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4 Summary

The multi-billion antibody drug market shows substantial growth and has many successfully an-

tibody products since 1975. One of the major challenges to produce antibodies as vaccines and

therapeutics is the ability to develop and manufacture them, and adverse effects that can reduce

the efficacy of an antibody product or induce serious health concerns (immunogenicity). Thus, the

projects of these topics evolve around methods to design antibodies with low immunogenic effects,

and a method to predict if an antibody can be expressed, which can ultimately aid in re-engineering

an antibody for increased expressability.

The increasing availability of immunome repertoires, that is the antibody sequences from B-Cells

obtained from peripheral blood samples from human blood donors, and the increasing number of

antibody (co-)crystal structures facilitates the development of methods that combine large sequence

repertoires of observed sequences and computational structural design. Antibodies can specifically

bind to a wide variety of antigens and body-foreign particles. The wide range of specificity is

generated by multiple mechanisms, which include germline gene rearrangements, non-templated

junction segments, and somatic hyper-mutation. The resulting human antibody sequence space is

thus estimated to be at least in the range of 1013 unique antibody sequences. At the same time,

even the largest immunome repertoires list just 106 unique sequence per human individual. Projects

in this thesis deal with the design of antibodies that are more human-like and therefore reduce the

likelihood of inducing immunogenic effects.

The motivation of the four main projects in this dissertation is outlined in Chapter 5. Since

the developed methods are ultimately to be used in conjunction with the structural protein mod-

eling software Rosetta, the developed methods for this dissertation are set into context of existing

protocols relevant to antibody design. The four main method developed are 1) the human-likeness

assessment of antibodies using statistics of complete immunome repertoires. 2) the design of pro-

teins using homologous sequence information to retain protein function during protein design. 3)

the engineering of human-like antibodies with Rosetta and a probablistic human-like sequence

space. 4) the prediction and re-engineering of antibodies for increased expressability.

Chapter 6 describes the human-likeness estimation of antibodies using statistics of complete

immunome repertoires. This is achieved by creating nucleotide frequency statistics for each germline

gene of an antibody, avoiding the need for pairwise alignment of the database. The statistics can

be used to distinguish human from non-human, and engineered antibodies (chimeric or non-human

origin). The back-translation allows to create a nucleotide sequence for each amino acid sequence.

The following chapter 7 describes the usage of co-evolutionary information during Rosetta

design, leading to designed sequences that are more natural and are much more likely to retain

the identity of the wild-type for functional residues. Thus, co-evolutionary information can be

understood as a fingerprint for function. In the benchmark of human-likeness, it was observed

that the highly variable CDRH3 region remains elusive to human-likeness assessment. To further

improve upon this technique it is recommended to ultimately make use of co-evolutionary residue

information in antibody lineages. This will allow the grouping of antibodies that undergo similar
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maturation pressure for antigen binding.

The used immunome repertoire is not grouped into lineages and the antibodies specificity re-

mains unknown. Consequently, chapter 8 describes the first step towards sequence pattern analysis

by combining the human-likeness nucleotide frequencies (Chapter 6 with a clustering approach).

In conjunction with Rosetta, it was shown that antibodies designed with clustered human-likeness

profiles are more human-like and render the CDRH3 statistics more meaningful, with increased

human-likeness in some cases.

Finally, the expressability of antibodies was addressed with a Deep Learning approach. The

protein expression in general involves a complex cascade comprising: transcription, translation,

folding, post-translational modifications, vesicle transport and secretion. Deep Learning has the

potential to recognize sequence patterns responsible for low expression independent of its exact bio-

physical cause. Chapter 9 describes the expressability prediction for a set of paired Flu antibodies.

The re-design with Rosetta increased the probability of predicted expressability in all cases while

exhibiting distinct N and C terminal mutational patterns.

All four major projects comprising this dissertation are critically discussed in chapter 10 with its

potentials and limitations, and future approaches to improve upon these techniques are suggested.

With the main takeaways that human-like antibody engineering may profit from incorporating

methods for co-evolutionary analysis and potentially Deep Learning techniques. This may ulti-

mately lead to powerful techniques for computational antibody discovery. Antibody expressability

remains an unsolved and complex challenge requiring an integrated Research and Development

cycle that integrates and collaborates with experimental antibody expression.
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5 Introduction

Selected sections of this chapter have been adapted from (Schoeder, Schmitz et al., 2021).

5.1 The Adaptive Immune Response

The immune system defends the host against infection. Innate immunity comprises the skin barrier,

blood chemicals, and immune system cells and serves as a first line of defense. However, it lacks the

ability to recognize certain pathogens and to provide the specific protective immunity that prevents

reinfection. In contrast, adaptive immunity is able to respond dynamically from highly diverse

antigen-specific receptors that enable the immune system to recognize any foreign antigen. In the

adaptive immune response, antigen-specific antibodies proliferate and differentiate to eliminate the

pathogen (Murphy, Weaver, and Janeway 2017). The human Antibody (Ab) consists of a heavy

and light chain, both of which can be divided into a constant and variable region (Fig. 1a). The

antigen-specificity is for the most part established in the variable region (Fv) and is therefore main

focus of this dissertation.

The ability of the Ab to mature from an unspecific (germline) state and to obtain high binding

affinity to specific epitopes arises from the germline gene rearrangement, non-templated nucleotides

at the junction between gene segments, and somatic hyper-mutation. Genetically both heavy and

light chains can be recombined from different gene loci. Human light chains are differentiated

between the chain class λ (chromosome 22) and κ chains (chromosome 2), whereas heavy chain loci

are located on chromosome 14 (Fig. The exact sequences of the germline genes can differ between

individuals and different ethnic groups, but the ImMunoGeneTics information system (IMGT)

system has assembled gene sequences that can be used as reference (Giudicelli, Chaume, and M.-P.

Lefranc 2005). To date 556 V, 52 D, and 34 J human germline gene alleles have been cataloged by

IMGT/GeneDB and resemble the basis for antibody variability by recombination(Fig. 1b).

Figure 1: The high sequence diversity of an antibody is facilitated by gene rearrange-
ments and mutations. Simplified schematic representation of an antibody molecule. The variable
region directly binds the antigen and undergoes B-Cell maturation (a). The germline gene orga-
nization of the heavy and light chain loci in the genome. 29-33 κ V light chain loci, 38 λ V light
chain loci, and about 40 heavy chain loci (red) across three chromosomes facilitate gene recombi-
nation and sequence variability. The highly variable third loop of the heavy chain can be encoded
by special D-genes (yellow) (b). (Janeway’s Immunobiology page 129-161) (Murphy, Weaver, and
Janeway 2017)

Human antibodies consist of a heavy and a light chain, which share a well-conserved constant

region (Fc) and framework region (Fr) within the variable region (Fv). Antibody variability is

established through the process of recombination of the V, D, and J genes in the creation of the

näıve B cell repertoire and by the subsequent somatic hyper-mutation of antibody variable genes in

the stimulated B cells during germinal center reactions. Sequence variation and structural variation
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of the antibody manifest in the Complementary Determining Region (CDR) as three highly variable

loop regions in each heavy and light chain, which facilitates antigen recognition. The sequences of

most antibodies are very similar in the Fc and Fr regions if they share the same germline genes.

The high variability in the CDR loop regions of the variable domain impedes accurate structure

prediction and design of antibodies and has posed a significant challenge in modeling the native

conformations of antibody–antigen structures (North, Lehmann, and Dunbrack 2011; Finn et al.

2016).

The segment of the Ab with the greatest sequence variability and therefore potential to differen-

tiate is the third loop of the heavy chain, which is partially based on one or more D gene fragments

(B. S. Briney et al. 2012). Whenever the mature Ab sequence is based upon a germline, we speak

of it as templated. Identifying the position of the CDR and FR regions is a first crucial step in

the characterization of an Ab. Several numbering schemes have been introduced to identify the

CDRs of a given antibody from the sequence and to provide a consistent structure-based alignment

system (Dondelinger et al. 2018). Prominent numbering schemes include Chothia, Kabat, and AHo

numbering schemes, to align CDRs spatially (Chothia et al. 1989; Al-Lazikani, Lesk, and Chothia

1997; Honegger and A. Plückthun 2001). These numbering schemes are either based on antibody

sequence alignments (Kabat), the structural superposition of crystal structures (Chothia and Aho).

Another commonly used numbering scheme is IMGT numbering, which is derived from the gene

assignment (Brochet, M.-P. Lefranc, and Giudicelli 2008; M.-P. Lefranc, Giudicelli, et al. 2015).

Immune repertoire fingerprinting has been developed to group repertoires together that share a

common disease state or history. Despite generally high variability of antibody repertoires between

individuals, common exposure can lead to a co-evolution of antibody lineages, for example in the

case of HIV (Liao et al. 2013; Doria-Rose et al. 2014) or influenza (Krause et al. 2011; Jiang et al.

2013; Joyce et al. 2016). V and J gene distributions as a result of antibody lineages with high

specificity can be used to identify a common specificity of immunome repertoires (Sevy, Soto, et al.

2019).

Consequently, a clonotype definition has been developed (’VJ3’) that encompasses the V and

J germline gene as well as the length of the Heavy Chain Complementary Determining Region 3

(CDRH3) region for the analysis of immune repertoires (Soto, Bombardi, et al. 2019). CDRH3

D germline gene(s) are not considered due to the high sequence variability and the resulting low

confidence in germline gene predictions, aggravating the challenging task of a functional charac-

terization of immunome repertoires. Tools that infer germline gene rearrangements like IgBlast

(Ye et al. 2013; Soto, Finn, et al. 2020) or MIXCR (Bolotin et al. 2015) provide germline gene

rearrangements and the partitioning of the Ab into Fr and CDR domains.

In this work, IgBlastN (Ye et al. 2013) was used to analyze antibody sequences via nucleotide

germline gene alignments. Consequently, the Ab partitioning schema of choice is the germline gene

based IMGT numbering schema (M.-P. Lefranc, Giudicelli, et al. 2015). Chapter 6 describes the

implementation and use cases of a antibody amino-acid partitioning algorithm for protein sequences

similar to IgBlastN for nucleotide sequences.
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5.2 Combining Next Generation Sequencing And Structural Information

B lymphocytes are a population of cells that express clonally diverse cell surface antibodies. These

B-cells of peripheral blood samples can be sequenced on a large scale to assess the sequence space

of individuals before, after, or during infections with a pathogen and curated in form of immunome

repertoires. With the decreasing costs of Next Generation Sequencing (NGS) over the past decade

(Koboldt et al. 2013; Metzker 2010), the availability of Ab sequence databases has consequently

increased. NGS immunome repertoires typically comprise T- and B-Cell receptor sequences of the

variable region of antibodies. The Adaptive Immune Receptor Repertoire Community (AIRR)

facilitates to share these special types of datasets (Rubelt et al. 2017). The platform iReceptor is a

portal to access and analyze repertoire repositories across different countries and workgroups in a

uniform manner (Corrie et al. 2018). At the time of its publication iReceptor made over 145 million

sequences available from 17 studies and 13 research labs organized in 4 remote data repositories

(Fig 2a).

Approximately 6800 Ab crystal structures have been deposited at the Protein Databank (PDB)

(Berman et al. 2000) often with detailed insight into the binding mode with the corresponding

antigen as co-crystal structure (Fig. 2b). Out of these, roughly 1000 Ig molecules are annotated as

fully human in the Structural Antibody Database (SAbDab) (Dunbar et al. 2014).

Figure 2: Availability of antibody sequences and protein structures as of 2018. AIRR-seq
repositories in available in the iReceptor portal allows access of 145 million sequences and growing.
The platform is decentralized and accesses data repositories of different work-groups in multiple
countries (a). Antibody structure deposits in the Structural Antibody Database (SAbDab) has
been steadily growing since 2004 and had approximately 6800 structures available (b).

This dissertation aims to produce new technologies to process large sequence datasets and

antibody engineering tools, to inform the computational structural antibody engineering. Here,

about 350 million unique nucleotide sequences (Soto, Bombardi, et al. 2019) were used in combination

with high-resolution antibody structures from SAbDab (Dunbar et al. 2014) and computational

predictions of antibody structures.

5.3 Monoclonal Antibodies for Clinical Use

Antibodies also represent a class of therapeutic proteins, that can routinely be produced in large

quantities for either therapeutic use or as vaccines. To date, at least 550 therapeutic monoclonal

antibody (mAb)s have been studied in clinical trials and 79 mAbs have been approved by the
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Figure 3: The antibody drug market shows substantial growth and multiple successfully
developed therapeutics since 1975. The estimated market value of mAb therapeutics for each
year. The best selling antibodies in the year 2018 are colored red. The estimated market value has
approximately tripled within the past decade (R.-M. Lu et al. 2020).

Federal Food and Drug Administration (FDA) for clinical use (R.-M. Lu et al. 2020; Kaplon and

Reichert 2019). The success of various antibody products and the market growth highlight the

importance of antibody products for clinical use (Fig. 3).

Advances in sequencing technologies enable the creation of large repertoires containing up to

several hundred million unique sequences from one or more donors. The function of antibodies

involves specific binding to pathogen specific antigens and immune regulatory roles. The six hyper-

variable loops, which are usually referred to as the Complementary Determining Region (CDR),

determines the specific binding of an antibody to its antigen(s). The antibody maturation mech-

anism in B-cells enables large sequence diversity of the CDR by germline-gene recombination and

somatic hyper-mutation (SHM) of the Fv. This leads to a repertoire diversity of at least 1013

antibody sequences capable of binding to a large variety of antigens and pathogens (Wooden and

Koff 2018). Antibody repertoires allow the systematic assessment sequence motifs which may be

indicators for antigen-specific, differentiated variable regions. For example, the large-scale compar-

ison of Fv repertoires from different donors gave insight into the extreme variability of sequences

that are for the most part specific for one person (”private”) with little sequence overlap between

individuals (Soto, Bombardi, et al. 2019).

NGS repertoire research can be invaluable for antibody discovery and immunologic research,

however mAbs for clinical use must fulfill additional requirements. First, the mAb as an industrial

product must be capable of being produced in unphysiologically high titers (Mathias et al. 2020).

Second, the mAb must exhibit broad acceptance by the human immune system to avoid adverse

effects and/or compromised efficacy (Ducancel and Muller 2012). The fact that many Ab repertoires

do not distinguish between Ig receptors secreted by the B-Cell and Ig which are not secreted, and
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therefore rendered inactive, does aggravate this challenge (Soto, Bombardi, et al. 2019; B. Briney

et al. 2019; DeWitt et al. 2016).

This dissertation describes novel tools to assess and improve the qualification of an Ab for

clinical use, like the design of more human-like antibodies by informing the structural design with

immunome repertoire statistics.

5.4 Manufacturability and Immunogenicity of antibodies

Therapeutic antibodies and vaccines are a class of mAb which are tight and specific binders, in-

hibitors, or steric blockers. Engineering of non-natural Ab is hereby standard practice to create

biologicals that meet these requirements (Spiess, Zhai, and Paul J. Carter 2015; Jost and Andreas

Plückthun 2014). Antibodies do not necessarily experience evolutionary pressure for high yields

in mammalian cell lines and often show low product titer (Johari et al. 2015). These difficult to

express (DTE) Ab can potentially halt product development in late stages due to low product titers

(Pybus, Dean, et al. 2014). The developability of an product depends on the ability to recognize

and work around DTE candidates. In this dissertation modern Deep Learning (DL) methods are

applied to predict the expressability of antibodies. In combination with computational structural

design, biologicals are re-engineered to improve the predicted expressability while retaining its

biophysical properties.

Additional risk assessment of early-stage mAb biologics development includes screening for

sequence liabilities that r compromise the developability and manufacturability (Jarasch et al.

2015). Clinical-stage mAb are exposed to heat and different pH values that can occur during the

manufacturing to evaluate performance during long-term storage and assess the risk of modification

of the biophysical properties. The CDR is especially susceptible to chemical modification (CM),

which includes deamidation and isomerization processes that can disrupt the binding mode to the

antigen (X. Lu et al. 2019). Over 200 ptm are known and can affect stability, and efficacy of the Ab

product (Amann et al. 2019). Glycosylation in the constant region (Fc) for example is a PTM that

plays a role in mitogenicity (Bolt et al. 1993), and therapeutic efficacy (Mimura et al. 2018; Chen

et al. 2017) by regulating the antibody’s immunobiologic downstream effects. Simultaneously, N-

linked glycosylation of the Fv can sterically prohibit antigen binding, or influence immunogenicity

(Waldmann 2019).

The immunogenic response to antibody products can be caused by CM, PTM, or aggregation

results in an anti-drug antibody (ADA) response. ADA includes human anti-mouse antibody

(HAMA) (Schroff et al. 1985), or human anti-chimeric antibody (HACA) (Afif et al. 2010) upon

artificial engineering can impact patient safety as well as pharmacokinetic properties and ultimately

limit drug efficacy. Surprisingly even fully-human Ab can result in the human anti-human antibody

(HAHA) response (Nechansky 2010a). The natural immune response against engineered antibodies

is an effect of the sequence being very dissimilar to sequences generated by the adaptive human

immune response. Consequently humanization techniques were developed (Tsurushita, Hinton,

and Kumar 2005) that has reduced the immunogenicity of engineered Abs (Hwang and Foote
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Figure 4: Antibody humanization from fully
antibodies (green) to fully human antibod-
ies (blue). Fully murine Ab (a), murine Fv of
chimeric Ab (b), humanized Ab with murine CDR
loops (c), and fully human mAb (d). mAbs are
often annotated with the International Nonpro-
prietary Name (INN) nomenclature (-momab, -
ximab, -zumab, -and umab) which uses suffixes to
roughly indicate the type of humanization effort.

2005). One of the more widespread humanization technique for mAb products is CDR grafting,

where the murine Fv is transplanted onto human framework sequences (Maloney et al. 1997),

or only transplanting murine CDR-loops while keeping the Fv framework regions human (Queen

et al. 1989). Until 2017, the different degrees of human-likeness was captured by International

Nonproprietary Name (INN) naming schema which indicates the level of humanization of an mAb.

For example Adalimumab indicates a human antibody (Fig. 4). However, the naming system has

undergone repeated reviews and its details have been changed since 2017 (Mayrhofer and Kunert

2021).

Sequence liability screening for PTM, CM, and aggregation therefore increases the likelihood of

successful development of an mAb into a product that is manufacturable and has been adopted in

product development pipelines (Y. Xu et al. 2013). The variety of factors that influence manufac-

turability, developability, and immunogenicity requires different methodological approaches.

This dissertation addresses these factors by statistically measuring human-likeness for the first

time by assessing nucleotide statistics from complete immunome repertoires. A Deep Learning (DL)

based expressability method was developed to predict if an antibody can be expressed and to

re-engineer antibodies for increased expression rates.

5.5 Computational Approaches for antibody design

5.5.1 Rosetta protein design

The Rosetta protein design software package (Leaver-Fay, Tyka, et al. 2011) employs the Monte

Carlo (MC) simulated-annealing (Xiangqian Hu, Beratan, and W. Yang 2009) algorithm for heuris-

tic sampling of the sequence as well as conformational space for a protein. The fundamental concept

behind Rosetta’s protein-design algorithm is the packer. The packer builds new amino acid side-

chains onto a protein scaffold by evaluating a set of rotamers at each position (Ponder and Richards

1987). The large degree of freedom within the protein renders this problem computationally highly

expensive (NP-hard) and can not be solved be enumerating all solutions exhaustively (Pierce and
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Winfree 2002). Instead, MC simulated annealing approach attempts to find sub-optimal to optimal

sequence spaces (B. Kuhlman and D. Baker 2000). The semi-random walk over the sequence and

conformational space is evaluated by Rosetta using a scoring function until the solution converges

to a (local) minimum. Thus, the non-deterministic behavior of this design approach demands the

generation of a variety of decoys to be inspected and filtered by the user with biophysical expert

knowledge (Kufareva and Abagyan 2012).

The Rosetta scoring function has historically derived statistical potentials (Simons, Kooperberg,

et al. 1997) that describe residue-pair interactions from the PDB (Berman et al. 2000). This early

version of the scoring function was purely knowledge-based and did not handle amino-acid side-

chain conformations explicitly. Improvements to the scoring function were made by adding physics-

based potentials, like van der Waals interactions, or hydrogen bonding terms (Simons, Ruczinski,

et al. 1999). The addition of rotamer libraries, a Lennard-Jones solvation model (Neria, Fischer,

and Karplus 1996), and electrostatic considerations for hydrogen bonds (Kortemme, Morozov, and

David Baker 2003) facilitated the first all-atom energy function (B. Kuhlman and D. Baker 2000).

The modern Rosetta Energy Function 2015 (REF15) computes the free energy of a bio-molecule’s

conformation as a linear combination of its weighted individual terms (Alford et al. 2017) (Eq. 1).

The Rosetta score ∆Etotal is the sum of its individual physics and knowledge-based potentials (Ei)

as functions of degree of freedom (Θ) and residue types (aa). The contribution of each term to the

final score is carefully fine-tuned by a sets of weights wi, allowing to design native-like backbone

torsion angles (Renfrew, Butterfoss, and Brian Kuhlman 2008).

∆Etotal “
ÿ

i

wiEipΘ, aaiq (1)

REF15 incorporates a set of 19 weighted energy terms, one of which allows for sequence design.

The Rosetta amino acid reference energies ∆Gref
i facilitate sequence design on a protein confor-

mation. ∆Gref
i was optimized empirically to maximize the native sequence recovery and allows

for estimation of the free energy difference between the folded and unfolded state. Thus, reference

energies help to estimate for the energetic change of a mutation (Alford et al. 2017; Jain, Cerutti,

and McCammon 2006).

Rosetta is designed to be easily extended by knowledge based potentials and has experimentally

been used to combine the primarily thermostabilizing scoring function potentials with additional

weighted terms (‘constraints‘). Adding experimental data constraints to the energy function, for

example, further improved de novo structure prediction with paramagnetic constraints (Kuenze

et al. 2019), electron-electron resonance spectroscopy decay traces (Del Alamo et al. 2020), or

information of co-evolving residue pairs (Ovchinnikov, D. E. Kim, et al. 2016).

In this dissertation, novel scoring terms were developed to demonstrate that a) the human-likeness

of antibodies can be improved by adding immunome repertoire sequence constraints and b) co-evolutionary

information can be used for conservative protein design in order to retain protein function, and c) a

Deep Learning (DL) based expression prediction can guide the mutational space towards a greater

likelihood of Ab expressability.
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Figure 5: Co-evolution of protein residue
pairs reflect their spacial contacts and ulti-
mately the 3D-structure. Predicted contacts
(blue), X-ray contacts (gray). Co-evolution of
residue pairs (couplings) can be inferred from ho-
mologous sequences. Couplings resemble a net-
work of evolutionary restraints across the protein
that arise from structure, function, and protein
dynamics. In the case of antibodies, coupling
analysis therefore may be able to inform about
antibody specificity and reveal binding patterns
specific for an antigen and may ultimately support
antibody discovery from large immunome reper-
toires (Figure by Sergey Ovchinnikov)

5.6 The role of residue-pair co-evolution in protein design

The protein sequence of a protein arises from stability, structural, functional, constraints. Evolu-

tionary related, ‘homologous‘ proteins accumulate sequence patterns specific for protein family and

function. Tools have been developed that allow for extracting co-evolving residue pairs (couplings)

that are characteristic for a set of homologous sequences (Morcos et al. 2011; Marks, Colwell, et al.

2011; Ekeberg et al. 2013; D. T. Jones et al. 2012; Kamisetty, Ovchinnikov, and David Baker 2013;

Ovchinnikov, Kamisetty, and David Baker 2014). Methods that extract couplings decompose the

chaining of co-evolving residues (residue A evolves with B, B evolves with C and thus, A evolves

with C), resulting in pairwise terms that do not have to be in direct contact with each other. The

majority of couplings however (ą 91%) are within 5-15 Å in at least one homologous structure

and thus can be considered in physical contact with each other (Anishchenko et al. 2017). Conse-

quently, the incorporation of co-evolutionary information into Rosetta as additional scoring term

during de novo structure prediction has led to a substantial improvement of the computational

models (Ovchinnikov, D. E. Kim, et al. 2016). Figure 5 visualizes the contact map of the 50S ribo-

somal subunit as a matrix, where each cell represents the correlation strength between two residues

within the protein. The inferred couplings of the 50S ribosomal subunit (blue) match closely with

the residue-pair distances of its corresponding X-ray structure.

Non-local couplings have been proposed to be of phylogenetic origin (Wollenberg and Atchley

2000), results of codon usage (Jacob, Unger, and Horovitz 2015), or allosteric interaction networks

(Süel et al. 2003). In this dissertation we demonstrate, that non-local couplings can inform the

Rosetta design process in favor of function and protein interaction that may support the design of

highly specific antibodies without the requirement of fully studying the binding mode and antigen.

The hypothesis of leveraging couplings for protein function and dynamics is supported by previ-

ous studies that used co-evolutionary analysis for protein-protein complex prediction (Burger and

Nimwegen 2008; Hopf et al. 2014; Ovchinnikov, Kamisetty, and David Baker 2014), interaction

partners (Bitbol et al. 2016), and modeling of conformational changes (Dago et al. 2012; Schug

et al. 2009).

In this dissertation, we will demonstrate that co-evolutionary analysis can be applied to struc-

tural design with Rosetta to conserve the functional knowledge of a protein without its explicit
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knowledge. Immune repertoires yet can not be systematically be functionally annotated and dis-

covering functional antibodies remains challenging (DeWitt et al. 2016; Soto, Bombardi, et al. 2019;

B. Briney et al. 2019). Immunome repertoire analysis may benefit from elaborate co-evolutionary

analysis of antibody lineages that share functionally relevant sequence patterns. As a first step into

this direction, we extract sequence patterns from large repertoires by applying an efficient cluster-

ing technique capable of processing billions of sequences and demonstrate that antibodies designed

with sequence constraints of appropriate clusters increase their similarity to the repertoire. This

is an indication that sequence sub-populations can be extracted, which support a certain antibody

structure and therefore likely function and sequence patterns.

5.6.1 Rosetta methods for antibody design

Rosetta has been successfully applied on a variety of biological design questions, including protein

design (Leaver-Fay, Jacak, et al. 2011), de novo protein folding (Brian Kuhlman et al. 2003; Rohl

et al. 2004), peptide design and docking (Raveh et al. 2011), enzyme design (Richter et al. 2011),

and small-molecule docking (Nguyen et al. 2013). A number of protocols are specifically tailored

towards antibody design. To place the methods developed for this dissertation in the context of

existing approaches, Rosetta immunogen design protocols that are applicable on human antibodies

are described here.

Antibody Structure Prediction. In protein structure prediction, two major approaches are

used: (1) de novo folding in the absence of a structural reference or template and (2) comparative

modeling, which takes advantage of the availability of a structurally similar template to build a

target model (Brian J. Bender et al. 2016). Given the large number of experimental antibody

structures deposited in the PDB and the conserved immunoglobulin (Ig) fold, the large number of

homology templates provides little to no need for de novo folding of the complete Fv domain. This

makes antibodies ideal targets for comparative modeling approaches. However, the true challenge

of antibody structure prediction lies in the correct orientation and fold of the CDRs, as all further

scientific questions concerning antigen binding depend on the accuracy of the modeled loop confor-

mations. Excluding HCDR3, five of the six loops usually fall into canonical clusters as defined by

North et al., which can greatly simplify structure prediction (North, Lehmann, and Dunbrack 2011;

Adolf-Bryfogle, Q. Xu, et al. 2015). Here, we will review three available protocols for antibody

structure prediction from sequence in Rosetta: RosettaAntibody, AbPredict, and RosettaCM.

The RosettaAntibody application uses a three-step protocol for modeling the variable domain

from sequence (compare Figure 6A): (1) template selection for the framework and the five canon-

ical loops, (2) grafting of selected templates into a preliminary model, and (3) HCDR3 de novo

loop modeling while simultaneously optimizing the VH–VL interface orientation (Weitzner, Jeli-

azkov, et al. 2017; Weitzner, Kuroda, et al. 2014; Sivasubramanian, Sircar, et al. 2009). For

template selection, a BLAST sequence search matches the parsed sequence to a modified copy

of the PyIgClassify database provided as part of Rosetta to assign both the Fv template and

CDR conformations. This assignment can be checked with the identify cdr clusters application in
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Rosetta such that any mismatches or other poor assignments within the template selection can be

manually modified (Weitzner, Jeliazkov, et al. 2017; Sivasubramanian, Sircar, et al. 2009). As a

next step, the initial VH–VL orientation is diversified by sampling VH–VL orientations from the

BLAST list based on light–heavy orientational coordinates (LHOC), a metric that combines the VL

and VH opening angles, the packing angle between the VH and VL domains, and the interdomain

distance (Marze, Lyskov, and Gray 2016). Somatic hypermutation at the interface results in mul-

tiple angles between VL and VH even from sequences derived from the same germline genes such

that a small difference in VH–VL distance and orientation may result in a drastic change in the

CDR placement. This modulation of chain interface relationships has been investigated recently

by Cisneros et al., who found VH–VL interface residues were reverted to the germline sequence,

which resulted in significant loss of affinity, and indicated that the rigidification of the VH–VL

interface, which will determine its orientation, is a major driver for affinity maturation (Cisneros

et al. 2019). RosettaAntibody selects 10 different framework matches as starting structures for

loop grafting. The selected template loops are superimposed on the framework based on two over-

lapping residues and optimized through a cycle of minimizations, random torsional sampling and

cyclic coordinate descent (CCD) (Wang, Bradley, and David Baker 2007; Canutescu and Dunbrack

2003). Subsequently, HCDR3 conformations are modeled with the next-generation kinematic loop

closure (KIC) algorithm in a low-resolution step (Stein and Kortemme 2013). The full model is

then refined in full atom mode, with the VH–VL orientation reoptimized with rigid-body docking,

(Gray et al. 2003) and the model is subsequently refined with an additional high-resolution step

of next-generation KIC, residue side chain packing, and minimization (Weitzner, Jeliazkov, et al.

2017; Sivasubramanian, Sircar, et al. 2009).

Accurate modeling of the target antibody with RosettaAntibody relies on the availability of

templates in the database that are highly similar in sequence to the antibody target. Most of the

antibody structures determined so far are either human- or mouse-derived. Given the variability

of the species-specific germline repertoire, such as the varying number of V genes or the different

structural features represented, modeling of non-human or non-murine antibodies may be prob-

lematic due to the lack of appropriate templates. Therefore, when antibodies from other species

are being modeled, it may be advisable to either curate a custom database or provide selected

templates manually.

RosettaAntibody participated in both the 2011 and 2014 antibody modeling assessments (AMAs)

(Almagro, Beavers, et al. 2011; Almagro, Teplyakov, et al. 2014). RosettaAntibody performed well

overall on the basis of MolProbity scores and loop Cα RMSDs in AMA I (Almagro, Beavers, et al.

2011). In AMA II, RosettaAntibody was compared to six other software suites on a set of 11

unpublished antibody structures. It predicted 42 of 55 non-HCDR3 loops with an accuracy of

better than 1 Åand generated the best HCDR3 model for 4 of 11 antibody structures from the

other six competing methods (Weitzner, Kuroda, et al. 2014; Almagro, Teplyakov, et al. 2014).

Subsequent analysis of the AMA II results identified some areas in the protocol that had weakened

its performance: the lack of good loop templates, the inaccurate modeling of the HCDR3 due to
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Figure 6: Methods in Rosetta for antibody structure prediction. (A) Schematic workflow
of the RosettaAntibody application, in which HCDR1–2 and LCDR1–3 are modeled from tem-
plates in the loop database, and HCDR3 is de novo folded and grafted on a selected framework.
(B) Schematic of the AbPredict protocol, which assembles an antibody from templates in four
fragment databases, containing VL, LCDR3, VH, and HCDR3 templates. (C) Schematic overview
of RosettaCM, which creates models by threading and hybridization of template structures based
on user-provided sequence alignments.
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limitations in the loop modeling protocols, and the wrong orientation of the VH–VL interfaces

(Weitzner, Kuroda, et al. 2014). All of these issues were addressed in the present RosettaAntibody

protocol, which samples a variety of VH–VL starting structures60 and incorporates next-generation

KIC with HCDR3 conformational constraints (Weitzner, Jeliazkov, et al. 2017; Weitzner and Gray

2017). The problem of missing starting structures, which prevents accurate sampling of rare CDR

loop conformations, can be further improved only when more structural data are deposited in

the PDB that are continuously integrated into PyIgClassify and the RosettaAntibody database

(Weitzner, Jeliazkov, et al. 2017; Adolf-Bryfogle, Q. Xu, et al. 2015).

A similar approach that combines antibody structural templates in another way has been im-

plemented in the AbPredict protocol (compare Figure 6B) (Norn, G. Lapidoth, and Fleishman

2017). AbPredict selects low-energy combinations of backbone fragments derived from experimen-

tally determined structures of antibodies in the PDB (Norn, G. Lapidoth, and Fleishman 2017).

The template antibodies are segmented into four parts: (1) heavy chain CDR3, (2) light chain

CDR3, and (3 and 4) heavy and light chain V gene regions each containing CDR1 and CDR2

and the framework as defined by the conserved core disulfide in the variable region. Additionally,

AbPredict considers the rigid-body orientation between VL and VH, which is represented by the

spatial distance of the disulfide’s cysteine residues to L88 and H92 (Kabat numbering). Briefly, a

database of randomly recombined backbone fragments and rigid-body orientations with the target

sequence length is created. After the target sequence has been threaded on a random starting

conformation, a Monte Carlo search that samples backbone fragments from the curated database,

repacks side chains, and minimizes the whole structure is executed, which is output as scFv (Norn,

G. Lapidoth, and Fleishman 2017; G. D. Lapidoth et al. 2015).

AbPredict has been benchmarked using the AMA II antibody set and compared to the methods

presented therein. It performed in the upper third of all compared methods and showed benefi-

cial performance in the prediction of the HCDR3 stem and the rigid-body orientation (Norn, G.

Lapidoth, and Fleishman 2017).

Because AbPredict draws from an antibody template database provided as part of Rosetta,

the representation of rare CDR loop length combinations is again a potential limitation, especially

because AbPredict requires that target and template length match. A protocol capture is included

within Rosetta.

Although antibody-tailored homology modeling protocols like RosettaAntibody can take advan-

tage of knowledge-derived features of antibody structure, Rosetta’s general multitemplate homology

modeling protocol, RosettaCM can also be used (Figure 6C) (Song et al. 2013). RosettaCM might

be advantageous in specific cases, especially if the antibody structure shows noncanonical struc-

ture elements such as unusual loop lengths or conformations, which would not be available in the

antibody template databases. Using the DetailedControls option, RosettaCM can be employed to

model only specific ranges of peptide sequences within a protein, for example, just one CDR. A

similar approach was used to model G protein-coupled receptor loop regions with great accuracy

(Brian Joseph Bender et al. 2019).
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Overall, for most antibody structure prediction tasks, a good starting point is to employ Roset-

taAntibody as described in the tutorial section. Depending on specific features of the target an-

tibody such as template availability or unusual loop length, models may need further refinement.

In this case, the user can consider using only selected templates or perform a partial remodel-

ing with RosettaCM. It is advisable to run smaller test runs with only a few output models in

the beginning and monitor the outcome for reasonable modeling performance by looking at the

total score, a metric for predicted protein stability, which should be negative. In production runs,

up to 10000 models should be created, depending on the complexity of the modeling task and the

specific requirements of the protocol. Using metrics such as the total score and Cα RMSD, the

performance of the modeling run and the quality of the models can be assessed. This can also be

used to compare the modeling performance of different protocols.

This work makes use of a RosettaCM (Song et al. 2013) based multi-template homology modelling

protocol for antibodies (Kodali et al. 2021). Structural models were used to demonstrate that the

predicted likelihood of expression can be increased via re-design in conjunction with a novel scoring

term.

HCDR3 Structure Prediction. Structure prediction of HCDR3 has been challenging to date

due to its high length and conformational diversity. Although half of HCDR3 loops are shorter than

16 residues, HCDR3 has been described to adopt loop sizes far longer, up to 32 residues, and even

longer outliers have been described (IMGT nomenclature) (North, Lehmann, and Dunbrack 2011).

The mean HCDR3 loop length has been determined to be 16 residues (B. S. Briney et al. 2012).

Ultralong HCDR3 loops (ě 28 amino acids) have been described as necessary for the neutralization

of disease states such as HIV or malaria, (Pancera et al. 2010; Henderson et al. 2007; McLellan

et al. 2011) making the accurate modeling of long HCDR3 loops increasingly important for the

structure prediction of therapeutically relevant antibodies.

Canonical loop clustering fails in the case of HCDR3 due to its high degree of diversity. PyIg-

Classify lists HCDR3 up to lengths of 5-9 residues, which are more restrained in their structural

diversity, but structural clusters are not defined for longer HCDR3 lengths (Adolf-Bryfogle, Q. Xu,

et al. 2015). However, the HCDR3 “torso” region, encompassing the first three (T1-T3) and the last

four residues (T4-T7) of HCDR3 (based on the IMGT numbering scheme), can be classified into

“kinked” (“bulged”) or “extended” (“non-bulged”) (Morea et al. 1998; Shirai, Kidera, and Naka-

mura 1996). The kinked conformation is predominant in antibodies, although structure prediction

software rarely samples this conformation type (Finn et al. 2016; Weitzner and Gray 2017). In the

past, sequence-based approaches have been employed to make a distinction between the kinked and

extended conformation, relying on the presence of an arginine or lysine in the second position and

an aspartic acid in the second to last position of the HCDR3 loop to classify an antibody as having

a kinked conformation (North, Lehmann, and Dunbrack 2011; Morea et al. 1998). Although these

amino acids are present in a large number of kinked conformations, they fail to cover the entirety

of existing kinks (Finn et al. 2016). Therefore, other metrics for describing the kink conformation

have been introduced and used as penalties during loop modeling. In an independent protocol to
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Figure 7: Incorrect long HCDR3 loop structure prediction. (A) Model of FluA-20 created
with RosettaCM. HCDR1 and HCDR2 are predicted very well; however, the HCDR3 loop has an
incorrect conformation that will impair future studies using this model. (B) Experimental structure
of FluA-20 for comparison. (C) CDRH3 RMSD for 5 different Rosetta structure prediction methods.
Short represents HCDR3 loop lengths of 1-6 amino acids (AA), medium of lengths 7 to 13 AA, and
long of lengths 14 to 20 AA

more accurately model near-native HCDR3 loop conformations, Finn et al. described in greater

detail the range of dihedral angles present in the torso region and identified a set of rules to guide

kinked conformation sampling (Finn et al. 2016). The dihedral angle restraints are defined by the

ψ angle at the sixth torso residue (T6) and are added as a Rosetta constraint file using a circular

harmonic scoring function that penalizes the incorrect torso residues.

In RosettaAntibody, this limitation was overcome by integrating a structurally derived filter

based on the kink definition by Shirai et al (Shirai, Kidera, and Nakamura 1996). so that bulged

conformations are enriched (Weitzner, Kuroda, et al. 2014). To refine the definition of a “kinked”

HCDR3 loop, Weitzner et al. integrated the conformation bias constraint to increase the likeli-

hood of sampling native-like geometries of the last two C-terminal dihedral angles of HCDR3 plus

the following framework residue’s dihedral angle (as defined by the Chothia numbering scheme)

(Weitzner and Gray 2017). Weitzner et al. hypothesized that the kink increases the degree of

HCDR3 structural diversity by disrupting the propagation of β-strand pairing. Such a trend was

also observed for proteins from other families where similar kinks occur in ligand recognition sites

(Weitzner, Dunbrack, and Gray 2015).

Homology modeling of influenza hemagglutinin protein-specific human monoclonal antibody

FluA-20 provides an illustrative example of challenging HCDR3 loop modeling (Figure 7A-B).

While the best scoring homology model created with a RosettaCM protocol had accurate HCDR1

and HCDR2 predictions, the HCDR3 tip is flipped compared to the crystal structure. Structure

prediction methods have difficulty with FluA-20 due to its 18-residue HCDR3 loop. The rules

and protocols that Finn et al. and Weitzner et al. provide are a good starting point to improve

native-like HCDR3 placement despite its noncanonical conformation. Accurate prediction of all

CDR loops, especially HCDR3, from an antibody modeling protocol is paramount in obtaining

biologically relevant results in downstream protocols, such as antibody–antigen docking.

The RosettaCM based homology modeling protocol used in this dissertation (Kodali et al. 2021)

outperformes the single-template RosettaCM protocol for long CDRH3 loops.

Antibody–Antigen Docking. The structural study of antibody–antigen complexes is crucial

for the understanding of antibody–antigen interactions, guides optimization and design approaches
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of both docking partners, and ultimately helps develop new antibody-based therapies. Prediction of

antibody–antigen complexes with computational protein–protein docking is of particular interest

in investigating antibody function, as high-resolution experimental models of antibody–antigen

complexes are rare due to the difficulty of co-crystallization. While more and more antibody–antigen

complexes are now becoming available through the use of cryo-EM, the experimental data may not

fully support atomic-level accuracy in all regions.

In Rosetta, a general protocol called RosettaDock can be employed for rigid-body docking with

full backbone flexibility of two interacting proteins (Chaudhury, Berrondo, et al. 2011; Chaudhury

and Gray 2008; Gray et al. 2003). This protocol was reviewed previously by Bender et al (Brian J.

Bender et al. 2016). and will be discussed only briefly here. A low-resolution docking step, where

docking poses are identified by rigid-body movements about the surface of the binding partner(s)

(namely rotation and translation moves), is followed by a high-resolution step in full atom mode

with fine-grained docking moves and side chain optimization stages (Gray et al. 2003). RosettaDock

requires as input a structure of both docking partners, optimally with a user-defined starting point.

However, RosettaDock also can perform a global docking step to identify low-energy docking poses

(Gray et al. 2003; Chaudhury, Berrondo, et al. 2011).

SnugDock is an antibody- and antigen-specific extension of the RosettaDock protocol that is

especially useful for docking homology modeling-derived antibody structures. SnugDock incor-

porates antibody-specific moves to overcome limitations of homology model-based inaccuracy in

rigid-body docking that were observed in docking challenges (Weitzner, Jeliazkov, et al. 2017;

Sircar and Gray 2010). Specifically, SnugDock adds a refinement step for HCDR2 and HCDR3

loops after low-resolution docking, allowing for greater loop backbone sampling with small, shear,

and CCD moves. During the high-resolution phase, explicit sampling of the rigid-body VH–VL

orientation and HCDR2 and HCDR3 conformations is achieved by CDR minimization, and loop

backbone perturbation accompanied by additional small, shear, or CCD moves. SnugDock also can

be combined with EnsembleDock, providing a database of input models for a higher diversity of

starting structures (Weitzner, Jeliazkov, et al. 2017; Sivasubramanian, Sircar, et al. 2009; Sircar

and Gray 2010). SnugDock (together with EnsembleDock) has been benchmarked on a set of 11

antibody–antigen complex structures, resulting in four medium and seven acceptable ratings us-

ing the critical assessment of prediction of interactions (CAPRI) criteria (Sircar and Gray 2010).

SnugDock performed significantly better than did the standard RosettaDock protocol. However,

SnugDock can also overfit, closing voids and constructing unnaturally tight interfaces (Sircar and

Gray 2010). A protocol capture for SnugDock has been published by Weitzner et al (Weitzner,

Jeliazkov, et al. 2017).

Generally, a docking approach will greatly benefit from including experimentally obtained re-

straints, which can be used to limit the conformational space to relevant structures. Examples of

such experimentally derived restraints are alanine or site-directed mutagenesis, hydrogen–deuterium

exchange mass spectrometry (HDX) or also HDX-NMR, NMR chemical shift perturbations, low-

resolution cryo-EM, and chemical cross-linking data (Sivasubramanian, Chao, et al. 2006; Thorn-
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burg et al. 2013). In the presence of a low-resolution EM map, however, it can be very difficult to

dock an antibody in the right orientation, and a combination of structural methods may be neces-

sary to obtain a high-confidence antibody–antigen complex model (Thornburg et al. 2013). Both

SnugDock and RosettaDock are compatible with a wide variety of general constraints and filters in

Rosetta. The general performance of a docking attempt can be assessed by calculating the interface

energy for the created models, and also the Cα RMSD, for example, to the best scoring model. In

many cases, some kind of experimental or knowledge-derived restraints are available that can also

guide model selection, either manually or using filters in Rosetta. As docking normally has a high

number of degrees of freedom, it is advisable to sample a high number of models when performing

production runs for thoroughly sampling the conformational landscape (e.g., 10000, depending on

the complexity of the problem).

In this dissertation, co-crystal structures were used for antibody design. To estimate the effect

of mutations on the binding affinity to the antigen, Rosetta was used to calculate the Rosetta

interface energy normalized by the size of the binding interface.

Antibody Design. Where structure prediction seeks to identify the optimal three-dimensional

protein fold for a particular one-dimensional amino acid sequence, protein design seeks to find

potential amino acid sequences that can maintain at least one previously determined, stable three-

dimensional protein structure. Therefore, in contrast to antibody structure prediction and docking,

where an antibody of fixed sequence is considered, antibody design modifies the sequence of an

antibody to improve antibody affinity, specificity, and breadth, guided by knowledge-based sampling

strategies.

Single-State Design. Single-state design protocols focus on the optimization of the binding

affinity of a single antibody to a specific antigen. Such an approach can be used either to improve

an already existing interaction or to create a new interaction for a nonbinding antibody–antigen

pair. This refinement of an antibody sequence can be seen as a computational analogy to the

natural affinity maturation process (Willis, B. S. Briney, et al. 2013). Somatic hypermutation

introduces changes in sequence in the highly variable CDR regions during clonal expansion, leading

to a high adaption to the presented antigen and to the expression of the tightest binder in a

plasma cell. Rosetta on the contrary samples random mutations, using its energy function and

Monte Carlo sampling to differentiate between beneficial and destabilizing mutations. While such

a design process can proceed näıvely, naturally occurring patterns can be used as knowledge-based

restraints to restrict the sequence search space.

Sequence design in the presence of an antigen can be performed by a very basic design algo-

rithm in Rosetta, focusing the design to amino acids within the antibody–antigen interface. An

example for this procedure is given in Bender et al (Brian J. Bender et al. 2016). First, a Python

script is used to identify residues that are within a distance of specified residues that define the

antibody–antigen protein interface. Subsequently, these interface residues are listed in a so-called

“resfile”, or a space-delimited file that designates designable residues, labeled by their residue num-

ber and chain identification, and to what entities, e.g., amino acid side chains, each residue may
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be designed. In essence, the resfile controls which residue side chains can be mutated through de-

sign, repositioned through repacking, or kept rigid during design. Because interface design includes

more than one protein, it is important to consider which side of the interface should be “mutated”;

typically, it is desired to optimize the binding interface of the antibody through design while main-

taining the antigen-binding interface. Therefore, it is most common to specify the residues within

the antibody’s interface as designable residues, while the antigen interface residues are limited to

repacking to accommodate amino acid changes in the interface (Figure 8A).

The Rosetta design protocol optimizes the sequence on the basis of the overall energy of the

complex, including the internal energy of the antibody and antigen, rather than the binding energy

specifically. The resulting binding energy can be evaluated afterward by using InterfaceAnalyzer.

Ideally, the binding affinity increases or decreases in value, while the overall energy (as a measure-

ment for stability) does remain relatively constant. These criteria provide an initial filter to select

models for further evaluation. More rigorous analysis, however, should evaluate each proposed mu-

tation independently for its contribution to the total energy and binding energy in relation to the

native model. A notable application using a similar protocol and analysis was the redesign of PG9,

a human monoclonal antibody targeting the HIV envelope glycoprotein, where a RosettaDesign

variant displayed increased potency and neutralization breadth (Willis, Sapparapu, et al. 2015).

This method is generally applicable to protein–protein interactions, and as such, it does not

use any information about the natural sequence profiles for antibodies. Furthermore, its ability

to sample backbone conformations is limited, which in turn limits accurate prediction of residues

critical for forming antibody–antigen interaction. To circumvent such a limitation, it may be

advisable to run the protocol on an ensemble of pregenerated starting conformations, or to integrate

a backrub step, (Smith and Kortemme 2008) which will introduce greater backbone conformational

flexibility.

Multi-state design (MSD) is a popular approach to inform Rosetta about protein flexibility. In

this dissertation, we benchmarked our design approach that incorporates co-evolutionary information

against MSD since both, ensemble of structures and evolutionary information allows the design of

structures that favor protein flexibility. We show, that design using co-evolutionary information is

capable of producing more natural protein sequences and retains residues that have been discovered

to be functionally relevant in previous studies.

RosettaAntibodyDesign (RAbD). RosettaAntibodyDesign (RAbD) is capable of both de

novo antibody design from a nonbinding antibody and also affinity maturation of an already existing

antibody. It classifies the antibody into regions, including framework, the five canonical loops,

and the HCDR3 loop, similar to the methodology in RosettaAntibody. Additionally, it can also

redesign the DE loop, or H/LCDR4, as reported by Lehmann et al. for anti-EGFR scFv antibodies

(Lehmann et al. 2015). RAbD starts from an assembled antibody–antigen complex and allows for

both sequence and graft design based on the canonical clusters described by North et al.: (North,

Lehmann, and Dunbrack 2011) GraftDesign exchanges a whole CDR for another from the canonical

cluster database, and SequenceDesign optimizes the sequence on the basis of the canonical cluster
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Figure 8: Overview of multistate design protocols in Rosetta. (A) Multistate design re-
verts the antibody sequence back to the germline sequence, while single-state design approximates
affinity maturation (figure reproduced under CC-BY from ref (101)). (B) The RECON protocol
(REstrained CONvergance) expedites discovery of states that bind multiple targets faster than
traditional MSD algorithms because of its independent search of sequence space. (C) Design with
negative states performs selectivity design against binders.
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sequence profiles. The protocol is highly tunable by using a CDR instruction file, which allows users

to include and exclude clusters, loop length, or PDB entries on the basis of the user’s preferences. An

example for this can be found in the tutorial section in the Supporting Information. Briefly, RAbD

consists of an outer loop, which performs the graft design if enabled, and then passes the structure to

an inner loop of sequence design, side chain repacking, CDR minimization, and optional integrated

docking with epitope and paratope constraints. The structure is energy-minimized through the

use of cluster-based CDR dihedral constraints and uses the Metropolis Monte Carlo criterion in

the inner and outer loop for optimization. The default cycle number is set to 25 outer loops and

one inner loop. The RAbD Metropolis Monte Carlo criterion can be set to the total energy (the

protein stability score) or can be set to look specifically at the interface energy (corresponding to the

computational binding affinity) using the integrated InterfaceAnalyzer methodology, as described

above (Adolf-Bryfogle, Kalyuzhniy, et al. 2018).

RAbD therefore samples through all experimentally observed antibody conformations of differ-

ent lengths and their corresponding sequence and structure space, allowing the design of loops with

different lengths if desired. The protocol was benchmarked on a set of about 60 antibody–antigen

complex structures and tested in two experimental antibody design cases, where it improved binding

affinities for both antibodies.

AbDesign. AbDesign relies on backbone fragment recombination from experimental structures

of antibodies deposited in the PDB, mimicking V(D)J recombination and allowing more native-like

packing between the heavy and light chain than other antibody design protocols (G. D. Lapidoth

et al. 2015; Baran et al. 2017). In short, AbDesign first predicts candidate apo structures of an

antibody and, then following antibody docking, optimizes the antibody-binding interface against

the target antigen. Like AbPredict, each heavy and light chain is segmented into one segment

containing the CDR1, CDR2, and framework region (resembling the part of the protein encoded

by the V gene) and another containing CDR3. Conformational representatives of each of the four

segments are selected from precomputed Rosetta databases containing backbone segment torsion

and sequence profiles. The selected segments are inserted, or grafted, onto the template scaffold

by being subjected to CCD moves (Canutescu and Dunbrack 2003) using dihedral and coordinate

constraints. Afterward, the individual antibody segments are scored against the original segment,

and if the difference is ă1 Åacross all segments, the predicted antibody model is kept for design.

In addition, the antibody sequence is optimized on the basis of conformation-dependent position-

specific scoring matrices (PSSMs) for each segment cluster, thereby combining knowledge-based

sequence space with backbone plasticity. Following sequence and backbone optimization, the pool

of generated models is docked onto the target antigen using low-resolution docking. This is followed

by a last design step. It is important to note that the sequence constraint is less strict for residues in

the antigen interface, thereby encouraging a high degree of sequence variability for the optimization

of the binding energy upon design, whereas the more conserved framework regions have stricter

constraints, to encourage selection of naturally occurring sequences to maintain stability. Using a

many-valued fuzzy-logic approach (Warszawski, Netzer, et al. 2014) in the final selection, antibodies
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are chosen on the basis of stability (total energy), binding energy, buried surface area, packing

between the heavy and light chain, (Sheffler and David Baker 2009) and shape complementarity

(Lawrence and Colman 1993) between the antibody and antigen (G. D. Lapidoth et al. 2015).

AbDesign was benchmarked on a set of nine antibody–antigen complexes and evaluated on

sequence recapitulation and interface side chain rigidity (G. D. Lapidoth et al. 2015). Furthermore,

AbDesign was used for two de novo designs of scFv in combination with yeast display and error-

prone PCR in five consecutive cycles over which the protocol was adapted to its final version.

Major modifications were necessary, however, because the first designs expressed poorly, which was

attributed to cavities in designs, unpaired buried charges, and the loss of long-range hydrogen bonds

(Baran et al. 2017). Even with the two successfully predicted scFv models, crystallization of the

models as Fabs (notably without antigen) revealed structural differences between the experimentally

determined models and the AbDesign models, especially in HCDR3 and HCDR1 (Baran et al. 2017).

RAbD is one of the most feature-rich Rosetta antibody design protocols. In contrast to

AbDesign, it allows the integration of sequence profiles. These profiles are sourced from a few

thousand clustered PDB structures. In this dissertation, a new protocol to incorporate sequence

statistics derived from complete immunome repertoires was developed that ultimately will awill th

design of the challenging CDRH3 region.

Balancing between Sampling and Stability. The protocols presented above represent

multiple options to design antibodies in Rosetta. The optimal choice of protocol depends on the

design task. The more changes are made to the native antibody that initially is expressible and

capable of being crystallized, the less likely are the designs to be expressed and stable (Baran et al.

2017; Sevy, N. C. Wu, et al. 2019). Like in affinity maturation, however, it is often necessary

during protein design to sample a broad sequence and conformation space to identify the optimal

combination of antibody sequence and structure to achieve both high specificity and binding affinity

for a target antigen. This can require sampling beyond energy barriers that confine the native

antibody’s sequence and structure space to a local energy minimum, and in such cases, protocols

that provide a means for more extensive sampling may be superior to more conservative approaches

that limit the sampling space to a local energy minimum. In general, if the goal is to improve

the binding affinity of an antibody within an already determined antibody–antigen complex, it is

generally advisable to begin with a more conservative approach. Otherwise, it is often a good idea

to use more than one protocol and to compare results for convergence onto the same sampling space.

Even after cross-checking multiple approaches, it may be necessary to alter the chosen protocol to

account for problems like expressibility or solubility. However, to overcome energy maxima in the

conformational landscape, it might be necessary to sample more thoroughly, and in these cases,

protocols with more sampling can be superior compared to more conservative approaches. Upon

comparison or establishment of protocols, a smaller size of models can be sampled and evaluated

for chosen parameters, which could include the interface energy as metric for predicted binding

affinity, but also sequence similarity, type of newly created interactions, or other knowledge-derived

metrics depending on the complexity and the specific questions of the design task. The number of
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models that should be created for a design task can vary quite heavily depending on the number

of positions to design and the protocol used. Generally, more output models will be needed for less

conservative approaches.

The Rosetta designs generated in the studies of this dissertation were compared to already

published, similar Rosetta protocols or to unrestrained Rosetta design runs, without additional

scoring terms (control). The control group acts as baseline the estimate the rate of improvement

when a novel scoring term was added.

Multistate Design (MSD). While single-state design considers just a single antibody or

antibody–antigen structure, MSD protocols provide a wide platform for addressing several types of

higher-complexity design problems. Most commonly, MSD encompasses the design of one antibody

in the presence of more than one antigen. The goal can be to optimize the breadth of the antibody

to bind multiple antigens, find an antibody that can bind to multiple conformations of a single

antigen, or to optimize the selectivity of the antibody through negative design against a subgroup

of antigens.

For all three of these possibilities, protocols have been developed in Rosetta and used in the

field of antibody design.

Broadly neutralizing antibodies (bnAbs) have proven to be a powerful therapeutic tool. A

highly optimized antibody is at risk of losing its binding affinity when small changes in the antigen’s

amino acid composition occur, whereas bnAb maintains its ability to bind to antigens from multiple

strains, subtypes, or even species. The bnAb therefore is more likely to provide protection for a

longer period of time. Such breadth is normally mediated through limited but tight binding to

conserved residues that are functionally less susceptible to antigenic drift.

One classical MSD task includes designing an antibody initially known to bind to a single anti-

gen to optimize its sequence to form multiple novel binding interactions with one or more antigens.

The Rosetta MSD design protocol using the REstrained CONvergence (RECON, 8B) algorithm

was originally developed to perform such a task to increase antibody breadth by constraining the

sampled sequence space to adopt multiple (binding) conformations (Sevy, Jacobs, et al. 2015; Sevy,

N. C. Wu, et al. 2019). Broad antigen recognition, or polyspecificity, may be linked to germline

antibody sequences; it has been hypothesized that näıve germline antibodies exhibit greater con-

formational flexibility, which enables polyspecificity (Babor and Kortemme 2009). Interestingly,

using RECON MSD to design the sequence space of a single antibody when in complex with a

set of antigens reverted an antibody’s sequence back toward its germline gene sequence (Figure

8A). Conversely, using single-state design-introduced mutations will make the difference from the

germline gene sequence greater (Willis, B. S. Briney, et al. 2013).

Design of polyspecificity requires that the antibody of interest be spatially aligned with all

antigens for which a common binding motif should be found, which comprise the antibody’s intended

targets, and that a common antibody-binding interface be the subject of design. For RECON MSD,

the antibody interface of interest is based on a known antibody–antigen complex structure, such

that any novel binding interfaces are based on the superimposition of target antigens to the known
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antibody–antigen complex. RECON MSD is novel with respect to other MSD protocols in that

rather than treating design as a combinatorial problem, it reduces the design of a large conformation

space by treating each structure, or state, included in the design as a separate design problem, thus

making RECON MSD very efficient. More specifically, design sampling identifies the lowest-relative

free energy sequence for each single conformation but will accept a redesigned sequence only if the

sequence has the lowest average energy across all states. RECON MSD assumes that the native

sequence is close to the sequence that is ideal for conformational flexibility or polyspecificity and

encourages the selection by using a convergence restraint to favor the selection of native sequences.

Convergence is further encouraged by using multiple rounds (typically four rounds) of design. To

converge on a common sequence, a sequence similarity restraint is introduced. The restraint is kept

small in early rounds of design to sample a broad sequence and conformational space specific to

each antigen and ramped up in later rounds of design to find convergence over multiple antigens.

In the case in which selection of a sequence does not converge for a designed position, the last

step in the protocol forces a selection based on the lowest fitness over all sampled amino acids for

nonconverging positions. In the end, this sequence convergence encouraged through restraints is

hypothesized to find minima in the energy landscape more rapidly (Figure 8B). The independent

sequence search allows trajectories to adopt sequences that are favorable in one state but might not

be in another state, which in contrast to classic MSD algorithms prevents the exclusion of these

intermediate states. Thus, the encouraged convergence bypasses high-energy states. RECON was

benchmarked in comparison to the traditional Rosetta MSD, where it showed improved performance

to recapitulate evolutionary sequence profiles, a metric chosen to represent polyspecificity (Sevy,

Jacobs, et al. 2015). RECON was further refactored to run in parallel on separate processors using

message passing interface (MPI) communication, which enables massive parallel design against a

large number of antigens (Sevy, N. C. Wu, et al. 2019). It was applied to design broad influenza

hemagglutinin H1 antibodies based on the C05–H3 complex structure (Ekiert et al. 2012) and could

propose mutations that showed an enhanced breadth against additional virus strains, including a

strain with a known escape mutation (Sevy, N. C. Wu, et al. 2019). In this work, criteria that yield

greater success in design were identified. For example, a high drop of energy for some antigens,

especially the antigen that is bound by the antibody in the original complex structure, indicates

nonfavorable mutations (Sevy, N. C. Wu, et al. 2019). Mutations that establish new hydrogen

bonds, relieve clashes with the antigen, or create more van der Waals interactions are favorable.

To increase the sampling space, the protocol can be combined with backrub moves, which creates

a backbone ensemble and enables the sampling of a larger sequence space (Sevy, Jacobs, et al.

2015). Generally, the evaluation criteria are similar to a single design task, however, considering

only such amino acid changes that improve predicted binding affinity (e.g., interface energy) for

all multistate design targets while not compromising protein stability (total score). An example

protocol for multistate design with the RECON design protocol can be found in the Supporting

Information.

The BROAD (BReadth Optimization for Antibody Design) algorithm has been developed to
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enhance MSD performance further than RECON MSD. The RECON protocol becomes computa-

tionally expensive when designing antibodies against large panels of antigens, or many different

conformations of a protein. BROAD includes support-vector machines to classify antibody binders

versus nonbinders and optimizes breadth through the use of integer linear programming. This

method is very fast and can be applied to large sets of antigens (e.g., a large panel of different viral

strains). The method has been tested computationally, but the protocol has not yet been applied

to an experimental application (Sevy, Panda, et al. 2018).

Vaccine Design through Thermostabilization. A major challenge of vaccine design is the

flexibility and instability of immunogenic proteins. For now, computational generation of novel

epitope-presenting proteins, such as with the methods described above, requires several rounds of

testing and optimization both computationally and experimentally. Another approach is to simply

stabilize a protein of interest (Goldenzweig, Goldsmith, et al. 2016). In the latter, the needs of

thermostabilizing a protein structure and maintaining its function were achieved through amino acid

changes guided by information about the protein sequence’s evolutionary diversity. The rationale is

that evolution does not allow for destabilizing mutations as those would render the protein inactive.

The protocol represents the evolutionary diversity with a PSSM, which it uses to sample possible

mutations. The effect of a mutation on the stability of the protein and its interactions are evaluated

by a ∆∆G calculation in Rosetta. Stabilization is achieved by a combinatorial search of groups

of amino acid changes that can have an additive effect on protein stability. This protocol was

benchmarked on multiple proteins to predict known stabilizing mutations without choosing known

destabilizing mutations (Goldenzweig, Goldsmith, et al. 2016). Additionally, the protocol was

tested for thermostabilization of human acetylcholinesterase (hAChE), which is usually expressed

in eukaryotic cells and could be obtained in large amounts in Escherichia coli expression. Of the

five chosen designs that had 17–67 mutations in total, four maintained activity while having higher

deactivation temperatures (Goldenzweig, Goldsmith, et al. 2016). The protocol is available as a

Web server, called the Protein Repair One Stop Shop (PROSS, http://pross.weizmann.ac.il).

This approach also has been applied to a vaccine design project, namely, the thermostabi-

lization of Plasmodium falciparum reticulocyte-binding protein homologue 5, a relevant target for

malaria vaccine development. In total, 18 mutations were introduced and yielded a design that

was expressed in E. coli and showed higher stability, while maintaining its immunogenicity. An

experimentally determined structure proved that the design was very similar to the original protein

(Campeotto et al. 2017).

In this study, a novel method was benchmarked that restraints the design with co-evolutionary

information. It has been shown that the evolutionary design protocol outperforms classic sequence

profiles (PSSM)s and is likely to improve stability and conserved function.

5.7 Difficult-to-express (DTE) antibodies

Historically, the foundation of monoclonal antibody production was made 1975 by the immortal-

ization of B-lymphocytes (Köhler and Milstein 1975). Briefly, antibody-secreting B-cells extracted
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from a model system (e.g. mouse) are fused with immortal myeloma cancer cells induced virally

or chemically. The hybrid cell line (hybridoma) can be used to identify, characterize and produce

monoclonal antibodies as a result of a murine immune response. The technology is still popular

and has been used with recent successes in recent mAb discovery using murine hybridoma for diag-

nostics and research (Aguiar et al. 2016; Parray et al. 2020) and was awarded with the nobel prize

in physiology and medicine of 1984 (Leavy 2016).

The method evolved after hybridoma instability issues and human anti-mouse antibody (HAMA)

antibody responses in patients, reducing the antibody efficacy as therapeutic and inducing adverse

effects (immunogenicity). During the 1990s chimeric antibodies were developed with 1) a human

Fc region and mouse Fv regions to reduce the HAMA response and 2) humanization strategies were

employed to remove T-cell epitopes in the Fv.

Humanization, also referred to as reshaping, complementary determining region (CDR)-grafting,

veneering, resurfacing, specificity-determining residue (SDR)-transfer, or DeImmunization, include

strategies to reduce the immunogenicity of antibodies of non-human origin. The design of the

humanized antibody sequence is critical for reproducing the affinity, specificity, and function of

the original molecule while minimizing HAMA responses elicited in patients. A natural strategy

is to keep the engineered antibody human from the very beginning of the design phase which may

circumvent the biggest challenges faced in late-stage humanization processes. In this dissertation,

a method was developed that allows the structural affinity maturation of antibodies using a human

germline gene restraints.

Recombinant cell lines large-scale for mAb expression include CHO, NS0, Sp2/0, HEK-293,

and PER.C6. The vast majority of approximately 70% of presently industrially produced proteins

is conducted in Chinese ovary hamster (CHO) cell lines (Jayapal et al. 2007). Modern fed-batch

cultivation processes using CHO cell lines are able to produce monoclonal antibodies in the range of

multiple grams per liter (Kunert and Reinhart 2016). Protein synthesis is mediated by a complex

process that involves tightly regulated and balanced network of steps involving different cellular

compartments (Alberts et al. 2017). For an antibody product to be expressed and secreted, the

journey begins with ribosomal synthesis in the endoplasmatic reticulum (ER). The first regulatory

lever for the expression rate is the nucleotide sequence codon usage itself. Codon usage is specific

for the production system and directly affects the efficiency of messenger RNA transcription (Z.

Zhou et al. 2016). Folding in the ER lumen is facilitated by specific protein chaperones that

belong to the heat-shock protein family such as the 70kDa binding immunoglobulin protein (BIP),

calnexin/calreticulin of the leptin protein family, and peptidyl-prolyl isomerases (Braakman and

Hebert 2013; Ellgaard and Helenius 2003). Cystine form disulfide bridges between two residues

add additional rigidity and support the proteins tertiary structure. Disulfide bridges are covalent

bonds and formed by isomerases after the folding process (Appenzeller-Herzog 2011).

Correctly folded proteins are transported to the Golgi apparatus, a part of the intracellular

vesicular transportation system, where post-translational modifications (PTM) occur before the

protein is transported into vesicles for secretion. Misfolded proteins are degraded in the proteosome
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as part of the ER-associated degradation pathway (Xudong Wu and Rapoport 2018).

With pitfalls on many levels of protein expression, starting from transcription, to folding, to

vesicular transport and PTM, the complexity of the challenge to optimize protein expression re-

quires substantial experimental data-collection. In case of a lack of an appropriate data source, a

model cannot be created that describes protein expression in sufficient detail. In this dissertation,

the Deep-Learning architecture Long short-term memory (LSTM) was employed to extract relevant

sequence patterns that influence expressability by one or more unknown bio-physiological effects,

automatically from a limited amount of data. An additional Rosetta energy term is then developed

to support the design of antibodies with increased expression rates.

5.7.1 Engineering of human-like antibodies

Methods for detecting human-likeness in antibody amino acid sequences support the screening

and engineering of antibodies with immunogenic effects, tend to reduce the efficacy of Abs in a

clinical setting. The H-Score method to estimate human-likeness developed by Abhinadan et al.

in 2007 was based on pairwise sequence identity calculations (Abhinandan and Martin 2007). The

method evolved by replacing pairwise sequence calculations with Basic Local Alignment Search

Tool (BLAST) databases. The resulting T20 score was also derived from a dataset of about 38,700

sequences (Gao et al. 2013). To take germline gene family specificity of immunogenic effects into

account, the germline gene aware G-Score was developed (Thullier et al. 2010). Seeliger et al

(Seeliger 2013). demonstrated the usefulness of a heuristic scoring function to increase human-

likeness and reduce immunogenic effects. The heuristic scoring function is capable of suggesting

mutations to reduce immunogenicity and increase human-likeness based on a pairwise probabilistic

model.

The Human String Content (HSC) is an alternative method to decrease immunogenic effects

by increasing the germline similarity to 9-mer fragments of germline genes in order to reduce the

class II MHC binding affinity (Lazar et al. 2007). The HSC has successfully been combined with

structure-based antibody design to produce humanized antibodies with high affinity (Choi et al.

2015). The methods H-Score, T20 and the heuristic scoring function have been developed from

small amino acid sequence datasets of several thousand sequences. Recent advances in deep-learning

methods enabled Wollacott et al. to precisely capture human-likeness of antibody sequences using

a Long short-term memory (LSTM) model trained on 25,000 sequences (Wollacott et al. 2019).

Human-likeness scores are usually derived from small datasets, and are primarily concerned with

the question of how to separate human from non-human antibodies instead of developing a sequence

model that explains how an Ab can emerge from a repertoire.

Computational assessment of Human-likeness has first been described as an alignment of several

hundred amino-acid Ab sequences (Abhinandan and Martin 2007). The alignment human, or

murine sequences allows for statistical assessment of the frequency of each amino acid type at each

position and can be used as a distinct species specific antibody profile. This technique has been

evolved to be more scalable on larger sequence sets (approximately 10,000) (Gao et al. 2013; Seeliger

27



2013).

The Rosetta Antibody design protocol (RAbD) (Adolf-Bryfogle, Kalyuzhniy, et al. 2018) allows

for inclusion of sequence restraints from human antibody sequences available as structures deposited

in the Protein Databank (PDB) (Berman et al. 2000), and from conformational loop clusters (Adolf-

Bryfogle, Q. Xu, et al. 2015). The limitation of this approach is, that the number of available human

antibodies ranges at the time of writing between 1,000 and 2,0000 unique antibodies. The sequence

profiles developed in this dissertation are based on complete immunome repertoires and further are

expanded using probabilistic modeling of an amino acid sequence space
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6 Human-likeness of antibody biologics determined by

back-translation and comparison with large antibody variable

gene repertoires

This chapter has been published under (Schmitz et al., 2020).

6.1 Introduction

Antibodies (Abs) bind to epitopes on the surface of microbial pathogens like bacteria and viruses.

Abs are produced by B lymphocytes that use genetic mechanisms to increase sequence diversity of

the expressed repertoire. These genetic mechanisms include recombination of variable (V), diversity

(D), and joining (J) gene segments as well as enzymatic modification and addition of non-templated

(N) or palindromic (P) nucleotides in the V-D, D-J and V-J junction regions (Jung and Alt 2004).

The variable domain of an antibody is encoded by the three genes (V, D, and J) for heavy chain

sequences, and two genes (V, and J) for light chain sequences. The variable domain can further

be divided into framework regions (FR) and complementarity determining regions (CDR). The

introduction of somatic mutations in the variable domains occurs in recombined genes during the

secondary immune responses (Jung, Giallourakis, et al. 2006). The resulting sequence space of the

combined set of näıve and mature sequences of the V domain in an individual organism depends on

general characteristics of the Ab genes for a species and on the prior experience of the individual

including pathogen exposures. We previously determined the immunome (adaptive immunome

receptor repertoire) comprising Ab sequences for three healthy human blood donors using very

deep next-generation sequencing (NGS) (Soto, Bombardi, et al. 2019). The Ab sequences of this

dataset either cover the full variable domain or start midway into the FR region.

The analysis of human Ab sequences usually comprises the partitioning into V, D, and J gene-

encoded domains, and the determination of the FR and CDR as well as somatic mutations. Various

computational tools are available to assign inferred genes and domains to portions of Ab sequences

by making species-specific germline gene calls (Ye et al. 2013; Bolotin et al. 2015; Russ, Ho, and

Longo 2015; Xihao Hu et al. 2018; Brochet, M.-P. Lefranc, and Giudicelli 2008; Gaëta et al.

2007). Germline genes also may vary in individuals and ethnic subgroups, potentially biasing the

maturation process in ways that may be of clinical relevance (Brovkina et al. 2018). The increasing

availability of large immunome datasets (Soto, Bombardi, et al. 2019; DeWitt et al. 2016; B.

Briney et al. 2019; Corrie et al. 2018; Kovaltsuk et al. 2018) was leveraged to create a position- and

gene-specific scoring matrix (PGSSM) for datasets in order to describe the human Ab sequence

space. For this study we used the sequencing dataset from the Soto et al (Soto, Bombardi, et al.

2019). dataset composed of the antibody sequencing from the blood compartment of three healthy

human donors. The PGSSMs were derived from this dataset and consisted of 326 million unique

antibody sequences. The PGSSM was used to model the single nucleotide frequencies (SNFs) per

position in the germline gene, allowing us the estimation of similarity of an Ab sequence to a given

immunome repertoire collection. SNFs can arise from different sources such as: allelic differences,

hypermutation, or sequencing errors. The method developed in this study attempts to capture
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frequencies caused by hypermutations by grouping all SNFs to their respective germline gene. The

size of immune repertoire dataset ensures that any errors that arise from sequencing are minimized.

Our PGSSMs are germline gene-specific (Sheng et al. 2017) for templated regions, and length-

dependent for the heavy chain complementarity-determining region three (CDRH3). This approach

allows us to model SNFs that exclude insertions, but include non-templated (N) and palindromic

(P) nucleotide additions that bracket the CDR3. This feature enables us to derive the nucleotide

sequence that maximizes the nucleotide frequencies in the PGSSM model so that the resulting

nucleotide has a high human likeness. In this study, we attributed each optimized nucleotide

sequence with a score for the variable (V) and joining (J) domain (PGSSMVJ) and characterized

the properties of the PGSSMVJ. We show that the PGSSMVJ represents a similarity measure

between an amino acid sequence and a given immune repertoire. Thus, the PGSSMVJ could in

principle be used to engineer an antibody sequence to make it more human-like in the future

(Olimpieri, Marcatili, and Tramontano 2015).

Methods for detecting human-likeness in antibody amino acid sequences support the screening

and engineering of antibodies with immunogenic effects, which tend to reduce the efficacy of Abs in

a clinical setting. The H-Score method to estimate human-likeness developed by Abhinadan et al.

in 2007 was based on pairwise sequence identity calculations (Abhinandan and Martin 2007). The

method evolved by replacing pairwise sequence calculations with Basic Local Alignment Search

Tool (BLAST) databases. The resulting T20 score was also derived from a dataset of about 38,700

sequences (Gao et al. 2013). To take germline gene family specificity of immunogenic effects into

account, the germline gene aware G-Score was developed (Thullier et al. 2010). Seeliger et al

(Seeliger 2013). demonstrated the usefulness of a heuristic scoring function to increase human-

likeness and reduce immunogenic effects. The heuristic scoring function is capable of suggesting

mutations to reduce immunogenicity and increase human-likeness based on a pairwise probabilistic

model.

The Human String Content (HSC) is an alternative method to decrease immunogenic effects

by increasing the germline similarity to 9-mer fragments of germline genes in order to reduce the

class II MHC binding affinity (Lazar et al. 2007). The HSC has successfully been combined with

structure-based antibody design to produce humanized antibodies with high affinity (Choi et al.

2015). The methods H-Score, T20 and the heuristic scoring function have been developed from

small amino acid sequence datasets of several thousand sequences. Recent advances of deep-learning

methods enabled Wollacott et al. to precisely capture human-likeness of antibody sequences using

a Long-Short-Term-Memory (LSTM) model trained on 25,000 sequences (Wollacott et al. 2019).

Human likeness scores are usually derived from small datasets, and are primarily concerned with

the question of how to separate human from non-human antibodies instead of developing a sequence

model that explains how an Ab can emerge from a repertoire.

In this study, we developed the algorithm IgReconstruct, which draws conclusions about Ab

human-likeness that are distinctly different from other methods. Firstly, our method is based

on single nucleotide frequencies. Secondly, to estimate the similarity of a target Ab amino acid
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sequence to a given repertoire, a germline gene rearrangement tailored to the nucleotide frequency

observations made in the repertoire is generated. Thirdly, the target Ab amino acid sequence is

back-translated to the nucleotide sequence to allow a fine-grained comparison with the observed

immune repertoire nucleotide frequencies. IgReconstruct scales well with large repertoires consisting

of hundreds of millions of sequences, and will be useful for computational antibody engineering.

6.2 Results

We calculated position- and gene-specific PGSSM matrices (Figure 11.1) from a publicly available

human immunome repertoire of 326 million antibody Ab sequences (Soto, Bombardi, et al. 2019).

The PGSSM matrices encode the observed single nucleotide frequencies in the repertoire. The

PGSSM matrices were used to calculate the PGSSMVJ score (Figure 9, Equation 2) for any given

antibody sequence, which essentially represents the similarity of a given antibody sequence to

the immunome repertoire. We then curated a set of in total of 181,355 GenBank (Benson et al.

2013) sequences from 20 different species (see Material and Methods for a sequence breakdown by

species). To measure the performance of our PGSSM method with an independent dataset, we

used the GenBank sequences and estimated the similarity to the human immunome repertoire of

326 million naturally occurring antibody Ab sequences.

Human Likeness was assessed by calculating the Z-Score of the PGSSMVJ score (Equation 3),

for which we used the distribution of PGSSMVJ scores of human GenBank sequences as reference.

As expected, human GenBank antibody sequences were most similar to the antibody sequences in

our human immunome repertoire.

We demonstrated that our statistical PGSSM model captures a human-like antibody sequence

space by recovering the human-like nucleotide sequences. We further were able to calculate a score

of the V and J gene-encoded regions to quantify the similarity of an antibody sequence to a given

immunome repertoire. The PGSSMVJ score is the average of SNFs in the V and J gene-encoded

region of the optimized sequence (Equation 2). We successfully used the score to distinguish

between human, non-human, and engineered antibodies. We assessed the scores for 475 antibodies

in clinical trials or approved by the U.S. Food and Drug Administration (FDA), indicating a high

level of human likeness, but distinguishable difference from natural human antibody sequences.

6.2.1 Processing of immune repertoire data and counting SNFs in V, D, J gene-

encoded, and CDR3

Our NGS sequence dataset was annotated with IgBLASTn results comprising germline gene align-

ments (Figure 9, A1). We only considered Ab sequences without sequencing ambiguity that contain

nonstandard nucleotide letters. A collection of 196,755,218 heavy chain and 128,815,779 light chain

sequences was used to create PGSSMs (325,570,997 in total). The dataset was processed with Ig-

BLASTn and inferred germline gene alignments were assigned. We generated a full-length PGSSM

for each of the 287 VH, 79 VK, 72 VL, 37 D, 13 JH, 9 JK, and 9 JL germline gene alleles. In-frame

(+open reading frame (ORF)) germline reference sequences that are pre-annotated with CDR and
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Figure 9: Flowchart of scoring Ab sequences with IgReconstruct. The algorithm can be
divided into three tasks (a-c) with three steps (1–3) in each task. (a) The IgReconstruct algorithm
starts with the generation of Position and Gene Specific Scoring Matrices (PGSSM) for the variable
(V, light blue bars), diversity (D, red bars), joining (J, green bars) and CDR3 (dark blue bars)
regions of the Ab nucleotide sequence (yellow bars). In this study, nucleotide sequences were
obtained from a large immunome repertoire dataset. (b) For a given amino acid Ab sequence
(purple bars), the V, D, and J germline gene rearrangement is determined from the alignment to
the PGSSMs by creating a hierarchic tree of aligned nucleotide PSSMs. (c) The highest scoring
rearrangement then is mapped to germline gene-dependent V, D, J and germline gene independent
CDR3 PSSMs. The resulting nucleotide model is used to determine a back-translation which
maximizes the observed nucleotide frequencies in the repertoire. The V and J regions of back-
translated sequence is then scored (PGSSMVJ) after the observed nucleotide frequencies in the
repertoire

FR start positions were pulled from IMGT/GENE-DB (Giudicelli, Chaume, and M.-P. Lefranc

2005). Each of the matrices ultimately contains the frequency of observed G, A, T or C nucleotides

for each position in each human germline gene (SNF). Here, we defined the CDR3 sequence as the

sequence that starts with the first untemplated position after the V germline gene-encoded align-

ment and stops one position before the first J germline gene-encoded residue. For each observed

heavy chain CDR3 loop (CDRH3) length, we created a germline gene independent PGSSM.

6.2.2 Calculation of PGSSMs from single nucleotide counts

To generate the PGSSMs, we first counted nucleotide observations in each germline gene as well

as CDR3 loops. We extracted the V, D, and J gene alignments for each sequence as well as the

untemplated region of the CDR3 loops. For some light chains and heavy chain sequences with high

mutation frequency, no unambiguous D gene assignment was possible, whereas V, and J alignments

are present for all analyzed sequences. Here, we refer to this D gene segment uncertainty with (D).
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IgBLASTn generates alignments that contain in some cases overlaps of a few residues between V,

(D), and J genes. In this case, we prioritized the alignments in the following descending order: V,

J, (D). Each column of a PGSSM matrix corresponds to a nucleotide position in a germline gene.

We then incremented either the G, A, T, C or gap cell in each aligned column of the PGSSM,

avoiding double counts caused by gene overlaps (Figure 9, A2). We converted the observed counts

into frequencies for each column after adding one pseudo-count to each cell, which resembles the

SNFs. In addition to germline gene dependent V, D, and J PGSSMs, we generated germline gene

independent CDR3 PGSSMs for each observed loop-length in the same manner (Figure 9, A3).

6.2.3 BLAST database generation and searches for creating a plausible amino acid

germline gene rearrangement

In order to construct a PGSSM for a given amino acid target Ab sequence, we create a germline

gene rearrangement as the first step (Figure 9, B1). For this purpose, we translated all human nu-

cleotide germline genes using the reference sequences in the ImMunoGeneTics information system®

(IMGT) database (Giudicelli, Chaume, and M.-P. Lefranc 2005) in all reading frames, allowing non-

productive sequences, and generated separate BLAST databases (Stephen F. Altschul et al. 2009)

containing V, D, and J genes while not distinguishing between heavy, kappa, or lambda chains. For

each target Ab amino acid sequence, our algorithm conducts three independent BLAST searches

with e-value thresholds of 20 (V), 100 (D), or 50 (J). The number of alignments was limited to 3

(V), 100 (D), or 10 (J). Word sizes were 4 (V), 2 (D), or 3 (J). BLAST hits were discarded if a

stop codon was observed in the aligned region or if a corresponding PGSSM was not available. The

length and position of the CDR3 is defined by the V, and J germline gene alignments. For each

combination of V, and J BLAST hits, we assigned its distinct CDRH3 PGSSM, which is solely

chosen by the length of the non-templated part of the CDRH3.

6.2.4 Assignment of a plausible V(D)J rearrangement for an amino acid target se-

quence

Our algorithm chooses a plausible V(D)J rearrangement for an amino acid sequence by scoring the

combinations of BLAST hits. First, we create a V-J-D-CDRH3 tree hierarchy in the form of a

nested data structure for each possible V(D)J alignment (Figure 9, B2). We prevented incorrect

alignments from being added to the tree, such as D alignments that were not overlapping with the

CDR3, and J alignments not overlapping with the FR4 region. Both regions were calculated for

each V germline gene dynamically following the IMGT Unique Numbering scheme, (M.-P. Lefranc,

Pommié, Ruiz, et al. 2003; M. P. Lefranc 1997) which encodes the positions of FR and CDR as

fixed positions in gapped germline genes. The pattern [WF]GXG in the J gene-encoded region

marks the end of the CDR3. We also ensured the rearrangements were consistent regarding chain

type (heavy, kappa, or lambda).

Second, to choose a final V(D)J rearrangement from the tree, we rescored all recombinations of

V, (D), and J alignments after trimming all overlapping regions (Figure 9, B3). We calculated the
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BLOSUM62 scores for each alignment after pruning the aligned region from overlaps. Overlapping

alignments were trimmed or kept with the following descending priority: V, J, D. For example, a

D gene alignment overlapping with N residues of a J gene alignment shortens the scoring area of

the D gene alignment by N residues. The remaining V(D)J recombinations then were sorted after

summing the scores of the individual alignments. We discarded all rearrangements but the one

with the highest score. This process does not require D germline gene alignments, since BLAST D

germline genes could not be aligned in about 50% of all cases.

It is important to point out, that the germline gene rearrangement tree is individually generated

for each antibody and depends on the unique SNF of the repertoire. A rearrangement in the tree

is preferred if a compatible and optional CDRH3 PSSM has been found. A CDRH3 PSSM is

compatible if it can bridge the distance between the last aligned V residue and the first J residue.

Hence, the chosen V, J, D, CDRH3 rearrangement is dependent on observed CDRH3 lengths in

the repertoire.

6.2.5 Creation of the final PGSSM model and scoring of an amino acid target se-

quence

We used the V(D)J rearrangement chosen earlier and mapped the aligned amino acids corresponding

to V, (D) or J genes to their nucleotide counterparts. In addition, we assigned one CDR3 PSSM

depending on the length of the loop (Figure 9, C1). We concatenated each V, (D), J and (CDR3)

PGSSM such that overlapping parts were discarded. We again respected the domain priority in

the descending order V, J, D, CDR3 (Figure 9, C2). Despite the important role of the CDRH3

PSSM for back-translation as well as scoring of the germline gene rearrangement, we chose to

not include the untemplated CDRH3 region in the score calculation for two reasons. Firstly, the

germline D gene and CDRH3 PSSMs cannot always be assigned. Success depends on the chain

type and the availability of CDRH3 PSSMs of a certain length, i.e., the CDRH3 must be observed

in the repertoire. Secondly, the CDRH3 PSSM contains all CDRH3 loops of 128,815,779 heavy

chain sequences, solely grouped by length. As a result, we do not expect predictive capabilities to

the PSSM regarding human-likeness (Figure 11.1b), even though it supports the generation of a

back-translated sequence in this region (Figure 11.1a).

We therefore restricted calculation of the PGSSM score to V and J PGSSMs, whereas residues

without assigned V or J PGSSM remain unscored (Equation 2). Mann-Whitney statistics were

used to assess the significance between PGSSMVJ scores of human, non-human Abs and Ab drugs.

To assess the human likeness of the PGSSMVJ score, we calculated the Z-Score using mean

and standard deviation of PGSSMVJ scores obtained for all human GenBank antibody sequences

separated by heavy or light chain type (Equation 3).

6.2.6 Strategy to reconstruct nucleotide sequences from Ab amino acid sequences

The concatenated nucleotide PGSSM (Figure 9, C2 and Figure 11.1) aligned and cropped to fit the

amino acid target sequence was used to calculate the PGSSMVJ score. Naturally, this approach
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also can deduce a nucleotide sequence that maximizes the SNFs (Figure 9, C3). Such a nucleotide

back-translation is codon-optimized and exhibits the highest possible similarity to the PGSSM and

its underlying immune repertoire data. Creating an optimized nucleotide sequence eliminates a

potential sequence bias of reported nucleotide sequence and increases the robustness of our method

in scenarios where only amino acid sequences are available. This situation occurs frequently in

artificial computational protein Ab design in which typically the design process is performed without

regard to germline gene rearrangements or nucleotide sequences (Adolf-Bryfogle, Kalyuzhniy, et al.

2018; Sircar, E. T. Kim, and Gray 2009). The generation of our nucleotide sequence comprises

two steps. First, we interrogated for each amino acid the aligned nucleotide PGSSM and chose the

triplet with the smallest hamming distance to the wild-type germline gene. For the untemplated

CDRH3, we skipped this step. Second, if multiple triplets after step one are available, we chose the

triplet, which maximizes the cumulative SNF.

Figure 9 depicts the complete strategy from amino acid Ab target sequence to nucleotide re-

construction. This method presents per-nucleotide frequency statistics for almost the complete

Ab variable domain, including the junction areas of the CDR3 loop and the loop itself. The few

exceptions to this assignment are N and C termini without alignments, short light chain junctions,

or residues encoded by insertions in the templated regions. Figure 11.1 shows the complete PGSSM

rearrangement of the heavy chain with GenBank accession number EU620063.

6.2.7 The PGSSMVJ acts as a human likeness score in the context of immunomes from

healthy humans

We calculated the PGSSMVJ (Equation 2) for all reconstructed nucleotide sequences in the context

of three human healthy immunome repertoires (Figure 10b). The scores for human heavy and light

sequences were significantly higher with 93.6% ± 3.5% (heavy chain) and 93.7 ± 2.9% (light chain),

respectively, than the scores for other species.

The non-human primates Callithrix jacchus (91.1 ± 2.2%/90.9 ± 2.9%), Chlorocebus sabaeus

(89.1 ± 2.4%/91.5 ± 2.7%) and Macaca fascicularis (89.2 ± 2.4%/91.7 ± 2.1%) scored significantly

lower with P values from a Mann-Whitney test ! 10-7. The lowest scoring species include Gallus

gallus (Red junglefowl) and Salmo salar (Atlantic salmon) with 78.6 ± 1.9%/82.0 ± 1.5% and 79.3%

± 3.7%/N.A (heavy chain/light chain). The lower bound of PGSSMVJ as well as sequence recovery

is constrained by the chance to guess nucleotides of a fixed amino acid sequence correctly, which

is approximately 73.68% (Appendix). Scores around the value of 73.68% are strong indicators for

sequence alterations such as engineered sequences.

6.2.8 The PGSSMVJ score can be used to identify engineered and atypical antibodies

Some sequences of the species Homo sapiens are outliers in that they score significantly lower

than the 95% confidence interval. For Abs annotated with Mus musculus, a number of high-

scoring outliers outside the 95% confidence interval occurred (Figure 11.1b). These findings can be

attributed to engineered or other non-natural Abs. For the case of Mus musculus, sequences often
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Figure 10: Native nucleotide sequence recovery and PGSSMVJ score for Ab sequences
taken from GenBank. Amino acid sequences were downloaded from GenBank (Benson et al.
2013) and then back-translated to nucleotide sequences using IgReconstruct. (a) The sequence re-
covery rate after back-translation with IgReconstruct is highest for human (H. sapiens) sequences
when compared to that for sequences from non-human primates (C. jacchus, C. sabaeus, M. fascicu-
laris), mouse (M. musculus), rat (R. norvegicus) or rabbit (O. cuniculus). (b) The PGSSMVJ score
for the same set of back-translated nucleotide sequences also scores highest for amino acid sequences
derived from humans. Light colors (left bar in each subplot) represent light chain sequences, dark
colors (right bar in each subplot) represent heavy chain sequences. A Mann-Whitney test shows
statistically significant (‹, p ! 10-7) recovery rates and scores for human sequences compared to
the other species.

can be associated to studies involving transgenic mice with human Ab loci (Sok et al. 2016; Longo

et al. 2017; Suárez et al. 2006; M. Tian et al. 2016; Protopapadakis et al. 2005).

A large number of low scoring human sequences are annotated with patents related to engineer-

ing and or animal Ab sources (US20050002930A1, JP2007524605A, EP2150565A2) often directed to

human cancer and immune disorder treatments (JP2009221224A, EP2150565A2, WO2005063299A3,

WO2004085474A2) like prostate cancer (WO0173032A2, JP2003528591A), or patents evolving in

the vicinity of anti-human Abs (WO2005067477A3). Another possible explanation for the low scor-

ing GenBank entries are their annotations designating them as unpublished or having incomplete

publication records (e.g., GenBank IDs: EU620060, FW576479, DQ187727). Our observations

match previously reported concerns of incorrectly annotated Abs (Martin and Rees 2016).

Heavy chain/light chain sequences of structures from the Protein Database (PDB) (Berman

et al. 2000) with IDs 1GAF (79.9%/86.3%), 1AXS (80%/83.9%), 1BBJ (81.9%/84.7%) 4UOK

(88.0%/82.8%), and 4UOM (80.7%/90.0%) were scored. These PDBs were reported previously as

incorrectly annotated with human origin (Martin and Rees 2016). The low PGSSMVJ scores (<1σ

of GenBank sequences assigned as human) also underlines the probable non-human origin of all

heavy chains and most light chains.

One shotgun sequenced human light chain of the transcriptome with ORF expressed sequence

tags described in 2000 (Dias Neto et al. 2000) exhibits two insertions and a region of five deletions,

dropping the sequence score to 77.16%. Other examples for sequences with presumably human
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background but atypical mutation patterns are broadly neutralizing HIV Abs (Xueling Wu, T.

Zhou, et al. 2011; Liao et al. 2013) like VRC01 and its derivatives that occurred after long-term lin-

eage evolution (Xueling Wu, Zhang, et al. 2015). These highly matured Abs can indicate sensitivity

to the progress in sequencing methods. Low-scoring HIV mAbs may highlight the challenge for

the human system to generate the right combination of rare mutations against the highly variable

sequences of HIV envelope protein (Bhatti, Usman, and Kandi 2016).

Another example of Abs with rare mutations are fetal lymphocyte progenitors, (Kolar et al.

2004) highly mutated Abs of tonsillar IgD-cells, (Seifert et al. 2009) or expanded multiple sclerosis

associated lineages in immortalized B cells (Fraussen et al. 2013). Some of these Abs are related

to tissue location or to autoimmune diseases, and might therefore not be typical of Abs found

circulating in the peripheral blood, which is the current context of our Ab analysis method.

6.2.9 The PGSSMVJ score correlates with the phylogenetic distance to human V

germline genes

We further interrogated the PGSSMVJ properties and estimated their correlation with the phyloge-

netic distances between human and non-human species. The phylogenetic distance was calculated

as the sum of the branch length between the two closest germline genes of the same class (heavy,

kappa, lambda) of two species. We calculated a phylogenetic tree between the available IMGT ref-

erence germline sequences. Nucleotide frequencies in V and J gene-encoded domains are on average

low in number and guide the overall sequence space of a species. This germline gene preference of

nucleotides is directly captured in the PGSSM frequencies and ultimately in the PGSSMVJ score.

The average PGSSMVJ score for all studied sequences is plotted against the phylogenetic dis-

tance from the assigned human V gene to its closest V gene of the organism of origin separately for

heavy chain (Figure 11a) and light chain V genes (Figure 11b). GenBank sequences of the species

Mus musculus are frequently the subject of lineage evolution and of engineering studies, and such

sequences exhibit highly artificial mutation patterns, which causes a low correlation between phylo-

genetic distance and score. We therefore separated Mus musculus sequences and highlighted these

in red color. The correlation of heavy chains remains less affected due to the higher number of

datapoints.

Single nucleotide frequencies in Abs roughly recapitulate phylogenetic distances. One can thus

use the PGSSMVJ to confirm or question the Ab species annotation. The PGSSMVJ therefore can

be used as a measure of the degree of recombinant engineering with known phylogenetic relations.

6.2.10 PGSSMVJ allows for the recovery of nucleotide sequences for human Abs

We performed a nucleotide sequence recovery benchmark to demonstrate that triplet indepen-

dent observations of single nucleotide frequencies can approximate the human Ab sequence space.

181,335 GenBank sequences of 20 different species were translated with IgBLASTn (Ye et al. 2013).

The nucleotide sequence was optimized by maximizing the PGSSMVJ score.

Back-translation recovery rates peak for human sequences, with an average heavy and light chain
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Figure 11: The PGSSMVJ score approximates the evolutionary distance from human
immunoglobulin germline genes to immunoglobulin germline genes belonging to 20
species. Amino acid sequences were downloaded from GenBank (Benson et al. 2013) and then
back-translated to nucleotide sequences using IgReconstruct. (a) The average PGSSMVJ scores
for heavy chain Ab sequences or (b) light chain Ab sequences are plotted against the phylogenetic
distance from the assigned human germline gene using IgReconstruct (see Methods section for
details). The PGSSMVJ scores correlate with the phylogenetic distance with a Spearman rank
correlation coefficient of ρ = -0.83 (P = 2e-41, α = 0.01) for heavy chain Ab sequences and ρ =
-0.83 (P = 2e-37, α = 0.01) for light chains Ab sequences. (c) Sequence recovery between native
heavy chain sequences and back-translated nucleotide sequences, made using IgReconstruct, gave a
Spearman rank correlation coefficient of ρ = 0.92 (P = 0, α = 0.01). (d) Sequence recovery between
native light chain sequences and back-translated nucleotide sequences using IgReconstruct gave a
Mann-Whitney correlation coefficient of ρ = 0.86 (P = 0, α = 0.01). Mouse (M. musculus) Abs
engineered to be human-like are colored red (top right corner of subplot a and b)

recovery of 95.9 ± 2.6% or 97.2 ± 2.8%, respectively (Figure 10a, Figure 11.1a). As expected, when

we leveraged the human PGSSMVJ score to determine the most likely human nucleotide sequence

for Abs of different species, correct nucleotide identification dropped, labeling these Abs as non-

human. For non-human primates, recovery rates were Callithrix jacchus (93.5 ± 1.5%/93.3 ±

2.2%), Chlorocebus sabaeus (93.4 ± 1.9%/94.5 ± 2.7%) and Macaca fascicularis (92.8 ± 1.9%/94.7

± 1.9%). The lowest scoring species included Gallus (Red junglefowl) and Salmo salar (Atlantic

salmon) with heavy/light chain scores as low as 82.7 ± 1.1%/82.9 ± 1.4% and 82.6 ± 2.2%/N.A. A

comparison of PGSSMVJ scores with sequence recovery rates (Figure 10) shows striking similarity,

suggesting that the PGSSMVJ score is a predictor of sequence recovery. Figure 11.1 depicts the

similarity of sequence recovery (a) with PGSSMVJ score (b) for all 20 species.
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6.2.11 The sequence recovery frequency strongly correlates with the PGSSMVJ

A third property of PGSSMVJ is the ability to estimate the nucleotide sequence recovery rate. We

calculated the correlation between average nucleotide mutation frequency (PGSSMVJ score) with

the sequence identities determined in our sequence recovery benchmark. The recovered sequence is

of importance to determine the minimal distance to its context for Ab-dataset comparisons. With

a Mann-Whitney correlation coefficient of R = 0.92, P = 0 for heavy chains (Figure 11c) and R

= 0.86, P = 0 for light chains (Figure 11d), the PGSSMVJ is approximately the sequence recovery

rate for human sequences ± 5%.

6.2.12 Ab therapeutics in context of the Ab repertoire of healthy humans

We used 475 unique Abs that are either approved by the U.S. FDA or are in clinical trials (Jain,

Sun, et al. 2017; Poiron 2021). All biologics were either annotated with the INN designations

(Parren, Paul J Carter, and Andreas Plückthun 2017) HU, ZU, XI, and XIZU as reported by Jain

et al (Jain, Sun, et al. 2017). or annotated with Human, Humanized, Chimeric, and Mouse in

case of antibodies taken from IMGT/mAb-DB (Poiron 2021). For this study, we chose appropriate

labels for HU (Human), ZU (Humanized), XI (Chimeric), and XIZU (Humanized Chimeric Hybrid)

to match the designations used in IMGT/mAb-DB. The sequences were treated the same way

independent from its labeling in the algorithm. We investigated the Ab sequences in the context of

our three individual immunome repertoires and in the context of one large merged repertoire. For

Z-Score calculation, mean and standard deviation (σ) from GenBank sequences (Figure 10b) were

used (Equation 3).

We compared the Z-Score of PGSSMVJ either grouped by clinical stage (Figure 14) or source

subsystem, which indicates the origin and type of engineering of the biologics (Figure 13) (Parren,

Paul J Carter, and Andreas Plückthun 2017). Drugs with a human source scored highly similar to

GenBank sequences (Z-Score around 0), followed by humanized, chimeric and murine Abs. This

trend was consistent for both drug datasets processed. Scores of sequences from mice still score in

a similar range of GenBank Mus musculus sequences. This finding shows that antibody sequences

from IMGT/mAb-DB with a murine background remain distinguishable from biologics with human

origin. On the other hand, humanized and chimeric sequences populate a scoring range closer to

human and non-human primate sequences. Pooling drugs by their clinical status shows that drugs

in Phase 2 to 3 clinical trials and approved Abs have an average Z-score of -0.56 ± 1.05 (Phase 2),

-0.77 ± 1.35 (Phase 3), and -1.18 ± 1.45 (Approved). On average, human drugs appear human-like

with a Z-Score greater than -2, caused by the high number of human (57) and humanized (68)

drugs compared to 13 chimeric. The low number of available sequences aggravates the challenge

to draw reliable conclusions. The PGSSMVJ indicates that there is a non-human sequence space

compatible with the human system. However, we hereby choose a Z-Score cutoff of -2 or greater

to roughly group the majority of clinical stage antibodies (Figure 14, horizontal red line). For

our next experiment, we used this cutoff to distinguish between biologics/human antibodies, and

non-human antibodies.
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To further investigate the role of public and private repertoires on the eligibility of Abs as

drugs, we calculated PGSSMVJ scores using each of the three individual immunome repertoires.

The majority of staged antibodies exhibit a cutoff of -2 or greater (Figure 14). Hence, we roughly

defined any of the three scores as human-like as long as the Z-Score of the PGSSMVJ was greater

or equal to -2. Figure 15 depicts the number of human-like scores for non-human (orange), human

GenBank Abs (blue), and biologics (green), separated by light chains (a) and heavy chains (b).

We observed high agreement between the three scores for human and therapeutic Abs. We also

observed high agreement rates between all three repertoires, including 70.0% of all biologics and

92.3% of all human GenBank heavy chain sequences and 81.8% of all biologics and 94.6% of all

human GenBank light chain sequences. In contrast only 8.8% light chain and 8.8% heavy chain

sequences of biologics and 1.3% of light chain biologics and 2.6% of heavy chain human GenBank

sequences were scored as non-human in all three cases.

6.2.13 Performance and robustness

The initial release of our algorithm requires amino acid Ab sequences that cover at least a fraction of

the V and J gene-encoded region, which can be successfully aligned via BLAST. The algorithm then

places optional D PGSSMs as well germline gene CDR3 loop PGSSMs in the appropriate locations

if available. Templated regions as well CDR3 junctions are modeled statistically; insertions are

represented in the statistical SNF model as gaps.

We compared the germline gene families with the top five germline gene families assigned

by IgBLASTp, the IgBLAST tool for protein sequences (Table 1). Our method reliably assigns

germline V genes to our sequences when IgBLASTp is taken as reference.

6.2.14 Output

We provide a webservice called IgReconstruct (http://meilerlab.org/index.php/servers/IgReconstruct),

which takes amino acid sequences of Ab variable domain in FASTA format as input. The output

is presented graphically in a downloadable PDF file (Figure 12), and a spreadsheet with equivalent

machine-readable information. The PDF report presents the query amino acid sequence aligned to

its reconstructed nucleotide sequence, V, (D), and J germline gene alignments. The germline gene

alignments indicate sequence identity with a dot and residue type replacements with a one-letter

code. The variable region is annotated in the form of branches for the predicted IMGT-CDR1-3.

V(D)J domains are colored blue, red, and green and match the colors used in the IgReconstruct

flowchart (Figure 9). In case of overlapping alignments, the region is colored according to the

hierarchy of the rearrangement tree.

6.3 Discussion

We have shown that statistics of SNFs of the variable region using large human immunome reper-

toires are capable of modeling the human Ab sequence space by predicting nucleotide sequences

from amino acid sequences (Figure 10). With more and more large NGS nucleotide sequence
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Figure 12: Alignment report generated by IgReconstruct. An example alignment re-
port for the human heavy chain Ab sequence with the GenBank accession number
AF044419. Reports generated by IgReconstruct provide information on the query amino acid se-
quence (first row), the back-translation (second row) and alignments to the germline gene sequences
(third and following row if applicable). The color code blue (V gene), red (D gene), and green (J
gene) refers to the aligned germline PSSMs which were used to create the back-translated sequence.
Columns without color are not aligned to a specific germline gene. Dots represent the germline
sequence; mutations are shown using the one-letter amino acid code. CDR loops 1 to 3 are inferred
based on alignments to the V and J germline genes. The numbers on top of the amino acid sequence
was implemented using the IMGT numbering scheme (M. P. Lefranc 1998). Non-templated regions
at the V-D and D-J junctions flanking the D gene alignment (red) are covered by the CDRH3
PSSM, but are not visualized in the color scheme. The PDF report gives a quick insight into the
nature of the germline gene rearrangement which is used to generate the back-translation and the
human-likeness score

datasets becoming publicly available, (Soto, Bombardi, et al. 2019; DeWitt et al. 2016; B. Briney

et al. 2019; Corrie et al. 2018; Kovaltsuk et al. 2018) IgReconstruct resembles an approach to link

the nucleotide sequence space with resources of Abs where primarily amino acid information is

available, like de-novo computational models or structural databases (Berman et al. 2000; Dunbar

et al. 2014). Approaches of structural modeling of Abs (Adolf-Bryfogle, Kalyuzhniy, et al. 2018)

have been made to include amino acid sequence profiles of V and CDR3. IgReconstruct may pave

the way to completely model the germline gene rearrangement of an amino acid sequence at the

nucleotide level and provide full access to large-scale human immunome repertoire statistics.

We demonstrated that the PGSSMVJ score, derived from the SNF statistics of an individual

Ab, is an appropriate distance measure of a particular chosen Ab to a nucleotide immunome

repertoire or arbitrary large set of sequences (context). For this, we fulfilled the requirement to find

the minimal distance by suggesting the most probable nucleotide sequence for a given repertoire

(context-dependent). The PGSSMVJ then can be used to estimate the likelihood to observe a

context-dependent nucleotide sequence in the dataset. Finally, the PGSSMVJ strongly correlates
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with the phylogenetic distance between human and non-human germline genes (Figure 11). These

combined properties allowed us to estimate the similarity of a variable domain to a dataset and to

interpret it as a distance value. For example, further studies might conclude that infections like

HIV exhibit a greater distance to the human sequence space, which results in less effective immune

responses.

A current shortcoming of our method is that our CDRH3 statistics, which include the heavy

chain junctions, are only length dependent. As a result, the major domain that diversifies an

immunome repertoire (Glanville et al. 2009; Saada et al. 2007; Warren et al. 2011) is merged into

relatively small bins, disregarding the sequence similarity and function. As a result, our PGSSMVJ

score is currently exclusively calculated from V and J gene templated regions. We do not anticipate

or observe sufficient performance using solely CDRH3 PSSMs to distinguish between non-human,

human, and biologics only using CDRH3 sequences due to high variability (Figure 11.1). However,

CDRH3 PSSMs can be used to support the back-translation of amino acid sequences to nucleotides

(Figure 11.1).

We evaluated Ab sequences from 20 species and were able to distinguish sequence origins be-

tween human primates, non-human primates and other species reliably. While doing this, we found

that the prior species annotation in deposited sequences often was not reliable. The signal that

allows us to distinguish between human vs. non-human persisted while studying the IgReconstruct

results of clinical-stage and FDA-approved Abs (Figure 13). A non-human source could reliably be

detected in murine, chimeric, humanized chimeric and humanized Abs. Due to the higher count

of therapeutic Abs with a human sequence background, the combined population of sequences

scores at the lower end of “human-like” (Figure 14). A more comprehensive therapeutic Ab and

immunome repertoire relationship might be developed in the future, when our statistical Ab model

incorporates a more sophisticated CDRH3 model. The results indicate that there is a non-human

sequence space, which is compatible with human biology (i.e., is associated with a manageable

frequency of adverse effects). Abs from that space can be used as therapeutics. These sequences

remain unlike the repertoire in our study with low human likeness scores, despite humanization

efforts. However, the majority of Z-Scores of antibody biologics in clinical phases appears to be -2

or greater (red horizontal line). For our next experiment, we used this cutoff to distinguish between

biologics/human antibodies, and non-human antibodies.

Krawczyk et al. used amino acid alignments of variable and CDR regions to show that sequences

with high similarity to therapeutic Abs can emerge in the human antibody repertoire, whereas

chimeric and humanized antibodies tend to be slightly more dissimilar (Krawczyk et al. 2019).

This observation could be reproduced using SNFs mapped onto germline genes instead of amino

acid sequence alignments. In addition, a Z-score cutoff of -2 was chosen, which enables us to

separate between non-human and human as well as biologics. The ability to separate drugs from

non-human antibodies is hypothesized to support antibody drug development in the future.

The human-likeness score in this study is distinctly different from previously published meth-

ods, where typically the ability of the separation of real human and non-human sequences was
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Figure 13: The PGSSMVJ score ranks human Abs highest when compared to either
chimeric or mouse Abs used as biologics. Ab sequences for biologics were obtained from
IMGT/mAb-DB (Poiron 2021) separated by heavy chain (blue) and light chain (orange). All
PGSSMVJ scores were transformed into Z-scores and ranked within each group. (a) Biologics ana-
lyzed from the Jain et al (Jain, Sun, et al. 2017). study show that human Abs rank highest when
compared to either chimeric or mouse Abs. Humanized Abs also rank higher than either chimeric
or mouse Abs. (b) Biologics from the IMGT monoclonal Ab database show a similar picture, with
human sequences scoring higher than biologics with a non-human origin. Approved Biologics are
distinguishable from human antibodies. Mann-Whitney significance tests show statistical signifi-
cance (p ! 10-7) and are labeled with a star (*)

Figure 14: PGSSMVJ score cannot discrim-
inate between clinical stage and FDA-
approved biologics. The Z-Scores of heavy
chains (blue) and light chains (orange) were calcu-
lated using the distribution of GenBank sequences
annotated as human. PGSSMVJ scores of bio-
logics from Jain et al., (Jain, Sun, et al. 2017)
grouped by their clinical phase, show an overall
picture of human-like sequences (within one stan-
dard deviation of human GenBank sequences) and
a smaller population of low scoring sequences. A
Mann-Whitney test between clinical trial Phase
2, 3 and FDA-approved Abs revealed no signifi-
cance (ns) to very weak statistical significance (p
<5 x 10-2, *)

being maximized. Recent advances in deep-learning have shown excellent classification capabilities

(Wollacott et al. 2019). Here, we devised a method that generates a nucleotide frequency model

based on repertoire observations, which represents the plausibility that an Ab sequence arises from

a particular repertoire. The results of a previous study could be confirmed, which has shown that

biologics can be distinguished from human sequences (Krawczyk et al. 2019). On the one hand, this

study does not aim to maximize the separation between truly human and non-human sequences,

resulting in less clear boundaries between human and, for example, macaque sequences (Thullier

et al. 2010). On the other hand, the approach could hypothetically be used to capture the bio-

logically relevant question of the immunogenicity of an Ab, which cannot strictly be answered by

separating human from non-human sequences. Consequently, a slightly worse separation perfor-

mance compared to the deep-learning approach of Wollacott et al. could be observed with an Area
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Figure 15: Scoring medically relevant Abs using sequencing data from three individual
human immunome repertoires. PGSSMVJ scores of biologics (Jain et al.47) versus human and
non-human Ab sequences from GenBank. All Ab sequences were scored using sequencing data from
three separate immunome repertoires (Soto, Bombardi, et al. 2019). Z-Scores of the PGSSMVJ was
calculated using GenBank sequences annotated as human. A binary score was used to indicate
if an amino acid sequence was human-like. A score of 1 indicates a human-like sequence with a
Z-score of -2 or greater. A score of 0 indicates a non-human-like sequence with a Z-score less than
-2 (see human data in Figure 14 for Z-score cutoff value). Each sequence was scored against each
repertoire and summed up. Thus, a maximum number of three scores can be achieved for any
individual sequence which signifies that the sequence is human-like according to comparison with
all three individual repertoires. Using the cutoff of -2 allows to roughly separate between non-
human (orange), human (blue) GenBank sequences and biologics (green). In case of light chains
(a) the cutoff of -2 classifies a larger amount ( 30%) of non-human antibodies as human than in
the case of heavy chains ( 12%) (b)

Under the Curve (AUC) of 0.94 compared to 0.97 (Figure S6). At the same time, IgReconstruct is

able to leverage the substantial sizes of the largest repertoires with hundreds of million to billion

sequences like the Observed Antibody Space (Kovaltsuk et al. 2018) by using nucleotide germline

gene rearrangements as reference, as opposed to using smaller datasets in the ranges of ten thou-

sands of sequences of previous methods (Abhinandan and Martin 2007; Gao et al. 2013; Thullier

et al. 2010; Seeliger 2013; Wollacott et al. 2019). IgReconstruct provides an alternative to extrapo-

lating sequence landscapes from a small representative set of sequences in favor of leveraging large

repertoires to its full extent. The definition of human-likeness in this study is a novel approach

with the potential to support Ab engineering and explain immunogenic effects in future studies.

6.4 Materials and methods

We developed the PGSSM method and supplementary tools for repertoire processing in Python-

3.7.1. We provide a webserver that generates germline gene rearrangements for amino acid Ab

sequences in text or PDF form, and numeric information in a spreadsheet format.

6.4.1 Curation of sequences from three sources

We curated a set of 181,355 Ab sequence from GenBank (Benson et al. 2013). 119,827 heavy chains

Ab were from the following species: Bos indicus (5), Bos taurus (1,520), Callithrix jacchus (328),
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Camelus dromedarius (388), Canis lupus familiaris (253), Chlorocebus sabaeus (82), Equus cabal-

lus (427), Felis catus (94), Gallus gallus (157), Homo sapiens (76,728), Lama glama (499), Macaca

fascicularis (3,592), Mus musculus (27,863), Oryctolagus cuniculus (1,253), Ovis aries (1719), Rat-

tus norvegicus (544), Salmo salar (109), Sus scrofa (4029), Vicugna pacos (237). 61,528 light chain

sequences were from the species Anas platyrhynchos (298), Bos indicus (191), Bos taurus (353), Cal-

lithrix jacchus (874), Camelus dromedarius (32), Canis lupus familiaris (417), Chlorocebus sabaeus

(74), Equus caballus (319), Felis catus (76), Gallus (301), Homo sapiens (41,347), Lama glama (15),

Macaca fascicularis (673), Mus musculus (13,249), Oryctolagus cuniculus (1,099), Ovis aries (583),

Rattus norvegicus (299), and Sus scrofa (1,328). We applied our method on the translated variable

domains reported by IgBLASTn. To estimate the performance, we calculated the nucleotide se-

quence identity of the complete variable region and compared the germline gene families assigned

with our method with the results from IgBLASTp for protein sequences.

In addition to GenBank, we used a dataset of 137 Ab drugs (Jain, Sun, et al. 2017) and extracted

382 Abs for clinical use from IMGT/mAb-DB (Poiron 2021). In total, we had sequences for 475

unique Ab drugs available for analysis.

6.4.2 Calculation of PGSSMVJ scores and assessment of human-likeness

We developed a method that creates position- and gene-dependent scoring matrices for a given

immunome repertoire (Figure 9). Our PGSSMVJ score assesses the similarity of any given amino

acid antibody sequence to the repertoire by averaging the observed single nucleotide frequencies

over the Ab V and J gene-encoded regions. The single nucleotide frequencies were looked up in the

PGSSM matrix that was generated for each antibody individually (Figure 11.1). Equation 2 was

used to calculate the similarity score using a specific sequence and PGSSM matrix.

Equation 2 Calculation of the PGSSMVJ score for the variable and joining region calculated as

an average of the observed single nucleotide frequencies

∆Etotal “

N
ÿ

i

PGSSMV Jpresi, resnq{N (2)

N:= Sequence Length

resi:= Residue Position i

resn:= Residue type at position i P {G, A, T, C}

The Z-Score of the PGSSMVJ score was used to estimate the human likeness of an antibody. For

Z-Score calculation, we used the average and standard deviation of PGSSMV J scores we calculated

for 76,728 human GenBank sequences (Equation 3). We also defined an antibody as human-like as

long as its Z-Score was -2 or greater.

Z “ pPGSSMV J ´ µq{σ (3)

µ: = Mean of PGSSMV J scores of human GenBank sequences

σ: = Standard deviation of PGSSMVJ scores of human GenBank sequences
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6.4.3 Phylogenetic tree construction and the evolutionary distance of germline genes

To characterize the PGSSMVJ score, we correlated scores of 20 species with the phylogenetic dis-

tance to human germline genes. For this purpose, we constructed a phylogenetic tree from the

complete set of IMGT reference sequences (M. P. Lefranc 1998) of all species available using the

program PhyML (Guindon et al. 2010). For each human V germline gene allele, we calculated the

minimal phylogenetic distance to each genus of the same chain class (heavy, lambda, kappa) by

summing up the branch lengths of the closest path. We averaged the sequence recovery rate and

PGSSMVJ score for each germline gene in the tree.

6.5 Availability

IgReconstruct is available as a webservice, hosted by Meiler Lab with no restrictions for sequence

files up to 4 MB. (http://meilerlab.org/index.php/servers/IgReconstruct)
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7 Rosetta design with co-evolutionary information retains

protein function

This chapter has been published under (Schmitz et al., 2021).

7.1 Introduction

Proteins play a vital role in fundamental processes of life, and their diverse three-dimensional

structures allow for highly diverse functions. Computational protein design explores the sequence

landscape and side chain conformational space for a given protein backbone to find a residue

combination that supports a function. The protein modeling suite Rosetta (Leaver-Fay, Tyka, et

al. 2011) has been applied with marked success on various applications (Raveh et al. 2011; Rohl

et al. 2004), including protein (Brian Kuhlman et al. 2003) and enzyme design (Richter et al. 2011).

A critical element of Rosetta is a scoring function that is fine-tuned to respect knowledge-based

statistics and physical approximations. Without additional restraints, this scoring function reflects

the thermodynamic stability of one static protein conformation in a distinct environment (Alford

et al. 2017).

However, protein function often relies on structural flexibility (Süel et al. 2003), thus multiple

Rosetta protocols have been developed to favor sequences which do not only thermostabilize but

also account for protein flexibility. Multi-state design (MSD), for example, supports design on

multiple protein conformations simultaneously which benefits the design of conformational changes

(Sevy, Jacobs, et al. 2015; Leaver-Fay, Jacak, et al. 2011; Löffler et al. 2017). The MSD implemen-

tation RECON (Sevy, Jacobs, et al. 2015; Sauer et al. 2020) optimizes in an iterative protocol the

individual sequences of the conformational states. Each iteration increases a restraint to converge

the individually designed sequences into a single sequence that supports all conformations.

Improving thermodynamic stability or function of a given protein is an important aspect of

protein design (Goldenzweig and Fleishman 2018). As protein sequences observed in nature are

often close to the optimum (B. Kuhlman and D. Baker 2000), the design of sequences constrained

towards native conformations and sequences is a successful strategy. It can be implemented by

using sequence profiles (Goldenzweig, Goldsmith, et al. 2016) that mirror the residue occupancy at

each position of a backbone and serve as additional constraints on sequence selection. However, as

each residue is treated independently, a severe limitation of sequence profile design is the neglection

of subtle interdependencies between residue occupancies.

The reasons for these mutual dependencies are often the maintenance of structural stability by

compensatory mutations but are also more importantly related to sophisticated functional aspects

like information transmission, conformational plasticity, and the binding of ligands or other proteins

(Z. Hu et al. 2007; Marks, Hopf, and Sander 2012). Thus, a network of evolutionary constraints

may exist in a protein that fine-tunes the occupancy of several pairs of residue-positions. Various

methods like GREMLIN (Balakrishnan et al. 2011), plmDCA (Ekeberg et al. 2013), and PSICOV

(D. T. Jones et al. 2012) have been developed to identify these constraints, which are also named

couplings, to indicate the dependency between the occupancy of residue pairs. In a pioneering
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study, co-evolutionary fitness landscapes have been used to design three different stable protein

folds with the ability to bind native ligands with high affinity (P. Tian, Louis, et al. 2018).

Pairwise sequence requirements in natural proteins are a consequence of maintaining thermody-

namic stability, structural flexibility (plasticity), and other requirements for protein function, such

as recognizing interaction partners, catalyzing chemical reactions, and many more. Computational

protein design with Rosetta primarily favors thermodynamic stability and is conceptually unaware

of couplings required for protein flexibility and/or function. The premise of this study is that this

restriction in evolutionary tolerated sequence space is not reflected in Rosetta designed proteins.

This leads to design solutions that are thermodynamically stable but might change flexibility or

lose function. While custom protocols for a specific design task can circumvent this shortcoming,

we wondered about a general approach to maintain native-like couplings in the sequences designed

beyond the couplings dictated by thermodynamic stability. For this study, we evaluate a number

of computational design protocols in Rosetta: 1) One biased towards the wild-type sequence as a

baseline for comparison, 2) Design with a sequence profile, which encodes the sequence space as

observed in functional proteins, 3) RECON multi state design, which has the potential to capture

couplings critical for protein plasticity, and 4) Constraining co-evolving residues directly in the

Rosetta design process.

We hypothesize that incorporating evolutionary constraints in the Rosetta design process will

allow us to optimize the sequence across all functionally relevant conformations even for single state

design (SSD), including intermediate states that are difficult to obtain experimentally (Bonetti et

al. 2016). Thus, we have implemented a novel RosettaScripts (Fleishman et al. 2011) element, the

ResCue (residue coupling enhanced) mover, which transforms coupling strengths inferred from a

MSA into an energy function bias (restraint). These restraints are generalizable and applicable

on different design scenarios that can be addressed with Rosetta. To evaluate our method, we

captured two performance metrics: First, we measured the recovery of couplings. Second, we

assessed the overall sequence recovery of the full protein and of residues which were reported as

functionally relevant in literature. We found that proteins designed with ResCue had significantly

higher recovery rates compared with three other state-of-the-art design approaches.

We use native sequence recovery as one of our metrics of design success in order to facilitate

comparison with other studies. Although it might appear counter-intuitive to use this measure

to assess coupling recovery, we argue that it is a useful metric as increased coupling recovery

will imply increased sequence recovery. Our method achieves high recovery rates by conserving

networks of co-evolving residue pairs, in contrast to an alternative approach that trivially increases

sequence recovery rates by limiting the number of mutations. We show, that our method is superior

in recapitulating the wild-type residues especially in functionally active sites compared to other

approaches and thus is suitable to retain function during design.
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Description PDB IDs Resolution [Å] Length RMSD [Å] MSA size

HPPK 1HKA 1Q0N 1.5 1.3 435 0.5 4534

FixJ 1D5W 1DBW 2.3 1.6 126 0.5 38021

RasH 6Q21 4Q21 2.0 2.0 189 0.5 46795

G-protein Arf6 1E0S 2J5X 2.3 2.8 174 1.0 36036

S100A6 1K9P 1K9K 1.9 1.8 90 1.9 14768

Calmodulin 1CKK 1CFD NMR NMR 148 9.9 13561

LAO Binding protein 2LAO 1LAF 1.9 2.1 238 4.5 23810

Phosphate-binding protein 1QUK 1OIB 1.7 2.4 321 2.9 5898

Thioredoxin reductase 1TDE 1F6M 2.1 3.0 316 6.6 33408

Adenylate kinase 1AKE 4AKE 2.0 2.2 214 7.0 30589

Table 1: Characterization of the ten benchmark proteins (benchcoev) used in this study.

7.2 Results and discussion

7.2.1 Assembling a benchmark benchcoev of ten proteins representing conformational

flexibility

In order to test our hypothesis that co-evolutionary information helps to improve the protein design

process, we assembled a benchmark of ten proteins, which we named benchcoev (Table 1). We chose

the proteins based on four criteria. First, two conformations had to be available in the Protein Data

Bank (PDB), representing two functionally different states e.g. without or with a bound substrate.

Second, we accepted only structures with an experimental resolution of 3 Åor better. Third, for each

protein of length N, we confirmed that 10 x N homologous sequences were available in databases,

which is a prerequisite for a reliable determination of coupling (Ovchinnikov, Kamisetty, and David

Baker 2014). Forth, we preferred proteins that are functionally well studied and understood. We

ended up with a diverse set of two calcium binding proteins, two GTP binding proteins, one DNA

binding protein, one phosphate binding protein, one enzyme, one bacterial solute binding protein

and one protein that is part of an ABC transporter.

7.2.2 The ResCue mover and its energy term

Our method aims at the conservation of co-evolutionary networks during the design of protein

sequences (Fig 16). For their identification, we opted for GREMLIN (Ovchinnikov, Kamisetty, and

David Baker 2014) that deduces from an MSA of homologous sequences a four-dimensional coupling

tensor storing the co-evolutionary scores. The first two dimensions list two residue positions and the

last two indicate their amino acid interdependencies for all possible combinations. Large positive

values represent a strong coupling and negative values indicate their incompatibility; but most

values are close to zero. The tensor allows us to quickly deduce a score (Eq 4) for the strength of

the coupling constraint cc(i) for each individual residue i. These scores are then used to constrain

sequence design as an add-in to the Rosetta energy function. Note that it is essential to balance

carefully between having an efficient constraint but not over-writing the standard energy function,

since the designed proteins should fulfill the coupling restraints and be physically realistic.
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Figure 16: Basic concept and application of ResCue. Co-variance scores are deduced from

an MSA of homologous sequences and converted to position specific coupling constraints cc(i). The

ResCue constraints are then added to the Rosetta energy function to maintain the interdependencies

between residues while protein sequence design.

7.2.3 Sophisticated design protocols sample sequences of higher energy

To evaluate our method, we assessed the performance of four established design protocols on the

protein benchmark set benchcoev: a) An unmodified, default Rosetta single-state design protocol

that served as a reference (RoSSD) (Leaver-Fay, Tyka, et al. 2011), b) RECON MSD design,

c) SeqProf Mover (SeqProf), which is sequences profile design using a position-specific scoring

matrix (PSSM) (S. F. Altschul and Koonin 1998), d) biased design to prefer the native sequence

(FavorNative), and e) our co-evolutionary informed design ResCue. The same MSA was used to

derive the PSSMs for SeqProf and the residue-specific coupling constraints cc(i) (Eq 4) utilized

with ResCue.

As noted above, it is essential, to balance carefully between having an efficient coupling re-

straint and designing physically realistic sequences as dictated by the Rosetta energy function. By

restraining Rosetta to bias the sampling towards a desired goal, the energy landscape is modified.

As a result, when reevaluating the solutions with the unmodified energy function, the energy can

and often does increase (get worse). The ResCue protocol (S2 Supplement) was parametrized to

produce designs with Rosetta energies comparable to the established SeqProf method and sub-

stantially increased coupling recovery. In order to assess the energy increase of the different design

approaches, we determined the difference of the Rosetta total energy to the relaxed wild-type struc-

ture with the best energy, normalized by protein length. As expected, all design approaches with

constraints had significantly higher Rosetta energies compared to the relaxed wild type (Fig 17),

(Mann–Whitney U test (MW) p <1.0e-04 for all three comparisons). The differences per residue

were -0.15 ± 0.11 REU for single state design, +0.55 ± 0.76 REU for RECON MSD, + 0.28 ± 0.14
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REU for the SeqProf design, -0.057 ± 0.15 REU for FavorNative, and +0.13 ± 0.15 REU for our

ResCue mover. As the latter value is significantly lower than that of the RECON protocol (MW p

= 6.4e-195) and comparable to the SeqProf design, we concluded that our concept of considering

evolutionary constraints affects the scoring function less than a well-established MSD approach.

The FavorNative design energies remain on average close to the wild-type energies (-0.057 REU).

Most likely, for several positions residue choices with similar energies exist and FavorNative helps

to select the native residue. As expected, sequence recovery increases substantially with the Fa-

vorNative method, which is a trivial result as the correct solution is input into the method. Thus,

this approach would not allow the design of new sequences that retain structure, plasticity, and

function. Details on the execution of each experiment and the used constraint weights can be found

in S2 Supplement.

Figure 17: Distribution of Rosetta total energies for the full benchmark design. Energies

are given in Rosetta energy units (REU) relative to the wild-type on a per residue basis for the

five design protocols. For this figure and all subsequent boxplots, the median is indicated as a

black line; boxes depict the interquartile range (IQR), whiskers represent 1.5 x IQR. Results of a

two-sided Mann-Whitney-Wilcoxon test are indicated as follows: * fl 1.00e-02 <p <= 5.00e-02, *

fl 1.00e-03 <p <= 1.00e-02, * fl 1.00e-04 <p <= 1.00e-03, *** fl p <= 1.00e-04.

7.2.4 ResCue recovers networks of co-evolving residues

Having shown that our scoring of couplings had no drastic effect on sequence energies, we assessed

the conservation of couplings by analyzing for each benchmark prot the designed sequence seqDesign

and the native sequences seqNative. We determined the coupling recovery score crs(prot) (Eq 6),

which quantifies how well the inferred residue interaction network was maintained. To compute

this score, we first calculated for each seqDesign the sum of the corresponding scores cc(i). One

can consider the cumulative strength of pairwise couplings as a measure for the selective functional

pressure on a particular residue i (Marks, Hopf, and Sander 2012). For normalization, the resulting

cs(seqDesign) value (Eq 5) was divided by cs(seqNative). Note that crs(prot) can assume values

greater than one.
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Fig 18A depicts the crs values of the sequences designed with the five protocols; the standard

deviation was « 10% in all cases. The unconstrained Rosetta protocol RoSSD reached an average

crs value of 21%. The performance of RECON MSD was slightly better with an average crs value

of 25% and SeqProf design gained an average crs value of 28%. FavorNative reached an average

crs value of 52% with a higher standard deviation compared to other protocols with 18.3%. In

contrast, ResCue reached an average crs value of 109%. Note, that the crs value can be larger than

100% which would suggest that the designed sequences fulfill additionally restraints not found in

the native sequences seqNative, but in homologs.

Figure 18: Performance of four different design approaches. (A) Coupling recovery scores

crs deduced for all designed sequences. The 100% value is indicated by the dashed line. (B) Native

sequence recovery nsr of the four design approaches. (C) Sequence similarity seqsim of the full-

length sequences. (D) Native sequence recovery nsrCN of residues found in clustered networks. The

scores are summarized with boxplots as explained above. Results of a two-sided Mann-Whitney-

Wilcoxon test are indicated as follows: * fl 1.00e-02 <p <= 5.00e-02, * fl 1.00e-03 <p <= 1.00e-02,

* fl 1.00e-04 <p <= 1.00e-03, *** fl p <= 1.00e-04).

These data show that the native Rosetta protocol is not suitable to completely recover the evolu-

tionary constraints for functional connectivity between residues across our ten proteins. Moreover,

we expected a better performance of RECON, since multistate design optimizes over both confor-

mations at the same time. This optimization should consider residue couplings that are in spatial

proximity in either state. As expected, SeqProf failed to drastically improve the performance as

mutual residue-dependencies are ignored. In contrast, the average crs value of ResCue exceeds

100%.
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7.2.5 Preserving evolutionary constraints by means of ResCue improves native se-

quence recovery and sequence similarity

As further quality measures, we determined native sequence recovery nsr(seqDesign) (Eq 7) and

sequence similarity seqsim(seqDesign) (Eq 9) values by comparing the designed sequences and the

native ones (Fig 18B and 3C). RoSSD reached an average nsr value of 50 ± 6.3% and a seqsim

value of -2.72 ± 0.34. For RECON, the nsr and seqsim values were 50 ± 12.2% and -2.50 ± 0.35,

respectively. SeqProf design gained an averaged nsr value of 51 ± 10% and a seqsim value of -2.74

± 0.35. FavorNative reached nsr and seqsim values of 78 ± 9.15% and -1.28 ± 0.5. Note that

the FavorNative weights were tuned to approximate the ResCue sequence recovery. Our ResCue

design showed a significant increase both in the nsr and the seqsim values, which were 78 ± 11.7%

and -1.20 ± 0.61, respectively. Compared to the other design approaches, these improvements were

statistically significant (MWp ă 5.0e´ 04 for nsr and seqsim).

We wanted to know, whether these protocol-specific performance differences in nsr and crs values

affect each individual protein of the benchmark benchcoev and determined the nsr improvements

and the crs improvements. For each of the two conformations of a protein, the nsr value of RoSSD

was subtracted from the nsr value reached by each of the three other design protocols, namely

RECON, SeqProf, and ResCue. Analogously, the crs values were processed. Thus, a difference

greater than zero indicates an improvement compared to RoSSD, whereas a value smaller than zero

indicates that the protocol performed worse than the reference.

In Fig 19, these pairs of values are plotted for each protein of benchcoev. RECON showed a

slight increase except for the two conformational states of the thioredoxin reductase (two datapoints

in the lower left quadrant). Most likely, these results are due to the low resolution of one state,

which was 3.0 Å. SeqProf slightly improved sequence identity and coupling recovery values in six

of the proteins (thioredoxin reductase, LAO binding protein, phosphate-binding protein, S100A6,

FixJ and HPPK) and impaired them in four proteins (RasH, G-protein Arf6, calmodulin and the

adenylate kinase). In contrast, ResCue design improved nsr and crs values for the full benchmark

set.
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Figure 19: Improvement of native sequence recovery values and coupling recovery scores

for the two conformational states of all ten benchmark proteins. For each state, the nsr

value of the default Rosetta protocol was subtracted from the nsr value reached by one of the other

protocols. The crs values were processed analogously. The following color code indicates the design

protocols: RECON (orange), SeqProf (green), ResCue (blue), and FavorNative (gray).

Taken together, ResCue directed the design process towards native sequences that facilitate the

coupling of residues. Considering these constraints comes at the expense of a relatively moderate

energy increase, which however, is not energetically more expensive than maintaining sequence

composition by means of sequence profiles.

7.2.6 ResCue recovers functionally relevant residues

Residues involved in evolutionary couplings often form networks (Süel et al. 2003; Jeon et al.

2011; Marino Buslje et al. 2010) and the cc(i) values are a measure for the selective functional

pressure on a particular residue (Marks, Hopf, and Sander 2012). To study the most prominent

cases, we adopted a previous approach (Jeon et al. 2011) and identified all residues pres20cc pprotqq

having a coupling constraint cc(i) above the 20th percentile. As expected, these residues were often

described as functionally relevant in the literature (see discussion for individual proteins below).

We used the residues to compute coupling networks (CN) and determined for the corresponding

sets of residues the nsrCN values, which were higher than the global sequence recovery nsr(prot)

values. The average nsrCN value of the RoSSD protocol was 46 ± 8.8%, for RECON, SeqProf,

and FavorNative design the values were 47.5 ± 14.8%, 50 ± 14.9%, and 49 ± 14.9% respectively.
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Our ResCue design reached an average nsrCN value of 87 ± 8.8% (Fig 18D), which is statistically

significantly higher than that of the second-best protocol, namely SeqProf (MW p = 1.9 e-22).

To study the coupling networks in detail, we present results for four benchmark proteins, LAO,

FixJ, RasH, and calmodulin, which we have chosen for the following reasons: First, the binding site

residues of LAO play an essential role in stabilizing both the closed and the open state. Second, FixJ

residues are involved in dimerization. Third, RasH uses two highly flexible switch domains to bind

GTP. Fourth, residues crucial for peptide binding in calmodulin are only moderately conserved,

which complicates efforts to recognize and recapitulate them. Detailed information about the

remaining benchmark proteins is provided in S1 Supplement.

7.2.7 The substrate induced conformational change of the lysine-arginine-ornithine

binding protein LAO

LAO is a periplasmic protein capable of binding the amino acids L-arginine and L-histidine (Oh

et al. 1993). Periplasmic transport systems consist of a substrate-binding protein and a membrane-

bound complex that translocates the substrate from the periplasm to the cytoplasm. Following

substrate binding, LAO undergoes a conformational change, bringing the two domains into a closed

configuration that completely buries the ligand. Recently, residues crucial for substrate binding

were identified (Vergara et al. 2020) by performing alanine scanning and categorized into different

groups: Main chain binding (D161, S72, R77), guanidino binding (D11), side chain binding (Y14,

F52) and water-mediated binding (D30, S70).

Our analysis revealed that res20cc pLAOq the residues form two networks located close to the

binding site, a smaller network consisting of seven residues and a more complex one with 35

residues (Figs 20A and 21A). Four of the eight crucial residues (Y14, F52, S70, R77) are part

of the more complex network, which highlights that certain combinations of binding site residues

enables them to bind the ligand cooperatively. Comparing the structure with and without bound

ligand showed that all res20cc pLAOq residues adopt alternative configurations in the open and the

closed configuration. Analyzing the sequence space for LAO designs showed that each of the

five design approaches was able to recover the native amino acids at position 11 (aspartate) and

position 30 (aspartate) (Fig 22A). Both RoSSD design and RECON failed to sample the A77. In

contrast, Y14, F52, S70, and S72 were only recovered in ResCue designs. Superimposing the native

structure with a ResCue design sampling the correct amino acids illustrates the similarity except

for two side-chain conformations (Fig 23A).
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Figure 20: Localization of highly coupled residues in four benchmark proteins. Localiza-

tion of highly coupled residues in four benchmark proteins. (A) Network analysis of highly coupled

residues mapped on the structure of LAO (PDB ID: 2LAO (unbound), 1LAF (bound)). Super-

position of the unbound (grey) and the bound state (blue). The substrate L-asparagine is shown

as sticks. The two networks are highlighted in red and yellow. Residues known to be crucial for

substrate binding and belonging to a network are shown as sticks. (B) Network of highly coupled

residues (red) mapped on the structure of FixJ (PDB ID: 1DBW (unphosphorylated), 1D5W (phos-

phorylated)). Superposition of the unphosphorylated (grey), the phosphorylated protein (blue) and

a second FixJ (light blue) belonging to the dimer. Residues critical for dimerization are shown as

sticks. (C) Network of highly coupled residues (red) mapped on the structure of RasH (PDB ID:

4Q21 (GDP bound), 6Q21 (GTP bound)). Superposition of the GDP bound state (grey) and the

GTP bound state (blue). The substrate is shown as sticks. Bound magnesium is depicted as green

spheres. (D) Network analysis of highly coupled residues mapped on the structure of calmodulin

(PDB ID: 1CFD (without Ca2+), 1CKK (with Ca2+)). Superposition of the unbound (grey) and

the bound state (blue). The peptide CaMKK is shown in orange. The two networks are highlighted

in red and yellow.
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Figure 21: Representation of residue interaction networks. Intra-protein couplings are de-

picted as solid lines and dashed lines indicate substrate-binding residues or inter-protein couplings.

(A) LAO possesses two interaction networks (red, yellow). Residues crucial for binding the substrate

L-arginine are marked blue. (B) Residue interaction network of FixJ. Residues that are crucial for

dimerization are highlighted in blue. Circles/squares distinguish coupled residues belonging to the

two protomers of the dimeric complex. (C) Residue interaction network of RasH. Residues that are

crucial for GTP hydrolysis are highlighted in blue. (D) Residue interaction networks (red, yellow)

of calmodulin. Residues that are crucial to the binding of the peptide CaMKK are highlighted in

blue.
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Figure 22: Sequence logos resulting from five design protocols. The native sequences are

listed below the logos. (A) LAO binding site, eight residues. (B) FixJ dimer interface, seven

residues (C) RasH binding site, five residues. (D) calmodulin-binding site, five residues.
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Figure 23: 3D representation of binding sites. (A) The native structure of LAO in the closed

state (PDB ID: 1LAF) is depicted in blue and a protein designed with ResCue is shown in grey.

The ligand arginine is shown as green sticks. (B) FixJ in the phosphorylated state (PDB ID:

1D5W) is depicted in blue and a protein designed with ResCue is shown in grey. Residues crucial

for dimerization are shown in stick representation. (C) Native structure of RasH (PDB ID: 6Q21)

with bound GTP (green sticks) is depicted in blue and a protein designed with ResCue is shown in

grey. (D) Native structure of calmodulin (PDB ID: 1CKK) with bound peptide CaMMK (orange

sticks). The Ca2+ bound state is depicted in blue and a protein designed with ResCue is shown in

grey. For all four protein designs, the ligand was not part of the starting structure.

The coupling strength cs(seq) of the chosen set of residues for each protein was calculated and

visualized as a bar plot. Compared to the native sequence, the coupling strength of ResCue was

on average 103±50%, followed by FavorNative with 35±55%, SeqProf with 23±58%, RECON with

20±63%, and RoSSD with 4±56% (S4 Supplement). The improvement of ResCue was statistically

significant compared to all other design methods (MW p <5.0e-04) The increased sequence recovery

of the ResCue protocol can therefore be attributed to the collective interaction of couplings. Full-

length sequence logos of the ResCue design are provided in S3 Supplement.
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7.2.8 Conformational changes induced by the phosphorylation of the FixJ receiver

domain

FixJ is a two-component system crucial for the symbiotic nitrogen fixation in Sinorhizobium meliloti

(David et al. 1988; Agron and Helinski 1995). The FixJ receiver domain is arranged in two domains,

and phosphorylation of the conserved D54 residue induces the dimerization of the protein (Kahn

and Ditta 1991; Da Re, Bertagnoli, et al. 1994; Da Re, Schumacher, et al. 1999; Birck et al. 1999).

consists of 20 residues that form an interaction network located at the dimerization interface (Figs

20B and 21B). The network includes the seven residues, which are critical for dimerization, namely

V87, P88, V91, M94, K95, D100 and E103 (Gouet et al. 1999). Comparing the sequence logos (Fig

22B) of the five design approaches indicates that only ResCue sampled these seven amino acids

correctly and highlights a major advantage of our approach: Since only one protein structure was

used during the design phase, all protocols were deprived of the interactions across the dimerization

interface, which resulted in sequences probably unable to dimerize. Even SeqProf did not sample

critical interface residues, because they are often less conserved (Holinski et al. 2017) and depend on

the occupancy of neighboring positions, which induces couplings. Thus, considering co-evolutionary

constraints during the design process leads to favorable residue combinations, even without explicit

knowledge of restraints related to dimerization (Fig 23B).

7.2.9 RasH switches between two states for signal transduction

RasH is part of a signal transduction crucial for cell growth and differentiation. RasH adopts an

‘off’ and an ‘on’ state induced by a substantial conformational change in the so-called switch I

region (residues 30–38) and switch II region (residues 60–76) (Milburn et al. 1990). The network

connects both regions spanning residues 32–40 and 56–78. The networks highlight how the con-

formational shift is the product of the subtle interdependencies of protein residues (Figs 20C and

21C). The analysis of sequence logos determined for five GTP binding residues reveals that all

four methods recover three residues well (T58, A59, G60) (Fig 22C). The other two (D57, Q61)

were only recovered by ResCue. Superimposing the native structure with a model determined for

a ResCue design confirms the correct orientation of the side chain residues (Fig 23C).

7.2.10 The conformational switch of the calcium-binding messenger protein calmod-

ulin

Calmodulin is an intermediate calcium-binding messenger protein, playing a critical role in coupling

transient Ca2+ influx to events in the cytosol and therefore the calcium signal transduction pathway

(Kuboniwa et al. 1995). The protein undergoes a substantial conformational shift to bind the

calmodulin-binding domain of the calmodulin-dependent protein kinase kinase (CaMKK) (Osawa

et al. 1999). 25 residues (positions 34–53 and positions 72–76) are functionally relevant and the

network is located at the N-terminal hydrophobic pocket anchoring T444 of the CaMKK peptide

(Figs 20D and 21D). Due to the large number of functionally relevant residues, five exemplary

residues were chosen with approximately similar distance; these were M51, I52, M72, K75, M76.
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The five residues are part of the coupling network and crucial for the CaMKK binding. The results

highlight how our co-evolutionary approach biases the design towards the native amino acids (Fig

22D). Furthermore, sequences designed with co-evolutionary information sample realistic side-chain

conformations, even in the absence of CaMKK in the design process (Fig 23D).

7.2.11 Pros and cons of ResCue

In this work, we tested our hypothesis that incorporating co-evolutionary information into protein

design helps Rosetta to design stable and functional proteins. For a benchmark consisting of ten

difficult cases, native sequence recovery values and sequence similarity values were superior to

three alternative design protocols. We imply that considering these evolutionary restraints helps

to maintain function by recovering the couplings between residues.

ResCue outperforms SeqProf, because many crucial residues are not prominent in MSAs, and

depend on the occupancy of neighboring positions. The design with RECON on only two con-

formations may underestimate its performance, since it scales well with the amount of different

structures available for a given protein (Sauer et al. 2020). At the same time, the choice to use

two conformations highlights how our approach is especially useful for proteins with little available

additional structural information. Interestingly, ResCue compromises the energy score of the de-

signed sequences less than RECON MSD. Since the score is meant to reflect the thermodynamic

stability of the design, impacting it to a high degree would possibly result in a less stable protein.

The high native sequence recovery of ResCue, the fact that native sequences are close to optimal

to their structure (B. Kuhlman and D. Baker 2000), and the experimental evidence that coupling

guided design can generate novel sequences with stability similar to the wild type (Socolich et al.

2005; P. Tian and Best 2017; P. Tian, Louis, et al. 2018) suggests that the slightly increased Rosetta

energy is thermodynamically acceptable. A restriction of our method is the need for an MSA con-

sisting of N homologous sequences. However, given that more than 120 million protein sequences

are deposited in the UniProt Databank (UniProt Consortium 2019) compared to the 163,141 struc-

tures deposited at the PDB (Berman et al. 2000), we suppose that ResCue can be applied to a

wide variety of proteins. Our results are in agreement with earlier findings (P. Tian, Louis, et al.

2018; Socolich et al. 2005) indicating that the integration of co-evolutionary information promotes

stability and function in protein design.

Primary motivation of ResCue is to demonstrate, that co-evolutionary information can be lever-

aged for a Rosetta design algorithm that yields more natural sequences while conserving couplings

that, at least in some cases, will be critical for plasticity or function, i.e. properties of the pro-

tein that are ‘hidden’ in a single structure/sequence pair. These couplings would encode required

properties of the sequence but cannot be derived from a single conformation and in the absence of

all binding partners. The Rosetta scoring function will optimize thermodynamic stability (Alford

et al. 2017) of a single conformation but miss other aspects of plasticity or function. The altered

scoring method with ResCue can be exploited 1) to explore a sequence space more similar to native

sequences, 2) for conservative re-engineering while keeping known and unknown functions intact,
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or similar 3) to design on one structural conformation while not destabilizing other possible confor-

mations. Alternative design protocols that can indirectly inform the design process about pairwise

residue couplings were discussed: These are firstly, the design on multiple conformations (RE-

CON), and secondly, design with a sequence profile. Amongst these, ResCue generates sequences

most similar to the wild type and conserves the most plausible functionally important residues and

couplings. Nonetheless, future experimental studies are required to confirm the suitability of our

approach for the different suggested design scenarios.

It was previously shown that selecting a small number of mutations based on conservation

information in sequence alignments can improve expression rates and predict improved protein

stability (Goldenzweig, Goldsmith, et al. 2016). This approach however failed to allow mutations in

proximity of binding partners and co-factors to prevent activity loss in the first place. By leveraging

co-evolutionary information, ResCue is going beyond the task of thermodynamic stabilization and

can be exploited to re-design proteins including its functionally relevant sites, even when properties

crucial for function are not encoded in one sequence/structure pair.

7.3 Methods

7.3.1 Collection of the benchmark benchcoev

When compiling the benchmark, a major goal was to represent a wide variety of small to massive

conformational shifts and proteins of different length N. Proteins were collected that exhibited

conformational changes with the criteria that at least two conformations of the protein were known.

To prevent discrimination of non-ResCue design protocols caused by low quality protein structures,

only structures with an experimental resolution of at least 3Å were accepted. The existence of at

least 10 x N non-redundant, homologous sequences was confirmed and the sequences were compiled

to an MSA (see below). Sequences were considered redundant if they shared more than 80%

sequence identity to the native sequence. All structural models were relaxed by means of Rosetta.

For all single state design protocols, both structures were used as starting points and the results

were pooled.

7.3.2 GREMLIN-based co-evolution analysis

To analyze co-evolution between residues, multiple sequence alignments (MSA) were created using

HHblits (E-value cutoff: 1.0e-10, Iterations: 4) (Remmert et al. 2011; Zimmermann et al. 2018). On

average, the MSAs consisted of 24,700 sequences. We omitted sequences that did not cover at least

75% of the original sequence length. Additionally, we removed positions in the MSA with more

than 75% gaps. The python version of GREMLIN was used to analyze each MSA and to create a

tensor storing covariance values DCi,j(aax, aay) for all possible residue combinations aax, aay at

all positions i, j. The coupling strengths DCi,j(aax, aay) from the Markov Random Field (MRF)

tensor were used to restrain designs with ResCue. MRF-values were preferred over the derived

GREMLIN (pseudo)log-likelihood values (Ovchinnikov, D. E. Kim, et al. 2016) for two reasons:

Firstly, (pseudo)log-likelihood values combine coupling strength and amino acid preferences at a
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certain position. In the MRF tensor, both values are listed separately. Here, we wanted to focus on

coupling strengths. If desired, the user can utilize the already established FavorSequenceProfile term

in addition to the ResCue coupling weight to incorporate a sequence conservation term (present in

the log-likelihood). Secondly, usage of coupling strengths allows favoring correlations and penalizing

anti-correlations. In contrast, the (pseudo)log-likelihood values reflect absolute coupling strengths

and thus ignores this information. Eq 4 indicates how DCi,j(aax, aay) values were combined to

deduce a coupling constraint cc(i) for each single residue position i:

ccpiq “
ÿ

i,j!“i

DCi,jpaax, aayq (4)

Here, and in all other formulae, N is the length of the protein. The coupling strength cs(seq)

of a given sequence seq was determined by adding the N cc(i) values:

cspseqq “

N
ÿ

i“1

ccpiq (5)

To assess the coupling recovery of a designed protein prot, the coupling recovery score crs(prot)

was deduced from the cs values related to the designed and native sequences seqDesign and seqNa-

tive:

crspprotq “
cspseqDesignq

cspseqNativeq
(6)

7.3.3 Assessment of native sequence recovery and sequence similarity

The native sequence recovery nsr(seqDesign) of a sequence seqDesign is the fraction of residues

seqDesign[i] that match the corresponding native residues seqNative[i]:

nsrpseqDesignq “
1

N

N
ÿ

i“1

identpseqDesignpiq, seqNativepiq (7)

The binary function ident() determines the identity of two residues aak and aal:

identpaak, aalq “

$

’

’

&

’

’

%

1, ifaak ““ aal

0, else

(8)

Analogously, sequence similarity seqsim(seqDesign) was computed:

seqsimpseqDesignq “
1

N

N
ÿ

i“1

BLOSUM62pseqDesignpiq, seqNativepiqq (9)

Scores for the similarity of corresponding residue pairs ware taken from the BLOSUM62 matrix

(S. Henikoff and J. G. Henikoff 1992). All computations were performed using Biopython (Cock

et al. 2009).
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7.3.4 Protein design with ROSETTA

he ROSETTA software suite was used for all different design approaches. RosettaScript XML files

and commands can be found in S2 Supplement. Designs with no additional constraints (RoSSD)

were performed by one round of fixed backbone rotamer optimization followed by repacking. RE-

CON multistate designs utilized four rounds of fixed backbone design and a convergence step, as

described in (Sevy, Jacobs, et al. 2015). For each design, a PSSM was created by means of PSI-

BLAST (S. F. Altschul and Koonin 1998). The PSSM was needed for the SeqProf RosettaScripts

mover and the MSAprot served GREMLIN to deduce for each design the coupling tensor required

for the ResCue Mover. At least 100 designs were generated for each protein in the benchmark and

each approach. The resulting designs were scored with the ref 2015 Rosetta energy function.

7.3.5 Network analysis of highly coupled residues

Regions of highly coupled residues were analyzed by using a similar technique, as described in (Jeon

et al. 2011). First, for each residue i of the native sequence the cc(i) score (Eq 4) was determined.

Then, a sliding window (window size of ten, step size of one) was used to identify regions containing

highly co-evolving residues indirectly connected by slightly weaker coupled residues. To analyze

regions with the highest co-evolutionary significance, we took the residues and further analyzed how

exactly they are coupled with each other. The networks were visualized with Cytoscape (Shannon

et al. 2003) and mapped on the protein structure by means of PyMOL. Sequence logos were created

with WebLogo (Crooks et al. 2004).
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8 The human antibody sequence space and structural design of

the V, J, and CDRH3 domains with Rosetta

This chapter has been submitted under (Schmitz et al., 2021).

8.1 Introduction

As of 2019, over 570 antibody drugs are in development with a substantial increase of late-stage an-

tibody development over the past decade (Kaplon and Reichert 2021; Kaplon and Reichert 2019).

Historically, antibody reagents were generated using cells from an animal source such as rabbit

(Steinberger et al. 2000), chicken (Tsurushita, Park, et al. 2004), and more prominently murine

model organisms (Gillies, Lo, and Wesolowski 1989; Bonwick et al. 1996). The downside of us-

ing antibodies with non-human origin is the elicitation of anti-drug-antibodies (ADA) in human

patients (Gillies, Lo, and Wesolowski 1989; Bonwick et al. 1996; Nechansky 2010b). High titers

of ADA responses usually result in reduced efficacy of the antibody drug by blocking the antigen

binding site or by faster depletion of antibody drugs in the bloodstream (Holgate and M. P. Baker

2009). The reasons for the ADA response in patients are multi-factorial but often comprise se-

quence patterns foreign to the human system (Harding et al. 2010). This observation gave rise to

humanization techniques resulting in engineered antibodies with non-human sequences interspersed

among human-derived antibody segments (T. D. Jones et al. 2016; Parren, Paul J Carter, and An-

dreas Plückthun 2017). Here, we introduce a method based on the human-likeness (HL) assessment

method IgReconstruct (Schmitz et al. 2020), and expand upon it to support the structural design

of human-like antibodies. A possible application of our method is supporting the development of

antibody biologics that appear human-like early in the development process. It also may be useful

to simulate a possible human immune response for a particular pathogen and specific to the human

donors on which the immune repertoire is based.

Essential for HL assessment are large quantities of observed human antibodies sequences, the

so-called adaptive immune receptor repertoires (Schmitz et al. 2020; Wollacott et al. 2019; Seeliger

2013; Gao et al. 2013; Lazar et al. 2007). Next generation sequencing (NGS) of peripheral blood

samples has given insight into the diversity of human adaptive immune receptor repertoires, some-

times referred to as B-cell immunomes (DeWitt et al. 2016; B. Briney et al. 2019; Soto, Bombardi,

et al. 2019). Despite the high diversity, a small sequence overlap between individual blood donors

exists (Soto, Bombardi, et al. 2019; B. Briney et al. 2019). The major mechanism of antibody

diversification is comprised of somatic recombination of variable (V), diversity (D), and joining (J)

germline gene segments. The human immune system has approximately 123-129 heavy chain vari-

able genes (IGHV), 27 diversity genes (IGHD), and 9 joining genes (IGHJ) at its disposal. Light

chain genes are grouped into kappa (chromosome 2) and lambda (chromosome 22) genes with 40-

76 (IGKV), 73-74 (IGLV) variable genes, 5 (IGKJ), and 1 (IGLJ) joining gene.20 The antibody

germline genes contribute to antibody diversity, with the recombination events alone producing

a diversity of 106 sequences (Charles A Janeway et al. 2001). The addition or deletion of single

nucleotides in the junctions between the variable, diversity, and joining genes (V-D, V-J, or D-J),
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and somatic hyper-mutation further increase the antibody diversity. Higher affinity variants of

B-cell receptors are generated via somatic hyper-mutation. During this process, double stranded

DNA breaks lead to the introduction of single point nucleotide mutations or insertion/deletions,

which are introduced by error-prone DNA repair mechanisms (Teng and Papavasiliou 2007). The

resulting diversity of human antibody repertoires has been estimated to exceed 1012 unique B-cell

receptors (Charles A Janeway et al. 2001). It was shown that the human-likeness of the IgG isotype

of antibodies can be modeled by assessing the single nucleotide frequency for each germline gene in

the observed antibody space (Kovaltsuk et al. 2018). It is difficult to assess HL for the heavy chain

CDR3 loop (CDRH3), because it comprises junctions that are not derived from the germline genes

(non-templated regions). Even though the diversity germline gene can contribute to the assembly

of the CDRH3, the alignment of the CDRH3 to a diversity germline gene is often of low confidence.

Here, we expand upon HL assessment using single nucleotide frequency profiles to model a human

sequence space that is able to describe the CDRH3 sequence. To achieve this, all sequence sections

that align to V, and J germline genes, as well as CDRH3 regions are clustered based on sequence

similarity. Instead of aligning germline genes to the CDRH3 region to assess human-likeness as was

previously described (Schmitz et al. 2020), we choose the most similar V, J, and CDRH3 cluster

center to assess the human-likeness of the CDRH3 region. Human-likeness is then calculated for

all antibody regions by assessing the observed nucleotide frequencies of sequences in the assigned

repertoire cluster.

An important question to answer for HL assessment is to what extent NGS has discovered

the human antibody space. To date the largest B-cell sequence databases published from single

individuals include approximately 325 million nucleotide sequences from three blood donors (Soto,

Bombardi, et al. 2019). Taken together, modern sequencing methods have explored a combined

sequence space of 5x108 sequences, which is orders of magnitude smaller than the theoretical max-

imum sequence space for a single individual (at least 1012). Large antibody sequence repertoires

are the result from work in the Human Immunome Project, which aims to comprehensively catalog

the human B- and T-cell sequence spaces (Wooden and Koff 2018). It could be shown that even

though the sequence commonality between human-blood donors is greater than anticipated, the

overall sequence overlap remains small (¡¡ 1% of heavy chain clonotypes) (Soto, Bombardi, et al.

2019; B. Briney et al. 2019). This low commonality is primarily a result of the high sequence

diversity, and the main cause for antibody diversity is the high variability of the CDRH3 region.

To accommodate for the small ratio of observed to expected antibody space, we mathematically

calculate an enlarged human amino acid space from nucleotide frequencies. We hypothesize that

there is additional information in nucleotide sequences that can inform the antibody space for the

following reasons:

The genetic code is degenerate, which means that 64 unique nucleotide triplets in the standard

translation table encode the 20 canonical amino acids. Thus, some amino acids are encoded by

multiple nucleotide triplets and different amino acids share the same nucleotide in 1 or 2 positions

of the nucleotide triplet. Human-likeness was previously described as independent single nucleotide
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observations (Schmitz et al. 2020), suggesting that the antibody maturation process is an stochas-

tic process that mutates single nucleotides independently. We therefore postulate that all single

nucleotide frequencies not only inform about the frequency of their encoding amino acid, but also

informs the likelihood of observing another amino acid at that position which is partially encoded

by the same nucleotides of a different codon. In this study, we employ Bayesian statistics to model

the probability of observing amino acids in human antibodies and postulate that the resulting

amino acid frequencies model a larger human sequence space than what has been observed, with

the potential to suggest probabilities for amino acids that have not directly been observed at certain

positions. We demonstrate, that amino acid frequencies can then be used to inform computational

structural protein design with Rosetta (Leaver-Fay, Tyka, et al. 2011) to generate antibodies that

are antigen-specific and thermodynamically stable while still maintaining human-likeness.

The computational structural design package Rosetta, allows structural sequence design of

proteins. Computational design with Rosetta is mainly achieved by its scoring function, that

evaluates the sequence grafted onto a protein conformation. The Rosetta scoring function comprises

the weighted sum of physical, and knowledge-based potentials (Alford et al. 2017) to evaluate

the conformation and sequence of proteins. The scoring function can be extended by adding

additional weighted restraints. This approach is commonly used to bias the protein design to include

experimental observations, like alanine or site-directed mutagenesis, hydrogen–deuterium exchange

mass spectrometry (HDX) or also HDX-NMR, NMR chemical shift perturbations, low-resolution

cryo-EM, and chemical cross-linking data (Thornburg et al. 2013; Sivasubramanian, Chao, et al.

2006). In this study, we re-design human antibody structures with our Bayesian human sequence

profiles for increased HL. To benchmark our method, we chose 27 human antibody structures

from structures deposited in the Structural Antibody Database (SabDab) (Dunbar et al. 2014).

Choosing human antibodies provides us with HL of human antibody sequences, which serves as

reference for benchmark purposes. Abs designed without human restraints is expected to decrease

in their HL and exhibit reduced wild-type (WT) sequence identity. Thus, Rosetta designed Ab

sequences created with our amino acid frequency restraints were evaluated for HL, and sequence

identity to the human WT antibody, and compared to Rosetta designed Abs without restraints.

We hypothesize, that the sequence recovery rate of designs using HL profiles should increase if our

Bayesian model indeed resembles a human sequence space. We expect the Bayesian sequence space

to be larger compared to the observed antibody space. We use Rosetta to narrow the sequence

space down, and create antibody sequences which are suited for the antibody/antigen complex.

Our method suggests a way to create novel antibodies with Rosetta that are more human-like, or

to re-design existing antibodies for increased HL.

8.2 Results

The IgReconstruct method assesses human-likeness (HL) via single nucleotide frequency statistics

from immunome repertoires (Schmitz et al. 2020), and has been compared with 10 similar ap-

proaches (Prihoda et al. n.d.). In this study, we extend IgReconstruct to improve its ability to
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assess the HL of the heavy chain CDR3 region (CDRH3). IgReconstruct assigns observed fre-

quency statistics to the antibody germline genes. The germline gene centric approach can not be

applied to the CDRH3 since its genes either cannot or can only be partially assigned. Instead, the

immunome repertoire is clustered by V, J, and CDRH3 domains. This enables us to assign nu-

cleotide frequencies to the CDRH3 by using the sequence of the cluster center instead of a germline

gene. The following chapters describe how we model the Bayesian antibody space, and our clus-

tering algorithm as an extension to IgReconstruct, followed by the results of our Rosetta design

benchmark.

8.2.1 Calculation of the Bayesian antibody space

The proposed method calculates amino acid probabilities for an antibody from single nucleotide

frequencies. The frequency profiles are assessed from large immunome repertoires of 325 million

unique sequences (Figure 24a). IgReconstruct (Schmitz et al. 2020) is a method to assess HL as

nucleotide frequency profiles for each germline gene and position, and for each CDRH3 regions

(length dependent). (Figure 24b). The next subchapter will describe how we expand upon this

approach by creating clustered frequency profiles for genes and CDRH3 regions. The frequency

profiles for V, J, and heavy chain CDR3 region (CDRH3) were then combined into position specific

frequency matrices. The combined frequency profile spans the variable region of an antibody and

is mapped onto the structure (Figure 24c). The high diversity of the CDRH3 gives rise to the low

commonality between human immunome repertoires (Soto, Bombardi, et al. 2019; B. Briney et al.

2019). The observed antibody space used in this study (approximately 325 million sequences from

three healthy human blood donors) is small compared to the estimated antibody diversity of 1012

(Charles A Janeway et al. 2001). This study therefore suggests Bayesian statistic to model amino

acid frequencies from the observed nucleotide frequencies (Equation 10). Here, it is assumed, that

all positions of the antibody variable region has the potential to mutate to any canonical amino

acid via somatic hyper-mutation. It is also assumed, that the nucleotide distribution observed in

the immunome repertoire of 325 million sequences is representative for the human antibody space.

Thus, the Bayesian statistics (Equation 10) can be simplified by making the assumption that the

a priori probability p(aa) to observe each amino acid at each position is 1.

Different amino acids are encoded by a different number of triplets. Equations 11-12 take the

number of different triplets (trpl) that encode for a specific amino acid into account as normalization

parameter. For each amino acid probability p(aa—trpl) with a given distribution of nucleotide

frequencies (trpl), a substitution score sij is calculated. The substitution score represents statistical

significance of the calculated frequencies for each position and will be used as Rosetta restraint for

HL antibody design. The calculation of the substitution score (Equation 13, Figure 24e) has been

adapted from the description for PSI-BLAST (S. F. Altschul 1991; S. F. Altschul, Madden, et

al. 1997; Stephen F. Altschul et al. 2009). The lambda parameter of sij is a scaling factor and is

optimized for each nucleotide profile to correlate with the change of HL when amino acid i is replaced

by j (see Supplement Section 11.10.4). The tables of amino acid frequencies and substitution scores
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are then converted into a PSI-BLAST compatible ASCII file which can be parsed by Rosetta for

further design (Figure 24d).

Figure 24: From immunome repertoire processing, to statistical modeling of an amino

acid sequence space, to structural human-like antibody design. First, V, CDRH3, and J

domains are extracted from the immunome repertoires (a) to generate position specific nucleotide

frequency profiles for each domain (b). The structure of an antibody that is to be re-designed for

increased human-likeness (c) is assigned a unique nucleotide frequency profile. A Bayesian method

extrapolates possible amino acid frequencies for the antibody (d) to create amino acid substitution

scores (e). The substitution scores can be used to guide the Rosetta structural design to more

human-like antibodies, narrowing the human sequence space to structurally viable solutions.

8.2.2 Extending the nucleotide human-likeness metric with a clustering algorithm

Unlike the fragment region of the antibody variable region, which is templated by germline genes,

the highly variable CDRH3 region is either non-templated or has low confidence diversity (D) gene

alignments. This compromises our approach to assess HL via germline gene specific nucleotide

frequencies. Consequently, the CDRH3 was excluded for HL calculations in our previous study

(Schmitz et al. 2020). To enable CDRH3 HL assessment, we extended the positions specific substi-

tution matrix (PSSM) generation method by implementing a basic clustering approach capable of

processing large datasets quickly. Clusters are created based on nucleotide sequence identity and

are represented as frequency profiles (clustered PSSM). The cluster center is the sequence that can

be generated from the most frequent nucleotides observed in the PSSM and is not necessarily a

sequence directly observed in the repertoire.

The clustering method can be subdivided to four steps and took place while iterating once

over our immunome repertoire of approximately 325 million unpaired heavy and light chain human

antibody sequences. The first cluster is initialized with the first random sequence encountered

(Figure 25a). Every other sequence was either added to any of the existing cluster(s), or was added

to a new cluster based on the sequence identity of the cluster center (Figure 25b). Here, the cluster

center is the sequence that can be generated by picking the most frequently observed nucleotide at
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each position of the V, CDRH3, or J PSSM. Distance cutoffs for sequence identity vary for V, J,

and CDHR3 domain due to the distinct sequence diversity of the regions. For V, and J domains

a sequence identity of 90% was used, whereas the CDRH3 clusters had a sequence identity cutoff

of 30% for the following reasons: The sequence identity cutoff was determined under consideration

of the sequence diversity of V, J, and CDRH3 regions, number of final clusters, and their size.

The higher the sequence identity cutoff, the more and smaller clusters are created. Since the V

and J regions are more conserved, higher cutoffs were applied to these regions. A smaller cutoff

was chosen for the much more diverse CDRH3 region. Here, we set the requirement that each

cluster must contain at least 100 sequences in order to ensure sufficient numbers, to create position

specific nucleotide frequencies for HL assessment. The cutoffs of 90% (V, and J domains) and 30%

(CDRH3) led to 14,638 V, 390 J, and 411 CDRH3 clusters. We considered the median sequence

population of V, and J clusters with 263, and 291 sequences respectively, and the median CDRH3

cluster population with 9,863 sequences sufficiently above the chosen minimum of 100 sequences per

clusters. In comparison, a higher CDRH3 cutoff of 50% would result in 142,295 clusters, with the

majority strongly underpopulated. Only 18,380 clusters would contain more than 100 sequences.

Figure 25: Schematic of fast immunome repertoire clustering. Each V, J, and CDRH3

sequence not assigned to a cluster in the repertoire is represented as a black dot. The arbitrary

first sequence (red dot, a) is assigned to the first cluster (red circle, a). New sequences (?) are

processed in random order and the sequence identity to the cluster center (cross, b) is used as

distance measure (dotted line, b). If a new sequence has an identity smaller than the threshold, it

is assigned to an existing cluster (cyan, b), otherwise a new cluster is created until each sequence

is assigned. Finally, clusters that cluster centers smaller than the sequence identity threshold are

merged (c). Each cluster represents a unique PSSM after processing the repertoire once (d).

8.2.3 The Rosetta human-like antibody design protocol

Major change made to the IgReconstruct method (Schmitz et al. 2020) is: Instead of relying

solely on germline gene alignments to create HL frequency profiles, a cluster of sequences with the

greatest sequence identity of the cluster center to the V, J, or CDRH3 region is assigned when

creating HL profiles. To create amino acid restraints that can be interpreted by RosettaLeaver-

Fay, Tyka, et al. 2011, we calculate amino acid frequencies from cluster nucleotide frequencies

using Bayesian statistics. In this study, we benchmark Ab designed with Rosetta that were created

with the Bayesian antibody space, and without any HL restraints. From hereon out, we refer to

proteins that were designed with the Rosetta suite as decoys. The antibody space is calculated
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using original PSSMs, and clustered PSSMs. We then compare the Rosetta score, predicted binding

energy, sequence recovery, and HL between the designs. In the optimal case, the binding energy

is not compromised compared to the WT and the HL increases. If the our Bayesian amino acid

frequencies of clustered immunome repertoires are able to model the human antibody space, we

also expect to see increased sequence recovery, since the WT sequence of the designed antibodies

are of human origin.

A set of 27 antibody crystal structures was curated that is a) of human origin and b) high

resolution (better than 2 Å), and c) available as complex bound to its antigen. For each of the

antibody structures, we created a Bayesian PSSM for heavy and light chain separately. PSSM

restraints were added to Rosetta in form of a PSI-Blast formatted ASCII PSSM file (Stephen

F. Altschul et al. 2009). During Rosetta design, each mutation is then re-evaluated for increased

human-likeness by either favoring a mutation (positive substitution score), or disfavoring a mutation

(negative substitution score). The substitution scores ultimately guide Rosetta to prefer mutations

that are more human-like.

Rosetta restraints must be carefully balanced to not overshadow the scoring terms that evaluate

the thermodynamic stability of the protein. To estimate the effect on the protein’s stability and the

binding of the antibody to its antigen, Rosetta decoys created with HL restraints were compared

to decoys without HL restraints (control). To avoid the difference in number of mutations between

control and designs to affect the results, decoys were also compared to control designs with a similar

number of mutations. Each Rosetta HL design was assigned one control design that matched the V,

and J sequence identity the closest, and another control design that matched the sequence identity

of the CDRH3 region the closest. From hereon out, we refer to this control group as “native”. The

native group is used as a reference to calculate the difference of HL between designs, and the next

closest control design with a similar number of mutations. Supplementary Figure 74 demonstrates

the close correlation of sequence identities between native, and human-like designs. Thus, for each

Rosetta design, a control design can be found with comparable mutation rate.

8.2.4 Rosetta design of human-like antibody structures remain thermodynamically

plausible and antigen-specific

To prove, that the Rosetta restraint were balanced correctly, the Rosetta energy of control and

human-like decoys was compared with each other. Rosetta Energy Units (REU) are a measure for

thermodynamic stability of a protein (complex) (Alford et al. 2017). The REU score can be used

to compare different protein conformations, and estimate mutational changes of thermodynamic

stability. The more negative the score, the higher the predicted stability. Here, we compare the

REU scores of the Rosetta decoys, with the REU score of the WT crystal structure. Thus, a score

smaller than 0 means an improvement compared to the WT structure. The more negative the

reported results, the greater the improvement of predicted stability of the protein compared to the

WT.

On average, the Rosetta energy was improved during design, compared to the relaxed wild-type
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structure, by -142.8 ± 25.0 (control), or -115.6 ± 26.6 (native), or -82.7 ± 24.4 (original), or -68.7

± 22.3 (clustered) REU. REU scores of the decoys that were restrained by original or clustered

PSSMs are more positive compared to the control (e.g -142.8 ± 25.0 of the control vs. -68.7 ±

22.3 for clustered), which is expected due to the additional restraints added and is an indicator,

that a normally unexplored sequence space was sampled. When comparing the control group with

the native group, we see a similar trend. This is mainly due to the limited number of mutations

in the native group which gives Rosetta less degrees of freedom to optimize the protein. Overall,

the design protocols improved the Rosetta energy compared to the WT energy in all cases (Figure

26a). The binding energy, normalized by its interface size, retained original values, suggesting a

conserved specific antibody binding to its antigen (Figure 26b). We conclude, that the chosen

weights (see Supplement Section 11.10.3) for HL restraints can be considered appropriate for the

design task.

Figure 26: Rosetta energy and binding energy of the human antibody set. The total

Rosetta score change relative to the relaxed wild type score (a) and the interface energy normalized

by the interface size (b).

8.2.5 Improved human wild-type antibody sequence recovery for the V and J domain

It is hypothesized that our Bayesian amino acid profiles from clustered nucleotide repertoires can

be used to model the human antibody space. As a consequence, it can be expected that antibodies

designed with HL restraints explore a more human sequence space that is more similar to the WT

sequences of the designed structures. Sequence recovery rates of the human WT sequence were

measured for the V, J region, and the CDRH3 region separately. When compared to the control

group, the heavy chain sequence recovery increases from 74.5 ± 6.3% (control) to 84.8 ± 3.8%
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(original), or 85.5 ± 4.6% (clustered). Similarly, the light chain sequence recovery is increased

from 77.1 ± 7.2% (control) to 85.6 ± 4.3% (original), or 85.5 ± 4.6% (clustered) (Figure 27a). In

contrast to the increased sequence recovery of the V and J regions, the CDRH3 sequence recovery

does not change significantly from 45.6 ± 11.1% (control) to 45.0 ± 13.3% (original). With a

slight decrease of sequence recovery to 40.6 ± 10.1%, the clustered human-like design approach

appears to influence the average sequence recovery. We hypothesize that the CDRH3 sequence is a

consequence of antibody maturation and differs between individuals too much to be reproducible

without access to their sequence repertoire.

Figure 27: Wild-type sequence recovery rates of the antibody after Rosetta design. The

sequence recovery for the V and J regions is increased for clustered and original design compared

to the un-restrained control design (a). The sequence recovery of the CDRH3 region does not

substantially change for the original design but is reduced when clustered design is applied (b).

Heavy chains (gray), and light chains (white). Statistical annotations with the Mann-Whitney

significance test (****: p ă 10e´ 4; ns: not significant)

8.2.6 Increased human-likeness across the antibody framework region

Similarly, to the observed increased sequence recovery in the V and J regions of the antibody, a

substantial increase of HL was observed. To compare the human-like Rosetta decoys, the control

group was scored with both the clustered and the original PSSMs and compared to their respective

HL decoys. HL of decoys generated with clustered and original PSSMs were not compared directly

with each other due to the different sets of underlying sequences and nucleotide frequency distri-

butions. Figure 28a visualizes the HL of the framework regions compared to the control group.
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While the heavy chain HL of the control group barely differed in their HL of 70.7 ± 2.8% (original)

and 71.3 ± 2.7% (clustered), the human-like designs both increased substantially to 86.0 ± 2.8%

(original) and 87.9 ± 2.6% (clustered). Similarly, the light chain human-likeness increased from

71.0 ± 2.8% to 86.3 ± 2.2% (original), or from 71.8 ± 2.8% to 86.8 ± 2.1% (clustered).

As a reminder, the native control group are those control decoys with the highest sequence

similarity to the HL antibody design. Thus the native decoys are the control decoys with a similar

number of mutations when compared to a HL decoys. When designing an antibody in Rosetta

without HL restraints, a decrease of HL is expected as the number of mutations increases. The

native group does account for the different number of mutations to not artificially render the

performance of the HL design protocol greater than it is. When compared to the native group, HL

Rosetta decoys do not decrease their HL as much as the native control group when compared to

the WT HL. In the case of the design with original PSSMs, the HL of one antibody was higher

than its WT HL (Figure 28b). In the clustered design scenario (Figure 28c) four Abs increased

their HL compared to the WT. In contrast to our design protocol, all control decoys with a similar

sequence identity to the HL designs (“native”) decreased their HL.

Figure 28: Human likeness of the V and J domains after Rosetta design. The control

group was scored using original and clustered PSSMs, and is significantly lower than the human-like

designs, original and clustered (a). The change of human-likeness in respect to the native designs

(unrestrained Rosetta design with similar sequence identity to the wild-type used as baseline),

shows an improvement of human-likeness for original (b) as well as clustered PSSM designs (c) for

all antibodies in the dataset. Each data point represents a unique PDB ID. Heavy chains (gray),

and light chains (white). Statistical annotations with the Mann-Whitney significance test (****:

p ă 10e´ 4; *: 1.00e´ 02 ă p ă“ 5.00e´ 02).

8.2.7 The human-likeness of the CDRH3 benefits from repertoire clustering

The most difficult task of antibody HL assessment and engineering is the highly variable CDRH3

region. We previously introduced with IgReconstruct a HL assessment method based on single

nucleotide frequencies of the observed antibody space (Schmitz et al. 2020). The untemplated

and diverse character of the CDRH3 requires an alternative approach to address CDRH3 human-

likeness. Thus, IgReconstruct was expanded to support repertoire clustering. Instead of germline
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genes, the sequence of the cluster center was used to assign nucleotide profiles to the CDRH3.

Characteristic for the CDRH3 sequence space is its low commonality between human blood donors

(Soto, Bombardi, et al. 2019; B. Briney et al. 2019), and the relatively low number of observed

sequences per individual (108 per donor versus ą 1012). To address the difficult task of defining

human-likeness for the CDRH3 region, Bayesian statistics were used to infer an enlarged amino

acid sequence space from single nucleotide observations. To assess the performance of our method

for the CDHR3 specifically, decoys created with the original or clustered PSSMs were compared to

the HL of the native group. Decoys created with and without clustering did not show a substantial

change in HL when compared to the control group and native group (Figure 29a). In contrast, eight

antibodies in our benchmark designed with clustered PSSMs exhibited a positive change (¿ 3.5%)

of HL compared to their native group (Figure 29b). Structures with an increased HL compared

to their natives were 1n0x (8.0 ± 0.7%), 2yc1 (3.5 ± 0.0 %), 3l5x (5.0 ± 0.7 %), 4hs6 (4.0 ± 0.6

%), 4ioi (4.3 ± 1.4%), 4j6r (3.5 ± 0.8%), 5f9o (6.1 ± 0.7%), or 5xku (6.5 ± 0.9%). Supplementary

Table 8 contains a complete list of changes in HL. Due to the low shared commonality of CDRH3

sequences between human individuals, and the fact that the used antibody repertoires were collected

from healthy blood donors, it cannot be expected that the PSSMs carry the information needed

to generate mature, highly specific antibody sequences in all 27 cases. Figure 29c visualizes the

eight cases with an CDRH3 HL improvement of at least 3.5%. Even though the design approach

using original PSSMs may increase the HL slightly, this effect is more pronounced when clustered

restraints were used. For interpreting the HL scores, it is important to point out, that the maximum

possible HL an antibody can achieve, is not always 100% and depends on how distinct sharp the

frequency distribution is. Generally speaking, the more diverse a sequence set, the flatter the

observed frequency distribution. Here, the HL of the CDRH3 never exceeded 40% for clustered

PSSMs (Figure 29b), and less then 32.5% for original PSSMs (Figure 29a). We therefore consider

the cutoff to determine an improvement in HL of 3.5% reasonable.
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Figure 29: Human-likeness (HL) of the CDRH3 compared to Rosetta designs with

limited number of mutations (native). HL of Rosetta designs using original (a, circles) and

clustered (b, circles) PSSMs. The HL of control designs (star) was assessed with clustered and

oringial PSSMs respectively. Each datapoint corresponds to a unique PDBID. In contrast to the

original designs, 8 out of 27 PDBs using clustered PSSMs could improve HL when compared to

its control and native designs (red). When selecting the seven antibodies with improved CDRH3

human-likeness, the significance of the change becomes visible for HL scores using clustered and

original PSSMs (c). Statistical annotations with the Mann-Whitney significance test (****: p ă

10e´ 4).

8.3 Discussion

Valuable research grade monoclonal antibodies are often derived from non-organisms such as mouse,

rat, or rabbit and chicken. Humanization techniques are required if such antibodies are developed

for clinical use, to avoid adverse effects and maintain the efficacy of antibodies when used in the

clinic. Here, a method was developed for computational antibody design of IgG antibody isotypes

with Rosetta. Even though our findings are exclusive to one antibody isotype, we suggest that this

method can be expanded to all isotypes for which a sufficient large amount of human nucleotide

reference sequence are available to create the PSSM antibody space.

The observed antibody space of single blood donors (108) is magnitudes smaller than the ex-

pected diversity of human antibodies (ą 1012). The main reason for the high diversity and the

low commonality (Soto, Bombardi, et al. 2019; B. Briney et al. 2019) of sequence repertoires is

the variable CDRH3 region of the antibody, that enables specific binding to a wide variety of anti-

gens. To model human-likeness despite these difficulties, the previously described IgReconstruct

(Schmitz et al. 2020) method was improved. Amino acid frequency profiles of clustered antibody

repertories were modeled from nucleotide sequences using Bayesian statistics. It is hypothesized

that Bayesian statistics are able to infer a larger antibody space by exploiting the degeneracy of the

genetic code. The usefulness of this antibody space was demonstrated by improving the HL of the

CDRH3 region with Rosetta design for 8 out of 27 human co-crystal structures. For the variable

and joining segments of the antibody, the HL was reliably improved compared to unrestrained

Rosetta designs, suggesting that Rosetta can be employed using our method to either design novel

antibodies that are human-like, or re-design existing antibodies for human-likeness. Re-design of
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non-human antibodies was not conducted in the study and comes with additional challenges:

It has been shown, that human germline genes can be assigned to non-human antibody species

(Schmitz et al. 2020) – which is the foundation of our method. However, the alignments naturally

can be of low quality due to their low HL and low germline identity. Consequently, it can be

expected that a greater number of mutations is required to humanize an antibody of non-human

origin. To address humanization of non-human antibodies, decisions must be made on a case-to-

case basis that include 1) which human germline gene combination should be used that optimally

supports the CDRH3 conformation , 2) which areas of the variable region should be protected from

mutations. 3) Evaluation of the humanness that may depend on specific project aims and include

experimental evidence. Non-human antibodies are therefore ill-suited for an initial benchmark of

our study as they fail to provide a HL baseline and human WT sequence for comparison. In

this study, we suggest to exploit nucleotide frequencies to infer amino acid probabilities instead

of assessing amino acid frequencies directly for three main reasons: First, ambiguities that arise

during antibody amino acid characterization can be resolved on the nucleotide sequence level. For

example, nucleotide triplets may only be partially aligned to germline genes. Or the same triplet

can be assigned to different genes, which may occur in the junctions between V-D, D-J, or V-J

gene assignments. The amino acid representation would fail to resolve ambiguities and inaccurately

model frequency statistics. Second, germline gene dependent nucleotide statistics do not require

special handling of frame-shifts. Third, single nucleotide observations can be used in combination

with our Bayesian approach to suggest probabilities for amino acids that have not necessarily been

observed in immune repertoires. The low commonality of human CDRH3 sequences between human

subjects has been shown before (Soto, Bombardi, et al. 2019; B. Briney et al. 2019). This finding

implies, that antibodies specific to the same antigen can differ in its sequence significantly between

different humans. This may explain our observation, that clustered PSSMs fail to significantly

increase the sequence identity to the WT antibody, since the sequence space is biased by individual

repertoires. The CDRH3 human-likeness on the other hand could be increased in 8 out of 27 cases.

It should be noted that the human blood samples for the repertoires used here were collected from

otherwise healthy donors in the US. The individuals did not have exposure histories for all antigens

observed in our dataset of 27 co-crystallized antibodies that comprise antigens from HIV, HPC,

auto-antibodies, dengue virus, and more. In the cases of increased CDRH3 HL and decreased

sequence identity to the wild-type, it can be assumed that the immune response of the blood

donor(s) would appear differently than the antibody deposited in the PDB. A design scenario with

greater practical relevance, which is less tailored for benchmarking of aggravated difficulty, e.g.,

starting from a non-human lead antibody, is likely to yield much more significant changes in human-

likeness. Further applications may include established Rosetta design protocols that are available

as RosettaScripts (Fleishman et al. 2011), and combined with our PSSMs. The RosettaScript used

for this study (see Supplement Section 11.10.3) can be considered as a basic single-state affinity

maturation protocol when co-crystal structures in complex with the antigen are used, where one

conformation is referred to as a single state. Our approach can also be combined with RECON,
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a multi-state design protocol that can be used to design multi-specific antibodies, or for affinity

maturation (Sevy, N. C. Wu, et al. 2019; Sevy, Jacobs, et al. 2015). Another possible use case is

the de-novo design with RostetaAntibodyDesign (RabD) (Adolf-Bryfogle, Kalyuzhniy, et al. 2018)

of both human-like antibodies from an experimental structure of a non-binding antibody, or affinity

maturation of an already existing antibody weakly binding antibody while maintaining HL.

8.4 Methods

8.4.1 Generation of Single Nucleotide Frequency (SNF) profiles

Previous work grafted Single Nucleotide Frequency (SNF) profiles onto amino acid antibody se-

quences using NGS sequenced immunome repertoires (Schmitz et al. 2020). This enables the

assessment of human-likeness and the recovery of human like nucleotide sequences. SNF statistics

were generated for each germline gene and CDRH3 loop length independently. Here, a similar ap-

proach is used, but instead of pooling all sequences depending on germline gene and loop length, the

immunome repertoires are clustered based on minimal sequence identity. Separation by sequence

identity allows us to capture the SNF statistics that depend on reading frames or that are unique

for antibody lineages. We used SNF profiles with a sequence identity of 50%, 70%, 80%, and 90%

for V, D, and J regions and profiles with a CDRH3 loop identity of 16%, 23%, 30%, 37%, 44%, and

50%. We used 196,072,571 heavy chain and 129,095, 736 light chain sequences published by Soto,

Bombardi, et al. 2019. SNF profiles with an identity cutoff of 90% of V and J domains and 30%

for the CDRH3 were chosen for all experiments as a compromise between number of clusters and

cluster sizes.

8.4.2 Bayesian approach to model the human amino acid sequence space

We deduce amino acid substitution scores from SNF profiles. We hypothesize, that silent mutations

and the degeneracy of the genetic code contain additional information which allow us to extrap-

olate a larger and smoother amino acid sequence space than experimentally determined via NGS

sequencing. We developed a Bayesian approach to estimate amino acid probabilities from inde-

pendent nucleotide triplet observations p(aa—trpl) (Equation 10). We simplify Equation 10 with

the assumption that the immunome repertoire is of infinite size and an observation of any amino

acid at any position is possible with p(aa) equals 1.0. The denominator p(trpl) is the fraction of

observed versus all possible triplet observations for all 20 amino acids.

∆ppaa|trplq “
pptrpl|aaqppaaq

pptrplq
(10)

The triplet probability for a given amino acid (nominator) and the global triplet probabilities

(denominator) was reformulated as a fraction of amino acid pseudo-observations Opseudo, and

divided by the total number of observations. Working with observations instead of frequencies

allows further simplification of the equation. Pseudo-observations were inferred by pooling all

encoding triplets together that encode an amino acid together for the first, second, and third

position separately. Each nucleotide is counted once, as seen at the example of serine and the
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Table 2: Example of unique nucleotides at each position of the six triplets (Tunique), that encode
Serine. Tunique is used to look up the observed nucleotide frequencies that contribute to a specific
amino acid.

Position1 Position2 Position 3

Triplet1 A G T

Triplet2 A G C

Triplet3 T C T

Triplet4 T C C

Triplet5 T C A

Triplet6 T C G

Tunique A, T G, C T, C, A, G

unique nucleotides were used to infer the triplet frequency for a specific amino acid. Table 8

exemplary shows for serine. The resulting observations are independent of the varying number of

triplets that encode an amino acid.

Opseudo is ultimately the sum of SNF observations of all unique nucleotides and resembles

to the frequency of a specific amino acid. The probability to observe a specific amino acid resn

at position resi, given the triplet observations from our SNF profile, is described in equation 11

as p(resn — trpl). Pseudo-observations allow us to determine the greatest common denominator

(GCD). The GCD is calculated for all three positions in the triplet.

ppresn|trplq “

řTuniquepresnq

nt Opseudopresi,ntq
GCD

ř

aa

řTuniquepaaq

nt Opseudopresi,ntq
GCD

(11)

The GCD cancels out which leads us to our final Equation 12. We expect these amino acid

pseudo-observations to approximate the bayesian human amino acid sequence space.

ppaa, resiq “

řTuniquepresnq

nt Opseudopresi, ntq
ř

aa

řTunqiuepaaq

nt Opseudopresi, ntq
(12)

8.4.3 Generation of a position specific substitution matrix

We use the amino acid probabilities calculated in Equation 12 to assemble position specific frequency

matrices antibody variable regions. The substitution matrices are deduced from SNF profiles

which are individually generated for each sequence depending on its germline gene rearrangement

(Schmitz et al. 2020). We then convert these frequencies into PSI-Blast formatted position specific

substitution matrices for amino acids (Stephen F. Altschul et al. 2009). The method to calculate

substitution matrices from probabilities was described for Blast applications (S. F. Altschul 1991).

We adopted the mathematical Equation 13 for substitution score calculation and applied it on each

germline gene dependent and CDRH3 loop length dependent amino acid probability matrix p(aa,

resi) (Equation 12).

sij “

´

ln
qij
pipj

¯

λ
(13)

The target frequency qij which describes the probability to mutate amino acid i to residue j, and

background probabilities for each amino acid i, and j (pi and pj). The scaling parameter lambda

was determined for each probability matrix individually by optimizing the spearman correlation
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between substitution score and nucleotide human-likeness score PFMVJ (Schmitz et al. 2020). We

used Powell optimization as optimization function, and cropped the sij values between -10 and 10.

Cropping ensures that outliers and extreme values turn into forced mutations during Rosetta design.

Supplementary Figure 75 visualizes the effect correlation optimization has on the distribution of

substitution scores, which leads to a better spread of the values within the allowed range of -10 to

10.

8.4.4 Design of antibody structures with and without substitution score constraints

Crystal structures were obtained from the protein data bank (Dunbar et al. 2014), removed solvent

and all non-protein and duplicate chains. For structural sequence design Rosetta was used (Leaver-

Fay, Tyka, et al. 2011). First, we constraint relaxed all prepared structures succeeded by a sequence

conversion to Alanine of the variable region (Fv). Using Rosetta we redesigned the Fv region with

and without substitution scores, in apo and holo state if available. To add the constraints to Rosetta

we used our PSI-Blast formatted PSSM in combination with the FavorSequenceProfileMover and

global scaling, and a weight of 5. All positions in the PSSM without any information about

substitution scores (untemplated regions like insertions or the antigen) were filled with zeros. In

order to measure the sequence recovery rate, we compared the variable regions of the heavy and

light chains only.

8.4.5 Human-likeness and SNF alignment generation for the dataset

Human-likeness was calculated as previously described as PFMVJ is a direct measure of observed

nucleotide frequencies (Schmitz et al. 2020). HL values were reported for the V and J domain as

the average of nucleotide frequencies (PFMVJ) and adopted for the CDRH3 region analogously

(PFMCDRH3). SNF matrices were generated by from the wild-type crystal structures using IgRe-

construct and the clustered version of the IgReconstruct algorithm. SNF matrices were then used

to create the substitution scores/PSSMs as human-likeness restraint. The sequence recovery was

calculated by counting the number of mutations introduced during Rosetta each design run, divided

by the total number of residues in the antibody chains. Sequence recovery was calculated for heavy

and light chains separately.

8.5 Availability

The IgReconstruct webservice has been extended to output clustered and original PSSMs which

can directly be used in combination with Rosetta scripts (see Supplementary Section 11.10.3). The

IgReconstruct webservice is available at http://www.meilerlab.org/index.php/servers/IgReconstruct
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9 Assessment and optimization of antibody expressability using

Long-Short Term Memory and structural design

This chapter has been submitted to Prot. Eng. Des. Sel. (Schmitz et al., 2021).

9.1 Introduction

Although the market for monoclonal antibodies for both therapeutic use and in vaccines has in-

creased dramatically over the past three decades (R.-M. Lu et al. 2020), there have been impedi-

ments to transitioning functional human-like antibodies to become therapeutics. The development

and manufacturing of antibodies requires high concentration bioprocesses in unphysiological condi-

tions. However, natural antibodies or antibodies derived therefrom do not experience evolutionary

pressures to perform well in these altered conditions conditions of scientific experiments or in-

dustrial productions. As a consequence, the results of many antibody discovery campaigns are

difficult-to-express (DTE) antibodies that yield low concentrations (Pybus, James, et al. 2014) and

low product quality (Johari et al. 2015), which can compromise research efforts and increase costs

when transitioned into industrial scale production. Factors that increase the likelihood of antibod-

ies to be DTE include translation (Kallehauge et al. 2017), aggregation (Hasegawa et al. 2017),

degredation (Johari et al. 2015), and folding (Jung and Alt 2004) problems. Single-point-mutations

introduced during engineering efforts may improve or exacerbate expression of DTE antibodies(5),

but can also be detrimental for antibody specificity (Iba et al. 1998; Winkler et al. 2000), and

affinity (Wojcikiewicz and Luo 1998; Schildbach et al. 1993).

Previous studies have explored computational predictions of solubility. Tools like PROSO II

(Smialowski et al. 2012), CamSol (Sormanni, Aprile, and Vendruscolo 2015), SolPro (Magnan,

Randall, and Baldi 2009) are often based on a form of Machine Learning, similar to Support Vector

Machines (Z. R. Yang 2004), and the manual grafting of sequence feature sets that might influence

solubility. The recently described predictors DeepSol (Khurana et al. 2018) and SKADE (Raimondi

et al. 2020) made use of Deep Learning and SoluProt with a Gradient Boosting Machine (Hon et al.

2021). These tools address the related challenge of protein solubility but usually are not antibody

specific and are designed for the Escherichia coli expression system. The solubility definition can

include non-expressing antibodies, which renders the quest for solubility and expressability predic-

tors scientifically and technically comparable. Like DeepSol and SKADE, this study uses a Deep

Learning approach to create an expressability model and investigates the possibility of conserved

sequence changes that may alleviate the problem of low expressability. Unlike SKADE, this study

makes use of computational re-design with Rosetta (Leaver-Fay, Tyka, et al. 2011) to identify

important sequence modifications for improved expressability that are plausible from a structural

point of view. The method presented here is tailored for antibodies and was developed with data

from protein assays for expression in Chinese Ovarian Hamster (CHO) cells.

Therefore, this study takes a two-fold approach to predict and optimize antibody expressability.

First, a Deep-Learning model was trained on a dataset of experimentally assessed concentrations.

The model then was used to predict the effect of single point mutants on the expressability of par-
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ticular antibody clones. Second, computational structural re-design informed by a library of single

point mutant expressability was used to introduce as few mutations as possible while maximizing

the expressability.

Deep mutational scanning (Fowler and Fields 2014) encompasses methods that exhaustively en-

list the effect of single-point-mutants (SPM). Libraries of SPM have been used to successfully study

binding tolerance (Whitehead et al. 2012) and sequence-function relationships (Fowler, Araya, et al.

2010). A recent study has shown, that SPM libraries can support the computational optimization

of antibody heavy-light chain binding interfaces to improve antibody stability and even expression

yields (Warszawski, Katz, et al. 2019). The concentrations of our dataset of 888 unique Flu-binding

antibodies was expressed with a uniform method, and has therefore minimized experimental bias re-

garding expressability. Concentrations of each SPM are not available in this study, and we therefore

use modern deep learning to create an exhaustive library of single point mutants.

Deep-Learning (DL) has demonstrated great success in mining the complex relationships hidden

in biosequences (Li et al. 2019). Here, the long-short term memory (LSTM) (Hochreiter and

Schmidhuber 1997) architecture was chosen, which has been applied successfully on sequences

(Wainberg et al. 2018; Jurtz et al. 2017; Angermueller et al. 2016) before to predict Human-

Likeness (Wollacott et al. 2019), or for de-novo structure prediction (AlQuraishi 2019). A recent

study demonstrated antibody affinity maturation based on a LSTM model (Saka et al. 2021).

Our study demonstrates, that an LSTM model can be used to predict the expressability of an

antibody and generate SPM libraries to ultimately inform computational sequence design and

optimize expressability.

The computational structural modeling suite Rosetta (Leaver-Fay, Tyka, et al. 2011) can be

used for a wide variety of tasks including, but not restricted to, immunoglobulins. This includes:

structure prediction, docking, antigen and antibody design (Schoeder et al. 2021). Here, we predict

structures of a dataset of Flu antibodies using Rosetta homology modeling (Song et al. 2013) to

successively conduct design. We restrain the sequence design to favor those mutations that are likely

to improve the antibodies’ overall expressability. For that, a pyrosetta (Chaudhury, Lyskov, and

Gray 2010) protocol was developed that re-evaluates each mutation based on the LSTM-predicted

expressability of its corresponding SPM.

9.2 Results

A set of 888 Flu antibodies were expressed in CHO cells and their expression levels were measured.

Sequence diversity and chain class content are detailed in Supplementary Figures S70-S71 and

Tables S6-S7. This study can be divided into two main parts. First, the antibody expressability

estimation was calculated using a DL neural network trained with these CHO Flu sequences.

Second, each antibody was redesigned with Rosetta in order to demonstrate the possibility of using

DL-informed computational design to improve protein expressability.

The architecture of choice is a recurrent long-short term memory (LSTM) (Hochreiter and

Schmidhuber 1997). The LSTM was trained and its performance evaluated via a 10-fold cross
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validation. Due to the limited size of the training dataset, and to simplify the difficult computational

expressability prediction task, the sequences were classified into two categories: ‘expressing’ or ‘non-

expressing’. An antibody was defined as expressing, if its concentration levels are greater than 50

µg/mL for two reasons. First, 50 µg /mL safely exceeds the minimal detectable concentration of

5µg/mL of the iQue flow cytometric detection system we used to measure immunoglobulins. Second,

selecting the threshold of 50 µg/mL renders the dataset well balanced, since this cutoff results in

487 expressable (55%) and 401 non-expressing (45%) samples. This approach minimizes the risk

of overfitting due to the otherwise lack of sufficient training samples in one category. Without a

balanced cutoff, either the expressing or non-expressing samples are overrepresented. Unbalanced

datasets would lead to biased performance numbers, since the network would learn a tendency to

guess the expressibility label of the larger sample group. We do not expect any restrictions in the

ability to change the expressibility cutoff for greater minimal expression yields. This would require

experimental training data that either enables choosing a different cutoff, or is sizeable enough to

remove excess positive or negative samples. The degree of correlation between expression levels

and variable cutoffs may be explored in future studies.

9.2.1 Expressability prediction and optimization

The LSTM architecture was introduced specifically to improve the learning of long-term dependen-

cies observed in classic recurrent neural networks (RNN) (Hochreiter and Schmidhuber 1997). Long

distance relationships between residues in bio-sequences become especially relevant when residues

distant from each other in the primary sequence, come spatially close to each other in the final

structure.

Modern networks incorporate multiple layers of hidden states, which enable the model to learn

relationships in high-dimensional data. Here, we translated the result into a probabilistic output

with the help of a function called softmax (Figure 30a, Figure S63). Inputs to the network are

heavy or light chain sequences that are presented as one-hot matrix, where each row corresponds

to a specific amino acid identity and each column corresponds to an amino acid position assigned

by the ImMunoGeneTics information system® (M.-P. Lefranc, Pommié, Kaas, et al. 2005) as

unique IMGT-Number (M.-P. Lefranc, Pommié, Ruiz, et al. 2003). The IMGT numbering scheme

encodes the location of framework and CDR regions, which ultimately allows us to compare different

antibody sequences. We hypothesize that the alignment of the input samples to their IMGT

Numbers allows the network to learn sequence features that correlate with expression characteristics

in the binding interface of the paired heavy and light chain. The LSTM model was trained on

either heavy (heavy), or light chain variable (light) sequences, in addition to a combination of both

(paired), and the performance of all three models was assessed. The resulting input matrix for

the neural net is of the shape times 21, with representing the number of unique IMGT numbers

observed in the training set, and 21 features, which are the 20 canonical amino acids plus a gap

symbol. When paired sequences are used, the feature dimension is doubled to 42 rows.
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Figure 30: LSTM architecture to binarily predict if an antibody can be expressed

experimentally. Paired heavy/light chain sequences are represented in a onehot-matrix. Each

canonical amino acid plus the gap symbol is represented in one row, whereas the number of columns

is determined by the longest observed training sequence. The one-hot matrix is forwarded into a

bi-directional LSTM layer. A softmax function ultimately converts the LSTM prediction into the

probability of belonging to either expression class (a).To improve expressability using structural

re-design with Rosetta, IMGT Numbering for the input structure is assessed, to prepare the input

for the LSTM and to identify framework and CDR regions. The CDR and residues with native

cysteine are prohibited for mutation. For regions allowed to mutate, an exhaustive list of single

point mutants is generated and its expressability predicted. To guide the re-design for increased

expressability, each mutation is re-evaluated using its corresponding SPM expressability prediction

(WSPM) and to a preference to retain the wild-type residue type (WWT) (b).

To increase the predicted expressability while keeping the number of changes (mutations) at a

minimum, a Rosetta design protocol was developed that guides the structural design in two ways.

First, each mutation is evaluated using the LSTM model. Second, a fixed term preferring the wild-

type residue (“native”) is calculated. Both terms interact with each other such that each possible

mutation must be either structurally beneficial or especially beneficial for expressability in order

to overcome the bias towards the native sequence. By adding both terms to the Rosetta scoring

function, the structural re-design favors such sequences which improve expressability (Figure 30b).

9.2.2 Training performance of 10-fold cross-validation

To assess the expressability prediction performance, recall (Figure 31a) and area under the curve

(AUC, Figure 31b) were recorded for each of the ten models during the ten-fold cross-validation.

Control models were created by randomly shuffling the sequence labels. Random shuffling conserves

the relative frequency of both expressing and non-expressing samples in the dataset as to not bias
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the result.

Figure 31: Binary LSTM classification performance of (non-)expressing Flu antibodies.

Recall (a) and area under the curve (AUC, b) for two runs of ten-fold cross-validation. LSTM

models were created for heavy chain, light chain, and paired heavy and light chain sequences. Each

model was evaluated with a test-set of randomly relabeled sequences (Control). The paired, as well

as the light chain model score, is significantly higher than the Control, without any substantial

difference in performance between the two. The heavy chain model does not perform better than

the Control. Mann Whitney significance tests annotated with p¡= 1e-4 (****), 1e-3¡=p¡=1e-2 (**),

and p¿5e-2 (not significant; ns).

When averaged over ten models, a recall of 0.54 ± 0.04 (control), 0.65 ± 0.05 (paired), 0.57

± 0.04 (heavy), or 0.66 ± 0.04 (light) was observed. AUC values were 0.54 ± 0.05 (control),

0.70 ± 0.05 (paired), 0.59 ± 0.05 (heavy), or 0.71 ± 0.04 (light). Precision values were 0.55 ±

0.03 (control), 0.67 ± 0.04 (paired), 0.59 ± 0.03 (heavy), or 0.67 ± 0.03 (light). Classification

using light chain sequences only significantly outperformed heavy chain sequence models. In our

expression experiments, a frequent over-expression of light chains was noticed. Prior to pairing,

the heavy chain is chaperoned by other host proteins prior to pairing. Taking both together may

indicate that the light chain drives antibody heavy and light chain pairing. We hypothesize that
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the increased light chain performance of the classificator reflects the experimental conditions of our

dataset.

For all further experiments, the models trained using the paired antibody sequences were used

for the following reasons: First, the approach aims to remove sequence patterns that are unfavorable

for expression. We hypothesize that the different chain classes can inform each other about (un-

)favorable sequence patterns that may or may not be specific to chain classes or germline genes.

The performance of kappa and lambda class antibodies was evaluated (Figure S72) but did not

improve their performance reliably. Second, due to the limited size of the dataset a further split

was avoided. We can not exclude the possibility that separate models are advantageous for different

datasets.

In addition to the LSTM models, the performance of logarithmic expression was explored. To

estimate the impact of the sample encoding, all models were evaluated using Kidera and Atchley

factors that encode biochemical properties of amino acids, instead of the one-hot encoding of the

amino acid sequence. It is hypothesized that Kidera and Atchley encoding may be advantageous,

since it would allow the model to learn input feature distances based on biochemical amino acid

properties. Figure S72 shows performance metrics for 13 different LSTM and regression models

trained with one-hot, Kidera, and Atchley encoding using paired, light chains, kappa, or lambda

sequences. To summarize, Kidera and Atchley encoding did not increase the classification perfor-

mance. The performance drops for models using a lambda class antibodies, likely due to small size

of the dataset (30.7% of the dataset with 273 antibodies). Overall, regression models performed

comparably, but slightly worse than the LSTM models in most cases. In particular, the decreased

AUC performance of regression models is likely detrimental for the re-design of antibodies for in-

creased expressibility for Rosetta since the probability scores are converted into Rosetta restraints.

We also hypothesize that the LSTM model may benefit from the continuous addition of more

training data that would arise from re-training alongside expression experiments.

9.2.3 LSTM-informed structural design with Rosetta

RosettaCM (Song et al. 2013) was used to create homology models for each sequence in our Flu

antibody dataset. The performance of RosettaCM homology models for antibodies have been

studied in great detail in a previous study(40). The framework region is structurally conserved

and RMSD vs Rosetta score plots of our homology models generally show folding tunnels, which

is supportive of the idea that the models are plausible (Figure S73). The structural design does

ignore the structurally much more diverse CDR3 region, which alleviates the impact of possible

misfolded structures. We therefore consider the homology models reliable enough to exclude a

major structural bias of misfolded structures that would impact the presented results.

To optimize the design for expressability, a library of single point mutants (SPM) was created,

and the expressability of each mutant was predicted. The prediction was then converted into

Rosetta energy penalties and bonuses. Each score serves as an estimate for the change each mutation

has on the expressability. This change is independent of other sequence changes made during the
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design. Penalties (positive scores) and bonuses (negative scores) guide the design towards sequences

the LSTM would evaluate more favorably for expression.

Re-design was prevented in CDR3 regions for two main reasons. First, the CDR3 is crucial

for antibody-antigen binding and mutations in this area may alter the efficacy the most. Second,

the high sequence variability of the hypervariable region (Soto, Bombardi, et al. 2019) is likely

insufficiently captured by the available dataset of the 888 sequences, which is a detriment to the

task of making high-confidence predictions for mutations that benefit the expressability. In addition

to the restriction on the CDR3 region, all cysteine residues were conserved and the introduction of

new (and potentially unpaired) cysteines was prohibited.

To conserve optimal biophysical properties, and ultimately binding properties, the number of

mutations was restricted by adding a Rosetta term that rewards a high identity to the wild-type

(“native”) sequence. This term directly opposes the newly introduced SPM expressability term

and was balanced to work in harmony with the expressability term.

Our Rosetta design protocol activates two additional restraints: the LSTM expressibility re-

straint, and a sequence conservation restraint. Both restraints counterbalance each other, where a

large expressibility weight tends to result in highly mutated antibodies, the conservation restraint

reduces the number of mutations. Here a set of three weights are suggested that translates to

light, moderate, and aggressive re-design by combining large and low weights for expressibility and

sequence conservation. The weights were chosen that produced antibodies with expressibilities and

number of mutations that appeared reasonable to us, but can be freely modified by the user of the

protocol (Table 3). As a result, the “low intensity” weight combination introduces few mutations

with the lowest increase in expressibility, “medium intensity” results in a moderate increase in both

expressibility and number of mutations, and “strong intensity” which results in the largest number

of mutations and the greatest increase in expressibility.

9.2.4 Predicted expressability before and after re-design

Figure 32 visualizes the three design intensities in red (strong), yellow (medium), or blue (low). A

completely unrestraint control design resulted in large number of mutations without a significant

gain in expressability. A restraint control (control cst., gray) was therefore introduced, where

expressability was not optimized during re-design and the number of mutations restricted in the

same way as in the low intensity design. See Table 3 for exact weighting schemes.
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Figure 32: Design performance of 888 Flu antibodies that did (star), or did not express

(-) before the Rosetta re-design. The LSTM prediction of the antibody expressability of the

wild-type sequence versus the best scoring Rosetta design (a) and the number of heavy and light

chain mutations (b). All antibodies were design with weak (blue), medium (yellow), or strong

(red) expressability sequence restraints. Out of 888 antibodies considered, 352 were labeled as non-

expressers before design (-). For 277 (weak), 32 (medium), or 16 (strong) of out 888 antibodies,

the design resulted in a decrease of predicted expressability. Control designs with limited number

mutations and disabled expressability term (gray) did not result in increased expressability on

average.

In comparing the predicted expressability before or after re-design (Figure 32a), our method

improves the expressability in 611 (low), 856 (medium), 872 (strong), or 447 (control cst) out of

888 cases, and the expressability changed on average by 3.6 ± 12% (low), 25.4 ± 24% (medium),

37.1 ± 29% (strong), and 0.0 ± 14% (control cst). The large standard deviation is direct result of

the variable starting expressability of the wild-type sequences. Even though the gain in predicted

low expressability for the low intensity design is moderate, the number of designs with a predicted

decrease in expressability decreases compared to the control (Figure 32a, blue and gray marks

below the diagonal).

Low intensity design can be considered the least conservative, and strong intensity design the

most aggressive. Similar to the increased predicted expressability, the number of mutations also

increases allowing a greater degree of freedom to increase expressability (Figure 32b). The median

of introduced light chain mutations was 1 (low), 5 (medium), 9 (strong), or 1 (control cst.). The

median of introduced heavy chain mutations was 1 (low), 5 (medium), 9 (strong), or 2 (control

cst.).

To summarize, the number of mutations increases with increasing design intensity, whereas the

predicted expressability substantially improves alongside. With about 4 to 5 mutations per chain

on medium settings, excluding the CDR region, it appears plausible that the binding activity of

the antibody can be conserved while increasing the chance for successful expression in CHO cells.
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Design with the strong setting allows the reliable design of antibodies with high expressibility with

the expense of up to 19 mutations. It is recommended to choose or adapt the weighting schema on a

case-by-case basis to explore the optimal ratio of expressibility gained to the number of mutations.

This also may involve creating new fine-tuned weighting schemes for the desired outcome.

9.2.5 No evidence for reduced structural stability after re-design

Rosetta protein design can come with the risk of impaired structural stability, especially when

additional restraints are added. Here, these terms favor the native sequence and expressability. To

evaluate Rosetta designs, Rosetta Energy Units (REU) serve as a metric to compare the wild-type

structure with the designs. Additional restraint terms inevitably decrease the REU and potentially

aggravate the effect of structures with impaired stability.

To assess a potential negative effect of the re-design protocol on the protein stability, the change

of REU compared to the wild-type was assessed for each design intensity (Figure 33a). The largest

effect on the REU was 18.2 ± 10 (low), followed by 3.0 ± 13 (medium), -3.4 ± 13 (strong), -72.6

± 18 (control), or 12.3 ± 12 (control cst.). Here, in addition to the previously used control that

enabled the native sequence restraint (control cst.), the results also were compared to a completely

unrestrained design (control). To generalize, the more mutations that were introduced, the more

degrees of freedom were available to compensate for mutations that were less favorable without

restraint, but were beneficial for expressability. This effect is exaggerated in the unrestrained

control design, which exhibits the greatest REU improvement to the expense of a large number of

mutations. By reducing the number of allowed mutations (control cst.) the REU change avareges on

a similar like the low intensity design, showing that our method does exhibit energy changes within

expectations. Among the restrained designs, the greatest impact was observed for low intensity,

which is comparable to its control (control cst.). Strong intensity designs exhibit on average a

statistically significantly lower reduction in REU than the restraint control design (control cst.),

and remains close to the wild-type energy. Thus, it can be concluded that our design approach

does not have the tendency to reduce the structural integrity, and remains in ranges that can be

considered normal for the specific structures and the chosen design.

The predicted expressability after re-design significantly improved with low intensity (56.1 ±

31%), medium (78.0 ± 23%), and strong intensity (90.0 ± 15%), compared to the control (57.4 ±

32%) and restraint control (52.0 ± 32%) (Figure 33b).
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Figure 33: Effect on predicted expressability, engineerability, and Rosetta energy of

re-engineered antibodies. The increase (worsening) of Rosetta energy relative to the wild-type

is highest with low intensities (low number of mutations) and comparable for medium or strong

restraint intensities. The energy impact on the two control groups is lowest without restraints (con-

trol, maximum number of mutations). The control with limited mutations (control cst.) has similar

effect on the REU as the design with low intensity (a). The predicted expressability significantly

increases when using low versus medium versus strong restraint intensitites. Low intensities and

controls without restraints (control) and limited amount of mutations (control cst.) do not improve

the predicted expressability clearly (b). The engineerability term, which serves as an estimate on

how well an re-engineered anitbody can improve expressability is least predictive for the low (¡0), on

average accurate for medium (on average 0), and in most cases represents a minimal expressability

improvement for strong intensity (¿0) (c). Mann Whitney significance tests annotated with p¡=

1e-4 (****), 1e-3¡=p¡=1e-2 (**), and p¡5e-2 (*).

To estimate the degree to which an antibody’s expressability can be improved in advance of

re-design, we introduce the term engineerability. Here, engineerability is equal to the SPM with

the highest predicted expressability. To demonstrate the predictive potential of the engineerability

term, the expressability of the best re-design was compared with its engineerability. Figure 33c

shows the difference between engineerability and expressability for each antibody. For both control

groups, the expressability stays below zero and rarely reaches the engineerability value (-19.6 ± 33%

control and -25.1 ± 21% control cst.). Similarly, the low intensity design (-21.0 ± 18%) remains

below the engineerability value, whereas medium intensity designs, on average, come close to their

engineerability (0.0 ± 17%), and strong intensity designs, on average, surpass the engineerability

(12.6 ± 21%). Engineerability therefore can be considered as a predictive tool, when keeping the

used restraint intensities in mind.
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9.2.6 Re-engineered antibodies show a preference for certain residues

In this study, we demonstrated that a LSTM informed re-design is able to improve the predicted

antibody expressability. To assess how the improved expressability was achieved, we assessed

mutational preferences of the most successful Rosetta designs. The most successful designs were

chosen as follows: First, the predicted expressability must increase by at least 80% compared to

the wild-type expressability. Second, the final expressability prediction after design is at least 90%.

Out of 888 cases, 142 unique antibodies remained matching the criteria and were analyzed further

for potential sequence patterns.

Figure 34 visualizes the mutation rate for heavy (a, b) or light chains (c, d). The overall

mutation frequency can be seen, which indicates how often an antibody has been mutated at a

specific residue (panel a for heavy, and c for light chains). Column X is the cumulative frequency

for each residue, indicating how often a position was mutated, disregarding its specific amino acid

type. The specific distribution of amino acids for each residue is presented in panel b (heavy chain),

or d (light chain).
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Figure 34: Frequency of heavy chain mutations of the re-engineered designs with strong

intensity. A subset of antibodies is represented (best Rosetta score, expressibility greater than

90%, and improvement by re-design at least 80%). The numbers are percent rounded down to

integers. The frequency of mutations in the heavy chain observed for each IMGT number and their

total frequency of all designs (X). Mutation frequency is plotted separately for heavy chain (a)

and light chain (c). For example: position 125 was mutated in 55% of all designs, most frequently

substituted with Isoleucin (I, 71%). The mutations were mapped onto a typical immunoglobulin

structure that represents the used dataset well (gray: CDR; colors match the heatmap). Most

frequent mutations (3, 5, 12, 125) are located in either the N or C termini (b) which are both

located at the surface of the structure. Mutations between the CDR1 and CDR2 (39-55) located

in between the heavy and light chain interface exhibit only low mutation frequencies (d).

In heavy chains, the most frequently mutated residues was IMGT residue 3 with 64%, followed

by 125 (56%), 5 (51%), 20 (49%), 6 (46%), 1 (42%), 2 (39%), 11 (35%), 9 (29%), or 24 (28%) each

(Figure 34a, column X). Positions 2, 3, 5, and 125 were frequently replaced with isoleucine (41%,

39%, 71%, or 73%, Figure 34b). For most other most positions with high mutation frequencies,

the amino acid preferences were slightly more ambiguous, ranging from a hydrophobic valine at

position 20 (46%), alanine at position 11 (29%), charged amino acids aspartatic acid or glutamatic

acid at positions 9 (29%), 14 (29%), or 24 (33%). Overall, it can be summarized, that for very
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successful designs with high positive change in expressability, there is a preference towards N

and C-terminal mutations with primarily hydrophobic (isoleucine, valine, arginine), and also less

frequently charged amino acids (aspartic or glutamatic acid). This overall trend barely changes,

when “successful design” is defined more generously, with an expressability improvement of at

least 50% (284 unique antibodies applicable) instead of 80%, indicating that for this dataset, the

observed mutational preference is robust (Figure S68).

Sequence logos for the complete Flu antibody dataset, as well sequence logos for Flu sequences

labeled as expressing or non-expressing (Figures S64-S66) show, that the mutational preferences

after Rosetta design (Figure S67) do not match the sequence conservation observed in the dataset.

It can be concluded, that the LSTM guided re-design does not simply recapitulate amino acid

identities that are already present in the set of already expressing sequences. The extent to which

the specific mutations can be reproduced with different antibody lineages, and experimental assays

requires further studies.

9.3 Methods

9.3.1 Plasmablasts isolation and paired heavy and light chain variable regions se-

quencing

Generation a panel of monoclonal antibodies that were isolated from plasmablasts was described

previously (Zost et al. 2021). Briefly, PBMCs were isolated during natural influenza A H3N2 virus

infection on day 7 from symptom onset and stained with the following phenotyping antibodies; anti-

CD19, -CD27 and -CD38 (BD Biosciences) to identify plasmblasts. Plasmablasts were single-cell

sorted in bulk using an Aria III flow cytometer (BD Biosciences) and carried through single-cell

RNA sequencing using the 10X Genomics Chromium platform with enrichment using the VDJ

amplification kit (10X Genomics) according to the manufacturer’s instructions. Amplicons were

sequenced on an Illumina Novaseq 6000, and data were processed using the CellRanger software

v3.1.0 (10X Genomics).

9.3.2 Antibody production, purification, and quantification

cDNA encoding heavy or light chains of interest were synthesized and cloned into IgG1 or IgK/IgL

expression vectors, respectively (Twist Bioscience). Heavy and light chain plasmids were transfected

into 96-well cultures of ExpiCHO cells (ThermoFisher Scientific,) for microscale expression and then

purified using previously described methods (Gilchuk et al. 2020). High-throughput quantification

of microscale-purified mAbs was performed using the Cy-Clone Plus Kit and an iQue Plus Screener

flow cytometer (IntelliCyt) according to the vendor’s protocol. Only a small fraction of antibodies

(¡ 10%) did aggregated visibly; low antibody concentration measurement values therefore represent

either, low expression or aggregation after purification.
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9.3.3 Training of LSTM models

TensorFlow 2.1 (Abadi et al. 2016) short-term memory written in python3.6. The two layer bi-

directional LSTM (Figure S63) was trained by splitting the dataset into train, dev, test datasets

from 888 antibodies in a ratio of 80%, 10%, 10%. As a pre-processing step, sequences were assigned

IMGT numbering using IgReconstruct (Schmitz et al. 2020) and presented as an aligned one-hot

matrix, where each column represents a unique IMGT number. The rows of each sample correspond

to one of the 20 canonical amino acids plus a gap symbol. Models were created for either heavy

or light chain individually, or for both chains paired together. In the case of paired heavy/light

chain models, matrices for heavy and light chains were concatenated. The LSTM results were

translated into a binary classifier to estimate the expressability using the Dense network of the

tensorflow/keras framework. To evaluate the training performance ten fold cross validation was

chosen and recall and AUC metrics reported. Each model was trained for up to 100 epochs, while

logging the weights and loss after each epoch. To minimize the risk of over-fitting, the model weights

with the smallest loss was chosen. As a consequence, some models may have trained for fewer than

100 epochs. Labels were represented as a onehot vector where 1 represents ą 50 µg/mL and 0

represents ď 50 µg/mL measured titers. A threshold of 50µg/mL rendered the dataset available

for this study balanced with 487 sequences labeled as expressing and 401 sequences labeled as

non-expressing.

9.3.4 Expressability prediction

For expressability prediction, only those IMGT numbers (columns) observed during training can

be considered. Non-observed IMGT numbers in each are equivalent to gaps. 10 models were

generated with random bootstrapping of the training set using either light chains, heavy chains,

or aligned heavy and light chains. After evaluating the classification performance of the models,

the 10 models generated with paired heavy and light chains were chosen to predict expressability

before and after design. Each sequence was scored with up to 10 models while the only models

that were considered were those not previously part of the training set. The result with the highest

confidence in expressability was chosen as the result.

9.3.5 Structural antibody homology modeling with Rosetta

500 homology models for each antibody in our dataset were created using a multi-template protocol

(Kodali et al. 2021) based on RosettaCM (Song et al. 2013). Each structure was refined with

RosettaRelax (Nivón, Moretti, and David Baker 2013) five times and the best model was chosen

purely by its best Rosetta energy.

9.3.6 Rosetta design with and without expressability restraints

The Rosetta design protocol was implemented in pyrosetta (Chaudhury, Lyskov, and Gray 2010)

and implemented in the RosettaScripts (fleisman˙rosettascripts˙2011) framework for the pur-

pose of combining our protocol with existing or future Rosetta protocols that may, for example,
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reduce immunogenic effects by adding additional design constraints. An exhaustive list of all single

point mutations was created and scored for expressability. The Rosetta protocol implemented in

pyrosetta uses the predicted expressability score of the SNPs to assign a Rosetta score penality and

bonuses during Rosetta sequence design respectively. The expressability term E(resi) for any given

mutation resi is therefore expressed as the difference between the expressability of its corresponding

SPM (ESPM), and the WT expressability (EWT). The expressability difference between WT and

SPM may be small and thus the prediction has a lower confidence than more distinguishable scores.

To account for close-to-wildtype scores, the SPM – WT difference was scaled according to equation

14. The effect of the scaling is visualized in Figure S69.
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Epresiq ˆ p1 ´ EWT q if Epresiq ą 0

Epresiq ˆ EWT if Epresiq ă 0; with Epresiq “ ESPM ´ EWT

0 if Epresiq “ 0

(14)

The scores S(resi) is clamped into a range of -W to W to create Rosetta scores. This approach

guarantees that the Rosetta restraint term has values close to the user specified weight W and

allows the protocol to behave in a predictable way. However, to account for outliers in the set

of S(resi) scores, the final constraint bonuses and penalties CR(resi) are first normalized by its

90th percentile (P90) and then clamped into the range [-W; W] (equation 15). The percentile is

calculated for each chain individually.

Cpresiq “
Spresiq

P90pSq
ˆW ; with Cpresiq P r´W ;W s (15)

The influenza dataset used in this study comprises antibody variable regions of paired heavy

and light chains, with only residues within the variable region subjected to design. In addition,

Rosetta design was restricted to not introduce cysteines and to conserve already existing cysteines.

No mutations were allowed in the CDR region comprising all 6 CDR loops of the heavy and light

chains. The location of the CDR loops 1-3 was inferred from IMGT numbers, that is IMGT

numbers 27-38 for CDR1, 56-65 for CDR2, and 105-117 for CDR3 (M.-P. Lefranc, Pommié, Ruiz,

et al. 2003). Equally to the CDR, the four residues after the CDR3 (the [WF]GXG motif) also

were prohibited for re-design. The [WF]GXG motif is a highly conserved antibody sequence pattern

indicating the end of the CDRH3. The remaining Fv region was free to mutate using 19 canonical

amino-acids (cysteine excluded).

To minimize the number of mutations, the WT sequence was favored. Three expressability

design intensities were chosen by combining the strength to favor expressability as well as a low

number of mutations. Two controls, one completely unrestrained, the other restrained exclusively

to favor the WT sequence (Table 3). A custom energy constraint was implemented in pyrosetta

for the Expressability weight, whereas RosettaScript’s FavorNativeResidue was used to limit the

number of mutations.
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Table 3: Rosetta weights used to increase expressability and keep the number of mutations at a
minimum
Intensity Expressability weight (W) WT sequence weight

low 4 3

medium 3 2

strong 4 2

control cst. 0 2

control 0 0

9.4 Availability

Pyrosetta scripts using tensorflow 2.1 for training and predicting expressability are at the Rosetta

Commons github repository under https://github.com/RosettaCommons/AbExpress. Ten pre-

trained models using our Flu dataset are included, but it is recommended to re-train the model

for individual use. IgReconstruct (Schmitz et al. 2020) is available to provide IMGT numbered

sequence alignments at http://www.meilerlab.org/index.php/servers/IgReconstruct.

9.5 Discussion

This study presents a Deep Learning based method to predict antibody expressability in CHO

cells. It could be shown that the predictor can be used to inform computational structural design

that can alter the sequence to improve the expressability of antibodies without disrupting the

protein structures. The predicted expressability could be significantly increased. To increase the

chance of keeping biophysical properties intact, the number of mutations can be controlled and

minimized. The method developed here is comparable to scientifically related solubility predictors.

The presented method is antibody specific and makes use of computational structural design to

optimize expressability. Sequence analysis of optimized antibodies exhibited mutational hot-spots

at the N and C-termini of the variable region with predominantly hydrophobic, and to a much

lesser extent, charged amino-acids. Even though attention based neural networks previously have

attributed high importance to N-and C-termini for solubility (Raimondi et al. 2020), the underlying

driving forces may be different. First, N and C-terminal regions tend to be more conserved due

to their germline gene templating. The artificial neural network may conceal potential mutational

preferences with a higher degree of uncertainty for more variable regions, that have a lower training

sample coverage. Generalization of these observations may be aggravated by the low degree of

shared sequence space in antibody heavy chains (Soto, Bombardi, et al. 2019). Thus, the optimal

use case scenario may involve training custom expressability LSTMmodels for each antibody lineage

alongside ongoing experimental characterization.

Whether these indications for mutational preferences, and whether the expressability optimiza-

tion protocol can be observed with other antibody lineages, must ultimately be decided by future

efforts.
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10 Conclusion and Future Directions

10.1 Human-likeness from large sequence datasets

In the first part of this work (Chapter 6), the technological foundation (IgReconstruct) is laid

to statistically assess complete immunome repertoires of more than 300 million unique sequences.

IgReconstruct as an approach to links the nucleotide sequence space with resources of Abs where

primarily amino acid information is available, like de-novo computational models or structural

databases (Berman et al. 2000; Dunbar et al. 2014). by creating individual nucleotide frequency

alignments with each antibody.

Nucleotide statistics of the variable region derived from large human immunome repertoires are

capable of estimating the similarity of an antibody the observed human antibody sequence space.

by predicting nucleotide sequences from amino acid sequences. In the process, our statistical model

performed on-par with a Deep-Learning approach to estimate antibody human-likeness (Wollacott

et al. 2019) and in addition is capable of suggesting nucleotide-sequences. Future studies may ex-

plore how these sequences compare with codon-optimized sequences routinely generated by biotech

companies.

The rise of modern Deep-Learning techniques has recently found widespread applications in

structural biology, like AlphaFold (Senior et al. 2020; Jumper et al. 2021), RoseTTAFold (Baek

et al. 2021), or Long short-term memory (LSTM) based antibody affinity maturation (Saka et al.

2021). Deep-Learning approaches can be implemented and evaluated quickly, and do not require

an elaborate hypothesis due to the automatic feature-extraction from data that is inherent to the

success of this approach. At the same time, Deep-Learning suffers from a lack of explainability.

While extraordinary success could be demonstrated in the area of de-novo protein-folding, it has

not improved the understanding of protein-folding mechanics.

By choosing a statistical model for IgReconstruct, it can be concluded that the human-likeness

is primarily a function of the underlying germline gene rearrangement and its individual nucleotide

frequencies. This indirectly supports the hypothesis that the B-Cell maturation process is a pri-

marily an undirected stochastic process succeeded by - as opposed to guided by - a selection process

for affinity and productivity.

The greatest challenge and limitation of this method is the high variability of CDRH3 region,

aggravated by a lack of germline genes with a high-confidence alignment. Germline gene rearrange-

ments are fundamental to assessing human-likeness with IgReconstruct. Thus, to solely estimate

human-likeness, or more generally speaking, the similarity to a set of sequences, Deep-Learning

approaches certainly would outperform our CDRH3 human-likeness prediction as well as back-

translation. In this study, we build upon this technique to address this shortcoming (Chapter

8).

10.2 Co-evolving residues characterize protein function and flexibility

Co-evolving residues span a network across the protein, with the majority in physical contact

with each other (ą 91%), but others account for protein dynamics and function (e.g. interac-
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tion partners). It was shown that incorporating co-evolutionary information into protein design

helps Rosetta to better design stable and functional proteins while conserving functionally relevant

residues (Chapter 7).

Traditionally protein design with Rosetta occurs on one or few conformations with no or very lit-

tle information about the protein environment. Thus, the primary hypothesis is, that evolutionary

information comprising structural, flexibility and functional information can be leveraged to inform

the protein design. This is especially useful for proteins with little available additional structural

information, i.e. properties of the protein that are ‘hidden’ in a single structure/sequence pair. It

could be shown that the designed proteins have more natural sequences that are more similar to

homologous proteins, and tend to conserve in many cases the amino acid identity of functionally

relevant residues. In future studies, the extent to which the designed proteins can also conserve the

protein’s conformation and flexibility can be investigated in greater detail. We further could show

that filtering of the network of co-evolving residues can highlight areas of interest that overlap with

regions known to be relevant for function.

Implications towards antibody design in conjunction with large immunome repertoires are as

follows: Future studies may develop methods to assess antibody datasets based on their function.

Fingerprinting antibodies according to their coupled residues to ultimately support antibody dis-

covery by directly scanning for and grouping by patterns of covariant residue frequencies. The

design with antibodies sharing the same fingerprint may support antibody sequence design and

potentially inform the epitope-focused immunogen design to elicit a more potent immune response

with Rosetta.

The applicability to antibodies was limited by the lack of antibody sequence data and requires

a large amount of annotated antibody sequences of the same antibody lineage that can support the

development and validation of the method. Thus, the development of the antibody design approach

was continued by using a clustering approach on large immunome repertoires without information

about its specificity.

10.3 Modeling the antibody sequence space and human-like antibody design

For many years, the development of structure-based computational methods has been proceeding,

resulting in a multitude of protocols in Rosetta. Various structural design protocols are specific

for antibody design. One of the most comprehensive Rosetta Antibody design protocols is RabD

(Rosetta Antibody Design) (Adolf-Bryfogle, Kalyuzhniy, et al. 2018) and allows the addition of

sequence profiles from structurally clustered antibodies (Adolf-Bryfogle, Q. Xu, et al. 2015). This

approach is significantly limited by the comparatively small amount of available antibody structures.

At the time of writing, 1,000 - 2,000 human antibodies were available at the time of writing at

the curated antibody database SAbDab (Dunbar et al. 2014). It seems obvious that a small

amount of sequences is insufficient to recapitulate the (human) antibody sequence space, which

is conservatively estimated to be in the range of 1013 unique sequences. Even though substantial

progress was made to experimentally increase the observed antibody sequence space (DeWitt et al.
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2016; B. Briney et al. 2019; Soto, Bombardi, et al. 2019), the cumulative body of sequences amounts

to few billion antibodies from highly diverse sources (Corrie et al. 2018).

In this study, both challenges were addressed, the limited observed antibody sequence space from

diverse sources and their insufficient integration into protein design with Rosetta, and mitigation

of the sequenced fraction of immune repertoires via a mathematical model (Chapter 8).

The previously discussed human-likeness evaluation of antibodies using nucleotide frequency

statistics has been discussed earlier (Chapter 6). The limitation of making conclusions about the

CDRH3 region has been pointed out. The primary challenge in the CDHR3 region is the lack of

high confidence diversity (D) germline genes and the untemplated character of CDRH3 junction

regions in general. This enables the high specificity of antibodies to its antigen, but at the same

time, this diminishes the meaning of suggested back-translations and human-likeness predictions.

Templated regions on the other hand allow the estimation of the diversification of sequences using

the germline genes as reference.

To improve the value of the CDRH3 predictions, a clustering approach was employed to generate

nucleotide statistics for similar sequences. A set of similar sequences may convey sequence patterns

that support the binding and conformation of a given structural design. Thus, clustered human-

likeness or human-likeness on a specific antibody lineage may reveal patterns that are characteristic

for binding and function.

To address the limited number of single-source observed sequences, the degeneration of the

genetic code was leveraged to model amino acid probabilities that arise from the nucleotide type

at the first, second, and third position of a triplet which is shared between certain amino acids.

In this work we have demonstrated increased sequence similarity of designed antibodies to their

respective wild-type crystal structures and increased human-likeness. For the CDRH3 region, the

human-likeness increased only for a fraction of the benchmarked antibodies. This was expected due

to the high variability and low commonality of antibodies, rendering the used repertoire in some

cases more, and in other cases less prone to develop a response.

Future studies may use this technology to improve upon the limitations in the nucleotide fre-

quency statistics. For one, the heavy and light chains were unpaired - a limitation of the dataset

- and during clustering, the clonotype was ignored. One improvement may thus be to include the

usage of a sequence dataset of paired sequences and with V, J, and CDRH3 clusters that depends

on the V and J gene combination (Clonotype). Co-evolutionary analysis on top of the clustering

may reveal distinct patterns that indicate functional activity, facilitating the grouping of repertoires

by function.

In combination with Rosetta, an enhanced method may allow for simulation of the immune

response to a specific antigen to ultimately optimize the epitope focused vaccine design in order

to elicit the most effective immune response with the lowest probability of escape mutants. The

combination of multi-state design using different human-likeness restraints at the same time that

have previously been determined to be functionally relevant with Rosetta may support the design

of bi-specific antibodies that appear human-like. As it is common for Research and Development

99



projects, meaningful outcomes can only be achieved in a closed cycle of computational prediction

and experimental validation to establish a positive feedback loop. Thus, the greatest limitation of

this approach is the requirement of close collaboration with experimental antibody discovery.

10.4 Prediction of antibody expressability

The complex biophysical cascade that involves the expression of a protein from transcription to

secretion has been described in Chapter 5.7. To address the challenge of predicting if an antibody

can be expressed is a multivariate challenge and the public data is sparse that fulfill the requirements

to develop expressability pipelines. In the optimal case, antibodies are required to be screened

for bottlenecks in translation, folding, and secretion. The minimal requirements to develop an

expressability predictor is a dataset with experimental expression yields determined by one single

experimental approach.

In this study, a Flu dataset was examined with expression yields. Due to the lack of any further

sequence annotation a Deep Learning approach was employed to predict expressability and to

design antibodies with increased expressability. Even though, the performance of the predictor was

mediocre with an AUC of 0.70, it could be shown that in combination with Rosetta, the predicted

expressability could be increased in all cases. Thus, a use-case of this approach is to improve the

expressability while keeping the number of mutations low to avoid changes in the binding mode.

To further improve performance of expressability predictors, the single most important approach

is the integration with an experimental workflow - usually well established in antibody discovery

laboratories - to attain a continuous feedback loop with fresh training data. Furthermore, predictors

or experimental data regarding post-translational modification (PTM) or structural stability may

to some degree improve the classification. However, due to the vast number of unknowns, it would

be advised to re-train the predictor individually for specific antibody lineages and experimental

setups. In this work it was observed that the light chains of the studied Flu antibodies had

a dis-proportionally high effect on the classificator performance compared to the heavy chains.

This phenomenon remains unexplained and may or may not be reproducible with other datasets.

Ultimately, the project may facilitate the study binding characteristics of antibodies that have been

elusive to experiements due to low yields.
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11 Appendices

11.1 Antibody human-likeness via back-translation

Figure 35: Heatmap of single nucleotide frequences for the heavy chain sequence with

GenBank ID EU6200063.1

Figure 36: Sequence recovery and human-likeness scores for all 20 species.
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Figure 37: Nucleotide sequence recovery for the CDRH3 loop for human and non-

human sequences.

Figure 38: CDRH3 classification performance using the CDRH3 human-likeness score.
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11.1.1 Random back-translation results in nucleotide sequence identity of roughly

74%

To roughly estimate the chance of guessing a nucleotide sequence correctly given a fixed amino

acid sequence the following considerations were made: To simplify the calculation, the degree of

degeneration of the amino acid translation table was quantified. Six distinct groups of codons,

which differ in how many different nucleotides are possible at all three positions, were identified.

Group one comprises two amino acids with only one triplet (W, M). Group two comprises nine amio

acids (H, F, Y, E, N, K, D, E, C) with two triplets, which differ at the third position. Group three

of one amino acid (I) with three triplets differing at the third nucleotide and so on. All groups are

listed in detail in Supplementary Table 1. For each group we calculated the chance, T, to guess the

wild type nucleotide triplet given the wild type amino acid, which is the average of the probability

to guess each individual nucleotide (Equation 16).

T “

1
A ` 1

P ` 1
E

3
(16)

T := Chance to guess the correct triplet for a given amino acid

A := Number of possible nucleotides at the first triplet position

P:= Number of possible nucleotides at the second triplet position

E:= Number of possible nucleotides at the third triplet position

Amino acids R, L, and S are encoded by two groups. The total chance to guess correctly in

such cases is the average of both groups (Supplementary Table 4, column 5). The calculation was

simplified with the assumption that all amino acids are observed equally, often on average. To

obtain the probability to guess group one to six correctly, the total chance was multiplied with

the number of amino acids in each group. The final chance to guess the nucleotide sequence of a

fixed amino acid sequence correctly is then the sum of all probabilities divided by 20 (number of

canonical amino acids). This simplified calculation results in an average probability to guess the

correct nucleotide sequence of 73.68%. To validate our calculation, 206,165 GenBank sequences

were back-translated from our benchmark dataset three times. The sequence set contained 130,768

heavy chain sequences of the species Homo sapiens (92,787), Callithrix jacchus (547), Chlorocebus

sabaeus (123), Macaca fascicularis (4780), Mus musculus (31,070), Oryctolagus cuniculus (608),

and Rattus norvegicus (865). It further contained 75,384 light chain sequences of species Homo

sapiens (57,427), Callithrix jacchus (828), Chlorocebus sabaeus (129), Macaca fascicularis (735),

Mus musculus (13,619), Oryctolagus cuniculus (2,141), and Rattus norvegicus (505). Supplemen-

tary Figure 5 shows the average sequence identity of three random back-translations for each of the

sequences. We used uniformly distributed probability for each triplet encoding the given amino acid

at each position. On average, the sequence identity over all species was 73.46 ± 2.60 % (compare:

73.68% calculated).
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Table 4: Expected nucleotide sequence recovery for random back-translation. The rightmost column

summed up results in a probability of 0.7368

Amino

acids

Codons

of

bold

amino

acid

Number of differ-

ent nucleotides to

choose from posi-

tion one to three

Chance to choose

the correct nu-

cleotide

Total

chance

Total chance multiplied

by number of amino

acids

W, M TGG 1, 1, 1 1`1`1
3 “ 1 1 1

H, F, Y, E,

N, K, D, E,

C

CAT

CAC

1, 1, 2 1`1`1{2
3 “ 5

6
5
6

15
2

I ATT

ATC

ATA

1, 1, 3 1`1`1{3
3 “ 7

9
7
9

7
9

P, V, A, T CCT

CCC

CCA

CCG

1, 1, 4 1`1`1{4
3 “ 3

4
3
4

15
4

R, L CGT

CGC

CGA

CGG

2, 1, 4 1{2`1`1{4
3 “ 7

12
7{12`2{3

2 “

5
8

5
4

R, L AGA

AGG

2, 1, 2 1{2`1`1{2
3 “ 2

3
7{12`2{3

2 “

5
8

5
4

S TCT

TCC

TCA

TCG

2, 2, 4 1{2`1{2`1{4
3 “ 5

12
5{12`1{2

2 “

11
24

11
24

S AGT

AGC

2, 2, 2 1{2`1{2`1{2
3 “ 1

2
5{12`1{2

2 “

11
24

11
24
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11.2 Rosetta design with co-evolutionary restraints and benchmark description

11.2.1 Benchmak Protein Description

Here, additional data on the other benchmark proteins can be found, highlighting the broad use of

ResCue. For a detailed description of the protein design methods used, see Section 2.

11.2.2 Overview of all ten benchmark proteins

In all cases ResCue designs showed a lower energy increase compared to SeqProf and RECON,

while having a large increase in crs values (Fig S1). All ResCue designs occupied a more favorable

area of this energy landscapes. In all of our benchmark proteins there is a clear separation of the

design methods visible.
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Figure 39: Energy landscapes for designed sequences. The normalized Rosetta Energy in

REU is plotted against the Coupling Recovery Score crs (%). Each dot represents a designed

sequence and is colored by the used design protocol. Each plot is one of the ten proteins used as

benchmark. (Note that in typical Rosetta fashion the x-axis is inverted, to highlight the energy

funnel. Additionally the crs is represented in % to enable comparison between the proteins.)

11.2.3 A network of coupled residues is involved in the binding of ATP in the HPPK

The 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) belongs to a class of enzymes

catalyzing the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP),

which is the first reaction in the folate pathway (Xiao et al. 1999; Switzer and Gibson 1978;

Blaszczyk et al. 2000). Here, the residue interaction network formed by the 20% highest coupled
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residues res20cc pHPPKq is mostly involved in the binding of ATP (Q74, R88, W89, H115, Y116,

R121) (Fig S2, red network). In contrast, the other found small networks (purple, green, yellow) are

not annotated in the literature. Other residues critical for the substrate/cofactor binding besides

ATP were not part of our found networks, but some of the residues are conserved. This conservation

excludes co-evolutionary mutations with other residues. Comparing the sequence logos of designed

sequences reveals that there is almost no difference in sampling between RoSSD and RECON MSD

(Fig S3). This lack of improvement is not surprising since the RMSD between the two conforma-

tional states is only 0.5Å, and optimizing over two almost identical state has no additional benefit.

In the case of the two residues H115 and R121, sequences designed with SeqProf constraints sam-

ple the native amino acid more often than sequences designed with ResCue. Analyzing the MSA

revealed that these two positions are conserved residues, preventing a co-evolutionary signal.

Figure 40: Localization of highly coupled residues in HPPK. Network of highly coupled

residues (red, yellow, green, purple) displayed on the structure of HPPK (PDB ID: Unbound 1HKA,

Bound 1Q0N). Alignment of the bound state (blue) and the unbound state (grey). The substrate

ATP and a HP analog are shown as sticks. Bound magnesium is depicted as green spheres.
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Figure 41: Sequence logos resulting from four design protocols for HPPK. The native

sequences are listed below the logos. (A) Shown are sequence logos for six binding site residues for

each design approach. (B) Graphical view of the binding site residues and the substrates ATP and

a HP analog (green) shown in stick representation. Native structure in closed state is depicted in

blue, while a protein designed with ResCue is shown in grey. For the protein designs, the ligands

were not part of the starting structure. (Bound state PDB ID: 1Q0N)

11.2.4 The calcium sensor mechanism of S100A6 relies on the coupled residues at

the two binding sites

S100A6 is a member of the S100 family of calcium-binding proteins and undergoes a conformational

shift after binding (Otterbein et al. 2002). The protein functions as a calcium sensor through a

helix-loop-helix motif called EF-hand, similar to calmodulin and troponin C (Lewit-Bentley and

Réty 2000). Here, the residue interaction network formed by the 20% highest coupled residues

res20cc pS100A6q is separated into two distinct networks at the two calcium-binding sites (Fig S4).

Interestingly, while the red network at the second binding site captures all crucial binding residues,

the yellow network at the first binding site is small and only in close spacial proximity. This re-

sult is perhaps explained by the fact that the coordination of the calcium in the first site primarily

involves main chain carbonyls compared to the involvement of side chains in the second binding site.

Comparing the sequence logos of residues crucial for calcium-binding at both sites of different

design approaches further demonstrates the difference between the two binding sites (Fig S5). Here,

we expected RECON do perform better at sampling the native amino acids at the second binding

site than the first. This expectation is based on the fact that a large conformational shift occurs

at the second binding site while the first site shows almost no change. Indeed, RECON samples

the native amino acids at the second binding site more often than at the first. While the residues

at the first binding site are already well sampled by RoSSD design, the residues at the second site

have only in ResCue designs the native amino acids.

108



Figure 42: Localization of highly coupled residues in S100A6. Network of highly coupled

residues (red, yellow) displayed on the structure of S100A6 (PDB ID: Calcium bound 1K9K, Cal-

cium free 1K9P). Alignment of the calcium bound state (blue) and the calcim free state (grey).

Bound magnesium is depicted as green spheres. Residues critical for calcium-binding are shown as

sticks.
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Figure 43: Sequence logos resulting from four design protocols for S100A6. The native

sequences are listed below the logos. (A) Shown are sequence logos for nine binding site residues

for each design approach. (B) Native structure in calcium bound state is depicted in blue, while a

protein designed with ResCue is shown in grey. For the protein designs, the ligands were not part

of the starting structure. (Bound state PDB ID: 1K9K)

11.2.5 A network of coupled residues contributes to the conformational shift after

phosphate binding in the Phosphate-Binding Protein

The phosphate-binding protein (PBP) is responsible for the active transport of phosphate in bac-

terial cells and is highly specific for phosphate. The binding of phosphate is stabilized by twelve

hydrogen bonds, as well as one salt link (Yao et al. 1996). We found that the residue interaction

network formed by the 20% highest coupled residues res20cc pPBP q connects the positions forming

hydrogen bonds with the phosphate with residues further away from the binding site that undergo

conformational changes upon binding (Fig S6, Residues T10, F11, A13, Y33, S38, D56, N137,R135,

S139, G140, T141, S142, G176, N177, E195, Y198, T256, F257). Analyzing the designed sequences

of our different approaches with sequence logos highlighted how only our ResCue approach samples

the residues necessary to create hydrogen bonds with the ligand (Fig S7). The only residue that is

not sampled in all different methods is R135, which forms a hydrogen bond with a water molecule.

Again, water is not commonly included in protein design and thus remains a challenge for Rosetta.
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Figure 44: Localization of highly coupled residues in PBP. Network of highly coupled residues

(red) displayed on the structure of PBP (PDB ID: Unbound 1OIB, Bound 1QUK). Alignment of

the bound state (blue) and the unbound state (grey). The substrate phosphate is shown as sticks.

Residues known to be crucial for substrate binding are shown as sticks.

Figure 45: Sequence logos resulting from four design protocols for PBP. The native

sequences are listed below the logos. (A) Shown are sequence logos for nine binding site residues

for each design approach. (B)Graphical view of the binding site residues and the ligand phosphate

(orange) shown in stick representation. Native structure in closed state is depicted in blue, while

a protein designed with ResCue is shown in grey. For the protein designs, the ligand was not part

of the starting structure. (Bound state PDB ID: 1QUK)

11.2.6 A network of coupled residues is involved in the binding of GTP in the small

G protein Arf6-GDP

Arf6 localizes at the periphery of the cell and plays an essential role in endocytotic pathways

(Ménétrey et al. 2000; Pasqualato et al. 2001). Here, the residue interaction network formed by

the 20% highest coupled residues res20cc pArf6q is involved in the binding of GTP (T41, I42, D63,
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V64, G65, G66) (Fig S9, red network). Comparing the sequence logos of designed sequences reveals

that RoSSD often samples the native amino acids at positions 41, 63, 64 and 65. RECON does a

slightly better job at sampling the native sequence, for example in the case of G66 (Fig S8). In

the case of the residues I42 and D63 and G66, only ResCue designs show a clear bias towards the

native sequence.

Figure 46: Sequence logos resulting from four design protocols for Arf6. The native

sequences are listed below the logos. (A) Shown are sequence logos for six binding site residues

for each design approach. (B) Graphical view of the binding site residues and the ligand shown

in stick representation. Native structure in GTP bound state is depicted in blue, while a protein

designed with ResCue is shown in grey. For the protein designs, the ligand was not part of the

starting structure. (PDB ID: With GDP 1E0S, With GTP 2J5X)
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Figure 47: Localization of highly coupled residues in Arf6. Network of highly coupled

residues (red) displayed on the structure of Arf6 (PDB ID: With GDP 1E0S, With GTP 2J5X).

Alignment of the GTP bound state (blue) and the GDP bound state (grey). The substrate is shown

as sticks.

11.2.7 A network of coupled residues is involved in the binding of AMP in the Adeny-

late Kinase

Adenylate kinases are nucleoside monophosphate (NMP) kinases and consist of a large CORE

domain, a small NMP-binding domain and a LID domain (Müller, Schlauderer, et al. 1996; Müller

and Schulz 1992). Here, the residue interaction network formed by the 20% highest coupled residues

res20cc pAdenylatKinaseq is involved in the binding of AMP (Network residues: 29-40, 57, 58, 60,

61, 81-93, Binding residues: T31, R36, K57, L58, G85, F86, P87, R88) (Fig S10, red network).

Comparing the sequence logos of designed sequences reveals that all methods sample the native

amino acids for G85, F86 and P87 (Fig S11). However, in the case of the residues T31, R36 and

K57, only ResCue designs show a clear bias towards the native sequence.
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Figure 48: Localization of highly coupled residues in the Adenylate kinase. Network of

highly coupled residues (red) displayed on the structure of the Adenylate kinase (PDB ID: Ap5A

bound 1AKE, unbound 4AKE). Alignment of the Ap5A bound state (blue) and the unbound state

(grey). The substrate is shown as sticks.

Figure 49: Sequence logos resulting from four design protocols for the Adenylate kinase.

The native sequences are listed below the logos. (A) Shown are sequence logos for seven binding

site residues for each design approach. (B) Graphical view of the binding site residues and the

ligand shown in stick representation. Native structure in Ap5A bound state is depicted in blue,

while a protein designed with ResCue is shown in grey. For the protein designs, the ligand was not

part of the starting structure. (PDB ID: Ap5A bound 1AKE, unbound 4AKE)

11.2.8 A network of coupled residues is involved in the binding of FAD in the Thiore-

doxin reductase

In the thioredoxin reductase, cycles of reduction and reoxidation of FAD depend on rate-limiting

rearrangements of the FAD and NADPH domains (Lennon, Williams, and Ludwig 2000; Waksman

et al. 1994). Here, the residue interaction network formed by the 20% highest coupled residues
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res20cc pThioredoxinreductaseq is involved in the intearction with FAD (Network residues: 44-53,

132-144, 159-168, 172, 173, 179-182, 184, 291-309, Binding residues: N51, R181, R293, Q294,

A295) (Fig S12, red network). Comparing the sequence logos of designed sequences reveals that

RoSSD samples the native amino acids for N51 and Q294(Fig S13). However, in the case of the

residues R181 and R293, only ResCue designs show a clear bias towards the native sequence.

Figure 50: Localization of highly coupled residues in the Thioredoxin reductase. Network

of highly coupled residues (red) displayed on the structure of the Thioredoxin reductase (PDB ID:

AADP+ bound 1F6M, unbound 1E0S). Alignment of the AADP+ bound state (blue) and the

unbound state (grey). The substrate is shown as sticks.

Figure 51: Sequence logos resulting from four design protocols for the Thioredoxin

reductase. The native sequences are listed below the logos. (A) Shown are sequence logos for five

binding site residues for each design approach. (B) Graphical view of the binding site residues and

the ligand shown in stick representation. Native structure in AADP+ bound state is depicted in

blue, while a protein designed with ResCue is shown in grey. For the protein designs, the ligand

was not part of the starting structure. (PDB ID: AADP+ bound 1F6M, unbound 1E0S)
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11.2.9 Rosetta Design Protocols

11.2.10 Clean and relax

All proteins were cleaned and relaxed before design. An ensemble of five relaxed structures was

used as a starting point for all designs.

Listing 1: PDB cleaning commands

./Rosetta/tools/protein_tools/scripts/clean_pdb.py $PDBid $CHAIN

Listing 2: Rosetta relax commands

./Rosetta/main/source/bin/relax.default.linuxgccrelease -s $PDB -use_input_sc -

ãÑ nstruct 5 -relax:constrain_relax_to_start_coords -scorefile relax.fasc -out

ãÑ :suffix _relax

Listing 3: RosettaScripts design command file for unconstrained designs.

./Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease @design.options

-parser:protocol /design.xml -out:suffix_design -scorefile design.fasc -s $pdb

Listing 4: RosettaScripts XML file for unconstrained designs.

<ROSETTASCRIPTS>

<SCOREFXNS>

</SCOREFXNS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

<ReadResfile name="rrf" filename="design.resfile"/>

</TASKOPERATIONS>

<MOVERS>

<PackRotamersMover name="design" scorefxn="REF2015" task_operations="ifcl,

ãÑ rrf" />

</MOVERS>

<FILTERS>

</FILTERS>

<APPLY_TO_POSE>

</APPLY_TO_POSE>

<PROTOCOLS>

<Add mover="design" />

</PROTOCOLS>

<OUTPUT scorefxn="REF2015" />

</ROSETTASCRIPTS>
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11.2.11 Unconstraint Rosetta Single State Design (RoSSD)

The following options were used to design proteins in the benchmark without any additional con-

straints (control group).

Listing 5: Rosetta design options and residue file for unconstrained designs.

-linmem_ig 5 -ex1 -ex2 -nstruct 10000

design.resfile:

ALLAAxc

start

11.2.12 Design with co-evolutionary constraints (ResCue)

The following options and commands were used for the new ResCue protocol (with the same options

and resfile as above).

Listing 6: RosettaScripts command for co-evolutionary constraint designs.

./Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease @design.options

-parser:protocol design.xml -out:suffix _design -scorefile design.fasc -s $pdb

Listing 7: RosettaScripts XML file for co-evolutionary constraint designs.

<ROSETTASCRIPTS>

<SCOREFXNS>

<ScoreFunction name="scorefxn_cst" weights="ref2015.wts">

<Reweight scoretype="res_type_linking_constraint" weight

ãÑ ="1.0"/>

</ScoreFunction>

<ScoreFunction name="scorefxn" weights="ref2015.wts"/>

</SCOREFXNS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

<ReadResfile name="rrf" filename="design.resfile"/>

</TASKOPERATIONS>

<MOVERS>

<AddResidueCouplingConstraint name="favor" tensor_file=".

ãÑ tensorBinary.bin" index_file="indexList" strength="1.0"

ãÑ alphabet="ARNDCQEGHILKMFPSTWYV-"/>

<PackRotamersMover name="design" scorefxn="scorefxn_cst"

ãÑ task_operations="ifcl,rrf" />

</MOVERS>

<FILTERS>

</FILTERS>
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<PROTOCOLS>

<Add mover="favor" />

<Add mover="design" />

</PROTOCOLS>

<OUTPUT scorefxn="scorefxn" />

</ROSETTASCRIPTS>

11.2.13 RECON Multistate Designs (MSD)

Following commands and options were used for RECON multistate design (with the same Options

and resfile as above):

Listing 8: RosettaScripts design command for RECON MSD design.

./Rosetta/main/source/bin/recon.default.linuxgccrelease @design.options -parser:

ãÑ protocol design.xml -out:suffix _multiDesign -scorefile design.fasc -s $pdb

ãÑ $pdb2

Listing 9: RosettaScripts XML file for RECON design.

<ROSETTASCRIPTS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

</TASKOPERATIONS>

<MOVERS>

<PackRotamersMover name="design" scorefxn="REF2015" task_operations

ãÑ ="ifcl" />

<MSDMover name="msd1" design_mover="design" constraint_weight="0.5"

ãÑ resfiles="design.resfile, design.resfile" />

<MSDMover name="msd2" design_mover="design" constraint_weight="1"

ãÑ resfiles="design.resfile, design.resfile"/>

<MSDMover name="msd3" design_mover="design" constraint_weight="1.5"

ãÑ resfiles="design.resfile, design.resfile" />

<MSDMover name="msd4" design_mover="design" constraint_weight="2"

ãÑ resfiles="design.resfile, design.resfile" />

<FindConsensusSequence name="finish" scorefxn="REF2015" resfiles="

ãÑ design.resfile, design.resfile" />

</MOVERS>

<FILTERS>
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</FILTERS>

<PROTOCOLS>

<Add mover="msd1" />

<Add mover="msd2" />

<Add mover="msd3" />

<Add mover="msd4" />

<Add mover="finish" />

</PROTOCOLS>

<OUTPUT scorefxn="REF2015" />

</ROSETTASCRIPTS>

11.2.14 Design with a position specific scoring matrix (PSSM)

Following commands were used to design with a PSSM.

Listing 10: RosettaScripts design command and XML file for design constraint with PSSM.

./Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease

@design.options -parser:protocol design.xml -out:suffix _design -scorefile design

ãÑ .fasc -s $pdb
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Listing 11: RosettaScripts XML for design constraint with PSSM.

<ROSETTASCRIPTS>

<SCOREFXNS>

<ScoreFunction name="scorefxn" weights="ref2015.wts">

<Reweight scoretype="res_type_constraint" weight="0.0"/>

</ScoreFunction>

<ScoreFunction name="scorefxn_cst" weights="ref2015.wts">

<Reweight scoretype="res_type_constraint" weight="1.0"/>

</ScoreFunction>

</SCOREFXNS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

<ReadResfile name="rrf" filename="design.resfile"/>

</TASKOPERATIONS>

<MOVERS>

<FavorSequenceProfile name="favorSequence" scaling="global" weight

ãÑ ="5" pssm="pssm.txt" scorefxns="scorefxn_cst" />

<PackRotamersMover name="design" scorefxn="scorefxn_cst"

ãÑ task_operations="ifcl,rrf" />

</MOVERS>

<FILTERS>

</FILTERS>

<PROTOCOLS>

<Add mover="favorSequence"/>

<Add mover="design" />

</PROTOCOLS>

<OUTPUT scorefxn="scorefxn" />

</ROSETTASCRIPTS>

11.2.15 Design favoring the wild-type sequence

Following commands were used to design with a limited amount of mutations.

Listing 12: RosettaScripts design command and XML file for design constraint to the native se-

quence.

./Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease

@design.options -parser:protocol design.xml -out:suffix _design -scorefile design

ãÑ .fasc -s $pdb -"parser:script_vars weight=WEIGHT"
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Listing 13: RosettaScripts XML for design constraint to the native sequence.

<ROSETTASCRIPTS>

<SCOREFXNS>

<ScoreFunction name="scorefxn" weights="ref2015.wts">

<Reweight scoretype="res_type_constraint" weight="0.0"/>

</ScoreFunction>

<ScoreFunction name="scorefxn_cst" weights="ref2015.wts">

<Reweight scoretype="res_type_constraint" weight="%%weight%%"/>

</ScoreFunction>

</SCOREFXNS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

<ReadResfile name="rrf" filename="/home/erteltm/moritz/Protein_Designs

ãÑ /Constrained/Full/design.resfile"/>

</TASKOPERATIONS>

<MOVERS>

<FavorSequenceProfile name="favorSequence" weight="1.3" use_current="true"

ãÑ matrix="IDENTITY" scorefxns="scorefxn_cst" />

<PackRotamersMover name="design" scorefxn="scorefxn_cst" task_operations="

ãÑ ifcl,rrf" />

</MOVERS>

<FILTERS>

</FILTERS>

<APPLY_TO_POSE>

</APPLY_TO_POSE>

<PROTOCOLS>

<Add mover="favorSequence"/>

<Add mover="design" />

</PROTOCOLS>

<OUTPUT scorefxn="scorefxn" />

</ROSETTASCRIPTS>

For each benchmark protein, the weight of the score function term res type constraint was

optimized to roughly reflect the average native sequence recovery of the ResCue protocol. This

allows to compare the coupling recovery across the protocols. Table 1 lists the used weights for the

FavorNative protocol.
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Table 5: Weights used for the FavorNative protocol for each benchmark protein.
PDB1 PDB2 Weight Protein Description

1CKK 1CFD 1.8 Calmodulin
1EOS 2J5X 1.4 G-protein Arf6
6Q21 4Q21 1.25 RasH
1TDE 1F6M 1.0 Thioredoxin reductase
1QUK 1OIB 1.0 Phosphate-binding protein
2LAO 1LAF 0.8 LAO Binding protein
1K9P 1K9K 0.6 S100A6
1AKE 4AKE 0.7 Adenylate kinase
1HKA 1Q0N 0.7 HPPK
1D5W 1DBW 0.4 FixJ

11.2.16 ResCue full length sequence logos

Here, full length weblogos are provided for the ResCue design on the benchmark dataset (Figures

S1-S10). The weblogos visualize high wild-type sequence recovery over the full protein length.

Figure 52: Full sequence weblogo for the ResCue design on LAO
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Figure 53: Full sequence weblogo for the ResCue design on FixJ

Figure 54: Full sequence weblogo for the ResCue design on RasH
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Figure 55: Full sequence weblogo for the ResCue design on Calmodulin

Figure 56: Full sequence weblogo for the ResCue design on HPPK
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Figure 57: Full sequence weblogo for the ResCue design on S100A6

Figure 58: Full sequence weblogo for the ResCue design on Arf 6
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Figure 59: Full sequence weblogo for the ResCue design on thioredoxin reductase
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Figure 60: Full sequence weblogo for the ResCue design on Phosphate binding protein
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Figure 61: Full sequence weblogo for the ResCue design on adenylate kinase
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11.2.17 Coupling strength of functionally relevant residues

Figure S1 shows the coupling strength cs(seq) of functional relevant residues in the benchmark

proteins. Residues were chosen according when mentioned in literature as functional (see Methods

of manuscript). The coupling strength cs(seq) of the chosen set of residues for each protein was

calculated and visualized as a bar plot. Compared to the native sequence, the coupling strength of

ResCue was on average 103±50%, followed by FavorNative with 35±55%, SeqProf with 23±58%,

RECON with 20±63% and RoSSD with 4±56% (Fig8). The improvement of ResCue was statis-

tically significant compared to all other design methods (MW p ¡ 5.0e-04) (Fig 8). The increased

sequence recovery of the ResCue protocol can therefore be attributed to the collective interaction

of couplings.

Figure 62: Coupling strengths for residues relevant to function. The methods are sorted by

the average coupling strength, and increases in the order: RoSSD, RECON, SeqProf, FavorNative

and ResCue (top to down). The observation was made for all proteins, (A) LAO binding site,

eight residues. (B) FixJ dimer interface, seven residues (C) RasH binding site, five residues. (D)

calmodulin-binding site, five residues.

129



11.3 Antibody expressability prediction and engineering using LSTM and Rosetta

11.4 Tensorflow model chart

Figure 63: The detailed architecture implemented in tensorflow consists of primarily

two bi-directional GRU/LSTM layers. The input layer of the visualized model was created

for 140 unique IMGT Numbers (timesteps), and 42 features (the number time-steps may vary

depending on the training data). The 42 features of paired heavy/light sequences comprise 20

amino acids and a gap symbols for each sequence. The GRU layer consists of 128 units and returns

the full sequence, whereas the LSTM layer consists of 32 units and returns its last output. Dropout

layers with rates of 0.1 avoid over-fitting. The last layer is a dense network with a softmax function

to classify the samples as either expressing or non- expressing

130



11.5 WebLogos of the Flu dataset

Figure 64: Weblogo of all Flu antibodies classified as expressing (titer ą 50 µg/mL) and non-

expressing (titer ď 50µg/mL) for heavy chains (a) and light chains (b). Residues are numbered

according to the IMGT numbering schema.
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Figure 65: Weblogo of all Flu antibodies classified as non-expressing (ď 50µg/mL) for

heavy chains (a) and light chains (b). Residues are numbered according to the IMGT numbering

scheman.
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Figure 66: Weblogo of all Flu antibodies classified as non-expressing (ď 50µg/mL) for

heavy chains (a) and light chains (b). Residues are numbered according to the IMGT numbering

schema. Framework regions 1-4 are displayed that were used for Rosetta re-design. No significant

differences in the sequence logo of expressing antibodies can be identified.
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11.6 WebLogos of designed Flu antibodies with Rosetta

Figure 67: WebLogo of re-engineered Flu antibodies with Rosetta. Heavy chains (a) and

light chains (b). The amino acid distributions appear not to recapitulate either the complete Flu

dataset, or the subset of (non)-expressing sequences (compare: heavy chain residues 3, 20, and 125

in sequence logos of Figures S2-S4).
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Figure 68: Frequency of heavy chain muations of the re-engineered designs with strong

intensity. A subset of antibodies is represented (best Rosetta score, expressability greater than

90%, and improvement by re-design at least 50%). Compared to main Figure 5, which shows

antibodies with an expressability improvement of at least 80%, the mutational preferences do not

visibly change.
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11.7 Rosetta score term scaling using single point mutant expressability pre-

dictions

Figure 69: Visualization of the re-scaling used for converting predicted expressability

values into a Rosetta scoring term. The scaled score (a) compared to the unscaled score (b)

mediates the contribution of single point mutants (SPM) with a very low or very high probability to

express. This allows a greater degree of freedom for mutations when the mutational score already

approaches the positive and negative limit of S(resi). By reducing the weight of mutations with a

small relative gain (when already close to optimal), we hypothesize that it is more easy to escape

from local minima. S(resi) is negated for the Rosetta scoring term to penalize low and favor high

expressability.

11.7.1 Antibody sequence dataset description

The Flu dataset used for creating LSTM models consists of 888 unique antibody sequences. The

dataset was aligned by its IMGT numbers, and the pairwise sequence identities were calculated.

Heavy chains have two populations of frequent sequence identities at 48% and 72%, kappa chains

at 67% and 81%, lambda chains at 58% (Figure S70). For the sequence identity calculation, the

CDRH3 region is excluded. The standardized antibody germline gene nomenclature divides the

germline genes into group (IG, TR), gene type (V, variable; D, diversity; J, joining; C, constant),

and the subgroup category groups the genes that contain a nucleotide sequence identity of at least

75%1. Thus, the measured sequence identities align with the prevalent selection of gene subgroups

in the dataset, with 3 heavy chain germline gene subgroups resembling the majority (¿= 90%) of the

dataset (Table S6) and 3 to 5 light chain germline gene subgroups (Table 7). The iQue expresability

threshold of 50µg/mL was used to distinguish between antibodies that express and antibodies that

do not express. With this threshold, 71 of 273 are lambda antibodies and are labeled as expressing

(26.0%), while 416 of 615 kappa antibodies are labeled as expressing (67.6%). When splitting the

dataset by its chain class, 615 (69.3%) belong to the kappa and 273 (30.7%) lambda class (Figure

S71b) likely aggravating the challenge to predict lambda antibody expressability.
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Table 6: V germline gene subgroups of the used Flu antibody dataset sorted by their highest

frequency. The majority (ě 90%) of sequences was annotated with germline genes belonging to

one of the top three germline gene subgroups (bold)

Heavy Nr. of sequences Kappa Nr. of sequences Lambda Nr. of sequences

1 IGHV3 378 IGKV1 325 IGLV3 90

2 IGHV1 243 IGKV3 195 IGLV1 86

3 IGHV4 190 IGKV2 39 IGLV2 76

4 IGHV5 37 IGKV4 35 IGLV8 7

5 IGHV2 30 IGKV3D 16 IGLV4 5

6 IGHV6 6 IGKV1D 5 IGLV6 3

7 IGHV4/OR15 4 IGLV5 3

8 IGLV7 2

9 IGLV9 1

Table 7: J germline gene subgroups of the used Flu antibody dataset sorted by their highest

frequency. The majority (ě 90%) of sequences was annotated with germline genes belonging to

one of the top three to five germline gene subgroups (bold)

Heavy Nr. of sequences Kappa Nr. of sequences Lambda Nr. of sequences

1 IGHJ4 230 IGKJ2 182 IGLJ2 114

2 IGHJ5 224 IGKJ1 155 IGLJ1 72

3 IGHJ6 223 IGKJ4 116 IGLJ3 65

4 IGHJ3 151 IGKJ3 82 IGLJ7 20

5 IGHJ1 41 IGKJ5 80 IGLJ6 2

6 IGHJ2 19

Figure 70: Histograms of pairwise sequence identities of the Flu dataset. Heavy chain

(a), kappa light chain (b), and lambda light chain (c) pairwise sequence identity frequencies. The

sequence identity calculation incudes IMGT residues 1-104 and 119-127 and does not include the

CDRH3 region.
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Figure 71: Expression levels and chain class content of the Flu dataset. The iQue expres-

sion levels are distinguishable between kappa (blue) and lambda (orange) chains. The threshold

used to distinguish between antbodies that express and non-expressing antibodies at 50µg/mL (ver-

tical line, a). The majority of antibodies in the dataset are kappa (blue) antibodies, only 30.7% of

the antibody chains are lambda class (b).

11.8 Performance metrics of LSTM and Regression models

As an alternative to the LSTM models, logarithmic regression models were evaluated on the same

influenza dataset. The generalization capability of the models was estimated via 10fold cross-

validation and visualized. Figure S10 shows AUC, Accuracy, Precision, and Recall for all 13

predictor types. For both logarithmic regression and LSTM models, the input was encoded as one-

hot matrix, Kidera, or Atchley factors. Models were generated for “paired” antibodies (meaning

heavy and light chains as one sample), lambda class light chains, kappa class light chains, heavy

chains, or paired lambda, or paired kappa antibodies. In addition to one-hot encoding, each column

that represents a specific antibody residue (IMGT number), was replaced by Kidera, or Atchley

factors. Kidera and Atchley factors describe the biochemical properties of amino acids and could

have the potential to act as a biochemical similarity measure between the amino acids. This could

potentially improve the classificators’ performance by including a distance metric to the embedding

space, which is equidistant in the case of the one-hot encoding. Overall, the performance of the

regression and LSTM models are for the most part comparable, especially when compared to the

paired one-hot LSTM model used in the study. The regression models’ performance breaks down

when the dataset is split into kappa and lambda antibodies – likely due to the reduced size of the

dataset. The LSTM models’ performance appears to be more robust in these cases. For 6 of the

13 model types, the LSTM’s AUC scores are superior, which may be advantageous for the Rosetta

structural design protocol in this study. Superior ranking capabilities of the model are preferred

since the scores are converted to sequence design restraints.
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Figure 72: Performance metrics of logarithmic regression and LSTM expressability

classifiers. Area under the curve (AUC, a), Accuracy (b), Precision (c), and Recall (d) are

reported for LSTM (blue) and logarithmic regression models (orange) for 20 models each. Models

were trained either with heavy, light (kappa and lambda), or kappa, or lambda chains only, or IMGT

alignments of paired heavy and light chains (paired). Models were either trained with a onehot

matrix representing the amino acid sequence, or by using Kidera, or Atchley amino acid descriptors.

Mann-Whitney-Wilcoxon test with p-value annotation ns: 5.00e´02 ă p ď 1.00e`00˚ : 1.00e´02 ă

p ď 5.00e´02˚˚ : 1.00e´03 ă p ď 1.00e´02˚˚˚ : 1.00e´04 ă p ď 1.00e´03˚˚˚˚ : p ď 1.00e´04
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11.9 RosettaCM structure predictions of the antibody dataset

Figure 73: Assessment of Rosetta homology models do not suggest any folding defects.

Folding tunnels for heavy chain (a), and light chains (c) of the homology models were created by

subtracting the RMSD and Rosetta Energy of each of the 888 influenza antibodies from each of its

alternative designs. RMSD vs Energy plots for all 888 homology models indicate folding tunnels

suggesting confidence of Rosetta’s scoring function in the results. All heavy chains (b) and light

chains (d) superimposed appear as expected, with constant low RMSD framework regions and

highly variable CDR loops. The overall Rosetta energy is negative (the more negative the better)

in the range of -800 to -615 REU (e). The variability in REU is expected due to the diverse length

of the antibodies and does not indicate misfolded outliers.
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11.10 Rosetta design with human-like sequence restraints

11.10.1 Dataset of 27 co-crystalized human antibodies

The benchmark dataset of 27 crystal-structures was chosen by scanning SabDab for antibodies

annotated as human, available as co-crystal structure, and with a resolution of ă 2 Å.

Table 1 PDB ID number, binding partner, CDRH3 length, and change of the CDRH3 human-

likeness (∆HL) compared to the native designs, and antibodies for which the CDRH3 human-

likeness could be improved (bold).

Table 8: PDB ID number, binding partner, CDRH3 length, and change of the CDRH3 human-

likeness (∆HL) compared to the native designs, and antibodies for which the CDRH3 human-

likeness could be improved (bold).

# PDB ID Specificity CDRH3 length (aa) ∆ HL

1 1n0x HIV-1 20 `8.0 ˘ 0.7%

2 2vxq Pollen Allergen Phl P2 10 ´3.7 ˘ 2.1%

3 2xwt TSHR Autoantibody 12 ´2.5 ˘ 0.4%

4 2yc1 Cn2 toxin (Centruroides noxius Hoffman) 10 3.5 ˘ 0.0%

5 3fn0 HIV-1 19 0.4 ˘ 0.10%

6 3l5x IL-13 13 5.0 ˘ 0.7%

7 3uji Anti-HIV-1 16 0.7 ˘ 0.3%

8 4al8 Dengue virus DIII 10 0.0 ˘ 0.5%

9 4dgy HPC glycoprotein E2 16 1.2 ˘ 0.5%

10 4h8w HIV-1 12 ´2.3 ˘ 0.3%

11 4hpo HIV-1 19 ´0.44 ˘ 0.4%

12 4hs6 HPC glycoprotein E2 12 4.0 ˘ 0.6%

13 4ioi Cancer (trastuzumab) 13 4.3 ˘ 1.4%

14 4j6r HIV-1 14 3.5 ˘ 0.8%

15 4lkx IgE 10 ´5.7 ˘ 0.6%

16 4m1d HIV-1 22 ´1.9 ˘ 1.0%

17 4m62 HIV-1 20 ´0.3 ˘ 0.1%

18 4nzr HIV-1 20 0.8 ˘ 0.1%

19 4xc1 HIV-1 20 1.0 ˘ 0.6%

20 4xmp HIV-1 25 0.2 ˘ 0.5%

21 5cin HIV-1 18 ´0.6 ˘ 0.0%

22 5f9o HIV-1 15 6.1 ˘ 0.7%

23 5ig7 Gluten peptides (B-Cell epitope) 16 ´1.5 ˘ 0.4%

24 5l6y IL-13 (tralokinumab) 15 1.2 ˘ 1.0%

25 5ob5 gro-beta 12 ´2.2 ˘ 3.0%

26 5uek Histone chaperone ASF1 10 1.9 ˘ 2.0%

27 5xku 57N9 17 6.5 ˘ 0.9%
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11.10.2 The sequence identity of the unrestraint “native” Rosetta designs is compa-

rable to that of HL designs

To benchmark the HL design approach, a control group (called “native”) with a limited number of

mutation was designed (Rosetta’s FavorNativeResidue mover). To each human-likness design using

the amino acid substitution scores, one of the native designs with the closest sequence identity to

the wild-type was assigned. Native designs were assigned separately for the V/J region, and the

CDRH3 region. The native group was used as baseline to estimate the amino acid change of an

already human antibody after Rosetta design.

Figure 74: The sequence identity between human-like Rosetta designs and wild-type,

and between its assigned native design and the wild-type for the VJ region (a) and the CDRH3

region (b). For the VJ region, native designs with almost perfect sequence identity could be found,

whereas some of the best fitting native designs for the CDRH3 loop had a slightly higher sequence

identity to the wild-type.

11.10.3 Rosetta design methods with and without human-likeness restraints

Each antibody in the dataset was designed 13 times. First, the unrestraint control group was

designed without any additional restraints. Second, the native designs were generated using the

FavorNativeResidue mover using 8 different weights (0.5 to 4.0 with an interval of 0.5). Human-

likeness designs were achieved by adding the PSSM via the FavorSequenceProfile mover. Designs

took place with a clustered and original PSSM separately using the weights 3 and 4.

For each antibody, resfiles were generated allowing only design within the Fv region, allowing

all amino acids but Cysteins. Design was not allowed for residues that are Cysteins in the wild-type

structure.

Unrestraint control designs

<ROSETTASCRIPTS>

<SCOREFXNS>

<ScoreFunction name="scorefxn" weights="\%\%scorefxn\%\%.wts">

<Reweight scoretype="res_type_constraint" weight="0.0"/>

</ScoreFunction>

<ScoreFunction name="scorefxn_cst" weights="\%\%scorefxn\%\%.wts">
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<Reweight scoretype="res_type_constraint" weight="1.0"/>

</ScoreFunction>

</SCOREFXNS>

<RESIDUE_SELECTORS>

</RESIDUE_SELECTORS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

<ReadResfile name="rrf" filename="\%\%resfile\%\%"/>

</TASKOPERATIONS>

<MOVE_MAP_FACTORIES>

</MOVE_MAP_FACTORIES>

<FILTERS>

</FILTERS>

<MOVERS>

<PackRotamersMover name="design" scorefxn="scorefxn_cst" task_operations="rrf,

ãÑ ifcl"/>

</MOVERS>

<PROTOCOLS>

<Add mover="design"/>

</PROTOCOLS>

<OUTPUT scorefxn="scorefxn"/>

</ROSETTASCRIPTS>

Native designs

<ROSETTASCRIPTS>

<SCOREFXNS>

<ScoreFunction name="scorefxn" weights="\%\%scorefxn\%\%.wts">

<Reweight scoretype="res_type_constraint" weight="0.0"/>

</ScoreFunction>

<ScoreFunction name="scorefxn_cst" weights="\%\%scorefxn\%\%.wts">

<Reweight scoretype="res_type_constraint" weight="1.0"/>

</ScoreFunction>

</SCOREFXNS>

<RESIDUE_SELECTORS>

</RESIDUE_SELECTORS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

<ReadResfile name="rrf" filename="\%\%resfile\%\%"/>

</TASKOPERATIONS>

<MOVE_MAP_FACTORIES>

143



</MOVE_MAP_FACTORIES>

<FILTERS>

</FILTERS>

<MOVERS>

<FavorNativeResidue name="native" bonus="\%\%weight\%\%"/>

<PackRotamersMover name="design" scorefxn="scorefxn_cst" task_operations="rrf,

ãÑ ifcl"/>

</MOVERS>

<PROTOCOLS>

<Add mover="native"/>

<Add mover="design"/>

</PROTOCOLS>

<OUTPUT scorefxn="scorefxn"/>

</ROSETTASCRIPTS>

Design with human-likeness restraints

<ROSETTASCRIPTS>

<SCOREFXNS>

<ScoreFunction name="scorefxn" weights="\%\%scorefxn\%\%.wts">

<Reweight scoretype="res_type_constraint" weight="0.0"/>

</ScoreFunction>

<ScoreFunction name="scorefxn_cst" weights="\%\%scorefxn\%\%.wts">

<Reweight scoretype="res_type_constraint" weight="1.0"/>

</ScoreFunction>

</SCOREFXNS>

<RESIDUE_SELECTORS>

</RESIDUE_SELECTORS>

<TASKOPERATIONS>

<InitializeFromCommandline name="ifcl"/>

<ReadResfile name="rrf" filename="\%\%resfile\%\%"/>

</TASKOPERATIONS>

<MOVE_MAP_FACTORIES>

</MOVE_MAP_FACTORIES>

<FILTERS>

</FILTERS>

<MOVERS>

<FavorSequenceProfile name="profile" weight="\%\%weight\%\%" scaling="\%\%

ãÑ scaling\%\%" pssm="\%\%pssm\%\%" chain="\%\%chainnum\%\%" scorefxns="

ãÑ scorefxn_cst"/>

<PackRotamersMover name="design" scorefxn="scorefxn_cst" task_operations="rrf,
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ãÑ ifcl"/>

</MOVERS>

<PROTOCOLS>

<Add mover="profile"/>

<Add mover="design"/>

</PROTOCOLS>

<OUTPUT scorefxn="scorefxn"/>

</ROSETTASCRIPTS>

All designs were succeeded by a constraint relax run using the Rosetta relax application the

option

-relax:constrain_relax_to_start_coords

11.10.4 The effect of Powell optimization of lambda on the substitution scores

Powell optimization of the lambda parameter was introduced to increase the correlation of the

amino acid substitution scores with the human-likeness to maximize the effect of the HL design

protocol. Each CDRH3 profile has an individual distribution and therefore is generated for each

PSSM individually.

Figure 75: Correlation between substitution scores and human-likeness before and after

Powell optimization. Optimization of the lambda parameter maximizes the effect of the substi-

tution score for the design. The distribution of the substiution scores for a CDRH3 of the length

19 is flat before (left) and is likely to have little effect on the design favors and disfavors certain

subsitutions more clearly after optimization (right). Before optimization, a default lambda for 0.09

is chosen and was determined to be 0.027 after optimization in this case.
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Guindon, Stéphane et al. (May 2010). “New algorithms and methods to estimate maximum-

likelihood phylogenies: assessing the performance of PhyML 3.0”. eng. In: Syst Biol 59.3,

pp. 307–321. issn: 1076-836X. doi: 10.1093/sysbio/syq010.

Harding, Fiona A. et al. (June 2010). “The immunogenicity of humanized and fully human anti-

bodies: residual immunogenicity resides in the CDR regions”. eng. In: MAbs 2.3, pp. 256–265.

issn: 1942-0870. doi: 10.4161/mabs.2.3.11641.

Hasegawa, Haruki et al. (July 2017). “Single amino acid substitution in LC-CDR1 induces Rus-

sell body phenotype that attenuates cellular protein synthesis through eIF2 phosphorylation

and thereby downregulates IgG secretion despite operational secretory pathway traffic”. In:

mAbs 9.5. Publisher: Taylor & Francis eprint: https://doi.org/10.1080/19420862.2017.1314875,

pp. 854–873. issn: 1942-0862. doi: 10.1080/19420862.2017.1314875. url: https://doi.

org/10.1080/19420862.2017.1314875 (visited on 04/12/2021).

Henderson, Kylie A. et al. (Nov. 2007). “Structure of an IgNAR-AMA1 complex: targeting a

conserved hydrophobic cleft broadens malarial strain recognition”. eng. In: Structure 15.11,

pp. 1452–1466. issn: 0969-2126. doi: 10.1016/j.str.2007.09.011.

Henikoff, S. and J. G. Henikoff (Nov. 1992). “Amino acid substitution matrices from protein blocks”.

eng. In: Proc Natl Acad Sci U S A 89.22, pp. 10915–10919. issn: 0027-8424. doi: 10.1073/

pnas.89.22.10915.

Hochreiter, Sepp and Jürgen Schmidhuber (Dec. 1997). “Long Short-term Memory”. In: Neural

computation 9, pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

Holgate, Robert G. E. and Matthew P. Baker (Apr. 2009). “Circumventing immunogenicity in the

development of therapeutic antibodies”. eng. In: IDrugs 12.4, pp. 233–237. issn: 2040-3410.

Holinski, Alexandra et al. (Feb. 2017). “Combining ancestral sequence reconstruction with protein

design to identify an interface hotspot in a key metabolic enzyme complex”. eng. In: Proteins

85.2, pp. 312–321. issn: 1097-0134. doi: 10.1002/prot.25225.

Hon, Jiri et al. (Jan. 2021). “SoluProt: prediction of soluble protein expression in Escherichia coli”.

In: Bioinformatics 37.1, pp. 23–28. issn: 1367-4803. doi: 10.1093/bioinformatics/btaa1102.

url: https://doi.org/10.1093/bioinformatics/btaa1102 (visited on 04/21/2021).

Honegger, A. and A. Plückthun (June 2001). “Yet another numbering scheme for immunoglobulin

variable domains: an automatic modeling and analysis tool”. eng. In: J Mol Biol 309.3, pp. 657–

670. issn: 0022-2836. doi: 10.1006/jmbi.2001.4662.

Hopf, Thomas A. et al. (Sept. 2014). “Sequence co-evolution gives 3D contacts and structures of

protein complexes”. eng. In: Elife 3. issn: 2050-084X. doi: 10.7554/eLife.03430.

Hu, Xiangqian, David N. Beratan, and Weitao Yang (Oct. 2009). “A gradient-directed Monte Carlo

method for global optimization in a discrete space: application to protein sequence design and

folding”. eng. In: J Chem Phys 131.15, p. 154117. issn: 1089-7690. doi: 10.1063/1.3236834.

153



Hu, Xihao et al. (Nov. 2018). “Evaluation of immune repertoire inference methods from RNA-seq

data”. eng. In: Nat Biotechnol 36.11, p. 1034. issn: 1546-1696. doi: 10.1038/nbt.4294.

Hu, Zengjian et al. (June 2007). “Ligand binding and circular permutation modify residue in-

teraction network in DHFR”. eng. In: PLoS Comput Biol 3.6, e117. issn: 1553-7358. doi:

10.1371/journal.pcbi.0030117.

Hwang, William Ying Khee and Jefferson Foote (May 2005). “Immunogenicity of engineered anti-

bodies”. eng. In:Methods 36.1, pp. 3–10. issn: 1046-2023. doi: 10.1016/j.ymeth.2005.01.001.

Iba, Y. et al. (May 1998). “Changes in the specificity of antibodies against steroid antigens by

introduction of mutations into complementarity-determining regions of the V(H) domain”. eng.

In: Protein Eng 11.5, pp. 361–370. issn: 0269-2139. doi: 10.1093/protein/11.5.361.

Jacob, Etai, Ron Unger, and Amnon Horovitz (Sept. 2015). “Codon-level information improves

predictions of inter-residue contacts in proteins by correlated mutation analysis”. eng. In: Elife

4, e08932. issn: 2050-084X. doi: 10.7554/eLife.08932.

Jain, Tushar, David S. Cerutti, and J. Andrew McCammon (2006). “Configurational-bias sampling

technique for predicting side-chain conformations in proteins”. en. In: Protein Science 15.9.

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1110/ps.062165906, pp. 2029–2039. issn: 1469-

896X. doi: 10.1110/ps.062165906. url: https://onlinelibrary.wiley.com/doi/abs/10.

1110/ps.062165906 (visited on 09/02/2021).

Jain, Tushar, Tingwan Sun, et al. (Jan. 2017). “Biophysical properties of the clinical-stage antibody

landscape”. eng. In: Proc Natl Acad Sci U S A 114.5, pp. 944–949. issn: 1091-6490. doi: 10.

1073/pnas.1616408114.

Jarasch, Alexander et al. (June 2015). “Developability assessment during the selection of novel

therapeutic antibodies”. eng. In: J Pharm Sci 104.6, pp. 1885–1898. issn: 1520-6017. doi:

10.1002/jps.24430.

Jayapal, Karthik P. et al. (Oct. 2007). “Recombinant protein therapeutics from CHO Cells - 20

years and counting”. In: Chemical Engineering Progress 103.10, pp. 40–47. issn: 0360-7275.

url: http://www.scopus.com/inward/record.url?scp=41849140828&partnerID=8YFLogxK

(visited on 10/01/2021).

Jeon, Jouhyun et al. (Sept. 2011). “Molecular evolution of protein conformational changes revealed

by a network of evolutionarily coupled residues”. eng. In: Mol Biol Evol 28.9, pp. 2675–2685.

issn: 1537-1719. doi: 10.1093/molbev/msr094.

Jiang, Ning et al. (Feb. 2013). “Lineage Structure of the Human Antibody Repertoire in Response

to Influenza Vaccination”. EN. In: Science Translational Medicine. Publisher: American Asso-

ciation for the Advancement of Science. url: https://www.science.org/doi/abs/10.1126/

scitranslmed.3004794 (visited on 09/04/2021).

Johari, Yusuf B. et al. (Dec. 2015). “Integrated cell and process engineering for improved transient

production of a ”difficult-to-express” fusion protein by CHO cells”. eng. In: Biotechnol Bioeng

112.12, pp. 2527–2542. issn: 1097-0290. doi: 10.1002/bit.25687.

154



Jones, David T. et al. (Jan. 2012). “PSICOV: precise structural contact prediction using sparse

inverse covariance estimation on large multiple sequence alignments”. eng. In: Bioinformatics

28.2, pp. 184–190. issn: 1367-4811. doi: 10.1093/bioinformatics/btr638.

Jones, Tim D. et al. (2016). “The INNs and outs of antibody nonproprietary names”. eng. In: MAbs

8.1, pp. 1–9. issn: 1942-0870. doi: 10.1080/19420862.2015.1114320.

Jost, Christian and Andreas Plückthun (Aug. 2014). “Engineered proteins with desired specificity:

DARPins, other alternative scaffolds and bispecific IgGs”. eng. In: Curr Opin Struct Biol 27,

pp. 102–112. issn: 1879-033X. doi: 10.1016/j.sbi.2014.05.011.

Joyce, M. Gordon et al. (July 2016). “Vaccine-Induced Antibodies that Neutralize Group 1 and

Group 2 Influenza A Viruses”. English. In: Cell 166.3. Publisher: Elsevier, pp. 609–623. issn:

0092-8674, 1097-4172. doi: 10.1016/j.cell.2016.06.043. url: https://www.cell.com/

cell/abstract/S0092-8674(16)30851-0 (visited on 09/04/2021).

Jumper, John et al. (Aug. 2021). “Highly accurate protein structure prediction with AlphaFold”.

en. In: Nature 596.7873. Bandiera abtest: a Cc license type: cc by Cg type: Nature Research

Journals Number: 7873 Primary atype: Research Publisher: Nature Publishing Group Sub-

ject term: Computational biophysics;Machine learning;Protein structure predictions;Structural

biology Subject term id: computational-biophysics;machine-learning;protein-structure-predictions;structural-

biology, pp. 583–589. issn: 1476-4687. doi: 10.1038/s41586- 021- 03819- 2. url: https:

//www.nature.com/articles/s41586-021-03819-2 (visited on 10/08/2021).

Jung, David and Frederick W Alt (Jan. 2004). “Unraveling V(D)J Recombination: Insights into

Gene Regulation”. en. In: Cell 116.2, pp. 299–311. issn: 0092-8674. doi: 10.1016/S0092-

8674(04 ) 00039 - X. url: https : / / www . sciencedirect . com / science / article / pii /

S009286740400039X (visited on 09/10/2021).

Jung, David, Cosmas Giallourakis, et al. (Jan. 2006). “Mechanism and control of V(D)J recom-

bination at the immunoglobulin heavy chain locus”. eng. In: Annu Rev Immunol 24, pp. 541–

570. issn: 1545-3278. doi: 10.1146/annurev.immunol.23.021704.115830. url: https:

//doi.org/10.1146/annurev.immunol.23.021704.115830 (visited on 09/10/2021).

Jurtz, Vanessa Isabell et al. (Nov. 2017). “An introduction to deep learning on biological sequence

data: examples and solutions”. In: Bioinformatics 33.22, pp. 3685–3690. issn: 1367-4803. doi:

10.1093/bioinformatics/btx531. url: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5870575/ (visited on 03/06/2021).

Kahn, D. and G. Ditta (Apr. 1991). “Modular structure of FixJ: homology of the transcriptional

activator domain with the -35 binding domain of sigma factors”. eng. In: Mol Microbiol 5.4,

pp. 987–997. issn: 0950-382X. doi: 10.1111/j.1365-2958.1991.tb00774.x.

Kallehauge, Thomas Beuchert et al. (Jan. 2017). “Ribosome profiling-guided depletion of an mRNA

increases cell growth rate and protein secretion”. en. In: Scientific Reports 7.1. Number: 1

Publisher: Nature Publishing Group, p. 40388. issn: 2045-2322. doi: 10.1038/srep40388. url:

https://www.nature.com/articles/srep40388 (visited on 04/12/2021).

155



Kamisetty, Hetunandan, Sergey Ovchinnikov, and David Baker (Sept. 2013). “Assessing the utility

of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era”.

eng. In: Proc Natl Acad Sci U S A 110.39, pp. 15674–15679. issn: 1091-6490. doi: 10.1073/

pnas.1314045110.

Kaplon, Hélène and Janice M. Reichert (Mar. 2019). “Antibodies to watch in 2019”. eng. In: MAbs

11.2, pp. 219–238. issn: 1942-0870. doi: 10.1080/19420862.2018.1556465.

— (Dec. 2021). “Antibodies to watch in 2021”. eng. In: MAbs 13.1, p. 1860476. issn: 1942-0870.

doi: 10.1080/19420862.2020.1860476.

Khurana, Sameer et al. (Aug. 2018). “DeepSol: a deep learning framework for sequence-based

protein solubility prediction”. In: Bioinformatics 34.15, pp. 2605–2613. issn: 1367-4803. doi:

10.1093/bioinformatics/bty166. url: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC6355112/ (visited on 04/21/2021).

Koboldt, Daniel C. et al. (Sept. 2013). “The next-generation sequencing revolution and its impact on

genomics”. eng. In: Cell 155.1, pp. 27–38. issn: 1097-4172. doi: 10.1016/j.cell.2013.09.006.

Kodali, Pranav et al. (2021). “RosettaCM for antibodies with very long HCDR3s and low template

availability”. en. In: Proteins: Structure, Function, and Bioinformatics n/a.n/a (). eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.26166. issn: 1097-0134. doi: 10.1002/

prot.26166. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.26166

(visited on 06/28/2021).
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