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CHAPTER 1

Introduction

Continuous response variables are very common and often skewed. Regression analysis is one of the most

widely used types of continuous data analysis. One often needs to transform continuous response variables

for regression modeling assumptions. However, finding the optimal transformation is challenging and re-

sults may vary with the choice of transformation. Log-transformation and square-root transformation are

often recommended for right-skewed data to improve normality and homoscedasticity. Box and Cox (1964)

proposed a more general way for monotonic transformation that works for positive data. However, this two-

stage parametric method does not consider the model uncertainty based on the transformation and is unable

to always lead to ideal transformation. It is desirable to use more robust models that are invariant to transfor-

mation of response variables. Nonparametric and semiparametric approaches are usually more robust in this

sense, but they may lack interpretability and computational efficiency. Liu et al. (2017) suggested applying

the cumulative probability model (CPM), a semiparametric ordinal regression model, to continuous response

variables to avoid pre-transformation of response variables. They showed that CPMs perform well in this

setting. CPMs incorporate rank information only and are thus invariant to any monotonic transformation of

response variable. In addition, CPMs model the cumulative distribution function (CDF) from which other

quantities (e.g. expectations and quantiles) can be derived. Harrell (2020) implemented a computationally

efficient algorithm for CPMs in the orm() function in the rms R package that is able to handle thousands of

ordinal levels.

The CPM can be regarded as a semiparametric transformation model that models the CDF and requires

link function specification (Zeng and Lin, 2006). CPMs assume that after some unspecified monotonic trans-

formation, the response variable is a linear function of covariates and follows a distribution corresponding to

the link function specified. The monotonic transformation is estimated nonparametrically as a step function

by treating each response value as a distinct category. Hothorn et al. (2018) recently proposed a parametric

linear transformation model, the most likely transformation (MLT) model, that estimates the transforma-

tion parametrically with basis functions. It is of interest to understand the strengths and limitations of the

semiparametric and parametric linear transformation models. In Chapter 2, we compare the two novel trans-

formation models, CPMs and MLTs, for fitting continuous response variables. We ran extensive simulations

under different scenarios and compared both methods by analyzing data from an HIV biomarker study.

To complicate things, in addition to being skewed, continuous response variables can also be censored.

A continuous variable subject to detection limits (DLs) can only be measured within a certain rage. To

1



investigate the association between a continuous response variable subject to DLs and covariates by regression

analysis, many approaches explicitly or implicitly make parametric assumptions on the distribution outside

the DLs. Dichotomizing a continuous response variable at a DL and then fitting logistic regression is a

commonly used approach, but it may lead to information loss (Jiamsakul et al., 2017). With multiple DLs,

more information is lost because a response variable is dichotomized at its smallest lower DL or largest upper

DL. Replacing values outside DLs with a single constant is another common approach, but the results are

sensitive to the constant used (Baccarelli et al., 2005). More sophisticated methods often make parametric

assumptions on the distribution of values outside DLs, and biased results are possible when distributional

assumptions are inappropriate. Nonparametric approaches for DLs, although usually more robust, do not

allow for adjusting covariates. In Chapter 3, we introduce a new method to address DLs in the response

variables based on CPMs. We also propose a new estimator for the conditional quantile derived from a

CPM that is more interpretable when response variables are subject to DLs. Two examples are presented

to demonstrate the proposed method. One investigates the association between covariates and a biomarker

subject to a lower DL. The other example uses data from a large multi-cohort study of viral load after starting

antiretroviral therapy (ART) among people with HIV. The response variable, viral load, is subject to multiple

DLs that vary across sites and over time. We implement our method in an R package multipleDL.

When a continuous response variable is repeatedly measured for a subject or the continuous responses

come in clusters, it is more challenging to model the clustered continuous response data due to correlation

within clusters. Methods for cross-sectional continuous response variables assume observations are indepen-

dent of each other. Therefore, cross-sectional methods cannot be directly applied on clustered data. Liang

and Zeger (1986) and Zeger and Liang (1986) proposed the generalized estimating equation (GEE) method

that combines generalized linear models and quasi-likelihood methods for longitudinal data analysis, where

the quasi-likelihood method only requires specification of the first two multivariate moments of the response

variable. GEE methods require correctly specifying the marginal regression model and a working correla-

tion structure for association within clusters that does not necessarily need to be correct. To fit continuous

response variables, GEE methods still have similar parametric assumption as generalized linear models and

may require transformation of response variables. Again, inappropriate transformation might lead to biased

results and results are sensitive to the choice of transformation in this case. Therefore, it is important to have

robust approaches for clustered continuous response data. We study the extension of CPMs on analyzing

clustered continuous response variables based on GEE methods for ordinal response variables in Chapter 4.

Two feasible and computationally efficient approaches are proposed and demonstrated by simulations. We

apply our approaches on two data examples. One uses data from The Lung Health Study to investigate the

contribution of a single nucleotide polymorphism to lung function decline. The other studies predictors of

2



CD4:CD8 ratios in an HIV study. An R package cpmgee has been developed.
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CHAPTER 2

An Empirical Comparison of Two Novel Transformation Models

This chapter is from An Empirical Comparison of Two Novel Transformation Models published in Statis-

tics in Medicine and has been reproduced with the permission of the publisher and my co-authors Torsten

Hothorn, Chun Li, Frank Harrell, and Bryan Shepherd.

2.1 Introduction

We often transform continuous response variables to meet modeling assumptions, but it is not easy to find

the optimal transformation. Box and Cox modified a method proposed by Tukey (Box and Cox, 1964; Tukey

et al., 1957) that provides a family of power transformations to create a monotonic function of the responses.

The Box-Cox transformation is widely used to improve normality and homoscedasticity. However, the Box-

Cox transformation only works for positive response variables. It is generally implemented in a two-stage

manner (1. select transformation, 2. fit model to transformed response) that ignores the model uncertainty

regarding the choice of transformation, and it is still a parametric procedure that may result in sub-optimal

transformations.

Two transformation models have recently been proposed: semiparametric cumulative probability models

(CPMs) (Liu et al., 2017) and parametric most likely transformation models (MLTs) (Hothorn et al., 2018).

Both approaches model the cumulative distribution function and require specifying a link function, which

implicitly assumes the response variable follows a known distribution after some monotonic transformation.

However, the two approaches estimate the transformation differently. With CPMs, an ordinal regression

model is fit, which essentially treats each realization of the response as a unique ordered category and encodes

the empirical CDF into the intercepts, and therefore nonparametrically estimates the transformation; CPMs

belong to the class of semiparametric linear transformation models (Zeng and Lin, 2007; De Neve et al.,

2019). In contrast, with MLTs, the transformation is parameterized using flexible basis functions. Conditional

expectations and quantiles are readily derived from both methods on the outcome’s original scale. Both

methods have been shown to be robust and flexible, and have good performance in estimation (Liu et al.,

2017; Hothorn et al., 2018).

The goal of this paper is to compare the CPM and MLT methods to each other to better understand the

advantages and disadvantages of each. In Section 2, we give a brief introduction to linear transformation

models, cumulative probability models and most likely transformation models. In Section 3, we describe a

wide range of simulation scenarios to compare the methods and in Section 4 we present simulation results.
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In Section 5 we illustrate and contrast both methods using data from a study of biomarkers among persons

living with HIV. Finally, we provide discussions and conclusions in Section 6.

2.2 Review of Methods

2.2.1 Linear Transformation Models

Let Y designate a continuous response variable. The goal is to model some aspect of the distribution of Y

as a function of a vector of covariates, X . It may be difficult to directly model Y , so the analyst may instead

want to model a transformation of the outcome, Y ∗ = h(Y ), where h(·) is a monotonic transformation. A

linear transformation model assumes h(Y ) = Y ∗ = β T X + ε , where ε ∼ Fε is a known distribution. Let

H(·)≡ h−1(·). Then

Y = H(Y ∗) = H(β T X + ε), where ε ∼ Fε . (2.1)

The linear transformation model (2.1) can be rewritten as a cumulative probability model (CPM). The

conditional cumulative distribution function of Y can be expressed as

F(y | X) = P(Y ≤ y | X)

= P[H(β T X + ε)≤ y | X ]

= P[ε ≤ H−1(y)−β
T X | X ]

= Fε [h(y)−β
T X ].

Let G = F−1
ε be a link function. Then

G[F(y | X)] = h(y)−β
T X . (2.2)

2.2.2 Semiparametric Cumulative Probability Models

A semiparametric linear transformation model leaves the transformation, h(y), unspecified, estimating it

nonparametrically with a step function (Zeng and Lin, 2006). The partial likelihood approach to the Cox

model can also be interpreted as a member of this class. We first consider the situation of no ties in the

outcome. Without loss of generality, assume y1 < y2 < · · · < yn. Then for the observed values {yi; i =

1,2, . . . ,n}, the semiparametric CPM is

G[F(yi | X)] = αi −β
T X , (2.3)
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where αi = h(yi).

Since α(·) is an increasing function, α1 < α2 < · · · < αn. The semiparametric likelihood can then be

approximated as

L∗(β ,ααα) =
n

∏
i=1

[
Fε(αi −β

T xi)−Fε(αi−1 −β
T xi)

]
, (2.4)

where an auxiliary parameter α0(< α1) is added in the model. L∗ is maximized when α̂0 =−∞ and α̂n =+∞

because Fε is increasing, so in practice α̂0 and α̂n are fixed to these values and maximization of L∗ is with

respect to the other parameters (Liu et al., 2017).

The semiparametric cumulative probability model (2.3) is equivalent to the “cumulative link model”

commonly used for the analysis of ordered categorical data (Walker and Duncan, 1967; McCullagh, 1980),

and the likelihood (2.4) is equivalent to the multinomial likelihood used for these ordinal models. In fact,

maximizing (2.4) to obtain nonparametric maximum likelihood estimators (NPMLEs) for (β ,ααα) can be done

by treating continuous Y as if it were a discrete ordinal variable with n categories. The approach also works

seamlessly if Y is a mixture of continuous and discrete data or if there are ties (Liu et al., 2017).

Although in theory, semiparametric CPMs can be fit using algorithms for cumulative link models, in

practice, most commonly used software programs employ algorithms that can handle only a relatively small

number of discrete ordinal categories. However, this need not be the case, as large portions of the score

equation and Hessian matrix are zero permitting computational simplifications. The orm() function in the

rms package in R statistical software allows efficient maximization of (2.4) for continuous Y with thousands

of distinct levels (Harrell Jr, 2015; Harrell Jr et al., 2016).

With the NPMLEs (β̂ , α̂αα), one can estimate the conditional CDF, F̂(yi | X) = Fε(α̂i − β̂X). From the

estimated conditional CDF, one can estimate conditional expectations and conditional quantiles. The delta

method can be used to derive the standard error for the conditional CDF and the conditional expectation.

Confidence intervals for conditional quantiles can be obtained using linear interpolation of the inverse of

confidence intervals for the conditional CDF. Details are in Liu et al. (2017). The probability index (PI),

defined as P(Y1 < Y2|X1,X2) for independent and identically distributed copies (Y1,X1) and (Y2,X2), and its

confidence interval can also be readily obtained from CPMs (Acion et al., 2006; De Neve et al., 2019).

2.2.3 Most Likely Transformation Models

The motivation behind most likely transformation models is similar to that of semiparametric CPMs. After

some transformation, h(y), the outcome is assumed to be linearly associated with covariates with errors

following a known distribution, Fε , leading to the linear transformation model (2.1). This can then be re-
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written as the cumulative probability model (3.1). MLTs differ from semiparametric CPMs in the manner

that the unknown transformation function, h(y), is modeled. Rather than nonparametrically estimating h(y),

it is flexibly modeled using basis functions. Specifically, h(y) = a(y)T ϑ , where a is a vector of appropriate

basis functions and ϑ is a vector of coefficients. The conditional cumulative probability model then becomes

G[F(y | X)] = a(y)T
ϑ −β

T X , (2.5)

where as before, G = F−1
ε .

The choice of basis function is problem-specific and depends on the scale of Y . For continuous outcomes,

the basis functions can be any polynomial or splines basis. Bernstein polynomials of order M can be applied

on the support of y, [l,u], as

h(y) = aBs,M(y)T
ϑ =

M

∑
m=0

ϑm fBe(m+1,M−m+1)(ỹ)/(M+1), (2.6)

where ỹ = y−l
u−l ∈ [0,1] and fBe(m,M) is the probability density function of a Beta distribution with parameters

m and M. In theory, the Bernstein polynomials can approximate any function on an interval as long as M

is big enough. Polynomial basis functions and log basis functions can also be used in suitable cases. The

monotonicity of h can be ensured by constrained optimization.

A more general class of transformation models are conditional transformation models of the form

G[F(y | X)] = c(y,x)T
ϑ , (2.7)

where the unknown transformation function now depends both on y and x, and c is a vector of basis functions

conditioning on x (Hothorn and Zeileis, 2017). Although the MLT framework handles such transformations,

unless noted otherwise, we will consider models of the form (2.5) rather than of the form (2.7).

Estimation proceeds using maximum likelihood. The likelihood of a datum C = (y, ȳ], where (y, ȳ] is a

short interval around y, for a given transformation function h is (Lindsey, 1996):

L(h|Y ∈ (y, ȳ]) = Fε(h(ȳ))−Fε(h(y)). (2.8)

For absolute continuous responses, the log-density is used as log-likelihood and the maximum likelihood

estimator of h is called most likely transformation (Hothorn et al., 2018).

The mlt R package is an implementation of most likely transformation models in R (Hothorn, 2018).

A variety of increasingly complex transformation models can be built and evaluated in a computationally
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efficient way by this package. In the rest of the paper, MLT refers to the theoretical method rather than the

package. As with semiparametric CPMs, conditional expectations, quantiles, and probability indices and

their confidence intervals can be computed after fitting MLT models.

2.3 Simulation Plan

2.3.1 Simulation Set-up

We compared semiparametric CPMs and MLTs using a wide variety of simulation scenarios. The basic

structure for our simulations was the following:

Y ∗ = Xβ +Zγ + ε,

ε ∼ Fε(.),

Y = H(Y ∗).

For the primary simulation setting, we set β = 1,γ = 0 with no Z included in the model, X ∼ Binomial(p =

0.5),ε ∼ N(0,1), and H(y) = Inv-χ2(Φ(y),5), where Φ is the probability density function of the standard

normal distribution and Inv-χ2(·,5) is the inverse of the CDF for a chi-square distribution with 5 degrees

of freedom. H(·) was chosen in this manner so that there would be no obvious closed form transformation

function h. All other simulations were some variation from this primary simulation setting.

For each setting, we varied the sample size from 50, 100, 500 to 1000 and specified the number of

simulation replications at 10,000. CPMs and MLTs were fit with the same specified link function. MLTs

were generally fit using Bernstein polynomials with M = 10 unless stated otherwise.

Modifications of the primary simulation setting included the following:

• β = 0 and 0.5.

• X ∼ Binomial(p = 0.3), Uniform(-1, 1), and N(0,1).

• ε ∼ N(0,1), Logistic(0,3/π2), and Gompertz(0,1).

• Z ∼ N(0,1) and N(X ,1); γ = 1.

• Multiple covariates Z1, . . . ,Z6, with Z1,Z2,Z3 ∼ N(0,1),Z4 ∼ N(X ,1),Z5 ∼ N(Z1 +X ,1), and Z6 ∼

N(Z3 −Z4,1); γ = {1,1,1,1,1,1}.

• H(y) = y, exp(y), and Inv-logistic(Φ(y)).
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Figure 2.1: Transformation functions used in simulation and corresponding Bernstein polynomials approxi-
mation with order M

We also evaluated the two methods with data simulated from a mixed distribution, corresponding to a

setting with a detection limit or left censoring:

H(y) =


exp(y) if y > 0

0 if y ≤ 0

We also considered settings where Y was a discretized version of Y ∗ using 5, 10, 20, and 50 categories

based on quantiles of the distribution (see details in Supplementary Materials).

Figure 2.1 illustrates the different transformation functions considered in these simulations. The Figure

also includes curves illustrating how well the Bernstein polynomials approximate the transformation func-

tions.

Note that the CDF in orm() is in the form G1[1−F(y|X)] = αorm +βormX , which can be transformed to

(3.1) if G(t) =−G1(1− t),α =−αorm and β = βorm. For symmetric error distributions, we use the same link

function in orm() as in the CPM and α =−αorm. For nonsymmetric error distributions, its complementary

version can be used (Liu et al., 2017).
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2.3.2 Evaluations

To evaluate the two methods, we estimated bias, mean squared error (MSE) and coverage of 95% confidence

intervals for β , as well as conditional expectations, conditional quantiles, and conditional cumulative distri-

bution functions. We also computed the out-of-sample log-likelihood based on the fitted model parameters

for a separate data set of the same size sampled from the simulation distribution. For the purpose of com-

paring the out-of-sample log-likelihoods, the responses in MLT were categorized into short intervals (yi, ȳi]

based on CPM categorization, which were the distinct observed responses of the original data. The likelihood

was then calculated as L(H) = ∏i
[
Fε(H(ȳi))−Fε(H(yi))

]
.

Under correct link function specification, for ε ∼ N(0,1), the probit link function was used and when

ε followed a logistic distribution, the logit link function was used. We used the cloglog link function if ε

followed a Gompertz distribution.

Ordinary linear regression was also evaluated and compared with the two methods for simple transfor-

mations H(y) = y and H(y) = exp(y). All simulations and analyses were performed in R version 3.4.4 (?);

complete code is available at http://biostat.mc.vanderbilt.edu/ArchivedAnalyses and an abbreviated version

is available at https://github.com/harrelfe/rscripts/blob/master/sim-continuous-ordinal.r.

2.4 Simulation Results

In general, CPMs and MLTs were quite comparable when models are correctly specified (i.e., correct link

function and linear terms). Bias was close to 0, MSE was low, and the coverage probability of 0.95 confidence

intervals tended to be 0.95 with increasing sample sizes. CPMs tended to have a slightly smaller bias for β

than MLTs as the sample size increased. In terms of the conditional mean, CPMs generally had a smaller

bias than MLTs, especially in large sample sizes, but MSEs were very close. Neither one had obvious ad-

vantages in estimating conditional quantiles. Both methods performed better estimating conditional medians

than more extreme quantiles. CPMs generally had better performance in estimating conditional CDFs with a

smaller bias, particularly in large sample sizes. MLTs tended to have slightly narrower confidence intervals.

With continuous Y , the out-of-sample log-likelihood was larger in MLTs probably because it directly maxi-

mizes the likelihood whereas CPMs maximize an approximated multinomial likelihood. Details for specific

simulation scenarios are provided below and in Supplementary Material.

2.4.1 The Primary Setting and its Modifications

Simulation results under the primary setting, with the order of Bernstein basis varying from M = 5 to M = 10,

are shown in Figure 2.2 and reported in Table 2.3 (in Supplementary Material). For β estimation, CPMs and

MLTs performed similarly, resulting in minimal bias and 95% coverage that improved with increasing sample
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Figure 2.2: Simulation results under the primary setting

sizes. CPMs had slightly less bias and similar to lower coverage than MLT with M = 10 when estimating

conditional expectations. For estimating conditional CDFs and medians, MLTs with M = 5 generally under-

performed MLTs of M = 10 and CPMs. Coverage of MLT with M = 10 was slightly better than that of CPMs

for conditional CDFs and slightly worse for conditional medians. At large samples, estimates of conditional

medians were less biased for CPMs than MLT with M = 10, but more biased at small sample sizes. For most

of the remaining simulations, CPMs were only compared with MLTs with M = 10.

For simple transformations H(y) = y and H(y) = exp(y), ordinary linear regression after the correct

transformation (i.e., no transformation and log-transformation, respectively) had, not surprisingly, the best

performance in estimating β with much smaller bias, particularly at small sample sizes. The other two
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Figure 2.3: Simulation results when including covariate Z, which is dependent and independent of X

methods had similar respectable performance with coverage near 95% at all sample sizes and MSE 10% to

30% larger than the correctly specified linear regression, with MSE getting closer with larger sample sizes.

The results of β estimation for transformation H(y) = y are in Table 2.1. With moderate and large sample

sizes, the results of estimated conditional expectation were very similar. More detailed results are shown in

Supplementary Material Figure 2.10, Figure 2.11, Figure 2.12, Table 2.4, Table 2.6, and Table 2.6.

When including a covariate Z, the results are shown in Figure 2.3. If Z was independent of X , MLTs

had a slightly smaller bias in β and the differences between the two methods decreased as the sample size

got larger. MSEs and confidence interval coverage rates were similar. However, if Z was dependent on X ,

the CPM had slightly better performance in estimating β than the MLT. In both scenarios, the MLT had a

larger out-of-sample log-likelihood. When including multiple covariates, some of them being independent of

X while others being dependent on X , CPMs generally outperformed MLTs although only by a small amount.

(See detailed results in Table 2.7, Table 2.8, Table 2.9, and Figure 2.13 in Supplementary Material.)

CPMs performed slightly better than MLTs when using the correct link function for ε ∼ Logistic(0, 3
π2 )

(See Table 2.10 and Figure 2.14 in Supplementary Material). Results were similar using correct link function

for ε ∼ Gompertz (See Table 2.11 and Figure 2.15 in Supplementary Material). Results were similar when us-
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ing different distributions for X (see Supplementary Material Table 2.12, Table 2.13, Table 2.14, Figure 2.16,

Figure 2.17, and Figure 2.18). When changing the value of β , the results were similar (see Supplementary

Material Table 2.15, Table 2.20, Figure 2.19 and Figure 2.20).

2.4.2 Link Function Misspecification

Under minor or moderate link function misspecification, the bias of the estimated β was slightly smaller in

CPMs. Results were similar in other evaluation criteria (See Table 2.17 and Figure 2.21 in Supplementary

Material). With severe link function misspecification, MLTs tended to have slightly better performance in

estimating β (See Table 2.18, Table 2.19, Figure 2.22, and Figure 2.23 in Supplementary Material). MLTs

always had larger out-of-sample log-likelihood under model misspecification.

2.4.3 Mixture of Discrete and Continuous Responses

For the mixture of discrete and continuous responses corresponding to the setting where values below zero

were set to zero, we compared CPMs and two MLT models, one treating the responses as ordinary continuous

responses and the second properly treating the zero values as left censored responses. For β estimation, the

results are shown in Figure 2.4. For small sample sizes, the uncensored MLT had the smallest bias while

the censored MLT and CPM had better confidence interval coverage rates. However, the uncensored MLT

performed the worst when the sample size became large. CPM had the smallest bias in large sample sizes

and it also had the largest out-of-sample log-likelihood in all sample sizes. See Table 2.20 in Supplementary

Material for more detailed results.

2.4.4 Discretization of Continuous Response

If continuous responses are discretized into categories, the MLT can handle them as ordered factors (i.e.,

resulting in identical estimation to CPMs) or as continuous responses. Simulation results are in Figure 2.5.

CPMs, in general, performed better than MLTs (Bernstein polynomials with M = 5) treating the discrete data

as continuous. Such advantages were more obvious as the sample size increased. MLTs outperformed CPMs

for estimated β in sample sizes when the number of categories was small; while CPMs always had better

confidence interval coverage rates for β . CPMs also had larger out-of-sample log-likelihood for all cases.

2.4.5 Computation Time

The average computing time for the primary setting based on 100 replications is shown in Table 2.2. In

general, both methods are quite fast for moderate sample sizes. On average, CPMs ran much faster in small

sample sizes while MLTs were faster in large sample sizes. MLTs with M = 10 took longer to run than MLTs
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Figure 2.4: Simulation results for mixture of discrete and continuous responses comparing CPM and MLT
treating response as ordinary continuous responses and censoring responses.
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Figure 2.5: Simulation results for discretized continuous responses into 5, 10, 20 and 50 categories.
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with M = 5. This simulation and all other simulations were performed on a 64 bit Linux server equipped with

2 Intel Xeon X5647 processors running at 2.93GHz, 96Gb of memory.

2.5 Application Examples

To further compare the two models, we applied them to a biomarker study among people living with HIV

(PLWH). The risks of diabetes and cardiovascular disease are higher for PLWH than the general population.

There is interest in assessing the association between body mass index (BMI) and biomarkers of inflamma-

tion and metabolism among PLWH. We used data from 216 HIV-positive adults on antiretroviral therapy

(ART) with no history of diabetes or myocardial infarction and with a viral load less than or equal to 400

copies/mL from the Vanderbilt Lipoatrophy and Neuropathy Cohort (LiNC; n=147) (Koethe et al., 2012) and

the Adiposity and Immune Activation Cohort (AIAC; n=69) (Koethe et al., 2016). We estimated the associa-

tion between BMI and five inflammation biomarkers: Interleuken 6 (IL-6), high sensitivity C-reactive protein

(hsCRP), Interleuken 1 β (IL-1-β ), soluble CD14 (sCD14) and leptin. The study over-sampled overweight

patients; the median BMI was 29.3 kg/m2; the range was 17.8 to 57.4. The analysis adjusted for age, sex,

race, study location, CD4 cell count, and smoking status. Probit link functions were used for all biomarkers.

Figure 2.6 shows the distribution of IL-6, which is right skewed and has a lower detection limit; those

below the detection limit (3%) were recorded as having a value of 0. The estimated transformation functions

are shown in Figure 2.6 and are similar for the CPM and MLT analyses. Because it is parametrically estimated

by basis functions, the transformation function is a smooth curve for MLT. The transformation function for

CPM is a step function. The estimated conditional mean and median as a function of BMI are also very

similar for the two models. The estimated PI for IL-6 for a 10 kg/m2 difference in BMI is 0.64 (95% CI 0.58-

0.69) for both CPM and MLT analyses, further demonstrating the similarity between models. This suggests

that for a 10 kg/m2 difference in BMI, the subject with the higher BMI will have a 0.64 probability of having

a higher IL-6.

As shown in Figure 2.7, the distribution of hsCRP is extremely right-skewed. The estimated transfor-

mation is similar between the CPM and MLT analyses, but it is not as close as it was in the analyses with

IL-6 as the outcome. Hence, the conditional expectation and the conditional median as a function of BMI

are comparable, but slightly different, under the two transformation models. The probability indices for a

10 kg/m2 increase in BMI are 0.59 (95% CI 0.54-0.65) and 0.60 (95% CI 0.55-0.65) for CPM and MLT,

respectively. Interestingly, if one initially log-transforms hsCRP, fits MLT, and then transforms back to the

original scale, then the MLT estimates are much more similar to those of the CPM; Figure 2.8 shows the

conditional expectation. Notice that CPM is invariant to any pre-transformation transformation; i.e., esti-

mates of β , expectations, quantiles, and probability indices are identical whether or not one applies an initial
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Figure 2.6: Results for IL-6. A: The distribution of IL-6. B: The estimated transformation functions. C: The
estimated conditional means and their confidence intervals. Other covariates are at their most frequent level
or median level. D: The estimated conditional medians and their confidence intervals. Other covariates are at
their most frequent level or median level.
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Figure 2.7: Results for hsCRP. A: The distribution of hsCRP. B: The estimated transformation functions. C:
The estimated conditional means and their confidence intervals. Other covariates are at their most frequent
level or median level. D: The estimated conditional medians and their confidence intervals. Other covariates
are at their most frequent level or median level.
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Figure 2.8: The comparison of the estimated conditional mean on the original scale and the transformed log
scale

transformation. This is an advantage of CPM over MLT.

The distribution of IL-1-β is shown in Figure 2.9. It is right skewed and a large portion (39%) are below

the assay detection limit and assigned the value 0. We applied CPM and MLT with left censoring to the data.

The estimated transformation functions of the two models are somewhat similar. There is a flat line in the

transformation function for CPM, which corresponds to the gap around 1 pg/ml in the histogram; CPM is

flexible enough to capture this. The estimated conditional expectations are similar between the two models,

with MLT generating a narrower confidence interval. The results for the conditional median are also similar

for the two models. The PIs for 10 kg/m2 difference in BMI is 0.50 (95% CI 0.44-0.56 for CPM and 0.44-0.55

for MLT) for both CPM and MLT, suggesting there is little association between BMI and IL-1-β .

We also fit CPM and MLT models to assess the association between BMI and the biomarkers leptin and

sCD14. Leptin was positively associated with BMI and sCD14 was negatively associated. In both cases,

results from the CPM and MLT models were almost identical (similar to the IL-6 results); details are in

Figure 2.25 and Figure 2.26 in Supplementary Material.

2.6 Discussion

In this paper, we have reviewed two novel transformation models, CPMs and MLTs, and we have compared

them under a variety of simulation settings. The paper also serves as a validation of the two software im-

plementations in orm() and mlt(). Both methods directly model the conditional CDF from which other

characteristics of the distribution can be derived easily. Both models are linear transformation models, in that
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Figure 2.9: Results for IL-1-β . A: The distribution of IL-1-β . B: The estimated transformation functions. C:
The estimated conditional means and their confidence intervals. Other covariates are at their most frequent
level or median level. D: The estimated conditional medians and their confidence intervals. Other covariates
are at their most frequent level or median level.
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they assume that after some transformation, the association between response and predictors can be charac-

terized linearly with errors following a known distribution. The main difference between the two methods

lies in the estimation of the transformation. CPMs are semiparametric transformation models; each distinct

observed response is treated as a category and an ordinal regression model is fit which essentially mod-

els the transformation (or equivalently the intercept when written as a cumulative probability model) with

a step function. With MLTs, the transformation is parametrically modeled using flexible basis functions.

MLT also allows for easy set-up of more complex models featuring covariate-dependent effects using the

low-dimensional parameterization of ϑ (Hothorn and Zeileis, 2017; Hothorn, 2019).

We ran extensive simulations to compare the two methods under different settings. The two methods had

similar results in most cases and both methods handled complex transformations quite well. We had expected

to see more gains in efficiency using MLT and more benefits in terms of robustness using CPMs; if this was

the case, only minor differences were seen. MLTs were slightly more efficient. With larger sample sizes, the

bias for MLTs occasionally slightly increased; this is presumably because MLTs are slightly misspecified with

small orders (e.g. M = 10) and we kept the order constant irrespective of the sample size in our simulations.

We ran another simulation using M = 15 with sample size of 1000 under the primary setting. The bias

of conditional medians are -0.018 for X = 0 and -0.017 for X = 1, which are much smaller than the bias

using M = 10. As illustrated with the biomarker data, CPMs are invariant to any monotonic transformation

of the outcome, which can be considered an advantage. The CPM and MLT approaches handle censoring

differently, with CPMs assigning values below a detection limit the lowest rank value, whereas MLTs assume

that they follow a distribution informed by data above the detection limit. Resulting conditional expectations,

therefore, are slightly different with MLTs treating censored values as something less than the detection limit

whereas CPMs compute the expectation as the value after transforming the data back to the original scale

(i.e., expectations will use the numeric value assigned to values below the detection limit). For computation

time, MLT is significantly faster for large sample sizes with large numbers of distinct response values.

It should be emphasized that CPMs are semiparametric linear transformation models (SLTMs). SLTMs

have been advocated for use with time-to-event outcomes and its parametric counterpart mlt() was em-

ployed to estimate Cox models with time-varying effects in Hothorn (2020). Some attempts have been made

to use these models with continuous data (De Neve et al., 2019; Zeng and Lin, 2006), but computation has

been a limiting factor. By recognizing that ordinal “cumulative link models” are a special case of SLTMs and

that algorithms applying ordinal models can be sped up using a few simple tricks implemented in the func-

tion orm of the R package rms, SLTMs can now be efficiently estimated as CPMs. It should be noted that

most measurements in biomedical research are discrete to within the resolution of the measurement method.

Results from semiparametric models treating the responses as discrete can in a sense be considered more
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Table 2.1: Simulation results for β estimation of transformation H(y) = y

Sample Size Method Bias MSE Coverage (%)

n=50
CPM 0.0465 0.1077 0.9400
MLT 0.0457 0.1068 0.9412

Linear Regression 0.0003 0.0824 0.9399

n=100
CPM 0.0192 0.0491 0.9448
MLT 0.0183 0.0487 0.9456

Linear Regression -0.0039 0.0403 0.9463

n=500
CPM 0.0045 0.0090 0.9532
MLT 0.0043 0.0090 0.9537

Linear Regression 0.0002 0.0080 0.9526

n=1000
CPM 0.0024 0.0046 0.9492
MLT 0.0022 0.0046 0.9498

Linear Regression 0.0001 0.0040 0.9518

Table 2.2: Average computation time (in seconds) for CPM, MLT(M = 5), and MLT(M = 10) for the primary
simulation setting using different sample sizes and based on 100 replications

Sample Size CPM MLT(M = 5) MLT(M = 10)
50 0.0349 0.1326 0.1729

100 0.0261 0.1360 0.1844
500 0.2909 0.2318 0.3121
1000 0.8703 0.3995 0.4416

10000 63.7773 2.8190 4.0533

accurate than continuous methods that approximate discrete responses using a smooth probability density

function.

Although not the focus of this manuscript, diagnostics and goodness-of-fit can be assessed for both meth-

ods using probability-scale residuals and/or the probability integral transformation (Cox and Snell, 1968; Li

and Shepherd, 2012; Shepherd et al., 2016). Since CPMs and MLTs both model the CDF, under proper spec-

ification with continuous responses, probability-scale residuals will be approximately uniformly distributed.

Probability-scale residuals can also be used in residual-by-predictor plots and partial regression plots to inves-

tigate whether covariates are correctly included in the CPM or MLT models. Link functions can be selected

based on an approach by Genter and Farewell (Genter and Farewell, 1985). Details and examples are in Liu

et al. (2017).

Future studies might consider even more flexible versions of transformation models. For example, it may

be worthwhile to develop CPMs that permit different relationships and different distributions for different

covariate levels. Extensions of both approaches to handle correlated or longitudinal data, using a similar

approach to Manuguerra and Heller,would also be beneficial (Manuguerra and Heller, 2010).
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2.7 Supplementary Material

Table 2.3: Simulation results for the primary setting

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04642 0.10774 0.9399

MLT(M = 5) 0.04800 0.11051 0.9380
MLT(M = 10) 0.04814 0.10882 0.9398

n=100
CPM 0.01915 0.04906 0.9448

MLT(M = 5) 0.02083 0.05062 0.9420
MLT(M = 10) 0.02032 0.04961 0.9433

n=500
CPM 0.00452 0.00899 0.9532

MLT(M = 5) 0.00712 0.00937 0.9498
MLT(M = 10) 0.00629 0.00915 0.9524

n=1000
CPM 0.00244 0.00459 0.9492

MLT(M = 5) 0.00502 0.00478 0.9456
MLT(M = 10) 0.00427 0.00467 0.9478

F(5|X = 0)

n=50
CPM 0.00274 0.00851 0.9277

MLT(M = 5) -0.00221 0.00787 0.9493
MLT(M = 10) 0.00992 0.00785 0.9600

n=100
CPM 0.00129 0.00422 0.9410

MLT(M = 5) -0.00154 0.00400 0.9430
MLT(M = 10) 0.00823 0.00393 0.9596

n=500
CPM -0.00093 0.00084 0.9452

MLT(M = 5) -0.00134 0.00082 0.8935
MLT(M = 10) 0.00521 0.00079 0.9575

n=1000
CPM -0.00050 0.00041 0.9531

MLT(M = 5) -0.00100 0.00041 0.8308
MLT(M = 10) 0.00510 0.00040 0.9505

F(5|X = 1)

n=50
CPM -0.00159 0.00533 0.9166

MLT(M = 5) -0.00635 0.00496 0.9464
MLT(M = 10) 0.00252 0.00502 0.9605

n=100
CPM 0.00002 0.00266 0.9329

MLT(M = 5) -0.00280 0.00251 0.9450
MLT(M = 10) 0.00453 0.00251 0.9586

n=500
CPM -0.00115 0.00051 0.9488

MLT(M = 5) -0.00223 0.00050 0.9390
MLT(M = 10) 0.00288 0.00048 0.9521

n=1000
CPM -0.00065 0.00026 0.9454

MLT(M = 5) -0.00178 0.00026 0.9300
MLT(M = 10) 0.00300 0.00025 0.9358

E(Y |X = 0)

n=50
CPM -0.00438 0.39292 0.9349

MLT(M = 5) -0.02293 0.39143 0.9223
MLT(M = 10) -0.01963 0.39142 0.9330

n=100
CPM -0.00138 0.19771 0.9407

MLT(M = 5) -0.01571 0.19880 0.9320
MLT(M = 10) -0.01226 0.19779 0.9379

n=500
CPM 0.00083 0.03881 0.9490

MLT(M = 5) -0.01148 0.03949 0.9415
MLT(M = 10) -0.00808 0.03912 0.9456

n=1000
CPM -0.00230 0.01965 0.9444

MLT(M = 5) -0.01428 0.02008 0.9373
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Table 2.3: Simulation results for the primary setting (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT(M = 10) -0.01097 0.01988 0.9417

E(Y |X = 1)

n=50
CPM -0.01814 0.82857 0.9275

MLT(M = 5) -0.07790 0.79589 0.9051
MLT(M = 10) -0.07050 0.79704 0.9419

n=100
CPM -0.02173 0.41321 0.9379

MLT(M = 5) -0.06392 0.40291 0.9189
MLT(M = 10) -0.06286 0.40137 0.9471

n=500
CPM 0.00237 0.07998 0.9499

MLT(M = 5) -0.02227 0.07857 0.9420
MLT(M = 10) -0.02523 0.07775 0.9517

n=1000
CPM -0.00177 0.04069 0.9484

MLT(M = 5) -0.02446 0.04048 0.9443
MLT(M = 10) -0.02749 0.04008 0.9501

F−1(0.1|X = 0)

n=50
CPM 0.20035 0.24566 0.8743

MLT(M = 5) 0.04432 0.18880 0.9752
MLT(M = 10) 0.18626 0.19364 0.9755

n=100
CPM 0.10556 0.11364 0.9560

MLT(M = 5) 0.02878 0.09116 0.9691
MLT(M = 10) 0.15908 0.10185 0.9730

n=500
CPM 0.02232 0.02161 0.9482

MLT(M = 5) 0.01338 0.01782 0.8539
MLT(M = 10) 0.13383 0.03273 0.9210

n=1000
CPM 0.01065 0.01097 0.9467

MLT(M = 5) 0.00990 0.00882 0.6541
MLT(M = 10) 0.13064 0.02451 0.8324

F−1(0.1|X = 1)

n=50
CPM 0.22521 0.56862 0.9450

MLT(M = 5) 0.31949 0.48065 0.9541
MLT(M = 10) 0.15119 0.42908 0.9591

n=100
CPM 0.10398 0.25717 0.9483

MLT(M = 5) 0.24913 0.24292 0.9589
MLT(M = 10) 0.06296 0.19640 0.9502

n=500
CPM 0.02582 0.04755 0.9497

MLT(M = 5) 0.21077 0.07880 0.9669
MLT(M = 10) 0.00438 0.03683 0.8879

n=1000
CPM 0.01335 0.02417 0.9486

MLT(M = 5) 0.20332 0.05912 0.9612
MLT(M = 10) -0.00774 0.01913 0.7867

F−1(0.5|X = 0)

n=50
CPM 0.10563 0.46642 0.9479

MLT(M = 5) 0.13547 0.33453 0.9483
MLT(M = 10) -0.02376 0.39242 0.9616

n=100
CPM 0.04961 0.23222 0.9480

MLT(M = 5) 0.11572 0.17180 0.9395
MLT(M = 10) -0.04373 0.20316 0.9588

n=500
CPM 0.01172 0.04694 0.9485

MLT(M = 5) 0.10096 0.04239 0.8899
MLT(M = 10) -0.05468 0.04496 0.9557

n=1000
CPM 0.00457 0.02290 0.9503

MLT(M = 5) 0.09721 0.02563 0.8345
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Table 2.3: Simulation results for the primary setting (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT(M = 10) -0.05971 0.02459 0.9533

F−1(0.5|X = 1)

n=50
CPM 0.20048 1.11656 0.9452

MLT(M = 5) -0.12001 0.92052 0.9633
MLT(M = 10) 0.03007 0.95229 0.9604

n=100
CPM 0.08966 0.54157 0.9511

MLT(M = 5) -0.18618 0.48877 0.9574
MLT(M = 10) -0.00326 0.47608 0.9573

n=500
CPM 0.02691 0.10205 0.9511

MLT(M = 5) -0.21455 0.13279 0.9381
MLT(M = 10) -0.01198 0.09274 0.95509

n=1000
CPM 0.01260 0.05013 0.9506

MLT(M = 5) -0.22718 0.09557 0.9008
MLT(M = 10) -0.02327 0.04707 0.9538

F−1(0.8|X = 0)

n=50
CPM 0.06688 1.05641 0.9514

MLT(M = 5) -0.22179 0.93013 0.9534
MLT(M = 10) -0.08754 0.97143 0.9579

n=100
CPM 0.03294 0.52462 0.9488

MLT(M = 5) -0.23006 0.50334 0.9519
MLT(M = 10) -0.04745 0.48855 0.9557

n=500
CPM 0.00787 0.10244 0.9507

MLT(M = 5) -0.24076 0.14714 0.9542
MLT(M = 10) -0.02601 0.09556 0.9419

n=1000
CPM 0.00213 0.05195 0.9468

MLT(M = 5) -0.24694 0.10570 0.9515
MLT(M = 10) -0.03046 0.04867 0.9186

F−1(0.8|X = 1)

n=50
CPM 0.31165 2.47150 0.9609

MLT(M = 5) 0.08370 1.70604 0.9587
MLT(M = 10) 0.03272 1.89087 0.9628

n=100
CPM 0.14366 1.16903 0.9554

MLT(M = 5) 0.18623 0.90953 0.9593
MLT(M = 10) 0.03091 0.99242 0.9651

n=500
CPM 0.04875 0.22490 0.9517

MLT(M = 5) 0.30724 0.27373 0.8984
MLT(M = 10) 0.02032 0.20574 0.9606

n=1000
CPM 0.01889 0.11247 0.9512

MLT(M = 5) 0.30983 0.18657 0.8150
MLT(M = 10) -0.00706 0.10641 0.9509

Out-of-sample Log-likelihood

Value

n=50
CPM -186.896

MLT(M = 5) -170.377
MLT(M = 10) -171.092

n=100
CPM -455.055

MLT(M = 5) -420.825
MLT(M = 10) -420.056

n=500
CPM -3055.871

MLT(M = 5) -2852.102
MLT(M = 10) -2852.031

n=1000
CPM -6785.049
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Figure 2.10: Simulation results for H(y) = y

Table 2.3: Simulation results for the primary setting (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT(M = 5) -6392.950

MLT(M = 10) -6376.261

Table 2.4: Simulation results for H(y) = y

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.0465 0.1077 0.9400
MLT 0.0457 0.1068 0.9412
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Table 2.4: Simulation results for H(y) = y (continued)

Measure Sample Size Method Bias MSE Coverage Rate
Linear Regression 0.0003 0.0824 0.9399

n=100
CPM 0.0192 0.0491 0.9448
MLT 0.0183 0.0487 0.9456

Linear Regression -0.0039 0.0403 0.9463

n=500
CPM 0.0045 0.0090 0.9532
MLT 0.0043 0.0090 0.9537

Linear Regression 0.0002 0.0080 0.9526

n=1000
CPM 0.0024 0.0046 0.9492
MLT 0.0022 0.0046 0.9498

Linear Regression 0.0001 0.0040 0.9518

F(5|X = 0)

n=50
CPM -0.00024 0.00138 0.8766
MLT 0.00025 0.00118 0.9583

n=100
CPM -0.00034 0.00068 0.9073
MLT 0.00020 0.00059 0.9553

n=500
CPM -0.00014 0.00013 0.9457
MLT -0.00008 0.00012 0.9511

n=1000
CPM 0.00001 0.00007 0.9470
MLT 0.0004 0.00006 0.9432

F(5|X = 1)

n=50
CPM 0.00068 0.00776 0.9278
MLT 0.00051 0.00638 0.9624

n=100
CPM 0.00082 0.00379 0.9375
MLT 0.00184 0.00314 0.9592

n=500
CPM -0.00038 0.00072 0.9497
MLT -0.00025 0.00061 0.9582

n=1000
CPM -0.00003 0.00037 0.9507
MLT 0.00005 0.00031 0.9558

E(Y |X = 0)

n=50
CPM -0.00133 0.04083 0.9365
MLT -0.00221 0.04065 0.9344

Linear Regression -0.00242 0.04052 0.9432

n=100
CPM 0.00001 0.02045 0.9422
MLT -0.00021 0.02038 0.9405

Linear Regression -0.00022 0.02037 0.9457

n=500
CPM 0.00084 0.00403 0.9493
MLT 0.00083 0.00403 0.9486

Linear Regression 0.00082 0.00403 0.9497

n=1000
CPM -0.00006 0.00205 0.9468
MLT -0.00005 0.00204 0.9468

Linear Regression -0.00005 0.00204 0.9467

E(Y |X = 1)

n=50
CPM -0.00314 0.04129 0.9372
MLT -0.00237 0.04117 0.9322

Linear Regression -0.00215 0.04102 0.9448

n=100
CPM -0.00428 0.02059 0.9432
MLT -0.00409 0.02053 0.9386

Linear Regression -0.00408 0.02050 0.9455

n=500
CPM 0.00105 0.00394 0.9512
MLT 0.00106 0.00394 0.9487

Linear Regression 0.00107 0.00393 0.9520

n=1000
CPM 0.00008 0.00202 0.9483
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Table 2.4: Simulation results for H(y) = y (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT 0.00007 0.00202 0.9470

Linear Regression 0.00007 0.00202 0.9482

F−1(0.1|X = 0)

n=50
CPM 0.10268 0.09696 0.8819
MLT 0.04438 0.07366 0.9420

n=100
CPM 0.05572 0.04877 0.9566
MLT 0.02392 0.03649 0.9299

n=500
CPM 0.01184 0.01010 0.9481
MLT 0.00476 0.00721 0.8975

n=1000
CPM 0.00541 0.00519 0.9468
MLT 0.00176 0.00367 0.8756

F−1(0.1|X = 1)

n=50
CPM 0.06788 0.07780 0.94519
MLT 0.03050 0.07139 0.94849

n=100
CPM 0.03064 0.03743 0.9482
MLT 0.01176 0.03518 0.9317

n=500
CPM 0.00753 0.00720 0.9494
MLT 0.00436 0.00678 0.8200

n=1000
CPM 0.00351 0.00369 0.9488
MLT 0.00233 0.00348 0.6570

F−1(0.5|X = 0)

n=50
CPM 0.02447 0.05262 0.94789
MLT -0.00551 0.04954 0.97230

n=100
CPM 0.01133 0.02685 0.9479
MLT -0.00187 0.02490 0.9679

n=500
CPM 0.00322 0.00551 0.9483
MLT 0.00089 0.00506 0.9577

n=1000
CPM 0.00140 0.00270 0.9506
MLT -0.00016 0.00250 0.9539

F−1(0.5|X = 1)

n=50
CPM 0.03566 0.05664 0.9452
MLT 0.00237 0.05088 0.9688

n=100
CPM 0.01521 0.02819 0.9514
MLT -0.00269 0.02545 0.9657

n=500
CPM 0.00476 0.00540 0.9510
MLT 0.00129 0.00494 0.9625

n=1000
CPM 0.00194 0.00266 0.9501
MLT 0.00035 0.00249 0.9548

F−1(0.8|X = 0)

n=50
CPM 0.00518 0.06243 0.9514
MLT -0.02582 0.05878 0.9412

n=100
CPM 0.00274 0.03120 0.9486
MLT -0.01281 0.02936 0.9152

n=500
CPM 0.00121 0.00610 0.9508
MLT -0.00118 0.00575 0.7699

n=1000
CPM 0.00036 0.00310 0.9463
MLT -0.00071 0.00292 0.6111

F−1(0.8|X = 1)

n=50
CPM 0.04268 0.07296 0.9616
MLT -0.02176 0.05473 0.9347

n=100
CPM 0.01890 0.03555 0.9555
MLT -0.01163 0.02827 0.8977

n=500
CPM 0.00639 0.00696 0.9522
MLT 0.00109 0.00577 0.5443
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Table 2.4: Simulation results for H(y) = y (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=1000
CPM 0.00161 0.00350 0.9512
MLT 0.00019 0.00299 0.2415

Out-of-sample Log-likelihood

Value

n=50
CPM -186.896
MLT -171.731

n=100
CPM -455.055
MLT -417.689

n=100
CPM -3055.871
MLT -2848.799

n=100
CPM -6785.049
MLT -6367.617

Table 2.5: Simulation results for H(y) = exp(y)

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04642 0.10774 0.9399
MLT 0.04863 0.11454 0.9353

Linear Regression 0.00021 0.08238 0.9399

n=100
CPM 0.01915 0.04906 0.9448
MLT 0.02065 0.05218 0.9386

Linear Regression -0.00386 0.04032 0.9463

n=500
CPM 0.00452 0.00899 0.9532
MLT 0.00500 0.00963 0.9454

Linear Regression 0.00024 0.00796 0.9526

n=1000
CPM 0.00244 0.00459 0.9492
MLT -0.00221 0.00491 0.9421

Linear Regression 0.00012 0.00402 0.9518

Out-of-sample Log-likelihood

Value

n=50
CPM -196.409
MLT -179.517

n=100
CPM -450.390
MLT -430.551

n=500
CPM -3062.587
MLT -2877.188

n=1000
CPM -6789.501
MLT -6434.118
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Figure 2.11: Simulation results for H(y) = exp(y)
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Figure 2.12: Simulation results for H(y) = Inv-logistic(Φ(y))
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Table 2.6: Simulation results for H(y) = Inv-logistic(Φ(y))

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04642 0.10774 0.9399
MLT 0.04348 0.10569 0.9421

n=100
CPM 0.01915 0.04906 0.9448
MLT 0.01588 0.04811 0.9469

n=500
CPM 0.00452 0.00899 0.9532
MLT 0.00142 0.00990 0.9555

n=1000
CPM 0.00244 0.00459 0.9492
MLT -0.00070 0.00454 0.9506

Out-of-sample Log-likelihood

Value

n=50
CPM -186.8960
MLT -172.0136

n=100
CPM -455.0545
MLT -417.9264

n=500
CPM -3055.871
MLT -2847.904

n=1000
CPM -6785.049
MLT -6372.934

Table 2.7: Simulation results for including covariate Z ∼ N(0,1), which is independent of X

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.06728 0.11989 0.9321
MLT 0.05754 0.11591 0.9365

n=100
CPM 0.02936 0.05169 0.9442
MLT 0.02193 0.05116 0.9447

n=500
CPM 0.00689 0.00911 0.9532
MLT 0.00151 0.00917 0.9510

n=1000
CPM 0.00363 0.00462 0.9491
MLT -0.00111 0.00464 0.9463

Out-of-sample Log-likelihood

Value

n=50
CPM -178.060
MLT -159.152

n=100
CPM -409.099
MLT -371.022

n=500
CPM -2927.662
MLT -2735.722

n=1000
CPM -6490.808
MLT -6104.455
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Figure 2.13: Simulation results for including multiple covariates Z1,Z2,Z3 ∼ N(0,I),Z4 ∼ N(X ,1),Z5 ∼
N(Z1 +X ,1),Z6 ∼ N(Z3 −Z4,1)

Table 2.8: Simulation results for including covariate Z ∼ N(X ,1)

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.06902 0.15194 0.9357
MLT 0.08516 0.15621 0.9321

n=100
CPM 0.02871 0.06368 0.9409
MLT 0.04616 0.06668 0.9379

n=500
CPM 0.00571 0.01128 0.9508
MLT 0.02372 0.01229 0.9402

n=1000
CPM 0.00268 0.00574 0.9495
MLT 0.02088 0.00643 0.9368

Out-of-sample Log-likelihood

Value

n=50
CPM -171.942
MLT -153.132

n=100
CPM -406.006
MLT -371.460

n=500
CPM -2844.186
MLT -2651.443

n=1000
CPM -6375.575
MLT -5983.449

Table 2.9: Simulation results for including multiple covariates Z1,Z2,Z3 ∼N(0,I),Z4 ∼N(X ,1),Z5 ∼N(Z1+
X ,1),Z6 ∼ N(Z3 −Z4,1)

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.09129 0.11445 0.9373
MLT 0.09324 0.11598 0.9377
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Table 2.9: Simulation results for including multiple covariates Z1,Z2,Z3 ∼N(0,I),Z4 ∼N(X ,1),Z5 ∼N(Z1+
X ,1),Z6 ∼ N(Z3 −Z4,1) (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=100
CPM 0.06477 0.05410 0.9375
MLT 0.06684 0.05513 0.9349

n=500
CPM 0.04753 0.01166 0.9184
MLT 0.04999 0.01206 0.9133

n=1000
CPM 0.04430 0.00619 0.9056
MLT 0.04666 0.00649 0.8912

Out-of-sample Log-likelihood

Value

n=50
CPM -186.919
MLT -170.907

n=100
CPM -449.502
MLT -413.414

n=500
CPM -3055.861
MLT -2856.913

n=1000
CPM -6783.180
MLT -6376.370

Table 2.10: Simulation results for using the correct logit link function for ε ∼ Logistic(0, 3
π2 )

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04694 0.10712 1.0000
MLT 0.05690 0.10856 0.9999

n=100
CPM 0.02094 0.04841 0.9998
MLT 0.03347 0.04987 1.0000

n=500
CPM 0.00423 0.00922 0.9997
MLT 0.01474 0.00954 0.9997

n=1000
CPM 0.00209 0.00458 0.9996
MLT 0.01253 0.00481 0.9996

F(5|X = 0)

n=50
CPM -0.00001 0.00896 0.9312
MLT 0.00944 0.00827 0.9659

n=100
CPM 0.00069 0.00441 0.9403
MLT 0.01211 0.00425 0.9602

n=500
CPM -0.00005 0.00087 0.9507
MLT 0.01146 0.00094 0.9504

n=1000
CPM -0.00006 0.00044 0.9467
MLT 0.01126 0.00053 0.9306

F(5|X = 1)

n=50
CPM -0.00046 0.00475 0.9126
MLT 0.00170 0.00437 0.9636

n=100
CPM 0.00056 0.00240 0.9306
MLT 0.00405 0.00227 0.9531

n=500
CPM -0.00008 0.00047 0.9452
MLT 0.00439 0.00046 0.9284

n=1000
CPM -0.00006 0.00023 0.9482
MLT 0.00435 0.00024 0.8942
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Table 2.10: Simulation results for using the correct logit link function for ε ∼ Logistic(0, 3
π2 ) (continued)

Measure Sample Size Method Bias MSE Coverage Rate

E(Y |X = 0)

n=50
CPM 0.00901 0.37500 0.9373
MLT -0.05876 0.36693 0.9402

n=100
CPM 0.00359 0.18297 0.9414
MLT -0.06609 0.18365 0.9328

n=500
CPM 0.00626 0.03743 0.9475
MLT -0.05312 0.03960 0.9345

n=1000
CPM 0.00602 0.01843 0.9473
MLT -0.05231 0.02077 0.9266

E(Y |X = 1)

n=50
CPM 0.00399 0.86735 0.9228
MLT -0.14146 0.75629 0.9050

n=100
CPM -0.01119 0.42757 0.9339
MLT -0.14248 0.37896 0.9292

n=500
CPM 0.00414 0.08364 0.9467
MLT -0.11026 0.08245 0.9385

n=1000
CPM 0.00383 0.04241 0.9466
MLT -0.10741 0.04733 0.9266

F−1(0.1|X = 0)

n=50
CPM 0.19870 0.28072 0.9009
MLT 0.15886 0.21725 0.9647

n=100
CPM 0.10327 0.13827 0.9692
MLT 0.10953 0.10873 0.9662

n=500
CPM 0.02211 0.02724 0.9492
MLT 0.09981 0.02952 0.9711

n=1000
CPM 0.01136 0.01370 0.9483
MLT 0.09743 0.01918 0.9512

F−1(0.1|X = 1)

n=50
CPM 0.21597 0.59737 0.9539
MLT 0.14212 0.46472 0.9634

n=100
CPM 0.10216 0.27626 0.9484
MLT 0.09233 0.21145 0.9544

n=500
CPM 0.01758 0.05236 0.9500
MLT 0.02975 0.04010 0.9311

n=1000
CPM 0.00869 0.02579 0.9490
MLT 0.02391 0.02018 0.8978

F−1(0.5|X = 0)

n=50
CPM 0.11908 0.40509 0.9534
MLT -0.02145 0.34071 0.9648

n=100
CPM 0.05550 0.19342 0.9523
MLT -0.03446 0.16103 0.9636

n=500
CPM 0.01147 0.03881 0.9487
MLT -0.05361 0.03521 0.9628

n=1000
CPM 0.00662 0.01901 0.9490
MLT -0.05364 0.01896 0.9578

F−1(0.5|X = 1)

n=50
CPM 0.17551 0.93895 0.9518
MLT 0.02756 0.79539 0.9648

n=100
CPM 0.06786 0.43809 0.9518
MLT -0.00326 0.38323 0.9576

n=500
CPM 0.00953 0.08394 0.9504
MLT 0.00346 0.07501 0.9551

n=1000
CPM 0.00176 0.04187 0.9511
MLT 0.00166 0.03785 0.9530
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Table 2.10: Simulation results for using the correct logit link function for ε ∼ Logistic(0, 3
π2 ) (continued)

Measure Sample Size Method Bias MSE Coverage Rate

F−1(0.8|X = 0)

n=50
CPM 0.09922 0.94830 0.9514
MLT -0.06426 0.86592 0.9627

n=100
CPM 0.04129 0.45649 0.9543
MLT -0.07018 0.43292 0.9605

n=500
CPM 0.01556 0.09357 0.9492
MLT -0.02872 0.08995 0.9458

n=1000
CPM 0.00889 0.04634 0.9466
MLT -0.03072 0.04510 0.9265

F−1(0.8|X = 1)

n=50
CPM 0.36291 2.53392 0.9574
MLT 0.08217 1.90985 0.9625

n=100
CPM 0.14527 1.11688 0.9568
MLT 0.03524 0.91880 0.9649

n=500
CPM 0.02104 0.20628 0.9539
MLT 0.03492 0.18837 0.9568

n=1000
CPM 0.00504 0.10591 0.9469
MLT 0.02743 0.09906 0.9380

Out-of-sample Log-likelihood

Value

n=50
CPM -189.186
MLT -173.154

n=100
CPM -455.262
MLT -417.729

n=500
CPM -3053.475
MLT -2852.847

n=1000
CPM -6802.809
MLT -6392.715

Table 2.11: Simulation results for using the correct cloglog link function for ε ∼ Gompertz

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.06104 0.12733 0.9437
MLT 0.06460 0.12534 0.9473

n=100
CPM 0.03525 0.05469 0.9459
MLT 0.03718 0.05403 0.9479

n=500
CPM 0.00680 0.00994 0.9504
MLT 0.00795 0.00988 0.9499

n=1000
CPM 0.00368 0.00496 0.9476
MLT 0.00458 0.00492 0.9476

F(5|X = 0)

n=50
CPM 0.00356 0.00698 0.9229
MLT 0.00714 0.00631 0.9548

n=100
CPM 0.00185 0.00345 0.9382
MLT 0.00411 0.00310 0.9625

n=500
CPM 0.00060 0.00070 0.9461
MLT 0.00182 0.00063 0.9577

n=1000
CPM 0.00077 0.00034 0.9495
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Table 2.11: Simulation results for using the correct cloglog link function for ε ∼ Gompertz (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT 0.00181 0.00031 0.9523

F(5|X = 1)

n=50
CPM -0.00506 0.00729 0.9214
MLT -0.00404 0.00671 0.9601

n=100
CPM -0.00432 0.00352 0.9352
MLT -0.00343 0.00324 0.9587

n=500
CPM -0.00078 0.00068 0.9442
MLT -0.00019 0.00063 0.9552

n=1000
CPM -0.00017 0.00034 0.9491
MLT 0.00037 0.00031 0.9528

E(Y |X = 0)

n=50
CPM -0.01111 0.25880 0.9277
MLT -0.03566 0.26265 0.9220

n=100
CPM -0.00865 0.12678 0.9428
MLT -0.03064 0.12896 0.9344

n=500
CPM -0.00671 0.02554 0.9480
MLT -0.02723 0.02658 0.9387

n=1000
CPM -0.00618 0.01268 0.9440
MLT -0.02643 0.01351 0.9318

E(Y |X = 1)

n=50
CPM 0.00648 0.62496 0.9269
MLT 0.00869 0.62310 0.9367

n=100
CPM 0.01666 0.30593 0.9408
MLT 0.01659 0.30524 0.9423

n=500
CPM -0.00251 0.05932 0.9521
MLT -0.00502 0.05911 0.9504

n=1000
CPM -0.00370 0.02983 0.9490
MLT -0.00653 0.02973 0.9471

F−1(0.1|X = 0)

n=50
CPM 0.18037 0.18072 0.9252
MLT 0.22361 0.18316 0.9705

n=100
CPM 0.09172 0.08122 0.9712
MLT 0.20968 0.10825 0.9684

n=500
CPM 0.01696 0.01469 0.9486
MLT 0.19575 0.05098 0.9365

n=1000
CPM 0.00799 0.00708 0.9508
MLT 0.19605 0.04478 0.8661

F−1(0.1|X = 1)

n=50
CPM 0.24974 0.46851 0.9495
MLT 0.33606 0.38757 0.9685

n=100
CPM 0.13925 0.20991 0.9493
MLT 0.26547 0.19314 0.9631

n=500
CPM 0.03264 0.03712 0.9495
MLT 0.19311 0.05936 0.9612

n=1000
CPM 0.02289 0.01818 0.9488
MLT 0.18532 0.04499 0.9511

F−1(0.5|X = 0)

n=50
CPM 0.08669 0.40232 0.9506
MLT -0.04023 0.33103 0.9640

n=100
CPM 0.04574 0.20179 0.9510
MLT -0.05537 0.17342 0.9671

n=500
CPM 0.00738 0.04079 0.9474
MLT -0.06849 0.04094 0.9659

n=1000
CPM 0.00190 0.01989 0.9490
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Table 2.11: Simulation results for using the correct cloglog link function for ε ∼ Gompertz (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.07029 0.02270 0.9594

F−1(0.5|X = 1)

n=50
CPM 0.22305 1.09728 0.9485
MLT 0.08381 0.93684 0.9624

n=100
CPM 0.13725 0.53565 0.9489
MLT 0.05743 0.46698 0.9581

n=500
CPM 0.02949 0.10164 0.9506
MLT -0.00474 0.09177 0.9544

n=1000
CPM 0.01880 0.05075 0.9500
MLT -0.01397 0.04618 0.9537

F−1(0.8|X = 0)

n=50
CPM 0.05483 0.65794 0.9482
MLT -0.08004 0.60558 0.9561

n=100
CPM 0.02389 0.32129 0.9531
MLT -0.04480 0.29221 0.9612

n=500
CPM 0.00143 0.06535 0.9504
MLT -0.02236 0.05848 0.9398

n=1000
CPM -0.00034 0.03224 0.9488
MLT -0.02328 0.02913 0.9189

F−1(0.8|X = 1)

n=50
CPM 0.20617 1.59207 0.9623
MLT 0.00263 1.20935 0.9559

n=100
CPM 0.12090 0.75820 0.9543
MLT 0.05491 0.62127 0.9620

n=500
CPM 0.03115 0.14890 0.9510
MLT 0.03568 0.13167 0.9574

n=1000
CPM 0.01950 0.07565 0.9512
MLT 0.02443 0.06840 0.9413

Out-of-sample Log-likelihood

Value

n=50
CPM -191.801
MLT -178.390

n=100
CPM -446.725
MLT -416.666

n=500
CPM -3054.302
MLT -2876.370

n=1000
CPM -6805.474
MLT -6473.184

Table 2.12: Simulation results for X ∼ Uniform(0,1)

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04475 0.30304 0.9378
MLT 0.04285 0.29959 0.9390

n=100
CPM 0.02040 0.13539 0.9473
MLT 0.01791 0.13496 0.9486

n=500
CPM 0.00541 0.02444 0.9551
MLT 0.00430 0.02446 0.9554
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Table 2.12: Simulation results for X ∼ Uniform(0,1) (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=1000
CPM 0.00194 0.01274 0.9473
MLT 0.00111 0.01278 0.9463

F(5|X = 0)

n=50
CPM 0.00092 0.01456 0.9111
MLT 0.00650 0.01385 0.9492

n=100
CPM 0.00051 0.00720 0.9347
MLT 0.00564 0.00685 0.9560

n=500
CPM -0.00061 0.00139 0.9487
MLT 0.00343 0.00134 0.9547

n=1000
CPM -0.00059 0.00071 0.9476
MLT 0.00312 0.00069 0.9411

F(5|X = 1)

n=50
CPM 0.00374 0.00900 0.8983
MLT 0.00771 0.00875 0.9534

n=100
CPM 0.00190 0.00428 0.9278
MLT 0.00620 0.00424 0.9535

n=500
CPM -0.00064 0.00081 0.9495
MLT 0.00266 0.00079 0.9571

n=1000
CPM -0.00028 0.00043 0.9443
MLT 0.00272 0.00042 0.9428

E(Y |X = 0)

n=50
CPM 0.02610 0.80669 0.9279
MLT 0.00520 0.80453 0.9186

n=100
CPM 0.01026 0.38698 0.9409
MLT -0.00222 0.38872 0.9345

n=500
CPM 0.00196 0.07398 0.9499
MLT -0.00678 0.07468 0.9470

n=1000
CPM -0.00015 0.03831 0.9477
MLT -0.00855 0.03875 0.9446

E(Y |X = 1)

n=50
CPM -0.01906 1.64840 0.9223
MLT -0.07521 1.54617 0.9206

n=100
CPM -0.01865 0.80486 0.9379
MLT -0.06616 0.76725 0.9361

n=500
CPM 0.00324 0.15570 0.9517
MLT -0.03166 0.14910 0.9519

n=1000
CPM -0.00342 0.08022 0.9485
MLT -0.03664 0.07791 0.9507

F−1(0.5|X = 0)

n=50
CPM 0.12730 0.86396 0.9421
MLT 0.02457 0.75358 0.9487

n=100
CPM 0.05858 0.40703 0.9517
MLT -0.01387 0.36659 0.9572

n=500
CPM 0.01294 0.07815 0.9507
MLT -0.03928 0.07561 0.9575

n=1000
CPM 0.00551 0.03984 0.9511
MLT -0.04265 0.04005 0.9571

F−1(0.5|X = 1)

n=50
CPM 0.23511 2.04371 0.9427
MLT 0.06687 1.80262 0.9514

n=100
CPM 0.10632 0.93012 0.9474
MLT 0.00751 0.84960 0.9509

n=500
CPM 0.03332 0.16934 0.9528
MLT -0.00820 0.16173 0.9555
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Table 2.12: Simulation results for X ∼ Uniform(0,1) (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=1000
CPM 0.01483 0.08708 0.9499
MLT -0.02251 0.08409 0.9503

Out-of-sample Log-likelihood

Value

n=50
CPM -191.684
MLT -175.702

n=100
CPM -458.573
MLT -422.812

n=500
CPM -3089.845
MLT -2886.741

n=1000
CPM -6858.044
MLT -6445.935

Table 2.13: Simulation results for X ∼ N(0,1)

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.05438 0.04242 0.9346
MLT 0.03896 0.03795 0.9464

n=100
CPM 0.02823 0.01821 0.9420
MLT 0.01465 0.01682 0.9498

n=500
CPM 0.00623 0.00318 0.9446
MLT -0.00398 0.00305 0.9471

n=1000
CPM 0.00284 0.00152 0.9509
MLT -0.00694 0.00153 0.9475

F(5|X = 0)

n=50
CPM 0.00170 0.00643 0.9372
MLT 0.01273 0.00528 0.9714

n=100
CPM 0.00073 0.00320 0.9418
MLT 0.00993 0.00260 0.9704

n=500
CPM -0.00053 0.00062 0.9497
MLT 0.00713 0.00053 0.9637

n=1000
CPM -0.00045 0.00031 0.9499
MLT 0.00712 0.00028 0.9648

F(5|X = 1)

n=50
CPM -0.00422 0.00593 0.9069
MLT 0.00659 0.00526 0.9654

n=100
CPM -0.00281 0.00293 0.9256
MLT 0.00719 0.00261 0.9601

n=500
CPM -0.00129 0.00059 0.9389
MLT 0.00736 0.00056 0.9408

n=1000
CPM -0.00072 0.00028 0.9464
MLT 0.00783 0.00030 0.9159

E(Y |X = 0)

n=50
CPM -0.01140 0.22060 0.9356
MLT -0.03473 0.21979 0.9400

n=100
CPM -0.00528 0.10869 0.9443
MLT -0.02495 0.10871 0.9436

n=500
CPM -0.00077 0.02154 0.9465
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Table 2.13: Simulation results for X ∼ N(0,1) (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.01904 0.02185 0.9426

n=1000
CPM -0.00307 0.01051 0.9529
MLT -0.02127 0.01092 0.9427

E(Y |X = 1)

n=50
CPM 0.03037 0.92104 0.9277
MLT -0.10792 0.84272 0.9475

n=100
CPM 0.02781 0.43177 0.9427
MLT -0.08295 0.40661 0.9543

n=500
CPM 0.00896 0.08647 0.9467
MLT -0.06748 0.08490 0.9455

n=1000
CPM 0.00312 0.04216 0.9504
MLT -0.06911 0.04400 0.9426

F−1(0.5|X = 0)

n=50
CPM 0.12767 0.36809 0.9505
MLT -0.09699 0.29458 0.9725

n=100
CPM 0.06259 0.17759 0.9521
MLT -0.10707 0.15958 0.9701

n=500
CPM 0.01362 0.03439 0.9462
MLT -0.10659 0.04192 0.9739

n=1000
CPM 0.00369 0.01671 0.9533
MLT -0.10892 0.02666 0.9771

F−1(0.5|X = 1)

n=50
CPM 0.31356 1.42888 0.9473
MLT -0.00825 1.07147 0.9685

n=100
CPM 0.17049 0.64786 0.9513
MLT -0.05418 0.51316 0.9657

n=500
CPM 0.03959 0.12480 0.9443
MLT -0.08739 0.11372 0.9596

n=1000
CPM 0.02007 0.06016 0.9487
MLT -0.09519 0.06124 0.9556

Out-of-sample Log-likelihood

Value

n=50
CPM -184.301
MLT -169.515

n=100
CPM -420.930
MLT -387.442

n=500
CPM -2935.062
MLT -2737.588

n=1000
CPM -6532.848
MLT -6151.616

Table 2.14: Simulation results for X ∼ Binomial(1, p = 0.3)

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04705 0.13165 0.9427
MLT 0.04915 0.13183 0.9454

n=100
CPM 0.02280 0.05775 0.9458
MLT 0.02476 0.05775 0.9471
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Table 2.14: Simulation results for X ∼ Binomial(1, p = 0.3) (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=500
CPM 0.00486 0.01053 0.9496
MLT 0.00678 0.01061 0.9500

n=1000
CPM 0.00313 0.00541 0.9491
MLT 0.00506 0.00545 0.9483

F(5|X = 0)

n=50
CPM 0.00066 0.00651 0.9326
MLT 0.00627 0.00579 0.9621

n=100
CPM 0.00075 0.00322 0.9412
MLT 0.00557 0.00288 0.9586

n=500
CPM -0.00100 0.00063 0.9507
MLT 0.00238 0.00056 0.9531

n=1000
CPM -0.00051 0.00032 0.9492
MLT 0.00227 0.00029 0.9362

F(5|X = 1)

n=50
CPM 0.00017 0.00797 0.8993
MLT 0.00289 0.00766 0.9554

n=100
CPM 0.00010 0.00390 0.9260
MLT 0.00271 0.00372 0.9537

n=500
CPM -0.00102 0.00075 0.9460
MLT 0.00088 0.00071 0.9556

n=1000
CPM -0.00070 0.00039 0.9452
MLT 0.00078 0.00037 0.9441

E(Y |X = 0)

n=50
CPM -0.00508 0.28263 0.9357
MLT -0.02122 0.28146 0.9350

n=100
CPM -0.00730 0.14215 0.9439
MLT -0.01922 0.14183 0.9402

n=500
CPM 0.00085 0.02771 0.9525
MLT -0.00717 0.02778 0.9495

n=1000
CPM -0.00282 0.01404 0.9495
MLT -0.01035 0.01415 0.9475

E(Y |X = 1)

n=50
CPM -0.02920 1.38866 0.9197
MLT -0.08721 1.31227 0.9305

n=100
CPM -0.01793 0.68027 0.9350
MLT -0.06541 0.64494 0.9396

n=500
CPM 0.00235 0.13261 0.9491
MLT -0.03070 0.12714 0.9538

n=1000
CPM 0.00004 0.06822 0.9465
MLT -0.03066 0.06604 0.9512

F−1(0.5|X = 0)

n=50
CPM 0.10374 0.36472 0.9524
MLT -0.02964 0.31474 0.9675

n=100
CPM 0.04564 0.17627 0.9491
MLT -0.04900 0.16112 0.9656

n=500
CPM 0.01087 0.03514 0.9499
MLT -0.04602 0.03464 0.9673

n=1000
CPM 0.00432 0.01727 0.9513
MLT -0.04767 0.01855 0.9600

F−1(0.5|X = 1)

n=50
CPM 0.25922 1.82671 0.9453
MLT 0.06664 1.57711 0.9559

n=100
CPM 0.11981 0.83894 0.9467
MLT 0.00599 0.74058 0.9564
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Table 2.14: Simulation results for X ∼ Binomial(1, p = 0.3) (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=500
CPM 0.03466 0.15817 0.9505
MLT -0.00916 0.14763 0.9574

n=1000
CPM 0.01771 0.07873 0.9486
MLT -0.01840 0.07557 0.9561

Out-of-sample Log-likelihood

Value

n=50
CPM -188.865
MLT -172.420

n=100
CPM -452.227
MLT -417.286

n=500
CPM -3068.055
MLT -2864.786

n=1000
CPM -6810.171
MLT -6400.164

Table 2.15: Simulation results for β = 0.5

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.02284 0.09650 0.9384
MLT 0.02276 0.09564 0.9409

n=100
CPM 0.00787 0.04431 0.9463
MLT 0.00690 0.04427 0.9462

n=500
CPM 0.00251 0.00827 0.9530
MLT 0.00210 0.00829 0.9534

n=1000
CPM 0.00133 0.00419 0.9509
MLT 0.00101 0.00421 0.9508

F(5|X = 0)

n=50
CPM 0.00115 0.00827 0.9307
MLT 0.00534 0.00756 0.9587

n=100
CPM 0.00033 0.00410 0.9390
MLT 0.00346 0.00377 0.9554

n=500
CPM -0.00083 0.00081 0.9465
MLT 0.00093 0.00075 0.9476

n=1000
CPM -0.00057 0.00040 0.9485
MLT 0.00085 0.00038 0.9432

F(5|X = 1)

n=50
CPM -0.00226 0.00809 0.9273
MLT 0.00140 0.00748 0.9584

n=100
CPM -0.00042 0.00404 0.9380
MLT 0.00281 0.00370 0.9603

n=500
CPM -0.00171 0.00077 0.9496
MLT 0.00014 0.00071 0.9590

n=1000
CPM -0.00126 0.00039 0.9485
MLT 0.00024 0.00036 0.9571

E(Y |X = 0)

n=50
CPM -0.00492 0.39055 0.9352
MLT -0.01941 0.38509 0.9336

n=100
CPM -0.00120 0.19607 0.9424
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Table 2.15: Simulation results for β = 0.5 (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.00979 0.19508 0.9395

n=500
CPM 0.00081 0.03862 0.9480
MLT -0.00459 0.03864 0.9458

n=1000
CPM -0.00222 0.01957 0.9455
MLT -0.00724 0.01962 0.9434

E(Y |X = 1)

n=50
CPM -0.01557 0.58278 0.9293
MLT -0.03880 0.56750 0.9358

n=100
CPM -0.01874 0.29075 0.9385
MLT -0.03684 0.28586 0.9420

n=500
CPM 0.00190 0.05634 0.9495
MLT -0.00933 0.05541 0.9497

n=1000
CPM -0.00170 0.02855 0.9486
MLT -0.01202 0.02831 0.9490

F−1(0.1|X = 0)

n=50
CPM 0.17264 0.21298 0.9119
MLT 0.18992 0.17960 0.9526

n=100
CPM 0.08944 0.10012 0.9513
MLT 0.16004 0.09478 0.9231

n=500
CPM 0.01819 0.01915 0.9465
MLT 0.13211 0.03092 0.8368

n=1000
CPM 0.00965 0.00960 0.9483
MLT 0.12785 0.02306 0.7668

F−1(0.1|X = 1)

n=50
CPM 0.17586 0.32541 0.9466
MLT 0.17742 0.25404 0.9584

n=100
CPM 0.08356 0.15205 0.9484
MLT 0.11744 0.11929 0.9427

n=500
CPM 0.02076 0.02842 0.9522
MLT 0.07558 0.02551 0.7755

n=1000
CPM 0.00956 0.01445 0.9449
MLT 0.06649 0.01456 0.5432

F−1(0.5|X = 0)

n=50
CPM 0.10025 0.46589 0.9466
MLT -0.02077 0.41633 0.9604

n=100
CPM 0.04586 0.22615 0.9495
MLT -0.03269 0.21341 0.9589

n=500
CPM 0.01015 0.04523 0.9477
MLT -0.03065 0.04486 0.9545

n=1000
CPM 0.00367 0.02228 0.9499
MLT -0.03132 0.02294 0.9465

F−1(0.5|X = 1)

n=50
CPM 0.14988 0.74505 0.9459
MLT 0.02800 0.66157 0.9595

n=100
CPM 0.06338 0.36033 0.9477
MLT -0.00047 0.32757 0.9600

n=500
CPM 0.02242 0.06762 0.9525
MLT -0.00266 0.06159 0.9587

n=1000
CPM 0.01071 0.03343 0.9524
MLT -0.01044 0.03105 0.9562

F−1(0.8|X = 0)

n=50
CPM 0.09239 1.06059 0.9515
MLT -0.07025 0.94719 0.9623

n=100
CPM 0.04724 0.52680 0.9501
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Table 2.15: Simulation results for β = 0.5 (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.04584 0.47602 0.9567

n=500
CPM 0.01153 0.09914 0.9508
MLT -0.02804 0.09490 0.9511

n=1000
CPM 0.00438 0.05124 0.9470
MLT -0.03026 0.04971 0.9446

F−1(0.8|X = 1)

n=50
CPM 0.21087 1.68003 0.9562
MLT -0.00870 1.40610 0.9656

n=100
CPM 0.09878 0.80246 0.9522
MLT -0.02060 0.72827 0.9652

n=500
CPM 0.03519 0.15369 0.9500
MLT -0.02163 0.14466 0.9665

n=1000
CPM 0.01440 0.07515 0.9529
MLT -0.03716 0.07263 0.9673

Out-of-sample Log-likelihood

Value

n=50
CPM -192.250
MLT -176.341

n=100
CPM -460.401
MLT -424.847

n=500
CPM -3094.909
MLT -2891.795

n=1000
CPM -6871.982
MLT -6460.752

Table 2.16: Simulation results for β = 0

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.00051 0.09294 0.9378
MLT 0.00039 0.09163 0.9398

n=100
CPM -0.00418 0.04321 0.9463
MLT -0.00396 0.04267 0.9477

n=500
CPM 0.00019 0.00807 0.9521
MLT 0.00028 0.00804 0.9524

n=1000
CPM 0.00019 0.00405 0.9508
MLT 0.00019 0.00405 0.9508

F(5|X = 0)

n=50
CPM -0.00021 0.00815 0.9311
MLT 0.00195 0.00761 0.9612

n=100
CPM -0.00037 0.00405 0.9390
MLT 0.00097 0.00380 0.9600

n=500
CPM -0.00112 0.00080 0.9481
MLT 0.00034 0.00076 0.9520

n=1000
CPM -0.00066 0.00040 0.9483
MLT 0.00075 0.00038 0.9424

F(5|X = 1)

n=50
CPM -0.00070 0.00839 0.9269
MLT 0.00150 0.00777 0.9586
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Table 2.16: Simulation results for β = 0 (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=100
CPM 0.00095 0.00411 0.9386
MLT 0.00220 0.00385 0.9631

n=500
CPM -0.00149 0.00079 0.9481
MLT -0.00006 0.00074 0.9525

n=1000
CPM -0.00103 0.00039 0.9503
MLT 0.00038 0.00037 0.9412

E(Y |X = 0)

n=50
CPM -0.01021 0.38727 0.9321
MLT -0.02377 0.38216 0.9325

n=100
CPM -0.00252 0.19634 0.9388
MLT -0.01225 0.19412 0.9402

n=500
CPM 0.00039 0.03855 0.9477
MLT -0.00541 0.03841 0.9451

n=1000
CPM -0.00253 0.01956 0.9450
MLT -0.00774 0.01953 0.9443

E(Y |X = 1)

n=50
CPM -0.00818 0.39449 0.9320
MLT -0.02181 0.38806 0.9329

n=100
CPM -0.01445 0.19697 0.9390
MLT -0.02345 0.19509 0.9395

n=500
CPM 0.00188 0.03800 0.9504
MLT -0.00368 0.03777 0.9474

n=1000
CPM -0.00120 0.01922 0.9491
MLT -0.00640 0.01918 0.9473

F−1(0.1|X = 0)

n=50
CPM 0.14353 0.18357 0.9429
MLT 0.17897 0.16066 0.9550

n=100
CPM 0.07530 0.08754 0.9483
MLT 0.14613 0.08275 0.9099

n=500
CPM 0.01548 0.01700 0.9452
MLT 0.11519 0.02523 0.4498

n=1000
CPM 0.00715 0.00845 0.9459
MLT 0.10978 0.01797 0.1263

F−1(0.1|X = 1)

n=50
CPM 0.14853 0.18764 0.9425
MLT 0.18166 0.16313 0.9503

n=100
CPM 0.07010 0.08777 0.9484
MLT 0.14173 0.08235 0.9082

n=500
CPM 0.01723 0.01617 0.9514
MLT 0.11642 0.02499 0.4541

n=1000
CPM 0.00843 0.00850 0.9435
MLT 0.11084 0.01825 0.1300

F−1(0.5|X = 0)

n=50
CPM 0.10486 0.46978 0.9476
MLT 0.00160 0.43062 0.9610

n=100
CPM 0.05100 0.22548 0.9465
MLT -0.00835 0.21472 0.9575

n=500
CPM 0.01174 0.04522 0.9478
MLT -0.00869 0.04292 0.9503

n=1000
CPM 0.00486 0.02222 0.9477
MLT -0.00960 0.02147 0.9510

F−1(0.5|X = 1)

n=50
CPM 0.10718 0.47960 0.9412
MLT 0.00554 0.44035 0.9587
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Table 2.16: Simulation results for β = 0 (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=100
CPM 0.04277 0.23224 0.9501
MLT -0.01656 0.21920 0.9579

n=500
CPM 0.01472 0.04384 0.9485
MLT -0.00540 0.04191 0.9541

n=1000
CPM 0.00798 0.02196 0.9502
MLT -0.00641 0.02110 0.9530

F−1(0.8|X = 0)

n=50
CPM 0.12923 1.10047 0.9543
MLT -0.05079 0.96618 0.9666

n=100
CPM 0.06987 0.54428 0.9484
MLT -0.04266 0.50030 0.9613

n=500
CPM 0.01783 0.10171 0.9512
MLT -0.02934 0.09465 0.9534

n=1000
CPM 0.00376 0.05132 0.9515
MLT -0.02821 0.04861 0.9396

F−1(0.8|X = 1)

n=50
CPM 0.13690 1.12511 0.9530
MLT -0.04482 0.98421 0.9682

n=100
CPM 0.05761 0.53678 0.9489
MLT -0.05491 0.49127 0.9612

n=500
CPM 0.02539 0.10174 0.9528
MLT -0.02072 0.09390 0.9534

n=1000
CPM 0.01155 0.05045 0.9480
MLT -0.02073 0.04707 0.9403

Out-of-sample Log-likelihood

Value

n=50
CPM -196.430
MLT -180.425

n=100
CPM -461.252
MLT -424.277

n=500
CPM -3107.826
MLT -2904.348

n=1000
CPM -6908.245
MLT -6496.046

Table 2.17: Simulation results for misspecification: ε ∼ N(0,1), link function = logit

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.77590 0.92688 0.7388
MLT 0.80261 0.97609 0.7280

n=100
CPM 0.72863 0.67946 0.5302
MLT 0.75260 0.71829 0.5098

n=500
CPM 0.70479 0.52417 0.0080
MLT 0.72678 0.55637 0.0066

n=1000
CPM 0.70144 0.50599 0
MLT 0.72287 0.5368 0

F(5|X = 0)

n=50
CPM 0.00898 0.00909 0.9233
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Table 2.17: Simulation results for misspecification: ε ∼ N(0,1), link function = logit (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT 0.02035 0.00882 0.9612

n=100
CPM 0.00848 0.00457 0.9338
MLT 0.01942 0.00456 0.958

n=500
CPM 0.00713 0.00095 0.9369
MLT 0.01718 0.0012 0.9598

n=1000
CPM 0.00766 0.00050 0.9298
MLT 0.01714 0.00070 0.9626

F(5|X = 1)

n=50
CPM -0.00542 0.00515 0.9101
MLT -0.00269 0.00486 0.9642

n=100
CPM -0.00449 0.00256 0.9268
MLT -0.00123 0.00240 0.9620

n=500
CPM -0.00619 0.00053 0.9341
MLT -0.00298 0.00046 0.9618

n=1000
CPM -0.00582 0.00029 0.9252
MLT -0.00286 0.00024 0.9574

E(Y |X = 0)

n=50
CPM 0.05750 0.40320 0.9381
MLT -0.01167 0.40194 0.9374

n=100
CPM 0.06342 0.20642 0.9475
MLT 0.0257 0.20336 0.9434

n=500
CPM 0.06761 0.04439 0.9420
MLT 0.01392 0.04040 0.9500

n=1000
CPM 0.06498 0.02428 0.9289
MLT 0.01260 0.02041 0.9486

E(Y |X = 1)

n=50
CPM -0.06659 0.83691 0.9229
MLT -0.14046 0.81146 0.8982

n=100
CPM -0.07391 0.42048 0.9287
MLT -0.13820 0.41514 0.9280

n=500
CPM -0.05200 0.08317 0.9370
MLT -0.10688 0.08793 0.9316

n=1000
CPM -0.05601 0.04402 0.9334
MLT -0.11009 0.05105 0.9166

F−1(0.1|X = 0)

n=50
CPM 0.24638 0.27051 0.8866
MLT 0.20722 0.22113 0.9734

n=100
CPM 0.15492 0.12948 0.9687
MLT 0.18939 0.12302 0.9768

n=500
CPM 0.07665 0.02760 0.9308
MLT 0.1723 0.04683 0.9560

n=1000
CPM 0.06554 0.01541 0.9137
MLT 0.17092 0.03778 0.9314

F−1(0.1|X = 1)

n=50
CPM 0.16833 0.57776 0.9553
MLT 0.12658 0.43810 0.9599

n=100
CPM 0.03875 0.26215 0.9540
MLT 0.03123 0.19651 0.9491

n=500
CPM -0.04642 0.05197 0.9491
MLT -0.03290 0.03766 0.8597

n=1000
CPM -0.05900 0.02867 0.9337
MLT 0.01350 0.01795 0.7775

F−1(0.5|X = 0)

n=50
CPM 0.08316 0.46017 0.9521
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Table 2.17: Simulation results for misspecification: ε ∼ N(0,1), link function = logit (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.06783 0.39497 0.9621

n=100
CPM 0.02036 0.22882 0.9483
MLT -0.09296 0.20723 0.9555

n=500
CPM -0.02391 0.04698 0.9467
MLT -0.09524 0.04603 0.9437

n=1000
CPM -0.03179 0.02365 0.9417
MLT -0.11717 0.03399 0.9169

F−1(0.5|X = 1)

n=50
CPM 0.23651 1.14031 0.9472
MLT 0.08698 0.97437 0.9633

n=100
CPM 0.13560 0.55622 0.9501
MLT 0.06205 0.48468 0.9570

n=500
CPM 0.08089 0.10870 0.9433
MLT 0.06139 0.09642 0.9438

n=1000
CPM 0.06738 0.05495 0.9373
MLT 0.05190 0.04926 0.9378

F−1(0.8|X = 0)

n=50
CPM 0.01151 1.11193 0.9556
MLT -0.18056 1.06432 0.9621

n=100
CPM -0.02666 0.55764 0.9526
MLT -0.13868 0.54058 0.9580

n=500
CPM -0.05658 0.11304 0.9509
MLT -0.11033 0.11396 0.9570

n=1000
CPM -0.06268 0.05955 0.9451
MLT -0.11203 0.06343 0.9535

F−1(0.8|X = 1)

n=50
CPM 0.16403 2.32095 0.9651
MLT -0.16465 1.82775 0.9684

n=100
CPM 0.00087 1.11914 0.9606
MLT -0.14446 0.96128 0.9631

n=500
CPM -0.09039 0.22339 0.9483
MLT -0.11637 0.20761 0.9556

n=1000
CPM -0.11838 0.12235 0.9377
MLT -0.13346 0.11813 0.9507

Out-of-sample Log-likelihood

Value

n=50
CPM -187.049
MLT -170.972

n=100
CPM -457.143
MLT -423.316

n=500
CPM -3060.906
MLT -2860.515

n=1000
CPM -6788.465
MLT -6383.818
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Figure 2.14: Simulation results for using the correct logit link function for ε ∼ Logistic(0, 3
π2 )
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Figure 2.15: Simulation results for using the correct cloglog link function for ε ∼ Gompertz
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Figure 2.16: Simulation results for X ∼ Uniform(0,1)

50



Bias Coverage MSE

beta
F

(5|X
=

0)
F

(5|X
=

1)
E

(Y
|X

=
0)

E
(Y

|X
=

1)
M

ed(Y
|X

=
0)

M
ed(Y

|X
=

1)

−0.1 0.0 0.1 0.2 0.3 0.91 0.93 0.95 0.97 0.0 0.5 1.0 1.5

50

100

500

1000

50

100

500

1000

50

100

500

1000

50

100

500

1000

50

100

500

1000

50

100

500

1000

50

100

500

1000

sa
m

pl
e 

si
ze

method CPM MLT

Figure 2.17: Simulation results for X ∼ N(0,1)
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Figure 2.18: Simulation results for X ∼ Binomial(1, p = 0.3)
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Figure 2.19: Simulation results for β = 0.5
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Figure 2.20: Simulation results for β = 0
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Figure 2.21: Simulation results for misspecification: ε ∼ N(0,1), link function = logit
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Figure 2.22: Simulation results for misspecification: ε ∼ Gompertz, link function = logit

56



Table 2.18: Simulation results for misspecification: ε ∼ Gompertz, link function = logit

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM -0.14776 0.12024 0.9981
MLT -0.13106 0.11882 0.9982

n=100
CPM -0.15993 0.06967 0.9955
MLT -0.14478 0.06661 0.9960

n=500
CPM -0.17641 0.03944 0.9431
MLT -0.16223 0.03495 0.9582

n=1000
CPM -0.17795 0.0359 0.7844
MLT -0.16401 0.0313 0.8372

F(5|X = 0)

n=50
CPM -0.00712 0.00600 0.9456
MLT -0.00075 0.00544 0.9710

n=100
CPM -0.00770 0.00299 0.9566
MLT -0.00299 0.00271 0.9704

n=500
CPM -0.00812 0.00066 0.9543
MLT -0.00475 0.00057 0.9466

n=1000
CPM -0.00782 0.00035 0.9487
MLT -0.00474 0.00029 0.9263

F(5|X = 1)

n=50
CPM -0.01680 0.01034 0.8866
MLT -0.01738 0.00985 0.9431

n=100
CPM -0.01989 0.00532 0.8992
MLT -0.02125 0.00513 0.9293

n=500
CPM -0.01898 0.00134 0.8722
MLT -0.02119 0.00138 0.8854

n=1000
CPM -0.01868 0.00084 0.8232
MLT -0.02107 0.00091 0.8371

E(Y |X = 0)

n=50
CPM 0.18398 0.30572 0.9585
MLT 0.12510 0.29897 0.9555

n=100
CPM 0.18823 0.16896 0.9557
MLT 0.13496 0.15764 0.9562

n=500
CPM 0.19011 0.06298 0.8481
MLT 0.14102 0.04795 0.8986

n=1000
CPM 0.19031 0.04959 0.7086
MLT 0.14215 0.03422 0.8272

E(Y |X = 1)

n=50
CPM -0.05325 0.69629 0.9053
MLT -0.05738 0.70941 0.9108

n=100
CPM -0.03053 0.34354 0.9155
MLT -0.03348 0.34924 0.9293

n=500
CPM -0.04014 0.06853 0.9212
MLT -0.04129 0.06964 0.9481

n=1000
CPM -0.03995 0.03540 0.9162
MLT -0.04083 0.03596 0.9448

F−1(0.1|X = 0)

n=50
CPM 0.12732 0.15789 0.9225
MLT 0.14124 0.14994 0.9581

n=100
CPM 0.03308 0.06982 0.9614
MLT 0.11766 0.07672 0.9487

n=500
CPM -0.04725 0.01558 0.9157
MLT 0.09770 0.02186 0.9203

n=1000
CPM -0.05758 0.00978 0.8788
MLT 0.09731 0.01557 0.9107
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Table 2.18: Simulation results for misspecification: ε ∼ Gompertz, link function = logit (continued)

Measure Sample Size Method Bias MSE Coverage Rate

F−1(0.1|X = 1)

n=50
CPM 0.66103 1.09235 0.8809
MLT 0.66107 0.92133 0.9197

n=100
CPM 0.55765 0.62829 0.8317
MLT 0.58788 0.57164 0.8837

n=500
CPM 0.44938 0.26269 0.5118
MLT 0.50103 0.29183 0.6847

n=1000
CPM 0.43999 0.22455 0.2352
MLT 0.49108 0.26145 0.45980

F−1(0.5|X = 0)

n=50
CPM 0.00281 0.42524 0.9624
MLT -0.16451 0.40993 0.9709

n=100
CPM -0.04526 0.21744 0.9609
MLT -0.18431 0.23166 0.9681

n=500
CPM -0.09203 0.05276 0.9389
MLT -0.20370 0.08403 0.9559

n=1000
CPM -0.09889 0.03120 0.9151
MLT -0.20677 0.06359 0.9388

F−1(0.5|X = 1)

n=50
CPM 0.09116 1.00208 0.9373
MLT -0.02631 0.92564 0.9497

n=100
CPM 0.04523 0.49025 0.9321
MLT -0.01648 0.45395 0.9406

n=500
CPM -0.02448 0.09638 0.9327
MLT -0.04396 0.09079 0.9340

n=1000
CPM -0.03022 0.04889 0.9314
MLT -0.04658 0.04694 0.9305

F−1(0.8|X = 0)

n=50
CPM 0.34849 0.88943 0.9429
MLT 0.16858 0.75153 0.9578

n=100
CPM 0.32264 0.48415 0.9363
MLT 0.20811 0.39554 0.9393

n=500
CPM 0.30268 0.16950 0.8337
MLT 0.23338 0.12507 0.7428

n=1000
CPM 0.30186 0.13007 0.7098
MLT 0.23475 0.09079 0.5032

F−1(0.8|X = 1)

n=50
CPM -0.22993 1.55672 0.9686
MLT -0.53588 1.45754 0.9479

n=100
CPM -0.31622 0.82751 0.9469
MLT -0.46692 0.81245 0.9224

n=500
CPM -0.40681 0.30843 0.8121
MLT -0.43961 0.31670 0.7970

n=1000
CPM -0.41821 0.24745 0.6539
MLT -0.43679 0.25499 0.6746

Out-of-sample Log-likelihood

Value

n=50
CPM -192.958
MLT -179.062

n=100
CPM -451.006
MLT -420.752

n=500
CPM -3064.242
MLT -2883.105

n=1000
CPM -6824.644
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Figure 2.23: Simulation results for misspecification: ε ∼ N(0,1), link function = cloglog

Table 2.18: Simulation results for misspecification: ε ∼ Gompertz, link function = logit (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -6490.792

Table 2.19: Simulation results for misspecification: ε ∼ N(0,1), link function = cloglog

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.01065 0.13672 0.9213
MLT 0.00937 0.13420 0.9219

n=100
CPM -0.03729 0.06188 0.9191
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Table 2.19: Simulation results for misspecification: ε ∼ N(0,1), link function = cloglog (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.03800 0.06089 0.9166

n=500
CPM -0.07157 0.01580 0.8493
MLT -0.06990 0.01546 0.8549

n=1000
CPM -0.07619 0.01114 0.7670
MLT -0.07417 0.01083 0.7740

F(5|X = 0)

n=50
CPM -0.03124 0.01061 0.8970
MLT -0.02419 0.00960 0.9373

n=100
CPM -0.03422 0.00594 0.8877
MLT -0.02594 0.00513 0.9087

n=500
CPM -0.03902 0.00246 0.7082
MLT -0.02971 0.00175 0.6405

n=1000
CPM -0.03886 0.00197 0.5092
MLT -0.02974 0.00131 0.3618

F(5|X = 1)

n=50
CPM 0.04417 0.00644 0.9338
MLT 0.04839 0.00657 0.8970

n=100
CPM 0.04985 0.00471 0.8637
MLT 0.05506 0.00514 0.7711

n=500
CPM 0.05241 0.00317 0.2981
MLT 0.05795 0.00376 0.1438

n=1000
CPM 0.05334 0.00306 0.0435
MLT 0.05871 0.00365 0.0067

E(Y |X = 0)

n=50
CPM 0.09018 0.44355 0.9035
MLT 0.06796 0.44324 0.9001

n=100
CPM 0.09747 0.22445 0.9089
MLT 0.07646 0.22254 0.9086

n=500
CPM 0.11348 0.05512 0.8811
MLT 0.08916 0.05072 0.8922

n=1000
CPM 0.11206 0.03387 0.8337
MLT 0.08679 0.02914 0.8665

E(Y |X = 1)

n=50
CPM -0.15323 0.85954 0.9283
MLT -0.18113 0.84165 0.9342

n=100
CPM -0.17479 0.44633 0.9344
MLT -0.19302 0.44309 0.9392

n=500
CPM -0.16722 0.10775 0.9243
MLT -0.16666 0.10637 0.9290

n=1000
CPM -0.17296 0.07006 0.8876
MLT -0.16891 0.06832 0.8934

F−1(0.1|X = 0)

n=50
CPM 0.36060 0.34293 0.8858
MLT 0.36352 0.31390 0.9906

n=100
CPM 0.28030 0.18741 0.9584
MLT 0.35684 0.21606 0.9918

n=500
CPM 0.21304 0.06779 0.7473
MLT 0.34896 0.13938 0.9623

n=1000
CPM 0.20398 0.05289 0.5481
MLT 0.34843 0.13023 0.9195

F−1(0.1|X = 1)

n=50
CPM -0.48997 0.59171 0.8319
MLT -0.43024 0.43626 0.7981

n=100
CPM -0.62493 0.55468 0.6362
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Table 2.19: Simulation results for misspecification: ε ∼ N(0,1), link function = cloglog (continued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.52008 0.38478 0.5335

n=500
CPM -0.72610 0.55887 0.0260
MLT -0.58516 0.36313 0.0033

n=1000
CPM -0.73961 0.56236 0.0002
MLT -0.59653 0.36624 0.0000

F−1(0.5|X = 0)

n=50
CPM 0.39705 0.63930 0.9183
MLT 0.28004 0.47767 0.9378

n=100
CPM 0.34717 0.35933 0.8866
MLT 0.25974 0.26879 0.9032

n=500
CPM 0.32349 0.15247 0.6437
MLT 0.25407 0.10572 0.6779

n=1000
CPM 0.31751 0.12413 0.4094
MLT 0.24862 0.08228 0.4485

F−1(0.5|X = 1)

n=50
CPM 0.10261 1.25842 0.9548
MLT -0.06703 1.10094 0.9640

n=100
CPM -0.07837 0.61030 0.9504
MLT -0.16823 0.56816 0.9514

n=500
CPM -0.20233 0.15407 0.9125
MLT -0.23678 0.15753 0.9053

n=1000
CPM -0.22376 0.10526 0.8536
MLT -0.25741 0.11619 0.8349

F−1(0.8|X = 0)

n=50
CPM 0.15682 1.13436 0.9183
MLT -0.00113 1.02389 0.9306

n=100
CPM 0.11847 0.55292 0.9228
MLT 0.03498 0.50474 0.9287

n=500
CPM 0.10465 0.11636 0.9125
MLT 0.07027 0.10189 0.8749

n=1000
CPM 0.10081 0.06350 0.8990
MLT 0.06676 0.05266 0.7988

F−1(0.8|X = 1)

n=50
CPM 0.62461 3.08822 0.9621
MLT 0.43530 2.43644 0.9686

n=100
CPM 0.45054 1.52173 0.9532
MLT 0.40836 1.36050 0.9691

n=500
CPM 0.33662 0.37300 0.9220
MLT 0.33763 0.36804 0.9218

n=1000
CPM 0.30132 0.22027 0.8873
MLT 0.28898 0.21728 0.8539

Out-of-sample Log-likelihood

Value

n=50
CPM -189.412
MLT -173.534

n=100
CPM -453.361
MLT -420.154

n=500
CPM -3061.024
MLT -2860.836

n=1000
CPM -6799.685
MLT -6405.667
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Table 2.20: Simulation results for mixture of discrete and continuous distribution: H(y) = 0 if y ≤
0 else H(y) = exp(y)

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04205 0.11432 0.9429
MLT 0.01687 0.11762 0.9395

MLT(survival) 0.03716 0.11123 0.9567

n=100
CPM 0.01670 0.05241 0.9455
MLT -0.01277 0.05390 0.9400

MLT(survival) 0.01190 0.05124 0.9563

n=500
CPM 0.00437 0.00969 0.9530
MLT -0.02862 0.01072 0.9343

MLT(survival) -0.00258 0.00952 0.9609

n=1000
CPM 0.00251 0.00488 0.9512
MLT -0.003180 0.00603 0.9141

MLT(survival) -0.00493 0.00483 0.9556

Out-of-sample Log-likelihood

Value

n=50
CPM -128.763
MLT -142.921

n=100
CPM -337.646
MLT -357.800

n=500
CPM -2337.830
MLT -2373.479

n=1000
CPM -4791.826
MLT -5104.161

Table 2.21: Simulation results for discretizing continuous responses into 5 categories: 0, 3, 5, 7, 10

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04324 0.11425 0.9430
MLT 0.01932 0.11494 0.9326

n=100
CPM 0.01575 0.05235 0.9475
MLT -0.01004 0.05366 0.9348

n=500
CPM 0.00364 0.00975 0.9535
MLT -0.02414 0.01057 0.9337

n=1000
CPM 0.00230 0.00493 0.9521
MLT -0.02562 0.00572 0.9197

E(Y |X = 0)

n=50
CPM -0.00607 0.36455 0.9354
MLT -0.00865 0.37464 0.8757

n=100
CPM 0.00074 0.18621 0.9401
MLT 0.00096 0.19135 0.8796

n=500
CPM 0.00291 0.03688 0.9463
MLT 0.00556 0.03784 0.8848

n=1000
CPM -0.00048 0.01852 0.9479
MLT 0.00220 0.01901 0.8839

E(Y |X = 1)

n=50
CPM -0.00184 0.37449 0.9341
MLT 0.00423 0.38376 0.9025

n=100
CPM -0.00886 0.18647 0.9430
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Table 2.21: Simulation results for discretizing continuous responses into 5 categories: 0, 3, 5, 7, 10 (contin-
ued)

Measure Sample Size Method Bias MSE Coverage Rate
MLT -0.00569 0.19101 0.9007

n=500
CPM 0.00482 0.03550 0.9519
MLT 0.00594 0.03633 0.9044

n=1000
CPM 0.00274 0.01832 0.9506
MLT 0.00362 0.01875 0.9059

Out-of-sample Log-likelihood

Value

n=50
CPM -75.732
MLT -88.033

n=100
CPM -159.409
MLT -180.299

n=500
CPM -762.421
MLT -824.768

n=1000
CPM -1494.791
MLT -1648.610

Table 2.22: Simulation results for discretizing continuous responses into 10 categories: 0, 2, 3, 4, 5, 6, 7, 8,
10, 12

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04405 0.10969 0.9418
MLT 0.03934 0.11182 0.9368

n=100
CPM 0.01706 0.05014 0.9450
MLT 0.01214 0.05170 0.9387

n=500
CPM 0.00429 0.00926 0.9535
MLT -0.00096 0.00959 0.9443

n=1000
CPM 0.00234 0.00470 0.9509
MLT -0.00285 0.00488 0.9435

E(Y |X = 0)

n=50
CPM -0.00705 0.36468 0.9374
MLT -0.01228 0.36708 0.9005

n=100
CPM -0.00137 0.18439 0.9435
MLT -0.00375 0.18634 0.9068

n=500
CPM 0.00167 0.03647 0.9485
MLT 0.00190 0.03700 0.9154

n=1000
CPM -0.00078 0.01830 0.9484
MLT -0.00028 0.01855 0.9122

E(Y |X = 1)

n=50
CPM -0.00380 0.44249 0.9357
MLT -0.00508 0.44741 0.9033

n=100
CPM -0.01078 0.21997 0.9435
MLT -0.01143 0.22248 0.9027

n=500
CPM 0.00554 0.04194 0.9516
MLT 0.00607 0.04242 0.9034

n=1000
CPM 0.00183 0.02158 0.9481
MLT 0.00262 0.02180 0.9034

Out-of-sample Log-likelihood

Value
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Table 2.22: Simulation results for discretizing continuous responses into 10 categories: 0, 2, 3, 4, 5, 6, 7, 8,
10, 12 (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=50
CPM -110.317
MLT -116.119

n=100
CPM -227.991
MLT -236.425

n=500
CPM -1095.694
MLT -1152.974

n=1000
CPM -2171.780
MLT -2283.256

Table 2.23: Simulation results for discretizing continuous responses into 20 categories: 0, 1, 2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 15

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04613 0.10813 0.9386
MLT 0.05430 0.12089 0.9270

n=100
CPM 0.01818 0.04923 0.9468
MLT 0.02666 0.05560 0.9304

n=500
CPM 0.00416 0.00908 0.9524
MLT 0.01331 0.01039 0.9355

n=1000
CPM 0.00226 0.00462 0.9515
MLT 0.01148 0.00532 0.9322

E(Y |X = 0)

n=50
CPM -0.02196 1.02983 0.9345
MLT -0.00975 1.05967 0.9080

n=100
CPM -0.00840 0.51849 0.9416
MLT 0.00244 0.53628 0.9203

n=500
CPM 0.00255 0.10262 0.9470
MLT 0.01201 0.10619 0.9266

n=1000
CPM -0.00153 0.05143 0.9465
MLT 0.00760 0.05314 0.9270

E(Y |X = 1)

n=50
CPM 0.00560 1.08025 0.9327
MLT -0.01249 1.11214 0.9158

n=100
CPM -0.01182 0.53736 0.9423
MLT -0.02783 0.55479 0.9183

n=500
CPM 0.00970 0.10215 0.9501
MLT -0.00438 0.10553 0.9233

n=1000
CPM 0.00412 0.05249 0.9508
MLT -0.00989 0.05449 0.9236

Out-of-sample Log-likelihood

Value

n=50
CPM -142.016
MLT -143.775

n=100
CPM -300.009
MLT -309.736

n=500
CPM -1439.589
MLT -1493.155
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Table 2.23: Simulation results for discretizing continuous responses into 20 categories: 0, 1, 2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 15 (continued)

Measure Sample Size Method Bias MSE Coverage Rate

n=1000
CPM -2841.223
MLT -2964.074

Table 2.24: Simulation results for discretizing continuous responses into 50 categories: 0, 1, 1.4, 1.6, 1.9,
2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.1, 5.3, 5.5 5.7, 5.9, 6.1, 6.4, 6.6, 6.8,
7.0, 7.3, 7.6, 7.8, 8.2, 8.5, 8.8, 9.0, 9.4, 9.8, 10.2, 10.6, 11.0, 11.5, 12.0, 13.0, 13.5, 14.5, 16.0, 18.0

Measure Sample Size Method Bias MSE Coverage Rate

β

n=50
CPM 0.04641 0.10784 0.9401
MLT 0.05585 0.11921 0.9294

n=100
CPM 0.01906 0.04905 0.9452
MLT 0.02859 0.05482 0.9319

n=500
CPM 0.00432 0.00901 0.9537
MLT 0.01526 0.01027 0.9375

n=1000
CPM 0.00237 0.00460 0.9507
MLT 0.01344 0.00530 0.9326

E(Y |X = 0)

n=50
CPM -0.05463 6.53464 0.9349
MLT 0.02347 6.68861 0.9159

n=100
CPM -0.02541 3.28806 0.9409
MLT 0.05314 3.39546 0.9254

n=500
CPM 0.00495 0.64939 0.9477
MLT 0.07668 0.67764 0.9298

n=1000
CPM -0.00568 0.32671 0.9468
MLT 0.06408 0.34119 0.9307

E(Y |X = 1)

n=50
CPM 0.00706 6.62922 0.9341
MLT -0.39988 7.39843 0.9064

n=100
CPM -0.02841 3.29753 0.9423
MLT -0.39039 3.74305 0.9104

n=500
CPM 0.02244 0.62732 0.9513
MLT -0.30736 0.76786 0.9096

n=1000
CPM 0.00791 0.32268 0.9487
MLT -0.32699 0.44968 0.8822

Out-of-sample Log-likelihood

Value

n=50
CPM -168.705
MLT -164.335

n=100
CPM -383.900
MLT -382.161

n=500
CPM -1920.775
MLT -1947.334

n=1000
CPM -3775.912
MLT -3873.933

65



(A) Histogram of log(hsCRP)
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Figure 2.24: Results for log-transformed hsCRP. A: The distribution of log-transformed hsCRP. B: The
estimated transformation functions. C: The estimated conditional means and their confidence intervals. Other
covariates are at their most frequent level or median level. D: The estimated conditional medians and their
confidence intervals. Other covariates are at their most frequent level or median level.
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(A) Histogram of leptin
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Figure 2.25: Results for leptin. A: The distribution of leptin. B: The estimated transformation functions. C:
The estimated conditional means and their confidence intervals. Other covariates are at their most frequent
level or median level. D: The estimated conditional medians and their confidence intervals. Other covariates
are at their most frequent level or median level.
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(A) Histogram of sCD14
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Figure 2.26: Results for sCD14. A: The distribution of sCD14. B: The estimated transformation functions.
C: The estimated conditional means and their confidence intervals. Other covariates are at their most frequent
level or median level. D: The estimated conditional medians and their confidence intervals. Other covariates
are at their most frequent level or median level.
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CHAPTER 3

Addressing Detection Limits with Semiparametric Cumulative Probability Models

3.1 Introduction

Detection limits (DLs) are not uncommon in biomedical research and other fields. For example, radiation

doses may only be detected above a certain threshold (Wing et al., 1991), antibody concentrations may not

be measured below certain levels (Wu et al., 2001), and X-rays may have lower limits of detection (Pan et al.,

2017). In HIV research, viral load can only be detected above certain levels. To complicate matters, DLs

often vary by assay and may change over time. For example, HIV viral load assays have had lower DLs at

400, 300, 200, 50, and 20 copies/mL depending on the commercial assay and year of application (Steegen

et al., 2007).

Different types of analysis methods to handle DLs have been proposed for different purposes. In this

manuscript, we will focus on studying the association between an outcome variable and covariates, where

the outcome variable is subject to DLs. This is typically achieved with some sort of regression model. One

common and simple method is to dichotomize the outcome as detectable or undetectable, and then to perform

logistic regression (Jiamsakul et al., 2017). While it can be useful for some purposes, the dichotomization

leads to information loss since the observed values inside the DLs are treated as if they are the same. Another

common approach for handling DLs is substitution, where all nondetects are imputed with a single constant

and a linear regression model is fit. The imputed constant may be, for example, the DL itself, DL/2, DL/
√

2

(Hornung and Reed, 1990; Lubin et al., 2004; Helsel, 2011), or the expectation of the measurement condi-

tional on being outside the DL under some assumed parametric model (Garland et al., 1993). For example,

DL/2 corresponds to the expectation of a uniform distribution between 0 and the DL. Although simple, these

substitution approaches typically result in biased estimation, underestimated variances, and thus sometimes

wrong conclusions (Baccarelli et al., 2005; Fiévet and Della Vedova, 2010). In a third approach, one explicitly

makes parametric assumptions on the distribution of the data, both within and outside the DLs. Parameters

of interest can then be estimated by maximizing the censored data likelihood. Such a maximum likelihood

approach is efficient and consistent when the distribution is correctly specified, but may perform poorly when

distributional assumptions are incorrect. To compound the problem, there is typically no way to examine

model fit outside the DLs; goodness-of-fit of a parametric model inside DLs does not ensure goodness-of-fit

outside the DLs (Baccarelli et al., 2005; Harel et al., 2014). A related, fourth approach for addressing DLs

is to multiply impute values outside the DLs (Little and Rubin, 2019; Harel and Zhou, 2007). This approach
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may be computationally expensive, still requires parametric assumptions that can only be verified inside DLs,

and may be particularly problematic with high rates of censoring or small sample sizes (Lubin et al., 2004;

Zhang et al., 2009).

To avoid strong parametric assumptions, nonparametric methods such as Kaplan–Meier, score and rank-

based methods have been proposed in two-sample comparisons (Helsel, 2011). Zhang et al. (2009) explored

the use of the Wilcoxon rank sum test, other weighted rank tests, Gehan and Peto-Peto tests, and a novel

nonparametric method for location-shift inference with DLs. Although attractive for two-sample tests, these

nonparametric methods do not permit inclusion of covariates.

In this manuscript, we propose a new approach for analyzing data subject to detection limits. Data with

DLs effectively follow a mixture distribution, where those below a lower DL can be thought of as belonging

to a discrete category, those above an upper DL belonging to another discrete category, while those inside

the DLs are continuous. Whether discrete or continuous, the values are orderable. In earlier work, Liu

et al. (2017) showed that continuous response variables can be modeled using a popular model for ordi-

nal outcomes, namely the cumulative probability model (CPM), also known as the ‘cumulative link model’

(Agresti, 2003). CPMs are a type of semiparametric linear transformation model, in which the continuous

response variable after some unspecified monotonic transformation is assumed to follow a linear model, and

the transformation is nonparametrically estimated (Zeng and Lin, 2007). These models are very flexible and

can handle a wide variety of outcomes, including variables with DLs. Importantly, when fitting CPMs to

data with DLs, minimal assumptions are made on the distribution of the response variable outside the DLs

as these models are based on ranks, and values below/above DLs are simply the lowest/highest rank values.

Because of their relationship to the Wilcoxon rank sum test (McCullagh, 1980), the CPM can be thought of

as a semiparametric extension to permit covariates to the approaches that Zhang et al. (2009) found effective

for handling DLs in two-sample comparisons. Finally, as will be shown, because CPMs model the condi-

tional cumulative distribution function (CDF), it is easy to extract many different measures of conditional

association from a single fitted model, including conditional quantiles, conditional probabilities, odds ratios,

and probabilistic indexes, which permits flexible and compatible interpretation.

In Section 2, we review the CPM, illustrate its use for simple settings where there is only a single set of

DLs, and then show how CPMs can be extended to address multiple DLs. We also propose a new method for

estimating the conditional quantile from a CPM. In Section 3, we illustrate and demonstrate the advantages

of the proposed approach using real data from two studies. The first study aims to measure the association

between covariates and a biomarker whose values are below a DL in approximately 15% of observations. The

second example is a large multi-cohort study of viral load (VL) after starting antiretroviral therapy among

persons with HIV, where most observations are below DLs, but the DLs vary across sites and change over
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time. In Section 4, we demonstrate the performance of our method with simulations. The final section

contains a discussion of the strengths and limitations of our method and future work.

3.2 Methods

3.2.1 Cumulative Probability Models

Transformation is often needed for regression of a continuous outcome variable Y to satisfy model assump-

tions, but specifying the correct transformation can be difficult. In a linear transformation model, the outcome

is modeled as Y = H(β T X + ε), where H(·) is an unknown monotonically increasing transformation, X is a

vector of covariates, and ε follows a known distribution with CDF Fε . This linear transformation model can

be equivalently expressed in terms of the conditional CDF,

F(y|X)≡ Pr(Y ≤ y|X) = Pr[ε ≤ H−1(y)−β
T X |X ] = Fε [H−1(y)−β

T X ].

Let G = F−1
ε and α = H−1; α(·) is monotonically increasing but otherwise unknown. Then

G[F(y|X)] = α(y)−β
T X , (3.1)

where G serves as a link function and the model becomes a cumulative probability model (CPM). The in-

tercept function α(y) is the transformation of the response variable such that α(Y ) = β T X + ε. The β co-

efficients indicate the association between the response variable and covariates: fixing other covariates, a

positive/negative β j means that an increase in X j is associated with a stochastic increase/decrease in the

distribution of the response variable.

In the CPM (3.1), the intercept function α(y) can be nonparametrically estimated with a step function

(Zeng and Lin, 2007; Liu et al., 2017). This allows great model flexibility. Consider an iid dataset {(yi,xi) :

i = 1, . . . ,n}. The nonparametric likelihood is

n

∏
i=1

[
F(yi|xi)−F(y−i |xi)

]
, (3.2)

where F(y−i |xi) = limt↑yi F(t|xi). In nonparametric maximum likelihood estimation, the probability mass

given any x will be distributed over the discrete set of observed outcome values. Thus we only need to

consider functions for α(·) such that F(y|xi) is a discrete distribution over the observed values. Let J be the

number of distinct outcome values, denoted as a1 < · · ·< aJ . Let S = {a1, . . . ,aJ}. These serve as the anchor

points for the nonparametric likelihood. Let α j = α(a j); then α1 < · · · < αJ . The nonparametric likelihood
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(3.2) can be written as

L(β ,ααα) = ∏
i:yi=a1

Fε(α1 −β
T xi)×

J−1

∏
j=2

∏
i:yi=a j

[
Fε(α j −β

T xi)−Fε(α j−1 −β
T xi)

]
×

∏
i:yi=aJ

[
1−Fε(αJ−1 −β

T xi)
]
. (3.3)

Maximizing (4.4), we obtain the nonparametric maximum likelihood estimates (NPMLEs), (β̂ , α̂αα), where

α̂αα = (α̂1, . . . , α̂J−1). Note the multinomial form of the likelihood (4.4); because the probabilities in a multi-

nomial likelihood add to one, αJ is not estimated. Note also that the likelihood in (4.4) is identical to that

of cumulative link models for ordinal data if the outcome Y is treated as ordinal with categories {a1, . . . ,aJ}.

Liu et al. (2017) and Tian et al. (2020) have shown that CPMs can be fit to and work well for continuous

and mixed types of responses. CPMs have also been shown to be consistent and asymptotically normal, with

variance consistently estimated with the inverse of the information matrix under mild conditions including

boundedness of the outcome variable (Li et al., 2022b). The NPMLEs and their estimated variances can be ef-

ficiently computed with the orm() function in the rms package in R (Harrell, 2020), which takes advantage

of the tridiagonal nature of the Hessian matrix using Cholesky decomposition (Liu et al., 2017).

CPMs have several nice features. Some widely used regression methods model only one aspect of the

conditional distributions (e.g., conditional mean for linear regression and conditional quantile for quantile re-

gression). With the NPMLEs (β̂ , α̂αα), we can estimate the conditional CDFs as F̂(y|x) = Fε(α̂ j − β̂ T x) where

j is the index such that a j = max{a ∈ S : a ≤ y}; standard errors can be obtained by the delta method. Since

conditional CDFs are directly modeled, other characteristics of the distribution, such as the conditional quan-

tiles and conditional expectations, can be easily derived (Liu et al., 2017). Depending on the choice of link

function, β may be interpretable; for example, with the logit link function, exp(β ) is an odds ratio. Proba-

bilistic indexes (De Neve et al., 2019), which are defined as Pr(Y1 <Y2|X1,X2), can also be easily derived; for

example, with the logit link, P(Y1 <Y2|X1,X2) =
[
1+ exp

(
−(X2 −X1)

T β
)]−1. With the transformation α(·)

nonparametrically estimated, CPMs are invariant to any monotonic transformation of the outcome; therefore,

no pre-transformation is needed. With a single binary covariate and the logit link function, the score test for

the CPM is nearly identical to the Wilcoxon rank sum test (McCullagh, 1980); see Supplemental Material.

Because only the order of the outcome values but not the specific values matter when estimating β in the

CPM, it can handle any ordinal, continuous, or mixture of ordinal and continuous distributions, which can be

useful for analyzing data with DLs.
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3.2.2 Single Detection Limits

In this subsection, we first present our method for the simple scenario that there is a single lower DL and/or

a single upper DL. We will describe the general approach for multiple DLs in the next subsection.

Consider a dataset with a lower DL, l, and an upper DL, u. The outcome Y is observed if it is inside the

DLs (i.e., l ≤ Y ≤ u) or censored if it is outside the DLs. The J distinct values of the observed outcomes

are denoted as l ≤ a1 < · · · < aJ ≤ u. When there are no observations outside the DLs, these values are

treated as ordered categories in CPMs and they are the anchor points in the nonparametric likelihood (4.4),

and correspondingly there are J −1 alpha parameters, α1 < · · · < αJ−1. With observations outside the DLs,

the likelihood (4.4) needs to be modified accordingly.

When there are observations below the lower DL, we do not know their values except that they are < l.

As there is no way to distinguish them, we treat them as a single category, denoted as a0. Note that a0 is not a

value but a symbol for the additional category below a1. The nonparametric likelihood for a subject outcome

censored at the lower DL l is

Pr(Yi < l|Xi = xi) = Fε(α0 −β
T xi),

where α0 is the extra alpha parameter corresponding to category a0 such that α0 < α1. Because a1, the

previously lowest category, now has a category below it, the nonparametric likelihood for a subject with

yi = a1 becomes

Fε(α1 −β
T xi)−Fε(α0 −β

T xi).

Similarly, when there are observations above the upper DL, they are also treated as a single category,

denoted as aJ+1, which is a symbol for the additional category above aJ . The nonparametric likelihood for a

subject censored at the upper DL u is

Pr(Yi > u|Xi = xi) = 1−Fε(αJ −β
T xi),

Because aJ is no longer the highest category, αJ will need to be estimated, and the likelihood for a subject

with yi = aJ is now

Fε(αJ −β
T xi)−Fε(αJ−1 −β

T xi).

Put together, with observed data subject to a single lower DL and a single upper DL, the CPM likelihood
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is

L(β ,ααα) = ∏
i:yi=a0

Fε(α0 −β
T xi)×

J

∏
j=1

∏
i:yi=a j

[
Fε(α j −β

T xi)−Fε(α j−1 −β
T xi)

]
×

∏
i:yi=aJ+1

[
1−Fε(αJ −β

T xi)
]
, (3.4)

which is equivalent to (4.4) except with two new anchor points, a0 and aJ+1. Therefore, (3.4) is maximized

in an identical manner to (4.4), with outcomes below the lower DL and outcomes above the upper DL simply

assigned to categories a0 and aJ+1, respectively.

In summary, when there are data censored below the lower DL, we add a new anchor point a0 < a1 and a

new parameter α0; when there are data censored above the upper DL, we add a new anchor point aJ+1 > aJ

and a new parameter αJ . The alpha parameters to be estimated are (α1, . . . ,αJ−1) when there are no DLs or no

data censored at DLs, (α0,α1, . . . ,αJ−1,αJ) when both categories a0 and aJ+1 are added, (α0,α1, . . . ,αJ−1)

when only a0 is added, and (α1, . . . ,αJ−1,αJ) when only aJ+1 is added.

In practice, one can fit the NPMLE in these settings using the orm() function by setting outcomes below

the lower DL to some arbitrary number < l and outcomes above the upper DL to some arbitrary number

> u. Note that unlike single imputation approaches for dealing with DLs, the CPM estimation procedure is

invariant to the choice of these numbers assigned to values outside the DLs. The CPM (3.1) assumes that

after some unspecified transformation, the outcome follows a linear model both within and outside the DLs.

In contrast, parametric approaches to deal with DLs assume the full distribution of the outcome conditional

on covariates is known, both within and outside DLs. Hence, CPMs make much weaker assumptions than

fully parametric approaches.

3.2.3 Multiple Detection Limits

We now consider the general situation where data may be collected from multiple study sites. A site may

have no DL, only one DL, or both lower and upper DLs. Each site may have different lower DLs and different

upper DLs, which may change over time.

Every subject has a vector X of covariates and three underlying random variables (Y,CL,CU ), where Y

is the true outcome and CL < CU are the lower and upper DLs. When there is no upper DL, CU = ∞, and

when there is no lower DL, CL =−∞. CL and CU are assumed to be independent of Y conditional on X ; the

vector X may contain variables for study sites or calendar time. This non-informative censoring assumption

is typically plausible as DLs are determined by available equipment / assays. We assume the CPM (3.1)

holds for all subjects. Due to DLs, we may not always observe Y . Instead we only observe (Z,∆), where

Z = max(min(Y,CU ),CL) and ∆ is a variable indicating whether Y is observed or censored at a DL: ∆ = 1
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and Z = Y if Y is observed, ∆ = L and Z =CL if Y <CL, and ∆ =U and Z =CU if Y >CU .

Given a dataset {(zi,δi;xi)} (i = 1, . . . ,n), we first determine how many anchor points are needed to

support the nonparametric likelihood of the CPM. Let J be the number of distinct values of zi among those

with δi = 1; they are denoted as a1 < · · · < aJ . For data without any DLs, these points are the anchor

points for the nonparametric likelihood, and they are effectively treated as ordered categories in a CPM. Let

S = {a1, · · · ,aJ} be the set of these values. When there are data with δi = L, let l be the smallest zi with

δi = L. Similarly, when there are data with δi = U , let u be the largest zi with δi = U . If l ≤ a1, we add a

category into S below a1, denoted as a0; note that it is not a value but a symbol for the additional category in

S below a1. Similarly, if u ≥ aJ , we add aJ+1 into S, which is a symbol for the additional category above aJ .

Depending on the data, the number of ordered categories can be J, J+1, or J+2.

Consider the situation where both a0 and aJ+1 have been added to S (i.e., S = {a0,a1, . . . ,aJ ,aJ+1}).

When δi = 1, the nonparametric likelihood for (zi,1) is

Fε(α j −β
T xi)−Fε(α j−1 −β

T xi), (3.5)

where j is the index such that a j = zi. When δi = L, the nonparametric likelihood for (zi,L) is

Pr(Y < zi|xi) =

 Fε(α0 −β T xi), (zi = l)

Fε(α j −β T xi), (zi ̸= l)
(3.6)

where j is the index such that a j = max{a ∈ S : a < zi} when zi ̸= l. When δi = U , the nonparametric

likelihood for (zi,U) is

Pr(Y > zi|xi) =

 1−Fε(αJ −β T xi), (zi = u)

1−Fε(α j−1 −β T xi), (zi ̸= u)
(3.7)

where j is the index such that a j = min{a ∈ S : a > zi} when zi ̸= u. The overall nonparametric likelihood is

the product of these individual likelihoods over all subjects. Note that if there are no uncensored observations

between two lower (or upper) DLs, the two DLs are effectively treated as the same DL. We show a toy

example to illustrate the approach to handle multiple DLs described in Table 3.1.

Slight modifications will be applied when no or only one additional category is added to S. When there

is no need to add a0 to S (i.e., when l > a1 or there are no lower DLs), only the second row in the likelihood

(3.6) for (zi,L) will be employed, and the likelihood for (zi,1) with zi = a1 is Fε(α1 −β T xi). When there is

no need to add aJ+1 to S (i.e., when u < aJ or there are no upper DLs), only the second row in the likelihood
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Table 3.1: The likelihood contribution for each observation in a toy example with multiple detection limits.
Suppose there are eight observations from two sites. The lower and upper DLs of one site are 3 and 9, respec-
tively, and those of the other site are 5 and 12. Suppose the dataset is {(3,L;x1),(4,1;x2),(6,1;x3),(9,U ;x4)}
from site 1 and {(5,L;x5),(7,1;x6),(10,1;x7),(12,U ;x8)} from site 2. There are thus J = 4 uncensored val-
ues, and we include two additional categories corresponding to those below the smallest DL and those above
the largest DL, such that S = {a0,a1, . . . ,a5}= {‘<3’,4,6,7,10, ‘>12’}.

zi δi j Likelihood
3 L 0 Fε(α0 −β T x1)
4 1 1 Fε(α1 −β T x2)−Fε(α0 −β T x2)
5 L 1 Fε(α1 −β T x5)
6 1 2 Fε(α2 −β T x3)−Fε(α1 −β T x3)
7 1 3 Fε(α3 −β T x6)−Fε(α2 −β T x6)
9 U 4 1−Fε(α3 −β T x4)

10 1 4 Fε(α4 −β T x7)−Fε(α3 −β T x7)
12 U 5 1−Fε(α4 −β T x8)

(3.7) for (zi,U) will be employed, and the likelihood for (zi,1) with zi = aJ is 1−Fε(αJ−1 −β T xi).

We have developed an R package, multipleDL available at https://github.com/YuqiTian35/multipleDL,

which uses the optimizing() function in the rstan package to maximize the likelihood (Stan Develop-

ment Team, 2020).

3.2.4 Interpretable Quantities and Conditional Quantiles

Interpretation of results after fitting CPMs to outcomes with DLs is similar to settings without DLs. De-

pending on the link function, β may be directly interpretable. The conditional CDF, probabilistic indexes,

and conditional quantiles are also easily derived. Note, however, that without additional assumptions on the

distribution of the outcome outside DLs, conditional expectations cannot be estimated.

We now describe how to infer conditional quantiles from a CPM fitted on data with DLs. The conditional

CDF from a CPM for a given x can be computed as F̂(y|x) = Fε(α̂ j − β̂ T x) where j is the index such that

a j = max{a ∈ S : a ≤ y}; if there is no a ∈ S such that a ≤ y, then F̂(y|x) = 0. For ease of presentation, we

fix x and let Pj = F̂(a j|x) ( j = 0,1, . . . ,J,J+1); for convenience, let P−1 = 0. Our goal is to define a quantile

function Q̂(p), where 0 < p < 1, for the conditional distribution given x.

The quantile function for a CDF F(·) is typically defined as Q(p) = inf{z : F(z)≥ p}. A plug-in estimator

for an estimated CDF, F̂ , is Q̂0(p) = inf{z : F̂(z) ≥ p}. When applied to our setting, Q̂0(p) = a j when

Pj−1 < p ≤ Pj. This estimator may not be suitable for CPMs because F̂(·) is a step function and therefore

Q̂0(p) only takes values at the anchor points, which can be undesirable for continuous outcomes, especially

when there is a large gap between adjacent anchor points.

Liu et al. (2017) proposed to estimate quantiles for CPMs with linear interpolation. Specifically, given
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Figure 3.1: Illustration of three approaches for conditional quantiles. The data set has a lower DL 0.5, an
upper DL 2, and five observed values of y: 0.7, 0.86, 1, 1.5, 1.8. Thus S= {‘<0.5’,0.7,0.86,1,1.5,1.8, ‘>2’}.
The dashed lines are for Q̂1(p), the dotted lines are for Q̂2(p), the solid black lines are for Q̂(p), and the solid
gray lines are for the empirical CDF. Here, Q̂(p) = Q̂1(p) = ‘<0.5’ when p < F̂(0.5|x), and Q̂(p) = Q̂2(p) =
‘>2’ when p > F̂(2|x).

a fixed p, let j = j(p) be the index such that Pj−1 < p ≤ Pj. When p > P0, j ≥ 1 and define Q̂1(p) =

a j−1 +
p−Pj−1
Pj−Pj−1

(a j −a j−1), which is a linear interpolation between a j−1 and a j. When p ≤ P0, Q̂1(p) is set to

be a0. Recall that a0 is not a value but a symbol for being below the lower DL, l; we thus relabel it as ‘<l’,

so when p ≤ P0, Q̂1(p) = ‘<l’. For the linear interpolation between a0 and a1, we set a0 to be l. Similarly,

aJ+1 is labeled ‘>u’ and assigned the value u for the linear interpolation between aJ and aJ+1. Q̂1(p) is

illustrated as the dashed lines in Figure 3.1. An alternative definition is to interpolate between a j and a j+1:

Q̂2(p) = a j +
p−Pj−1
Pj−Pj−1

(a j+1 −a j) when p < PJ and Q̂2(p) = aJ+1 = ‘>u’ when p ≥ PJ . Q̂2(p) is illustrated

as the dotted lines in Figure 3.1. For continuous data without DLs, Q̂1(p) and Q̂2(p) converge as the sample

size increases. However, they are problematic for continuous data with DLs because Q̂1(p) < aJ+1 for all

p < 1 and Q̂2(p) > a0 for all p > 0 even though there are non-zero estimated probabilities at the lower DL

a0 and upper DL aJ+1.

We propose a new quantile estimator as a weighted average between Q̂1(p) and Q̂2(p),

Q̂(p) = (1−w)Q̂1(p)+wQ̂2(p), (3.8)

where w = w(p) = p−P0
PJ−P0

when P0 < p < PJ , 0 when p ≤ P0, and 1 when p ≥ PJ . This definition is shown as

the black curve in Figure 3.1. Note that Q̂(p) equals Q̂1(p) = ‘<l’ when p ≤ P0, and equals Q̂2(p) = ‘>u’
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when p ≥ PJ . It can be shown that similar to Q̂1(p) and Q̂2(p), Q̂(p) is also piecewise linear with transition

points at Pj ( j = 0,1, . . . ,J).

In situations where there is only a lower DL or an upper DL, our definition of Q̂(p) is similar. Confidence

intervals for the conditional quantiles can be estimated by applying a weighted linear interpolation to the

confidence intervals of the conditional CDF similar to the above procedure (Liu et al., 2017).

3.3 Applications

In this section, we illustrate our method with two datasets, one from a biomarker study with a single lower

DL and the other from a multi-center study with multiple DLs varying within and across centers.

3.3.1 Single Detection Limit

Our first example uses data from a study investigating the relationship between HIV, diabetes, obesity, and

various biomarkers. Data were collected on 161 adults, some of whom were highly overweight (body mass

index (BMI) ranged from 22 to 58 kg/m2). Several biomarkers were measured. Here, we focus on interleuken

4 (IL-4), a cytokine that is related to T-cell production and metabolism and has been seen to limit lipid

accumulation in mice (Tsao et al., 2014). We examine the association between IL-4 and BMI, controlling for

age, sex, HIV-status, and diabetes-status. Our measures of IL-4 had a single lower DL of 0.019 pg/ml, and

24 subjects (15%) had IL-4 values below the DL. Figure 3.2 shows the distribution of IL-4 is right skewed

and has a lower detection limit as 0.019. After log-transformation, the response variable is approximately

normally distributed except for value below the DL.
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Figure 3.2: (A) The distribution of IL-4. (B) The distribution of log-transformed IL-4. (C) The estimated
transformation function.

We fit a CPM as described in Section 2.2, using the logit link; results are in Table 3.2. No transformation

of IL-4 was needed. With the logit link function, the β parameters can be interpreted as log odds ratios.

BMI was found to be negatively associated with IL-4 (p-value 0.023). Holding other covariates constant, a 5
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Table 3.2: Application results for IL-4: the estimated odds ratios with 95% confidence intervals, and p-values

Predictor Odds Ratio 95% (CI) P-value PI
Age (per 10 years) 1.16 (0.89, 1.51) 0.271 0.525
Sex 0.689

Female (reference) 1
Male 1.14 (0.59, 2.22) 0.689 0.522

BMI (per 5 kg/m2) 0.78 (0.62, 0.97) 0.023 0.264
Status <0.001

HIV positive, insulin sensitive (reference) 1
HIV positive, pre-diabetic 2.15 (1.03, 4.50) 0.041 0.625
HIV positive, diabetic 1.03 (0.44, 2.44) 0.945 0.505
HIV negative, diabetic 1.82 (0.70, 4.74) 0.218 0.599
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Figure 3.3: The conditional median obtained by CPMs varying BMI while fixing other covariates at medi-
an/mode levels

kg/m2 increase in BMI corresponded to a 22% decrease in the odds of having a higher IL-4 value (adjusted

odds ratio 0.78, 95% confidence interval (CI) of (0.62,0.97)). The corresponding probabilistic index was

0.264, meaning that holding other variables constant, a 5 kg/m2 increase in BMI was associated with a 0.736

(= 1− 0.264) probability of having a lower IL-4. The median IL-4 conditional on BMI and controlling for

all other covariates at their median/mode levels was estimated from the CPM and is shown in Figure 3.3. The

conditional median decreased as BMI increased, with the 95% CI including the category ‘<0.019’ for those

with a very large BMI. Note that ‘<0.019’ is the smallest ordered category indicating for values below the

DL. Other quantiles and quantities can also be easily derived from the CPM; for example, Figure 3.4 shows

the 90th percentile of IL-4 as a function of BMI, and the probabilities of IL-4 being greater than 0.019 (the

DL) and greater than 0.05 as functions of BMI.

It is worth comparing results from the CPM to other potential analysis approaches. (i) The most common

approach in practice would be to singly impute those values below the DL; given the skewed nature of the
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Figure 3.4: We can obtain conditional quantities by CPMs. Other covariates set to corresponding median or
mode. (A) The conditional 90th percentile of IL-4 as a function of BMI. (B) The probabilities of IL-4 being
greater than 0.019 (the DL). (C) The probabilities of IL-4 being greater than 0.05.
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Figure 3.5: (A) The conditional median obtained by CPMs fixing other covariates. (B) The conditional
median obtained by the likelihood approach (after log-transformation). (C) The conditional median obtained
by median regression.
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data, one would then likely log-transform the data and fit a linear regression model. The result can vary

depending on the choice of the imputed number: if one imputes with the DL itself (0.019) vs. 0.001, the log-

transformed IL-4 is estimated to decrease 0.013 pg/ml vs. 0.032 pg/ml, respectively, per 5 kg/m2 increase

in BMI, with different statistical significance (p-value 0.020 vs. 0.073). (ii) A more sophisticated approach

might be to assume the data are log-normally distributed and perform a likelihood-based analysis, which

results in an estimated change on the log-scale of −0.015 pg/ml per 5 kg/m2 BMI increase (p-value 0.018).

The conditional median as a function of BMI could also be extracted from this analysis, and is in Figure

3.5(B). The curve of conditional median as a function of BMI is similar to what was estimated with the

CPM (Figure 3.5(A)), but it is slightly lower and its confidence bands are tighter than those of the CPM. The

tighter bands reflect the parametric assumption that the data are truly log-normally distributed. In contrast, the

CPM does not require transformation of the data, and it non-parametrically estimates the best transformation.

(iii) One could also directly estimate the conditional median as a function of BMI using quantile regression

(Koenker and Hallock, 2001). This estimated curve is in Figure 3.5(C), which closely matches that estimated

from the CPM. However, the confidence bands for median regression are wider than those of the CPM,

and the 95% CI for the slope contains 0. One could argue that the CPM is assuming more than median

regression (which only assumes a linear relationship between the median on the original outcome scale and

the covariates); hence the narrower confidence bands. However, the CPM is able to yield several additional

quantities (e.g., other quantiles, odds ratios, excedence probabilities) from a single model that cannot be

obtained from median regression. Also, the confidence bands obtained by the CPM do not go below the DL.

(iv) Finally, one could dichotomize IL-4 into “undetectable” and “detectable” and fit a logistic regression

model. However, logistic regression was not able to provide stable estimation for this dichotomization. One

could consider other dichotomizations, but the choice is arbitrary. In fact, a beta coefficient in the CPM can

be thought of as a weighted average of the log-odds ratios for logistic regression models that consider all

possible orderable dichotomizations of the outcome.

3.3.2 Multiple Detection Limits

We illustrate our approach to handle multiple DLs with data from a multi-center HIV study. The data include

5301 adults living with HIV starting antiretroviral therapy (ART) at one of 5 study centers in Latin America

between 2000 and 2018. Viral load (VL) measures the amount of virus circulating in a person with HIV.

A high VL after ART initiation may indicate non-adherence or an ineffective ART regimen that should be

switched. We study the association between VL at approximately 6 months after ART initiation and variables

measured at ART initiation (baseline). The DLs for the outcome VL differed by site and calendar time.

Figure 3.6 shows the most frequent lower DL values for each year and at each site. There are five distinct
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Figure 3.6: The changes of most frequent DL values every year at each study site over time.
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Figure 3.7: Distribution of the log10 transformed 6-month VL. The transformed DLs are shown in red dashed
lines; 2992 (56%) of the patients were censored at one of these DLs.

lower DLs in this database: 20, 40, 50, 80, and 400 copies/mL. A total of 2992 (56%) patients had 6-month

VL censored at a DL: 45%, 54%, 52%, 65%, and 57% at study sites in Argentina, Brazil, Chile, Mexico, and

Peru, respectively. Figure 3.7 shows the distribution of log-transformed 6-month VL and lower DLs.

A traditional analysis in the HIV literature would dichotomize VL as detectable and undetectable and

perform logistic regression (Jiamsakul et al., 2017). There are a few issues that make this analysis less than

ideal. First, all VLs above the DL (nearly half of all observations) would be collapsed into a “detectable”

category resulting in well-known loss of information due to dichotomizing continuous variables (Fedorov

et al., 2009). Second, because the DL varies with time and by site, the analyst is forced to dichotomize at the

largest DL (in this case 400 copies/mL) or else perform an analysis where values above the DL at one site are

treated differently than they would be treated at another site. For example, a VL of 300 copies/mL measured

in Mexico in 2005 would be measured as ‘<400’ that same year in Peru; assigning this value as ‘<400’
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Figure 3.8: The estimated conditional 50th and 90th percentiles of 6-month VL and the conditional probabil-
ity of 6-month VL being greater than 1000 and 20 as functions of age (top row), prior AIDS events (middle
row), and baseline VL (bottom row) while keeping other covariates at their medians (for continuous vari-
ables) or modes (for categorical variables) based on our method.

results in lost information but leaving it as “detectable” would make the outcome variable different across

time and sites. A more parametric analysis might assume that the VL follow a specified distribution (e.g.,

log-normal distribution) and fit the censored data likelihood or multiply impute values below the DL from

the assumed distribution to obtain estimated regression coefficients. However, distributional assumptions for

values below the DL are strong and untestable, and given that over half of the response variables are below

the DL, these assumptions would have a large impact on results.

In contrast, the CPM uses all available information (i.e., does not dichotomize the response variable) and

makes much weaker assumptions than the fully parametric approaches. Similar to the parametric approaches,

the CPM assumes non-informative censoring conditional on covariates (which is reasonable, given that DLs

are determined by equipment / assays independent of true values) and that all observations follow a common

distribution conditional on covariates, which permits borrowing information across sites and time. Unlike

the fully parametric approach, however, the CPM does not fully specify this distribution. Rather, the CPM

assumes that response variables follow a linear model with known error distribution after some unspecified

transformation.
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Table 3.3: The β coefficients in CPMs can be interpreted as log odds ratios. We show the odds ratio (95%
confidence interval) and p-value for the predictors included in the model.

Predictor Odds Ratio (95% CI) P-value
Age (per 10 years) 0.98 (0.93, 1.03) 0.418
Sex 0.201

Male (reference) 1
Female 0.90 (0.76, 1.06)

Study center <0.001
Peru (reference) 1
Argentina 1.26 (0.98, 1.61)
Brazil 1.07 (0.91, 1.26)
Chile 1.07 (0.90, 1.26)
Mexico 0.59 (0.49, 0.70)

Route of infection <0.001
Homosexual/Bisexual (reference) 1
Heterosexual 0.96 (0.83, 1.10)
Other/Unknown 0.79 (0.62, 1.01)

Prior AIDS event 0.001
No (reference) 1
Yes 1.24 (1.09, 1.41)

Baseline CD4 (per 1 square root cells/µL) 1.09 (1.08, 1.10) <0.001
Baseline VL (per 1 log10 copies/mL) 1.44 (1.34, 1.54) <0.001
ART regimen 0.034

NNRTI-based (reference) 1
INSTI-based 0.55 (0.40, 0.75)
PI-based 1.10 (0.95, 1.29)
Other 2.57 (1.28, 5.16)

Months to VL measure 0.95 (0.92, 0.98) 0.002
Calendar year 0.89 (0.88, 0.91) <0.001
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We applied our method in Section 2.3 to fit a CPM of the 6-month VL on baseline variables with the logit

link. Results are shown in Table 3.3. With the logit link, the β parameters can be interpreted as log odds ratios

and are presented as odds ratios in the table along with 95% CIs. P-values are likelihood ratio test p-values.

The results suggest that study center, route of infection, prior AIDS event, baseline CD4 count, baseline VL,

ART regimen, the time from ART initiation until the VL measurement, and calendar year are all associated

with VL at 6 months. Holding other variables fixed, a 10-fold increase in VL at baseline is associated with a

44% increase in the odds of having a higher VL at 6 months (95% CI 34% to 54%).

Quantiles and cumulative probabilities are also easily extracted from the CPM. The first row of Figure

3.8 are the estimated conditional 50th and 90th percentiles of 6-month VL and the conditional probabilities

for 6-month VL being greater than 1000 and 20 copies/mL as functions of age. The plots show that VL at 6

months is fairly similar across age after fixing the other covariates. The smallest DL is 20 copies/mL, and all

VL less than this DL belong to the smallest ordered category, which we label as ‘<20’. The second row of

Figure 3.8 contains the estimated conditional quantiles and probabilities as functions of whether a patient had

an AIDS event prior to starting ART. People with a prior AIDS event (36%) tended to have a higher VL at 6

months. The third row of Figure 3.8 are the estimated conditional quantiles and probabilities as functions of

baseline VL. People with a higher baseline VL tended to have a higher VL at 6 months.

Figure 3.9 and Table 3.4 show the results from a similar CPM, except with continuous covariates expanded

using restricted cubic splines to relax linearity assumptions and increase model flexibility. The results are

fairly similar. Figure 3.9 plots the estimated conditional quantiles and probabilities of the outcome being

above 1000 and 20. The conditional median and its confidence intervals all fall into the smallest level “<20”.

For age, the general trend is the same as in the model without splines but for patients younger than 40

years old, age increase is correlated with slightly increase in 6-month viral load. The estimated conditional

quantiles and probabilities as a function of prior AIDS events shown in the third row of Figure 3.9 are very

similar to the results in model without splines. In the second row of Figure 3.9, patients with large baseline

viral load values tend to have much higher 6-month viral load measures. Table 3.4 shows the odds ratio and

95% confidence intervals using splines for all predictors. The p-values in the table are based on the likelihood

ratio tests.

Table 3.4: Application results for viral load: the estimated odds ratios with 95% confidence intervals, and
p-values from the model with splines on continuous covariates.

Predictor Odds Ratio 95% CI P-value
Age 0.959

20 1.00 0.82-1.23
30 (reference) 1

Continued on next page
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Table 3.4 – continued from previous page
Predictor Odds Ratio 95% CI P-value

40 1.00 0.87-1.14
50 0.98 0.84-1.13
60 0.94 0.76-1.16

Sex 0.213
Male (reference) 1
Female 0.90 0.76-1.06

Study center <0.001
Peru (reference) 1
Argentina 1.17 0.91-1.50
Brazil 0.99 0.83-1.17
Chile 0.96 0.81-1.15
Mexico 0.57 0.47-0.68

Route of infection 0.099
Homosexual/Bisexual (reference) 1
Heterosexual 0.93 0.81-1.07
Other/Unknown 0.77 0.60-0.98

Prior AIDS event 0.075
No (reference) 1
Yes 1.13 0.99-1.29

Baseline CD4 <0.001
50 0.66 0.60-0.73
100 0.65 0.60-0.69
200 (reference) 1
300 1.71 1.59-1.85

Baseline VL <0.001
100 0.74 0.52-1.04
1000 0.85 0.73-1.01
10000 (reference) 1
100000 1.33 1.18-1.50

ART regimen <0.001
NNRTI-based (reference) 1
INSTI-based 0.60 0.43-0.83
PI-based 111 0.95-1.29
Other 2.51 1.26-5.00

Time <0.001
3 months 1.57 1.20-2.04
6 months (reference) 1
9 months 1.05 0.91-1.22

Calendar year <0.001
2005 1.50 1.33-1.68
2010 (reference) 1
2015 0.45 0.38-0.52

For comparisons, we also analyzed the data using competing approaches described earlier. First, we fit

logistic regression to 6-month VL values dichotomized as <400 vs. ≥400 copies/mL, corresponding to the

highest DL. Results are in Table 3.5. The CPM and the logistic regression model gave similar estimates of

the beta coefficients (which are log odds ratios), although there were some differences in the estimates and
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Figure 3.9: The estimated conditional 50th and 90th percentile of age, prior AIDS events, and 6-month viral
load and the conditional probability of the 6-month viral load being greater than 1000 and 20 as functions of
age, prior AIDS event, and baseline viral load while keeping other covariates at their medians (for continuous
variables) or modes (for categorical variables) level based on the model with splines.
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Table 3.5: The odds ratio analyzing the data by logistic regression and point estimation obtained by the
fully likelihood approach. For logistic regression, the responses are dichotomized into two levels: <400 and
≥400. We show odds ratios with 95% confidence intervals, and p-values of parameter estimation for predic-
tors included in the model. The point estimation with 95% confidence intervals, and p-values of parameter
estimation for predictors included in the model by the fully likelihood approach.

Logistic Regression Fully Likelihood Approach
Odds Ratio (CI) P-value Estimation (CI) P-value

Age (per 10 years) 0.91 (0.85, 0.98) 0.013 -0.03 (-0.09, 0.03) 0.276
Sex 0.739 0.271

Male (reference) 1 1
Female 0.96 (0.77, 1.21) -0.10 (-0.28, 0.08)

Study center <0.001 <0.001
Peru (reference) 1 1
Argentina 1.43 (1.04, 1.97) 0.26 (-0.01, 0.53)
Brazil 1.21 (0.97, 1.51) 0.10 (-0.08, 0.28)
Chile 1.08 (0.85, 1.37) 0.08 (-0.11, 0.27)
Mexico 0.58 (0.45, 0.75) -0.54 (-0.73, -0.35)

Route of infection 0.563 0.197
Homosexual/Bisexual (ref) 1 1
Heterosexual 0.99 (0.81, 1.21) -0.04 (-0.20, 0.11)
Other/Unknown 0.84 (0.61, 1.17) -0.24 (-0.51, 0.02)

Prior AIDS event 0.009 <0.001
No (reference) 1 1
Yes 1.27 (1.06, 1.52) 0.25 (0.1, 0.39)

Baseline CD4 1.13 (1.12, 1.15) <0.001 0.10 (0.09, 0.11) < 0.001(per 1 square root cells/µL)
Baseline VL 1.04 (0.95, 1.14) 0.357 0.35 (0.27, 0.42) < 0.001(per 1 log10 copies/mL)
ART regimen <0.001 <0.001

NNRTI-based (reference) 1 1
INSTI-based 0.44 (0.27, 0.72) -0.60 (-0.93, -0.28)
PI-based 0.95 (0.77, 1.16) 0.07 (-0.10, 0.23)
Other 3.58 (1.49, 8.60) 1.06 (0.30, 1.82)

Months to VL measure 1.01 (1.00, 1.03) 0.068 -0.03 (-0.06, 0.01) 0.140
Calendar year 0.86 (0.84, 0.87) <0.001 -0.12 (-0.13, -0.10) <0.001

the CIs from CPMs tend to be narrower, as expected. In logistic regression, the log odds ratios are based on

the single undetectable vs. detectable dichotomization, while those in CPMs are based on dichotomizations

at each response value. Second, we fit a full likelihood based model assuming the outcome variable was

normally distributed after log10(·) transformation. Note that even the log10-transformed 6-month VL were

still quite skewed (shown in Figure 3.7), and hence the assumptions of this fully parametric approach were

questionable. The parameters in this approach and those from the CPM are not directly comparable because

they are on different scales, however, the directions of associations were similar.
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3.4 Simulations

Extensive simulations of CPMs with continuous data have been reported elsewhere (Liu et al., 2017; Tian

et al., 2020). Here we present a limited set of simulations investigating the performance of CPMs with data

subject to single and multiple DLs.

3.4.1 Single Detection Limits

Data were generated for sample sizes of n = 100 and n = 500 such that the outcome Y followed a normal

linear model after log-transformation in the following manner:

Y = exp(Y ∗), where Y ∗ = Xβ + ε,β = 1,X ∼ N(0,1), and ε ∼ N(0,1).

Various scenarios of DLs of Y were considered: 1. No DL. 2. One lower DL at 0.25 (censoring rate 16.3%).

3. One upper DL at 4 (censoring rate 16.3%). 4. One lower DL at 0.25 and one upper DL at 4 (censoring

rate 32.7%). 5. One lower DL at 4 (censoring rate 83.7%). In addition, we considered a scenario with a more

complicated transformation: 6. One lower DL at 0.0625 and

Y =


exp(2Y ∗) if Y ∗ < log(0.25)√

exp(Y ∗) if log(0.25)≤ Y ∗ < log(2)

exp(Y ∗) if Y ∗ ≥ log(2).

Note that the Y in scenario 6 is a monotonic transformation of that in scenario 2 with exactly the same

censoring rate.

CPMs were fit to the observed data {X ,Y} without any knowledge of the correct transformation or Y ∗.

We simulated 1,000 replications under each scenario. Percent bias, root mean squared error (RMSE), and

coverage of 95% CIs were estimated with respect to β , conditional medians for X = {0,1}, and conditional

CDFs at y = 1.5 for X = {0,1}.

Table 3.6 shows results under correctly specified models (i.e., probit link function and X correctly in-

cluded). CPMs resulted in nearly unbiased estimation and good CI coverage. As the sample size increased,

both the bias and RMSE decreased. Note that estimation of the condition medians was “perfect” in scenario

5 because the true conditional medians were below the lower DL due to the high censoring rate and the esti-

mated conditional medians were always ‘<4’, the lowest outcome category corresponding to below the DL.

The estimate of β was more variable in scenario 5 because of the high censoring rate. The estimation of β

in scenario 6, where data were generated from the complicated transformation, was exactly the same as that

in scenario 2 because the same seed was used in all simulation scenarios and the order information above
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the DL was identical between scenarios 2 and 6. However, the conditional medians and CDFs depend on the

scale of the outcome, and their estimates differed between scenarios 2 and 6.

Table 3.7 shows results under scenario 2 with n= 1000 comparing CPMs with some widely used methods

for handling DLs, specifically single imputation with l/2, single imputation with l/
√

2, multiple imputation,

and fully parametric maximum likelihood estimation (MLE). For all non-CPM approaches, we first correctly

assumed that the outcome variable followed a log-normal distribution. With the imputation approaches,

unobserved values were imputed, then a linear regression model was fit on the log-transformed outcome

to obtain the β estimate, and median regression was used to estimate conditional medians. In multiple

imputation, the correct tail distribution was used for imputing data and 10 iterations were performed for each

data set. As expected, the MLE performed the best with the lowest bias and RMSE, and highest efficiency

because the distributional assumptions matched the true distribution. The performance of multiple imputation

was similar to that of the MLE, but with higher RMSE. As a semiparametric method, the CPM also resulted

in minimal bias and correct coverage, but had slightly larger variance and RMSE. In contrast, the single

imputation estimators were biased and tended to have poor coverage, especially for estimating β . We also

evaluated the comparator methods under misspecification of the transformation. We simulated datasets with

X ∼ N(5,1), Y ∗ = Xβ + ε , β = 1, ε ∼ N(0,1), Y = Y ∗2, n = 1000, and l = 13.12 (approximately 17%

censored). The non-CPM approaches assumed a normal linear model after an incorrectly specified log-

transformation. As shown in the bottom half of Table 3.7, only the CPM was able to properly estimate β and

the conditional medians, because pre-transformation and strict distributional assumptions are not needed for

fitting CPMs.

Finally, the Table 3.8 shows the performance of CPMs for the data generated in scenario 2 under moderate

and severe link function misspecification (i.e., fitting CPMs with logit and loglog link functions, respectively).

Link function misspecification is equivalent to misspecification of the distribution of ε because Fε = G−1.

The performance of CPMs was reasonable with moderate link function misspecification with bias under 6%

and coverage of 95% CI close to 0.95 with n = 100, although as low as 0.91 with n = 500. With severe

link function misspecification, performance of CPMs was noticeably worse, with bias as high as 12% and

coverage as low as 0.60 for the conditional median at X = 1.

3.4.2 Multiple Detection Limits

To illustrate the use of CPMs with multiple detection limits, we simulated data from 3 study sites. The data

were generated in a similar way as in Section 4.1, but different DLs were applied at different sites and the

distribution of the covariate X was allowed to vary across sites in some scenarios. Specifically, we considered

the following 5 scenarios:
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Table 3.6: Simulation results for single DLs

n=100 n=500
Parameter Truth Bias(%) RMSE Coverage Bias(%) RMSE Coverage
Scenario 1

β 1 2.803 0.133 0.944 0.638 0.057 0.945
Q(0.5|X = 0) 1 -0.388 0.140 0.951 -0.124 0.063 0.951
Q(0.5|X = 1) 2.718 1.552 0.494 0.949 0.321 0.218 0.951
F(1.5|X = 0) 0.658 0.117 0.054 0.949 0.059 0.024 0.951
F(1.5|X = 1) 0.276 -1.429 0.060 0.949 -0.383 0.026 0.945
Scenario 2

β 1 2.665 0.138 0.945 0.585 0.057 0.948
Q(0.5|X = 0) 1 -0.240 0.142 0.953 0.028 0.063 0.948
Q(0.5|X = 1) 2.718 1.445 0.498 0.953 0.406 0.222 0.946
F(1.5|X = 0) 0.658 0.005 0.054 0.946 -0.085 0.024 0.950
F(1.5|X = 1) 0.276 -0.479 0.061 0.948 0.368 0.028 0.943
Scenario 3

β 1 2.710 0.139 0.943 0.581 0.058 0.948
Q(0.5|X = 0) 1 -0.460 0.141 0.951 -0.020 0.063 0.949
Q(0.5|X = 1) 2.718 0.803 0.477 0.954 0.310 0.223 0.945
F(1.5|X = 0) 0.658 0.0147 0.054 0.946 -0.083 0.024 0.951
F(1.5|X = 1) 0.276 -0.487 0.062 0.948 0.381 0.028 0.941
Scenario 4

β 1 2.544 0.139 0.945 0.538 0.058 0.951
Q(0.5|X = 0) 1 -0.243 0.141 0.954 0.028 0.063 0.949
Q(0.5|X = 1) 2.718 1.017 0.477 0.953 0.358 0.223 0.947
F(1.5|X = 0) 0.658 0.004 0.054 0.947 -0.086 0.024 0.950
F(1.5|X = 1) 0.276 -0.285 0.062 0.948 0.432 0.028 0.943
Scenario 5

β 1 7.315 0.276 0.946 1.330 0.101 0.948
Q(0.5|X = 0) 1 0* 0 1 0 0 1
Q(0.5|X = 1) 2.718 0 0 1 0 0 1
F(1.5|X = 0) 0.658 0.183 0.026 0.954 -0.029 0.010 0.949
F(1.5|X = 0) 0.276 -0.189 0.069 0.952 -0.169 0.030 0.949
Scenario 6

β 1 2.665 0.138 0.945 0.585 0.057 0.948
Q(0.5|X = 0) 1 -0.841 0.071 0.951 -0.503 0.032 0.945
Q(0.5|X = 1) 0.368 -0.312 0.542 0.953 -0.529 0.222 0.946
F(1.5|X = 0) 0.654 0.254 0.048 0.947 0.056 0.022 0.953
F(1.5|X = 1) 0.500 0.061 0.069 0.949 0.536 0.032 0.946

The results of zero bias and RMSE when there is a high censoring rate are because the true conditional medians are below the lower DL
and the estimated conditional medians were always ‘<4’, the lowest outcome category corresponding to below the DL.
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Table 3.7: Comparison of methods under correct and incorrect model specifications

Method Truth Bias(%) Empirical SE RMSE Coverage
Correct model specification

CPM
β 1 0.258 0.040 0.040 0.951

Q(0.5|X = 0) 1 0.226 0.045 0.045 0.953
Q(0.5|X = 1) 2.718 0.490 0.155 0.156 0.949

Single imputation with dl/
√

2
β 1 -10.294 0.028 0.107 0.057

Q(0.5|X = 0) 1 3.614 0.039 0.053 0.859
Q(0.5|X = 1) 2.718 -4.580 0.144 0.190 0.883

Single imputation with dl/2
β 1 -4.247 0.030 0.052 0.732

Q(0.5|X = 0) 1 0.620 0.039 0.040 0.955
Q(0.5|X = 1) 2.718 -1.700 0.147 0.155 0.949

Multiple imputation
β 1 0.269 0.035 0.036 0.964

Q(0.5|X = 0) 1 1.341 0.039 0.041 0.947
Q(0.5|X = 1) 2.718 -1.576 0.148 0.154 0.945

MLE
β 1 0.031 0.035 0.035 0.952

Q(0.5|X = 0) 1 -0.006 0.032 0.032 0.952
Q(0.5|X = 1) 2.718 0.075 0.123 0.123 0.952

Model misspecification
CPM

β 1 0.257 0.040 0.040 0.951
Q(0.5|X = 0) 24.997 0.070 0.444 0.444 0.953
Q(0.5|X = 1) 35.996 0.127 0.680 0.681 0.949

Single imputation with dl/
√

2
β 1 -61.821 0.011 0.618 0.000

Q(0.5|X = 0) 24.997 -3.568 0.389 0.973 0.405
Q(0.5|X = 1) 35.996 -0.818 0.665 0.727 0.935

Single imputation with dl/2
β 1 -55.739 0.014 0.558 0.000

Q(0.5|X = 0) 24.997 -4.833 0.445 1.287 0.262
Q(0.5|X = 1) 35.996 0.240 0.698 0.703 0.887

Multiple imputation
β 1 -59.690 0.016 0.597 0.000

Q(0.5|X = 0) 25.000 -3.040 0.382 0.851 1.000
Q(0.5|X = 1) 35.996 -1.014 0.660 0.754 1.000

MLE
β 1 -62.108 0.012 0.621 0.000

Q(0.5|X = 0) 24.997 -4.838 0.303 1.247 0.021
Q(0.5|X = 1) 35.996 -3.468 0.535 1.358 0.451
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Table 3.8: Simulation results for model misspecification with one lower DL at 0.25

n=100 n=500
Parameter Truth Bias(%) RMSE Coverage Bias(%) RMSE Coverage

Logit Link
Q(0.5|X = 0) 1 0.006 0.142 0.949 0.287 0.064 0.942
Q(0.5|X = 1) 2.718 2.827 0.514 0.947 1.965 0.233 0.936
F(1.5|X = 0) 0.658 0.923 0.057 0.944 0.869 0.024 0.940
F(1.5|X = 1) 0.276 -5.221 0.062 0.939 -4.862 0.030 0.912
Loglog Link
Q(0.5|X = 0) 1 -4.116 0.232 0.953 -3.241 0.042 0.932
Q(0.5|X = 1) 2.718 -10.673 0.491 0.887 -11.861 0.192 0.603
F(1.5|X = 0) 0.658 -0.4602 0.045 0.961 -1.081 0.020 0.947
F(1.5|X = 1) 0.276 8.092 0.076 0.900 10.164 0.010 0.809

1. Lower DLs 0.16, 0.30, and 0.50 for the 3 sites (about 10%, 20%, and 30% censored), and X is inde-

pendent of DLs/sites.

2. Upper DLs 0.16, 0.30, and 0.50 for the 3 sites (about 90%, 80%, and 70% censored), and X is inde-

pendent of DLs/sites.

3. Lower DLs 0.16, 0.30, and 0.50 for the 3 sites (about 17%, 20%, and 20% censored), and X ∼ N(µx,1)

where µx =−0.5,0, and 0.5 for site 1, 2, and 3, respectively.

4. Upper DLs 0.16, 0.30, and 0.50 for the 3 sites (about 83%, 80%, and 80% censored), and X ∼ N(µx,1)

where µx =−0.5,0, and 0.5 for site 1, 2, and 3, respectively.

5. Lower DLs 0.2, 0.3, and -∞ (13%, 20%, and 0% censored) and upper DLs at ∞, 4, and 3.5 (0%, 19%,

and 16% censored) for the 3 sites, and X is independent of DLs/sites.

We considered two sample sizes, n = 150 and n = 900, with the samples sizes distributed equally across sites.

In scenarios 2 and 4, because of the high censoring rates, we estimated the quantiles at p = 0.03 (i.e., 3rd

percentile) and CDFs at y = 0.05. Results from fitting the CPM based on 10,000 replications are shown Table

3.9. In summary, estimates had very low bias and confidence intervals had proper coverage in all simulation

scenarios.

3.5 Discussion

In this paper, we have described an approach to address detection limits in response variables using CPMs.

CPMs have several advantages over existing methods for addressing DLs. They make minimal distributional

assumptions, they yield interpretable parameters, and they are invariant to the value assigned to measures

outside DLs. Any values outside the lowest/highest DLs are simply assigned to the lowest/highest ordinal
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Table 3.9: Simulation results for multiple DLs

n=50 for each site n=300 for each site
Parameter Bias(%) Bias RMSE Coverage Bias(%) Bias RMSE Coverage
Scenario 1

β 1.871 0.019 0.111 0.948 0.249 0.003 0.044 0.948
Q(0.5|X = 0) -0.071 -0.001 0.12 0.948 0.001 -0.001 0.047 0.953
Q(0.5|X = 1) 1.137 0.031 0.404 0.952 0.042 0.001 0.164 0.947
F(1.5|X = 0) 0.258 0.002 0.044 0.950 0.134 0.001 0.017 0.954
F(1.5|X = 1) -1.115 -0.003 0.050 0.950 -0.435 -0.001 0.020 0.952
Scenario 2

β 3.706 0.037 0.186 0.948 0.455 0.005 0.068 0.954
Q(0.03|X = 0) 3.440 0.005 0.037 0.953 0.152 0.000 0.014 0.952
Q(0.03|X = 1) -1.952 -0.008 0.071 0.953 1.795 0.007 0.046 0.9545
F(0.05|X = 0) 11.276 0.000 0.000 0.974 -2.917 0.000 0.000 0.953
F(0.05|X = 1) 79.059 0.000 0.000 0.961 -3.762 0.000 0.000 0.944

Scenario 3
β 1.891 0.019 0.106 0.958 0.248 0.003 0.041 0.962

Q(0.5|X = 0) -0.202 -0.002 0.117 0.964 -0.092 -0.001 0.047 0.969
Q(0.5|X = 1) 0.939 0.026 0.395 0.950 0.041 0.001 0.160 0.949
F(1.5|X = 0) 0.223 0.002 0.045 0.963 0.159 0.001 0.017 0.962
F(1.5|X = 1) -1.221 -0.003 0.050 0.948 -0.383 -0.001 0.020 0.955
Scenario 4

β 1.926 0.019 0.175 0.945 0.206 0.002 0.065 0.954
Q(0.03|X = 0) 4.032 0.006 0.039 0.955 0.332 0.001 0.014 0.951
Q(0.03|X = 1) 7.982 0.033 0.125 0.950 2.096 0.009 0.049 0.950
F(0.05|X = 0) 21.028 0.000 0.000 0.965 -1.349 0.000 0.000 0.952
F(0.05|X = 1) 110.371 0.000 0.000 0.956 -0.940 0.000 0.028 0.943

Scenario 5
β 1.838 0.018 0.111 0.957 0.250 0.003 0.044 0.960

Q(0.5|X = 0) -0.046 -0.001 0.115 0.948 0.440 0.004 0.047 0.951
Q(0.5|X = 1) 2.019 0.054 0.412 0.968 0.171 0.005 0.165 0.963
F(1.5|X = 0) 0.406 0.003 0.04 0.945 -0.059 -0.000 0.229 0.960
F(1.5|X = 1) -0.059 -0.000 0.050 0.960 -0.319 -0.001 0.020 0.961

The percent bias in scenario 4 is relatively high due to the small true values.
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categories, and estimation proceeds naturally. CPMs are also easily extended to handle multiple DLs. From

simulation studies we saw that CPMs performed well, even with high censoring rates and relatively small

sample sizes. We also illustrated the use of CPMs with two quite different HIV datasets with censored

response data. Similar datasets with limits of detection are quite common in biomedical research; the CPM

is an effective analysis tool in these settings.

CPMs have some limitations. Although CPMs do not make distributional assumptions on the response

variable, the link function must still be specified, which corresponds to making an assumption on the distri-

bution of the response variable after an unspecified transformation. Performance can be poor with severe link

function misspecification; however, CPMs appear to be fairly robust to moderate misspecification. In addi-

tion, because we do not make distributional assumptions outside DLs, we are not able to estimate conditional

expectations after fitting a CPM; however, with DLs, conditional quantiles are probably more reasonable

statistics to report anyway.

Further research could consider extensions of CPMs to handle clustered or longitudinal data with DLs.

It may be of interest to study the use of these models with right-censored failure time data (i.e., survival

data), where each observation is potentially subject to a different censoring time; the current manuscript only

considered situations with a relatively small number of potential censoring times (i.e., upper DLs).
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3.6 Supplementary Material

Let a1 < · · ·< aJ be the unique outcome values in a data set. In a CPM,

G[Pr(Y ≤ a j|X ,α,β )] = α j −β
T X ( j = 1, ...,J−1).

For observation i with Xi = xi, let γi, j = Pr(Yi ≤ a j|xi,α,β ). For convenience, let γi,0 = 0 and γi,J = 1. Let

pi, j = γi, j − γi, j−1 be the multinomial probability at a j ( j = 1, . . . ,J).

Consider the logit link function, G(p) = log p
1−p . Then for j = 1, . . . ,J − 1, γi, j =

eφi, j

1+eφi, j
, where φi, j =

α j −β T xi, and ∂γi, j
∂β

=
∂γi, j
∂φi, j

∂φi, j
∂β

= −xiγi, j(1− γi, j). Note that this equation also holds for j = 0 and j = J.

Then

∂ pi, j

∂β
=

∂γi, j

∂β
−

∂γi, j−1

∂β
=−xi[γi, j(1− γi, j)− γi, j−1(1− γi, j−1)]

=−xi[(γi, j−1 + pi, j)(1− γi, j)− γi, j−1(1− γi, j + pi, j)]

=−xi[pi, j(1− γi, j)− γi, j−1 pi, j]

= xi pi, j(γi, j + γi, j−1 −1).

Given data {(xi,yi)}, the log-likelihood is l(α,β ) = ∑i log pi, j(i), where j(i) is the index such that a j(i) =

yi. The score function with respect to β is

∂ l
∂β

= ∑
i

1
pi, j(i)

∂ pi, j(i)

∂β
= ∑

i
xi(γi, j(i)+ γi, j(i)−1 −1).

Now consider the situation where there is a single binary X , coded as 0 and 1. Let nk be the number of

observations with X = k (k = 0,1), and n = n0 + n1. Under the null of β = 0, the CPM estimate of α j is

α̂ j = G(P̂j), where P̂j is the CDF of the empirical distribution of {yi} at a j. As a result, γ̂i, j(i) = P̂j(i). In this

situation, the numerator of the score test statistic is

S =
∂ l
∂β

∣∣∣∣
α̂|β=0

= ∑
i:xi=1

(P̂j(i)+ P̂j(i)−1 −1) = ∑
i:xi=1

(P̂j(i)+ P̂j(i)−1)−n1.

Let k j be the number of observations with yi = a j, R j be the midrank for a j, and R1 = ∑i:xi=1 R j(i) be

the sum of the midranks for the observations with X = 1. Then R j = nP̂j −
k j−1

2 = nP̂j−1 +
k j+1

2 . Since

n
2 (P̂j(i)+ P̂j(i)−1) =

1
2 (R j(i)+

k j−1
2 +R j(i)−

k j+1
2 ) = R j(i)− 1

2 , we have

n
2

S = R1 −
n1

2
− nn1

2
= R1 −

n1(n+1)
2

.
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Note that (R1) =
n1(n+1)

2 under the null of β = 0.

In comparison, the Wilcoxon–Mann–Whitney statistic is U = R1 − n1(n1+1)
2 , which has mean µU = n1n0

2 .

The corresponding test statistic, z = U−µU
σU

, has numerator U −µU = R1 − n1(n+1)
2 . Thus the numerator of the

Wilcoxon test statistic differs from that of the score test statistic by a constant multiplier n
2 .
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CHAPTER 4

Analyzing Clustered Continuous Response Variables with Ordinal Regression Models

4.1 Introduction

Analyses of quantitative response variables are often challenged by distributions that do not follow standard

parametric assumptions. A common approach in such settings is to transform the response variables so

that model assumptions are satisfied. However, response transformations are often ad hoc and parameters

associated with the models can be difficult to interpret on their natural, untransformed scale. For example,

numerous studies of participants living with HIV model associations with CD4:CD8 ratio, a biomarker that

measures the strength of an individual’s immune system. CD4:CD8 ratio tends to be right-skewed (Figure

4.1), and there is no standard accepted transformation. Researchers have analyzed CD4:CD8 ratio with no

transformation (Castilho et al., 2016), log-transformation (Sauter et al., 2016), square-root transformation

(da Silva et al., 2018), fifth-root transformation (Gras et al., 2019), and various categorizations (Petoumenos

et al., 2017; Serrano-Villar et al., 2017). Finding the appropriate transformation can be challenging and results

may be sensitive to the choice of transformation.

A compelling approach to tackling the challenges associated with non-standard response distribution

modeling is to treat continuous response variables as if they were ordinal using cumulative probability mod-

els (CPMs), also known as cumulative link models (Liu et al., 2017). The CPM is a semi-parametric linear

transformation model (Zeng and Lin, 2006) that assumes the response variable follows a linear model fol-

lowing an unspecified transformation is applied. Rather than making an assumption about the appropriate

transformation to apply, CPM fitting uses the data to estimate the transformation non-parametrically by a

step function. The CPM is invariant to any monotonic transformation of the response variable because only

order information is incorporated in regression parameter estimation. Therefore, no pre-transformation of the

response variable is needed. Regression parameters from CPMs are interpretable, and because the cumula-

tive distribution function (CDF) is modeled, conditional (on covariates) means and quantiles can be extracted

from the CPM fit. The use of CPMs for cross-sectional continuous response variables, even with thousands

of unique outcomes, is computationally feasible with applications of sparse matrix calculations and it has

been implemented in Harrell’s orm() function in the rms R package (Harrell, 2020).

Clustered continuous data are common in practice and important for studying associations over time. The

generalized estimating equation (GEE) procedure proposed by Liang and Zeger (1986) and Zeger and Liang

(1986) estimates marginal regression parameters for clustered responses. GEE methods extend generalized
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Figure 4.1: The histogram of CD4:CD8 ratio measured at first follow-up visit for people living with HIV and
on antiretroviral therapy for a year with a suppressed viral load at the Vanderbilt Comprehensive Care Clinic
(VCCC) between 1998 and 2012.

linear models (GLMs) and quasi-likelihood methods to correlated data. Even though valid inferences are pos-

sible with GEE when second and higher order moments are misspecified, GEE for correlated is challenged

by non-standard distributions in the same way linear regression is for scalar response data. Inspired by Liu

et al. (2017), in this paper, we discuss CPMs for clustered continuous response variables again to avoid spec-

ifying a transformation. Specifically, we demonstrate that 1) CPMs can be fit to correlated data using GEE

for ordinal data, and 2) GEE for ordinal data can be applied to non-standard, quantitative response distribu-

tions. We will propose two practical approaches to fit ordinal GEE models to continuous data, depending

on the specified GEE working correlation structure. With our approach, which requires no transformation of

the response variable, we can obtain parameter and CDF estimates, from which estimates of the mean and

quantiles as functions of covariates can be derived. We are unaware of existing methods and software that

implement ordinal data GEE to settings with large numbers (i.e., hundreds or thousands) of unique levels.

In Section 2, we review CPMs for cross-sectional continuous response variables. In Section 3, we demon-

strate how CPMs for clustered data can be fit using GEE for ordinal response variables, and we propose

practical estimation techniques. We illustrate the performance of the methods by simulation in Section 4. In

Section 5, we apply our methods to data from two studies. The first investigates predictors of CD4:CD8 ratio

in a longitudinal cohort of people living with HIV. The second evaluates the genetic contribution of a single

nucleotide polymorphism to lung function decline in a cohort of smokers with chronic obstructive pulmonary

disease (COPD). Finally, we discuss strengths and limitations of the proposed methods and potential future

directions in Section 6.
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4.2 Review of Methods

Liu et al. (2017) proposed fitting cross-sectional continuous response variables using CPMs. Let Y be a con-

tinuous response variable, and Y ∗ = h(Y ) be some transformation of Y , where h(·) is an unknown monotonic

function. Let XXX be a vector of covariates and ε be the error term. We assume the relationship between the

transformed variable and covariates is linear Y ∗ = βββ
T XXX + ε , where ε follows a known distribution Fε and βββ

is a vector of regression parameters. Then,

Y = h−1(Y ∗) = h−1(βββ T XXX + ε). (4.1)

Let G = F−1
ε be a link function corresponding to the distribution of ε . (4.1) can be expressed as a CPM:

F(y|XXX) = P(Y ≤ y|XXX)

= P
(

h−1(βββ T XXX + ε)≤ y|XXX
)

= P
(

ε ≤ h(y)−βββ
T XXX |XXX

)
= Fε

(
h(y)−βββ

T XXX
)
, which implies

G[F(y|XXX)] = h(y)−βββ
T XXX .

The intercept function h(y) = G[F(y|XXX = 000)] represents the reference distribution of the link function trans-

formed CDF when XXX = 000, and βββ
T XXX represents shifts in this that depend on the values of XXX .

Assume there are N i.i.d subjects. Denote y( j) as the jth smallest observed response value ( j = 1, . . . ,J).

Rather than specifying a function form for h(·), we can estimate it using a step function with γ j = h(y( j)).

Such a model, where h(·) is estimated nonparametrically, is referred to as a semi-parametric linear transfor-

mation model (Zeng and Lin, 2006). For each {yi, i = 1, . . . ,N}, we have the CPM

G[F(yi|xxxi)] = G[F(y( j)|xxxi)] = γ j −βββ
T xxxi. (4.2)

Let θθθ = (γγγT ,βββ T )T , where γγγ = (γ1, . . . ,γJ−1)
T . Then are able to identify the likelihood with

L(θθθ) =
J

∏
j=1

∏
i:yi=y( j)

[
F(yi|xxxi)−F(y−i |xxxi)

]
, (4.3)

where F(y−i |xxxi) = limt↑yi F(t|xxxi). The “nonparametric” likelihood can be obtained by substituting F(y−i |xxxi) =
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F(y−
( j)|xxxi) with F(y( j−1)|xxxi) as follows

L(θθθ) =
J

∏
j=1

∏
i:yi=y( j)

[
G−1(γ j −βββ

T xxxi)−G−1(γ j−1 −βββ
T xxxi)

]
, (4.4)

where −∞ ≡ γ0 < γ1 < · · ·< γJ−1 < γJ ≡ ∞. Nonparametric maximum likelihood estimates (NPMLEs) of θθθ

can then be estimated.

The CPM in (4.2) is identical to the cumulative link model often used for ordered categorical data and the

likelihood in (4.4) is identical to the multinomial likelihood used to estimate parameters of cumulative link

models for ordinal data (Snell, 1964; McCullagh, 1980; Agresti, 2010). Therefore, a semi-parametric linear

transformation model can be fit using an ordinal CPM where each distinct value of continuous Y is treated as

its own ordinal category. With truly continuous Y , there will be N such categories. In summary, with CPMs, a

continuous response variable is a linear function of covariates after an unspecified monotonic transformation

is applied. The transformation is estimated nonparametrically with a step function.

CPMs have a number of attractive properties for fitting continuous response variables (Liu et al., 2017;

Tian et al., 2020). First, since only ordinal information is used for estimating βββ , CPMs are invariant to

any monotonic transformation of response variables, which means no transformation of response variables is

needed. They also work well with continuous response variables subject to detection limits even with high

censoring rates and small sample sizes (?). It has been shown that under some mild conditions, CPMs result in

estimates that are consistent and asymptotically normal (?), whose variance can be estimated as the inverse of

the information matrix. The estimated CDF conditioning on covariates is F̂(y|XXX) = G−1(γ̂ j − β̂ββ
T

XXX), where j

is the index such that y( j) = max{i ∈ {1, . . . ,J} : y(i) ≤ y}. Other quantities, such as quantiles and expectation

conditional on covariates can be easily derived. The expectation conditional on covariates can be estimated

as Ê(Y |XXX) = ∑
J
j=1 ∑i:yi=y( j)

y( j)
[
F̂(y( j)|XXX)− F̂(y( j−1)|XXX)

]
. Standard errors for CDFs and expectations can be

calculated using the delta method (Liu et al., 2017). Quantiles conditional on covariates and their confidence

intervals are based on the linear interpolation of inverse of the CDFs (?).

Until recently, the use of CPMs for continuous responses was rare due to lack of unawareness and com-

putational limitations. Harrell’s orm() function in the rms package in R is a computationally efficient

implementation of CPMs that can be fit with tens of thousands of distinct responses. The orm() function

takes advantage of the sparse structure of the Hessian matrix which allows for efficient inversion by Cholesky

decomposition in a Newton-Raphson algorithm (Harrell, 2020; Liu et al., 2017).
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4.3 Methods

4.3.1 CPMs for Clustered Continuous Response Variables

We now consider the setting with clustered continuous response variables where some transformation of

response variables may also be needed before analysis. We would like to extend CPMs to handle clustered

continuous response variables, so we do not have to specify the transformation.

We first introduce some notation and setup. Suppose there are N subjects, and subject i has Ti observations

for i = 1, . . . ,N. Denote the response of subject i at time t as Yit , and YYY i = (Yi1, . . . ,YiTi)
T . Across all subjects,

YYY = (YYY 1, . . . ,YYY N)
T has a total of J distinct values; with truly continuous YYY , J = ∑

N
i=1 Ti. Let Zit j = I(Yit ≤

y( j)) and µit j = E(Zit j|xxxit) = P(Yit ≤ y( j)|xxxit), where y( j) corresponds to the jth smallest value among the

J levels of the response variable. Let the vector of binary indicator variables for subject i at time t be

ZZZit = (Zit1, . . . ,Zit(J−1))
T , and µµµ it = (µit1, . . . ,µit(J−1))

T . For subject i, let ZZZi = (ZZZT
i1, . . . ,ZZZ

T
iTi
)T and µµµ i =

(µµµT
i1, . . . ,µµµ

T
iTi
)T . Covariates for subject i at time t are represented as xxxit .

Suppose Yit has a linear relationship with the covariates xxxit after some unspecified monotonic transforma-

tion h(·) that leads to a linear transformation model

Yit = h−1(Y ∗
it ) = h−1(βββ T xxxit + εit), (4.5)

where εit follows a specified distribution corresponding to the link function G = F−1
ε . We assume that εit is

independent of εi′t ′ for i ̸= i′, but not independent if i = i′. Based on the linear transformation model, we have

µit j = P(Yit ≤ y( j)|xxxit)

= P(h−1(βββ T xxxit + εit)≤ y( j)|xxxit)

= P(εit ≤ h(y( j))−βββ
T xxxit |xxxit)

= Fε(h(y( j))−βββ
T xxxit), which implies

G(µit j) = h(y( j))−βββ
T xxxit .

Therefore, similar to (4.2), the CPM for a clustered continuous response variable is:

G(µit j) = γ j −βββ
T xxxit , (4.6)

where G(·) is the specified link function and γ j = h(y( j)). The parameters θθθ = (γγγT ,βββ T )T are marginal

parameters that do not conditional on random effects. The interpretation of βββ depends on the link function

specified. For example, βββ is interpreted as a log odds ratio with the logit link and a hazard ratio with the
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complementary log-log link (cloglog link). The intercepts γγγ are the link function transformed CDFs with all

covariates equal to 0, which also represents the transformation needed for the response variable to be modeled

by a linear model.

With clustered data, we cannot directly apply nonparametric maximum likelihood estimation to fit CPMs

due to within cluster correlation. Because the CPM has been parameterized as an expectation, µit j, to obtain

estimates of (4.6), we can use GEE techniques. GEE was proposed to model longitudinal data with general-

ized linear models and quasi-likelihood methods. It only requires correct specification of the marginal model

for the response mean while the within cluster correlation is modeled with a working correlation in terms

of association parameters (Liang and Zeger, 1986; Zeger and Liang, 1986). The estimation of association

parameters can be improved by introducing a second estimating function based on a response dependence

model (Prentice, 1988; Prentice and Zhao, 1991; Carey et al., 1993). GEE methods for longitudinal ordinal

responses have been proposed, where µit j, the mean of the binary indicator for the response Zit j, is modeled

(Heagerty and Zeger, 1996; Lipsitz et al., 1994; Huang et al., 2002; Parsons et al., 2006; Touloumis et al.,

2013).

Specifically, we estimate θθθ in (4.6) using GEE methods for ordinal response data and solve the estimating

equation

Qθθθ (θθθ ;ααα) =
N

∑
i=1

DDDT
i WWW−1

i (ZZZi −µµµ i) = 000, (4.7)

where DDDi =
∂ µµµ i
∂θθθ

and WWW i = SSS
1
2
i RRRi(ααα)SSS

1
2
i . RRRi(ααα) is a working correlation matrix of ZZZi in terms of the association

parameters ααα and SSSi is a Ti(J−1)×Ti(J−1) block matrix with elements based on the variance of Zit j. WWW−1
i

can be considered as a weight matrix for subject i. More efficiency is gained as the working correlation matrix

RRRi(ααα) gets closer to the true correlation structure of ZZZi. The structure of RRRi(ααα) is assumed by the analyst and

ααα can then be estimated with a second estimating function that will be described in more detail in Section

4.3.3.

The variance of the estimate of θθθ can be estimated by

Vθθθ =

[
N

∑
i=1

DDDT
i WWW−1

i DDDi

]−1[ N

∑
i=1

DDDT
i WWW−1

i Cov(ZZZi)WWW−1
i DDDi

][
N

∑
i=1

DDDT
i WWW−1

i DDDi

]−1

(4.8)

with plug-in estimates, where Cov(ZZZi) = (ZZZi −µµµ i)(ZZZi −µµµ i)
T .

Since µit j = F(y( j)|xxxit), the marginal CDF conditional on covariates, is modeled, other quantities condi-

tional on covariates can be readily obtained from a fitted CPM. The CDF conditional on covariates XXX can be

calculated as F̂(y|XXX) = G−1(γ̂ j − β̂ββ
T

XXX), where j is the index such that y( j) = max{i ∈ {1, . . . ,J} : y(i) ≤ y}..
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We can derive its standard error by the delta method. Quantiles conditional on covariates along with their

confidence intervals can be obtained from the linear interpolation of the inverse of the CDF and its corre-

sponding confidence intervals. The expectation conditional on covariates XXX can be calculated as Ê(Y |XXX) =

∑
J
i=1 ∑i,t:yit=y( j)

y( j)
[
F̂(y( j)|XXX)− F̂(y( j−1)|XXX)

]
. Similar to F̂(y|XXX), the standard error of the expectation can

also be obtained by the delta method.

Although the model described has attractive features, it is very challenging to fit ordinal GEE methods

on clustered continuous response variables due to computation limitations. More specifically, for each ob-

servation Yit , we need J − 1 indicators Zit j = I(Yit ≤ y( j)), and J is usually a large number for continuous

data, which implies that WWW i and DDDi in (4.7) and (4.8) can be enormous. In the following subsections, we

will introduce two feasible and computationally efficient implementations to analyze clustered continuous

response variables based on CPMs with specific working correlation structures.

4.3.2 CPMs with Independence Working Correlation

Independence working correlation structures do not require estimating ααα because RRRi(ααα) is set to III, the identity

matrix. In addition to potentially improving computation efficiency, there are settings where using an inde-

pendence working correlation structure is recommended. For example, if E(Yit |XXX it) ̸= E(Yit |XXX i1, . . . ,XXX iTi),

one must use an independence working correlation to get unbiased estimates of marginal parameters (Pepe

and Anderson, 1994). There are many examples in practice where the cross-sectional conditional expectation

is not equal to the full conditional expectation, particularly with time-varying covariates (e.g., Lauderdale

et al. (2008); Schildcrout et al. (2020)).

With independence working correlation, solving (4.7) and plugging estimates into (4.8) to estimate the

variance is equivalent to treating the data as unclustered, computing the NPMLEs as described in Section 2,

and then correcting the variance using a sandwich-variance estimate. CPMs with robust covariance is ordinal

GEE with independence working correlation structure. This equivalence is known but a detailed proof is in

the Supplementary Material. CPMs can be efficiently fit to clustered continuous responses with thousands of

distinct values, since this approach permits fitting CPMs to cross-sectional response data in a computationally

efficient manner.
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Specifically, we fit CPMs to clustered continuous response variables by maximizing the likelihood

L(θθθ) =
J

∏
j=1

∏
i,t:yit=y( j)

[
F(yit |xxxit)−F(y−it |xxxit)

]
=

J

∏
j=1

∏
i,t:yit=y( j)

[
G−1(γ j −βββ

T xxxit)−G−1(γ j−1 −βββ
T xxxit)

]
=

J

∏
j=1

∏
i,t:yit=y( j)

(
µit j −µit( j−1)

)
.

(4.9)

To correct for correlated responses within each cluster, we use the Huber sandwich estimator to estimate

the covariance (Freedman, 2006). Since the clusters are independent, we group terms within clusters and then

treat clusters as independent units. Let

l(θθθ) = log(L(θθθ)) =
J

∑
j=1

∑
i,t:yit=y( j)

log( fit j)

be the log-likelihood of (4.9), where fit j = µit j −µit( j−1). The first and second partial derivatives of l(θθθ) with

respect to θθθ are given by

l′(θθθ) =
∂ l(θθθ)

∂θθθ
=

J

∑
j=1

∑
i,t:yit=y( j)

∂ log( fit j)

∂θθθ
=

J

∑
j=1

∑
i,t:yit=y( j)

git j,

l′′(θθθ) =
∂ 2l(θθθ)

∂θθθ
2 =

J

∑
j=1

∑
i,t:yit=y( j)

∂ 2 log( fit j)

∂θθθ
2 .

The Huber sandwich estimator for the covariance based on the estimated parameters θ̂θθ is

[
l′′(θ̂θθ)

]−1

 N

∑
i=1

(
Ti

∑
t=1

ĝit j

)(
Ti

∑
t=1

ĝit j

)T
[l′′(θ̂θθ)]−1

. (4.10)

The consistency and asymptotic normality of estimates using this approach to clustered continuous re-

sponse data can be shown under mild regularity conditions in a manner similar to that of Li et al. (2022b).

Details are in the Supplementary Material.

The point estimations and corresponding robust covariance of CPMs can be obtained by orm() and

robcov() functions in the rms package in R respectively (Harrell, 2020).

4.3.3 CPMs with Exchangeable/AR1 Working Correlation

Though computationally efficient, CPMs with independence working correlation structure can be statistically

inefficient if the within cluster correlation is high. GEE methods for ordinal response variables allow for more
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complicated working correlation structures to improve efficiency. There have been many ways proposed for

specifying and estimating ααα in such settings. Lipsitz et al. (1994) estimated the association parameter by

Pearson residuals; Heagerty and Zeger (1996) extended alternating logistic regression for binary longitudinal

outcomes to ordinal longitudinal outcomes using pairwise log-odds ratio parameters as the association pa-

rameters (Lipsitz et al., 1991; Carey et al., 1993); Touloumis et al. (2013) described the association as local

odds ratios based on Goodman’s row and column effects models.

For computation efficiency, we utilize a framework proposed by Parsons et al. (2006, 2009) that specifies

the association parameter α as a correlation and estimates the parameter iteratively by minimizing the loga-

rithm of the determinant of the covariance matrix of the regression parameters. This method, which Parsons

et al. (2009) denoted as “repolr”, uses the covariance matrix to estimate ααα , where the dimension is manage-

able. Other methods require all pairs of observations in the second estimating equation, which is extremely

computationally intensive for continuous response data. In repolr, RRRi(ααα) is constructed as RRRi(α)=KKKi(α)⊗CCC,

where KKKi(α) is a Ti ×Ti matrix of within cluster correlation and SSS is a (J−1)× (J−1) matrix of correlations

between ZZZit . By assumption, CCC is the same for every pair of binary indicators within one cluster.

CCC =


ρ11 . . . ρ1(J−1)

...
. . .

...

ρ(J−1)1 . . . ρ(J−1)(J−1)

 ,

where ρpq is expected correlation between Zit p and Zitq for i = 1, . . . ,N. With the logit link, ρpq = ρqp =

exp(γp − γq)
1
2 where p < q (Kenward et al., 1994). Two most widely-used structures for KKK(α) are exchange-

able (also called uniform or compound symmetric) and first-order autoregressive (AR1) structures (Diggle

et al., 2002). For exchangeable structure, KKK(p,q)(α) = 1 if p = q and KKK(p,q)(α) = α otherwise; for AR1

structure, KKK(p,q)(α) = 1 for p = q and KKK(p,q)(α) = α |tp−tq| otherwise. The additional estimating equation for

the association parameter α in repolr is

∂ log |Vθθθ (α)|
∂α

= 0, (4.11)

which is equivalent to estimating α by minimizing log |Vθθθ (α)|. Hence, this equation estimates α to minimize

the confidence region size of the θθθ parameter estimates. The algorithm iterates between solving (4.7) for θ̂θθ

and solving (4.11) for α̂ until convergence. This approach can be applied with the repolr() function in

the repolr package in R (Parsons, 2017) for complete data and the logit link.

With continuous response variables, it may still be expensive to run a fully-iterated repolr model; hence,

we propose a more computationally efficient one-step repolr.
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Others have proposed one-step GEE estimators to reduce computational burden (Lipsitz et al., 2017).

In our setting, instead of iterating between the two estimating equations (4.7) and (4.11) until convergence,

we start with an estimate of θθθ under independence working correlation structure θ̂θθ I , and then obtain the

association parameter α̂αα by plugging θ̂θθ I into (4.8), and finally solve (4.7) to get θ̂θθ which is asymptotically

equivalent to the fully-iterated GEE estimator (Lipsitz et al., 2017). Specifically,

1. Estimate θ̂θθ I by minimizing (4.9)

2. Estimate α̂ by solving (4.11) with V
θ̂θθ I
(α)

3. Estimate θ̂θθ by solving (4.7) with α̂ .

We have built an R package, cpmgee (available at https://github.com/YuqiTian35/cpmgee), that applies

this one-step estimation procedure for exchangeable and AR1 working correlation structures. This pacakge

also fits CPMs with independence working correlation.

Although this one-step repolr can substantially reduce the computational burden, computation with ex-

changeable and AR1 working correlation structures may still be an issue with large numbers of continuous

outcomes. We may need to further reduce the number of distinct values in the response by binning. Specifi-

cally, the N′ = ∑
N
i=1 Ti observations can be divided into Mb bins, where the value assigned to each observation

in the bin is the median value for observations in that bin. Approximately equal-quantile binning can be

achieved by expressing N′ as

N′ = Mbq+ r = (Mb − r)q+ r(q+1), (4.12)

where q is the integer quotient of N′
Mb

. In this way, Mb − r bins have q observations, and r bins have q+ 1

observations. Rounding to a certain decimal place is another way to reduce the number of distinct values.

More strategies for binning and rounding for cross-sectional CPMs with very large sample sizes are provided

elsewhere (Li et al., 2022a).

4.4 Simulations

We studied the performance of our estimators applying CPMs with independence, exchangeable, and AR1

working correlation structures to continuous clustered data under various simulation settings. Responses

were generated in the following manner for subject i at time t:

Yit = Inv-χ2
(

Φ(Y ∗
it )

2
, df = 5

)
, and Y ∗

it = XiβX +TitβT + εit ,
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Figure 4.2: (A) Histogram of the response variable. (B) Histogram of the log-transformed response variable.
(C) Histogram of the response variable with the correct transformation 2Φ−1(χ2(Y,df = 5)) for a linear
model.

where Inv-χ2(·, df=5) is the inverse of the CDF for a chi-square distribution with 5 degrees of freedom and

Φ(·) is the probability density function of the standard normal distribution. The transformation has been used

in earlier work (Tian et al., 2020) and was chosen because it corresponds to no closed-form transformation.

In the primary setting, we set the sample size N to be 1000. Each subject had at least 2 and at most 6

observations, where dropouts were missing completely at random. Xi is a time-invariant covariate following

the standard normal distribution. Tit represents time, a time-variant covariate, and was set to be 0,0.2, . . . ,1.

A logistic residual distribution was used and the correlation structure was exchangeable with α = 0.7. We set

βX = 1 and βT = 1.In Figure 4.2, we show histograms of the response variable after different transformation

based on one simulated data set. The response variable on its original scale is right-skewed. A natural choice

for right-skewed data is log-transformation. However, the log-transformed response variable is slightly left-

skewed. The correct transformation 2Φ−1(χ2(·, df=5)) is not a function one would typically consider for

transformation. For CPMs with exchangeable and AR1 working correlation structures, we fit models using

equal-quantile binning with Mb = 300.

Besides the primary setting, we also looked into scenarios with smaller α , identity transformation (i.e.,

Y = Y ∗), complete data, different Mb for equal-quantile binning, rounding with different decimal places, dif-

ferent sample sizes, different cluster sizes, different time effects, different correlation structures, link function

misspecification, and fully-iterated repolr models. (Simulation results for some settings are in Supplementary

Material.)

We simulated 1000 replications under each scenario and evaluated the results by percent bias, root mean

squared error (RMSE), and coverage of 95% CIs with respect to covariate coefficients. We also compared

our two methods with standard GEE methods for continuous data with the correctly transformed response
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variable. We also investigated the performance of estimates of E(Y |X = 1,T = 0.2), Q(0.5|X = 1,T = 0.2),

and F(5|X = 1,T = 0.2) that were estimated from the fitted CPMs. To evaluate the relative efficiency (RE)

of regression parameters, we divided the empirical variance obtained from a CPM method by the empirical

variance of standard GEE for continuous response variables with the correct transformation. With the correct

transformation and correlation structure, the standard GEE method is optimal.

4.4.1 The Primary Setting and its Modifications

Simulation results under the primary setting and two modifications are shown in Table 4.1. For the primary

setting, CPMs performed quite well with low bias and generally good coverage for βX , βT , E(Y |X = 1,T =

0.2), Q(0.5|X = 1,T = 0.2), and F(5|X = 1,T = 0.2). CPMs with an independence working correlation

structure had minimal bias and coverage near 0.95. Estimates of βT from CPMs with a properly specified

exchangeable working correlation structure tended to be slightly more biased (∼3%) and have lower than

normal coverage (0.91) but were much more efficient than those using independence working correlation

(RMSE of 0.075 vs. 0.091). The relative efficiency of CPMs with a exchangeable working correlation was

fairly close to that of the gold standard GEE estimator where the correct transformation and correlation

structure were correctly assumed.

When the within cluster correlation was low (α = 0.3), the performance of CPMs remained good and had

similar efficiency to standard GEE. CPMs with exchangeable working correlation was even slightly more

efficient in estimating the time-varying covariate and this might be due to variance reduction from binning.

With identity transformation, the results of CPMs for βX and βT were identical to the primary setting because

both methods are invariant to monotonic transformation of the response variable. The conditional mean was

estimated with low bias and correct coverage rates using both working correlation structures.

4.4.2 Equal-quantile Binning and Rounding

In the primary simulation setting, when applying CPMs with exchangeable working correlation, we used

equal-quantile binning with Mb = 300. To investigate the sensitivity of results to this choice, we repeated

simulations using different binning/rounding strategies. Table 4.2 shows results. As Mb increased, we ob-

served fairly similar performance with slightly higher bias in coefficient estimation and slightly lower bias

in conditional quantities. With larger Mb might lead to poorer estimation of coefficient parameter and better

estimation of conditional quantities due to increasing number of intercepts estimated while fixing the sample

and cluster size. Rounding to 0 decimal place resulted in 169 categories in the response variable on average.

There was great information loss by rounding to 0 decimal place and therefore the performance particularly

of Q(0.5|X = 1,T = 0.2) and F(5|X = 1,T = 0.2) was poor. Also, rounding to a decimal place tends to be
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Table 4.1: Simulation results for the primary setting and its modifications

Scenario Method Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

Bias(%) -0.010 0.087 - - -
GEE RMSE 0.050 0.060 - - -

(correct) Coverage 0.953 0.944 - - -
RE baseline baseline - - -

Bias(%) 0.129 0.270 -0.009 -0.074 -0.169
α = 0.7 CPM RMSE 0.054 0.091 1.232 1.199 0.171

Y=Inv-χ2
(

Φ(Y∗)
2 ,5

)
(ind) Coverage 0.957 0.942 0.956 0.958 0.956

RE 1.129 2.279 - - -
Bias(%) 0.234 2.983 -0.181 -0.270 -0.077

CPM RMSE 0.052 0.075 1.224 1.191 0.170
(ex) Coverage 0.957 0.910 0.948 0.956 0.958

RE 1.047 1.310 - - -
Bias(%) -0.061 0.127 - - -

GEE RMSE 0.040 0.089 - - -
(correct) Coverage 0.955 0.943 - - -

RE baseline baseline - - -
Bias(%) 0.063 0.254 -0.015 -0.054 -0.069

α = 0.3 CPM RMSE 0.041 0.092 1.236 1.204 0.171
Y=Inv-χ2

(
Φ(Y∗)

2 ,5
)

(ind) Coverage 0.959 0.946 0.957 0.952 0.959
RE 1.063 1.073 - - -

Bias(%) 0.160 2.929 -0.196 -0.249 0.023
CPM RMSE 0.041 0.091 1.227 1.195 0.170
(ex) Coverage 0.961 0.936 0.953 0.943 0.959

RE 1.041 0.943 - - -
Bias(%) -0.010 0.087 - - -

GEE RMSE 0.050 0.060 - - -
(correct) Coverage 0.953 0.944 - - -

RE baseline baseline - - -
Bias(%) 0.129 0.270 0.005 -0.248 -0.006

α = 0.7 CPM RMSE 0.054 0.091 0.708 0.707 0.011
Y = Y ∗ (ind) Coverage 0.957 0.942 0.957 0.958 0.954

RE 1.129 2.279 - - -
Bias(%) 0.234 2.983 -0.266 -0.803 0.008

CPM RMSE 0.052 0.075 0.706 0.702 0.011
(ex) Coverage 0.957 0.910 0.955 0.956 0.932

RE 1.047 1.310 - - -
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Table 4.2: Simulation results for equal-quantile binning and rounding with exchangeable correlation structure

Scenario Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

Binning Mb =
50

Bias(%) 0.174 0.757 -0.039 -0.053 -0.233
RMSE 0.052 0.068 1.205 1.166 0.171

Coverage 0.958 0.942 0.929 0.923 0.935

Binning Mb =
100

Bias(%) 0.187 1.193 -0.316 -0.493 -0.174
RMSE 0.052 0.069 1.217 1.181 0.171

Coverage 0.957 0.936 0.945 0.948 0.953

Binning Mb =
200

Bias(%) 0.208 2.069 -0.197 -0.311 -0.112
RMSE 0.052 0.071 1.223 1.189 0.170

Coverage 0.957 0.924 0.946 0.952 0.958

Rounding
0 decimal place

Bias(%) 0.196 0.799 -0.015 -7.316 -20.965
RMSE 0.052 0.070 1.231 0.940 0.222

Coverage 0.959 0.937 0.952 0.244 0.004

Rounding
1 decimal place

Bias(%) 0.210 3.180 -0.123 -0.693 -2.147
RMSE 0.052 0.076 1.229 1.175 0.176

Coverage 0.957 0.907 0.953 0.942 0.943

a sub-optimal choice for such right-skewed responses because many values were rounded at the lower end to

a single value. There were 498 ordinal levels on average if the response variable was rounded to 1 decimal

place. The performance for rounding to 1 decimal place was good.

4.4.3 Sample Size and Cluster Size

Table 4.3: Simulation results for different sample sizes and cluster sizes

Scenario Method Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

N = 100

M = 6

Bias(%) 0.551 -0.313 - - -
GEE RMSE 0.166 0.184 - - -

(correct) Coverage 0.917 0.952 - - -
RE baseline baseline - - -

Bias(%) 2.114 1.504 0.289 0.469 -0.757
CPM RMSE 0.182 0.288 1.325 1.299 0.180
(ind) Coverage 0.940 0.945 0.939 0.939 0.947

RE 1.196 2.433 - - -
Bias(%) 3.122 40.440 -1.114 -0.873 0.985

CPM RMSE 0.181 0.516 1.260 1.233 0.175
(ex) Coverage 0.920 0.556 0.920 0.942 0.946

RE 1.159 3.016 - - -

N = 200

M = 6

Bias(%) 0.497 0.099 - - -
GEE RMSE 0.112 0.131 - - -

(correct) Coverage 0.938 0.948 - - -
RE baseline baseline - - -

Bias(%) 1.090 0.873 0.085 0.164 -0.505
CPM RMSE 0.126 0.195 1.266 1.240 0.174
(ind) Coverage 0.940 0.952 0.939 0.946 0.934

RE 1.263 2.200 - - -
Bias(%) 1.595 16.625 -0.505 -0.418 0.179

CPM RMSE 0.122 0.242 1.251 1.221 0.174
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Table 4.3: Simulation results for different sample sizes and cluster sizes (continued)

Scenario Method Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

(ex) Coverage 0.946 0.790 0.933 0.939 0.939
RE 1.166 1.797 - - -

N = 500

M = 6

Bias(%) -0.259 0.034 - - -
GEE RMSE 0.074 0.084 - - -

(correct) Coverage 0.940 0.949 - - -
RE baseline baseline - - -

Bias(%) 0.074 0.444 -0.049 -0.068 -0.035
CPM RMSE 0.082 0.122 1.236 1.210 0.171
(ind) Coverage 0.941 0.955 0.942 0.941 0.944

RE 1.211 2.137 - - -
Bias(%) 0.192 5.862 -0.318 -0.360 0.262

CPM RMSE 0.079 0.114 1.223 1.196 0.170
(ex) Coverage 0.940 0.911 0.927 0.934 0.931

RE 1.134 1.370 - - -

N = 1000

M = 3

Bias(%) 0.011 -0.013 - - -
GEE RMSE 0.052 0.142 - - -

(correct) Coverage 0.950 0.943 - - -
RE baseline baseline - - -

Bias(%) 0.281 0.157 -0.006 -0.049 -0.267
CPM RMSE 0.054 0.167 1.233 1.201 0.171
(ind) Coverage 0.956 0.950 0.944 0.957 0.957

RE 1.067 1.387 - - -
Bias(%) 0.283 2.863 -0.083 -0.144 -0.364

CPM RMSE 0.053 0.154 1.229 1.196 0.171
(ex) Coverage 0.955 0.938 0.945 0.956 0.957

RE 1.050 1.137 - - -

N = 1000

M = 12

Bias(%) 0.041 -0.083 - - -
GEE RMSE 0.050 0.023 - - -

(correct) Coverage 0.950 0.954 - - -
RE baseline baseline - - -

Bias(%) 0.221 0.029 0.026 -0.022 -0.212
CPM RMSE 0.056 0.046 1.235 1.203 0.171
(ind) Coverage 0.949 0.954 0.955 0.945 0.950

RE 1.235 4.075 - - -
Bias(%) 0.461 2.455 -0.365 -0.401 -0.144

CPM RMSE 0.053 0.043 1.216 1.186 0.170
(ex) Coverage 0.947 0.886 0.940 0.945 0.954

RE 1.115 2.310 - - -

We conducted additional simulations varying the number of clusters, N, from 100 to 500. The cluster

size is of interest as well. Let M = max{Ti} be the largest cluster size. Performances of the two methods

were evaluated with smaller (M = 3) and larger (M = 12) cluster sizes while other settings were the same

as the primary settings (N = 1000,M = 6). Results are shown in Table 4.3. When N = 100, CPMs with

independence working correlation had good performance while CPMs with exchangeable working correlation

had substantial bias. The bias decreased and efficiency gains increased as the sample size increased. With
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Table 4.4: Simulation results for the AR1 correlation structure

Method Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

Bias(%) -0.065 0.144 - - -
GEE RMSE 0.046 0.099 - - -

(correct) Coverage 0.954 0.943 - - -
RE baseline baseline - - -

Bias(%) 0.087 0.277 0 -0.062 -0.111
CPM RMSE 0.048 0.109 1.231 1.198 0.170
(ind) Coverage 0.960 0.946 0.958 0.958 0.950

RE 1.115 1.169 - - -
Bias(%) 0.089 0.530 -0.107 -0.190 -0.114

CPM RMSE 0.048 0.103 1.226 1.193 0.170
(AR1) Coverage 0.958 0.946 0.950 0.951 0.950

RE 1.079 1.051 - - -
Bias(%) 0.203 3.007 -0.176 -0.256 -0.033

CPM RMSE 0.048 0.107 1.223 1.190 0.170
(ex) Coverage 0.961 0.946 0.950 0.947 0.958

RE 1.004 1.040 - - -

large N, performance of CPMs was good regardless of cluster size. However, the RE of standard GEE over

CPMs seemed to be greater as the number of clusters increased.

4.4.4 First-order Autoregressive (AR1) Correlation Structure

We generated residuals with AR1 correlation structure with α = 0.7, and fit both AR1 and exchangeable

working correlation structures keeping other settings the same as the primary setting. The results are in Table

4.4. CPM methods were almost as efficient as continuous GEE methods, especially with the correct AR1

working correlation structure. If fitting exchangeable working correlation, CPMs method still had small bias

and correct coverage rates.

4.4.5 Link Function Misspecification

We look into the performance of our approaches with link function misspecification. The residuals were

generated with standard normal distributions and we still fit models with the logit link. Results are shown in

Table 4.5. Regression parameters were transformed to the same scale. CPMs methods are generally robust to

moderate link function misspecification (Liu et al., 2017; Tian et al., 2020). The bias of regression parameters

is larger than that in correctly specified models. Mean and median estimation are still good. The results for

CDF is less satisfying under link function misspecification.

4.5 Applications

To illustrate the use of CPM methods proposed, we applied them on two real data sets. The first studies

CD4:CD8 ratios among people living with HIV CD4:CD8 ratios. The second considers lung function among
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Table 4.5: Simulation results for the link function misspecification

Method Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

Bias(%) -0.009 0.057 - - -
GEE RMSE 0.028 0.033 - - -

(correct) Coverage 0.952 0.944 - - -
RE baseline baseline - - -

Bias(%) -3.983 -3.879 0.272 0.503 -6.193
CPM RMSE 0.052 0.066 1.220 1.223 0.271
(ind) Coverage 0.793 0.876 0.956 0.953 0.842

RE 1.414 2.654 - - -
Bias(%) -4.602 -2.726 0.237 0.342 -5.338

CPM RMSE 0.056 0.050 1.219 1.216 0.270
(ex) Coverage 0.722 0.890 0.952 0.954 0.864

RE 1.341 1.597 - - -

smokers with mild COPD.

4.5.1 CD4:CD8 Ratio

CD4:CD8 ratio is the ratio of CD4 lymphocyte count (cells/mm3) to CD8 lymphocyte count (cells/mm3). It

has been associated with immune senescence, inflammation, and comorbidities for people living with HIV

(Castilho et al., 2016). As highlighted in the Introduction, CD4:CD8 ratio tends to be right-skewed and there

is no standard transformation. To study the relationship between CD4:CD8 ratio and age, an observational

cohort study was conducted among people living with HIV who had been on antiretroviral therapy (ART) for

one year, had a suppressed viral load, and received treatment at the Vanderbilt Comprehensive Care Clinic

(VCCC) between 1998 and 2012 (Castilho et al., 2016). In the current analysis, we are interested in factors

associated with CD4:CD8 ratio during one year of follow-up, i.e., during the second year after starting ART.

CD4:CD8 ratio was collected longitudinally during routine clinical visits. Our study included 1763 subjects

with a mean of 2.9 CD4:CD8 measurements (median = 3; range = 1-7), and 3862 unique values in the

outcome.

CPMs with independence working correlation is able to handle 3862 ordinal levels, while CPMs with

exchangeable or AR1 working correlation requires binning or rounding due to computation limitations. For

the latter, We divided the outcome to 1000 bins and rounded to 2 decimal places. The equal-quantile binning

resulted in 979 ordinal levels because of ties on the original scales. The 2 decimal place rounding led to 234

levels. The logit link was used in all models. The time-invariant covariates considered were calendar year at

baseline (one year after ART initiation), race, baseline age, sex, probable route of infection, hepatitis C virus

(HCV) infection status, and hepatitis B virus (HBV) infection status. Time (in years) after baseline was the

only time-varying covariate.
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Table 4.6: Odds ratio estimates of higher CD4:CD8 ratios with 95% confidence intervals from CPMs with
independence working correlation and CPMs with exchangeable working correlation with binning and round-
ing (1000-bin equal-quantile binning that led to 979 levels; rounding to 2 decimal place) are shown. Variance
ratios are calculated by the variances of the log-odds ratios from CPMs with exchangeable working correla-
tion divided by the variances of the the log-odds ratios from CPMs with independence working correlation.

Predictor Independence Exchangeable VR Exchangeable VR(Binning) (Rounding)
Time (years) 1.217 (1.082, 1.370) 1.226 (1.135, 1.325) 0.429 1.226 (1.134, 1.324) 0.429
Enrollment Year 1.011 (0.984, 1.038) 1.013 (0.989, 1.038) 0.813 1.014 (0.989, 1.038) 0.814
Race

African American (Reference)
Caucasian 1.014 (0.829, 1.239) 1.069 (0.886, 1.291) 0.881 1.063 (0.881, 1.283) 0.881
Hispanic 0.679 (0.464, 0.992) 0.730 (0.501, 1.064) 0.983 0.721 (0.495, 1.051) 0.984
Other 0.724 (0.467, 1.123) 0.740 (0.489, 1.119) 0.890 0.732 (0.484, 1.108) 0.889

Baseline Age (10 years) 0.670 (0.608, 0.735) 0.677 (0.620, 0.740) 0.877 0.676 (0.619, 0.738) 0.877
Sex

Male (Reference)
Female 1.724 (1.321, 2.249) 1.803 (1.400, 2.322) 0.902 1.800 (1.398, 2.318) 0.902

Route
Heterosexual (Reference)
Injection Drug Use 0.991 (0.675, 1.455) 0.931 (0.644, 1.347) 0.927 0.931 (0.644, 1.348) 0.928
MSM 0.904 (0.700, 1.167) 0.902 (0.709, 1.148) 0.885 0.898 (0.706, 1.142) 0.885
Other/Unknown 0.793 (0.466, 1.351) 0.858 (0.535, 1.377) 0.789 0.851 (0.530, 1.366) 0.789

HCV 0.824 (0.596, 1.138) 0.808 (0.599, 1.088) 0.850 0.805 (0.597, 1.085) 0.851
HBV 0.993 (0.660, 1.492) 0.919 (0.642, 1.314) 0.771 0.920 (0.643, 1.317) 0.770

Odds ratio estimates and 95% confidence intervals from the fitted CPMs are shown in Table 4.6. The

results suggested that time, race, baseline age and sex are significantly associated with CD4:CD8 ratio. Re-

sults are fairly similar across all three fitted CPMs. For example, fixing other variables, a 10-year increase in

baseline age is associated with 33% decrease in the odds of having higher CD4:CD8 ratio.

There were some differences in efficiency of estimates across different CPM estimating procedures. The

variance ratios in Table 4.6 are the ratios of the variances of the log-odds ratios from CPMs with exchangeable

working correlation divided by the variances of the log-odds ratios from CPMs with independence working

correlation. The variances for the estimated log-odds ratio for the time-varying covariate, time, for the two

exchangeable working correlation models was 0.429 times that for the independence working correlation

model. We saw variance ratios ranging from 0.78 to 0.93 for time-invariant covariates.

Other quantities can be estimated from the fitted CPMs. Conditional means, and medians of CD4:CD8

and the conditional probabilities of CD4:CD8 being greater than 1 are shown as a function of time since

baseline in Figure 4.3 with other covariates fixed at their median (for continuous covariates) or mode (for cat-

egorical covariates) levels. CD4:CD8 ratio above 1 is considered normal for people without HIV (Petoumenos

et al., 2017). Results from the three models are generally very close. We also included the conditional mean

obtained by a standard GEE model without transforming the response data for purpose of comparison; results
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Figure 4.3: The estimated conditional mean, median of CD4:CD8 and the conditional probability of the ratio
being greater than 1 (normal range) as functions of years since enrollment while fixing other covariates at
their medians (for continuous covariates) or modes (for categorical covariates).

from this analysis are also fairly similar.

4.5.2 The Lung Health Study

For the second application, we used data from The Lung Health Study on smokers with mild COPD. The

Lung Health Study is a randomized clinical trial collecting data from 10 centers in the United States and

Canada from 1986 to 1994 (Schildcrout et al., 2020). We are interested in the genetic contributions of a

single nucleotide polymorphism (SNP), rs12194741, on chromosome 6 to lung function decline over 5 years

(Hansel et al., 2013). Lung function was quantified as the amount of air in liters one can force from the lung

in the first second of exhalation (FEV1). rs12194741 was represented by a binary indicator for whether there

was at least 1 copy of the T allele at rs12194741. The interaction of rs12194741 and visit was used to evaluate

the genetic contribution to lung function decline. Data were collected from participants’ annual visits over a

5-year follow-up period. In this analysis, we included participants who were smokers for all their visits and

had at least 2 observations. There were 2562 subjects included and 1694 (66%) completed 5 visits. Base-

line adjustment covariates included age, study site, body mass index (BMI, weight(kg)/height(m2)), lifetime

smoking status (in pack years), and average number of cigarettes smoked per day over the previous year.

BMI change from baseline and study visit were included as time-varying covariates. The distribution of the

responses, FEV1, was fairly symmetric (Figure 4.4 in Supplementary Material). 61% (1567) of participants

had at least 1 copy of the T allele at rs12194741.

We applied both CPMs with independence and exchangeable working correlation with the logit link on

the data and compared the results and efficiency. No binning or rounding was needed to fit the models as
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Table 4.7: We show odds ratios estimates for higher FEV1 with 95% confidence intervals from CPMs with in-
dependence and exchangeable working correlation without adjusting for the baseline FEV1. The last column
shows the variance ratios (VRs) calculated by the variances of the log-odds ratios from CPMs with exchange-
able working correlation divided by the variances the log-odds ratios from CPMs with independence working
correlation.

Predictor Independence Exchangeable VR
Visit:rs12194741 0.965 (0.941, 0.989) 0.971 (0.955, 0.987) 0.431
Visit 0.859 (0.842, 0.877) 0.854 (0.843, 0.866) 0.445
rs12194741 1.120 (0.971, 1.291) 1.118 (0.973, 1.284) 0.950
BMI Change (per 5 kg/m2) 0.651 (0.529, 0.801) 0.666 (0.587, 0.754) 0.365
Baseline Age (per 10–year) 0.342 (0.300, 0.389) 0.340 (0.301, 0.384) 0.879
Baseline BMI (per 5 kg/m2) 1.480 (1.343, 1.631) 1.485 (1.356, 1.626) 0.868
Cigarettes/day (per 10 cigs/day) 0.976 (0.920, 1.034) 0.975 (0.922, 1.032) 0.938
Pack Years (per 20 pack year) 1.190 (1.085, 1.304) 1.192 (1.089, 1.305) 0.968
Study Site

1 (Reference)
2 2.028 (1.429, 2.878) 1.989 (1.444, 2.739) 0.837
3 1.422 (1.001, 2.019) 1.386 (1.003, 1.914) 0.847
4 1.811 (1.268, 2.588) 1.820 (1.319, 2.512) 0.815
5 2.671 (1.909, 3.738) 2.564 (1.885, 3.488) 0.838
6 1.950 (1.374, 2.770) 1.861 (1.348, 2.569) 0.847
7 0.908 (0.635, 1.297) 0.902 (0.652, 1.248) 0.825
8 1.724 (1.234, 2.409 1.667 (1.227, 2.264) 0.838
9 2.016 (1.425, 2.852) 1.956 (1.427, 2.680) 0.825
10 2.307 (1.585, 3.357) 2.261 (1.559, 3.198) 0.853

there were only 361 distinct values of the outcome. Table 4.7 shows odds ratio estimates of higher FEV1

and 95% confidence intervals obtained from the two methods. The odds ratios from the two models are very

close. The variance ratios (VRs) shown in the last column indicate that the log-odds ratios obtained by CPMs

with exchangeable working correlation are more efficient than those from CPMs with independence working

correlation, particularly for time-varying covariates (visit and BMI change from baseline). The confidence

interval for the interaction term did not cover 1, which means that rs12194741 was associated with lung

function decline. BMI change from baseline, baseline age, and lifetime smoking status were negatively

associated with FEV1 while baseline BMI and the average number of cigarettes smoked per day had positive

associations with FEV1. For example, keeping other covariates constant, 5 kg/m2 increase in BMI change

from baseline was associated with a 33-35% decrease in the odds of having a higher FEV1 value.

Conditional quantities including means, medians, and probabilities that FEV1 less than or equal to 2L

were derived from the models and are shown in Figure 4.5 of the Supplementary Material as a function of

study visit and genotype.

In an additional analysis, we adjusted for baseline FEV1 in the models. Results are detailed in Table 4.11

in the Supplementary Material. The interaction term between study visit and genotype was still significant.
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However, efficiency gains using the exchangeable working correlation compared to the independence working

correlation were smaller in these analyses. The reason could be that most of the variation was explained by

baseline FEV1 (log odds ratio = 8.61 and 8.47; Pearson’s correlation between FEV1 and baseline FEV1 was

0.93). We did see that CPMs with exchangeable working correlation was more efficient in estimating time-

varying covariates, with the VR for BMI change from baseline being 0.619, for example. The confidence

intervals for conditional quantities were also much narrower after adjusting for the baseline FEV1 as shown

in Figure 4.6 of the Supplementary Material.

4.6 Discussion

We extended CPMs, a class of ordinal regression models for cross-sectional responses, to analyze clustered

continuous response variables. Only rank information is used in CPMs when estimating βββ , and thus fitting

such ordinal regression models can avoid transformation of response variables. In cross-sectional settings,

CPMs have been used to fit different types of continuous response variables (Liu et al., 2017; Tian et al.,

2020). To account for correlation between observations within each cluster, we estimate parameters in CPMs

using GEE techniques. With estimated parameters, we can easily obtain CDFs, expectation and quantiles

conditional on covariates to help better interpret regression results.

We proposed two feasible and computationally efficient approaches for fitting CPMs depending on the

working correlation structure. With low within cluster correlation, CPMs with independence working corre-

lation is able to provide unbiased estimations with proper confidence interval coverage rates without losing

much efficiency. With high within cluster correlation, CPMs with exchangeable/AR1 working correlation

can provide more efficient estimations. Our approaches work well under a variety of simulation settings. We

have built an R package, cpmgee, for CPMs with independence, exchangeable and AR1 working correlation.

Our methods can fit fully continuous clustered data with independence working correlation, but might re-

quire binning or rounding if using exchangeable or AR1 working correlation structures. For futures research,

we could consider extending CPMs to include weights. With weighted CPMs, we could fit fully continuous

clustered data with more complex working correlation structures by choosing different weighting matrices.

GEE methods assume observations are missing completely at random, which can be violated in practice.

We could extend our methods under the less restrictive missingness assumption of missing at random in the

future.
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4.7 Supplementary Material

4.7.1 Asymptotic Properties of CPMs with Independence Working Correlation

Li et al. (2022b) has shown consistency and asymptotic normality for NPMLEs in CPMs in cross-sectional

settings. The proof for CPMs with independence working correlation is very similar as the proof in Li et al.

(2022b) with minor modifications to address for correlated responses and sandwich estimator for covariance.

We use the same notation in Li’s paper (γγγ , XXX , and G−1 in this paper are equivalent to A, Z, and G in Li et al.

(2022b) respectively).

First, for clustered data, the log-likelihood ln(β ,A) is now the summed log-likelihood from each observa-

tion within one cluster

l(β ,A) =
1
N

N

∑
i=1

1
Ti

Ti

∑
t=1

{I(Yit ≤ L) logG(A(L)−β
T Zit)+ I(Yit >U) log(1−G(A(U)−β

T Zit))+

I(L < Yit ≤U) log(G(A(Yit)−β
T Zit)−G(A(Yit−)−β

T Zit))},

where N is the number of clusters and Ti is the number of observations in cluster i.

The boundedness of Â(y) and nA{Yi}, and consistency of parameters still hold for clustered data following

the same proof in Li et al. (2022b). For proof of the asymptotic distribution, note that (A.8) and (A.9) are still

valid for clustered data, where SSS11,SSS12,SSS21, and SSS22 are the second order differentiation operators based on

the newly defined log-likelihood and SSS(Y,Z) is the first order differentiation operator derived from the pseudo

log-likelihood.

From (A.10), the asymptotic variance for the parameters takes the sandwich form described in (4.10)

since ν and h are the inverse of the information operator. In the cross-sectional setting, we have shown the

consistency of the variance, the inverse of the information matrix. The middle part of the sandwich estimator

is also consistent because it is a function of the score function, which is differentiable with respect to β

and A, so the estimator is also consistent based on the Glivenko-Cantelli Theorem. Therefore, the sandwich

estimator for variance is also consistent.

4.7.2 CPMs with Independence Working Correlation and Ordinal GEE with Independence Working

Correlation Structure

The marginal regression model used in GEE methods for ordinal response variables is the CPM. CPMs

with independence correlation and GEE methods for ordinal response variables with independence working

correlation both ignore the within cluster correlation. We would like to show the estimations for θθθ and Vθθθ

from CPMs with independence working correlation and GEE methods for ordinal response variables with

independence working correlation are equivalent. More specifically, we first show that the score equation in
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CPMs is the equivalent to the estimating function in GEE methods when assuming independence working

correlation, then we demonstrate the equivalence of the covariance estimator.

Before directly working with the likelihood of CPMs, we first introduce some new notations. Let Oit j =

I(Yit = y( j))=Zit j−Zit( j−1) and πit j =E(Oit j|xxxit). Then OOOit =(Oit1, . . . ,OitJ)
T and OOOit ∼Multinomial(1,πππ it),

which belongs to the exponential family. The probability mass function (PMF) is

P(OOOit |xxxit) =

(
J−1

∏
j=1

π
Oit j
it j

)(
1−

J−1

∑
j=1

πit j

)(1−∑
J−1
j=1 Oit j

)

= exp

{
J−1

∑
j=1

Oit j log(πit j)+

(
1−

J−1

∑
j=1

Oit j

)
log

(
1−

J−1

∑
j=1

πit j

)}

= exp

{
J−1

∑
j=1

Oit j log

(
πit j

1−∑
J−1
j=1 πit j

)
+ log

(
1−

J−1

∑
j=1

πit j

)}
.

The log-likelihood is

lO =
N

∑
i=1

Ti

∑
t=1

J−1

∑
j=1

Oit j log

(
πit j

1−∑
J−1
j=1 πit j

)
+ log

(
1−

J−1

∑
j=1

πit j

)
(4.13)

The score equation of variables in the exponential family have a specific form (McCullagh and Nelder,

1983). Let πππ i = (πππT
it , . . . ,πππ

T
iTi
)T and OOOi = (OOOT

i1, . . . ,OOO
T
iTi
)T . The score equation based on (4.13) is

UO(θθθ) =
N

∑
i=1

(
∂πππ i

∂θθθ

)T

SSS−1
Oi (OOOi −πππ i) = 000, (4.14)

where SSSOi is a block diagonal matrix with Cov(OOOit)= diag(πππ it)−πππ itπππ
T
it on the diagonal, i.e. SSSOi = diag{Cov(OOOi1),

. . . ,Cov(OOOiTi)}.

In CPMs, we use cumulative indicators Zit j =∑
j
k=1 Oitk and cumulative probabilities µit j =∑

j
k=1 πitk. The

underlying model is still multinomial and can be converted by a (J−1)×(J−1) matrix LLL=



1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

1 1 1 . . . 1


.

The score function of CPMs can be derived by ZZZi = LLLOOOi and µµµ i = LLLπππ i (McCullagh and Nelder, 1983):

UZ(θθθ) =
N

∑
i=1

(
∂ µµµ i
∂θθθ

)T

SSS−1
Zi (ZZZi −µµµ i) = 000, (4.15)

where SSSZi = diag{Cov(ZZZi1), . . . ,Cov(ZZZiTi)} and SSSZi = LLLSSSOiLLLT .
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Similarly, the information is

IZ(θθθ))) =
N

∑
i=1

(
∂ µµµ i
∂θθθ

)T

SSS−1
Zi

(
∂ µµµ i
∂θθθ

)T

. (4.16)

Then the robust covariance of CPMs can be estimated based on (4.10)

V̂θθθ ,CPM =

[
N

∑
i=1

(
∂ µ̂µµ i
∂θθθ

)T

ŜSS
−1
Zi

(
∂ µ̂µµ i
∂θθθ

)T
]−1[ N

∑
i=1

(
∂ µ̂µµ i
∂θθθ

)T

ŜSS
−1
Zi (ZZZi − µ̂µµ i)(ZZZi − µ̂µµ i)

T ŜSS
−1
Zi

(
∂ µ̂µµ i
∂θθθ

)]
[

N

∑
i=1

(
∂ µ̂µµ i
∂θθθ

)T

ŜSS
−1
Zi

(
∂ µ̂µµ i
∂θθθ

)T
]−1

.

(4.17)

For GEE methods, the independence working correlation indicates that WWW i = SSS
1
2
i RRRi(ααα)SSS

1
2
i = SSSi, where SSSi

is a block diagonal matrix with Cov(ZZZit) be the diagonal elements. This means SSSi = SSSZi. The estimating

equation with independence working correlation is

Qθθθ (θθθ) =
N

∑
i=1

(
∂ µµµ i
∂θθθ

)T

SSS−1
Zi (ZZZi −µµµ i) = 000. (4.18)

Now (4.15) and (4.18) are identical and thus solving the two equations would result in the same point esti-

mations.

The covariance matrix in GEE methods assuming independence is estimated by

V̂θθθ ,GEE =

[
N

∑
i=1

(
∂ µ̂µµ i
∂θθθ

)T

ŜSS
−1
Zi

(
∂ µ̂µµ i
∂θθθ

)]−1[ N

∑
i=1

(
∂ µ̂µµ i
∂θθθ

)T

ŜSS
−1
Zi (ZZZi − µ̂µµ i)(ZZZi − µ̂µµ i)

T ŜSS
−1
Zi

(
∂ µ̂µµ i
∂θ

)]
[

N

∑
i=1

(
∂ µ̂µµ i
∂θθθ

)T

ŜSS
−1
Zi

(
∂ µ̂µµ i
∂θθθ

)]−1

.

(4.19)

(4.17) and (4.19) are also identical. Therefore, we have shown that CPMs with independence working corre-

lation is equivalent to GEE methods for ordinal response variables with independence working correlation.

4.7.3 Simulations

4.7.3.1 Complete Data

In an ideal situation, no value is missing. With complete data and the same time-varying covariate pattern

across all subjects, each observation contributes approximately equally to the estimating equation, so the

independence working correlation structure is as efficient as a more complex working correlation structure

(Lipsitz et al., 1994).

We evaluated the performances of the two CPM methods with different association parameter α when we
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Table 4.8: Simulation results for the complete data scenarios

Scenario Method Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

α = 0.3

Bias(%) -0.051 0.073 - - -
GEE RMSE 0.037 0.058 - - -

(correct) Coverage 0.942 0.949 - - -
RE baseline baseline - - -

Bias(%) 0.072 0.207 -0.006 -0.031 -0.058
CPM RMSE 0.038 0.056 1.235 1.204 0.171
(ind) Coverage 0.942 0.947 0.959 0.955 0.956

RE 1.035 0.953 - - -
Bias(%) 0.183 2.899 -0.338 -0.387 -0.402

CPM RMSE 0.038 0.065 1.219 1.188 0.170
(ex) Coverage 0.943 0.912 0.953 0.945 0.948

RE 1.075 1.002 - - -

α = 0.7

Bias(%) -0.006 0.063 - - -
GEE RMSE 0.050 0.038 - - -

(correct) Coverage 0.950 0.945 - - -
RE baseline baseline - - -

Bias(%) 0.157 0.300 0 -0.038 -0.122
CPM RMSE 0.051 0.043 1.233 1.200 0.170
(ind) Coverage 0.945 0.950 0.953 0.956 0.950

RE 1.041 1.251 - - -
Bias(%) 0.277 2.955 -0.327 -0.394 -0.303

CPM RMSE 0.051 0.053 1.218 1.185 0.169
(ex) Coverage 0.949 0.888 0.952 0.953 0.951

RE 1.051 1.317 - - -

have complete data. The results are in Table 4.8. We do not expect and did not observe efficiency gain by

using exchangeable working correlation with complete data. The CPM methods with independence working

correlation had slightly better performance under this circumstance for its lower bias, more proper cover-

age rates, and similar RMSE. The CPM method was almost as efficient as the GEE method for continuous

response variables with the correct transformation when the within cluster correlation is small.

4.7.3.2 Time Effects

We varied the coefficient for time, βT , from 0 to 2 to investigate the performance under scenarios with

different time effects. Results are in Table 4.9. When βT = 0, the percent bias for both methods was ∞

because the true value (in the denominator) is 0, and the bias for the all methods was small. As the time effects

increase, CPM methods were less efficient than the standard GEE method with the correct transformation,

but they still had small bias and good coverage rates.
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Table 4.9: Simulation results for different time effects

Scenario Method Metric βX βT E(Y |X=1,T=0.2) Q(0.5|X=1,T=0.2) F(5|X=1,T=0.2)

βT = 0

Bias(%) -0.01 Inf - - -
GEE RMSE 0.710 0.710 - - -

(correct) Coverage 0.953 0.944 - - -
RE baseline baseline - - -

Bias(%) 0.125 Inf -0.009 -0.079 -0.103
CPM RMSE 0.712 0.711 1.184 1.150 0.173
(ind) Coverage 0.958 0.947 0.954 0.959 0.956

RE 1.130 2.166 - - -
Bias(%) 0.157 Inf -0.121 -0.210 -0.144

CPM RMSE 0.712 0.709 1.180 1.145 0.174
(ex) Coverage 0.959 0.940 0.945 0.956 0.956

RE 1.046 1.180 - - -

βT = 0.5

Bias(%) -0.010 0.174 - - -
GEE RMSE 0.358 0.359 - - -

(correct) Coverage 0.953 0.944 - - -
RE baseline baseline - - -

Bias(%) 0.126 0.275 -0.009 -0.074 -0.089
CPM RMSE 0.361 0.363 1.208 1.174 0.172
(ind) Coverage 0.957 0.944 0.955 0.957 0.957

RE 1.130 2.189 - - -
Bias(%) 0.180 3.111 -0.146 -0.236 -0.047

CPM RMSE 0.369 0.349 1.202 1.168 0.172
(ex) Coverage 0.95 0.933 0.941 0.954 0.958

RE 1.046 1.204 - - -

βT = 2

Bias(%) -0.020 0.047 - - -
GEE RMSE 0.710 0.711 - - -

(correct) Coverage 0.953 0.944 - - -
RE baseline baseline - - -

Bias(%) 0.132 0.279 -0.013 -0.086 -0.188
CPM RMSE 0.708 0.727 1.285 1.255 0.165
(ind) Coverage 0.960 0.945 0.959 0.956 0.955

RE 1.130 2.637 - - -
Bias(%) 0.411 2.766 -0.266 -0.358 -0.147

CPM RMSE 0.706 0.751 1.272 1.242 0.165
(ex) Coverage 0.957 0.888 0.951 0.947 0.949

RE 1.061 1.728 - - -
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Table 4.10: The odds ratios with 95% confidence intervals from standard GEE with exchangeable working
correlation on log-transformed CD4:CD8 ratio.

Predictor Odds Ratio CI
Time (in years) 1.079 (1.061, 1.097)
Enrollment Year 0.996 (0.989 1.002)
Race

African American (Reference)
Caucasian 1.000 (0.950, 1.052)
Hispanic 0.871 (0.740, 1.025)
Other 0.859 (0.736,1.004)

Baseline Age 0.986 (0.984, 0.988)
Sex

Male (Reference)
Female 1.202 (1.187, 1.218)

Route
Heterosexual (Reference)
Injection Drug Use 1.017 (0.927, 1.116)
MSM 0.946 (0.938, 0.954)
Other/Unknown 0.919 (0.750, 1.127)

HCV 0.946 (0.914, 0.980)
HBV 1.010 (0.853, 1.197)

4.7.4 Applications

4.7.4.1 CD4:CD8 Ratio

We analyzed the data using standard GEE methods with exchangeable working correlation after log-transforming

the CD4:CD8 ratios. Results in Table 4.10 suggested that time, baseline age, sex, route, and HCV have sig-

nificant association with the outcome. The conclusion and estimations were different from the results from

CPM methods. Log-transformation might be a natural choice for such right-skewed responses, but not the

optimal transformation for CD4:CD8 ratios.

4.7.4.2 The Lung Health Study

The distribution of FEV1 at the first follow-up visit is shown in Figure 4.4.

In Figure 4.5, we show the conditional mean and median of FEV1, and the conditional probability of

FEV1 being less than or equal to 2L while fixing other covariates at median (continuous covariates) or mode

(categorical covariates).

We adjusted for baseline FEV1 in the models and the results are in Table 4.11.

The conditional quantities after adjusting for baseline FEV1 are shown in Figure 4.6.
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Figure 4.4: The histogram of the FEV1 measured at the first follow-up visit of participants in The Lung
Health Study who were smokers for all 5 visits with at minimum 2 visits.
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Figure 4.5: The estimated conditional mean, median of FEV1 and the conditional probability of FEV1 being
less than or equal to 2 as functions of study visit while fixing other covariates at their medians (for continuous
covariates) or modes (for categorical covariates) under the circumstances that rs12194741 is present (dotted
lines) and is not present (solid lines).
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Table 4.11: We show odds ratios estimates for higher FEV1 with 95% confidence intervals from CPMs with
independence and exchangeable working correlation adjusting for the baseline FEV1. The last column shows
the VRs calculated by the variances of the log-odds ratios from CPMs with exchangeable working correlation
divided by the variances of the log-odds ratios from CPMs with independence working correlation.

Predictor Independence Exchangeable VR
Visit:rs12194741 0.946 (0.909, 0.984) 0.947 (0.912, 0.983) 0.880
Visit 0.608 (0.919, 1.157) 0.607 (0.588, 0.626) 0.934
rs12194741 1.031 (0.919, 1.157) 1.003 (0.882, 1.140) 1.244
BMI Change (per 5 kg/m2) 0.344 (0.289, 0.410) 0.336 (0.293, 0.386) 0.619
Baseline Age (per 10–year) 0.845 (0.761, 0.938) 0.853 (0.768, 0.946) 0.993
Baseline BMI (per 5 kg/m2) 1.075 (0.999, 1.157) 1.081 (1.002, 1.116) 1.071
Cigarettes/day (per 10 cigs/day) 0.936 (0.891, 0.984) 0.941 (0.897, 0.988) 0.940
Pack Years (per 20 pack year) 0.960 (0.888, 1.039) 0.957 (0.885, 1.035) 1.000
Study Site

1 (Reference)
2 1.642 (1.251, 2.155) 1.634 (1.246, 2.143) 0.995
3 0.984 (0.755, 1.283) 0.982 (0.750, 1.286) 1.039
4 1.654 (1.274, 2.147) 1.632 (1.248, 2.134) 1.057
5 1.284 (0.980, 1.682) 1.250 (0.959, 1.630) 0.966
6 1.409 (1.079, 1.840) 1.403 (1.069, 1.842) 1.041
7 0.888 (0.680, 1.159) 0.891 (0.676, 1.173) 1.068
8 1.163 (0.895, 1.509) 1.147 (0.883, 1.491) 1.005
9 1.951 (1.487, 2.560) 1.918 (1.474, 2.496) 0.940
10 1.072 (0.781, 1.472) 1.059 (0.781, 1.436) 0.923

Baseline FEV1 5497.550 (4231.518, 7142.369) 4782.765 (3719.052, 6150.717) 0.924
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Figure 4.6: The estimated conditional mean, median of FEV1 and the conditional probability of FEV1 being
less than or equal to 2 as functions of study visit while fixing other covariates (including the baseline FEV1)
at their medians (for continuous covariates) or modes (for categorical covariates) under the circumstances
that rs12194741 is present (dotted lines) and is not present (solid lines).
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CHAPTER 5

Conclusion

5.1 Summary

Continuous data are commonly encountered in practice and often are too complicated to be simply modeled

by linear regression. In this dissertation, we address skewed, censored, and clustered continuous response

data with semiparametric CPMs. The goal of the research has been to present more robust and flexible

approaches to analyze different types of continuous response data. .

In Chapter 2, we studied the similarities and differences of two transformation models, CPMs and MLTs.

Both models assume that a response variable can be modeled linearly with errors following a specified distri-

bution after an unspecified monotonic transformation. Therefore, neither of the models require transformation

of response variables before modeling, but estimate the transformation as part of the modeling procedure. The

two models mainly differ by the way that they estimate the transformation. CPMs regard each distinct re-

sponse value as its own ordinal level, and estimate the transformation nonparametrically with a step function,

while MLTs utilize parametric basis functions for the estimation of the transformation. They both had good

and similar performance in most cases, even with complex transformation and skewed distributions. We note

that they handle left censored response data differently. MLTs make assumptions on the distribution of cen-

sored data based on uncensored data, while CPMs treat censored values as the smallest ordinal level. This

leads us to the next chapter focusing on censored continuous response data.

In Chapter 3, we proposed approaches to analyze continuous response variables subject to DLs based on

CPMs. Most existing methods for DLs require dichotomization, single imputation, or distribution assump-

tions for values outside DLs. CPMs, an ordinal regression models, do not make such assumptions and use

all available information. Continuous data subject to DLs effectively follow a mixture distribution of discrete

and continuous data. We described our approaches in two scenarios, single DLs, where there is a single lower

DL and/or upper DL, and multiple DLs, where data are collected from different sites/times with different DLs

or no DL. With single DLs, CPMs, as ordinal regression models, make minimal assumptions on distributions

outside DLs, and assign ordinal level to unobserved values. We extended CPMs to address multiple DLs by

modifying the CPM likelihood to appropriately distribute probability mass. In addition, we proposed a new

estimator for conditional quantiles from CPMs that is more interpretable with DLs. Our approaches had good

performance even with small sample sizes and large censoring rates. The work is accompanied by a new R

package, multipleDL.
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In Chapter 4, we extended CPMs for clustered continuous data to avoid transformation of response vari-

ables. In previous chapters, we estimated parameters in CPMs based on the likelihood. For clustered con-

tinuous data, parameters are estimated by GEE to account for correlated observations within each cluster.

To overcome computation limitations due to the large number of ordinal levels with continuous data, we

proposed two feasible approaches. With independence working correlation, CPMs can be directly applied to

obtain the point estimation, and then we use a robust estimator for covariance to correct for misspecification

of correlation structure. To gain greater efficiency by specifying a more complex working correlation, we

propose a one-step GEE estimator for CPMs using the framework of repolr for estimating the association

parameter. Our approaches work well under a variety of simulation settings. We have built an R package, cp-

mgee, for CPMs to fit clustered continuous response variables with independence, uniform and AR1 working

correlation.

We hope that our work provides new directions and tools for researchers to analyze skewed, censored,

and clustered continuous response data.

5.2 Future Research

All CPM-based approaches described in this dissertation make an implicit parallelism assumption that βββ

does not depend on j, the order of response values. In practice, this assumption might be violated. For

example, the effects of at least on covariate might vary across different cut-off points. In the future, we might

consider developing more flexible partial CPMs that allow for different relationships for different covariate

levels. Partial CPMs can also be useful if addressing composite endpoints (e.g., death, heart disease, and

blood pressure) longitudinally in a single analysis.

CPMs assume the error terms are independent and identically distributed. With correlated observations,

this assumption is violated and we proposed approaches in Chapter 4 to deal with it by treating correlation

as nuisance parameters with GEE. Another solution could be weighted CPMs to put different weights on

observations.

GEE methods assume observations are missing completely at random (MCAR), which can be a strong

assumption in practice. We could extend our methods under the less restrictive missingness assumption of

missing at random (MAR).
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Serrano-Villar, S., Caruana, G., Zlotnik, A., Pérez-Molina, J. A., and Moreno, S. (2017). Effects of maraviroc
versus efavirenz in combination with zidovudine-lamivudine on the CD4/CD8 ratio in treatment-naive
HIV-infected individuals. Antimicrobial Agents and Chemotherapy, 61(12):e01763–17.

Shepherd, B. E., Li, C., and Liu, Q. (2016). Probability-scale residuals for continuous, discrete, and censored
data. Canadian Journal of Statistics, 44(4):463–479.

Snell, E. (1964). A scaling procedure for ordered categorical data. Biometrics, pages 592–607.

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2.

Steegen, K., Luchters, S., De Cabooter, N., Reynaerts, J., Mandaliya, K., Plum, J., Jaoko, W., Verhofstede,
C., and Temmerman, M. (2007). Evaluation of two commercially available alternatives for HIV-1 viral
load testing in resource-limited settings. Journal of Virological Methods, 146(1-2):178–187.

Tian, Y., Hothorn, T., Li, C., Harrell Jr, F. E., and Shepherd, B. E. (2020). An empirical comparison of two
novel transformation models. Statistics in Medicine, 39(5):562–576.

Touloumis, A., Agresti, A., and Kateri, M. (2013). GEE for multinomial responses using a local odds ratios
parameterization. Biometrics, 69(3):633–640.

Tsao, C.-H., Shiau, M.-Y., Chuang, P.-H., Chang, Y.-H., and Hwang, J. (2014). Interleukin-4 regulates lipid
metabolism by inhibiting adipogenesis and promoting lipolysis. Journal of Lipid Research, 55(3):385–397.

Tukey, J. W. et al. (1957). On the comparative anatomy of transformations. The Annals of Mathematical
Statistics, 28(3):602–632.

Walker, S. H. and Duncan, D. B. (1967). Estimation of the probability of an event as a function of several
independent variables. Biometrika, 54(1-2):167–179.

Wing, S., Shy, C. M., Wood, J. L., Wolf, S., Cragle, D. L., and Frome, E. (1991). Mortality among workers
at Oak Ridge National Laboratory: evidence of radiation effects in follow-up through 1984. Journal of the
American Medical Association, 265(11):1397–1402.

Wu, L., Thompson, D. K., Li, G., Hurt, R. A., Tiedje, J. M., and Zhou, J. (2001). Development and evaluation
of functional gene arrays for detection of selected genes in the environment. Applied and Environmental
Microbiology, 67(12):5780–5790.

Zeger, S. L. and Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes.
Biometrics, pages 121–130.

Zeng, D. and Lin, D. (2006). Efficient estimation of semiparametric transformation models for counting
processes. Biometrika, 93(3):627–640.

Zeng, D. and Lin, D. (2007). Maximum likelihood estimation in semiparametric regression models with
censored data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):507–564.

Zhang, D., Fan, C., Zhang, J., and Zhang, C.-H. (2009). Nonparametric methods for measurements below
detection limit. Statistics in Medicine, 28(4):700–715.

132


	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 An Empirical Comparison of Two Novel Transformation Models
	2.1 Introduction
	2.2 Review of Methods
	2.2.1 Linear Transformation Models
	2.2.2 Semiparametric Cumulative Probability Models
	2.2.3 Most Likely Transformation Models

	2.3 Simulation Plan
	2.3.1 Simulation Set-up
	2.3.2 Evaluations

	2.4 Simulation Results
	2.4.1 The Primary Setting and its Modifications
	2.4.2 Link Function Misspecification
	2.4.3 Mixture of Discrete and Continuous Responses
	2.4.4 Discretization of Continuous Response
	2.4.5 Computation Time

	2.5 Application Examples
	2.6 Discussion
	2.7 Supplementary Material

	3 Addressing Detection Limits with Semiparametric Cumulative Probability Models
	3.1 Introduction
	3.2 Methods
	3.2.1 Cumulative Probability Models
	3.2.2 Single Detection Limits
	3.2.3 Multiple Detection Limits
	3.2.4 Interpretable Quantities and Conditional Quantiles

	3.3 Applications
	3.3.1 Single Detection Limit
	3.3.2 Multiple Detection Limits

	3.4 Simulations
	3.4.1 Single Detection Limits
	3.4.2 Multiple Detection Limits

	3.5 Discussion
	3.6 Supplementary Material

	4 Analyzing Clustered Continuous Response Variables with Ordinal Regression Models
	4.1 Introduction
	4.2 Review of Methods
	4.3 Methods
	4.3.1 CPMs for Clustered Continuous Response Variables
	4.3.2 CPMs with Independence Working Correlation
	4.3.3 CPMs with Exchangeable/AR1 Working Correlation

	4.4 Simulations
	4.4.1 The Primary Setting and its Modifications
	4.4.2 Equal-quantile Binning and Rounding
	4.4.3 Sample Size and Cluster Size
	4.4.4 First-order Autoregressive (AR1) Correlation Structure
	4.4.5 Link Function Misspecification

	4.5 Applications
	4.5.1 CD4:CD8 Ratio
	4.5.2 The Lung Health Study

	4.6 Discussion
	4.7 Supplementary Material
	4.7.1 Asymptotic Properties of CPMs with Independence Working Correlation
	4.7.2 CPMs with Independence Working Correlation and Ordinal GEE with Independence Working Correlation Structure
	4.7.3 Simulations
	4.7.3.1 Complete Data
	4.7.3.2 Time Effects

	4.7.4 Applications
	4.7.4.1 CD4:CD8 Ratio
	4.7.4.2 The Lung Health Study



	5 Conclusion
	5.1 Summary
	5.2 Future Research

	 References 

