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Cellulose as an Architectural Component in Bacterial Biofilms 
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1.1 Abstract 

Bacteria thrive in diverse environments by establishing biofilms, a collection 

of surface associated communities of microbial cells encased in an extracellular 

polymeric matrix. These cells are a concern in the medical field due to their 

increased resistance to antibiotics. Bacteria found in biofilm can have antibiotic 

resistance 10-1000 times that of their planktonic counterparts.1 As a result, it is 

important to study the formation of biofilms. Cellulose biofilms are predominantly 

formed by Enterobacteriaceae, such as Salmonella and Escherichia coli (E. coli) 

spp. strains. Biofilms contribute to these species by providing antimicrobial 

protection, colonization of bacterial communities, and the promotion of DNA 

exchange.1 Current studies suggest that the glycopolymer cellulose, and its 

functionalized derivatives, plays an important role in the formation of E. coli biofilms.  

While bacterial cellulose was first discovered in the 19th century, it was not until this 

last decade that studies emerged to provide insight into the biosynthesis and 

production of bacterial cellulose. This chapter examines recently published research 

on how cellulose-based polymers modulate bacterial cell processes including 

alterations in cellular metabolism, extracellular matrix secretion, surface organelle 

biogenesis, cellular adhesion, and biofilm formation.  
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1.2 Introduction 

Cellulose, an unbranched extracellular polysaccharide, is the most abundant 

and sustainable biopolymer found on Earth.2 Cellulose is found in plants, fungi, 

algae, flagellates, and in some animals. It is the main component of the cell wall in 

plants and in many natural fibers, such as wood (90% of wood contains cellulose), 

cotton, and jute. Additionally, plant cellulose is associated with other materials in the 

cell wall, such as hemicelluloses and lignins. At the structural level, cellulose is a 

polysaccharide composed of glucans, linked via β-(1→4) glycosidic bonds (Figure 

1A).3 Cellulose chains are linear, with aggregation occurring through intra- 

and intermolecular hydrogen bonds and van der Waals forces (Figure 1B). These 

plant microfibrils are commonly 10 nm in diameter and particularly long relative to 

their width (10-50 mm). When grouped, these microfibrils form macro-fibrils, or 

cellulosic fibers.  

Cellulose was first discovered by Aneselme Payen in 1838, where a white 

crystalline substance resembling starch was extracted from wood.4 Furthermore, it 

was not until years later that the structure and molecular weight of cellulose was 

confirmed by Hermann Staudinger.5-6 Staudinger showed that the viscosity of the 

polymer is directly proportional to its molecular weight and as a result, the equation 

for this relationship is known as the Staudinger equation.6 Despite its ubiquitous 

presence in plants, it is reported to exist in a variety of bacteria. Although the 

molecular formula of both plant and bacterial cellulose are the same, their chemical 

and physical features are different.7-8 One key difference lies in the highly ordered 

structure of these celluloses. Distinctive from plant cellulose, bacterial cellulose is 
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secreted in the form of a ribbon, composed of bundles of microfibrils.9-13 These fibers 

are very thin with a width that is only one-hundredth that of plant cellulose. A shared 

feature among the cellulose biosynthetic machinery is the coupling of glucose 

polymerization reactions with secretion of the polymer in either the extracellular 

matrix or the cell’s envelope.13-15 

Cellobiose, a β-1,4-linked glucose dimer, is the structural unit of cellulose 

and the major product in enzymatic or acid hydrolysis of cellulose. Cellobiose is a 

repeating unit and is incorporated at varying degrees of polymerization. When 

considering the structure of cellobiose, the molecule is highly oxygenated bearing 

eight free alcohols along with a hemiacetal group.8 These functional groups provide 

cellobiose  with the ability to form strong inter- and intramolecular hydrogen bonds.  

 

 

 

 

 

 

Figure 1.1. Properties of cellulose polymers in nature: (A) Molecular structure of cellulose 
polymer with cellobiose as a repeating unit. (B) Inter-and intramolecular hydrogen bonds in 
cellulose. 
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1.3 Synthesis and Degradation of Cellulose 

1.3.1 Synthesis of Cellulose 

The biosynthesis of plant-derived cellulose takes place in the plasma 

membrane in plants, Golgi apparatus in algae, and acquired extracellular in bacteria 

(Figure 1.2. A).8,10-12 While cellulose predominantly exists as an essential structural 

component in plants, bacteria synthesize cellulose to provide a protective coat 

around the cell (i.e., exopolysaccharides). Bacterial cellulose (BC) was initially 

discovered by A.J. Brown in 1886 from Acetobacter xylinum, who noticed the growth 

of unbranched pellicles that displayed similar structural features to the plant-derived 

cellulose.7 Despite the initial discovery, it was not until the 20th century that more in-

depth research on BC was accomplished. From the onset, a wide variety of bacteria 

was discovered to produce cellulose including Enterobacter, Agrobacterium, 

Dickeya, Rhizobium, Achromobacter, Pseudomonas, Komagataeibacter (formerly 

Gluconacetobacter), Gluconacetobacter (formerly Acetobacter), Alcaligenes, 

Aerobacter, Azotobacter, Agrobacterium, Dickeya, Rhizobium, Burkholderia, 
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Salmonella, Sarina and Escherichia coli.9-20 

Contrary to plant-derived cellulose, BC is a pure crystalline material with a 

high degree of polymerization and surface area and is free of hemicellulose and 

lignin. The degree of crystallinity represents the relative number of crystalline 

regions in the cellulose polymer, but also helps quantify changes in cellulose 

structure stemming from physiochemical, biological, and chemical treatments.21-26 

More importantly, the β-(1→4) glucan chain in cellulose corresponds strongly via 

hydrogen bonding and is responsible for maintaining the high degree of crystallinity 

and stability of cellulose.27-28 Taking inspiration from the seminal work of A.J. Brown, 

the Tokoh group began to further characterize BC and has shown it produces an 

interesting three-dimensional fibers network with fibers diameter of approximately 

30-50 nm.29 These ribbon-like microfibrils are much thinner compared to plant 

cellulose, making BC a more porous material. The unique physical properties along 

with the ease of production have prompted many uses of BC fibers in the medical 

field, such as wound care treatment.30 Since its discovery, there is a growing body 

of work on the production of modified bacterial cellulose and its applications. Table 

1.1. compares the differences in growth and production between bacterial and plant-

derived cellulose fibers.  
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Bacterial cellulose biosynthesis, applications, and production have been 

reported in detail by many groups around the world.31-33 Cellulose biosynthesis 

entails two key steps: step one entails the polymerization of β-(1→4) glucan chain 

to cellulose, and step two involves cellulose chain crystallization and assembly. 

Figure 1.2.B shows a schematic diagram of the BC biosynthesis.34 Cellulose 

microfibrils are synthesized inside the bacteria and extrude between the outer and 

cytoplasmic membranes of the cell. These ribbon-like structures are composed of 

approximately 25-50 microfibrils. Bacteria that produce cellulose metabolize glucose 

via the Krebs cycle or the pentose-phosphate cycle, depending on the physiological 

state of the cell coupled with gluconeogenesis.32 The biosynthesis of cellulose is a 

multi-step sequence involving different enzymes, catalytic complexes, and 

regulatory proteins. The four major enzymatic steps for the synthesis of BC from 

 

Table 1.1. Comparison criteria for the synthesis of bacterial and plant-derived 
cellulose fibers. 
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glucose are: (1) the phosphorylation of glucose by glucokinase, (2) the 

transformation of glucose-6-phosphate (Glc-6-P) to glucose-1-phosphate (Glc-1-P) 

by phosphoglucomutase, (3) the synthesis of uridine diphosphoglucose (UDP-Glc) 

by UDP glucose pyrophosphorylase (UGPase), and (4) cellulose synthase, a 

membrane bound enzyme that catalyzes the polymerization of glucose using UDP-

Glc as its donor.21-22 

The synthesis of cellulose occurs when glucose is polymerized into a β-(1→4) 

chain, which incorporates other neighboring chains and protrudes from the cell as 

fibrils.29, 31 This coupling step needs to occur for the biosynthesis of cellulose. Among 

the characterized microorganisms with respect to cellulose synthesis, G. xylinus is 

the most extensively studied.23-24 During initial investigation on BC production by 

this bacterium, it was determined that the BC biosynthesis system is composed of 

bcs operons, which is vital for cellulose synthesis and its activation. Furthermore, 

the bcs operon is assembled by bcsA, bcsB, bcsC and bcsD.22 Through further 

analysis, it was understood that bcsA is responsible for the polymerization of UDP-

Glc; bcsB, a subunit of cyclic D-guanosine monophosphate, is an activator of 

cellulose and bcsC and bcsD are responsible for the crystallization and extrusion of 

cellulose. The repeating unit, cellobiose, is also derived biosynthetically from 

cellulose and relies on cellulase, an enzyme that hydrolyzes β-(1→4) glycosidic 

bonds. 
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1.3.2 Degradation of Cellulose 

The degradation of cellulose to produce biomaterials is typically prepared 

industrially by subjecting the material to a strong acid under strict control of 

temperature, agitation, and hydrolysis time. The differing hydrolysis conditions and 

sources of cellulose can generate diverse cellulose nanomaterials (CN) with unique 

morphologies.35 Additionally, it has been studied that the hydronium ions penetrate 

the loosely bundled and disordered amorphous region instead of the tightly bound 

crystalline area.36 The preparation of CNs generally use hydrochloric acid or sulfuric 

acid. Interestingly, hydrolysis of cellulose using sulfuric acid can create rod-like 

materials with negative charges (OSO3-/H+), whereas treatment with hydrochloric 

acid generates neutral materials and minimizes their dispersion ability.35 

Enzymatic hydrolysis of cellulose is also known via a multi-step 

heterogeneous reaction in which cellulose is cleaved by complex enzymes such as, 

endoglucanase, cellobiase, and cellobiohydrolase that work synergistically with 

each other.37 Particularly, fungi, especially Penicillium, Aspergillus, and 

Trichoderma species, produce commercial cellulases.38 Currently, 

Trichodermareesei (T.reesei) is the most efficient producer of extracellular cellulase 

enzymes and is the preferred choice of enzyme for CNs production industrially.37 

Lastly, the enzymatic hydrolysis of cellulose is dependent on the surface area of the 

substrate, concentration of the enzyme, reaction temperature, and duration of 

enzyme activity.39  
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1.4   Bacterial Biofilm and Extracellular Matrix 

To cooperate and coordinate within a community, microorganisms form 

aggregates of cells encased in a rigid but dynamic extracellular matrix that is 

commonly referred to as a biofilm. Biofilms are complex cellular structures that are 

governed by tightly controlled regulation of gene expression of biofilm-associated 

factors.  The shift from planktonic to sessile life occurs due to a variety of 

environmental factors which are sensed by the cell; triggering alterations in 

transcriptional and metabolic processes leading to enhanced cellular adhesion.   

Biofilms serve several functions that facilitate bacterial colonization and 

survival in the environment. The tenacious extracellular matrix of the biofilm serves 

to increase bacterial survival of antimicrobial challenges including antibiotics. 

Biofilms also help bacteria evade host immune responses including phagocytosis 

by innate immune cells. Additionally, the community of bacterial cells that is housed 

in a biofilm is protected from various environmental stressors, such as desiccation 

or osmotic pressure.  Thus, bacterial biofilm formation is critical for microbes to 

create and maintain a replicative niche. 

The self-produced biofilm matrix, composed of extracellular polymeric 

substances (EPS), is critical to structural integrity, protection, surface adhesion and 

survival. This hydrated matrix, which accounts for over 90% of the total biofilm mass, 

is composed of exopolysaccharides, nucleic acids (RNA and extracellular DNA), 

lipids, and amyloid-like proteins.40-41 The structural morphology of the matrix is 

highly varied and can indicate the extent of a biofilm virulence or stage of formation. 

Initially, biofilms appear smooth and flat in their microcolonies, but later can become 
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rough and wrinkled, often progressing into mushroom-like macro-colonies.41 

EPS mediates cell-to-cell communication interactions called quorum sensing 

as a result of the close proximity of the cells within the matrix. The EPS matrix is 

particularly effective in protecting microorganisms against hostile stressors including 

ultraviolet radiation, variations in temperature, and pH. Moreover, protection against 

antimicrobial agents is afforded as the matrix acts as a structural barrier.42 The 

reduced diffusion of antimicrobial agents across the matrix contributes to the spread 

of antibiotic resistant strains of bacteria. In addition to the physical barrier of the 

matrix, anionic molecules within the EPS bind to charged antibiotics, effectively 

deactivating them.43 

As outlined above, the biofilm matrix is an integral part of these cellular 

communities. Furthermore, it has been demonstrated that the transition from 

planktonic to sessile life is regulated by a complex network of polysaccharide 

biosynthetic genes, and as such, it is important that the polysaccharide components 

of it are explored in depth.44 The function and subsequent components of these 

extracellular polysaccharides vary greatly between microbes but can generally be 

separated into two distinct categories: those associated with the cellular surface, 

and those that are secreted extracellularly.40 The polysaccharides described below 

are those implicated in biofilm formation in E. coli (Figure 1.3.). 

Capsular polysaccharides (CPS) are one of the primary virulence factors 

associated with the pathogenesis of a myriad of species. These protective glycans 

are tightly bound to the bacterial cell surface through covalent attachments to 

phospholipid or lipid-A moieties. These hydrated molecules are structurally diverse 
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with more than 80 unique CPSs identified in E. coli.45 Despite the structural 

variability, CPS can be classified into four groups based on the location of the 

biosynthesis gene cluster, biosynthesis processes, and mode of transport and 

regulation.46 As a first line of defense against the host immune response, these 

capsules are often targeted for treatment and prevention of infection.  

Cell surface polysaccharides are associated with bacterial adhesion, biofilm 

stability, and bacteria-mediated immune responses.40 One adhesive structure found 

on many biofilm-producing bacteria is pili. Also termed fimbriae, these proteinaceous 

appendages are made up of interacting pilin subunits, and are integral in cellular 

adhesion, host cell invasion, biofilm formation and cell motility.47 Binding of the 

proteins located on the tip of the pilus to specific receptors on the host cell initiates 

cellular adherence. Moreover, pili interacts with structural units of neighboring pili to 

instigate auto aggregation of bacterial cells in the beginning stages of biofilm 

formation. Mediating this attachment is a linear glucosaminylglycan, polysaccharide 

intercellular adhesin (PIA, 1.1) (Figure 1.3.). It has been shown that PIA is implicated 

in early stages of adherence to host tissues.48 Additional studies have found PIA to 

play an integral role in moderating the host cell immune response.49-50 Implicated 

tightly in S. aureus and S. epidermidis biofilm formation among others, PIA is 

responsible for the intracellular bacterial adhesion found in mature biofilms.51 

While many polysaccharides implicated in the biofilm matrix serve to promote 

bacterial cell adherence, others help to mediate microbial protection from host and 

environmental challenges. One such polysaccharide is alginate, a linear chain of 

1→4 linked mannuronic acid and l-guluronic acid.52-53 Alginate (1.2) was originally 
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studied due to its large role in cystic fibrosis lung infections of P. aeruginosa.54 While 

it was originally thought that alginate promoted bacterial attachment and biofilm 

formation, upon more recent study, it has been determined that due to its highly 

hygroscopic properties, alginate is responsible for promoting antimicrobial and host 

immune protections.55 

Structurally composed of a glucose, galactose, fucose, and glucuronic acid 

core, colanic acid (1.3) is an additional cell-associated, branched polysaccharide. 

Moreover, other branched polysaccharides that are known contributors to biofilms 

are curdlan (1.4) and dextran (1.5) (Figure 1.3.). The production of this protective 

capsule provides defense against extreme environmental stressors, such as 

extreme temperatures, osmotic shock, and dehydration.56-57  Colanic acid 

expression is not critical for initial microbial adhesion, however, has been shown 

necessary for the maturation of three-dimensional biofilms.58-60 

Finally, cellulose plays a key role in the structural integrity of the biofilm 

structures formed across species.53 Initial reports of cellulose-mediated biofilm 

formation cite the contribution of cellulose to cell aggregation in G. xylinus. Cellulose 

(1.6) in various Enterobacteriaceae has been shown to interact with curli, protein 

fibers, to develop the mature biofilm matrix.61 Additionally, the production of bacterial 

cellulose initiates binding of epithelial cells and suppresses the immune response to 

E. coli Nissle 1917.62 Taken together, all these functions set up an important 

framework for a symbiotic relationship between host surface and bacterium. Most 

interestingly, cellulose is a ubiquitous polysaccharide used by many bacteria for a 

wide array of different functions, highlighting the structural and functional diversity 
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of polysaccharides implicated in the biofilm matrix.53 

 

 

 

 

 

Figure 1.3. (A) Extracellular polymeric substances (EPS) matrix. (B) Polysaccharides 
associated with bacterial biofilm and extracellular matrix. 
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1.5. Chemical and Enzymatic Modification to Cellulose Fibers 

Cellulose is a versatile bio-based material with the potential to be used in a 

variety of applications. In the past decade, the race to develop sustainable and 

biodegradable materials have led to the rapid growth in cellulose-focused research 

with the aim of replacing petroleum-based materials. As an excellent alternative, 

cellulose is a naturally abundant polymer that could be used for this purpose 

because of its low-cost of production, easily modifiable chemical functionality, and 

strong physical properties, which makes it an ideal feedstock to manufacture new 

materials. Moreover, the core structure of cellulose allows for convenient 

modification via a chemical or enzymatic reaction. Importantly, the functional groups 

available on cellulose serve as handles that can be altered using various methods 

including sulfonation, oxidation, phosphorylation, etherification, esterification, 

silylation, carbamation, and nucleophilic substitution (Figure 1.4.).63-64  

Depending on the preferred site of transformation, the primary or secondary 

alcohols of cellulose can be functionalized. As a result, these structural modifications 

can greatly improve the versatility of cellulose-based materials. In this section, we 

discuss some literature examples of regioselective and site-specific chemical and 

enzymatic modification of cellulose. 
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Figure 1.4. Enzymatic and chemical modification of cellulose. 
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1.5.1 Chemical Modification of Alcohols 

One of the first implemented strategies to modify cellulose is through the 

oxidation of the C-6 primary alcohol and the oxidative cleavage between the C-2 

and C-3 carbon bond in β-D-glucose monomer of cellulose to access 

carboxycellulose. The presence of the negative charge on the carboxylic acid group 

is deleterious to cellulose crystalline structure due to the enhanced repulsive 

interactions between charges. Published work has shown that an increase in the 

degree of oxidation will result in a decrease of crystallinity leading to a more 

amorphous-like cellulose material.65-66  

Although many strategies exist for the oxidation of alcohols, two known 

methods to access carboxycellulose fibers include: the periodate-chlorite and 

2,2,6,6-tetramethyl-1- piperidinyloxy (TEMPO) oxidation reactions. Periodate-

chlorite mediated oxidation of cellulose is achieved by an initial oxidative cleavage 

of the vicinal diols (C-2 and C-3 alcohols) in β-D-glucose monomer of cellulose 

resulting in the formation of 2, 3, dialdehyde cellulose (DAC). From here, sodium 

metaperiodate in an aqueous solution can regioselectively oxidize the C-2 and C-3 

alcohols to provide Dicarboxyl acid cellulose (DCC) fibers.65-66 

The use of the organocatalyst TEMPO and its analogous have opened a new 

area of efficient and selective functionalization of alcohols to ketones, aldehydes, 

and carboxylic acids. This catalytic oxidative reaction offers a mild protocol to 

functionalized complex molecules.  Specifically, De Nooy et al. first applied TEMPO-

mediated oxidation to water soluble carbohydrates, such as pullulan (1.7), starch 
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(1.8), dextrin (1.9) and cellulose for the regioselective conversion of C-6 primary 

alcohol to a carboxylic acid moiety (Figure 1.5.).67  

In this reaction, catalytic amounts of TEMPO and NaBr were dissolved in a 

solution of cellulose at pH 10-11, and oxidation commenced by the addition of a 

solution of NaClO as the primary oxidant.65-66 This sustainable and efficient reaction 

for the conversion of the primary alcohol to the carboxylate is believed to proceed 

to the mechanism shown in Figure 1.6. Mechanistically, TEMPO reacts with the 

oxidant to create a nitrosium ion intermediate that then transforms the C-6 alcohol 

into an aldehyde. Next, the aldehyde group undergoes further oxidation to access 

the carboxylic acid group. Various TEMPO-mediated oxidation reactions of complex 

mono-, oligo- and polysaccharides have been achieved thus far. The TEMPO-
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mediated oxidation reaction remains one of the most popular reactions for oxidizing 

cellulose in industry since it is thoroughly studied and cost-effective.  

Additional approaches for the chemical modification of cellulose have also 

used DAC as an important intermediate (Figure 1.7.). DAC can be functionalized to 

form cationic quaternized (CDAC) cellulose through use of Girard’s reagent ((2-

hydrazinyl-2- oxoethyl)-trimethylazanium chloride).64 Alternatively, introduction of 

sulfur atoms on cellulose fibers can also be achieved via a sulfonation reaction by 

treating DAC with bisulfite to form adducts to give anionic sulfonated cellulose 

(ADAC).68  
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Among the diverse set of chemical modifications of cellulose, esterification 

represents one of the most promising methods, which was adopted by van de Ven 

et al. to access cellulose derivatives.63 The first step of the reaction involves the 

treatment of an alcohol with sodium hydroxide, followed by SN2 displacement with 

monochloroacetic acid to provide the carbomethylated cellulose fibers. Interestingly, 

other methods to modify the C-6 position of cellulose fibers include phosphorylation 

and silyl ether formation. To date, more than 100 different methods of converting 

cellulose into new materials have been achieved.  

1.5.2 Enzymatic Modification of Alcohols 

Enzymatic modification of cellulose fibers is a viable greener method when 

compared to the traditional route using chemical synthesis.69 Cellulose material 

functionalized with enzymes has a significant advantage since it avoids the 

production of toxic byproducts as well as using harmful reagents. To date, chemical 

synthesis to esterify cellulose uses toxic anhydrides, acid catalysts, and non-green 

solvents. The introduction of enzymes, such as esterases, and in particular, lipases 
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has been used successfully for the regio- and stereo selective esterification of 

complex molecules and sugars.70-71 Furthermore, one of the earliest examples of 

enzymatic esterification of cellulose was accomplished by Sereti et al., where 

cellulose fatty esters were synthesized.72  

More recently, enzymatic phosphorylation of cellulose has been reported by 

Cavaco-Paulo et al. This phosphorylation involves hexokinase by which it catalyzes 

the phosphoryl transfer from adenosine-5’-triphosphate (ATP) to the 6-alcohol of 

cellulose.73 This method is also applicable to various furanose and pyranose 

compounds as well. The ability to enzymatically phosphorylate cellulose rather than 

chemical phosphorylation cuts down many complicated steps that would otherwise 

require additional protection and deprotection sequences in chemical synthesis. 

Enzymatic phosphorylation allows for a facile and efficient synthesis, while 

eliminating many of these costly and unwanted steps. 

Furthermore, the carboxylation of cellulose through a chemo-enzymatic 

process has also been well-studied by Kokol et al. in which they used laccase as 

the biocatalyst and TEMPO as the mediator in this reaction.74 From their studies, it 

was shown that laccase was more productive and had a higher oxidation rate than 

alternative chemical peroxides at near neutral or slightly acidic environments, and 

under mild conditions. This is an ecologically and economically friendly alternative 

as compared to traditional chemical oxidative conditions of cellulose fibers. 
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1.6 Targeting Cellulose as an Anti-biofilm Strategy 

While it has been outlined in detail the ways in which cellulose can be 

chemically manipulated, it is important to contextualize the reason behind such 

modifications. As discovered by Cegelski and co-workers, E. coli biofilms not only 

contain curli fibers, but also produce pEtN cellulose within their extracellular matrix.75 

Additional discoveries from this study confirm the synergistic relationship between 

pEtN cellulose and curli within the biofilm to elicit structural integrity of the 

architecture. Our recent efforts confirm this discovery, highlighting that increases in 

E. coli biofilm production across multiple strains correlate with supplementation of a 

phosphoethanolamine cellobiose (pEtN) tool compound.76 To expand on this further, 

it is also determined that not only is biofilm production increasing, but also the 

presence of curli binding within the extracellular matrix, making pEtN also 

responsible for changes in biofilm architecture. The relationship between pEtN 

cellulose, curli, and subsequent biofilm formation offers a unique targeting 

opportunity for biofilm producing microbes and highlights the importance of 

glycobiology in the pathogenesis of said organisms.  

In the United States, hospital-acquired infections account for more deaths per 

year than those from human immunodeficiency virus (HIV/AIDS), cancer, and 

vehicle accidents combined. Of these invasive infections, catheter associated 

urinary tract infections (CAUTIs) and hospital-acquired pneumonias (HAPs) rank 

among the most prevalent and deadly. Hospital-acquired infections are most usually 

caused by instrumentation use, specifically long-term catheter, and ventilator use, 

wherein the infectious bacteria form biofilms to the mentioned abiotic surfaces and 
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are introduced to the patient during treatment. We hypothesize that employing 

cellulose targeted strategies against biofilm forming bacteria on abiotic hospital 

surfaces will lead to the decrease and potential eradication of cell surface adhesion, 

offering unique opportunities for prophylactic antimicrobial intervention.  

1.7   Biogenesis of Bacterial Surface Organelles 

The complex nature of the extracellular matrix that gives rise to biofilm 

formation is unique to each bacterium within the biofilm and can be characterized 

by distinct component communities within the matrix.77 Specific to 

Enterobacteriaceae, such as Salmonella and Escherichia spp., the extracellular 

biofilm matrix is predominantly composed of curli. Curli, an amyloid-type fiber, is an 

extracellular protein produced by many enteric bacteria such as Escherichia coli (E. 

coli) and Salmonella species. Curli fibers serve to promote biofilm formation, cell 

aggregation, and adhesion to surfaces. Structurally, curli belongs to a large class of 

fibers known as amyloids. Amyloid fiber formation is associated with Alzheimer’s 

and Huntington’s diseases, although the in vivo formation of amyloids is not fully 

studied.  

Specifically, E. coli produces an extracellular matrix that consists of curli as 

the major proteinaceous component and cellulose being the second in the matrix. 

Curli provides a unique avenue to study the pathogenesis of diseases and how it 

interacts with flagella, pili, and exopolysaccharides to enable biofilm development. 

Furthermore, curli’s role in the pathogenesis of diseases has not been fully 

elucidated, but several factors suggest that curli has an important role in the initial 

step of infection (i.e., attachment phase). Understanding the key structures that 
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actively help promote biofilm formation, such as curli and the role that cellulose plays 

in curli formation, is vital towards developing therapeutics that can negate host 

colonization and biofilm formation.  

Enteric bacteria express curli, proteinaceous amyloid proteins, to promote 

community behavior and host colonization within the produced biofilms.78 Curli 

production and biogenesis are highly regulated by the bacteria and have been 

shown to initiate under stressful conditions that favor biofilm formation over 

planktonic cell growth. While implicated in cell communication and host colonization, 

curli production is regulated by curli-specific gene (csg) operons, some of which are 

integral in discerning the bacterial transition from motile to attached bacterial 

behaviors, and as such, afford curli as the responsible component for the three-

dimensional structure of the biofilm architecture.79 It has been previously 

demonstrated that E. coli lacking curli-specific genes are unable to form three-

dimensional structures, and as such, only grow in a single layer.77 
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1.8 Synthetic Phosphoethanolamine Cellobiose by Nguyen and co-workers 

In our previous studies, we reported the synthesis and evaluation of a minimal 

zwitterionic pEtN ability to promote cellular adhesion and biofilm formation in E. 

coli.76 The strategy was to synthesize a structurally defined tool compound to mimic 

the naturally occurring polymer, which is difficult to acquire and characterize in a 

heterogenous mixture (Figure 1.8.).  

 

The impact of synthetic pEtN cellobiose on biofilm was examined via 

colorimetric assays, which revealed an increase in cellular adhesion to an abiotic 

substrate compared to untreated sample.76  Additionally, we confirmed this through 

high-resolution field-emission scanning electron microscopy analyses, which 

showed that pEtN cellobiose supplementation increases adhesion within the biofilm 

matrix (Figure 1.9.). 
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The synthesis commenced with fully protected D-methyl cellobiose 1.17, 

prepared in 6 steps from D-cellobiose 1.16 (Scheme 1.1.). Next, regioselective 

reductive opening of the benzylidene acetal allows access to the C6’ alcohol in 

excellent yield to provide 1.18. To introduce the phosphoethanolamine moiety at 

C6’, phosphoramidite donor 1.19 was synthesized, which functioned well when 

using tetrazole as an activator. Coupling of intermediate 1.18 with 1.19, followed by 

oxidation at phosphorous using mCPBA gave the desired phosphodiester 1.20 in 80 

% yield over two steps. With the fully protected disaccharide 1.20 in hand, 

hydrogenolysis with Pd/C in methanol and formic acid furnished 1.15 in quantitative 

yield. 

 

 

 

 

 

 

Figure 1.9. High resolution scanning electron microscopy demonstrates that exposure to 
phosphoethanolamine (+pEtN) enhances E. coli biofilm compared to samples cultured in 
medium alone without pEtN (Medium Alone). 
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1.9 Conclusion and Future Outlook 

As the most abundant natural polymer on the planet, cellulose has gained 

considerable attention due to its excellent physical and chemical properties, low 

cost, and recyclability. Specifically, BC has a broad spectrum of application for many 

industries, allowing for further research and development of new cellulose-based 

materials. The use of biocatalysis provides a simpler and green approach to perform 

these complex chemical transformations, offering sustainable and innovative 

solutions to specially modify cellulose. The present chapter reports details on the 

advance in the preparation, modification, and employment of cellulose as a target 

for anti-biofilm strategy. Polysaccharides play an integral role in biofilm formation 

and assembly, with cellulose and its derivatives additionally critical to modulating 

numerous cellular processes. While current studies have provided in-depth 

information about cellulose’s role in biofilm architecture, additional work is needed 

to keep pace with the continued development of diseases associated with biofilms. 
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1.11. Experimental Methods 

General. All moisture-sensitive reactions were performed in flame-dried or oven-

dried glassware under an atmosphere of argon. Reaction temperatures were 

controlled and monitored using a hot plate stirrer with a thermocouple thermometer. 

Analytical thin-layer chromatography (TLC) was performed on Sorbtech Silica XHL 

UV254, glass-backed, 250 μm plated, and visualized using UV, cerium ammonium 

molybdate stain or ninhydrin stain. Yields were reported as purified and isolated 

compounds. Solvents were dried through a Braun MB-SPS solvent system and used 

immediately or stored over 3 Å or 4 Å molecular sieves. Instrumentation: 1H, 13C, 

1H-13C HSQC and 31P NMR spectra were recorded in the Vanderbilt Small Molecule 

NMR Facility on a Bruker 400 and 600 MHz. Chemical shifts are reported in parts 

per million (ppm) of the δ scale. Spectra were recorded in CDCl3 by using the solvent 

residual peak chemical shift as the internal standard (CDCl3: 7.26 ppm 1H, 77.0 ppm 

13C) or in D2O using the solvent as the internal standard in 1H NMR (D2O: 4.79 ppm 

1H). 1H NMR spectral data are presented as follows: Chemical shifts (δ ppm), 

multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, 

br = broad, m = multiplet) coupling constants (Hz), integration. High-resolution mass 

spectra (HRMS) were obtained from the Department of Chemistry, Vanderbilt 

University using a Synapt G2-S HDMS (Milford, Ma, USA) mass spectrometer.  
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Preparative Procedures 

Methyl 2,3,4-tri-O-benzyl-β-D-glucopyranosyl-(1→4)-

2,3,6-O-benzyl-β-D-glucopyranoside (1.18): A 

solution of methyl 4,6-O-benzylidene acetal-2-O-

benzyl-β-D-glucopyranosyl-(1→4)-2,3,6-O-benzyl-β-D-glucopyranoside (1.17) (1.0 

equiv., 2.50 g, 3.07 mmol) in anhydrous CH2Cl2 (60.0 mL) was added BH3·THF (5.0 

equiv., 15.4 mL, 15.4 mmol) and a solution of TMSOTf (0.25 equiv., 0.15 mL, 0.768 

mmol, 15 % in anhydrous CH2Cl2) at 0 °C under an argon atmosphere. The reaction 

mixture was stirred for 1.5 h while warming to room temperature. The reaction 

mixture was cooled to 0 °C and quenched by the addition of methanol and Et3N. The 

reaction was concentrated then co-evaporated with methanol to remove residual 

borate esters. The crude reaction mixture was purified by silica gel flash column 

chromatography (30:70 EtOAc/hexanes) to give methyl 2,3,4-tri-O-benzyl-β-D-

glucopyranosyl-(1→4)-2,3,6-O-benzyl-β-D-glucopyranoside 1.18  (2.50 g, 2.79 

mmol, 90%) as a white solid; 1H NMR (600 MHz, CDCl3): δ 1H NMR (600 MHz, 

CDCl3) δ 7.31 – 7.08 (m, 30H), 4.90 – 4.60 (m, 9H), 4.51 (dd, J = 11.6, 7.3 Hz, 2H), 

4.37 (d, J = 7.9 Hz, 1H), 4.36 (d, J = 12.1 Hz, 1H), 4.22 (d, J = 7.8 Hz, 1H), 3.84 (t, 

J = 9.5 Hz, 1H), 3.73 (dd, J = 10.9, 4.0 Hz, 1H), 3.62 (dd, J = 10.9, 1.8 Hz, 1H), 3.54 

(dd, J = 12.0, 2.7 Hz, 1H), 3.49 (s, 1H), 3.48 – 3.39 (m, 2H), 3.41 – 3.21 (m, 5H), 

3.05 (ddd, J = 9.7, 5.1, 2.7 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ 139.13, 138.63, 

138.54, 138.39, 138.12, 138.10, 128.46, 128.43, 128.36, 128.33, 128.06, 127.92, 

127.85, 127.82, 127.79, 127.69, 127.67, 127.64, 127.60, 127.54, 127.18, 104.74, 

102.47, 84.74, 82.75, 82.71, 81.66, 77.98, 75.70, 75.23, 75.04, 75.01, 74.87, 73.35, 
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BnO

OBnO
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BnO
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BnO
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67.94, 61.82, 57.09; ESI-HRMS calcd for C55H60O11Na+ (m/z): [M+Na+] 919.4033, 

found: 919.4032.  

Methyl 6-O-{benzyloxy-2 [N(benzyloxycarbonyl) 

amino]ethylphosphate}-2,3,4-tri-O-benzyl-β-D-

glucopyranosyl-(1→4)-2, 3, 6-O-benzyl- β-D-

glucopyranoside (1.20): Methyl 2,3,4-tri-O-benzyl-β-D-

glucopyranosyl-(1→4)-2,3,6-O-benzyl-β-D-glucopyranoside 1.18 (1.50 g, 1.67 

mmol) and phosphoramidite 1.19 (1.45 g, 3.34 mmol) were coevaporated (3 ×) from 

toluene and dried overnight in vacuo. The compounds were dissolved in CH2Cl2 (65 

mL) and a solution of 3% tetrazole solution in anhydrous CH3CN (3.0 equiv., 12.1 

mL, 5.02 mmol). The solution was allowed to stir at room temp, for 3 h. The solution 

was cooled to -40 °C and mCPBA (1.92 g, 8.36 mmol) was added to the reaction 

mixture. The solution was allowed to warm to room temp for 1 h, after which it was 

diluted with CH2Cl2 (10 mL), washed with 10% Na2SO3 (2 × 3 mL), dried with 

Na2SO4, filtered and evaporated. The crude reaction mixture was purified by silica 

gel flash column chromatography (10:90 EtOAc/hexanes) to give methyl 6-O-

{benzyloxy-2 [N(benzyloxycarbonyl) amino]ethylphosphate}-2,3,4-tri-O-benzyl-β-D-

glucopyranosyl-(1→4)-2, 3, 6-O-benzyl- β-D-glucopyranoside 1.20 (1.48 g, 1.19 

mmol, 72%, mixture of phosphate diastereomers) as a clear oil. 1H NMR (600 MHz, 

CDCl3): 7.42 – 7.15 (m, 40H), 5.13 – 4.60 (m, 17H), 4.55 (d, J = 7.7 Hz, 1H), 4.51-

4.48 (m, 1H), 4.32 (d, J = 7.7 Hz, 1H), 4.23 – 3.97 (m, 4H), 3.97 – 3.69 (m, 4H), 3.59 

(s, 3H), 3.57 – 3.47 (m, 2H), 3.42-3.33 (m, 4H); 13C NMR (151 MHz, CDCl3) δ 

156.33, 138.94, 138.61, 138.42, 138.32, 138.07, 137.92, 136.66, 135.74, 135.69, 

O
OCH3BnO

BnO

OBn
O

BnO
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128.64, 128.50, 128.47, 128.44, 128.38, 128.27, 128.19, 128.11, 128.06, 127.91, 

127.89, 127.82, 127.77, 127.75, 127.70, 127.68, 127.54, 104.79, 102.03, 84.69, 

82.88, 82.60, 81.59, 77.17, 76.01, 75.62, 75.41, 74.97, 74.94, 74.89, 74.75, 73.56, 

73.34, 69.56, 69.52, 68.10, 66.61, 57.02, 41.08, 41.04; 31P NMR (162 MHz, CDCl3) 

δ -0.54, -0.14; ESI-HRMS calcd for C72H78NO16PNa+ (m/z): [M+Na+] 1266.4955, 

found: 1266.4956. 

 

Phosphoethanolamine Cellobiose (1.15): A solution of 

methyl 6-O-{benzyloxy-2 [N(benzyloxycarbonyl) 

amino]ethylphosphate}-2,3,4-tri-O-benzyl-β-D-

glucopyranosyl-(1→4)-2, 3, 6-O-benzyl- β-D-

glucopyranoside (1.20) (1.25 g, 1.00 mmol), in 4% HCOOH in MeOH (20 mL), 10% 

Pd/C (1.07 g) was added and the mixture was hydrogenated at room temp for 48 h. 

The reaction mixture was filtered over celite and concentrated in vacuo yielded 1.15 

quantitatively (445 mg, 0.928 mmol). 1H NMR (600 MHz, D2O) d1H NMR (600 MHz, 

D2O) δ 4.32 (d, J = 8.0 Hz, 1H), 4.20 (d, J = 8.0 Hz, 1H), 3.98 (ddd, J = 11.5, 5.2, 

2.2 Hz, 1H), 3.95 – 3.83 (m, 2H), 3.79 (dd, J = 12.3, 1.9 Hz, 1H), 3.61 (dd, J = 12.3, 

4.7 Hz, 1H), 3.45 – 3.39 (m, 4H), 3.37 (s, 3H), 3.36 – 3.27 (m, 2H), 3.26 – 2.93 (m, 

4H); 13C NMR (151 MHz, D2O) δ 103.01, 102.80, 79.37, 75.25, 74.62, 74.51, 74.34, 

73.04, 72.80, 69.01, 64.42, 61.88, 60.02, 57.21, 40.01; 31P NMR (162 MHz, D2O) δ 

1.58; ESI-HRMS calcd for C15H30NO14P+ (m/z): [M+H]+ 479.1403, found: 480.1477. 
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Bacterial Strains and Culture Conditions 

The bacterial strains used in this study were all Escherichia coli strains: ATCC 

11775T, a type strain urinary isolate (serovar O1:K1: H7); ATCC 700414, ATCC 

700415, and ATCC 700416, all urinary isolates (serovar O4:H5); ATCC 700928, a 

urinary isolate (serovar O6: H1); and ATCC 25922, a control strain (serovar O6:H1). 

E. coli strains were grown on tryptic soy agar plates supplemented with 5% sheep 

blood (blood agar plates) at 37°C in ambient air overnight. The strains were 

subcultured from the blood agar plates into 5 mL of Todd-Hewitt broth (THB) and 

incubated under shaking conditions at 180 rpm at 37°C in ambient air overnight. 

Following overnight incubation, bacterial density was quantified through absorbance 

readings at an optical density at 600 nm (OD600) using a Promega GloMax-Multi 

Detection System plate reader. Bacterial numbers were determined using the 

predetermined coefficient of 1 OD600=109 CFU/mL. 

 

Bacterial Biofilm Assays 

E. coli was grown overnight as described above and used to inoculate fresh THB or 

THB+1% glucose at a multiplicity of infection (MOI) 106 colony forming units (CFUs) 

per 200 μL of growth medium in 96 well tissue culture treated, sterile polystyrene 

plates. pEtN methyl cellobiose was dissolved in DI water to achieve a concentration 

of 50 mg/mL and filtered through a 0.2 μm syringe filter. pEtN methyl cellobiose was 

added to achieve a final concentration of ca. 5 mg/mL. Bacteria grown in THB or 

THB+1% glucose in the absence of any pEtN methyl cellobiose served as the 
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controls. Cultures were incubated under static conditions at 37°C in ambient air for 

24 h. Bacterial growth was quantified through absorbance readings at an optical 

density of 600 nm (OD600). Following growth quantification, the culture medium was 

removed, and wells were washed gently with phosphate buffered saline (PBS, pH 

7.4) to remove nonadherent cells. The remaining biofilms were stained with a 1% 

crystal violet solution for 10 min. Following staining, wells were washed with PBS 

and allowed to dry at room temperature for at least 30 min. The remaining crystal 

violet stain was solubilized with 200 μL of 80% ethanol/20% acetone solution. Biofilm 

formation was then quantified through absorbance readings at an optical density of 

560 nm (OD560). Results are expressed as biofilm/biomass ratios (OD560/OD600). 

 

Bacterial Growth Assays 

E. coli was grown overnight as described above and used to inoculate fresh THB at 

a multiplicity of infection (MOI) of 106 colony forming units per 200 μL of growth 

medium in 96 well tissue culture treated, sterile polystyrene plates (Corning, Inc). 

pEtN cellobiose was dissolved in DI water to achieve a concentration of 50 mg/mL 

and filtered through a 0.2 μm syringe filter. pEtN cellobiose was added to achieve a 

final concentration of ca. 5 mg/ mL. Bacteria grown in THB in the absence of pEtN 

cellobiose served as the control. Cultures were grown under static conditions at 

37°C in ambient air for 24 h. Growth was quantified through spectrophotometric 

reading at OD600 with readings taken at 0, 2, 4, 6, 7, and 8 hours then a final reading 

at 24 hours. 
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Scanning Electron Microscopy Analysis of E.coli cultured in the absence or 

presence of pEtN 

Scanning electron microscopy analysis of E. coli cultured in the absence or 

presence of pEtN E. coli was grown on plastic coverslips in 1 mL THB media in the 

presence or absence of ca. 5 mg/mL pEtN cellobiose. Cultures were grown under 

static conditions at 37°C in ambient air for 24 h. The following day, samples were 

fixed in a solution of 2.0% paraformaldehyde, 2.5% glutaraldehyde in a 0.05 M 

sodium cacodylate buffer at pH 7.4 for 24 h as previously described. After primary 

fixation, samples were subjected to sequential dehydration with increasing 

concentrations of ethanol and dried at the critical point using a Tousimis Critical 

Point Dryer machine. Samples were mounted onto aluminum stubs, sputter coated 

with 20 nm of gold-palladium, and painted at the sample edge with a small stripe of 

colloidal silver to facilitate charge dissipation. Samples were imaged with an FE-

IQuanta 250 field-emission gun scanning electron microscope to evaluate biofilm 

architecture and bacterial cell ultrastructure. 
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Appendix A1: 
 
 
 

Spectra Relevant to Chapter 1 
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Figure A1.1. 1H NMR (600 MHz, CDCl3) of compound 1.18 
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Figure A1.2. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 1.18. 
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Figure A1.3. 13C NMR (151 MHz, CDCl3) of compound 1.18. 
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Figure A1.4. 1H NMR (600 MHz, CDCl3) of compound 1.20. 
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Figure A1.5. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 1.20. 
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Figure A1.6. 13C NMR (151 MHz, CDCl3) of compound 1.20. 
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                            Figure A1.7. 31P NMR (162 MHz, CDCl3) of compound 1.20 
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Figure A1.8. 1H NMR (600 MHz, D2O) of compound 1.15. 
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Figure A1.9. 1H-13C HSQC NMR (600 MHz, D2O) of compound 1.15. 
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Figure A1.10. 13C NMR (151 MHz, D2O) of compound 1.15. 
 

O
O
CH

3
HO

HOO
H

O
HO

HO
O

HOOP
O

O
O

NH
3

1.
15



 
58 

 
 
 

 
 
 
 
 
 
 
                            Figure A1.11. 31P NMR (162 MHz, D2O) of compound 1.15 
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Chapter 2 

 

Synthesis of Deoxy-amino Sugars and Their Applications in Total Synthesis 
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2.1 Introduction 

Bacterial deoxy-amino sugars are a vital structural component of several 

extracellular polysaccharides (EPS), lipopolysaccharides (LPS), glycoconjugates 

and secondary metabolites, including antibiotics.1-6 These monosaccharides are 

ubiquitously dispersed on the cell surface of polysaccharides and are produced by 

numerous pathogenic bacterial strains including: Psuedomonas aeruginosa, 

Streptoccocus pneumonia, Bacteroides fragilis, and shigella sonnei; however, they 

are absent in the human metabolism.5-10 Different from their eukaryotic counterparts, 

bacterial glycans can be exploited for target specific drug discovery since their 

structural differences help differentiate between the host cell and pathogen and is 

quintessential for drug development.  

While the biological activity of these deoxy-amino sugars is noteworthy, they 

are not available from natural sources. As such, the procurement of these highly 

orthogonally protected glycans via chemical synthesis has therefore received 

notable attention. To this end, a variety of methods have been developed by groups 

around the world to access these rare sugars using both carbohydrate and non-

carbohydrate starting materials.  

The introduction of an amine group into pentose or hexose sugars can greatly 

affect their physiochemical properties, and in consequence, can change their 

biological activity. The most desirable sugars include, 2-acetamido-4-amino-2,4,6-

trideoxy-D-galactose (AAT, 2.1)9, N-acetyl fucosamine (FucNAc, 2.2)10, 2,4-

diacetomido-2,4,6-tridoexy-D-galactose (DATDG, 2.3)11, D-xylo-6-deoxy-4-

ketohexosamine (DKH, 2.4)12 and bacillosamine (Bac, 2.5)13 among the selected 
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from Table 2.1 (Figure 2.1). Synthetic methods to access these compounds in 

suitable quantity and stereochemical purity is of great importance because it will 

provide tool compounds to investigate the role of bacterial glycans in the 

pathogenesis of virulent bacteria. In this chapter, we will discuss the biological 

importance of bacterial deoxy-amino sugars, their biosynthesis, and current 

methods for their preparation and application in total synthesis. Chapter 2 of this 

thesis will also delineate our laboratory’s work in the area of deoxy-amino sugar 

synthesis; this work has resulted in the first total synthesis of the Aeromonas veronii 

strain Bs8 OPS disaccharide repeating unit, as well as a scalable synthesis of  an 

AAT derivative. 
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Table 2.1. The natural origin of deoxy-amino sugars.14-42 

IUPAC name Common name SourcesConstituent of

2-amino-2-deoxy-D-galactose

2-amino-2,6-dideoxy-D-galactose

2-acetamindo-2,6-dideoxy-L-galactose

2-amino-2-deoxy-D-mannose

3-amino-3,6-dideoxy-D-mannose

4-amino-4,6-dideoxy-D-mannose

2-amino-2-deoxy-D-gulose

2-amino-2-deoxy-D-talose

3-amino-3-deoxy-D-ribose

4-amino-4-deoxy-L-arabinose

3-amino-2,3,6-trideoxy-L-lyxo-hexose

3-amino-2,3,6-trideoxy-L-ribose

3-amino-2,3,6-trideoxy-L-arabinose

2,3,4,6-tetra-deoxy-4-
(methoxycarbonylamino)-3-C-methyl-3-
nitro-D-xylo-hexapyranose

2-amino-2-deoxy-D-glucose

2-methylamino-2-deoxy-L-glucose

2-acetamido-2-deoxy-D-glucose

2-amino-2,6-dideoxy-D-glucose

2,4-diamino-2,4,6-trideoxy-D-glucose

2,4-diacetamido-2,4,6-trideoxy-D-glucose

3-amino-3-deoxy-D-glucose

6-amino-6-deoxy-D-glucose

3,6-dideoxy-3-dimethylamino-D-glucose

3-(dimethylamino)-3,4,6-trideoxy-D-
glucose

D-galactosamine

D-fucosamine

N-acetyl-L-fucosamine

D-mannosamine

D-mycosamine

D-perosamine

D-gulosamine

D-talosamine

D-ribosamine
__

L-daunosamine

L-ristosamine

L-acosamine

D-kijanose

D-glucosamine

N-methyl-L-glucosamine

N-acetyl-D-glucosamine

D-quinosamine

D-bacillosamine

__

D-kanosamine

__

D-mycaminose

D-desoamine

bacterial cell wall chondroitin sulfate

teichuronic acid (component of cell wall)

lipopolysaccharides

N-acetylneuraminic acid sialic acid

amphotericin B, nystatin, trichomycine A, 
pimaricin

O-antigen, perimycin

streptothricins

chondroitin sulfate

puromycine

lipopolysaccharides

daunomycine

kijanimicin A

chitosan

streptomycin

chitin, murein, hyaluronic acid, 
glycoproteins

lipopolysaccharides

polysaccharides

polysaccharides

unbound, kanamycine A

kanamycine A

leucomycines, tylosin

erythromycin

Bacillus subtilis, mammalian 
glycosaminoglycans

Bacillus subtilis

Pseudomonas aeruginosa

human plasma

Streptomycetes

Vibrio cholerae, Streptomyces coelicolor

Actinomycetes

Sheep cartilage

Streptomyces alboniger

Salmonella minnesota

Streptomyces spp.

Streptomyces spp.

Streptomyces spp.

Actinomadura kijaniata

Mucor rouxii

Actinomycetes

Crustaceans, insects, fungal and 
bacterial cell wall

Vibrio cholerae

Bacillus subtilis

Bacillus licheniformis, C.jejuni

Streptomyces kanamyceticus, Bacillus spp.

Streptomyces kanamyceticus

Streptomyces kitasatoenis Hata

Streptomyces erytherus, Streptomyces 
venezuleae

2-acetamindo-4amino-2,4,6-trideoxy-D-
galactose

AAT

2,4-diacetamino-2,4,6-trideoxy-D-
galactose

DATDG

D-xylo-6-deoxy-4-ketohexosamine DKH lipopolysaccharides Yersinia enterocolitica

polysaccharides

zwitterionic polysaccharides Shigella sonnei, Streptococcus pneumonia, 
Bacteriodes fragilis, Streptococcus mitis, 
Proteus vulgaris
Staphlyococcus aureus

5,7-diacetamido-3,5,7,9-tetradeoxy-l-
glycero-α-l-manno-nonulosonic acid

Pseudaminic acid polysaccharides P. aeruginose, Shigella boydii

2-acetamido-2,6-dideoxy-L-galactose L-fucosamine polysaccharides Yersinia enterocolitica, Plesiomonas shigelloides, 
Staphylococcus aureus, Pseudomonas chloraphis, 
Pseudomonas aeruginosa

2-acetamido-2,6-dideoxy-L-glucose L-quinovosamine polysaccharides Vibrio vulnificus, Shewanella putrefaciens

2-acetamido-2,6-dideoxy-L-talose N-acetyl L-pneumosamine polysaccharides P. shigelloides, Alteromonas nigrifaciens

2-acetamido-2,6-dideoxy-L-rhamnose L-rhamnosamine polysaccharides V. vulnificus, P.vulgaris

D-forosamine4-(dimethylamino)-2,3,4,6-tetradeoxy-D-
erythro-hexose

spinosyns Saccharopolyspora spinosa
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2.2 The natural origins of deoxy-amino sugars  

Deoxy-amino sugars are an important class among deoxy-sugars and are 

synthesized by a diverse range of microorganisms. Naturally abundant glycans, 

such as D-mannosamine (ManN), D-galactosamine (GalN), D-glucosamine (GlcN) 

and their N-acetyl derivatives (GalNAc, ManNAc, and GlcNAc) are products of 

primary metabolism.43-44 For example, chitin, the second most abundant biopolymer 

on Earth after cellulose, is a β-1,4 linked GlcNAc homopolymer.45 These N-acetyl 

deoxy-amino sugars are also present in the microbial cell wall, where they are a key 

Figure 2.1. Representative examples of rare deoxy-amino sugars from bacteria. 
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structural component of the peptidoglycan layer. Furthermore, they are also a major 

constituent of bacterial glycoproteins and are linked to pathogen-associated targets. 

Indeed, pathogenic bacteria can synthesize glycoproteins and is more than often 

related to their ability to cause disease.  

 In contrast, other deoxy-amino sugars, such as perosamine (2.6), 

mycaminose (2.7), desosamine (2.8), daunosamine (2.10), forosamine (2.11), and 

mycosamine (2.12) are products of secondary metabolism (Figure 2.1).46-49 They 

are components of several antibiotics. For example, 2.8 is present in erythromycin, 

2.7 in tylosin, and 2.12 in amphotericin B, respectively. Although more than fifty 

amino sugars have been described in the literature, only the most relevant and 

important are listed in Table 2.1.  At present, deoxy-amino sugars are important for 

biological activity and further investigation of these rare sugars will enable access 

to new glycoconjugate-based vaccines.  

 

 

 

 

 

 

 

 



 
65 

2.3 Deoxy-amino sugar biosynthesis 

 

The origin of most deoxy-amino sugars produced by bacteria biosynthetic 

pathways are derived from ⍺-D-glucose-1-phosphate, which in turn, is initially from 

D-glucose (2.17).50-51 From here, direct anomeric phosphorylation is catalyzed by 

an anomeric kinase to allow access to glucose-1-phosphate (2.19). Alternatively, 

glucose-6-phosphate (2.18) upon treatment with a phosphohexose mutase can also 

arrive at the same key intermediate (2.19). Next, a nucleotide monophosphate 

(NMP) group from nucleotide triphosphate (NTP) could then be coupled with 

nucleotidylyltransferase to provide NDP-glucose (2.20). Although deoxy-amino 

sugars from primary metabolites can be activated by NDP groups, majority of all 

bacterial deoxyamino-sugars featured in complex molecules, such as antibiotics, 

are primarily produced via the secondary metabolism pathway. They are derived 

biosynthetically from TDP-⍺-D-glucose (2.21).52-53 

From here, 2.20 and 2.21 can be subjected through a series of enzymatic 

reactions that lead to a key reduction (dehydration), resulting in the displacement of 

one or two alcohols with hydrogens. Moreover, an important step in the synthesis of 
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deoxy-amino sugars involves a transamination reaction that converts the ketone for 

an amine. Consequently, the genes that are involved in the biosynthesis of deoxy-

amino sugars are often grouped and located nearby other genes required for the 

synthesis of the corresponding sugar.49 These clustered genes share a 

commonality, as they contain genes encoding isomerases, aminotransferases, 

amidotransferases, dehydratases, glycosyltransferases, and methyltransferases. 

Furthermore, chemical synthesis of deoxy-amino sugars is possible through routes 

involving the use of carbohydrate starting material or via a de novo route that 

highlights precursors, such as amino acids, alcohols, carboxylic acids, esters, 

lactones, and aldehydes. In both cases, a regio- and stereospecific reaction would 

be required to introduce an amino functionality into the appropriate site on the 

molecule.   

2.3.1. Deoxy-amino sugars derived from primary metabolism 

The transfer of an amine group from an amino acid donor, such as L-

glutamine or L-glutamate to a ketose derivative in the open form or to the closed 

Scheme 2.2. Proposed mechanism of amino transfer and sugar isomerization by GlcN-6-P 
synthase in primary metabolism. 
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form of an aldose derivative is an important initial step in the biosynthesis of deoxy-

amino sugars in primary metabolism. This stereospecific reaction is driven via 

enzymatically by an independent amidotransferase or a dependent 

aminotransferase. In general, the acceptor is a sugar nucleotide or a sugar 

phosphate. The synthesis of D-glucosamine-6-phosphate (GlcN-6-P, 2.22) from L-

glutamine and D-fructose-6-phosphate (Fruc-6-P, 2.23) is a prime example of 

deoxy-amino sugars synthesized from primary metabolism.49 The enzyme 

responsible for this transformation is fructose-6-phosphate amidotransferase, also 

known as glucosamine-6-phosphate (GlcN-6-P) synthase, which is a ubiquitous 

enzyme in nature and is prevalent among all living organisms. This irreversible 

enzymatic reaction with GlcN-6-P synthase does not require any coenzymes and 

proceeds through transferring an amide of L-glutamine to Fruc-6-P followed by 

isomerization of the fructose intermediate as shown in Scheme 2.2.50-53 

Upon completion of 2.22, the newly synthesized glycan can then proceed 

downstream through the Leloir pathway, which is a series of three consecutive 

reactions to access UDP-GlcNAc. From here, the UDP-GlcNAc can serve as a 

donor in the biosynthesis of other structurally complex polysaccharides and glyco-

conjugates. Nevertheless, UDP-GlcNAc can also be functionalized by other 

enzymes, such as epimerases to access N-acetyl galactosamine (GalNAc) and 

mannosamine (ManNAc) deoxy-amino sugars. Additionally, UDP-GlcNAc can be 

used for the synthesis of the rare sugar, N-acetyl-L-fucosamine, which is shown in 

numerous polysaccharides.49-50  
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2.3.2 Deoxy-amino sugars derived from secondary metabolism 

The biosynthesis of deoxy-amino sugars via the secondary metabolism 

pathway is often associated with a variety of genes and enzymes. Bacterial glycan 

featured in complex molecules are functionalized from enzymes, such as isomerase, 

dehydratases, methyltransferases, glycosyltransferases, and aminotransferases.51 

An overview of the enzymes and genes required for the biosynthesis of selected 

monosaccharides is shown in Table 2.2.  

 

 

In general, the biosynthesis of deoxy-amino sugar requires the activation of 

a precursor monosaccharide followed by coupling with nucleotidylyltransferase to 

access NDP-⍺-D-glucose.49 From the latter intermediate, the biosynthetic pathway 

for this glycan can vary, since the next steps could involve a reduction, 

isomerization, and dehydration reaction. Eventually, a key transamination step will 

convert the deoxy-sugar to a deoxy-amino sugar by an aminotransferase. However, 

deoxy-amino sugars produced in bacterial secondary metabolism exclusively use 

TDP-⍺-D-glucose (2.21) as the primary intermediate for further enzymatic 

modifications. Indeed, rare bacterial sugars, such as mycaminose (2.7), 

Table 2.2. Summary of common enzymes in the biosynthetic pathways of key deoxy-amino sugars 
in bacteria. NI Not Identified.49  
 

Complex Molecules Deoxy-amino sugar 4,6-DehydrataseIsomerase

Erythromycine

Tylosin

Polyene macrolides

Spinosyns

Daunorubicin

Aminotransferase MethyltransferaseGlycotransferase

D-desosamine

Forosamine

Mycosamine

L-daunosamine

Mycaminose

EryCII EryCIII Gdh EryCI EryCVI

3,4-dehydratase

EryCIV

NI SpnP Gdh SpnR SpnS SpnQ

NI AmphDI, CanG, 
NysDI, PimK
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NysDIII, PimJ

AmphDII, CanA, 
NysDII, PimC NI Ni

NI DnmS DnmM DnmJ NI NI
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desosamine (2.8), and forosamine (2.11) can be accessed from 2.21 (Scheme 2.3). 

While most deoxy-amino sugar moieties (i.e., 2.8, 2.11, and 2.12) in macrolides 

originate from 2.21, deoxy-amino sugars from polyene macrolides, specifically 

perosamine (2.6) and mycosamine (2.12) are believed to arise from GDP-D-

mannose (2.44, Scheme 2.4).   

To date, erythromycin, 3-(dimethylamino)-3,4,6-trideoxy-D-glucose, is one of 

the most widely studied antibiotics and is produced by Saccharopolyspora 

erythraea. Erythromycin contains two deoxy-sugars (L-cladinose and D-

desosamine) linked to a 14-membered ring, respectively. The biosynthesis of TDP-

D-desosamine (2.39) requires the early activation of glucose-1-phosphate (2.19) by 

TDP-glucose synthase to provide 2.21, followed by dehydration at the C-4 and C-6 

positions by TDP-D-glucose 4,6 dehydratase to access 2.29.54 From here, an 

additional four enzymatic steps, including a key aminotransferase reaction will 

provide TDP-D-desosamine (2.39). Conveniently, mycaminose and forosamine can 

also be synthesized in three and five steps by the same key dehydrated intermediate 

2.29 (Scheme 2.3).55-56 
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Other deoxy-amino sugars derived from microbial secondary metabolism, 

such as 2.6 and 2.12 are mainly associated with polyene macrolide antibiotics, such 

as nystatin, amphotericin B, and candicidin, which are produced by S. noursei, S. 

nodosus, and S. griseus.57 The proposed biosynthetic pathway for both 2.6 and 2.12 

is shown in Scheme 2.4. Different from other deoxy-amino sugars synthesized by 

secondary metabolism, 2.6 and 2.12 is synthesized via the GDP-mannose 

pathway.57-58 Accordingly, GDP-D-mannose is synthesized by enzymes involved in 

Scheme 2.3. Proposed biosynthetic pathway for D-desosamine, D-mycaminose, and D-
forosamine. 
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primary metabolism, starting from fructose-6-phosphotase (2.23). From here, 

transformation of GDP-D-mannose to GDP-D-perosamine (2.46) and GDP-D-

mycosamine (2.49) would entail a few additional steps starting from a reaction with 

GDP-4,6-dehydratase, followed by a key transamination step to afford 2.46 and 

2.49. 

 

 

 

 

 

 

 

Scheme 2.4. Proposed biosynthetic pathway for D-perosamine and D-mycosamine. 
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2.4. Chemical synthesis of deoxy-amino sugars 

Current strategies to combat against bacterial diseases have heavily relied 

on blockbuster antibiotics, such as Penicillin and Vancomycin, to inhibit the enzymes 

responsible for peptidoglycan biosynthesis.59 Although these therapies have been 

effective at saving numerous lives, recent emergence of the World Health 

Organization antibiotic resistant “priority pathogen” list has called for an inquiry into 

alternative treatment.60  

An ongoing impediment in bacterial disease treatment have largely been due 

to the paucity of knowledge around bacterial glycoproteins and 

glycosyltransferases. Particularly, the lack of specific probes for diagnosis and 

treatment against pathogenic bacteria in a selective manner is a major setback. To 

address this issue, recent work showed that deoxy-amino sugars found exclusively 

on pathogenic bacteria can used as a basis for a target therapy. Moreover, these 

bacterial sugars have been linked to bacterial fitness and pathogenesis, respectively 

making them great targets. Undeniably, a quick survey of the literature has shown 

that peptidoglycan formed improperly can experience osmotic lysis and altered 

lipopolysaccharides can be dismantled by the host’s immune system.61 These 

examples reveal that deoxy-amino sugars have a critical function and are linked to 

pathogenicity. Remarkably, targeting these structures could alleviate the urgent 

need to develop new diagnostic and antibiotics for bacterial diseases.  

Therefore, access to these bacterial sugars in sizeable quantity and 

stereochemical purity can be highly attractive. As a result, the development of 

efficient synthetic methods and strategies to acquire these structurally diverse 
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deoxy-amino sugar is of great importance. For example, Pseudomonas aeruginosa 

links N-acetyl fucosamine (FucNAc, 2.2) residues62, Bacteroides fragilis attaches 2-

acetamido-4-amino-2,4,6-trideoxy-galactose (AAT, 2.1)9 onto its cell surface 

zwitterionic polysaccharides, and Neisseria meningitidis use bacillosamine (2,4, 

diamino-2,4,6-trideoxy-D-glucose, Bac, 2.5)63 as a key structural component of its 

long polymeric filamentous glycoproteins (Figure 2.1). For more than three decades, 

there has been an earnest attempt to synthesize these unique bacterial sugars to 

access aforesaid synthetic targets. Given their biological importance, these complex 

glycoconjugates and molecules represented in Figure 2.2 are interesting targets for 

chemical total synthesis.  
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Figure 2.2. Part A. Structures of representative glycans found on bacterial cells, with exclusively 
bacterial sugar highlighted in color.  
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Figure 2.2. Part B. Structures of representative glycans found on bacterial cells, with exclusively 
bacterial sugar highlighted in color.  
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Considerable attention has been dedicated toward the syntheses of these 

rare bacterial monosaccharides, exploiting both non-carbohydrate and carbohydrate 

starting materials. Given the inherent difficulty of synthesizing these glycans, some 

strategies still require lengthy multistep procedures, along with low overall yields and 

use of expensive starting materials. New methodology employing modern chemistry 

and enantioselective catalysis would allow for an efficient and facile method to 

synthesize these structurally diverse molecules. The section below will provide an 

overview on the various approaches toward the synthesis of deoxy-amino sugars, 

but also include an in-depth analysis of modern approaches that employs de novo 

strategies. 

 

2.4.1 Overview of D-fucosamine chemical synthesis 
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Among the methodology that has been developed for the synthesis of D-

fucosamine (FucNAc, 2.2), a common strategy involves the deoxygenation on D-

galactosamine at the C-6 position. This protocol would require a reduction of an alkyl 

halide at C-6 with a hydride source or using classical Barton-McCombie 

conditions.64-68 Because D-galactosamine is significantly more expensive when 

compared to D-glucosamine, the latter is frequently used as an alternative. 

Strategies for the use of D-glucosamine would require an additional two-step 

procedure that consists of an SN2 displacement of a triflate or mesylate at the C-4 

position followed by nucleophilic attack with benzoate.69-71 From here, 

deoxygenation at C-6 with conditions mentioned above would provide D-fucosamine 

derivatives (Figure 2.3).  

A closer examination at the literature reveals chemistry developed by the 

Shibaev72 and Carreira73 groups have used D-fucal as a starting material, whereby 

an azidonitration or aminohydroxylation reaction would allow access to D-

fucosamine derivatives. In a different approach, elegant work by Adamo and co-

workers showed that functional group interconversion at the C-2 position via a 

double inversion oxidation-reduction reaction followed by azide displacement can 

afford the deoxy-amino sugar.74 

2.4.2 Overview of D-bacillosamine chemical synthesis 

Previous chemistry that has been developed for the synthesis of D-

fucosamine can be applied toward the synthesis of D-bacillosamine (2.5) by using 

D-fucal75, D-glucosamine76-77, and D-galactosamine78 as the starting materials. A 

fruitful route to access D-fucosamine would entail a tosylation, mesylation, or 
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triflation reaction on the secondary alcohol at C-4 and subsequent nucleophilic 

displacement with an amine source will afford the desired D-bacillosamine building 

block (Figure 2.4).  

 

2.4.3 Overview of AAT and DATDG chemical synthesis 

With so many unique and diverse complex molecules containing AAT and 

DATDG, it is not surprising that several syntheses of these key building blocks have 

been reported.79-85 The first synthesis of an orthogonally protected AAT building 

block was achieved by Loongren and co-workers in 1984, where D-glucosamine 

was used as the key starting material for their total synthesis of a capsular 

polysaccharide antigen of Streptococcus pneumoniae.80 At the start of their work, 

they employed the popularized two-step Mitsunobu protocol to set the desired 

stereocenter on their AAT building block. D-glucosamine is the most suitable 

Figure 2.4. Synthetic strategies employed for D-bacillosamine (Bac) derivatives. 
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material for the synthesis of 2.1 and 2.3 since the necessary amine at C-2 has 

graciously been installed beforehand (Figure 2.5). In a similar approach for the 

syntheses of 2.2 and 2.5, deoxygenation at C-6 will be necessary to afford 2.1 and 

2.3.   

Tremendous and continuous research effort for the synthesis of 2.1 and 2.3 

was accomplished by van Boom and co-workers using D-mannose as their starting 

material.86-87 This method would consist of a stepwise approach to install the amine  

at the C-4 and C-2 positions. Since the discovery of these rare deoxy-amino sugars, 

more than ten groups around the world have successfully synthesized 2.1 and 2.3 

by various chemistries, including a concise approach that was developed by our 

group. Furthermore, we will enumerate the application of these chemistries in the 

context of total synthesis to highlight both classical and de novo approaches to 

deoxy-amino sugars. 

 

Figure 2.5. Known synthetic strategies for AAT and DATDG derivatives. 
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2.4.4 General approaches for rare deoxy-amino sugar chemical synthesis 

Adamo and co-workers’ 2012 synthesis of D-FucNAc acceptor 2.68.74 

In their 2012 total synthesis of Staphylococcus aureus type 5 capsular 

polysaccharide (CPS) repeating unit (2.51), Adamo and co-workers reported a 

synthesis of a D-FucNAc derivative using peracetylated D-fucose (2.64) as their 

starting material. The synthesis of the D-FucNAc acceptor 2.68 commenced with 

the installment of a benzyl(N-(hydroxylpropyl) carbamate at the anomeric position 

to afford 2.65 in a 72% yield, exclusively as the β-product (Scheme 2.5). Next, 

deacetylation of 2.65 under Zemplén condition and isopropylidene protection provided 

compound 2.66 (87% yield over two steps). To install the amine moiety at C-2, the next 

steps consist of a Swern oxidation and subsequent reduction with NaBH4, leading 

stereoselectivity to the talo configuration in 87% yield over two steps. At this stage, O-

triflation of the C-2 alcohol followed by displacement with sodium azide provided 2.67 in 

excellent 90% yield. Finally, removal of the isopropylidene protecting group and 

regioselective protection of the C-4 alcohol through a sequence of four steps provided the 

desired accepter 2.68.  
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Seeberger’s 2010 de novo synthesis of AAT (2.1) from L-threonine88-89 

Although majority of carbohydrate building block synthesis proceeds through 

the classical approach of using carbohydrate as a starting material, de novo 

approaches have attracted much interest from the synthetic community. The 

advantage of such an approach for total synthesis are often atom economics by 

avoiding protecting group manipulations and pre-functionalization, which is 

notorious in carbohydrate synthesis.  Recent de novo approaches have explored 

the use of aldehydes, alcohols, esters, ketones, lactones, and amino acid as starting 

materials. 

In 2010, Seeberger and co-workers developed an elegant and efficient 

synthesis of AAT via a de novo route. Seeberger’s synthesis commenced with 

commercially available Cbz-L-threonine 2.69 (Scheme 2.6). First, routine 

esterification and alcohol acetylation provided cyclization precursor 2.70, which 

underwent the key Dieckmann cyclization upon treatment with LiHMDS. Methylation 

AcO
O

AcO

AcO
CH3

OAc

HO(CH2)3NHCBz, 
BF3-Et2O, CH2Cl2, 

72%

1. NaOCH3, CH3OH2
2. CH3(OCH3)2, p-TsOH

     87% over 2 steps

1. (COCl)2, DMSO
2. NaBH4, CH3OH, 87%

3. TfO2, Pyr., CH2Cl2
4. NaN3, DMF, 90%

AcO
O

AcO

AcO
CH3

O NHCbz

O
O

HO

O
CH3

O NHCbzO
O

N3

O
CH3

O NHCbz

1. 80% AcOH, 98%
2. BuSn2O, PMBBr, TBAI, 
Toluene, 76%
 
3. BnBr, NaOH, 18-crown-6, 
THF/H2O, 99%
4. DDQ, CH2Cl2/H2O, 94%

HO
O

N3

BnO
CH3

O NHCbz

2.64 2.65

2.66
2.67

2.68

Scheme 2.5. Synthesis of D-FucNAc (2.2) from D-galactose by Adams and co-workers. 
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of the cyclized product with dimethyl sulfate gave the vinylogous carbonate 2.71 in 

73% yield over two steps. Next, DIBAL-H mediated lactone reduction in a 1,2-

fashion and upon acidic workup, provided the rearranged enone intermediate. 

Reduction of the carbonyl via a diastereoselective Luche reduction afforded allylic 

alcohol 2.72 in an excellent 77% yield over two steps. Protection of the free C-3 

alcohol as its acetate followed by azidonitration to install the C-2 amine functionality 

gave anomeric nitrate 2.74. For the construction of an imidate donor, p-TolSH 

mediated anomeric denitration and subsequent treatment with F3CC(NPh)Cl 

provided AAT donor 2.75.  

 

 

 

 

 

 

 

 

 

 

Myer’s 2016 de novo synthesis of D-desosamine acceptor 2.82 90 

Since the characterization of D-desosamine (2.8) in 1962, a variety of 

syntheses of this monosaccharide have been reported, including three 

stereospecific approaches. The first reported synthesis of 2.8 was achieved by 

Scheme 2.6. De novo synthesis of orthogonally protected AAT (2.1) by Seeberger and co-
workers. 
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Richardson et. al. in 1964, where the group highlighted an 8-steps approach from 

commercially available methyl 3-acetamido-4,6-O-benzylidene-3-deoxy-⍺-D-

glucopyranoside. Furthermore, a de novo route was established in 2004 by 

McDonald and Davidson, who reported an 11-steps synthesis from (R)-3-tert-

butyldimethylsiloxy-butanal that highlighted a key tungsten-catalyzed alkynol 

cycloisomerization step. More recently in 2016, Myer’s de novo route toward a D-

desosamine derivative was achieved in a mere 4 steps, making this route the most 

efficient and concise approach. The synthesis of D-desosamine acceptor 2.82 

began with the transformation of methyl vinyl ketone (2.76) to a 4-nitro-2-butanone 

compound (2.77) (Scheme 2.7). Next, an enantioselective reduction step was 

employed that featured the Corey-Bakshi-Shibata oxazaborolidine catalyst (2.78) to 

afford the alcohol (2.79) in 75% yield and 87% ee. In the key step, coupling of the 

nitro alcohol with glyoxal (trimeric form) mediated by an aqueous solution of cesium 

carbonate furnished the desired crystalline sugar (2.80) in 50% yield after filtration. 

Completion of 2.8 was achieved by a sequential nitro reduction and reductive 

amination reaction. To access the desired donor 2.82, a two-step protocol was 

implemented that consists of a benzoylation reaction to give the fully protected 

compound 2.81 followed by treatment with 2-mercaptopyrimidine and BF3•OEt2 to 

provide thioglycoside 2.82. 
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Schmid’s 2013 de novo synthesis of DATDG91  

Owing to the development of using L-threonine (2.83) as a chemical 

precursor for the synthesis of rare bacterial sugars, Schmid’s 2013 de novo 

synthesis of DATDG demonstrated the versatility of using amino acid starting 

material.  Their synthetic venture commenced with L-threonine (2.83), which 

proceeded through Garner’s protocol to obtain aldehyde (2.84). Next, a nitro aldol 

reaction with 2-nitroacetaldehyde diethyl acetal under basic condition provided the 

carbon scaffold 2.85 in 74% yield. From here, subsequent nitro reduction with Raney 

nickel gave the free amine, which was acetylated to afford the fully protected ketal 

2.86. Global deprotection at high temperature and concurrent O to N acetate 

migration under aforesaid conditions directly furnished DATDG derivative 2.3 in 37% 

yield. 
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Scheme 2.7. A 4 steps de novo synthesis of D-desosamine by Myers and co-workers. 
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Lowry’s synthesis of methyl L-daunosamine (2.91) via formation of an aziridine ring92 

In 2006, Lowry reported an alternative approach to L-daunosamine that 

employed a key photo-induced acylnitrene aziridination. The synthetic route that 

provided access to L-daunosamine (2.91) is shown in Scheme 2.9. The synthesis 

commenced with known L-threo-hex-2-enopyranoside derivative 2.87, which was 

previously prepared in 6 steps from L-rhamnose. Treatment of 2.87 under modified 

Bergmeir and Stanchina conditions provided the corresponding acyl azide 2.88 in 

an excellent 98% yield over two steps.  Next, photochemical generation of an 

acylnitrene intermediate upon exposure to UV light provided aziridine derivative 2.89 

in 74% yield.  At this stage, a regioselective ring opening of the aziridine ring via 

hydrogenolysis with palladium on carbon furnished the desired 3,4-carbamate-

protected methyl glycoside of daunosamine 2.90. Finally, deprotection of the 

carbamate with barium hydroxide in water quantitatively yield methyl L-
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daunosamine 2.91.  

 

Seeberger’s 2013 divergent de novo synthesis of orthogonally protected FucNAc, 

DKH, and Bac derivatives93 

The stereoselective synthesis of deoxy-amino sugars from non-carbohydrate 

sources is a valuable synthetic strategy. Among the various functional groups 

available, aldehydes are the most frequently used, specifically Garner aldehyde. For 

example, the Seeberger group developed the syntheses of FucNAc, DKH, and Bac 

derivatives using commercially available L-Garner aldehyde 2.83 while applying 

chelation-controlled organometallic additions to aforesaid substrate (Scheme 2.10). 

Beginning with aldehyde 2.83, reaction with propynyl magnesium bromide afforded 

the propargyl alcohol and subsequent selective reduction of the alkyne with Red Al 

provided the desired trans allylic alcohol. Exposure of this compound to O-alkylation 

conditions will afford E-olefin 2.84. Furthermore, cleavage of the acetonide followed 

by DMP oxidation will generate aldehyde 2.85. Upjohn dihydroxylation of 2.85 and 

Scheme 2.9. Synthetic strategies to access L-daunosamine via formation of aziridine ring.  
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intramolecular cyclization gave the desired D-fucosamine derivative 2.86. To access 

the DKH derivative, the free C-4 alcohol was oxidized with DMP to give DKH 

derivative 2.87. Alternatively, triflation of 2.86 and inversion with azide gave D-

bacillosamine derivative 2.88.  Applying this method, Seeberger and co-workers 

were able to selectively functionalize the 2.86 to access three different valuable 

deoxy-amino sugars. 
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Gao’s 2021 synthesis of L-QuiNAc toward the Tetrasaccharide Haptens of Vibrio 

vulnificus MO6-2494 

In their 2021 total synthesis of the tetrasaccharides haptens of Vibrio 

vulnificus MO6-24, Gao and co-workers constructed the carbon backbone of the L-

QuiNAc sugar in a manner reminiscent of Kulkarni’s 2016 work. They began from 

known β-L-thiorhamnoside 2.89, which was treated with dimethyltin dichloride to 

mediate a regioselective benzoylation of the C-3 alcohol to afford alcohol 2.90 in 

79% yield (Scheme 2.11). Next, 2.90 was converted to the corresponding triflate 

using triflic anhydride and pyridine. Substitution of the triflate with sodium azide 

provided orthogonally protected 2-azido-L-QuiN 2.91 in 62% yield over two steps. 

The author postulated that the observed β-anomeric configuration of 2.91 was key 

for the SN2 reaction to occur, since the ⍺-confirmation would have an unfavorable 

repulsive interaction with the thiomethyl group, and the incoming nucleophile would 

have a deleterious pyranosidic vicinal axial effect that would lead to decomposition 

of the intermediate compound. With the skeleton of 2.91 in place, further treatment 

with Lewis-acid and thiophene provided the desired linker-equipped 

monosaccharide 2.92 in 83% yield. Finally, treatment with Zemplén conditions 

provided the acceptor building block 2.93 an excellent 91% yield.  
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Kulkarni’s divergent synthesis of L-mycosamine, L-fucosamine, and L-

quinovosamine derivatives95 

In 2016, Kulkarni reported a divergent total synthesis of L-deoxy-amino 

sugars, which are virtually absent in the human metabolism and difficult to isolate in 

nature. This efficient and expedient methodology to access L-mycosamine, L-

fucosamine, and L-quinosvosamine derivatives from readily available starting 

material is advantageous toward the total synthesis of complex molecules. They 

began from commercially available β-L-thiorhamnoside 2.94 and upon exposure to 

triflic anhydride and catalytic Me2SnCl2, regioselective triflation of the C-3 alcohol 

was successful (Scheme 2.12). Next, acetylation of the 2,4 alcohols and subsequent 

displacement with TBANO2 gave 6-deoxy-l-altroside 2.95 in 40% yield over 3 steps. 

At this stage, triflation of the C-3 alcohol of 2.95 and concomitant displacement with 

azide fashioned L-mycosamine derivative 2.96 (47% over 2 steps).  

Alternatively, treatment of 2.94 under a highly regioselective 
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Scheme 2.11. Synthesis of L-QuiNAc acceptor (2.93) from L-rhamnose by Gao and co-
workers. 
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monobenzoylation using Me2SnCl2 and benzoyl chloride provided intermediate 2.97. 

For the synthesis of L-fucosamine derivative, 2.97 was treated with triflic anhydride 

in pyridine to give rise to 2,4-bis-triflate, which upon treatment with stoichiometric 

amount of tertbutyl ammonium azide in acetonitrile lead to regioselective inversion 

of the C-2 triflate to the corresponding alcohol. In the same pot, increasing 

stoichiometric amount TBANO2 enable the displacement of C-4 triflate via a Lattrel-

Dax reaction to afford L-fucosamine acceptor 2.98 (57% yield over 3 steps).  

To this end, compound 2.97 can also be used to access L-quinovosamine 

through a series of three additional steps. These steps first consist of a tert-

butyldimethyl silyl protection of the C-4 alcohol to obtain intermediate 2.99. Similarly, 

a two-step inversion using triflic anhydride and sodium azide gave fruitful access to 

L-quinovosamine derivative 2.100.  

Scheme 2.12. Kulkarni’s divergent synthesis of L-quinovosamine (2.96), L-fucosamine (2.98) 
and L-mycosamine (2.100) derivatives.  
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2.4.5 Nguyen and Townsend’s 2021 Gram scale synthesis of an orthogonally 

protected AAT donor and acceptor 96 

In designing our synthesis of a suitable 2-acetamido-4-amino-2,4,6-trideoxy-

D-galatose (AAT, 2.1) donor and acceptor, we surveyed the literature of this 

particularly rare deoxy-amino sugar. We found that AAT serves as a key glycan in 

the structures of numerous zwitterionic polysaccharides (ZPSs) from bacteria (i.e., 

Bacteroides fragilis, Photorhabdus temperata, Bacillus cereus, and Providencia 

alcalifaciens).  

As noted above (See section 2.4.3), various groups have previously 

synthesized AAT from either a carbohydrate source or by a de novo route. To this 

end, we envisioned that AAT derivative 2.105 would serve as an ideal intermediate 

target as it possesses a modifiable reducing end that can proceed through an 

oxidative cleavage to transform into a variety of glycosidic donors, and benzoyl 

removal at C-3 would provide a suitable acceptor. We were inspired by chemistry 

developed by the Mulard and Schmidt group that used D-glucosamine as the 

carbohydrate starting material. The advantage of using D-glucosamine as the 

requisite material consists of a pre-installed C-2 amine and ease of large-scale 

material throughput.  

We drew inspiration for our approach from previous syntheses of AAT, as 

well as syntheses related to deoxy-amino sugars DATDG, D-fucosamine, and D-

bacillosamine. We note that synthetic target 2.105 differs only from its nitrogen 

protecting at the C-2 position from chemistry employed by Schmidt in the syntheses 

of D-AAT acceptor. This strategic choice arose from (1) concerns that an azide at 
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C-2 in previous AAT syntheses would not provide the desired β-selectivity in our 

total synthesis pursuit of Photorhabdus temperata repeating unit and (2) the ability 

to use our key AAT building block as both an acceptor and donor, which would 

require a robust capping group at the anomeric position that would survive our 

planned synthetic route, but also can be selectively cleaved.  

To implement this strategy, our synthesis of AAT donor 2.106 and acceptor 

2.107 began with known triol 2.101, available in 4 steps from commercially available 

D-glucosamine•HCl (Scheme 2.13). Next, functional group interconversion to the 6-

iodo glucoside 2.102 was subsequently exposed to a NaBH3CN facilitated the 

desired reduction, providing 2.103 in 80% yield. With the diol in hand, regioselective 

benzoylation of the C-3 alcohol gave 2.104. Having established the full carbon 

skeleton, our next task was to convert 2.104 to the corresponding triflate using triflic 

anhydride and pyridine. Substitution of the triflate with sodium azide provided the 

fully orthogonally protected AAT intermediate 2.105. At this stage of the synthetic 

campaign, we elected to push forward to synthesize the desired AAT donor 2.106 

with a 2-step sequence. First, oxidative cleavage of the p-methoxyphenyl ether 

(PMP) acetal with ceric ammonium nitrate (CAN) and conversion of the resulting 

alcohol to its trichloroacetimidate gave 2.106, primarily as the ⍺-anomer, in 70% 

yield.  

Alternatively, we can access the desired AAT acceptor via exposure of 2.105 

with sodium methoxide in methanol to obtain 2.107 in an excellent 90% yield. While 

this synthesis of AAT donor and acceptor is not radically different from established 

routes, we highlight that this synthesis is operable on gram scale and is currently 
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the shortest route toward AAT known in the literature.  

 

 

 

 

 

 

 

 

 

Scheme 2.13. Nguyen and Townsend’s gram scale synthesis of AAT donor 2.106 and acceptor 
2.107. 
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2.5 Applications to total synthesis of glycoconjugates 

 

Seeberger’s 2011 Synthesis of Bacteroides fragilis ZPS A1 Repeating Unit 

(2.114)88-89 

In 2011, Seeberger and co-workers reported the first total synthesis of PS 

A1, highlighting an elegant de novo approach toward the synthesis of AAT. As initial 

attempts to form the desired glycosidic linkage with AAT donor in a late-stage 

approach proved ineffective, the authors elected to implement the union of N-phenyl 

trifluoroacetimidate (2.75) and D-galactosamine acceptor (2.108) earlier, which 

proved to be successful (Scheme 2.14). Accordingly, 2.75 donor was activated with 

TMSOTf and coupled with 2.108 to form the desired disaccharide in great yields and 

diastereoselectivity.  

Next, naphthyl cleavage and subsequent glycosylation with 2.110 followed 

by anomeric functional group interconversion provided trisaccharide (2.111). 

Exposure to dimethyl(methylthio)sulfonium triflate (DMTST)/TTBP mediated 

glycosylation of 2.111 with acceptor 2.112 afforded the corresponding 

tetrasaccharide (2.113) in 58% yield. Finally, global deprotection was carried out 

over four additional steps to access tetrasaccharide repeating unit of PS A1 of B. 

fragilis 2.114.  
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Adamo’s 2012 Synthesis of Staphylococcus aureus type 5 repeating unit74 

Adamo’s synthesis of Staphylococcus aureus type 5 was completed in 2012, 

which featured a novel strategy for the synthesis of rare L and D-FucNAc building 

block. Elaborating further on this work, Adamo and co-workers employed these key 

pieces to complete the total synthesis of capsular polysaccharide from 

Staphylococcus aureus. Furthermore, the monumental step for this synthesis 

involved the formation of a required ⍺-glycosidic bond, which was achieved by 

coupling of donor 2.115 with acceptor 2.68 to obtain trisaccharide 2.116 in good 

selectivity (α:β 2.8:1). Global deprotection of the trisaccharide 2.116 afforded the final 

Scheme 2.14. Synthesis of PS A1 ZPS of B. fragilis by Seeberger and co-workers. 
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target compound in good yields (Scheme 2.15).  

Gao’s 2021 Synthesis of Tetrasaccharide Haptens of Vibrio vulnificus MO6-2494 

Recently, in 2021, Gao and co-workers reported the first total synthesis of 

Vibrio vulnificus MO6-24 repeating unit 2.56, featuring the use of rare L-deoxy-

amino sugar, L-QuiNAc 2.9 (Scheme 2.16). Accordingly, disaccharide 2.120 was 

assembled via AgOTf promoted glycosylation of thioglycoside donor 2.118 and D-

galactosamine acceptor 2.119. Next, regioselective ring opening of the benzylidene 

acetal upon exposure to triflic acid provided the desired free alcohol, which was 

subjected to another glycosylation reaction, with 2.121 to give trisaccharide 2.122.  

Oxidative cleavage of the PMP acetal, followed by conversion of the 

hemiacetal to the imidate donor 2.123 resulted in a 71% yield over 2 steps. Then 

the corresponding trisaccharide donor 2.123 was activated with TMSOTf and 

coupled with L-QuiNAc derivative to produce the ⍺ linked tetrasaccharide 2.124 in 

82% yield. The target tetrasaccharide 2.56 was accomplished by consecutive 

deprotection of the functional groups.  

Scheme 2.15. Synthesis of the repeating unit of S. aureus by Adamo and co-workers. 
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Kulkarni’s 2016 Synthesis of Pseudomonas chloroaphis subsp. aeureofaciens 

Trisaccharide Repeating Unit 97 

In 2016, Kulkarni and co-workers reported the first total synthesis of P. 

chloroaphis subsp. aeureofaciens trisaccharide repeating unit 2.130. The total 

synthesis of L-QuiNAc and L-FucNAc containing trisaccharide is outlined in Scheme 

2.17. The major challenges for this synthesis were the construction of the L-deoxy-

amino sugars 2.126 and 2.128 and the incorporation of two consecutive ⍺ linkages. 

Coupling of 2.125 with L-FucNAc derivative 2.126 in a stereoselective fashion gave 

disaccharide 2.127.  Thioglycoside 2.127 was activated by NIS and TMSOTf and 

coupled with acceptor 2.128 to furnish trisaccharide 2.129 in 58% with clean 

Scheme 2.16. The total synthesis of the tetrasaccharide haptens of Vibrio vulnificus MO6-24 by 
Gao and co-workers.  
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selectivity. Global deprotection was done in 3 steps, involving a key reduction of the 

azide, followed by N-acetylation, then hydrogenolysis of all functional groups 

afforded target molecule 2.130.  
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2.6 Nguyen and Townsend’s 2021 Total Synthesis of Aeromonas veronii strain Bs8 

OPS Repeating Unit 

The Aeromonas family of gram-negative bacteria is dispersed among 

freshwater environments and soils, where they are symbionts of zebrafish, mussel, 

and leech.98-99 More recently, there has been an increase in Aeromonas related 

research due to the relevance in both veterinarian and human health. Pertaining to 

human health, Aeromonas species are associated with wound infections, 

gastroenteritis, and sepsis – bacterial blood poisoning. It is important to mention that 

Aeromonas species were the leading cause of skin and soft tissue infections found 

among the 2004 tsunami survivors in Thailand. 100-103 

In particular, the pathogenesis of Aeromonas species includes a series of 

virulence factors including extracellular enzymes, flagella, and toxins. Moreover, cell 

surface lipopolysaccharides (LPS) are a key contributor to virulence by interacting 

with eukaryotic cells.104-106 For instance, an O-specific polysaccharides regulates 

strain immunospecificity and is the basis for their serological classification.107-115 

While the biological activity of many of these O-specific polysaccharides is 

noteworthy, it is truly their chemical complexity that piqued our interest as synthetic 

targets.  

Herein, we describe the first total synthesis of A.veronii strain Bs8 

disaccharide repeating unit 2.131, which features the deoxy-amino sugar, D-

galactosamine.116 The major challenges in the synthesis of the disaccharide 2.131 

is the formation of the requisite 1,2-cis linkage. Regardless of the conditions, forming 

glycosidic bonds to C-3 of GalNac with absolute stereocontrol is often 
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problematic.117-119 While not achieving complete diastereocontrol, we have had 

success in forming the desired 1,2 cis linkage by leveraging the equatorial donating 

effects of thiophene as an addictive, as well as relied on solvent assisted 

glycosylation conditions to bring our synthetic route to completion.117 For an efficient 

and convergent synthesis of disaccharide 2.132, we envisaged that D-fucose120 

donor could be accessed in 4 steps and D-galactosamine121 acceptor can acquired 

in 5 steps from known literature precedent.  

In the forward direction, building block synthesis started from D-fucose, which 

was peracetylated resulting in near quantitative yield. Exposure of the anomeric 

acetate with ethanethiol and BF3•OEt2 gave thioglycoside 2.137. Lastly, to arm the 

donor, and to enable a more facile deprotection sequence, all acetates were 

substituted for electron releasing benzyl ethers. For the GalNAc piece, we first 

masked the acetamide as its trichloro-derivative using previous chemistry 

developed in the group. Next, peracetylation provided compound 2.139 in excellent 

yield (80% over 2 steps). From here, the anomeric acetate was exchanged for a 

PMP acetal under Lewis acidic conditions to give 2.140, exclusive as the ⍺-anomer. 

Saponification of 2.140 and treatment with benzylaldehydedimethylacetal afforded 

acceptor 2.134 in 75% over two steps. Having access to both key building blocks, 

we next evaluated the best conditions to yield the best diastereoselectivity. Upon 

initial screen with select conditions, we found that glycosylation with diethyl ether as 

the solvent provided the most favorable selectivity and yield. With the fully protected 

disaccharide in hand, exhaustive hydrogenolysis provided the repeating unit (as its 

reducing end PMP-acetal) in 85%. This final key reaction removed three benzyl 
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ethers, one single benzylidiene acetal, and converted the trichloroacetamide to its 

acetamide. The spectral data for the final compound showed homology with 

published characterization data for the native polymer. 
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2.7 Conclusion 
 

In this chapter, we described the biosynthesis, chemical synthesis, and 

application of bacterial deoxy-amino sugars in total synthesis. Our goal in this 

chapter was to provide the reader with a brief overview of known protocols to 

synthesize both D and L- deoxy-amino sugars and disclose our efforts to the 

synthesis of the widely studied glycan, AAT. Furthermore, we described the first 

total synthesis of the Aeromonas veronii strain Bs8 disaccharide repeating unit, 

which contains a D-galactosamine derivative as part of the core structure.  
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 2.9 Experimental Methods 

 

General.  All non-aqueous reactions were performed in flame-dried or oven dried 

round-bottomed flasks under an atmosphere of nitrogen or argon, unless otherwise 

noted. Stainless steel syringes or cannula were used to transfer air- and moisture-

sensitive liquids. Reaction temperatures were controlled using a thermocouple 

thermometer and analog hotplate stirrer. Reactions were conducted at room 

temperature (rt, approximately 23 °C) unless otherwise noted. The anhydrous 

solvents used in the reactions were obtained from an MBraun MB-SPS 800 

anhydrous Solvent System. Solvent for chromatography were of analytical grade 

and distilled under reduced pressure prior to use. Commercially available reagents 

were obtained from Aldrich, Fisher, TCI, TRC, and Carbosynth. Flash column 

chromatography was conducted as described Still et. al. using silica gel 230-400 

mesh.1 Where necessary, silica gel was neutralized by treatment of the silica gel 

prior to chromatography with the eluent containing 1% triethylamine. TEAB buffer 

was prepared by filling TEA (7 mL) in a measuring cylinder and adding water until 

the total volume reached 500mL. The solution was transferred to a flask and CO2 

was bubbled through the solution for 2 h at 0 °C. The buffer was stored at 4 °C. 

Thin layer chromatography (TLC) was performed using glass backed 60-F254 

silica gel plates obtained from Silicycle. Visualization of TLC plates was performed 

by UV (215 nm and 254 nm), CAM stain (5% (w/v) ammonium molybdate, 1% (w/v) 

cerium (III) sulfate and 10% (v/v) sulfuric acid in water) or ninhydrin stain (1.5% 

(w/v) ninhydrin and 3% (v/v) acetic acid in n-butanol) dipping solutions. Size 

exclusion chromatography (SEC) was performed using Bio Gel ® P-2 Gel (Bio-

Rad). Powdered 4 Å molecular sieves were obtained from Sigma-Aldrich and used 
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for reactions. Sieves were activated by iterative heating (to 180 °C) and cooling (to 

25 °C) cycles (minimum of 3 times). Heating was carried out by microwave 

irradiation and cooling took place in a desiccator equipped with Drierite™ and 

P2O5.  

Instrumentation: 1H NMR, 13C NMR, 31P and 2D NMR spectra were recorded in 

the Vanderbilt Small Molecule NMR Facility on a Bruker 400 and 600 MHz. 

Chemical shifts are reported in parts per million (ppm) of the δ scale. Spectra were 

recorded in CDCl3 by using the solvent residual peak chemical shift as the internal 

standard (CDCl3: S7 7.26 ppm 1H, 77.0 ppm 13C) or in D2O using the solvent as 

the internal standard in 1H NMR (D2O: 4.79 ppm 1H) unless otherwise stated. 31P 

NMR spectra 1% H3PO4 in D2O was used as an external standard. 1H NMR 

spectral data are presented as follows: Chemical shifts (δ ppm), multiplicity (s = 

singlet, d = doublet, dd = doublet of doublets, dq = doublet of quadruplet, ddd = 

doublet of doublet of doublet, t = triplet, q = quartet, p = pentet, br = broad, m = 

multiplet) coupling constants (Hz), integration. High-resolution mass spectra 

(HRMS) were obtained from the Department of Chemistry, Vanderbilt University 

using an LTQ-Orbitrap XL mass spectrometer. Optical rotations (OR) were 

measured with on a AUTOPOL IV digital polarimeter. Concentrations (c) in g/100 

mL and solvent are given in parentheses and the reported value is an average of 

n = 3 independent measurements. 
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Preparative Procedures 

p-Methoxyphenyl 2,6-dideoxy-6-iodo-trichloroacetamido-β-D-
glucopyranoside (2.102): 

 

 

 

To a solution of PPh3 (4.48 g, 17.1 mmol, 1.0 equiv.), imidazole (2.77 g, 40.6 mmol, 

2.5 equiv., and I2 (4.33 g, 17.1 mmol, 1.0 equiv.) in anhydrous THF (81 mL) under 

an argon atmosphere was added triol 2.101 (7.00 g, 16.3 mmol, 1.0 equiv.). The 

mixture stirred at room temperature for 4 h. At completion, the reaction mixture 

was quenched by the addition of satd. aq. Na2S2O3 (25 mL × 1) and extracted with 

CH2Cl2 (3 × 50 mL). The combined organic layers were dried over anhydrous 

Na2SO4, filtered, and concentrated in vacuo. Flash chromatography of the crude 

material eluting with EtOAc/Hexane (6:4) gave 6-iodo derivative 2.102 (7.5 g, 16.3 

mmol, 85%) as a white foam. 6-iodo derivative   2.102 had Rf 0.42 (EtOAc/Hexane 

7:3) visualized with ceric ammonium molybdate stain; [a]D25 = -3.9° (c = 0.01, 

CH3OH); 1H NMR (600 MHz, MeOD) δ 7.08 (d, J = 9.1 Hz, 2H, Ar), 6.81 (d, J = 9.1 

Hz, 2H, Ar), 5.02 (d, J = 8.4 Hz, 1H, H-1), 3.93 (dd, J = 10.5, 8.5 Hz, 1H, H-2), 3.74 

(s, 3H, OCH3), 3.72 – 3.65 (m, 2H, H-3, H-6), 3.37 – 3.26 (m, 3H, H-4, H-5, H-6); 

13C NMR (151 MHz, MeOD) δ 163.2 (NHCO), 155.5, 151.7, 118.4, 114.0, 100.4 

(C-1), 92.7 (CCl3), 76.1 (C-5), 74.6 (C-4), 73.1 (C-3), 57.8 (C-2), 54.7 (OCH3), 4.3 

(C-6); HRMS (ESI) calcd. for C15H16O6Cl3IN (M-H)- 537.9093, found 537.9083 m/z. 
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HO
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p-Methoxyphenyl 2,6-dideoxy-2-N-trichloroacetamido-β-D-glucopyranoside 
(2.103): 

 

 

 

A solution of 6-iodo derivative 2.102 (10.0 g, 18.5 mmol, 1.0 equiv.) was dissolved 

in anhydrous DMF (92 mL) under an argon atmosphere. Sodium cyanoborohydride 

(7.81 g, 211 mmol, 5.0 equiv) was added and the reaction mixture was stirred at 

100 °C for 30 h. At completion, the reaction mixture was diluted with H2O (300 mL) 

and extracted with CH2Cl2 (3 × 100 mL). The combined organic layers were dried 

over Na2SO4, filtered, and concentrated in vacuo. Flash chromatography of the 

crude material eluting with CH2Cl2/CH3OH (95:5) gave diol 2.103 (5.34 g, 12.9 

mmol, 70%) as a white foam. Diol 2.103 had Rf 0.33 (CH2Cl2/CH3OH 19:1) 

visualized with ceric ammonium molybdate stain; [a]D25 = -12.5° (c = 0.014, 

CH3OH); 1H NMR (600 MHz, MeOD) δ 6.94 (d, J = 9.1 Hz, 2H, Ar), 6.81 (d, J = 9.1 

Hz, 2H, Ar), 5.01 (d, J = 8.5 Hz, 1H, H-1), 3.90 (dd, J = 10.5, 8.5 Hz, 1H, H-2), 3.74 

(s, 3H, OCH3), 3.65 (dd, J = 10.5, 8.8 Hz, 1H, H-3), 3.46 (dq, J = 9.4, 6.1 Hz, 1H, 

H-5), 3.14 (t, J = 9.1 Hz, 1H, H-4), 1.35 (d, J = 6.1 Hz, 3H, H-6); 13C NMR (151 

MHz, MeOD) δ 163.2 (NHCO), 155.4, 151.7, 117.9, 114.0, 100.1 (C-1), 92.8 

(CCl3), 76.1 (C-4), 73.3 (C-3), 72.0 (C-5), 58.0 (C-2), 54.6 (OCH3), 16.7 (C-6); 

HRMS (ESI) calcd. for C15H17O6Cl3N (M-H)- 412.0127, found 412.0127 m/z. 

 

 

O
OPMPHO

TCAHN

HO

I

O
HO

TCAHN

CH3
HO

OPMP
NaBH3CN

DMF, 100ºC, 30 h
80%

2.102 2.103



124  

p-Methoxyphenyl 3-O-benzoyl-2,6-dideoxy-2-trichloroacetamido-β-D-
glucopyranoside (2.104):  

 

 

A solution of diol 2.103 (2.91 g, 6.91 mmol, 1.0 equiv.) was dissolved in anhydrous 

pyridine (70 mL) under an argon atmosphere and cooled to -30°C. A diluted 

solution of benzoyl chloride (0.82 mL, 6.9 mmol, 1.0 equiv.) in 1.0 mL pyridine was 

then added dropwise over 10 min. The reaction mixture was held at -30°C for 6 h. 

At completion, the solution was diluted with EtOAc (100 mL) and washed with 2M 

HCl (100 mL × 5), sat. aq. NaHCO3 (100 mL × 1), and brine (100 mL × 1). The 

combined organic layers were dried over anhydrous Na2SO4, filtered, and 

concentrated in vacuo.  Flash chromatography of the crude material eluting with 

EtOAc/Hexane (1:5) gave the 3-O-benzoyl derivative 2.104 (3.31 g, 6.41 mmol, 

91%) as a white foam. Alcohol 2.104 had Rf 0.60 (EtOAc/Hexane 3:1) visualized 

with ceric ammonium molybdate stain; [a]D25 = +9.7° (c = 0.0019, CHCl3);  1H NMR 

(600 MHz, CDCl3) δ 7.97 (dd, J = 8.4, 1.4 Hz, 2H, Ar), 7.61 – 7.55 (m, 1H, Ar), 7.41 

(dd, J = 8.3, 7.4 Hz, 2H, Ar), 7.27 (d, J = 9.5 Hz, 1H, NH), 6.96 (d, J = 9.1 Hz, 2H, 

Ar), 6.79 (d, J = 9.1 Hz, 2H, Ar), 5.63 (dd, J = 10.8, 8.3 Hz, 1H, H-3), 5.13 (d, J = 

8.4 Hz, 1H, H-1), 4.40 (ddd, J = 10.8, 9.1, 8.3 Hz, 1H, H-2), 3.76 (s, 3H, OCH3), 

3.73 – 3.56 (m, 2H, H-4, H-5), 1.44 (d, J = 5.6 Hz, 3H, H-6); 13C NMR (151 MHz, 

CDCl3) δ 167.9 (COPh), 162.5 (NHCO), 155.8, 151.5, 134.0, 130.0, 128.8, 128.7, 

118.9, 114.7, 100.5 (C-1), 92.3 (CCl3), 75.7 (C-3), 74.5 (C-4), 72.4 (C-5), 56.3 (C-

2), 55.7 (OCH3), 17.8 (C-6); HRMS (ESI) calcd. for C22H21O7Cl3N (M-H)- 516.0389, 

found 516.0378 m/z. 
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p-Methoxyphenyl 3-O-benzoyl-4-azido-2,4,6-trideoxy-2-trichloroacetamido-
β-D- galactopyranoside (2.105):  

 

 

 

Alcohol 2.104 (1.80 g, 3.50 mmol, 1.0 equiv.) was dissolved in anhydrous CH2Cl2 

(35 mL) under an argon atmosphere. The reaction mixture was cooled to 0 °C and 

anhydrous pyridine (0.56 mL, 6.9 mmol, 2.0 equiv.) was added followed by triflic 

anhydride (0.70 mL, 4.2 mmol, 1.2 equiv.). After stirring for 1 h at 0 °C, the reaction 

mixture was diluted with CH2Cl2 (100 mL) and washed with H2O (100 mL × 1) and 

brine (100 mL × 1). The organic layer was dried over anhydrous Na2SO4, filtered 

and concentrated in vacuo. The residue was dissolved in anhydrous DMF (30 mL) 

and NaN3 (599 mg, 9.22 mmol, 3.0 equiv.) was added. After stirring for 3 h at rt, 

the reaction mixture was diluted with EtOAc (150 mL) and washed with H2O (100 

mL × 1) and brine (100 mL × 1). The organic phase was dried over anhydrous 

Na2SO4, filtered, and concentrated in vacuo. Flash chromatography of the crude 

material eluting with EtOAc/Hexane (1:4) gave the azido derivative 2.105 (1.30 g, 

2.40 mmol, 78%) as a white solid. The trideoxy intermediate 2.105 had Rf = 0.50 

(EtOAc/Hexane 2:3) visualized with ceric ammonium molybdate stain; [a]D25 = -

23.3° (c = 0.015, CHCl3);   1H NMR (600 MHz, CDCl3) δ 8.08 (dd, J = 8.3, 1.3 Hz, 

2H, Ar), 7.63 – 7.59 (m, 1H, Ar), 7.47 (dd, J = 8.3, 7.4 Hz, 2H, Ar), 6.97 (d, J = 9.0 

Hz, 2H, Ar), 6.88 (d, J = 8.6 Hz, 1H, NH), 6.79 (d, J = 9.0 Hz, 2H, Ar), 5.77 (dd, J 

= 11.2, 3.6 Hz, 1H, H-3), 5.15 (d, J = 8.3 Hz, 1H, H-1), 4.48 (dt, J = 11.2, 8.5 Hz, 

1H, H-2), 4.03 (dd, J = 3.6, 1.3 Hz, 1H, H-4), 3.96 (qd, J = 6.3, 1.4 Hz, 1H, H-5), 
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3.76 (s, 3H, OCH3), 1.45 (d, J = 6.3 Hz, 3H, H-6); 13C NMR (151 MHz, CDCl3) δ 

166.1 (COPh), 162.2 (NHCO), 155.8, 151.1, 134.0, 130.1, 128.6, 128.3, 119.1, 

114.5, 100.4 (C-1), 92.2 (CCl3), 72.0 (C-3), 69.6 (C-5), 63.5 (C-4), 55.6 (C-5), 53.3 

(OCH3), 17.5 (C-6); HRMS (ESI) calcd. for C22H20O6Cl3N4 (M-H)- 541.0454, found 

541.0442 m/z. 
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3-O-benzoyl-4-azido-2,4,6-trideoxy-2-trichloroacetamido-β-D- 
galactopyranosyl N-trichloroacetimidate (2.106): 

 

 

 

 

To a solution of compound 2.105 (1.10 g, 2.0 mmol, 1.0 equiv.) in CH3CN/H2O (3:1 

v/v, 20 mL) at 0 °C under an argon atmosphere was added cerium ammonium 

nitrate (5.54 g, 10.1 mmol, 5.0 equiv.).3 The reaction mixture was stirred for 3 h at 

0 °C, the reaction mixture was diluted with EtOAc (100 mL) and washed with satd. 

aq. NaHCO3 (30 mL × 1) and H2O (30 mL × 1). The organic layer was dried over 

anhydrous Na2SO4, filtered and concentrated in vacuo. Flash chromatography of 

the crude material eluting with EtOAc/Hexane (2:1) as eluent to afford the 

hemiacetal as a yellow-orange foam. The compound was dissolved in CH2Cl2 (50 

mL), trichloroacetonitrile (1.0 mL, 10.3 mmol, 5 equiv.) and DBU (50 μL, 0.61 

mmol, 0.30 equiv.) were added, and the reaction mixture was stirred at 0 °C for 1 

h. The solvent was removed under reduced pressure, and the residue was purified 

by flash column with EtOAc/hexane (1:1) to yield the trichloroacetimidate 2.106 as 

a white foam (1.10 g, 1.9 mmol, 70%). The trichloroacetimidate 2.106 had Rf =  

0.80 (EtOAc/Hexane 1:1) visualized with ceric ammonium molybdate stain; [a]D25 

= +7.6° (c = 0.006, CHCl3); 1H NMR (600 MHz, CDCl3) δ 8.79 (s, 1H, OC(N)HCCl3), 

8.08 (dd, J = 8.4, 1.1 Hz, 2H, Ar), 7.64 – 7.56 (m, 1H, Ar), 7.47 (dd, J = 8.3, 7.4 

Hz, 1H, Ar), 7.01 (d, J = 9.0 Hz, 1H, NH), 6.47 (d, J = 3.6 Hz, 1H, H-1), 5.75 (dd, J 

= 11.2, 3.3 Hz, 1H, H-3), 4.91 (ddd, J = 11.1, 9.0, 3.6 Hz, 1H, H-2), 4.35 (qd, J = 

6.4, 1.5 Hz, 1H, H-5), 4.09 (dd, J = 3.5, 1.5 Hz, 1H, H-4), 1.40 (d, J = 6.4 Hz, 3H, 

O
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C-6); 13C NMR (151 MHz, CDCl3) δ 166.9 (COPh), 162.2 (NHCO), 160.2 

(OC(NH)CCl3), 134.2, 130.3, 128.8, 128.2, 94.9 (C-1), 91.9 (CCl3), 90.9 (CCl3), 

71.0 (C-3), 68.2 (C-5), 63.8 (C-4), 50.0 (C-2), 17.4 (C-6); HRMS (ESI) calcd. for 

C17H15O6Cl6N5Na (M+Na)+ 601.9104, found 601.9100 m/z. 
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p-Methoxyphenyl 4-azido-2,4,6-trideoxy-2-trichloroacetamido-β-D- 
galactopyranoside (2.107):  

 

 

 

A solution of 2.105 (125 mg, 0.21 mmol, 1.0 equiv.) in anhydrous CH3OH (4 mL) 

under an argon atmosphere was added NaOCH3 solution (0.10 mL, 1.5 mmol, [1.5 

M] in CH3OH) dropwise at room temperature. At 1 h, the pH of the reaction mixture 

was still >12 and TLC indicated that the starting material had been completely 

consumed for a more polar spot. The reaction was neutralized by the addition of 

acidic form Amberlite IR 120 (H+) ion exchange resin. The solution was filtered 

through a glass fritted funnel with a pad of Celite to remove the resin. The filtrate 

was concentrated in vacuo to give 2.107 (85.0 mg, 0.19 mmol, >95%) as a white 

foam in quantitative yield. Rf = 0.40 (EtOAc/Hexanes 1:1) visualized with ceric 

ammonium molybdate stain; [a]D25 = -28.9° (c = 0.016, CHCl3);   1H NMR (600 

MHz, CDCl3) δ 7.02 (d, J = 6.4 Hz, 1H, NH), 6.97 (d, J = 9.1 Hz, 1H, Ar), 6.80 (d, 

J = 9.1 Hz, 1H, Ar), 5.05 (d, J = 8.3 Hz, 1H, H-1), 4.45 (ddd, J = 10.5, 6.6, 3.7 Hz, 

1H, H-3), 3.89 – 3.83 (m, 1H, H-2), 3.83-3.79 (m, 2H, H-4, H-5), 3.76 (s, 3H, -

OCH3), 3.15 (d, J = 6.6 Hz, 1H, OH), 1.43 (d, J = 6.3 Hz, 3H, H-6); 13C NMR (151 

MHz, CDCl3) δ 163.0 (NHCO), 155.8, 150.8, 119.1, 114.6, 99.5 (C-1), 92.2 (CCl3), 

70.6 (C-3), 70.0 (C-5), 65.7 (C-4), 57.0 (C-2), 55.6 (OCH3), 17.5 (C-6); HRMS (ESI) 

calcd. for C15H17O5Cl3N4Na (M+Na)+ 461.0164, found 461.0157 m/z. 

 

NaOCH3, CH3OH

0ºC, 1 h
96%

O

TCAHN

N3
CH3

BzO OPMP

2.105

O

TCAHN

N3
CH3

HO OPMP

2.107



130  

2,2,2-trichloro-N-((2R,4aR,6S,7R,8R,8aR)-6-(4-methoxyphenoxy)-2-phenyl-8-
(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-methyltetrahydro-2H-pyran-2-
yl)oxy)hexahydropyrano[3,2-d][1,3]dioxin-7-yl)acetamide (2.132) 

 

 

 

Donor 2.133 (1.0 eq, 0.500g, 1.04 mmol) and acceptor 2.134 (1.5 eq, 0.813g, 1.6 

mmol) were coevaporated with benzene (2 x 8 mL) and placed in a vacuum 

desiccator containing P2O5 overnight. The donor/ acceptor mixture was dissolved 

in diethyl ether (14 mL) and the resulting solution was cannulated into a reaction 

flask containing 4 Å powdered molecular sieves. The mixture was stirred under 

argon 1 hour then cooled to -78C and TfOH (0.1 eq, 0.038 mL in 0.2 mL CH2Cl2) 

was added. The reaction was stirred 2 hour then quenched with Et3N. The reaction 

was diluted with CH2Cl2, filtered through celite, dried (MgSO4), filtered, and 

concentrated in vacuo. The crude residue was purified via flash column 

chromatography (2:1 hexanes/EtOAc) to yield diasaccharide 2.132 (0.890g, 0.95 

mmol, 91%) as a yellow foam: Rf 0.35 (1:1 hexanes/EtOAc); [α]D25 = +38.7° (c = 

0.012, CHCl3) (α major product),1H NMR (600 MHz, CDCl3) δ 7.39 – 7.25 (m, 20H), 

7.02 (d, J = 9.1 Hz, 2H), 6.93 (d, J = 8.4 Hz, 1H,-NH), 6.85 (d, J = 9.0 Hz, 2H), 

5.71 (d, J = 3.5 Hz, 1H), 5.26 (s, 1H), 5.16 (d, J = 3.5 Hz, 1H), 5.02 (d, J = 11.5 

Hz, 1H), 4.85 (d, J = 11.9 Hz, 1H), 4.79 – 4.77 (m, 1H), 4.75 (d, J = 9.2 Hz, 1H), 

4.72 (d, J = 7.2 Hz, 1H), 4.65 (d, J = 11.5 Hz, 1H), 4.62 (d, J = 11.4 Hz, 1H), 4.40 

(d, J = 3.3 Hz, 1H), 4.24 (d, J = 13.3 Hz, 1H), 4.20 (dd, J = 11.0, 3.2 Hz, 1H), 4.13 

(dd, J = 10.1, 3.5 Hz, 1H), 4.07 – 4.01 (m, 2H), 3.92 (d, J = 13.3 Hz, 1H), 3.80 (m, 

1H), 3.78 (s, 3H), 3.64 (m, 1H), 1.20 (d, J = 6.6 Hz, 3H). 13C NMR (150 MHz, 
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CDCl3) δ 161.6, 155.5, 150.4, 138.8, 138.5, 137.5, 128.4, 128.2, 128.2, 128.1, 

128.0, 127.4, 117.9, 114.8, 100.6, 97.5, 96.8, 92.6, 78.9, 78.0, 75.9, 75.0, 73.3, 

73.1, 72.8, 72.0, 69.2, 67.7, 63.7, 55.6, 50.5, 16.8. HRMS (ESI) calcd for 

C49H50Cl3NO11[M+Na]+ 956.2347, found 956.2348. 
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N-((2R,3R,4R,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-(4-methoxyphenoxy)-4-
(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-
yl)oxy)tetrahydro-2H-pyran-3-yl)acetamide (2.131) 
 
 
 
 
 
 

 

To a solution of 2.132 (1.0 eq, 0.500 g, 0.535 mmol) in CH3OH (10 mL) and AcOH 

(1 mL) and Pd(OH)2 was added (2.0 eq, 0.75g g, 1.07 mmol). The reaction was 

stirred under H2 for 3 days then was diluted with CH3OH, filtered through celite, 

concentrated in vacuo. The crude material was purified by size exclusion 

chromatography (Bio-Gel P2 gel) using a 1:1 mixture of deionized H2O:CH3OH as 

an eluant. Fractions containing the desired product (determined from MS) were 

combined and lyophilized to yield 2.131 (0.214 g, 0.452 mmol, 85%) as a white 

solid; [α]D25 = +60.7° (c = 0.012, CH3OH), 1H NMR (600 MHz, CD3OD) δ 7.18 (d, 

J = 9.2 Hz, 2H), 7.01 (d, J = 9.3 Hz, 2H), 5.50 (s, 1H), 5.12 (s, 1H), 4.62 – 4.51 (m, 

1H), 4.35 – 4.28 (m, 1H), 4.18-4.12 (m, 2H), 4.06-4.05 (m, 1H), 3.85 (s, 3H), 3.84 

– 3.83-3.75(m, 5H), 2.11 (s, 3H), 1.31 (s, 3H). 13C NMR (150 MHz, CD3OD) δ 

175.4, 156.2, 151.8, 120.2, 120.0, 116.3, 98.8, 97.9, 75.8, 73.2, 72.6, 71.0, 69.3, 

68.7, 66.7, 62.3, 57.0, 50.2, 23.3, 16.9. HRMS (ESI) calcd for C21H31NO11 [M+Na]+ 

496.1794, found 496.1101. [α]D25 = +60.7° (c = 0.015, CDCl3) 
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Appendix A2: 
 
 
 

Spectra and Table Relevant to Chapter 2 
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Figure A2.1. 1H NMR (600 MHz, CD3OD) of compound 2.102. 
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Figure A2.2. 13C NMR (151 MHz, CD3OD) of compound 2.102. 
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Figure A2.3. 1H-13C HSQC NMR (600 MHz, CD3OD) of compound 2.102. 
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Figure A2.4. 1H-1H COSY NMR (600 MHz, CD3OD) of compound 2.102. 
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Figure A2.5. 1H NMR (600 MHz, CD3OD) of compound 2.103. 
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Figure A2.6. 13C NMR (151 MHz, CD3OD) of compound 2.103. 
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Figure A2.7. 1H-13C HSQC NMR (600 MHz, CD3OD) of compound 2.103. 
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Figure A2.8. 1H-1H COSY NMR (600 MHz, CD3OD) of compound 2.103. 
. 
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Figure A2.9. 1H NMR (600 MHz, CDCl3) of compound 2.104. 
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Figure A2.10. 13C NMR (151 MHz, CDCl3) of compound 2.104. 
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Figure A2.11. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 2.104. 
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Figure A2.12. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 2.104. 
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Figure A2.13. 1H-13C HMBC NMR (600 MHz, CDCl3) of compound 2.104. 
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Figure A2.14. 1H NMR (600 MHz, CDCl3) of compound 2.105. 
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Figure A2.15. 13C NMR (151 MHz, CDCl3) of compound 2.105. 
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       Figure A2.16. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 2.105. 
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Figure A2.17. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 2.105. 
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Figure A2.18. 1H-13C HMBC NMR (600 MHz, CDCl3) of compound 2.105. 
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Figure A2.19. 1H NMR (600 MHz, CDCl3) of compound 2.106 
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Figure A2.20. 13C NMR (151 MHz, CDCl3) of compound 2.106 
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Figure A2.21. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 2.106. 
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Figure A2.22. 1H NMR (600 MHz, CDCl3) of compound 2.107. 
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Figure A2.23. 13C NMR (151 MHz, CDCl3) of compound 2.107 
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Figure A2.24. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 2.107 
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Figure A2.25. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 2.107. 
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Figure A2.26. 1H NMR (600 MHz, CDCl3) of compound 2.132. 
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Figure A2.27. 13C NMR (151 MHz, CDCl3) of compound 2.132. 
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Figure A2.28. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 2.132. 
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Figure A2.29. 1H NMR (600 MHz, CD3OD) of compound 2.131. 

 

2.
13
1

O

Ac
HN

HO
O
H

O
PM

P

O

HO
O

HO

HO
CH

3



163  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A2.30. 13C NMR (151 MHz, CD3OD) of compound 2.131. 
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Figure A2.31. 1H-13C HSQC NMR (600 MHz, CD3OD) of compound 2.131. 
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Table A2.1. 1H and 13C NMR chemical shifts (ppm) between isolated 

polysaccharide and synthetic 2.131. 
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Chapter 3 

 

 

Total Syntheses of Zwitterionic Polysaccharide Repeating Units 
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3.1 Introduction 

Zwitterionic polysaccharides (ZPSs), an emerging class of carbohydrate 

antigens with novel T-cell activation capability, have gained interest from the 

scientific community due to the role of cell surface glycans in pathogenesis.1-7 

Advances in glycobiology have shown how glycan-protein molecular recognition 

processes play a role in the body’s adaptive immune response to pathogens.3-4 

Contrary to nonspecific innate immune responses that prevent the spread of foreign 

pathogens throughout the body, the adaptive immune response mounts a pathogen-

specific response by initiating the production and activation of T-cells and B-cells. In 

the adaptive immune response, carbohydrates were conventionally thought to be T-

cell independent antigens due to their inability to modulate a T-cell response. These 

carbohydrates activate B-cells through cross-linking of cell receptors, which leads 

to the production of low affinity immunoglobulin M (IgM) antibodies (Figure 3.1).5-6 

T-cell independent responses are less robust than T-cell dependent responses and 

short-lived.  

 To access high-affinity immunoglobulin G (IgG) antibodies, class switching 

from IgM to IgG antibodies must be accomplished, in which B-cells must interact 

with helper T-cells. To overcome this challenge, carbohydrates have been 

Carbohydrate
Antigen

plasma cells produce 
short-lived low affinity IgM

T-cell 
independent 

pathway Plasma
B-cell

IgM

B-cell

Figure 3.1. Carbohydrates bind B-cell receptors, initiating a weak T-cell independent response. 
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conjugated to carrier proteins, such as keyhole limpet hemocyanin (KLH), which 

induces a T-cell dependent immune response that results in the production of IgG 

antibodies and memory B-cells.8-13 However, carrier proteins can be deleterious to 

carbohydrate immunity as protein-based immune responses can invalidate 

antibodies directed at the targeted carbohydrate antigens. This results in 

suppression of immunity of the carbohydrate-specific antigens.14-16  

A novel insight into glycan recognition by T-cells was disclosed by the Kasper 

group, when ZPSs were shown to bind to and be presented by major 

histocompatibility complex II (MHCII) to T-cells.17 ZPSs have both a positive and 

negative charge in each repeating unit and can be processed by antigen-presenting 

cells (APCs) (Figure 3.2). Moreover, Kasper et al. confirmed that removal of either 

the negative or positive charge, or both, on ZPSs will lead to a T-cell independent 

pathway, which will cause ZPSs to lose its ability to activate T-cells. 

ZPSs are consumed, fragmented by APCs, and bound to MHCII complex via 

electrostatic interactions. Presentation on the cell surface allows the T-cell receptor 

of helper T-cells (Th-cells) to bind to the antigen/MHCII complex resulting in a 

release of cytokines that activate cytotoxic T-cells (CTLs) and B-cells.18-22 To 

acquire high affinity IgG antibodies, additional stimulation from activated Th-cells to 

Figure 3.2. Zwitterionic polysaccharides induce a robust T-cell dependent response. 

Th receptor Cytokines

B-cell
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T-cell 
dependent
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Memory
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antigen-bound B-cells leads to B-cell maturation and induces immunoglobulin class 

switching from IgM to polysaccharide-specific IgG and memory B-cell production. 

Production of memory B-cells is essential to acquiring a long-lasting immune 

response.  

Zwitterionic glycan modifications, such as the incorporation of a phosphorus 

residue, govern host-pathogen interactions. Although it is recognized that this 

transformation play an important role to stimulate the host immune response, the 

purpose of phosphorus modifications on glycan remains unexplored in the literature. 

The inherent biological activity of ZPSs can be attributed to the three-dimensional 

structure of the polysaccharides with each repeating unit having a 

zwitterionic/alternating charge functionality in contrast to negative or neutral charge 

polysaccharides. Apart from the charge characteristic, the repeating units of these 

bacterial glycans are rich with highly immunodominant sugars like D-AAT (2-

acetamido-4-amino-2,4,6-trideoxy-D-Galactosamine), D-GalNAc, D-Ribitol, and D-

Gal (Figure 3.3). Specifically, D-AAT, as previously mentioned in Chapter 2, is an 

exclusively rare bacterial sugar that is not present in the human metabolism.  Since 

the discoveries of ZPSs, various research groups around the world have taken up 

the challenging task of synthesizing these complex ZPSs, to acquire tools to study 

T-cell activation mechanism. Although these compounds’ biological activity is 

striking, it is truthfully their molecular structure that piqued our group’s interest as 

targets for total synthesis. Our group completed the first total syntheses of two 

zwitterionic repeating units, such as a 32-step synthesis of P. temperata23-24 and a 

33-step synthesis P. vulgaris repeating units, both with alternating charges adjacent 
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monosaccharides, which we believe is pertinent for immunological activity.  

 

 

 

 

 

 

Figure 3.3. Zwitterionic bacterial glycan structures featuring phosphorus residues. 
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3.2 Total Synthesis of Photorhabdus temperata ssp. Cinereal 3240 Trisaccharide 

Repeating Unit 

Zwitterionic polysaccharides (ZPSs), such as PT-ZPS, is isolated from 

Photorhabdus temperata, a gram-negative bacterium through a tedious and 

strenuous multi-step procedure with low yield.  The grand limitation of using naturally 

isolated PT-ZPS in studying the mechanistic details of T-cell activation at the micro 

level is its heterogenous polymer consisting of unknown lengths and sizes.1-3 To 

better understand antigen uptake, processing, and presentation of PT-ZPS 

regarding MHC II by antigens presenting cells (APCs), acquiring well-characterized 

tools of defined lengths are the utmost of importance. The completion of a well-

thought and executed synthetic route to access ZPS fragments for mechanistic 

studies will be the overarching theme of this chapter.  

In 2019, phosphorylated zwitterionic polysaccharides, namely the P. 

temperata trisaccharide repeating unit, was selected as a formidable synthetic target 

for our group. Initially, we choose to pursue the total synthesis of PT-ZPS cassette 

predominantly because we wanted to build upon and apply the chemistry that was 

developed by our group, as well as to synthesize these complex ZPS fragments 

bearing unique phosphorus residues. Structurally, the trisaccharide cassette of PT-

ZPS is composed of glucuronic acid (GlcA), N-Acetyl galactosamine (GalNAc), and 

the deoxy-amino sugar 2-acetamido-4- amino-2,4,6-trideoxy-D-galactopyranose 

(AAT). Our initial forays into PT-ZPS repeating unit synthesis began with a structural 

analysis of the molecule (Scheme 3.1).24  
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When considering the structure of PT-ZPS repeating unit, several synthetic 

challenges become apparent. The repeating unit of P. temperata possesses two 

1,2-trans-β-glycosidic bonds, which would require anchimeric assistance from an 

ester at C2 to govern the diastereoselectivity during this type of glycosidic bond 

formation reaction. In particular, we anticipated that installing phosphoethanolamine 

(PEtN) on the poorly nucleophilic and sterically hindered axial alcohol of the GalNAc 

residue would be puzzling.25-26 While pioneering studies have clarified the difficulties 

in achieving such a transformation, most of these methods are not amendable to 

our synthetic route. Notwithstanding this bleak outlook, we hypothesized that we 

could mask the C2 amine as a trichloroacetamide to control diastereoselectivity and 

unmasking to reveal the native amide. The repeating unit have an unusual 

architecture featuring a PEtN and a glucuronic acid residue. Incorporation of these 

residues into the repeating unit of complex ZPSs are known to be synthetically 

challenging with limited chemistry that have been developed for these key 

transformations. Thus, we hope to develop a strategy for the preparation of 

phosphorylated ZPSs that would be amenable to the synthesis of other complex 
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ZPSs, such as the repeating unit of P. vulgaris.  

A retrosynthetic strategy for the synthesis of PT-ZPS repeating unit is 

presented in Scheme 3.1. As a critical maneuver, we choose to introduce the PEtN 

(3.9) moiety at a late stage in the synthesis to facilitate the handling of key 

precursors and to avoid the early introduction of diastereomers affected by the 

central phosphorus residue. Thus, our first-generation approach to the repeating 

unit centered on the synthesis of frame 3.5, where PEtN-modified sugar is at the 

nonreducing end to minimize steric hindrance related to the C4 alcohol.  

Furthermore, this route relied on the synthesis of three key building blocks (3.6, 3.7, 

and 3.8), which were readily available from carbohydrate starting materials (Scheme 

3.1). 

Our initial efforts toward the total synthesis of the repeating unit 3.5 focused 

on a linear [1+1] glycosylation strategy with donor 3.13 and acceptor 3.17. The 

synthesis of the orthogonally protected D-galactosamine donor 3.13 began with TCA 

protection of the C2 amine of D-galactosmine 3.10, followed by peracetylation of the 

intermediate provided compound 3.11 in 80% yield over two steps. Installation of 

thiophenol or thiotoluene at the anomeric position using the Lewis-acid BF3•Et2O 

gave 3.12. Next, compound 3.12 was then subjected to Zemplén deprotection 

conditions to afford the triol. The triol was then regioselectively masked as its 

benzylidene acetal by means of benzaldehyde dimethyl acetal (BDMA) under 

camphorsulfonic acid (CSA). Finally, the compound was then protected with acetic 

anhydride in pyridine to obtain the desired donor 3.13 in 50-55% yield over three 

steps (Scheme 3.2A).  
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In preparation for the union of 3.13 and 3.17, it was necessary to synthesize 

analogues of acceptor 3.17 to find a compatible coupling partner that was not too 

electron deficient and rich in character. The second building block was synthesized 

from D-glucose pentaacetate 3.14, which was converted to its p-methoxy phenol 

derivative 3.15. Deprotection of the compound 3.15 led to the formation of tetraol. 

Similar to the synthesis of building block 3.13, a benzylidiene acetal protection of 

the tetraol was required and completed under acidic conditions. Subsequent 

benzylation or benzoylation provided compound 3.16 in 50-60% over three steps. 

At this juncture, we decided that we needed to install the carboxylic acid functionality 
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that could be deleterious to a more complex trisaccharide scaffold.  A reliable 

method for the synthesis of the glucuronic acid acceptor 3.17 would entail a tempo-

catalyzed oxidation with (Diacetoxyiodo) benzene (BAIB). Removal of the 

benzylidene acetal followed by oxidation and esterification of the intermediate gave 

3.17, which can be unmasked to provide the carboxylic moiety during the final global 

deprotection steps (Scheme 3.2B).  

One of the early challenges that we faced in our synthesis of the PT-ZPS 

repeating unit was the procurement of the rare deoxy-amino sugar, AAT (3.18). 

Although a quick survey of the literature showed that this building block was 
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previously synthesized by various groups, there was minimal examples shown of a 

participating group at C2 for β-selective glycosylation.27-33 Majority of the known 

published route relied on a late-stage reduction of an azide followed by acetylation 

to access the amide in the native polymer (Figure 3.4). The disadvantage in this 

strategy comprises of harsh reaction conditions that are incompatible with several 

functional groups and the incorporation of additional concession steps. Our initial 

endeavor for the synthesis of AAT resulted in three strategies that ended in 

disappointment, whereas the reserve strategy, though it teetered on the edge of 

despair, proved to be successful. In fact, the first glimmer of hope came nearly after 

7 months of darkness. Our successful route toward AAT was previously mentioned 

in chapter 2, where we disclose an efficient and scalable method to access both 

AAT donor (3.19) and acceptor (3.20, Scheme 3.2C).  
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With all the key fragments in hand, we next investigated the viability of the 

glycosylation reaction (Scheme 3.3A). Upon exposure to NIS/TMSOTf mediated 

conditions, thioglycoside donor 3.13A and glucuronic acceptor 3.17B33 underwent 

a [1+1] glycosylation to afford disaccharide 3.21 in 65 % yield. While the 

glycosylation reaction was successful, it did not provide the desired β-selectivity that 

one would have hoped for with a C-2 trichloroacetamide participating group. Instead, 

an α-anomer as the sole diastereomer was isolated.34-35 Despite this uninviting 

outlook, we hypothesized that the selectivity was guided by a torsional effect from 

the 4,6-O-benzylidene acetal, modification of the donor 3.13 (i.e., exchange of the 

silyl ether for an electron withdrawing acetate) generated the desired β-anomer 3.22 

in 70% yield. Although protecting groups shields undesired sites from reaction 

during a reaction, it is known that they can have a deleterious effect on the reactivity 

of the molecule. With the initial success, a more detailed study and optimization of 

the direct coupling was pursued. The undesired α-selectivity had previously been 

documented by Fraser-Reid and co-workers, where they reasoned that observed 

4,6-O benzylidene acetals have a disarming (retarding oxocarbenium ion formation) 

effect on the hydrolysis of O-pentenyl glycosides.36-37  

Nevertheless, this effect was accredited to the increased torsional strain in 

the fused bicyclic system as the chair−chair glycosyl donor collapses to an 

intermediate chair−boat oxocarbenium ion.38-41 Regrettably, employing this logic to 

the selectivity observed in the synthesis of 3.21 and 3.22 is contradictory since both 

donors 3.13A and 3.13B contain a benzylidene acetal protecting group. As a result, 

we postulated that an electronic element from C3 was governing the 
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diastereoselectivity. In detail, the plausible mechanism is shown in Scheme 3.3B, 

upon activation of the thioglycoside donor 3.13A by NIS/TMSOTf, we speculated 

that an electron donating silyl ether at C-3 would destabilize the intermediate 

glycosyl triflate 3.23. Consequently, we expected a shift in the covalent α-glycosyl 

triflate 3.24 solvent-separated ion pair (SSIP) equilibria to favor an α-selective SSIP.  

Further analysis would suggest that in the β-selective case (Scheme 3.3C), 

the result is best described as the C3 acetate imparting a moderate electron-

withdrawing effect, which acts to increase the energetic barrier between a covalent 

glycosyl triflate and the oxocarbenium ion, resulting in a diminished concentration of 

the SSIP. While disappointing, we did acquire some intelligence into the 

shortcomings of this reaction. Analysis of the β-selective pathway suggests that one 

would anticipate the reactive intermediate to be present in the form of a α-glycosyl 

triflate 3.25, contact ion pair (CIP) 3.26, or an oxocarbenium ion 3.27 stabilized 

through anchimeric assistance. Therefore, we believe that in each of these cases, 

an increased in β-selectivity would be observed.   We mention that this analysis is 

hypothetical at this juncture and spectroscopic studies are ongoing to characterize 

the pathways involved in producing the diverging selectivity. 

 Returning to the synthesis of trisaccharide 3.29, the methods of Adamo and 

co-workers for oxidative cleavage of the PMP acetal was successful upon exposure 

to ceric ammonium nitrate (CAN) to release the anomeric alcohol.42 Since the use 

of trichloroacetimidate are adorned in the literature, we had hoped it might be 

possible to unite donor 3.28 with AAT acceptor 3.19 (Scheme 3.4).  
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Chemistry developed and elegantly presented by Boons and co-worker 

showed trichloroacetimidate donors would allow for productive glycosylation.43 

Following the conversion to donor 3.28, we were surprised by our inability to unite 

donor 3.28 with AAT acceptor 3.19 under a multitude of Lewis and Brønsted acidic 

reaction conditions. It is tempting to consider that the presence of a uronic acid 

moiety could impart an electronic element in destabilizing the oxocarbenium ions. It 

was quickly discovered that the ester protecting groups at C2 and C3 would also 

render the Boons approach intractable. Furthermore, exchange of all benzoates for 

electron-rich benzyl ethers also failed to furnish any of the desired coupled product. 

Thus, we realized that a frame shift in the repeating unit would be needed for a 

successful total synthesis of PT-ZPS repeating unit.  

After the next frame shift was selected, a screen of new building blocks and 

optimal solvent conditions to promote a β-selective glycosylation was undertaken. 

Our new retrosynthetic analysis is shown in Scheme 3.5. A defining aspect of the 

second-generation approach consists of moving the AAT building block to the 

nonreducing end of the repeating unit 3.30, a maneuver that jettisoned the 
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glucuronic acid monosaccharide as both an acceptor and donor. While we had 

carefully tackled the glucuronic acid glycosylation issue, we would now need to 

install the phosphorus residue on a very sterically hindered alcohol.  

Undeterred, individual monosaccharides were designed to be more reactive 

and surpass previous problems encountered during our first-generation approach. 

While we were able to form the β-linkage of 3.31 with donor 3.13C and acceptor 

3.17A, the resultant diastereomeric ratio was not appreciated. An assessment of the 

coupling system showed that extended reaction time did not provide better 

diastereoselectivity nor improve the overall yield. Although conducting the coupling 

at warmer temperatures was significantly more productive (72%), the 

diastereoselectivity suffered, dropping to 2:1. After several abortive attempts, we 

were able to access a tractable route to 3.31 by using TfOH as the promoter at −78 
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°C in a CH2Cl2/CH3CN solvent system with a 4:1 β/α ratio in 91% yield (Table 3.1). 

With 3.31 in hand, an acetate deprotection could be accomplished under Zemplén 

condition to obtain acceptor 3.32 in near quantitative yield (Scheme 3.6).   

Next, the assembly of the trisaccharide repeating unit commenced with a 

[2+1] glycosylation of trichloroacetimidate donor 3.19 with acceptor 3.32 at −78 °C 

using TfOH as the promoter provided 3.33 as the β-anomer in 90% yield. Inspired 

by the work done by Ellervik and co-workers regarding the reductive opening of the 

benzylidene acetal, we wondered if analogy could be made to the problem at hand 

with our more complex substrate.44 In the case of the reductive opening, exhaustive 

attempts were made prior to successful attainment of the desired regioselectivity 

(Table 3.2). Accordingly, trisaccharide 3.34 was isolated with a free axial C4″ alcohol 

in 83% yield.  The synthetic challenge posed by the reductive opening of 

galactosamine residues in complex carbohydrate synthesis has been answered by 
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an Et3SiH−TfOH reducing system.45-50 Having obtained the desired intermediate, 

additional assessment for installing the phosphorus arm were made. Given that the 

acceptor is fixed on the central residue, it is in a 1,2-cis relationship with the terminal 

monosaccharide, and is axial, we suspected that phosphorylation would be 

challenging.  

 

 

Previous experience from our lab has shown that electrophiles of type 3.36 

are suitable reagents to install phosphocholine onto hindered nucleophiles.51-52 

Regrettably, the coupling of phosphoramidite 3.36 with 3.34 (under a range of 

reaction conditions), using 1H-tetrazole as the activator failed to form any desired 

O−P bonds. Undeniably, the only productive reaction (33% yield) observed in our 

early studies was when 4,5-dichloroimidazole (DCI) was used as the activator to 

provide phosphorylated compound 3.37. While we had some success, we ultimately 

decided to diverge from the initial protocol and sought other means to incorporate 

the phosphorus residue. A very small summary of our failures can be seen in Table 

3.3.  
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Entry Yield %

1a

2a
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0
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Et3SiH, I2, 0ºC - rt
Et3SiH, TfOH, -78ºC

O
O

TCAHN

O
O

O
BnO BnO

OCH3O

OPMP
O

TCAHN

N3
CH3

BzO O

Ph

O
O

TCAHN

HO
OBn

O
BnO BnO

OCH3O

OPMP
O

TCAHN

N3
CH3
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a. observed the cleavage of the trisaccharide starting material

3.33 3.34

Table 3.2. Optimization of regioselective reductive opening of benzylidene acetal 
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With a quick inquiry of the known literature, we discovered that a common 

strategy to form O-P bonds is to leverage the reactivity of H-phosphonates.53-55 We 

postulated that we could use reagent 3.35 to install the phosphoethanolamine 

moiety. H-phosphonate chemistry work according to the following proposed 

mechanism. First, the phosphonate is activated by pivaloyl chloride, which 

generates a system in which the electron-withdrawing character of the pivaloyl ester 

makes the phosphorus(V) center sufficiently electrophilic. Furthermore, upon 

reaction with an alcohol nucleophile, rapid transesterification leads to the formation 

of the O−P bond. Next, oxidation leads to the desired functionality. Pleasingly, 

coupling between 3.34 and 3.35 was indeed executed in the presence of pivaloyl 

chloride and pyridine to form the O−P bond. At this juncture, oxidation with I2 

provided the phosphorylated trisaccharide 3.37 in 81% yield (Scheme 3.6).  
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Entry Yield %

1
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3.34

Table 3.3. Screening of phosphorylation conditions 
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With the fully protected repeating unit in hand, we began our monumental 

descent from this exhaustive endeavor by initiating a global deprotection sequence. 

First, hydrogenolysis over Pearlman’s catalyst was employed to remove three 

benzyl ethers and a carbamate. The reducing environment also reduced two 

trichloroacetamides to their corresponding acetamide and one azide to its 

corresponding amine. Removing organic soluble impurities by means of a short 

column, the material was carried forward and exposed to NaOCH3 in aqueous 

CH3OH at ambient temperature to saponify the methyl ester and remove a single 

benzoate. 

Following purification of the material via size exclusion chromatography, 3.30 

was isolated as a white solid after lyophilization. Moreover, the characterization of 

the repeating unit using 1H, 13C, and 31P NMR provided spectra analogous to those 

of the native polymer. In conclusion, we developed the first concise and 

diastereoselective synthesis of the Photorhabdus temperata ssp. Cinereal 3240 

zwitterionic trisaccharide repeating unit. Our synthesis of PT-ZPS highlights a 

scalable synthesis of AAT donor and the use of an H-phosphonate donor to install 

the desired phosphoethanolamine moiety on a poorly nucleophilic and sterically 

hindered alcohol.  
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3.3 Total Synthesis of a Ribitol Teichoic Acid Zwitterionic Repeating Unit from 

Proteus vulgaris strain TG 276-1 

Having completed the total synthesis of PT-ZPS repeating unit, my initial 

goals were to prepare a thorough review of deoxy-amino sugars, and possibly 

explore the syntheses of other rare bacterial sugars. However, upon examining the 

literature for other repeating units consisting of an AAT residue, I came across the 

repeating unit of P. vulgaris. Steve, not unexpectedly, had agreed to let me pursue 

an additional two total synthesis projects, knowing my time was almost up. As an 

advocate for collaborative projects, I organized the junior members of the group to 

synthesize building blocks, while I orchestrated the assembly of the desired 

repeating units at hand. I encouraged Ms. C. Elizabeth Adams (hereafter referred to 

just as Elizabeth) to join me on this new endeavor. Like PT-ZPS, P. vulgaris 

repeating unit is zwitterionic; however, the cassette features two phosphorous 

residues. In fact, our group had previously synthesized a bis-phosphorylated 

trisaccharide ZPS back in 201951, whereby we developed new phosphorus 

chemistry to install this key residue. Although Steve had agreed to let me work on 

this new project, the rest of the planning fell on Elizabeth’s and my shoulders. The 

initial strategy, developed after some minor investigative work in the laboratory (and 

coffee at FIDO), turned to be conceptually close to the final working route. 

As mentioned in previous chapters, in gram-negative organisms, the outer 

membrane provides protection from the environment, provides a barrier from toxins, 

and forms the periplasm, which holds the extra-cytoplasmic enzymes required for 

cell-wall growth and degradation. To contrast, gram-positive organisms lack an outer 
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membrane. Consequently, the peptidoglycan layer is very thick compared to the thin 

layer present in gram-negative organisms.55 Peptidoglycan stabilizes the cell 

membrane and provides many sites to which extracellular conjugates can attach. 

For example, gram-positive peptidoglycan is heavily modified with charged 

polysaccharides that are critical to membrane integrity. Intriguingly, this anionic 

polymer layer appears to function in a similar manner as the outer membrane: they 

govern membrane permeability, facilitate extracellular interactions, provide stability 

to the plasma membrane, and, along with peptidoglycan, serve as scaffolds for 

extra-cytoplasmic enzymes required for cell-wall growth and degradation. 

A major class of cell wall macromolecules in gram-positive organisms are the 

teichoic acids (TAs).56-60 TAs are made up of anionic polymers of glycerol phosphate 

or ribitol phosphate linked via an ester to either D-alanine or a monosaccharide. 

There are two types of teichoic acids. The first are wall teichoic acids (WTAs), which 

are covalently bound via a phosphodiester bond to C-6 of N-acetylmuramic acid in 

the peptidoglycan layer. The second type are lipoteichoic acids (LTAs), which 

contain a terminal glycolipid that functions as an anchor in the cytoplasmic 

membrane.61 Several central physiological functions have been assigned to teichoic 

acids ranging from cation homeostasis to ion trafficking. Overall, LTAs are essential 

for microbial cell growth and play an important role in host-pathogen interactions.  

Enterobacteriaceae are a large family of opportunistic, gram-negative 

pathogens of the genus Proteus.62 These bacteria are a common cause of urinary 

tract infections and related kidney and urological illnesses in patients who have 

undergone procedures involving catheterization of the urinary tract. P. vulgaris is 
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among the most virulent species in the clinic and is known to employ several 

virulence factors that govern the infectious process - such as swarming, flagella, 

capsule, and outer membrane lipopolysaccharide (LPS). Recently, Knirel et al. have 

characterized the structure of a cell surface O- zwitterionic polysaccharide with a 

repeating unit containing 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (D-

FucNAc4N or AAT) and two D-ribitol phosphate (D-Rib-ol-5-P) residues.63 

Compelled by the biological importance of ZPSs, together with the 

unanswered questions regarding their minimum polymer length to elicit an immune 

response, our group embarked on the total synthesis of P. vulgaris ZPS (PV-ZPS) 

repeating unit 3.38, aiming for a concise approach from commercially available 

carbohydrates. Corollary to these goals was our group’s ongoing interest in 

phosphorylated zwitterionic polysaccharides and the synthesis of rare-deoxy amino 

sugars. An important structural component of the repeating unit is the AAT residue, 

which was expected to allow for straightforward elaboration to the trisaccharide 

repeating unit.  
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After careful considerations, a synthetic route to PV-ZPS repeating unit 

beginning from readily available carbohydrate precursors was deemed a suitable 

approach for the following reasons: 1) the opportunity to apply chemistry developed 

in our group for the synthesis of ZPSs containing AAT residues; and 2) the occasion 

to synthesize new phosphorylated sugars with H-phosphonate chemistry. However, 

several challenges must be addressed, including the use of AAT as both an acceptor 

and donor, the diastereoselective formation of 1,2-trans-β glycosidic linkage, and 

the installation of two phosphorus residues. 

To access PV-ZPS repeating unit, monosaccharide building blocks were 

functionalized and protected with various protecting groups to provide the respective 

acceptors and donors. During the planning stage, Elizabeth was tasked with the 

synthesis of the bis-phosphorylated D-ribitol piece 3.39, while I worked on the AAT 

(3.40) and allyl protected D-ribitol (3.41) building blocks (Scheme 3.7).  

Elizabeth had previously found that preparation of building block 3.49 can be 

derived from D-ribose 3.42. Thus, treatment of 3.42 with ethanethiol with the aid of 
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hydrochloric acid and consequent reaction with trityl chloride under the promotion of 

4-dimethylaminopyridine (DMAP) and pyridine afforded trityl protected D-ribose 

derivative 3.43 in 50% yield over two steps. The triol 3.43 was then benzylated with 

benzyl bromide and sodium hydride in DMF to give fully protected compound 3.44 

in 85% yield. Exposure of 3.44 to a solution of mercury (II) chloride in acetone and 

water led to the cleavage of the dithioacetal, providing an aldehyde, which was 

subsequently reduced with sodium borohydride to afford 3.45 in 63% yield over two 

steps. Gratifyingly, reaction with phosphorous reagent 3.46 with tetrazole gave the 

monophosphorylated intermediate and further oxidation with tert-Butyl 

hydroperoxide (TBHP) provided 3.47 in 98% yield over two steps. Next, selective 

trityl removal under trichloroacetic acid and triethyl silane gave alcohol 3.48. Finally, 

treatment of monophosphorylated intermediate with phosphonic acid and pivaloyl 

chloride in pyridine delivered the bis-phosphorylated D-ribitol piece 3.49 in 60% yield 

(Scheme 3.8).  

Considering the convenience of this approach for the synthesis of bis-

phosphorylated D-ribitol building block 3.49 from D-ribose, we adopt a similar 

strategy to prepare the known allyl protected D-ribitol fragment 3.41. Furthermore, 

the AAT donor 3.19 was synthesized using chemistry previously developed in our 

group. To demonstrate the utility of the three key building blocks, assembly of the 

unique core of trisaccharide 3.38 of P. vulgaris was carried out (Scheme 3.9).  
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To access the desired frameshift, a linear glycosylation approach was used 

adapting previous methods in the total synthesis of PT-ZPS. Synthesis of the bis-

phosphorylated zwitterionic repeating unit 3.38 started with [1+1] glycosylation using 

AAT trichloroacetimidate donor 3.19 and allyl protected ribitol acceptor 3.41. The 

TCA donor 3.19 and ribitol acceptor 3.41 were coupled using TfOH as the activator 

in dichloromethane at −78 °C to afford the disaccharide and subsequent treatment 

under Zemplén conditions provided acceptor 3.50 exclusively as the β-product in 

90% yield over two steps. Based on our work related to the other phosphorylated 

ZPSs (see PT-ZPS section above), the bis-phosphorylated D-ribitol derivative 3.49 

could be successfully coupled with disaccharide 3.50 in the presence of pivaloyl 

chloride and pyridine followed by oxidation with I2 to furnish the phosphorylated 

trisaccharide 3.51 in 53% yield over two steps. In this scenario, allyl removal with an 

iridium complex followed by Pd (OH)2/C-mediated removal and/or reduction of all 

remaining protecting groups will provide the trisaccharide repeating of P. vulgaris 

3.38.  
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3.4 Conclusion 

In summary, we have developed a facile method for the total synthesis of two 

phosphorylated zwitterionic polysaccharides involving H-phosphonate chemistry for 

installation of the key phosphorous residue. Viewed within the proper historical 

context, this protocol represents a significant advance in the field of phosphorus 

coupling chemistry. Specifically, it has been shown that coupling of poorly 

nucleophilic and sterically hindered substrates is a challenging process. Thus, work 

from our laboratory has shown that functionalization of complex glycans through this 

methodology is possible and efficient. This research program was initiated with the 

structures of the phosphorylated zwitterionic polysaccharides in mind and with a 

conscious effort to access rare deoxy-amino sugars, such as AAT.  
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3.6 Experimental Methods 

General.  All non-aqueous reactions were performed in flame-dried or oven dried 

round-bottomed flasks under an atmosphere of nitrogen or argon, unless otherwise 

noted. Stainless steel syringes or cannula were used to transfer air- and moisture-

sensitive liquids. Reaction temperatures were controlled using a thermocouple 

thermometer and analog hotplate stirrer. Reactions were conducted at room 

temperature (rt, approximately 23 °C) unless otherwise noted. The anhydrous 

solvents used in the reactions were obtained from an MBraun MB-SPS 800 

anhydrous Solvent System. Solvent for chromatography were of analytical grade 

and distilled under reduced pressure prior to use. Commercially available reagents 

were obtained from Aldrich, Fisher, TCI, TRC, and Carbosynth. Flash column 

chromatography was conducted as described Still et. al. using silica gel 230-400 

mesh.1 Where necessary, silica gel was neutralized by treatment of the silica gel 

prior to chromatography with the eluent containing 1% triethylamine. TEAB buffer 

was prepared by filling TEA (7 mL) in a measuring cylinder and adding water until 

the total volume reached 500mL. The solution was transferred to a flask and CO2 

was bubbled through the solution for 2 h at 0 °C. The buffer was stored at 4 °C. Thin 

layer chromatography (TLC) was performed using glass backed 60-F254 silica gel 

plates obtained from Silicycle. Visualization of TLC plates was performed by UV 

(215 nm and 254 nm), CAM stain (5% (w/v) ammonium molybdate, 1% (w/v) cerium 

(II) sulfate and 10% (v/v) sulfuric acid in water) or ninhydrin stain (1.5% (w/v) 

ninhydrin and 3% (v/v) acetic acid in n-butanol) dipping solutions. Size exclusion 

chromatography (SEC) was performed using Bio Gel ® P-2 Gel (Bio-Rad). 
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Powdered 4 Å molecular sieves were obtained from Sigma-Aldrich and used for 

reactions. Sieves were activated by iterative heating (to 180 °C) and cooling (to 25 

°C) cycles (minimum of 3 times). Heating was carried out by microwave irradiation 

and cooling took place in a desiccator equipped with Drierite™ and P2O5.  

Instrumentation: 1H NMR, 13C NMR, 31P and 2D NMR spectra were recorded in 

the Vanderbilt Small Molecule NMR Facility on a Bruker 400 and 600 MHz. Chemical 

shifts are reported in parts per million (ppm) of the δ scale. Spectra were recorded 

in CDCl3 by using the solvent residual peak chemical shift as the internal standard 

(CDCl3: S7 7.26 ppm 1H, 77.0 ppm 13C) or in D2O using the solvent as the internal 

standard in 1H NMR (D2O: 4.79 ppm 1H) unless otherwise stated. 31P NMR spectra 

1% H3PO4 in D2O was used as an external standard. 1H NMR spectral data are 

presented as follows: Chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, 

dd = doublet of doublets, dq = doublet of quadruplet, ddd = doublet of doublet of 

doublet, t = triplet, q = quartet, p = pentet, br = broad, m = multiplet) coupling 

constants (Hz), integration. High-resolution mass spectra (HRMS) were obtained 

from the Department of Chemistry, Vanderbilt University using an LTQ-Orbitrap XL 

mass spectrometer. Optical rotations (OR) were measured with on a AUTOPOL IV 

digital polarimeter. Concentrations (c) in g/100 mL and solvent are given in 

parentheses and the reported value is an average of n = 3 independent 

measurements. 
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Preparative Procedures 

Proton and Carbon assignment based on the following figure: 
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phenyl (4,6-O-benzylidene-3-O-acetyl-2-deoxy-2-trichloroacetamido-1-thio-β-
D- galactopyranoside (3.13B): 

To a solution of known phenyl 4,6-O-benzylidene acetal-2-

deoxy-2-trichloracetamido-1-thio-β-D-galactopyranoside6 (4.0 

g, 7.92 mmol, 1 equiv.) in pyridine (35 mL) was cooled to 0 °C 

under an argon atmosphere and added acetic anhydride (3.7 

mL, 39.6 mmol, 5 equiv.) and DMAP (0.1 equiv.). The reaction was stirred at room 

temperature. At 1 h, TLC indicated that the starting material was completely 

consumed. The reaction was cooled to 0 °C and the excess acetic anhydride was 

quenched by the addition of CH3OH (5.0 mL). After 5 min at 0 °C, the crude reaction 

mixture was stirred at room temperature for 5 min and then transferred to a 

separatory funnel with EtOAc (100 mL). The reaction was washed with 1 N HCl (3 x 

25 mL), satd. aq. NaHCO3 (1 x 25 mL), brine (1 x 125 mL), dried (NaSO4) and filtered 

through a glass fritted vacuum filter funnel to remove drying agent. The filtrate was 

concentrated to a crude oil which was purified by flash column chromatography (1:3 

to 1:1 EtOAc/hexanes) then was crystalized from hot EtOAc and hexanes to give 

product (3.50 g, 6.40 mmol, 81%) as white crystals. Rf = 0.55 (EtOAc/Hexane 1:1) 

visualized with ceric ammonium molybdate stain; [a]D25 = +4.2° (c = 0.0012, CHCl3);   

1H NMR (600 MHz, CDCl3) δ 7.69 – 7.62 (m, 2H, Ar), 7.45-7.42 (m, 2H, Ar), 7.41 – 

7.35 (m, 3H, Ar), 7.35-7.31 (m, 1H, Ar), 7.29 – 7.26 (m, 2H, Ar), 6.69 (d, J = 8.3, 1H, 

NH), 5.53 (s, 1H, PhCH), 5.44 (dd, J = 10.9, 3.3 Hz, 1H, H-3), 5.18 (d, J = 10.0 Hz, 

1H, H-1), 4.40 (dd, J = 12.3, 1.7 Hz, 1H, H-6), 4.37 (dd, J = 3.3, 1.0 Hz, 1H, H-4), 

4.14 (td, J = 10.5, 8.3 Hz, 1H, H-2), 4.06 (dd, J = 12.4, 1.6 Hz, 1H, H-6), 3.67 (s, 1H, 

H-5), 2.03 (s, 3H, COCH3); 13C NMR (151 MHz, CDCl3) δ 170.7 (COCH3), 161.4 

O
SPhAcO

TCAHN

O
O

Ph
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(NHCO), 137.6, 134.0, 130.9, 129.3, 129.1, 128.6, 128.3, 126.5, 101.0 

(PhCH/benzylidene), 92.4 (CCl3), 84.4 (C-1), 73.4 (C-4), 70.9 (C-3), 70.0 (C-5), 69.3 

(C-6), 50.9 (C-2), 20.9 (COCH3); HRMS (ESI) calcd. for C23H22O6Cl3NSNa (M+Na)+ 

568.0133, found 568.0126 m/z. 

p-Methoxyphenyl methyl 2,3-di-O-benzyl-β-D-glucopyranosidurinate (3.17A):  

 

To a solution of known diol4b (3.75 g, 8.04 mmol, 1.0 equiv.) in 

CH2Cl2/H2O (3/1 v/v, 100 mL) under an argon atmosphere was 

added 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (377 mg, 

2.41 mmol, 0.3 equiv.) and (Diacetoxyiodo) benzene (BAIB) (6.45g, 20.1 mmol, 2.5 

equiv.). The biphasic mixture was stirred vigorously for 3 h and quenched by the 

addition of satd. aq. Na2S2O3 (20 mL). The layers were separated, and the aqueous 

layer was acidified with 1M aqueous HCl to pH 2 and extracted with CH2Cl2 (50 mL 

× 3. The combined organic layers were dried over anhydrous Na2SO4, filtered, and 

concentrated in vacuo. The residue was dissolved in 65.0 mL of anhydrous DMF. 

To this solution was added sequentially KHCO3 (3.23 g, 32.3 mmol, 5.0 equiv.) and 

CH3I (0.44 mL, 7.10 mmol, 1.1 equiv.) at 0 °C and the solution was stirred at 25 °C 

for about 12 h. The solvents were concentrated in vacuo, and the residue was 

purified by flash silica gel chromatography (50:50 EtOAc/Hexanes) to provide the 

glucuronic acid methyl ester 31 (3.00 g, 6.45 mmol, 94% yield) as a white 

amorphous solid. Glucuronic acid methyl ester had Rf 0.40 (EtOAc/Hexane 1:1) 

visualized with ceric ammonium molybdate stain; [a]D25 = +9.2 ° (c = 0.0024, CHCl3);  

1H NMR (600 MHz, CDCl3) δ 7.38 – 7.28 (m, 10H, Ar), 7.02 (d, J = 9.0 Hz, 2H, Ar), 
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6.84 (d, J = 9.0 Hz, 2H, Ar), 5.02 (d, J = 10.9 Hz, 1H, PhCHH), 4.93 (d, J = 7.7 Hz, 

1H, H-1), 4.92 (d, J = 11.4 Hz, 1H, PhCHH),  4.85 (d, J = 11.4 Hz, 1H, PhCHH), 4.82 

(d, J = 10.9 Hz, 1H, PhCHH), 3.99 – 3.94 (m, 1H, H-4), 3.91 (m, 1H, H-5), 3.81 (s, 

3H, CO2CH3), 3.79 (s, 3H, OCH3), 3.74 – 3.68 (m, 1H, H-2), 3.59 (t, J = 8.9 Hz, 1H, 

H-3), 2.88 (s, 1H, OH); 13C NMR (151 MHz, CDCl3) δ 169.6 (CO2CH3), 155.7, 151.3, 

138.5, 138.1, 128.6, 128.5, 128.3, 128.1, 128.0, 118.7, 114.7, 103.2 (C-1), 83.1 (C-

3), 81.0 (C-2), 75.6 (PhCH2), 75.26 (PhCH2), 74.2 (C-5), 71.7 (C-4), 55.8 (OCH3), 

52.9 (CO2CH3); HRMS (ESI) calcd. for C28H30O8Na  (M+Na)+ 517.1833, found 

517.1836 m/z. 

 

p-Methoxyphenyl benzyl 2,3-di-O-benzoyl-β-D-glucopyranosidurinate (3.17B): 

 

To a solution of known diol (1.00 g, 1.97 mmol, 1.0 equiv.) in 

CH2Cl2/H2O (3/1 v/v, 100 mL) under an argon atmosphere 

was added 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) 

(92.2 mg, 0.59 mmol, 0.3 equiv.) and (Diacetoxyiodo) benzene (BAIB) (1.37, 4.92 

mmol, 2.5 equiv.). The biphasic mixture was stirred vigorously for 3 h and quenched 

by the addition of satd. aq. Na2S2O3 (20 mL). The layers were separated, and the 

aqueous layer was acidified with 1M aqueous HCl to pH 2 and extracted with CH2Cl2 

(50 mL × 3. The combined organic layers were dried over anhydrous Na2SO4, 

filtered, and concentrated in vacuo. The residue was dissolved in 65.0 mL of 

anhydrous DMF. To this solution was added sequentially KHCO3 (1.00 g, 9.83 

mmol, 5.0 equiv.) and BnBr (0.25 mL, 2.16 mmol, 1.1 equiv.) at 0 °C and the solution 

was stirred at 25 °C for about 12 h. The solvents were concentrated in vacuo, and 
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the residue was purified by flash silica gel chromatography (50:50 EtOAc/Hexanes) 

to provide the glucuronic acid benzyl ester 31 (0.95 g, 1.60 mmol, 81% yield) as a 

white amorphous solid. Glucuronic acid benzyl ester had Rf 0.44 (EtOAc/Hexane 

1:1) visualized with ceric ammonium molybdate stain; [a]D25 = +11.7° (c = 0.011, 

CHCl3);  1H NMR (600 MHz, CDCl3) δ 8.00 (dd, J = 8.4, 1.3 Hz, 1H, Ar), 7.97 (dd, J 

= 8.4, 1.4 Hz, 1H, Ar), 7.55 – 7.48 (m, 2H, Ar), 7.43 – 7.34 (m, 9H, Ar), 6.95 (d, J = 

9.0 Hz, 2H, Ar), 6.74 (d, J = 9.1 Hz, 2H, Ar), 5.67 (dd, J = 9.6, 7.6 Hz, 1H, H-2), 5.60 

(t, J = 9.4 Hz, 1H, H-3), 5.39 – 5.23 (m, 2H, PhCH2), 5.17 (d, J = 7.6 Hz, 1H, H-1), 

4.33 (t, J = 9.4 Hz, 1H, H-4), 4.20 (d, J = 9.6 Hz, 1H, H-5), 3.74 (s, 3H, OCH3); 13C 

NMR (151 MHz, CDCl3) δ 168.2 (CO2Bn), 166.6 (COPh), 165.1 (COPh), 155.9, 

150.9, 134.8, 133.5, 133.3, 130.0, 129.8, 129.1, 128.9, 128.7, 128.6, 128.4, 128.1, 

119.3, 114.5, 101.2 (C-1), 74.8 (C-3), 74.6 (C-5), 71.2 (C-2), 70.3 (C-4), 67.7 

(PhCH2), 55.6 (OCH3); HRMS (ESI) calcd. for C30H30O10Na (M+Na)+ 621.1731, 

found 621.1732 m/z. 
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p-Methoxyphenyl (4,6-O-benzylidene-3-O-tert. Butyldimethylsiyl-2-deoxy-2-
trichloroacetamido-α-D- galactopyranosyl)-(1→ 4)-(methyl 2,3-di-O-benzyl-β-
D-glucopyranosid)uronate (3.21): 

  

A solution of known acceptor 17.B (250 mg, 0.42 mmol, 1.0 equiv.)  and donor 3.13A 

(284 mg, 0.46 mmol, 1.1 equiv.) in anhydrous CH2Cl2 (5 mL) under an argon 

atmosphere was added 4 Å MS (0.5 g) at room temperature and allowed to stir for 

1 h. The reaction mixture was cooled to -78 °C and added NIS (188 mg, 0.83 mmol, 

2.0 equiv.). After 1 min, a solution of TMSOTf (0.15 equiv., 2.0 mL, 5% in anhydrous 

CH2Cl2) was added dropwise. The reaction was stirred at -78 °C for 2 h when TLC 

indicated complete consumption of the alcohol 17 starting material. The reaction 

was quench by the addition of dilute Et3N in CH2Cl2 while warming to room 

temperature. The reaction was filtered through a glass fritted filter funnel equipped 

with a pad of Celite to remove the 4 Å MS and then concentrated in vacuo. The 

crude oil was then diluted with EtOAc and transferred to a separatory funnel and 

washed with satd. aq. Na2S2O3 (20 mL x 1), brine (20 mL x 1), and dried over 

anhydrous Na2SO4. The mixture was filtered and concentrated to a crude oil. Flash 

chromatography of the crude material eluting with EtOAc/Hexane (2:3) gave ⍺ 

product: (300 mg, 0.27 mmol, 65%) as a yellow foam. Rf = 0.55 (EtOAc/Hexane 2:3) 

visualized with ceric ammonium molybdate stain; [a]D25 = +37.5° (c = 0.015, CHCl3);  

1H NMR (600 MHz, CDCl3) δ 7.99 – 7.92 (m, 2H, Ar), 7.93 – 7.85 (m, 2H, Ar), 7.63 
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– 7.49 (m, 4H, Ar), 7.45 – 7.31 (m, 12H, Ar), 7.29 – 7.12 (m, 2H, Ar), 6.91 (d, J = 9.1 

Hz, 2H, Ar), 6.75 (d, J = 9.1 Hz, 2H, Ar), 6.36 (d, J = 8.8 Hz, 1H, NH), 5.75 (t, J = 

9.2 Hz, 1H, H-3b), 5.65 (dd, J = 9.3, 6.9 Hz, 1H, H-2b), 5.50 (s, 1H, PhCH), 5.32 (d, 

J = 3.3 Hz, 1H, H-1a), 5.24 (d, J = 7.7 Hz, 1H, H-1b), 5.22 (d, J = 12.1 Hz, 1H, 

PhCHH), 5.17 (d, J = 12.1 Hz, 1H, PhCHH), 4.69 (t, J = 8.8 Hz, 1H, H-4a), 4.50 – 

4.39 (m, 1H, H-2a), 4.28 (d, J = 8.8 Hz, 1H, H-5b), 4.20 (d, J = 10.7, 1H, H-6a), 4.07-

4.02 (m, 2H, H-3a, H-4b), 3.95 (d, J = 10.6,1H, H-6a), 3.75 (s, 3H, OCH3), 3.68 (s, 

1H, H-5a), 0.84 (s, 9H, TBS), 0.09 (s, 3H, TBS), 0.07 (s, 3H, TBS); 13C NMR (151 

MHz, CDCl3) δ 167.0 (CO2Bn), 165.9 (COPh), 165.1(COPh), 161.8 (NHCO), 155.9, 

150.8, 137.6, 134.8, 133.9, 133.5, 130.2, 129.8, 128.9, 128.8, 128.8, 

128.7,128.6,128.6,128.5, 128.5, 128.2, 126.2, 118.9, 114.6, 100.9 (PhCH), 100.7 

(C-1a GalN), 98.0 (C-1b GluA), 92.0 (CCl3), 76.0 (C-4b), 75.6 (C-5b), 74.6 (C-4a), 

73.7 (C-3b), 71.8 (C-2b), 69.1 (C-6a), 68.0 (PhCH2), 67.8 (C-3a), 64.3 (C-5a), 55.7 

(OCH3), 51.8 (C-2a), 25.7 (TBS), 18.0 (TBS), -4.1 (TBS), -4.5 (TBS); HRMS (ESI) 

calcd. for C55H58O15NCl3SiNa (M+Na)+ 1128.2534, found 1128.2566 m/z. 
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p-Methoxyphenyl (4,6-O-benzylidene-3-O-acetyl-2-deoxy-2-
trichloroacetamido-β-D- galactopyranosyl) -(1→ 4)-(methyl 2,3-di-O-benzoyl-
β-D-glucopyranosid)uronate (3.22):  

 

A solution of acceptor 3.17B (0.90 g, 1.50 mmol, 1.0 equiv.)  and donor 3.13B (0.95 

g, 1.73 mmol, 1.1 equiv.) in anhydrous CH2Cl2 (20 mL) under an argon atmosphere 

was added 4 Å MS (0.50 g) at room temperature and allowed to stir for 1 h. The 

reaction mixture was cooled to -78 °C and added NIS (0.52 g, 3.0 mmol, 2.0 equiv.). 

After 1 min, a solution of TMSOTf (0.15 equiv., 2.0 mL, 5% in anhydrous CH2Cl2) 

was added dropwise. The reaction was stirred at -78 °C for 2 h when TLC indicated 

complete consumption of the alcohol 31 starting material. The reaction was quench 

by the addition of dilute Et3N in CH2Cl2 while warming to room temperature. The 

reaction was filtered through a glass fritted filter funnel equipped with a pad of Celite 

to remove the 4 Å MS and then concentrated in vacuo. The crude oil was then diluted 

with EtOAc and transferred to a separatory funnel and washed with satd. aq. 

Na2S2O3 (20 mL x 1), brine (20 mL x 1), and dried over anhydrous Na2SO4. The 

mixture was filtered and concentrated to a crude oil. Flash chromatography of the 

crude material eluting with EtOAc/Hexane (2:3) gave separable β product:(1.10 g, 

1.06 mmol, 70%) as white foam. The β-anomer had Rf = 0.45 (EtOAc/Hexane 2:3) 

visualized with ceric ammonium molybdate stain; [a]D25 = +17.3° (c = 0.012, CHCl3);  

1H NMR (600 MHz, CDCl3) δ 7.97-7.92 (m, 4H, Ar), 7.48 – 7.24 (m, 14H, Ar), 7.20 
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(t, J = 7.8 Hz, 2H, Ar), 6.92 (d, J = 9.1 Hz, 2H, Ar), 6.71 (d, J = 9.2 Hz, 2H, Ar), 5.77 

(t, J = 9.1 Hz, 1H, H-3b), 5.61 (dd, J = 9.2, 7.0 Hz, 1H, H-2b), 5.30 (d, J = 12.4 Hz, 

1H, PhCHH), 5.28 (s, 1H, PhCH), 5.21 (d, J = 7.0 Hz, 1H, H-1a), 5.14 (d, J = 12.2 

Hz, 1H, PhCHH), 5.03 (dd, J = 11.2, 3.4 Hz, 1H, H-3a), 4.85 (d, J = 8.3 Hz, 1H, H-

1b), 4.50 (t, J = 9.1 Hz, 1H, H-4b), 4.28 (d, J = 9.2 Hz, 1H, H-5b), 4.18 – 4.11 (m, 

1H, H-2a), 4.10 (d, J = 3.4 Hz, 1H, H-4a), 3.73 (s, 1H, OCH3), 3.65 (d, J = 12.5 Hz, 

1H, H-6a), 3.60 (d, J = 12.4 Hz, 1H, H-6a), 3.09 (s, 1H, H-5a), 2.02 (s, 3H, COCH3); 

13C NMR (151 MHz, CDCl3) δ 170.9 (COCH3), 168.1(CO2Bn), 165.5 (COPh), 165.3 

(COPh), 161.6 (NHCO), 155.9, 150.8, 137.6, 134.9, 133.4, 132.9, 130.0, 129.9, 

129.0, 128.8, 128.8, 128.7, 128.5, 128.3, 128.2 128.0, 126.6, 119.0, 114.6, 100.9 

(PhCH), 100.8 (C-1a GalN), 100.1 (C-1b GlcA), 92.6 (CCl3), 76.1 (C-4b), 74.4 (C-

5b), 72.8 (C-4a), 72.5(C-3b), 72.0 (C-2b), 70.7 (C-3a), 68.1 (C-6a), 67.9 (PhCH2), 

66.5 (C-5a), 55.7 (OCH3), 52.6 (C-2a), 20.8 (COCH3); HRMS (ESI) calcd. for 

C51H46O16Cl3NNa (M+Na)+ 1056.1774, found 1056.1789 m/z. 
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p-Methoxyphenyl (4,6-O-benzylidene-3-O-acetyl-2-deoxy-2-
trichloroacetamido-β-D- galactopyranosyl)-(1→ 4)-(methyl 2,3-di-O-benzyl-β-
D-glucopyranosid)uronate (3.31):  

 
A solution of acceptor 3.17A (1.75 g, 3.50 mmol, 1.0 equiv.)  and donor 3.13C (2.46 

g, 4.36 mmol, 1.5 equiv.) in anhydrous CH2Cl2 (30 mL) under an argon atmosphere 

was added 4 Å MS (5.0 g) at room temperature and allowed to stir for 1 h. The 

reaction mixture was cooled to -78 °C and added NIS (1.59 g, 7.08 mmol, 2.0 equiv.). 

After 1 min, a solution of TMSOTf (0.15 equiv., 2.0 mL, 5% in anhydrous CH2Cl2) 

was added dropwise. The reaction was stirred at -78 °C for 2 h when TLC indicated 

complete consumption of the alcohol 3.17A starting material. The reaction was 

quench by the addition of dilute Et3N in CH2Cl2 while warming to room temperature. 

The reaction was filtered through a glass fritted filter funnel equipped with a pad of 

Celite to remove the 4 Å MS and then concentrated in vacuo. The crude oil was then 

diluted with EtOAc and transferred to a separatory funnel and washed with satd. aq. 

Na2S2O3 (20 mL x 1), brine (20 mL x 1), and dried over anhydrous Na2SO4. The 

mixture was filtered and concentrated to a crude oil. Flash chromatography of the 

crude material eluting with EtOAc/Hexane (1:4) gave separable β/⍺ (4:1) products:  

β 32 (2.40 g, 2.53 mmol, 74%) and ⍺ (0.60g, 0.64 mmol, 18%) as both yellow foams. 

The combine yield is 91%. The β-anomer had Rf = 0.45 (EtOAc/Hexane 1:1) and ⍺-

anomer had Rf = 0.55 (EtOAc/Hexane 1:1), both visualized with ceric ammonium 

molybdate stain; β-anomer: [a]D25 = +46.7° (c = 0.0018, CHCl3);  1H NMR (600 MHz, 
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CDCl3) δ 7.55 – 7.47 (m, 2H, Ar), 7.44 – 7.38 (m, 2H, Ar), 7.37 – 7.26 (m, 9H, Ar), 

7.17 (m, 2H,Ar), 6.97 (d, J = 9.1 Hz, 2H, Ar), 6.85 (d, J = 9.0 Hz, 1H, NH), 6.82 (d, 

J = 9.1 Hz, 2H, Ar), 5.55 (s, 1H, PhCH), 5.20 (d, J = 10.7 Hz, 1H, PhCHH), 5.13 (dd, 

J = 11.2, 3.4 Hz, 1H, H-3a), 5.02 (d, J = 8.5 Hz, 1H, H-1a), 4.95 (d, J = 6.8 Hz, 1H, 

H-1b), 4.94 (d, J = 11.0 Hz, 1H, PhCHH), 4.79 (d, J = 11.1 Hz, 1H, PhCHH), 4.76 

(d, J = 10.7 Hz, 1H, PhCHH), 4.42 (dt, J = 11.2, 8.6 Hz, 1H, H-2a), 4.31 (d, J = 2.4 

Hz, 1H, H-4a), 4.26 (d, J = 10.9 Hz, 1H, H-6a), 4.21 (t, J = 9.0 Hz, 1H, H-4b), 3.99 

(d, J = 10.8 Hz, 1H, H-6a), 3.97 (d, J = 9.4 Hz, 1H, H-5b), 3.78 (s, 3H, OCH3), 3.75 

(s, 3H, CO2CH3), 3.73 (d, J = 8.7 Hz, 1H, H-3b), 3.69 (dd, J = 8.9, 6.8 Hz, 1H, H-

2b), 3.50 (s, 1H, H-5a), 2.08 (s, 3H, COCH3); 13C NMR (151 MHz, CDCl3) δ 171.2 

(COCH3), 170.1(CO2CH3), 161.9 (NHCO), 155.6, 151.2, 138.6, 138.2, 137.7, 129.1, 

128.6, 128.5, 128.3, 128.2, 128.1, 127.8, 127.5, 126.5, 118.5, 118.4, 114.7, 102.7 

(C-1a GalN), 101.0 (PhCH), 100.6 (C-1b GlcA), 92.7 (CCl3), 82.2 (C-3b), 81.3 (C-

2b), 78.5 (C-4b), 76.39 (PhCH2), 75.0 (PhCH2), 74.1 (C-5b), 73.2 (C-4a), 71.4 (C-

3a), 68.8 (C-6a), 66.9 (C-5a), 55.8 (OCH3), 53.1 (CO2CH3), 52.7 (C-2a), 20.9 

(COCH3); HRMS (ESI) calcd. for C45H46O14NCl3Na (M+Na)+ 952.1876, found 

952.1877 m/z. 
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p-Methoxyphenyl (4,6-di-O-benzylidene-2-deoxy-2-trichloroacetamido-β-D- 
galactopyranosyl) -(1→4)-(methyl 2,3-di-O-benzyl-β-D-
glucopyranosid)uronate (3.32):  

 

A solution of 3.31 (1.40 g, 1.54 mmol, 1.0 equiv.) in anhydrous CH3OH/CH2Cl2 (20 

mL) under an argon atmosphere was added NaOCH3 solution (1.00 mL, 1.5 mmol, 

[1.5 M] in CH3OH) dropwise at room temperature. At 1 h, the pH of the reaction 

mixture was still >12 and TLC indicated that the starting material had been 

completely consumed for a more polar spot. The reaction was neutralized by the 

addition of acidic form Amberlite IR 120 (H+) ion exchange resin. The solution was 

filtered through a glass fritted funnel with a pad of Celite to remove the resin. The 

filtrate was concentrated in vacuo to give 3.32 (1.28 g, 1.44 mmol, >95%) as a yellow 

foam in quantitative yield. Rf = 0.25 (EtOAc/Hexanes 1:1) visualized with ceric 

ammonium molybdate stain; [a]D25 = +12.8° (c = 0.0015, CHCl3); 1H NMR (600 MHz, 

CDCl3) δ 7.54 – 7.43 (m, 4H, Ar), 7.40 – 7.26 (m, 9H, Ar), 7.26 – 7.14 (m, 2H, Ar), 

6.99 (d, J = 9.1 Hz, 2H, Ar), 6.84 (d, J = 9.1 Hz, 2H, Ar), 5.59 (s, 1H, PhCH), 5.21 

(d, J = 10.4 Hz, 1H, PhCHH), 4.96 (d, J = 6.74, 1H, H-1b), 4.95 (d, J = 11.0 Hz, 1H, 

PhCHH), 4.86 (d, J = 8.4 Hz, 1H, H-1a), 4.81 (d, J = 11.0 Hz, 1H, PhCHH), 4.75 (d, 

J = 10.4 Hz, 1H, PhCHH), 4.26 (d, J = 12.7 Hz, 1H, H-6a), 4.24 – 4.16 (m, 2H, H-

2a, H-4a), 4.14 (t, J = 9.0 Hz, 1H, H-4b), 4.03-4.00 (m, 2H, H-6a, H-5b), 3.83-3.79 

(m, 1H, H-3a), 3.78 (s, 3H, OCH3), 3.77 (s, 3H, CO2CH3), 3.74 – 3.69 (m, 2H, H-2b, 
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H-3b), 3.48 (s, 1H, H-5a), 2.78 (s, 1H, OH); 13C NMR (151 MHz, CDCl3) δ 170.7 

(CO2CH3), 163.3 (NHCO), 155.7, 151.2, 138.5, 138.1, 137.6, 129.3, 128.7, 128.5, 

128.3, 128.1, 127.9, 127.7, 126.5,126.2, 118.5, 114.7, 102.73 (PhCH), 101.44 (C-

1b GlcA), 100.7 (C-1a GalN), 92.8 (CCl3), 82.3 (C-3b), 81.3 (C-2b), 78.9 (C-4b), 76.6 

(PhCH2), 75.1 (PhCH2), 75.0 (C-4a), 74.0 (H-5b), 72.6 (H-3a), 68.7 (C-6a), 67.2 (C-

5a), 55.8 (OCH3), 55.7 1 (CO2CH3), 53.2 (C-2a); HRMS (ESI) calcd. for 

C43H44O13NCl3Na (M+Na)+ 910.1770, found 910.1769 m/z. 
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p-Methoxyphenyl (3-O-benzoyl-4-azido-2,4,6-trideoxy-2-trichloroacetamido-β-
D-galactopyranosyl)-(1→3)-(4,6-di-O-benzylidene-2-deoxy-2-
trichloroacetamido-β-D- galactopyranosyl)-(1→4)-(methyl 2,3-di-O-benzyl-β-
D-glucopyranosid)uronate (3.33): 

A solution of acceptor 3.32 (1.10 g, 1.24 mmol, 1.0 equiv.)  and donor 3.19 (0.864 

g, 1.49 mmol, 1.2 equiv.) in anhydrous CH2Cl2 (12 mL) under an argon atmosphere 

was added 4 Å MS (3.0 g) at room temperature and allowed to stir for 1 h. The 

reaction mixture was cooled to -78 °C and a solution of TfOH (0.15 equiv., 2.0 mL, 

5% in anhydrous CH2Cl2) was added dropwise. The reaction was stirred at -78 °C 

for 1 h when TLC indicated complete consumption of the alcohol 3.32 starting 

material. The reaction was quench by the addition of dilute Et3N in CH2Cl2 while 

warming to room temperature. The reaction was filtered through a glass fritted filter 

funnel equipped with a pad of Celite to remove the 4 Å MS and then concentrated 

in vacuo. The crude oil was then diluted with EtOAc and transferred to a separatory 

funnel and washed with satd. aq. Na2S2O3 (20 mL x 1), brine (20 mL x 1), and dried 

over anhydrous Na2SO4. The mixture was filtered and concentrated to a crude oil. 

Flash chromatography of the crude material eluting with EtOAc/Hexane (1:4) gave 

the 3.33 (1.45g, 1.11 mmol, 90%) as a white foam. The trisaccharide 3.33 had Rf = 

0.40 (EtOAc/Hexane 1:1) visualized with ceric ammonium molybdate stain; [a]D25 = 

-27.7° (c = 0.0017, CHCl3); 1H NMR (600 MHz, CDCl3) δ 8.07 – 7.98 (m, 2H, Ar), 

7.64 – 7.55 (m, 1H, Ar), 7.52 – 7.42 (m, 4H, Ar), 7.40 – 7.34 (m, 2H, Ar), 7.28 (m, 

8H, Ar), 7.20 – 7.11 (m, 3H, Ar), 7.13 (d, J = 7.7 Hz, 1H, NH), 6.97 (d, J = 9.1 Hz, 
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2H, Ar), 6.85 (d, J = 9.0 Hz, 1H, NH), 6.82 (d, J = 9.1 Hz, 2H, Ar), 5.57 (s, 1H, PhCH), 

5.32 (dd, J = 11.0, 3.5 Hz, 1H, H-3c), 5.14 (d, J = 10.9 Hz, 1H, PhCHH), 5.05 (d, J 

= 8.3 Hz, 1H, H-1a), 4.97 (d, J = 6.6 Hz, 1H, H-1b), 4.91 (d, J = 11.0 Hz, 1H, PhCHH), 

4.88 (d, J = 8.5 Hz, 1H, H-1c), 4.77 (d, J = 11.0 Hz, 1H, PhCHH), 4.73 (d, J = 11.0 

Hz, 1H, PhCHH), 4.46 (dt, J = 11.0, 8.7 Hz, 1H, H-2c), 4.36 (dd, J = 10.8, 3.4 Hz, 

1H, H-3a), 4.32 (dd, J = 3.5, 1.0 Hz, 1H, H-4a), 4.28 (m, 1H, H-4b), 4.27 (d, J = 10.7 

Hz, 1H, H-6a), 4.18 – 4.11 (m, 1H, H-2a), 4.01 (d, J = 10.7 Hz, 1H, H-6a), 3.98 (d, J 

= 9.1 Hz, 1H, H-5b), 3.95 (dd, J = 3.5, 1.3 Hz, 1H, H-4c), 3.84 (qd, J = 7.3, 1.8 Hz, 

1H, H-5c), 3.78 (s, 3H, OCH3), 3.75 (s, 3H, CO2CH3), 3.75 – 3.67 (m, 2H, H-2b, H-

3b), 3.46 (s, 1H, H-5a), 1.43 (d, J = 6.3 Hz, 3H, H-6c); 13C NMR (151 MHz, CDCl3) 

δ 170.0 (CO2CH3), 166.2 (COPh), 162.5 (NHCO), 162.2 (NHCO), 155.6, 151.2, 

138.6, 138.1, 137.9, 134.0, 130.3, 128.8, 128.7, 128.52, 128.49, 128.3, 128.2, 

128.2, 128.1, 127.8, 127.5, 126.4, 118.4, 114.7, 102.7 (C-1b GlcA), 100.6 (PhCH), 

99.6 (C-1a GalN), 99.0 (C-1c AAT), 92.9 (CCl3), 92.2 (CCl3), 82.2 (C-3b), 81.3 (C-

2b), 77.6 (C-4b), 76.0 (PhCH2), 75.2 (C-4a), 75.0 (PhCH2), 74.3 (C-5b), 73.4 (C-3c), 

72.4 (C-3a), 70.3 (C-5c), 68.7 (C-6a), 67.1 (C-5a), 63.4 (C-4c), 55.8 (OCH3), 54.8 

(C-2a), 53.0 (CO2CH3), 52.5 (C-2c), 17.6 (C-6c); HRMS (ESI) calcd. for 

C58H56O17N5Cl6  (M-H)- 1304.1808, found 1304.1770 m/z. 
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p-Methoxyphenyl (3-O-benzoyl-4-azido-2,4,6-trideoxy-2-trichloroacetamido-β-
D-galactopyranosyl)-(1→3)-(6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D- 
galactopyranosyl)-(1→4)-(methyl 2,3-di-O-benzyl-β-D-
glucopyranosid)uronate (3.34): 

 
The trisaccharide 3.33 (1.40 g, 1.07 mmol, 1 equiv.) in CH2Cl2 (11 mL) and Et3SiH 

(0.520 mL, 3.21 mmol, 3.0 equiv.) was stirred with preactivated 4Å MS (3.0 g) for 30 

min under an argon atmosphere. After cooling to −78 °C, the mixture was treated 

with TfOH (0.330 mL, 3.74 mmol, 3.5 equiv.). The mixture was maintained at that 

temperature for 2 h. After TLC indicated complete consumption of the starting 

material, CH3OH (3 mL) and then NEt3 (1 mL) were added in this order. The mixture 

was diluted with EtOAc (50 mL), washed with H2O (2 x 50 mL), dried over anhydrous 

Na2SO4, and concentrated in vacuo to yield the crude alcohol. Flash 

chromatography of the crude material eluting with EtOAc/Hexane (3:7) gave the 

alcohol 3.34 (1.20 g, 0.915 mmol, 86%) as a white foam. The trisaccharide 3.34 had 

Rf = 0.30 (EtOAc/Hexane 1:1) visualized with ceric ammonium molybdate stain; 

[a]D25 = -15.0° (c = 0.002, CHCl3); 1H NMR (600 MHz, CDCl3) δ 8.05 (dd, J = 8.4, 

1.4 Hz, 2H, Ar), 7.63 – 7.53 (m, 1H, Ar), 7.50 – 7.42 (m, 2H, Ar), 7.41 – 7.36 (m, 2H, 

Ar), 7.36 – 7.23 (m, 13H, Ar), 7.13 (d, J = 7.5 Hz, 1H, NH), 7.01 (d, J = 8.7 Hz, 1H, 

NH), 6.97 (d, J = 9.1 Hz, 2H, Ar), 6.82 (d, J = 9.1 Hz, 2H, Ar), 5.42 (dd, J = 11.1, 3.5 

Hz, 1H, H-3c), 4.98 (d, J = 10.7 Hz, 1H, PhCHH), 4.95 – 4.89 (m, 3H, PhCHH,  H-

1a, H-1b), 4.84 (d, J = 8.3 Hz, 1H, H-1c), 4.78 (d, J = 11.0 Hz, 1H, PhCHH), 4.74 (d, 

J = 10.6 Hz, 1H, PhCHH), 4.46 (d, J = 11.9 Hz, 1H, PhCHH ), 4.42 – 4.37 (m, 1H, 

O
O

TCAHN

O
O

O
BnO BnO

OCH3O

OPMP
O

TCAHN

N3
CH3

BzO O

Ph

3.33

Et3SiH, TfOH

CH2Cl2, 4 Å MS
 -78ºC, 2 h

  83%

O
O

TCAHN

HO
OBn

O
BnO BnO

OCH3O

OPMP
O

TCAHN

N3
CH3

BzO O

3.34



 220 

H-2c), 4.37 (d, J = 11.8 Hz, 1H, PhCHH), 4.26 (dd, J = 10.4, 3.2 Hz, 1H, H-3a), 4.19 

(ddd, J = 9.1, 5.9, 3.0 Hz, 1H, H-4b), 4.12 (s, 1H, H-4a), 3.97-3.90 (m, 3H, H-2a, H-

4c, H-5b), 3.85 – 3.79 (m, 1H, H-5c), 3.78 (s, 3H, OCH3), 3.74 (s, 3H, CO2CH3), 3.72 

(dd, J = 9.7, 6.6 Hz, 1H, H-6a), 3.68 – 3.61 (m, 3H, H-2b, H-3b, H-5a), 3.54 (dd, J = 

9.7, 5.5 Hz, 1H, H-6a), 2.71 (s, 1H, OH), 1.40 (d, J = 6.3 Hz, 3H, H-6c); 13C NMR 

(151 MHz, CDCl3) δ 169.7 (CO2CH3), 166.4 (COPh), 162.6 (NHCO), 162.2 (NHCO), 

155.6, 151.2, 138.6, 138.2, 138.1, 134.1, 130.3, 128.8, 128.5, 128.3, 128.3, 128.2, 

127.9, 127.79, 127.62, 118.5, 114.7, 102.8 (C-1b GlcA), 99.7 (C-1c AAT), 98.9 (C-

1a GalN), 92.9 (CCl3), 92.3 (CCl3), 82.1 (C-3b), 81.2 (C-2b), 76.8 (C-4b), 76.1 (C-

3a), 75.9 (PhCH2), 75.1 (PhCH2), 74.2 (C-5b), 73.7 (C-5a), 73.5 (PhCH2), 72.8 (C-

3c), 70.1 (C-5c), 68.6 (PhCH2), 67.9 (C-4a), 63.5 (C-4c), 55.8 (OCH3), 55.7 (C-2a), 

53.2 (CO2CH3), 53.1 (C-2c), 17.5 (C-6c); HRMS (ESI) calcd. for C58H58O17N5Cl6 (M-

H)- 1306.1964, found 1306.1930 m/z. 
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p-Methoxyphenyl (3-O-benzoyl-4-azido-2,4,6-trideoxy-2-trichloroacetamido-β-
D-galactopyranosyl)-(1→3)-(4-(N-benzyloxycarbonyl)aminoethyl-phos-
phonato-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-
(1→4)-(methyl 2,3-di-O-benzyl-β-D-glucopyranosid)uronate (3.37): 

Ethanolamine H-phosphonate 3.35 (208 mg, 0.58 mmol, 2.0 equiv.) and 

trisaccharide 3.34 (108 mg, 0.082 mmol, 1.0 equiv.) were co-evaporated with 

anhydrous pyridine (3 × 5 mL) in two separate portions of 10 mL of RBF and dried 

under high vacuum overnight. The ethanolamine H-phosphonate 3.35 was 

dissolved in anhydrous pyridine (1 mL) followed by the addition of pivaloyl chloride 

(0.070 mL, 0.58 mmol, 2.0 equiv.) stirring for 15 min at room temperature under an 

argon atmosphere. To that mixture, a solution of trisaccharide 3.34 in anhydrous 

pyridine (1.5 mL) was added, and the resulting mixture was stirred at room 

temperature for 12 h. Iodine (158 mg, 0.62 mmol, 2.5 equiv.) in a mixture of pyridine 

and H2O (19:1, 0.5 mL) was added to oxidize P(III) to P(V) and stirred for additional 

6 h at room temperature. The reaction mixture was diluted with CH2Cl2 (50 mL) and 

the organic layer washed with satd. aq. Na2S2O3 (20 mL x 1), followed by 1M TEAB 

(triethylammonium bicarbonate) (20 mL x 1) buffer solution, and dried over 

anhydrous Na2SO4. Solvents were concentrated in vacuo, and the crude was 

purified by flash column chromatography with Et3N deactivated silica gel to give 3.37 

(118 mg, 0.082 mmol, 86%) as a white sticky liquid. Phosphorated 3.37 had Rf = 0.5 

(CH2Cl2/CH3OH = 9:1) visualized with ceric ammonium molybdate stain; [a]D25 = -

i. PivCl, pyr, 23 ºC, 12 h

ii. I2, pyr/H2O (19:1), 
    23 ºC, 6 h
         81%, 2 steps
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5.7° (c = 0.0017, CHCl3); 1H NMR (600 MHz, CDCl3) δ 8.05 (d, J = 7.7 Hz, 2H, Ar), 

7.55 (t, J = 7.4 Hz, 1H, Ar), 7.49 – 7.20 (m, 22H, Ar), 7.01 (d, J = 8.7 Hz, 1H, NH), 

6.97 (d, J = 9.0 Hz, 2H, Ar), 6.81 (d, J = 9.1 Hz, 2H, Ar), 6.50 (d, J = 5.0 Hz, 1H, 

NH), 6.13 (d, J = 9.7 Hz, 1H, H-4a), 5.32 (d, J = 8.1 Hz, 1H, H-1c), 5.13 – 4.98 (m, 

2H, PhCHH, PhCH2), 4.96 (d, J = 6.8 Hz, 1H, H-1b), 4.90 – 4.83 (m, 2H, H-3c, 

PhCHH), 4.80 (d, J = 8.2 Hz, 1H, H-1a), 4.74 (d, J = 11.1 Hz, 1H, PhCHH), 4.66 (d, 

J = 10.8 Hz, 1H, PhCHH), 4.50 (d, J = 11.8 Hz, 1H, PhCHH), 4.43 (d, J = 12.0 Hz, 

1H, PhCHH), 4.36 (d, J = 8.2 Hz, 1H, H-5c), 4.28 (t, J = 8.4 Hz, 1H, H-4b), 4.02 – 

3.95 (m, 4H, H-3a, H-5b, H-2c, H-4c), 3.93 – 3.80 (m, 4H, H-2a, H-6a, PEtN-CH2), 

3.77 (s, 3H, OCH3), 3.74-3.73 (m, 1H, H-5a), 3.72 (s, 3H, CO2CH3), 3.70 – 3.58 (m, 

3H, H-2b, H-3b, H-6a), 3.41 – 3.32 (m, 2H, PEtN-CH2), 1.38 (d, J = 6.3 Hz, 3H, H-

6c); 13C NMR (151 MHz, CDCl3) δ 169.4 (CO2CH3), 165.9 (COPh), 163.5 (NHCO), 

162.5 (NHCO), 156.6, 155.5, 151.2, 138.8, 138.4, 138.2, 136.8, 133.6, 130.2, 128.7, 

128.6, 128.5, 128.4, 128.4, 128.4, 128.3, 128.1, 128.1, 127.7, 127.7, 127.6, 127.5, 

118.36, 114.66, 102.4 (C-1b GlcA), 100.7 (C-1a GalN), 96.5 (C-1c AAT), 92.9 

(CCl3), 92.7 (CCl3), 82.1 (C-3b), 81.0 (C-2b), 77.0 (C-4b), 75.3 (PhCH2), 74.9 

(PhCH2), 74.8 (C-5a), 74.4 (C-5b), 73.8 (PhCH2), 73.5 (C-3c), 70.7 (C-5c), 70.3 (C-

4a), 69.7 (C-6a), 69.5 (C-3a), 66.6 (PhCH2), 64.3 (PEtN-CH2), 63.3 (C-4c), 55.7 

(OCH3), 54.1 (C-2a), 53.9 (C-2c), 52.8 (CO2CH3), 42.6 (PEtN-CH2), 17.9 (C-6c); 31P 

NMR (162 MHz, CDCl3) δ -0.28; HRMS (ESI) calcd. for C68H70O22N6Cl6P (M-H)- 

1563.2383, found 1563.2417 m/z. 
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p-Methoxyphenyl 2-acetamido-4-amino-2,4,6-trideoxy-β-D-galactopyranosyl-
(1→3)-4-O-aminoethyl-phospho-nato-β-D-galactopyranosyl-(1→4)-O-β-D-
Glucopyranosyluronic acid (3.30): 

 

Protected trisaccharide 3.37 (36 mg, 0.022 mmol, 1.0 equiv.) was placed under 

argon. To this flask was wet Pd (OH)2/C (20% Pd by weight, 110 mg, 0.15 mmol, 

7.0 equiv.). CH3OH (5 mL) and AcOH (1 mL) was added to this mixture, and then, 

H2 gas was bubbled through the solution at 23 °C for 30 min.10 After the H2 

atmosphere was established, the reaction was stirred for 66 h (progress monitored 

by MS). The mixture was then, filtered over Celite and concentrated in vacuo to yield 

the crude product. The crude material was dissolved in THF (3 mL) at 23 °C and 

then, treated dropwise, with a 1.5 M NaOCH3 solution in 1:1 CH3OH/H2O (5.0 mL, 

1.95 mmol). After stirring for 12 h (progress monitored by MS), AcOH was added 

until neutral pH was achieved. The crude material was concentrated in vacuo and 

was purified by size exclusion chromatography (Bio-Gel P2 gel) using deionized 

H2O as an eluant. Fractions containing the desired product (determined from MS) 

were combined and lyophilized to 3.30 (12.0 mg, 0.015 mmol, 68%) as a white 

powder; [a]D25 = -29.1° (c = 0.003, H2O);  1H NMR (600 MHz, D2O) δ 7.11 (d, J = 

9.1 Hz, 2H), 6.99 (d, J = 9.1 Hz, 2H), 5.01 (d, J = 7.9 Hz, 1H), 4.72 (dd, J = 9.2, 2.8 

Hz, 1H), 4.60 (d, J = 8.4 Hz, 1H), 4.54 (d, J = 8.4 Hz, 1H), 4.24 – 4.15 (m, 2H), 4.09 

– 4.00 (m, 2H), 3.97 (q, J = 6.0 Hz, 1H), 3.91 – 3.83 (m, 4H), 3.82 (s, 3H), 3.81 – 

3.76 (m, 3H), 3.71 (t, J = 8.7 Hz, 1H), 3.62 (dd, J = 9.5, 7.9 Hz, 1H), 3.55 (d, J = 4.7 

O

TCAHN

O OBn
PO O
O

NHCbz

O O
BnO BnO

OCH3O

OPMP
O

TCAHN

N3
CH3

BzO O

Et3NH

3.37

i. Pd(OH)2/C, H2, 
   CH3OH/AcOH (5:1),
   23 ºC, 66 h

ii. NaOCH3, 
    THF, CH3OH/H2O(1:1),
     12 h
         65%, 2 steps

O
OO

NHAc

O OH
PO O
O

NH3

O
HO

HO

O
OO

NHAc

H3N
CH3

HO
OPMP

3.30



 224 

Hz, 1H), 3.30 (t, J = 5.5 Hz, 2H), 2.10 (s, 3H), 2.02 (s, 3H), 1.34 (d, J = 6.6 Hz, 3H); 

13C NMR (151 MHz, D2O) δ 175.3, 175.1, 155.8, 152.0, 119.2, 116.1, 103.9, 102.3, 

102.1, 80.9, 79.2, 77.7, 75.9, 75.3, 74.8, 73.6, 69.0, 68.4, 63.2, 62.2, 56.8, 55.6, 

53.1, 52.0, 41.3, 23.7, 23.4, 16.8; 31P NMR (162 MHz, D2O) δ -0.30; HRMS (ESI) 

calcd. for C31H48O19N4P (M-H)- 811.2656, found 811.2631 m/z. Our spectroscopic 

data strongly matched previously reported data.11 
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Appendix A3: 

 
 
 

Spectra and Table Relevant to Chapter 3 
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Table A3.1. Comparison of 1H and 13C NMR chemical shifts (ppm) between 

isolated and synthetic 3.30 
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Figure A3.1. 1H NMR (600 MHz, CDCl3) of compound 3.13B 
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Figure A3.2. 13C NMR (151 MHz, CDCl3) of compound 3.13B. 
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Figure A3.3. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.13B. 
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Figure A3.4. 1H NMR (600 MHz, CDCl3) of compound 3.17A. 
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Figure A3.5. 13C NMR (151 MHz, CDCl3) of compound 3.17A. 
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Figure A3.6. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.17A. 
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Figure A3.7. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 3.17A. 
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Figure A3.8. 1H NMR (600 MHz, CDCl3) of compound 3.17B. 
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Figure A3.9. 13C NMR (151 MHz, CDCl3) of compound 3.17B. 
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Figure A3.10. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.17B. 
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Figure A3.11. 1H NMR (600 MHz, CDCl3) of compound 3.21. 
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Figure A3.12. 13C NMR (151 MHz, CDCl3) of compound 3.21. 
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Figure A3.13. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.21. 
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Figure A3.14. 1H NMR (600 MHz, CDCl3) of compound 3.22. 
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Figure A3.15. 13C NMR (151 MHz, CDCl3) of compound 3.22. 
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Figure A3.16. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.22. 
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Figure A3.17. 1H NMR (600 MHz, CDCl3) of compound 3.31. 
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Figure A3.18. 13C NMR (151 MHz, CDCl3) of compound 3.31. 
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Figure A3.19. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.31. 
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Figure A3.20. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 3.31. 
 
 
 

-1
0

1
2

3
4

5
6

7
8

9
10

11
f2
	(p
pm
)

-1 0 1 2 3 4 5 6 7 8 9 10 11

f1	(ppm)

JM
N
-e
-0
9
9
8.
6
.s
er

C
O
S
Y

Ac
O

O
O

TC
AH

N

O
O

Ph

O
Bn
O

Bn
O

O
CH

3

O
PM

P

O

3.
31



 247 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.21. 1H-13C HMBC NMR (600 MHz, CDCl3) of compound 3.31. 
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Figure A3.22. 1H NMR (600 MHz, CDCl3) of compound 3.22. 
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Figure A3.23. 13C NMR (151 MHz, CDCl3) of compound 3.22. 
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Figure A3.24. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.32. 
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Figure A3.25. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 3.32. 
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Figure A3.26. 1H-13C HMBC NMR (600 MHz, CDCl3) of compound 3.32. 
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Figure A3.27. 1H NMR (600 MHz, CDCl3) of compound 3.33. 
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Figure A3.28. 13C NMR (151 MHz, CDCl3) of compound 3.33. 

0
10

20
3
0

4
0

50
6
0

70
8
0

9
0

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

f1
	(p
pm
)

-1
0
0
0

010
0
0

20
0
0

3
0
0
0

4
0
0
0

50
0
0

6
0
0
0

70
0
0

8
0
0
0

9
0
0
0

JM
N
-e
-1
0
10
.9
.fi
d

13
C
	B
ot
to
m
	S
po
t

17.67

52.52
53.09
54.84
55.80
63.41
67.10
68.77
70.36
72.42
73.47
74.30
75.05
75.23
76.03
77.62
81.31
82.21
92.27
92.92
99.04
99.66
100.69
102.71
114.70
118.45
126.40
127.50
127.88
128.18
128.20
128.26
128.31
128.49
128.52
128.75
128.89
130.33
134.09
137.91
138.17
138.67
151.23

155.64

162.21
162.54
166.27
170.08

O
O

TC
AH

N

O
O

O
Bn
O

Bn
O

O
CH

3
O

O
PM

P
O

TC
AH

N

N 3
CH

3

Bz
O

O

Ph

3.
33



 255 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.29. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.33. 
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Figure A3.30. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 3.33. 
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Figure A3.31. 1H-13C HMBC NMR (600 MHz, CDCl3) of compound 3.33. 
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Figure A3.32. 1H NMR (600 MHz, CDCl3) of compound 3.34. 
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Figure A3.33. 13C NMR (151 MHz, CDCl3) of compound 3.34. 
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Figure A3.34. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.34. 
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Figure A3.35. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 3.34. 
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Figure A3.36. 1H-13C HMBC NMR (600 MHz, CDCl3) of compound 3.34. 
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Figure A3.37. 1H NMR (600 MHz, CDCl3) of compound 3.37 
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Figure A3.38. 13C NMR (151 MHz, CDCl3) of compound 3.37. 
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Figure A3.39. 1H-13C HSQC NMR (600 MHz, CDCl3) of compound 3.37. 
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Figure A3.40. 1H-1H COSY NMR (600 MHz, CDCl3) of compound 3.37. 
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Figure A3.41. 1H-13C HMBC NMR (600 MHz, CDCl3) of compound 3.37. 
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Figure A3.42. 31P NMR (162 MHz, CDCl3) of compound 3.37. 
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Figure A3.43. 1H NMR (600 MHz, D2O) of compound 3.30. 
 
 
 

0
.0

0
.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4
.0

4
.5

5.
0

5.
5

6
.0

6
.5

7.
0

7.
5

8.
0

f1
	(p
pm
)

-1
0

010203
0

4
0

506
0

708
0

9
0

10
0

11
0

12
0

13
0

14
0

15
0

16
0

JM
N
-e
-1
0
52
.1
8.
fid

1H
	F
in
al
	P
dt

3.11

3.00
3.07

2.15

1.04
1.03
1.08
3.07
3.30
4.09
1.10
1.93
2.22

0.98
0.95
1.04

1.09

2.27
2.20

1.34
1.35
2.02
2.10
3.29
3.29
3.30
3.30
3.54
3.55
3.60
3.61
3.62
3.63
3.70
3.71
3.73
3.77
3.78
3.78
3.79
3.79
3.80
3.81
3.82
3.84
3.84
3.85
3.86
3.87
3.87
3.96
3.98
4.01
4.02
4.03
4.03
4.04
4.05
4.06
4.17
4.18
4.18
4.22

4.53
4.55
4.59
4.60
4.71
4.72
4.73
4.73
5.00
5.02

6.98
7.00
7.10
7.12

O
O

O
NH

Ac

O
O
H

P
O

O
O

NH
3

O
HO

HO

O
O

O NH
Ac

H 3
N
CH

3

HO
O
PM

P

3.
30



 270 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.44. 13C NMR (151 MHz, D2O) of compound 3.30. 
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Figure A3.45. 1H-13C HSQC NMR (600 MHz, D2O) of compound 3.30. 
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Figure A3.46. 1H-1H COSY NMR (600 MHz, D2O) of compound 3.30. 
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Figure A3.47. 1H-13C HMBC NMR (600 MHz, D2O) of compound 3.30. 
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Figure A3.48. 31P NMR (162 MHz, D2O) of compound 3.30. 
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 4.1 Introduction  
 

Carbohydrates pervade the cell surfaces of viruses, parasites, and bacteria. 

Due to the prevalence of these biomolecules, glycan-protein molecular recognition 

processes are crucial in understanding the immune response to pathogens. 

Traditionally, carbohydrates were considered T-cell independent antigens that did 

not directly activate T-cells nor induce a protective immune response.1-3 However, 

a class of carbohydrate antigens called “zwitterionic polysaccharides” (ZPSs) were 

discovered to be effective immune modulators. ZPSs are characterized by the 

presence of both positive and negative charged functionalities.2-3 In recent years, 

the discovery of phosphorylated ZPSs have become an interesting synthetic target 

for the synthetic community. These polysaccharides often feature both a rare 

deoxyamino sugar AAT and a phosphorus residue. Moreover, glycopolymers of 

ZPSs of defined length are of interest to investigate the minimum polymer length 

necessary to stimulate an immune response. Our proposed methods will also grant 

access to glycopolymers of phosphorylated ZPS by leveraging a metal mediated 

ring-opening metathesis polymerization (ROMP) strategy to provide tool 

compounds for biological activity evaluation. 

4.2 Proposed Synthesis of Haemophilus parainfluenzae strain 20 ZPS  

Having achieved the synthesis of P. temperata (4.1) and P. vulgaris (4.2) 

zwitterionic repeating units, our next task is completing the synthesis of 

Haemophilus parainfluenzae (HP) strain 20 ZPS repeating unit (4.3).4 Below, we 

describe our current progress toward the total synthesis of HP-ZPS as well as our 

proposed strategy. 
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4.1.1. Proposed Synthesis of H. parainfluenzae strain 20 ZPS repeating unit 

Haemophilus parainfluenzae strain 20 ZPS repeating unit 4.3 shares an 

AAT residue similar to the one portrayed in the synthesis of 4.1 and 4.2. As such, 

we reasoned that the synthesis of HP-ZPS can be accomplished through the use 

of chemistry developed in the group. Structurally, the trisaccharide repeating unit 

is composed of an N-Acetylgalactosamine (4.4), glucose (4.5), and AAT (4.6) 

residues. Based on this preliminary evaluation, the molecule incorporates a 1,2-

trans-β-glycosidic linkage and would require a regioselective reductive ring 

opening of the benzylidene acetal to free the C’-6 alcohol for future phosphorus 

coupling. Our efforts toward the synthesis of 4.3 began with the synthesis of the 

three building blocks 4.4, 4.5, and 4.6, which can be accessed from commercially 

available carbohydrate starting materials (Scheme 4.1). 
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We envision that union of acceptor 4.4 and donor 4.6 can be possible via 

TfOH mediated glycosylation to give disaccharide 4.7. Next, we will subject 4.7 to 

a regioselective reductive ring-opening with borane-tetrahydrofuran and Lewis-

acid to obtain 4.8 as described by Ellervik et.al.5 Subsequent phosphorus coupling 

with 4.4 will yield 4.9 which should afford the desired repeating unit 4.3 upon 

hydrogenolysis and saponification with Pearlman’s catalyst and sodium methoxide 

(Scheme 4.2). 
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4.3 Polymerization of ZPS derivatives 

For the synthesis of the target glycopolymers by ROMP, we will explore the 

ability of Grubbs II ruthenium alkylidene catalyst to polymerize an end-

functionalized norbornene PT-ZPS repeating unit. To our knowledge, ZPS 

repeating units have not been polymerized or studied before. With this work, we 

hope not only to better understand how ZPSs can be used as vaccine adjuvants 

but also to identify the minimum polymer length needed to elicit an immune 

response. To gain further insight into the bioactivity of the PT-ZPS compounds, we 

propose the synthesis of glycopolymers of PT-ZPS through end-functionalized 

ring-opening metathesis polymerization (ROMP) studies. Furthermore, we hope to 

apply this methodology towards the synthesis of other norbornene functionalized 

ZPSs. 

To assemble glycopolymers of PT-ZPS, we will use Grubbs II ruthenium 

carbene catalyst to promote ring-opening metathesis polymerization (ROMP), a 

powerful technique that tolerates many functional groups, especially polar moieties 

observed on carbohydrates.6 Kiessling and Hsieh-Wilson have demonstrated 

ROMP of carbohydrates; however, these examples are limited to neutral and 

anionic functionalized monosaccharides and disaccharides.7-8 To our knowledge, 

ZPS repeating units have not been polymerized or studied before. Thus, we 

propose a strategy to couple complex ZPS repeating units with a norbornene-

based backbone to provide multivalent display of the polysaccharide chains 

(Figure 4.2). 
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ROMP is highly efficient for strained cycloalkenes, such as norbornenes 

because the metathesis equilibrium is shifted toward the ring opening process in 

order to release the ring strain.9 We chose ROMP for this work because of the 

living polymerization of nobornenes to produce polymers of a narrow polydispersity 

index (PDI) and good molecular weight control. PDI is used to describe the 

distribution of polymer chain molecular weight in a given polymer. As the PDI value 

increases, the chain length will vary. Living polymerization is a form of chain growth 

polymerization that does not undergo a termination step.10 This type of reaction 

continues until the monomer supply has been consumed completely. Because the 

supply of monomers is controlled, the chain length can be manipulated to serve 

the need of a specific application. 

Central to this work, key intermediate 4.11 will be subject to oxidative 

deprotection, cleaving the PMP group at C-1, followed by anomeric activation of 

the hemiacetal as the trichloroacetimidate to furnish donor 4.12 (Scheme 4.3A). 

Next, donor 4.12 will be coupled to norbornene acceptor 4.13 to provide the fully 

protected trisaccharide 4.14. Using chemistry previously developed by the 
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Kiessling and Hsieh-Wilson groups, we envision that trisaccharide 4.14 will 

undergo ROMP with Grubbs II catalyst and subsequent deprotection to yield 

desired glycopolymer 4.10. 

To determine the molecular weight and length of the glycopolymers, we will 

implement gel permeation chromatography (GPC). GPC is a separation method 

used to determine the molecular weight distribution of polymers and to separate 

polymers with different degrees of polymerization. Upon completion of the first 

ROMP study, we will apply this chemistry to synthesize the other ZPS repeating 

unit glycopolymers, such as 4.15 and 4.16 (Scheme 4.3B). 
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4.4 Conclusion 

The focus of the proposed work is the synthesis and polymerization of the 

ZPS repeating units for the purpose of determining the minimum polymer length 

necessary to stimulate an immune response. This work will provide access to three 

different ZPS repeating units, and future studies using polymerization of 

zwitterionic polysaccharides will provide a deeper understanding in how ZPS 

glycopolymers behave and function in the realms of glycobiology. As a result, this 

work will give new insights key to the design of new carbohydrate-based vaccines. 
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