, where the neck growth model parameter γ =

0.00345. The temperature dependent material viscosity η is given by η = ηr exp[−β (T −Tr)], where

the material viscosity at the reference temperature (Tr = 240◦C) ηr is 5100 Pa · s, β is a model

parameter that is selected as 0.056 by Sun et al. [89], and T is the temperature of the material at a

given time instance.

Table 7.1: Process parameters and material properties

Property Value

Printer nozzle temperature (◦C) 240
Build plate temperature (◦C) 110
Printer extrusion speed (m/s) 0.042
Filament length (m) 0.035
Filament width (m) 0.0008
Filament thickness (m) 0.0007
Fraction of filament’s perimeter for all contacts 0.15
Convective heat transfer coefficient (W/m2 ◦C) 86
Conductive heat transfer coefficient between filaments (W/m2 ◦C) 200
Conductive heat transfer coefficient between filament and build plate (W/m2 ◦C) 86
Thermal conductivity (W/m ◦C) 0.15
α (J/m3 ◦C) 1.196 × 106

7.2.1.4.1 Prediction of the Cooling of Filaments

A typical IR image of the temperature profile for the first layer of a part printed using (Tn,vp) =

(240◦C, 0.042 m/s) is shown in Fig. 7.5. The interface temperature is monitored at corresponding

locations between filaments. The experimental temperature profile was used to assess the validity

of the heat transfer model in order to be able to predict the neck growth accurately using the heat

transfer model predictions. The temperature of the filaments immediately after being extruded onto

the build plate or onto another filament was found to be significantly lower (20◦C to 50◦C) than the

specified printer nozzle temperature. At the upper temperature limit of the printer the filaments

were extruded at temperatures approximately 40-50◦C less than the set nozzle temperature. The

enclosure was not a precisely controlled environmental chamber with quantitative measurements

of temperature, humidity, and airflow. Therefore, these effects might be influencing the difference

between the printer setting and observed temperature. This variation in the temperature of the

filament as it leaves the nozzle tip is considered as a bias term in the heat transfer model.
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Figure 7.5: Top view temperature profile of the first layer
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Figure 7.6: Temperature evolution of 90 filaments at zcut = L/2 (a) with L = 0.035 m shown in
Fig. 7.3a and (b) with L = 0.21 m shown in Fig. 7.3b along deposition time

The temperature evolution of all the filaments illustrated in Fig. 7.3a and Fig. 7.3b at zcut =

0.0175 m along deposition time is shown in Fig. 7.6a and Fig. 7.6b respectively. The length to

diameter ratio of filaments has a significant effect on the cooling process. The time it takes for

the printer to extrude a single filament increases as the lengths of the filaments get longer. This

results in a faster cooling process, and consequently a smaller amount of heat transfer between each

filament. Moreover, extruding each layer’s first filament at the same x-coordinate results in a more

homogeneous part quality as the temperature difference between the filaments extruded on top of

the filaments below is approximately the same. Whereas, in Fig. 7.3b, the temperature difference

between the 1st and 30th filaments is much greater than 15th and 16th filaments, resulting in a

staggered temperature evolution and part quality. Therefore, the build strategy shown in Fig. 7.3a

is used for further analysis.
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Figure 7.7: Experimental temperature profiles compared with model predictions for the interface
between filaments 1 and 2 at zcut = 0.0175 m and the neck growth predictions using the heat transfer
model predictions (case A) and experimental temperature data (case B)

The Newtonian sintering model is coupled with the heat transfer model to predict the bond

lengths between filaments. The one-dimensional transient heat transfer model predictions, and

observed temperature data for the interface between filaments 1 and 2 are compared in Fig. 7.7.

The model predictions are in general agreement with the measured data. The measured temperature

data and model predictions show a similar trend in the initial stage due to enhanced convection at

higher temperatures, but at temperatures below 130◦C the model prediction deviates away from the

measurement data. However, the inaccuracy of the model at lower temperatures is not relevant for

neck growth predictions since the neck growth process occurs at higher temperatures [78].

The neck radius predictions for each case are corrected with the model discrepancy (estimated

by the surrogate model) at given input values. The measured neck radius and the corrected neck

growth predictions corresponding to case A (heat transfer model predictions as the input to the

sintering neck growth model) and case B (observed temperature profile as the input to the sintering

neck growth model) are demonstrated in Fig. 7.7 for (Tn,vp) = (240◦C, 0.042 m/s). The corrected

neck radius predictions are in agreement with the measured data around 130◦C since the model

parameters are calibrated using the neck radius predictions when the interface temperature is at

130◦C. Thus, case A is used for further analysis when the temperature data is not available.

7.2.1.4.2 Contribution Assessment of Uncertainty Sources

A sample-based single loop algorithm called MGSA (modularized GSA) proposed by Li and

Mahadevan [101] is used to compute the first-order Sobol’ indices. The results from MGSA indicate

which parameters’ individual effect have significant contribution to the uncertainty in the coupled
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Figure 7.8: Sensitivity indices for the bond length between the 1st and 2nd filaments in the first
layer

heat transfer and neck growth models. A low first-order index implies that the individual effect of

the parameter is insignificant; thus, it can be fixed at its mean value. Thus, GSA provides insights

on where to focus resources for improving the AM process.

The random variables in the heat transfer model are α,hconv, and λi, i ∈ {1,2,3,4,5}, i.e., the

material parameter, convective heat transfer coefficient and fraction of filament’s perimeter that is

in contact with other filaments or with the build plate. The random variables in the sintering neck

growth model are Γ, η , β , and γ, i.e., the surface tension, material viscosity values at reference

temperature of 240◦C, and model parameters of the temperature dependent surface tension and

material viscosity respectively.

7.2.1.4.2.1 GSA of the Bond Formation Model

The coupled heat transfer and sintering neck growth model considers eleven parameters as un-

certain, i.e., α, hconv, λi, i ∈ {1,2,3,4,5}, Γ, η , β and γ. As discussed earlier, the contributions of

121



various uncertainty sources to the neck growth vary for each layer as well; whereas, these contribu-

tions to the neck growth between filaments within a layer remain the same. Therefore, the first-order

Sobol’ indices of material parameters are assessed for four different neck growths at four different

layers, i.e., the 1st, 20th, 50th and 87th bond formations in the first, second, fourth and sixth layers,

respectively. We performed sensitivity analysis for each layer, at several interfaces within each layer.

We present the results for only 4 layers (i.e., first, second, fourth and sixth layers) out of a total of

6 layers since the results corresponding to the fifth layer were the same as for the fourth and sixth

layers, and the results corresponding to the third layer were the same as for the second layer. The

results from GSA for these neck growths are illustrated in Figs. 7.8, 7.9, 7.10, and 7.11.
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Figure 7.9: Sensitivity indices for the bond length between the 20th and 21st filaments in the second
layer

The contributions of β increase significantly during the deposition of the specimen, while the

contributions of α, λ1, λ2, λ3, λ4, λ5, hconv, Γ, η and γ to the variations in the neck growth at given

layers are negligible. The sensitivity index of β increases as the temperature of the interface between
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Figure 7.10: Sensitivity indices for the bond length between the 50th and 51st filaments in the fourth
layer
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Figure 7.11: Sensitivity indices for the bond length between the 87th and 88th filaments in the sixth
layer

the 1st and 2nd, and the 20th and 21st filaments cools down as illustrated in Figs. 7.8c and 7.9c.

The uncertainty grows fast as the deposition time increases or temperature decreases because

the influence of uncertainty in the model parameter β on the neck growth increases with decreasing

temperature. Another reason for the increase in uncertainty as the temperature decreases is that

the neck growth model cannot capture the physics accurately when the temperature is below 130◦C

as shown in Fig. 7.7.

Based on the contributions of the various uncertainty sources to the neck growth at each layer

of the part, β was found to be dominant for all the layers and interfaces considered; next was α

(considering the high contribution of α to the uncertainty in the temperature evolution of filaments)

which was found to be significant in some of the layers. All the other parameters are fixed at their

mean value to reduce computational effort since their contribution to the uncertainty in the neck

growth predictions were negligible compared to the parameters α and β , based on the rigorous

sensitivity analysis described in Section 7.2.1.4.2.

123



7.2.1.4.3 Model Calibration

In a Bayesian setting, the epistemic uncertainty regarding the model parameters that have signif-

icant sensitivity indices can be reduced using experimental data. As discussed in Section 7.2.1.4.2,

all material properties and model parameters, except α and β , are fixed at their nominal values.

The measurement error is considered to be negligible since the measured bond lengths are precise

to seven decimal points. Note that the material property α, which is required for the heat transfer

analysis, is not needed in case B, where experimentally measured temperature profile is the input

to the sintering neck growth model instead of the heat transfer model prediction.

The posterior distribution for the sintering neck growth model parameter β for case B (using

observed temperature data as the input) is illustrated in Fig. 7.13. For case A, where heat transfer
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Figure 7.12: Prior and posterior distributions of the material property α and model parameter β
considering the heat transfer model predictions as the input to the sintering neck growth model
(case A)

model predictions are the input to the sintering neck growth model, the posterior distributions for

α and β are shown in Fig. 7.12.

In order to calibrate these model parameters, 15,000 posterior samples are drawn using MCMC

and the initial 5,000 samples are rejected (initial burn-in samples). The last 10,000 samples yield

a mean value of 1.196 × 106, and a coefficient of variation of 0.215 for α = ρC and two different

posterior distributions of β with mean values of 0.00378 and 0.0193, and coefficient of variations of

0.1154 and 0.05 for case A and B respectively. The mean of the posterior distribution of β for case

B is close to the value reported in the literature [89]. However, for case A the uncertainty in α has

a significant effect on the posterior distribution of β by shifting its mean to a smaller value. These

values are used in the subsequent analysis (i.e., in the surrogate models for the model errors and

optimization under uncertainty).
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Figure 7.13: Prior and posterior distributions of the model parameter β using experimental temper-
ature profile as the input to the sintering neck growth model (case B)

7.2.1.4.4 Surrogate Modeling

The surrogate models for the model discrepancy in cases A and B are built using the calibrated

model parameters illustrated in Section 7.2.1.4.3. The GP model described in Section 2.2.1 is built

with the training point inputs [Tn,vp,x,y] (i.e., nozzle temperature, printer speed, and the location

of midpoint of the intra-layer bonds, respectively), and the corresponding intra-layer bond length

model discrepancy δ . Then, for a given combination of nozzle temperature and speed, the predicted

model discrepancy is used to correct the bond length estimated by the neck growth model.

A series of experiments with different combinations of nozzle temperature and printer speed are

used to measure the bond length, thus providing discrepancy data to train and test the above GP

surrogate model. The specimens were sectioned at the midpoint, i.e. zcut = L/2 = 0.0175 m, and

their cross-sections were analyzed under a digital microscope. The features of these cross-sections

were analyzed using the image processing program ImageJ [88] (Fig. 7.14).

For a sample that is printed with inputs (Tn,vp) = (240◦C, 0.042 m/s), the intra-layer bond

lengths between adjacent filaments at zcut = 0.0175 m of each layer are given in Table. 7.2. The

numbering of the interfaces is done from left to right for all layers. For example, the label for the

interface between 1st and 2nd filaments is 1 and the label for the interface between 89th and 90th

filaments is 14.

Table 7.2: Intra-layer bond length measurements at each layer for (Tn,vp) = (240◦C, 0.042 m/s)

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.4146 0.4558 0.5050 0.5050 0.5130 0.4339 0.4425 0.3915 0.3806 0.3930 0.3840 0.3798 0.3323 0.3162
2 0.4529 0.5056 0.5398 0.5357 0.5345 0.5050 0.3350 0.3293 0.3709 0.3833 0.4041 0.3854 0.2870 0.2606
3 0.4203 0.4828 0.5469 0.5517 0.5046 0.4889 0.3771 0.2269 0.2406 0.3271 0.3284 0.3361 0.2758 0.2506
4 0.4619 0.4895 0.5472 0.5944 0.5917 0.5196 0.3472 0.2055 0.2266 0.2608 0.3069 0.3316 0.2780 0.2781
5 0.4268 0.4798 0.5002 0.6125 0.5746 0.5667 0.4010 0.2617 0.1874 0.3071 0.2743 0.2913 0.2334 0.2621
6 0.4185 0.4694 0.4891 0.5334 0.4948 0.4750 0.3427 0.2617 0.2356 0.2886 0.2771 0.2670 0.2731 0.2884
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Figure 7.14: Cross-section view of a sample produced with Tn = 240◦C, and vp = 0.042 m/s

Using Latin hypercube sampling, 25 sets of process parameters were generated, and experiments

were conducted at these 25 values. The experimental data is divided into 2 sets, namely training set

(20 specimens) and testing set (5 specimens). The training set is further subdivided into two subsets

for cross-validation; k-fold cross-validation is performed by splitting the training set into 16 sets for

model training and 4 sets for cross-validation, and these sets are selected randomly k = 5 different

times. The bond length predictions using the observed temperature profiles are different than the

ones using the heat transfer model predictions as inputs to the sintering neck growth model. Thus,

two different GP models are built to represent the model error associated with these two cases, i.e.,

the bond length predictions using (A) heat transfer model predictions, and (B) observed temperature

data. In each fold of training and cross-validation, the GP models are trained using 16 sets of data

and the trained models are cross-validated using the remaining 4 sets of data. The average cross-

validation accuracy of the GP models over the 5 folds (random shuffles) is assessed by evaluating

the average mean squared error (MSE), which is found to be 0.0018 and 0.0017 for cases A and B

respectively.

Further validation of the corrected bond length prediction model is done using testing data, i.e.,

5 sets of experiments. The prediction accuracy of the corrected model for the test set is assessed by

evaluating the mean squared error (MSE), which is found to be 0.0020 and 0.0019 for cases A and

B respectively. MSE of 1% is used as the quantitative criterion for acceptance. The results indicate

that the MSE values for both models are less than 1%, thus they are accepted for further analysis.

The corrected bond length predictions at each interface based on case A and B are validated by
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comparing with the bond length measurements at each interface between adjacent filaments of the

test set (see Figs. 7.15 and 7.16. Note that the points are close to the 45-degree line, showing good

agreement between predictions and observations even for individual interfaces.
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Figure 7.15: Validation of the bond length prediction model for case A, where x and y-axes represent
the bond length predictions and experimental observations respectively at each interface between
adjacent filaments
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Figure 7.16: Validation of the bond length prediction model for case B, where x and y-axes represent
the bond length predictions and experimental observations respectively at each interface between
adjacent filaments

7.2.1.4.5 Process Design Optimization

In this optimization, the process parameters (nozzle temperature and extrusion speed) are the

design variables. The objective is to optimize the bond quality (indicated by bond length) at each

layer of the specimen while satisfying the constraints on the design variables. The lower and upper

bounds (LB and UB respectively) for the design variables are shown in Table 7.3. The lower and

upper bounds have the same numerical values for all layers. The upper bound for the printer nozzle

temperature was chosen as 260◦C, since the printer did not allow an extrusion temperature above
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260◦C. The lower bound for the printer nozzle temperature was chosen as 210◦C because the quality

of the specimens reduced significantly below a nozzle temperature of 210◦C. The lower and upper

bounds for the printer extrusion speed vp were chosen as 0.015 and 0.043 m/s, respectively. We

observed debonding and geometrical inaccuracies (warping) in the FFF parts that are printed using

process parameter combinations above the linear fit. For example, a part printed with 220°C and 40

mm/s resulted in debonding in several layers and interfaces. These experimental data points and a

linear fit to these combinations of process parameters that result in poor bonding (bonding frontier)

are plotted in Fig. 7.17. The overall bond quality of a part printed with parameter values above the

bonding frontier is poor and delamination is observed. Whereas, the bond quality with parameter

values below the bonding frontier is good, and gets better as the distance increases.

Table 7.3: Lower and upper bounds for the process design variables

Design variable LB UB

Tn (◦C) 210 260
vp (m/s) 0.015 0.043

210 220 230 240 250 260
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Figure 7.17: Bonding frontier for Ultimaker 2 Extended +

The methodology proposed in Section 7.2.1.2 is implemented here for the part shown in Fig. 7.3a

with L= 0.035 m. The calibrated values of the material property α and model parameter β in case A

are used in the optimization of the neck growth at each layer. In order to demonstrate the robustness

of the proposed formulation, two cases are considered: (I) different printer nozzle temperature and

extrusion speed values for each layer, and (II) same printer nozzle temperature and extrusion speed

value for all layers. The optimal solutions for these two cases are presented in Table 7.4.

The optimal solutions are used to print three specimens for each case. The optimization results

are then validated by comparing the bond length model predictions with the bond length measure-
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Table 7.4: Optimal printer nozzle temperatures (◦C) and extrusion velocities (m/s)

Case I Case II
Layer Tn vp Tn vp

1 259.91 0.0430 259.30 0.0372
2 259.65 0.0162 259.30 0.0372
3 258.63 0.0150 259.30 0.0372
4 258.87 0.0150 259.30 0.0372
5 258.99 0.0150 259.30 0.0372
6 258.99 0.0150 259.30 0.0372

ments at each interface between adjacent filaments. The MSE value of 0.0027 is obtained based

on the parts printed with the optimal solutions. Figure 7.18 shows the validation results for all six

specimens, i.e., three specimens for each of Case I and II, printed with the corresponding optimum

process parameter solution. The mean and standard deviation of bond lengths of each layer are
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Figure 7.18: Validation of the optimization results, where x and y-axes represent the bond length
predictions and experimental observations respectively at each interface between adjacent filaments
of Case I and II, respectively (three specimens printed for each case)

averaged across the three specimens (µBL and σBL). The standard deviation across the averaged

mean of bond lengths of three parts σparts are shown in Table 7.5 together with µBL and σBL. It

is seen in Table 7.5 that the variations across these specimens are relatively small. Note that the

averaged mean of bond lengths (µBL) across these three specimens is found to be smaller at the

first layer than the other layers for the first case. The likely reasons for this difference are that the

calibration/leveling of the build plate can be erroneous, and/or the printer extrusion speed decreases

significantly (from 0.0430 m/s to 0.0162 m/s) as the second layer starts printing. These may result

in excessive deformation on the first layer due to gravity and/or the weight of the material deposited

above the first layer. As the bond quality starts reaching its upper limit (i.e., dimensionless neck

radius y/a = 1) as shown in Fig. 7.19c, the differences regarding the bond length between the top

129



and bottom layers become negligible. Whereas, in the second case, since the dimensionless neck

radius is still relatively less than unity, the decrease in the neck growth in the top few layers is more

prominent. This difference can be attributed to the fact that the top layer cools down more than

the bottom layers because a larger surface area of the filaments in the top layer is exposed to the

environmental temperature. This results in relatively poor bonding in the top layers. As it can

be seen in Table 7.5, the overall bond quality of the part and the bond quality at each layer are

significantly better for the first case since the printer nozzle temperature and extrusion speed are

optimized at each layer separately.

Table 7.5: Overall average bond length at optimal solutions (all units are in millimeters)

Case I Case II
Layer µBL σBL σparts µBL σBL σparts

1 0.56 0.0458 0.0479 0.58 0.0458 0.0049
2 0.65 0.0387 0.0292 0.59 0.0385 0.0053
3 0.65 0.0368 0.0146 0.59 0.0567 0.0022
4 0.64 0.0460 0.0086 0.57 0.0568 0.0149
5 0.66 0.0359 0.0068 0.55 0.0602 0.0129
6 0.65 0.0407 0.0048 0.52 0.0494 0.0081

(a) (b)

(c) (d)

Figure 7.19: Cross-section views of the parts at zcut = 0.0175 m built with non-optimal and optimal
process parameters: (a) sample 1, (b) sample 2, (c) case I and (d) case II

Two specimens (sample 1 (Tn = 240◦C and vp = 0.042 m/s) and sample 2 (Tn = 247◦C and vp =

0.037 m/s)) that are printed with non-optimal process parameters are used to demonstrate the effect

of the proposed methodology. The total void area and the overall mean bond length (BL) at zcut =

0.0175 of case I and II are compared with sample 1 and sample 2 in Table 7.6. The cross-section

views of these parts are shown in Fig. 7.19. The overall bond quality of sample 2 represented by
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total void area (0.54 mm2) and overall mean bond length metrics (0.52 mm) is better than the bond

quality of sample 1 since the total void area and overall mean bond length of sample 1 are 2.11 mm2

and 0.39 mm respectively (lower values of total void area and higher values of overall mean bond

length imply a better-quality product). The total void area of the parts is identified with the use of

microscopy images processed through the ImageJ software [88], combined with a Matlab script to

estimate the size of voids. The total void area is the smallest and the overall mean bond length is

the largest for case I as expected, thus demonstrating the effectiveness of the proposed optimization

methodology.

Table 7.6: Total void areas and overall mean bond lengths at zcut = 0.0175 m

Metric Case I Case II Sample 1 Sample 2

Total void area (mm2) 0.42 0.47 2.11 0.54
Overall mean BL (mm) 0.64 0.57 0.39 0.52

The coupled heat transfer and sintering neck growth model is directly used in the uncertainty

quantification and optimization problems since the original simulation model is not very expensive

(∼100 s for one run on Intel® Xeon® CPU E5-2650 v4@2.20GHz with 64 GB RAM desktop machine).

7.2.1.5 Summary

This section developed a formulation for FFF process optimization under uncertainty, using

an analytical solution for the transient heat transfer during filament deposition and cooling, and

a sintering neck growth model. The neck growth between adjacent filaments is optimized while

accounting for various sources of uncertainty and error. Variance-based sensitivity analysis is used

to quantify the contribution of each uncertainty source to the variability of the output quantity

(bond length). The physics model parameters that have the most significant contribution to the

uncertainty in the model output are calibrated using experimental measurement of bond length.

Additional experimental observations are used to build a surrogate model for the physics model

discrepancy in predicting the bond length. The surrogate model is used to estimate the model

discrepancy for given process parameter values and correct the physics model predictions. The

corrected prediction model is used to select the optimal process parameters to maximize the bond

quality at each layer. The optimum solution is validated with specimens printed with the optimized

process parameters.
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7.3 Multiple Quantities of Interest3,4

7.3.1 Proposed Methodology

In this section, we present the methodology for process parameter optimization under uncertainty

with a focus on the FFF process. However, the proposed methodology is applicable to any AM pro-

cess with corresponding data and QoI prediction models. The three components of the methodology

are: (a) Data collection, (b) Construction of data-driven prediction models including uncertainty,

and (c) Multi-objective optimization under uncertainty.

7.3.1.1 Data Collection

For a data-driven methodology, the first step is to collect data to build the prediction models

for the QoI. Traditionally, data is collected from physical experiments. With the advent of physics-

based modeling, some researchers also use data generated by the physics-based model [177]. In that

case, the physics-based model prediction should be first validated with experiments to ensure that

the training data closely approximates the actual physics of the AM process. In some cases, data

available from previous studies or in the public domain might also be used [38, 178–180]. For this

work, we collected data from laboratory experiments to build the prediction models. The shape of

the part is conceptualized, and a CAD model is first built and then sliced in a slicing software where

the printing path is also defined. The printing instructions thus generated are used to print the part.

Various sensors can be used to monitor the AM process and parts. The most common measure-

ment QoIs are melt pool temperature, part dimension, surface roughness, microstructure, tensile

properties, etc. Monitoring can be broadly divided into online and offline monitoring techniques.

Online monitoring refers to in situ monitoring of the part during the manufacturing process in order

to implement process control. Effective online monitoring is not disruptive to the ongoing process,

and is non-destructive to the part such as monitoring of the temperature profile using an infrared

(IR) camera, or monitoring of the part geometry using profilometer or optical camera. Offline or ex

situ monitoring of the part after it has been produced may be either destructive (such as microstruc-

ture characterization with scanning electron microscope) or non-destructive (such as part dimension

measurement using calipers). Both contact and non-contact techniques may be used for monitoring.

For example, temperature data can be collected through contact thermocouples or non-contact IR

cameras. Thus, depending on the QoI and the monitoring mode, the instruments and experimental

setup are determined. The collected data is then used to construct the prediction models. In this
3Adapted with permission from: Kapusuzoglu, B., Nath, P., Sato, M., Mahadevan, S., & Witherell, P., “Multi-

Objective Optimization Under Uncertainty of Part Quality in Fused Filament Fabrication,” ASME J. Risk Uncertainty
Part B., vol. 8(1), no. 011112, 2022.
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paper, the QoIs are part thickness and bond quality, both of which are measured offline after the

part is manufactured.

7.3.1.2 Construction of Data-Driven Prediction Model

There are several machine learning techniques to build prediction models using data. Commonly

used approaches include Decision Tree, K-Nearest Neighbor, Support Vector Machine, Linear Dis-

criminant Analysis, Quadratic Discriminant Analysis, Artifical Neural Network (ANN), Polynomial

Chaos Expansion, Radial Basis Function, Gaussian Process Modeling, Random Forest Regression

etc. As the amount of data available has increased, use of ANN has gained popularity; several

types of ANN are available, such as deep neural network (DNN), recurrent neural network (RNN)

to handle time series data, and convolution neural network (CNN) to handle image data. Machine

learning (ML) models appear promising for complex systems that are not fully understood or cannot

be represented with simplified physics-based relationships, given adequate quality and quantity of

data. Generally, the construction of data-driven ML models does not require in-depth knowledge of

the complex physics inherent in the physical process [104]. In this work, adequate experimental data

is available to build a deep learning (DL) model based on the observation data, thus we pursue the

ML approach. In addition, we quantify the DL model uncertainty by constructing Bayesian neural

network (BNN) models (see Section 2.2.3) to predict the QoIs and use these BNN models to perform

optimization under uncertainty. In the next sections, we introduce the underlying mechanisms in

the feedforward neural network and Bayesian neural network (BNN).

7.3.1.2.1 Uncertainty Quantification in Bayesian Neural Network (BNN)

Various sources of uncertainty can be considered, such as (a) Epistemic uncertainty due to lack of

knowledge, and (b) Aleatory uncertainty due to the inherent variability across multiple samples and

over space and time. Epistemic uncertainty is caused by insufficient knowledge or information about

the model and data. In the case of a DNN model, the values of the model parameters such as neuron

weights are estimated from the data. If limited data is available, there is epistemic uncertainty in

the model prediction. BNN is used to describe the epistemic uncertainty caused by the model by

placing distributions over the network weights.

Aleatory uncertainty is caused by the natural variability in the AM process, leading to variability

in the process output QoI. For example, the AM parts printed with the same process parameters may

have different geometric dimensions and mechanical properties. The observation noise parameter σ

also needs to be tuned. Similar to the procedure in Bayesian model calibration, observation noise
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can be learned through the BNN model by minimizing the following loss function [181]:

LBNN(θ) =
1
N ∑

i

1
2

σ̂−2
i ||yi − ŷi||2 +

1
2
log σ̂−2

i +λg(w) (7.7)

where N is the number of observations yi; ŷi and σ̂2
i are the predictive mean and observation noise

corresponding to input indexed by i, the first term represents the norm of residuals for measuring

goodness of fit; λ is the weight decay parameter, and g(w) represents a regularization function for

the weights (or the penalty term which often uses L2 regularization). The second regularization term

prevents the network from predicting infinite uncertainty, thus zero loss. The neuron weights can

be drawn from the approximate posterior ŵ ∼ q(w) to obtain the model outputs of a BNN denoted

as fŵ(x) = [ŷ, σ̂2]. The second term of the loss function can be regarded as an uncertainty regular-

ization term and it prevents the network from predicting infinite uncertainty. In order to have a

numerically stable network during training, the log variance log σ̂2
i is predicted instead of predicting

σ̂2
i . (Sometimes the process parameter settings specified by the designer (such as the nozzle tem-

perature, nozzle speed, layer thickness, etc.) may not be actually realized in manufacturing (this is

input uncertainty (epistemic), i.e., the input value specified in the model is different from what is

actually in the manufacturing process, and we do not know what the actual value is). However, this

type of uncertainty is not considered in this paper).

The predictive mean and variance are estimated by collecting the results of stochastic forward

passes through the model. The mean prediction of the model with T MC samples can be approxi-

mated by

E(y)≈ 1
T

T

∑
t=1

ŷt , (7.8)

and the variance of the prediction is estimated by

Var(y)≈ 1
T

T

∑
t=1

ŷ2
t −

(
1
T

T

∑
t=1

ŷt

)2

︸ ︷︷ ︸
model uncertainty

(epistemic)

+
1
T

T

∑
t=1

σ̂2
t︸ ︷︷ ︸

observation
noise

(aleatory)

. (7.9)

In the next section we discuss how to use the model predictions given by Eq. 7.8 and Eq. 7.9 for

optimization under uncertainty.
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7.3.1.3 Multi-Objective Optimization under Uncertainty

7.3.1.3.1 Formulation of Multi-Objective Optimization

The objective functions in Eq. 7.1 depend on the intended use of the additively manufactured

part. Since optimization involves evaluation of the objective function repeatedly at different process

parameter settings, instead of conducting expensive physical experiments the objective functions are

evaluated using the data-driven model discussed in Section 7.3.1.2. The prediction from the BNN

model has a mean given by Eq. 7.8 and the corresponding variance given by Eq. 7.9. The conven-

tional deterministic optimization does not consider the uncertainty in the input variables, data and

model parameters; the output of the manufacturing process is sensitive to these uncertainty sources.

Optimization under uncertainty can be pursued in two directions: (1) robust design optimization

(RDO) [163], and (2) reliability-based design optimization (RBDO) [164]. In RDO, both the mean

and the variability of the objective function are optimized (since minimizing the variability makes

the objective insensitive to variations of the input variables and parameters), and the constraints

are satisfied within specified uncertainty bounds. On the other hand, in RBDO, a desired target

level of reliability is maximized (i.e., probability of satisfying a desired threshold of performance

or quality) by optimizing the decision variables, or a cost function is minimized while satisfying

a reliability constraint. In this work we are interested in a robust design to improve the quality

of products and processes by optimizing both the mean and variance of the quantities of interest.

Therefore, robust design optimization (RDO) is used in this study for the design of the FFF process

parameters. (Note also that for well-designed practical systems, the probability of failure would

be very low; thus the RBDO formulation would require substantially more function evaluations in

comparison to the RDO formulation where the means and variances of the objective function and

the constraints can be evaluated with a much smaller number of function evaluations). The robust-

ness of the objective function can be achieved by simultaneously optimizing the mean and variance.

Thus RDO even with respect to a single objective QoI becomes a bi-objective optimization problem

with two objectives: (a) Optimize the mean of the QoI, and (b) Minimize the variance of the QoI.

The resulting bi-objective RDO problem can be approximately solved through a single objective

formulation, using a weighted sum approach, i.e., mean and variance terms have weights that reflect

the designer’s preference.

The computation of objectives f j(x,p) ( j = 1, . . . ,nob j) and constraints g(x,p) is affected by un-

certainty sources such as input variability and model uncertainty; thus we have stochastic objectives

and constraints. The input variability is already present in the experimental data that is used for
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training the DL model, and further, the model uncertainty (epistemic) is also captured through

the BNN approach. The aleatory uncertainty is learned by minimizing the loss function shown in

Eq. 7.7. MC dropout, which is performing dropout during prediction, is used to quantify the epis-

temic uncertainty in the model prediction. As a result, the output of the BNN model is stochastic,

which incorporates both sources of uncertainty mentioned above. The optimization formulation in

Eq. 7.2 properly accounts for the resulting uncertainty. In the next section, we discuss the solution

of the optimization problem.

7.3.1.3.2 Solution of Multi-Objective Optimization

Depending on the design variables and constraints, the optimization problem discussed in Sec-

tion 7.3.1.3 can be solved using a suitable global optimization algorithm. In this paper, we choose

to employ Non-dominated Sorting Genetic Algorithm II (NSGA-II) [168].

7.3.1.3.2.1 Non-Dominated Sorting Genetic Algorithm II

Since a multi-objective problem is formulated, the solution depends on the weighting coefficients.

The trade-off among nob j objective functions fk, k = 1,2, ...,nob j can be represented by the Pareto

front. The Pareto front is a set of Pareto optimal solutions, which correspond to the solutions

for different values of the weighting coefficients for the optimization problem specified in Eq. 7.2.

The NSGA-II algorithm is one of the frequently applied multi-objective optimization evolutionary

algorithms for generating the Pareto front [168].

The NSGA-II procedure for finding the Pareto front can be briefly described in following steps:

1. An initial random population is generated and the fitnesses of the individuals are evaluated

during several generations;

2. Several Pareto fronts are generated by ranking the population based on the non-dominating

sorting criteria (where individuals with the best rank represents the first front, the ones with

the second best rank generate the second front and so on);

3. The crowding distance value is assigned to each front once the sorting is completed;

4. The individuals are selected using a binary tournament selection with crowded-comparison

operator (if two individuals have the same rank, the individual with greater crowding distance

is selected to increase the diversity, otherwise an individual with a better rank is chosen);

5. Binary crossover and polynomial mutation are used to generate a new offspring population

combined with the current population;
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6. The next generation is set by selection until the population size exceeds the current population;

and

7. The above steps are repeated until the stopping condition is met and a set of non-dominated

Pareto optimal solutions are obtained.

The Pareto optimal set is the set of all possible Pareto optimal vectors and there is a need for a

stopping criterion that evaluates the quality of the Pareto front solutions. There are methods that

apply a stopping criterion, such as NSGA-II [168]. Another important concept is the ideal stopping

generation criterion, where the solution is as close to the optimal Pareto front as possible in a short

amount of generation. The ideal stopping generation is a compromise between the distance to the

Pareto optimal front and the cost of generation. Therefore, it is important to be able to determine

how good a solution is compared to the optimal one by using an indicator, such as hypervolume

indicator [182], and epsilon indicator [183, 184].

7.3.1.3.2.2 Evaluating Performance: Hypervolume Indicator

Among the variety of performance indicators for genetic algorithm in optimization, the hypervol-

ume indicator has been favored by many researchers to measure the quality of a solution [182, 185].

The hypervolume indicator can capture the closeness of the solutions to the Pareto optimal set and

partially the spread of the solutions across the objective space.

The hypervolume indicator, Ihv(A ), computes the volume of the region, H, defined by a set of

reference or nadir points and given set of points, N and A , respectively as

Ihv(A ) =Volume
( ⋃

∀a∈A ;∀n∈N

hypercube(a,n)
)
, (7.10)

where larger values of Ihv(A ) corresponds to better solutions. The absolute performance of an

optimization algorithm is measured using nadir points, which are the worst elements of the Pareto

front solutions.

The performance of an algorithm as the evolution proceeds can be tracked by transforming the

indicator [183]:

Ihv(t) = Ihv(Pt)−Ihv(Pt−1), (7.11)

where Pt−1 and Pt are the previous and current non-dominated elements of the local Pareto optimal

front.
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7.3.1.3.3 Experimental Validation

The subsection discusses two types of validation as part of the methodology: first the prediction

model is validated against experimental data, and second, the optimization solution is also validated

against experimental data. (Note that there is also cross-validation during the model construction

phase, by partitioning the data into training and testing sets, in order to check that the model has

the required accuracy, as explained in Section 7.3.2.3).

7.3.1.3.3.1 BNN Model Validation

Quantitative comparison of model prediction against experimental data is traditionally done

using hypothesis testing. In recent model validation literature, several quantitative methods have

been pursued, such as classical hypothesis testing, Bayesian hypothesis testing, reliability-based

method, area-metric-based method, etc. Any of these methods can be used to quantitatively validate

the optimization results [186]. The classical t-test is used in this paper to test the null hypothesis

that the mean of observations is equal to the mean of the model prediction. The t-test is based on

Student’s t-distribution and the corresponding test statistic t is

t =
Y D −µm

sD/
√

n
(7.12)

where Y D is the sample mean of experimental observations, µm is the mean prediction, and sD is

the sample standard deviation. The p-value (i.e., p = 2FT,n−1(−|t|), where FT,n−1 is the cumulative

distribution function (CDF) of a t-distribution with (n-1) degrees of freedom) is compared with the

significance level α (usually 0.01 or 0.05). If the p-value is less than or equal to α, then the null

hypothesis is rejected, otherwise the null hypothesis is not rejected.

7.3.1.3.3.2 Optimization Solution Validation

Since we are using an approximate surrogate model, we perform the second validation to check

whether the propagation of surrogate model error through the optimization process has significantly

affected the optimum solution. Validation of the optimization methodology can be achieved by

comparing the performance of the optimum solution against other randomly selected settings for

the decision variables. In this paper, the Pareto optimal solutions obtained using the proposed

methodology are validated by conducting actual printing experiments at the optimal process pa-

rameter settings and other random settings. The performance comparison is done by comparing

the quality objectives achieved in the actual manufactured parts, such as mean bond length, mean
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part thickness, and their standard deviations. Section 7.3.2.4 considers four combinations of these

individual objectives. In each case, it is investigated whether the optimum solution gives better part

quality than randomly selected process parameter settings.

7.3.1.4 Summary of Methodology

The steps of the proposed methodology for multi-objective optimization of AM process param-

eters under uncertainty are summarized in Fig. 7.20. The proposed method consists of five main

components: (a) Collection of experimental data, (b) Construction of data-driven probabilistic pre-

diction models, (c) Validation of the trained BNN models, (d) Multi-objective optimization under

uncertainty of process parameters, and (e) Validation of the optimization results.

Validation of the optimum 
design by conducting 

actual printing 
experiments at various 

points of the Pareto front

Design of experiments1

Collection of experimental 
data

2

Construction of data-driven 
BNN models for the QoIs

3

Validation of the trained 
BNN models

4

Formulation and solution 
of the multi-objective 
optimization problem 
using the trained BNN

models

5

Y

X

6

Figure 7.20: Flowchart of the proposed methodology

The methodology presented in this paper can be generalized for any AM process, as long as

experimental data is available to build the data-driven model. In the next section, we demonstrate

the effectiveness of the proposed methodology for four different cases with multiple objectives.

7.3.2 Numerical Example

In this section we demonstrate the implementation of the proposed methodology on a part of

dimensions 35 mm × 12 mm × 4.2 mm printed with ABS (acrylonitrile butadiene styrene) using

an Ultimaker S5 printer [187]. The objective is to find the optimal process parameters nozzle

temperature (Te), nozzle speed (Ve), and layer height (lt), i.e., x = [Te,Ve, lt ] such that both the

dimensional accuracy and bond quality of the part are maximized. Since the maximum extrusion

volume for the 0.8 mm diameter nozzle used in the experiments is 24 mm3/s, an inequality constraint

g = Ve × lt ×Lw ≤ 24 mm3/s, where Lw = 0.8 mm is the raster width, is added to the optimization

problem.
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7.3.2.1 Data Collection from Experiments

In this work, we use ABS and modify the printing environment by adding an enclosure to the

3D printer to isolate the printer from environmental effects (see [26, 27, 32, 104] for details). Using

Latin hypercube sampling (Fig. 7.22), 25 sets of process parameters x are generated and three parts

are printed at each parameter setting. The ranges considered for the variables are: Te : 215◦C to

280◦C, Ve : 25 mm/s to 45 mm/s, and lt = {0.42,0.60,0.70} mm.

L
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z

Figure 7.21: Deposition sequence of unidirectional filaments

260
270

280
25

45

0.45

0.50

0.55

0.60

0.65

0.70

N
oz

zl
e 
sp

(m
m

/s
)

Nozzle temperature (°C)

L
ay

er
 t

h
ic

k
n
es

s 
(m

m
)

Figure 7.22: Design of experiments for process parameters

Since the focus is on maximizing the dimensional accuracy and bond quality, data pertaining to

these two quality characteristics are collected. The measure for dimensional accuracy is considered

to be the error in part thickness, i.e., the difference between the printed part thickness and the

target part thickness of 4.2 mm. As shown in Fig. 7.23, using a laser displacement sensor Keyence

LK-H057 [188] the part thickness is measured at z= {7,12,17,22,27} mm at discrete points along the

x-axis. The bond lengths (mesostructural feature of interest) between the filaments were measured at

cross-section zcut = L/2 = 17.5 mm as shown in Fig. 7.21 with the use of microscopy images processed
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through the ImageJ software [88].

Figure 7.23: Thickness measurement of the printed part

The bond length measurements at each interface of a part, which is printed with inputs (Te,Ve, lt)=

(227◦C, 41 mm/s, 0.6 mm), are given in Table. 7.7. The interfaces are numbered from left to right

for all layers (e.g., the label for the interface between filaments 1 and 2 is 1 and the label for the

interface between filaments 89 and 90 is 14 in Fig. 7.21). The bonding quality between adjacent

Table 7.7: Bond length measurements (in mm) at each layer for (Te,Ve, lt) = (227◦C, 41 mm/s, 0.6
mm)

Layer Interface
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.383 0.381 0.416 0.469 0.459 0.487 0.472 0.490 0.528 0.525 0.500 0.474 0.452 0.421
2 0.431 0.444 0.452 0.429 0.396 0.431 0.322 0.360 0.294 0.353 0.363 0.408 0.317 0.342
3 0.462 0.495 0.434 0.487 0.431 0.345 0.000 0.167 0.101 0.180 0.281 0.347 0.251 0.220
4 0.424 0.464 0.416 0.444 0.439 0.314 0.170 0.000 0.220 0.261 0.248 0.238 0.210 0.185
5 0.365 0.441 0.419 0.441 0.431 0.281 0.162 0.000 0.246 0.266 0.243 0.177 0.233 0.200
6 0.375 0.398 0.467 0.510 0.396 0.347 0.259 0.000 0.254 0.215 0.208 0.157 0.261 0.208
7 0.340 0.381 0.480 0.449 0.391 0.360 0.287 0.223 0.180 0.223 0.134 0.182 0.195 0.193

filaments at zcut = 17.5 mm of the same part is illustrated in Fig. 7.24. The 8th and 9th filaments

at layers 3, 4, 5, and 6 show delamination. This delamination phenomenon was also observed at

the exact same interfaces in the other two sets of samples printed with the same process parameter

values. The average of these measured bond lengths gives the mean bond length of the part.

The thickness of the part printed at (Te,Ve, lt) = (227◦C, 41 mm/s, 0.6 mm), measured using the
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Figure 7.24: Cross-section view of a sample with poor bonding

laser sensor, is shown in Fig. 7.25. At each of the five Z-axis points, the measurements are taken

along the X-axis to measure the part thickness. It is observed that repeated measurements along X-

axis for each Z-axis point show similar values demonstrating the reliability of the measuring system.

These discrete point measurements averaged together give the mean thickness of the part.
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Figure 7.25: Part thickness of a sample along Z-axis locations

7.3.2.2 Model Training and Prediction

Separate BNNs are constructed for predicting each individual QoI (bond length and thickness

in this case). Since the data is collected at many discrete spatial locations, the inputs to the BNNs

include the process parameters nozzle temperature, nozzle speed, layer height, and also the spatial

locations. The inputs to the bond length model (BNNbl) are [Te,Ve, lt ,x,y] and the inputs to the part
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thickness model (BNNth) are [Te,Ve, lt ,x,z]. The output for BNNbl and BNNth are bond length and

part thickness respectively.

The available experimental data related to the bond length model and part thickness model is

divided into 2 sets, namely training set (75% of all data) and testing set (25% of all data). The input

and output data are normalized prior to the training of the BNN models, and the hyperparameters

of these models (e.g., batch size, learning rate, dropout rate etc.) are tuned with grid search. The

minimum prediction error during prediction for the bond length model, BNNbl, is achieved using a

dropout rate of 0.1 with 128 batch size, rectified Linear Unit (ReLU) activation function and Adam

optimizer with a learning rate of 0.004. The minimum prediction error of BNNth is obtained using

a dropout rate of 0.1 with 128 batch size, sigmoid activation function and Adam optimizer with a

learning rate of 0.005.

7.3.2.3 Model Performance and Cross-Validation

In order to measure the accuracy of the trained bond length BNN model (BNNbl), the model

predictions for the testing data subset (i.e., subset of 25 percent of all shuffled data set) are compared

with the observed bond lengths at randomly selected interfaces of each printed part in Fig. 7.26. The

horizontal axis represents test combinations with different input parameter combinations and the

blue dots denote the bond length measurements at the randomly selected interface from the test data

for each printed part. In this figure, the black cross denotes the mean prediction of bond length

as predicted by the probabilistic model, the shaded light brown area demonstrates the epistemic

uncertainty for one standard deviation away from the mean value, the shaded cyan represents the

aleatory uncertainty for one standard deviation away from the mean plus the epistemic uncertainty

value and the shaded light blue represents the total uncertainty (aleatoric and epistemic) for one

standard deviation away from the mean plus the epistemic plus the aleatory uncertainty value. Thus,

the whole shaded area represents the uncertainty bounds for three standard deviations away from

the mean predictions.

Figure 7.27 compares the observed average bond lengths with the predictions using BNNbl. The

horizontal axis represents different sets of samples, which are printed using the same process param-

eters (Te,Ve, lt). An overall bond quality metric is obtained by averaging the measured and predicted

bond lengths of a part at each interface. As shown in Fig. 7.27, the model is able to capture the

ground truth within half standard deviation.

The observed and mean prediction bond length values at the interfaces of the test data using

MC dropout are compared on a 45-degree angle line in Fig. 7.28. The bond length measurements
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Figure 7.26: Predicted bond lengths and uncertainty bounds at randomly selected interfaces from
the test data and actual bond length measurements (obtained using microscopy images)
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Figure 7.27: Average bond length predictions vs. observations of three sets of parts printed with
same process parameters

and predictions are carried out at each interface in a layer. The delamination (i.e., zero bond length,

which is an outlier) observed in one of the parts is predicted with a non-zero mean bond length.

Similar analysis is carried out for part height measurements. Figure 7.29 shows the comparison

between the observation and mean prediction using MC dropout for the part height. Note that

the pairs of the observations and the mean predictions are close to the 45-degree line, showing good

agreement between predictions and observations for the BNNbl model but not that good for the BNNth

model. Further cross-validation of the bond length and part thickness prediction models is done using

testing data, i.e., (25% of all shuffled data). The prediction accuracy of both models for the test set

is assessed by evaluating the root mean squared error (RMSE); RMSE=
√

∑N
i=1(yi − ŷi)2/N, which
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is found to be 0.0667 and 0.0826 for BNNbl and BNNth, respectively. RMSE of 0.1 is used as the

quantitative criterion for acceptance. The results indicate that the RMSE values for both models

are less than 0.1, thus they are accepted for further analysis.
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Figure 7.28: Comparison of mean dropout prediction and observation of bond lengths

Figure 7.29: Comparison of mean dropout prediction and observation of part thickness

7.3.2.4 Multi-Objective Optimization

The predictions from the BNN models are used in the multi-objective optimization methodology

to optimize the process parameters such that the dimensional accuracy and bond quality of the part

145



are maximized. Four different optimization cases under uncertainty are considered:

(1) Case 1, the mean overall bond quality of the part is maximized while minimizing its variance;

(2) Case 2, the mean geometric accuracy of the part is maximized while minimizing its variance;

(3) Case 3, the mean overall bond quality and the mean geometric accuracy of the part are maxi-

mized; and

(4) Case 4, the mean overall bond quality and the mean geometric accuracy of the parts are maxi-

mized while minimizing the variance in bond quality and geometric accuracy.

Note that cases 1, 2, and 4 include minimization of variance of the part quality (bond quality and

geometric accuracy), thus considering uncertainties. Case 3 minimizes the means of two part quality

metrics without considering the variance. The weighted sum approach gives a convex combination

of two different objectives in the first three cases. Whereas, Case 4 is a convex combination of

four different objectives (i.e., one minus the mean value of dimensionless bond length of the part,

(1− µb̂l), the standard deviation of dimensionless bond length of the part σb̂l, the dimensionless

mean and standard deviation of the absolute error between the desired and predicted part thickness

(µt̂h, σt̂h)).

The QoIs (bond length and part thickness) are dependent on the part layer thickness. For

example, intra-layer bond length between interfaces is a function of part layer thickness. The max-

imum achievable intra-layer bond length equals to layer thickness, thus the scale of bond length

values changes with changing layer thicknesses. In order to remove this dependency and to prevent

the problem caused by different scales, the mean and standard deviation of the QoIs are non-

dimensionalized. The mean and standard deviation of the bond length are non-dimensionalized

and scaled to unity by dividing with part layer thickness (i.e., nondimensional bond length =

(intra-layer bond length)/(layer thickness)). The predicted mean absolute error in part thickness

(µth = |µthpred − thdesired|, where µthpred and thdesired are the mean dropout prediction of part thickness

and desired part thickness, respectively) and standard deviation of the part thickness σth are also

nondimensionalized and scaled to unity as µt̂h = µth/thdesired and σt̂h = σth/thdesired.

Based on the information obtained from the layer height measurements and the infrared (IR)

thermal camera images during the printing process, no significant difference is observed between

the measured and reference values; thus, the epistemic uncertainty in the input is not considered.

The model uncertainty (epistemic) is described by placing distributions over the model’s weights.

The aleatory variability (intrinsic randomness) in the input, which can be described as noise in the

observations, is present in the experimental data used in training the BNN models and is learned
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by minimizing the loss function shown in Eq. 7.7. As a result, uncertainty in the prediction model

as well as the aleatory uncertainty in the input are considered in the optimization.

The hyperparameters of the NSGA-II optimization algorithm (i.e., population size and the max-

imum number of generations) are tuned by evaluating the performance indicator (hypervolume) (see

Section 7.3.1.3.2.2) of nine different experiments. The experiments are repeated 30 times since the

methods are stochastic. The convergence of hypervolume values are monitored for each case. The

probability of crossover and mutation are chosen as 0.8 and 0.2, respectively. For illustration pur-

poses, the hypervolume values for Case 3 are compared by changing the population size or maximum

number of generations while keeping the other one constant (Fig. 7.30). The maximum hypervol-

ume value is achieved using a population size of 200 with 30 generations as shown in Fig. 7.30. The

hypervolume values of other cases show a similar trend. Fig. 7.31 shows in more detail the change

in hypervolume values with increasing numbers of generations for a population size of 200 for Case

3. It is found that hypervolume values converge at 30 generations; thus a population size of 200 and

30 generations are used for all the multi-objective optimization cases considered in this paper. The

maximum extrusion volume inequality constraint g is implemented using a penalty function. The

penalty function gives a fitness disadvantage to the individuals that violate the constraint.
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Figure 7.30: Hypervolume values (mean and one standard deviation) of nine different experimental
designs of Case 3
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Figure 7.31: Hypervolume values vs. number of generations of Case 3 (Population size 200)

7.3.2.4.1 Case 1

In Case 1, one minus the mean of dimensionless bond quality metric (1−µb̂l) and the standard

deviation of the dimensionless bond quality metric σb̂l are minimized.

minimize
x∈Rnx

w1 (1−µb̂l(x))+w2 σb̂l(x)

subject to g(x) = 0.8mm×Ve × lt ≤ 24mm3/s

215◦C≤ Te ≤ 280◦C

25mm/s≤Ve ≤ 45mm/s

lt ∈ {0.42,0.60,0.70}mm

(7.13)

The Pareto front obtained for these two objectives is demonstrated in Fig. 7.32 with selected

design points A1, B1, and C1 for experimental validation. The design points represent three design

variables, i.e., nozzle temperature Te (◦C), nozzle speed Ve (mm/s), and layer thickness lt (mm).
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Figure 7.32: Pareto front of Case 1: A1 = (Te (◦C), Ve (mm/s), lt (mm)) = (217.09, 26.14, 0.42), B1
= (244.54, 29.59, 0.60), C1 = (219.03, 43.96, 0.42)
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In each generation, several values of the design variables (nozzle temperature, nozzle speed, and

layer thickness) are generated and passed to the optimizer to evaluate two objectives. The layer

height is restricted to three possible values, 0.42, 0.6, and 0.7 mm, in order to have an integer value

for the total number of layers given the desired part thickness of 4.2 mm. A single design can be

selected from the optimal designs shown in Fig. 7.32.

7.3.2.4.2 Case 2

The dimensionless mean and standard deviation of part thickness error (µt̂h, σt̂h) are minimized

in Case 2 using the BNNth.

minimize
x∈Rnx

w1 µt̂h(x)+w2 σt̂h(x)

subject to g(x) = 0.8mm×Ve × lt ≤ 24mm3/s

215◦C≤ Te ≤ 280◦C

25mm/s≤Ve ≤ 45mm/s

lt ∈ {0.42,0.60,0.70}mm

(7.14)

Similar to Case 1, the Pareto front obtained for these two objectives is shown in Fig. 7.33 with

selected design points A2, B2, and C2 for experimental validation.
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Figure 7.33: Pareto front of Case 2: A2 = (Te (◦C), Ve (mm/s), lt (mm)) = (272.17, 33.68, 0.42), B2
= (223.92, 31.02, 0.42), C2 = (251.41, 36.63, 0.42)
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7.3.2.4.3 Case 3

In this case, one minus the mean of dimensionless bond quality metric (1−µb̂l) and the dimen-

sionless mean of part thickness error µt̂h are minimized by using both models BNNbl and BNNth.

minimize
x∈Rnx

w1 (1−µb̂l(x))+w2 µt̂h(x)

subject to g(x) = 0.8mm×Ve × lt ≤ 24mm3/s

215◦C≤ Te ≤ 280◦C

25mm/s≤Ve ≤ 45mm/s

lt ∈ {0.42,0.60,0.70}mm

(7.15)

The Pareto front of these two objectives is shown in Fig. 7.34 with selected design points A3, B3,

and C3 for experimental validation.
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Figure 7.34: Pareto front of Case 3: A3 = (Te (◦C), Ve (mm/s), lt (mm)) = (217.02, 26.01, 0.42), B3
= (217.05, 27.84, 0.42), C3 = (274.04, 34.29, 0.42)

7.3.2.4.4 Case 4

In this case, one minus the mean of the dimensionless bond quality metric (Obj1 = 1−µb̂l), the

standard deviation of the dimensionless bond quality metric (Obj2 = σb̂l), and the dimensionless

mean and standard deviation of part thickness error (Obj3 = µt̂h & Obj4 = σt̂h) are minimized by

using both models BNNbl and BNNth. In each generation, a new value of the design variables (Te,
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Ve, lt) is generated and passed to the optimizer to evaluate four objectives.

minimize
x∈Rnx

w1 (1−µb̂l(x))+w2 σb̂l(x)+w3 µt̂h(x)+w4 σt̂h(x)

subject to g(x) = 0.8mm×Ve × lt ≤ 24mm3/s

215◦C≤ Te ≤ 280◦C

25mm/s≤Ve ≤ 45mm/s

lt ∈ {0.42,0.60,0.70}mm

(7.16)

A plot of the Pareto front is demonstrated in Fig. 7.35, where Obj1 is displayed on the x-axis,

Obj2 on the y-axis, Obj3 by the color of the markers, and Obj4 by the size of the markers. A single

design can be selected from the optimal designs shown in Fig. 7.35. The designer can choose a

design based on the relative importance of each objective over the others, since slight improvement

in one of the objectives may lead to significant degradation in other objectives. From the optimal

solutions, three points A4, B4, and C4 are chosen for experimental validation.
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Figure 7.35: Pareto designs for Case 4: A4 = (Te (◦C), Ve (mm/s), lt (mm)) = (217.08, 26.88, 0.42),
B4 = (277.99, 39.41, 0.42), C4 = (225.34, 31.84, 0.42)

The optimization results for Case 4 can be illustrated using the parallel coordinate plots shown in

Figs. 7.36 and 7.37. The resulting parallel coordinates reflect the Pareto dominance relation between

different solutions. In Fig. 7.36, the color map reflects the values of the first objective (1−µb̂l). The

red solid line represents the solution that results in the worst mean bond quality within the Pareto

front. Note that due to the negative correlation between the first and second objectives (heavily

conflicting objectives), worst mean bond quality solutions (i.e., red solid lines) couple with the best

(lower) standard deviation bond quality. The mean bond quality starts to improve as the color of the
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solid line changes from red to green. In the same manner as Fig. 7.36, Fig. 7.37 also illustrates the

optimization results with a color map of the third objective. The red solid lines denote the solutions

that yield the poorest mean geometric accuracy within the Pareto front approximations. The mean

and standard deviation of the geometric accuracy are partially negatively correlated since there are

lines that are parallel between the two axes in parallel coordinates. More specifically, the parallel

green solid lines at the bottom of the third and fourth objectives that do not intersect with other

lines depict the solutions with moderately good mean and standard deviation of geometric accuracy.

Figure 7.36: Parallel coordinate representation of the model dependencies with a color mapping
along the first objective (1−µb̂l).

Figure 7.37: Parallel coordinate representation of the model dependencies with a color mapping
along the third objective (µt̂h).

The Pearson correlation coefficient between each design variable and/or objective functions is
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shown in Fig. 7.38. A correlation coefficient of ±1 represents a perfect linear relationship. The

nozzle temperature (DV1) is negatively correlated with Obj1 = 1−µb̂l and Obj3 = µt̂h, which means

that the mean geometric accuracy and the overall mean bond quality of a part tend to improve with

increasing nozzle temperature. Whereas, parts with a greater layer height (DV3) appear to have a

degraded mean geometrical accuracy and mean bond quality. The nozzle speed (DV2) has a smaller

effect on the objective functions. The correlation coefficient between Obj1 and Obj3 is calculated

as 0.46 indicating that these two objectives do not have a significant relationship, which is also

illustrated in Fig. 7.41. Furthermore, the parallel plots and the correlation matrix demonstrate the

difficulty in choosing the optimal process parameters. Therefore, the Pareto front is beneficial in

finding a design that offers a good trade-off between the objectives.
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Figure 7.38: The correlation coefficient between design variables and objective functions

The computation time for one optimization is on average ten minutes using a desktop computer

(Intel® Xeon® CPU E5-1660 v4@3.20GHz with 32 GB RAM and GPU NVIDIA Quadro K620 with

2 GB).

7.3.2.5 Monte Carlo Optimization

The Pareto front and direct correlations between objective functions obtained from the NSGA-

II algorithm in Section 7.3.2.4 are compared with a Monte Carlo sampling (MCS) approach. A

relatively large number of Monte Carlo samples (10,000 samples) of design variables from the design

space are generated and the objective functions for different cases are predicted using the trained

BNN models. Due to computational complexity and difficulty in visualizing the four-dimensional

results of Case 4, MCS approach is only employed for bi-objective cases i.e., Cases 1, 2 and 3

(Figs. 7.39, 7.40, 7.41).

The relationship between the two objectives in Case 2 and 3 as shown in Figs. 7.40 and 7.41
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Figure 7.39: Pareto front and MCS results of Case 1

Figure 7.40: Pareto front and MCS results of Case 2

is highly non-linear. The regions with sharp edges generally represent constraint boundaries. The

relationship between two physical quantities, i.e., bond quality and geometry accuracy of a part,

shown in Fig. 7.41 demonstrates the importance of choosing the optimal process parameters. For

some combinations of design variables, both physical quantities may have significantly degraded

values, which can be avoided by using the proposed methodology. The Pareto front results shown

in Figs. 7.32, 7.33 and 7.34 are superimposed on the MCS results and labeled as red crosses in

Figs. 7.39, 7.40, and 7.41. The superimposed Pareto fronts show that the optimization results are

in agreement with the MCS results.
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Figure 7.41: Pareto front and MCS results of Case 3

7.3.2.6 Experimental Validation

Three points are chosen for validation from the Pareto fronts for each of the four multi-objective

optimization cases considered above. The predicted values of objectives for each point are validated

using classical hypothesis testing. The sample size of experiments for each point is 5. The sample

size of model predictions for each point is 100, which is produced using MC dropout. For validation

of the prediction models, the t-test, which is based on Student’s t-distribution, is used to test the

hypothesis that the mean of the observations is equal to the mean of the model prediction. Since the

calculated p-values for all selected design points (A1, B1, C1, A2, B2, C2, A3, B3, C3, A4, B4, C4)

are above the significance level α = 0.05, the predictions at the optimum solutions agree with the

experimental observations. This is the validation of the BNN prediction models, which are trained

with the previous experimental data. Note that the training data and validation data are separate.

Next we also validate the optimization result, by demonstrating that the optimum solution

gives better part quality than randomly selected process parameter settings. Parts are printed and

measured at eleven other process parameter settings selected at random and compared to the part

printed with the optimal process parameters of Case 3. The dimensionless mean thickness error

(µt̂h) and the dimensionless bond quality metric (1 − µb̂l) obtained using the randomly selected

process parameters are found to be larger than that of the optimal solution (Fig. 7.42), thus clearly

demonstrating the effectiveness of the proposed methodology.
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Figure 7.42: Experimental validation of optimal process design (Case 3)

7.3.2.7 Summary

We find that, using the proposed approach, we were able to manufacture FFF parts with better

part quality using the optimization results from the Pareto front obtained through the probabilistic

data-driven methodology for process parameter optimization. In this section, we obtain probabilistic

estimates of both quantities (bond quality and geometrical accuracy) and include the probabilistic

estimates within the process design for optimization under uncertainty. The input variability in the

experimental data and the model uncertainty are captured through the probabilistic deep learning

approach, BNN.

The probabilistic estimates facilitate different options of optimization under uncertainty: opti-

mize only the mean value of an individual quality metric, optimize both the mean and variance of

an individual quality metric, optimize the mean values of multiple quality metrics simultaneously,

and optimize both the mean values and variances of multiple quality metrics simultaneously. Except

the first option, all other options require multi-objective formulations. It is observed that the mean

values of both quality metrics (bond length and part thickness accuracy) are optimized with the

smallest layer thickness (i.e., 0.42 mm). This is generally expected in AM processes. However, it is

not that straightforward to see a similar trend for other parameters. In general, the optimal solutions

for the mean of both quality metrics are achieved with larger nozzle temperature and smaller nozzle

speed values. However, there are some cases where some other combinations of nozzle temperature

and speed (e.g., small temperature and speed) also result in optimal solutions for these two quan-
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tities. Thus, the Pareto front is helpful in finding a design that offers a good trade-off between the

objectives.

The prediction models are verified using the cross-validation approach as explained in Sec-

tion 7.3.2.3, and validated against experimental data. The optimization results are validated by

printing and measuring the parts corresponding to the points A, B, and C of the Pareto fronts. The

results show that the optimum solution using the proposed process optimization framework gives

better part quality than randomly selected process parameter settings.
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CHAPTER 8

Conclusion

The overall goal of this dissertation is to develop efficient ML models for uncertainty quan-

tification and decision-making under uncertainty with limited available experimental data. In this

research, both time-independent and time-dependent systems are considered. Towards this end, this

research has investigated physics-informed machine learning (PIML) strategies and their combina-

tions for global sensitivity analysis (GSA), for accurate system response prediction and optimization

under uncertainty using both physics knowledge and experimental data. The proposed adaptive

sampling and multi-level Bayesian calibration strategies particularly help to approach challenging

multivariate time-dependent multi-component systems. A summary of the accomplishments and

contributions of this dissertation are outlined below.

8.1 Summary of Contributions

The contributions and accomplishments of this dissertation are outlined as follows.

1. Physics-informed and hybrid machine learning models are developed to allow accurate model

predictions even with smaller amounts of experimental data. Three types of strategies are

explored to incorporate physics constraints and multi-physics fused filament fabrication (FFF)

simulation results into a deep neural network (DNN), thus ensuring consistency with physical

laws: (1) incorporate physics constraints within the loss function of the DNN, (2) use physics

model outputs as additional inputs to the DNN model, and (3) pre-train a DNN model with

physics model input-output and then update it with experimental data. These strategies help

to enforce a physically consistent relationship. Thus, the proposed approach helps to fill the

physics knowledge gap in the ML model while leveraging the capability of ML to extract

complex process-material-geometry relationships, and correcting for the approximation in the

physics-based model. (Chapter 3)

2. A robust information fusion and machine learning methodology is developed for sensitivity

analysis using both physics knowledge and experimental data, while accounting for model

uncertainty. Physics-informed machine learning strategies are investigated to effectively com-

bine the physics-based and experimental information in order to maximize the accuracy of the

sensitivity estimate. (Chapter 4)
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3. We look to adaptively improve the model by developing an adaptive sampling strategy for

training points selection that aims at optimizing resource allocation. An adaptive surrogate

modeling method is developed for high-dimensional problems to predict spatio-temporal output

quantities of interest (QoIs) using a two-step dimension reduction approach and to improve the

surrogate model accuracy with the fewest possible runs of the expensive physics-based model.

(Chapter 5)

4. A multi-level Bayesian calibration approach is developed for information fusion from hetero-

geneous sources to estimate the model parameters with real-time monitoring data of time-

dependent multi-component systems, and prediction of the real-time QoIs using the updated

model. Multi-level Bayesian calibration is performed to estimate component-level and system-

level parameters using experimental data that are obtained at different time instances for

different system components. (Chapter 6)

5. Several multi-objective problem formulations are developed for process parameter optimiza-

tion under uncertainty using both physics-based and data-driven models. The multi-objective

process optimization methodology is developed for additive manufacturing (AM) using both

physics models and data-driven models. With a focus on FFF AM process, the proposed

methodology optimizes the process parameters with the objectives of minimizing the geometric

inaccuracy and maximizing the filament bond quality of the manufactured part. Uncertainty

in the prediction model is considered in the optimization. Using the predictions from these

models, different robust design optimization formulations are investigated. The effectiveness

of the proposed methodology is validated by manufacturing the parts at optimal settings and

demonstrating the quality improvement. (Chapter 7)

8.2 Future Work

Future research may be pursued in the following directions.

First of all, the data produced by experiments and physics models have different levels of cred-

ibility; thus the weighting of the two sources of data needs to be investigated in the future. Also,

in order to further evaluate the performance of the proposed PIML strategies and how different

combinations of methods affect the accuracy and computational effort, a more complex problem in-

volving several random variables can be considered. Future work can also explore the generalization

capabilities of the proposed strategies to parts of different geometry, as well as transfer learning to

parts manufactured with different 3D printers and materials.
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The proposed PIML-based sensitivity analysis approaches need to be tested for problems with

a larger number of dimensions both in the input and output, with multiple combinations to further

analyze the convergence of Sobol’ index estimates. In order to have a more complete comparison

between the GP and DNN models, the proposed approach for GP models can be extended by using

different kernels with varying smoothness.

The proposed adaptive sampling technique used randomly generated points to sequentially select

the next training points. Future work can explore an implementation of a rigorous optimization

strategy for the same purpose. The reliability of the adaptive sampling techniques in terms of

reproducibility of results also needs to be considered. Future work can explore other large-scale

engineering examples in order to further evaluate the performance of the proposed method, gain more

insight about the method’s behavior for different problems, and further improve the methodology.

The proposed multi-level online Bayesian calibration approach could support building a Digital

Twin that contains all the information about the engineering system and is continuously updated

with real-time information. The Digital Twin can be used to (1) assess the current condition and

capabilities of the system, (2) predict the future condition and capabilities of the system, and (3)

provide information for decision-making related to system health management (inspection, main-

tenance, and repair). Future work should conduct more experiments at several spatio-temporal

locations to obtain sharper posterior estimates by fusing more information from multiple levels.

Further investigation is needed regarding resource allocation for data collection in the context of

multi-level calibration and its connection to the preferred calibration strategy. In the future, a more

sophisticated and numerically robust method can be used for joint state-parameter estimation, in

the presence of time-dependent system states.

In this dissertation, multi-objective decision-making under uncertainty was considered. The

proposed approach helps to replace the trial-and-error experimental approach with a model-based

process parameter optimization under uncertainty. Future work can also extend this framework

to process control under uncertainty, thus further reducing the variability in the QoIs in order to

achieve various product quality objectives.
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Appendix A

Appendix

A.1 Benchmark Test Functions

Two-dimensional benchmark functions used in this paper to evaluate the performance of the

proposed method and compare its performance to existing adaptive surrogate model improvement

methods are defined in Table A.1.

Table A.1: Test problems

Branin function

y =
[

x2 −5
( x1

2π

)2
+

5x1

π
−6
]
+10

(
1− 1

8π

)
cos(x1)+10

x1 ∈ [−5,10], x2 ∈ [0,15]

Goldstein & Price function

y =
[
1+(x1 + x2 +1)2 (19−14x1 +3x2

1 −14x2 +6x1x2 +3x2
2
)]

×
[
30+(2x1 −3x2)

2 (18−32x1 +12x2
1 +48x2 −36x1x2 +27x2

2
)]

x1, x2 ∈ [−2,2]

Sasena’s function
y = 2+0.01(x2 − x2

1)
2 +(1− x1)

2+

2(2− x2)+7sin(0.5x1) sin(0.7x1x2)

x1, x2 ∈ [0,5]

Alpine function
y = sinx1 sinx2

√
(x1x2)

x1, x2 ∈ [0,10]

Modified form of function in Meckesheimer et al. [189]
y = e(x1−x2)

2
+ e(10−x1)

2 − x1x2

x1, x2 ∈ [0,10]

Modified form of function in Jin et al. [127]

y = cos(10x2
1)+3.1|x1 −0.7|+2x2

1 + sin
(

1
|x1 −0.7|+0.31

)
+2x2

2

x1, x2 ∈ [0,1]

Schwefel function
y = 418.9829n−∑(xi sin

√
|xi|

xi ∈ [−500,500], i = 1, ...,n,n = 2
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