
Progressively Stacking Differentiable Architecture Search (PS-DARTs) for

Recurrent Neural Networks (RNNs)

By

Yubo Du

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

December 18, 2021

Nashville, Tennessee

Approved:

Gautam Biswas, Ph.D

Marcos, Quinones Grueiro, Ph.D

TABLE OF CONTENTS

Page

DEDICATION . ii

1 Introduction . 1

2 Background and Related Work . 4

2.1 Problem Formulation . 4

2.2 Traditional Approaches . 4

2.3 Deep Learning Models . 5

2.4 NAS . 6

3 Proposed Approach . 8

3.1 Search Space . 8

3.1.1 Architecture Parameters . 10

3.1.1.1 Activation Selection Module (ASM) 10

3.1.1.2 Addition Module (AM) 10

3.1.1.3 Tied Module (TM) . 11

3.1.1.4 Connections Among Nodes 11

3.1.2 Initializing Architecture Parameters and Deriving Discrete Archi-

tectures . 12

3.2 Progressively Stacking Search Algorithm 13

3.2.1 Definitions in Graph . 14

3.2.2 Discrete Current Node . 14

3.2.3 Add New Node . 15

3.2.4 Pretrain Parameters . 15

3.2.5 Update Parameters and Architecture Parameters 15

ii

4 Experiments . 16

4.1 Datasets . 16

4.2 Methods for Comparison . 17

4.3 Metrics . 18

4.4 Experiment Details . 18

4.4.1 Hyperparameters . 18

4.4.1.1 Hyperparameter Search 19

4.4.1.2 Constraints on Hyperparameters 19

4.4.2 Experiment Devices . 20

4.5 Results and Analysis . 20

4.5.1 Comparison with Traditional Approaches & Deep Learning Models 21

4.5.2 Comparison with DARTs . 22

5 Conclusion . 24

iii

LIST OF TABLES

Table Page

4.1 Comparison with state-of-the-art models on three time series datasets: Red

means the best among all approaches. Green means the second best. We re-

peat the experiments on each task for 5 times and report the mean/standard

deviation information. * means we reimplement DARTs on MTS datasets. . 21

4.2 Comparison of DARTs and PS-DARTs on searching efficiency 22

iv

LIST OF FIGURES

Figure Page

2.1 DAG representation of the RNN cell: To avoid the cycles in the graph, each

node is assigned an index and only accepts the input from the nodes with

lower indexes. In this example, there are 10 possible connections among

nodes in total, colored as blue or red. The set of arrows in red color is one

possible combination of connections among the nodes. 7

3.1 Search space in a single node i at time step t: the modules labeled as ’A’

are addition modules (AM); the modules labeled as ’act’ are activation se-

lection modules (ASM); the arrows pointing to each AM are possible latent

representations for AM’s input, xt is the input at time t; ht−1 represents the

hidden states from last time step t− 1; Ni
input,t is the output from previous

node for node i at time t; Ni
out put,t is the output for node i at time t. To

distinguish the input of A2 from other ASMs, we add black outlines to the

arrows which mean no linear layer will be added to ht−1 or Ni
input,t 9

3.2 Progressive search: First, add node N1 to the graph and search the architec-

ture of it. Second, fix architecture of discretized N1, add node N2 and edge

e1,2 to the graph and search the micro architecture in node N2. Third, fix

architecture of discretized N3, add node N3, edge e1,3 and e2,3 to the graph

and search the micro architecture in node N3. 13

v

Chapter 1

Introduction

Multivariate time series data is important in our daily life ranging from stock prices,

traffic occupancy of highways and electricity consumption of buildings, etc. Predicting fu-

ture information based on historical observations helps people allocate resources properly.

For example, based on the prediction of hourly traffic occupancy for different regions, the

traffic control center can divert the traffic flow of the popular highways and distribute the

police for different districts before the peak hours. With an accurate prediction, congestion

can be alleviated and potential accidents can be reduced.

To solve the multivariate time series prediction (MTSP) problems, quite a lot of ideas

have been proposed, which can be divided into traditional methods [1, 2, 3, 4, 5] and deep

learning approaches [6, 7, 8, 9, 10, 11]. In the traditional methods, a large body of work

is based on the idea of auto-regression models which fit previous observations and future

information into regression equations. Although these methods are simple yet efficient,

they can not always capture short/long-term repetitive patterns in time series. Applica-

tion data in the real-world usually shows cycles related to the hour of the day, the day

of a week, the month in the year, etc. To improve this ability, deep learning approaches

such as recurrent neural network (RNN) based long short-term memory model (RNN-

LSTM) [12, 13, 14] and Gated Recurrent Unit (RNN-GRU) [7], convolution neural net-

works (CNN) [9] are proposed. Recently deep learning models mentioned above were

combined with attention models to further improve their abilities on capturing complicated

repetitive patterns [11, 10]. However, these manually designed models required much hu-

man effort and time on adjusting the architectures and performed worse on data without

repetitive patterns than traditional approaches.

Neural Architecture Search (NAS) was first introduced to solve the time and human ef-

1

forts in manually designing deep learning models. In the early work [15], the reinforcement

learning (RL) or evolutionary agents [16] was used to evaluate and predict the performance

of architectures by taking validation loss as the reward after each training cycle. However,

these approaches demand enormous computing resources due to the numerous training and

validation cycles required to learn. To improve the efficiency of NAS, Differentiable Ar-

chitecture Search (DARTs) [17] was proposed. In this work, the discrete architecture of

RNN such as the connections of layers and choice of activation functions were relaxed to a

continuous space so that they could be updated through gradient descent. With this frame-

work, the controller was not needed anymore and the search can be done in one day with

only one GPU.

When applying DARTs to design RNNs for the MTSP tasks, we found that their search

space was constrained to the recurrent highway network (RHN) [18] architecture, which

limited the ability to capture dynamics in data. As shown in Fig. 3.1(a), the search space

of a single RNN layer in DARTs is the same as RHN except for one activation labeled as f

was decided by the search.

In our work, we extend the search space of RNNs more than millions larger than DARTs

and design a progressive stacking approach that enables the search to finish in a competitive

time. As shown in Fig. 3.1(b), we consider every activation function, the input components

for each activation function, and the decision about whether to tie the input between two

gates to be searchable. With this design, the search space is increased by 2e85 which is

proved in section 3.1.1.4 and the architecture is designed properly for the data either with

or without repetitive patterns. To avoid memory and searching time explosion brought by

the large search space, we further design a progressively stacking framework that conducts

the search in a one-by-one manner for each node instead of searching all of them at once.

The contributions of our work can be summarized as followings:

• Larger Search Space: We relax the constraints on the search space by adding all

activation functions, linear layers and decision on whether to tie the input for gates

2

into the search. Thus, we are able to explore architectures that fit better for each

specific task.

• Less Hyperparameter Tuning: The architectures with limited hyperparameter search

achieve better or competitive results compared with the manually designed deep

learning models with exhaustive hyperparameter search.

The remainder of this paper is organized as follows. In chapter 2 we review related work

and background knowledge. Then, in chapter 3 we describe the proposed method. Next,

we present and analyze our approach on three real world time series datasets in chapter 4.

Finally, we conclude in chapter 5.

3

Chapter 2

Background and Related Work

In this part, we first presents the definition of MTSP. Then, we introduces the traditional

approaches and deep learning models that have ever been applied on this problem. After

that, we explains the background knowledge about DARTs where PS-DARTs derives from.

2.1 Problem Formulation

In MTSP task, given a time series data X = x1,x2, ...,xt−1, where xi ∈ Rn, n is the num-

ber of features, we want to predict the information at xt−1+h, where h is a fixed horizon. We

denote this prediction as yt−1+h, and the ground-truth value as ŷt−1+h = xt−1+h. Moreover,

for every task, we make an assumption that there is no useful information before the win-

dow thus we can use only xt−w,xt−w+1, ...,xt−1 to predict xt−1+h, where w is the window

size.

2.2 Traditional Approaches

Traditional approaches for time series prediction tasks can be further divided into lin-

ear and non-linear models. The most popular linear model is the autoregressive integrated

moving average (ARIMA) [1] which incorporated other autoregressive time series models,

such as AR, moving average (MA), and autoregressive moving average (ARMA). Linear

support vector regression (SVR) [19] model was also designed to solve time series forecast-

ing problems by treating them as typical regression problems with time-varying parameters.

However, these models are limited to only linear univariate time series. For solving MTSP,

a generalization of AR-based model called vector autoregression (VAR) [20] was proposed.

To promote the abilities to capture the nonlinear properties for MTSP tasks, one of the most

popular approaches based on kernel methods called gaussian process (GP) [21] was come

4

up with. However, all the approaches mentioned above failed to capture the complicated

features such as repetitive patterns.

2.3 Deep Learning Models

RNNs have been used widely for time series forecasting because of their abilities

on exhibiting temporal dynamic behaviors. Among them, the most popular variants are

long/short-term memory models (LSTMs) [12, 13, 14] and gated recurrent unit (GRU) [7]

whose success was credited to the tricky designing of the gates. For example, to capture the

information in a long series of data efficiently, GRU implemented a reset gate to deal with

which short-term memory should be kept and an update gate for deciding which long-term

memory should be deleted. When applying them to real-world data with different charac-

ters, we need further adjust the activation functions of each gate or connections among gates

to better express different properties. But manually adjusting these structures took a lot of

time due to the larger numbers of the possible combinations. In our work, we overcame

this problem by using NAS to automatically design the appropriate RNN representations

in several GPU hours.

Long-and short-term temporal pattern network (LSTNet) [10] was a recent GRU-based

approach. It added a CNN layer which lowered down the dimension of features followed

by the GRU layer with skip connections. A temporal attention module between distant

cells along with the local connections between adjacent cells was also added to improve

the models’ ability to capture more important features.

Another representation work was temporal pattern attention-based LSTM (TPA-LSTM) [11].

It proposed a set of filters to extract time-invariant temporal patterns. Then it combined an

attention mechanism that selected the relevant variables as opposed to the relevant time

steps with the LSTM model.

Although these two models achieved state-of-the-art accuracy in real-world datasets,

they showed less power for dealing with the data without repetitive patterns and need man-

5

ual efforts in designing the architecture.

2.4 NAS

Different from previous models, NAS aims to design the deep learning model automat-

ically. Thus, the definition of the search space where the search is conducted is important.

In NAS, the RNN cell at time step t is defined as a directed acyclic graph (DAG) consists

of N ordered nodes as shown in Fig. 2.1. To avoid the cycles in the graph, a node should

only accept the output from the nodes with lower indexes as it input. For the definition of

the architecture inside each node, recent works [22, 17, 23] take each node as one layer of

recurrent highway network (RHN) [18] as Eq. 2.1 - 2.2 for the first node in the cell and

Eq. 2.3 - 2.4 for the other nodes, where x(t) is the RNN signal x at its recurrent time step

t; h(t)l is the output of node l at time t; for l = 2,3, ...,N, node hl receives its input from a

layer jl ∈ h1, ...,hl−1; W (x,c), W (c)
l,jl

, W (c)
0 ,W (x,h), W (h)

l,jl
, W (h)

1 are parameters in linear layers.

Only the activation function fl as well as the connections among nodes jl in the Eq. 2.4

attends into the search, all the other parts like c(t)1 , h(t)1 and c(t)l keeps unchanged.

c
(t)
1 = sigmoid(x(t)W (x,c)+h

(t−1)
N W

(c)
0) (2.1)

h
(t)
1 = c

(t)
1 ⊗ tanh(x(t)W (x,h)+h

(t−1)
N W

(h)
1)+(1−c(t)1)⊗h(t−1)

N (2.2)

c
(t)
l = sigmoid(h(t)

jl
W

(c)
l,jl

) (2.3)

h
(t)
l = c

(t)
l ⊗ fl(h

(t)
jl
W

(h)
l,jl

)+(1−c(t)l)⊗ht
jl

(2.4)

A state-of-the-art work of NAS called DARTs which used the same search space as

mentioned before was proposed recently. By assigning all possible components of a RNN

model with continuous weights (called architecture parameters in this paper), it could up-

date the parameters in linear layers and architecture together by gradient descent. However,

when it was applied to the MTSP tasks, the constraints in the search space limited its ability

6

Figure 2.1: DAG representation of the RNN cell: To avoid the cycles in the graph, each
node is assigned an index and only accepts the input from the nodes with lower indexes.
In this example, there are 10 possible connections among nodes in total, colored as blue or
red. The set of arrows in red color is one possible combination of connections among the
nodes.

to adapt to the data with different properties.

7

Chapter 3

Proposed Approach

This chapter presents PS-DARTs in details: Section 3.1 demonstrates how we extend

the search space for each node in DARTs. At the end of this section, we also describe

how to generate discrete architectures from the search results. Section 3.2 shows how the

progressively stacking framework conducts the search for each node one by one together

with the connections of the whole graph.

3.1 Search Space

In our work, we follow the representation of the connections inside the RNN cell as

Fig. 2.1. For the microarchitecture inside each node, inspired by the learnable gating

framework in vanilla RNN [24], long short-term memory model (LSTM) [14, 25], peep-

hole LSTM [12, 26], gated recurrent unit (GRU) [27] and the variants of LSTM/GRU listed

in [28], we formulate the search space of each node as a combination of different gates and

relax the constraints of RHN backbone. As shown in the Fig. 3.1(b), each node consists of

6 activation selection modules (ASM), 4 addition modules (AM) and 1 tied module (TM),

where the ASMs and AMs are used to search appropriate activation operations and latent

representations, respectively. TM decides whether to share the input between AM1 and

AM3 like RHN. All modules are embedded in the skeleton with 2 multiplication and 1

addition operation, which remain constant and are not part of the search space.

To learn how the combination of different computational components affects the model’s

performance through back propagation, each computational component is assigned a weight,

which is also called architecture parameters.

8

(a) Search space in previous work: For the node with
index i and i > 1, there is only the module labeled as
f can attend into search. For the input of ASM A1-
A4, only the output from previous nodes is considered.
Note, xt and ht−1 are only fed into the first node which
is fixed to RHN and will not attend into the search.

(b) Search space updated: Compared with the dia-
gram on the left, we extend each part where we can
add activation functions and the decision of whether
to tie inputs between A1 and A3 to be searchable.
Besides, every node can consider taking xt and ht−1
as possible inputs regardless of the index.

Figure 3.1: Search space in a single node i at time step t: the modules labeled as ’A’
are addition modules (AM); the modules labeled as ’act’ are activation selection modules
(ASM); the arrows pointing to each AM are possible latent representations for AM’s input,
xt is the input at time t; ht−1 represents the hidden states from last time step t−1; Ni

input,t is
the output from previous node for node i at time t; Ni

out put,t is the output for node i at time t.
To distinguish the input of A2 from other ASMs, we add black outlines to the arrows which
mean no linear layer will be added to ht−1 or Ni

input,t .

9

3.1.1 Architecture Parameters

Architecture parameters consist of five parts: ASM architecture parameters αASM, AM

architecture parameters αAM, tied architecture parameters αT M, and connection architec-

ture parameters αN , whose details and their corresponding modules will be introduced in

the following sections.

3.1.1.1 Activation Selection Module (ASM)

There are four activation functions in each ASM: sigmoid, Relu, tanh, and identity,

noted as S,R,T, Id,S−, respectively. Each of them is assigned a weight (αASM)o
j , where

o ∈ S,R,T, Id,S−, j is the index of ASM module, 1 ≤ j ≤ 6. Eq. 3.1 shows how the ASM

normalizes (αASM) j based on the input:

ASM j(x) = ∑
o

ReLu(so f tmax((αASM) j)
o−CASM)KASM ∗ fo(x) (3.1)

, where fS(x)= Sigmoid(x), fR(x)=LeakyRelu(x), fT (x)=Tanh(x), fId(x)= x, fS−(x)=

1− Sigmoid(x), CASM and KASM are constant coefficients. Because the architecture is the

same across different time steps and each node is optimized one by one, we ingore the time

step and the node index in the definition of the variables for all architecture parameters

assuming the current time step is t and the node index is i unless explicitly stated.

ReLU activation after shifting operation enables us to update the unwanted weights

to 0 or close to 0. Thus, the result of the the architecture parameters is close to discrete

representation, which can reduce degradation brought by discretizing step.

3.1.1.2 Addition Module (AM)

Each possible latent representation in AM will be assigned a weight (αAM)k
j, where j

is the index of AM module, 1 ≤ j ≤ 4; k is the index of latent representations, 1 ≤ k ≤ l j;

l j is the number of all possible latent representations. Eq. 3.2 shows how AM normalizes

10

αAM based on the input:

AM j(L j) =
l j

∑
k

ReLU(so f tmax((αAM) j)
k−CAM)KAM ∗Lk

j (3.2)

, where CAM and KAM are constant coefficients. As shown in Fig. 3.1(b), for j ∈ {1,3,4}:

l j = 4, L j = [W x
j xt ,W

h
j ht−1,W

N
j N

i
t ,Wb] , where xt is the input x at time step t; ht−1

is the hidden state at time step t− 1; N i
t is the input of node i at time step t; Wb is bias;

W x
j ,W h

j andWN
j are parameters of the linear layers. For j = 2: l j = 2, L j = [ht−1,N

i
t].

3.1.1.3 Tied Module (TM)

To cover more architectures, tied architecture weightsαT is introduced to decide whether

to share weights between AM1 and AM3. Eq. 3.3 shows how αT is normalized:

T M(x) = (α′T M)1 ∗ (1−AM1(x))+(α′T M)2 ∗AM3(x) (3.3)

α′T M = ReLU(so f tmax(αT M)−CT)KT (3.4)

, where α′T M = [(α′T M)1,(α′T M)2], CT and KT are constant coefficients.

We also add a loss function here to avoid that two options have equal weights, in which

case T M(x) keeps a constant value.

LT =−((α′T M)1− (α′T M)2)∗ ((α′T M)1− (α′T M)2) (3.5)

3.1.1.4 Connections Among Nodes

Similar to the work in DARTs [17], the nodes are sorted by their indexes and the con-

nections can only start from the nodes with lower indexes to the ones with higher indexes.

Fig. 3.2 shows an example of search space among nodes, where e(n1,n2) represents the edge

from node n1 to node n2 and it will be assigned an weight (αN)
n1
n2 during search. Eq. 3.6

11

shows how (αN)n2 is normalized and the input for node n2 is calculated:

N n2
input =

n1<n2

∑
n1=1

ReLU(so f tmax((αN)n2)
n1−CN)KN ∗N n1

out put (3.6)

, where CN and KN are constant coefficients. For the output of the whole RNN cell, we con-

sider it as a virtual node (consist of only one identity function) has searchable connections

with all nodes.

With all the equations mentioned before and Fig. 3.1(b), the output for node n1 can be

formulated as following:

Nn1
out put = ASMn1

3 (ASMn1
1 (AMn1

1 (Ln1
1))∗ASMn1

2 (AMn1
2 (Ln1

2))) (3.7)

+ASMn1
6 (ASMn1

4 (T Mn1(AMn1
1 (Ln1

1),AMn1
3 (Ln1

3))∗ASMn1
5 (AMn1

4 (Ln1
4))) (3.8)

With this design, the complexity of ASM is 46, AM is 2(3×3+2), TM is 2 per node,

connections among nodes is N!. Thus, the complexity of whole search space is (46×

2(3×3+2)×2)N×N!≈ 2e95 when N = 12, which is 2e85 larger than the one in DARTs.

3.1.2 Initializing Architecture Parameters and Deriving Discrete Architectures

In PS-DARTs, the architecture of each node will be searched one by one, thus the

initialization and discretization of architecture parameters for each node are also executed

one by one. In the initialization step, all parameters in each module will be assigned the

same value. The discretization works as follows:

• ASM architecture parameters: Only the activation function with the maximum weight

in each module will be kept, all others will be deleted as [17] to reduce the model’s

complexity.

• AM architecture parameters: All latent components with normalized weights αAM

larger than 0 will be kept, the other components will be deleted.

12

Figure 3.2: Progressive search: First, add node N1 to the graph and search the architecture
of it. Second, fix architecture of discretized N1, add node N2 and edge e1,2 to the graph and
search the micro architecture in node N2. Third, fix architecture of discretized N3, add node
N3, edge e1,3 and e2,3 to the graph and search the micro architecture in node N3.

• TM architecture parameters: The decision with the larger weight αT M will be kept,

the other one will be deleted.

• Connection architecture parameters: Only connections with normalized weight αN

larger than 0 will be kept, all other connections will be deleted.

Meanwhile, only after searching for all nodes is finished, the architecture weights for

connections αN among nodes is discretized. Before that, every time a new node is added

to the search space, the architecture parameters for all the connections among nodes will

be reset to the initial state.

3.2 Progressively Stacking Search Algorithm

If we consider all nodes as part of the search space at the same time, memory space and

searching time increases drastically. To solve this problem, we design a greedy progressive

approach as shown in Alg. 1 to study the connections among the nodes and the architecture

of each node at the same time.

13

Algorithm 1 Progressively Stacking Differentiable Architecture Search
1: input: graph G, architecture parameter α , linear weights ω

2: while not exceeds parameter budget or not increase in performance do

3: Add new node to G

4: Pretrain ω in G

5: while not converged do

6: Update α by descending ∇Lval(ω−η∇ωLtrain(ω,α),α)

7: Update weights ω by descending ∇Ltrain(ω,α);

8: end while

9: Discretize current node

10: end while

3.2.1 Definitions in Graph

Graph G includes nodes and connections among nodes as shown in Fig. 2.1. Each node

consists of the parameters in linear layers (which are also called parameters in the following

sections) ω ′ and architecture parameters α ′. The collection of parameters for all nodes in

G is called ω , and the collection of architecture parameters for all nodes and connections

is called α .

3.2.2 Discrete Current Node

Once the architecture of the currently searching node is discretized following sec-

tion 3.1.2, all parameters of a current node are reset to the initial state and the kept ar-

chitecture parameters are fixed in the following steps. This process corresponds to line 9 in

Alg. 1.

14

3.2.3 Add New Node

Then, a new node and the connections pointed from previous nodes to this new node

are added to G. Besides, the parameters and architecture parameters of the new node are

added to ω and α , respectively. This process corresponds to line 3 in Alg. 1.

3.2.4 Pretrain Parameters

Unlike only selecting activation functions, when we add the linear components to the

search space, the random initialization of parameters in linear layers may affect the decision

on architecture. Thus, we add a pretrain step before updating architecture parameters.

The exact number of this pretrain step will be decided by grid search described in section

4.4.1.1. This process corresponds to line 4 in Alg. 1.

3.2.5 Update Parameters and Architecture Parameters

After pretraining all parameters in G, the architecture parameters for this new node as

well as the connections among all nodes will attend in the search. Then, all the linear

parameters and architecture parameters in the graph will be updated by gradient descent

alternately in each epoch until converging as [17]. Repeat this process until adding a new

node exceeds the parameter budget or can not improve the performance further. Here the

parameter budget refers to the maximum parameter number which does not exceed the

GPU memory, which is never reached in our experiment. This process corresponds to line

5-8 in Alg. 1.

The loss function L here is the summation of LT absolute loss (L1-loss) and as shown

in Eq. 3.9:

L =LT +∑
Ω

∑
t

n−1

∑
i=0
|Yt,i− Ŷt,i| (3.9)

, where n is the number of variables, t is time step, Ω is dataset which can be either training

set or validation set and Y,Ŷ ∈ Rn×t are ground true data and prediction data, respectively.

15

Chapter 4

Experiments

In this section, we compare our approach with 9 state-of-the-art approaches on 3 bench-

mark datasets for MTSP tasks.

4.1 Datasets

We use following three benchmark datasets that are publicly available:

• Traffic1: Hourly road occupancy rates (between 0 and 1) collected by different sen-

sors on San Francisco Bay area freeways from 2015 to 2016 (48 months).

• Electricity2: The electricity consumption in the unit of kWh collected every 15 min-

utes from 2012 to 2014 for 321 clients. In our experiment, it is converted into hourly

data.

• Exchange-Rate: Daily exchange rate collected from eight countries including Aus-

tralia, British, Canada, Switzerland, China, Japan, New Zealand and Singapore from

1990 to 2016

We follow the pre-processing step as [10] where each dataset is split into the training

set, validation set and test set by 6:2:2 in chronological order.

In LST-skip/attn’s work, the electricity and traffic datasets are proved to have both short-

term daily patterns and long-term weekly patterns. While there is no repetitive long-term

patterns in exchange rate dataset. These observations are important for our later analysis

on the comparisons of different approaches. The manually designed complicated models

perform better on predicting the data with obvious repetitive patterns than the one without

1http://pems.dot.ca.gov
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

16

repetitive patterns. Since the proposing of the NAS is to automatically design an appro-

priate architecture for a specific task, a good NAS framework should be able to design the

models adaptive to the data with various repetitive patterns. In the section 4.5 we will do

an empirical analysis for this point.

4.2 Methods for Comparison

In our work, we compare following methods:

1. AR: One dimension Auto Regressive model.

2. LRidge: Vector Auto Regression (VAR) model with L2-regularization.

3. LSVR [29]: VAR model with Support Vector Regression (SVR) objective function.

4. GP [30]: Gaussian Process for time series modeling.

5. RNN-GRU [7]: Recurrent Neural Network using Gate Recurrent Unit.

6. LST-skip [10]: Long-Short-Term Temporal model with skip RNN layers.

7. LST-atten [10]: Long-Short-Term Temporal model with temporal attention layers.

8. TPA-LSTM [11]: Long-Short-Term Memory (LSTM) with Temporal Attention (TPA).

9. DARTs [17]: The first work of Differentiable Architecture Search.

10. PS-DARTs: Our proposed Progressively Stacking Differentiable Architecture Search.

Among these methods: 1-8 are manually designed models. There is only one architec-

ture for each method on three datasets with only hyperparameters being different. 9-10 are

NAS approaches that generate different RNN models for different datasets.

17

4.3 Metrics

We use the following three evaluation metric to compare the performances of different

models:

• Relative Squared Error (RSE):

RSE =

√
∑(i,t)∈Ωtest (Yit− Ŷit)2√

∑(i,t)∈Ωtest (Yit−mean(Y))2
(4.1)

• Correlation Coefficient (CORR):

CORR =
1
n

n

∑
i=1

∑t (Yit−mean(Yi))(Ŷit−mean(Ŷi))

∑t

√
(Yit−mean(Yi))2(Ŷit−mean(Ŷi))2

(4.2)

• Searching Efficiency (SE) :

SE =
number o f architecture parameters

searching time
(4.3)

, where t is time step; n si the length of time series data; i is index of variables; Ωtest is test

dataset; Y,Ŷ ∈ Rn×t are ground true data and prediction data, respectively; searching time

here is in the unit of GPU hour. The RSE is the scaled version of Root Mean Square Error

(RMSE), which is designed to eliminate the effects of data scale. For RSE, the lower the

better, whereas for CORR and SE, the higher the better.

4.4 Experiment Details

4.4.1 Hyperparameters

We used the source code in of LST-skip [10] and replaced its deep learning model with

our PS-DARTs framework. However, introducing NAS adds two new hyperparameters:

18

architecture learning rate: lrarch and pretrain epochs: epocht . For these hyperparameters

we conducted a grid search. For the other hyperparameters, we followed the setting up in

TPA-LSTM whose model is more similar to ours. Thus, the settings for hyperparameters

are divided into the following two parts.

4.4.1.1 Hyperparameter Search

• lrarch: Since architecture parameters and parameters in linear layers are updated al-

ternatively, they should have separate learning rates. We followed the setting up of lr

as TPA-LSTM, then we set up the grid search range based on lr: {0.01∗ lr, 0.05∗ lr,

0.1∗ lr, 0.5∗ lr, lr, 5∗ lr, 10∗ lr}.

• epocht : There is no pretrain step in DARTs and we want to explore how many epochs

of pretraining enable the parameters in linear layers to neither affect the decision

of component selection nor overfit the model. We set up the grid search range as

{0,5,10,15}.

4.4.1.2 Constraints on Hyperparameters

NAS focused on finding architectures for each problem, we can assume that the search-

ing algorithm should be able to find an appropriate architecture given a set of specific hyper-

parameters related to the model’s structure. To save time on the hyperparameter searching,

we select the hyperparameters for NAS as follows:

• Learning Rate: Same as TPA-LSTM, where the learning rate is 0.001 for electricity

and traffic datasets and 0.003 for exchange rate dataset.

• Hidden Size: The maximum hidden size in TPA-LSTM’s hyperparameter search

space, where the hidden size is 70 for electricity and traffic datasets and 12 for ex-

change rate dataset.

19

• Window Size: The maximum size in TPA-LSTM’s hyperparameter search space

which doesn’t exceed the computer’s RAM or searching time threshold(1 minute)

for a single epoch.

• Dropout: The maximum value in TPA-LSTM’s hyperparameter search space, which

is 0.2 for all datasets.

• Searching Epochs: We considered the searching to be converged if the discrete

architecture derived from the current epoch hasn’t been changed for 15 epochs and

the searching will be stopped.

• Training Epochs: We considered the training to be converged if no validation RSE

loss decreases or validation CORR increases for 50 epochs and the training will be

stopped.

• Other Hyperparameters: Batch size, auto regression window size, optimizer, weight

decay are not mentioned in other works, thus we followed the settings in LST-skip’s

source code.

4.4.2 Experiment Devices

The experiments of DARTs and PS-DARTs are conducted on the NVIDIA Tesla V100

GPU with Pytorch framework and TorchScript accelerator.

4.5 Results and Analysis

We test PS-DARTs on the three MTS datasets mentioned above with the evaluation ma-

trix of RSE and CORR. Then we compare it with the experiment results of traditional ap-

proaches, LSTNet-skip, LSTN-attn and TPA-LSTM. Besides, we also reimplement DARTs

on these three MTS datasets and compare its SE, RSE and CORR with PS-DARTs. Finally,

our approach achieves 16 best result and 6 second best on 24 tasks.

20

Dataset Exchange-rate Traffic Electricity
Horizon Horizon Horizon

Methods Metric 3 6 12 24 3 6 12 24 3 6 12 24

AR
RSE 0.0228 0.0279 0.0353 0.0445 0.5991 0.6218 0.6252 0.6293 0.0995 0.1035 0.1050 0.1054

CORR 0.9734 0.9656 0.9526 0.5357 0.7752 0.7568 0.7544 0.7519 0.8845 0.8632 0.8591 0.8595

LRidge
RSE 0.0184 0.0274 0.0419 0.0675 0.5833 0.5920 0.6148 0.6025 0.1467 0.1419 0.2129 0.1280

CORR 0.9788 0.9722 0.9543 0.9305 0.8038 0.8051 0.7879 0.7862 0.8890 0.8594 0.8003 0.8806

LSVR
RSE 0.0189 0.0284 0.0425 0.0662 0.5740 0.6580 0.7714 0.5909 0.1523 0.1372 0.1333 0.1180

CORR 0.9782 0.9697 0.9546 0.9370 0.7993 0.7267 0.6711 0.7850 0.8888 0.8861 0.8961 0.8891

GP
RSE 0.0239 0.0272 0.0394 0.0580 0.6082 0.6772 0.6406 0.5995 0.1500 0.1907 0.1621 0.1273

CORR 0.8713 0.8193 0.8484 0.8278 0.7831 0.7406 0.7671 0.7909 0.8670 0.8334 0.8394 0.8818

GRU
RSE 0.0192 0.0264 0.0408 0.0626 0.5358 0.5522 0.5562 0.5633 0.1102 0.1144 0.1183 0.1295

CORR 0.9786 0.9712 0.9531 0.9223 0.8511 0.8405 0.8345 0.8300 0.8597 0.8623 0.8472 0.8651

LSTNet-skip
RSE 0.0226 0.0280 0.0356 0.0449 0.4777 0.4893 0.4950 0.4973 0.0864 0.0931 0.1007 0.1007

CORR 0.9735 0.9658 0.9511 0.9354 0.8721 0.8690 0.8614 0.8588 0.9283 0.9135 0.9077 0.9119

LSTNet-attn
RSE 0.0276 0.0321 0.0448 0.0590 0.4897 0.4973 0.5173 0.5300 0.0868 0.0953 0.0984 0.1059

CORR 0.9717 0.9656 0.9499 0.9339 0.8704 0.8669 0.8540 0.8429 0.9243 0.9095 0.9030 0.9025

TPA-LSTM
RSE 0.0174 0.0241 0.0341 0.0444 0.4487 0.4658 0.4641 0.4765 0.0823 0.0916 0.0964 0.1006

CORR 0.9790 0.9709 0.9564 0.9381 0.8812 0.8717 0.8717 0.8629 0.9429 0.9337 0.9250 0.9133

DARTs*

RSE 0.0209 0.0273 0.0347 0.0458 0.4583 0.4663 0.4736 0.4991 0.0836 0.0944 0.0978 0.0979
±0.0008 ±0.0006 ±0.0004 ±0.0007 ±0.0014 ±0.0010 ±0.0007 ±0.0101 ±0.0004 ±0.0007 ±0.0004 ±0.0006

CORR 0.9961 0.9941 0.9921 0.9862 0.8789 0.8745 0.8713 0.8548 0.9365 0.9260 0.9242 0.9203
±0.0002 ±0.0002 ±0.0014 ±0.0005 ±0.0006 ±0.0009 ±0.0010 ±0.0018 ±0.0013 ±0.0003 ±0.0009 ±0.0007

PS-DARTs

RSE 0.0174 0.0244 0.0332 0.0436 0.4544 0.4645 0.4704 0.4843 0.0834 0.0916 0.0947 0.0964
±0.0002 ±0.0003 ±0.0002 ±0.0007 ±0.0009 ±0.0017 ±0.0013 ±0.0024 ±0.0007 ±0.0016 ±0.0013 ±0.0005

CORR 0.9968 0.9950 0.9917 0.9868 0.8823 0.8765 0.8727 0.8661 0.9349 0.9280 0.9239 0.9205
±0.0000 ±0.0001 ±0.0002 ±0.0001 ±0.0006 ±0.0007 ±0.0009 ±0.0006 ±0.0026 ±0.0021 ±0.0019 ±0.0011

Table 4.1: Comparison with state-of-the-art models on three time series datasets: Red
means the best among all approaches. Green means the second best. We repeat the ex-
periments on each task for 5 times and report the mean/standard deviation information. *
means we reimplement DARTs on MTS datasets.

4.5.1 Comparison with Traditional Approaches & Deep Learning Models

The result of each approach is shown in table 4.1, where the experiment result of AR,

LRidge, LSVR, GP, GRU, LSTNew-skip/attn are from [10], the experiment result of TPA-

LSTM is from [11] and DARTs is reimplemented on the three MTS datasets.

Although TPA-LSTM exceeds the performance of traditional approaches on traffic and

electricity datasets, it performs slightly worse than the traditional approaches when hori-

zon is 6 on exchange rate dataset. This shows the limitation of TPA-LSTM that can not

adaptive to various MTS datasets with different repetitive patterns. PS-DARTs exceeds all

the traditional approaches on all tasks, which in turn proves that our approach can design

appropriate structures for tasks with various repetitive patterns. For the comparison with

TPA-LSTM on traffic and electricity datasets, PS-DARTs performs slightly worse than but

still competitive as TPA-LSTM in term of RSE with horizon 1, 12, 24 on traffic dataset and

CORR with horizon 3, 6, 12 on electricity dataset while achieves the best performance on

21

all the other 9 tasks. However, neither does our approach conduct any exhaustive hyperpa-

rameter search nor adds any extra attention modules like TPA-LSTM or LSTNet-skip/attn.

This further shows PS-DARTs’ power of automatically finding appropriate architectures

for specific tasks.

4.5.2 Comparison with DARTs

When apply NAS on three MTS datasets, we do hyperparameter search for DARTs

on architecture parameters and PS-DARTs on both architecture parameters and pretraining

epochs in the searching period. Unlike PS-DARTs, the number of RNN layers in DARTs

can only be decided manually before searching but not automatically during searching.

To decided this hyperparameter, we first select the best architecture found by PS-DARTs.

Then we define the number of RNN layers by keeping the number of trainable parameters

the same as DARTs. All other hyperparameters follow the settings in section 4.4.1.2.

Methods Dataset Exchange-rate Traffic Electricity

DARTs
GPU hours 0.06 0.33 0.45

Arch Params 4 10 17
Efficiency 66.67 30 37.78

PS-DARTs
GPU hours 0.98 2.61 2.75

Arch Params 53 108 164
Efficiency 54.08 41.37 59.64

Table 4.2: Comparison of DARTs and PS-DARTs on searching efficiency

The comparison between DARTs and PS-DARTs’ searching efficiency of the best archi-

tecture found on each task is shown in table 4.2. On each task, the number of architecture

parameters in PS-DARTs is around 10 times of that in DARTs, which means more possible

architectures are explored. Although the searching time is increased, PS-DARTs in fact

improves the searching efficiency on traffic and electricity datasets. On the exchange-rate

dataset, DARTs’ efficiency is around 1.2 of PS-DARTs, which is caused by PS-DARTs’

searching time overhead. DARTs fixes the first layer to RHN and only conducts search for

the other layers. In contrast, PS-DARTs searches the architecture for each layer and needs

22

to search one layer further to decide at which step to stop the search. This overhead af-

fects the searching efficiency when the number of layer is small. In our reported result, the

best architecture found by PS-DARTs has only one layer. Thus, the searching efficiency is

slightly worse than DARTs.

For the comparison of RSE and CORR, PS-DARTs exceeds DARTs on 22 tasks. For

the other two tasks, PS-DARTs still shows competitive performances as DARTs. This then

demonstrates that the expanding of the search space in PS-DARTs can lead us to find better

architectures that can capture more precise dynamics of the MTS with different repetitive

patterns.

23

Chapter 5

Conclusion

In this work, we propose PS-DARTs which can find better architectures in a competitive

searching time as DARTs. Our experiments on three real-world MTS datasets strongly

support this idea and show PS-DARTs has better searching efficiency than DARTs and

ability to explore more accurate architectures for MTS data with different repetitive patterns

than manually designed deep learning models and DARTs.

24

BIBLIOGRAPHY

[1] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time

series analysis: forecasting and control. John Wiley & Sons, 2015.

[2] William WS Wei. Time series analysis. In The Oxford Handbook of Quantitative

Methods in Psychology: Vol. 2. 2006.

[3] Jiahan Li and Weiye Chen. Forecasting macroeconomic time series: Lasso-based ap-

proaches and their forecast combinations with dynamic factor models. International

Journal of Forecasting, 30(4):996–1015, 2014.

[4] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factor-

ization for high-dimensional time series prediction. Advances in neural information

processing systems, 29:847–855, 2016.

[5] G Peter Zhang. Time series forecasting using a hybrid arima and neural network

model. Neurocomputing, 50:159–175, 2003.

[6] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information processing

systems, 25:1097–1105, 2012.

[9] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

25

[10] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and

short-term temporal patterns with deep neural networks. In The 41st International

ACM SIGIR Conference on Research & Development in Information Retrieval, pages

95–104, 2018.

[11] Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. Temporal pattern attention for

multivariate time series forecasting. Machine Learning, 108(8):1421–1441, 2019.

[12] Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-

free and context-sensitive languages. IEEE Transactions on Neural Networks,

12(6):1333–1340, 2001.

[13] Ben Krause, Liang Lu, Iain Murray, and Steve Renals. Multiplicative lstm for se-

quence modelling. arXiv preprint arXiv:1609.07959, 2016.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[15] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.

arXiv preprint arXiv:1611.01578, 2016.

[16] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks

using genetic algorithms. In ICGA, volume 89, pages 379–384, 1989.

[17] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture

search. arXiv preprint arXiv:1806.09055, 2018.

[18] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnık, and Jürgen Schmidhuber.

Recurrent highway networks. In International Conference on Machine Learning,

pages 4189–4198. PMLR, 2017.

26

[19] Li-Juan Cao and Francis Eng Hock Tay. Support vector machine with adaptive pa-

rameters in financial time series forecasting. IEEE Transactions on neural networks,

14(6):1506–1518, 2003.

[20] John R Freeman, John T Williams, and Tse-min Lin. Vector autoregression and the

study of politics. American Journal of Political Science, pages 842–877, 1989.

[21] Roger Frigola and Carl Edward Rasmussen. Integrated pre-processing for bayesian

nonlinear system identification with gaussian processes. In 52nd IEEE Conference on

Decision and Control, pages 5371–5376. IEEE, 2013.

[22] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural

architecture search via parameters sharing. In International Conference on Machine

Learning, pages 4095–4104. PMLR, 2018.

[23] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via

perturbation-based regularization. In International Conference on Machine Learning,

pages 1554–1565. PMLR, 2020.

[24] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudan-

pur. Recurrent neural network based language model. In Eleventh annual conference

of the international speech communication association, 2010.

[25] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for

language modeling. In Thirteenth annual conference of the international speech com-

munication association, 2012.

[26] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning precise tim-

ing with lstm recurrent networks. Journal of machine learning research, 3(Aug):115–

143, 2002.

27

[27] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[28] Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen

Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks

and learning systems, 28(10):2222–2232, 2016.

[29] Vladimir Vapnik, Steven E Golowich, Alex Smola, et al. Support vector method for

function approximation, regression estimation, and signal processing. Advances in

neural information processing systems, pages 281–287, 1997.

[30] Roger Frigola. Bayesian time series learning with Gaussian processes. PhD thesis,

University of Cambridge, 2015.

28

	DEDICATION
	Introduction
	Background and Related Work
	Problem Formulation
	Traditional Approaches
	Deep Learning Models
	NAS

	Proposed Approach
	Search Space
	Architecture Parameters
	Activation Selection Module (ASM)
	Addition Module (AM)
	Tied Module (TM)
	Connections Among Nodes

	Initializing Architecture Parameters and Deriving Discrete Architectures

	Progressively Stacking Search Algorithm
	Definitions in Graph
	Discrete Current Node
	Add New Node
	Pretrain Parameters
	Update Parameters and Architecture Parameters

	Experiments
	Datasets
	Methods for Comparison
	Metrics
	Experiment Details
	Hyperparameters
	Hyperparameter Search
	Constraints on Hyperparameters

	Experiment Devices

	Results and Analysis
	Comparison with Traditional Approaches & Deep Learning Models
	Comparison with DARTs

	Conclusion

