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Preface 

 This dissertation is structured as five chapters. Chapters I and II are general overviews of 

background and recreated from published literature, which are referenced when necessary. 

These chapters serve as an introduction to complex systems, systems biology, single-cell biology, 

and cancer biology. Chapters III, IV, and V are recreated from the manuscript titled Differential 

pre-malignant programs and microenvironment chart distinct paths to malignancy in 

human colorectal polyps. Chapter III details the data-driven discovery of divergent tumor-

associated regulatory programs. Chapter IV further describes these observed effects within the 

tumor microenvironment alongside genetically engineered mouse and organoid models used for 

validation. Chapter V discusses the wider implications of these discoveries and presents potential 

directions for next-generation methods in the analysis of complex biological systems. 
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Chapter I - Systems theory and its application to data-driven biomedical science 

 

Recreated from:  

Herring, C. A., Chen, B., McKinley, E. T., & Lau, K. S. (2018). Single-Cell Computational 

Strategies for Lineage Reconstruction in Tissue Systems. Cellular and Molecular 

Gastroenterology and Hepatology. https://doi.org/10.1016/j.jcmgh.2018.01.023 

and 

Chen, B., Alrifai, W., Gao, C., Jones, B., Novak, L., Lorenzi, N., France, D., Malin, B., & Chen, Y. 

(2021). Mining tasks and task characteristics from electronic health record audit logs with 

unsupervised machine learning. Journal of the American Medical Informatics Association. 

https://doi.org/10.1093/jamia/ocaa338 

and 

Islam, M., Chen, B., Spraggins, J. M., Kelly, R. T., & Lau, K. S. (2020). Use of Single-Cell -Omic 

Technologies to Study the Gastrointestinal Tract and Diseases, From Single Cell Identities to 

Patient Features. Gastroenterology. https://doi.org/10.1053/j.gastro.2020.04.073  

 

Complex Systems 

Deconstructing observed natural phenomena has historically been approached through bottom-

up paradigms. Such paradigms involve the ostensible breakdown of highly complex, macroscale 

systems into their elemental, molecular components followed by the perturbation and modeling 

of these components through hypothesis-driven procedures. The investigation of these 

phenomena begins at the scale of human perception; thus, these observations describe complex 

systems, abstracted several hierarchical levels away from their underlying molecular mechanisms 

1,2. While a deep understanding of such elements is possible, there remains a disconnect between 

a collection of well-characterized components and the constituent system’s overall functional or 

https://doi.org/10.1016/j.jcmgh.2018.01.023
https://doi.org/10.1093/jamia/ocaa338
https://doi.org/10.1053/j.gastro.2020.04.073
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behavior 3,4. Though it can be intuited what complex systems consist of, they can be generally 

identified by their shared features with respect to emergence, robustness, and modularity.  

 

Emergent behavior in complex systems is characterized by the observation of properties not 

directly found in its elemental components. Early models of complex systems, such as cellular 

automata, were defined by simple rule sets (Figure 1) 5. Given a large enough space of 

possibilities, it would quickly become unfeasible or even impossible to predict the final state of the 

system due to emergent behaviors 6,7. These behaviors are emergent as the participating agents, 

or components, follow relatively simple sets of rules within the system, but the overall behavior of 

the system does not directly correspond to the behavior of any individual agents; nor are these 

behaviors easily predictable 8. A less theoretical example is that human cells, while also complex 

systems themselves, act in aggregate to dictate the behavior of an organ. Another more 

sociologically scaled example is individual healthcare providers acting in concert within a 

healthcare organization (HCO) 9. The key observations here are that organs do not appear to be 

scaled up single-cells nor are HCOs scaled up healthcare providers; this is succinctly described 

as being “greater than the sum of its parts”.  
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Figure 1. Conway’s Game of Life. 

An implementation of John Conway’s cellular automaton in python, modeling a complex system 

of ‘cells’. This simulation follows simple rules: Given two or three cell neighbors, a living cell 

remains alive; with three cells giving life to a dead cell. Otherwise, living cells die within one 

generation and dead cells that do not satisfy these conditions remain unchanged. Though the 

rules are simple, stable patterns of cells emerge spontaneously until disturbed, such as the four-

cell square. 

 

 

Robust behavior is another feature common to complex systems, meaning that complex systems 

have a dynamic sensitivity to both internal and external perturbations. In practice, many emergent 

behaviors can be formalized as the nonlinear amplification or dampening of inputs and outputs, 

lending to this property of robustness. Feedback loops, for example, consist of simple, self-

referential components, and may propagate or dampen signals throughout the system. 

Reasonably, this tendency to dynamically regulate the flow of information may be necessary for 

several complex systems to exist at all, given that they are often open systems communicating 

other systems operating at different scales and modalities. Following the analogy of cells, injury 

response in organs necessitate processes that regulate the fine-tuned compartmentalization and 

repair of cellular damage without initiating a cascade of failures throughout the entire organ. 

Feedback loops are still only one motif that may exist in a network of interacting agents comprising 

a complex system, which may be symbolically represented as graphs 4,10. In such network 

representations, the components of a complex system are graph vertices, and their generic 

interactions are the edges connecting these vertices.  

 

Modular properties of complex systems accompany these emergent and robust behaviors, where 

functional network motifs, or systems, may become robust themselves, and thus partially 
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independent from the operation of the complex system as a whole. Much like how robust systems 

may emerge from self-organization, its subsystems, too, may undergo a scaled-down version of 

self-organization. This fractal behavior is also known as scale-free organization, where modules 

of network components tend to maintain a large number of connections to a small number of 

important components (Figure 2) 11. The resulting distribution of graph vertices and their degrees 

of connection, or number of edges, is then observed to follow an asymptotic power law. Assuming 

random perturbations may occur in an open system, the risk of systemic dysfunction is diluted 

through all possible vertices and edges, while important components of a complex system remain 

insulated. This fault-tolerant behavior also permits a relatively safe evolutionary progression of 

subsystems, as mutations destructive to the network are compartmentalized. 

 

Figure 2. Scale free network. 

Graph and respective histogram generated using the Barabási–Albert model in python and the 

NetworkX package. The distribution of node degree follows a power law. 
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General Systems Theory  

Complex systems are observed across several fields of study with, albeit with different 

vocabularies and at different scales. General principles outlining such systems were first 

described in the 1940s and 50s among biologists, physicists, and psychologists among others. 

Some well-known precursors to General Systems Theory (GST), as introduced by biologist 

Ludwig von Bertalanffy, include subjects like Gestalt psychology, statistical physics, and ergodic 

theory for the study of dynamical systems 2. Bertalanffy and his contemporaries, held that the top-

down view of a system and its behavior should be seen as valuable as its elemental components, 

alongside the generalizability of these types of relationships. Key concepts of GST include the 

recognition of isomorphic laws across fields of study and its characterization of open systems.  

 

This structural isomorphism of laws across fields refers to the shared concepts that have been 

discovered in different complex systems, with a simple example being exponential laws and 

principles of diminishing returns (Figure 3). In nuclear physics and microbiology, radioactive 

isotopes undergo decay and microbes undergo division; both express diminishing returns as open 

systems experiencing a net loss of entropy. GST posits that the identification of “generalized 

kinetics and dynamics” or logically homologous interactions in separate models should lead to a 

better understanding of complex systems behaviors, especially in the context of top-down 

approaches. Ultimately, GST acts as a foundational paradigm for interdisciplinary study of 

complex systems. 
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Figure 3. Isomorphic laws of exponential behavior.  

A simulated example of exponential behavior between population dynamics and radioactive half-

lives using python. An examination of properties such as entropy in either system, for example, 

may yield insights on diminishing returns or explosive growth. 

 

Cells as Complex Systems 

On several hierarchical levels cellular networks are open and complex systems, meaning that the 

flow of information crosses different scopes and scales of interaction. Primarily, these scales 

reflect the central dogma of molecular biology, where information freely flows between genomic, 

transcriptomic, and proteomic layers of molecular organization. Still, these types of interactions 

are largely intracellular, acting within a single-cell. Intercellular interactions between 

heterogeneous cell types, such as those comprising organs, are several hierarchical levels 

abstracted from its underlying molecular mechanics (Figure 4). Modeling and understanding 

complex systems, such as these, first involves the high-dimensional quantification of its respective 

features. Given a space of all possible states within a complex system, its cumulative features 

should be able to approximate a single state. Accordingly, dynamic models would involve the 

characterization of these state transitions over time. 
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Figure 4. Hierarchical levels of abstraction.  

The hierarchical ‘grouping’ or abstraction of molecular functions compounds into more 

interdependent complex systems. Moving between these hierarchical levels, it is infeasible to 

accurately predict the effects of non-adjacent abstractions without experimentation or simulation. 

For example, it is difficult to infer the effect social structures have on specific organelles and vice 

versa. 

 

Though modular components of a complex system can be removed and perturbed in vitro (i.e. a 

gene knockout in a mammalian cell line), its altered behavior does not necessarily reflect what 

may happen in different hierarchies of complex systems. Organ-level behaviors, expectedly, are 

unfeasible to accurately predict without a complete recapitulation of the system itself, hence the 

value of in vivo experimentation. This disconnect between relatively simple agents and the 

emergent properties of their overall complex system strongly parallels the computational 

irreducibility of cellular automata, a concept proposed by Stephen Wolfram on a backdrop of John 

Conway’s ‘Game of Life’ 7. Simplistically, computational irreducibility is a property of complex, 

computable systems where there is no feasible way to predict its final state without performing 

each procedural step in its given rule set. In the same way that computational fields have benefited 

from top-down, systems approaches so do complex biological systems.  

 

Omics Paradigm Shifts in Systems Biology 
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Technological advances have enabled the omics-level molecular profiling of living systems, and 

more recently at single-cell resolutions. More broadly, this means that high-resolution, top-down 

characterizations of systems have become significantly more feasible. Systems biology 

approaches, or the application of systems theory for the understanding of biological systems, 

have proliferated in conjunction with these new technologies 8,12. Former technical challenges 

involving the limited micro-scale tooling and computational resources available have generally 

been overcome. In line with this, isomorphic examples of Moore’s law have been observed both 

in commercially available computers (measured by the doubling number of transistors) as well as 

genome sequencing (measured by the exponentially decreasing cost per raw megabase of DNA 

sequencing) since the beginning of the Human Genome Project (HGP).  

 

Concerted institutional efforts following the HGP, such as the Encyclopedia of DNA Elements 

(ENCODE) and The Cancer Genome Atlas (TCGA), have resulted in explosions of data on many 

fronts. The widespread adoption of these technologies represented a preliminary shift away from 

candidate-based (bottom-up) approaches and towards data-driven (top-down) approaches for 

hypothesis generation. Notably, methods using massively-parallel sequencing by synthesis were 

at the core of these projects; as a consequence, nucleotide-based omics protocols allowed for 

the joint development and wide-spread application of next-generation sequencing devices. The 

resultant ecosystems of large-scale omics projects then expanded from genomics to 

transcriptomics, followed by epigenomics and proteomics. With the increasing accessibility of 

omics methods, the paradigm shifted, again, towards more context-specific processes in 

biological systems. Functionally, this meant that top-down omics could approach the biological 

scoping of bottom-up approaches; thus, the abstraction gap between hypothesis-driven and data-

driven paradigms narrowed. For example, TCGA aimed to create an integrative map of several 

human cancer types and their respective tissues by measuring their molecular characteristics, 

ranging from their gene expression to their DNA methylation profiles. These efforts originated 
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from the general understanding of the human genome, laid out by the HGP, but refocused on 

tissue-level (as opposed to patient-level) abstractions of underlying biological phenomena.  

 

These data have been valuable in both basic and translational aspects, but without deeper 

processing, tissue-level abstractions also have a limited scope with the general assumption 

cellular homogeneity. In the same way that humans have biological functions compartmentalized 

to different tissues, these tissues are also compartmentalized into heterogeneous cell types and 

structures. Tissue-level bulk genomics, therefore, helps to define human biology over populational 

averages of individual cell types, unable to traverse the layer of cellular complexity (Figure 5). 

This gap between tissue-level and cell-level complex system abstractions is extremely important 

since therapeutics ultimately act on the underlying biological mechanisms at the molecular level 

13. The progression of several key technologies, many of which heralded the bulk genomics 

paradigm, have since brought about the diffusion of single-cell resolution technologies. Outside 

of the decreasing costs of nucleotide sequencing and strand synthesis (for sequencing library 

construction), newly developed applications of microfluidic technologies allowed the 

characterization of single-cells from human tissue.  

 

Figure 5. scRNA-seq compared to bulk RNA-seq.  

(A) Genes A, B, and C can individually be probed per single cell with scRNA-seq. The cell on the 

right is expressing 10,000 transcripts of gene C. (B) A population average is, instead, measured 
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for genes A, B, and C; the high expression of gene C in certain cells is diluted through the 

measurement of the entire population of cells. 

 

Previously, methods such as flow cytometry were used to measure properties of individual cells, 

such as size and DNA content, through light absorption. Candidate-based approaches applied to 

these pipelines, by means of fluorescent protein conjugates, allowed for the detection of specific 

cellular proteins. Combined with microfluidic sorting mechanisms, heterogeneous mixtures of 

cells, like those found in human tissue, could then be disaggregated by their molecular properties. 

More recent variations on these candidate-based approaches, like DISSECT-CyTOF, use mass 

spectrometry to quantify cellular features labeled with heavy metals, which overcome limitations 

of fluorescent multiplexing such as spectral overlap 14,15. Advances such as these allow for an 

increase in the breadth of detectable features in single-cell state characterization. Incremental 

improvements in candidate-based approaches, while valuable for focusing on specific 

components of biological pathways, still remain several orders of magnitude away from omics-

level feature spaces. Thus, the eventual application of high-throughput sequencing technologies 

gradually began to replace multiplexed, candidate-based approaches in general top-down 

characterizations of heterogeneous cell populations.  

 

Single-Cell Transcriptomics  

Precursors for commonly used single-cell transcriptomic technologies originated in candidate-

based approaches such as microarrays. Typically, large volumes of DNA-based probes are 

generated per candidate gene target and quantified based on the intensity of its respective 

hybridization signal. The dynamic range and diversity of genes quantified is limited to those 

defined at the time of experimentation, but these methods enabled a first step into single-cell 

resolution transcriptomics. Early adopters, like Yamamura et al. and Kamme et al., combined 

these microarray technologies with microwells and laser capture 16,17. Low-throughput adaptations 



 

 
 

11 

of RNA-seq at single-cell resolutions, first described by Tang et al., were able to overcome the 

limitations of these methods, but introduced new challenges in throughput and scalability, having 

been developed in isolated oocytes. Such challenges were due to the inability of existing 

technologies to rapidly isolate and deconvolute biologically meaningful volumes of single-cells. 

Though early developmental models, on the order of eight to twelve cells, significantly benefited, 

physiologically relevant numbers of cells, on the order of hundreds to thousands, could not be 

feasibly analyzed.  

 

The maturation of two key technologies, stemming from established high-throughput sequencing 

methods and microfluidic chip fabrication, facilitated the transition of single-cell transcriptomics 

into physiologically relevant cell numbers and out of cost-prohibitive protocols 18. Single-cell 

droplet encapsulation, and the paradigm shift that followed, traded the burden of scaling cell 

number from microwells and micro-manipulation onto the reaction reagents themselves, high-

throughput sequencing, and computational deconvolution. In this framework, single cells and their 

barcoded sequencing libraries become completely isolated within a droplet, formed at the 

interface of oil and an aqueous cell suspension. Generating these droplets involves a tightly 

controlled flow of a few microfluidic channels containing a dilution of barcoded primer beads and 

dissociated cells in addition to the reaction mixture and oil interface. Three of the most commonly 

used platforms, inDrop, Drop-seq, and 10x Chromium are used to generate these emulsifications 

of droplet-encapsulated cells, each with unique assumptions and drawbacks 19–21.  

 

In terms of modularity and cost-sensitivity, the inDrop platform presents an optimal balance for 

developing incremental improvements of and rapid application to large-scale human studies. 

Fundamentally, inDrop features several open-source aspects ranging from microfluidic chip 

design to its compatibility with a wide range of mechanical components and reagents. Its 

barcoded beads, containing synthesized nucleotide primer fragments, vary minimally from its 
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counterparts, Drop-seq and 10x Chromium, consisting of a PCR primer, combinatorically 

generated cell barcode, unique molecular identifier (UMI), and 3’ poly-T tail. Procedurally, each 

individual droplet reaction produces a reverse-transcribed (RT) transcriptome captured through 

mRNA poly-A tail annealing and is released from the primer bead through UV photocleavage, an 

inDrop-specific process. After RT product conversion into double-stranded DNA through second-

strand synthesis, a unique feature of the inDrop primer structure, the T7 promoter, is used for in-

vitro transcription. This linear amplification process is vital for generating representative, and not 

exponentially biased, fragments of RNA and its subsequent cDNA product. Finally, adapters 

suitable for interacting with Illumina sequencing-by-synthesis platforms are appended through 

PCR, which include P7 and P5 priming sites. The combination of these procedures allows for the 

high-throughput sequencing of transcribed mRNA with an associated cell barcode and UMI, 

making each transcriptome tractable to a single cell and each detected transcript tractable to a 

single mRNA molecule through computational deconvolution, respectively 22.  

 

Single-Cell Genomics and Epigenomics 

Whole-transcriptome capture and sequencing only represents one layer of transient, complex 

molecular information (Figure 7). Looking upstream of the transcriptome, genomic information 

represents a relatively stable source of all possible transcripts, given other possible post-

transcriptional modifications. The intermediary between these two layers of molecular information 

would then be the epigenome, as a layer of dynamic regulations leading to the flow of information 

between the genome and transcriptome. Contrasting transcriptomic methods, single-cell 

genomics and epigenomics have a different set of technical limitations, namely the limited amount 

of DNA contained within a single nucleus and the physical conformations of its nuclear packaging. 

Like single-cell transcriptomics, several of these methods are based on the isolation of single 

cells, the targeted enrichment of nucleotide-based information, the generalized application 

sequencing, and the use of high-performance computing 23. Functionally, these methods are often 
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used for investigating chromatin accessibility, protein–DNA interactions, chromosome 

conformation, and DNA methylation at single-cell resolutions.  

 

 

 

Figure 6. Multi-omic models in single-cell biology.  

-Omic level information (proteome, metabolome, transcriptome, spatial organization, epigenome, 

etc.) may detect cellular relationships individually which are not detected by other modalities. 

Integrating information across these layers of molecular information yields a complete picture of 

how these three single-cells are related. 

 

Single-cell assays for transposase-accessible chromatin using sequencing (scATAC-seq) target 

accessible genomic regions by exploiting the kinetic favorability of Tn5-mediated transposition 

reactions with DNA not incorporated into nucleosomes. These captured genome sequences can 

be cis-acting DNA elements poised for transcription or regulation by transcription factors. 

Borrowing the microfluidic platforms of single-cell transcriptomics, several scATAC-seq methods 

have been established (see studies by Cusanovich et al, Buenrostro et al, and Lareau et al) 24–26. 

These methods isolate individual cells using plated micro-wells, integrated fluidic circuits, and 
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encapsulation into nanoliter droplets, respectively. Each nucleus therefore produces a single 

barcoded library of genomic fragments enriched for regions of accessible genomic loci. 

 

Single-cell chromatin conformation capture methods can be used to identify cis-acting DNA 

elements and determine their physical proximities to potential regulators. Topologically 

associated domains and long-range chromatin interactions mediated by loop structures can be 

probed by 3C methods; more recently, these approaches have been advanced to single-cell 

resolution. Hi-C, and its single-cell variants like sc-Hi-C and sci-Hi-C, developed by Nagano et al 

and Ramani et al, combine chromatin crosslinking, restriction digestion, and proximity-based 

ligation to create libraries that capture spatially proximal DNA fragments 27,28. sci-Hi-C, in 

particular, isolates nuclei in microwells and incorporates combinatorial indexing. These methods 

result in a single library per cell, containing fragments that represent pairs of proximally adjacent 

genomic loci. Although it is not exactly a single-cell chromatin conformation capture method, a 

modified form of ATAC-seq, called ATAC-See, developed by Chen et al, permits covalent tagging 

of accessible chromatin with visualizable fluorophores 29. This allows for visualization by 

microscopy and subsequent high-throughput sequencing. 

 

Single-cell chromatin immunoprecipitation methods target protein–DNA interactions within single, 

isolated cells. These methods retain the same strategy as their bulk approaches, relying on 

specific antibody–protein interactions. Droplet-based single-cell chromatin immunoprecipitation 

sequencing, a method developed by Rotem et al, takes protein-associated genomic fragments 

generated from droplet-isolated single cells and tags them with unique DNA barcodes 30. These 

nanoliter droplets, which contain the contents of a single cell, are broken and aggregated for 

immunoprecipitation and library generation. This information can also be obtained using cleavage 

under targets and tagmentation, described by Kaya-Okur et al 31. This method uses protein-A–

tethered Tn5 transposons to localize these elements to protein-bound antibodies. Target-
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localized transposons fragment the genome in a way that enriches for target protein-associated 

loci. These reactions are amenable to Nanowell-based systems because antibody binding and 

transposon introduction can be performed at a bulk level prior to isolation. Both of these methods 

produce sequencing libraries that contain cis-acting regulatory elements associated with the 

antibody-targeted protein. 

 

Single-cell methylation and hydroxymethylation (sc-5mc and sc-5hmc) assays measure covalent 

modifications on genomic cytosine residues. Often, these modifications are enriched for CpG 

islands—high concentrations can result in silencing or reversible down-regulation of gene 

expression 32. These methods are classified by their sodium bisulfite dependence, where bisulfite-

dependent methods convert cytosine residues into sequencing-detectable uracil. Single-cell 

genome-wide and reduced-representation sequencing methods, which depend on bisulfite 

conversion, have been developed to capture varying breadths of the methylome 33,34. In contrast, 

single-cell CpG island methylation sequencing combines methylation-sensitive restriction 

digestions with multiple displacement amplification to generate a sequencing library enriched for 

loci associated with methylated CpG islands, while avoiding destructive bisulfite conversions 35. 

Other new methods include scAba-seq, which targets 5hmc and retains strand-specific 

information through bisulfite-independent, but glucosylation-dependent enzymatic reactions 36. 

 

Like single-cell transcriptomes, epigenetic data from single cells can be used in human research, 

possibly to determine patient prognoses and/or to select therapy. Bormann et al. examined the 

CpG island methylator phenotype along with cell-of-origin signatures in colorectal tumor tissues 

and identified epigenetically defined subtypes of tumors that correlated with patient survival 37. 

Other tumor types have epigenetic heterogeneity along with functional heterogeneity. 

Litzenburger et al. used scATAC-seq to demonstrate differences in chromatin accessibility 

associated with sensitivity of cancer cell lines to drugs 38. 
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Benefiting HCOs Through GST 

Machine learning models and applications generalizable to complex systems have been 

demonstrated through interdisciplinary collaborations between the VUMC (Vanderbilt University 

Medical Center) Department of Biomedical Informatics and the Chemical and Physical Biology 

program. In these collaborations, we examined the emergent behaviors of interacting healthcare 

workers through a digital medium of the Epic electronic health record (EHR) system and in the 

context of the VUMC Neonatal Intensive Care Unit. Additionally, these methods borrow from 

methods in the computational analysis of single-cell biology primarily through the encoding of 

behavioral sessions as analogous to single-cell transcriptomes. Understanding these interactions 

provides a means of addressing emergent phenomena such as clinician burnout and the quality 

of patient care 9,39.  

 

Healthcare organizations exist as complex systems of individual providers interacting with each 

other using a combination of analog and digital means. Clinician activities within EHR systems 

can influence their workload and workflow, which can induce stress and burnout if improperly 

managed 40–45. Clinicians use EHRs for various functions, including chart review, documentation, 

messaging, orders, patient discovery, medication reconciliation, etc. 46 Healthcare organizations 

(HCOs) and EHR vendors have previously investigated such usages to understand clinician EHR 

activities and efficiency 47,48. These investigations measure the time spent on each EHR function 

to build provider efficiency profiles 49. 

 

In recent years, EHR audit logs have become valuable resources for the investigation of clinician 

efficiency in EHRs 50,51. When a clinician accesses or moves between modules in the EHR 

interface, such as moving from Progress Notes to Order Entry screens, a timestamped record of 

that action is documented, along with clinician and patient identifiers 52–55. Arndt et al. leveraged 
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audit logs to identify 15 tasks, including clerical (eg, assigning Current Procedural Terminology 

and International Classification of Diseases–Tenth Revision codes), medical care (eg, reviewing 

an encounter note), and inbox tasks (eg, developing a letter to a patient) completed by family 

medicine physicians. Similarly, Sinsky et al. created a set of metrics to quantify the time spent by 

a physician in an EHR by using audit logs. 

 

Our approach applies unsupervised learning methods to audit log event sequences to identify 

and characterize putative EHR tasks performed by clinicians. This framework encodes each 

human-computer interaction (HCI) as feature-rich sessions such that individual functional 

interactions can be described in a high-dimensional feature space. Relative to the complex task 

of inpatient care, these behaviors are simple and performed by interacting agents, and such 

interactions operate at a sociological scale as opposed to the molecular scale observed in single-

cells. Structural isomorphisms, however, can be observed between these systems such that the 

development of complex systems analysis methods may benefit the study of both (Table 1).  

 

Level of 
Abstraction 

Systems Biology EHR Systems 

Low 
Expressed  
transcripts 

Logged HCI  
events 

 Are used to define ... 

 Single cells User sessions 

 Are aggregated and classified as ... 

 Cell types Provider tasks 

 Are mined to understand ... 



 

 
 

18 

High 
Biological  
pathways 

Provider behavior  
trees 

 

Table 1. Isomorphisms between the contextual abstractions of systems biology and EHR 

systems. 

Two contexts of complex systems, in systems biology and EHRs, share several logically 

analogous  

 

Formally, this framework consists of three hierarchical levels of abstraction, from low to high: the 

system-level, session-level, and task-levels (Figure 7). The goal of our work is to provide an 

informatics framework for mining audit log data to discover EHR event and session patterns, 

which we call tasks. We developed hierarchical metrics to describe these tasks and leveraged 

them to investigate task complexity and efficiency. System-level representations of the data 

consist of the most granular observations of clinician-EHR interactions, being the audit log itself. 

These dense, highly voluminous data are largely uninterpretable, consisting of EHR event 

categories, provider IDs, patient IDs, and timestamps. We reasoned that the examination of 

emergent behaviors could only be interpretable at higher levels of abstraction, or the task level.  

 

Figure 7. Hierarchical contexts and metrics in EHR analysis. 

Each level of abstraction is built upon the previous level, and we devised respective metrics per 

level. Audit logs represent the raw data in this framework and thus the metrics associated with it 
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are the baseline at the system-level. Respectively, session and task-level metrics are averaged 

across their constituent lower-level elements.  

 

To segment these streams of raw data into functionally interpretable abstractions, we used a data-

driven method to determine optimal time cutoffs for aggregating HCIs (further elaborated in 

Chapter II in the context of single-cell computational biology). This was done under the 

assumption that successive interactions would occur in ergonomic ‘bursts’ followed by longer 

pauses (Figure 8). The length of these bursts and pauses were determined through finding the 

operating point of a cumulative sum of intervals between measured HCIs, which would act as the 

point of diminishing returns and maximize the density of functional HCI information per session. 

At this stage, each session is defined by a set of elemental HCIs within a data-driven time window. 

Such aggregation abstracts the elemental information into a form analogous to a single-cell 

transcriptome, much like the process of cell encapsulation from heterogeneous tissues.  

 

Figure 8. Data-driven audit log sessionization. 
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Higher-order abstractions are made possible through the transformation and aggregation of 

lower-level elements. In this case, a continuous list of events is abstracted as a session by finding 

the operating point of intervals between provider interactions with the EHR system and 

aggregating those sequences of events. 

 

Because of this session-level abstraction, methods applicable to the analysis of agents defined 

by a high-dimensional feature space can now be used through the mapping of logical homologies 

between complex systems. This includes linear dimensionality reduction methods such as 

principal component analysis (PCA), non-linear projection methods such as Uniform Manifold 

Approximation and Projection (UMAP) or t-Distributed Stochastic Neighbor Embedding (tSNE), 

and unsupervised clustering. Primarily, these methods, often used to abstract cellular function in 

single-cell biology, could instead be used to abstract groups of HCI function in the form of tasks. 

As a pilot study, this work focuses on task complexity, task efficiency, and task prevalence among 

clinicians. We stratify tasks by complexity and investigate differences in task efficiency and 

clinician prevalence between each complexity profile (Figure 9). Our methods can potentially 

guide HCOs to optimize EHR activities or clinical workflows, by highlighting specific inefficient 

tasks. To test our methods, we applied our approach to identify and characterize EHR tasks for 

nurses involved in the care of surgical cases in the neonatal intensive care unit (NICU). Metrics 

generated relative to each level of abstraction are then used to summarize behavioral information 

with greater resolution and context-awareness. 
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Figure 9. Task complexity profiles. 

Each of the 81 detected provider tasks can be split into quadrants of low (L) or high (H) diversity 

(D) and repetition (R). A ratio was taken between the ranked repetition (how repetitive a task was) 

and diversity (how diverse the events within a task were) coefficients, and then and split across 

both axes by the median value. 

 

Studies to date have created metrics to measure the amount of time spent by clinicians in EHRs 

and the tasks that clinicians perform while interacting with EHR systems, primarily in outpatient 

and ambulatory settings. Yet few studies have focused on inpatient settings or have developed 

metrics to model task complexity in EHR utilization. Our study created an unsupervised learning 

framework to identify clinician tasks performed in EHRs and developed hierarchical metrics to 

describe EHR task complexity, which is lacking in the existing literature. We tested the 

effectiveness of our metrics and approach in learning EHR tasks and task complexities for nurses 

in the NICU. Our hierarchical metrics capture contextual information of a task beyond its explicit, 

session-level content. Ultimately, by applying the approaches described in this study, 
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investigators can better understand clinician activities in EHRs with reduced manual effort with 

the utilization of machine learning. 
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Chapter II - Single-cell approaches for the investigation of mammalian gastrointestinal 

biology 

 

Recreated from:  

Chen, B., Ramirez, M., Heiser, C., Liu, Q., Lau, & K. S. (2021). Processing single-cell RNA-seq 

data for dimension reduction-based analyses using open-source tools. STAR Protocols. 

https://doi.org/10.1016/j.xpro.2021.100450 

and 

Chen, B., Herring, C. A., & Lau, K. S. (2019). pyNVR: investigating factors affecting feature 

selection from scRNA-seq data for lineage reconstruction. Bioinformatics. 

https://doi.org/10.1093/bioinformatics/bty950 

and 

Herring, C. A., Chen, B., McKinley, E. T., & Lau, K. S. (2018). Single-Cell Computational 

Strategies for Lineage Reconstruction in Tissue Systems. Cellular and Molecular 

Gastroenterology and Hepatology. https://doi.org/10.1016/j.jcmgh.2018.01.023 

 

Technical Challenges of Single-Cell Biology and Computational Solutions 

Single-cell RNA-sequencing (scRNA-seq) extracts transcriptomic information while preserving 

complex, multicellular interactions. This is unlike bulk transcriptomic methods, where tissues are 

homogenized and such cellular heterogeneity is lost in the process, with no feasible way to 

deconvolve individual cells de novo. Single-cell techniques capture extremely complex cell states 

in the form of high-dimensional data, most often in transcriptomic spaces. scRNA-seq is known 

to produce noisy data on a per-feature basis, especially for lowly expressed genes, owing to the 

capture and amplification of small amounts of nucleic acids. These physical limitations are 

exacerbated by biological phenomenon such as bursting transcription, which entails the 

stochastic expression and detection of specific transcripts, owing to the fact that scRNA-seq only 

https://doi.org/10.1016/j.xpro.2021.100450
https://doi.org/10.1093/bioinformatics/bty950
https://doi.org/10.1016/j.jcmgh.2018.01.023
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captures a temporal snapshot of complex cell states 56. This effect is compounded with the sparse 

quantification of expressed features in multidimensional space, which is a phenomenon known 

as the curse of dimensionality, which greatly affects downstream trajectory analysis when using 

the full ensemble of features 57.  

 

A way to mitigate this effect is to select and analyze only a subset of the most important features 

that maximally captures the phenomenon of interest, while ignoring uninformative or noisy 

features. The feature selection step is implicitly performed in candidate-based approaches, such 

as Cytometry Time-of-Flight and multiplex microscopy, because the user is picking the most 

important markers to measure. How to pick informative features while eliminating uninformative 

ones from genome-scale scRNA-seq experiments is still an active area of research. 

 

One intuitive method for feature selection is a supervised approach that only includes genes of 

interest. For instance, candidate genes can be selected from a differentially expressed gene set 

from a bulk RNA-seq experiment that uses a time course or genetic perturbation experimental 

design. Pipelines such as Single-cell Topological Data Analysis and Single Cell Lineage Inference 

Using Cell Expression Similarity and Entropy incorporate annotated gene sets from gene ontology 

resources such as Protein ANalysis THrough Evolutionary Relationships or the Database for 

Annotation, Visualization and Integrated Discovery to select features in a semi-supervised fashion 

58,59. For studies with minimal or unreliable prior knowledge, completely unsupervised methods 

that leverage general gene expression patterns may be used. 

 

Different unsupervised feature selection methods vary in their assumptions as well as complexity. 

For example, a commonly used method in analyzing scRNA-seq data involves identifying 

transcriptomic features with highly variable expression across the entire data set of single cells. 

Here, the assumption is that variance in gene expression between cells corresponds to 
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meaningful gene regulation. This method calculates the variance of each gene across all data 

points (cells), and filters the features to capture only those with the highest variances 60. In a way, 

this method is analogous to principal component analysis (PCA) in selecting the dimensions with 

the highest variances 61. Technical variation can potentially exceed meaningful biological 

variation, and filtering methods can be confounded by the simultaneous occurrence of these 2 

sources of variation. However, because of their computational tractability, variance ranking 

methods can provide a quick evaluation of data quality by enumerating the number of biologically 

relevant genes returned, which can be collected to potentially reveal both known and unknown 

cellular relationships. 

 

More sophisticated methods based on different patterns of gene expression have been developed 

to identify biologically relevant features. Qui et al. developed dpFeature, a method that selects 

differentially expressed genes between cell populations described by unsupervised clustering for 

downstream trajectory analysis 62. Clusters of cells automatically identified are representative of 

distinct cell states, and differentially expressed genes represent likely regulators of these states. 

However, data sets that depict transitions are generally continuously distributed and do not form 

distinct clusters. Clustering in these cases is based on arbitrary cut-off values, and, thus, how 

dpFeature performs on these types of data sets remains to be tested. 

 

To handle continuous data distributions, Welch et al. developed a metric called neighborhood 

variance 63. Implementing a K-nearest neighbors graph approach with each cell represented as a 

node, this method defines neighborhoods of locally varying cell states. Variance of a feature is 

analyzed over each defined neighborhood and compared with the global variance of that feature, 

with a threshold of selection for downstream analysis. Selected features exhibit small local 

variance with gradual and monotonic changes, consistent with progressively transitioning cell 

states. In addition, Furchtgott et al. developed a Bayesian approach for identifying subsets of 
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gene expression patterns over 3 cell states that are useful for defining lineage relationships 64. 

These feature selection methods use unique patterns of gene expression present in single-cell 

data sets to filter out genes whose variances are either owing to noise or are irrelevant to the 

phenomenon of interest. More refined gene expression patterns perhaps can be identified in the 

future for more sophisticated feature selection. 

 

However, these algorithmic approaches perform best when provided with high-quality features, 

which are often confounded by artifacts such as gene dropouts, resulting from incomplete 

transcriptomic sampling, and stochasticity, arising from the amplification of single-cell scale 

reaction materials 65. Detectable cell-to-cell variation can also originate from stochastic gene 

expression, where an underlying level of randomness is captured at the time of sample processing 

66,67. These sources of variation necessitate machine learning strategies for the selection of 

biologically meaningful features 68.  

 

Unsupervised feature selection algorithms such as neighborhood variance ratio (NVR), dpFeature 

(dpF), FindVariableGenes (FVG) and PCA-Based Feature Extraction (PCAFE) are distinct 

strategies for achieving this goal in the context of pseudotemporal analysis 62,63,69,70. Although 

feature selection is essential, the assumptions and performance of these algorithms have not 

been systematically evaluated, confounding the applicability of these methods to different 

datasets. Work by Chen et al. examined an underlying characteristic of high-dimensional data 

that interacts with these algorithms with a focus on NVR and dpFeature 71. 

 

This algorithm presented by Welch et al. generates a connected graph based on the Euclidean 

distances of cell-to-cell gene expression. Based on this graph, the algorithm compares the 

variance of gene expression within neighborhoods and the variance of gene expression globally 

on a cell-to-cell basis. It then assumes that if the neighborhood variance is lower than the global 
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variance, there exists some meaningful and controlled gene expression. The formalization of this 

neighborhood variance, in the context of genes, is described as follows, where n is the sample 

number, kc is the minimum number of neighbors in the connected graph, g is the gene of interest, 

and N( i , j ) is the nearest neighbor j of the sample i: 

 

Figure 10. Formal description of NVR algorithm.  

 

An example of this phenomenon would be the expression of some gene that changes 

monotonically along the progression of a given developmental lineage. Neighborhood variation 

would be low given the gradual change of gene expression, and global variation would be higher 

given the differences in expression between end states of a transition. Due to the calculation of 

neighborhood variance, the time complexity of this algorithm is O(n) where n is the product of the 

number of cells and the number of genes. The following is the pseudocode for the algorithm: 

 

1. Determine the minimum number of connections, k, that will generate a connected graph.  

a. Calculate the pairwise distances between each element of the input matrix  

b. Convert this vector into squareform 

c. Generate an adjacency matrix based on this squareform 

d. Permit k number of connections and generate a graph based on the adjacency 

matrix 

i. Count the number of connected components, c 

ii. If C>1, add 1 to k and repeat until C=1 

2. Use this number of connections, k, to generate a connected graph 
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3. For each gene, calculate the mean variance of some n neighbors based on the generated 

graph 

a. Repeat for all possible neighborhoods 

b. Calculate the mean of this neighborhood variance 

4. For each gene, calculate the global variance in the context of all cells 

5. If the global variance of a gene divided by the average neighborhood variance of that 

same gene is greater than 1, select that gene. 

 

A popular feature selection method, developed by the Trapnell group 62, utilizes density peak 

clustering 72 on a t-SNE (t-distributed stochastic neighbor embedding) dimension-reduced 

representation of transcriptomic data 73. For t-SNE, our study used the monocle R package using 

the parameters max_components=2, num_dim=6, and check_duplicates=FALSE. Using this 

representation of the data, density peak clustering was performed. A generalized linear model 

was then used to test for the most significantly differentially expressed genes between clusters.  

 

Principal component analysis (PCA)-based unsupervised feature extraction (FE) is a another 

method used to select biologically relevant genes 70. This method starts by scaling the raw count 

data and performing a principal component analysis. For the first three principal components, the 

gene weights are then scaled and summed. These sums are used for a Chi- squared test. Finally, 

an adjusted p-value threshold is set and genes that meet that threshold are selected.  

 

Following these explorations into feature selection and data pre-processing, we devised an open 

source pipeline incoporating these methods (Figure 11). This pipeline consists of bioinformatic 

read alignment with the STAR aligner, droplet count matrix estimation with DropEst, and 

preliminary quality control with the scRNABatchQC R package 74–76. First, dropTag (part of 

DropEst) takes paired-end, raw .fastq files and tags them in the context of unique molecular 
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identifiers (UMIs) and cellular barcodes for the demultiplexing process. This is dependent on the 

scRNA-seq platform’s barcode whitelist; in this case we use the inDrop V1 and V2 barcodes. 

Before running the actual alignment process, a genome index must first be generated with respect 

to the reference and annotation files. STAR is a fast, scalable RNA-seq aligner which has splice 

awareness and takes the multiple tagged fastq.gz files generated by dropTag and aligns them 

using a reference genome index. The sorted .bam file generated by STAR alignment is used as 

an input to dropEst, which generates a barcode by gene count matrix, or droplet matrix, from the 

STAR aligned transcripts. Finally, scRNABatchQC is used to provide summary statistics and a 

quality assessment of the generated droplet matrix. This droplet matrix is further filtered in the 

heuristic droplet filtering and automated droplet filtering with dropkick section variants. 

 

 

Figure 11. Open-source pipeline developed for the processing of scRNA-seq data. 

Our pipeline is a three phase protocol which can be modularly tuned for various widely used 

scRNA-seq platforms.  
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Once these data exist in cell matrix form, barcode filtering is necessary, and can be used 

modularly if the user has a pre-computed matrix, either from the single-cell read alignment and 

DropEst library quantification section of this protocol or an external source, so long as the rows 

represent cell barcodes and columns represent genes. The output for this section is a cell matrix, 

differing from a droplet matrix in that it only contains gene read counts from only high-quality, 

intact single cells. First, a data-driven cutoff, by means of finding the inflection point in a 

cumulative sum curve of ranked barcode counts, is generated and used to minimize information-

spars barcodes. This cumulative sum curve method borrows from an electrical engineering, 

through the usage of operating points. Like the determination of a time interval threshold in 

human-computer interactions or a stable operating point of an AC motor, we used a data-driven 

heuristic for the detection of high-quality libraries with this cutoff optimization. This method is 

related to what Satopää et al. refers to as “knee point” finding, and is a heuristic often used to find 

operating points in complex systems. Formally, this “knee” is akin to geometric curvature 

previously described for any continuous function f as: 

 

Figure 12. Formal description of Kneedle algorithm. 

 

Where Kf (x) represents a standard closed-form defining the curvature of f at any point as a 

function of its first and second derivative. We then devised an algorithm which maximized the 

curvature for some threshold (cell quality, time thresholds, rotational speed, etc.), x.  

 

After this first pass matrix filter, another distribution of uniquely detected genes per droplet is 

automatically thresholded through Otsu’s method, separating the remaining information-rich and 
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information-sparse droplets and generating a binary metadata label. Third, tissue-specific gene 

expression signatures are visualized after DR to pinpoint cell populations of interest for 

downstream analysis. Fourth, unsupervised clustering is performed to and evaluated to 

consistently discretize the single-cell transcriptional landscape 77. Finally, by heuristically 

integrating these metrics and expression signatures, populations of intact single-cells and their 

respective high-quality transcriptomes can be saved for downstream analyses. 
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Multi-omic Mappings of Cellular Developmental Trajectories 

A disruption to hub nodes of biological interactions often leads to the dysregulation of otherwise 

homeostatic equilibria, which vary across human tissues composed of heterogeneous systems of 

cells. This dysregulation may alter developmental processes that result in disease states capable 

of propagating throughout multicellular systems, ultimately affecting as macroscale symptoms, 

diagnoses, and prognoses. Pinpointing the disrupted junctions of developmental processes 

remains a high-value target for computational biology. These junctions may exist as transient cell 

states, as defined through the epigenome, transcriptome, or proteome, and contribute to the 

dynamic nature of tissue heterogeneity in multicellular organisms. Accordingly, multi-omic 

snapshots of this heterogeneity may capture cell states across a range of developmental lineages, 

which can be rationally ordered in high-dimensional feature-spaces to summarize a continuum of 

cellular differentiation 78,79. By examining these relationships, developmental timelines and 

“pseudo-timelines” can be mapped out under the assumption that such multicellular snapshots 

capture self-renewing and differentiating communities of cells. With omics-level data at high 

enough resolutions, relative comparisons between homeostatic conditions and disease states can 

be made, where cell state intersections represent potential points of meaningful dysregulation. 

Three major classes of algorithms are popularly used to map out these multicellular states, being 

trajectory inference, clonal inference, and RNA velocity.  
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Figure 13. Computational methods for inferring developmental dynamics. 

(A) p-Creode trajectory of colonic epithelium and tumor tissues overlaid with CytoTRACE scores 

(B) Modified DENDRO phylogenetic estimations for the same libraries as in (A) (C) RNA velocity 

of normal cells highlighted on UMAP of libraries in (A). 

 

Trajectory inference methods are typically implemented in R or Python with wrappers around 

functions written in lower-level programming languages and generally take single-cell count 

matrices as input. pCreode is an algorithm which uses an ensemble of density-dependent k-

Nearest Neighbors (k-NN) in principal component space. Using this ensemble of graphs, the most 

representative graph structure was chosen by minimizing the Gromov-Hausdorff distance 68. The 

result is a hierarchical tree of transcriptional variation across developmental pseudotime points, 

where branchings represent splits of developmental processes into different lineages. Similarly, 

Monocle 3 employs principal graph learning through PAGA (partition-based graph abstraction) 62. 

In three steps, Monocle 3 reduces the dimension of the count matrices, partitions the data into 

supergroups (consisting of communities of cells detected through the Louvain algorithm) using 

the PAGA algorithm, and finally learns a smoothed principal graph using these supergroups as 



 

 
 

34 

landmark points. The resulting principal graph, or multidimensional graph, is embedded into three 

dimensions using SimplePPT for interpretability. Given the appropriate transformations, even 

epigenomic single-cell data, representing snapshots of dynamic cell states can be mapped out. 

Namely, the STREAM (Single-cell Trajectories Reconstruction, Exploration And Mapping) 

algorithm can be generalized from scRNA-seq to scATAC-seq data through the mapping of an 

elastic principal graph 80.  

 

Clonal inference methods, unlike trajectory inference, utilize information retrieved from nucleotide 

variation and genotypes detected within each single-cell sequencing library. These are valuable 

since a core assumption of trajectory inference is that cells with similar transcription or epigenetic 

states are also developmentally similar, which may not be universally true as gene expression 

can vary greatly throughout the life cycle of a cell. In this case, the direct measurement of genetic 

history is used to reconstruct developmental lineages as opposed to an inferred genetic history 

based on gene expression or regulation. The molecular content of genomes, however, remains 

relatively difficult to recover intact from a single-cell. While some methods have used pseudo-bulk 

aggregates of cells instead, others have applied rationally-devised, statistical adjustments to 

transcriptomic data to detect germline genetic variation. Calling genetic variation in transcribed 

sequences still remains a challenge, given that an additional layer of variation in dynamic gene 

expression is also captured. Examples of this would include high or low expressing genes which 

differ between two distinct subpopulations of cells, where the quantification of genotypic reads is 

confounded by an inherent increase in the likelihood of detecting highly expressed transcripts. 

DENDRO or DNA based EvolutionNary tree preDiction by scRNA-seq technOlogy, uses a Beta 

binomial generative model to describe these stochastic effects of gene expression by considering 

gene expression in the description of genotypes from transcriptomic sequencing data 81. 

scLineager, similar to DENDRO, employs a Bayesian hierarchical model. This model takes factors 
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and their hierarchical relationships into account such as gene dropout or stochastic gene 

expression alongside their correlations to known cell line genetic variation 82. 

 

RNA velocity methods, like clonal inference, also make of information that exists in the sequence 

of transcripts. Instead of dissecting the phylogenetic relationships, the splice states of detected 

reads are instead used to describe potential developmental states.  Differing from both trajectory 

inference and clonal inference, RNA velocity predicts the likelihood of cell state transitions and 

their directionality de novo. In conjunction with splice-aware sequence alignment for single-cell 

libraries, the velocyto python package was introduced with the concept of RNA velocity in seminal 

work done by Le Manno et al. 83 Subsequent improvements in the prediction of cell state vector 

fields have been through the incorporation of dynamical modeling, as described by Bergen et al. 

and implemented in the scVelo python package 84.  

 

Transcriptomically-Derived Gene Signatures and Regulatory Networks  

Although experimental and computational methods can now be used reliably to measure the 

whole transcriptomes of single cells, the abstraction of biological function from these 

transcriptomes remains a challenge. On one hand, top-down approaches reliant on published 

literature are highly dependent on existing bodies of knowledge and are largely used for the 

summarization of pre-defined gene expression programs. Summarization is important, as genes 

seldom act in a vacuum; the joint evaluation of multiple genes comprising individual biological 

programs better describes biologically meaningful phenomena as opposed to the quantification 

of single gene features in isolation. Gene signature scoring, like that described by Satija et al., 

provides a robust method to calculate the enrichment of gene sets compared to a randomly 

generated background signature 85. Such methods come with an increased risk of committing 

type II errors, given that biological processes uncharacterized by existing literature could not be 

directly measured nor summarized. On the other hand, purely bottom-up approaches have a 
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higher risk of committing type I errors, given that co-varying biological processes may be 

functionally disjoint in practice. cNMF, or consensus Non-negative Matrix Factorization, robustly 

decomposes an observation-by-feature matrix into two component matrices, denoted H and W, 

which when multiplied together reconstructs the original gene expression matrix 86. This is 

typically a computationally intensive process which explores the space of possible H and W 

combinations, and in the case of cNMF, is instead an ensemble of sampled factorizations. In this 

case H and W can be reframed as matrices representing gene expression programs and program 

representation per cell. Pragmatically, the utilization of both top-down and bottom-up methods, 

such as with the SCENIC algorithm occupy a space which allows for a mixture of mining regulatory 

networks de novo, while also being able to incorporate prior knowledge about transcription factor 

protein-DNA interactions, compiled from literature 87. Similar to cNMF, SCENIC detects gene co-

expression modules de novo, using gradient boosting instead of NMF. To parse potential false 

positives, by virtue of coincidental co-expression, the SCENIC pipeline uses known transcription 

factor regulatory motifs to assess whether co-expressed genes share a common co-expressed 

transcription factor. Importantly, this step draws from the biological intuition that gene expression 

is tightly controlled in regulatory networks, largely under the regulation of transcription factors 

specifically interacting with the genome. 

 

Figure 14. Gene expression program inference based on matrix factorization-based. 
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(A) cNMF decomposition of matrix V results in W and H, which represent “usages” or weightings 

per cell and gene expression programs respectively. When multiplied, V can be reconstructed. 

(B) Ecotyper detects coexisting cell states by clustering a decomposed matrix, similar to the W of 

cNMF. 

 

 

Inferring multicellular interactions through scRNA-seq 

While the calculation of gene signature or regulatory network enrichment can abstract biologically 

meaningful, cell-intrinsic insights from single-cell transcriptomes, meaningful interactions between 

those inferred processes require additional sets of analysis. Modeling the gestalt of a system of 

cells should include the consideration of models with higher orders of complexity in the form of 

cell-extrinsic regulatory networks alongside cell-intrinsic models 88,89. Like cell-intrinsic network 

inference, an analogous dichotomy between top-down and bottom-up is also seen in its 

algorithmic strategies. Instead of coexpressed genes within a single-cell or cell-type, the 

abstraction of cell-extrinsic biological processes is dependent on the paired expression of 

receptor-ligand pairs and their respective mediators. Top-down methods, again, are dependent 

on the retrieval of intercellular receptor-ligand pairs mined from literature and large-scale 

databases. Popular algorithms such as Cellphonedb and iTalk are dependent on combinatorial 

statistical testing for the discovery of significantly paired receptor-ligand gene expression 90,91. 

From these gene sets, queries are made to manually curated databases of receptor-ligand 

subunits, finally outputting lists of interactions alongside their probabilistic matrices. Bottom-up 

approaches follow a similar trend to their cell-intrinsic counterparts. Primarily, these methods 

employ versions of matrix factorization algorithms, not unlike cNMF, in finding correlated gene 

expression programs across distinct populations of cells. Namely, Ecotyper and multicellular 

immune hub prediction 92,93. These methods are heavily dependent on the non-negative 

factorization of gene expression across multiple, co-captured cell populations of heterogeneous 
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tissues. Gene expression programs decomposed from these factorizations are then scanned for 

co-regulation across these populations, leading to pathway-level inferences of cell-cell 

interactions. Alternatively, NicheNet blends top-down and bottom-up processing, like SCENIC 94. 

This method employs prior knowledge to refine data-driven pathway definitions, which may 

provide a lower likelihood of type I or II errors, though few meta-analyses have thoroughly 

evaluated the performance of these methods given their recency. 

 

Features of the Colonic Epithelium 

The molecular characterization of heterogeneous tissues has more recently been used for the 

understanding of the mammalian colon, a complex system of neural, connective, endothelial, 

epithelial, and immune cells of further specification 95. Compounding these interactions, the lumen 

of the gastrointestinal tract contains diverse microbial populations comprising the gut microbiome, 

and its interactions with the host organism’s complex systems have yet to be deeply 

characterized. The macro-structural organization of the colon can be classified by its anatomical 

positioning as well as its cross-section layers 96. Anatomically, the colon or large intestine is 

attached to the ileum of the small intestine, or the most distal segment. In proximal-to-distal order, 

the colon can be generally divided into five segments: the cecum and appendix, ascending colon, 

transverse colon, descending colon, and sigmoid colon. Importantly, the luminal properties of the 

colon are heterogeneous given its proximal-distal axis 97. Three examples include the speed of 

distal colonic transit (monotonic decrease), microbial diversity in the lumen (monotonic increase), 

and the volume of fecal short-chain fatty acids (monotonic decrease).  

 

The cross-sectional organization of the colon involves four major layers of cells of varying 

thickness. In external-to-internal order, these layers are the serosa, muscularis, submucosa, and 

the mucosa 95. The serosa, largely consisting of connective tissue, provides the outermost layer 

of the colon interfacing with the mesentery, which contains blood vessels and components of the 
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enteric nervous system. The muscularis contains the outermost layer of circular and longitudinal 

muscles, and with its innervation, this layer is important for initiating peristalsis. The submucosa 

is a second layer of connective tissue, which, like serosa and muscularis, contain specialized 

subsets of tissue including lymphatic vessels. Finally, the innermost layer of the colon is the 

mucosa, which contains a high diversity of self-renewing epithelial cell types, intermixed with a 

variety of non-epithelial stromal cells. This mucosa is the primary interface with the lumen of the 

gut, regularly enduring the vast majority of microbial insults 98,99.  

 

A large focus on gastrointestinal biology remains on the micro-scale, molecular characterization 

of this luminal epithelium. Several pathogenic mechanisms may originate from this layer likely 

due to its rate of self-renewal, the complexity of interactions involving the immune system, and its 

proximity to the diversity of microbes and chemical signals 100. Similar to the small intestine, 

intestinal glands, or crypts of Lieberkühn, line the inner surface of the mucosa, leading to an 

increase in surface area for the potential absorption of nutrients. Differing from the small intestine, 

colonic glands only contain a crypt domain, without a villus domain extending past the opening of 

the crypt and into the lumen. In terms of cellular organization and crypt compartmentalization, a 

gradient of morphgenic and juxtacrine signals maintain a diversity of undifferentiated, self-

renewing stem cells and its differentiated descendants in homeostatic conditions 101–105. 

Morphogenic signals such as those used by the BMP, Wnt, and EGF pathways involve the ligand-

based transference of information across a distance and are dependent on the concentration of 

these cell-free ligands. Juxtacrine, or contact-dependent, signals such as Ephrin and Notch 

signaling, are reliant on the direct interaction of membrane-bound or extracellular-matrix 

originating ligands with membrane-bound receptors. The movement of molecules through a 

shared cellular junction, like a gap junction, would also enable this type of signaling. Other aspects 

affecting this signaling gradient include the concentration of oxygen, given that endothelial vessels 

reside closer to the base of the crypt, which has significant effects on hypoxia-inducible factor 



 

 
 

40 

signaling and its related effects on metabolism. In each of these cases, the gradient concentration 

of signals along the crypt leads to a series of coordinated pathway regulation which 

compartmentalize cellular differentiation and function.  

 

Several molecularly distinct cell types reside at the base of the crypt, where Wnt, EGF, Notch, 

and Ephrin signaling is high 101–106. Generally, these basally enriched cell types are related to the 

function or maintenance of stem cells, or multipotent and undifferentiated epithelial cells. These 

stem cells can generally be identified by their capacity to self-renew with symmetrical division, 

with functional studies yielding specific gene markers related to the regulation of these processes 

such as LGR5, LRIG1, AXIN2, and OLFM4 107–111. The maintenance and regulation of these 

progenitor cells is performed by differentiated deep-crypt secretory cells, which intercalate the 

stem cells at the crypt base 112,113. With molecular function resembling the Paneth cells of the 

small intestine, these cells help to maintain the gradient of signaling molecules required for proper 

stem cell regenerative function and differentiation. Separated by a label retaining cell at the +4 

position of the crypt, the transit amplifying cells act as a buffer between undifferentiated and 

differentiated cells 111,114. These transit amplifying cells (TAC), originating from the adjacent stem 

cells, undergo rapid proliferation, and their daughter cells are physically displaced across the 

gradient of signals which, ultimately, leads to the differentiation into more mature cell types 101,115. 

TACs, thus, can easily be identified by both their positioning and expression of genes involved in 

cell cycle phase progression, such as MKI67 and PCNA.  

 

Differentiation downstream from stem cells and TACs lead to two primary epithelial lineages with 

more specific molecular functions, being the absorptive and secretory lineages. The absorptive 

lineage exists as a gradient of enterocytes at various points of developmental maturity. Crypt-top 

cells represent a fully mature state which typically reside at the tops of each crypt, expressing the 

genes BEST4 and OTOP2 which contribute to the maintenance of luminal pH 116–118. Importantly, 
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these cells help to regulate homeostatic conditions interacting with luminal microbes. Colonocytes 

comprise the vast majority of cells in the colonic crypt and intercryptal surfaces. They exist in a 

gradient of differentiation along the axis of the crypt, and primarily act as mediators of nutrient 

and water absorption. Expectedly, both of these cell types are the most exposed to the genotoxic, 

microbial interactions, being located closest to the lumen and the opening of the crypt. The 

secretory lineage differs from the absorptive lineage with the expression of the transcription factor, 

ATOH1, an early cell fate determinant which inhibits the expression of HES1 68,119. Functionally, 

secretory lineage cells, of which there are three major subtypes, generally involve the secretion 

ranging from mucins to hormones, and are far outnumbered by absorptive lineage cells. The most 

common of these subtypes are the goblet cells, morphologically resembling a goblet spilling over 

in liquid, secrete high volumes of heavily glycosylated molecules known as mucins through the 

production of mucin-filled vesicles 96. The resulting matrix of mucins, produced through genes 

such as MUC2, acts as a protective buffer between the lumen and epithelium. Other secretory-

lineage cells are rarer in nature and have highly-specific functions, namely the enteroendocrine 

and tuft cells 68,120. Enteroendocrine cells help to regulate the interaction between the gut and the 

endocrine system through the production of hormonal peptides secreted through pathways 

involving CHGA and CHGB 121.  Finally, tuft cells, named for their apical tufted protrusions, act as 

chemosensory immune mediators which are marked by the expression of DCLK1 and play a role 

in the detection of parasitic infections 122,123. 

 

This epithelial complexity further interacts with non-epithelial systems of varying lineages, which 

include cells that are hematopoietic, mesenchymal, or endothelial in origin. Such cells generally 

reside within the stromal microenvironment, interacting with the wider immune system and acting 

as an interface between the mucosal epithelium and often modulated by disease states 124. 

Hematopoietic cells produce two primary sub-lineages of immune cells that can be found 

interacting with the colonic epithelium, being lymphoid and myeloid cells 125. Lymphoid cells 
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constitute a significant portion of the adaptive immune system in this microenvironment, can be 

further subdivided into T, B, and Natural Killer (NK) cells. T cells originate in a naïve state in the 

thymus and gain antigen specificity through interacting with antigen-presenting cells. Upon 

activation, these cells differentiate into two subtypes marked by the expression of CD8 or CD4. 

Similar to Natural Killer cells, CD8+ T cells gain cytotoxic function through the expression of 

perforins and granzymes to compromise the cellular membranes of its targets. Contrasting these, 

CD4+ cells are further specialized for the regulation of this cytotoxicity through the production of 

cytokines and chemokines. NK cells, unlike these CD8+ and CD4+ subtypes, maintain their 

cytotoxicity without a stepwise activation through the adaptive immune system. B and plasma B 

cells, while lymphoid in origin, differ greatly in function from the T cells. B cells and their 

descendents, such as plasma B cells, function as part of the adaptive immune system in 

presenting antigens and produce antibodies, which bind to the surface of its targets and allow for 

more specific immune interactions.  

 

Paired with these lymphoid lineage cells, myeloid cells within the colonic microenvironment are 

represented primarily by granulocytes, macrophages, and dendritic cells 125. Granulocytes, 

named for the appearance of their cytoplasmic granules, encompass several subclasses of 

myeloid cells which specialize in producing enzymes, such as lysozymes, which help to break 

down pathogenic agents.  The granulocyte class includes mast cells and neutrophils, for example. 

Mast cells in the gut often interact with the enteric nervous system and act as regulators of 

inflammation, by secreting proinflammatory cytokines. Neutrophils are also part of the innate 

immune system and release enzymes through degranulation, while also undergoing phagocytosis 

in the neutralization of pathogens. Monocytic immune cells, as part of the myeloid lineage, include 

macrophages and dendritic cells, both of which are antigen presenting cells. Macrophages, like 

neutrophils, phagocytose pathogenic materials, process, and present the relevant antigens for 

utilization by the adaptive immune system. Dendritic cells share a similar role at the interface 
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between the innate and adaptive immune systems. Structurally, the dendrites extending from 

these cells increase their effective surface areas for microenvironmental sampling and secretion 

of signaling molecules such as inflammatory cytokines.  

  

Cell-intrinsic and extrinsic characterizations of colorectal cancer 

Colorectal cancer (CRC) is the fourth most common cancer and second leading cause of cancer 

death in the United States 126. Classification schemes for CRC focus largely on intrinsic features 

of tumor cells, including histopathology, bulk gene expression (Consensus Molecular Subtypes 

or CMS), chromosomal instability (CIN), hypermethylation (CpG Island Methylator Phenotype or 

CIMP), and microsatellite-instability (MSI) 127–129. Additionally, the tumor microenvironment and 

immune response is critical to CRC pathogenesis, as highlighted recently 93. Hypermutated MSI-

high (MSI-H) tumors exhibit a neoantigen-triggered cytotoxic immune infiltration that contributes 

to their responsiveness to immunotherapy 124,130. However, a significant subset of low mutation 

burden CRCs appears to exhibit an activated immune microenvironment via ill-defined 

mechanisms 131. We hypothesize that mapping the routes towards tumorigenesis in precursors of 

MSI-H and MSS CRCs will uncover mechanisms that define the CRC cellular landscape and 

identify targets with diagnostic or therapeutic utility. 

 

Most MSS and MSI-H CRCs develop from pre-cancerous conventional adenomas (ADs) and 

sessile serrated lesions (SSLs; formerly sessile serrated adenomas/polyps), respectively. As 

proposed by Vogelstein and others, ADs arise from truncating mutations in APC, which result in 

activation of the WNT pathway and CIN 132. ADs subsequently accumulate gain-of-function 

mutations in oncogenes (chiefly KRAS) and loss-of-function mutations in tumor suppressor genes 

such as TP53, ultimately forming MSS CRCs. Conversely, SSLs resemble MSI-H CRCs 

molecularly and are distinct from ADs in that tumorigenesis is not initiated by genetic disruptions 

of APC 133,134. Instead, they have epigenetic disruptions, including MLH1 hypermethylation and a 
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40-75% prevalence of CIMP 135,136. These tumors harbor BRAF mutations in contrast to KRAS 

mutations commonly present in ADs. Mirroring the relatively lower incidence of MSI-H CRCs and 

their prevalence in the proximal colon, SSLs represent only 10-20% of polyps and are also found 

more often in the proximal colon, unlike the more frequently distal ADs 133,137,138. 
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Chapter III - Gene regulatory networks and the discovery of polyp-specific transcriptional 

programs from heterogeneous tumor tissues 

 

Recreated from: 

Chen, B., Scurrah, C. R., Mckinley, E. T., Simmons, A. J., Ramirez-Solano, M. A., Zhu, X., 

Markham, N. O., Heiser, C. N., Vega, P. N., ... Coffey, R., Shrubsole, M., & Lau, K. S. (2021). 

Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in 

human colorectal polyps. Cell. https://doi.org/10.1016/j.cell.2021.11.031 

 

Introduction 

We present a multi-omic human pre-cancer atlas integrating single-cell transcriptomics, 

genomics, and immunohistopathology describing the two most common pathways towards CRC. 

We identify and functionally validate distinct origins and molecular processes that establish 

divergent tumor landscapes. Notably, this clearer understanding of advanced and highly 

heterogeneous cancers was enabled only by looking at CRCs through the lens of their originating 

lesions, paving a path to new strategies for precision prevention, surveillance, and therapeutics. 

 

Figure 15. Overview of findings from pre-cancer atlas.  

https://doi.org/10.1016/j.cell.2021.11.031
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This human tumor atlas was derived from multi-omic human data and validation in mouse and 

organoid experiments. Shown are the two divergent routes of tumorigenesis, dependent on cell 

position within the crypt, and ultimately resulting in malignancies with contrasting 

microenvironmental properties. 

 

Distinct histopathologic and molecular features define colonic pre-cancer subtypes   

Polyps, as well as matching normal biopsies, were collected from COLON MAP study participants 

recruited as described in the methods. Most polyps were small (median diameter ≤ 5 mm) and 

were bisected for multi-assay analysis. Single-cell RNA-seq (scRNA-seq), multiplex 

immunofluorescence (MxIF), and multiplex immunohistochemistry (MxIHC) were performed on 

two independent sets of specimens collected approximately 1 year apart. The Discovery (DIS) 

set consisted of 65 specimens analyzed including 30 tumors. The Validation (VAL) set consisted 

of 63 specimens analyzed including 32 tumors (Figure 16A). Overall, 128 independent scRNA-

seq datasets on 62 tumors were generated (Figure 16A). Specimens were collected from diverse 

sex, racial, and age groups. In addition, we performed bulk RNA-seq and targeted gene 

sequencing on an orthogonal set of 66 and 281 polyps, respectively (Figure 17A). 
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Figure 16. Histological and mutational features of human colonic pre-cancers.  

(A) Experimental design for the multi-omic characterization of pre-cancers and CRCs, with 

subtypes classified based on histopathology, exome-sequencing based mutational spectra, and 

MSI-testing. Two independent datasets were collected for each group of sample sets: the DIS 

and VAL datasets for colonic biopsies and polyps and the VUMC and Broad datasets for CRCs. 

(B) Representative H&E (Haematoxylin and Eosin) images depicting the histology of normal 

colonic tissue and polyp subtypes in the study. Green brackets label portions of crypts occupied 

by neoplastic cells. (C) Oncoplot representation of the mutational landscape of 30 polyps 

analyzed by exome sequencing and somatic mutation calling. Total numbers of mutations 

detected per specimen represented by a bar plot (top), and different types of mutations color-

coded. Important genes for CRC are grouped into pathways (dark gray boxes). Percentage of 

gene and pathway mutations within polyp subtypes summarized in a table (right). Multi-hit refers 

to multiple mutations in the same gene detected within a specimen. 
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Figure 17. Heterogeneous molecular landscapes of human colonic pre-cancers.  

(A) Oncoplot representation of the mutational landscape of 281 polyp specimens detected 

through bulk targeted sequencing and mutational variant calling, with layout similar to Figure 1C. 

(B) Representative IHC for MLH1 in AD and SER. (C) Quantification of MLH1 gene expression in 

AD and SER from scRNA-seq of polyp-specific cells, as compared to the same analysis of MSI-

H CRC cells (red line - mean). n=29 for AD and 19 for SER.  Each point represents an individual, 

averaged sample using normalized and scaled Arcsinh-transformed single-cell counts. (D) UMAP 

representation of epithelial scRNA-seq data, color coded by specimen to depict interspecimen 

heterogeneity, examining (top) DIS and (bottom) VAL sets, and (left) raw count-based and (right) 

SCENIC regulon-based.  
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Pre-cancerous polyps were histologically categorized by two pathologists into two subtypes: ADs 

consisting of tubular ADs (TAs) and tubulovillous ADs (TVAs), or serrated polyps (SERs) 

consisting of hyperplastic polyps (HPs) and SSLs. TAs were much more common than TVAs in 

both the DIS and VAL sets, and they were found on both sides of the colon. SSLs were found 

preferentially on the proximal side of the colon consistent with their expected distribution. 

Representative polyps are shown in Figure 16B. TAs had less than a 25% villous component, 

whereas the more histologically advanced TVAs had between 25-75% villous features. True 

villous adenomas (> 75% villous features) were not found in either set. TAs and TVAs exhibited 

varying degrees of conventional dysplasia with characteristic elongated, pseudostratified nuclei 

and increased mitotic activity (Figure 16B). HPs and SSLs were categorized based on 

morphology at the crypt base and distribution of epithelial serrations. HPs are subdivided into 

goblet cell-rich HPs (GCHPs) and microvesicular HPs (MVHPs). Although the malignant potential 

of HPs is debated 135, MVHPs appear to be relatively more advanced and may progress to SSLs 

133. GCHPs had enlarged crypts with numerous goblet cells throughout the crypt length; epithelial 

serrations, if present, were subtle and confined to the mucosal surface (Figure 16B). MVHPs had 

elongated crypts, many of which contained microvesicular mucin granules, and fewer goblet cells 

at the crypt base. Epithelial serrations extended from the surface to two thirds down the crypt, 

sparing the crypt base. For both types of HPs, the crypt base was morphologically normal. In 

contrast, SSLs showed epithelial serrations that extended to the base of crypts, which were 

dilated and spread laterally above the muscularis mucosae; goblet cells were also found 

throughout the crypt (Figure 16B). SERs infrequently displayed overt cytologic dysplasia. 

  

Next, we characterized the mutational profiles of ADs and SERs by conducting exome sequencing 

and detecting somatic mutations by comparison to paired blood or buccal cell specimens to 

remove germline sequence variants (Figure 16C). Due to small polyp sizes and the prioritization 

of fresh tissue for single-cell assays, we used the clinical Formalin Fixed Paraffin Embedded 
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(FFPE) material from both sample sets for exome sequencing, and about half generated sufficient 

sequence quality for further analysis. Although the numbers of samples were low, the 

predominant patterns of mutations were consistent with published literature. APC mutations were 

detected in 86% (11/13) of the TAs and in both TVAs. Only one (8%) TA had a KRAS mutation, 

while both TVAs harbored KRAS mutations, consistent with TVAs being more histologically 

advanced. Mutations in FAT1-4, multifunctional genes involved in WNT and Hippo pathways, 

were observed frequently in ADs. All but one of the 9 SSLs (89%) had the oncogenic BRAFV600E 

mutation; none of the 3 GCHPs harbored BRAF mutations but 2 (67%) MVHPs did, consistent 

with MVHPs being SSLs in evolution. Neither APC nor KRAS mutations were detected in any of 

the SSLs, and none of the ADs had BRAF mutations. Somewhat surprisingly, none of the SSLs 

exhibited a hypermutation phenotype, while a portion of TAs/TVAs did. Whereas MLH1 

expression is usually lost in MSI-H CRCs due to promoter methylation, MLH1 protein and gene 

expression in SSLs were comparable to ADs, both of which were higher than the mean MSI-H 

CRC level (Figure 17B,C). Biallelic loss in mismatch repair genes was not detected in any polyp, 

further supporting that these SSLs had not yet acquired a hypermutation phenotype. 

  

We validated this mutational analysis using targeted gene sequencing of a separate larger set of 

281 premalignant tumors, consisting mostly of TAs and TVAs (Figure 17A). Once again, APC 

mutations were found in 67% (148/222) of TAs and this increased to 91% (48/53) in TVAs. 

Likewise, mutations in KRAS increased markedly from TAs (5%, 12/222) to TVAs (42%, 22/53). 

BRAF mutations were again enriched in SSLs (67%) compared with TAs (1%) and TVAs (4%). 

Again, none of the SSLs exhibited a high mutation load, where several TA/TVAs did, confirming 

exome sequencing results. Only a single mutation in the TGF-b/BMP pathway was observed in 

SSLs. Non-APC mutations in WNT pathway genes, such as RNF43 or ZNRF43, were not 

common in SSLs from either dataset. When signaling pathways were queried from the combined 

mutational analysis, a picture emerges of WNT-driven tumorigenesis in TA and TVAs, but SSLs 
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are less dependent on this pathway. Most, but not all SSLs harbor BRAF mutations; yet, they are 

not hypermutated. 

 

Single-cell analysis identifies neoplastic cells in conventional adenomas and serrated 

polyps that arose from distinct tumorigenic processes 

We generated scRNA-seq data on 70,691 (DIS studies) and 71,374 cells (VAL studies), (Total: 

142,065), respectively, after filtering for high quality barcodes using dropkick 139. For pre-cancer-

specific analysis, we selected a subset of 121 (DIS:62 and VAL:59) scRNA-seq datasets across 

normal biopsies and all four pre-cancer polyp subtypes as defined by histological classification. 

Cells from specimens with unconfirmed histology (labeled UNC) were transcriptomically 

classified. Overall, 55 total polyps were analyzed (Figure 16A). We conducted UMAP dimension 

reduction on raw scRNA-seq data and observed intermixing of epithelial cells from normal colonic 

biopsies and immune cells from different participants, indicating the absence of batch effects 

(Figure 17D). However, neoplastic tissues clustered by sample, demonstrating intertumoral 

variability consistent with unique tumorigenic processes. 

  

Since transcription factor (TF)-defined regulon activities are considered to be determinant of cell 

identity in a transcriptomic landscape, we used SCENIC (Single-Cell rEgulatory Network 

Inference and Clustering), which is a regulon-based, batch-robust feature extraction tool, to adjust 

for polyp-specific effects 87,140. This process factors out environmentally sensitive and/or random 

contributors such as metabolic genes. Clustering and co-embedding 62 samples from the DIS 

dataset in regulon space, we identified nine major epithelial cell populations (Figure 18A,B). 

Biopsies from normal colonic tissues served as reference landmarks for seven canonical epithelial 

cell types, including goblet cells (MUC2/ATOH1+), absorptive cells (KRT20/GUCA2A+), crypt top 

colonocytes (BEST4/MEIS1+), enteroendocrine cells (CHGA/NEUROD1+), tuft cells 

(POU2F3/SOX9+), transit-amplifying cells (PCNA/MKI67+), and stem cells (LGR5/OLFM4+) 
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(Figure 18A,B; Figure 19A). Polyp samples also contained substantial numbers of normal cells 

consistent with the histopathology (Figure 16B, 18B; Figure 19B). However, two cell populations 

were overwhelmingly represented in polyp samples, as determined by the sample-by-sample 

breakdown of proportional cluster representation (Figure 18B,C; Figure 19C). One population 

was enriched in TA and TVA, hereafter referred to as ASCs (AD-specific cells, p<1E-4 MWU test). 

The second neoplastic population was enriched in SSLs and HPs, hereafter referred to as SSCs 

(serrated-specific cells, p<1E-4 MWU test). Importantly, these results, as well as others below, 

were consistent across DIS and VAL datasets (Figure 18A-C; Figure 19A-D), which demonstrate 

rigor and reproducibility of our data and enable high-confidence identification of ASCs and SSCs 

for further analysis.  
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Figure 18. Single-cell gene expression and regulatory network landscape of conventional 

and serrated polyps.  

(A) Heatmap representation of top biologically relevant and differentially expressed genes for 

(left) DIS (n = 62) and (right) VAL (n = 59) datasets. Inset circle indicates prevalence within defined 

single-cell populations and color intensity represents scaled and standardized Arcsinh gene 

expression. Cell types as defined by Leiden clustering and marker gene detection. ABS-

absorptive cells, ASC-adenoma-specific cells, CT-crypt top colonocytes, EE-enteroendocrine 

cells, GOB-goblet cells, STM-stem cells, SSC-serrated-specific cells, TAC-transit amplifying cells, 

TUF-tuft cells. (B) Regulon-based UMAP of (top) DIS and (bottom) VAL datasets color overlaid 

with (left) tissue and polyp subtype and (right) cell type. (C) Scatter plots of normalized (left) ASC 

or (right) SSC representation per tissue and polyp subtype. Points represent individual 

specimens. Error bars represent SEM of n = 29 for AD, n = 19 for SER, and n = 66 for NL. (D) 

Stem, metaplasia, and fetal signature scores overlaid onto UMAP of (top) DIS and (bottom) VAL 

datasets. (E) Ridge plots of CytoTRACE score distributions for ASC, SSC, and NL cell populations 

across (top) DIS and (bottom) VAL datasets. (F,G) TF target network created from normal and 

pre-cancer cells, organized into super-regulons derived from shared targets for (F) ASCs and (G) 

SSCs. Color overlays for each TF node are averaged and normalized regulon enrichment scores, 

while edge opacities are the inferred TF-target weightings. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 19. Heterogeneity of colonic polyps depicted by scRNA-seq data.  

(A) UMAP of regulon-based epithelial cell scRNA-seq data overlaid with cell type-specific genes. 

Color intensity represents scaled and standardized Arcsinh gene expression. (B) UMAP of (left) 

DIS and (right) VAL datasets color overlaid with HP subtypes. (C) Scatter plots of normalized (left) 

ASC or (right) SSC representation per tissue and polyp subtype.  Points represent individual 

specimens. Error bars represent SEM of n = 29 for AD, n = 19 for SER, and n = 66 for NL. Coloring 

of points indicates (top) polyp subtype or (bottom) DIS or VAL dataset. (D) Scatter plots of 

signature scores by cell type, with each point representing a single cell, for (top) DIS and (bottom) 

VAL datasets. Error bars depict SEM of single cells. Not all post-hoc tests shown. (E) Regulon-

based UMAP of epithelial cell scRNA-seq data overlaid with CytoTRACE scores for (top) DIS and 

(bottom) VAL datasets. (F) Regulon-based UMAPs of (top) ASC and (bottom) SSC-gated scRNA-

seq data with colored label overlays indicating Leiden subcluster, cohort, polyp subtype, and 

specimen ID. (G) Expanded TF target network created from normal and pre-cancer cells, 

organized into super-regulons derived from shared targets for AD-derived normals, ASCs, SER-

derived normals, and SSCs. Color overlays for each TF node are averaged and normalized 

regulon enrichment scores, while edge opacities are the inferred TF-target weightings. (H) 

Heatmap representation of gene sets derived from the scRNA-seq applied to bulk RNA-seq data 

of colonic polyps (n=36 tubular, 22 tubulovillous, 8 SSLs). Inset circle indicates the fraction of 

specimens presented with gene expression and color intensity represents mean scaled and 

standardized Arcsinh gene expression. *p<0.05, **p<0.01, ***p<0.001. 
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Next, we identified gene programs and pathways differentially activated in ASCs and SSCs 

compared to accompanying normal epithelial cells. ASCs resembled colonic stem and progenitor 

cells and expressed genes indicative of WNT pathway activation (LGR5, OLFM4, ASCL2, AXIN2, 

RNF43, and EPHB2) (Figure 18A).  The stem cell signature in ASCs was greater than crypt base 

stem cells from matching normal colon biopsies from the same individuals (Figure 18D; Figure 

19D) 106,107,109,110,141–143. Crypt base-specific genes such as CLDN2 and CD44 were also enriched 

in ASCs, suggesting ADs originate from the bottom of colonic crypts. Because ASCs resembled 

normal stem cells, we used CytoTRACE to infer their stem potential 144. First, we demonstrated 

normal colonic biopsies contained stem cells with high CytoTRACE scores transitioning into 

differentiated cells with lower CytoTRACE scores (Figure 18E; Figure 19E). The score 

distribution was relatively uniform in normal biopsies due to a mix of stem, transitioning, and 

differentiated epithelial cells. In contrast, CytoTRACE analysis of ASCs yielded a distribution 

skewed towards cells with high predicted stem potential (Figure 18E). This variation in stem 

potential suggests the presence of tumor stem cells, which is further supported by the relative 

enrichment of GO terms associated with WNT-driven stemness within specific ASC subclusters 

(Figure 19F). Together, these analyses describe a model wherein WNT-dependent stem cell 

expansion initiates tumorigenesis in ADs, which is consistent with known WNT pathway-activating 

gene mutations prevalent in CRC initiation, most notably loss-of-function mutations in APC 145.  

  

In marked contrast to ASCs, SSCs did not exhibit WNT pathway activation or a stem cell 

signature, but instead shared transcriptomic similarities with differentiated cells (Figure 18A,D; 

Figure 19A,D). The CytoTRACE scores of SSCs were skewed towards lower predicted stem 

potential, opposite to ASCs (Figure 18E; Figure 19E). Given low overall stemness, 

heterogeneous populations of SSCs with variable differentiation characteristics were still 

observed (Figure 19F). The transcriptomic profiles of SSCs resembled absorptive-lineage cells, 

but SSCs also expressed functional goblet cell genes, including TFF3 and MUC2. Unlike normal 
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goblet cells, they did not express the master secretory cell TF ATOH1, and the ATOH1-related 

regulon was not enriched, suggesting SSCs harbor a mixed cellular identity (Figure 18A; Figure 

19G). To this point, SSCs highly expressed genes not normally observed in the colon (MUC5AC, 

AQP5, TACSTD2 (TROP2), TFF2, MUC17, and MSLN), but rather found in other endodermal 

organs. Most notably, SSCs expressed a gastric metaplasia gene signature not expressed in 

ASCs or normal colonic cells (Figure 18A,D; Figure 19D) 146–151. This surprising finding, along 

with the expression of differentiated cell gene signatures in SSC, led us to hypothesize metaplasia 

may underlie the pathogenesis of SSLs. 

  

Metaplasia is a process by which differentiated cells transdifferentiate to non-native cell types, 

often occurring as a regenerative mechanism after damage. Loss of CDX2, a hindgut homeobox 

TF, in the colon is associated with an imperfect pyloric-type gastric metaplasia and a shift towards 

expression of genes more rostral in the rostral-caudal gradient 152–154. In our datasets, CDX2 was 

expressed in most colonic cell types, including ASCs; however, it was downregulated in SSCs, 

supporting a loss of regional identity in these cells (Figure 18A). This loss of caudal identity in 

SSCs was accompanied by a reversion to an embryonic stage as evident by a fetal gene 

expression signature; this includes the MDK gene, which encodes a heparin-binding growth factor 

only transiently expressed early in normal colonic development (Figure 18A,D; Figure 19A,D) 

155. Luminal communication pathways function through receptors for retinoic acid (RA) 

(RXRA/RARA) and the aryl hydrocarbon receptor (AHR), and these were enriched in SSCs 

(Figure 18A) 156–159. A recent paper reported luminal RA aided in the maturation of absorptive 

cells while suppressing a YAP-dependent regenerative stem state in organoids 160. Absorptive 

genes stimulated by RA, such as ALDOB, were similarly increased in SSCs. However, rostral 

identity genes suppressed in absorptive cell differentiation, such as ANXA10 (gastric) and ANXA1 

(fetal and esophageal), were upregulated in SSCs 147,151,161,162 (Figure 18A). These gene 
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signatures depict a loss of colonic identity and provide further evidence SSCs arise from a 

metaplastic process.   

  

In addition to differential gene expression, we used TF target similarity to create a common TF 

regulatory network depicting the coordinated regulation of genes as programs and pathways. 

Some coordinated clusters of regulons, which we referred to as super-regulons, were 

overrepresented in ASCs versus SSCs, including WNT-driven and Hippo-driven super-regulons 

marked by MYC, ASCL2, TCF7, and TEAD1 activities (Figure 18F; Figure 19G). These results 

were consistent with the role of Hippo signaling and the ASCL2 transcriptional complex in 

regeneration and renewal responses of intestinal stem cells 163,164. For SSCs, supporting the role 

of a damage-induced metaplastic process, a super-regulon indicating interleukin signaling and 

microbiota interaction was observed (Figure 18G; Figure 19G). Specifically, the upregulated 

transcription factor activities for SSCs included RELB (NF-κB signaling), IRF1, IRF6, and IRF7, 

reflecting the immunogenic state of these epithelial cells (Figure 18A,G), which was corroborated 

by gene set enrichment of microbial infection response, innate immune activation, and epithelial 

wound healing pathways 165. Supporting the activation of interferon response elements, 

coordinated upregulation of inflammasome-related genes such as IL18 and gasdermins further 

implicated responses to external pathogens as triggers of metaplasia (Figure 18A) 166–169. 

Similarly, regulons related to FOSL2, KLF4, and ATF3 were enriched (Figure 18G; Figure 19G), 

drawing parallels to recent work documenting increased chromatin accessibility of these TF 

targets in a mouse model of microbiota-driven colitis 170. The increased presence of luminal 

communication regulons, driven by RXRA, RARA, and VDR, in SSCs further supports the 

potential involvement of luminal microbiota (Figure 18G; Figure 19G) 160,171,172. The regenerative, 

immunogenic, and microbiota-responsive regulons in SSCs are all indicative of an active 

metaplastic program. 
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We performed bulk RNA-seq on an additional 58 ADs (36 TAs, 22 TVAs) and 8 SSLs to further 

validate our findings. The same gastric metaplasia signature in our single-cell data was enriched 

in the SSLs from this validation set (Figure 19H). We also observed the same paradoxical 

expression of goblet cell genes (TFF3 and MUC2) without ATOH1 in SSLs. The WNT-driven stem 

cell signature was present in ADs, with TVAs exhibiting slightly higher expression (Figure 19H). 

These results validate our scRNA-seq findings of a WNT-activated program of stem cell 

expansion in ADs, and a program of gastric metaplasia, likely arising from a committed cell 

lineage, in SSLs. 

 

Serrated polyps arise from a distinct cellular origin compared with conventional adenomas 

Because SSCs may arise from metaplasia of differentiated cells, we hypothesized SERs originate 

from differentiated cells in a “top-down” model of tumorigenesis, compared to ADs arising from 

proliferative stem cells in a “bottom-up” fashion. To provide histological evidence of tumor origins 

and to build on our scRNA-seq results with spatial data, we mapped the location of neoplastic 

cells by multiplex histological and immunofluorescence imaging. Stem cell markers, OLFM4 and 

SOX9, were abundant in ADs but were significantly reduced in HPs and SSLs (Figure 20A,B; 

Figure 21A,B). Nuclear CDX2 was detected in the normal colon and in ADs but was decreased 

in HPs and absent in SSLs (Figure 20C; Figure 21C). MUC5AC, a marker of SSCs, was highly 

expressed in HPs and SSLs but was absent from normal colonic biopsies and ADs (Figure 20D; 

Figure 21D). Interestingly, MUC5AC-positive, neoplastic cells were often observed at the top of 

the crypt with normal-appearing MUC5AC-negative cells at the crypt bottom, implying a non-crypt 

origin of SERs. MUC5AC-positive cells first appeared at the luminal surface in GCHPs and then 

extended further to the crypt base in MVHPs and SSLs (Figure 21D,E), consistent with the 

histopathological progression of these SERs (Figure 16B) and supporting the luminal surface 

origin of SSCs. MUC5AC-positive cells were detected in the majority of abnormal crypts from 

SERs (Figure 21F), indicating metaplasia is a homogeneous feature of these polyps. In the 
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normal colon, MUC5AC staining was largely absent, but occasional MUC5AC immunoreactivity 

was detected, again, at the luminal surface in a few specimens (Figure 21G). MUC5AC staining 

was increased in the epithelial compartment of ulcerative colitis patients (Figure 21G), supporting 

metaplasia as a response to epithelial damage. Luminal surface colonic cells appear susceptible 

to damage-induced metaplasia that may elicit serrated polyp formation if the damage is not 

resolved. 
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Figure 20. Inferred origins of conventional and serrated polyps.  

(A-D) Representative multiplex images of colonic polyps and normal tissues for (A) SOX9, (B) 

OLFM4, (C) CDX2, and (D) MUC5AC.  Quantification of multiplex images (right) of positive pixels 

per tumor area for each marker of n=20 polyps per polyp type (AD vs. SER), presented as violin 

plots with median as solid lines and quartiles as dotted lines. (E) Trajectory inference through p-

Creode performed on the regulon landscape of single epithelial cells. Overlay represents 

CytoTRACE scores. Individual branches representing developmental lineages labeled by 

canonical markers. Insets are p-Creode trajectories with AXIN2 overlay to represent WNT 

pathway activity, and MUC2 overlay to represent goblet cell mucin production. For these insets, 

node size represents the proportion of cells and overlay color intensity represents mean scaled 

and standardized Arcsinh gene expression. (F) RNA velocity for representative NL, TA, and SSL 

overlaid on combined UMAP embedding for DIS sample set. Vectors inferring average cell state 

transitions within each specimen are shown as black arrows. Colored points represent cells 

derived from the individual specimen, with grey points representing all other cells. 
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Figure 21. Stem cell and metaplastic programs in conventional and serrated polyps.   

(A-D) Additional representative multiplex images of colonic polyp subtypes for (A) SOX9, (B) 

OLFM4, (C) CDX2, and (D) MUC5AC. White outline demarcates HP location. (E) MUC5AC 

staining for different GCHPs. (F) Low magnitude view of MVHPs and SSLs for MUC5AC staining. 

(G) MUC5AC staining of non-neoplastic colonic epithelium: (row 1) normal, (row 2) tumor 

adjacent, and (row 3) ulcerative colitis. (H) p-Creode trajectories inferred from epithelial scRNA-

seq data. Overlay of genes relevant to developmental lineages. Node size represents the 

proportion of cells, and overlay color intensity represents mean scaled and standardized Arcsinh 

gene expression.  (I) Additional RNA velocity maps for normal colonic tissues and polyps on 

combined UMAP embedding for (top) DIS and (bottom) VAL datasets. Vectors inferring average 

cell state transitions within each specimen are shown as black arrows. Colored points represent 

cells derived from the individual specimen, with grey points representing all other cells. (J) 

Representative genetic phylogenies inferred through DENDRO, with each tree representing a 

specimen for colonic polyp subtypes. Hierarchical clusters demarcated by dotted boxes and cell 

clusters denoted by leaf node color. Tree height is derived from a beta-binomial adjusted genetic 

divergence between single cells and shows the evolutionary time before splits in phylogeny. ABS 

– absorptive, ASC – adenoma specific cells, CT – crypt top, EE – enteroendocrine, GOB – goblet, 

STM – stem, SSC – serrated specific cells, TAC – transit amplifying cells, TUF – tuft. 
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To further leverage our single-cell transcriptomics data, we inferred cell-state transition 

trajectories from epithelial cells using p-Creode on batch-robust SCENIC regulons, which 

produced a developmental hierarchy where seven major cell types were mapped onto lineage 

branches 68 (Figure 20E). From stem cells, we observed a secretory lineage branching into 

goblet, tuft, and enteroendocrine cells. Also, an absorptive lineage separately branched into 

proliferating transit-amplifying cells, colonocytes, and crypt top colonocytes (Figure 21H). 

CytoTRACE score and WNT target gene overlays identified the stem cell branch (Figure 20E; 

Figure 21H), which was shared with ASCs, suggesting aberrantly expanded stem cells are the 

origin of AD. In marked contrast, SSCs, which expressed goblet cell genes such as MUC2, were 

inferred to develop from absorptive progenitors and colonocytes (Figure 20E; Figure 21H). RNA 

Velocity analysis on individual tumors largely confirmed these findings (Figure 20F; Figure 21I) 

83,84. In normal colonic specimens, Velocity vectors originated from stem cells and flowed into 

differentiated cell types. ASCs were implicated to develop from stem cells following the RNA 

Velocity analysis. However, the Velocity vectors were reversed for SSCs, suggesting the origin of 

these cells to be non-stem cells.   

  

Shared genetic variants between populations of neoplastic cells and normal cells can be used to 

deduce cellular origins. Because we sequenced normal cells within each polyp, we can leverage 

the continuum of mutational information between normal and neoplastic cells on a per polyp basis 

to determine their genetic distance and evaluate potential shared origins. To approximate the 

inherited genomic variations from single-cell data, we used DENDRO (DNA-based EvolutionNary 

tree preDiction by scRNA-seq technOlogy), a phylogenetic reconstruction algorithm that adjusts 

for the inherent sparsity of scRNA-seq data 81. The robust application of this algorithm was 

enabled by the aggregation of transcriptionally similar cells and the filtering of variants using 

accepted quality metrics, which account for low sequencing depth on shorter reads and 

minimizing the inclusion of stochastically detected variants. Exonic variants detected through this 
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method were validated through exome sequencing of paired FFPE tissues. Representative 

DENDRO trees conducted on 34 libraries depicted the genetic variation across histological 

classifications and highlighted how ASCs had a shorter genetic distance to crypt base stem cells 

compared to SSCs (p<5E-02 MWU test) (Figure 21J,K). In contrast, SSCs demonstrated 

divergent genetic profiles from stem cells, and, in fact, often clustered with differentiated 

colonocytes and absorptive progenitors (Figure 21J). Orthogonal methodologies produced 

histological, transcriptomic, and genetic evidence to support the hypothesis that ADs arise from 

dysregulation of the stem cell compartment, but SSLs appear to arise from a developmentally 

committed cell. 

 

Methods 

Colorectal Molecular Atlas Project (COLON MAP) Cohort Recruitment and Characteristics  

COLON MAP participants were recruited from among adults undergoing routine screening or 

surveillance colonoscopy or surgery for resection of a polyp at Vanderbilt University Medical 

Center in Nashville, TN, USA that began in March 2019 and is still on-going. The participants 

included in this study are the first 56 participants from COLON MAP with polyps collected for 

analysis by scRNA-seq. All participants provided written informed consent approved by the 

Vanderbilt University Medical Center Institutional Review Board. 

  

Eligibility criteria for COLON MAP include ability to provide informed consent, free-living (not a 

resident of an institution), ability to speak and understand English, aged 40 to 75 years, permanent 

residence or telephone, and no personal confirmed or suspected histories of hereditary polyposis 

syndromes, familial or genetic colorectal cancer syndromes, inflammatory bowel disease, primary 

sclerosing cholangitis, colon resection or colectomy, cancer, neoadjuvant therapy, or cystic 

fibrosis. Eligible individuals were first identified from the schedule within the electronic health 

record (EHR) and assigned a random number. Potential participants undergoing colonoscopy 
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were further selected using a stratified weighted random sampling design to increase the inclusion 

of non-White or Latinx participants in the study. Within strata of colonoscopy appointment day 

and time, random sampling was weighted by EHR-derived racial/ethnic category (White non-

Latinx vs all other races and ethnicities) such that non-White or Latinx patients were first selected 

at random within colonoscopy day and time. White non-Latinx patients were then selected at 

random within remaining time slots. 

  

Following selection, study staff conducted a manual review of the EHR to confirm study eligibility. 

The majority of eligible individuals were mailed a letter to introduce the study and a few days later 

were attempted to be reached by telephone to discuss their willingness to participate in the study. 

Individuals who were willing to participate completed an additional screening form to confirm 

eligibility and eligible and willing individuals completed an interviewer-administered computer-

assisted telephone interview to solicit information on personal health history, family history of 

cancer and polyps, lifestyle factors, and other risk factors for colorectal polyps and cancer. When 

the schedule of the study staff would allow, individuals who were not reached by telephone were 

approached in the colonoscopy waiting room or at the surgical appointment to determine eligibility 

and willingness as well as some individuals who did not receive a mailing. 

  

For histopathological diagnosis, standard clinical histology was performed. Information on the 

colonoscopy or surgery and diagnosis was initially abstracted from the EHR colonoscopy, 

surgery, and pathology reports by study staff including in vivo size and polyp location. Two study 

pathologists additionally reviewed each case to standardize diagnoses and identify HP subtypes 

which are not part of routine clinical practice. For polyps which were partial due to the sampling 

for this study, the portion which had been reserved for clinical diagnosis was reviewed. SSLs were 

defined using the World Health Organization criteria of at least one distorted, dilated, or 

horizontally branched crypt within the polyp 173. Subtypes of ADs were identified using standard 



 

 
 

71 

diagnostic criteria based on the villous component (tubular (< 25% villous component), 

tubulovillous (25%-74% villous component), and villous (≥ 75%)). HPs were classified as 

microvesicular HP or goblet cell HP 135. In this analysis, participants were classified based upon 

the diagnosis of their index polyps but may have had synchronous polyps with the same or 

different histopathologies. 

  

Cooperative Human Tumor Network (CHTN) Cohort Recruitment and Characteristics  

Tissue was collected for COLON MAP from 33 colorectal cancer (CRC) patients via the CHTN 

Western Division. These participants were aged between 21 and 82 years of age from both sexes 

(51.5% male, 48.5% female) and were white (75.8%), Black (21.2%), or Asian (3.0%). De-

identified clinical metadata from each patient was extracted from clinical pathology reports in 

accordance with policies from CHTN. Tumors were classified by grade and staging, ranging from 

G1 to G3 and I to IV, respectively. The majority (75.6%) of the tumors were classified as G2, or 

moderately differentiated, and staged primarily as IIA (30.3%) and IIIB (33.3%). Additionally, 

51.5% were microsatellite stable (MSS) and 49.5% were microsatellite-high (MSI-H). 

  

A colorectal carcinoma progression tissue microarray (TMA) was also provided by the CHTN Mid-

Atlantic Division which included cores from 54 individuals. The mean (standard deviation) age of 

the individuals included on the TMA was 56.9 (14.7), 56.9% were men, and 43.1% were women. 

Race and ethnicity were not provided. Information on the TMA is available at 

https://chtn.sites.virginia.edu/chtn-crc2 

  

Tennessee Colorectal Polyp Study (TCPS) Cohort Recruitment and Characteristics  

The TCPS was a large colonoscopy-based case-control study among individuals undergoing 

colonoscopy in Nashville, Tennessee, USA between February 2003 and October 2010. 

Institutional approval for human subjects research was provided by the VUMC and VA Institutional 

https://chtn.sites.virginia.edu/chtn-crc2
https://chtn.sites.virginia.edu/chtn-crc2
https://chtn.sites.virginia.edu/chtn-crc2
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Review Boards and the VA Research and Development Committee. TCPS participants were aged 

between 40 to 75 years of age and had no personal history of colon resection, cancer, polyposis 

syndrome, inflammatory bowel disease, hereditary colorectal cancer syndromes, or previous 

adenoma. In TCPS, the diagnostic criteria for polyps were identical to the criteria used for COLON 

MAP. Additionally, all polyps were reviewed by one of the COLON MAP pathologists. 

  

Detailed methods have been previously published 174. In this analysis, a subset of TCPS formalin-

fixed paraffin-embedded polyps which were previously analyzed by bulk RNA-seq were included 

to validate findings from the COLON MAP scRNA-seq analysis. In addition, a subset of fresh 

frozen polyps which were selected for targeted gene sequencing were also included. 

 

COLON MAP Biological Specimen Collection and Processing, Colorectal Tissue 

During the colonoscopy, the gastroenterologist used biopsy forceps to collect normal appearing 

mucosa samples from the ascending and descending colon for all participants. One of the 

biopsies from each colon segment was placed into RPMI. Any polyps were removed during the 

colonoscopy per standard clinical practice. In this analysis, the first polyp which was removed 

from a participant that was larger than 0.5 cm was selected for scRNA-seq analysis (index polyp). 

Polyps which were removed intact were bisected along the vertical access using a sterile razor 

blade and half was placed in RPMI. For polyps which were removed piecemeal, the second 

largest piece was placed in RPMI. The other portions of the polyps were placed into formalin for 

diagnosis and fixed and processed using standard clinical practice in the Vanderbilt Pathology 

Laboratory. All polyps which were placed in RPMI were immediately transported to the research 

lab for use in scRNA-seq analysis. 

  

COLON MAP Bulk DNA Extraction 
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For germline, DNA was isolated from thawed buffy coat or mouth rinse samples using a QIAmp 

DNA kit (Qiagen). For tumors, DNA for whole exome sequencing (WES) was purified with the 

truXTRAC FFPE microTUBE DNA Kit-Column Purification kit (Covaris). In brief, tumor tissues 

were scraped from 1-5 of 10 μm FFPE sections, deparaffinized using xylene, and lysed in an 

optimized lysis buffer that contains proteinase K. Following the proteinase K digestion to release 

DNA from the tissue, a higher temperature was used incubation to reverse formalin crosslinking 

alongside RNase treatment using RNAse A (Thermo Fisher). The DNA and RNA samples were 

stored at -80°C before being used for assays.  

  

CHTN Bulk DNA Extraction of Fresh Frozen Samples 

Fresh frozen samples were stored in Tissue-Tek O.C.T. (Fisher Scientific) compound until ready 

for processing. These samples were washed in cold 1x PBS followed by centrifugation before 

using the Qiagen DNeasy Blood and Tissue kits (Qiagen) for DNA extraction. All following 

processing was performed according to the manufacturer’s guidelines. The DNA extract collected 

from these samples were sequenced and aligned as detailed in the COLON MAP Whole Exome 

Sequencing (WES) and Alignment section. 

 

TCPS Bulk DNA and RNA extraction 

DNA was extracted from FFPE tissue sections using QIAamp DNA FFPE Tissue Kit (Qiagen), 

following the manufacturer’s instructions. Briefly, tumor tissues were scraped from 1-5 of 10 μm 

FFPE sections, deparaffinized using xylene, and lysed under denaturing conditions with 

proteinase K. The sample lysate was incubated at 90°C to reverses formalin crosslinking and then 

applied to a QIAamp MinElute spin column, where DNA was captured on a silica membrane. The 

genomic DNA was then washed and eluted from the membrane. 
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DNA and total RNA were extracted from fresh frozen polyps and purified using Qiagen’s AllPrep 

DNA/RNA/miRNA Universal Kit (Qiagen), following the manufacturer’s instructions. Briefly, the 

frozen tissue samples were first disrupted and homogenized using Lysing Matrix E (MP Bio) by 

shaking the tubes on a bead-beater at 5.5 m/sec for 30 second. The lysate was then passed 

through an AllPrep DNA Mini spin column. This column allows selective and efficient binding of 

genomic DNA. Following on-column Proteinase K digestion, the column was then washed and 

pure, ready-to-use DNA was eluted. Flow-through from the DNA Mini spin column was then 

digested by Proteinase K in the presence of ethanol and applied to the RNeasy Mini spin column, 

where the total RNA binds to the membrane. Following DNase I digestion, contaminants were 

efficiently washed away and high-quality RNA was eluted in RNase-free water. The quantity and 

quality of the DNA/RNA samples were checked by Nanodrop (E260/E280 and E260/E230 ratio) 

and by separation on an Agilent BioAnalyzer. 

 

COLON MAP Whole Exome Sequencing (WES) and Alignment 

Standard WES was performed on S4 flow cells on NovaSeq6000 (PE150) to the targeted 

coverage. WES reads were aligned to the human reference genome hg19 using BWA 175, sorted 

and indexed by Sambamba 176. Duplicated reads were removed by mark duplicates with Picard 

177. Somatic mutations were called using sequenced DNA extracted from specimens detailed in 

the COLON MAP Biological Specimen Collection and Processing, Blood and Oral Rinse 

section. These somatic mutations were then called using GATK4 Mutect2 in “normal-tumor” 

paired mode 178,179. 

COLON MAP scRNA-seq, Single-cell Encapsulation and Library Generation 

Colonic biopsy samples were first placed into RPMI solution, minced to approximately 4mm2, and 

washed with 1x DPBS. These samples were then incubated in chelation buffer (4mM EDTA, 0.5 

mM DTT) at 4 °C for 1 h 15 min. Then, the resulting tissue suspension was dissociated with cold 

protease and DNAse I for 25 minutes 180. This suspension was titurated throughout the process, 
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every 10 minutes, then washed three times with 1x DPBS before encapsulation. Cells were 

encapsulated using a modified inDrop platform 19, and sequencing libraries were prepared using 

the TruDrop protocol 22. Libraries were sequenced in a S4 flow cell using a PE150 kit on an 

Illumina NovaSeq 6000 to a target of 150 million reads. 

  

COLON MAP scRNA-seq, Alignment and Droplet Matrix Generation 

We demultiplexed, aligned, and corrected the detected read counts of these libraries with the 

DropEst pipeline 76, using the STAR aligner with the Ensembl reference genome 74, GRCh38 

release 25. This was paired with the corresponding GTF annotations. The protocol for running 

this pipeline is described by 181. 

 

COLON MAP scRNA-seq, Droplet Matrix Quality Control 

We identified high-quality, cell-containing droplets and their respective barcodes through the joint 

application of cumulative sum inflection point thresholding, our dropkick QC algorithm 139, and 

prior-knowledge gene expression profiling. This droplet matrix was processed as an AnnData 

object using our preprocessing pipeline which utilizes the Scanpy toolkit 182. First, we ran dropkick 

with 5-fold cross validation on the unprocessed droplet matrix, which assigned each barcode a 

probability of being a high-quality cell. Second, the droplet matrix was preprocessed for low 

dimensional analysis through finding the inflection point of the cumulative sum curve, and droplets 

with low information content were removed. Third, the remaining cells were normalized to the 

median number of counts per single-cell library per dataset, inverse hyperbolic sine transformed, 

and then scaled as a Z-score. Fourth, normalized matrices were projected into 2 dimensions by 

using its 50 principal component decomposition to initialize a UMAP 183. Fifth, gene expression 

and dropkick probability scores were overlaid and checked for consistency. The genes overlaid 

were based on prior knowledge of the colonic epithelial markers, deferring to dropkick scores 

when no markers were found. Sixth, the selection of the final set of high-quality cell-containing 
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droplets were determined by setting a binarization threshold on the dropkick probability scores, 

given concordance to marker gene expression and other general quality metrics such as total 

counts, mitochondrial count percentage, and transcriptional diversity. The full protocol for running 

this QC pipeline is described by 181. 

 

TCPS Targeted DNA Sequencing and Alignment 

The list of candidate genes included in the targeted sequencing was developed from a literature 

review of candidate mutations which showed 1) evidence that mutation is common in adenoma 

(>5% of adenomas), 2) evidence that the mutation is associated with or predictive of adenoma 

recurrence in previous studies, 3) evidence that mutation is associated with clinically more 

significant adenoma (i.e. advanced adenoma or multiplicity), 4) evidence that mutation is 

associated with colorectal field carcinogenesis, and 5) evidence that mutation is associated with 

colorectal cancer aggressiveness and survival. In addition, additional candidate mutations were 

identified from potential mutations observed in Lrig1-Cre:Apc adenomas. All primer development 

and next-generation sequencing were conducted by Covance. Sequencing depth was 500X. 

Targeted sequencing reads were aligned to the human reference genome hg19 using BWA 175, 

and then were sorted and indexed by Sambamba 176. Alignments were further refined, and 

variants were called using GATK Best Practices tools 179, including mark duplicates with Picard 

177, base quality-score recalibration, and variant calling with HaplotypeCaller and 

GenotypeGVCFs 184. SNPs were filtered using GATK VariantFiltration function with the 

parameters “QD < 2.0 || Qual < 30.0 || FS > 60.0 || SOR>3.0 || MQ < 40.0 || MQRankSum < -12.5 

|| ReadPosRankSum < -8.0”, while indels were filtered with the parameters “QD < 2.0 || Qual < 

30.0 || FS > 200.0 || ReadPosRankSum < -20.0”. The variants with a minor allele frequency >0.1% 

in ExAC, gnomAD, TOPMed or 1,000 Genomes were also removed. The functional effects of 

variants were annotated by ANNOVAR 185,186. 
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TCPS Bulk RNA Sequencing and Alignment 

Bulk RNA-sequencing was performed by Aros Applied Biotechnology A/S. This process involves 

the initial QC on an Agilent Bioanalyzer, with a minimum quality threshold of the DV200 at 30%. 

Total RNA-seq libraries which pass this QC threshold are prepared alongside a high-quality 

human reference RNA control. 100ng of RNA per sample is input to an Illumina TruSeq RNA 

Access Library Prep Kit, with protocol version 0.2. The yielded libraries undergo another round of 

QC through qPCR and quantified with a Qubit 2.0 Fluorometer, using its corresponding DNA BR 

Assay kit (Qubit), and size profiled on an Agilent Bioanalyzer. Pools of 4 libraries in equimolar 

amounts are created and undergo a final round of QC. These pools are loaded onto paired-end 

flow cells of a HiSeq2500 equipped with a cBot for sequencing at: 101 read cycles, 7 index cycles, 

and 101. The samples will be sequenced on a HiSeq2500 using 101 cycles for read 1, 7 index 

reads, and another 101 cycles for read 2. Following sequencing data generation, the reads are 

demultiplexed through Illumina’s Genome Studio CASAVA software, which detected an average 

of 120 million reads per 4 sample pool. 

 

scRNA-seq, Regulon Network Prediction, Activity Inference, and Visualization 

The Single-Cell rEgulatory Network Inference and Clustering or SCENIC pipeline was used to 

integrate cancer, pre-cancer, and their corresponding normal tissue datasets 87,140. For each 

group of integrated datasets, we concatenated the individual target datasets with an outer join 

and generated a combined AnnData object 182. This AnnData object underwent further gene 

filtering, selecting only those that were expressed in at least 1% of all cells, primarily for the sake 

of speedup in running the module inference step of SCENIC. The resulting cumulative count 

matrix was input, without normalization, into the first step of SCENIC with default parameters, as 

suggested by the published protocol. We used a Dask client to parallelize the grnboost2 version 

of this step on an AMD Threadripper 2990WX CPU 187. Subsequently, cisTarget was performed 
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using default parameters and three hg19 .feather ranking databases, comparing 10 species: tss-

centered-5kb, tss-centered-10kb, and 500bp-upstream. 

  

Further, this cisTarget step produced a list of detected regulons, their driving TFs, and their 

corresponding weights for the prediction of individual gene expression. These weights were used 

to build a feature matrix defining each regulon by its predicted targets. This feature matrix was 

then used to generate an adjacency matrix per SCENIC integration run, which was the basis of 

the regulon-regulon target network. This target network was based on a k-nearest neighbors 

graph (with k equal to the square root of the number of total regulons) of the adjacency matrix. 

For each of these target networks, the Louvain community detection algorithm was run at a 

resolution of 2, defining super-regulons 188. This regulon-regulon target network (along with its 

cluster labels and average enrichment per regulon) was exported as a weighted adjacency matrix 

for visualization in Cytoscape 189. 

  

Finally, we performed AUCell with default recommended parameters across 64 threads to 

generate a regulon activity enrichment matrix, which was jointly analyzed with the count-based 

matrix. Additional regulon activity enrichment scores were calculated for the Broad cohort by 

performing AUCell with regulon definitions learned from VUMC pre-cancer and CRC datasets. 

For visualization, target-network heatmaps featuring these regulon enrichment values were Z-

score transformed, color scaled in a regulon-wise manner, and standardized to jointly integrated 

normal biopsies or polyp-derived normal cells when possible. 

  

scRNA-seq, Count Matrix Normalization and Heatmap Generation 

Using scanpy and numpy functions, raw count data were normalized by median library size, log-

like transformed with Arcsinh, and Z-score standardized per gene 182,190. This yielded interpretable 
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unit variance scaled and centered values. Heatmaps featuring individual gene expression depict 

this normalized, transformed, and standardized data with color scaling in a gene-wise manner. 

  

scRNA-seq, UMAP and t-SNE Visualization 

Three modes of UMAP visualization were used in this study based on regulons, feature-selected 

counts, or Harmony-corrected components. All human epithelial UMAP visualizations were 

generated using the “scanpy.tl.umap” function with a min_dist parameter of 0.15.  The input to 

this function was Z-score standardized AUCell values, their 50-principal component 

decompositions with no feature selection, and a subsequent KNN graph with k equal to the square 

root of the number cells projected. Human nonepithelial UMAP visualizations that included all 

nonepithelial subtypes were performed the same way. To finely resolve T cell subtypes with 

UMAP, we generated a KNN based on the PCA of a feature-selected set of genes after 

normalizing, log-like transforming with Arcsinh, and Z-score standardizing raw counts. Finally, 

murine validation experiments were integrated with the Harmony algorithm, generating adjusted 

principal components with default parameters 191. These components were used as the basis for 

KNN and UMAP generation with the same parameters as used in the human data. For t-SNE 

visualizations, the perplexity was set to the same as the k used in the UMAP KNN graph. The 

bootstrapped variant of t-SNE visualization was performed by running t-SNE with the same 

parameters 100 times to ensure qualitatively robust embeddings, given the algorithms inherent 

stochasticity. 

  

scRNA-seq, Gene Signature Scoring 

We used a gene signature scoring method implemented in scanpy and first detailed by (Satija et 

al., 2015). This method scores a defined gene set by finding the difference between its average 

expression against the average expression of randomly sampled sets of reference genes, 

corresponding to matched and binned expression levels. Each signature in this study was 
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calculated on normalized, transformed, and standardized data (as described in the scRNA-seq, 

Count Matrix Normalization and Heatmap Generation section) using a reference sample size 

of 2000 genes across 25 bins. The x-axis range of scatterplots featuring these signature data was 

set by excluding single-cell outliers beyond the 1.5x interquartile range 192,193. Statistical tests of 

these score distributions encompass an initial Kruskal-Wallis test. If the null hypothesis was 

rejected, these tests were followed by post-hoc Mann-Whitney U tests and appropriate p-value 

adjustments 194,195. Gene signatures for murine TSC scRNA-seq were calculated for ISCI, ISCII, 

and ISCIII as described by Biton et al, with the same method applied to calculating the murine 

MHCII signature 196. 

          

scRNA-seq, Unsupervised Clustering and Cell Type Labeling 

The labeling of single-cell subpopulations was done through the Leiden algorithm, as part of the 

Scanpy toolkit. We performed Leiden clustering based on the KNN derived from the distances 

calculated in the principal component space of Z-score transformed regulon enrichment scores, 

as these represented cell-cell transcriptional states in a more batch-robust manner. The resolution 

of this clustering was based on the detection of rarer populations such as enteroendocrine cells, 

at 2. Since this algorithm detected discrete clusters in a continuum of cell states, we aggregated 

multiple discrete clusters by the observation of marker gene expression. Similarly, these methods 

were applied to nonepithelial datasets given their regulon or feature-selected matrices, depending 

on the subtypes of interest. This Leiden algorithm was also used to determine clusters for murine 

scRNA-seq validation experiments. Higher resolution subclustering was also done by performing 

k-means clustering after the initial Leiden clustering. Importantly, some subclusters were identified 

as a result of patient-to-patient variation originating from mitochondrial read enrichment, as 

evidenced by mitochondrial read percentage distributions and GO terms. These subclusters were 

identified and statements regarding their relative, subpopulational variation were excluded. These 

patient-to-patient variations did not affect overall comparisons between tumor-specific and normal 
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cell types. For example, after excluding these mitochondrially-enriched subclusters, the SSC 

subpopulational analysis focused on GO terms related to intercellular communication and stromal 

interactions.   

  

scRNA-seq, Differential Gene Expression Testing and Gene Set Enrichment Analysis 

(GSEA) 

The differential testing of gene expression was performed based on cluster labels (as defined by 

the scRNA-seq, Unsupervised Clustering and Cell Type Labeling section), both in the context 

of raw gene counts and regulon enrichment values. For both cases, we used Mann-Whitney U 

tests with Benjamini-Hochberg corrections, on the raw values, implemented through the 

“scanpy.tl.rank_genes_groups” function, identifying the top 200 genes and top 50-100 regulons 

182. Further, biological insight was gathered through scanpy’s integration of g:profiler gene set 

enrichment framework 165. This process was also performed on the stem and TSC components 

of the murine scRNA-seq datasets using the GSEA webapp 197,198. 

  

scRNA-seq, Proportional Cell Type Representation and Identifying Polyp-Specific 

Populations 

Given the detected clusters (as described in the scRNA-seq, Unsupervised Clustering and 

Cell Type Labeling section), we calculated the proportional cell type representations of each 

individual sample. We counted the raw number of epithelial and nonepithelial cells as well as the 

raw number of cells falling into any given cell cluster. These results were cross-tabulated as 

contingency tables, summarizing how many cells were observed in each category and for which 

samples using pandas 199. Proportional values were then calculated by normalizing cluster counts 

to the number of epithelial cells per sample (Figures 2 and S2) or to the cumulative number of 

cells per sample (Figures 6 and S6). Clusters were designated as polyp-specific populations if, 

proportionally, they were significantly overrepresented in polyp samples and not normal samples, 
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which was indicated by post-hoc statistical tests following Kruskal-Wallis null hypothesis rejection. 

The x-axis range of scatterplots featuring these proportional representation data was set by 

excluding samples with values beyond the 1.5x interquartile range. In the context of the murine 

scRNA-seq datasets, the proportional representation of cell types was calculated by normalizing 

to the total number of epithelial or immune cell subtypes for each Mist1 and Lrig1 tumor sample. 

  

scRNA-seq, Predicting Differentiation Potential with CytoTRACE 

CytoTRACE is a relative scoring method dependent on included datasets for inferring 

developmental potential. CytoTRACE was performed based on the default recommended settings 

after concatenating the batches of interest using an outer join 144. We performed CytoTRACE with 

five separate groupings of single-cell libraries. First, the discovery cohort (Figures 2E, S2E), 

including all epithelial cells from both its normal biopsies and polyps. Second, the validation cohort 

(Figures 2E, S2E), including all epithelial cells from both its normal biopsies and polyps. Third, 

the epithelial VUMC polyp-specific cells (Figure 4E), including only tumor-specific cells from 

VUMC AD, MSS, SER, and MSI-H samples. Fourth, the epithelial Broad cohort (Figures 4E,S4E), 

including MSS, MSI-H, and Normal samples. The Broad cohort (including 32 normal samples) 

distribution was only calculated from 50% random sample of the total cells detected due to 

memory constraints. Fifth, CytoTRACE was performed on the stem and TSC component of the 

murine scRNA-seq datasets. Statistical tests of these score distributions encompass an initial 

Kruskal-Wallis test. If the null hypothesis was rejected, these tests were followed by post-hoc 

Mann-Whitney U tests and appropriate p-value adjustments.  

  

scRNA-seq, CMS scoring at Single-cell Resolution 

The single-cell distributions of CMS scores were calculated on the VUMC ASC, MSS, SSC, and 

MSI-H and the Broad MSI and MSI-H libraries using the CMSclassifier R package as described 

by 128,200. To accommodate the heterogeneity of the single-cell landscape, the single sample 
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predictor or SSP mode of the software was used after converting gene symbols to Entrez IDs. 

This SSP mode calculated the median correlation distance between each single cell to 

established, standard centroids derived from CMS1, CMS2, CMS3, and CMS4 CRC subtypes. 

Further, these score distributions were visualized through a normalized kernel density estimation 

implemented in the Seaborn python package. Statistical tests of these score distributions 

encompass an initial Kruskal-Wallis test. If the null hypothesis was rejected, these tests were 

followed by post-hoc Mann-Whitney U tests and appropriate p-value adjustments.  

  

scRNA-seq, Trajectory Inference 

pCreode was used to map the developmental state transitions of the single-cell transcriptional 

landscape of our Discovery cohort pre-cancer and normal COLON MAP samples 68. This 

algorithm was generalized to process regulon-based principal components, inheriting its batch-

robust properties. By examining the variation captured by the principal components, we selected 

the first 4 components based on their capture of rare cell populations, such as Tuft and 

enteroendocrine cells. We developed this algorithm to traverse a density weighted KNN 

generated from the pairwise distances between each single cell; subsequently, we used a 

histogram thresholding method to estimate the neighborhood distance cutoff for calculating local 

densities. These densities were used as input to a supervised variant of pCreode, which 

established developmental endstates through K-means clustering and marker-defined labels. The 

downsampling and noise parameters were both set to 4, resulting in samples of around 6,000 

cells per run, and repeated 50 times. Each of these runs was scored by the minimization of the 

Gromov–Hausdorff distance, resulting in a single, most representative graph layout. Overlays 

were generated based on pre-computed single-cell observation vectors, such as a CytoTRACE 

score, or the normalized, transformed, and z-scored gene expression values. 

  

scRNA-seq, RNA Velocity 
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RNA velocity analysis was performed using velocyto CLI version 0.17 201. Individual sample BAM 

files were used as input to the “run-dropest” command along with a human gene annotation file 

(GTF) for GRCh38.85, and a tab-delimited text file containing dropkick-filtered cell barcodes from 

the corresponding sample as the “—bcfile” flag. Then, scVelo version 0.2.3 was used to build 

models of splicing kinetics to estimate and visualize RNA velocity vector fields in SCENIC 

integrated UMAP space 84. Each sample was individually filtered to the top 2,000 genes expressed 

in a minimum of 20 cells using the function “scvelo.pp.filter_and_normalize”. The moments of all 

RNA velocity vectors were calculated with 30 principal components and 30 nearest neighbors 

using the function “scvelo.pp.moments” prior to estimating velocities using “scvelo.tl.velocity” with 

default parameters. Finally, velocity UMAP embeddings were plotted using the function 

“scvelo.pl.velocity_embedding_stream” and the subset of SCENIC master UMAP coordinates for 

each sample. 

sc-RNA-seq, Subclone Phylogeny Estimation 

We used DENDRO, an algorithm designed to reconstruct subclonal phylogenies within scRNA-

seq datasets 81. Since our sequencing libraries are generated through the tag-based inDrop 

method, the short, 3’-biased reads necessitated the aggregation of single-cell transcriptomes. For 

each of the 34 sequencing libraries we performed this analysis on (24 ADs, 11 SERs), we defined 

20 aggregate populations through regulon-based K-means clustering 202. Thus, we predicted the 

average genotypic representation of multiple single-cells, or pseudo-bulk RNA-seq libraries, and 

created a phylogenetic tree between the defined clusters. DropEst produced a filtered and sorted 

.bam file, which we derived read information from, and split into 20 distinct .bam files using the 

sinto python package 203. These bam files were then processed with GATK4 179, according to 

guidelines detailed by Zhou et al. The GATK4 steps of this pipeline involved the following: adding 

read groups, marking duplicates, splitting N-cigar reads, applying base quality recalibration with 

known single nucleotdie polymorphisms (SNPs), haplotype calling (with the GATK4 
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HaplotypeCaller and an hg38 reference) to generate VCF files, consolidating these VCFs into 

genomicsdb databases, and then genotyping these data. 

  

Because the measurement of single nucleotide variations (SNVs) within transcriptomes is 

dependent on dynamic expression patterns, we used a beta-binomial framework, as described 

by Zhou et al., to model genetic divergence between each pseudo-bulk, cell aggregate. Standard 

genetic divergence frameworks, such as those comparing DNA-derived genomic variants, do not 

consider the varying levels of low nor high gene expression between pseudo-bulk populations. 

Examples of this transcription-specific variation would be stochastic bursts of gene expression 

captured in a minority of populations, yielding low average expression across all populations, and 

constitutively expressed genes, yielding high average expression across all populations. These 

bursty loci will more likely represent genes dropped out from the majority of pseudo-bulk 

populations, so including its respective variants would yield an inflated genetic divergence value. 

Conversely, variants in loci that are expressed and observed in the vast majority of pseudo-bulk 

populations would be uninformative in terms of phylogenetic discrimination. The genetic 

divergence d between each possible cell aggregate pair c and c’ at loci g is represented formally 

as: 

 

Where c and c’ represent two different cell aggregates, while I and I’ represent their originating 

clonal groups. Correspondingly, Xcg is the alternative allele read count for cell aggregate c at loci 

g, while Ncg is the respective total read count. Thus, d is a function of five derived probabilities: 
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1. Which is the alternative allele frequency across cell aggregates estimated by the above GATK4 

pipeline. 

 

2 and 3. Which represent detected variants due to rare editing and technical sequencing error 

events in c and c’ at g. Here, Zcg is set as 0, modeling scenarios lacking SNVs, which can be 

approximated as the following binomial distribution with ϵ set to 0.001 or 0.1%. 

 

 ϵ, representing the combined error rate, was used according to our sequencing platform, a 

NovaSeq 6000 System. This is in line with empirical studies of Illumina sequencing instruments 

as detailed by Stoler et al., observing a median error rate of 0.109% across 239 samples on a 

NovaSeq 6000 device 204.  Another previous study by Fox et al. had similar estimates for 

sequencing-by-synthesis platforms, including the Illumina MiSeq and HiSeq2000, with an error 

frequency of 10-3 (or 0.1%) attributed to single nucleotide substitutions 205. 

 

4 and 5. Which represent detected variants due to the presence of SNVs in c and c’ at g. In this 

case, Zcg is set as 1, modeling scenarios with SNVs present. 

 

This can be approximated as a beta-binomial distribution, as previously described by Jiang et al.  

and Skelly et al.  in the context of single-cell and bulk RNA sequencing 206,207. Qcg is the proportion 

of alternative alleles in cell aggregate c at g, using a beta distribution prior, approximated as q. q 

is parameterized by αg and βg, as estimated gene activation and deactivation rates respectively. 
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Before performing genetic divergence calculations based on these probabilistic models, two filters 

were applied to minimize the inclusion of stochastically or constitutively expressed variants: 

  

The first filter is dependent on the observed variant allele frequencies (VAFs) across each set of 

cell aggregates. VAFs were visualized as histograms representing the number of times each 

unique variant was observed across each set of cell aggregates. We observed that these VAF 

distributions were unimodal and positively skewed, with the vast majority of variants being 

detected in very few cell aggregates, which was in line with stochastic gene expression. To 

remove these stochastically expressed variants, we heuristically determined a cutoff at observed 

convex elbow/knee points of the curve, at 10%. This cutoff was symmetrically applied to the top 

10% of the most pervasive variants as well, as these represented constitutively expressed 

variants. 

  

The second filter is dependent on α and β parameter estimations. If either the α or β parameters 

of the beta prior were estimated to be 0 or 1, it meant that the activation and deactivation rates 

were completely on or off. Akin to the rationale for our first filter, these variants would not be 

informative in the genetic divergence calculation since they likely represent genes with a tendency 

to dropout/be stochastically expressed or be constitutively active. These cases would inflate or 

deflate genetic divergence metrics, respectively. 

  

The quality of the filtered variants, consisting of about 5.07% (std. 1.46%) of the initially detected 

variants, met appropriate QD and DP levels suggested by GATK4 guidelines and were also 

located within genomic regions characteristic of the inDrop barcoding chemistry 

(https://github.com/Ken-Lau-

Lab/STAR_Methods/blob/main/Supplemental_Table_Variant_Type_Func.refGene_Distribution.

xlsx). Exonic variants detected through this method were validated through the exome sequencing 
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of paired FFPE tissue and respective GATK HaplotypeCaller pipeline. If the exact exonic genomic 

loci and genotypes were detected in both the exome and scRNA-seq pseudo-bulk aggregates, 

the variants were flagged as validated. An average of 53.9% (std. 12.9%, max >75%) of the exonic 

variants detected through scRNA-seq were validated with this orthogonal exome sequencing. 

Tables of these detected variants per cell population and their exome-seq statuses are shown at 

(https://github.com/Ken-Lau-Lab/STAR_Methods/tree/main/Tables). 

  

After filtering, the genetic divergence is calculated for all possible pairs of cell aggregates, and a 

phylogenetic tree is constructed. The leaves of these trees represent the previously defined cell 

aggregates, which were assigned cell type labels accordingly. For each set of pseudo-bulk cell 

aggregates, we also calculated the minimum genetic divergence between tumor-specific cell 

aggregates (ASCs and SSCs) and canonical stem cell aggregates (STM). These values were 

normalized to the maximum distances observed per tumor sample, yielding a value between 0 

and 1. This metric was interpolated with a value of 1 in samples which lacked measurable 

canonical stem cell aggregates.  
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Chapter IV - Multi-modal data integration and model validation through organoids and 

genetically engineered mouse models 

 

Recreated from: 

Chen, B., Scurrah, C. R., Mckinley, E. T., Simmons, A. J., Ramirez-Solano, M. A., Zhu, X., 

Markham, N. O., Heiser, C. N., Vega, P. N., ... Coffey, R., Shrubsole, M., & Lau, K. S. (2021). 

Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in 

human colorectal polyps. Cell. https://doi.org/10.1016/j.cell.2021.11.031 

 

Introduction 

Without experimental validation, in silico computational models remain entirely theoretical and 

observational. Clearly, the vast majority of computationally generated models are not directly 

testable, since, outside of clinical trials, the in vivo validation of models of human biology remains 

infeasible. Thus, the utilization of human organoids ex vivo and mouse models in vivo are the 

most feasible means of experimental validation for generalized models described in humans. 

Here, we present in-depth dissections of the malignant transformation of human precancer 

followed by the experimental support of the hypothesized effects of divergent tumorigenesis 

originating from variations in cell differentiation state. 

 

Phenotypic transitions and subtype-specific features during malignant progression from 

pre-cancer to cancer 

We used the same experimental design of our polyp studies to examine MSI-H and MSS CRCs 

in relation to their precursors. We performed scRNA-seq on 7 (2 MSI-H, 5 MSS) fresh CRC 

specimens for a discovery dataset and procured a CRC scRNA-seq dataset (n=60; 32 MSI-H, 28 

MSS) from the Broad Institute. Furthermore, we analyzed whole tumor blocks from 26 additional 

CRC patients (14 MSI-H, 12 MSS) for further validation. Exome sequencing of CRC specimens 

https://doi.org/10.1016/j.cell.2021.11.031
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revealed expected mutational features in MSS CRCs following the conventional tumorigenesis 

pathway with APC (100%), KRAS (35%), and TP53 (71%) mutations (Figure 23A). MSI-H CRCs 

had fewer of these conventional mutations (33%,0%,7%, respectively), but more BRAF mutations 

(53% in MSI-H vs. 0% in MSS). All MSI-H CRCs had acquired a higher mutational burden 

compared to MSS CRCs. Histologically, all CRCs showed invasive adenocarcinoma with 

cribriform architecture (Figure 23B), with MSI-H CRCs exhibiting mucinous features. 

  



 

 
 

91 

Figure 22. Analysis of CRCs through the lens of pre-cancers. 

(A) Regulon-based UMAPs for tumor-specific cells derived from pre-cancerous and cancerous 

specimens colored by (top) subtypes and (bottom) specimen ID for both the (left) VUMC and 

(right) Broad datasets. (B) Stem, meta, and fetal signature scores overlaid onto UMAP of tumor-

specific cells for both (left) VUMC and (right) Broad datasets. (C) Heatmap representation of pre-

cancer derived gene sets for VUMC (n = 55) and Broad (n = 60) tumor-specific cells. Inset circle 

indicates prevalence within defined single-cell populations and color intensity represents scaled 

and standardized Arcsinh gene expression. (D) Single-cell CMS scoring based on single sample 

predictor for both VUMC and Broad tumor-specific cells. (E) Ridge plots of CytoTRACE score 

distributions for VUMC and Broad tumor-specific cells. Broad CytoTRACE scores calculated 

relative to corresponding Broad normals (n=32) (F-I) TF target network created from polyp-

specific and cancer cells, organized into super-regulons derived from clustering of shared targets: 

(F) ASC, (G), MSS, (H) SSC, and (I) MSI-H. Color overlays for each TF node are averaged and 

normalized regulon enrichment scores, while edge opacities are the inferred TF-target weightings.  
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Figure 23. Single-cell characterization of CRC subtypes as related to their pre-cancer 

precursors. 

(A) Oncoplot representation of the mutational landscape of CRCs detected through exome 

sequencing, and (left) mutational variant calling or (right) somatic mutation calling. Total number 

of mutations detected per specimen represented as bar plot (top), and different type of mutations 

color-coded. Important genes to CRC are presented and grouped into pathways. Proportion of 

gene and pathway mutation within CRC subtypes (combined) summarized as table. (B) 

Representative H&E of each CRC subtype at low and high magnification views of the 

corresponding colored insets. (C)  Scatter plots of signature scores by tumor-specific cell subtype, 

with each point representing a single cell, for (top) VUMC and (bottom) Broad datasets. Error bars 

depict SEM of single cells. (D) Heatmap representation of top biologically relevant and 

differentially expressed genes, for Broad (MSS, n=28; MSI-H, n=32) and SMC (CMS1, n=5; 

CMS2, n=8; CMS3, n=4; CMS4, n=6) single-cell datasets. Inset circle indicates prevalence within 

defined single-cell populations and color intensity represents scaled and standardized Arcsinh 

gene expression. (E,F) Expanded TF target network created from (E) VUMC or (F) Broad tumor-

specific cells, organized into super-regulons derived from clustering of shared targets. Color 

overlays for each TF node are averaged and normalized regulon enrichment scores, while edge 

opacities are the inferred TF-target weightings. VUMC regulon values are normalized to tumor-

derived normal cells while Broad values are unnormalized due to lack of detected tumor-resident 

normal cells. 
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scRNA-seq data of malignant CRC cells revealed substantial tumor-to-tumor variability, as seen 

by others 93,208. Transcriptomes clustered by individual tumors even after regulon-based 

embedding (Figure 22A). Combined with our pre-cancer data, an increase in intertumoral 

heterogeneity was observed as epithelial cells transition from normal to pre-cancer to malignant 

cells. We considered that the intrinsic complexity and heterogeneity of CRC transcriptomics might 

be reduced by looking at CRC cells through the lens of pre-cancerous polyps; by using the pre-

identified gene sets from ADs and SERs, we observed that both MSS and MSI-H CRC cells 

retained aspects of their respective precursors. Comparing between subtypes, MSS CRC cells 

overexpressed a signature of regenerative crypt base stem cells, and MSI-H CRC cells retained 

a metaplastic signature (Figure 22B,C; Figure 23C). These patterns of gene expression in 

different CRC subtypes were replicated using scRNA-seq data generated independently from the 

Samsung Medical Center (SMC) 208 (Figure 23D). To further support commonalities between pre-

cancer and cancer, we classified ASCs, SSCs, and CRC cells by consensus molecular subtype 

(CMS), which uses the median distance between transcriptional centroids of each CMS to 

individual transcriptomes as a single-cell predictor 128,200 (Figure 22D). ASCs shared comparable 

score distributions with MSS CRC cells, which were predicted to be CMS2 (Figure 22D) the 

subtype most often associated with APC mutations and WNT pathway dysregulation. In contrast, 

both SSCs and MSI-H CRC cells scored low for CMS2, but high for CMS1 and CMS3, which 

feature immunogenic and RAS pathway activation, respectively 209–211 (Figure 22D) None of the 

examined polyp cells had strong enrichment of CMS4 epithelial-to-mesenchymal transition scores 

(Figure 22D), consistent with their identity as early tumor cells and the previously reported 

absence of CMS4 in ADs 212,213. Shared features between malignant cells and pre-cancerous cells 

provide additional evidence of precursor-cancer relationships. 

  

In addition to commonalities in CRCs and their precursors, we also examined characteristics 

acquired or lost during the transition from pre-cancer to malignancy. MSI-H CRC cells showed 
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relatively decreased metaplastic and fetal features compared to SSCs. However, key genes within 

the WNT-activated stem cell program were increased relative to SSCs (Figure 22C; Figure 23C). 

Supporting reactivation of stem cell properties, CytoTRACE analysis demonstrated MSI-H CRC 

cells had higher inferred stem potential compared to SSCs (Figure 22E; Supplemental Table 

S5). MSS CRC cells also gained higher scores relative to ASCs, suggesting they possess 

aberrant stemness (Figure 22E). Gene regulatory network analysis more clearly demonstrated 

how molecular pathways that were either maintained or were altered during malignant transition, 

supported through GSEA (Figure 22F-I; Figure 23E). A common feature for both CRC subtypes 

was the activation of the proliferation super-regulon, with enrichment of genes (PCNA and MKI67) 

and regulons (BRCA1, RAD21, POLE3, and EZH2) involved in DNA synthesis and repair (Figure 

22F-I). The WNT signaling super-regulon was consistently upregulated in ASCs and MSS CRC 

cells (Figure 22F,G). For MSI-H CRC cells, the super-regulon describing pathogen damage 

response in SSCs was suppressed, but the WNT signaling super-regulon, previously suppressed 

in SERs, was activated (Figure 22H, I). The differences in super-regulon enrichment were 

maintained in the Broad dataset (Figure 23F). Activation of the WNT pathway was supported by 

acquisition of activating mutations in non-APC WNT pathway components in MSI-H CRCs, 

including RNF43 (60%), TCF7L2 (53%), ZNRF3 (33%), APC2 (27%), AXIN2 (20%), FAT1 (33%), 

FAT2 (47%), and FAT4 (40%) (Figure 23A). TCGA exome sequencing data also showed 

enrichment of non-APC WNT pathway gene mutations in MSI-H CRC (APC2, RNF43, AXIN2, 

LRP1B, LRP6, TCF7L2). (Figure 25A) 214. These results suggest MSI-H CRC acquired 

metaplasia-independent events by transitioning into more aggressive stem-like cells through 

selection of APC-independent activating mutations in the WNT pathway.  

  

Transition of metaplastic cells to stem-like cells contributes to tumor heterogeneity in MSI-

H CRCs 
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We further queried 63 annotated bulk RNA-seq datasets from the TCGA and observed consistent 

expression of a gastric metaplastic signature in CMS1 and CMS3 CRCs but not CMS2 CRCs 

(Figure 25B), and the inverse was true for the stem cell signature. However, the data were noisier 

than scRNA-seq data on an individual tumor basis, likely due to additional intratumoral 

heterogeneity and/or poor data quality (Muzny et al., 2012). This led us to perform spatial profiling 

using multiplex immunostaining and whole slide scanning of entire CRC specimens. Strikingly, 

none of the MSS CRCs (0/17) stained positive for MUC5AC, but most MSI-H CRCs (13/14) had 

some degree of staining (Figure 24A,B). However, the amount of tumor area stained by MUC5AC 

was variable within the positive MSI-H CRCs. CDX2 staining followed the inverse trend; virtually 

all tumor cells in MSS CRCs were CDX2-positive, and MSI-H CRCs had variably decreased CDX2 

staining (Figure 24A,B). Stem cell markers (OLFM4, SOX9) were expressed throughout MSS 

CRCs, and they uniformly lacked MUC5AC expression (Figure 24C,D; Figure 25C). In contrast, 

MSI-H CRCs displayed considerable intratumoral heterogeneity. Unlike SSLs where almost all 

crypts were MUC5AC-high, MUC5AC staining was variable and low in certain regions of MSI-H 

tumors (Figure 24E,F). Interestingly, these MUC5AC-low regions were positive for OLFM4 and 

to some degree CDX2 (Figure 24F-H). SOX9 was overexpressed in MSI-H CRCs in both 

MUC5AC-high and -low regions, suggesting all cells gained some level of stem-like 

characteristics upon malignant progression (Figure 24H). We validated the heterogeneity 

between stem and metaplastic cells by focused analysis of individual scRNA-seq datasets from 

MSI-H CRCs. Positive MUC5AC and MSLN expression, coupled to loss of CDX2 expression, 

distinguished metaplastic cells from LGR5/β-catenin-expressing, WNT-driven stem cells within 

the same tumor (Figure 24I). These stem-like cells were enriched in cell cycle gene expression 

consistent with the increased proliferative capacity of CRC cells identified in our earlier analysis 

(Figure 24I, 4C,E). In multiple instances of MSI-H CRCs, we observed intratumoral cellular 

heterogeneity characterized by the mutual exclusivity of stem-like cells and metaplastic cells.  
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Figure 24. Heterogeneity of CRCs with metaplastic and stem-like features.  

(A) Representative whole slide scans for IHC of MUC5AC and CDX2 in 3 MSS and MSI-H CRCs. 

(B) Image quantification of positive pixels per tumor area in IHC scans of n=17 MSS and n=14 

MSI-H CRCs, presented as violin plots with median as solid lines and quartiles as dotted lines. 

(C) Low magnification view of MUC5AC staining, and (D) high magnification view of a MSS CRC 

with various protein stains. (E) Low magnification view of MUC5AC staining of an MSI-H CRC. 

(F) High magnification view of a MUC5AC high and MUC5AC low area for metaplasia markers of 

the CRC in E. (G,H) Same as in E,F but staining for stem cell markers. (I) Count-based UMAP of 

scRNA-seq data of the MSI-H CRC in E overlaid with various metaplasia and stem cell markers, 

as well as with cell cycle signatures. Color intensity represents mean scaled and standardized 

Arcsinh gene expression.  *p<0.05, **p<0.01 
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Figure 25. Homogeneous and heterogeneous features of CRCs.  

(A) Oncoplot visualizing genomic tracks for 276 assayed TCGA CRC specimens. Each row 

represents unsorted mutational status of key pathway genes. Each column represents an 

individual specimen with hypermutation status noted. (B) Heatmap representation of gene 

signatures identified by scRNA-seq of pre-cancers applied to bulk RNA-seq of TCGA CRC 

specimens (CMS1, n=8; CMS2, n=26; CMS3, n=10; CMS4, n=19). Inset circle on summary 

heatmap (left) indicates the fraction of specimens presented with gene expression and color 

intensity represents mean (left) or individual (right) scaled and standardized Arcsinh gene 

expression. (C) Representative whole slide scans for MxIF of OLFM4 in 3 MSS and MSI-H CRCs. 

(D) Staining for various metaplasia markers from 4 CRCs from a tissue microarray. Red outline 

represents the MLH1 low area in CRC 4. 
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We confirmed these findings in a CRC tissue microarray using MLH1 staining to infer the 

microsatellite status of each specimen. MLH1-high cancers (presumably MSS) had uniform 

CDX2, but not MUC5AC expression, regardless of whether they were well-differentiated (CRC1) 

or poorly differentiated (CRC2) (Figure 25D). CRC3 had uniformly low MLH1 staining 

(presumably MSI-H) and expressed MUC5AC but not CDX2. CRC4 was heterogeneous in MLH1 

staining and had areas of CDX2low/MUC5AChigh expression and areas with CDX2high/MUC5AClow 

expression. These results suggest MSI-H CRCs may acquire stem cell characteristics in a 

background of metaplasia leading to cellular heterogeneity in tumor landscapes. 

  

Serrated polyps associate with a CD8+ T cell enriched cytotoxic microenvironment prior to 

developing hypermutation 

Although unidentified factors likely contribute, high neoantigen load in MSI-H CRCs has been 

hypothesized to induce a cytotoxic microenvironment conferring responsiveness to 

immunotherapy 131,215. SERs did not exhibit hypermutation in our mutational analysis (Figure 16C; 

Figure 17A), but all MSI-H CRCs analyzed were hypermutated (Figure 23A). We then sought to 

determine whether or not SERs have a distinct tumor microenvironmental signature preceding 

hypermutation. We combined analyses of the non-epithelial scRNA-seq datasets from colonic 

pre-cancers and cancers to identify T cells, plasma cells, myeloid cells, mast cells, fibroblasts, 

endothelial cells, and B cells based on differential gene expression (Figure 26A,B; Figure 27A-

C). 
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Figure 26. Immune cell characterization of colonic tumor subtypes. The immune 

microenvironment of different tumor subtypes.  

(A) Regulon-based UMAP representation of non-epithelial cell populations color overlaid with cell 

type defined by Leiden clustering and marker genes. (B) Heatmap representation of marker genes 

defining each cell type in A. Inset circle indicates prevalence within defined single-cell populations 

and color intensity represents scaled and standardized Arcsinh gene expression. (C) Scatter plots 

of cell type representation per sample (x-axis is the proportion of cells in a sample with indicated 

subtype), (top) polyp and (bottom) cancer subtypes. Points represent individual specimens 
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derived from both VUMC and Broad cohorts. The cytotoxic subtype consists of CD8+ T, NK, and 

γδ T cells. Error bars represent SEM of n= 28 for AD, n = 17 for SER, n = 66 for NL, n = 33 for 

MSS, and n = 34 for MSI-H. (D-F) Scatter plots of (D) plasma cell, (E) CD4+ T cell, (F) tumor cell 

- specific signature scores, with each point representing a single cell, for (top) polyp and (bottom) 

CRC. Tumor cell data source from epithelial data in Figures 2 and 4. Error bars depict SEM of 

single cells. (G) Representative MxIF images of CD8+ cells in ADs and SERs. (H) Quantification 

of MxIF images of intraepithelial CD8+ cells, and intraepithelial CD8+ to stromal CD3+/CD4+ T 

cells, normalized to total number of cells in each compartment. Violin plots with median as white 

circles and quartiles as candles for n=20 polyps per type. (I) Representative MxIF images of 

CD68+ cells and MUC5AC+ in ADs and SERs. (J) Representative MxIF scans of intratumoral 

heterogeneous regions within CRCs (OLFM4+ - stem versus MUC5AC+ - metaplasia). MSS CRC 

only has stem regions. Representative MxIF images of CD8+ and CD3+ cells within each of the 

stem and metaplastic regions. Inset is the quantification of CD8 positive pixels per tumor area in 

stem versus metaplastic regions in MxIF scans of n=15 MSS and n=10 MSI-H CRCs, presented 

as violin plots with median as solid lines and quartiles as dotted lines. *p<0.05, **p<0.01, 

***p<0.001. 
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Figure 27. The immune microenvironment as related to tumor cell heterogeneity.  

(A) Regulon-based UMAP representation of non-epithelial cell populations color overlaid with 

tissue and tumor subtype. (B) Feature-selected, count-based UMAP representation of T cell 

subtypes, color overlaid with (left) tissue and tumor subtype and (right) cell type defined by 
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clustering and marker gene expression. (C) Heatmap representation of feature-selected genes 

used to generate UMAP in B. Inset circle indicates prevalence within defined single-cell 

populations and color intensity represents scaled and standardized Arcsinh gene expression. (D) 

Comprehensive scatter plots of normalized cell type representation per tissue, (top) polyp and 

(middle) cancer subtypes. Points represent individual specimens. Error bars represent SEM of n= 

28 for AD, n = 17 for SER, n = 66 for NL, n = 33 for MSS, and n = 34 for MSI-H. Plots in the third 

row colored by VUMC or Broad datasets. (E) Heatmap representation of marker genes defining 

plasma B immunoglobulin signature alongside PIGR expression in corresponding neoplastic 

epithelial cells. Inset circle indicates prevalence within defined single-cell populations and color 

intensity represents scaled and standardized Arcsinh gene expression. (F) Scatter plots of CD8+ 

T cell cytotoxicity and exhaustion signatures, with each point representing a single cell, for (top) 

polyp and (bottom) CRC. Error bars depict SEM of single cells. (G) Additional representative MxIF 

images of CD8+ cells in multiple ADs and SERs. (H) Quantification of MxIF images of marker 

positive cells in epithelial or stromal compartments, normalized to total number of cells in each 

compartment. Violin plots with median as white circles and quartiles as candles for n=20 polyps 

per type. (I) Quantification as in H for CD8+ T cells in the epithelial compartment of TAs separated 

by mutational burden, for n=6 high (>1500 mutations) vs n=7 low (<1500 mutations). (J) Additional 

representative MxIF images of CD68+ cells and MUC5AC+ in multiple ADs and SERs. (K,L) 

Additional representative MxIF scans of intratumoral heterogeneous regions within CRCs 

(OLFM4+ - stem versus MUC5AC+ - metaplasia), and additional representative MxIF images of 

CD8+ and CD3+ cells within each of the stem and metaplastic regions of (K) MSI-H CRCs and (L) 

MSS CRCs with only stem regions. (M) Quantification of marker positive pixels per tumor area in 

stem versus metaplastic regions in MxIF scans of n=15 MSS and n=10 MSI-H CRCs, presented 

as violin plots with median as solid lines and quartiles as dotted lines. *p<0.05, **p<0.01, 

***p<0.001. 
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Microenvironmental composition was markedly different between ADs, SERs, and normal 

biopsies. Most immune cell types were increased in polyps compared to normal tissue, although 

many were not different between subtypes (Figure 26C; Figure 27D). Strikingly, CD8+ T cells, 

NK cells, and γδT cells, the cytotoxic immune cells, were significantly increased in SERs 

compared to ADs (Figure 26C). Increases in overall T cell numbers in SERs compared to ADs 

were not driven by helper cells, since CD4+ T cell numbers were not statistically different between 

the polyp types, although these cells were increased in polyps compared to normal (Figure 26C). 

The overrepresentation of total T cells, and specifically cytotoxic T cells, was also observed in 

MSI-H CRCs compared to MSS CRCs, with no difference in CD4+ T cells, suggesting a consistent 

dichotomy in the adaptive microenvironment between subtypes regardless of hypermutation. 

  

Pre-cancer resident plasma cells express IgA, which is transported across the epithelium into the 

lumen by PIGR. PIGR was highly expressed in epithelial pre-cancer cells compared to both MSS 

and MSI-H cancer cells (Figure 27E), suggesting the normal gut humoral response is relatively 

intact in polyps 216,217. The immunoglobulin gene signature was significantly lower in SER plasma 

cells compared to AD plasma cells, and it was further suppressed in MSI-H compared to MSS 

CRCs (Figure 26D; Figure 27E). MSS CRC plasma cells did not express IgA but instead 

expressed IgG, the major immunoglobulin subtype in blood plasma cells arising from the spleen 

and lymph nodes. SER plasma cells presented a diminished regulatory B signature, consistent 

with an active immune environment (Figure 26D). 

  

Despite differences in CD8+ cytotoxic T cell abundance, gene signatures related to cytotoxicity 

and exhaustion did not differ between ADs and SERs (Figure 27F). FOXP3 regulon activity was 

higher than normal colon in AD-derived CD4+ T helper cells, consistent with a degree of Treg-

dependent immunosuppression (Figure 26E). Signatures of cytotoxicity and exhaustion were 

intensified in MSI-H CRC T cells compared with MSS CRC T cells, indicative of T cell dysfunction 
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in MSI-H CRCs (Figure 27F). Differential adaptive immune cell regulation between conventional 

and serrated pathway tumors was also observed in tumor epithelial cells. ASCs expressed a 

monocyte-attracting chemokine signature, and SSCs expressed a lymphocyte-attracting cytokine 

signature important for establishing an adaptive immune environment (Figure 26F) 218,219. An 

antigen processing and presentation gene signature 93,208 was significantly higher in SSCs relative 

to ASCs, which was also increased in MSI-H CRC cells relative to MSS CRC cells (Figure 26F). 

These transcriptomic data illustrate how the differential regulation of adaptive immunity persists 

during progression to malignancy and appears independent of hypermutation status. 

  

Using scRNA-seq results to inform multiplex imaging, we examined the geographical differences 

in the immune compartment between ADs and SERs. As expected, SERs had a higher number 

of total T cells and CD8+ cytotoxic T cells, as well as a higher ratio of CD8+ to CD4+ T cells 

compared to ADs (Figure 26G,H; Figure 27G,H), while other immune cell populations were not 

significantly different. CD8+ cytotoxic T cells had a close spatial association with epithelial cells in 

SERs. There appeared to be more CD8+ cytotoxic T cells in the stromal compartment of ADs with 

high mutational load versus those with a lower load; however, our analysis was underpowered to 

show a statistically significant difference (Figure 27I). While myeloid cell abundance was not 

different by both scRNA-seq and imaging, the spatial distribution of CD68+ macrophages was 

markedly different between SERs and ADs. In ADs, CD68+ macrophages were distributed 

throughout the tumor stroma, but they were concentrated at the luminal surfaces of SERs (Figure 

26I; Figure 27J). Macrophages in SERs appeared prominently near MUC5AC+ metaplastic cells, 

coinciding with the surface localization of these lesions (Figure 26I; Figure 27J). A similar striking 

distribution of CD68+ macrophages was reported after fecal transplant and successful 

immunotherapy response 220, further supporting the influence of epithelial-microbial interactions 

on SER tumorigenesis and cytotoxic immune responses. MSI-H CRCs had a heterogeneous 

distribution of total T cells and CD8+ T cells mirroring the observed tumor cell heterogeneity. There 
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was a significant enrichment of CD8+ T cells in MUC5AC+ metaplastic regions and reduced 

numbers in OLFM4+ stem cell-like regions (Figure 26J; Figure 27K-M). In contrast, MSS CRCs 

had fewer T cells throughout the tumors, which were homogeneously composed of OLFM4+ stem-

like cells (Figure 26J; Figure 27K-M). These results strengthen the association between the 

metaplastic origin of SERs and the cytotoxic immune microenvironment, and implicate immune 

suppression as tumor cells gain stem properties. 

 

Tumor cell differentiation status dictates the adaptive immune microenvironment 

We next used mouse models to determine if the cytotoxic response in serrated tumorigenesis is 

intrinsic to tumor cell state. Our human SER data and a recent mouse model 221 demonstrate that 

a cytotoxic immune environment is established prior to the onset of hypermutation and 

microsatellite instability. We thus investigated the underpinnings of the induction of cytotoxic 

immunity using genetically engineered mice that model the earliest events of tumorigenesis. The 

Lrig1CreERT2/+;Apc2lox14/+ is a well-established model of conventional pathway tumorigenesis, 

resulting in development of adenomatous tumors in the distal colon 111. Driving a Braf activating 

mutation (Lrig1CreERT2/+;BrafLSL-V600E/+) did not result in macroscopic tumors, but induced villiform 

metaplasias in the proximal colon (Figure 28A). Apc mutant tumors had elevated cytoplasmic 

staining of β-catenin and a reduced number of CD8+ T cells compared to control normal colon, 

consistent with human ADs and MSS CRCs (Figure 28B,C). In contrast, Braf mutant lesions were 

associated with increased CD8+ T cell infiltration (Figure 28B,C). Together, these results suggest 

that the different immune responses in tumors from conventional and serrated pathways can each 

be modeled via a single driver mutation. Strikingly, CD8+ T cell infiltration was only observed in 

the differentiated cell compartment of villiform metaplasias and not in the mutant crypts, signifying 

that Braf mutant differentiated cells, but not stem cells, drive the cytotoxic microenvironment 

(Figure 28C). Similar results were observed in a parallel Kras-activating mouse model 

(Lrig1CreERT2/+;KrasLSL-G12D/+) (Figure 29A-C). 
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Figure 28. Functional validation of the tumor cell differentiation status and the effects on 

cytotoxic immunity.  

(A) Representative macroscopic IF images depicting a Lrig1CreERT2/+; Apc2lox14/+ tumor and 

Lrig1CreERT2/+; BrafLSL-V600E/+ proximal villiform metaplasia (white arrows). (B) Quantification of CD8 

positive pixels per nuclear area in Apc-driven tumor, and the villus and crypt compartment of Braf-

driven villiform metaplasias. Red line denotes the mean level detected in adjacent normal colon 

in Braf mice. Error bars represent SEM from n=3 animals per group. (C) IF images of CD8+ T cells 

in an Apc-driven tumor overexpressing β-catenin, Braf-driven villiform metaplasias (white arrows), 

and control colon. Dotted line demarcates border between villus and crypt compartments. (D,E) 

Representative H&E (D) and β-catenin IHC (E) of colonic tissues and tumors from induced 

Lrig1CreERT2/+; Apc2lox14/2lox14 mice (n=4 animals; advanced dysplasia) and induced Mist1CreERT2/+; 

Apc2lox14/2lox14 mice (n=4; low grade dysplasia) 28 days after DSS. (F-H) Combined UMAP 

embedding of epithelial scRNA-seq data generated from mouse colonic tissues (n=3 or 4 per 

condition), with overlays indicating (F) Leiden clustering labeled by cell populations (ABS-

absorptive, EE-enteroendocrine, GOB2-goblet 2, GOB1-goblet 1, PAN-Paneth, STM-stem TAC-

transit-amplifying, TUF-tuft, TSC-tumor specific cell), (G) specific gene overlays with color 

intensity representing scaled and standardized Arcsinh gene expression, (H) distribution of 

different biological replicates (mice) under specific conditions. (I) Heatmap representation of gene 

sets defining a human metaplastic or stem cell signature in specific cell populations, including 

Mist1 and Lrig1 TSCs. Inset circle indicates prevalence within defined single-cell populations and 

color intensity represents scaled and standardized Arcsinh gene expression. (J,K) Combined 

UMAP embedding of scRNA-seq data of immune cells generated from colonic tissues from C, 

with overlays indicating (J) different conditions and (K) Leiden clustering labeled by cell 

populations. (L,M) Quantification of (L) general immune cell types  and (M) specific lymphocyte 

populations in Lrig1 (left) and Mist1 (right) tumors. (N) UMAP overlays of specific gene expression 

delineating immunosuppression or cytotoxicity in myeloid and lymphoid cell lineages. Color 
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intensity represents scaled and standardized Arcsinh gene expression. (O) Representative MxIF 

images of Lrig1 (left) and Mist1 (right) tumors with markers delineating T cells. (P) Normalized 

quantification of (left) CD3+/CD8+ and (right) CD3+ cells per tumor area in Lrig1 and Mist1 tumors. 

Each dot represents a field of view. Error bars represent SEM from n=3 animals per group. (Q) 

CytoTRACE score distribution, a predictor of stemness, for Lrig1 and Mist1 TSCs calculated from 

scRNA-seq. (R) Normalized organoid formation efficiency of single cells isolated from Lrig1 

tumors, Mist1 tumors, and control colons. Each dot represents data from a well with 

representative images shown in insets. Error bars represent SEM from n=4 animals per tumor, 2 

for control. (S) Normalized metagene signature expression of ISCI, ISCII, and ISCIII for Lrig1 and 

Mist1 TSCs derived from scRNA-seq. (T) Heatmap of individual antigen presentation, scaled and 

standardized Arcsinh gene expression at single-cell level. (U) Normalized MHCII metagene 

signature expression for Lrig1 and Mist1 TSCs. (V) Quantification of flow cytometry plots of DQ-

OVA+/I-AI-E+ epithelial cells comparing antigen processing and presentation abilities between 

Lrig1- and Mist1- tumoroids. Error bars represent SEM from n=6 animals per condition. (W) 

Percentage of proliferating T cells determined by CellTrace Violet assay when cocultured with 

organoids derived from colonic tumors or normal tissues (+DSS) treated with or without x 100 

ug/ml OVA peptide. Error bars represent SEM of organoids from n=5 mice for tumors and 2 for 

normal. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 29. Stem versus non-stem cell characteristics of tumors and the tumor immune 

environment.   

(A) Representative macroscopic IF images depicting a Lrig1CreERT2/+; Apc2lox14/+ tumor and 

Lrig1CreERT2/+; KrasLSL-G12D/+ proximal villiform metaplasia (white arrows). (B) Quantification of CD8 

positive pixels per nuclear area in Apc-driven tumor, and the villus and crypt compartment of Kras-

driven villiform metaplasias. Red line denotes the mean level detected in adjacent normal colon 

in Kras mice. Error bars represent SEM from n=3 animals per group. (C) IF images of CD8+ T 

cells in an Apc-driven tumor overexpressing β-catenin, Kras-driven villiform metaplasias (white 

arrows), and control colon. Dotted line demarcates border between villus and crypt compartments.  

(D) Representative IF images of short term and long term (rows: 24 hours and 28 days, 

respectively) lineage tracing in the colon using Lrig1CreERT2/+; R26RLSL-EYFP/+, Mist1CreERT2/+; 

R26RLSL-EYFP/+, and Mist1CreERT2/+; R26RLSL-EYFP/+ with DSS mouse models (columns). (E) 

Quantification of lineage traced glands at 28 days at homeostasis or with DSS-damage from stem 

(Lrig1) and non-stem (Mist1) cells using different reporters. Error bars represent SEM from n=3 

animals for each condition. (F) Representative IF images of long term (28 days) lineage tracing 

in the proximal colon of Mist1CreERT2/+; R26RLSL-mTmG/+ with or without DSS. (G) Representative IF 

images of reporter co-expression with cell type specific markers, DCLK1 for tuft cells, MUC2 for 

goblet cells, and CHGA for enteroendocrine cells, after 24 hours of lineage tracing in Mist1CreERT2/+; 

R26RLSL-EYFP/+ mouse colons. Arrows point to single positive (green/red) or double positive (yellow) 

cells. (H) Quantification of double positive cells compared to single positive cells for each marker. 

Each dot represents a field of view. Error bars represent SEM from n=3 animals.  (I) 

Representative IF image of reporter co-expression with MUC2 in Mist1CreERT2/+; R26RmTmG/+ 10 

days after initiation of lineage tracing at homeostasis. (J) Combined t-SNE embedding of bulk 

RNA sequenced Mist1 reporter (mTmG – left or EYFP – right)-expressing cells (solid circle in red) 

with n=3 reference murine colonic scRNA-seq dataset (colored dots from different mice). Goblet 

(green) and enteroendocrine (magenta) cell populations are delineated by dotted lines. (K) 
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Quantification of Mist1 reporter (EYFP or mTmG)-expressing cells co-embedding with different 

cell types using boot-strapped t-SNE runs in J. n=3 independent experiments. (L,M) 

Representative H&E (L) and β-catenin IHC (M) of control (uninduced) normal colonic tissues as 

in Figure 28D,E. (N) Histological scoring of tissues of multiple biological replicates of Mist1- and 

Lrig1- tumors along with uninduced controls. 0: none; 1: unicrypt; 2: low; 3: high, 4: advanced. (O) 

Combined UMAP embedding as in Figure 28F with overlays of key marker gene expression 

delineating epithelial cell types and states. Color intensity represents scaled and standardized 

Arcsinh gene expression. (P,Q) Combined UMAP embedding as in Figure 28J with overlay of (P) 

marker gene expression delineating immune cell types and (Q) expression of genes involved in 

immunosuppression, cytotoxicity, and effector function. Color intensity represents scaled and 

standardized Arcsinh gene expression. (R) Representative MxIF images for tumor infiltrating 

immune cells in Lrig1- versus Mist1- tumors. (S) Quantification of immune cells from MxIF. Error 

bars represent SEM from n=3 animals. Dots represent fields of view. (T) Gene expression of Myc, 

Ctnnb1, Krt18, and Krt8 for Lrig1 and Mist1 TSCs from scRNA-seq. Library size-normalized and 

Arcsinh-scaled. (U) Selected GSEA enrichment plots generated using KEGG and Gene Ontology 

of Mist1 TSCs against Lrig1 TSCs. (V) Representative flow cytometry plots of DQ-OVA+/I-AI-E+ 

epithelial cells comparing antigen processing and presentation abilities between Lrig1- and Mist1- 

tumoroids. (W) Representative flow cytometry plots of CellTrace Violet peaks that depicts 

proliferating T cells when cocultured with organoids derived from colonic tumors or normal tissues 

(+DSS) treated with or without x 100 ug/ml OVA peptide.  Positive control is dendritic cells used 

for antigen presentation. Gates denote proliferating cells plotted in Figure 28W. (X) Organoid 

replating efficiency as presented as number of organoids formed from 1000 single cells isolated 

from human ADs and SERs. Each dot represents data from a well. Error bars represent SEM 

from n=7 ADs and 6 SERs. *< p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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To determine how a differentiated cell versus stem cell state influences the immune 

microenvironment, we normalized the genetic event by driving the same Apc mutation from stem 

(Lrig1CreERT2) versus non-stem (Mist1CreERT2) cells. While Lrig1+ cells are bona fide stem cells 

(Powell et al., 2012), lineage tracing studies during both homeostasis and DSS damage showed 

Mist1+ cells are non-stem cells in the proximal colon (Figure 29D,E). No lineage tracing was 

observed from Mist1+ cells in the colon under any condition using a standard YFP reporter (Figure 

29D,E). A baseline level of lineage tracing was observed only in the distal colon of a more 

sensitive mT/mG reporter, and not in the proximal colon, even with DSS damage  (Figure 29F). 

Using immunostaining and transcriptomics, we determined Mist1+ cells represent a subset of 

differentiated cells outside of the colonic crypt base (goblet/enteroendocrine) (Figure 29G-K). 

  

Importantly, Mist1+ cells initiated colonic tumors (abbreviated as Mist1 tumors) with biallelic 

recombination of Apc (Mist1CreERT2/+; Apc2lox14/2lox14) followed by 2.5% DSS damage, representing 

a non-stem-driven tumor model. At most one or two Mist1 tumors developed per mouse in the 

proximal versus distal colon by a 7:1 ratio (Figure 28D,E; Figure 29L,M), which differs from the 

distal colon predominance of tumors in the Lrig1CreERT2/+; Apc2lox14/+ model (Powell et al., 2012). 

We developed a stem cell-driven tumor model (abbreviated as Lrig1 tumors) for direct comparison 

with the Apc mutation using Lrig1CreERT2/+; Apc2lox14/2lox14 mice and focal Cre activation, followed by 

DSS (Figure 28D,E; Figure 29L,M). Blinded histological assessment revealed Lrig1 tumors were 

high-grade dysplastic tumors, but Mist1 tumors were low-grade (Figure 29N). To decipher the 

molecular landscape of the two tumor types, we performed scRNA-seq on harvested tumor 

tissues along with controls (untreated colon and after DSS recovery) (Figure 28F,G; Figure 29O) 

and identified cells specific to tumors but not controls (Figure 28H), similar to our human study. 

Abnormal Paneth cells were only present in tumors and not in the normal colon (Figure 28F,G). 

Due to a common WNT-driven mutational process, tumor specific cells (TSCs) from both tumor 

types formed an Lgr5-overexpressing cell population without a metaplastic gene signature 
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(Figure 28G-I), similar to ASCs. Moreover, both tumor types exhibited elevated cytoplasmic and 

nuclear staining of β-catenin staining reflecting WNT activation (Figure 28E; FigureS7M).  

  

While the mutational processes between the tumor types were the same, we identified marked 

differences in the immune microenvironments (Figure 28J). Mist1 tumors, similar to SERs, 

harbored higher proportions of CD8+ T cells, which clustered with intraepithelial lymphocytes (IEL) 

from control colons and expressed IEL markers Itgae and Trdc 222,223 (Figure 28J-M; Figure 29P). 

These cells expressed markers of active cytotoxicity and killing effectors, which are summarized 

in Supplemental Table S6 (Figure 28N; Figure 29Q). Lrig1 tumors possessed a distinct 

population of dysfunctional CD4+ T cells that may have transitioned into anergy or exhaustion and 

ultimately contributes to immunosuppression (Figure 28J-M; Figure 29P) 224–226. These cells 

expressed immunosuppressive markers, the most prominent being Pdcd1 (PD1) 227, Ctla4 228, 

Prdm1 229, and Havcr2 (TIM3) 230, as well as genes of the Foxp3 regulon, implicating dysfunctional 

T cells exhibiting regulatory characteristics (Figure 28N; Figure 29Q). Strikingly, Lrig1 tumors, 

but not Mist1 tumors, had a large infiltration of myeloid cells including tumor-associated 

macrophages and myeloid derived suppressive-like cells, and distinct neutrophils that expressed 

Cd274 (PDL1) (Figure7J-N; Figure 29P,Q). Our scRNA-seq results informed multiplex imaging 

experiments that showed a significantly higher number of tumor-infiltrating CD8+ T cells but not 

CD4+ T cells in Mist1 tumors compared to Lrig1 tumors (Figure 28O,P). Lrig1 tumors had a greater 

infiltration of B cells consistent with scRNA-seq data (Figure 29R,S). In separate mouse models 

with identical Apc mutations, we show tumors originating from differentiated cells promote a 

cytotoxic immune microenvironment while tumors driven by stem cells associate with a 

suppressive immune microenvironment. 

  

We then aimed to identify whether epithelial cell-intrinsic stemness contributes to immune 

microenvironmental differences. Similar to human studies, we applied CytoTRACE to score stem 
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cell potential of the two TSC types. Lrig1 TSCs had significantly higher inferred stem potential 

than Mist1 TSCs (Figure 28Q), which was verified by the expression of specific stem and 

differentiated cell genes (Figure 29T). This result was validated by organoid experiments 

demonstrating Lrig1 tumor cells were significantly more successful in forming organoids than 

Mist1 tumor cells (Figure 28R), which confirmed how stemness is a function of cellular origin. 

Gleaning from previous work defining a gradient of stemness (ISCI > ISCII > ISCIII) in normal 

intestinal stem cells associated with immune cell interactions 196, we found Lrig1 TSCs exhibited 

a higher ISCI score while Mist1 TSCs exhibited higher ISCII and ISCIII scores (Figure 28S); ISCII 

and ISCIII were found to exhibit higher antigen processing and presentation abilities. Consistent 

with this finding, Mist1 TSCs had increased expression of antigen presentation machinery, both 

at the single-cell level and signature level (Figure 28T,U). Lrig1CreERT2/+;BrafLSL-V600E/+ villiform 

metaplasias also exhibited increased epithelial expression of antigen presentation machinery 

compared to Lrig1CreERT2/+;Apc2lox14/+ tumors, but only in the differentiated and not in the stem cell 

compartment (Figure 29U), while stromal expression was not different. GSEA demonstrated 

Mist1 TSCs were significantly enriched for genes associated with immune-mediated processes, 

with antigen presentation being the most significant (Figure 29V). These results demonstrate how 

the degree of stemness within neoplastic compartments, as dictated by cellular origins, is linked 

to the tumor immune microenvironment. 

  

To validate expression of antigen presentation machinery actually reflects function, we assayed 

for antigen processing and presentation in Lrig1- and Mist1- tumor-derived tumoroids using the 

class 2 antigen ovalbumin (OVA). Mist1 tumoroids were shown to process and present more 

antigen than Lrig1 tumoroids, denoted by green fluorescence from endocytosis and proteolysis of 

DQ-OVA, coupled to I-A/I-E staining indicating surface antigen presentation (Figure 28V; Figure 

29W). In support of this observation, Mist1 tumoroids had an increased ability to stimulate T cell 

proliferation upon presentation of OVA peptide compared to Lrig1 tumoroids (Figure 28W; Figure 
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29X); suppression of this effect was observed in Lrig1 tumoroids compared to normal distal 

colonoids collected under the same condition. Human tumor organoid assays revealed a 

decrease in stem capacity alongside an increased antigen presentation gene signature in human 

SERs compared to ADs (Figure 29X; Figure 26F). Within each tumor, cytotoxic cell infiltration 

positively correlated with metaplastic signatures in SERs (Figure 29Z). Differentiation media, 

IFNγ (representative of type 1 immune environment found in SERs), or the two combined were 

used to induce human AD tumor organoids. All three conditions increased expression of antigen 

presentation machinery, although the effect of IFNγ was greater (Figure 29A’). These results are 

consistent with the expression of antigen presentation machinery in stem and differentiated cell 

types of the human colon (Figure 29B’). Together, our data implicate how differentiation and 

stemness influence antigen presentation ability, which may partly underlie the differential 

stimulation of a cytotoxic immune response. 

 

Methods 

Mouse Models 

All animal experiments were performed under protocols approved by the Vanderbilt University 

Animal Care and Use Committee and in accordance with NIH guidelines. Mice were 8 weeks old 

at the start of experiments and were humanely euthanized at the end of experiments according 

to approved guidelines. Animal weights were recorded at initiation of experiment and at the time 

of euthanasia. All animals used in this study were predominantly of the C57BL/6J background 

and both sexes were used. Littermate controls were used for experiments when possible. All 

animals were housed 2 to 5 per cage in a controlled environment in standard bedding with a 

standard 12-hour daylight cycle, cessation of light at 6 PM, and free access to standard chow diet 

and water. Experiments were conducted during the light cycle, excluding continuous dietary 

interventions. 
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Human Organoids 

Polyps were dissociated and washed as described in the COLON MAP scRNA-seq, 

Encapsulation and Library Generation section. After dissociation, cells were washed 3 times 

with PBS containing 10 μM ROCK inhibitor (STEMCELL Technologies) and pelleted by quick-

pulse centrifugation for 7 seconds. Human organoid models were generated from COLON MAP 

individuals of both sexes (70% female, 30% male). Polyp-derived cells were grown with Human 

IntestiCult organoid growth media (STEMCELL Technologies) supplemented with 10 μM Y-

27632, 10 nM Gastrin I (Sigma-Aldrich), 1 mM N-acetyl-L-cysteine (Sigma-Aldrich), 500 nM A83-

01 (Tocris), 50 ng/mL FGF-2 (Thermo Fisher), 100 ng/mL IGF-1 (BioLegend), 100 μg/mL Primocin 

(InvivoGen), and Matrigel (Corning) in a 3:1 ratio of Matrigel to media. Media was replaced every 

2-3 days, and passaging was performed by dissociating the organoids in TrypLE Express 

(Thermo Fisher) with 10 μM Y-27632 for 15 minutes at 37 °C while shaking and triturating. 

  

Mouse Organoids 

Mouse organoids were generated from the same pool of mice used in mouse model experiments, 

with both sexes being used. Mouse tumors were dissociated using TrypLE Express, and cell 

pellets were resuspended in Matrigel and seeded in 25 µL droplets in a 24-well or 12-well plate. 

Once solidified, samples were incubated in 1 mL Mouse IntestiCult culture medium (STEMCELL 

Technologies) with 100 μg/mL Primocin for 5 days. Fresh media was replaced on day 3. 

Passaging was performed similarly to human organoids. 

COLON MAP and CHTN TMA MxIHC 

MxIHC was performed by iterative antibody staining and chromogen removal based on the 

protocol in 231. Chromogen was removed between sequential rounds through sequential alcohol 

baths, and antibody was stripped by high temperature (95°C for 15 minutes). Single antibody 

stains using 3,3'-Diaminobenzidine were performed using standard protocols.  
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COLON MAP and CHTN TMA MxIF 

Cyclical antibody staining, detection, and dye inactivation was performed as described previously 

by 232. Briefly, fluorescence imaging was performed on a GE IN Cell Analyzer 2500 using the Cell 

DIVE platform. Images were acquired at x200 magnification with exposure times determined for 

each antibody. For each round of staining, DAPI images were aligned using rigid transformations 

to the first imaging round. The registered images were corrected for uneven illumination and 

autofluorescence was removed for each channel. 

 

COLON MAP Pre-cancer Organoid Replating Efficiency Assay 

COLON MAP samples that successfully formed organoids were dissociated and counted using 

Bio-RAD TC20 automated cell counter and plated at 1,000 cells/well in 5 μL Matrigel domes in a 

96-well plate. Organoids were imaged and counted using an inverted microscope (Fisherbrand) 

after 8 days in culture. Patient IDs were matched to histopathology results after compilation and 

tabulation of results. GraphPad Prism 9 was used for plotting and statistical analysis using 

unpaired t-tests. 

  

COLON MAP Pre-cancer Organoid Differentiation Assay 

COLON MAP organoids were cultured in appropriately supplemented Human IntestiCult organoid 

growth media (OGM) for 3 days. They either remained in OGM for control or switched to 

supplemented Human IntestiCult organoid differentiation media (ODM) (STEMCELL 

Technologies) for 3 more days. For IFN gamma treatment, human recombinant IFN-gamma 

(Biolegend) was added to each media condition at 100 ng/mL for 24 hours prior to harvesting. 

  

Murine Lineage Tracing 

For homeostatic lineage tracing studies, Lrig1CreERT2/+;Rosa26LSL-EYFP/+ mice were injected 

intraperitoneally (i.p.) for 3 consecutive days with 2.5 mg tamoxifen (Sigma-Aldrich; T5648) in 



 

 
 

121 

corn oil, while Mist1CreERT2/+;Rosa26LSL-EYF/+P were injected i.p. for 3 consecutive days with 5 mg 

tamoxifen. Mice were euthanized 24 h, 10 days, and 28 days later. For damage-induced lineage 

tracing, Mist1CreERT2/+;Rosa26LSL-EYFP/+ and Mist1CreERT2/+;Rosa26mT/mG/+ mice were injected i.p. for 

3 consecutive days with 5 mg tamoxifen, and were then administered 2.5% DSS (TdB 

Consultancy; Batches DB001-37, DB001-42) in drinking water for the following 6 days. After 

cessation of DSS, mice were euthanized 24 h, and 28 days later. 

  

Murine Induction of Recombination Using Different Promoters 

To recombine genes, Lrig1CreERT2/+;BrafLSL-V600E/+ and Lrig1CreERT2/+;Apc2lox14/+ mice were induced 

and have their tissues harvested using established protocols (Kondo et al., 2020; Powell et al., 

2012). Tissues were harvested from these mice approximately 12 weeks after induction of 

recombination. Lrig1CreERT2/+;KrasLSL-G12D/+ mice were anesthetized and induced with 100 µL of 10 

mg/mL 4-hydroxytamoxifen (Sigma-Aldrich) in ethanol delivered with an enema using a gavage 

feeding needle, and tissues were harvested around 8 weeks later. 

  

For generating tumors, Mist1CreERT2/+;Apc2lox14/2lox14 were injected intraperitoneally for 3 

consecutive days with 5 mg tamoxifen in corn oil. They were administered 2.5% DSS in drinking 

water for the following 6 days, followed by a 9-day rest period, and a second round of DSS.  

Lrig1CreERT2/+;Apc2lox14/2lox14 were injected with 0.01mM 4-hydroxytamoxifen through colonoscopy-

guided orthotopic injections into the mucosal lining of the distal colon 233, and were administered 

2.5% DSS in drinking water for the following 6 days. Control mice received PBS injections followed 

by DSS. Mice were euthanized approximately 28 days following Cre induction.  

  

Murine Immunofluorescence and Histological Imaging 

Upon euthanasia of an animal, colonic tissue was removed, washed with 1X DPBS, spread 

longitudinally onto Whatman filter paper and fixed in 4% PFA (Thermo Scientific) overnight. Fixed 
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tissues were washed with 1X DPBS, swiss-rolled, and stored in 70% EtOH until processing and 

paraffin embedding. Tissues were sectioned at 5 mm thick onto glass slides. Slides were 

processed for deparaffinization, rehydration, and antigen retrieval using citrate buffer (pH 6.0; 

Dako) for 20 minutes in a pressure cooker at 105°C followed by a 20-minute bench cool down. 

Endogenous background signal was reduced by incubating slides in 1% H2O2 (Sigma-Aldrich) for 

10 minutes, before blocking for 30 minutes in 2.5% Normal Donkey Serum in 1X DPBS prior to 

antibody staining. Primary antibodies against selected markers were incubated on the slides in a 

humidity chamber overnight, followed by three washes in PBS, and 1 hour incubation in Hoechst 

33342 (Invitrogen), and compatible secondaries (1:500) conjugated to Invitrogen AlexaFluor-488 

(AF-488) or Invitrogen AF-647. Slides were washed in 1X DPBS, mounted in Prolong Gold 

(Invitrogen) and imaged using a Zeiss Axio Imager M2 microscope with Axiovision digital imaging 

system (Zeiss; Jena GmBH). Multiplexed imaging using an immune cell-based antibody panel 

was performed by using a multiplex iterative staining and fluorescence-inactivation protocol, as 

previously described (Eliot et al., 2017; McKinley et al., 2019a), and imaged on an Olympus X81 

inverted microscope (20X magnification) with a motorized stage.  For histological analysis, slides 

were processed and stained for hematoxylin and eosin and beta-catenin using standard 

approaches. Blind scoring was conducted by a pathologist (Dr. Kay Washington) using brightfield 

microscopy and a standard grading scale for dysplasia. 

 

Murine Organoid Formation Assay 

Organoids derived from Lrig1 and Mist1 tumors were dissociated using TrypLE Express. Cell 

pellets were resuspended in matrigel and seeded in 25 µL/well in a 24-well plate with 500 µL of 

Mouse Intesticult (STEMCELL Technologies) media. After one week, the number of organoids 

was counted using the GelCount™ system (Oxford Optronix). The number of organoids formed 

in each well was normalized to the number of single cells plated to determine organoid formation 

rate. Results were tabulated and plotted using Prism 9 (GraphPad) with unpaired t test. 
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Murine Organoid Antigen Processing and Presentation Assay 

Organoids were formed and cultured for one week in Matrigel and Mouse Intesticult media. They 

were collected and reseeded without Matrigel in media with 100 µg/mL DQ-Ovalbumin (Thermo 

Fisher Scientific) for approximately 24 hours. After 24 hours, organoids were fixed, stained 

overnight with antibodies against GFP and Ia/Ie-AF647 (1:100; Biolegend), and analyzed using a 

BD LSRII 5-laser flow cytometer. Flow data were analyzed using Cytobank 234. 

  

Murine T cell Activation Assay 

Naïve OTII cells were isolated from the spleen of 8–10-week-old OT-II mice. Cells were purified 

using the naïve CD4+ T Cell Isolation Kit (STEMCELL Technologies) following manufacturer’s 

protocol. CD11c+ DCs were isolated using MagniSort™ Mouse CD11c Positive Selection Kit 

(Thermo Fisher) per manufacturer’s recommendations. Murine Organoids were dissociated with 

TrypLE containing 10 μM Y-27632 for 15 minutes at 37 °C while shaking. Cells were counted 

using Bio-RAD TC20 automated cell counter for use in the antigen presentation assay. 

To track T cell proliferation, naïve CD4+ OTII T cells were labeled using 5 mM CellTrace Violet 

(Thermo Fisher) by incubating for 20 minutes at 37°C, 5% CO2 in PBS and then an equal volume 

of T cell media containing serum was added and incubated an additional 5 minutes at 37°C, 5% 

CO2 to quench free dye. 5x104 labeled OTII CD4+ T cells were plated in a 96-well round bottom 

plate with 2.5x105 organoid-dissociated single cells (without Matrigel) or 2.5x105 CD11c+ DCs 

and in the presence or absence of 50 μg/mL ovalbumin peptide (Anaspec), spun at 350 x g for 5 

minutes and then incubated at 37°C, 5% CO2 for 72 hours. Following co-culture, cells were 

washed with PBS, stained with an antibody cocktail and assessed via flow cytometry. Wells 

containing cells were pipetted up and down to resuspend all cells and placed in 5mL Falcon™ 

Round-Bottom Polystyrene Tubes. These were centrifuged briefly at 350 x g for 3 minutes at 4°C, 

washed in FACS buffer (PBS w/o Ca2+Mg2+, 2% FBS, 2 mM EDTA), and resuspended in 100 μL 
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FACS buffer containing the antibody cocktail and stained for 15 min at 4°C. Cells were spun down 

as before, washed in FACS buffer, and were resuspended in 250 μL of FACS buffer and kept on 

ice until acquired on a 4-laser Fortessa. Cytometry data analysis was done using FlowJo v10 

software and T cell proliferation results were tabulated and plotted in GraphPad Prism 9 using 

ANOVA with post-hoc Tukey tests. This protocol was adapted from 196. 

 

MxIF, Single-cell Segmentation and Image Analysis 

Cell segmentation was accomplished using the MANDO pipeline 235. Briefly, random forest pixel 

classification on manually annotated images was used to define tissue and subcellular regions in 

each image. An initial watershed segmentation using cell nuclei as seed points and the learned 

cell membranes as boundaries was followed by re-segmentation of objects containing internal 

cell membranes. For every identified cell, image intensities for each marker were then calculated 

as well as morphological features such as cell size and location. For quantifying marker positive 

cells in MxIF, we fitted linear mixed effects models on the logit transformed cell proportions within 

epithelial or stromal tissue compartments. We estimated the proportion of marker positive cells 

within each compartment, by dividing the number of marker positive cells by the total number of 

cells within the tissue compartment. We added ½ to the numerator and denominator of the 

proportion to accommodate zero proportions; this is equivalent to a Bayesian estimator for the 

proportions using a noninformative beta prior. We fit the logit transformed proportions using a 

linear mixed effects model with an interaction between tissue compartment (epithelium/stromal), 

tissue type (AD/SSL), and a random effect for slide to account for the correlation between regions 

on a slide 236. We estimated differences between tumor types within each tissue compartment 

using emmeans 237. We computed false discovery rate (FDR) adjusted p-values using Benjamini-

Hochberg. For murine tissue, tumor areas were established by a beta-Catenin mask and cell 

counts for image quantification were determined the same way as human tissues. 

  



 

 
 

125 

MxIF and MxIHC, Pixel-based Image Quantification 

MATLAB was initially used to create masks to mark positive pixels of each cell type marker from 

MxIF images 238. The tumor region was divided into an epithelial region (masked by beta-Catenin, 

pan-Cytokeratin, and NaKATPase expression) and a stromal region (tumor mask minus the 

epithelial mask).  An overlay of OLFM4, MUC5AC, and PANCK was used as a guide for identifying 

stem (OLFM4+) and metaplastic (MUC5AC+) epithelial (PANCK+) regions, which were then 

manually demarcated. Each region was validated by quantifying MUC5AC and OLFM4 positive 

pixels within the regions. Cell types were defined by combinations of marker masks; for example, 

CD4+ T cells were defined by intersecting CD4 and CD3 pixel masks. On the other hand, CD8+ 

T cells were defined using the CD8 marker. We then calculated the fraction of pixels occupied by 

each cell type, normalized to the number of pixels of each tumor region. For example, a ratio of 

intraepithelial CD8+ cells to stromal CD4+ T cells was calculated from two sets of values 

calculated in this way. The measurements from all regions of the same type within each tumor 

was used to calculate a mean value; thus, each patient is a biological replicate. One-way ANOVA 

with Dunnett post-test was used for statistical testing. For IHC images, a similar process was 

used, with whole tumor regions demarcated by tissue morphology using hematoxylin nuclear 

counterstain. Antibody stains (3,3’-diaminobenzidine - DAB or 3-amino-9-ethylcarbazole - AEC) 

were spectrally unmixed such that individual marker masks can be generated and quantified as 

above. 
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Chapter V - Discussion and Future Directions 

 

Recreated from: 

Chen, B., Scurrah, C. R., Mckinley, E. T., Simmons, A. J., Ramirez-Solano, M. A., Zhu, X., 

Markham, N. O., Heiser, C. N., Vega, P. N., ... Coffey, R., Shrubsole, M., & Lau, K. S. (2021). 

Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in 

human colorectal polyps. Cell. https://doi.org/10.1016/j.cell.2021.11.031 

 

Discussion 

We present a multi-omic analysis of the two major subclasses of pre-malignant polyps in the 

human colon: ADs and SERs that include SSLs and HPs. While the oncogenesis, progression, 

and stem cell origin of ADs and MSS CRCs are well-substantiated from human data and mouse 

models 110,111,132, our atlas provides novel insights into the less-studied SERs by comparing their 

biology to ADs. AD and MSS CRC cells exhibit higher degrees of stemness compared to normal 

colonic stem cells, consistent with what is known about WNT dysregulation in these tumors 239,240. 

Importantly, we present evidence that SSLs and other associated SERs arise from gastric 

metaplasia based on a pyloric gland gene signature expressed in SSCs. In SERs, MUC5AC+ cells 

were observed extending from the surface mucosa to the crypt base, consistent with the notion 

that these lesions originate at the luminal surface and extend downwards. This pattern contrasts 

markedly with ADs, which arise from the stem cell compartment at the crypt base. These findings 

provide support for both a top-down (in SSLs) and bottom-up (in ADs) model of colorectal 

tumorigenesis, and may help reconcile a long unresolved debate in the field 241,242. 

  

By definition, metaplasia is a process in which differentiated cells transition into cell types that are 

non-native to the tissue. Metaplasia often arises in response to damage of the epithelium, which 

activates a regenerative program to direct the conversion to reparative mucous-secreting lineages 

https://doi.org/10.1016/j.cell.2021.11.031
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resembling those of pyloric glands 243. Metaplastic programs have been observed in the stomach 

(spasmolytic polypeptide-expressing metaplasia, SPEM) 244,245, pancreas (acinar to ductal 

metaplasia, ADM) 246, and small intestine (ulcer-associated lineage, UACL) 247–249. In SERs, we 

observed mis-expression of genes found in the gastric pylorus, reversion to a fetal gene program, 

and loss of regional identity with reduced CDX2 expression. In the postnatal gut, loss of Cdx2 

expression in mice results in a rostral shift of tissue identity with expression of gastric markers 152. 

It is important to distinguish metaplastic loss of regional identity from dedifferentiation of 

committed cells into less differentiated and even stem cell state 250–253, because the latter still 

retains the identity of the original organ. We propose a new paradigm in which damage in the 

proximal colon, possibly from microbiota, initiates a regenerative process resulting in loss of CDX2 

expression, gastric metaplasia, and reversion to a more embryonal state. Response to damage 

may activate survival/proliferative signaling pathways that eventually selects for activating BRAF 

mutations in metaplastic cells. Reversion to a fetal developmental identity is a feature of WNT-

independent tumorigenesis found in recent mouse models 254, which can be triggered by MAPK 

activation either genetically by Braf activating mutations, response to epithelial damage, or stress 

triggered by mismatch repair deficiency 255,256. Critically, Braf mutations in mouse models must be 

accompanied by a “second hit”, such as perturbation of TGF-β signaling, for tumor induction 

154,254,256. This “second hit” may be provided by signals from the microenvironment. 

  

Methylation of the CDX2 locus has been frequently observed in serrated tumors, potentially 

leading to its downregulation, and loss of Cdx2 can provide the “second hit” in a serrated 

tumorigenesis model  154. Increased methylation has been found to be dependent on extrinsic 

factors such as aging 257, consistent with the preponderance of BRAFV600E mutations in MSI-H 

CRCs in older individuals 258. Shown more recently, microbial dysbiosis can also be an 

environmental trigger for hypermethylation 221. Antibiotic suppression of the microbiota reduces 

colonic tumorigenesis in a Braf mutant model 256, whereas in another study, enterotoxigenic 
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Bacteroides fragilis (ETBF) infection is a required trigger for tumorigenesis in the proximal mid-

colon in a Braf mutant mouse model 221. In the latter report, the earliest events of the ETBF 

response in epithelial cells prior to tumor formation occur at the colonic mucosal surface, where 

colonic epithelial cells and luminal contents interact. The importance of the microbiota to this type 

of tumorigenesis is underscored by the co-occurrence of polymicrobial biofilms in ~90% of right-

sided CRCs, which are enriched for serrated tumors, versus ~12% biofilm-positive left-sided 

CRCs 259. Considering the crypt-to-lumen vertical axis of the colonic mucosa, differentiated cells 

at the luminal surface are exposed to the microbiota, are more susceptible to damage, and utilize 

repair mechanisms reliant on cellular plasticity. Conversely, stem cells residing in the crypt base 

are more protected from luminal stressors 98. We speculate that conventional adenomatous and 

serrated tumorigenesis originate from fundamentally different mechanisms: the former from DNA 

replication-induced mutations in continually proliferating stem cells and the latter from damage 

and repair at the colonic surface triggered and maintained by foreign stressors in the luminal 

environment. Distinct origins of neoplastic cells then select for different mutational pathways 

required for tumorigenesis. 

  

Our data support distinct origins of serrated and conventional tumors based on histological, 

genetic, and transcriptomic evidence. Several of our findings have significant clinical relevance. 

SSLs can be challenging to identify as the diagnosis is based on the presence of a single 

“architecturally distorted serrated crypt” as defined by the recently revised WHO classification 260. 

Presently, there are no accepted molecular markers to aid in the diagnosis. Based on our findings, 

MUC5AC staining, coupled with the absence of CDX2 staining, may confirm the diagnosis of 

lesions suspicious for SSLs. In addition, the cytotoxic immune response in SSLs is observed to 

precede hypermutation in human tumors, which is consistent with recent mouse modeling 

showing the same order of events 221. Hypermutation is a characteristic of MSI-H CRCs, and the 

resulting high neoantigen load is thought to be the critical driver of the cytotoxic microenvironment. 
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What then drives the cytotoxic immune response without hypermutation? Our human data, 

supported by mouse modeling experiments, implicate the differentiation status of neoplastic cells. 

Specifically, tumors arising from differentiated cells are more adept at antigen presentation and 

setting up an adaptive immune environment similar to that of an anti-microbial response. This 

concept is consistent with normal mouse intestine where antigen presentation by intestinal stem 

cells positively correlates with the degree of differentiation 196.  Luminal microbial antigen passage 

has also been shown to be orchestrated by colonic goblet cells that potentially develops from 

Mist1+ progenitors described in this study 261. Strikingly, driving tumorigenesis via WNT pathway 

activation in non-stem cells is sufficient to promote a more cytotoxic immune environment. How 

tumor cells with a differentiated phenotype acquire and maintain immuno-stimulating properties 

remains to be determined. In contrast, acquisition of stem cell characteristics by MSI-H CRCs 

contributes to spatial intratumoral heterogeneity: metaplastic compartments retain their 

association with cytotoxic immune cells, and stem cell compartments become associated with 

immunosuppressive cells and signals. Colon cancer stem-like cells have been shown to 

downregulate their antigen-presentation machinery 262,263. The degree to which MSI-H CRCs 

acquire stem-like properties is variable; future studies will be needed to determine whether 

acquisition of “stemness” in these cancers impacts the likelihood of an immunotherapeutic 

response. The top-down spatial organization, differentiated and metaplastic transcriptional 

program, and cytotoxic immune environment associated with SSLs may open novel strategies for 

interception of cancer progression, including better informed interval guidelines for surveillance, 

chemoprevention, or pre- and pro-biotic therapies. 

 

Future Directions 

Next-generation computational methods 

The work presented in this dissertation was only made possible by the application of approaches 

beyond their originating disciplines. Complexity science is interdisciplinary in nature, and it is 
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evident that complex systems, regardless of scale, share generalizable properties that may be 

better understood through their joint study. A concrete example is the development of my 

analytical HCI framework using methods originating in single-cell transcriptomics; some of these 

methods, such as inflection point optimization, originate in fields with further degrees of separation 

such as electrical engineering and signal processing. Inverting this pattern, our understanding of 

biological systems may even stand to benefit from the generalization of HCI complex systems 

analyses. This may be done by borrowing HCI process mining methods, used to understand 

behavioral workflows, and applying them to mining biological pathways (Figure 30). All that is 

required for this type of analysis in information systems is categorical time series data, typically 

logging user interactions. Arguably, biological pathways are also sequential executions of 

functional units, but instead of user clicks and roles, biological system functions may be executed 

through the expression of genes and coordination of translated proteins. Single-cell 

transcriptomics aptly fulfills the requirements for this type of process-oriented analysis, given that 

genes represent quantifiable, categorical variables and RNA velocity establishes a relative 

timeline of gene transcript expression. Thus, the theoretical output of process mining 

transcriptomes would be a process tree designating relative timelines of probabilistic gene 

expression, analogous to signaling pathway diagrams.  
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Figure 30. Hypothetical RNA velocity-based biological process mining. 

 

 

In characterizing human tissue, one of our approaches introduced levels of abstraction by 

reframing gene expression into regulatory networks and describing the resulting clusters of cells. 

A strange loop arises through the application of the same clustering method to resulting regulatory 

networks themselves. Briefly, strange loops are a notable phenomenon which may arise in 

complex systems, where hierarchical levels of abstracted information become “tangled” in self-

reference 264. Illustrating this is the question of what is upstream and what is downstream of 

different layers of biological information: Where is the ground level in the central dogma of 

multicellular organisms, the DNA which originates translated RNA or the protein which enables 

the propagation of DNA? Here, an attempt to describe the gene regulation of single-cells, instead, 

becomes a top-level description of coordinated gene expression shared across all cells 

comprising the tissue. This unusual behavior of hierarchical abstraction remains poorly 

characterized in the context of biology and is likely tied with the emergent properties of complex 

systems. Importantly, this super-regulon concept is not unique among contemporary studies, with 

logically homologous frameworks published as Ecotypes and multicellular-immune hubs. Each of 

these frameworks involves the abstraction of regulatory programs across heterogeneous mixtures 

of single cell transcriptomes through the application of clustering to a feature space (genes and 

regulatory programs) as opposed to the observation space (cells and cell populations). Building 

on these ideas, next generation frameworks for exploring multicellular regulatory networks may 

involve yet another layer of abstraction. 

 

Through the course of this thesis work, a major focus was the application of methods, whether 

they were existing or were novel developments. Given these applications, several methods should 

be highlighted for potential algorithmic improvement. Namely, CytoTRACE, p-Creode, and 
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SCENIC may likely be improved through the incorporation of regulon-based modalities, formal 

hierarchical models, and data-driven sampling methods. First, CytoTRACE is the method used in 

our characterization of stem and developmental potential which is trained on genes correlated 

with transcriptional diversity. Evidenced by our organoid experiments, this algorithm produces 

scores that are highly correlated with self-renewing properties; still, issues associated with the 

utilization of this algorithm originate in three aspects: its implementation in the R programming 

language, the confounding effects of batch integration, and memory utilization in large datasets. 

Given our established pipeline of transcriptomic quality control and scanpy-based analysis, the 

seamless integration of CytoTRACE would benefit from a python implementation with speedups 

drawing from the AnnData data structure and python parallelization libraries. Batch integration 

and memory utilization may be jointly addressed simultaneously through model training on 

regulons as opposed to genes. This is due to the batch-robust properties of the regulon feature 

extraction and the decreased feature load incorporated into the CytoTRACE regression model, 

yielding a lighter-weight calculation.  

 

The benefit of these CytoTRACE improvements would propagate to our implementation of p-

Creode as well, as the detection of root node endstates are typically associated with high 

CytoTRACE scores since stem-like cells are often the progenitors of a developmental process. 

Albeit a user input-heavy process, core functionality of p-Creode is its denoising process 

implemented through density-based down-sampling. With the recent publication of multiple 

intelligent sampling methods, namely Geosketch and Hopper, this denoising process may be 

automated in a streamline manner. Such methods, instead of relying on manually set density 

thresholds, learn the transcriptomic manifold and selectively sample from each of its regions, 

resulting in the balanced detection of rare and common cell types. Additionally, newer modalities 

of graphing libraries, along with their features, would improve the runtime and capabilities of p-

Creode. Examples of this are the graph-tool library and the schist python packages, acting as 
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wrappers around C++ frameworks. These modalities allow for up to a 10-times, parallelized 

speedup of several graph-based calculations which may be used alongside other Python parallel 

processing implementations. By speeding up the runtime and sampling quality of each p-Creode 

run, more runs of higher quality may be incorporated into the ensemble of graphs for scoring. 

Outside of speedups, these graph libraries offer alternative graph architectures for trajectory 

inference, such as relative neighborhood graphs or stochastic block models. 

 

Impact on understanding the human GI tract 

Following the biological intuitions presented by my work published in Cell, the process of 

metaplasia in the human gastrointestinal tract may be more common than previously thought. The 

work described in this thesis includes a single-cell resolution atlas of human adenomas and 

serrated polyps, where serrated polyps arise from metaplasia as opposed to adenomatous stem 

cell expansion. Importantly, this work shows that cytotoxic immunity in serrated polyps occurs 

independently of hypermutation, and instead such distinct immune microenvironments track 

tumor cell- differentiation states. Our defined regulatory networks and gene signatures, in the form 

of regulon weighting matrices and gene sets, represent tangible abstractions of biological 

processes involved in metaplasia; these are generalizable for the characterization of any set of 

single-cell transcriptomes. 

 

Extending the transcriptomic quality control pipeline we devised during the creation of this cell 

atlas, the deep characterization of biological processes occurring within dying cells may lead to 

novel methods of droplet classification. For example apoptosis, anoikis, and netosis are three 

tightly regulated processes in which a pathway of genes initiates the dissolution of cells. Once 

characterized in the context of single-cell transcriptomics, regulatory networks and gene sets may 

then be generalized for the detection of undesirable transcriptomes during the quality control 

process. Alongside this, the understanding of pervasively expressed mitochondrial or ribosomal 
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genes may lay the foundation for the subcategorization of previously defined cell states, like those 

involved in stem cell regeneration and proliferation. 

 

By validating that T cell proliferation and the presentation of antigen processing machinery vary 

depending on tumor cell antigenic properties, our work refines the scope for future studies 

involving T cell regulation. Though macrophage and other myeloid-lineage cell type interactions 

were not the focus of our study, the investigation of some properties, such as macrophage 

localization and antigen processing, stand to benefit as our atlas represents an early snapshot 

during tumorigenesis. Inflammatory processes which may be regulated through macrophages, 

such as the IL-1R response, could be investigated for potential roles in crypt regeneration using 

our atlas as a starting point. In a similar vein, a shortcoming of this work is its lack of -omics level 

spatial analysis, which would benefit the understanding of juxtacrine signaling in the 

microenvironment. Stromal characterization through cell-cell interaction methods, especially 

those incorporating the gestalt of signaling cascades and their regulatory networks, still need to 

be defined alongside paired spatial transcriptomics. 

 

Metaplasia, and closely related biological processes such as inflammation and stress or damage 

response, have been nominally characterized before in the context of the lower GI tract. Using 

multiple layers of molecular information, Nyström and co-authors described inter-cryptal goblet 

cells alongside noncanonical goblet cells which resembled the mucin-producing SSCs observed 

in colonic polyps. These similarities were evidenced by the expression of genes related to 

inflammation and damage response, as abstracted through gene set enrichment analysis. Further 

investigation may yield a shared process linking the behavior of these enterocyte-like goblet cells 

to a disruption of homeostasis that could result in serrated polyps or eventually MSI-H cancer.  
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