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CHAPTER 1

Alternating access in LeuT-fold transporters

1.1 Introduction

Secondary active transporters tap the potential energy stored in electrochemical gradients to allow

cells to import and export nutrients and cytotoxic drugs as needed [44]. Despite a divergence in

topologies and ligands [98, 373], these transporters are believed to operate via alternating access,

a generic term referring to the exposure of the substrate-binding site to no more than one side of

the membrane at a time [182, 289]. This mechanism allows transporters to couple conformational

changes critical to substrate binding and/or release while minimizing the uncoupled flux or leaking

of ions down their electrochemical gradients. Although this basic working model of transport has

been devised over sixty years ago [182], characterizing the precise molecular mechanisms relating

substrate binding to translocation in individual proteins of interest presents a formidable scien-

tific challenge. High-resolution structures cannot identify the movements underpinning alternating

access unless a protein is captured in multiple distinct conformations [168, 316]. As such, solution-

state measurements, carried out in the absence or presence of various substrates under conditions

permitting conformational interconversion, directly report on the transporter’s energy landscapes

and allows high-resolution snapshots to be assigned to specific intermediate states observed in the

functional cycle [199, 241, 274, 301]. Unfortunately, but not unexpectedly, few proteins have been

so exhaustively characterized.

The bacterial Neurotransmitter-Sodium Symporter (NSS) homolog LeuT found in the ther-

mophilic archaea Aquifex aeolicus presents a rare example of a transporter that has been studied

to this extent (Figure 1.1) [455]. LeuT couples the import of small aliphatic amino acids such

as leucine and alanine to an inward sodium gradient and an outward proton gradient [475]. Nearly

two decades of persistent investigation has produced a library of atomic-resolution crystal structures

capturing conformational intermediate states [120, 147, 224, 259, 381, 455] linked by solution-state
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Figure 1.1: Architecture of the bacterial amino acid transporter LeuT. (A) The sodium-coupled
amino acid transporter LeuT. (B) The ten-transmembrane helix core consists of a bundle domain
(highlighted in red), a hash domain (green), and a pair of gating helices (blue). (C) Cartoon de-
piction of the conserved transport domain showing the pseudo-twofold symmetry of the ten-helix
core. Substrate-binding site indicated by the red X. (D) Inverted repeats in helices 1-5 and 6-10.

experimental data collected using various techniques [6, 32, 33, 76, 213, 281, 474]. Collectively,

this body of knowledge describes in exquisite detail the molecular and energetic basis of ligand-

dependent conformational changes driving sodium-coupled amino acid transport.

In this chapter, we explore the extent to which structural homologs of LeuT, many of which are

found in humans and whose dysfunction contribute to a range of diseases, undergo similar ligand-

dependent structural rearrangements [247]. These homologs include mammalian NSSs, such as

the serotonin transporter (SERT) and the dopamine transporter (DAT) [27, 77, 311], as well as a

multitude of more distant homologs that have been identified across nearly a dozen families (Tables

1.1 and 1.2). As many proteins with the LeuT-fold have been the subject of extensive study over
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the course of many decades and have been the subject of numerous recent reviews [51, 67, 69, 112,

159, 223, 309, 345, 380, 480], this chapter focuses on comparing their conformational changes,

structural dynamics, and energy landscapes. Necessarily, emphasis is placed on NSSs which are

the most extensively studied family of transporters with this topology.

1.2 Functional and structural diversity within the fold

1.2.1 The ten transmembrane helix topology

Proteins in the LeuT-fold belong to the Amino Acid-Polyamine-Organocation (APC) superfamily

of transporters [423] and share a core transport structure consisting of ten transmembrane helices

(TMH)s related by pseudo-twofold symmetry [136, 211]. These ten helices can be subdivided into

three domains: the bundle domain (TMH 1, 2, 6, and 7), the hash domain (TMH 3, 4, 8, and 9), and

gating helices (TMH 5 and 10; this Chapter uses this canonical numbering scheme and ignores N-

terminal transmembrane helices). Additional N- and/or C-terminal helices uninvolved in transport

flank this ten-helix core and vary across individual transporter families comprising the LeuT fold.

Characteristically, TMH 1 and 6 contain conserved unwound regions, observed near the geometric

center of the ten-helix core, and their involvement in ligand coordination is a hallmark of the fold

[364]. Importantly, structural similarity is not accompanied by sequence similarity: few structural

motifs are identifiable at the sequence level [32, 258, 394], which prevented these protein families

from being co-categorized prior to the determination of their structures [27].

The LeuT fold is perhaps best defined by its evolutionary persistence across families of trans-

porters with sequences that appear unrelated (Figure 1.2) [4]. In addition to NSS [67], the LeuT

fold has been found to be adopted by members of the Sodium-Solute Symporter (SSS) [159],

Cation-Chloride Cotransporter (CCC) [69], APC transporter [112], Natural resistance-associated

macrophage protein (Nramp) [51], Nucleobase-Cation Symporter (NCS1) [309], and Amino Acid-

Auxin Permease (AAAP) families. The same topology also describes representatives of proteins

families unique to prokaryotes, such as those in the Betaine/Carnitine/Choline Transporter (BCCT)

[480], Alanine/Glycine-Cation Symporter (AGCS), and Potassium Uptake Permease (KUP) fami-
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Table 1.1: Curated library of LeuT-fold protein structures. Conformations are assigned to ei-
ther outward-facing open (OFOp), outward-facing occluded (OFOc), fully occluded (OO), inward-
facing occluded (IFOc), or inward-facing open (IFOp). Structures are marked if they were mutated
(†) or bound to inhibitors (‡) or antibodies (§). Redundant structures have been omitted.

Protein (Organism) Conf. PDB ID Resolution Substrates Reference

Neurotransmitter-sodium symporter family
b0AT1 (Homo sapiens) OFOc 6M17 2.90 Å Apo [458]
DAT (Drosophila melanogaster) OFOp 4XP1§ 2.89 Å 2Na+/Cl−/Dopamine [312]
GlyT1 (Homo sapiens) IFOp 6ZPL†‡§ 3.94 Å 2Na+/Cl−/Benzoylisoindoline [369]
LeuT (Aquifex aeolicus) OFOp 3TT1†§ 3.10 Å 2Na+ [224]

3F3A‡ 2.00 Å 2Na+/Tryptophan [381]
7DIXb 3.49 Å Na+/Leucine [120]

OFOc 2A65 1.65 Å 2Na+/Leucine [455]
5JAE 2.50 Å Apo [259]

IFOc 6XWM† 2.60 Å 2Na+/Phenylalanine [147]
IFOp 3TT3†§ 3.22 Å Apo [224]

MhsT (Bacillus halodurans) IFOc 4US3 2.10 Å 2Na+/Tryptophan [258]
SERT (Homo sapiens) OFOp 5I6Z†§ 4.53 Å Apo [77]

5I6X†‡§ 3.14 Å Paroxetine [77]
IFOc 6DZZ‡§ 3.60 Å Ibogaine [78]

Amino acid-polyamine-organocation transporter family
AdiC (Escherichia coli) OFOp 3OB6 3.00 Å Arginine [221]

5J4I 2.21 Å Apo [174]
5J4N 2.59 Å Agmatine [174]

OFOc 3L1L† 3.00 Å Arginine [122]
AdiC (Salmonella typhimurium) OFOp 3NCY 3.20 Å Apo [122]
ApcT (Methanococcus janaschii) IFOc 3GIA 2.32 Å Apo [367]
b(0,+)AT1 (Homo sapiens) IFOp 6LI9 2.30 Å Arginine [457]

6LID 2.70 Å Apo [457]
BasC (Carnobacterium sp. AT7) IFOp 6F2W§ 3.40 Å 2-Aminoisobutyrate [111]

6F2G§ 2.92 Å Apo [111]
GadC (Escherichia coli) IFOp 4DJI 3.19 Å Apo [254]
GkApcT (Geobacillus kaustophilus) IFOc 5OQT 2.86 Å Alanine [201]

6F34 3.13 Å Arginine [201]
Lat1 (Homo sapiens) OFOp 7DSQ‡ 3.40 Å Diiodotyrosine [456]

IFOp 6IRS‡ 3.30 Å JPH203 [459]
6IRT‡ 3.50 Å BCH [459]
6JMQ§ 3.31 Å Apo [230]

Lat2 (Homo sapiens) IFOp 7CMH 3.40 Å Tryptophan [460]
xCT (Homo sapiens) IFOp 7CCS† 6.20 Å Apo [300]

Cation-chloride cotransporter family
NKCC1 (Homo sapiens) IFOp 6PZT 3.46 Å Apo [464]
NKCC1 (Danio rerio) IFOp 6NPL 2.90 Å K+/2Cl− [68]
KCC1 (Homo sapiens) IFOp 6KKT 2.90 Å K+/2Cl− [246]

6KKR 2.90 Å Apo [246]
KCC2 (Homo sapiens) IFOp 7D8Z 3.40 Å Apo [452]
KCC3 (Homo sapiens) IFOp 6M22‡ 2.70 Å DIOA [70]

7D90 3.60 Å Apo [452]
KCC4 (Homo sapiens) IFOp 7D99 2.90 Å Apo [452]
KCC4 (Mus musculus) IFOp 6UKN 3.65 Å K+/Cl− [337]
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Table 1.2: Curated library of LeuT-fold protein structures (continued).

Protein (Organism) Conf. PDB ID Resolution Substrates Reference

Betaine/carnitine/choline transporter family
BetP (Corynebacterium glutamicum) OFOp 4DOJb† 3.25 Å Apo [316]

OFOc 4DOJa† 3.25 Å Apo [316]
OO 4AINa 3.10 Å Apo [316]
IFOc 2WIT 3.35 Å 2Na+/Betaine [339]
IFOp 3P03 3.35 Å 2Na+/Choline [315]

CaiT (Escherichia coli) IFOp 2WSX 3.50 Å γ-Butyrobetaine [362]
3HFX 3.15 Å Carnitine [402]

CaiT (Proteus mirabilis) IFOp 2WSW 2.29 Å Apo [362]

Natural resistance-associated macrophage protein family
ScaDMT (Staphylococcus capitis) IFOp 5M94†§ 3.10 Å Apo [106]

5M95†§ 3.40 Å Mn2+ [106]
EcoDMT (Eremococcus coleocola) OFOp 5M8K† 3.60 Å Apo [107]

5M87† 3.30 Å Mn2+ [107]
DraNramp (Deinococcus radiodurans) OFOp 6D91† 2.36 Å Apo [52]

6BU5† 3.30 Å Mn2+ [52]
IFOc 6C3I† 2.40 Å Apo [52]
IFOp 5KTE†§ 3.94 Å Apo [50]

6D9W†§ 3.94 Å Apo [52]

Sodium-solute symporter family
vSGLT (Vibrio parahaemolyticus) IFOc 3DH4 2.70 Å 2Na+/Galactose [118]

IFOp 2XQ2† 2.70 Å Apo [438]
SiaT (Proteus mirabilis) OFOp 5NV9 1.95 Å 2Na+/Neuraminic acid [428]

5NVA 2.26 Å Apo [428]

Potassium uptake permease family
KimA (Bacillus subtilis) IFOp 6S3K 3.70 Å 3K+ [404]

Amino acid-auxin permease family
DrSLC38A9 (Danio rerio) IFOp 6C08†§ 3.17 Å Arginine [231]

7KGV†§ 3.40 Å Apo [232]

Nucleobase-cation symporter-1 family
Mhp1 (Microbacterium tumefaciens) OFOp 2JLN 2.85 Å Apo [444]

OFOc 4D1B 3.80 Å Na+/Benzylhydantoin [377]
IFOp 2X79 3.80 Å Apo [374]

Alanine/glycine-cation symporter family
AgcS (Methanococcus maripaludis) OO 6CSE§ 3.24 Å Na+/Alanine [255]

6CSF§ 3.30 Å Na+/D-Alanine [255]

lies. Additionally, several transporter families lacking representatives in the PDB are predicted to

have this fold (Figure 1.3) [349, 418, 423].
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Figure 1.2: Structural diversity within the LeuT fold. The LeuT fold is adopted by proteins found in
a range of transporter families. PDB IDs, starting from top left: 2A65, 4US4, 5I6X, 6PZL, 3DH4,
5NVA; 4DJI, 6IRS, 6LI9, 6M23, 6S3K; 2JLN, 6CSE, 2WIT, 6D91, 6C08.

1.2.2 Functional variation within the LeuT fold

Retention of this ten-helix core is all the more remarkable considering the extent to which the func-

tions, ligands, and sequences of these proteins differ. Although the majority of LeuT-fold proteins

studied thus far cotransport their substrates and driving ions, others exchange them in opposite di-

rections (symport and antiport, respectively [134]). The centrally located substrate-binding site,

shared by symporters and antiporters, accommodates ligands ranging in size and charge from halo-
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Figure 1.3: Predicted structural models of proteins belonging to LeuT-fold families with no repre-
sentatives in the PDB. Transporter families are defined by the Transporter Classification Database,
and each model was generated using AlphaFold2.

gen ions and divalent metals to sugars and aromatic amino acids. Its manipulation by mutagenesis

has been shown to alter substrate specificity profiles in LeuT (NSS) [320, 482], GAT-1 (NSS) [482],

and BetP (BCCT) [314], highlighting the involvement of this region in identifying and trafficking

ligands.

Beyond plasticity at this specific site, structural features decorating the core transporter further

contribute to functional specialization. A remarkable example is SLC38A9, which both exports

amino acids from the lysosome and activates the regulatory complex mTORC1 under nutrient-rich

conditions [335, 432]. An N-terminal domain elegantly couples these two functions by binding

to the cytoplasmic cavity [232] and, following displacement by the transported substrate arginine,

releases and binds to GTPases involved in downstream signaling [139]. In an interesting case of con-

vergent evolution, the C-terminal domain of the pH-dependent glutamic acid (Glu)/γ-aminobutyric

acid (GABA) exchanger GadC arrests transport by binding to the intracellular cavity at neutral pH

in a nearly identical conformation [254]. Autoinhibition by disordered terminal domains has also

been directly visualized in several potassium-chloride symporters [70, 452]. In other proteins, such

as eukaryotic NSSs, disordered termini instead regulate transport by interacting with a range of cy-

toplasmic proteins [82, 206]. In BetP, a cytoplasmic C-terminal helical domain regulates transport

in response to osmotic stress [149, 222]. These domains often go unobserved in structural studies

[77, 246, 311] due to truncation or intrinsic disorder, prompting speculation regarding their role in

transport.
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1.2.3 Quaternary structures adopted by LeuT-fold transporters

Recent structures obtained by cryogenic electron microscopy (cryo-EM) have bolstered the diversity

of quaternary structures known to be adopted by these proteins. Whereas X-ray crystallography

demonstrated that LeuT-fold transporters can assemble as homodimers (AdiC, vSGLT) [118, 368],

homotrimers (BetP, CaiT) [339, 362], or heterodimers (GkApcT) [201], due to technical limitations

only compact binding interfaces were observed. By contrast, oligomers visualized by cryo-EM

reveal a multitude of weaker, more flexible, and in some cases asymmetric binding interfaces [68,

230, 300, 404, 457, 458, 459, 460]. For example, the eukaryotic APC transporters Lat1, Lat2, and

xCT each associate with 4f2hc (also called CD98hc) [183, 300, 459, 460], a protein with a large

extracellular domain and a single transmembrane helix that is uninvolved in transport (Figure 1.2).

The homologous APC transporter b(0,+)AT1 further assembles into a dimer of dimers with rBAT,

each of which resemble the Lat/4f2hc complexes [449, 457]. This dimer-of-dimers arrangement

was even observed in the NSS b0AT1, which associates with Angiotensin-converting enzyme 2

(the experimental structure of this tetramer was determined as part of a larger complex involving

the SARS-CoV-2 spike protein) [458]. Notably, the N-terminal transmembrane helices of rBAT and

4f2hc bind to the hash domains of b(0,+)AT1 and the Lats, respectively, at a similar position as the

C-terminal transmembrane helix of ACE2 to b0AT1. Separately, the eukaryotic CCCs [68, 71, 246,

337, 464] and the bacterial potassium transporter KimA [404] both fold as homodimers with large

domain-swapped cytoplasmic regions. Divergence in both the sequences of these protein families

and the structures of their cytoplasmic domains may highlight a recurrent quaternary assembly

mechanism, the extent of which has not yet come to light.

Finally, in many cases, the oligomeric interfaces observed by cryo-EM appear to be weaker and

more flexible than suggested by the crystal structures. In both Lat1 and KCC1, for example, sub-

stantial interdomain movements have been reported when comparing their respective inward-facing

apo and outward-facing inhibitor-bound states [246, 456, 459, 460, 476]. Molecular dynamics sim-

ulations of the homodimer KimA suggested that contacts between the two transport domains are

transient and fleeting, as these domains are tethered to one another only by their intertwined cy-
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toplasmic domains [404]; similar observations were experimentally made in CCCs [70]. Such ar-

rangements sharply contrast with the interfaces observed in vSGLT [118, 438], BetP [339], and

other oligomers determined by crystallography, and hint at future discoveries regarding how these

transporters interact as part of larger complexes.

1.2.4 Recurring elements of substrate binding

These unique structural features and arrangements surround a highly conserved ten-helix architec-

ture shown in Figure 1.1.C that, in several cases, have been shown to retain ligand-binding modes

across distantly related proteins (Figure 1.4). A widely discussed example is the conserved sodium

site, termed Na2, found in the majority of sodium-coupled symporters [118, 339, 428, 444, 455].

In fact, the Na2 site’s recurrence in this fold prompted Chew et al. to assign its position to the

sodium-binding site in the sodium/potassium/chloride symporter NKCC1, which was subsequently

corroborated by molecular dynamics simulations and mutagenesis experiments that severely abro-

gated transport [68, 181]. Among symporters that bind two sodium ions (NSSs, SiaT [428], BetP

[214]), no such conservation is observed in the position of the other sodium ion. In proton-coupled

symporters and amino acid exchangers, positively-charged residues occupy this position (lysine in

ApcT, GkApcT, and BasC, and arginine in CaiT [111, 368, 201, 362, 402]), highlighting the mal-

leability of substrate coupling throughout the fold. A noteworthy exception is the sodium-coupled

amino acid symporter AgcS, which coordinates its only sodium at a position equivalent to LeuT’s

Na1 site, leaving the Na2 site unoccupied [255]. This is despite its alanine binding site overlapping

nearly perfectly with the substrate binding sites of unrelated amino acid transporters from the NSS

and APC families (Figure 1.4.C). To our knowledge, no cations besides sodium ions and protons

have been observed in this site, and no comparable degree of structural conservation has observed

at other ligand-binding sites, such as those involved in binding potassium (transported by SERT, as

well as the KUP and CCC families) or chloride (transported by NSSs and CCCs).
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Figure 1.4: Examples of conserved ligand coordination. (A) Sodium ions (orange) and leucine
(pink) in LeuT. (B) Conservation of the Na2 site. (C) Partial recurrence of amino acid binding
modes. Substrates colored white are shared in all four panels.

1.3 Alternating access inferred from crystal and cryo-EM structures

At the molecular level, alternating access involves the opening and closing of gates providing pas-

sage to the substrate-binding site from either the intracellular or extracellular spaces [182] For

transporters with the LeuT-fold, this principally manifests as isomerization between outward-facing

(OF) and inward-facing (IF) states using a ”rocking bundle” mechanism that forbids substrate entry

and exit from the cytoplasmic or periplasmic side of the membrane, respectively [134]. Despite

their co-classification, however, closer examination at structural changes in these proteins reveals a

striking lack of consensus over the molecular details of alternating access. Conformational diver-

gence as the rule, not the exception, became apparent nearly a decade ago with the publication of

high-resolution structures of Mhp1 [374, 444], BetP [339], and LeuT [211, 224, 455], and has since

been reinforced by similar studies in SERT [77, 78], DraNramp [50, 52], and Lat1/4f2hc (Figure

1.5) [456, 230, 456]. Additional structures of AdiC [122, 368] and vSGLT [118, 438] in both open

and occluded conformations, though limited to OF and IF states, respectively, further expand the
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ways in which these transporters grant access to the substrate-binding site. Overall, comparison

of pairs of structures reveals fundamental differences in which helices move and which stay fixed

(Figure 1.6).

1.3.1 Movement of gating helix TMH5

Along with the intracellular loop preceding it, TMH5 ranks among the most consistently mobile

and dynamic regions in the transporters studied so far [394]. In OF conformations, TMH5 nestles

against the bundle domain helices TMH1a and TMH6b, forming the highly ordered intracellular

”thick gate”. In the IF state, by contrast, opening of the intracellular vestibule is driven by rearrange-

ments that vary across families and even individual proteins within families. The contribution of

TMH5 to alternating access has been most extensively studied in NSSs [394]. A GXNP sequence,

strictly conserved within the family and partially conserved throughout the fold, putatively mediates

both bending and unfolding motions instrumental to the initiation of substrate release (Figure 1.7).

Mutagenesis of glycine or proline severely abrogates transport [258], highlighting the importance

of the dynamic processes facilitated by this motif. First observed in a substrate-bound IF-occluded

conformation of MhsT [258], partial unwinding of TMH5 has been corroborated in several NSSs

by hydrogen-deuterium exchange/mass spectrometry (HDX/MS) studies under conditions promot-

ing the IF conformation of each protein [6, 281, 292, 298]. However, although IF-open structures

of LeuT and SERT show this helix protruding out from the rest of the transporter [77, 147, 224],

orthogonal measurements in LeuT both suggest that under IF-promoting conditions it adopts con-

formations where the intracellular cavity is occluded, rather than open [212, 372, 474, 475]. As is

elaborated below in Section 1.4.1 below, however, these results are qualified by the frequent use of

leucine, which has a low transport rate and nanomolar binding affinity [381]. Subsequent solution-

state experiments bound to different amino acids found that quenching of fluorescent probes at-

tached to the intracellular half of TMH5 inversely correlated with transport rate [32], suggesting

that this IF-occluded conformation may be less stable, relative to IF-open, when transporting sub-

strates with higher turnover rates such as alanine. Nevertheless, in conjunction with other findings
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Figure 1.5: Variations in structural dynamics within the LeuT-fold. Conformational dynamics of
LeuT-fold transporters show striking differences in how alternating access is carried out. Dynamic
and static helices are depicted as ribbons and cylinders, respectively. Bottom left: No individual
SSS has been characterized in both OF and IF conformations.
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Figure 1.6: Residue-level movements during IF-to-OF isomerization in various LeuT-fold proteins.
Unresolved residues omitted from the plot. All structures were aligned using TM-Align [453, 471].

discussed below in Section 1.4.1, this points to a mechanism in which TMH5 preferentially adopts

the partially unwound occluded conformation when bound to its substrate but transiently bends to

release substrates.

It is notable that TMH5 adopts a similar, but not identical, conformation in IF-open Mhp1,

which shares this GXNP sequence [374]. Despite this agreement, electron paramagnetic resonance

(EPR) measurements revealed a degree of disorder in TMH5 altogether absent from similar mea-

surements carried out on LeuT in the presence of leucine [213]. Interestingly, ApcT also shares

a LeuT-like bend despite lacking a proline in TMH5 at the equivalent position [367]. Since its
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structure has only been determined in a single conformation, and since its homologs such as GadC

and BasC maintain a straight conformation of this helix [201, 254], the extent to which the afore-

mentioned NSS movements occur in ApcT and its homologs is unclear [371]. Finally, although

TMH5 is also involved in opening the intracellular cavity in DraNramp [52], which also lacks the

conserved mid-helical proline, it undergoes a rigid-body up-and-out translation rather than bending

and unfolding. Many other IF structures, such as those observed in vSGLT and GkApcT, lack a fully

resolved stretch of residues corresponding to intracellular loop (IL) 2, located between TMHs 4 and

5, indicating a high degree of heterogeneity in the crystal lattice or cryo-EM grid [201, 438]. Ulti-

mately, the conformational variation observed across the fold in this loop and helix, combined with

solution-state data indicative of local disorder, suggests that the protruded conformation observed

in some proteins, though perhaps physiologically relevant and likely fundamental to the transport

cycle, may not represent a well-defined low-energy state.

Figure 1.7: Pivoting of TMH5 and TMH10 is observed in a subset of LeuT-fold transporters. Top
left: LeuT with TMH4/5 and TM9/10 highlighted. Bottom: Movements of TMH5 observed in
NSSs, ApcT, and DraNramp in the IF state. Conserved proline residues are highlighted in LeuT,
MhsT and Mhp1. Top right: Movement of TMH0 in Mhp1.
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1.3.2 Movement in gating helix TMH10

Movement in TMH10, despite its pseudosymmetry to TMH5, is less frequently observed (Figure

1.7.B). In NSSs, for example, no evidence has been collected that show involvement in either ligand-

dependent conformational dynamics, or partial unwinding [213, 281, 292, 298]. Mhp1 shows some

partial symmetry of TMH10 to TMH5 in both sequence and structure, with comparable increases in

conformational heterogeneity detected by EPR under OF-stabilizing experimental conditions (Fig-

ure 1.7) [212, 374, 444]. However, the movement inferred from crystal structures is less dramatic

than that of TMH5. In both BetP and DraNramp, differences between their OF-closed and open

conformations in this region, though less drastic than in Mhp1, are nonetheless unmistakable; in-

deed, the corresponding proline in TMH10 facilitating this bend is strictly conserved in the BCCT

family and partially conserved among Nramps [51, 362]. Although the APC transporter AdiC both

shares this specific residue and shows evidence of this structural movement, its structural similarity

to the eukaryotic homolog Lat1, which instead has a cysteine at the equivalent position, indicates

that placement of the proline halfway across TMH10 may be coincidental [122, 456].

1.3.3 Helical pivoting in the bundle domain

LeuT’s twofold pseudosymmetry initially appeared to imply that a rigid-body rotation of the bun-

dle domain relative to the rest of the structure mediates alternating access [136]. This proposal,

although elegant, failed to predict subsequent structural evidence in two key respects. First, the

contribution of this domain to alternating access, although prominent in some proteins, is far from

universal. Movement in ancillary helices and loop regions has been observed in every protein stud-

ied thus far. Second, the bundle domain virtually never moves as a rigid body. The exception,

Mhp1, locks the bundle domain into place and instead pivots the hash domain and gating helices

around this scaffold [444] (see Section 1.3.4 below).

Movements in TMH1a embody the variable intradomain dynamics observed in these helices.

Its apparent dissociation from the rest of the intracellular vestibule, observed in X-ray and cryo-EM

structures of NSSs and Nramps [52, 78, 106, 224], has been verified in solution (both families, it
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should be noted, lack N-terminal helices and oligomeric interfaces capable of restricting the dy-

namics of TMH1a; see Figure 1.6). Particular controversy surrounds the relevance of the signature

45° pivot observed in LeuT, which has been attributed to both the use of short-chain detergents

commonly used in membrane protein crystallography [291, 383], as well as alanine mutagenesis

of a conserved tyrosine residue essential for function [224, 248]. Molecular dynamics simula-

tions of LeuT’s IF-open crystal structure in a lipid bilayer later revealed the steep energetic cost

of this movement into a more physiological membrane environment [383]. Although this brought

attention to the contribution of the membrane mimetic (along with a high-affinity antibody) in

stabilizing such an extreme conformer, these findings, alongside experimental measurements ob-

tained using both luminescence resonance energy transfer (LRET) [383] and HDX/MS [6] in lipid

environments, nonetheless corroborated the more general hypothesis that TMH1a becomes con-

formationally disordered in the IF-open state. Nevertheless, as these experiments were executed

on similar tyrosine-to-alanine mutants, they do not address the extent to which this IF-open con-

formation is sampled by the wildtype protein in solution. For example, EPR measurements on

equivalent tyrosine-to-alanine mutants recorded a comparable degree of disorder in TMH1a; by

contrast, no such dynamics were observed in variants without this mutation [213, 281]. Follow-up

experiments in SERT would paint a similar picture, with ibogaine, a ligand used to stabilize the

IF-open structure during cryo-EM studies, taking the role of this tyrosine-to-alanine mutation in

LeuT [78, 292]. Overall, the data suggest that the IF-open conformations of NSSs, and perhaps

other proteins with similar conformational dynamics, transiently sample disordered TMH1a states

as part of their function, dovetailing with the conclusions on TMH5 discussed above.

A similar pattern of increased disorder under IF-open-promoting conditions has also been ob-

served in the intracellular side of TMH7. In addition to the movements observed crystallographi-

cally, TMH7 in LeuT appears to partially unfold under IF-favoring experimental conditions [281].

For example, the eight N-terminal residues of this helix were not assigned to electron density in

IF-open apo DraNramp [52]. The most pronounced motion of TMH7 is likely found in Lat1, which

swings over 10 Å to close its intracellular cavity [456]. As is discussed below, such a motion was
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suggested by, but not directly observed in, its bacterial homologs in the APC family [111, 254].

Interestingly, no comparable movements are observed on the extracellular side of TMH7. Unfortu-

nately, the absence of data reporting the dynamics of transporters in the APC family prevents any

conclusions regarding increases in disorder in this helix from being established.

TMH1b and TMH6a, located on the extracellular sides of the protein, consistently undergo

smaller scale but nonetheless significant dynamics essential to opening of the extracellular vestibule

[381]. These helices appear to open the extracellular vestibule by moving in concert with the con-

served helix extracellular loop (EL) 4, located between TMH7 and TMH8, in NSSs, APC trans-

porters, and Nramps. While the observed movements of EL4 appear minor when compared to

TMH1a on the intracellular side, EPR spectroscopy data on LeuT indicate that crystal structures

may understate the true extent to which these helices move [212]. Interestingly, on the intracellular

side, no equivalent coupling between TMH1a, TMH6b, and IL1 has been detected to our knowl-

edge. Indeed, unlike EL4, IL1 appears to be firmly stapled to the hash domain.

1.3.4 The hash domain generally acts as a rigid body

Relative to movements outlined above, independent helical movement within the hash domain are

relatively rare. Mhp1 stands out in rocking this domain, alongside bending in TMH5 and TMH10,

to fully mediate alternating access [213, 374, 444]. Similar movements were recorded in vSGLT

using EPR [310], although these coincided with additional movement distributed throughout the

rest of the structure. As a point of contrast, other proteins limit their movements to bending of

TMH4 on the intracellular side and TMH9 on the extracellular side to complement aforementioned

movements of TMH5 and TMH10, respectively. The contribution of ancillary helices, which are

frequently found adjacent to the hash domain, in explaining this phenomenon is unclear. In an

interesting twist, a preprint publication describing the IF-to-OF transition in KCC1 proposes that

alternating access is purely mediated by movement of TMH3 and TMH8, while TMH4 and TMH9

remain fixed [246, 476].
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1.3.5 Conformational stabilization complicates the interpretation of these structures

Importantly, many of these transporters, with Mhp1 and BetP being noteworthy exceptions, could

only be coaxed into specific conformations using mutations, antibodies, or high-affinity transport

inhibitors detrimental to function (see Tables 1.1 and 1.2). In addition to the controversial use of

a transport-abolishing tyrosine-to-alanine mutation in LeuT discussed above (Section 1.3.3) [224],

stabilization of its IF-open state was also achieved by mutating a conserved tryptophan similarly

found to be essential for function [147]. Crystallographic capture of DraNramp in OF and IF con-

formations required glycine-to-arginine and glycine-to-tryptophan mutations near the unwound re-

gions of TMH1a and TMH6a, respectively, that prevented isomerization by obstructing closure of

the appropriate vestibule [50, 52]. In human Nramps, the equivalent missense mutation in TMH1a

is correlated with severely reduced iron uptake in vivo [21], highlighting the extent to which trans-

port function is impaired. Similarly, crystallization of IF-open vSGLT resulted from a lysine-to-

alanine mutation that prevented ligand binding and showed no transport activity [438]. Capture of

the OF-occluded conformation of AdiC, achieved using an aspartate-to-alanine mutation, may have

played a role in stabilizing a ligand pose distinct from those observed in subsequent ligand-bound

crystal structures of the wildtype protein [368]. Equivalent studies of the eukaryotic transporters

SERT [78], Lat1 [456], and KCC1 [476] have employed a broad panel of potent inhibitors that

preferentially bind to specific conformations. Whereas apo SERT readily crystallized in an OF

conformation, capture of its IF conformation required the small molecule ibogaine [78]. Similarly,

both Lat1 and KCC1 were structurally characterized in IF conformations in the absence of ligands

[230, 246, 452, 457] but could only be described in OF conformations using inhibitors [456, 476].

In each of these cases, the introduction of small molecules and/or inactivating mutations arrested

transport by stabilizing conformers off-path with respect to the protein’s functional cycle.

Nevertheless, assuming the physiological relevance of these structures, their comparison nat-

urally prompts speculation regarding the evolutionary and/or functional basis for the variation in

alternating access mechanisms. One proposal, made by the authors that determined the OF struc-

ture of KCC1, is the size of the ligand; only small-scale movements, limited to TMH3 and TMH8,
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are necessary for symport of the relatively small ions potassium and chloride [476]. This hypoth-

esis implies that larger substrates require larger movements and is supported by the observation

that outward-locked DraNramp can transport protons, but not metals [52]. However, the small size

of metals nonetheless raises questions about why DraNramp’s OF-to-IF transition consists of such

large-amplitude movements. Similarly, the relatively minor conformational changes observed in

the transport cycle of BetP [316], the substrates of which are comparable in size to amino acids,

have been justified by function-specific adaptations. Ultimately, the insufficient data prevent any

conclusions from being established in this respect.

1.4 Connecting the dots: from structures to landscapes

Proteins rarely navigate the conformational space accessible to them in the stepwise fashion sug-

gested by depictions such as the one shown in Figure 1.8. Mechanistic models of transport must

necessarily, therefore, also map the conditions under which specific conformations occur. Sec-

ondary active transporters lack a molecular motor such as an ATPase and must therefore rely on the

energy input provided by ions and ligands to undergo forward transport [45]. The central question

concerns how transporters harness this energy to undergo reconfigurations that ultimately result

in productive transport. Unfortunately, the outstanding structural record of the LeuT-fold overrep-

resents static states amenable to structural characterization [294, 414]. As a result, although the

resulting structures enrich mechanistic models of transport, such as the glide-symmetry symport

mechanisms proposed over two decades ago for NSSs [344] and CCCs [346], they are ill-equipped

to directly test them. An example that will not be discussed further is the possible existence of an

allosteric binding site in LeuT and other prokaryotic NSSs, which remains controversial despite

over a decade of structural and experimental research [131, 237, 281, 321, 330, 329, 371, 405].

1.4.1 Characterizing dynamics in the NSSs

The energy landscapes of NSSs are far better characterized than thoose of LeuT-fold proteins in

other families and point to a striking degree of conservation. Measurements carried out in solution

consistently demonstrate that sodium stabilizes OF conformations, ligands stabilize occluded con-
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formations, and absence of either promotes flexible interconversion between IF-open and OF-open

[212, 281, 407, 472, 473]. These data provide additional context for these structures by reporting

on how ligand-binding events bias the conformational ensemble, which can hint at the drivers of

the transport cycle. At the same time, the data can reveal steps unanticipated by canonical symport

and/or antiport mechanisms. For example, recent data suggesting that potassium stabilizes IF-open

LeuT hint at a step in which intracellular potassium ions indirectly participate in the transport cycle

by competing with sodium and accelerating their release from the central binding site [33, 281]

(facilitation of substrate release by allosterically bound ions has since been reported in KCC1 [246]

and KCC2 [469] and suggested for KCC4 [337]).

These studies further highlight how homologs might diverge due to functional specialization.

Despite their structural similarity, LeuT, SERT and DAT were observed to have slight variations in

their conformational dynamics. Whereas LeuT adopts an IF-occluded conformation when bound

to leucine [213, 281], SERT fluctuates between IF-occluded and IF-open [292]. More intriguingly,

the helical unwinding in IL2 and TMH5 initially proposed by the IF-occluded structure of MhsT

[258], although plausible in LeuT and SERT, was altogether inconsistent with data collected in

DAT suggesting a lack of cooperative movement in this region [298]. Comparable dynamics were

instead observed in IL4, a nearby region that was previously found to be critical to IF-opening in

other eukaryotic NSSs but static in LeuT [154, 213] (lack of coverage in HDX/MS studies of SERT

prevented this region from being studied [292]). However, the presence of lipids and cholesterol

in DAT samples presents a confounding factor when attempting to directly compare these results

to those collected in SERT, which was studied in detergent micelles. This suspicion is supported

by previous studies that reported modulation of conformational dynamics in both eukaryotic NSSs

and other secondary active transporters by detergent and lipids [78, 87, 180, 267, 292, 311, 468].
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Figure 1.8: Conformational dynamics of neurotransmitter-sodium symporters inferred from crys-
tal structures. Top: LeuT couples the import of small aliphatic amino acids, such as leucine, to
the inward and outward electrochemical gradients of sodium and protons, respectively. Bottom:
Incomplete transport cycles of other NSSs. Inhibitor-bound states are highlighted in purple.
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Single-molecule visualization of conformational changes using Förster resonance energy trans-

fer (FRET) has added a layer of detail entirely missed by these ensemble-level measurements

[199, 361]. A recent study employing this technique showed how LeuT appears to undergo un-

coupled movement on the intracellular and extracellular sides of the membrane in the absence of

substrate, including sampling a channel-like conformation simultaneously open to both sides [407].

Although canonical symport mechanisms of alternating access forbid this arrangement [134], LeuT

appears to avoid uncoupled sodium flux by sealing the intracellular cavity in response to sodium

binding. Additionally, this study corroborated previous experimental and computational studies

on LeuT suggesting that substrate dissociation, and specifically ligand-dependent sodium dissoci-

ation from the Na2 site (see Section 1.2.4 above) [32, 333], is the rate-limiting step in transport.

However, as mentioned above, this phenomenon may be unique to LeuT. A subsequent study on

wildtype MhsT, in which soluble amino acid-binding proteins labeled with pairs of complementary

fluorescent probes were cleverly introduced to the interior of MhsT-containing proteoliposomes,

determined that the substrate-free IF-to-OF transition was instead rate-limiting [131]. Electrophys-

iology studies in human NSSs led to similar conclusions [28], suggesting that these discrepancies

may be attributable to lower rates of transport and/or higher ligand-binding affinity observed in the

thermophilic protein LeuT relative to transporters adapted to function at lower temperatures.

1.4.2 Differential dynamics in the SSS family

The differences in conformational dynamics among NSSs, although not trivial, are dwarfed by

those distinguishing them from SSSs such as the eukaryotic sodium/glucose symporter SGLT1,

the prokaryotic sodium/galactose symporter vSGLT, and the prokaryotic sodium/proline symporter

PutP. While not as well studied, these proteins traverse an energy landscape that is distinct from

those of NSSs and indicative of the challenges inherent to the interpretation of solution-state dy-

namics data. EPR measurements of vSGLT [310] and PutP [331] as well as fluorescent labeling

and cysteine accessibility measurements in SGLT1 [249, 250, 351] suggest that ligand-dependent

conformational dynamics were effectively inverted relative to NSSs, with apo and/or sodium-rich
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conditions favoring IF conformations and substrate binding stabilizing the OF conformation. As

with NSSs discussed above, key differences between vSGLT and PutP were observed: no con-

formational response to sodium binding was detected in the former [310], whereas sodium bind-

ing to the latter led to closing of EL4 and increased labeling of residues lining the intracellular

vestibule [194, 331, 440]. Importantly, similar sodium-invariant conformational dynamics were

independently reported in the unrelated bacterial transporter Mhp1 using both EPR and cysteine

accessibility measurements [212, 62, 443], and sodium-driven stabilization of an IF state was also

suggested by EPR data in BetP [235].

Data from EPR studies on vSGLT prompted the conclusion that the sodium gradient is a critical

driver of transport [310]. Consistent with this hypothesis, accessibility measurements and fluores-

cent labeling data collected in human SGLT1 in cells that actively maintain a sodium gradient

showed a conformational landscape nearly identical to NSSs: unrestricted isomerization between

OF and IF in the apo state [351] and stabilization of the OF conformation in the presence of sodium

and absence of glucose [249, 278]. Critically, the OF-promoting effect of sodium diminished when

the electrochemical gradient was decreased [249]. However, while these data support the hypothe-

sis that the gradient may play a similar role in prokaryotic SSSs, a critical difference with unknown

significance is SGLT1’s 2:1 sodium-to-glucose stoichiometry, which contrasts with the 1:1 stoi-

chiometry of the prokaryotic model systems discussed above.

1.4.3 Energy landscapes in antiporters

Missing from our knowledge of transporters with this fold is a detailed accounting of conforma-

tional dynamics data in antiporters. Despite their ubiquity in all domains of life and their extensive

structural study by crystallography and cryo-EM (Figure 1.9), their energy landscapes remain vir-

tually uncharacterized. Whereas canonical symport mechanisms, such as those broadly defining

NSSs and SSSs, contain a substrate-free isomerization step, canonical antiport mechanisms facil-

itate substrate exchange by forbidding this conformational change [134]. Instead, the second half

of the antiport cycle involves the translocation of a second substrate in the opposite direction. In
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non-LeuT-fold antiporters, import of one molecule is proposed to power the energetically unfavor-

able export of another. For example, mechanisms of alternating access in unrelated transporters

that expel toxic drugs frequently involve the cation-dependent stabilization of an IF conformation

[108, 180, 270]. The relevance of these findings to understanding LeuT-fold antiporters, however, is

unclear, since many of them are not coupled to electrochemical ion gradients and instead function as

substrate exchangers facilitating downhill translocation in opposite directions [122, 254, 362, 402].

Figure 1.9: Structures and transport cycles of amino acid exchangers in the APC family. Top: The
pH-activated precursor-product exchangers GadC and AdiC are co-transcribed with decarboxylases
GadB and AdiA, respectively. Bottom: Canonical mechanisms of antiport forbid substrate-free
conformational isomerization.

A range of pH-dependent amino acid/polyamine antiporters in the APC family, sometimes

called ”virtual proton pumps”, import and export the precursors and products, respectively, of

proton-consuming amino acid decarboxylases with which they are cotranscribed (Figure 1.9) [122,

137, 204, 223, 254]. Activation of these decarboxylases under extreme acidic conditions drains the
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intracellular concentration of the appropriate amino acids and raises that of the cognate polyamines,

thus ensuring that both halves of the antiport cycle are energetically favorable. In fact, the two most

well-characterized transporters, AdiC and GadC, are capable of forward and reverse transport of

both substrates under equilibrium conditions [254, 253, 416, 417]. In contrast, they are inactive

when their intracellular sides, but not extracellular sides, are exposed to protons, or in the pres-

ence of a negative-inside electric potential [416, 417]. One hypothesis proposed from Molecular

Dynamics (MD) simulations of AdiC posits that protonation of a conserved glutamate leads to the

rate-limiting substrate dissociation from the central binding site [481], similar to the proposed role

of potassium-induced substrate release on the intracellular side of LeuT (see section 1.4.1).

Homologs with broader substrate specificities such as BasC and Lat1 exchange amino acids

in accordance with cellular needs while maintaining high intracellular amino acid concentrations

[111, 230, 459]. A critical adaptation in these proteins is their asymmetric binding affinity, with

apparent Km values in the micromolar and millimolar range during out-to-in and in-to-out transport,

respectively [23]. This is hypothesized to address the disparity between amino acid concentrations

on the intracellular and extracellular side, which differ by several orders of magnitude. A secondary

form of asymmetry in amino acid exchangers of the APC family is the selective import and export

of charged substrates; b(0,+)AT1 selectively imports and exports cationic and neutrally charged

amino acids, respectively, although neither the structures nor subsequent studies have shed light on

the structural basis of this observation [449, 457].

Unfortunately, the recent explosion of structures in the APC transporter family has not been

accompanied by studies into these proteins’ energy landscapes. To our knowledge, the only study

of dynamics in antiporters in the APC family has been in the bacterial serine/threonine antiporter

SteT [338] using single-molecule dynamic force spectroscopy, which reports on a protein’s kinetic

barriers [36]. This study found that conformational flexibility in SteT increased under substrate-

bound conditions relative to apo, consistent with the substrate-dependent conformational movement

predicted by a canonical model of antiport. However, the data do not report on the protein’s ther-

modynamics, which leaves critical questions about the protein’s energy landscape unanswered.
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1.5 Comparison to homologous proteins

Overall, the outstanding evidence suggests that proteins in the LeuT-fold share few, if any, signature

motifs of alternating access. To answer the question posed in the Introduction, differences in the

structures and conformational dynamics of transporters both within and across families suggest

that functional specialization has contributed to a degree of evolutionary divergence that prevents

our rich knowledge of NSSs in general and LeuT in particular from being directly applied to less

well-known families such as KUPs or AAAPs. However, the data also suggest that transporters in

the same family are more similar to each other, both in structure and dynamics, than to proteins in

other families. Thus, the question is one of evolutionary conservation at the family-level.

1.5.1 Structural similarity within families of transporters

From the perspective of structural similarity, the outstanding data suggest that homologs within

a protein family show a degree of structural conservation not shared by other proteins with this

fold. During their transport cycles, individual proteins sample conformations that differ by 3 Å Cα

root mean squared deviation (RMSD) [323]. Structures of homologous proteins within and across

families, meanwhile, differ by around 3 Å and 5 Å Cα RMSD, respectively. This divergence has

complicated the development of unified mechanistic models of transport for any protein or family

because structural variation between different proteins could either reflect differences in sequence

and function, or represent distinct steps in the transport cycle. Indeed, minor structural differences

are even observed when comparing the structures of the same protein across different species, such

as CaiT from Proteus mirabilis and Escherichia coli [362], AdiC from Salmonella typhimurium

and E. coli [122], NKCC1 from Homo sapiens [464, 469] and Danio rerio [68], and KCC4 from

H. sapiens [452] and Mus musculus [337].

An instructive example that was discussed in Section 1.3.1 above is the varying position of

TMH5 in NSSs. The ligand-bound IF-occluded structure of MhsT [258, 394] was interpreted as

evidence that unwinding of TMH5 is a feature preceding substrate release in all NSSs. In contrast,

the conformation of TMH5 in IF-occluded LeuT, which was corroborated by FRET, was bent and
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not unwound, which provided comparatively greater access to the intracellular vestibule [147, 407],

while the conformation of TMH5 in IF-occluded SERT was described as ”halfway” between that

of LeuT and MhsT [78]. It remains unclear if these structures represent distinct steps in a shared

transport cycle, or if they reflect more fundamental differences between proteins resulting from

functional specialization, evolutionary divergence, and/or environment-specific adaptations.

1.5.2 Structural similarity between prokaryotic and eukaryotic transporters

Nevertheless, the striking degree of structural correlation observed between distantly related pro-

teins, particularly between bacterial and eukaryotic proteins, has been a recurring theme throughout

studies of proteins with this fold. The first eukaryotic LeuT-fold transporter to be structural deter-

mined, the dopamine transporter DAT from Drosophila melanogaster [311], bore a remarkable

resemblance to LeuT, obtained from a thermophilic archaeum found in hot springs. Similarly,

the structure of the APC transporter GadC in an IF conformation [254] aligns well with those de-

termined for the eukaryotic transporters Lat1/4f2hc [230, 456, 459], Lat2/4f2hc [183, 460], and

b(0,+)AT1 [449, 457]. This observation is all the more intriguing given that GadC’s structure pu-

tatively represents an auto-inhibited state with no mechanistic equivalent in the transport cycles

of these eukaryotic proteins [254, 253]. Equally fascinating is the correspondence between the

OF-open inactive conformations of Lat1 [456] and AdiC [174]. Unfortunately, comparison of eu-

karyotic and bacterial homologs is only possible in the NSS and APC families, as the structurally

determined proteins comprising every other family of transporters are either exclusively prokary-

otic or exclusively eukaryotic.

Regarding the energy landscapes of these proteins, a dearth of dynamics data prevents straight-

forward comparisons from being made. It is nonetheless remarkable that the structural dynamics of

vSGLT are more similar to those of Mhp1, which has identical 1:1 sodium-to-substrate stoichiom-

etry despite being unrelated at the sequence level, than those of its homolog SGLT1, which instead

mirror those of NSSs sharing its 2:1 sodium-to-substrate stoichiometry [212, 249, 310]. At the

same time, given the variation in dynamics data observed among NSSs [6, 213, 281, 292], small
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divergences in how SSSs respond to their substrates at the structural level appear to be expected.

1.5.3 Implications of structural similarity and divergence on modeling

In 2008, vSGLT became the second protein, after LeuT itself, to be observed with the LeuT-fold

[118]. Publication of its crystal structure in an IF conformation was complemented by an OF model

generated from the structure of LeuT that attempted to predict which helices are involved in alter-

nating access. Though this comparison is, with the benefit of hindsight, somewhat inappropriate,

modeling of alternate conformers has since been a staple of structural studies that has guided exper-

imental design [142, 147, 310, 295, 467], generated starting points in simulations [37, 215, 333],

and contextualized experimental findings [213, 310, 407]. The previous discussion emphasized the

risk of assuming that conformations observed in one protein are relevant to others, modeling has

been particularly effective at extracting mechanistic insights into eukaryotic proteins from bacterial

model systems [37, 136, 135, 142, 431, 482].

Shortly after structure determination of LeuT in 2005, modeling studies led to the identification

of the chloride-binding site of eukaryotic NSSs [135, 482]. Chloride ions are not native ligands of

LeuT, which instead exchanges two extracellular sodium ions and an amino acid with an intracellu-

lar proton [475]. Nevertheless, by identifying a negatively-charge side chain near the sodium bind-

ing site exclusive to chloride-independent NSSs [27], this chloride-transporting phenotype could

be introduced by mutating native glutamate and aspartate near the sodium-binding site of LeuT

and the bacterial NSS Tyt1, respectively [482]. Likewise, chloride-independent transport could

be introduced in the GABA transporter GAT1 by replacing the serine in the same position with a

glutamate. In parallel, the chloride-binding site in SERT was identified by aligning its sequence

to LeuT, and the resulting homology model predicted the chloride-binding position in SERT with

astonishing detail [136].

Several drug discovery studies of Lat1 employed homology models, generated from IF-occluded

ApcT [367] and OF-open AdiC [368], to guide rational design of inhibitors and ligands [142, 295,

380, 467]. Although small details in the substrate-binding sites of these models were subsequently
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found to be inconsistent with the cryo-EM structures [230, 456, 459], they nonetheless facilitated

the identification of multiple novel inhibitors. One of these inhibitors was later used to trap Lat1

in an OF-open conformation for cryo-EM studies [456], and the resulting structures verified the

”carboxylate-up” orientation initially predicted by the homology model that had been observed in

other transporters (Figure 1.4).

Finally, structural models have been invaluable in guiding restraint selection using sparse ex-

perimental data. A model of OF vSGLT, generated from the homologous SiaT [428], was used

to determine which measurements to pursue using EPR [310]. Importantly, the OF model pro-

vided a context for the relatively sparse distance data and highlighted the flexibility of TMH10

that was unanticipated. Additionally, prior to the structural determination of NKCC1 by cryo-EM,

cross-linking experiments were guided by computational models generated from AdiC; the confor-

mation and register of TMHs 10-12 predicted by this model was subsequently validated by cryo-EM

[293, 464].

1.6 Scope of this dissertation

The objectives of this dissertation are twofold.

The first objective focuses on studying the structural dynamics of the glutamate/GABA an-

tiporter GadC. At low pH, GadC serves as a model system for other LeuT-fold antiporters, partic-

ularly those in the APC sub-family, while at high pH it putatively adopts an inactive conformation.

As was discussed in section 1.4.3, these transporters are far less well studied than homologous

sodium-coupled symporters, and the extent to which their mechanisms of alternating access are

conserved is unclear. Symporters such as LeuT, Mhp1, PutP, vSGLT, and SERT have been shown

to undergo ligand-dependent changes in their conformational equilibria; whether GadC or homol-

ogous exchangers found in eukaryotes do the same is unknown. These questions are explored in

Chapter 5 using EPR spectroscopy and computational modeling.

As will be discussed in Chapter 2, the experimental data collected in GadC can report on changes

in the distribution of distances between two spin labels but are local in nature and must be com-

29



plemented with computational modeling to obtain global, fold-level structural insights. Thus, the

second objective of this dissertation focuses on developing novel computational methods to model

the structures of these proteins using these data. The Markov Chain Monte Carlo approach used

throughout this text separates the modeling process into two steps, sampling and scoring. As is dis-

cussed in subsequent chapters, existing sampling and scoring methods do not effectively leverage

the experimental data, leading to unacceptable losses in modeling precision and unnecessary in-

creases in computation time. Therefore, this dissertation describes and discusses advancements in

both halves of the modeling process. However, more attention is paid to the development of scoring

approaches; the novel sampling approach is discussed further in Appendix C. These sampling and

scoring methods are combined to attempt to model conformational changes in three homologs of

GadC using experimental EPR data.

One thread discussed in chapters 3 and 4 of this dissertation, unrelated to these two objectives,

explores the extent to which the analysis of DEER data and its use for computational modeling can

be integrated. In general, the time-domain data are first interpreted as distance distributions, which

are in turn used as modeling restraints (see Chapter 2 for details). While several recent reports have

begun to couple interpretation of the time domain data with structural modeling, the benefits of this

approach have not been studied. Chapters 3 and 4 explore these approaches in greater detail for

two specific tasks, predicting the folds of protein structures using sparse DEER and determining

the positions of nitroxide rotamers, respectively. The goal of these two chapters is to determine the

extent to which these two steps can be coupled. As is discussed in Chapter 3, this has the potential

to advance the integration of computation and spectroscopy in a manner analogous to the prediction

of protein structures using unassigned nuclear magnetic resonance (NMR) chemical shifts or raw

SAXS scattering profiles. An overview of methods to analyze and simulate DEER data is provided

in the following chapter.
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CHAPTER 2

Analysis and modeling applications of DEER data

This Chapter presents an overview of the methods available to analyze DEER data and apply the re-

sulting distance distributions to model protein structures. Particular attention is paid to interpreting

these data using Tikhonov regularization and Gaussian mixture models. Distributions converted

from the time domain using these methods can then be used to guide structural modeling. Com-

monly used strategies for integrating these experimental data as restraints are discussed. This Chap-

ter concludes by speculating on how the analysis of DEER data and its application for modeling

protein structures can be coupled.

2.1 Introduction

Among the tools available to the field of structural biology, DEER spectroscopy is uniquely suited to

monitor the dynamic properties of proteins [171, 186, 274]. DEER, also called PELDOR, measures

nanometer-scale distance distributions between two paramagnetic probes attached to the protein’s

surface. By resolving and reporting full distributions, rather than just average distance values,

DEER can reveal conformational heterogeneity and intermediate states that may be inaccessible to

crystallography and cryo-EM. The contribution of this technique to the derivation of mechanistic

inferences has been bolstered in recent years by its integration with computational modeling [190].

Distributing experimental measurements throughout the structure of a protein allows qualitative

conclusions to be synthesized into quantitative structural models. Computational modeling allows

one-dimensional distance data to be interpreted in the context of a three-dimensional structural

models, thus facilitating further hypothesis testing.

Nonetheless, computational modeling and DEER spectroscopy are each areas of research under

active development. Their integration in the literature is highly nonstandard, with customized pro-

tocols often being used on a case-by-case basis. As will become clear in this chapter, best practices
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are far from established. Individually, each method provides opportunities to make unwarranted in-

ferences; in tandem, they present a risk of overfitting the data and arriving at spurious conclusions.

Perhaps as a result, most studies employ the data conservatively and deliberately underleverage

some of the DEER technique’s advantages, such as its ability to reveal minor populations. This

hinders the development of one’s understanding of a protein’s structural dynamics. Nonetheless,

recent methodological advancements in both DEER data analysis and macromolecular modeling

promise to mitigate this possibility.

This chapter discusses the analysis of four-pulse DEER data [304] and its interpretation by struc-

tural modeling. We focus our attention on the common experimental scenario where proteins are

labeled with two flexible spin-1
2 nitroxide probes per macromolecule and flash-frozen prior to mea-

surement. Our discussion is limited with respect to more exotic applications, include alternative

pulse sequences [41, 55, 280, 386], labeling with lanthanide ions [145, 271, 324, 454] or noncanoni-

cal amino acids [54, 357, 358], deliberate introduction of orientation effects [48, 110, 264], special-

ized sample preparation conditions for long-distance measurements [109, 360], and interpretation

of measurements performed at room temperature [148, 227, 283] or in cells [17, 198, 379, 462]. The

scope of this chapter nonetheless encompasses the vast majority of integrative modeling studies.

That being said, the DEER technique is certain to continue evolving; it is not difficult to envision

room-temperature experiments capable of in-cell measurements in proteins with many conserved

cysteines.

2.2 Analysis of DEER data

2.2.1 Composition of the DEER signal

Pulse EPR methods measure the amplitude of spin echoes caused by the successive application of

microwave-frequency pulses to samples containing unpaired electrons in the presence of an external

magnetic field [286, 287]. The signal obtained from a four-pulse DEER experiment reflects time-

dependent spin-spin coupling within a macromolecule (𝑆(𝑡)) and across macromolecules (𝐵(𝑡)):
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𝑉 (𝑡)
𝑉0

= 𝐵(𝑡)∗(1−𝜆(1−𝑆(𝑡)))+𝜖 (2.1)

Here 𝑉(𝑡)
𝑉0

denotes the normalized signal amplitude and 𝜖 is normally distributed experimen-

tal noise in the signal [104]. The modulation depth 𝜆 reports the spin inversion efficiency and is

also affected by the parameters of the DEER experiment. The background coupling signal is most

commonly modeled using the following stretched exponential function 𝐵(𝑡) = exp(−𝑘|𝑡|
𝑑
3 ) and

relates the background spin concentration 𝑘 and the intermolecular coupling dimensionality 𝑑 (with

𝑑=3 except under circumstances where, for example, membrane proteins are reconstituted into lipid

environments). Alternative background functions can be used to account for an excluded volume

effect observed when the size of the molecule under study forbids short-distance intermolecular

coupling [209].

Ultimately the spectroscopist seeks to isolate and extract the distance information encoded by

𝑆(𝑡). Although the background coupling parameters 𝑘, 𝑑, and 𝜆 report biologically meaningful

information [185], they are frequently treated as nuisance parameters during the analysis of DEER

data. Nevertheless, their identification is critical to the accurate recovery of experimental distance

data, and failure to disentangle 𝑆(𝑡) from background contributions to the signal can corrupt the

resulting distance distribution by, for example, introducing spurious long-distance peaks [192].

2.2.2 Intramolecular contributions to the experimental signal

The isolation of 𝑆(𝑡) and its conversion into a distance distribution 𝑃(𝑟) is at the heart of substantial

research and methods development. The two are related by the following kernel function:

𝑆(𝑡) = ∫
∞

0
𝐾 (𝑡, 𝑟)𝑃(𝑟)d𝑟 (2.2)

𝐾 (𝑡, 𝑟) = ∫
𝜋
2

0
sin𝜃 cos⎛⎜

⎝
(1−3cos2 𝜃)𝜇0𝜇2

B𝑔2
X𝑡

4𝜋ℏ𝑟3
⎞⎟
⎠

d𝜃 (2.3)

Here 𝜇𝐵 is the Bohr magneton, 𝜇0 is the vacuum permeability constant, 𝑔 is the electron g-
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factor, 𝑟 is the interspin distance in nanometers, 𝑡 is the timing of the third pulse in microseconds,

and 𝜃 is the angle between the interspin vector and the bulk magnetization vector (we emphasize the

distinction of 𝜃 from 𝜗, which denotes the parameters of a model and is used in Equations 2.6, 3.3,

4.1, 4.2, 4.5, and 4.6 below). Detailed derivations of 2.3 are available [448]. In practice, the DEER

signal 𝑆 and distance distribution 𝑃 are discretized into time points and distance bins, respectively.

The relationship between the intramolecular component of the signal 𝑆 and the probability distri-

bution 𝑃 to 𝐾 can be denoted by the matrix-vector multiplication 𝑆 = 𝐾𝑃. Unfortunately, 𝑃 cannot

be obtained by matrix inversion, as 𝐾 is close to singular [104, 115]; consequently, the problem is

ill-posed. The resultant distributions are spiky, unstable, overly sensitive to the noise in the data,

and almost certainly not representative of actual distance values between unpaired electrons in the

sample. Their shapes contrast with our expectation of smoothness from distributions of distances

between flexible nitroxide probes attached to flexible macromolecules. In short, obtaining distri-

butions using ordinary least squares is not an option.

Table 2.1: Commonly used methods for
analyzing DEER data.

Method Reference

Pake transformation [193]

Tikhonov regularization [73, 185]

Osher’s Bregman iterative regularization [115]

Integral Mellin Transform [272]

Neural networks [448]

Monte Carlo [102]

Wavelet denoising [388]

Maximum entropy/Tikhonov [72]

Sum-of-gaussians model-based fitting [53, 391]

Thus, the analysis of DEER data must overcome two

problems. First, the background component of the signal

must be correctly identified, and second, the intramolecu-

lar component must be interpreted into distance data with-

out overfitting noise in the signal. Both problems, partic-

ularly the latter, are subjects of active research and have

been addressed using a wide range of mathematical strate-

gies. Several approaches have been developed over the

past two decades and are listed in Table 2.1 and shown in

Figure 2.1. For brevity, the following discussion is lim-

ited to Tikhonov regularization and model-based fitting,

which are perhaps the two most widely used approaches

in the literature. We note that for high-quality data con-

taining an unambiguous background coupling component
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and a high signal-to-noise ratio (SNR), the distributions reported by these methods are nearly iden-

tical. Methodological idiosyncrasies become more pronounced as the fidelity of the experiment

signal decreases and the intramolecular coupling component 𝑆(𝑡) becomes difficult to isolate.

Figure 2.1: Commonly used methods for analyzing DEER data.

2.2.3 Tikhonov regularization

A widely used approach to stabilizing ill-posed linear problems is to include a penalty term, which

is denoted by 𝐿 and is specific for the problem at hand, that quantifies our expectations of what a

reasonable solution should look like. Tikhonov regularization provides a general framework for

integrating this penalty term into ordinary least-squares problems [413]. The general strategy cal-

culates the optimal probability distribution �̂� ̂ by minimization of both the sum of squared residuals

∥𝐾𝑃 −𝑆∥2 and the penalty term ‖𝐿𝑃‖2:

�̂� = argmin
𝑃≥0

{∥𝐾𝑃 −𝑆∥2 +𝛼2 ‖𝐿𝑃‖2} (2.4)

Ultimately, the goal of this approach is to generate a smooth distribution with gradual changes in

amplitudes between distances fractions of an angstrom apart. For example, it seems unreasonable

to expect the peak of a distribution to be at 34.1 Å if the probability at 34.0 Å is zero. An effective
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penalty term would therefore restrain the derivative of the distribution, rather than the distribution

itself. For this reason, the most widely used matrix penalizes changes in the second derivative

[105, 115, 185]:

𝐿2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −2 1 0

1 −2 1

⋱ ⋱ ⋱

0 1 −2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.5)

This applies the smoothness constraint uniformly throughout the distribution, thus avoiding

the spikiness observed by ordinary least-squares fitting. The weight of this term, relative to that

of the least-squares term, is determined by the regularization parameter 𝛼, which does not reflect

an experimental variable and is only used to stabilize the probability distribution in solution. In

general, lower-quality data require more regularization, and thus larger 𝛼 values. For any given

value of 𝛼, one of several iterative non-negative least-squares algorithms can be used to obtain an

optimal solution [56, 244].

Not surprisingly, determining the most appropriate value for 𝛼 is critical to the accurate recovery

of distance data. It should be high enough to avoid overfitting noise in the time domain, but no

higher than necessary to minimize information loss in the distance domain. Prior to 2018, the most

common approach for selecting a value for 𝛼 was to use an L-curve, in which the distribution is

calculated using many values, and the resulting logarithm of the least-squares term of each fit is

plotted as a function of the logarithm of the penalty term [73, 185]. However, a recent benchmark

did not find the widespread practice of selecting the value of 𝛼 from the “elbow” of this plot to

be particularly effective [105]. Instead, the authors proposed using either the Akaike Information

Criterion (AIC) [7] or generalized cross-validation [252], and since then the use of the former has

become standard practice [117]. A follow-up study by Fábregas-Ibáñez and Jeschke found that

iterative regularization methods can further improve the quality of distributions generated this way

[115]. Although they proposed several alternative approaches to integrate the penalty matrix into
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the cost function, in practice the Tikhonov functional continues to be widely employed.

As evidenced by its widespread adoption among EPR spectroscopists, this strategy provides

informative distributions without the problems encountered by purely least-squares fitting. Addi-

tionally, and in contrast with the model-based paradigm discussed in the following section, it is

guaranteed to return the best possible fit given the choice of the penalty matrix 𝐿 and the regu-

larization parameter 𝛼. However, its ability to report physiologically meaningful distributions is

contingent on the universal application of the smoothness constraint throughout the distribution.

As a result, Tikhonov is ill-equipped to handle substantial variation within the distribution, such

as mixtures of broad and narrow components, particularly in the presence of noise [391]. Sharp

components may be smoothed over and broad components may be split. Moreover, artificial peaks

may be introduced throughout the distribution to improve the fit, even if there is no physiological

basis for their existence [66, 186].

One aspect of this optimization approach for the analysis of DEER data warrants further dis-

cussion. The least-squares portion is defined by the matrix-vector multiplication 𝐾𝑃, effectively

preventing the nonlinear background contribution of the DEER signal from being integrated into

this step of the analysis. As a result, the intermolecular coupling signal, modeled by 𝐵(𝑡) as de-

scribed above, must be determined and removed in advance [116, 185]. This is not a problem when

the time collection window is sufficiently large that the intramolecular signal eventually decays to

zero, such as when measuring distance distributions that are either short or broadly distributed.

Less ideal circumstances may prevent the contribution of background coupling from being readily

identified, which can lead to the introduction of fitting artifacts in the distance domain. A secondary

result of this a priori correction is its effect on the apparent SNR near the end of the data collection

window, termed the “noise explosion” [116], which can challenge the assumption fundamental to

least-squares fitting that noise values are independently and identically distributed. This can be

detrimental to the accurate recovery of short-distance components, and in practice this issue is of-

ten sidestepped by signal truncation after background correction. In part to address these concerns,

an iterative algorithm was developed that alternates between determining the distribution from the
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background-corrected data using Tikhonov regularization and refining the background parameter

values using nonlinear least-squares fitting [117]. The method promises to overcome many of these

challenges, but as of writing has not been widely used because of its novelty.

2.2.4 Model-based fitting

The fragmented analytical pipeline required by Tikhonov regularization contrasts with nonlinear

least-squares minimization, a one-step approach that can be achieved using a parametric model

[59]. The multi-Gauss model, for example, represents the experimental distribution using one or

more Gaussian distributions. These parameters, when combined with the background coupling pa-

rameters in Equation 2.1, constitute a parametric model (denoted by 𝜗) that can potentially recreate

the DEER signal. As such, their values can be optimized by directly comparing the simulated DEER

trace 𝑉sim (𝜗) to the experimental data in the time domain without any background correction:

̂𝜗 = argmin
𝜗

∥𝑉exp −𝑉sim (𝜗)∥
2

(2.6)

Standard nonlinear optimization algorithms can minimize the deviation between the simulated

and experimental DEER traces. These include the Levenberg-Marquardt [53, 236, 266, 391], Inte-

rior Point [173, 325], and Trust Region Reflective [61, 117, 288] algorithms, as well as approaches

such as Hamiltonian [166, 400] and random-walk Monte Carlo [102, 296], Gibbs sampling [104],

and particle swarm optimization [173]. Many of the shortcomings discussed above for Tikhonov

do not arise with model-based fitting; the background component need not be identified a priori,

and the use of Gaussian distributions ensures smoothness in the distance domain. Moreover, the

only constraint placed upon the model parameters is that the components’ amplitudes each exceed

zero and total one. This allows the Gaussian mixture model to accurately fit a mix of broad and

narrow components that may be challenging for Tikhonov regularization. Finally, the resulting dis-

tributions typically lack many of the spurious side peaks and long-distance components that define

distributions obtained using Tikhonov and may not be borne out of the signal.

However, these advantages come at the cost that the best solution is no longer guaranteed to be
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reached. Whereas linear least-squares problems can be solved analytically, the aforementioned nu-

merical methods required to solve numerical methods may not necessarily converge upon the global

minimum. Instead, the solution obtained is the result of iterative improvements of an initial guess

provided by the user. Depending on the number of parameters in the model, starting from several

unique guesses may be sufficient to identify a reasonable solution [117]. A further consideration is

the choice of how many Gaussian components constitute the model, which can be guided by several

statistical criteria [7, 395, 424] but must ultimately be chosen by the end user. Collectively, these

constraints place a greater burden on the practitioner to avoid the overinterpretation of suboptimal

fits.

2.3 Structural interpretations of distance distributions

The intrinsic dynamics and equilibrium states of protein structures come into focus when carrying

out multiple orthogonal distance measurements under identical conditions. Proteins may alternate

between a discrete number of conformations as part of their function, and the relative proportions

of these conformations may be affected by experimental conditions. Whereas an individual DEER

distribution might resemble a featureless smear, a series of measurements in the same pair might

reveal distinct distance components that ebb and flow under different conditions. This approach al-

lows discrete conformational states to be extracted from distributions that may otherwise be difficult

to interpret. With small datasets and/or simple conformational landscapes, unique conformations

can be identified by eye alone [22, 99, 213, 261].

However, when underlying components are not obvious, specialized approaches may be war-

ranted. In a study of the sodium-coupled aspartate transporter GltPH, which isomerizes between

three conformations, eight restraints were measured under six experimental conditions [143]. These

measurements were subsequently fit using three Gaussian components, one for each predicted con-

formation, under the assumption that the underlying components would retain their means and

widths, but change in amplitude. This effort benefited from the determination of several crystal

structures in distinct conformations, which provided initial guesses for the distance of each compo-
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nent. This allowed each component across different distance distributions to be linked to specific

structures, thus revealing the energy landscape of the transporter. Variations of this approach have

been used elsewhere. In a study of HIV-1 protease, the collection of multiple experimental distance

distributions allowed the effect of various drugs on specific distance components to be quantified

[38, 66]. Similarly, weighted ensembles of 5-NT in either open, intermediate, or closed conforma-

tions were determined under either apo or ligand-bound conditions using a Monte Carlo reweighting

approach [226]. Again, both cases were aided by a large library of determined conformations.

Similar procedures may nonetheless be carried out even without the information provided by

high-resolution protein structures. In their study of the Angiotensin receptor, Wingler et al mea-

sured ten distance restraints across ten experimental conditions and used non-negative matrix fac-

torization (NNMF) to assign specific distance components to four conformations from the entire

pool of experimental distance data [446]. Unlike the previous examples, no structures were known

a priori; in fact, the conformation-specific distances obtained by NNMF were ultimately used for

molecular dynamics simulations (see Section 2.6 below).

Each of these cases relied on distance distributions obtained using Tikhonov regularization to

make inferences about a protein’s structure and dynamics. As was previously mentioned, Tikhonov

can at times introduce artifacts and smooth over sparsely populated components in the distribution.

Information lost during analysis cannot be recovered by NNMF or Gaussian fitting. One solution is

to simultaneously fit the time domain data collected between the same spin-labeled residues under

the assumption that certain distance components are conserved across conditions [53]. As with the

examples mentioned above, the amplitudes of distinct components will increase and decrease across

various conditions, while their means and widths remain fixed. Individual conformations consist of

one or more distance components, and their relative energetics can be tracked and monitored under

different conditions. The population data obtained this way can reveal details such as the energetics

of protein-ligand interactions [79, 90] or conformational interconversion [89, 180, 267, 425], and

facilitate the development of kinetic models of protein function [79, 310].
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2.4 Integrative modeling of protein structures using DEER data

The previous sections discussed the challenges of transforming one-dimensional data in the time

domain to one-dimensional distributions in the distance domain. The remainder of this chapter dis-

cusses the more daunting task of converting multiple distance distributions into detailed models of

protein structures and ensembles. If properly executed, the integration of these data with modeling

can reveal the binding and interaction interfaces of multiple proteins or subunits, the conformational

heterogeneity of protein substructures under different conditions, and even the topology or fold of

protein structures that have not been previously determined to high resolution.

2.4.1 General principles of integrative modeling using experimental data

Quantitative models aim to explain or justify past observations, and/or predict future observations

[167]. Several recent reviews focused on integrative modeling of protein structures [342, 354] have

outlined five possible uses for experimental data:

1. Choosing a representation of the protein structure. In the context of DEER data, which

reports distance distributions between flexible spin labels, atomic-detail information is un-

available. Thus, absent other sources of experimental information, only low-resolution fold-

level models are generally feasible.

2. Scoring candidate structural models. A model’s agreement with experimental data must

be quantified for direct comparison to other models.

3. Constraining the search space. Given both the complexity of protein structures and the fun-

damental sparseness of the DEER data, exhaustive searches of the fold space are impossible.

This is closely related to the choice of which sampling method to use [273].

4. Filtering of models after sampling. Agreement with experimental data may be use to filter

models ex post facto, which is often necessary if consistency with experimental data cannot

be rapidly quantified.
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5. Model validation. Finally, the soundness of structural models can be verified using experi-

mental data that may be difficult to quantitatively incorporate.

Most recent advancements surrounding the integration of DEER data into modeling pipelines

can be categorized as improvements in either scoring or filtering approaches. Nevertheless, all

modeling studies must first address how to adequately constrain the search space.

2.4.2 Working with sparse data

Even the smallest proteins contain thousands of atoms, and even the coarsest depictions must ac-

count for at least two rotatable bonds per residue. If a model can sample these degrees of freedom

without restriction, then the DEER technique’s low throughput all but ensures that model parame-

ters outnumber distance restraints (Figure 2.2). The problem can be simplified if the structures of

certain regions are known and forced to remain static: rigid body docking of 𝑁 discrete domains

has 6(𝑁 −1) degrees of freedom [100], or 4(𝑁 −1) for symmetric homooligomers [164]. Indeed,

countless examples exist in the literature of DEER data being used to identify either a docking inter-

face or the relative spatial arrangements of multiple domains. As an added benefit, the search space

of the problems shrinks to the point that it may be searched nearly exhaustively [14, 219, 398].

If intradomain movement cannot be ruled out, then soft restraints can be used to limit the ex-

tent to which a model reconfigures away from a known conformation. For example, Evans et al.

modeled a conformational change in SthK by restraining Cα atoms to distances observed in the

starting conformation using a sigmoid-like function that increased the penalty of deviations up to

but not beyond 1 Å [114]. This limited the changes introduced to the model to regions that were

inconsistent with the experimental data. Alternatively, the source of the conformational change

can be determined by eye. Kazmier et al. found that conformational changes in the transporter

LeuT predominately map to four transmembrane helices. This allowed the remainder of the protein

structure to be restrained, preventing unnecessary movement [213]. Finally, such restraints can be

introduced implicitly, such as by starting from a template [35, 114].

Without prior structural information, DEER distance restraints play a supplementary role to
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either energy functions and/or alternative sources of experimental data such as NMR restraints.

Their integration is discussed in Section 2.5.5.

2.5 Evaluating a model’s agreement with experimental DEER data

2.5.1 Simulation of nitroxide side chains

Accurately modeling a protein structure is only possible when the target conformation recapitulates

the experimental data more effectively than alternative conformers. The reliance on flexible spin

labels complicates the problem of identifying the conformer of interest using DEER data. Dis-

tances are measured between stably bound unpaired electrons far from the protein backbone; for

example, in the widely used methanethiosulfonate spin label (MTSSL), they are separated from the

Cβ atom by 6 Å and five χ angles. Ultimately the linkers anchoring these unpaired electrons to

the protein backbone determine how distances between unpaired electrons relate to distances be-

tween backbone atoms. Their conformations are generally not known in advance (although they can

be determined using specialized algorithms, discussed in Section 2.6 below). Therefore, accurate

models of protein structures require accurate distance distributions, which in turn require accurate

predictions of spin labels rotamers.

However, the introduction of spin labels into the protein model is not straightforward. For

example, several problems become apparent even in simple cases where protein structures being

simulated in an MD environment are modified to have nitroxides at residues that have been exper-

imentally labeled [43, 49, 57, 83, 157, 175, 176, 262, 263, 343]. First, whereas the two spin labels

attached to any individual experimentally expressed double-cysteine mutant are unlikely to clash,

an in silico model attempting to integrate data from many DEER experiments may contain many

explicitly modeled nitroxide side chains, some of which may be in close proximity to one another

[176]. Second, the identity of the residue being labeled can provide valuable modeling information

about which environments it preferentially occupies [8]. For example, mutation of a tryptophan

in a membrane protein to a nitroxide prevents it from informing the simulation software about

structural characteristics such as membrane depth. Finally, and perhaps most critically, the compu-
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tational cost of atomic-detail molecular dynamics simulations precludes its use as a screening tool

that quantifies any given structural model’s agreement with DEER data.

Figure 2.2: Protein modeling applica-
tions ranked by complexity. More com-
plex problems, such as fold prediction
or homology modeling, generally re-
quire more restraints to obtain accurate.

Monte Carlo (MC) modeling paradigms provide one

alternative approach. In this modeling paradigm, the spin

label configurations are randomly picked from rotamer li-

braries, the probabilities of which are computed in ad-

vance. However, whereas rotamer statistics for canonical

amino acids can be obtained directly from the PDB, those

for nitroxide spin labels must instead be computed from

detailed quantum mechanical calculations, a procedure

described in detail elsewhere [10, 103, 322, 357, 464].

After obtaining these rotamers, MC facilitates the rapid

sampling a residue’s local environment, and pairwise

measurements can then be compared to experimental dis-

tances. The accuracy of distances obtained this way is

comparable to those obtained by traditional MD [220] and

in many cases are able to recover the rotamers observed

experimentally [10]. However, MC methods have the ad-

vantage of being several orders of magnitude faster.

MDDS, an alternative developed by Islam and Roux,

allows MD methods to rapidly calculate distance distri-

butions from protein models in minutes to hours while

avoid modeling spin labels to atomic detail [176]. By

using a set of over fifty experimental distance restraints

collected in T4 Lysozyme, they generalized the position

of the unpaired electron with respect to the protein back-

bone. They then converted these positions into force fields between backbone atoms and a dummy
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atom representing the unpaired electron, allowing them to discard the rest of the nitroxide side

chain.

2.5.2 Simulation of DEER distance distributions

Whereas experimental distance measurements are carried out between ensembles of molecules,

computational methods generally model only a single structure at a time. To model the distribution

of distance measured in ensembles of molecules, MDDS uses large numbers of noninteracting

dummy atoms to build distance distributions [213, 332]. Marinelli and Faraldo-Gomez instead

used a time window to build their distributions from MD simulations between explicit nitroxide

rotamers [173, 262, 263]. Alexander et al. generated thousands of models using full-atom MC

modeling and assembled distributions from those with the lowest energy [10].

By far the most common strategy in the literature models ensembles of possible nitroxide con-

formations. Methods such as MMM [189, 322], Pronox [156], Nasnox [24, 327, 403] and TagDock

[103] introduce every possible configuration stored in of a rotamer library one at a time and calcu-

late Boltzmann energy values for those that do not clash with the rest of the protein. Some methods,

such as TagDock, allow neighboring side chains to be repacked in response [103]; others, such as

MMM, can be applied to individual frames within an MD simulation to visualize the contribution

of backbone dynamics [392, 408]. By contrast, MtsslWizard [152, 153] uses MC to sample ro-

tamers until the number of either accepted rotamers or clashes reaches a predetermined threshold.

A benchmark by Klose et al. established that distributions simulated using these rotamer libraries

are comparable in accuracy to those simulated using MD, with the distribution’s average values

deviating by about 3.0 Å from those observed experimental in each case [220].

However, neither this approach, nor to our knowledge MD, can simulate distributions with

widths that correlate with experimental values [187], with the former consistently overstating spin

label dynamics while neglecting backbone dynamics [88]. The only method that has achieved any

correlation with experimental widths is a sampling-intensive MC refinement approach that permits

changes in the protein backbone [10], which suggests that coupling of backbone and side chain
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dynamics in solution may contribute to the width and shape of experimental distance distributions.

Such a case has been crystallographically observed in the chaperone Spa15 when a loop containing

a spin-labeled residue was found to slightly reconfigure compared to the wildtype structure [242].

One explanation for this discrepancy between experimental and simulated distribution widths

is the fact that DEER measurements are almost always carried out in protein samples following the

addition of cryoprotectants (such as glycerol) and flash-freezing. The common practice of submerg-

ing microliter-volume samples in liquid nitrogen gives spin labels up to hundreds of milliseconds

to reconfigure and converge upon low-energy conformers [359]. Studies with T4 Lysozyme [144]

and hemoglobin [20] have observed that the speed at which a sample freezes affects the width of the

resulting experimental distribution. It is unclear if this effect could be corroborated in silico, since

the timescales of such a simulation are not currently feasible. Most likely, the experimental distri-

bution likely involves a complex interplay between the spin label’s local environment, the sample

conditions and choices involved in its preparation, and the speed at which the sample was frozen.

2.5.3 Scoring functions

How can the target conformation be identified if it cannot be expected to recreate the experimental

data? Unfortunately, no consensus exists on this topic in the literature. Average values of dis-

tributions are widely used for the simple reason that their values correlate reasonably well with

computational predictions made from structural models. As was just discussed, distribution widths

cannot be recapitulated and are frequently ignored altogether, while distribution shapes are far more

difficult to glean from the raw data and as a consequence rarely factor into modeling.

One strategy that has seen relatively widespread use is to model the nitroxide rotamers using a

rotamer library such as MMM and to measure distances from the unpaired electron closest to the en-

semble average [88, 99, 100, 101, 124, 331, 436]. Comparing these distance values to experimental

averages allows a model to be scored using the sum of squared residuals. This retains the benefits

of using the entire ensemble of spin label conformations while removing potentially unreliably in-

formation from the distance distribution. Nevertheless, alternative scoring functions sometimes are
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used that factor the width of the distribution. For example, in several studies, the deviation between

the simulated and experimental average values has been divided by the experimental distribution’s

width. Presumably, this accounts for backbone heterogeneity by less aggressively penalizing devi-

ations between residues with wider distributions [188, 317], although to our knowledge no bench-

marks have been carried out to ascertain the merit of this fact. Alternatively, the entire shape can

be retained, and the score of a model can be either its percent overlap [157, 191, 213, 332] or the

area between the integrals of the two distributions [226].

It is important to note that regardless of the scoring function, the spin label’s flexibility means

that the direct application distance restraints to the unpaired electron or nitroxide bond to be largely

ineffective at obtaining high-precision protein models, as the rotamers can easily reconfigure with-

out any backbone changes. For example, when dummy atoms are used to model conformational

changes modeled using MDDS, they have been found to absorb changes in the distance distribution,

leaving the backbone untouched [213, 332]. Applying distance restraints to the nitroxide bond of

the rotamers in an MC simulation is fraught with similar challenges: for example, Herrick et al.

constrained the first two chi angles of MTSSL after finding that rotamers would otherwise adopt

”unrealistic orientations” [161, 228]. Similar observations were made when modeling 5-NT [226]

and Omp85 [88]. An exception is when data has also been collected using paramagnetic relax-

ation enhancement (PRE) paramagnetic relaxation enhancement NMR, which measures distances

between an unpaired electron and backbone nuclei. These distance data can be used as additional

restraints on nitroxide rotamers to prevent them from reconfiguring [285, 350, 450]. However,

the rotamers that contribute to the experimental signals may differ between the two datasets, since

DEER samples are measured after flash-freezing whereas PRE samples are measured at room tem-

perature.
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2.5.4 Limits of modeling protein structures using explicitly modeled rotamers and rotamer

libraries

Distance distributions in non-MD environments can typically be simulated in seconds or tenths

of a second, with the majority of computation time typically devoted to calculating clashes with

the rest of the protein. Unfortunately, even these speeds still preclude the use many modeling ap-

plications. Most studies therefore use these methods to screen models ex post facto, rather than

restrain them directly during sampling. Some studies circumvent these cost restrictions by intro-

ducing rotamers prior to modeling and retaining them throughout sampling without recalculating

clashes, thus skipping the most computationally expensive step. Such a strategy was appropriate

when docking CDB3 and Ankyrin [103], as the local environment of the spin labels were not ex-

pected to change throughout the docking simulation. Alternatively, a number of studies only retain

the rotamer closest to the center of the ensemble: by fixing it in space relative to the backbone, it

could be restrained using distance data without risking its reconfiguration [31, 99, 101, 331, 436].

2.5.5 Direct integration of DEER data during sampling using restraints between backbone

atoms

Because of this computational cost issue, these data are more frequently integrated as restraints

between backbone atoms during sampling. Restraints between Cβ atoms are more common, al-

though Cα atoms have also been used [308, 352]. While trivial to implement in most modeling

packages, this approach requires that distance values between spin labels be transformed into dis-

tance restraints between backbone atoms. Unfortunately, these measurements do not always line

up perfectly [165]. Yang et al. demonstrated the danger of taking these experimental distances at

face value when predicting the structure of the homodimer Dsy0195 [463]. The RMSD of their

model improved when using a restraint with an experimental DEER distance that matched the Cβ-

Cβ distance, but worsened when the two values differed by as little as 5 Å. As has been previously

noted [8, 30, 42, 128, 143, 187, 353], deviations of this magnitude are not uncommon. In globular

proteins, spin labels tend to face away from each other, leading to experimental distances values
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that exceed the corresponding Cβ-Cβ distance by a median of 6 Å to 7 Å. By contrast, the devi-

ations between these values across protein-protein interfaces are lower but nonetheless significant

[30, 128, 219]. Notably, these values exceed the 3 Å deviation observed between the average values

of simulated and experimental DEER distance distributions, highlighting the loss of precision that

comes with this scoring approach [353].

Backbone potentials frequently score a model’s agreement with experimental data using wide

and flat-bottomed harmonic potentials. These have be introduced as NOE-like restraints into pro-

grams such as CYANA [150], Xplor-NIH [363], CNS [58], Rosetta [229, 234, 378], and BCL

[205, 447]. Both Alexander et al. and MacCallum et al. successfully predicted the structures

of T4 Lysozyme and aA-crystallin de novo using this type of restraint [8, 256]. In both cases, a

score of zero was assigned to Cβ-Cβ distances (in angstroms) ranging from μSL − σSL − 12.5 to

μSL + σSL + 2.5, where μSL and σSL are the average values and standard deviations of the experi-

mental distribution. Similarly, Kim et al. determined the docking interface of CDB3 and Ankyrin

using a criterion in which any model was kept if its Cβ-Cβ distances deviated by less than 14 Å

from the experimental average distance [219]. Alternatively, the edges of the distribution have been

used as restraints bounds [31].

These scoring functions, although broad, can nonetheless respond poorly to outliers. Bhatnagar

et al. noted when docking CheA and CheW that a pair of Cβ-Cβ restraints whose distance deviated

substantially from experimental interspin distance values prevented low-RMSD models from being

obtained; their removal improved the RMSD of the docking interface from over 10 Å to 2.6 Å [30].

However, they used a more restrictive potential with lower and upper bounds of μSL−5.0 Å and

μSL+1.0 Å, respectively, which may increase the scoring function’s sensitivity to outliers [29].

A similar strategy was employed by Evans et al. when modeling conformational changes in the

ion channel SthK [114]. They took advantage of a starting conformation, as well as a set of DEER

data for that conformation, by applying the magnitude of the distance change as a harmonic restraint

between Cβ atoms with a lower and upper bound of μSL−1.0 Å and μSL−1.0 Å, respectively. This

strategy has the benefit of reducing variation among generated models but assumes that domains
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and spin labels do not rotate or substantially reconfigure with respect to one another.

Hirst et al. generated a custom cubic spline function called the motion-on-a-cone (CONE)

model that, unlike a flat-bottomed harmonic function, accounts for the fact that the experimental

distance is more likely, but not necessarily guaranteed, to be longer than the Cβ-Cβ distance [165].

Its use improved the number of high-resolution models folded de novo for T4 Lysozyme, and it has

since been applied to problems involving de novo folding [126, 127, 128], docking [9, 88, 128, 410],

and conformational change modeling [88, 217, 226, 422].

None of these approaches can determine unequivocally the structures of proteins or complexes.

For example, Kim et al. found that the incorporation of twenty experimental restraints when dock-

ing CDB3 and Ankyrin led to a wide range of possible configurations [219]. This highlights the

breadth of the solution space, even in cases where the experimental restraints outnumber the de-

grees of freedom by more than threefold. Ultimately this pool of models was further trimmed using

an orthogonal set of EPR data that measured the solvent accessibility of individual spin-labeled

residues.

This hierarchical approach contrasts with the direct integration of flat-bottomed harmonic re-

straints into sampling, which has the intended effect of directing the modeling protocol to a con-

formational subspace encompassing the target structure. Optimization within this subspace pro-

ceeds using additional criteria, such as energy functions or experimental NMR restraints, which

can evaluate structural features with greater precision. The MELD structure prediction program,

for example, navigates this subspace using AMBER forcefields and replica exchange molecular dy-

namics [256, 313], whereas Rosetta relies on its coarse-grained energy function and MC sampling

[8, 210]. By contrast, Ling et al. used Xplor-NIH to model the structure of YagP by combining

DEER data with EPR membrane depth restraints [245]. In each case, the flat-bottomed potentials

do not interfere with optimization within this region; instead, they guide the conformational search

away from false minima that fall outside their bounds. As a result, the weights of these restraints,

relative to other experimental restraints or score terms, is not generally optimized or fine-tuned.

By contrast, the CONE model developed by Hirst et al. does introduce a bias into the search
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procedure by assuming that the experimental distance will usually, but not always, exceed the Cβ

distance. This assumption modifies the function landscape and must therefore be carefully inte-

grated into the modeling protocol. During the development of this energy potential, Hirst et al.

determined by grid search a weight for this energy potential that maximized the proportion of high-

accuracy models of T4 Lysozyme. This weight has since been used in virtually all cases outlined

above.

We note that although these restraints are imprecise, they are often followed by the use of higher-

precision scoring functions in conjunction with atomic-detail depictions of spin label rotamers more

amenable to the identification of accurate models [355]. For example, structural modeling of EmrE

was achieved using the CONE model in BCL::Fold followed by refinement with Modeller using the

rotamer libraries available in MMM [88]. The structure of the C-terminus of ExoU was similarly

modeled de novo using the CONE model, followed by in silico spin labeling with explicit MTSSL

side chains using Rosetta [127]. The CheA/CheW binding interface was determined by generating a

set of initial models using Cβ-Cβ restraints followed by finer-grain selection using rotamer libraries

[30]. Thus, the use of coarse backbone restraints can set the stage for finer-grain modeling.

2.5.6 Error analysis

Our discussion has extensively mentioned the limit of DEER restraints in modeling structures: even

docking interfaces cannot be determined with absolute certainty using these data. Fortunately,

quantification of the uncertainty of these models is increasingly widely used. Cross-validation

requires that multiple subsets of these restraints be used for modeling, and the results compared to

check the stability of the solutions. This approach has been used to model the NhaA homodimer

[164], 5-NT [226], and RmsE/RmsZ [30]. The docking interface of the NhaA homodimer, for

example, was determined using each of the 36 available combinations of seven restraints from nine

restraints available, leading to an RMSD of 0.45 Å among each of the thirty-six best models from

each set [164]. Bowen and colleagues took this idea a step further and quantified the uncertainty

resulting from the choice of rotamer library [48]. Alternatively, if a starting structure is available,
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the error calculated for that structure can be used to inform the precision with which certain features

and/or substructures of a protein can be modeled with high confidence. Bliecken et al. calculated

the deviations among restraints in the soluble Bax monomer, which had been initially determined

using NMR, and used those values to inform the accuracy of their model for the membrane-bound

Bax dimer [39]. More commonly, uncertainty is depicted informally, for example by presenting a

handful of the best-scoring models [114, 146, 219]. Far more often it is ignored altogether.

2.5.7 Integrating DEER restraints with other types of experimental data

Flat-bottomed harmonic functions, although imprecise, nonetheless allow DEER data to be ele-

gantly integrated into a modeling protocol involving other types of data. When modeling distribu-

tions using programs such as MMM, it is less clear how best to jointly consider agreement with

both DEER data and, for example, small-angle X-ray scattering (SAXS) data. One option men-

tioned above is to use hierarchical approaches, where models are effectively filtered out if they fail

to satisfy each of several experimental criteria. Bowman, Boura, and Sundaramoorthy combined

DEER and SAXS data using this approach for rigid-body modeling of Vps75/Nap1, ECSRT-I, and

Chd1, respectively [46, 47, 48, 398]. In each case, models needed to be docked in such a way that

both the DEER data and SAXS density were satisfied. Several examples in the literature exist in

which this is done informally, such that a solution obtained using DEER data is simply validated

using experimental data from another source. Hilger et al. compared their model for the dimeric

NhaA antiporter to previously published low-resolution 2-D cryo-electron microscopy data [164],

whereas Sung et al. docked their model of Bax into SAXS density [399].

A preferable approach is the direct integration of the two during sampling. This, however,

requires that scores be balanced in such a way that avoid overemphasizing data from either method.

To our knowledge, no single widely used approach exists. In the literature, ESCRT-II was modeled

using both SAXS and DEER data using a 𝜒2 potential for each experimental technique [46]. Peter

et al. also used 𝜒2 potentials to model YopO using both SAXS and DEER, but simply compared

the average values of the simulated and experimental distributions [317].
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2.5.8 When simulation guides experiment: choosing restraints using starting structures

Several application-specific algorithms have been developed that recommend experimental restraints.

These recommendations are typically application-specific, as the demands of each application change

the information being sought by the experimental data. As an example, de novo folding problems

benefit from restraints between residues that are distant in sequence but close in space. The MC

algorithm developed by Kazmier et al. that chooses restraints for de novo folding uses two crite-

ria: it tries to ensure that the pairs of residues are far apart in sequence space while diversifying

their placements to avoid collecting redundant information, for example between the same pair of

helices [210]. By contrast, when a structure is known but its loops are not, networks of four re-

straints per spin-labeled loop residue have been proposed in a procedure analogous to triangulation

[188]. For conformational change problems, both Hays et al. [158] and Mittal and Shukla [290]

developed restraint-picking methods for conformational change modeling problems that prioritize

the reduction of redundant information by selecting residue pairs whose movements are minimally

correlated; both rely on short nanosecond MD simulations to obtain an initial guess for these struc-

tural dynamics. If for some reason such a simulation is impossible, an alternative method [184]

predicts which regions of a protein structure will move using normal mode analysis and a modi-

fication of the Zheng-Brooks algorithm [477]. The same author proposed a separate criterion for

rigid body docking problems, which require far fewer restraints to define analytically [191]. Since

only three residues need to be spin labeled per rigid body, an intuitive choice is to choose the three

residues in each rigid body that generate the largest nearly-equilateral triangle. This minimizes the

propagation of errors throughout the docked structure.

2.6 Towards the analysis of DEER data by structural modeling

The first half of this chapter discussed the difficulty of extracting distance data from DEER traces in

the time domain, while the second half discussed how best to use those distance data for modeling

protein structures. In principle, the two steps can be directly integrated by attempting the simulate

the raw data using the same approach summarized earlier. Briefly, the conformation determines
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the distance distributions being fitted and reconfigures to improve the goodness-of-fit in the time

domain. Several studies have attempted to recapitulate the raw data from protein models as early

as 2007 [30, 164]. The previously mentioned ESCRT-II, which was modeled using the raw DEER

traces alongside SAXS data using a 𝜒2 potential to balance the two [46, 47]. Marinelli and Fiorin

modeled a conformational change in VcSiaP by restraining the spin labels directly using the raw

data [263]. Notably, both the study of VcSiaP and NhaA also attempted to fit the background con-

tribution to the signal, which was added to the simulated data using a ”fit-within-a-fit” procedure.

By contrast, the study of ESCRT-II, as with others [336], background-corrected the data before

using it as a restraint.

Additionally, we mentioned in this chapter that native or correctly folded models are not ex-

pected to perfectly recapitulate the experimental DEER distance distribution. Failure to account

for this expectation can cause the data to be overfitted. In fact, whereas this expectation can easily

be encoded into the scoring function when scoring models using data in the distance domain - for

example, using broad, flat-bottomed functions (see Section 2.5.3 above) - it is far more difficult

to anticipate the magnitude of these deviations in the time domain. This imprecision prevents mi-

nor contributions to the experimental signal from being resolved, removing one of the fundamental

advantages of the DEER technique.

How can this issue be addressed? One might intuit that less flexible spin labels, the positions

of which can more precisely be simulated from the backbone, may be positioned to improve the

precision of simulated distributions enough to permit modeling using data in the time domain.

Several options are explored in the literature. The label IDSL (also called V1 or RSSR), for example,

has far less rotameric freedom than MTSSL and leads to sharper distance distributions [19, 437].

Other alternatives that have been used for modeling include bifunctional spin labels [119, 175, 347]

and paramagnetic copper ions [86, 282] that are conjugated to or coordinated by pairs of alpha

carbons. By reducing or altogether eliminating the contribution of rotamer dynamics to the width

of the distribution, these methods can potentially isolate the contribution of backbone dynamics.

Moreover, it avoids the risk of uncritical accepting the width of the rotamer distribution obtained
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from methods such as MMM, which may cause backbone dynamics to be understated (see Section

2.5.1).

A second option to reduce uncertainty is to determine the positions of flexible spin labels in ad-

vance. This triangulation procedure, however, requires a conformation of the protein to be known

a priori that is consistent with a set of experimental data. The positions of the spin labels can be

determined by singular value decomposition [152], non-linear least squares minimization [39], or

by eye [446]. An instructive example is provided in the study of the Angiotensin receptor, where

distance distributions attributed to a known conformation were used to determine which rotamers

were sampled in solution[446]. The distance data from other conformations were then used for

conformational change modeling using MD. Similarly, the model of dimeric membrane-embedded

Bax was obtained by first determining the MTSSL rotamers from the monomeric model [39]. How-

ever, the constraints placed upon rotamer triangulation - that a conformation is both known to high

resolution and consistent with a set of experimental data - make it uncommon, and this technique

has not yet been used to model proteins using data in the time domain. More often, it is used to

localize a paramagnetic ligand or ion within the same structure [140, 465].

What would the key benefit be of working with the raw data? To answer this question, it may be

prudent to take a global perspective on the state of the art, as outlined in Section 2.2 above. DEER

data are commonly background corrected, then analyzed; DEER distance distributions are parti-

tioned among several conformations, with the average peak of each component frequently isolated

for the purposes of modeling. As discussed above, information lost during each of these four steps

cannot later be recovered. It may, however, be accessible to one-step approaches that simulating

the raw data from an ensemble of models. It is in precisely this direction that we hope the field

moves.
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CHAPTER 3

Rapid simulation of unprocessed DEER decay data for protein fold prediction

The contents of this chapter have been previously published [97].

Despite advances in sampling and scoring strategies, Monte Carlo modeling methods still strug-

gle to accurately predict de novo the structures of large proteins, membrane proteins, or proteins of

complex topologies. Previous approaches have addressed these shortcomings by leveraging sparse

distance data gathered using site-directed spin labeling (SDSL) and EPR spectroscopy to improve

protein structure prediction and refinement outcomes. However, existing computational implemen-

tations entail compromises between coarse-grained models of the spin label that lower the resolution

and explicit models that lead to resource-intense simulations. These methods are further limited

by their reliance on distance distributions, which are calculated from a primary refocused echo de-

cay signal and contain uncertainties that may require manual refinement. Here, we addressed these

challenges by developing RosettaDEER, a scoring method within the Rosetta software suite capable

of simulating DEER distance distributions and decay traces between spin labels fast enough to fold

proteins de novo. We demonstrate that the accuracy of resulting distance distributions match or

exceed those generated by more computationally intensive methods. Moreover, decay traces gen-

erated from these distributions recapitulate intermolecular background coupling parameters, even

when the time window of EPR data collection is truncated. As a result, RosettaDEER can discrim-

inate between poorly folded and native-like models using decay traces that cannot be accurately

converted into distance distributions using regularized fitting approaches. Finally, using two chal-

lenging test cases, we demonstrate that RosettaDEER leverages these experimental data for protein

fold prediction more effectively than previous methods. These benchmarking results confirm that

RosettaDEER can effectively leverage sparse experimental data for a wide array of modeling appli-

cations built into the Rosetta software suite.
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3.1 Introduction

Structural biology increasingly relies on integrated methods to model the structure and dynamics

of proteins and protein assemblies [393, 451]. Multiple complementary experimental methodolo-

gies can describe the structure and dynamics of proteins that elude determination from a single

technique, such as integral membrane proteins, conformationally flexible proteins, and those that

fall outside the size limitations of solution-state nuclear magnetic resonance and cryo-EM. By in-

tegrating experimental data from multiple approaches, computational modeling can build accurate

models in regions with sparse experimental data. One promising source of high-resolution ex-

perimental data for integrated structural biology combines SDSL and EPR [190, 348]. Previous

studies have employed SDSL-EPR and computation in tandem to predict protein structures de novo

[8, 126, 127, 128, 165, 210, 245, 463], model conformational changes [212, 213, 263, 332], and

dock rigid-bodies [30, 103, 164].

Existing modeling methods largely focus on data gathered using four-pulse DEER [304], which

can report on distances of up to 60 Å to 80 Å between stable unpaired electrons conjugated to the

protein backbone by SDSL [186, 274]. However, incorporation of these distances as interatomic re-

straints for modeling purposes is confounded by the conformational freedom of these paramagnetic

probes. The central challenge is to convert inter-spin distance information into structural restraints

that report on the protein backbone [2, 9, 177]. Additionally, the need to incorporate two spin la-

bels into the protein sequence per restraint results in sparse coverage of the experimental data that

can introduce ambiguities into computational modeling [210]. As a result, only a few experimental

restraints are generally available to describe the protein fold.

These sparse datasets have nonetheless been leveraged for protein structure prediction and re-

finement by a range of computational modeling approaches that represent the spin labels either

implicitly or explicitly. Implicit models such as the CONE model [8] use knowledge-based po-

tentials to translate inter-spin distance values into backbone restraints, typically between Cβ atoms

[353]. Introducing these restraints led to measurable improvements in de novo structure prediction

benchmarks by programs employing Monte Carlo sampling strategies [8, 126, 127, 128, 165, 210],
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gradient minimization [245, 463], and molecular dynamics [256]. However, because these poten-

tials fail to account for the environment or the relative orientations of the spin labels, they tend to be

ambiguous [353]. Explicit methods, by contrast, model spin labels as either individual side chains

[10, 88, 226, 263, 262], ensembles of side chains [153, 156, 164, 322], or ensembles of dummy

atoms [176, 212, 213]. The added detail improves accuracy of modeling but makes implementa-

tions too computationally intensive for de novo protein structure prediction and limits the utility of

these methods to modeling small-scale conformational changes [212, 213, 263].

Despite their diversity, these methods largely share a common limitation in their reliance on

distance distributions, rather than the primary spectroscopic readout. Other computational method-

ologies directly incorporate primary experimental data, such as two-dimensional NMR spectr [277]

and cryo-EM electron density maps [433] to fold and refine proteins. The feasibility of using DEER

dipolar coupling decay traces as modeling restraints has only recently been explored [263]. Whereas

processing spectroscopic decay traces into distance distributions risks introducing ambiguities and

artifacts [53, 173, 192, 365, 448], simulating a decay trace from a distance distribution is well-

described and mathematically straightforward [169, 173, 186, 263].

Here we introduce RosettaDEER, a method in the macromolecular modeling suite Rosetta ca-

pable of rapidly simulating distance distributions and DEER decay traces between spin labels as

well as evaluating a model’s agreement with experimental data. RosettaDEER’s computational

efficiency enables prediction of protein structures de novo with greater accuracy than the default

energy function or the CONE model. Owing to Rosetta’s Monte Carlo sampling strategy [229],

the experimental data can be used directly without analysis or background-correction. Thus, as

with other forward modeling approaches[391], the quality of the primary spectroscopic data can

be significantly poorer than what would ordinarily be required for rigorous transformation into dis-

tance distributions using common fitting strategies. This method reinforces the utility of DEER in

conjunction with computational modeling to accurately model protein structures.
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3.2 Materials and Methods

3.2.1 Assembly of diverse experimental datasets

RosettaDEER was implemented in the Rosetta software suite [229, 234], trained on distance data

gathered in T4 Lysozyme obtained from the laboratory of Hassane S. Mchaourab, and tested and

cross-validated using both raw spectroscopic and analyzed distance data gathered in five laborato-

ries (Table 3.1). Data for the ExoU C-terminus [127], Bax [39], and Mhp1 [213] were obtained

from and analyzed by the laboratories of Dr. Jimmy Feix, Dr. Enrica Bordignon, and Dr. Has-

sane S. Mchaourab, respectively. New ExoU double-cysteine mutants were purified, spin labeled,

measured and analyzed as previously described (Figure E.1) [127]. Raw data for CDB3 [479] and

bovine rhodopsin [15] were obtained from the laboratories of Dr. Albert Beth and Dr. Wayne

Hubbell, respectively, and were analyzed using DEERAnalysis2016 [192]; the last 200 ns and

500 ns were removed from experimental decay traces shorter and longer than 1.5 μs, respectively.

The distribution of restraints is shown in Figure E.2.

3.2.2 Generation of DEER distance distributions

The accuracy of various methods that simulate distance distributions between spin labels were com-

pared using Bax (PDB: 1F16, NMR state 8), ExoU (PDB: 3TU3), CDB3 (PDB: 1HYN chains R/S),

Rhodopsin (PDB: 1GZM chain A), and Mhp1 (PDB: 2JLN). The methods compared were MMM

[322], MDDS [176], MtsslWizard [153], Pronox [156], and TagDock [103] (See Figure 3.1 and

Table 3.1). MMM2017 was run locally on both cryogenic 175 K and ambient mode 298 K with

default settings. MDDS was run using the CHARMM-GUI web server [195]. MtsslWizard was

run locally from PyMol 1.7.2.1 using tight fitting unless no rotamers could be placed, in which case

loose fitting was used (Mhp1 residue 324 could not be labeled using loose fitting). Pronox was run

from the USC web server using a bias of 0.9 and a van der Waals radius scaling factor of 0.75, the

latter of which was reduced to 0.4 if rotamers could not be placed. TagDock was run locally with

SCWRL4 [225] and a bump radius of 0.85. Measurements using the CONE model [8, 165] were

determined by adding 1.79 Å to the Cβ-Cβ distance.
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Figure 3.1: Simulations of distance distributions between nitroxide probes using RosettaDEER.
(A) An example of an experimentally observed distance distribution in apo Mhp1 51/278, shown
in black. Distance distributions were simulated using RosettaDEER, MMM, and MDDS from the
occluded Mhp1 structure (PDB: 2JLN). The average distance between Cβ atoms and the average
distance calculated using the CONE model shown in light gray and dark gray, respectively. (B) The
estimated average time required to simulate distance distributions (*the lower limit of quantifica-
tion exceeded the Cβ-𝐶β distance compute time). (C) Coarse-grained rotameric ensemble repre-
sentation of the MTSSL. Centers of mass, shown in purple, are used for clash evaluation, whereas
electron coordinates, shown in gray, serve as measurement coordinates. (D) Distance distributions
between residues are simulated by superimposing coordinates, evaluating clashes and measuring
all resulting pairwise distances.

3.2.3 RosettaDEER method description

The Rosetta rotamer library for the paramagnetic probe MTSSL [10] served as the basis for the

coarse-grained rotameric ensemble used in this study. For each of fifty-four possible rotameric

configurations, the unpaired electron was assumed to occupy the nitroxide bond midpoint; it was

from these coordinates that distances would be measured. These coordinates were consolidated

into a common frame defined by the Cα atom at the origin, the backbone carbonyl carbon along the

Z-axis, and the backbone nitrogen in the Y-Z plane (Figure 3.1.C). The remainder of each rotamer

was represented by a single pseudo-atom with a radius of 2.4 Å that was placed at 87.5% of the

distance between each nitroxide bond midpoint coordinate and an idealized Cβ coordinate; if this
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pseudo-atom clashed with the protein model, its corresponding electron coordinate was not used

for distance measurements. The placement of this pseudo-atom coincides with the center of mass

of the nitroxide ring of MTSSL (all spin-labeled proteins in the PDB are listed in Table E.1 and

Figure E.3). In cases where the steric environment prevented the placement of any coordinates,

the van der Waals radius of this pseudo-atom was gradually lowered until at least one rotamer

could be accommodated. Distance distributions between two residues reflect all pairwise distance

measurements between their respective coordinates after evaluating clashes; we smoothed each of

these distance values into gaussian distributions with a 0.5 Å standard deviation. The resulting

distance distributions were then binned to 0.5 Å.

Table 3.1: Benchmark set for the evaluation of RosettaDEER.

Protein Organism Restraints PDB ID Reference

Bax Homo sapiens 21 PDB: 1F16 model 8 [39]

ExoU Pseudomonas aeruginosa 11 PDB: 3TU3 [127]

CDB3 Homo sapiens 15 PDB: 1HYN R/S [479]

Rhodopsin Bos taurus 14 PDB: 1GZM A [15]

Mhp1 Microbacterium tumefaciens 18 PDB: 2JLN [444]

The resulting coordi-

nate frame, which con-

sisted of 54 unweighted co-

ordinates and their posi-

tions with respect to pro-

tein backbone, did not ac-

count for the dynamics of

the spin label (e.g. the con-

figurations and positions

it preferentially occupies)

and was highly redundant,

with coordinates often being placed less than 1.0 Å apart (Figure E.4). We addressed both is-

sues using a scheme outlined in Figure E.4. Neighboring coordinates were merged using k-means

clustering to generate a series of coordinate sets ranging from 3 positions to 53 total positions.

The weights of these resulting positions were then optimized using 49 previously published exper-

imental distance distributions between 37 residues gathered in T4 Lysozyme [176]. During each

of half a million iterations, a Monte Carlo Metropolis algorithm randomly modified the weight of

a coordinate and either accepted or rejected the change based on the improved agreement with the
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experimental T4 Lysozyme distance data. This algorithm was carried out on each set of clustered

coordinates one thousand times. The resulting set of weights with the best agreement consisted of

seventeen coordinates, four of which were fit to be zero. This set was introduced as the default set

of coordinates for RosettaDEER and was used for all subsequent experiments described here.

3.2.4 Simulation of DEER dipolar coupling decay traces and comparison to experimental

values

Because the simulation of DEER decay traces has been extensively described [173, 186, 192, 263],

here we limit our discussion to their generation from distance distributions for the purpose of eval-

uating protein structural models. The traces simulated by RosettaDEER (𝑉sim) are shown in Figure

E.5 and reflect coupling between spin labels attached to the same macromolecule (𝑉intra), as well as

an intermolecular “background” component reflecting coupling between spin labels across different

macromolecules:

𝑉sim (𝑡i,𝜆,𝑘, ⃗𝑟, �⃗�) = exp(−𝑘|𝑡i|) ∗ (1−𝜆(1−𝑉intra (𝑡i, ⃗𝑟, �⃗�))) (3.1)

This background is assumed to be homogeneous across three dimensions and is modeled using

a slope 𝑘 and a modulation depth 𝜆. The simulated distribution consists of a vector of distances

𝑟 (in nanometers) and their corresponding amplitudes 𝑤. Simulated traces obtained this way are

converted into scores (𝑆DEER) by comparing them to the corresponding experimental spectra (𝑉exp)

using the following cost function:

𝑆DEER = 1
𝑛

𝑛
∑
𝑖=1

(𝑉exp (𝑡i)−𝑉sim (𝑡i,𝜆,𝑘, ⃗𝑟, �⃗�))2
(3.2)

where 𝑛 is the number of time points in the data.

To convert a distance distribution into a spectroscopic signal that can be compared to experi-

mental data, RosettaDEER first simulates 𝑉intra for each 0.5 Å bin 𝑗 between 15 Å to 100 Å:
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𝑉intra (𝑡i, ⃗𝑟, �⃗�) =
𝑚

∑
𝑗=1

𝑤j ∗∫
𝜋
2

0
sin𝜃 cos⎛⎜⎜

⎝

(1−3cos2 𝜃)∗𝜇0𝜇2
B𝑔A𝑔B𝑡i

4𝜋ℏ𝑟3
j

⎞⎟⎟
⎠

d𝜃 (3.3)

where 𝑡 is the time point of a trace in microseconds, 𝜇B is the Bohr magneton, 𝜇0 is the vacuum

permeability constant, 𝑔X is the g-factor of electron 𝑋, 𝜃 is the angle between the interelectron

vector and the bulk magnetic field, and 𝑚 is the number of distance bins.

Background parameters 𝑘 and 𝜆 are then determined and optimized in two stages. Initial val-

ues for both parameters were first determined by incrementing 𝜆 with step size 0.01 and log-

transforming 3.1 to determine 𝑘 using linear regression:

̂𝑘 =
𝑛

∑
i=1

(𝑡i ∗ ln(
𝑉exp (𝑡i)

1−𝜆(1−𝑉intra (𝑡i, ⃗𝑟, �⃗�))))∗⎛⎜
⎝

n
∑
i=1

𝑡2
i
⎞⎟
⎠

−1

(3.4)

Subsequent attempts to fit simulated intramolecular decay traces were achieved using gradient

minimization to solve for 𝜆 and linear regression to solve for 𝑘. Convergence was reached when

|𝛥𝜆| < 0.0025. The iterative strategy used to obtain the initial guess was repeated in cases where

𝜆 exceeded reasonable values, the lower and upper bounds of which are defined by default as 0.02

and 0.50. This range corresponds to modulation depth values that would ordinarily be obtained

from Q-band DEER on well-labeled double-cysteine mutants without using an arbitrary waveform

generator. Deviations from experimentally observed values for these two parameters was found to

frequently occur during the initial stages of extended chain de novo folding, where simulated dis-

tance distributions deviated drastically from experimental values and lead to erroneous background

parameter results.

3.2.5 Rosetta model generation and evaluation

Rosetta models were generated with two approaches to sample a large conformational space but also

ensure native-like models at a high density. The native-like models were generated with RosettaCM

[384] using either full-length or truncated native models as inputs. Coverage of a large conforma-

tional space was accomplished by de novo protein folding. Bax, ExoU, and CDB3 were scored
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using the ref2015 energy function [13], and Rhodopsin and Mhp1 were scored using RosettaMem-

brane [466]. The transmembrane regions for Rhodopsin and Mhp1 were predicted using OCTO-

PUS [426]. These models were evaluated using RMSD100SSE, which measures the size-normalized

RMSD over residues in secondary structures [65]. Enrichment of these models was evaluated as

log10
𝑇𝑃P,Score∗𝑁Total

𝑃∗𝑁Total
 where 𝑁Total refers to the total number of models being considered, 𝑃 refers

to the proportion of models considered native-like by Cα RMSD100SSE, and 𝑇𝑃P,Score refers to the

number of true positives identified in the top 𝑃 ∗ 𝑁Total models by score [126]. We treated the

top 10% of models as native-like (𝑃=0.1), thus scaling the metric from -1 (none of the top 10%

of models by RMSD100SSE were in the top 10% by score) to 1 (all of the top 10% of models by

RMSD100SSE were also in the top 10% by score), with a value of 0 indicating that the number of

native-like models found in the top 10% by score was equal to what is expected by chance.

Oscillation frequencies of decay traces in microseconds for distributions with an average dis-

tance 𝑟avg (in angstroms) were calculated as 𝑟avg

5.2∗104 [173]. Decay traces with fewer than three

oscillations were not used to evaluate enrichment as a function of decay trace duration.

3.2.6 De novo protein structure prediction benchmark

The protein structure prediction protocol we used largely follows a previously published template

[302] and consists of three stages. In the first stage, 10,000 models were generated using extended

chain AbInitio with either RosettaDEER restraints, CONE model restraints [8], or no restraints.

This protocol relies on the insertion of fragments obtained from a July 2011 copy of the Protein

Data Bank and was obtained from the Robetta online server [216]; homologous protein structures

were excluded from these fragment libraries. The contribution of the RosettaDEER score term was

adjusted so that its dynamic range was similar to that of the Rosetta energy function [302]. Since

the proportion of DEER restraints relative to the protein length was comparable for Bax and ExoU,

the impact of the number of restraints on the weight of the score term was not considered [441].

Models generated this way were then clustered to a radius of 7.5 Å Cα RMSD100 using Durandal

[25]. Each cluster was evaluated by scoring its models using both RosettaDEER and the full-atom
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Rosetta energy function [13], obtaining the cluster averages for both values, and adding their Z-

scores with respect to those of other clusters. After discarding sparsely-populated clusters (smaller

than 5% of the size of the largest cluster), the top ten best-scoring models by combined Z-score

were selected from the five best-scoring clusters for subsequent modeling.

An additional 1,200 models were generated from these 50 models using RosettaCM [384],

which also relies on fragment insertion but ensures that the input model’s topology is retained

throughout the modeling process. The scripts were obtained from a recently published refinement

protocol [307], and no experimental restraints were used. Models generated during this stage were

again clustered to 7.5 Å Cα RMSD100 and scored, except only the RosettaDEER score was used to

evaluate the quality of these models.

During the third and final stage, models in the best-scoring cluster were minimized using Fas-

tRelax [81], which introduces and repacks side chains while performing gradient descent on a full-

atom depiction of the entire model. Models generated at this stage were scored exclusively using

the native Rosetta energy function, with the lowest-scoring model selected as the output model.

3.3 Results

3.3.1 Modeling nitroxide spin labels using RosettaDEER

A strategy to model proteins using DEER data must reliably simulate distance distributions between

spin-labeled residues. To quantify the computational cost and efficiency of this task, we considered

a panel of five proteins, listed in Table 3.1, where both atomic-detail structures and experimental

DEER data were available [15, 39, 127, 212, 479]. Distance distributions between residue pairs

that have been previously measured experimentally were simulated using a number of methods,

and the resulting error was quantified as the difference between the average values of the simulated

and experimental distance distributions (example shown in Figure 3.1.A). In addition, we measured

how rapidly each program calculated these distance distributions (Figure 3.1.B). Consistent with

previous results [128, 153, 353], the average values of experimental distance distributions gathered

in monomeric proteins, but not the homodimer CDB3, agree more closely with those of simulated
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distributions than their corresponding Cβ-Cβ distances, from which restraints such as the CONE

model are derived [8]. By contrast, none of the methods examined here reliably reproduced the

width of the distance distributions. This is likely attributable to oversampling of available confor-

mational space of the spin label, which results from the exclusive use of van der Waals repulsive

energies to limit possible rotameric configurations. Finally, the data revealed how simulation times

varied substantially between these methods.

These results further illustrate that increasing computational complexity did not lead to more

accurate distance distributions. We hypothesized that, for the same reason, decreasing the computa-

tional complexity would not lead to less accurate distance distributions. Therefore, RosettaDEER’s

design prioritized computational efficiency (see section 3.2). Rather than measure distances from

full-atom rotamers or mobile dummy atoms, RosettaDEER uses a probability density function to

capture high-occupancy electron positions that would be explored by MTSSL and map them onto

the protein structure (Figures 3.1.C and D). For each of these coordinates, an evaluation of a po-

tential van der Waals overlap was performed between a pseudo-atom representing the nitroxide

ring’s center of mass and the rest of the protein. Placing this pseudo-atom at an idealized location,

consistent with spin-labeled protein structures in the Protein Databank (Figures E.3 and Table E.1),

reduced the number of atoms for this evaluation to one per rotamer, thus maximizing computational

efficiency. Figures 3.1.A and B demonstrate that RosettaDEER’s simplified representation of the

spin label allows the generation of distance distributions three to five orders of magnitude faster

than other approaches but with comparable accuracy.

3.3.2 Comparison of simulated with experimental DEER decay traces

Most existing methods that leverage DEER experimental data for structural modeling require the

primary spectroscopic readout first be processed into a distance distribution. A conventional ap-

proach, such as the Rosetta CONE model, is outlined in Figure 3.2.A. This involves 1) manually

identifying and removing the “background” signal, which corresponds to coupling between spin la-

bels across macromolecules; 2) using Tikhonov regularization to convert the remaining intramolec-
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Figure 3.2: RosettaDEER simulations of distance distributions and decay traces. The forward ap-
proach taken by RosettaDEER contrasts with the preprocessing required by the CONE model. (A) A
flowchart illustrating how both the CONE model and RosettaDEER use experimental DEER data to
model proteins (example shown is T4 lysozyme residues 93 and 123). (B) Incorporation of DEER
experimental restraints into Rosetta structure prediction pipeline. (C) Recovery of experimental
background coupling and modulation depth parameter values.

ular signal into a distance distribution; and 3) selecting a single distance value from this distribution

to restrain the modeling process. An additional bias is often required to convert these distance data

into backbone restraints [8, 10, 352, 463].
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We reasoned that these preprocessing steps could be avoided by simulating a spectroscopic sig-

nal from candidate models for direct comparison to the experimental data. As with other forward

approaches to fitting DEER data [173, 391], the steps are as follows: 1) the model is used to gen-

erate a distance distribution; 2) this distance distribution is converted into a spectroscopic signal

consisting solely of the effect of coupling between spin labels attached to the same macromolecule;

and 3) the slope of the “background” coupling and depth of modulation needed to optimally fit the

simulated and experimental decay traces is determined.

This final step represents the outstanding challenge in the proposed pipeline, as most modeling

programs, including Rosetta, focus on isolated protein structural models. We instead used a two-

parameter exponential function to simulate the background coupling (𝑘) and modulation depth (𝜆)

(see Section 3.2). The values of these parameters were determined by minimizing the sum of the

squared residuals. The optimum values obtained strongly correlated with those obtained using

DeerAnalysis [192], with 𝑟2 values exceeding 0.90 for both parameters (Figure 3.2.C), despite the

fact that the inaccuracies in the distance distributions affected the fit (Figure E.5). In fact, we found

that this correspondence correlated less strongly with the goodness-of-fit in the distance domain

than it did with the quality of the experimental data in the time domain (Figure E.6).

3.3.3 Enrichment of native-like models using experimental decay traces

Being able to simulate DEER traces from candidate structural models without any pre-processing

offers the possibility to reframe the problem currently faced by translating the DEER traces into

distance distributions. Whereas methods such as Tikhonov regularization convert individual DEER

traces into distance distributions, RosettaDEER, in conjunction with Monte Carlo modeling, would

instead seek to determine the structural model most consistent with both an energy function and the

experimental data. To investigate whether unprocessed DEER traces can be used to discriminate

native-like models from incorrectly-folded models, we generated a series of 1000-2000 misfolded

models for each of the five proteins in our test set and scored their agreement with experimental

DEER data. In addition, we generated 1000 docked models of the homodimer CDB3 that retained
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the native fold for the protomer, but not the oligomeric interface. Similarity to the native model

was measured by Cα RMSD100SSE [65], which is the size-normalized root means squared deviation

across secondary structural elements (Figure 3.3). RosettaDEER’s effectiveness at this task was

measured by the enrichment parameter, which is defined in the Section 3.2.5 section and quantifies

a scoring function’s ability to discriminate native-like models from incorrectly-folded models.

Figure 3.3: Evaluation of models using DEER decay
traces. Models with Cα RMSD100SSE ranging from
0.5 Å to 30.0 Å were scored using both the Rosetta en-
ergy function and RosettaDEER.

RosettaDEER consistently scored native-

like models of the monomeric proteins

more favorably than poorly-folded mod-

els (Figure 3.3). This was also observed

with correctly-docked models of CDB3.

Moreover, it generally outperformed the

CONE model in enriching native-like

models (Figure E.7). Perhaps unsurpris-

ingly, the simultaneous use of Rosetta’s

energy function often improved enrich-

ment, since it overwhelmingly considers

short-range interactions and is therefore

expected to complement the evaluation of

longer ranger, fold-level information pro-

vided by DEER restraints (Figure E.7)

[13]. We note that RosettaDEER could not

effectively identify misfolded models of

CDB3, which we attribute to the fact that

DEER restraints reflect distances across

the center of symmetry, rather than within

the protomer. Nevertheless, these results suggest that RosettaDEER’s inability to perfectly recreate

the experimental DEER data did not impede its ability to identify correctly folded models, suggest-
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ing that it could be effectively used for structure prediction.

The fact that structural models are scored based on their consistency with the primary spectro-

scopic data led us to hypothesize that they could be evaluated using lower-quality data than what

would be necessary for conversion into precise distance distributions. We were specifically inter-

ested in evaluating the importance of the experimental data’s time window, which must undergo

roughly 0.8 and 1.6 oscillations for Tikhonov regularization to accurately identify a distance dis-

tribution’s average and standard deviation, respectively [186]. This hypothesis was tested by artifi-

cially truncating the experimental data in the time domain and measuring enrichment as a function

of how many oscillations were included (see 3.2 and Figure E.7). Strikingly, RosettaDEER could

enrich native-like models of Bax, ExoU, Rhodopsin, and Mhp1 with highly truncated data (< 0.8

oscillations), albeit to a reduced degree. We found that the addition of data in the time domain

beyond one oscillation failed to lead to any measurable improvements in enrichment, despite its

importance in allowing RosettaDEER to identify the correct background coupling parameters (Fig-

ure E.6). These results suggest that RosettaDEER is more permissive than Tikhonov regularization

with respect to the effect of data quality on protein structural modeling.

3.3.4 De novo folding of Bax and ExoU

To further illustrate RosettaDEER’s capability to identify native-like models, we folded Bax and

ExoU de novo using experimental DEER decay data. These two proteins were chosen because

native-like models cannot be identified using the default Rosetta energy function alone (Figures 3.3

and E.7). The structure prediction protocol we used is similar to one used to model proteins using

other types of sparse data [216, 302] and is illustrated in Figure 3.2.B and described in detail in 3.2.

We first generated an initial set of ten thousand models using Rosetta AbInitio folding supplemented

by either experimental restraints through RosettaDEER, experimental restraints through the CONE

model [8], or no restraints. These models were then clustered, and models from the best-scoring

clusters were refined and recombined into one thousand two hundred new models without using

experimental data. After a second round of clustering, models from the cluster with the best agree-
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ment to the experimental data were refined and minimized, and the model with the best Rosetta

energy score was returned as the predicted model.

Figure 3.4: Structure prediction of Bax and ExoU us-
ing experimental decay data. (A) De novo protein fold-
ing of native-like models using DEER decay restraints
with RosettaDEER, Cβ − Cβ distance restraints with
the CONE model, or no restraints. Inset: spread of all
models generated using these three methods. (B) Ac-
curacy of de novo folded models (gray dots) and clus-
ters (black circles) as a function of combined DEER
and Rosetta Z-score.

In the absence of experimental re-

straints, few of the models generated by

AbInitio folding resembled the native fold

(Figure 3.4.A). Perhaps strikingly, provid-

ing DEER restraints with the CONE model

had no effect on the proportion of native-

like models of ExoU generated this way

(a measurable improvement was observed

when folding Bax). This contrasts with the

proportion of native-like models generated

using RosettaDEER, which was substan-

tially higher in the case of both proteins.

Although agreement between models

and experimental structures loosely corre-

lated with both RosettaDEER score and

Rosetta energy score for both proteins,

an abundance of incorrectly-folded models

obscured this trend (Figure 3.4.B; Roset-

taDEER and Rosetta energy scores were

jointly considered by adding the Z-scores

of each). As a result, we were unable to

identify native-like models for either Bax of ExoU from score values alone. The ten best-scoring

models by these metrics were generally incorrectly folded (5 Å to 10 Å Cα RMSD100SSE) and buried

amphipathic features found on the surface of the native model. This shortcoming is typically ad-

dressed by clustering, since native-like models are more likely to be found near the centers of large
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clusters with favorable average scores [375]. We therefore clustered Bax and ExoU models with

a radius of 7.5 Å and evaluated these clusters by taking the Z-scores of both the average Rosetta

energy and RosettaDEER score and adding them together (Figure 3.4.B). In the case of both pro-

teins, this step placed native-like models in the best-scoring clusters. Focusing our attention on the

five best-scoring clusters allowed us to discard 85.3% of the Bax models and 61.3% of the ExoU

models, while retaining a majority of the native-like models in each case.

Figure 3.5: Predicted models of Bax and ExoU gener-
ated using DEER data. Best-scoring models of Bax and
ExoU had an accuracy of 3.2 Å and 2.1 Å Cα RMSD100SSE,
respectively.(Top) Models were obtained from 10,000 de
novo folded models, the best-scoring of which were re-
fined into 1200 additional models. Native models shown
in white. (Bottom) Example DEER traces in which the best
model outperformed the native. Corresponding residues in-
dicated as circles in (A) and (B).

Each cluster at this stage repre-

sented a broad population of mod-

els that satisfied the DEER data. To

test whether refining models with-

out experimental restraints would re-

veal the native fold, ten models from

each of the top five clusters were re-

fined and recombined using Roset-

taCM [384]. This step retained the

topology of the input models, but

permitted minor backbone rearrange-

ments that allowed misfolded models

to optimize away from conformations

consistent with the experimental data.

As a result, the cluster with the most

native-like models after this resam-

pling stage scored the most favorably

by RosettaDEER. After minimization

of models in this cluster [81], the best-scoring model by Rosetta score for both Bax and ExoU had

near-native folds (<3.5 Å Cα RMSD100SSE; Figure 3.5 and E.8).
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3.4 Discussion

RosettaDEER predicts and refines protein structures by integrating DEER spectroscopy data and

Rosetta computational modeling protocols. The novel aspects of this method are a simplified rep-

resentation of the commonly used spin label MTSSL and a strategy to rapidly simulate DEER

decay traces for comparison to uncorrected experimental traces. The robustness of the method was

demonstrated by benchmarking every step on five sparse datasets. Despite the simplified spin label

representation, the distance distributions simulated by RosettaDEER are comparable to those gen-

erated using more computationally complex rotamer library approaches. Moreover, even though

simulated spectra fail to perfectly fit experimental DEER traces, this integrated approach efficiently

identifies conformations that simultaneously satisfy the data and the Rosetta energy function. Our

findings illustrate how RosettaDEER can complement similar methods that are more computation-

ally intensive but able to use DEER decay data to perform high-resolution refinement of protein

structures [263].

The de novo folding benchmark with the small soluble proteins ExoU and Bax highlights the

success of this strategy. Both proteins possess surface-exposed amphipathic regions that insert

into the membrane. Bax transitions from a soluble monomer into a membrane-bound oligomer

using its C-terminal helix [39], whereas ExoU is hypothesized to move into the membrane using

a flexible loop between its two C-terminal helices [409]. Consistent with previous results [127,

128], the Rosetta energy function favored models that packed these substructures in the protein

core, leading to incorrectly folded models and lack of correlation between the Rosetta score and

model accuracy. As a result, orthogonal experimental data that define the structure are critical to

de novo folding. Our folding benchmark suggests that RosettaDEER more effectively leverages the

experimental data than the Cβ-based CONE model. Moreover, even low-quality data can be used

to discriminate native-like from incorrectly-folded models. We appreciate that, for larger proteins,

structure determination from DEER experiments alone would require extensive experimental data.

Integrating RosettaDEER with other types of sparse experimental data could therefore reduce the

number of DEER restraints required for accurate modeling.
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The strategy of RosettaDEER to predict the structures of these two proteins leverages the exper-

imental data by folding and optimizing protein structures with and without restraints, respectively.

The first step leads to a substantial reduction in the search space and a concomitant increase in the

number of models that satisfy the restraints, although not all of these models are correctly folded.

After clustering the models to remove those that correspond to narrow energy minima, the second

step, optimization without restraints, allows clusters with incorrectly folded models to reach energy

minima inconsistent with the data. This filtering procedure restores the experimental data’s ability

to identify native-like models, since the most native-like models of Bax and ExoU at this stage were

not identifiable using the Rosetta energy function. Overall, this protocol decreases both the number

of incorrectly-folded structures that fit the data and the conformational search space inherent to the

protein folding problem.

Despite its success illustrated here, the current implementation of RosettaDEER assumes that

a single protein conformation describes the data. For example, the distance distributions of Mhp1,

the most conformationally flexible protein examined in this dataset, were generally more poorly

simulated using available methods than those collected in other proteins. Experimental applications

of the DEER technique often focus on monitoring ensembles of protein conformations. They can

therefore be effectively complemented by computational methods that interpret this data with the

capability to generate multiple models and examine their consistency with sparse experimental data.
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CHAPTER 4

Methodology for rigorous modeling of protein conformational changes by Rosetta using

DEER distance restraints

The contents of this chapter have been previously published [96].

We describe an approach for integrating distance restraints from DEER spectroscopy into Rosetta

with the purpose of modeling alternative protein conformations from an initial experimental struc-

ture. Fundamental to this approach is a multilateration algorithm that harnesses sets of intercon-

nected spin label pairs to identify optimal rotamer ensembles at each residue that fit the DEER decay

in the time domain. Benchmarked relative to data analysis packages, the algorithm yields compa-

rable distance distributions with the advantage that fitting the DEER decay and rotamer ensemble

optimization are coupled. We demonstrate this approach by modeling the protonation-dependent

transition of the multidrug transporter PfMATE to an inward facing conformation with a deviation

to the experimental structure of less than 2 Å Cα RMSD. By decreasing spin label rotamer entropy,

this approach engenders more accurate Rosetta models that are also more closely clustered, thus

setting the stage for more robust modeling of protein conformational changes.

4.1 Introduction

Distance measurements between pairs of spin labels by DEER spectroscopy have been utilized ex-

tensively to investigate the structures and dynamics of proteins [79, 114, 212, 288] and the assem-

bly of protein-protein complexes [30, 218, 219, 410]. At the fundamental level, DEER measures

magnetic dipolar coupling to infer the distributions of distances between two or more spin labels

[186, 274]. A two-step process typically interprets these distances as spatial restraints describing

the protein backbone structure. First, the echo-decay time traces are transformed into distributions

consisting of distance components characterized by a mean and width [116, 173, 185, 304, 391].

Second, these distributions are compared to those predicted using one of several strategies, ranging
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from generic rotamer libraries[153, 322, 336], explicitly modeled pseudoatoms[212, 332], or ex-

plicitly modeled spin label side chains [10, 88, 226, 263, 353, 385]. However, these strategies tend

to overestimate the dynamics of flexible probes such as the commonly used MTSSL. Therefore, the

predicted distributions are broad relative to the experimental ones [153, 156, 176, 187, 220], which

hinders DEER-based evaluation of protein structures or complexes as well as mapping of protein

conformational changes. The latter can be obscured entirely if modeled distribution widths ex-

ceed distance changes observed between spin labels.1 Another layer of complications in modeling

of conformational changes arises if the ensemble of spin label rotamers is allowed to reconfigure,

hence providing a low energy pathway to account for changes in distance distributions that orig-

inate from backbone movements. Collectively, these caveats limit the accuracy and precision of

molecular models generated from DEER restraints.

Several algorithms have recently been developed to refine ensembles of spin label rotamers by

employing multilateration [1, 140, 152, 157, 189, 336]. Multilateration refers to the determination

of an object’s position in three-dimensional space given its distance from a constellation of points;

common applications include the positioning of electronic devices using the Global Positioning

System and of earthquakes epicenters using time-of-arrival data [121]. To utilize this approach to

position spin label rotamers requires both a high-resolution starting structure and a set of DEER

distance data consistent with that structure. However, a unique challenge in this endeavor is that

spin labels are flexible relative to the protein backbone. As a result, the ensembles characterizing

their positions must be refined simultaneously for all spin labels in a given protein model.

Molecular dynamics simulations have been used to determine a set of optimized rotamers from

explicitly modeled spin labels restrained by experimental distance distributions [173, 262, 263,

343]. Alternatively, rotamer libraries have been precomputed and reweighed using either Monte

Carlo [140, 157], singular value decomposition [152], or nonlinear least-squares minimization

[189]. The positions of these labels can, in turn, be used to more precisely locate paramagnetic

ligands or metal ions [1, 3, 140, 465] as well as make small-scale refinements to protein struc-

tures [336, 446]. To our knowledge, however, none of these methods have demonstrated that these
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optimized rotamers can lead to improvements in modeling conformational changes.

Furthermore, these methods generally do not address unique factors confounding multilatera-

tion of spin labels. First, the width of a distribution reflects disorder in the solid state as a result of

backbone and spin label side chain dynamics at room temperature. Existing multilateration meth-

ods generally ignore the former, by assuming the distribution is explained entirely by spin label

dynamics [140, 336], or both, by extracting the peak distance from the distribution and discarding

the width [446]. Second, relying on distance distributions rather than time domain data propagates

assumptions intrinsic to the method used for the transformation of the latter. Depending on the

noise level of the experimental measurements, this step can distort true components or introduce

ghost components to the distribution. Finally, although DEER distributions are often reported with

confidence bands to reflect the uncertainty inherent to this transformation [104, 116, 173], they are

generally taken at face value when used for rotamer multilateration. This incorrectly implies that

experimental uncertainty is uniformly distributed across the dataset and can lead to rotamers that

over- or underfit the DEER distributions. Collectively, these obstacles prevent the straightforward

positioning of spin label ensembles in three-dimensional space and complicate the confidence with

which such ensembles can be used for subsequent modeling purposes.

To address these issues, we developed and implemented, as part of the RosettaDEER module,

an algorithm that combines rotamer multilateration [3, 140, 189] for pairs sharing common spin

labeling sites with direct analysis of DEER time traces. The algorithm calculates a weighted dis-

tribution of “pseudo-rotamers”, or inflexible coarse-grained side chains, capable of recapitulating

large experimental datasets collected using DEER. Importantly, this algorithm goes beyond compa-

rable methods by refining these ensembles using raw data in the time domain, rather than distance

distributions calculated a priori, thus avoiding the loss of information that can occur as result of data

transformation. Using experimental collected in the model system T4 Lysozyme and the multidrug

transporter PfMATE, we demonstrate that this algorithm is able to fit time domain data as effectively

as widely-used DEER data analysis programs. Integrated with Rosetta, these rotamers ensembles

yield substantial improvements in both accuracy and precision of modeling the outward-to-inward
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isomerization of the multidrug transporter PfMATE, thus reinforcing the notion that coupling anal-

ysis of primary data with rotamer optimization is a superior approach for restrained modeling of

protein conformational states.

4.2 Results and Discussion

4.2.1 Overview of the multilateration algorithm

The algorithm capitalizes on the concept of pseudo-rotamers, which are simplified representations

of the spin label designed to maximize computational efficiency. A pseudo-rotamer models the

spin label side chain as a centroid atom representing the nitroxide ring and its unpaired electron,

yielding predicted distance distributions that are comparable to full-atom depictions. Unlike ex-

plicit depictions of the spin label used in all-atom simulations, ensembles of pseudo-rotamers do

not interact with one another; as a result, the dynamics of spin labels close in space are fully in-

dependent. However, in principle, any rotamer library can be used for the multilateration strategy

described here [10, 119, 153, 156, 322, 385].

The transformation of DEER data to distance distributions is an ill-posed mathematical problem

necessitating the use of either regularization [73, 116, 192], parametric modeling [116, 173, 391],

neural networks [448], or other methods [104, 304, 388]. Because these methods have intrinsic

approximations which could interfere with rotamer ensemble determination, we elected to fit the

raw experimental data directly using an iterative simulated annealing strategy that 1) measures all

pairwise distances between pseudo-rotamers, 2) converts each distance distribution into a DEER

decay, and 3) calculates the intermolecular dipolar coupling contribution by nonlinear least-squares

minimization (Figure 4.1). Different levels of noise between DEER traces linked by multilateration

were normalized using estimates obtained from each signal’s corresponding imaginary component

[263]. The algorithm prioritized the generation of parsimonious ensembles by minimizing the total

number of pseudo-rotamers with nonzero weights using the Akaike Information Criterion-corrected

(AICc) [7, 395]. This metric, which allows for regularization in rotamer space rather than the dis-

tance domain, was guided by the heuristic that the flash-freezing process sharpens the distribution
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of rotamers that contribute to the DEER signal [20, 144]. Finally, to account for backbone het-

erogeneity and the expectation of smoothness in the distance domain, simulated distributions were

broadened by a magnitude corresponding to the residues’ intrinsic flexibility, as reported by their

respective crystallographic B-factor values [397, 461].

4.2.2 Data analysis benchmark

We benchmarked this method using experimental DEER data collected in two model proteins, T4

Lysozyme [176, 439] (PDB: 2LZM) and the Multidrug and Toxin Extrusion (MATE) transporter

PfMATE [180, 401] in its outward-facing conformation (PDB: 6GWH). The extracellular and in-

tracellular spin label pairs of PfMATE were treated independently since they did not share residues

in common. These three DEER datasets consisted of 65 restraints between 47 residues; a sub-

set of the restraints in T4 Lysozyme is shown in 4.1.A. We note that unlike the benchmarks used

in other multilateration methods, these restraints were highly interconnected; half of the residues

were spin labeled in three or more DEER pairs, and in the most extreme case, two residues in T4

Lysozyme were spin labeled across seven pairs (Figure F.1). For each of the three datasets, the

RosettaDEER multilateration algorithm was executed for 1000 replicas, with each replica yielding

refined pseudo-rotamer ensembles at every spin labeled site.

We compared the resulting fits to those obtained using GLADDvu [173], DeerAnalysis [192],

and DeerNet [448], which are programs that analyze DEER data using Gaussian mixture models,

Tikhonov regularization, and feed-forward neural networks, respectively. Although other analy-

sis methods are available, we believe these represent a sufficiently diverse range of analytical ap-

proaches for the purposes of comparison. We found that the optimum rotamer ensembles, selected

by the AICc, could recapitulate the experimental DEER traces as effectively as each of these pro-

grams (Figures 4.1.B and C, F.2, F.3, F.4, and F.5). The mean squared errors obtained by the best

fit were not statistically different from those obtained by any of these three methods, or from the

noise estimated from the imaginary component (Student’s paired one-tailed t-test with Bonferroni

correction). However, unlike the latter methods, the interconnectedness of the spin label pairs al-
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Figure 4.1: Scheme of the RosettaDEER multilateration algorithm. (A) Refinement of pseudo-
rotamers using the RosettaDEER multilateration algorithm. (B) Representative DEER traces prior
to and following refinement. Insets: Distributions with 95% confidence bands. (C) Comparison of
RosettaDEER to other analysis programs.
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lowed our algorithm to couple pseudo-rotamer parametrization to the analysis of DEER data in the

time domain.

4.2.3 Distance distribution benchmark

Figure 4.2: Evaluation of distance distributions
by multilateration. Average distances (A) and
widths (B) between pseudo-rotamers prior to
(top) and following (bottom) refinement by mul-
tilateration. T4 lysozyme distributions omitted
from multilateration are shown in light green. (C
and D) Boxplots showing the difference between
values obtained using GLADDvu and values sim-
ulated between pseudo-rotamer ensembles prior
to and following refinement.

We anticipated that the analysis of DEER data

by multilateration would yield distance distri-

butions similar to those obtained using tradi-

tional methods. Consistent with this expec-

tation, distributions between refined pseudo-

rotamers in both T4L and PfMATE showed re-

markable agreement with those obtained using

the three methods mentioned above (see insets

in Figure 4.1.B for examples and F.3, F.4, and

F.5 for all distributions). For example, the av-

erage values of these distributions were within

0.5 Å of those obtained using GLADDvu for 60

of the 65 restraints (Figure 4.2). Additionally,

the widths of 52 of these restraints were within

0.5 Å of those obtained using GLADDvu. Dis-

crepancies occurred for broad distributions or

long distances (because the information content

in the time domain is not as well-defined) or

components less than 15 Å (because these dis-

tances minimally contribute to the DEER sig-

nal). Additionally, we uncovered differences

when comparing the widths of these distribu-

tions to those obtained using DeerAnalysis, likely resulting from small “ghost” side peaks fre-
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quently observed in regularization. Discrepancies were also observed when comparing these dis-

tributions to those obtained using DeerNet, which yielded widths clustered between 2.5 Å to 4.5 Å

(Figure F.6).

Finally, the uncertainty of these distributions was calculated from the five pseudo-rotamer en-

sembles with the lowest AICc values. The resulting confidence bands, which capture 95% of the

variation in the distance distributions, are qualitatively comparable to those obtained using GLAD-

Dvu, DeerAnalysis, and DeerNet (Figure F.7).

To further validate the algorithm, we simulated distance distributions for six T4L spin label pairs

which were excluded from the multilateration dataset. We observed that the median error between

the average distance values fell by 50% (Figure 4.2) using the refined rotamers. By contrast, the

standard deviations did not significantly sharpen, and their values are similar to those observed

prior to refinement. Notably, the uncertainty of these distributions is greater than those of the

distributions included in the training set.

4.2.4 Conformational change modeling in PfMATE using refined pseudo-rotamers

While the results above demonstrate the robustness of the multilateration algorithm in identifying

optimal spin label pseudo-rotamer ensembles, the central question is whether these provide supe-

rior restraint quality for modeling conformational changes. To address this question, we modeled

the isomerization of PfMATE between OF and IF conformations (shown in Figure 4.3.A and B,

respectively), both of which were determined by X-ray crystallography [401, 468]. The two confor-

mations differ primarily in the relative orientations of the N- and C-terminal domains resulting from

changes in the backbone dihedral angles of TMH7. Of direct relevance to the question addressed

here, distance distributions between pairs of spin labels measured at pH 7.5 and pH 4.0 were shown

to be consistent with the OF and IF conformations, respectively [180].

We generated several thousand models, using Rosetta [229, 234] without DEER restraints, by

perturbing TMH7 and found that none of the built-in membrane protein scoring functions [11, 12,

442, 466] could identify the IF state by score alone (Figure F.9) even if it was included in the initial
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model set. Thus, from an MC modeling perspective, the OF-to-IF conformational transition can be

sampled, but not necessarily identified, without experimental data.

Table 4.1: Restraints used to score PfMATE models.

Set 1 2 3 4 5 6 7 8 9 10

1 120/269 215/318 120/413 215/394 134/269 215/442 186/269 240/318 186/348 240/442
2 120/413 215/318 134/269 215/394 186/348 215/442 186/269 240/318 196/348 240/442
3 240/442 186/348 215/394 196/348 215/442 120/269 215/318 186/269 240/318 120/413
4 215/318 186/269 240/442 120/413 240/318 134/269 186/348 196/348 215/442 120/269

Figure 4.3: Modeling conformational changes in
the multidrug transporter PfMATE. (A) OF and
(B) IF crystal structures of PfMATE. N- and C-
terminal domains shown in purple and green, re-
spectively, with TMH7 in red. (C) RMSD values
of ten best-scoring models relative to the IF con-
formation using pseudo-rotamers either refined
by multilateration (teal) or available by default
(yellow).

To test the notion that DEER restraints in-

terpreted with the refined pseudo-rotamers can

drive convergence of Rosetta modeling, we

identified spin label pairs where the EPR line-

shape showed minimal changes upon a pH shift

from 7.5 to 4.0, supporting the approximation

that the spin label rotamer ensembles are in-

variant and thus were not allowed to reconfig-

ure during Rosetta modeling (Table 4.1). From

these pairs, 40 sets of restraints were generated,

each of which consisted of one to ten spin la-

bel pairs. Using scoring functions to assess the

agreement with the DEER restraints (see sec-

tion 4.3), the OF-to-IF conformational transi-

tion was modeled by perturbing the dihedral an-

gles of TMH7. DEER distributions were sim-

ulated using either the pseudo-rotamers ensem-

bles refined by multilateration or the unrefined
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ensembles available to RosettaDEER by default. Agreement with the experimental distributions

was evaluated by the overlap between the experimental and simulated distance distributions. Sim-

ilarity to the inward-facing crystal structure was quantified by the RMSD of the alpha carbons

excluding TMHs 1 and 7.

We observed a striking contrast between the effectiveness of the refined and unrefined ensembles

(Figure 4.3.C). The default rotamer library did not effectively improve the average RMSD values

of the ten lowest-scoring models beyond 2.0 Å to 3.5 Å. By contrast, the use of multilaterated

pseudo-rotamers converged upon inward-facing models to 1.5 Å to 2.5 Å Cα RMSD using restraints

obtained from the same spin label pairs.

Alongside these improvements in accuracy, the sharper range of RMSD values suggested that

multilateration improved model precision. Distributions of representative distances in the intracel-

lular and extracellular sides of the top ten models (Figures 4.4.A and B) revealed that, when using

the default pseudo-rotamers, a majority of these models failed to close the extracellular cavity and

were less inward-open than the OF structure (Figure 4.4.C), even when ten restraints were used. By

contrast, models obtained using refined pseudo-rotamers deviated less drastically from the crystal

structure. Nonetheless, these models were virtually all less inward-open than the crystal structure,

consistent with shorter-than-expected experimental DEER measurements on the intracellular side

at pH 4.0 (Figure 4.4.D) [180] .

4.2.5 Concluding remarks

Our results highlight a strategy to improve the quality of models obtained from EPR restraints. We

envision that the main application of this strategy is to model alternate conformational states starting

from an experimental structure and a set of interconnected DEER data. By implementing this

algorithm in Rosetta, we hope to encourage its use for a wide variety of modeling applications, such

as protein-protein docking and de novo folding. Moreover, further development of this approach,

as well as extensive use of multilateration in the design of spin label pairs, will open the door to

modeling proteins where conformational changes are defined by more complex modes of motion.

84



4.3 Materials and Methods

4.3.1 Overview of the model-based approach

Figure 4.4: Models obtained using multilaterated rotamers
more closely resemble the IF structure. Deviation between
experimental and predicted Cα-Cα distances observed be-
tween pairs on the A) extracellular and B) intracellular
sides. Models obtained using ten restraints either with C)
default or D) refined rotamers (IF structure in black).

The objective of the RosettaDEER

multilateration algorithm is to fit a set

of DEER data by weighting the ni-

troxide pseudo-rotamers available to

each spin-labeled residue in a pro-

tein structural model. Each repli-

cate of the algorithm independently

generates a unique set of pseudo-

rotamer ensembles for each spin-

labeled residue. For clarity through-

out this text, we will refer to these

outputs as ”coordinate models”, to

differentiate them from the starting

structural models. The space acces-

sible to the unpaired electron of each

residue’s spin label is divided into

fifty discrete pseudo-rotamers, which

are shown as small spheres in Fig-

ure 4.1.A. RosettaDEER then iden-

tifies and removes pseudo-rotamers

that clash with the protein back-

bone. Each residue’s ensemble of

pseudo-rotamers represents a proba-

bility density function of the space accessible to the unpaired electron of that residue’s spin label.

As a result, following refinement using this algorithm, the weights of a coordinate model’s pseudo-
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rotamers for any given residue are tightly coupled to those of other residues.

In this study we focus our attention on coordinate models with high parsimony. For example, co-

ordinate models capable of recapitulating DEER traces using only one pseudo-rotamer per residue

are prioritized over those with two or more. However, if the DEER trace indicates a broad and

multimodal distribution, additional pseudo-rotamers may be necessary to improve the goodness-

of-fit. The total number would ideally be no greater than the minimum required to fit the data, and

multiple combinations of pseudo-rotamers may be equally consistent with the data. We identified

parsimonious coordinate models using the AICc [7, 59, 395]:

𝐴𝐼𝐶𝑐 = −2∗ ln(𝐿( ̂𝜗|𝐷) (4.1)

This metric balances two competing objectives of 1) fitting the experimental data as well as

possible and 2) simplifying the model as much as possible. The leftmost term, goodness-of-fit, is

expressed as the maximum likelihood estimate of the coordinate model with parameters 𝜗 given

the experimental DEER data 𝐷 and is described below. The middle and rightmost term express the

complexity of the model, with the variable 𝐾 corresponding to the total number of parameters in

the coordinate model and 𝑛total corresponding to the total number of time points in the experimental

DEER data. 𝐾 includes the number of pseudo-rotamers with nonzero weights, as well as the number

of parameters required to fit the intramolecular DEER data in the time domain. The rightmost term,

which converges to zero as the data-to-parameter ratio increases, serves as further regularization in

modeling cases where less experimental data is available (in this case corresponding to the number

of time points in all DEER traces). Overall, the AICc quantifies the expectation that few spin label

rotamers contribute to the distance distribution.

4.3.2 Detailed description of the multilateration algorithm

The multilateration algorithm is implemented in Rosetta [229, 234] as part of the RosettaDEER

package and can be run using RosettaScripts [132]. It uses an iterative simulated annealing approach

and is therefore non-deterministic. As a result, it obtains diverse sets of solutions when executed
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multiple times. However, there is no guarantee that the global minimum solution is obtained using

this algorithm.

The positions of the pseudo-rotamers are kept fixed in space throughout the duration of the

algorithm, e.g., they are reweighted, rather than moved. Initial positions are obtained from the

nitroxide bond midpoints of each rotamer in the Rosetta MTSSL rotamer library following clash

evaluation [10]. At the start of the algorithm, one of these pseudo-rotamers is randomly chosen for

each residue and has its weight set to 1; the rest have weights set to zero.

The algorithm then proceeds as follows:

• The weight of a randomly chosen pseudorotamer is modified by a randomly chosen number.

Initially this value ranges uniformly from -0.1 to 0.1.

• The weight change is applied, and the resulting sum-of-squared residuals is calculated as

discussed below.

• Any move that decreases the sum-of-squared residuals is accepted, while any move that in-

creases it is accepted with the following probability (with iter being the current iteration):

𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = exp(− ln(𝐿(𝜗iter+1|𝐷))− ln(𝐿(𝜗iter|𝐷))
𝑘B𝑇 ) (4.2)

• The Boltzmann temperature 𝑘B𝑇 starts at 1.5 and asymptotically approaches zero with each

iteration as the algorithm proceeds. A total of 2500 trials per round are performed per DEER

trace in the dataset. However, each round is aborted if 500 consecutive trials fail to sample

an improvement.

• At the end of each round, the temperature 𝑘B𝑇 is raised to 1.5. If no improvements were

sampled, the magnitude of the weight changes made to coordinates is reduced by a factor of

√10. Once this magnitude reaches 10−4, the algorithm is concluded.

For PfMATE, we used a non-three-dimensional background model to fit the intermolecular

contribution of the experimental signal. This required a modification to the algorithm in which the
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first round of optimization was performed using a three-dimensional background. The first time 𝑘B𝑇

was reset to 1.5, this restriction was removed. Otherwise, the dimensionality of the intermolecular

background coupling was found to immediately drop to a value of 2, trapping the solution in a local

minimum.

4.3.3 Simulation of DEER distance distributions

To simulate distance distributions between two spin-labeled residues u and v, pairwise distances

were measured between all coordinates belonging to each residue. To account for backbone het-

erogeneity, each of these measurements were then broadened by a value equal to the pairwise root

mean squared fluctuation (RMSF) as inferred from the crystallographic isotropic B-factor of the

residues’ Cα atoms:

𝑅𝑀𝑆𝐹u = √3𝐵u,𝐶α

8𝜋2 (4.3)

𝑅𝑀𝑆𝐹uv = √𝑅𝑀𝑆𝐹2
u +𝑅𝑀𝑆𝐹2

v (4.4)

The result is equivalent to the convolution of the original distribution with a Gaussian distri-

bution with a width of 𝑅𝑀𝑆𝐹uv. Regions of proteins with higher B-factors, such as loops, have

previously been found to exhibit a greater degree of backbone flexibility in solution [34, 326, 461].

Failure to account for backbone flexibility could potentially overstate the intrinsic dynamics of the

spin label and decrease the precision of the models generated using the pseudo-rotamers obtained

this way. We did not normalize the experimental B-factors to account for differences in experi-

mental crystallographic resolution, since such differences may reflect variations in the backbone

disorder of different proteins.

4.3.4 Evaluating coordinate models obtained from raw DEER traces

The data 𝐷 consist of 𝑁 decay traces (𝑉exp), e.g., 𝐷 = 𝑉exp,1,𝑉exp,2,…,𝑉exp,N, with the ith decay

trace consisting of 𝑛i time points for a total of 𝑛total experimental time points among all experimental
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traces. In this case, the likelihood of the model was evaluated by the noise-normalized sum-of-

squared residuals to the experimental data:

ln(𝐿(𝜗|𝐷)) = −𝑛total
2 ∗ ln

⎛⎜⎜⎜⎜
⎝

1
𝑛total

𝑁
∑
i=1

𝑛i

∑
i𝑡

⎛⎜⎜
⎝

𝑉exp,i (𝑡it)−𝑉intra,i (𝑡it |𝜗)
𝜎i

⎞⎟⎟
⎠

2
⎞⎟⎟⎟⎟
⎠

(4.5)

Here 𝜎i is the standard deviation of the noise corresponding to the ith decay trace, 𝑉exp,i (𝑡i)

refers to the experimental data at the 𝑖tth time point of decay trace i, and 𝑉intra,i (𝑡i𝑡 |𝜗) refers to the

value of the simulated data in decay trace i at time point it given the model parameters 𝜗. The values

of 𝜎i were calculated from the imaginary component of each DEER trace. Normalizing the data to

the noise was necessary to satisfy the assumption that the sum of squared residuals is independently

and identically distributed. Forgoing this correction led to overfitting of noisier DEER traces and

underfitting of less noisy traces.

Simulation of DEER traces occurred in three steps. First, the distance distributions were ob-

tained from the model coordinates as described above. Second, the intramolecular form factor was

calculated for each time point 𝑡it:

𝑉intra,t (𝑡it |𝜗) =
𝑚

∑
j=1

𝑃sim,i (𝑟j|𝜗)∫
𝜋
2

0
sin(𝜃)∗ cos⎛⎜⎜

⎝

(1−3cos2 𝜃)𝜇0𝜇2
B𝑔2𝑡it

4𝜋ℏ𝑟3
j

⎞⎟⎟
⎠

d𝜃 (4.6)

Here, 𝑔 is the electron g-factor, 𝜇0 is the vacuum permeability constant, 𝜇B is the Bohr magne-

ton, 𝑡i𝑡 is the 𝑖tth time point in microseconds, 𝑟 is the bin distance in nanometers, and 𝜃 is the angle

between the bulk magnetic field and the interspin vector.

In the third step, the modulation depth, background slope, and dimensionality (in the case of

PfMATE) were determined using nonlinear least-squares minimization. This background was mod-

eled using the stretched exponential function 𝐵(𝑡) = 𝑒𝑥𝑝(−(𝑘𝑡)
𝑑
3 ), where 𝑑 refers to the dimen-

sionality of the background coupling and was constrained to 3.0 for T4 Lysozyme and to between

2.0 and 3.5 for PfMATE. In the latter case, we generally obtained values ranging from 2.0 to 2.5.

These parameters were determined using an initial search as previously described and were fine-

tuned throughout the duration of the algorithm using the Levenberg-Marquardt algorithm.
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4.3.5 Determination of distance distributions

We used GLADDvu [173] and DeerAnalysis2019b [192] to fit the data and obtain distance dis-

tributions. Each DEER trace was truncated by 500 ns to avoid fitting artifacts. Sum-of-Gaussian

distributions were obtained with GLADDvu using the interior point method. The distribution with

the lowest Bayesian Information Criterion was selected. Distributions were also obtained using

Tikhonov regularization with an L-curve criterion with default settings, as well as the generic Deer-

Net neural network ensemble, using DeerAnalysis2019b. Confidence bands and/or error margins

were obtained using the delta method for GLADDvu, the Validation tool for Tikhonov regulariza-

tion, and built-in ensemble statistics for DeerNet.

4.3.6 Application to T4 Lysozyme and PfMATE

The algorithm as described above was applied to T4 Lysozyme (PDB: 2LZM) and OF PfMATE

structure (PDB: 6GWH). For PfMATE, the data were further separated into the extracellular re-

straints and the intracellular restraints. The algorithm was executed one thousand times for each

of these three datasets. Each of the one thousand coordinate models were scored using the AICc

(Equation 4.1).

4.3.7 Modeling the OF-to-IF conformational change of PfMATE

Modeling the outward-to-inward conformational change of PfMATE was achieved using an MC

fragment insertion approach implemented in RosettaScripts. This protocol randomly changes the

backbone dihedral angles of certain residues chosen at random to match those of a similar stretch

of residues found in protein structures deposited in the PDB. Only residues 1–50 and 241–268 were

perturbed. Peptide fragments were obtained from a July 2011 version of the PDB using the Robetta

web server [219] with homologous protein structures removed. The fragment insertion protocol

was executed 1000 times in RosettaScripts using the score3 scoring function and was repeated for

5000 cycles. The Boltzmann temperature was set to 1.0. The following scoring function was then

used to quantify the similarity between the experimental and simulated DEER distributions:
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𝑆DEER =
𝑁

∑
i=1

ln⎛⎜⎜
⎝

∑
j=1

𝑝sim,ij𝑝exp,ij
⎞⎟⎟
⎠

(4.7)

In the event that an experimental and simulated distribution did not overlap, the inner term

resolves to ln(0). Under these circumstances, this value was automatically set to -87.0, which

is equivalent to the natural logarithm of the lowest non-negative value that can be described by a

single-precision floating point number. The choice of this scoring function is discussed in Appendix

B.
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CHAPTER 5

Structural dynamics of the glutamate-GABA antiporter GadC

This Chapter is based on unpublished data.

5.1 Introduction

Transporters belonging to the APC family shuttle amino acids and their derivatives such as hor-

mones and polyamines through lipid bilayers in organisms across all domains of life [203, 423].

Some APC transporters mediate cation-independent substrate exchange, or antiport, across cell

membranes [23, 111, 367], and in humans their upregulation correlates with poor prognosis in a

wide variety of cancers [203]. Homologous antiporters allow bacteria to withstand extreme acid

stress by importing and exporting the precursors and products, respectively, of proton-consuming

amino acid decarboxylases [137, 162, 204]. Of these four ”virtual proton pumps” found in the

pathogenic Escherichia coli strain O157:H7, the Glu/GABA antiporter GadC operates at the lowest

pH range [141, 204, 254]. Unlike the others, its knockout sensitizes cells to extremely acidic con-

ditions (pH 1.5-4.0) and sharply decreases host infection and mortality [251]. Experimental studies

of GadC may thus reveal both how deadly pathogens involved in food-borne illness survive at low

pH and how eukaryotic homologs with disease relevance transport their substrates.

Functional characterization of GadC revealed a stringent dependence of activity on pH, with

little to no detectable transport under neutral or weakly alkaline conditions [253, 254, 416]. Its

structure, determined by X-ray crystallography in detergent micelles at pH 8.0, was putatively as-

signed to an inactivated state incapable of substrate translocation. Interestingly, a C-terminal do-

main unique to GadC was found embedded in the intracellular cavity, suggesting that pH-dependent

inactivation appeared to be in part facilitated by autoinhibition. Although mild transport activity

was observed under neutral conditions in deletion mutants lacking this domain, detachment of the

C-terminus has never been directly detected.

Perhaps more importantly, the structure and dynamics of GadC as it undergoes amino acid ex-
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change remain unknown. It has been assumed that the conformational cycles of APC transporters

are expected to follow in outline those of well-studied LeuT-fold transporters such as neurotransmitter-

sodium symporters and sodium-solute symporters, which couple the otherwise unfavorable im-

port of substrates to inward electrochemical gradients of sodium ions [213]. However, studies of

these transporters using solution-state methods such as EPR spectroscopy [76, 212, 213, 310] and

HDX/MS [6, 281, 292, 298] have revealed striking divergences in both their elements of alternating

access as well as its and their ligand dependence. Moreover, as symporters, NSSs, SSSs, and others

undergo fundamentally different transport cycles than GadC [134]. In contrast, the conformational

dynamics of antiporters with this fold such as GadC remain understudied and unknown.

Here, DEER spectroscopy [90, 186, 274] and integrative modeling [342, 410] are used to inves-

tigate and model the pH-dependent structural changes of GadC in a native lipid environment. We

directly detect detachment of the C-terminus at low pH and observe increases in conformational

heterogeneity among neighboring helices. Unlike homologous symporters, GadC did not undergo

large-amplitude substrate-dependent conformational changes at low pH, which may indicate that its

antiport mechanism, rather than resulting from ligand-dependent conformational changes observed

in unrelated antiporters [180, 267, 270], could instead stems from stabilization of a transition state

that is inaccessible in the absence of substrate. Structural models generated from these distance

measurements deviate from the published crystal structure in key aspects and indicate that GadC

predominantly adopts an inward-facing occluded conformation in lipid bilayers [111, 367].

5.2 Results

The pH-dependent activity profile of GadC was verified by measuring radiolabeled substrate uptake

into proteoliposomes. A construct of wildtype GadC, previously cloned from E. coli str. O157:H7,

was obtained and expressed in E. coli C43 (DE3), purified in β-DDM detergent micelles, and re-

constituted into proteoliposomes containing 5 mM Glu at pH 5.5. These proteoliposomes were then

tested for substrate transport by detection of [3H]-L-glutamic acid uptake as a function of both ex-

ternal pH and substrate concentration. Additionally, time-dependent Glu transport was measured
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in proteoliposomes containing 5 mM GABA at pH 5.5 (Figure G.1). Consistent with previous find-

ings [253, 254, 416], we observed a strong dependence of radioligand uptake on pH, with negligible

transport detected at pH 6.5 and above (Figures 5.1.B and C).

Figure 5.1: Transport activity in the glu/GABA
antiporter GadC is dependent on pH. (A) Car-
toon depiction of the activation mechanism. (B)
Glutamate transport in wildtype GadC reconsti-
tuted into proteoliposomes is strongly dependent
on pH. (C) Maximal transport rate (Vmax) in-
creases exponentially as a function of pH.

To characterize the structural changes as-

sociated with pH-dependent activation, we

used site-directed spin labeling and EPR spec-

troscopy [186, 274]. After mutating all three

endogenous cysteines in the wildtype sequence

to chemically inert residues (C60V, C247A,

C380V), a panel of 25 single- and double-

cysteine mutants were generated. As with pre-

vious studies on structural homologs of GadC,

double-cysteine pairs were selected based on

their ability to report on inter- and intra-domain

motions. To evaluate if these measurements

were expected to fall within the detectable range

for DEER measurements (15 Å to 60 Å) and

to test whether the resulting data were consis-

tent with the crystal structure, distance mea-

surements were first simulated between candi-

date residue pairs using dummy spin labels modeled over the crystal structure [176, 195]. Following

purification and spin-labeling, all mutants were reconstituted into proteoliposomes and tested for

transport and pH-dependent inactivation at pH 5.5 (Figure G.2) and 7.5 (Figure G.3), respectively.

Additionally, all experimental DEER measurements were carried out in nanodiscs with lipid pro-

files matching those of the proteoliposomes used for transport assays. This ensured that neither the

spin labels nor the membrane environment interfered with the protein’s ability to traffic substrates

at acidic pH or to undergo inactivation at neutral pH.
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Figure 5.2: Detachment of the C-terminus is trig-
gered by low pH. (A) Position of the C-terminus,
shown in pink, relative to the main transmem-
brane domain of the transporter. Inset: The do-
main is embedded into the intracellular vestibule.
(B) At low pH, a distance component consis-
tent with a distance distribution predicted from
the crystal structure (shown in the dashed line)
is replaced by a wider, longer-distance compo-
nent. (C) Titration measurement of the dissoci-
ation of the C-terminus. (D) pH-dependent in-
creases in conformational heterogeneity resolved
by CW-EPR. (E) Titration measurement of the
third moment of the CW spectra reveals a simi-
lar profile to the DEER measurements.

Although GadC was crystallized as an an-

tiparallel homodimer, no experimental evi-

dence of this quaternary assembly was detected

in lipid nanodiscs (shown below). Additionally,

the addition of substrates induced neither large-

scale conformational modulations nor changes

in continuous-wave EPR lineshape data (repre-

sentative pairs shown in Figure G.4). As a re-

sult, the following discussion is limited to pH-

dependent structural changes.

5.2.1 Monitoring the detachment of the C-

terminus as a function of pH

Abrogation of transport at neutral and alkaline

pH has previously been attributed to a coiled

domain at the protein’s extreme C-terminus

(shown in pink in Figures 5.1 and 5.2.A). In

the crystal structure of GadC, captured at pH

8.0, this domain is embedded in the intracel-

lular cavity and putatively obstructs closure

of the intracellular gate, a prerequisite of al-

ternating access. To test the hypothesis that

this domain detaches under acidic conditions, a

double-cysteine mutant (143C/480C) was gen-

erated and spin-labeled to measure the distance

between the C-terminus and the transmembrane domain. Distance distributions of this pairs re-

ported large changes as a function of pH. At neutral pH, the average distance matched that predicted
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from the crystal structure, whereas a sharp increase in both the magnitude and the width of the dis-

tribution was observed under acidic conditions (Figure 5.2.B, raw data shown in Figure G.5). A

nonlinear least-squares fit of a sigmoid function to the amplitudes of the short- and long-distance

components revealed that this shift occurred cooperatively with a pKa of 6.07±0.11 (Figure 5.2.C),

with both short-distance components diminishing at low pH in a tightly correlated manner (Figure

G.6).

To further determine if this cooperative distance change originated from conformational disor-

der of the C-terminal domain, a second single-cysteine mutant was introduced near the C-terminal

extreme of the domain (505C). At neutral pH, the lineshape of this mutant’s continuous wave (CW)-

EPR spectrum suggested that the domain was relatively structured, consistent with its docked con-

formation in the crystal structure. By contrast, reducing the pH led to a sharp spectral component

that dominated the lineshape at pH 6.0 and below, suggesting increases in the C-terminal domain’s

disorder and mobility. Nonlinear least squares fit of the signal’s intensity of the high field line on as

a function of pH yielded a pKa of 6.30±0.04, consistent with the DEER measurements discussed

above (Figure 5.2.D and E). Taken together, the data are consistent with the corroborate the hy-

pothesis that the tail detaches from the transmembrane domain and becomes heterogeneous and

disordered. Additionally, the pKa of this event closely matched the pH at which transport activ-

ity is abrogated, reinforcing this domain’s role in regulating substrate exchange under neutral pH

conditions.

5.2.2 Characterization of structural changes in the transmembrane domain induced by low

pH

To determine if low pH drives additional structural changes following detachment of the C-terminal

domain, a systematic analysis of the structure of GadC was undertaken. A variety of motifs defining

conformational heterogeneity and alternating access have been observed in structural homologs

using both high-resolution methods, such as crystallography and cryo-EM [52, 211, 224, 230, 246,

316, 374, 444, 455, 459], as well as solution-state methods such as EPR spectroscopy [76, 212, 213,
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310], FRET [475], and HDX/MS [6, 281, 292, 298]. Depending on the transporter, isomerization

between inward- and outward-facing conformations appears to be largely mediated by combinations

of rigid-body movements between the bundle and hash domains, movement of EL2 and unwinding

of TMH5, and/or independent movement of TMH1, TMH6a, TMH7, and/or EL4. We thus set out

to test if movement in these motifs underpin activation of GadC at low pH.

5.2.3 The bundle domain is tilted relative to the crystal structure

Figure 5.3: Distance measurements between the bundle and scaffold domains deviate from crystal
structure. (A) Side view of GadC with the top and bottom slices corresponding to panels B and D,
respectively. (C) Distance measurements carried out at pH 4.5 and 7.5 alongside predictions made
from the crystal structure. Confidence intervals (95%) shown as shaded regions. (E) Distance
measurements on the intracellular side reveal striking inconsistencies with the crystal structure.

A series of measurements were carried out between spin labels attached to the bundle domain

and either the hash domain or TMH5 on the extracellular side of the GadC (Figure 5.3.A). Distance

distributions collected at pH 7.5 were largely in agreement with predictions made from the crystal

structure, in which the extracellular gate was fully closed (Figure 5.3.B). Consistent with this find-
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ing, CW profiles involving residue 37, located on the loop connecting helices 1 and 2, were broad

and indicative of a constrained environment (Figure G.7). Additionally, cysteine mutants labeled at

this residue showed partially abrogated transport at low pH (Figure G.2). Only minor changes were

observed in measurements at pH 4.5, suggesting that the extracellular vestibule remained closed

even at low pH. Although broadening was observed between TMH3 and TMH6, the considerable

overlap between the 95% confidence intervals for both distributions prevented us from definitively

concluding that this resulted from conformational rearrangements. The remainder of the data in-

dicate that at both low and high pH, the extracellular gate is consistent with the outward-closed

conformation observed in the crystal structure (Figure 5.3.C).

In contrast to these observations, distance measurements carried out on the intracellular side of

GadC deviated substantially from predictions made from the crystal structure (Figures 5.3.D, 5.3.E,

and G.8). At pH 7.5, we observed that TMH1 and TMH7 in the bundle domain were 10 Å to 15 Å

farther from TMH3, and 10 Å to 20 Å closer to TMH4 and TMH5, than the predictions made from

the crystal structure. Lowering the pH to 4.5 caused these distance distributions to broaden and, in

some distributions, to further shorten by 3 Å to 5 Å. However, the pairwise nature of the data do

not immediately indicate which regions of the protein A) deviated from the crystal structure, and

B) underwent increases in heterogeneity.

5.2.4 The scaffold domain is largely consistent with the crystal structure

As only minor pH-dependent movement was observed between the bundle and hash domains, sub-

sequent measurements focused on EL4 and IL1, which connected helices 7 and 8 and 2 and 3, re-

spectively. EL4 has been shown to pivot outward and provide access to the extracellular vestibule

in LeuT [76, 213], whereas transport activity data suggest that IL1 is involved in mediating pH-

dependent activation in the homolog AdiC [434]. In addition to revealing whether the positions

of these domains respond to changes in pH, the DEER data could further determine the extent to

which the discrepancies observed between our measurements and predictions made from the crystal

structure extended to the remainder of the structure.
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Figure 5.4: No pH-dependent movements are observed in IL1 and EL4. (A) Extracellular view of
GadC. (B) Measurements between EL4 and extracellular sites on the scaffold domain suggest that
TM5 is closer to the main body of the transporter than in the crystal structure. Confidence intervals
(95%) shown as shaded regions. (C) Intracellular view of GadC. (D) Intracellular measurements
within the scaffold domain. (D) Intracellular view. (E) Side view. (F) In-to-out measurement
suggests a slight pH-dependent movement in TMH9.

On the extracellular side, we collected three distance distributions between EL4 and various

points in the structure (Figures 5.4.A, 5.4.B, and G.9). None of the distributions indicated a large-

amplitude distance change as would be expected from EL4-mediated opening of the extracellular

vestibule. However, whereas two of the distributions involving the C-terminal end of EL4 (residue

280) were in reasonable agreement with the crystal structure, a third pair collected between TMH5

and EL4 showed a shorter-than-expected distance distribution. To ascertain if this discrepancy was

due to the position of TMH5, rather than EL4, we collected an additional measurement between

TM3 and TM5 and found that it too was also shorter than expected (Figure 5.4.A). A likely expla-

nation is that the extracellular side of TMH5 does not protrude as far as suggested by the crystal

structure, and that the position of EL4 is otherwise consistent with the crystal structure.
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Distance distributions between IL1 and TMH3 similarly showed little movement and suggest

that the two helices are effectively stapled together, consistent with a lack of independent move-

ment observed in other LeuT-fold transporters (Figures 5.4.C, D, and G.10). Further measurements

across the hash domain on the intracellular side highlight its structural invariance. However, mi-

nor pH-dependent distance changes in IL1/TMH4 are observed and appear to accompany local

reconfigurations as evidenced by the CW profile (Figure G.10). Alongside evidence that other dis-

tributions involving residue 143 on TMH4 were bimodal, these data suggest that several distinct

nitroxide rotamer states may be populated and that their relative proportions shift as a function of

pH. Measurements from the hash domain to TMH5, by contrast, do indicate minor changes in their

relative positions. This further illustrates how changes in pH and detachment of the C-terminal tail

domain coincide with subtle reorganizations of helices on the intracellular side of the protein.

Interestingly, measurements between IL1 and TMH9 on the extracellular side suggested a slight

sharpening that may be pH-dependent (Figure 5.4.E and F). The similarity in the distance changes

observed between both TMH6/TMH9 (204/355) and EL4/TMH9 (280/355; Figures 5.3.A and

5.4.A, respectively), combined with the lack of distance changes in measurements involving IL1,

suggest that these data as slight pH-dependent movements of TMH9. However, this movement

is substantially less than what is observed in structural homologs, such as Mhp1 [374, 443, 444],

that use the loop connecting TMH9 and TMH10 as a hinge to facilitate entry and exit from the

substrate-binding site.

Altogether, the data reveal minor structural rearrangements on the intracellular side but fail to

precisely identify which domains are moving and which are stationary.

5.2.5 The bundle domain does not behave like a rigid body

Finally, we evaluated whether the bundle domain acted as a rigid body during this pH transition. The

narrowness of this domain, combined with the 15 Å lower limit of DEER, meant that we could only

answer this question using distance measurements between the intracellular and extracellular sides

of the protein (Figure 5.5.A). Distance changes were observed in every measurement (Figures 5.5.A
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and G.11), arguing against the possibility that this domain acts as a rigid body as previously posited.

Additionally, they reveal minor discrepancies regarding the position of the extracellular half of

TMH6, which was hinted at by measurements described previously involving the hash domain

(Figure 5.3.A).

5.2.6 GadC adopts an inward-facing occluded conformation at both pHs

Figure 5.5: Measurements within the bundle do-
mains are inconsistent with a rigid-body pattern
of conformational dynamics. (A) In-to-out DEER
distance distributions in the bundle domain. Con-
fidence intervals (95%) shown as shaded regions.
(B) Side view showing the measurements.

To summarize the experimental DEER data,

we observed both substantial deviations be-

tween our observations and predictions made

from the crystal structure, as well as minor pH-

dependent broadening and amplitude changes.

To translate these pairwise measurements into

fold-level structural models, we generated a se-

ries of structural models of GadC using the

modeling software suite Rosetta [229, 234].

Unfortunately, high-precision models of the

structure of GadC cannot be obtained given the

relatively small number of available distance re-

straints. Therefore, we supplemented the mod-

eling process with a custom-designed statisti-

cal potential that quantified each model’s similarity to the structures of previously determined ho-

mologs. The design of this potential, outlined in Section 5.4, capitalized on the large number of

structures of homologs deposited in the Protein Databank. Effectively, this statistical potential

served as a form of regularization to penalize the introduction of conformational changes that are

not anticipated by the known structures of closely related homologs of GadC.

We generated 5,000 Rosetta models for each pH condition using a procedure discussed in detail

in section 5.4 and Appendix C. Experimental DEER data was introduced as distance restraints us-
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ing the RosettaDEER module (Chapter 3) and the scoring function discussed in Appendix B. Each

model generated this way was reweighed based on its structural similarity to homologous trans-

porters (discussed in section 1.4.3). The five best-scoring models generated using data collected at

either pH are shown in Figures 5.6.A and G.12. These models principally deviated from the crystal

structure in the positions of TMH1 and 7, although we note that the hash domain adopted a slightly

more ”upright” conformation with TMH4 nearly parallel to the membrane normal. By contrast, the

extracellular sides of these models closely resembled that of GadC, with subtle modifications to

TMH5 and TMH6a. Initial structural comparisons suggest that these models resemble the inward-

facing occluded conformation of the homologs ApcT [367] and MjApcT [201], in which the bundle

domain is tilted toward TMH4 and away from TMH3 relative to the crystal structure of GadC as

suggested by the data (Figure 5.6). However, unlike ApcT, TMH5 in our models is not bent or

puckered and instead adopts a configuration similar to that observed in the GadC crystal structure.

In fact, despite differences in the bundle domain, the overall structure of our models closely re-

sembles the structure of GadC, highlighting both the data’s limited disagreement with the crystal

structure and the effectiveness of our regularization strategy.

These clear deviations from the crystal structure contrasted with far more subtle differences

observed between low-pH and high-pH models. In fact, although small pH-dependent distance

changes were observed in the data, variation between the top five models at either pH were com-

parable to differences between models across different pHs (Figure G.12). Therefore, we conclude

that the resolution and sparseness of the data prevent the structural basis of pH-dependent activa-

tion following release of the C-terminus from being determined with high confidence. It is therefore

unclear if increases in heterogeneity observed at low pH are the result of movement in TMH5, as

suggested by structures of homologous transporters, or TMH1, which is more strongly supported

by the DEER data.
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Figure 5.6: Rosetta models of the low- and high-pH conformations generated using the DEER
data in purple and dark grey, respectively. Crystal structures of GadC and its homologs ApcT and
GkApcT are shown in the colored helices and suggest that GadC adopts an inward-facing occluded
conformation.

5.3 Discussion

The DEER data presented here investigates the structure and dynamics of the pH dependent Glu/GABA

antiporter GadC at low pH. These measurements, which reflect solution-state backbone dynamics

[186, 211], are inconsistent with the conformation stabilized by the crystal lattice, with substan-

tial deviations observed on the intracellular side of the protein. Instead, models generated using

Rosetta suggested that GadC adopts a conformation similar to closely related homologs in which

its the intracellular vestibule of GadC is partially occluded and resemble the inward-facing oc-

cluded conformations observed in the closely related homologs. Indeed, we found that a model of
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GadC generated de novo using the state-of-the-art method RoseTTAFold [18] generated a similarly

IF-occluded model that was more consistent with the data than the crystal structure G.13. This con-

formation is all the more notable given the crystal structure’s similarity to homologs such as BasC

[111], Lat-1 [230, 459], Lat-2 [460], and b(0,+)AT1 [449, 457]. It should be noted, however, that our

measurements reflect the structure and dynamics of GadC in a more physiologically relevant lipid

environment. The aforementioned homologs, by contrast, were structurally characterized in deter-

gent micelles and/or when bound to antibodies. It should be noted that lipid/detergent-dependent

conformational changes have also been reported in several transporters, including the structural

homolog LeuT [330, 383], as well as other membrane proteins.

The absence of substrate-induced conformational changes observed at low pH (Figure G.4) con-

trasts with results from similar studies of unrelated antiporters, such as those mediating sodium-

or proton-dependent drug efflux. However, this discrepancy may be explained by the fact that,

unlike the substrates of ion coupled antiporters, neither glutamate nor GABA are hypothesized to

move down their concentration gradients under physiological conditions. This owes to bacterial re-

sponses to acid stress that trigger rapid decarboxylation and depletion of cytoplasmic amino acids,

such as glutamate, and the corresponding spike in cognate polyamines, such as GABA [137, 340].

In fact, all four of the ”virtual proton pumps” involved in bacterial acid resistance, including GadC,

are co-transcribed with corresponding amino acid decarboxylases [204]. This metabolomic adap-

tation ensures that neither half of GadC’s transport cycle, glutamate import or GABA export, is

energetically unfavorable. This, in turn, may would obviate the need for ligand-dependent changes

in thermodynamics equivalent to, for example, the pH-dependent conformational rearrangements

observed in proton/drug antiporters [89, 180, 270].

On the basis of this observation, we propose a model in which the transport cycle of GadC

consists of two half-cycles of uniport in which facilitated diffusion of both Glu and GABA are

coupled in opposite directions (Figure 5.7). This posits that substrate binding contributes to the ki-

netics, rather than the thermodynamics, of the transporter’s functional cycle. We propose that this is

achieved by stabilization of a high-energy transition state separating the inward-facing and outward-
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facing conformations that, under apo conditions, cannot be traversed. Ligand-induced increases in

conformational flexibility, which would be consistent with this hypothesis, have previously been

reported in the homologous serine/threonine exchanger SteT using single-molecule dynamic force

spectroscopy [36]. These findings could extend to homologous amino acid exchangers in humans,

such as xCT, which couples the energetically favorable export of glutamine to the import of cystine,

which is immediately reduced to two cysteine molecules and thus absent from the cytoplasm [300].

Nevertheless, as these conclusions are derived from data collected under equilibrium conditions,

they do not reflect structural changes induced by substrate in the presence of gradients, such as

those reported in structural homologs such as SGLT1 [249]. The possibility that the conformational

dynamics of APC transporters are responsive to gradients is reinforced by evidence that homologous

transporters preferentially bind substrates on specific sides of the membrane [23]. For this reason,

further inquiries must determine the structure and function of GadC as it operates in and maintains

a pH gradient.

5.4 Materials and Methods

5.4.1 Site-directed mutagenesis

A codon-optimized version of the GadC gene from Escherichia coli str. O157:H7 (Genscript)

was cloned into a pET19b vector encoding an N-terminal deca-histidine tag. A cysteine-less con-

struct (C60V, C246A, C380V) was generated from this template using site-directed mutagenesis

(QuikChange). All single- and double-cysteine mutants were similarly generated from this cysteine-

free construct and verified by Sanger sequencing using both T7 forward and reverse primers.

5.4.2 Expression, purification, and spin labeling of GadC

Plasmids encoding either wildtype or mutant GadC were transformed into competent E. coli str.

C43 (DE3) cells and overexpressed in 1L minimal media A supplemented with ampicillin (Gold

Biotechnology) as previously described60. Upon reaching an absorbance (OD600) of 0.7-0.8,

GadC expression was induced by adding 1 mM IPTG (Gold Biotechnology) and the temperature

was dropped to 20°C. Cells were harvested after 16 hours by centrifugation at 5500 g for 15 minutes,
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Figure 5.7: Mechanistic model of pH-dependent activation and substrate transport in GadC. (A) Un-
der acidic conditions, the C-terminal domain of GadC detaches. Separately, GadB decarboxylates
intracellular glutamate into GABA, consuming protons and increasing intracellular pH. (B) GadC
undergoes two half-cycles of energetically downhill uniport. High cytoplasmic concentrations of
GABA ensure that its export is the most energetically favorable means of undergoing IF-to-OF iso-
merization, while low cytoplasmic concentrations of glutamate ensure that its import is the most
energetically favorable means of undergoing OF-to-IF isomerization.

resuspended in 22 mL lysis buffer (100 mM KPi, 10 mM DTT, pH 7.5), and lysed by sonication.

After centrifugation at 9000 g for 15 minutes, the supernatant was collected and ultracentrifuged at

200000 g for 90 minutes.

The pelleted membrane fractions were then solubilized in resuspension buffer (50 mM Tris/Mes,
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200 mM NaCl, 20% glycerol, 1 mM DTT, pH 7.5) containing 1% β-DDM (Anatrace) and stirred

on ice for 60 minutes. Insoluble material was removed by ultracentrifugation at 200.000 g for

30 minutes, and the supernatant was incubated with 1.0 mL Ni-NTA Superflow (Qiagen) resin at

4°C for two hours with 25 mM imidazole. After washing with ten column volumes of resuspension

buffer containing 50 mM imidazole and 0.05% B-DDM, purified GadC was eluted from the resin

using resuspension buffer with 250 mM imidazole and 0.05% β-DDM.

Following the addition of 60 mM Mes, single- and double-cysteine mutants were labeled with

three rounds of 20-fold molar excess MTSSL (Enzo Life Sciences) per cysteine at room temperature

and moved to ice overnight after four hours. Samples were then concentrated using Amicon Ultra

50.000 MWCO filter concentrators (Millipore) to a final concentration no greater than 3 mg/ml,

as reported by absorbance at 280 nm (𝜖=67.840 M−1 cm−1), and purified into 200 mM Tris/Mes,

pH 7.2, 20% glycerol, 0.05% β-DDM by size exclusion chromatography using a Shodex KW-803

column with guard column. Peak fractions were isolated for further studies.

5.4.3 Reconstitution of GadC into proteoliposomes

A 3:1 ratio (weight/weight) of E. coli polar lipids and L-α-phosphocholine (Avanti Polar Lipids)

were dissolved in chloroform and evaporated with a rotary evaporator. After overnight desiccation

in a vacuum chamber, lipids were resuspended in the appropriate buffer, homogenized by ten cycles

of freeze-thawing, and stored in small aliquots at -80°C.

Lipids prepared for liposomes were resuspended in 25 mM KPi, 150 mM KCl pH 5.5, and either

5 mM L-Glu or 5 mM GABA to a final concentration of 20 mg/ml (16.4 mM). Before reconstitu-

tion, lipids were diluted and destabilized with the addition of 1.25% octyl-β-D-glucopyranoside

(β-OG) (Anatrace) and extruded through a 400 nm membrane filter (Whatman). Purified GadC

was added to the sample at a 1:200 ratio (weight/weight), bringing the final lipid concentration to

5 mg/mL. Following a thirty-minute incubation at room temperature, detergent was removed from

the sample by the gradual addition of 400 mg/mL SM-2 polystyrene Bio-Beads (Bio-Rad) over the

course of four hours. After rocking overnight in the dark, the proteoliposome solution was cleared

107



of biobeads and ultracentrifuged at 150.000 g for 60 minutes. Proteoliposomes were then resus-

pended in external buffer (25 mM KPi, 150 mM KCl, pH 5.5) and ultracentrifuged to remove exter-

nal substrates. After repeating this ultracentrifugation step a total of three times, proteoliposomes

were suspended in external buffer at a final lipid concentration of 100 mg/ml. GadC concentration

was then quantified using SDS/PAGE and densitometry (ImageJ v. 1.53g), with purified GadC in

β-DDM serving as a standard curve.

5.4.4 Transport assays

In vitro transport assays were carried out either in triplicate (concentration-dependent) or in dupli-

cate (time-dependent) as previously described [254]. An additional baseline measurement was per-

formed on ice. Glutamic acid (between 25 μM and 1 mM) was added to external buffer and checked

for pH immediately prior to all transport experiments. For the time-dependent transport Glu/GABA

exchange assays shown in Figure G.1, an fixed external Glu concentration of 50 μM at pH 5.5 was

used. In both experiments, proteoliposomes (2 μL) were added to external buffer (98 μL) containing

1 μCi [3H]-L-glutamic acid (approximately 200 nM) and gently agitated. For titration experiments

on wildtype GadC, proteoliposomes (1 μL) were added to external buffer (99 μL) containing 1 μCi

[3H]-L-glutamic acid. Substrate uptake proceeded for two minutes at 25°C and was quenched by

adding ice-cold stop buffer (25 mM glycine, 150 mM KCl, pH 9.5) and vacuum-filtering the solution

through a 0.22 μm GSTF filter (Millipore) pre-soaked in stop buffer. The filter was then washed

with an additional 6 mL stop buffer, removed, and added to 5 mL Ecoscint H scintillation solu-

tion (National Diagnostics). Following quantitation, data were analyzed using Michaelis-Menten

kinetics using the curve_fit function implemented in SciPy [427]. Baseline measurements were

subtracted from the 25°C measurements.

5.4.5 Reconstitution of GadC into lipid nanodiscs

Lipids for nanodisc reconstitution were prepared as described above and resuspended in 50 mM

Tris/Mes pH 7.5 to a final concentration of 20 mM. MSP1D1E3 was purified as previously de-

scribed [180]. Nanodisc reconstitution proceeded using a molar ratio of 1:8 GadC:MSP1D1E3,
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1:50 MSP1D1E3:lipid, and 1:5 lipid:cholate. Detergents were gradually removed from the solution

using SM-2 Bio-Beads as previously described [180]. After overnight incubation, biobeads were

removed from the solution using a 0.20 μm filter. Nanodisc-reconstituted GadC was then isolated

from empty nanodiscs by size-exclusion chromatography using a Superdex 200 Increase 10/300

GL column into 50 mM Tris/Mes, pH 7.5, 10% glycerol and concentrated using an Amicon Ultra

100.000 MWCO filter concentrator (Millipore). The pH of all protein samples was carefully deter-

mined using a microelectrode and adjusted using 1 M citrate and 1 M Tris. Protein concentration

was then evaluated using CW EPR spectroscopy as previously described [483]. Glycerol was added

to all DEER samples to a final concentration of 23% vol/vol, which were then flash-frozen in liquid

nitrogen prior to DEER spectroscopy.

5.4.6 CW-EPR and DEER spectroscopy and data analysis

Spin-labeled GadC was characterized using CW-EPR at 25°C using a Bruker EMX spectrome-

ter operating at a frequency of 9.5 GHz, a 10 mW incident power, and a modulation amplitude of

1.6 G. DEER measurements were carried out using a dead-time free four-pulse protocol [304] at

either 50 K (for 143C/480C) or 83 K (all other double-cysteine mutants). Pulse lengths were as

follows: 10 ns to 14 ns (first 𝜋
2 pulse), 20 ns (second and fourth 𝜋 pulse), and 40 ns (third 𝜋 pulse).

The pump and observation frequencies were separated by 62.26 MHz. Echo decay data were ana-

lyzed into distance distributions using GLADDvu with the last 500 ns of the signal truncated [173].

Fitting model parameters were chosen using the Bayesian Information Criterion. To analyze the

pH titration distance data collected using GadC 143C/480C, the long-distance component was iso-

lated from the two short-distance components, and was fitted with a sigmoid function using the

curve_fit function as implemented in SciPy [427]. For all DEER pairs, the distance distributions

were compared to predictions generated by MDDS, which was accessed using the CHARMM-GUI

web server [195].
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5.4.7 Generation of a structure-based statistical potential

After manually isolating the ten core transmembrane helices defining the LeuT-fold, each protein

was aligned to each other using TM-Align version 20180426 [471]. For each model, the highest

TMscore [470] to a transporter in the APC family was obtained. TMscore quantifies structural

similarity and ranges from 0 to 1, with 1 indicating perfect structural overlap [453]; values between

different structures of the same transporter were not considered. To reflect the probability of a

model belonging to the APC family given its TMscore to structures of other proteins in that family,

we used the following exponential function:

𝑝(𝑀) = exp(−1−𝑇𝑀𝑠𝑐𝑜𝑟𝑒
β ) (5.1)

This function was parametrized by minimization of the total cross-entropy −∑ ln(𝑞𝑖), where 𝑞𝑖 =

𝑝(𝑀𝑖) for all APC transporters and 𝑞𝑖 = 1−𝑝(𝑀𝑖) for all non-APC LeuT-fold transporters. Using

the minimize function implemented in SciPy [427], a value of β = 0.072185 was obtained.

5.4.8 Initial homology modeling

Structural alignments were obtained using TMAlign. The Rosetta application partial_thread was

then used to thread the first ten transmembrane helices (residues 1-359) of the GadC sequence

over each structure. The three remaining helices were then directly grafted onto the structure by

structural alignment; the C-terminal tail (residues 471-511) was omitted. Homology models were

constructed using HybridizeMover [384] with five randomly selected templates as well as the hash

domain from GadC (PDB: 4DJI chain A). The weight of the DEER data was set to 10.0 during

the first two stages and to 0.0 during the final full-atom minimization stage. Sequence fragments

used during this step were obtained from the Robetta web server [216]. Each of these models were

further refined using ConfChangeMover as described below.
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5.4.9 Conformational change modeling using ConfChangeMover

The structural modeling method ConfChangeMover, described in detail in Appendix C, was imple-

mented in Rosetta 3 [229, 234] and consisted of three stages. In the first stage, rigid-body segments

consisting of either beta-sheets or individual helices were identified, and cutpoints were introduced

in the loops connecting them. This allowed secondary structural elements to be manipulated in

three-dimensional space while avoiding the ”lever-arm effect” described previously [419]. Sam-

pling consisted of either rigid-body movements or fragment insertions. The former consisted of ran-

dom rotations and translations, with an average rotation of 15° and an average translation of 2.0 Å,

and the latter consisted of modifications to the backbone dihedral angles of the model. During test-

ing, it was found that 50,000 total rounds, consisting of an even mixture of fragment insertions and

rigid-body movements, was sufficient to sample a reasonable variety of conformations.

In the second stage, loops were closed using a fragment-based protocol described in detail else-

where [384]. During this stage, sequence fragments were superimposed over regions of the protein

with chainbreaks that were introduced during rigid-body movement, and Cartesian minimization

was used to both minimize bond lengths and correct bond angles [341]. Additionally, contiguous

regions up to fifteen residues in length were periodically taken from the starting structure and su-

perimposed as fragments this way. We found that 1000 sampling rounds were sufficient to resolve

the chainbreaks caused by the first stage.

Lastly, explicit full-atom side chains were added to the model, which was then minimized using

FastRelax. An implicit membrane was introduced using RosettaMembrane [466], with membrane-

spanning regions determined using OCTOPUS [426].

Several types of restraints were used to drive the model toward conformations consistent with

the DEER data while maintaining the LeuT-fold topology of the starting model. During the first two

stages, models were restrained using the experimental DEER restraints as implemented in Roset-

taDEER. A weight of 10.0 was given to this score term. Agreement with the experimental distri-

bution was quantified using the probability function:
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𝑆DEER =
𝑁

∑
i=1

ln⎛⎜⎜
⎝

∑
j=1

𝑝sim,ij𝑝exp,ij
⎞⎟⎟
⎠

(5.2)

This function reflects the overlap between the experimental and simulated distributions. In the

event that any individual simulated distribution does not overlap with its experimental counterpart,

the innermost term resolves to ln(0). To avoid arbitrarily large scores, we automatically set this

number to -87.0, which is approximately the negative logarithm of the smallest non-negative value

that can be represented by a single-precision floating point number.

To account for the relative invariance of backbone dihedral angles in experimentally observed

conformational changes, the model’s backbone dihedral angles 𝜙sim and 𝜓sim in radians were re-

strained using the following circular sigmoid functions:

𝑆ϕ(𝑥) = (1+ exp(|𝜙sim −𝜙exp|− 𝜋
2 ))

−1
+(1+ exp(|𝜙sim −𝜙exp|+ 𝜋

2 ))
−1

(5.3)

𝑆ψ(𝑥) = (1+ exp(|𝜓sim −𝜓exp|− 𝜋
2 ))

−1
+(1+ exp(|𝜓sim −𝜓exp|+ 𝜋

2 ))
−1

(5.4)

Here 𝜙exp and 𝜓exp refer to the backbone dihedral angles in the starting model. This potential

minimized the introduction of unnecessary changes to backbone dihedral angles resulting from

fragment insertion. These potentials were further limited to regions of the protein with secondary

structure during the first stage and to loops during the second stage.

Finally, between the first two stages of modeling, coordinate constraints were placed on the Cα

backbone atoms belonging to secondary structures. This minimized the probability of reversion to

the initial starting pose. Both the dihedral and coordinate constraints were maintained during the

full-atom minimization and were given weights of 1.0 throughout conformational change model-

ing.
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CHAPTER 6

Perspectives and future directions

6.1 Synopsis of experimental findings

This document presents experimental research into the pH-dependent activation mechanism and

conformational dynamics of GadC, a ”virtual proton pump” found in the APC transporter family.

Additionally, it describes a series of structural models generated using these experimental data that

attempt to recapitulate the conformation adopted by GadC in solution. While the structural dy-

namics of more distant homologs, such as prokaryotic and eukaryotic NSSs and SSSs, continue to

be extensively studied, prior to this research only a single investigation in a member of the APC

family, the homologous serine/threonine antiporter SteT, had been conducted. It is noteworthy that

although the work discussed in this dissertation coincided with several breakthroughs in membrane

protein structural biology (discussed below), our body of knowledge with respect to structural dy-

namics of LeuT-fold antiporters barely grew. High-resolution structures of eukaryotic exchangers

with disease relevance, including Lat1 and Lat2, were unaccompanied by detailed descriptions of

how or even whether they isomerize when bound to ligands.

Given the sensitivity of structural homologs LeuT, Mhp1, and vSGLT to ligands, it came as

a surprise that no ligand-dependent conformational dynamics were observed in GadC. Sodium-

coupled symporters rely on ion gradients to drive the energetically unfavorable uptake of amino

acids and other nutrients into the cell. By contrast, in the low-pH conditions under which GadC is

hypothesized to be active, depletion and buildup of intracellular glutamate and GABA, respectively,

lead both substrates to be transported down their concentration gradients. The environmental con-

centrations of both substrates on either side of the cell may thus be sufficient to enforce productive

substrate movement required by the bacterial cell under low-pH conditions. Thus, the data pre-

sented in Chapter 5 and Appendix G of this dissertation reinforce the structural and conformational

diversity of transporters with the LeuT-fold, further highlighting the extent to which the energy
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landscapes of proteins with the same fold can diverge. A key takeaway from this work is that ex-

perimental evidence of ligand-dependent conformational dynamics in one transporter may not fully

correspond with those of structural homologs; in other words, conservation of transporter dynamics

at the family-level may not be guaranteed. An important implication of this conclusion is that it

may suggest that the conformational dynamics of transporters in eukaryotic organisms in general

and humans in particular may not match those of bacterial model systems (see section 1.5). For

this reason, it remains unclear whether these results extend to human amino acid exchangers with

disease relevance such as Lat1 [230, 459] or xCT [300]. Ultimately this hypothesis will be tested

as investigations into human proteins become more widespread.

6.1.1 Perspectives on the effect of substrates on the conformational dynamics of GadC

The DEER data presented here suggests that neither substrate biases the conformational dynamics

of GadC, a finding which led us to postulate that glutamate and GABA affect the protein’s kinetics,

rather than its thermodynamics - such a mechanism would almost certainly be missed by measure-

ments carried out using the DEER technique. Under the proposed mechanism, which is outlined

in section 5.3, the contribution of substrate binding to conformational dynamics is limited to stabi-

lization of a hypothetical high-energy transition state that is not traversable under apo conditions.

This model, although simple, would explain both the antiport mechanism forbidden substrate-free

isomerization as well as the absence of any substrate-mediated changes in the conformational dy-

namics of GadC observed using DEER. Nevertheless, as the DEER technique only interrogates

protein thermodynamics, rather than kinetics, other experiments would be required to test this hy-

pothesis. Direct evaluation of changes in protein kinetics can be achieved using HDX/MS [301],

single-molecule FRET [361], or fluorine NMR [261].

6.1.2 Perspectives on the pH-dependent activation mechanism of GadC

This directly ties into outstanding questions regarding the mechanism of pH-dependent substrate

transport. Data collected in radioligand transport assays show how activity spikes at low pH and

does not appear to plateau in the pH range under experimental observation (Figure 5.1.B and C).
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By contrast, detachment of the C-terminus appears to occur with a pKa of 6.0 to 6.25 (Figure

5.2.B, C, and D), which likely rules out the contribution of this domain to the increase in transport

rate observed at pH 4.0-5.0. In fact, the change in glutamate exchange observed at pH 6.0-6.5 is

negligible compared to the high rates of transport observed at lower pHs, which calls into question

the role of this domain in regulating transport at neutral pH.

Two questions naturally follow this line of thinking. First, what other mechanism could explain

the pH-dependent activity observed in GadC? Although protonation of the substrates’ γ-carboxylate

(pKa: 4.25), a prerequisite for transport, may partially explain this phenomenon, abrogated trans-

port of glutamine, which mimics protonated glutamate, at neutral and alkaline pHs is inconsistent

with this hypothesis [253]. In the homologous arginine/agmatine antiporter AdiC, activation has

been attributed to the proton sensing residue tyrosine Y74, located on the intracellular amphipathic

helix connecting TMHs 2 and 3 [434]. Whereas the wildtype similarly undergoes inactivation at

neutral pH, AdiC-Y74A maintained high transport activity regardless of pH. This research is rel-

evant because AdiC-Y74F maintained the same pH-dependent inactivation profile of the WT, and

in GadC a phenylalanine is found at the equivalent position (residue 76). However, we note that

spin-labeled cysteine mutants at residue 77 showed little to no change in either DEER distance

measurements or CW spectra, and was inactive at neutral pH. Nevertheless, this hypothesis can

be directly tested on F76A background mutants using radioligand transport assays such as those

outlined in section 5.4.4. A second hypothesis in AdiC, proposed following MD simulations, sug-

gests that protonation of E218 drives dissociation of the substrate from the active site [481]. This

residue is strictly conserved in the pH-dependent ”virtual proton pumps” but not the neutral-pH

homologous transporters such as ApcT and Lat1 [254]. A simple test of this hypothesis would be

to measure the dissociation constants of radiolabeled glutamate, GABA, and glutamine as a func-

tion of pH using a scintillation proximity assay [328], which measures substrate binding affinity in

detergent-solubilized transporters, in both wildtype and E218Q mutants of GadC. The role of this

proposed proton would be equivalent to that of potassium in LeuT, which serves to displace sodium

from the substrate-binding site but is otherwise uninvolved in the transport cycle [33].
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Second, if the C-terminal domain is negligibly involved in regulation of pH-dependent trans-

port, then what is its primary purpose? We speculate that this domain binds the glutamate decar-

boxylase GadB, which is cotranscribed with GadC and has been shown to partition to the membrane

fraction via an unknown mechanism at acidic pH, but not at neutral pH. In fact, the 2003 publication

presenting the crystal structure of GadB proposed this exact hypothesis in passing [64]. While the

structure of GadC, determined and published a decade later, was entirely consistent with this mech-

anism [254], no experimental evidence supporting or refuting this possible protein-protein interac-

tion has, to our knowledge, been published. Moreover, since the publication of GadC’s structure,

an equivalent mechanism was observed and demonstrated in the structural homolog DrSLC38A9,

which has a similar N-terminal domain embedded in its intracellular cavity that, when released into

the cytoplasm, binds and recruits the regulatory complex mTORC1 to the lysosomal membrane.

A pH-dependent GadB/GadC interaction could easily be tested by spin labeling the C-terminal

domain and observing mobility changes in the CW spectrum as a function of both pH and GadB

concentration (see Figure 5.2.D for an example of this experiment), as slower tumbling times would

be expected following binding of a 330 kDa soluble protein. Follow-up experiments include visu-

alization of GFP-labeled GadB using fluorescence microscopy in vivo in cells expressing either

full-length or truncated GadC at neutral and acidic pH. Alternatively, the structural basis of this in-

teraction can be determined by crystallography of GadB at low pH with a peptide fragment whose

sequence matches that of the C-terminal domain of GadC.

6.1.3 Perspectives on the IF-occluded conformation observed using DEER

We now turn our attention to the IF-occluded conformation modeled using the experimental DEER

data. Under physiological conditions, antiporters belonging to the APC transporter family exchange

substrates present at micromolar concentrations outside the cell, but millimolar concentrations in-

side the cell. In some proteins, such as the alanine/serine/cysteine antiporter BasC, this leads to

apparent Km values in the micromolar range during import (OF-to-IF) but in the millimolar range

during export (IF-to-OF). Technical limitations prevented the DEER experiments presented in this
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dissertation from being carried out in a gradient, leading to substrate concentrations identical on

both sides of the membrane. We therefore speculate that if GadC interacts with substrates with

a similar sidedness as BasC, then under the experimental conditions discussed in this dissertation,

this would be expected to lead to more OF-to-IF isomerization than IF-to-OF, consistent with a pre-

ponderance of IF GadC observed in our experiments. Stabilization of OF GadC may be achieved

by introducing a gradient, which would require reconstitution of GadC into proteoliposomes. To

address the possibility that not all GadC molecules are correctly oriented in the proteoliposome, the

membrane-impermeable reducing agent TCEP may need to be introduced following reconstitution

to reduce any spin-labeled cysteine residues on the wrong side of the membrane (e.g. intracellular

cysteine residues on the outside of the proteoliposome).

Other conformations in the transport cycle could conceivably be visualized using DEER by in-

troducing a pH gradient. Maintenance of a pH gradient for extended periods of time has previously

been shown to require specific lipid profiles; previous experiments in AdiC and GadC have relied

on liposomes comprised of 3:1 POPE:POPG to maintain an outer pH of 2.2 and an inner pH of

5.0 [415, 416, 417]. When executed in conjunction with the preparatory steps outlined above, this

experiment could reveal how pH gradients contribute to stabilization of OF GadC and sampling of

discrete conformational intermediates in the presence or absence of substrates.

To summarize the experimental findings, we found that 1) the structural basis of pH-dependent

activation is partially, but not fully, mediated by detachment of the C-terminal domain as previ-

ously hypothesized [254], and 2) the transporter predominantly adopts an inward-facing occluded

conformation regardless of whether substrates are presence or not. These findings advance our

understanding of transporters with the LeuT-fold by reinforcing the divergent energy landscapes

underpinning function. Further research into the breadth of transport mechanisms mediated by

symporters, antiporters, and permeases will be necessary to determine whether the observations

made in GadC are restricted to amino acid exchangers or transporters in the APC family.
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6.2 Synopsis of methodological advancements

While this dissertation nominally focused on studies of GadC, the overwhelming majority of the

results presented focus on the development of methods for modeling protein structures using sparse

experimental data, particularly DEER data. These methods were designed to tackle the sparse and

imprecise nature of the data being collected. Thus, in contrast with equivalent methods designed

to model proteins using cryo-EM density or residue coevolutionary restraints, acknowledging the

uncertainty and uneven distribution inherent to the experimental data presented in Chapter 5 was

fundamental to minimizing the risk of overfitting, which could lead to spurious conclusions (re-

sults obtained in de novo folding benchmarks of Bax and ExoU in Chapter 3 illustrate how incor-

rectly folded models can satisfy the experimental data, which is exactly the outcome to be avoided).

Therefore, the work presented in this dissertation took a multi-pronged approach to maximize the

contribution of these data during modeling:

• Uncertainty was minimized by explicitly modeling the spin label ensemble (Chapter 3). Com-

pared to the previous implementation of DEER restraints in Rosetta, the CONE model, im-

provements in modeling precision were observed in every protein.

• An effective scoring function was then determined by comparing several candidate functions

in Appendix B. This included the possibility that multiple conformers were present in the

data, which the distributions in Chapter 5 could not rule out.

• Further improvements in modeling precision were possible in cases where the starting struc-

ture was consistent with a set of DEER data. Multilateration of the spin labels using the

algorithm discussed in Chapter 4 could conceivably be used to more precisely determine the

conformation of interest. Unfortunately, GadC did not adopt the conformation observed in

the crystal structure, precluding the use of this method.

• Effective sampling methods discussed in Appendix C allowed modeling to be focused on

the immediate conformational vicinity of the starting structure, which prevented precious

computational resources from being wasted on sampling unrealistic conformers.
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• Finally, a statistical potential capturing our expectation that the structure of GadC resem-

bles those of its homologs served as an additional source of regularization that prevented

outrageous structures from being considered (see section 5.4.7).

The combined approach allowed models of IF-occluded GadC to be modeled using only 23

experimental restraints. The resulting models at both pHs closely resembled the structures of two

homologs, ApcT and GkApcT, as well as a model generated using RoseTTAFold (see section 6.3

below and Figure G.13). Nevertheless, uncertainty in modeling prevented differences between con-

formations generated using low- or neutral-pH data from being observed. While that may hint at

additional computational innovations that have yet to be realized, it may also suggest that impre-

cise and/or sparse experimental measurements can only go so far in resolving small-scale confor-

mational changes. Mitigation or elimination of experimental uncertainty could be achieved using

more rigid spin labels, such as bifunctional labels or imidazole-derived spin labels, which sample

fewer conformers.

In summary, the computational work presented here describes a means to directly integrate

DEER data for protein modeling. The results we obtained when using the raw data as experimental

restraints, rather than as a means of checking the correctness of structures after the fact, suggests

that sparse experimental DEER data can be integrated with computational modeling to complement

a wide variety of tasks. In this dissertation the use of DEER data is limited to de novo protein

fold prediction (Chapter 3, homology modeling (Chapter 5), and conformational change modeling

(Chapters 4 and 5), but the data can conceivably be adapted to achieve other tasks, such as to predict

the conformations of flexible loop regions that might be unresolved in experimental structures (see

Appendix D), or determine the location of paramagnetic ligands (see reference [140]). However,

integrating DEER data with other forms of experimentally collected information, such as SAXS

data or low-resolution cryo-EM density, will require further fine-tuning.
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6.3 Final thoughts: perspectives on integrative modeling using sparse data

As was discussed in section 2.4.1, the overarching goal of integrative modeling is to either explain

data that has already been collected or predict future observations [167]. While the former was the

predominant goal of the methods development projects discussed here, both approaches contributed

to the research presented in Chapter 5 of this dissertation. Although not discussed, experimental de-

sign of spin label pairs in GadC was initially guided by an OF homology model of GadC generated

using RosettaCM [384] with various structures of AdiC serving as templates [122, 368]. A chal-

lenge when using homology models to predict conformational changes between states with RMSD

values of 3 Å to 5 Å is that physiologically relevant structural movements are difficult to distinguish

from modeling artifacts. By contrast, pairs of experimental structures of a single homolog in both

OF and IF conformations can reveal more precisely which regions of a protein move and which stay

fixed. Unfortunately, structural characterization of an APC transporter in both conformations did

not occur until March 2021, after data collection was concluded. Comparison of these two struc-

tures, shown in Figures 1.5 and 1.6, reveal movement in virtually every helix in the core LeuT-fold

transmembrane domain. Importantly, they showed helical movements that were initially predicted

by the OF homology model of GadC, but misconstrued as modeling artifacts, particularly in the

hash domain and TMH10. As a result, no spin pairs were designed to specifically interrogate these

movements.

The shortcomings in using integrative modeling to design experiments of this nature hint at a

larger problem regarding the use of EPR spectroscopy as an exploratory tool for structural studies.

Fortunately, this research coincided with two methodological advancements with major implica-

tions for the field of integrative structural biology. First, steady improvements in both software

and hardware allowed single-particle cryo-EM to mature from a technique capable of viewing the

topologies of large proteins and complexes (>150 kDa) at low-to-medium resolution to one capable

of resolving the structures and dynamics of even medium-sized proteins, such as SERT (70 kDa),

to atomic detail [78, 478]. Second, state-of-the-art de novo protein structure prediction algorithms

were recently developed that are capable of routinely achieving sub-angstrom modeling accuracy
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from sequence alone [18, 200]. Appendix A presents anecdotal evidence that multiple discrete

conformers may be modeled to high accuracy this way, solving a major outstanding problem in de

novo structure prediction [297]. Therefore, access to atomic-detail structures and structural models

is expected to be less of a barrier to high-impact structural biology research in the coming years.

What will be the effect of these developments on integrative modeling? The research outlined

in this dissertation followed a playbook used in previous integrative structural biology investiga-

tions [213, 310] that focuses on two types of models: structural models and mechanistic models.

These technological advancements point to a future in which the integration of sparse data, such

as distance data collected using EPR, for the purposes of structure prediction may soon be unnec-

essary. By contrast, these technological improvements have the potential to facilitate the design

of enormously informative experiments seeking to describe how and when different structures of a

protein, either obtained experimentally or predicted de novo, interconvert in response to mutagen-

esis, ligand binding, or environmental changes such as pH or lipid composition. As stated above,

it was unclear during data collection if the absence of conformational dynamics in the DEER data

resulted from structural uniformity or from uninformative spin pair design. Having multiple protein

structures and/or high-accuracy structural models in different conformations can mitigate the pos-

sibility of the latter, which would be a welcome change when designing experiments that reports

on the characteristics of a protein’s energy landscape. Thus, experimental design that aims to track

population changes, rather than precise conformational details, plays to the strength of the DEER

technique and will ensure its relevance for years to come.
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Appendix A

AlphaFold2 predicts the inward-facing conformation of the multidrug transporter LmrP

The contents of this Appendix have been previously published [95].

As part of the 14th annual Critical Assessment of Structure Prediction (CASP), the protein

structure prediction algorithm AlphaFold2 generated multiple models of the proton/drug antiporter

LmrP. Previous experimental data from DEER spectroscopy, a technique which reports distance

distributions between spin labels attached to proteins, suggest that one of the lower-ranked models

may have captured a conformation that has so far eluded experimental structure determination.

Figure A.1: An IF model of LmrP generated by AlphaFold2 is consistent with experimental
data. Left: OF and IF conformations determined using X-ray crystallography and modeled by
AlphaFold2, respectively. Right: Experimental DEER distance distributions on the extracellular
and intracellular sides of the protein, respectively, overlap with distances predicted by AlphaFold2
model 1. Dashed lines are distance distributions predicted by either the crystal structure (blue) or
the model (red). These data have been previously published.

A.1 Main Text

Active transporters such as LmrP alternate between OF and IF conformations during their transport

cycles [45, 270, 267]. Whereas the crystal structure captures LmrP in the former [93], AlphaFold2

modeled LmrP in the latter [196] (Figure A.1). Because LmrP is a proton/drug antiporter, we

carried out DEER distance measurements [186, 90, 274] at low and neutral pH to stabilize the

IF and OF conformation, respectively (shown in red and blue in Figure A.1). To evaluate the IF

model’s consistency with the low pH DEER data, we modeled the predicted distances in silico using
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MDDS [176], a program hosted on the CHARMM-GUI web server [195]. Not only do the predicted

distances overlap remarkably well with our experimental data (Figure A.1, dashed and solid lines,

respectively), but importantly the magnitudes of the experimental distance changes agree with those

predicted between the OF crystal structure and AlphaFold2’s IF model. These results suggest that

the AlphaFold2 model depicts a functionally relevant intermediate of LmrP.

Figure A.2: Predicted DEER distances of all
CASP14 LmrP models. X and Y axes reflect the
average predicted DEER distances of all CASP
LmrP models on the intracellular side and extra-
cellular sides, respectively. Solid blue and red cir-
cles represent components from the experimen-
tal DEER data corresponding to outward- and
inward-facing conformations, respectively. The
inward-facing AlphaFold2 model shown in panel
A is located on the bottom-right.

The significance of this breakthrough in

modeling transporter conformations is rein-

forced by comparison of this model to those

submitted by other contestants, which over-

whelmingly depicted LmrP in an occluded con-

formation (Figure A.2). Occluded models re-

sult from methodological biases that favor com-

pactness [297]. Therefore, the success of Al-

phaFold2 in modeling IF LmrP suggests that

these biases may finally have been overcome.

Additionally, it sets the stage for the struc-

tural characterization of transporters and their

functional intermediates by integrating com-

putational modeling with experimental spec-

troscopy.
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Appendix B

Evaluation of scoring approaches for integrative modeling using DEER distance data

This Appendix is based on unpublished data.

Conformational changes define the functional cycles of many proteins. The complete charac-

terization of functional intermediates, such as those that are infrequently sampled or are transiently

populated, continues to elude established structural biology techniques. Integrating experimental

distance data collected using DEER spectroscopy with computational modeling methods promises

to overcome these barriers and provide a glimpse at these states. However, experimental DEER dis-

tance distributions cannot be reliably predicted or reproduced in silico, preventing the identification

of correctly folded models to high accuracy. In part because of this fact, the scoring functions used

to evaluate protein structural models using experimental DEER data in the literature vary wildly and

are highly non-standard. Here we use experimental data collected in the model system PfMATE

to evaluate a panel of scoring functions with the goal of determining the most effective metric for

identifying correctly folded protein structures. In general, most metrics were comparable in per-

formance when scoring unimodal distributions consistent with a single structure. However, when

the data indicated a bimodal distribution representing two populations in equilibrium, only a small

subset of these metrics could effectively identify native-like models. We conclude that methods

comparing the overlap between the simulated and experimental distributions, rather than their av-

erage distances as is commonly performed, are more effective at identifying native-like models

when structural uniformity cannot be guaranteed by the data. Nevertheless, our results indicate that

optimal results can only be achieved by a priori determination of individual conformations in the

data.
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B.1 Introduction

The integration of sparse experimental data collected using cryo-EM, X-ray crystallography, or

NMR with Rosetta protein structure prediction allows protein models to be generated at atomic-

detail accuracy [16, 47, 387, 393, 451]. Recently, distance data collected using EPR spectroscopy

in conjunction with SDSL have been a new focus for analyzing protein structure and dynamics

[171, 172, 190, 274]. Even a small number of distance measurements obtained using DEER spec-

troscopy, which range from 15 Å to 80 Å, effectively complement short-range distance data ob-

tained using nuclear magnetic resonance spectroscopy [245, 463]. As a consequence, the number

of computational tools that integrate these data into modeling continues to grow [157, 165, 263].

The recent interest in the DEER technique has been accompanied by methodological improve-

ments in the way the primary spectroscopic data are converted in the distance restraints for compu-

tation. A number of paradigms exist for fitting these data [389, 448] with model-free fitting contin-

uing to be the most widely-used strategy [192, 193]. Recent studies have identified improvements

in background correction methods [116] and have detailed the optimal balance between fitting the

data and regularization [105, 115]. By contrast, among methods that model distributions as sums

of Gaussian functions, substantial work has gone into identifying more effective fitting algorithms

and model selection criteria [117, 173, 365, 391, 400]. In both cases, these advancements have

coincided with the more widespread use of confidence bands in distance distributions to visualize

experimental uncertainty [104, 117, 173, 400].

Less research has been completed into determining the best approach for converting these dis-

tance data into accurate protein structural models. As a result, there is no standard approach for

integrating these data for protein structural modeling. For example, it is still common to use the

average or peak distance as a single restraint while disregarding the width or shape of the dis-

tance distribution [88, 243, 421]. In other cases, distribution widths have been used as function

bounds [8, 89, 114, 128, 245]. When spin labels are explicitly modeled as flexible side chains or

pseudo-rotamers, restraints have been introduced that attempt to maximize the overlap between the

entire simulated and experimental distributions [157, 213, 262, 332, 343]. A functionally similar
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approach is to minimize the area between the integrals [226]. Finally, the primary DEER data has

been used directly for model-building and refinement [48, 164, 263, 336]. Although direct fitting

has the potential to sidestep analytical artifacts, it is unclear whether there is any quantifiable im-

provement in model quality as a result of using this approach. Therefore, despite the variation in

these approaches, to the best of our knowledge, the optimal scoring function for protein modeling

has not been determined.

Here we employ the modeling suite Rosetta to compare several different scoring approaches

using the proton-coupled multidrug transporter PfMATE as a model system. Different scoring

functions are found to vary substantially in their ability to identify native-like structural models

using sparse DEER data. Importantly, several commonly used metrics, such as naive integration

of average distance values, fail to identify native-like models when the data are multimodal, which

is commonly observed in conformationally heterogeneous proteins. Using scoring functions that

compute the overlap between the experimental and simulated distributions could facilitate more

meaningful interpretation of protein structures from limited DEER distance data.

B.2 Results and Discussion

B.2.1 Overview of the hybrid energy function

Protein structural models are commonly evaluated using a hybrid score representing the sum of

its energy and its agreement with the data. This can be written as 𝐸total = 𝐸model + 𝑤data𝐸data,

where 𝐸model is a model’s score derived from an energy or scoring function, 𝐸data is the function

evaluating a model’s goodness-of-fit to the experimental data, and 𝑤data is the weight assigned to

the experimental data relative to the native energy function [5, 178]. Ideally, both 𝐸model and 𝐸data

would increase monotonically as a function of a model’s deviation from the target conformation of

interest. In practice, neither term alone is sufficient to unequivocally identify the experimentally

determined structure of a protein. The former crudely approximates the physical forces acting upon

biomacromolecules in solution, while the latter reflects agreement with measurements that may be

sparse, ambiguous, and unevenly distributed. Both functions must contribute to the calculation of
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physiologically meaningful models.

The challenge when applying experimental DEER data as modeling constraints is the fact that

the distance distributions simulated in silico tend to overstate the dynamics of the spin label while

neglecting the dynamics of the protein backbone [153, 156, 176, 322]. Any single structural model

can by definition only depict a subset of the backbone conformations sampled in solution. By

contrast, because clash evaluation is predominantly used to remove rotamers from structural models,

the conformations of the spin labels sampled in solution are likely a subset of the rotamer libraries

used to simulate these distributions. As such, it is highly unlikely that any individual structural

model can exactly reproduce the experimental data.

B.2.2 Overview of the benchmark

We thus sought to determine the most effective function of 𝐸data that could most effectively identify

native-like models despite these factors. Several reasons guided the choice to use the multidrug

transporter PfMATE as a model system to quantify the effectiveness of various scoring methods

(Table B.1). First, several crystal structures in different conformations have previously been pub-

lished [401, 468]. Second, a comprehensive panel of experimental DEER data has been previously

collected and found to be largely consistent with two of these structures that face either outward

(to the periplasm) or inward (to the cytoplasm) [180]. Third, the Rosetta suite is well equipped to

model intermediate states between these two conformations. We thus generated a library of ”de-

coy” structural models of PfMATE using Rosetta by perturbing the dihedral angles of this helix,

leading to approximately 3000 alternative conformations that ranged from OF to IF, fully occluded,

and fully open (see Chapter 4 for details on how these were modeled). We then calculated the Cα

RMSD of each model to the OF state. Finally, since this conformation is sampled at neutral pH,

we curated four sets of distance distributions collected at pH 7.5 that interrogated this inter-lobe

distance on both the intracellular and extracellular sides of the membrane (see Table 4.1 in Chapter

4).

In addition to evaluating the effect of each function on scoring, we also focused on the con-
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tribution of experimental noise and uncertainty to scoring. The data preparation pipeline, which

is discussed in detail in B.3, proceeded as follows. First, the experimental distance data at pH 7.5

were converted into raw DEER traces in the time domain with a step size of 8 ns. Background

intermolecular coupling was modeled as a stretched exponential function with background slope

values ranging from 10−6 to 10−1 and modulation depth values ranging uniformly from 0.05 to

0.40, which roughly corresponds to values that would be obtained with Q-band DEER without

the use of an arbitrary waveform generator. Second, random Gaussian noise was added to these

time traces to simulate the effect of SNR that were either high (noise comprises 0.5% of the signal

on average), medium (2%), or low (10%). Third, these data were truncated at time window du-

rations corresponding to the number of oscillations observed, which ranged from 0.2 to 3.0 with

step sizes of 0.2. Previous research suggests that at least one complete oscillation is required to

accurately resolve features in the distribution beyond the mean, such as the width and multimodal-

ity. Fourth, these data were converted into distance distributions with 95% confidence intervals in

Table B.1: Scoring metrics used for the benchmark. Symbols: 𝜇: average distance; 𝜎 : standard
deviation; cdf : cumulative density function; 𝑝X (𝑟): probability of distance 𝑟 in distribution 𝑋.

Method Formula

Average distance only (𝜇sim −𝜇exp)2

Bounded range 𝑚𝑎𝑥(0.0, |𝜇sim −𝜇exp −𝜎|)
Overlap ∑i=1 |𝑝sim (𝑟i)−𝑝exp (𝑟i) |
Wasserstein ∑i=1 |𝑐𝑑𝑓sim (𝑟i)−𝑐𝑑𝑓exp (𝑟i) |
Discrepancy 𝑚𝑎𝑥(|𝑝sim (𝑟)−𝑝exp (𝑟))
Kolmogorov-Smirnov 𝑚𝑎𝑥(|𝑐𝑑𝑓sim (𝑟)−𝑐𝑑𝑓exp (𝑟))

Chi-squared ∑i=1
(𝑝sim(𝑟i))−𝑝exp(𝑟i)

2

𝑝exp(𝑟i)

Reverse Chi-squared ∑i=1
(𝑝exp(𝑟i))−𝑝sim(𝑟i)

2

𝑝sim(𝑟i)
Cross entropy −∑i=1 𝑝exp (𝑟i) ln(𝑝sim (𝑟i))

Jensen-Shannon distance √∑i=1 ( 𝑝sim(𝑟i)
2 ln( 2∗𝑝sim(𝑟i)

𝑝sim(𝑟i)+𝑝exp(𝑟i)
))+ 𝑝exp(𝑟i)

2 ln( 2∗𝑝exp(𝑟i)
𝑝sim(𝑟i)+𝑝exp(𝑟i)

)

Bhattacharyya − ln(∑i=1 √𝑝sim (𝑟i)𝑝exp (𝑟i))
Hellinger 1−∑i=1 √𝑝sim (𝑟i)𝑝exp (𝑟i)

Jaccard index ∑i=1
𝑚𝑖𝑛(𝑝sim(𝑟i),𝑝exp(𝑟i))
𝑚𝑎𝑥(𝑝sim(𝑟i),𝑝exp(𝑟i))

Joint probability ∑i=1 𝑝sim (𝑟i)𝑝exp (𝑟i)
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an automated fashion using the analytical software DeerLab [117]. Finally, to evaluate the effect

of restraint quantity on scoring, between one and ten such distributions were used as restraints to

evaluate each structural model of PfMATE using each of the metrics listed in Table B.1.

B.2.3 Unimodal distance distribution benchmark

The results are presented in Figure B.1.A and show that most metrics achieve Spearman correla-

tion coefficients of approximately 0.7 under ideal conditions (three oscillations, ten restraints, high

SNR). Interestingly, experimental SNR, but not duration in the time domain, appeared to have an

outsized impact on correlation quality, which may be indicative of recent advancements in back-

ground correction methods during the analysis of DEER data [116]. The least effective metrics

for model quality by Spearman correlation were the average, cross-entropy, maximum discrepancy,

and Chi-squared, each of which we discuss in turn. The average distance may have been overly

sensitive to long-distance components that were occasionally added when time domain data were

transformed to the distance domain, but which may be absent when more deliberate data analyses

are performed. Indeed, simply using a distance range appeared to ameliorate this problem. The

cross-entropy metric may have been sensitive to differences in the width of the experimental and

simulated distributions, since it requires perfect overlap between the domains of the two distribu-

tions (e.g., the X-axes). This may be challenging for this specific model system, as the distance

data are characterized by wide distributions likely resulting from backbone disorder. The discrep-

ancy metric captures the largest difference in amplitudes at any point in the distance distribution;

given the difficulty of exactly simulating DEER distance distributions in silico, it is unsurprising

that this a poor reporter for model quality. By contrast, we are unable to rationalize why the Chi-

squared metric, but not the reverse Chi-squared metric, is ineffective of distinguishing native-like

from non-native-like models. None of these results were substantially affected by the inclusion of

95% confidence intervals during calculation (data not shown).
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Figure B.1: Spearman correlation coefficients between model RMSD and score as a function of
number of restraints, number of oscillations in the data, and scoring function. Data consist of dis-
tance distributions that are either A) unimodal or B) bimodal. Only a small number of metrics,
namely those that evaluate the overlap between experimental and simulated DEER distance distri-
butions, generate scores that correlate with RMSD when using bimodal distributions.
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B.2.4 Multimodal distance distribution benchmark

The results presented above are qualified by the fact that they were obtained using experimental

data that is ideal for modeling purposes, insofar as they represent a single population or component

consistent with the target crystal structure from which RMSD values were measured. In practice,

experimental data often features multiple populations with distinct distance components, some of

which may be analytical artifacts or ”ghost” peaks. While such data can be cleaned prior to model-

ing using strategies such as non-negative matrix factorization and/or global analysis [173, 446], it is

not always possible to exactly distinguish which distance components belong to the conformations

of interest. Under circumstances where multiple components are present in the data, we would ex-

pect metrics that consider agreement with entire distributions, such as the average distance, or the

Wasserstein (also called the earth mover’s) distance quantifying the area between the integrals of

two distributions, to be overly sensitive, and thus respond poorly, to multimodality in the data.

To test this hypothesis, we repeated the simulation pipeline outlined above, but added a distance

component consistent with the IF conformation of PfMATE prior to simulation of the data in the

time domain. The remaining steps of the analytical pipeline were unchanged. Each distribution

in this second set of data thus consisted of an even mixture of distance components belonging to

outward- and inward-facing PfMATE. The results, plotted in Figures B.1.B and B.2, reveal that

the majority of metrics considered in this study are incapable of correctly identifying models us-

ing these data, with many of their respective correlation coefficients plummeting even under ideal

conditions (three oscillations, high SNR, ten restraints). Because performance was irrespective of

SNR or duration in the time domain, we believe these reflect fundamental shortcomings in the ways

scores are computed, rather than how the data were analyzed. We note that results obtained using

these distributions, unlike the unimodal distributions discussed above, appeared to be more sensi-

tive to time domain truncation, which may reflect the increased difficulty of resolving the shape of

these distribution when there is insufficient data in the time domain.

Correlation coefficients calculated using several methods, such as the Jaccard index and the

Joint probability, appear to be minimally affected by the presence of new components in the distance
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Figure B.2: Comparison of scoring methods when evaluating unimodal and bimodal distributions.
All data used for scoring results shown here consisted of three oscillations in the time domain.

data. Interestingly, these metrics all favorably score partial overlap between distance components,

while penalizing distributions that fall between the two components. This may allow specific con-

formations consistent with the data to be pinpointed, including the outward-open conformation from

which RMSD values were calculated. It should be noted that these methods were more sensitive to

time domain truncation than the unimodal distributions described above, which may demonstrate

the extent to which low-quality data interferes with high-precision modeling of protein structures.

Nonetheless, all of them return values that correlate slightly worse than when scoring models us-

ing unimodal distributions (Figure B.1.A), again demonstrating the value of preprocessing the data

prior to modeling.

B.2.5 Concluding remarks

This study evaluated several scoring functions using experimental DEER data in the conforma-

tionally heterogeneous model system PfMATE. We elected to use this model system, rather than a

more static system such as T4 Lysozyme, due to its nonnegligible backbone dynamics that are also

observed in other proteins of biophysical interest [79, 90, 114, 267, 425]. Indeed, while these exper-

imental data may be broadly classified as consisting of components belonging to either outward-

facing or inward-facing conformations, they also indicate substantial heterogeneity and disorder.

Thus, reducing the distribution to a single value, such as an average distance, appears in this case

to be detrimental to high-precision modeling. In general, the majority of scoring functions studied
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here return values that correlate well with model quality when the data consist of only one compo-

nent. By contrast, while none of these scoring functions perfectly maintain this performance when

the data consist of multiple components, a minority of these scoring functions can nonetheless re-

turn score values for models that correlate with RMSD. Nevertheless, in all cases the Spearman

correlation coefficients decreased, indicating the importance of preprocessing the data and, if pos-

sible, isolating individual components in the data prior to modeling.

B.3 Materials and Methods

B.3.1 Preparation of PfMATE decoy models

A library of 2,855 structural models of PfMATE was generated using the software suite Rosetta 3.10

[229, 234], with both its OF (PDB: 6GWH) and IF (PDB: 6FHZ) conformations serving as template

models. These models were generated using fragment insertion, in which the backbone dihedral

angles of transmembrane helices 1 (residues 1-50) and 7 (residues 240-268) were perturbed using

sequence fragments obtained from the Protein Databank. Sequence fragments were obtained from

the Robetta web server as previously described [216]. A total of 5000 rounds of fragment insertion

was executed using the scoring function score3. Each model’s structural similarity to the outward-

facing state (PDB: 6GWH) was then calculated using the score_jd2 application with residues 1-50

omitted. Finally, we binned these models by this RMSD value and balanced the dataset to avoid

the overrepresentation of models that were either fully occluded or highly inaccurate.

B.3.2 Simulation and analysis of DEER data

All experimental DEER distributions used in this study have been previously published [180]. Uni-

modal distance distributions were simulated using the data at pH 7.5 as follows. First, each distance

distribution was converted into a DEER trace in the time domain with 8 ns time steps as previously

described. Each trace was normalized such that the signal intensity at 0 μs was equal to 1, and

their duration was set to three oscillations, which we calculated from the average distance 𝑟avg in

angstroms such that one oscillation had a duration of 𝑟3
avg

5.2∗104 microseconds. Second, background

coupling was simulated using the function 𝐵(𝑡) = exp(−𝑘𝑡), where 𝑘 represents the contribution of
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intermolecular background coupling to the signal and 𝑡 is the time in microseconds. Then, normally

distributed noise was added to simulate the contribution of experimental noise in the data, with the

standard deviation equal to either 0.005, 0.02, or 0.1 for the high, medium, and low SNR datasets,

respectively. Finally, these DEER traces were truncated to specific durations ranging from 0.2 to

3.0 oscillations and were analyzed using the fitmodel function implemented in DeerLab v0.13.1

with default settings [117].

Simulation of bimodal distributions was identical, except the experimental DEER data collected

at pH 4.0 were added to the experimental distributions collected at pH 7.5 prior to transformation

to the time domain.

B.3.3 Scoring of PfMATE models using simulated DEER distributions

We used the score_jd2 application to score each PfMATE model using each of the metrics listed in

Table B.1. All scoring methods were implemented in RosettaDEER. Scores were correlated with

DEER values using the spearmanr function as implemented in SciPy [427].
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Appendix C

ConfChangeMover: Integrative modeling of conformational changes in LeuT-fold

transporters using sparse spectroscopy data

This Appendix is based on unpublished data.

C.1 Introduction

Active transporters, such as those with the LeuT-fold, undergo conformational changes to import

and export substrates into and out of the cell [211]. Canonical models of symport and antiport

mandate that these proteins adopt several different conformers. However, their structures are of-

ten experimentally resolved in one specific state, leaving scientists guessing at the the molecular

drivers of substrate translocation. Sparse experimental data, collected using techniques such as

EPR [186, 213] and/or HDX/MS [281], can report on the structural basis of alternating access

when higher-resolution methods such as cryo-EM and X-ray crystallography fail. In conjunction

with computational modeling, these data can provide a glimpse of the molecular details of these

unknown conformers. Nonetheless, the sparseness and ambiguity of these experimental restraints

make it challenging to model structures that are consistent with the data provided while retaining

atomic-detail information provided by the starting X-ray or cryo-EM structure.

We reasoned that the general problem surrounding the accurate modeling of conformational

changes is similar in principle to that of structure refinement, in which the atomic details of struc-

tural models are deduced from low-quality models [160, 306, 334]. Recent advancements in MC

refinement methods have relied on conservative sampling described as ”broken-chain kinematics”

[307], in which rigid-body segments of structural models are manipulated in isolation and rejoined

using loop closure (see section D.1 for a more detailed discussion on protein loop closure methods).

This strategy has been instrumental to recent advances in homology modeling and is the foundation

of widely-used methods including RosettaCM [384] and Modeller [113]. However, MC methods
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are rarely employed for conformational change modeling problems, which have instead generally

been tackled using either gradient minimization [114] or MD simulations [263, 366]. Both methods

are computationally expensive and can potentially understate the extent to which protein backbones

reconfigure.

Here we describe a general-purpose MC sampling method, ConfChangeMover, which we im-

plemented in the macromolecular modeling program Rosetta [229, 234] and designed to model

conformational changes using sparse experimental data (Figure C.1). The method combines re-

cent conceptual advances borrowed from cutting-edge homology modeling methods with novel

sampling approaches designed to conservatively manipulate a starting structure. Whereas homol-

ogy modeling is concerned with identifying the dihedral angles of a protein that satisfy spatial

restraints provided by one or more template models, our approach instead samples spatial rear-

rangements consistent with dihedral angles observed in the starting structure. We first demonstrate

ConfChangeMover on a panel of soluble proteins using simulated Cα-Cα distance restraints. Then,

using experimental EPR data that has been previously published, we apply the method to three

transporters with the LeuT-fold fold (described in detail in Chapter 1).

Figure C.1: Overview of the ConfChangeMover sampler.
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C.2 Materials and Methods

C.2.1 Overview of the sampling approach

ConfChangeMover was implemented in Rosetta and executed in RosettaScripts [132]. As with

RosettaCM, it samples candidate structural models using a two-stage strategy (Figure C.1). Prior to

the first stage, the input structure is converted to a coarse-grained model with side chains replaced by

immobile centroid pseudo-atoms. Cutpoints are introduced at residues located on loops connecting

pairs of rigid bodies, or segments, which consist of either α-helices or β-sheets identified using the

Dictionary of Secondary Structure of Proteins (DSSP) [202]. These cutpoints allow the positions

and conformations of these segments to be perturbed either in isolation or in concert in the first

stage without downstream propagation to rest of the protein via the ”lever-arm effect” [419]. A

series of sigmoid dihedral constraints, discussed below in section C.2.2, are added to model.

During the first stage, several types of perturbations are randomly introduced in the structural

model. These include:

• Rigid-body movements of one secondary structural element (SSE). Rotation angles and

translation vectors are randomly drawn from normal distributions with standard deviations

of 15° and 2.0 Å, respectively.

• Rigid-body movements of multiple spatially adjacent SSEs. The number of SSEs ran-

domly ranges from 2 to 𝑁 − 1, where 𝑁 is the number of segments in the model, and the

movement parameters match those used for a single SSE.

• Helical twists. Helices are twisted by a randomly chosen angle drawn from a normal distri-

bution with a standard deviation of 15°.

• Fragment insertion. The dihedral angles of a three-residue stretch of the protein are modi-

fied to match those of a randomly chosen sequence fragment obtained from the PDB. Frag-

ments were obtained using the Robetta web server as previously described [216].

Throughout this stage, SSEs that are adjacent in sequence are constrained such that their N-

and C-terminal ends can be plausibly bridged by the loop connecting them. We achieved this by
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automatically rejecting moves that separate the termini of consecutive SSEs by distances greater

than 2.65𝑛res +2.11 Å, where 𝑛res is the number of residues in the loop [447].

During the second stage, loops are closed using a method similar to one described previously

[341] that is used by RosettaCM [384]. However, ConfChangeMover supplements this procedure

using stretches of the starting model ranging from three to fifteen residues in length. The perturba-

tions available include:

• Fragment superimposition over gap regions. Nine-residue fragments obtained from the

PDB are superimposed over unresolved gaps in the structure.

• Fragment superimposition over randomly chosen regions. Nine-residue fragments are

superimposed over randomly-chosen regions, which can include those that do not contain

chainbreaks.

• Template superimposition. Stretches of residues with lengths ranging from nine to fifteen

residues are copied from the starting conformation and superimposed over the model.

As with RosettaCM, during the final 25% of the second stage, each move is followed by a

brief Cartesian minimization [81] using the limited-memory Broyden-Fletcher-Goldfarb-Shanno

algorithm [60]. At the end of stage 2, the entire model is minimized using the same approach.

During an optional third stage, all-atom side chains replace the centroid pseudo-atoms, and the

entire model is iteratively minimized as previously described [81, 384].

C.2.2 Application of constraints during modeling

Several types of constraints are applied to these models throughout the algorithm. To account for the

relative invariance of protein dihedral angles during conformational change modeling (see section

C.3.1), circular sigmoidal restraints are added to the 𝜙 and 𝜓 angles of the model based on either

the starting conformation or a separate model provided by the user:
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𝑆ϕ(𝑥) = (1+ exp(|𝜙sim −𝜙exp|− 𝜋
2 ))

−1
+(1+ exp(|𝜙sim −𝜙exp|+ 𝜋

2 ))
−1

(C.1)

𝑆ψ(𝑥) = (1+ exp(|𝜓sim −𝜓exp|− 𝜋
2 ))

−1
+(1+ exp(|𝜓sim −𝜓exp|+ 𝜋

2 ))
−1

(C.2)

Additionally, following stage 1, coordinate constraints were applied to the Cα atoms of all

residues belonging to SSEs. This allowed fragment insertions during stage 2 to close loops while

minimally affecting the dihedral angles obtained following stage 1.

C.2.3 Benchmark on soluble proteins using simulated distance restraints

We first tested ConfChangeMover on seven soluble proteins (Table C.1). These topologically dis-

similar proteins were selected from previous benchmarks [186, 366]. We first modeled all missing

residues using RosettaCM [384]. Distance restraints between Cα atoms were selected from the start-

ing structure using a modification of the Zheng-Brooks algorithm as implemented in the program

MMM [186, 190, 322, 477], with one restraint per twenty residues in the total protein sequence,

rounding up. For the benchmark on soluble proteins, we compared ConfChangeMover to fragment

insertion, in which the dihedral angles of the starting structures were directly modified. For both

methods, regions that did not undergo conformational transitions between the two states were not

permitted to move and were not used for RMSD calculations.

C.2.4 Benchmark on LeuT-fold transporters proteins using experimental EPR restraints

For the benchmark using experimental data, ConfChangeMover was tested using three LeuT-fold

transporter proteins: LeuT [224, 455], Mhp1 [374, 444], and vSGLT [438] (Table C.1). These three

proteins have previously been studied using EPR, and all undergo ligand-dependent conformational

transitions between IF and OF conformations [76, 212, 213, 310].
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Table C.1: Protein structures used in the benchmark of ConfChangeMover. † A model of OF vSGLT
was generated from the X-ray structure of the homolog SiaT. This model was not used as a target
model in this benchmark. ‡ Insufficient experimental restraints were available to model the OF-to-IF
transition in LeuT.

Protein (Organism) PDB A (Resolution) PDB B (Resolution) Length References

Soluble proteins (simulated data)
Adenosylcobinamide kinase (Salmonella enterica) 1CBU (2.30 Å) 1C9K (2.20 Å) 181 [411, 412]
DNA polymerase I (Thermophilus aquaticus) 2KTQ (2.30 Å) 3KTQ (2.30 Å) 832 [239]
Glutamine-binding protein (Escherichia coli) 1GGG (2.30 Å) 1WDN (1.94 Å) 248 [170, 396]
Lactoferrin (Homo sapiens) 1LFH (2.80 Å) 1LFG (2.20 Å) 710 [155, 299]
Leucine-binding protein (E. coli) 1USI (1.80 Å) 1USG (1.53 Å) 369 [257]
Mitochondrial aspartate aminotransferase (Gallus gallus) 1AMA (2.30 Å) 9AAT (2.20 Å) 423 [275, 276]
Pol alpha DNA polymerase (Escherichia phage RB69) 1IG9 (2.60 Å) 1IH7 (2.21 Å) 903 [138]

LeuT-fold proteins (experimental data)
LeuT (Aquifex aeolicus) 2A65 (1.65 Å) 3TT3‡ (3.22 Å) 513 [224, 455]
Mhp1 (Microbacterium tumefaciens) 2JLN (2.85 Å) 2X79 (3.80 Å) 489 [374, 444]
vSGLT (Vibrio parahaemolyticus) 2XQ2 (2.73 Å) 5NV9† (1.95 Å) 543 [428, 438]

Four transitions of interest were used to benchmark ConfChangeMover (Table C.1). In each

case, experimental data was provided using the RosettaDEER module (see Chapter 3). For LeuT,

the IF-to-OF transition took advantage of distance restraints collected on LeuT in the presence of

the detergent β-OG [213]. In Mhp1, the OF-to-IF and IF-to-OF transitions were simulated using

DEER data collected either without substrates or with both sodium and benzylhydantoin, respec-

tively [212]. Finally, because vSGLT has only been crystallized in IF conformations [118, 438],

we modeled the OF-to-IF transition by starting from a previously published OF homology model

generated from the homologous sialic acid transporter SiaT [310, 428]. The IF-to-OF transition of

vSGLT and the OF-to-IF transition of LeuT were not modeled.

For both benchmarks, we set stages 1 and 2 to consist of 50,000 rounds and 1,000 rounds,

respectively. The weights of the score terms dihedral_constraint, atompair_constraint, and coor-

dinate_constraint were set to 1.0, 10.0, and 1.0, respectively. The Rosetta scoring functions score3

and score4_smooth_cart were used for stages 1 and 2, respectively. We generated 100 models using

each method for the soluble protein benchmark and 1000 models for the LeuT-fold benchmark.
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C.3 Results and Discussion

C.3.1 Most dihedral angles do not change during conformational isomerization

To determine the extent to which dihedral 𝜙 and 𝜓 angles rotate during conformational change,

we compared pairs of structures from a panel of conformational changes used in a recent bench-

mark [184]. Comparison of proteins in multiple states revealed that the overwhelming majority

of backbone dihedral angles in proteins remain unchanged when undergoing conformational tran-

sitions, suggesting that interconversion between two states may be facilitated by a small fraction

of residues as previously suggested [356] (Figure C.2). This expectation was implemented as a

modeling restraint using circular sigmoidal functions on the backbone 𝜙 and 𝜓 angles (see section

C.2.2). Sigmoidal restraints have previously been used for modeling proteins using restraints with

a small number of false positives, such as those obtained using residue coevolution [302, 303, 406],

because they favor structural models that satisfy as many restraints as possible while minimizing

the contribution of noisy data to the resulting model.

C.3.2 Benchmark on soluble proteins

We first benchmarked ConfChangeMover on a panel of seven soluble proteins using simulated

distance restraints (Table C.1). Both directions were used as part of the benchmark, leading to

fourteen total transitions. These proteins were specifically chosen for their complex modes of con-

formational isomerization, wherein loops and SSEs moves in ways that are unlikely to be easily

recapitulated by simple rotation of backbone dihedral angles [89, 226]. To test that this was the

case, the performance of ConfChangeMover was compared to simple fragment insertion. For both

methods, regions that do not move in between these two states were not manipulated. Distance

restraints between Cα atoms were chosen using a previously published restraint-picking algorithm

[184, 477] and simulated from the target structure. Following the simulation, Cα RMSD values

were calculated exclusively from the mobile regions of the protein.

The results are plotted in Figure C.3. In the absence of restraints, the majority of models sam-

pled using ConfChangeMover were nearly identical to the starting model, indicated by the dashed
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Figure C.2: Rotational changes observed in the dihedral angles observed in various proteins under-
going conformational changes. Left: the overwhelming majority of dihedral angles in the dataset
rotate less than 30° during isomerization. Right: Close-up of cases that rotate more than 60°.

line, suggesting that the starting structure generally occupied an energy minimum that may be dif-

ficult to escape. Introducing simulated Cα-Cα restraints led to improvements in RMSD in every

protein except lactoferrin. In contrast, using restraints with fragment insertion generally led to un-

folding of the models and worsening of RMSD relative to the starting structure (see Figure C.3.A),

despite the fact that fragments were only inserted in stretches of mobile residues. In general, the

breadth of models sampled this way was both far larger and universally poorer in quality than those

obtained ConfChangeMover. The exception to this second point, lactoferrin, appeared to be mod-

eled relatively easily by simple changes in the dihedral angles connecting two domains. Addi-

tionally, the majority of simulated restraints obtained using the modified Zheng-Brookes restraint-
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picking algorithm discussed above did not cover mobile portions of the protein. As a result, we

believe the aggressive sampling available to fragment insertion may have been beneficial to escap-

ing the local minimum and sampling conformers similar to the target. Nevertheless, the majority

of models did worsen in RMSD relative to the starting structure.

Figure C.3: ConfChangeMover outperforms fragment insertion in Rosetta when modeling confor-
mational changes in soluble proteins using simulated Cα restraints. Starting models indicated by
the dashed black line.

The remaining proteins in the benchmark set generally show a consistent pattern in which sam-

pling using ConfChangeMover is focused and worsening of models is generally avoided. This is the
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principal challenge of structure refinement [307], as there are many more ways to ruin a structural

model than improve it.

C.3.3 Benchmark on LeuT-fold transporters using experimental data

With these results in hand, we then applied this method to LeuT-fold transporters that have been

experimentally studied using EPR. The transmembrane domains of these transporters are entirely

α-helical and undergo various divergent modes of isomerization to facilitate translocation of sub-

strates across the membrane (see Chapter 1 for details). Libraries of DEER measurements collected

in LeuT, Mhp1, and vSGLT are generally consistent with experimental structures. For LeuT, due

to outstanding controversies surrounding the conformational details of the IF state [213, 383], we

exclusively simulated the IF-to-OF transition using experimental measurements collected in the de-

tergent β-OG. Helices in the bundle domain, as well as TMH5 and EL4, were permitted to move,

while the positions of the hash domain and TMH10-12 were fixed. For Mhp1, both the IF and OF

conformations were largely found to be consistent with EPR data collected in the apo and substrate-

bound state and indicated rigid-body movement of the hash domain and bending of TMH5. For

vSGLT, which has only been crystallized in IF conformations, we modeled the OF-to-IF conforma-

tional change starting from an OF homology model generated from the structure of the homolog

SiaT [428] that was generated for a previous study [310]. The conformational changes suggested by

the EPR data are largely consistent with those expected from this model and suggest a mechanism

of alternating access that combines elements of both LeuT and Mhp1 that involve helices across

the whole protein. We repeated the conformational change modeling procedure and compared it to

both fragment insertion and to the homology modeling program RosettaCM [384]. Additionally, to

evaluate the impact of experimental restraints on modeling, ConfChangeMover was also run with

simulated DEER restraints generated using MDDS [176], as well as simulated Cα-Cα distance re-

straints generated from the target model.

The results are shown in Figure C.4 and repeat the pattern observed in those obtained in the

soluble protein benchmark. ConfChangeMover largely samples structures similar to the starting
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Figure C.4: ConfChangeMover outperforms available methods in Rosetta when modeling confor-
mational changes in LeuT-fold transporters using EPR data. Starting models indicated by the dashed
black line.

model, with virtually all models improving in RMSD relative to the starting structure. The excep-

tion, OF-to-IF Mhp1, saw most models get worse in quality. The striking different between models

generated using simulated and experimental data suggested that poor model quality could be at-

tributed to differences between predicted and experimental spin label distances. Indeed, a distance

restraint between TMH1a and TMH9 on the intracellular side of the protein (30/338) differed from

predictions obtained using MDDS by 14 Å [212]. Additionally, visual examination of representa-

tive models obtained using simulated DEER restraints revealed that the kinked TMH5 facilitating

substrate egress into the cytoplasm could not be recapitulated using this method (Figure C.5).

Related to this observation, we found that in three cases the Cα-Cα distance restraints provided

the greatest benefit, suggesting that the precision obtained when directly restraining the backbone is
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generally superior to those obtained from spin probes measured using DEER. The results from the

fourth case, vSGLT, were not statistically different from either experimental or simulated DEER

data (unpaired two-tailed 𝑡-test), highlighting the consistency of that crystal structure with the ex-

perimental DEER data.

Figure C.5: Lowest RMSD models obtained using ConfChangeMover with experimental EPR re-
straints.

In marked contrast, and as was seen in the soluble protein benchmark, we found that fragment

insertion similarly unfolded these models, with average RMSD values of 10 Å to 25 Å (Figure C.3).

Unlike the soluble protein benchmark, in no cases did it outperform ConfChangeMover among

proteins with this topology. Additionally, the homology modeling program RosettaCM sampled

too conservatively and did not allow models to be modified away from the starting structure.

C.3.4 Concluding remarks

The modeling protocol ConfChangeMover is presented and discussed. Benchmarks in both soluble

proteins using simulated distance restraints and membrane transporter proteins using experimen-

tal restraints show how this method can tackle various modes of conformational interconversion

while generating models that nonetheless resemble the starting conformation. Its implementation

as a Mover in Rosetta allows it to be used in combination with countless other modeling meth-

ods. Further development should focus on combining ConfChangeMover with other protocols, or

embedding it in more complex modeling approaches [307].
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Appendix D

Efficient sampling of loop conformations using conformational hashing and random

coordinate descent

The contents of this Appendix have been previously published [94].

De novo construction of loop regions is an important problem in computational structural biol-

ogy. Compared to regions with well-defined secondary structure, loops tend to exhibit significant

conformational heterogeneity. As a result, their structures are often ambiguous when determined

using experimental data obtained by crystallography, cryo-EM, or NMR. Although structurally

diverse models could provide a more relevant representation of proteins in their native states, ob-

taining large numbers of biophysically realistic and physiologically relevant loop conformations is

a resource-consuming task. To address this need, we developed a novel loop construction algo-

rithm, Hash/RCD, that combines knowledge-based conformational hashing with RCD. This hybrid

approach achieved a closure rate of 100% on a benchmark set of 195 loops in 29 proteins that

range from three to thirty-one residues. More importantly, the use of templates allows Hash/RCD

to maintain the accuracy of state-of-the-art coordinate descent methods while reducing sampling

time from over 400 ms to 141 ms. These results highlight how the integration of coordinate de-

scent with knowledge-based sampling overcomes barriers inherent to either approach in isolation.

This method may facilitate the identification of native-like loop conformations using experimental

data or full-atom scoring functions by allowing rapid sampling of large numbers of loops. In this

manuscript, we investigate and discuss the advantages, bottlenecks, and limitations of combining

conformational hashing with RCD. By providing a detailed technical description of the Hash/RCD

algorithm, we hope to facilitate its implementation by other researchers.

192



D.1 Introduction

Despite its importance to computational structural biology, the prediction of protein loops remains

a challenge [238]. Without the periodic backbone hydrogen bonds defining regular secondary struc-

ture, a large conformational space needs to be searched. Moreover, loops can interconvert between

many isoenergetic conformations, complicating efforts to identify a single conformation at a global

energy minimum. Perturbation of loops in structures determined using experimental techniques

such as crystallography further complicates the development of loop modeling methods [179], as

the conformations observed in a crystal lattice may be artifacts of experimental design and/or data

collection.

Algorithms that predict loop regions in proteins generally use one of several strategies. Template-

based methods rely on experimentally determined loop conformations deposited in the Protein Data-

bank to build missing loop regions. For example, in the Loophash algorithm [419], which is imple-

mented in Rosetta [229, 234], the sequence of the loop target is threaded onto a template selected

from a loop library. Other examples of template-based methods include Superlooper [163], which

searches the Loops-in-proteins database [284]; FREAD [74], which uses several criteria to iden-

tify experimentally determined loops of interest; and DaReUs-Loop [207, 208], which uses loop

flanking regions to identify suitable candidate loops for modeling. In general, template-based loop

prediction has the advantage of being fast, since the loop dihedral angles have been experimentally

observed. However, they are limited by the underrepresentation of long loops in the PDB (11 or

more residues), which leads to fewer templates. Consequently, this approach is generally suitable

for short and medium-sized loops (10 or fewer residues).

An alternative approach for modeling missing loops is to do so de novo. This approach achieves

loop closure by relying on an energy function to optimize the dihedral angles of the residues com-

prising the loop. Various methods have been described that use this strategy, such as GalaxyLoop-

PS2 [305], ModLoop [130], LEAP [240], PETRA [92], and Rosetta-KIC [260] and NGK [390]. A

widely-used method is the cyclic coordinate descent (CCD) algorithm [63, 40], which was inspired

by the random tweak algorithm used in robotics. Both CCD and the closely-related RCD algorithm
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[75] rotate the loop’s backbone torsion angles to place the a ”virtual” terminal residue over the

loop’s anchor point. Coordinate descent methods have the advantage of high closure rates, even

among longer loops. However, as with all de novo methods, they are limited by their time complex-

ity, which depends on the loop’s sequence length. Moreover, they can introduce distortions in the

loop’s dihedral angles.

Finally, a series of “hybrid” approaches hold promise to find middle ground between low time

complexity of template-based modeling with the high closure rate of de novo-based methods. For

example, both CODA [91] and Sphinx [265] arrive at consensus predictions by combining the

template-based predictions from FREAD [74] with loops modeled de novo. The comparative mod-

eling protocol RosettaCM [384] predicts loop conformations by assembling three- and nine-residue

fragments from the PDB and closing loop regions using Cartesian minimization. Similar protocols

have used a hybrid approach to model long hypervariable loops in antibodies [123, 268, 269, 445].

In summary, these methods allow long loops to be predicted in a reasonable amount of time without

being restrained by the lack of experimentally determined templates of a given length.

An optimal loop construction algorithm would find the middle ground between low time com-

plexity and high closure rate. Here we introduce and discuss an algorithm, Hash/RCD, that com-

bines conformational hashing with RCD. Hash/RCD circumvents the lack of templates for long

loops by constructing them from shorter fragments using a MC framework. The resulting hybrid

algorithm, which is implemented as part of the BioChemical Library (BCL) [205, 447], combines

the advantages of conformational hashing and coordinate descent while mitigating their respective

limitations.

This Appendix discusses the implementation and performance of conformational hashing with

and without RCD and is organized as follows. First, Materials and Methods (section D.2) describes

the general methodology that combines conformational hashing and RCD within an MC frame-

work. Next, generation of the loop template library is discussed. This is followed by the mathemat-

ical details regarding the parametrization of 1) loop conformations for conformational hashing and

2) fragments for recombination into longer loop templates. We then provide a technical description
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of the RCD method used in this study and a summary of the benchmark set used to quantify the

performance of Hash/RCD. Finally, this section is concluded with a description of the method’s

performance compared to the Rosetta Loophash algorithm [419], RCD in isolation, and the orthog-

onal sampling approach RosettaCM [384]. In the Results section we discuss the performance of

Hash/RCD, which we evaluated using several metrics, including closure rate and central processing

unit (CPU) time consumption. We also explored the limits of conformational hashing and compare

the loops generated by Hash/RCD to those generated by Rosetta Loophash, RCD in isolation, and

RosettaCM.

D.2 Materials and Methods

D.2.1 General methodology and generation of the loop template library

The sampling approach used by Hash/RCD is described in Figure D.1 and consists of two stages

and a post-processing step. The first stage uses conformational hashing to construct loop regions

from precomputed templates (the term “template” refers to any experimentally determined loop

structure used for modeling purposes). The second stage identifies and closes loops that could not

be closed during the first stage using RCD. Finally, a post-processing step constructs loops that may

be missing from the protein’s N- and C-termini.

We compiled the initial template library used by the first stage from a nonredundant subset

of experimentally determined structures in the PDB [26]. The Dunbrack lab’s protein sequence

culling server (PISCES) server was used to filter out structures whose resolutions exceeded 3.0 Å

and did not fully or partially consist of Cα-traces [429, 430]. This avoided the overrepresentation of

protein structures that have been determined in multiple nearly identical conformations and resulted

in about 87,000 structures. From there, we discarded the SSE definitions provided in the PDB files,

instead using the SSE definition program DSSP [202]. Loops were defined as contiguous regions

in sequence space that could not assigned any regular secondary structure. This approach both

ensured reproducibility and standardized the assignment of secondary structure on the basis of

backbone hydrogen bonding geometry. Finally, we removed loops containing unresolved backbone
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Figure D.1: Overview of the Hash/RCD algorithm. Top: Loop parameterization using a hash key
computed from the length and relative orientation of its anchor points. A hash look-up identifies
and selects suitable template conformations. Bottom left: The initial template library consisted of
about 3.7 million loop conformations with different sequence lengths. These loops were collected
from a set of about 87,000 protein structures deposited in the PDB. Bottom right: Depiction of the
conformational hashing and RCD stages of this algorithm. An MC framework embeds both stages
and allows loop templates to be added, replaced, and removed.

coordinates. Using this approach, we collected about 3.7 million loop conformations (Figure D.1).

The templates were then translated into hash keys describing the geometric aspects of the anchor

residues flanking the loop (see next section for details). Lists of loops corresponding to specific

geometries were stored together in a hash table. As we discuss below, Hash/RCD draws from this

hash table to sample the addition and replacement of loops for given protein models by computing

the parametrization of the missing loop, calculating the associated hash key, and inserting a suitable

template chosen at random. The loop’s sequence is then threaded over this template and inserted
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into the protein model. By relying on a hash table to identify templates, this approach has the

advantage of 𝑂(1) computation time and generally requires CPU time on the order of microseconds.

Since long loops have fewer templates in the loop library, they could be assembled from shorter

fragments using a procedure discussed below.

Following conformational hashing, Hash/RCD uses random coordinate descent, previously de-

scribed by Canutescu et al. [63] and Chys and Chacon [75], to minimize the distance between a

moving (loop end) and target (anchor) set by calculating the rotation that must occur around a given

axis (𝜙,𝜓). We took several steps to diversify the loops generated this way. First, we found that

randomly choosing which dihedral angle (either 𝜙 or 𝜓) at every step allowed Hash/RCD to avoid

getting stuck in non-closable conformations. Additionally, only a random fraction of the rotation

is applied. Further, we modified the original protocol to bend the terminal regions of the SSEs

flanking the loop (Figure D.1). Finally, supplementing this protocol with scoring functions allows

it to identify and reject rotations that cause the loop to clash with the rest of the protein model.

The final step of the protocol constructs the terminal loop regions. These were initialized with

dihedral angles that are randomly chosen from a (𝜙,𝜓) distribution derived from experimentally

determined protein structures. The coordinate descent algorithm was then executed to resolve steric

interferences and/or energetically unfavorable configurations.

D.2.2 Parametrization of loop conformations and selection of suitable conformations

In addition to their length, loop conformations can be defined by the relative rotational and transla-

tional orientation of the anchor residues flanking them. Therefore, we defined a local orthonormal

coordinate system for the anchor points of each loop as (𝑒𝑥, 𝑒𝑦, 𝑒𝑧) based on their backbone coor-

dinates. Here 𝑒𝑥 is the normalized 𝐶α − 𝐶 vector, 𝑒𝑦 is the normalized component of the 𝐶α − 𝑂

vector orthogonal to 𝑒𝑥, and 𝑒𝑧 is computed from 𝑒𝑥 and 𝑒𝑦 such that 𝑒𝑧 = 𝑒𝑥 ×𝑒𝑦. Accordingly, the

translation vector resides within this coordinate system and is defined as follows:

⃗𝑡 = (𝑡x, 𝑡y, 𝑡z) = (𝛼c,x −𝛼n,x,𝛼c,y −𝛼n,y,𝛼c,z −𝛼n,z) (D.1)
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Here 𝛼c,x and 𝛼n,x are the 𝑥-coordinates of the 𝐶α-atom of the N-terminal and C-terminal an-

chors, respectively. The relative rotational orientation of the two anchor points was quantified using

Euler angles (𝛼,𝛽,𝛾) following the extrinsic 𝑥-𝑦-𝑧 convention [319]. These can be readily extracted

from the matrix Mr describing the rotation between both coordinate systems that can be computed

as Mr = M−1
n ⋅ Mc, where Mn and Mc are the transformation matrices of the local coordinate sys-

tems at the N- and C-terminal anchor points [382].

Thus, each loop was parametrized into seven parameters: the loop’s sequence length (𝑑), trans-

lation vector (𝑡x, 𝑡y, 𝑡z), and Euler angles (𝛼,𝛽,𝛾). Each parameter is discretized into bins and

translated into a one-dimensional hash key 𝑘 using the hash function 𝑓 :

𝑓 ∶ 𝑑 ×(𝑡x, 𝑡y, 𝑡z)×(𝛼,𝛽,𝛾) → 𝑘 (D.2)

By grouping structurally similar loops into the same bins using this function, sparse populations

within the hash map are avoided. We evaluated several different bin sizes in this study and found

bin sizes of 1 Å for the translation vector and 60° for the Euler angles provided the optimal balance

between closure rates and accuracy. Additionally, the hash map only stores the dihedral angles

(𝜙,𝜓) of each residue in the loop conformation. As a result, each loop conformation 𝑐 can be

described using only 2𝑑 + 2 parameters, e.g. 𝑐 = (𝜓N,𝜙1,𝜓1,…,𝜙𝑑,𝜓𝑑,𝜓C). Here 𝑑 is the length

of the loop in amino acid residues, 𝜓N is the 𝜓-angle of the N-terminal anchor point, (𝜙i,𝜓i) are

the dihedral angles of the 𝑖th residue of the loop, and 𝜙𝐶 is the 𝜙-angle of the C-terminal anchor

point. The key-value pair (𝑘,𝑐) of each conformation is stored in the hash map accordingly.

These steps are all carried out during the generation of the loop template prior to loop prediction.

During modeling, loop look-up proceeds as follows. First, the coordinate systems for the anchor

points are computed and converted into a hash function (Equation D.2). Second, a range of suitable

conformations capable of closing this loop are returned in 𝑂(1) time, and one is chosen at random.

Third, the sequence of the loop being modeled is threaded onto this randomly chosen conformation,

a process that happens in 𝑂(𝑛) time. Therefore, the overall time complexity of the algorithm is

limited by the linear-time computation of this last step, which is in turn determined by the length
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of the loop being modeled.

D.2.3 Integration of conformational hashing within a Monte Carlo Metropolis framework

In a protein model containing multiple loop regions, closing a certain loop with a certain conforma-

tion might hinder the closure of other loops. Consequently, our algorithm must be able to sample

different combinations of loops without needlessly increasing computational complexity. Owing

to the previously demonstrated success of MC algorithms [229, 234, 205, 129], we embedded the

conformational hashing step in an MC framework. Effectively, the loop construction algorithm con-

sists of two sub-algorithms, conformational hashing and RCD, which are executed back-to-back.

Each sub-algorithm places a ”pseudo-residue” at the terminal end of a loop and tries to perfectly

superimpose it over the corresponding anchor residue. Loop closure is calculated using the RMSD

of this pseudo-residue and the anchor residue; we use an RMSD cutoff of 0.08 Å to account to allow

for minor inaccuracies in bond lengths and angles.

In the MC implementation of the conformational hashing algorithm (Figure D.1), a loop is

randomly selected, perturbed, and evaluated using a scoring function. Several perturbations can

be sampled. First, missing loops can be added directly from the hash map. Second, subregions of

a loop can be replaced with loops added from the hash map. Third, short stretches of up to three

residues can be cut back at the anchor residues and replaced with loop conformations obtained

from the hash map. Fourth, when suitable loops with sequence length 𝑑 + 2 are absent from the

template library, stepwise construction of loops can instead be achieved by randomly selecting loop

conformations with sequence length less than 𝑑−2 from the template library and applying them to

the selected template.

Depending on the impact of these perturbations on the score of the model, the new model

is either accepted or rejected [205]. Knowledge-based score terms used to evaluate loop confor-

mations include clash evaluation, consistency with Ramachandran potentials, and residue-residue

interactions. We also added score terms to evaluate a model’s consistency with secondary structure

prediction algorithms such as PSI-blast based secondary structure Prediction [197, 435], Jufo9D
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[233], and MASP [279]. Finally, a score term consisting of 30% of the scoring function pushes the

algorithm toward loop closure by linearly penalizing stretches of missing residues.

D.2.4 Construction of missing loop regions using random coordinate descent

The RCD algorithm closed loops only when they could not be closed using the conformational

hashing algorithm. Its implementation is modeled on the CCD algorithm described by Canutescu

et al. [63], which is in turn based on the random tweak algorithm [125, 370]; additionally, we

included several modifications discussed by Chys and Chacon [75]. This portion of the algorithm

can be divided into a pre-stage and a main-stage component.

During the pre-stage, missing residues are dynamically added to the anchor residues. The back-

bone dihedral angles of these residues are initialized with (𝜙,𝜓) angles derived from a probability

distribution of experimentally observed backbone dihedral angles. Then, using a knowledge-based

potential, these (𝜙,𝜓) angles are subsequently perturbed and evaluated. Potential inaccuracies in

the secondary structure prediction are accounted for by adding and/or removing residues from the

anchor SSEs. Throughout this pre-stage, sampling is guided by scoring terms evaluating the com-

pleteness of the amino acid sequence, steric interference between residues, residue-residue interac-

tions, and the loop trajectory towards its anchor point. This module also constructed the terminal

loop regions of the protein models. The main-stage portion of the algorithm iteratively uses RCD

to calculate the rotation that must occur around a given axis (𝜙 of 𝜓) to minimize the distance be-

tween the end of the loop and the target coordinates over many iterations to close a chain break.

Throughout this step, residue-residue interactions and steric interferences between residues were

evaluated using scoring functions.

We found that running the conformational hashing algorithm for 500 iterations appeared to

offer the best balance between performance (loop closure) and time complexity. The algorithm

could be terminated early if no score improvements were identified after 50 iterations. For the RCD

algorithm, we obtained the best results when the algorithm was run for 2000 total iterations with

the option of terminating early after 500 iterations without any improvements.
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D.2.5 Compensation for lack of templates for long loops

The initial set of about 87,000 protein structures contained about 3.7 million loop templates. Of

those, the majority of these templates (about 2.2 million) were four or more residues in length

(Figure D.1). By contrast, only 12% of the templates were ten or more residues in length. Moreover,

longer loops cover a greater conformational space, making the conformational hashing algorithm

less likely to close these loops. We developed a two-pronged approach to overcome this challenge.

First, we supplemented our algorithm with a method that combines two short loop templates

into a larger loop template by superimposing the backbone coordinates of one loop’s C-terminal

anchor point with the backbone coordinates of the other loop’s N-terminal anchor point. The re-

sulting template has a sequence length of 𝑑 = 𝑑1 + 𝑑2 + 1, with 𝑑𝑛 being the sequence length of

the 𝑛th template. The translation vector ⃗𝑡 and the Euler angles (𝛼,𝛽,𝛾) are then computed in a

straightforward manner. The local coordinate system of the N-terminal anchor point of the second

template is first transformed into the local coordinate system of the N-terminal anchor point of the

first template. This is achieved by multiplying the first coordinate system’s rotation matrix the in-

verse of the second coordinate system’s rotation matrix, i.e., M = M−1
2 ⋅ M1. By multiplying the

translation vector 𝑡2 of the second template with this matrix, the resulting translation vector can be

computed by simple vector addition, i.e., ⃗𝑡 = 𝑡1 +(𝑡2 ⋅M).

Nevertheless, although this approach is theoretically sound, we found that small inaccuracies,

likely due the binning strategy used in the original hash map, could be propagated when templates

generated this way are in turn combined into new templates. Therefore, the stored dihedral angles

for both templates were recombined into a sequence consisting of 2(𝑑1 + 𝑑2 + 2) dihedral angles:

(𝜓𝑛,1,𝜙1,1,𝜓1,1,…,𝜙1,𝑑,𝜓1,𝑑,𝜙1,c,𝜓n,2,𝜙2,1,𝜓2,1,…,𝜙2,𝑑,𝜓2,𝑑,𝜙2,c). An artificial amino acid

sequence of length 𝑑 + 2 was generated within the algorithm and fitted against the combined se-

quence of dihedral angles, permitting the accurate computation of this template’s parameterization.
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D.2.6 The benchmark set used to evaluate the algorithm

We evaluated the performance of this algorithm using a benchmark set consisting of twenty-nine sol-

uble and membrane proteins (Table H.1). This included the set of soluble proteins previously used

by Tyka et al. to benchmark the Rosetta Loophash algorithm [419], as well as the eleven membrane

proteins previously used to benchmark the protein structure prediction algorithm BCL::MP-Fold

[126]. These proteins ranged in size from 57 to 1,560 residues with varying 𝛼-helical and 𝛽-strand

secondary structure content. The 195 loops in this benchmark set with four or more residues had

lengths between three and 31 residues. As we described earlier, secondary structure definitions

were obtained using DSSP [202]; loops identified this way were then removed from each of the

PDB structures. Loops with stretches of missing coordinates were excluded from the benchmark

set.

For the purposes of this benchmark, we used a modified loop template library in which we

removed templates belonging to homologs of proteins in the benchmark set (for heterooligomers,

we kept chains that were not homologous, but removed those that were). For these purposes, a

cutoff of 25% sequence identity was used when defining homology. Homologs were identified by

pairwise alignment of all 87,000 proteins to each protein in the benchmark set using Clustal Omega

[376]. This reduced the size of the loop template library by 3.4%.

D.2.7 Comparison with RCD, Rosetta Loophash, and RosettaCM

Three loop prediction protocols were compared to Hash/RCD. We used the Rosetta scoring function

score4_smooth_cart to score all models generated this way. The first method, RCD, is simply the

Hash/RCD algorithm without any conformational hashing. The second method, Rosetta Loophash

[419], was modified slightly to change the focus from loop diversification to loop closure. The

“relax” stage of the procedure was skipped, leaving only resampling- and minimization-based loop

closure stages. Because Loophash assumes “ideal” bond length and angles, we ran the Rosetta

idealize application on each structural model in the benchmark set prior to use. The same set of

structures obtained in the previous section were used to create a database for Loophash (unlike our
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loop database, however, even regions of the protein with secondary structure were included in the

Loophash database). The 195 non-terminal loops present in the benchmark set were each tested

individually, in the context of the full experimentally determined structure of the remaining loops,

with parameters set to skip RMSD-based filtering. A total of 100 output structures were sampled

for each loop in the benchmark set, and each output structure represents the result of 100 randomly

selected database loops matching the required geometry. Although Loophash always produced

models, we found that its substitution and minimization approach frequently perturbed the protein

structure, even in regions outside the loop. For this reason, whenever at least one of the 100 output

structures were within 1 Å Cα RMSD from the input structure, Loophash’s ability to close that

loop was defined as successful. Correspondingly, if none of the output structures met this criterion,

Loophash’s ability to close the loop was defined as a failure. Runtimes for Loophash are reported

as an average for a single output structure and include only the time spent actively sampling the

loop.

The third method, RosettaCM, is a homology modeling protocol that fills loops using a hy-

brid approach combining fragment insertion with full-atom Cartesian minimization [384]. We

chose this protocol as an orthogonal approach for the purposes of benchmarking Hash/RCD for

two reasons. First, it is widely used for homology modeling, a task that often involving loop pre-

diction and closure. Second, the strategy for loop closure, which involves the insertion of three- and

nine-residue fragments followed by Cartesian minimization, is superficially similar to the strategy

used by Hash/RCD. The fragment templates used by RosettaCM were obtained from the Robetta

web server with homologs excluded [216]. During the coarse-grained stages of the protocol, the

atom_pair_constraint score term was set to 5.0 and the frag_weight_aligned option was set to 0.0

to avoid modifying non-loop regions. The full-atom Cartesian minimization step was then carried

out with coordinate constraints from the starting model. Models were then scored using the scoring

function ref2015_cart. Because RosettaCM explicitly models all sidechains and has an execution

time ranging from minutes to hours, we do not report runtimes for this protocol and use it only to

compare the RMSD values of the resulting models.
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D.3 Results

This section describes the distribution of templates collected from structures in the PDB and ratio-

nalizes the need for template recombination. Following this, the performance of the conformational

hashing algorithm is reported using loop closure rate and compute time. Additionally, we discuss

the algorithm’s performance as a function of different optimization parameters. This section con-

cludes with a comparison of models generated by Hash/RCD, RCD alone, Rosetta Loophash, and

RosettaCM.

D.3.1 Effect of parameter bin size and loop length on loop closure by conformational hashing

Before computing the hash key for a loop template, the loop’s parametrization needs to be dis-

cretized, which is achieved through binning (see Section D.2). The hash map’s granularity is heav-

ily influenced by the bin width, which in turn significantly influences the closure rate and physical

reasonableness of the loop regions it generates. For example, whereas larger bin widths are more

densely populated, the resulting loop regions can be physically unreasonable. Smaller bin widths,

by contrast, result in a sparser population of the hash map and come at the cost of a lower loop

closure rate. Therefore, we quantified the influence of the bin width on the loop closure rate by

repeating loop construction for the benchmark set with different bin widths. Specifically, the rota-

tion bin width was increased in 30° steps from 30° to 120° (the translation bin width was kept at

1 Å because larger translation bin widths would require post-processing of the fitted loop to avoid

overextension of the peptide bonds). This evaluation did not use a post-processing step, such as

minimization, to reduce computational complexity.

The results are shown in Figure D.2 and demonstrate how loop closure rate decreased approxi-

mately linearly with loop length. For example, among loops no more than five residues long, a bin

width of 60° led to a loop closure rate of 94%. Among loops between six and ten residues long,

however, it dropped to 61%, and for loops greater than ten residues long, it fell further to 33%, for

an average total loop closure rate of 70%. We observed a similar, almost linear relation between

loop length and loop closure rates when using the other three evaluated angle bin widths. More
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generally, we found that loop closure strongly depended on angle bin width. For the evaluated an-

gle bin widths of 30°, 60°, 90°, and 120°, the total loop closure rate of the conformational hashing

algorithm arrived at 58%, 70%, 78% and 89% (Figure D.2). Although these results suggest that

larger angle bin widths are preferable, upon closer examination we found that many of the resulting

models revealed had unnatural angles within the peptide bonds connecting the anchor SSEs and the

loop. Rather than increase the computational complexity of the algorithm by using minimization

or other post-processing steps, we opted for an angle bin width of 60°.

D.3.2 Conformational hashing achieves a high loop closure rate for short loops but RCD is

required for long loops

We evaluated the percentage of missing loop regions among our benchmark set (Table H.1) that

could be successfully constructed by first removing all non-terminal loop regions from each protein

structure. We then constructed the missing loop regions using our algorithm and computed the loop

closure rate per benchmark protein. This was performed with the original template library either

prior to or following extension by template recombination and fragment-based loop construction

(see section D.2). In both cases, the loop libraries were binned at 60°.

When additional templates through fragment combination are excluded, the algorithm achieved

a loop closure rate of 54% over all twenty-nine benchmark proteins. As demonstrated above, a

loop’s length strongly influenced whether it could be successfully closed. For example, loops up

to five residues long were successfully closed 87% of the time, whereas loops ten residues long or

greater were closed only 21% of the time. By contrast, when the template library was extended to

include loops generated using fragment-based construction, the overall loop closure rate could be

improved by nearly 30% to an overall closure rate of 70% (Figure D.2). Further increases in either

the size of this library through additional fragment recombination did not appear to improve loop

closure rate (data not shown). Nevertheless, as we mentioned above, following this step with RCD

achieved a closure rate of 100%. We found that Rosetta Loophash achieves a 99% loop closure

rate on the loops with a length of ten residues or less. However, this plummeted to 39% when
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loop length exceeded ten residues. We note that this high loop closure rate is achieved in part by

using a 2 Å bin width, which is wider than the 1 Å width used by Hash/RCD. A consequence of

this approach is its reliance on optimization and refinement following the fitting, which increases

the computational effort required (discussed below).

D.3.3 CPU time requirement is dominated by the evaluation of steric interference

Although the time complexity of the template look-up is O(1), the task of threading the target se-

quence against the template is O(n), which leads to linear time complexity for the overall loop

construction algorithm. We therefore studied the effect this had on the CPU time required to exe-

cute the algorithm (specifically, the time between entering the MC algorithm and leaving the MC

algorithm divided by the number of successfully constructed loop regions). To evaluate the con-

tribution of the scoring term evaluating steric interference between residues relative to the overall

CPU time requirement, the computation time needed by this term was evaluated separately. This

was repeated for both RCD alone and Hash/RCD.

When steric interference was not included during sampling, conformational hashing required on

average 27±4 ms CPU time per loop, whereas RCD required 159±11 ms. By contrast, Hash/RCD

required only 68±7 ms (Figure D.2). When steric interference is calculated during sampling, the

required CPU time increased to 59±5 ms for conformational hashing, 468±41 ms for RCD, and

161±13 ms for Hash/RCD. The evaluation of steric interferences dominated the computational bur-

den by accounting for 54%, 66%, and 58% of the total CPU time requirement among conformational

hashing, RCD, and Hash/RCD, respectively. Overall, these results demonstrate that using templates

prior to coordinate descent can lead to a threefold decrease in the computation time of loop closure.

In contrast, the Rosetta Loophash protocol has a CPU runtime of 160 s to sample each loop. This

runtime is highly correlated with total protein size (𝑅2 = 0.8). We found that it is overwhelmingly

devoted to minimization, as only 5% of the algorithm’s runtime involved conformational sampling.
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D.3.4 Hash/RCD samples experimentally observed conformations

Figure D.2: Evaluating conformational hashing and
RCD algorithms for loop construction. Top: The ro-
tation angle bin width of the hash map influenced the
loop closure rate of longer loops when using confor-
mational hashing alone. When modeling short loops,
we found high loop closure rates regardless of bin
width. When conformational hashing was combined
with RCD, the loop closure rate increased to 100% in
our benchmark set. Bottom: The calculation of steric
interference constituted the overwhelming majority of
this algorithm’s CPU time requirement. Combining
conformational hashing with RCD was found to im-
prove CPU time efficiency.

Hash/RCD was developed to efficiently

sample both major and minor populations

that a loop might adopt. We assume that

the experimentally determined structures

deposited in the PDB correctly and accu-

rately represent one of the proteins’ major

populations (minor populations, by con-

trast, can only rarely be verified experi-

mentally and are not considered for this

benchmark). To test whether Hash/RCD

correctly samples those conformations, we

generated 100 models with constructed

loop regions for each protein in the bench-

mark set. These conformations were sub-

sequently compared to the experimentally

determined structures using the RMSD of

the Cα-atoms. For the membrane protein

structure 3P5N, two non-terminal loops

were not resolved in the X-ray-derived

model and consequently excluded from

this comparison. Moreover, in the case

of homo-oligomeric proteins in the bench-

mark set, we excluded each instance of a given loop beyond the first to avoid their overrepresentation

in the benchmark set. This led to 195 non-terminal loops comprised of three or more residues.

To focus on how effectively Hash/RCD could sample the major loop population, we determined

the loop with the lowest Cα RMSD among each of the 100 conformers sampled for each of the
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195 loops in the benchmark set (Figure D.3, top left). As expected, the lowest RMSD among the

conformers we sampled depended on the length of the loop, which in turn dictated the size of

the sampling space. However, in the majority of loops, at least one conformer was within 2 Å of

the experimentally observed structure, and all of the longer loops sampled at least one conformer

within 5 Å Cα RMSD. We found that these results were comparable to those obtained using RCD

alone, as well as the orthogonal hybrid method RosettaCM. In sharp contrast, Rosetta Loophash

was far less capable of sampling native-like loop conformers with lengths exceeding ten residues.

These results suggest that the lack of long templates prevents these loops from being closed using

physiologically meaningful structures, and that sampling becomes the predominant obstacle for

modeling long loops using conformational hashing.

When native loop conformations are unavailable and RMSD values cannot be calculated, scor-

ing functions must be used to infer which loop conformers are structurally relevant. We therefore

focused on the lowest-scoring loops obtained using each method. Distributions are shown in Figure

D.3 (right panels), and pairwise comparisons between Hash/RCD and other methods are shown in

Figure D.4. The results reinforce the findings discussed above. Notably, the lowest-scoring loop

conformer in most cases had RMSD values only slightly higher than the lowest-RMSD loop. We

interpret this to suggest that the sampling space of the Hash/RCD method is focused on native-like

conformers and ignores portions of the conformational space that are unlikely to be physiologically

relevant. Moreover, these RMSD values are comparable to those obtained from the lowest-scoring

loops obtained using RCD alone and contrast with the lowest-scoring conformers of long loops ob-

tained by Rosetta Loophash. Finally, they improve upon loop modeling using RosettaCM, which

interestingly was less effective at predicting short loops than we expected but reproduced the model

quality of long loops that was observed using either Hash/RCD or RCD alone.

Our results highlight the shortcomings of an exclusively template-based strategy when attempt-

ing to model long loops. When taken alongside the improvements in computation time, the results

suggest that Hash/RCD arrives at conformations similar in quality to RCD alone, but skips over

a large number of intermediate conformations that would otherwise be expensive to sample. By
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Figure D.3: Loops generated using Hash/RCD are comparable in quality to those using RCD alone.
Left: Histograms of the lowest RMSD values among loop conformers sampled by a variety of
methods. Although Rosetta Loophash slightly outperformed Hash/RCD, RCD alone, and Roset-
taCM when modeling short loops, it was unable to model native-like conformations for long loops.
Right: Histograms of the RMSD values of the lowest-scoring loop conformers.

further improving conformations obtained using conformational hashing, Hash/RCD achieves re-

sults comparable to RCD alone on computational timescales comparable to those of template-based

methods.
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D.4 Discussion

D.4.1 Complementing conformational hashing with template-independent modeling

Figure D.4: Pairwise comparison of
RMSD values among the best-scoring
loop conformations obtained using
Hash/RCD, Rosetta Loophash, RCD
alone, or RosettaCM.

Loop modeling algorithms that employ conformational

hashing methods must address the fact that most loops

found in structures deposited in the PDB have sequence

lengths of less than ten residues. This is evidenced by

our initial loop library, which was derived from about

87,000 protein structures and disproportionately consists

of short loops (Figure D.1). Additionally, longer loops

can cover a larger conformational space, further imped-

ing construction of long loops using conformational hash-

ing. When we designed Hash/RCD, we found that this

led to discrepancies between the loop closure rates for

different loop lengths. For example, whereas loops be-

tween three to five residues long were closed 96% of

the time, the loop closure rate dropped to 61% and 33%

among loops with lengths of either six to ten residues

or eleven or more residues, respectively. (Figure 2).

We mitigated this problem by using template recombi-

nation and fragment-based loop construction (see sec-

tion D.2), which improved the loop closure rate from

54% to 70%. Nonetheless, these results reinforced the

need for template-independent conformational sampling.

In this study, we integrated and applied an implementa-

tion of random coordinate descent to portions of loops

that could not be constructed by conformational hashing,

which compensated for the latter’s inability to close long
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loops. As a result, loop closure improved to 100%. Consequently, whereas a stand-alone conforma-

tional hashing approach might suffice when the goal is to construct very short loop regions, loops

found in most proteins will require a hybrid template-based/template-independent loop construction

algorithm.

D.4.2 Hash/RCD efficiently samples structurally diverse loop conformations

Prediction of structural heterogeneity in proteins can be achieved by sampling diverse conforma-

tions (Figure D.5), which could capture major and minor populations of the protein in equilibrium.

Random coordinate descent, although computationally demanding, achieves a high loop closure

rate that cannot be replaced by more CPU-efficient template-based methods. Relying on RCD only

in cases where conformational hashing was unsuccessful led to a significant reduction in CPU

time; this was demonstrated by a drop from 468ms using RCD alone to 161 ms using Hash/RCD

(Figure D.2). Thus, integrating conformational hashing with RCD combines the efficiency of con-

formational hashing with the high loop closure rate of RCD. The reduction in CPU time allows a

wider range of possible loop conformations to be considered (Figure D.4). However, it needs to be

noted that for longer loops in the benchmark set, the conformation of the experimentally determined

structure was not sampled in any of the models to within 2 Å (Figure D.3). Since this problem was

exclusively faced by loops longer than ten residues in length, it can be solved by incorporating

experimental data from technique such as electron paramagnetic resonance spectroscopy or fluo-

rescence resonance energy transfer, to reduce the size of the conformational space. Alternatively,

models obtained using Hash/RCD can be further refined in molecular dynamics simulations, which

may save considerable sampling time and assist in identifying more physiologically relevant loop

conformers.

D.5 Conclusion

The hybrid loop modeling method Hash/RCD provides an efficient way to sample structurally di-

verse loop conformations and is significantly faster than using the template-independent approach

RCD alone. We found that the constructed loop regions largely exhibit naturally occurring di-
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Figure D.5: Representative loop predictions obtained using Hash/RCD.

hedral angles due to their construction from experimentally observed conformations. While this

algorithm’s millisecond-timescale computation time was only quantified when implemented in the

BCL, we believe similar performance can be theoretically achieved in any protein structural mod-

eling program.

Two applications of this approach are proposed. First, it could be used for the prediction of

conformational ensembles in loop regions. For example, one could conceivably fit these loops

against experimental data to determine a weighted distribution of conformers that represents the

protein in question under equilibrium conditions. Second, the simultaneous prediction of adjacent

loops could reveal a protein’s topological details, for example by capturing to what extent two loops

may be intertwined. This may be relevant to multipass integral membrane proteins, as their solvent-

exposed loop regions are least likely to be resolved.
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Appendix E

Supplement to ”Rapid simulation of unprocessed DEER decay data for protein fold

prediction”

This Appendix contains supplementary information for Chapter 3.

Figure E.1: Data gathered in the ExoU C-terminus for this study.
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Table E.1: List of spin-labeled proteins in the Protein Databank.

Protein PDB Angle Distance Ref.
T4 Lysozyme 1ZYTa 5.23 0.83 [133]
T4 Lysozyme 2CUUa 7.24 0.84 [133]
T4 Lysozyme 2CUUa 3.39 0.78 [133]
T4 Lysozyme 2IGCa 11.49 0.81 [151]
T4 Lysozyme 2NTHa 3.06 0.8 [151]
T4 Lysozyme 2OU8a 7.13 0.82 [151]
T4 Lysozyme 2OU8a 9.08 0.86 [151]
T4 Lysozyme 2OU9a 15.13 0.84 [151]
T4 Lysozyme 2Q9Da 10.99 0.8 [151]
T4 Lysozyme 2Q9Ea 14.55 0.86 [151]
T4 Lysozyme 2Q9Eb 14.55 0.86 [151]
T4 Lysozyme 2Q9Ec 8.08 0.84 [151]
GB1 3V3Xb 4.78 0.83 [84]
GB1 3V3Xb 8.53 0.82 [84]
GB1 3V3Xb 1.13 1.02 [84]
GB1 3V3Xc 2 0.8 [84]
GB1 3V3Xd 5.65 0.78 [84]
GB1 3V3Xd 1.39 0.8 [84]
GB1 3V3Xd 2.71 0.81 [84]
GB1 5BMGa 10.97 1.08 [85]
GB1 5BMGb 4.57 0.79 [85]
GB1 5BMGc 13.52 1.13 [85]
GB1 5BMGd 5.89 0.8 [85]
GB1 5BMGe 1.45 0.99 [85]
GB1 5BMGf 7.7 0.84 [85]
GB1 5BMGg 8.47 0.87 [85]
GB1 5BMHa 8.29 0.77 [85]
GB1 5BMHa 9.38 0.77 [85]
GB1 5BMIa 7.42 0.83 [85]
Azurin 5I26a 4.8 0.81 [80]
Azurin 5I26b 0.55 0.99 [80]
Azurin 5I26c 0.92 1.01 [80]
Azurin 5I26d 0.89 1 [80]
Azurin 5I28a 0.5 1 [80]
Azurin 5I28b 0.71 1 [80]
Azurin 5I28c 0.32 1.01 [80]
Azurin 5I28d 0.25 1.01 [80]
Azurin 5I28e 4.49 0.96 [80]
Azurin 5I28f 1.81 1.01 [80]
Azurin 5I28f 2.15 0.98 [80]
Azurin 5I28h 2.1 0.89 [80]
Azurin 5I28i 5.44 0.8 [80]
Azurin 5I28j 6.8 0.85 [80]
T4 Lysozyme 5JDTa 2.52 0.78 [80]
T4 Lysozyme 5JDTa 0.85 0.76 [80]
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Figure E.2: Placement of experimental DEER restraints on protein structures used in this study.
Clockwise from top left: Bax (PDB: 1F16 model 8), CDB3 (PDB: 1HYN chains R/S), Rhodopsin
(1GZM chain A), Mhp1 (PDB: 2JLN), and ExoU (PDB: 3TU3, C-terminus only).

Figure E.3: Nitroxide centers of mass fall along the Cβ-electron vector. A) Depiction of spin label
from PDB: 2Q9D showing the nitroxide center of mass (purple) and the nitroxide bond midpoint
(green). B). Angle and relative distance of nitroxide center of mass along the Cβ-electron vector.
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Figure E.4: Optimization of RosettaDEER measurement coordinates. Left: Each of the rotamers
in Rosetta’s MTSSL rotamer library was converted into two coordinates: one representing the ni-
troxide ring center of mass (purple), which was used to evaluate clashes; and one representing the
nitroxide bond midpoint (silver), from which distances were measured. Shown over PDB 2CUU
residue 131. Right: Optimization scheme for reducing the number of measurement coordinates
using experimental T4 Lysozyme distance data. One thousand replicates were performed for each
of N clusters, with N ranging from 3 to 53 coordinates.
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Figure E.5: All simulated and experimental DEER decay data used in this study between experi-
mentally resolved residues. RosettaDEER could generally, but not always, simulate DEER traces
from native-like models that are comparable to the experimental data.
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Figure E.6: Deviation between experimental and simulated background decay (𝑘) and modulation
depths (𝜆).

Figure E.7: Enrichment of misfolded and misdocked decoys as a function of DEER decay trace
duration. Enrichment was quantified as the logarithm of the percentage of native-like models (top
10% by RMSD100SSE) that were also in the top 10% by score. An enrichment of 1 indicates that
the set of models constituting the top 10% by RosettaDEER score was identical to the set of models
constituting the top 10% by Rosetta score.
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Figure E.8: Effect of DEER restraints on structure prediction of Bax and ExoU. Top 3 best-scoring
models of ExoU (top) and Bax (bottom) folded either with (left) or without (right) experimental
DEER restraints. The native models are shown as cylinders for comparison.
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Appendix F

Supplement to ”Methodology for rigorous modeling of protein conformational changes by

Rosetta using DEER distance restraints”

This Appendix contains supplementary information for Chapter 4.

Figure F.1: Number of DEER restraints per spin-labeled residue across T4 Lysozyme and PfMATE.
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Figure F.2: All simulated and experimental DEER decay data used in this study between experi-
mentally resolved residues. All DEER traces determined by multilateration are shown in red. Ex-
perimental DEER traces are shown in black.
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Figure F.3: Comparison of distributions obtained using GLADDvu and those using the Roset-
taDEER multilateration algorithm. All DEER distance distributions determined by multilateration
are shown in black. DEER distributions calculated using GladdVU are shown in green, with the
shaded regions indicating 95% confidence intervals. Distance values shorter than 15 Å (indicated
by the dashed line) were not used to simulate DEER traces.
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Figure F.4: Comparison of distributions obtained using DeerAnalysis and those using the Roset-
taDEER multilateration algorithm. All DEER distance distributions determined by multilateration
are shown in black. DEER distributions calculated using DeerAnalysis are shown in green, with
the shaded regions obtained using the validation tool.
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Figure F.5: Comparison of distributions obtained using DeerNet and those using the RosettaDEER
multilateration algorithm. All DEER distance distributions determined by multilateration are
shown in black. DEER distributions calculated using DeerNet are shown in pink, with the shaded
regions obtained using ensemble statistics.
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Figure F.6: Comparison of average and standard deviation values obtained when fitting DEER
data collected in pfMATE and T4 Lysozyme to values obtained using DeerAnalysis and DeerNet.
Long-distance fitting artifacts were removed from fits obtained using DeerAnalysis. These fits
appeared to overstate the standard deviation values relative to GLADDvu, whereas those obtained
using DeerNet appeared to be biased toward certain width values.
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Figure F.7: Confidence analysis among the five best-scoring rotamer ensembles generated using
the RosettaDEER multilateration algorithm. Shaded regions depict 95% confidence intervals, and
line represents the mean distribution. Ensembles were selected using the AICc.
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Figure F.8: Comparison of DEER distance distributions used to validate pseudo-rotamers obtained
using the RosettaDEER multilateration algorithm. Distributions obtained using GLADDvu and
RosettaDEER are shown in green and grey, respectively. Confidence bands for RosettaDEER depict
the five best sets of pseudo-rotamers.
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Figure F.9: Rosetta energy functions for membrane proteins cannot identify the inward-facing con-
formation of PfMATE. In all three cases, the lowest-energy models are fully occluded from both
sides of the membrane. RMSD is measured from the inward-facing crystal structure (PDB: 6FHZ);
the first 50 residues were omitted.
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Appendix G

Supplement to ”pH-dependent structural dynamics of the glutamate-GABA antiporter

GadC”

This Appendix contains supplementary information for Chapter 5.

Figure G.1: Time-dependent glutamate transport by wildtype and cysless GadC reconstituted into
proteoliposomes filled with 5 mM GABA.
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Figure G.2: Glutamate transport activity by GadC cysteine mutants. All experiments executed in
triplicate and baseline-normalized. Wildtype transport rate is shown in black. Error bars show the
standard error of the mean.

231



Figure G.3: pH-dependent inactivation of glutamate transport activity by GadC cysteine mutants.
Transport activity at pH 4.5 and 7.5 are shown in mauve and orange, respectively. All experiments
executed in triplicate and baseline-normalized.
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Figure G.4: Representative EPR pairs do not show evidence of large-scale substrate-dependent
conformational changes in GadC. Top: DEER traces prior to and following background-correction.
Middle: DEER distance distributions at pH 4.5 with 1 mM GABA (orange) or glutamate (teal). Apo
distributions shown in grey. Bottom: continuous-wave EPR lineshapes with or without substrates.
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Figure G.5: pH-dependent DEER data and continuous-wave EPR spectra of GadC 143/480.

Figure G.6: Correlation between short-distance DEER components in spin pair 143/480 during
detachment of the tail.
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Figure G.7: DEER data and CW profiles of double-cysteine mutants labeled on both the bundle
and scaffold domains on the extracellular side.
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Figure G.8: DEER data and CW profiles of double-cysteine mutants labeled on both the bundle
and scaffold domains on the intracellular side.
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Figure G.9: DEER data and CW profiles of double-cysteine mutants labeled in EL4 and the scaffold
domain on the extracellular side.
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Figure G.10: DEER data and CW profiles of double-cysteine mutants labeled in IL1 and the scaffold
domain on the extracellular side.
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Figure G.11: DEER data and CW profiles of double-cysteine mutants labeled in the bundle domain.
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Figure G.12: Positions of the transmembrane helices among the five best low pH (pink) and high
pH (gray) models relative to crystal structure (shown in red, green, blue, and yellow for bundle
domain, hash domain, gating helices and EL4, respectively).
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Figure G.13: Experimental DEER distance distributions measured in GadC and compared to a
model generated de novo using RosettaFold.
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Appendix H

Supplement to ”Efficient sampling of loop conformations using conformational hashing and

random coordinate descent”

This Appendix contains supplementary information for Appendix D.

242



Table H.1: Protein structures used in the bench-
mark of Hash/RCD.

Protein PDB ID Length

Soluble proteins

Ribosomal protein S15 1A32 88

Acanthamoeba castellani profilin IB 1ACF 125

A-spectrin SH3 domain (D48G) 1BK2 57

β-Spectrin (CH domain) 1BKR 109

TRP1/HSC70 1ELW 252

HSD (S46D) 1OPD 85

Streptococcal protein G 1PGX 83

Phage 434 repressor 1R69 69

XcR50 1TTZ 87

Ubiquitin 1UBI 76

Topoisomerase I 1VCC 77

Glia maturation γ-factor 1VKK 154

APE2540 1WDV 304

Acetylcholinesterase 2ACY 98

CheY 2CHF 128

YeeU 2H28 260

SLC9A3R2 2HE4 90

HigA 2ICP 94

Membrane proteins

Aquaporin 1J4N 271

Mitochondrial ADP/ATP carrier 1OKC 297

Glycogen phosphorylase B 1PY6 498

V-type ATPase 2BL2 1560

GlpG 2IC8 182

DsbB 2K73 183

KdpD 2KSF 107

Rhodopsin II 2KSY 247

GlpG 2NR9 196

ApcT 3GIA 444

Riboflavin uptake protein 3P5N 378
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