
Statistical methods for optimal design and information preservation in pharmacokinetics and data

squashing with missing values

By

Ryan T. Jarrett

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Biostatistics

August 31, 2021

Nashville, Tennessee

Approved:

Bryan Shepherd, Ph.D.

Matthew S. Shotwell, Ph.D.

Jonathan Schildcrout, Ph.D.

Leena Choi, Ph.D.

André Diedrich, Ph.D.

Copyright © 2021 by Ryan T. Jarrett
All Rights Reserved

ACKNOWLEDGEMENTS

There are many people that I would like to thank for the support, advice, and mentorship that
they provided me with during my time at Vanderbilt. First, my dissertation advisor Dr. Matt
Shotwell has been has been a tremendous source of advice and mentorship. He has encouraged me
to pursue my own interests, while also introducing me to new statistical problems, new methods for
computation and estimation, and novel perspectives on scientific research. Much of my development
as a statistician is thanks to his mentorship.

Second, I would like to thank all those on my research assistantship and, in particular, my RA
advisor, Dr. Rameela Raman. I began my RA on the first day that I arrived at Vanderbilt. Since
that time, Rameela has been a superb mentor. She has always been an excellent source of statistical
and professional advice, while also seeking opportunities for me to publish research papers, attend
conferences, and receive awards. Thank you, Rameela, for your unwavering support.

My dissertation committee has also offered valuable advice throughout the progression of this
thesis. Thank you Drs. Bryan Shepherd, Jonathan Schildcrout, Leena Choi, and André Diedrich for
your insightful contributions and feedback. I would also like to thank the faculty, staff, and students
of the Vanderbilt Department of Biostatistics. It has been a pleasure and an honor to be a member
of our department. This is, in large part, due to the welcoming and stimulating environment that
you have created.

Finally, I would like to thank my family and friends. Many of you have helped me directly by
proofreading my papers or offering feedback on presentations. All of you have helped me become
the person that I am today. This would not have been possible without you.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . ix

Chapter

1 Introduction . 1

2 Optimal BIS reference functions for closed-loop induction of anesthesia with propofol . . . 3

2.1 Introduction . 3
2.1.1 Background . 3
2.1.2 Contributions in this chapter . 4

2.2 Preliminaries . 5
2.2.1 Pharmacokinetic model . 5
2.2.2 Pharmacodynamic model . 7
2.2.3 Prior construction and patient parameters 7
2.2.4 Closed-loop control mechanism . 8

2.3 Reference function . 8
2.3.1 Reference function optimization . 9
2.3.2 Identification of optimal reference functions from training set 12

2.4 Performance of optimized reference functions . 14
2.4.1 Comparison approaches . 14
2.4.2 Simulation results . 14

2.5 Discussion . 19
2.5.1 Limitations . 19

3 R statistical software package: tci . 21

3.1 Introduction . 21
3.1.1 Background . 21
3.1.2 Existing software and need for this package 21

iv

Rectangle

3.1.3 Propofol example . 22
3.2 Theory . 23

3.2.1 Notation . 23
3.2.2 TCI Algorithms . 23

3.2.2.1 Jacobs’ algorithm for plasma targeting 24
3.2.2.2 Shafer-Gregg algorithm for effect-site targeting 24

3.3 Examples . 25
3.3.1 Pharmacokinetic model . 26
3.3.2 TCI dosing schedules . 26
3.3.3 TCI dosing schedules with a PD model . 28
3.3.4 Simulation functions . 28

3.4 User-defined functions . 34
3.4.1 Custom PK models . 34
3.4.2 Custom TCI algorithms . 37

3.4.2.1 Example effect-site algorithm . 38
3.5 Summary . 39

4 Data squashing with missing values . 42

4.1 Introduction . 42
4.1.1 Background . 42
4.1.2 Prior work . 42
4.1.3 Contributions in this chapter . 43

4.2 Data squashing . 44
4.2.1 Theory . 44
4.2.2 Implementation . 45

4.2.2.1 Clustering mechanism . 46
4.2.2.2 Selection of moments and number of data points 46
4.2.2.3 Identification of squashed data points and weights 47

4.2.3 Simulation performance . 47
4.3 Squashing with missing values . 48

4.3.1 Propagation squashing - theory . 50
4.3.2 Evaluation of propagation squashing in simulations 52
4.3.3 Expectation Squashing - theory . 53

4.3.3.1 Case when all numeric observations are missing within a cluster . . 58
4.3.4 Evaluation of expectation-squashing in simulations 58

4.4 Workers’ Compensation Example . 60
4.4.1 Background . 60
4.4.2 Pre-processing of workers’ compensation data set 62
4.4.3 Squashing procedures . 66
4.4.4 Analyses . 66

4.4.4.1 Handling of missing data . 66
4.4.4.2 Analysis 1 - Multiple linear regression with FIML 66
4.4.4.3 Analysis 2 - Ordinal regression with MI 70

4.5 Discussion . 73

5 Conclusion . 75

5.0.1 Future work . 76

v

REFERENCES . 79

vi

LIST OF TABLES

Table Page

2.1 Summary of covariates and PK-PD parameters for N=122 patients from Eleveld
population PK-PD model . 11

2.2 Performance of optimized reference functions in testing set of N=72 patients. . . . 14

3.1 Predicted and true PK-PD parameters for an example patient. 26

3.2 Reproduction of Table 1 from Cascone et al. (2013): Values and dimensions of the
three-compartmental model parameters. 36

4.1 Missingness patterns and associated weights for amputation. 52

4.2 Distribution of number of clusters resulting from e-squashing procedure 60

4.3 Consolidation of levels in industry type variable. 64

4.4 Description of variables selected from Workers Compensation data set 64

vii

LIST OF FIGURES

Figure Page

2.1 Diagram of a 3-compartment pharmacokinetic model with an effect-site linking to
the pharmacodynamic model. 6

2.2 Visualization of optimized reference functions. 13

2.3 Simulated inductions for N = 72 test set patients. 16

2.4 Comparison individual-level criteria within the testing group. 17

2.5 Simulated BIS-time curves for N = 72 test set patients at optimized reference
functions. 18

3.1 Predicted patient responses to infusion schedule defined by ’tci’ function. 29

3.2 Predicted patient BIS responses to infusion schedule defined by ’tci_pd’ function. 30

3.3 Simulated patient data under PK-PD model misspecification. 31

3.4 Simulated response of example patient under Bayesian closed-loop control. . . . 33

3.5 Reproduction Figure 2 from Cascone et al. (2013) 34

3.6 Evaluation of user-defined remifentanil model. 37

3.7 Evaluation of user-defined TCI effect-site algorithm. 40

4.1 Performance of basic squashing method. 49

4.2 Performance of propagation squashing. 54

4.3 Distribution of cluster sizes in p-squashing procedure at 20% and 50% missingness. 55

4.4 Performance of imputation squashing. 59

4.5 Distribution of cluster sizes in e-squashing procedure at 20% and 50% missingness. 61

4.6 Description of variables in workers’ compensation data set. 65

4.7 Linear regression on logged time until ANCR with first-order terms. 68

4.8 Linear regression on logged time until ANCR with second-order terms. 69

4.9 Ordinal regression on claim type with first-order terms. 71

viii

4.10 Ordinal regression on claim type with interactions. 72

5.1 Probability that the complete-case variance will underestimate the sample variance
as a function of complete case size. 78

ix

LIST OF ABBREVIATIONS

BIS Bispectral Index

BIS50 Closed-loop induction strategy targeting BIS=50

CLC Closed-loop control

DoH Depth of Hypnosis

E-M Expectation-maximization procedure

FIML Full-information maximum likelihood

MAP Maximum a posteriori

MAR Missing at random

MCAR Missing completely at random

MI Multiple Imputation

MNAR Missing not at random

OpenLoop Open-loop induction strategy with weight- and age-adjusted doses

PD Pharmacodynamic

PK Pharmacokinetic

RF Reference function

RFe RF with exponential functional form

RFs RF with sigmoidal functional form

SET Stable entry time criterion

TCI Target-controlled infusion

TD Total dose criterion

TZ Target zone (BIS = [40,60])

WOS Weighted overshoot criterion

x

Chapter 1

Introduction

This dissertation aims to extend statistical methodological research in two distinct directions.
The first concerns the automation of intravenous drug delivery during anesthesia through "closed-
loop" systems. Systems are termed closed-loop when a response signal (i.e., a measurement of a
patient’s depth of hypnosis) is fed directly back to the mechanism that controls the input delivery
(i.e., the drug infusion rate), thereby "closing" the feedback loop. As of the writing of this dis-
sertation, closed-loop systems are still largely experimental in anesthesiology; however, automation
has been a long-standing goal within anesthesiology.(Absalom et al., 2011) The primary interest in
automation is in its potential to more precisely respond to the substantial inter- and intra-patient
variability in pharmacokinetics (PK, i.e., how a drug is processed by a body) and pharamacody-
namics (PD, i.e., how a person responds to a specific amount of drug).(Kuck and Johnson, 2017)
This variability confounds the ability to reliably sedate patients at the desired level: if the effective
dose is too small, a patient may experience interoperative awareness; if too large, a patient may
experience undesired cardiovascular events or delirium. During the induction of anesthesia, the goal
is to rapidly and reliably transition a patient from an awake state to a stable state of anesthesia. At
the time of the initial induction dose, however, one cannot know the precise dosage required due to
PK-PD variability.

Chapter 2 introduces a framework for optimizing closed-loop control of anesthetic delivery within
a population during the induction of anesthesia according to a user-specified criterion. This criterion
could reflect any number of quantities of clinical interest. In Chapter 2, we consider minimizing a
combination of over- and under-shoot of the target depth of hypnosis (DOH), time to stably reach
the target DOH, and the amount of drug (i.e. propofol) delivered. The problem of unobserved
inter-patient variability is considered from an optimal design of experiments perspective. When
measurements of patients’ DOH are continuously sampled at regular intervals, as they are within
this context, the primary experimental conditions that can be modified to elicit a desired response
are the infusion rates themselves. To this end, we propose the specification of a "reference function"
to be used by the closed-loop controller. This reference function determines the value of the response
variable that is targeted by the controller as a varying function over time and, in doing so, effectively
implements a protocol for determining infusion rates. By optimizing the parameters of the reference
function according to a population-level criterion, we can identify a protocol that is optimal for the
criterion within the population of patients.

Chapter 3 continues in the same direction by introducing an open-source software package in
the R programming language, tci, that flexibly implements open-loop target-controlled infusion
(TCI) algorithms, as well as closed-loop control systems, for compartmental PK and PK-PD models.
Briefly, TCI systems allow the user (i.e., the anesthesiologist) to target specific drug concentrations
for a patient, rather than specifying infusion rates directly. This is discussed in more depth in
Chapters 2 and 3. The TCI system then calculates the infusion rates required to achieve and
maintain the concentration based on a population PK model that is adjusted for relevant patient
covariates, such as weight, sex, and age. Though commonly termed "open-loop" systems, in practice
a clinician will adjust the target concentration based on patient responses, thereby "closing" the

1

feedback loop, albeit indirectly.
TCI systems are much more established in anesthesiology than closed-loop control though, in-

terestingly, are still unapproved for use in the United States by the FDA.(Dryden, 2016) The tci
software package aims to fill a distinct void: there currently are no packages in R, or any other
commonly-used statistical programming languages, that will implement TCI. Further, the only soft-
ware that will implement TCI is either proprietary or written in low-level programming languages
such that it is not readily accessible to, or modifiable by researchers interested in the subject. Conse-
quently, they are not designed for research into or experimentation with TCI algorithms. Chapter 3
provides a more-complete description of the software currently available. tci, by contrast, is freely-
avaliable, written in a commonly-used statistical programming language, and is easily customizable
by the user.

Chapter 4 of this dissertation proceeds in a distinctly different direction. Where Chapters 2 and
3 aim to contribute to the rapidly developing forefront of research in anesthesia and applied control
systems, Chapter 4 aims to extend a promising but largely unknown technique for statistical data
compression termed "data squashing" or "squashing." First introduced by DuMouchel et al. (1999),
the goal of squashing is to summarize a large data set with a much smaller version that contains
synthetic "pseudo-data" on the same variables and a corresponding set of frequency weights, such
that each pseudo-data point typically represents many points in the original data set. The squashed
data set is constructed in such a way as to preserve the statistical information with respect to
an arbitrary likelihood function applied to the original data set. Consequently, a model fit to the
squashed data set will closely replicate the results that would have been observed had it been fit to
the original data set. Since the squashed data set is substantially smaller, however, analyses that
were computationally demanding or prohibitive on the original data set may be feasible with the
squashed data set. The fact that squashing replaces real data with pseudo-data points provides
an ancillary benefit: patient privacy and proprietary claims associated with the original data are
protected. This facilitates direct sharing of data and analyses among researchers where it would
otherwise not be possible.

Despite the highly promising results of DuMouchel et al. (1999), surprisingly little effort to extend
squashing has been made in the intervening years. In Chapter 4 we describe these prior efforts and
suggest reasons why, we believe, squashing has not been more widely adopted. One reason for this
is that the original squashing method did not provide any mechanism for handling missing data.
To address this potential barrier to adoption of data squashing, we propose two different methods
to handling missing data within data squashing, which we term "propagation squashing" or "p-
squashing", and "expectation squashing" or "e-squashing." In the first, missingness from the original
data set is propagated on to the p-squashed data set while the information required for maximum
likelihood-based missing data techniques is preserved in the p-squashed data set. In e-squashing
the squashed data set is constructed to preserve the expectation of an arbitrary log-likelihood. This
approach is motivated by the E-M algorithm, which is commonly used as an estimation procedure
for models with missing data. E-squashing preserves the likelihood that results from a single E-step
of the E-M algorithm. In doing so, it relies on additional approximations, but also results in a fully-
observed data set. We conduct simulations to evaluate the performance of each squashing method
and apply them to a real data set consisting of approximately 2.2 million workers’ compensation
claims in New York state from January 2000 to June 2021.

2

Chapter 2

Optimal BIS reference functions for closed-loop induction of anesthesia with propofol

2.1 Introduction
2.1.1 Background

During the intravenous induction of anesthesia, the hypnotic agent propofol is frequently ad-
ministered to a patient to induce a loss of consciousness and amnesia. The advantages of propofol
are its rapid onset, short duration of action, and low incidence of postoperative nausea and vom-
iting.(Sahinovic et al., 2018) For many patients, a rapid administration of propofol may be safe,
reduce patient pain and discomfort on injection, and assist with patient intubation upon cessation
of breathing.(Bibian et al., 2006; Hajat et al., 2017) Consequently, it is common in clinical practice
to deliver an initial bolus or rapid infusion to bring the patient to a concentration that elicits the
desired depth of hypnosis, followed by a slower infusion to maintain the effect.(Morton, 2009) De-
spite a favorable pharmacokinetic (PK) and pharmacodynamic (PD) profile, however, propofol is not
without risks to patients. Higher doses of propofol have been associated with postoperative nausea
and delirium, slower recoveries from anesthesia, and dose-dependent intraoperative hypotension. In
some patients, such as the elderly or physically compromised, this may increase the risk of acute
kidney and myocardial injury.(Bibian et al., 2006; Marik, 2005; Phillips et al., 2015; Wesselink et al.,
2018; Sahinovic et al., 2018) For these reasons, it may be important in some circumstances to use
the lowest effective dose.

The ability to manage these benefits and risks is confounded by a high degree of interpatient
PK-PD variability that makes it difficult to anticipate the required effective dose for a particular
patient.(Mandel and Sarraf, 2012) Target-controlled infusion (TCI) systems control the administra-
tion of medication by using measured patient covariates (e.g., age, weight, sex) and an underlying
PK or PK-PD model to estimate the infusion rate required to reach and maintain a target drug con-
centration or clinical effect. A clinician may then manually adjust the target in response to patient
feedback. Since patient responses are not directly incorporated into the calculation of infusion rates,
however, TCI systems are termed “open-loop.”(Dumont and Ansermino, 2013; Struys et al., 2016)

Closed-loop controllers (CLC), by contrast, collect patient data in real time and adjust infusion
rates in order to maintain a specified reference value. The most commonly used reference value indi-
cating a patient’s depth of hypnosis is the Bispectral Index (BIS), an electroencephalography-derived
measurement with values between zero and 100. Lower values indicate greater degrees of sedation
and values between 40 and 60 are typically considered sufficient for general anesthesia.(Brogi et al.,
2017) By adapting in real time to patient responses, CLC provide a mechanism for precisely deter-
mining patient depth of hypnosis even in the presence of substantial inter- and intra-patient PK-PD
variability. More precise control of anesthesia will enable greater predictability in patient responses.
This, in turn, may allow for more optimal care and increase patient safety during operations involving
anesthesia.(Dumont and Ansermino, 2013)

A number of closed-loop controllers have been proposed for the induction of anesthesia that
function in different ways. For example, proportional-integral-derivative (PID) controllers (West
et al., 2013; Padula et al., 2017) adjust infusion rates according to the proportion, integral, and

3

derivative of the difference between the controlled variable and the reference value. Parameters may
be tuned such that the PID controller achieves an acceptable level of performance within a target
population and is therefore “robust” to uncertainty in population PK-PD. Bayesian controllers, by
contrast, update a patient-specific model as measurements are gathered and deliver an infusion
designed to reach the reference value as predicted by the model. These may also be tuned to achieve
robust performance within a population, as in De Smet et al. (2007). They also have the benefit
of incorporating patient covariates by using a TCI system. Work by Schiavo et al. (2021) aims
to identify an optimal bolus dose for patients using PID control to emulate the model-based dose
traditionally calculated by TCI systems.

The common element of these controllers is the input of a reference signal, about which the
controller aims to maintain the patient’s response. Most commonly, the reference signal is held
constant at BIS=50 and the controller aims to titrate infusion rates so as to achieve and maintain
this value.(West et al., 2013; Nascu et al., 2015; Padula et al., 2017; Brogi et al., 2017) There are
some exceptions to this. Padula et al. (2016) and Schiavo et al. (2021) define time-varying reference
signals for proportional-integral and PID controllers, respectively, achieved by applying an external
“feed-forward” signal that directs infusion rates without dependency upon patient feedback.

2.1.2 Contributions in this chapter
In this chapter, we propose a framework for replacing the standard fixed reference value with a

time-varying reference function (RF). The goal of this framework is to improve the ability of closed-
loop controllers to achieve clinical outcomes in the presence of substantial unobserved interpatient
PK-PD variability. Motivated by principles of optimal design of experiments, the RF is “designed”
according to a user-specified criterion that incorporates variability explained by patient covariates
and unexplained PK-PD variability within the patient population. For example, one criterion con-
sidered in this chapter is the average time required for a patient to stably achieve a BIS value
between 40 and 60. The full set of RF are detailed in Section 2.3.

The values of the RF are used as inputs to a controller that will translate the target values
into corresponding infusion rates. The process by which this happens will vary depending on the
controller. In this chapter, we implement a Bayesian controller that estimates a patient-specific
PK-PD model as data are collected. At each dosing time, the value of the RF is translated into a
target effect-site concentration using the patient-specific PD model. The target concentration is then
converted into an infusion rate by applying a TCI algorithm at the patient-specific PK model. Patient
PK-PD model parameters are updated at regular intervals such that infusion rates become more
accurate over time. This approach is compatible with any controller and can be complementary to
existing efforts to make controllers robust in target populations (e.g., robust PID). Further, because
the RF is optimized offline, it can be put in place prior to the administration of any medication.

Each RF defines a dosing protocol that will be applied to a population. To evaluate the perfor-
mance of a specific RF, we simulate patient responses following the protocol and calculate quantities
of interest, such as how quickly a patient entered the target zone of BIS = [40,60], or how much
propofol was administered. For our simulations, we create a population of synthetic patients based
on the Eleveld population PK-PD model.(Eleveld et al., 2018) Using the code and data provided by
Eleveld et al. (2018), we identify the maximum a posteriori (MAP) PK-PD parameter estimates for
the N = 122 patients whose data were used to develop both PK and PD components. These MAP

4

estimates represent the posterior mode of the PK-PD parameter distribution for each person and,
therefore, represent each person’s most-likely parameters estimates based on the structure of the
Eleveld model and the persons’ individual data. For our simulations, the MAP estimates are used to
define a set of “true” parameters that dictate a patient’s BIS response but are unknown to the CLC.
The CLC operates based on only the information that would be known in a real induction: it begins
with a model based on observable patient covariates and “learns” a more accurate patient-specific
model as BIS observations are made available.

Inductions are simulated for a random subset of 50 patients in order to identify optimal RF
parameters. The remaining 72 patients are used to evaluate the performance of each optimized
RF. Responses for these 72 patients are also simulated using a strategy in which the RF is fixed at
BIS=50 (BIS50). Finally, we also simulate results for each patient under an open-loop strategy, in
which patient receive doses adjusted to their weight and age in accordance with propofol guidelines
(OpenLoop).

The remainder of the chapter is structured as follows: Section 2.2 describes the PK-PD model, the
closed-loop control mechanism, and the construction of the prior distribution on PK-PD parameters
that is used by the CLC. Section 2.3 describes the specification of a RF and an optimality criterion
and presents the set of optimized RF based on the 50 patients in the training set. Section 2.4
discusses the performance of the optimized RF on the 72 test-set patients and compares to BIS50
and OpenLoop strategies. Section 2.5 concludes and discusses strengths and limitations of the
optimal reference function methodology.

2.2 Preliminaries
2.2.1 Pharmacokinetic model

Patient PK-PD are simulated using the Eleveld population model. Though full details regarding
the final population model are described in Eleveld et al. (2018) and development of the PK compo-
nent in Eleveld et al. (2014), we will briefly describe the relevant portions here. The Eleveld model is
a nonlinear mixed-effects model in which the PK of propofol are described by a three-compartment
model. Propofol is infused into a central compartment before circulating between two peripheral
compartments or transferred to an effect-site compartment. Heuristically, the central compartment
represents the plasma, the two peripheral compartments represent tissues that equilibrate rapidly
(e.g., muscle) and slowly (e.g., fatty tissues).(Al-Rifai and Mulvey, 2016) Propofol is eliminated from
the central compartment or transferred to an effect-site compartment (i.e., the brain) that links to a
PD model. Figure 2.1 provides a diagram of the three-compartment model. The parameters of the
three-compartment model describe the volume of each compartment and the rates at which propofol
is transferred between compartments and eliminated from the central compartment.

Each of the parameters of the three-compartment model are, in turn, modeled as functions of
a fixed effect term describing the average population value that is scaled by a function of observed
patient covariates (e.g., weight, age) and a random effect term describing variability between patients
conditional on covariate values. Consequently, each patient has two sets of PK parameter values:
1) “predicted” PK values calculated by the fixed effects at the patient’s covariates, and 2) “true”
parameter values that incorporate both the patient’s covariates and the patient’s random variation
from the typical value. The former can be calculated for a patient before administration of any
infusions while the latter are unobservable and cannot be known, except in a simulated setting. In

5

V1

Central
compartment

V3

Peripheral
compartment

V2

Peripheral
compartment

Drug infusion

K12

K21

K13

K31

K10

Effect site

K1e

Ke0

KR

Figure 2.1: Diagram of a 3-compartment pharmacokinetic model with an effect-site linking to the pharmacodynamic
model. Drug is administered to the central compartment, from which it circulates between two additional compart-
ments and is eliminated according to rate constants k12, k21, k13, k31 and k10, respectively. Absorption from the
central compartment to the effect-site compartment, described by k1e, ke0, allows for a time delay between drug
administration and pharmacodynamic effect.

our simulations, the empirical Bayes estimates are used as the patients’ “true” parameters. The
MAP estimates plausibly describe patient PK-PD and incorporate variability both explained and
unexplained by patient covariates. Using these parameters, patient PK are simulated according to
the following set of differential equations.

A =

−(k10 + k12 + k13) V2

V1
k21

V3
V1

k31 0
V1
V2

k12 −k21 0 0
V1
V3

k13 0 −k31 0
V1
Ve

k1e 0 0 −ke0

B = [1, 0, 0, 0]T

dC(t)
dt

= A · C(t) + B · u(t)

(2.1)

These equations describe the change in compartmental concentrations over time, dC(t)
dt , as a

function of concentration, C(t), and infusion rates, u(t). The parameters [V1, V2, V3] represent the
volumes within each compartment and the parameters kij , i, j ∈ {1, 2, 3, e} are rate constants
describing the transfer of propofol from compartment i to compartment j. To ensure that the fourth
effect-site compartment does not disrupt the dynamics of the three-compartment system, the volume
of the effect-site is arbitrarily set at Ve = V1/10, 000. Additionally, the rate of absorption in the
effect site compartment is set equal to the elimination rate, such that k1e = ke0/10, 000.(Shafer and
Gregg 1992)

6

2.2.2 Pharmacodynamic model
As with the PK model, each patient has a set of true PD model parameters that are used to

simulate the patient’s BIS response to the effect-site concentration. Specifically, a sigmoidal Emax
model is used.

BIS(t) = BISbaseline ·
(

1 − Cγ
e50

Cγ
e50 + Cγ

e

)
+ ϵ, ϵ ∼ N(0, σ2)

BISdelay(S) = 15 + exp(0.0517 · AGE)
(2.2)

Only the concentration at 50% effect, Ce50, and the residual error variance, σ2, include random
effects in the Eleveld model. Consequently, the predicted and true values are identical for BISbaseline

and γ. The PD model also incorporates a time-lag between the underlying BIS response and its
observation to describe the BIS signal processing delay. This time lag (in seconds) increases pre-
dictably with patient age from a minimum of 15 seconds. To implement this, BIS observations that
are simulated at time t are not observed by the controller until time t + BISdelay.

2.2.3 Prior construction and patient parameters
While the true patient PK-PD parameters describe the data generating process, the predicted

parameters are used to formulate a prior distribution on the patient’s PK-PD parameters. These
are readily calculated by evaluating the Eleveld model equations. Taking the V 2 parameter as an
example, the formula given in the Eleveld model is

V 2i = 25.5 · WGTi

70
· exp(−0.0156(AGEi − 35)) · exp(ηV 2)

ηV 2 ∼ N(0, 0.565)
(2.3)

where the values 70 and 35 are the weight (kg) and age (years) for the reference individual. The
value 25.5 is the typical V 2 parameter value in the population, and -0.0156 is the estimated amount
that V 2 decreases with age. The patient’s estimated V2 parameter, V̂ 2, is calculated by simply
evaluating the function at the patient’s age and weight while ignoring the final term, exp(ηV 2). The
formulas for the PK-PD parameters are too elaborate to reproduce them all here; however, each of
the varying PK-PD parameters in the Eleveld model are of the same form:

θi,true = θtypical · g(Xi) · exp(ηi) (2.4)

where g(Xi) is a function scaling the typical parameter value according to patient covariates.
The prior mean for each parameter is given by θ̂i = θtypical · g(Xi). Since some PK parameters are
correlated with each other (e.g., V 2 is used in the calculation of Q2), we empirically estimate each
patient’s prior variance-covariance matrix through Monte Carlo simulation. For each patient, 10,000
vectors of random effects, H, are drawn from a multivariate normal distribution:

H ∼ MVN(0, Ω)

Ω = diag(ωP K , ωP D)

ωP K = (0.610, 0.565, 0.597, 0.265, 0.345, 0.209)

ωP D = (0.242, 0.702, 0.230)

(2.5)

7

where ωP K are the variances describing interpatient variability for parameters (V 1, V 2, V 3, CL, Q2, Q3)
and ωP D are the variances for (Ce50, ke0, σ2). The matrix H has dimensions 10,000 × with the jth
column vector, ηj providing the random effects for the jth PK-PD parameter. A vector of “true”
values for each PK-PD parameter is calculated by adding each vector of random effects to the cor-
responding logged predicted parameter value. Letting θ̂i = [θ̂i1, ..., θ̂i9]T be the vector of predicted
PK-PD parameters for patient i, the jth vector of “true” parameter values is

log(θ̂ij,true) = log(θ̂ij) + ηj (2.6)

where θ̂ij,true is a vector with length 10,000. A 10,000 × 9 matrix of “true” PK-PD parameters for
the ith patient, Θ̂i,true, is constructed with θ̂ij,true as the jth column. The prior variance-covariance
matrix is given by the sample covariance of this matrix.

Σ̂i = cov(log(Θ̂i,true)) (2.7)

The vector of unknown patient-specific PK-PD parameters, θi,true, are then modeled with a
log-normal prior distribution.

log(θi,true) ∼ MVN(log(θ̂i), Σ̂i) (2.8)

2.2.4 Closed-loop control mechanism
For each simulated induction, BIS observations are generated according to each patient’s true

PK-PD model at a rate of one observation per 10 seconds. This is selected to reflect the default
smoothing rate of BIS VISTA monitoring systems under Monitor Mode III, in which the BIS signal
is smoothed in 10-second increments to calculate a time-averaged trend that is responsive to state
changes during induction.(Aspect Medical Systems, 2005) As observations become available (delayed
by the individual’s time-lag), the posterior distribution is estimated using a Laplace approximation at
minutes 1, 2, 4, 8, 10, 12, 15, and 20. Following each update to the posterior distribution, the target
BIS values obtained from the reference function are translated into target effect-site concentrations
by inverting the PD model at the posterior parameter estimates. Effect-site concentrations are then
converted into infusion rates using the Shafer-Gregg TCI algorithm.(Shafer and Gregg, 1992) Using
each person’s posterior PK estimates, the Shafer-Gregg algorithm calculates a 10-second infusion
designed to bring a patient’s effect-site concentration to the target level as quickly as possible without
overshoot.

2.3 Reference function
Within each simulation, BIS targets are specified by a parametric RF. The goal of the RF is

to provide a simple but flexible mechanism for identifying BIS targets. We consider two possible
RF specifications: a three-parameter exponential reference function (RFe), and a four-parameter
sigmoidal reference function (RFs).

8

RFe(t; B0, Bf , λ) = (B0 − Bf)e−λt + Bf

RFs(t; B0, Bf , β, t50) = B0 − (B0 − Bf) ∗ tβ

tβ
50 + tβ

(2.9)

In both functions, B0 defines the target BIS value at time t = 0 and Bf is the BIS value desired
by the end of induction. In the exponential function, λ is the exponential decay constant. In the
sigmoidal function, t50 is the time at which the target is set to the midpoint between B0 and Bf ,
and β is the “Hill parameter” that defines slope of the curve at t50. For simplicity, we refer to the
set of RF parameters for either function as Λ. While a number of alternative RF could have been
selected, exponential and sigmoidal functions monotonically decrease from B0 before asymptoting
at Bf , similar to the expected induction path for a patient. Further, since both functions can vary
in the starting target, B0, they both allow induction strategies that include an initial bolus dose,
followed by slower infusions, as is typical in inductions. Finally, by setting B0 = Bf = 50, both RF
include a fixed reference point of BIS = 50 as a special case.

To simplify the RF parameterization, we require both RF to asymptote at BIS = 50 by fixing
Bf = 50. To ensure that the induction concludes in a reasonable amount of time we also add the
constraint that the RF must pass through the point BIS = Bf + ϵ at time t = tϵ. Here, ϵ is some
small distance from the final induction target (BIS=50), and tϵ is the time at which the RF must
equal Bf + ϵ. We set ϵ = 1 and require tϵ ≤ 10. This allows us to reparameterize λ and t50 in RFe
and RFs, respectively, as follows.

λ = (log(B0 − Bf) − log(ϵ)) /tϵ

t50 = tϵ

(
ϵ

B0 − Bf − ϵ

) 1
β (2.10)

Consequently, the parameter sets are ΛRF e = (B0, tϵ), ΛRF s = (B0, γ, tϵ).

2.3.1 Reference function optimization
The reference function effectively defines a dosing protocol to be carried out within a population,

though the protocol is carried out differently for each patient (i.e., the same RF values result in
different infusion rates due to an individual’s PK-PD model). To evaluate how well the protocol
works for any specific patient, we can define an individual-level objective function that describes
a clinical criterion in terms of the patient’s BIS-time curve when the patient targets the RF. Due
to population PK-PD variability, any single RF will result in a different BIS-time curve for each
patient. Consequently, there will also be a distribution of corresponding individual-level criterion
values. To optimize a RF for the population, a population-level criterion is defined that is a function
(e.g., the mean) of the individual-level values.

This optimization process is similar to that of optimal experimental design methodologies for
“robust” design criteria such as the ED- or minimax-optimal designs.(Dodds et al., 2003; Zhou,
2008) In these cases, the experimenter defines a set of experimental conditions at which to take
measurements so as to maximize the information gathered about a set of parameters. During
induction of anesthesia, there is little need to determine optimal sampling times as BIS observations
are being gathered continuously. Instead, the experimenter must determine the set of infusion rates

9

to be administered or, more specifically, the parameters for a protocol that will determine how the
infusion rates are be identified.

As with the prediction variance criteria, we consider criteria that are a function of the BIS-time
response curve; however, we select them to reflect quantities of clinical significance. Specifically, we
consider 1) the weighted over and undershoot (WOS) of the region BIS = [40, 60] (hereafter the
“target-zone” or TZ), 2) the “stable entry time” (SET), defined as the time until the patient reaches
the TZ without subsequently overshooting, and 3) the total dose (TD) of propofol administered
until the SET. The three individual-level optimization criteria are described by the equations below
in which f(t) is the patient’s BIS response at time t.

ϕW OS = α

∫
(f(t) − 60)+ dt + (1 − α)

∫
(40 − f(t))+ dt

ϕSET = min(t | ∀ t∗ ≥ t, f(t∗) ∈ [40, 60])

ϕT D =
∫ ϕSET

0
kR(t)dt

(2.11)

The tuning parameter α in ϕW OS describes the weight placed on TZ undershoot relative to
overshoot and the + subscript indicates that only positive values are evaluated. kR(t) is the propofol
infusion rate in milligrams per minute at time t.

Each individual-level criterion, ϕ, is evaluated across the distribution of PK-PD variability in
the population. The distribution of MAP parameters incorporates both explained variability from
differing covariate values between patients, and unexplained variability due to unobserved patient
characteristics. From the population of 122 patients, a random sample of 50 were selected as a
training set on which to optimize the RF, while the remaining 72 were used as a hold-out testing
set. A summary of patient covariates and MAP PK-PD parameter values, stratified by testing set,
is provided in Table 1.

A population-level criterion, Φ, is calculated by applying a function to the distribution of
individual-level criterion values, ϕ. Letting θ0 be the distribution of “true” patient parameters,
the population criterion for the mean and variance can be expressed as

Φ(Λ) =
∫

g(ϕ(Λ, θ0))f(θ0)dθ0 (2.12)

where f(θ0) is the probability density function for θ0 and g(X) = X for the population mean and
g(X) = (X−E[X])2 for the population variance. In this chapter, the integral in the above equation is
approximated by summing over the 50 patients included in the training data set. The optimal set of
RF parameters, Λ∗ is given by minimizing Φ(Λ) with respect to Λ: Λ∗ = arg min

Λ
Φ(Λ). Depending

on the individual-level criterion selected, either minimizing the population mean or the population
variance may be of clinical interest. In the case of the stable entry time, ϕSET , we hypothesized
that both may be of interest: minimizing the average SET may result in reliably rapid inductions,
while minimizing the variance in SET between patients may make inductions more predictable and
assist in operation planning.

10

Table 2.1: Summary of covariates and PK-PD parameters for N=122 patients from Eleveld population PK-PD model
(used to develop PD component). Prior PK-PD parameters were calculated using patients’ covariate values. "True"
parameter values are given by maximum *a posteriori* (MAP) estimates for each patient. Parameters with standard
deviations of zero are assumed by the Eleveld model to be fixed within the population.

Train (N=50) Test (N=72) Total (N=122)
Covariates (observed)

Age (years)
Mean (SD) 36.82 (20.99) 34.49 (20.35) 35.44 (20.56)
Range 3.00 - 74.00 3.00 - 73.00 3.00 - 74.00

Weight (kg)
Mean (SD) 70.81 (27.38) 69.13 (30.31) 69.82 (29.04)
Range 15.00 - 124.00 15.00 - 141.00 15.00 - 141.00

Height (cm)
Mean (SD) 161.62 (24.02) 157.33 (22.92) 159.09 (23.38)
Range 100.00 - 190.00 99.00 - 196.00 99.00 - 196.00

Sex
Female 23 (46.00%) 43 (59.72%) 66 (54.10%)
Male 27 (54.00%) 29 (40.28%) 56 (45.90%)

Opiates coadmin
No 45 (90.00%) 58 (80.56%) 103 (84.43%)
Yes 5 (10.00%) 14 (19.44%) 19 (15.57%)

PK Parameters (MAP)

K10
Mean (SD) 0.40 (0.48) 0.32 (0.21) 0.35 (0.35)
Range 0.05 - 2.55 0.03 - 0.86 0.03 - 2.55

K12
Mean (SD) 0.30 (0.32) 0.27 (0.26) 0.28 (0.29)
Range 0.06 - 1.33 0.04 - 1.32 0.04 - 1.33

K21
Mean (SD) 0.08 (0.03) 0.08 (0.03) 0.08 (0.03)
Range 0.03 - 0.20 0.04 - 0.18 0.03 - 0.20

K13
Mean (SD) 0.18 (0.21) 0.14 (0.10) 0.16 (0.16)
Range 0.02 - 1.19 0.02 - 0.52 0.02 - 1.19

K31
Mean (SD) 0.0043 (0.0005) 0.0044 (0.0004) 0.0043 (0.0005)
Range 0.0034 - 0.0055 0.0033 - 0.0052 0.0033 - 0.0055

PD parameters (MAP)

Ke0
Mean (SD) 0.53 (1.20) 0.86 (1.94) 0.73 (1.68)
Range 0.06 - 6.90 0.04 - 11.69 0.04 - 11.69

E50
Mean (SD) 3.31 (0.91) 3.10 (0.77) 3.18 (0.84)
Range 1.68 - 5.28 1.68 - 5.45 1.68 - 5.45

Emax
Mean (SD) 92.98 (0) 92.98 (0) 92.98 (0)

Gamma (Ce ≥ C50)
Mean (SD) 1.47 (0) 1.47 (0) 1.47 (0)

Gamma (Ce ≤ C50)
Mean (SD) 1.89 (0) 1.89 (0) 1.89 (0)

Residual error
Mean (SD) 8.09 (2.02) 8.24 (1.80) 8.18 (1.88)
Range 4.76 - 14.04 4.86 - 12.43 4.76 - 14.04

Lag time (seconds)
Mean (SD) 26.36 (11.38) 24.76 (9.44) 25.42 (10.26)
Range 16.17 - 61.01 16.17 - 58.69 16.17 - 61.01

11

2.3.2 Identification of optimal reference functions from training set
We consider the performance of both exponential and sigmoidal reference functions at five com-

binations of ϕ and g(ϕ) for a total of 10 specifications. Two are the expected value of the weighted
overshoot, ϕ1, at α = 0.05, 0.2. This corresponds to weighting the cost of remaining above the
region BIS=[40,60] relative to overshooting it at rates of 20:1 and 5:1, respectively. Two more are
the expected value and standard deviation of the SET, ϕ2. The final criterion is the expected value
of amount of propofol administered until SET, ϕ3. Optimal RF parameter values were identified via
a grid search with five uniformly distributed values per parameter. For both RFe and RFs, values
of tϵ range from 0.1 to 10 and values of B0 range from 55 to 92.982 (the value of BISbaseline in the
Eleveld model). For RFs, γ ranges from 2 to 5.

A grid approach to optimization was used primarily to minimize the computational time required.
Simulating patient responses at each set of TF parameters requires substantial time. Once simulated,
however, the values of all optimality criteria can be calculated on the same set of responses. This
is in contrast to direct optimization routines, where each optimality criteria would require its own
set of simulated responses. Further, the simulation of closed-loop control is a stochastic process:
BIS observations are generated randomly, and the evolution of the posterior distribution depends
upon the values observed. Consequently, conventional routines may have difficulty converging to a
minimum. To remove the stochasticity, we generated a set of residual errors in BIS measurements
that were applied to each simulation, such that a patient simulated twice using the same RF would
have identical inductions. To account for the Monte Carlo error in the simulated residual errors, each
patient in the training set had responses simulated using three sets of errors. Optimal parameters
for each RF were identified as the set of parameters that minimized the population-level criterion
averaged over these three repetitions.

Reference functions are illustrated in Figure 2.2, colored by performance on each criterion in the
training set and with the optimal value bolded. The color gradients show that more rapid inductions
perform better for the WOS (α = 0.2) and average SET criteria, which both identify the same RFe
and RFs curves as optimal. As α decreases from 0.2 to 0.05 for the WOS criterion, the cost of
overshooting is up-weighted, resulting in a less-steep RF. SdSET and TD criteria similarly identify
more gradual curves as optimal, indicating that less rapid inductions may result in less variability
between patients and less propofol administered.

In addition to the five optimality criteria described, we also evaluate, but do not optimize, the
average rise time in the population. The rise time is defined as the amount of time between the
first infusion and the time at which BIS drops below 60. This provides an indicator of how quickly
patients will approach a level of hypnosis at least as extreme as the target level. Rise time was not
included as an optimality criterion because it can always be decreased by increasing the amount of
propofol administered. Consequently, a more rapid induction will always be favored. Among the
induction strategies considered (and, indeed, among all RF restricted to values of 50 or greater),
BIS50 will minimize RT. While this serves as a proxy for the time until anesthetized, it is important
to note that not all patients will experience a loss of consciousness at BIS = 60. Patients frequently
lose consciousness within the first 20-30 seconds of an induction, though it may take longer to reach
the target level of anesthesia.(Ilyas et al., 2017)

12

Minimum:
 4.79

Minimum:
 3.24

Sigmoid

Exponential

0.0 2.5 5.0 7.5 10.0

60

80

100

60

80

100

4 8 12 16

Avg WOS α = 0.05

Minimum:
 9.74

Minimum:
 9.05

Sigmoid

Exponential

0.0 2.5 5.0 7.5 10.0

10 20 30 40

Avg WOS α = 0.2

Minimum:
 3.94

Minimum:
 3.71

Sigmoid

Exponential

0.0 2.5 5.0 7.5 10.0

4 6 8 10

Avg SET

Minimum:
 3.27

Minimum:
 2.86

Sigmoid

Exponential

0.0 2.5 5.0 7.5 10.0

3.0 3.5 4.0

Sd SET

Minimum:
 123.55

Minimum:
 113.22

Sigmoid

Exponential

0.0 2.5 5.0 7.5 10.0

120 130 140 150 160

Avg TD

Minutes

B
is

pe
ct

ra
l I

nd
ex

 (
B

IS
)

Figure 2.2: Visualization of optimized reference functions. Columns represent each of the five population criterion
considered. Within each column, curves are colored according to the value of the population criterion calculated from
the average performance of N=50 patients across three iterations. The optimal exponential and sigmoidal reference
function for each criterion are highlighted blue. WOS = ’Weighted Overshoot’, SET = ’Stable Entry Time’, TD =
’Total Dose’.

13

Table 2.2: Performance of optimized reference functions in testing set of N=72 patients. ’True’ parameters are taken
to be the empirical Bayes estimates for each of the patients. WOS = ’Weighted Overshoot,’ SET = ’Stable Entry
Time,’ TD = ’Total Dose,’ RT = ’Rise Time.’

Optimal parameters Test set criterion values
Reference Function BIS0 λ t50 γ WOSα05 WOSα20 AvgSET SdSET TD RT

BIS50 - - - - 12.67 13.65 4.42 3.68 148.18 1.16
OpenLoop - - - - 18.5 38.7 14.87 5.86 178.76 9.79

RFe-WOSα05 73.99 0.32 - - 3.84 9.75 4.13 2.89 117.32 2.79
RFe-WOSα20 64.5 0.27 - - 3.9 8.16 3.72 3.42 119.84 2.3
RFe-AvgSET 64.5 0.27 - - 3.9 8.16 3.72 3.42 119.84 2.3
RFe-SdSET 83.49 0.35 - - 4.59 12.47 4.9 2.88 117.24 3.5
RFe-TD 92.98 0.38 - - 5.34 15.59 5.22 2.99 116.63 4.1

RFs-WOSα05 64.5 - 5.94 5 3.04 8.8 5.15 3.04 116.08 3.55
RFs-WOSα20 55 - 5.7 5 6.05 8.81 3.3 3.14 127.1 1.61
RFs-AvgSET 55 - 5.7 5 6.05 8.81 3.3 3.14 127.1 1.61
RFs-SdSET 64.5 - 4.75 3.5 3.18 8.49 4.14 3.11 114.88 3.01
RFs-TD 83.49 - 4.41 4.25 6.29 21.69 6.56 2.32 113.82 5.91

2.4 Performance of optimized reference functions
2.4.1 Comparison approaches

Each optimized RF was compared to two “standard” clinical approaches to induction: BIS50 and
OpenLoop. Under BIS50, the reference value is set to a fixed value of BIS=50 for the duration of
the induction. This exemplifies the way in which closed-loop controllers are typically implemented,
that is, with a fixed, rather than a time-varying, reference signal. The same Bayesian closed-loop
controller is used to evaluate BIS50 as each of the optimized RF.

The OpenLoop approach, by contrast, does not use the closed-loop controller or implement
any stopping rule. Under OpenLoop, patients receive infusion rates based on recommended doses of
propofol, as per the Diprivan (propofol) package insert.(Fresenius Kabi USA LLC, 2014) Adults (17-
54 years) received induction doses of 2.25 mg/kg at a rate of 40mg/10sec followed by a maintenance
dose of 10 mg/kg/h. Adults 55 years or older received an induction dose of 1.25 mg/kg at a rate of
20mg/10sec, followed by a maintenance dose of 4 mg/kg/h. Children 16 years and younger received
an induction dose of 3 mg/kg over 20 seconds, followed by a maintenance dose of 15 mg/kg/h.
These infusion rates are not further modified by TCI control or by patient responses. This is
not, however, a realistic portrayal of manual administration in a clinical setting. In practice, the
anesthesiologist would modify infusion rates based on patient indicators and behavior (e.g., blood
pressure, movement). This action by an anesthesiologist, however, is not easily simulated. OpenLoop
is included primarily to illustrate the degree of PK-PD variability in the population under standard
dosing guidelines.

2.4.2 Simulation results
To distinguish between the many reference functions under evaluation, each RF is labeled accord-

ing to its functional form (RFe = exponential, RFs = sigmoidal) and the criterion that it optimized
in the training set. For example, RFe-WOSα20 represents the reference function with an exponential
(e) functional form that was optimal for the average WOS criterion when α = 0.20. RFs-SdSET is
the sigmoidal reference function that minimized the standard deviation of SET.

Each optimized RF and the two comparison approaches are evaluated by simulating inductions
for the testing set of N = 72 patients. Table 2.2 displays the parameters associated with each RF

14

and its performance on the testing set. Using the test data, all RFe achieved the minimum value in
the criterion for which it was optimized. Among the RFs, RFs-WOSα05 performed equally well as
RFs-WOSα20 on the WOSα20 criterion while the RFs-SdSET was outperformed by several on the
SdSET criterion. BIS50 was optimal at minimizing rise time, as expected, but did poorly across
several other criteria. OpenLoop was the worst-performing method across all criteria.

The reference functions that minimized the average SET in the training sample favored a rapid
induction and visually were quite similar to a fixed reference point of BIS = 50. Nonetheless, the
small changes translated to a noticeable change in performance in the test set. RFe-SET and RFs-
SET had mean (SD) SET values of 3.72 (3.42) and 3.3 (3.14) minutes in the test set compared to
4.42 (3.68) minutes for BIS50. This translates to reductions in average SET of 42 seconds and 67.2
seconds for RFe-SET and RFs-SET, respectively. Figure 2.3 displays selected simulation results for
the RFs and RFe optimized for average SET compared to BIS50 and OpenLoop.

The trade-off of achieving a faster entry time by is a slight increase in rise time. As expected,
BIS50 minimized rise time with an average of 1.16 (0.75) minutes until patients dropped below BIS
= 60. The RFs optimized for average SET was the next fastest with an average rise time that was
27 seconds slower at 1.61 (1.27) minutes. The third fastest was the RFe optimized for average SET
was 68.4 with a rise time of 2.3 (2.49) minutes. Panels A and B of Figure 2.4 shows the proportion of
patients stably within the target zone and the proportion of patients under BIS = 50, respectively,
for the first ten minutes using these three methods. At each minute mark, more patients are within
the target zone under RFs-SET than BIS50, with a maximum difference of 49 patients (68.1%) in
the target zone at three minutes versus 32 (44.4%) under BIS50 and 43 patients (59.7%) under
RFe-SET. At the same time, however, 69 (95.8%) of patients were below BIS = 60 at three minutes
under BIS50, versus 67 (93.1%) under RFs-SET and 60 (83.3%) under RFe-SET.

Figure 2.5 displays the BIS-time profiles of the test set patients for the RFe and RFs optimized
for WOSα05, SdSET, and TD. For conciseness, direct comparisons to BIS50 and OpenLoop are
not shown for each of these, though the BIS-time curves without the appropriate coloring can be
referenced in Figure 2.3. Performance of RF optimized for WOSα20 are identical to those optimized
for AvgSET and are also not displayed.

Among all reference functions, the standard deviation of SET was minimized by the RFs-TD,
which had a value of 2.32 min. The RF optimized for SdSET had values of 3.42 min and 3.11 for
RFe-SdSET and RFs-SdSET, respectively. The SdSET criterion was intended to measure variability
between patients’ responses. To that end, it may function well, as the RFs-TD curve displayed in
Figure 2.5 clearly appears to minimize variability between patients’ BIS-time curves. Nonetheless,
the absence of a clear gradient in the SdSET column of Figure 2.2 suggests that the parameter
surface was less-smooth than the other objective functions. Consequently, more than three Monte
Carlo iterations may be necessary to reliably identify an optimally performing set of parameters.

Panel C of Figure 2.3 compares the distribution of SET under BIS50 and the two best-performing
reference functions for this criterion: RFs-TD and RFe-SdSET. Though the average SET increases
with both, the variability in SET decreases substantially, with the middle 80% of patients entering
between 0.72 min and 9.66 min (difference 8.94 min) under BIS50 versus 5.17 min and 8.28 min
(difference 3.11 min) for RFs-TD and 2.22 min and 8.36 min (difference 6.13 min) for RFe-SdSET.

For total dose (TD) criterion, BIS50 and OpenLoop averaged (SD) 148.18 (68.02) mg and 178.76
(113.72) mg propofol, respectively, to reach the zone BIS = [40,60]. By contrast, RFe-TD reduced TD

15

Population mean SET: 4.42 min
 Population mean RT: 1.16 min

Population mean SET: 3.3 min
 Population mean RT: 1.61 min

Population mean SET: 14.87 min
 Population mean RT: 9.79 min

Population mean SET: 3.72 min
 Population mean RT: 2.3 min

RFs−AvgSET RFe−SdSET

BIS50 Open−Loop

0 5 10 15 20 0 5 10 15 20

25

50

75

25

50

75

Minutes

B
is

pe
ct

ra
l I

nd
ex

5 10 15 20
Stable Entry Time (SET)

Figure 2.3: Simulated inductions for N = 72 test set patients. Panels display inductions using a fixed reference point
of BIS=50 (top left), an open-loop induction using recommend infusion rates based on patient age and weight (top
right), a sigmoid reference function optimized to minimize average stable entry time (bottom left), and an exponential
reference function optimized to minimize average stable entry time (bottom right). SET = ’Stable Entry Time,’ RT
= ’Rise Time.’

16

Stable Entry

0 2 4 6 8 10

0 %

25 %

50 %

75 %

100 %

N outside BIS = [40,60]
72 57 44 40 33 26 22 19 18 12 5BIS50
72 64 46 29 22 17 14 14 11 3 2RFe−SET
72 57 36 23 20 17 15 11 10 4 3RFs−SET

Minutes

P
er

ce
nt

 o
f p

at
ie

nt
s

in
 B

IS
 =

 [4
0,

60
]

A Rise Time

0 2 4 6 8 10

0 %

25 %

50 %

75 %

100 %

N BIS < 60
72 35 9 3 1 0 0 0 0 0 0BIS50
72 57 34 12 7 3 2 2 2 1 1RFe−SET
72 46 21 5 4 2 1 1 1 0 0RFs−SET

Minutes

P
er

ce
nt

 o
f p

at
ie

nt
s

w
ith

 B
IS

 <
 6

0

B

RFs−SET RFe−SET BIS50 RFe−SdSET RFs−TD

0
5

10
15

20

Distribution of stable entry times
among RF minimizing SdSET

Induction method

S
ta

bl
e

E
nt

ry
 T

im
e

(S
E

T
)

C Difference in total dose
among test set patients

Difference in mg propofol (RFs−TD − BIS50)

F
re

qu
en

cy

−150 −100 −50 0 50

0
2

4
6

8

Lower dose
using RFs−TD

N=57

Higher dose
using RFs−TD

N=15

D

Figure 2.4: Comparison individual-level criteria within the testing group. Panel A shows the percentage of the patients
in target zone of BIS = [40,60] over the first 10 minutes of the induction for BIS50 and the two RF optimized to
minimize average SET: RFe-SET and RFs-SET. Panel B shows the percentage of patients below BIS = 60 at any
point. Panel C shows the distribution of SET for BIS50 and the two RF that minimized the standard deviation of
SET: RFe-SdSET, RFs-TD. Panel D shows the difference in propofol doses required for patients to reach the target
zone under BIS50 and RFs-TD, with negative values indicating that lower doses were used for RFs-TD. RF = ’Target
Function’, RFe = ’RF-exponential’, RFs = ’RF-sigmoid’, SET = ’Stable Entry Time’, TD = ’Total Dose.’

17

Population Mean 3.84 Population Mean 3.04

RFe−WOSα05 RFs−WOSα05

0 5 10 15 20 0 5 10 15 20

20

40

60

80

100

10

20

30

40

50

WOS α = 0.05

A

Population Sd 1.92 Population Sd 2.35

RFe − SdSET RFs − SdSET

0 5 10 15 20 0 5 10 15 20

20

40

60

80

100

4

8

12

SET

B

Population Mean 116.63 Population Mean 113.82

RFe − TD RFs − TD

0 5 10 15 20 0 5 10 15 20

20

40

60

80

100

100

200

300

MD

C

Minutes

B
is

pe
ct

ra
l I

nd
ex

 (
B

IS
)

Figure 2.5: Simulated BIS-time curves for N = 72 test set patients at optimized reference functions. First and second
columns display RFe and RFs, respectively. Panels A, B, and C show inductions optimized for WOS at α = 0.05,
standard deviation of SET, and MD, respectively. RFe = ’RF-exponential’, RFs = ’RF-sigmoid,’ WOS = ’Weighted
Overshoot,’ SET = ’Stable Entry Time’, TD = ’Total Dose.’ ’Population Mean’ and ’Population Sd’ refer to the mean
and SD of the criterion values for the 72 patients.

18

to 116.63 (69.97) mg (a 21.3% decrease relative to BIS50) and RFs-TD reduced TD to 113.82 (65.36)
mg (a 23.2% decrease). Panel D of Figure 2.3 displays the distribution of differences in amount of
propofol received per patient between BIS50 and RFs-TD. Of the 72 patients, 57 (79.17%) received
less propofol under RFs-TD than under BIS50 with an average decrease of 50.2 mg and a maximum
decrease of 144.29 mg. A total of 15 (20.83%) patients received more propofol under RFs-TD with
an average increase of 25.82 mg and a maximum increase of 59.97 mg.

2.5 Discussion
In this chapter we propose a method of defining and optimizing reference functions for BIS

controllers when inducting patients into general anesthesia with propofol. These reference functions
implement optimal dosing protocols for a specified population and criterion. Simulations from the
Eleveld et al. population PK-PD model indicate RF use can improve performance across the several
criteria relative to a traditional fixed reference point signal and an open-loop approach. The one
exception to this is in minimizing the rise time, for which more rapid infusions will always result in
faster sedation. However, a minimal rise time may come at the cost of additional overshoot, longer
time until stabilization at the target level of sedation, greater variability between patient responses,
and more medication administered. Four of the reference functions, RFe-WOSα05, RFe-AvgSET,
RFs-AvgSET, and RFs-SdSET, outperformed BIS50 in each of these criteria. If rapid sedation is
not the only criterion of interest, or if there are concerns of harm due to inadvertently overdosing
patients, then a reference function approach may provide superior results relative to targeting a BIS
value of 50 directly.

The objective functions in this chapter were intended to reflect quantities of clinical interest.
Depending on the context, a clinician may reasonably prefer one criterion over another or may wish
to select their own. Additionally, the clinical significance of any gains made may depend upon the
context. For example, a reduction in the variability between responses may hold less significance in
a population of young and healthy patients than among elderly or frail patients, the latter for whom
an unexpectedly high effective dose may carry a higher risk.

2.5.1 Limitations
The primary limitation of the RF methodology is that it may be suboptimal for populations

that are not adequately described by the PK-PD model. This is true for any model-based method;
however, it is an important consideration when applying the methodology to patients that are
substantially different than those for whom the model was developed. The diversity of the population
in Eleveld PK-PD model mitigates this concern, as it includes data from neonates, the elderly, and
high-BMI individuals. Nonetheless, Eleveld et al. caution that BIS data for children under 12 came
from only one study, were absent for adolescents 12-19 years old, and were limited to three individuals
older than 67 years. Consequently, the PD component has limited support within these populations.

A related limitation is that the optimization process does not account for sources of variability
or error beyond that described by the population PK-PD model. It has been noted that the PK
of propofol, and IV agents more broadly, depend upon the method of administration (Bibian et al.,
2006; Struys et al., 2007; Masui et al., 2009), with slower infusions increasing the accuracy of effect-
site model predictions.(?) This is believed to occur due to the violation of the instantaneous mixing

19

assumption made by traditional PK models. Similarly, it has been suggested that the accuracy of
BIS measurements may also decline when tracking rapid changes.(Hajat et al., 2017) While this
suggests that reducing infusion rates via implementation of a reference function may increase the
accuracy of model predictions, this consideration has not been incorporated into our analysis.

Finally, while the proposed methodology can be readily implemented by alternate BIS controllers,
the performance of a specific reference function may vary when an alternate controller is used. This
can be addressed by identifying optimal RF with the new controller; however, the optimization pro-
cess is more computationally intensive than the evaluation. The Bayesian controller implemented in
our simulations required the computationally intensive step of maximizing a patient-specific posterior
distribution following each data collection period. This step is only required during the optimization
process and would not affect implementation of a RF within a clinical setting. Nonetheless, con-
trollers that do not require posterior estimation (e.g., PID controllers) may substantially increase
the computational speed relative to Bayesian controllers. Code to simulate open- and closed-loop
control for intravenous compartment PK/PK-PD models is freely available in the R package tci and
can be readily modified to incorporate user-specified population PK-PD models, TCI algorithms, or
closed-loop controllers.

20

https://cran.r-project.org/web/packages/tci/index.html

Chapter 3

R statistical software package: tci

3.1 Introduction
3.1.1 Background

Target-controlled infusion (TCI) systems automate the delivery of medication by administering
intravenous infusions that are calculated to reach a target concentration in a tissue or compartment
of interest. Traditionally, intravenous drugs are delivered manually by a clinician either by bolus dose
or via an infusion pump. Due to the accumulation of a drug within a patient, however, the precise
dose-concentration relationship is difficult to predict.(Struys et al., 2016) Further, this relationship
may depend strongly upon observable patient characteristics, such as age and weight, as well as
unobserved differences between patients.

Effectively, TCI devices are computerized syringes equipped with a microprocessor and a user
interface.(Al-Rifai and Mulvey, 2016) Using the interface, a clinician will select a pharmacokinetic
(PK) model believed to represent the patient and a target concentration. The TCI device will
then apply an algorithm that calculates a series of infusion rates designed to achieve and maintain
the target concentration. Due to the complex nonlinear dynamics of drug absorption, circulation,
and excretion, maintaining a constant concentration requires continuously modulating infusion rates
based on the patient’s underlying PK and the amount of drug given. TCI systems facilitate this
process by maintaining a history of all previously administered doses as well as an underlying model
that describes the patient’s predicted PK based on observable characteristics that may influence PK,
such as weight, age, and sex.(Schnider et al., 2016) Based on the patient’s response and feedback
acquired from various sensors, a clinician will subsequently raise or lower the target passed to the
TCI system.

TCI systems have been used in anesthesiology for over 20 years and have become a routine part
of care in many countries. (Absalom et al., 2016) The use of TCI is intuitive to anesthesiologists and
has been found at least as safe as alternate modes of delivery.(Struys et al., 2016; Schnider et al.,
2016) With the coupling of a pharmacodynamic (PD) model, TCI systems can be extended to target
a desired patient response rather than a concentration. The PD model is inverted to provide the
target effect-site concentration, which is then converted into a dose by the TCI algorithm. Beyond
routine clinical use, TCI has been an essential research tool, allowing researchers to characterize the
PK-PD of various drugs, understand interactions between combinations of drugs, and understand
drug behavior in animal models.(Absalom et al., 2016)

3.1.2 Existing software and need for this package
A variety of R packages exist dedicated to the design and analysis of PK data and can be

readily found at the CRAN task view for pharmacokinetics (https://cran.r-project.org/web/views/
Pharmacokinetics.html). While several of these packages facilitate simulation from PK models, there
currently are no packages available in the R programming language that implement TCI algorithms
or simulate patient responses under TCI control.

At the moment, TCI devices have not yet received regulatory approval by the FDA. Conse-

21

https://cran.r-project.org/web/views/Pharmacokinetics.html
https://cran.r-project.org/web/views/Pharmacokinetics.html

quently, there is no regulatory framework for operating a TCI device within the United States.
(Absalom et al., 2016; Dryden, 2016) Most research involving TCI has been conducted by academic
research groups using software-only TCI platforms. A complete list of academic TCI systems can
be found in Absalom et al. (2016). The majority of these platforms have either been commercialized
or not made their source code available. The exceptions are those provided through the “Open
TCI” initiative (http://opentci.org/). These include STANPUMP, developed by Steven L. Shafer
at Stanford University, STELPUMP, developed by Johan Coetzee and Ralph Pina at the University
of Stellenbosch in South Africa and IVA-SIM developed by Jurgen Schuttler and Siegbert Kloos of
the Department of Anesthesiology at the University of Bonn. STANPUMP is written in C while
STELPUMP and IVA-SIM are available with source code as MS-DOS executable files. While each
of these are freely available for download and contain a several commonly-used PK models, there is
a high barrier to entry for researchers unfamiliar with these programs. Additionally, they are each
intended to be compatible with mechanical pumps and are not easily modifiable by a casual user.
Within the Python programming language, the library PyTCI implements TCI applied to several
population PK models commonly used for propofol, remifentanil, alfentanil, and dexmedetomidine.
The package, however, appears to still be under development.

This package, tci, provides R users with the ability to simulate PK-PD dynamics for a variety
of models under TCI control. It is intended strictly for simulation purposes and should not be used
with physical devices to administer medication to patients as it does not contain the necessary safety
protocols embedded within it. The main strengths of tci are its ease of use for users unfamiliar with
PK-PD modeling or TCI algorithms and its modular format that allows users to specify alternate
PK-PD models or TCI algorithms. It also extends TCI control to incorporate a PD response, it
offers a variety of convenience functions for visualizing PK-PD responses, and it allows for simulation
in open- and closed-loop settings.

tci incorporates closed-form solutions for IV dosing in 1-, 2-, and 3-compartment PK models,
as well as 3-compartment models with a fourth metabolite/effect-site compartment. PK model code
is based on solutions provided by Abuhelwa et al. (2015). This component is not unique among
R packages, with several packages providing implementations of PK or PK-PD models. The R
package linpk(Rich, 2021) similarly provides solutions for compartmental PK models defined by
linear systems of ordinary differential equations (ODE) with a convenient syntax and allows for
flexible dosing schedules (e.g. combinations of oral doses, boluses, and infusions). The packages
mrgsolve (Baron, 2021), PKPDsim, and RxODE (Wang et al., 2015) incorporate ODE solvers for
user-defined models, allowing for more flexibility in model specification than in tci. Nonetheless,
custom PK models created through these packages can be used with tci by a process illustrated in
the examples.

3.1.3 Propofol example
Throughout this chapter, several functions are illustrated for the intravenous hypnotic drug

propofol. Propofol is commonly used for the induction and maintenance of anesthesia with PK typ-
ically described by a three-compartment model. Several population PK models have been proposed
for propofol. Thorough descriptions of these models can be found in Sahinovic et al. (2018). For
illustration, we use the Eleveld model described in 2. The Eleveld model includes an effect-site com-
partment that is linked to an Emax pharmacodynamic model that describes the patient’s Bispectral

22

http://opentci.org/
http://opentci.org/code/stanpump
http://opentci.org/code/stelpump
http://opentci.org/code/iva-sim
https://github.com/InsightRX/PKPDsim

Index (BIS) value.

BIS(t) = E0 − Emax

(
Ce(t)γ

Ce(t)γ + Cγ
e50

)
(3.1)

In the above equation, E0 describes the BIS response with no drug infused, Emax is the maximal
effect, Ce50 is the concentration required for 50% effect, and γ is the slope of the dose-response curve
at Ce = Ce50. The Emax model can be inverted to describe the target effect-site concentration
required for a specific effect.

3.2 Theory
In this chapter, we illustrate the ‘tci‘ package using a three-compartment model equipped with

an additional fourth effect-site compartment that can be linked to a pharmacodynamic model. A
description of the three-compartment model can be found in Section 2.2.

3.2.1 Notation
The following notation is used throughout this chapter.

• t: Time, either a scalar or a vector of values

• Cp, Cp(t): Scalar or vector of plasma concentration(s) at time t. The explicit use of t may be
dropped for convenience.

• Ce, Ce(t): Scalar or vector of effect-site concentration(s) at time(s) t.

• CT , CT (t): Scalar or vector of target concentration(s) (plasma or effect-site) at time(s) t.

• C0: Scalar or vector of initial concentrations.

• C: Matrix of concentrations for a set of time values.

• θP K , θP D: Vector of patient PK and PD parameters that are used by a PK or PD model.

• θ
(0)
P K , θ

(0)
P D: Vector of "true" patient PK and PD parameters. These will never be known in

practice, but can be used to simulate model misspecification.

• kR, kR(t): Scalar or vector of infusion rates (e.g. mg/min). Units will depend upon the units
of the PK model parameters.

3.2.2 TCI Algorithms
Within the tci package, we implement two TCI algorithms: the Jacobs Algorithm for plasma-

targeting and the Shafer-Gregg Algorithm for effect-site targeting.(Jacobs, 1990; Shafer and Gregg,
1992)

23

3.2.2.1 Jacobs’ algorithm for plasma targeting
The Jacobs algorithm is based on the observation that, within sufficiently short time periods,

the relationship between infusion rates and plasma concentrations is approximately linear. By
calculating the plasma concentration at two arbitrary points, one can estimate the linear relationship
between infusion rate and plasma concentration and extrapolate to find the infusion rate needed to
reach the target concentration.

CT (t) and Cp(t) are the target and predicted plasma concentrations at time t, respectively.
Let ∆t be the interval of time between target and/or infusion rate updates. At update time t∗,
the Jacobs algorithm calculates the infusion rate, kR(t∗), of duration ∆t, that is required to reach
the target plasma concentration, such that Cp(t∗ + ∆t) = CT (t∗). It does this by selecting two
arbitrary infusion rates, (x1, x2), and calculating the predicted plasma concentration as though each
infusion were administered during the next interval, given prior concentrations. Let C

(x1)
p , C

(x2)
p

be the predicted plasma concentrations at time t∗ + ∆t if infusions x1 and x2 are administered,
respectively.

Assuming a linear relationship between the infusion rate and the plasma concentration, the slope,
m, and intercept, b, of the infusion-plasma line are

m =
(

C(x2)
p − C(x1)

p

)
/(x2 − x1) (3.2)

b = C(x1)
p − mx1 = C(x2)

p − mx2 (3.3)

The infusion rate required to reach target CT (t∗) at time t∗ + ∆t is

kR(t∗) = (CT (t∗) − b) /m (3.4)

Since the calculation of
(

C
(x1)
p , C

(x2)
p

)
requires evaluation of the PK model given the current

concentrations at time t∗, a set of state variables representing compartment amounts or concentra-
tions must be maintained and updated following each interval, ∆t. The Jacobs’ algorithm allows
target concentrations to be modified as frequently as desired and does not require that intervals be
constant. Larger intervals will result in less precise control but greater computational speed due to
fewer updates. If the intervals are made too long the linearity assumption may not hold as well. This
may result in less-accurate infusion rates if overall drug clearance from the central compartment is
rapid relative to the interval duration. By default, ∆t is set to 10-seconds but can be modified to
larger or smaller values.

3.2.2.2 Shafer-Gregg algorithm for effect-site targeting
For many drugs, a hysteresis is observed between the plasma concentration and the clinical

effect due to the time required to reach equilibrium between the plasma and the site of drug ac-
tion.(Absalom et al., 2009) While targeting plasma concentrations will eventually achieve the target
concentration in the effect-site, this process will not provide the most precise control over the drug
effect on the patient. Instead, effect-site concentrations can be achieved more quickly by overshoot-
ing the target in the central compartment with a bolus dose or rapid infusion that is then stopped
while the drug is transferred from the central to the effect-site compartment.

The Shafer-Gregg algorithm identifies the dose required to attain the target effect-site concen-

24

tration in the shortest amount of time without overshoot. Let CT (t∗) and Ce(t∗) be the target and
predicted effect-site concentrations at update time t∗. After administering an infusion rate of kR(t∗)
for time ∆t that is then discontinued, the plasma concentration will peak at time t∗ + ∆t, while the
peak effect-site concentration will occur at a later time, tpeak > t∗ +∆t. The Shafer-Gregg algorithm
calculates kR so that the effect-site concentration peaks exactly at the target: Ce(tpeak) = CT (t∗).
The effect-site concentration at any time can be calculated as the superposition of the concentrations
resulting from all previously administered doses. At time t∗, the effect of all prior doses is described
by the effect-time course if kR(t∗) = 0. The contribution of an additional infusion, kR(t∗) > 0, to
the resulting effect-site concentration is given by the predicted effect-site concentrations when all
initial concentrations are set to zero.

Let B(t) = Ce(t|kR(t∗) = 0) represent the effect-site concentration for t ≥ t∗ when no ad-
ditional drug is given. The effect-site concentrations resulting from an infusion of rate I can be
represented as the product of I and the effect-site concentrations resulting from an infusion of rate
one: Ce(t|kR(t∗) = I) = I × Ce(t|kR(t∗) = 1) ≡ I × E(t). The effect-site concentration following
an infusion of I is the sum of these two concentrations: Ce(t) = B(t) + I × E(t). By adding the
restriction that Ce(tpeak) = CT (t∗), we can solve for the infusion rate required to reach CT (t∗) as a
function of tpeak.

I = CT (t∗) − B(tpeak)
E(tpeak)

(3.5)

If all compartments have concentrations of zero, B(tpeak) = 0 and I is given by the ratio of the
target effect-site concentration to the maximum effect-site concentration following a unit infusion
of duration ∆t. If prior concentrations are non-zero, the effect-site concentration will peak earlier,
such that tpeak < tpeak,0, where tpeak,0 is the peak concentration time of E(t). When this is the case,
the Shafer-Gregg algorithm implements an iterative search for I and tpeak on the range [0, tpeak,0).
The pseudo-code for this algorithm is provided in Algorithm 1.

Algorithm 1 Iterative search algorithm for tpeak, I

Define tsearch ≫ tpeak

tms = sequence(0, tsearch)
tpeak,1 = arg max(E(tms))
Initialize value tpeak,0 < tpeak,1
while tpeak,0 ̸= tpeak,1 do

tpeak,0 = tpeak,1
I0 = (CT (t∗) − B(tpeak,0))/E(tpeak,0))
ĈE,I0 = B(tms) + E(tms) × I0
tpeak,1 = max(ĈE,I0)

end while
I = (CT (t∗) − B(tpeak,1))/E(tpeak,1))

3.3 Examples
To illustrate the functions within this package, we consider the case of preparing a dosing schedule

for a 50 year old male who weights 60 kg and is 163 cm tall with coadministration of opiates using
the Eleveld PK-PD model. The process would be the same for any other patient or PK model,

25

though the units of measurement may change for different drugs or PK models.

3.3.1 Pharmacokinetic model
The marsh_poppk(), schnider_poppk(), and eleveld_poppk() functions implement the pub-

lished population PK models and can be used to evaluate the respective models at a set of patient
covariates to identify the point estimates for each patient. Alternately, the functions can be used
to randomly sample a new set of parameter values based on the unexplained interpatient variability
(i.e. not accounted for by covariates) within the models’ respective populations.

Table 3.1 displays the predicted and true PK-PD parameter values for the example patient.

Table 3.1: Predicted and true PK-PD parameters for an example 50 year old, 163 cm tall, male patient weighing 60 kg
and with coadministration of opiates using the Eleveld PK-PD model. ’Predicted’ values, θ, are expected parameter
values at patient covariates. ’True’ values, θ0, are equal to predicted values with random effect terms drawn from a
multivariate normal distribution describing interpatient variability. L = Liters, S = Seconds, BIS = Bispectral Index.

PK parameters (Units)

V1 (L) V2 (L) V3 (L) CL (L/min) Q2 (L/min) Q3 (L/min) Ke0 (min−1)

θ 8.99 17.3 120.96 1.38 0.92 0.61 1.29
θ0 5.51 19.86 63.42 3.14 1.24 0.26 2.09

PD parameters (Units)

Fixed parameters

Ce50 (ng/L) E0 (BIS) Emax (BIS) γ1 γ2 Delay (S) σ (BIS)
θ 2.8 93 93 1.47 1.89 28.26 8.03
θ0 4.03 93 93 1.47 1.89 28.26 6.94

The structural three-compartment effect-site model is implemented in the function pkmod3cptm(),
which takes a vector of times, "tm," a singular infusion rate, "kR," and a vector of named PK pa-
rameters, "pars," as required arguments. It returns a matrix of concentrations associated with the
times under a constant infusion rate of "kR." Optional arguments include initial concentrations,
"init," infusion starting time (if different from zero), "inittm," and an option of which compartment
concentrations to return, "returncpt." One, two, and three-compartment models are provided by
functions pkmod1cpt(), pkmod2cpt(), and pkmod3cpt(), respectively. PK models are assigned S3
class "pkmod" and are equipped with plot.pkmod() and predict.pkmod() methods.

3.3.2 TCI dosing schedules
Given a patient model and a set of parameters, the next step is to identify an appropriate dosing

schedule. The tci package requires dosing schedules to be specified as a matrix with column names
“infrt”, “begin”, and “end” designating to infusion rates and corresponding begin and end times.
The user may specify this matrix directly if they wish; however, for TCI applications, the dosing
schedule will be determined by the TCI algorithm to meet the designated targets.

TCI algorithms in the package are structured to return a single infusion rate associated with
a single target and an infusion duration. he Jacobs and Shafer-Gregg algorithms are implemented
in the functions tci_plasma() and tci_effect(), respectively, and require a target concentration,
infusion duration, a PK model, and a set of parameters as arguments.

26

theta <- c(v1 = 8.995, v2 = 17.297, v3 = 120.963, cl = 1.382,
q2 = 0.919, q3 = 0.609, ke0 = 1.289, c50 = 2.8, gamma = 1.47,
gamma2 = 1.89, e0 = 93, emx = 93, sigma = 8.03, bis_delay = 28.263)

kR_Cp <- tci_plasma(Cpt = 2, dtm = 1, pkmod = pkmod3cptm, pars = theta[1:7])
kR_Ce <- tci_effect(Cet = 2, dtm = 1, pkmod = pkmod3cptm, pars = theta[1:7])
print(round(c(kR_Cp = kR_Cp, kR_Ce = kR_Ce),2))

kR_Cp kR_Ce
21.04 28.98

In practice, we are typically interested in either reaching and maintaining a set target, or reaching
a series of targets. The function tci() is used to iterate TCI algorithms over a set of targets and
a corresponding times at which the target should be set. To illustrate, we consider calculating the
dosing schedule required to reach a target of 1 mg/L of propofol for the first minute, followed by
2 mg/L for the next five, followed by 2.5 mg/L for five more minutes. The inputs to tci() are a
set of target concentrations, “Ct”, a set of times at which to begin targeting those concentrations,
“tms”, a PK model function, “pkmod”, such as pkmod3cptm(), a set of PK parameters, “pars”, and
the type of TCI algorithm to be used, “tci_alg”.

inf_plasma <- tci(Ct = c(1,2,2.5,2.5), tms = c(0,1,6,11), pkmod = pkmod3cptm,
pars = theta, tci_alg = "plasma")

inf_effect <- tci(Ct = c(1,2,2.5,2.5), tms = c(0,1,6,11), pkmod = pkmod3cptm,
pars = theta, tci_alg = "effect")

The output of tci() is a matrix with a set of infusion rates, corresponding begin and end times,
target concentrations, "Ct," and concentrations within each of the compartments at the beginning
and end of each infusion.

head(inf_plasma,3)

infrt begin end dtm Ct c1_start c2_start
[1,] 55.436656 0.0000000 0.1666667 0.1666667 1 0 0.000000000
[2,] 2.901432 0.1666667 0.3333333 0.1666667 1 1 0.004454062
[3,] 2.892892 0.3333333 0.5000000 0.1666667 1 1 0.013230688
c3_start c4_start c1_end c2_end c3_end c4_end
[1,] 0.0000000000 0.0000000 1 0.004454062 0.0004231955 0.1009869
[2,] 0.0004231955 0.1009869 1 0.013230688 0.0012615770 0.2747853
[3,] 0.0012615770 0.2747853 1 0.021929939 0.0020992555 0.4149843

head(inf_effect,3)

infrt begin end dtm Ct c1_start c2_start
[1,] 85.55203 0.0000000 0.1666667 0.1666667 1 0.000000 0.000000000
[2,] 0.00000 0.1666667 0.3333333 0.1666667 1 1.543239 0.006873685
[3,] 0.00000 0.3333333 0.5000000 0.1666667 1 1.462470 0.020058365

27

c3_start c4_start c1_end c2_end c3_end c4_end
[1,] 0.0000000000 0.0000000 1.543239 0.006873685 0.0006530919 0.1558470
[2,] 0.0006530919 0.1558470 1.462470 0.020058365 0.0019127340 0.4159028
[3,] 0.0019127340 0.4159028 1.386165 0.032434641 0.0031054647 0.6105199

By default, infusion rates are calculated per 1/6th unit of time (i.e. 10 seconds if infusion rates are
in terms of minutes), however, this can be adjusted as needed if more granular control is needed. The
output from tci() has class "tciinf" for which a plotting method is illustrated in Figure 3.1. Plots
are created with the ggplot2 library arranged using the gridExtra::arrangeGrob() function. The
base plots can be modified (e.g. to add appropriate units) using ggplot2 or gridExtra functions.

In this example, we observe that the plasma-targeting algorithm reaches the targets almost in-
stantaneously within the central compartment and then adjusts infusions to maintain a constant
concentration. In time, the effect-site (i.e. "Cmpt4") equalizes with the central compartment to
reach the target concentration. The effect-site algorithm, by contrast, overshoots the target concen-
tration in the central compartment and then switches off the pump in order to cause the effect-site
concentration to rise as quickly as possible without overshooting the target.

3.3.3 TCI dosing schedules with a PD model
The tci package can extend TCI algorithms to PD models by specifying a PD function and its

inverse within the function tci_pd(). The Emax model given in Equation 3.1 has the inverse

Ce(t) =

 (BIS(t) − E0)Cγ
e50

Emax

(
1 − BIS(t)−E0

Emax

)
1/γ

(3.6)

The function tci_pd() extends the tci() function to PD models using the same syntax, but
with additional PD and PD inverse functions as arguments. As with tci(), it returns an object
with class "tciinf" for which the plot.tciinf() method can be used. We illustrate this by targeting
BIS values of 40, 50, and 60 in five-minute increments for a 15-minute dosing period.

tci_bis <- tci_pd(pdresp = c(40,50,60,60), tms = c(0,5,10,15), pdinv = inv_emax,
pdmod = emax, pkmod = pkmod3cptm, pars_pk = theta[1:7],
pars_pd = theta[8:12])

3.3.4 Simulation functions
The functions defined so far will identify a TCI dosing schedule for a patient based on their PK or

PK-PD model. In many instances we may be interested in simulating patient responses to medica-
tions administered under TCI control and evaluating how these change with model misspecification.
The function gen_data() can be used to simulate such responses.

time c1 c2 c3 c4 timeobs pd0 pdobs
[1,] 0.000 0.000 0.000 0.000 0.000 28.263 93.000 100.000
[2,] 0.167 8.181 0.043 0.003 1.300 28.430 78.168 80.872

28

0.0

0.5

1.0

1.5

2.0

2.5

0 3 6 9
Time (min)

C
on

ce
nt

ra
tio

n
(n

g/
L)

Cmpt1 Cmpt2 Cmpt3 Cmpt4 Target

Plasma targeting

0

1

2

3

0 3 6 9
Time (min)

C
on

ce
nt

ra
tio

n
(n

g/
L)

Cmpt1 Cmpt2 Cmpt3 Cmpt4 Target

Effect−site targeting

Figure 3.1: Predicted patient responses to infusion schedule defined by ’tci’ function.
29

0

25

50

75

100

0 5 10 15
Time

P
D

 r
es

po
ns

e

PD Target PD Target PD Response

0

1

2

3

4

5

0 5 10 15
Time

C
on

ce
nt

ra
tio

n

Cmpt1 Cmpt2 Cmpt3 Cmpt4 Target

Figure 3.2: Predicted patient BIS responses to infusion schedule defined by ’tci_pd’ function.
30

40

60

80

100

0 5 10 15
Minutes

B
is

pe
ct

ra
l I

nd
ex

 (
B

IS
)

Observed Target

Figure 3.3: Simulated patient data under PK-PD model misspecification.

[3,] 0.333 7.114 0.122 0.008 3.152 28.596 54.771 50.462

The output of gen_data is a list with class "datasim" that can be plotted, as demonstrated in
Figure 3.3.

We observe that, due to the PK-PD parameter misspecification, the true BIS values vary sub-
stantially from those predicted for the patient at their covariate values. Consequently, the actual
level of sedation is less than the target level and the targets would need to be adjusted to achieve
the desired result. In practice, a clinician would adjust the target as needed, thereby "closing" what
would otherwise be an "open-loop" system.

As discussed in chapter 2, in a closed-loop control system, patient responses are fed back to a con-
troller that adjusts infusion rates. Closed-loop control can be implemented within the tci package
through Bayesian updates to the patient-specific PK-PD model using the function bayes_control().
bayes_control() requires four components as arguments: 1) a data frame specifying a set of targets
and corresponding times, 2) a data frame specifying update times, 3) a set of prior PK-PD estimates,
and 4) a set of true PK-PD values. The prior PK-PD estimates refer to the values predicted for each
patient based on their covariate values alone. The true PK-PD values are the parameter values that
describe the patients underlying response. In practice, these are never known, but can be assigned

31

to evaluate the impact of model misspecification with simulations.
Using the example patient, the response targets and update times are easily set up.

targets <- data.frame(time = c(0,5,10,15), target = c(40,50,60,60))
update_times <- data.frame(time = seq(1,15,1),

full_data = rep(TRUE,15))

The "full_data" argument in the "update_times" data frame specifies whether or not all of the
data should be used to update the PK-PD parameters at each time. If set to FALSE, only the
data gathered since the prior update time will be used and the prior point estimates and variance
covariance will be replaced with the current estimates. Use of only the most recent data increases the
computational speed of the closed-loop controller, but may cause a loss of accuracy. A compromise
between the two would be to use full updates early on to ensure that an accurate patient-specific
model is identified, followed by partial updates at later times, when more data have been collected
and the computational cost of full updates is higher.

The prior distribution of PK-PD parameter values describes the variability between patients due
to unobserved characteristics. That is, it characterizes how much parameters vary among patients
with identical covariate values. The Eleveld PK-PD model assumes that all parameters that vary
within the population are log-normally distributed. Consequently, we formulate a multivariate nor-
mal prior distribution centered at the logged parameter point estimates for the example patient. The
Eleveld model also provides variance estimates for the inter-individual random effect terms, which
are assumed to be uncorrelated. Despite this, correlation between PK-PD parameters is nonetheless
induced due to common terms in the PK parameter calculations. For example, patient parameters
Q2 and V2 are correlated, as are Q3 and V3, because V2 and V3 randomly vary within the population
and are included within the fixed-effects portions of Q2 and Q3, respectively. Consequently, we es-
timate the variance-covariance matrix for the example patient by drawing 1,000 Monte Carlo "true"
PK-PD parameter samples.

rand_vars <- c("V1","V2","V3","CL","Q2","Q3","KE0","CE50","SIGMA")
set.seed(1)
theta_samples <- replicate(1e3, unlist(eleveld_poppk(patient_covariates,

rand = TRUE)[,rand_vars]))
prior_pars <- list(pars_pkpd = theta[1:12], sig = cov(t(log(theta_samples))),

pk_ix = 1:7, pd_ix = 8:12, fixed_ix = 9:12,
err = theta["sigma"], delay = theta["bis_delay"]/60)

Additional components that need to be specified in both the list of prior patient values and the
list of true patient values are the parameter indices that correspond to the PK parameters, the PD
parameters, the parameters that are fixed within the population and, therefore, are not updated,
the true residual error term, and the time delay between effect and measurement, if present.

true_pars <- list(pars_pkpd = theta0[1:12], pk_ix = 1:7, pd_ix = 8:12,
fixed_ix = 9:12, err = theta0["sigma"],
delay = theta0["bis_delay"]/60)

32

20

40

60

80

0 5 10 15
Minutes

B
is

pe
ct

ra
l I

nd
ex

 (
B

IS
)

Observed Prior Posterior Target

Figure 3.4: Simulated response of example patient under Bayesian closed-loop control.

The bayes_control function uses these four components to simulate data under closed-loop
control. The simulated results for the example patient are displayed in Figure 3.4. During this
simulation, the same targets were used as previously for open-loop control in Figure 3.3

bayes_sim <- bayes_control(targets = targets,
updates = update_times,
prior = prior_pars,
true_pars = true_pars)

plot(bayes_sim) + ylab("Bispectral Index (BIS)") + xlab("Minutes")

33

Figure 3.5: Reproduction Figure 2 from Cascone et al. (2013)

3.4 User-defined functions
3.4.1 Custom PK models

If a user needs to simulate responses from a PK model outside of the library, such as one based on
a set of ODE, user-defined functions can be specified. To illustrate this functionality, we consider the
PK of the drug remifentanil. Remifentanil is an opioid derivative that is often administered intra-
venously to induce analgesia alongside propofol. Here, we consider the three-compartment PK model
proposed by Cascone et al. (2013). The structural model is similar to that of the Eleveld propofol
model in that remifentanil is infused into a central compartment, representing the blood supply, and
then circulated to two peripheral compartments, representing highly-perfused and scarcely-perfused
organs and tissues. Unlike the propofol model, however, remifentanil is removed from all three-
compartments with separate clearance rates, rather than just the central one. A diagram of the
three-compartment model, reproduced from Cascone et al. (2013), is displayed in figure 3.5. The
differential equations describing the remifentanyl model are given in equations 3.7.

V1 · dCp

dt
= −Cl1 · C1 + k21 · V2 · C2 + k31 · C3 · V3 + −[(k12 + k13 + k10) · C1] · V1 + kR(t)

V2 · dC2

dt
= k12 · C1 · V1 − k21 · C2 · V2 − Cl2 · C2

V3 · dC3

dt
= k13 · C1 · V1 − k31 · C3 · V3 − Cl3 · C3

(3.7)

Since the closed-form solution for this model does not exist in the tci package, we can instead
program the structural model using the differential equation solver provided by the mrgsolve R
package. The differential equations are implemented as follows.

34

library(mrgsolve)

form <- '
$PARAM V1=1, V2=2, V3=3, CL1=1.1, CL2=1.2, CL3=1.3, k12=0.4, k21=0.6,
k13=0.6, k31=0.3, k10=0.8
$CMT A1 A2 A3
$ODE
dxdt_A1 = -CL1*A1/V1 + k21*A2 + k31*A3 - (k12+k13+k10)*A1;
dxdt_A2 = k12*A1-k21*A2 - CL2*A2/V2;
dxdt_A3 = k13*A1-k31*A3 - CL3*A3/V3;
'
mod_remif <- mcode("remifentanil", form)

Note that the differentials are defined in terms of the amounts of remifentanil infused, rather
than concentrations. The mcode() function is a mrgsolve function used to compile the code.

To implement this model within tci, we need to define a wrapper function in terms of specific
quantities. The function should be defined to take in as arguments 1) a vector of time points, "tm,"
2) a scalar infusion rate, "kR," 3) a vector of named parameters, "pars," 4) initial concentrations (not
amounts), "init," and 5) a scalar value indicating the starting time of the infusions. The function
should additionally be assigned S3 class "pkmod" for the predict.pkmod() and plot.pkmod()
methods to be compatible. The output of the function should be a vector or matrix of concentrations
predicted under a constant infusion rate.

pk_remif <- function(tm, kR, pars, init = c(0,0,0), inittm = 0){

begin times at 0 and end at last time evaluated
tm <- tm - inittm
end_inf <- max(tm)

pass parameters as list
pars <- sapply(pars, as.list)
vols <- unlist(pars[c("V1","V2","V3")])
A0 <- init*vols # initial amounts
names(A0) <- c("A1","A2","A3") # names required by mrgsolve

update parameters and initial values (as amounts)
mod_remif <- update(mod_remif, param = pars, init = A0)

dosing regimen - mrgsolve function in terms of amount infused
event <- ev(amt = kR*end_inf, time = 0, tinf = end_inf)

simulate responses (skip tm=0 unless specified)
dat <- mrgsim_q(x = mod_remif, # pk model

data = event, # dosing event

35

stime = tm) # evaluation times

skip tm=0 unless specified in tm
dat <- dat@data[-1,]

return concentrations with compartments in rows and times in columns
cons <- t(dat[,c("A1","A2","A3")]) / vols

rownames(cons) <- colnames(cons) <- NULL
return(cons)

}
class(pk_remif) <- "pkmod"

We can now evaluate the remifentanil PK model as we would any of the internal PK functions.
The optimized parameter values identified by Cascone et al. (2013), which we will use as an example,
are reproduced in Table 3.2.

Table 3.2: Reproduction of Table 1 from Cascone et al. (2013): Values and dimensions of the three-compartmental
model parameters.

Parameter Optimized value Parameter Optimized value
V1 7.88 L k10 0.172/min
V2 23.9 L k12 0.373/min
V3 13.8 L k21 0.103/min
CL1 2.08 L/min k13 0.0367/min
CL2 0.828 L/min k31 0.0124/min
CL3 0.0784 L/min

We observe in Table 3.2 that clearance parameters are given in terms of L/minute. Consequently,
dosage amounts measured in µg will result in infusion rates in terms of µg/min and concentrations
of µg/L or, equivalently, ng/mL.

As in Cascone et al. (2013), we consider our example patient’s predicted response when adminis-
tered a bolus dose (rapid infusion over 1 minute) of 1µg/kg and an constant infusion of 1µg/kg/min
for 20 min for our example patient, who weights 60 kg.

pars_remif <- c(V1 = 7.88, V2=23.9, V3=13.8, CL1=2.08, CL2=0.828, CL3=0.0784,
k10=0.172, k12=0.373, k21=0.103, k13=0.0367, k31=0.0124)

dtm = 1
dose = 1
inf <- cbind(begin = c(0,20), end = c(20,200),

infrt = c(dose*60,0))
bolus <- cbind(begin = c(0,dtm), end = c(dtm,200),

infrt = c(dose*60/dtm,0))
pb <- plot(pk_remif, pars = pars_remif, inf = bolus, title = "Bolus") +

scale_y_log10() + ylab("Concentration (ng/mL)") + xlab("Minutes")
pi <- plot(pk_remif, pars = pars_remif, inf = inf, title = "Infusion") +

36

0.001

0.010

0.100

1.000

0 50 100 150 200
Minutes

C
on

ce
nt

ra
tio

n
(n

g/
m

L)

Compartment

Cmpt1

Cmpt2

Cmpt3

Bolus

0.01

0.10

1.00

10.00

0 50 100 150 200
Minutes

C
on

ce
nt

ra
tio

n
(n

g/
m

L)

Compartment

Cmpt1

Cmpt2

Cmpt3

Infusion

Figure 3.6: Evaluation of user-defined remifentanil model.

scale_y_log10() + ylab("Concentration (ng/mL)") + xlab("Minutes")
grid.arrange(pb,pi,nrow = 2)

3.4.2 Custom TCI algorithms
Though the Jacobs and Shafer-Gregg TCI algorithms are commonly used for plasma and effect-

site targeting, respectively, a user may wish to specify an alternative algorithm. The structure of
the tci package allows users to do this while retaining use of the package’s S3 generic functions.
We illustrate this process using an example effect-site algorithm that limits the maximum overshoot
tolerated within the central compartment. The motivation for such an algorithm is similar to that
of an algorithm proposed by Van Poucke et al. (2004), which sets a maximum percentage overshoot
for the plasma concentration. As Van Poucke et al. (2004) notes, such an algorithm may be useful in
cases where there there may exist a site of toxic effect that equilibrates with the central compartment

37

faster than the therapeutic effect-site and resulting in toxicity to the patient. Rather than limiting
the percentage overshoot, here we implement an algorithm that limits the absolute concentration
overshoot.

3.4.2.1 Example effect-site algorithm
In this example algorithm the user specifies a permissible amount of overshoot in the central com-

partment, lim_amt, beyond the nominal target. At each step, the example TCI algorithm defines
a maximum plasma concentration to equal the target effect-site concentration plus the permissible
overshoot: Cp_max = Cet + lim_amt. It then calculates the infusion required to reach or maintain
Cp_max over the subsequent ten seconds, pinf. It then calculates the maximum effect-site con-
centration if pinf is given, Ce_max. If Ce_max is less than the target concentration, pinf can be
administered without overshoot. If Ce_max is greater than the target concentration, then targeting
the effect-site directly will result in a maximum plasma concentration less than Cp_max and the
effect-site targeting algorithm is applied.

To implement the algorithm, we create a function that takes in a single target concentration
as its first argument, a PK model with class pkmod as its second, and the duration of the infusion
administered, dtm, as its third.

tci_plasma_lim <- function(Cet, pkmod, pars, init = NULL, dtm = 1/6,
lim_amt = 0.5,ecmpt = NULL, tmax_search = 20,
cetol = 0.05, cptol = 0.1, maxrt = 1200){

if(is.null(init))
init <- eval(formals(pkmod)$init)

if(is.null(ecmpt))
ecmpt <- length(init)

ecmpt_name <- paste0("c", ecmpt)

if effect-site concentration is close to target,
switch to plasma targeting
if((Cet - init[ecmpt]) / Cet < cetol &

(Cet - init[1])/Cet <= cptol)
return(tci_plasma(Cet, pkmod = pkmod, dtm = dtm, maxrt = maxrt,

init = init, pars = pars))

Cp_max <- Cet + lim_amt

infusion required to reach Cp_max
pinf <- tci_plasma(Cpt = Cp_max, pkmod = pkmod, dtm = dtm, maxrt = maxrt,

init = init, pars = pars)

Administer dtm-minute infusion
unit_inf <- create_intvl(

38

data.frame(time = c(dtm, tmax_search),
infrt = c(pinf, 0))

)

Calculate maximum effect-site concentration
CeP <- function(tm) predict(pkmod, inf = unit_inf, pars = pars,

init = init, tms = tm)[,ecmpt_name]
Ce_max <- optimize(CeP, c(0,20), maximum = TRUE)$objective

if max Ce < Cet administer infusion to reach maximum target
if(Ce_max <= Cet + cetol*Cet)

infrt <- pinf
else

infrt <- tci_effect(Cet, pkmod, dtm, ecmpt, init = init, pars = pars)

return(infrt)
}

As with the plasma- and effect-site targeting TCI algorithms, tci_plasma_lim() returns a single
infusion rate when a single target is provided. Applying the new algorithm to the example patient
using the Eleveld propofol model, we target an effect-site concentration of 2 mg/L with a maximum
overshoot in the central compartment of 0.25 mg/L.

tci_plasma_lim(Cet = 2, pkmod = pkmod3cptm, pars = theta, lim_amt = 0.25)

[1] 124.7325

Once the base TCI algorithm has been created, it can be passed to tci() through the "tci_custom"
argument to be iteratively applied to a series of targets.

tci_custom_alg <- tci(Ct = c(1,2,2.5,2.5), tms = c(0,1,6,11),
pkmod = pkmod3cptm, pars = theta,
tci_custom = tci_plasma_lim, lim_amt = 0.25)

plot(tci_custom_alg, title = "Plasma-limiting effect-site TCI algorithm")

3.5 Summary
In this chapter we have introduced the tci package for implementing target-controlled infusion

algorithms for compartmental PK and PK-PD models. Interest in TCI systems has grown con-
siderably in the last two decades as TCI has become a "mature" technology.(Absalom et al., 2016)
Extensions to closed-loop control systems remain largely experimental, but have demonstrated sig-
nificant promise in their ability to maintain targets with less over- and under-shoot and lower doses
than manual control.(Loeb and Cannesson, 2017) To date, however, no software exists for the R

39

0

1

2

0 3 6 9
Time

C
on

ce
nt

ra
tio

n

Cmpt1 Cmpt2 Cmpt3 Cmpt4 Target

Plasma−limiting effect−site TCI algorithm

Figure 3.7: Evaluation of user-defined TCI effect-site algorithm.

40

programming language to implement TCI control, while existing software is either proprietary, less
accessible, or not easily modifiable by interested researchers. The goal of this package is to provide
a simple and easy to use, but also highly customizable, set of functions that are accessible to any
researcher familiar with R and the basic principles of TCI. Future additions to the package are ex-
pected to include a wider array of structural and population PK models within the package library,
C++ coding of PK models via the Rcpp library for faster computation, and extended simulation
capabilities for closed-loop control algorithms.

41

Chapter 4

Data squashing with missing values

4.1 Introduction
4.1.1 Background

In 1999, DuMouchel et al. (1999) introduced the method of "data squashing," by which a large
data set with N independent observations is approximated by a smaller, "squashed," data set. The
squashed data set has the same variables as the original but has M ≪ N rows of pseudo-data
values and corresponding frequency weights. The goal of squashing is to identify pseudo-data points
and weights so that the statistical information of the original data set is preserved in the squashed
sample. Consequently, statistical models that are fit to the squashed data set will have nearly
identical results as when fit to the original data set.

Through this process, squashing aims to scale-down the original data set such that conventional
statistical and machine learning (ML) methods can be used where they may have otherwise been
prohibitively computationally expensive if applied to the original data set. A secondary benefit of
the squashing procedure is that the original data set cannot be reclaimed from the squashed data
alone, making it a "lossy" procedure. This may facilitate data sharing between researchers where it
otherwise would have been impossible due to proprietary or identifiable information.

4.1.2 Prior work
At the time of publication, DuMouchel et al. (1999) predicted that data squashing had "the

potential for revolutionizing the field." Over twenty years later, however, very little has been done to
implement or extend the original methodology. In the years immediately following its introduction,
some efforts were made to extend squashing, develop similar approaches, or apply squashing to
machine learning tasks.

In 2003, DuMouchel and Agarwal (2003) introduced an alternate squashing method that was
intended to permit squashing of higher-dimensional data sets and those with more categorical levels
than the original method. This method applies a "fractional factorial sampling" method whereby
categorical variables are binarized before the data are iteratively partitioned into regions based on
principal components. From each region, data points are sampled and reweighted to approximate the
moments of the original data set. The authors, however, found this method to have disappointing
performance relative to the original.

Owen (2003) proposed a method of "empirical likelihood squashing," by which a simple random
sample is reweighted to match selected global moments. Like DuMouchel and Agarwal (2003), how-
ever, this method had worse performance than the original squashing method and had diminishing
utility relative to random sampling as the size of the original data set increased.

In 2002, Madigan et al. (2002) consider an extension to data squashing called "likelihood-based
data squashing" (LDS). In LDS, a set of pseudo data points is similarly constructed, rather than
sampled, with the goal of approximating a specific likelihood function and prior distribution. This
approach outperforms the original squashing method within some of the examples considered but
comes at the cost that the user must prespecify the model that is to be fit.

42

Around the same period, other authors make use of squashing methods for machine learning
applications. Pavlov et al. (2000) use LDS in order to train support vector machines, while Choki
and Suzuki (2002) propose an iterative squashing-boosting algorithm that uses data squashing to
compress the reweighted data set returned by the boosting algorithm at each step. Following 2003,
however, there seems to be no work aimed at extending or applying data squashing. Occasional
mentions are made only in passing by Xi (2009), who notes that no asymptotic guarantees have yet
been identified for squashing, and Ng (2017), who raises the criticisms that 1) the squashed data
points do not carry any specific interpretation since they don’t correspond to a specific point in the
original data set, and 2) that squashing (and parametric modeling) is not practical if the data set is
too large. Similarities also exist between data squashing and "instance selection" methods within the
data science and machine learning literature. Instance selection aims to remove noisy or redundant
values from a training set such that a model achieves a similar accuracy on the subset of data as
on the original data set.(Olvera-López et al., 2010) This shares more in common, however, with the
work derived from data squashing than it does with the original method. Like the approaches of
DuMouchel and Agarwal (2003) and Owen (2003), specific values from the data are selected rather
than constructing new pseudo instances. Also, as in the LDS approach proposed by Madigan et al.
(2002), instance selection methods focus on classification of a pre-specified variable, rather than the
approximation of an arbitrary likelihood function.

4.1.3 Contributions in this chapter
Given the apparent promise of data squashing, it is worth asking why it not only has not "rev-

olutionized" statistical analysis as predicted but remains largely unknown and unused today. We
believe there are several reasons why this may be the case. First, and most practically, to this day
there does not exist any published software that will perform data squashing. Though the focus
of this chapter is on the extension of the squashing methodology, an ancillary benefit is the con-
struction of open-source software in R that will make it easier for other researchers to further refine
data squashing. Methodologically, the primary limitations of data squashing concern the types of
data sets that are amenable to the procedure. As we will discuss later on, data sets with a large
number of categorical variables can be squashed but may not derive many benefits from the process.
This is the primary limitation that DuMouchel and Agarwal (2003) sought to overcome in their
earlier work, though they were largely unsuccessful in doing so. Data sets in which the number of
columns exceeds the number of rows are also not good candidates for data squashing. For these
cases, however, the extensive literature on variable selection can offer guidance.

A final limitation that, we believe, has hindered the implementation and development of data
squashing is its inability to handle data sets with missing values. Missing values are ubiquitous in
real-world data sets and cannot be handled by many popular machine learning algorithms. These
include support vector machines, lasso and elastic-net regression, and neural networks.(Kuhn and
Johnson, 2019) For sufficiently large data sets with missing values, more sophisticated methods
that adequately account for the variability in missing values, such as multiple imputation, may be
discarded in favor of simpler methods, such as mean or median imputation or outright deletion of
missing instances.

In this chapter, we describe two different approaches to handling missing data within the original
squashing framework proposed by DuMouchel et al. (1999). We begin by describing data squashing

43

and evaluating the performance characteristics of squashing as an estimation procedure. We then
show how the original methodology can be extended to allow for data sets with missing values by
propagating missingness through to the squashed data set. Using this process of propagation- or
p-squashing, the squashed data set preserves that statistical information of the original data set such
that maximum likelihood-based methods for handling missing data can be equivalently used on the
parent and squashed data sets. We then evaluate a second extension wherein the squashed data set
is constructed to preserve the expectation of the log-likelihood (e-squashing) in the original data,
thereby creating a squashed data set without any missing values.

4.2 Data squashing
4.2.1 Theory

Assume we have a large data set with N independent rows that are drawn from a probability
model, f , with parameters θ and C categorical variables and Q quantitative variables. Let i index
the rows of the data set and A1, ..., AC and X1, ..., XQ represent the categorical and quantitative
variables, respectively.

The log-likelihood for θ is defined as

log(L(θ|X, A)) =
N∑

i=1
log(f(Xi1, ..., XiQ, Ai1, ..., AiC |θ)) (4.1)

The goal of the squashing procedure is to construct a set of pseudo data points and corresponding
frequency weights that use the same set of variables, but with M ≪ N rows. Let Bc and Yj

represent the categorical and numeric variables in the squashed data set, respectively, for j = 1, ..., Q,
c = 1, ..., C, and let wi represent the frequency weights for i = 1, ..., M . For the squashed data set
to reproduce the log-likelihood in equation 4.1, the two are set to be equal.

N∑
i=1

log(f(Xi1, ..., XiQ, Ai1, ..., AiC |θ)) =
M∑

i=1
wilog(L(θ|Y, B)) (4.2)

For data squashing to work, the primary assumption is that, within regions defined by fixed
values of A, the log-likelihood for θ is sufficiently smooth as to be well-described by a Taylor series
expansion with K terms about the point x = (x1, ..., xQ). Given this assumption, the log-likelihood
within such regions can be written as

log(f(Xi1, ..., XiQ|Ai1 = a1, ..., AiC = ac, θ)) ≈
K∑

k=1

gk(a, x, θ)
Q∏

j=1
(Xij − xj)pkj (4.3)

The first K coefficients of the Taylor series, gk(a, x, θ), k = 1, ..., K, depend on the values of the
categorical variables in the region, a = (a1, ..., ac), as well the expansion point, x = (x1, ..., xQ), and
the unknown parameters, θ. The product term,

∏Q
j=1(Xj − xj)pkj , concisely notes all combinations

of products such that the sum of the vector of exponents, (pk1, ..., pkQ) is less than a set degree
of approximation:

∑
j pkj ≤ d. For example, letting Q = d = 2, the set of power vectors is

p = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)} such that the six terms of the Taylor approximation are

44

5∑
k=0

gk(a, x, θ)
2∏

j=1
(Xij − xj)pkj = g0 + g1(Xi1 − x1) + g2(Xi2 − x2)+

g3(Xi1 − x1)(Xi2 − x2) + g4(Xi1 − x1)2+

g5(Xi2 − x2)2

(4.4)

If we partition the original data into R regions with Nr rows in the rth region for r = 1, ..., R.

N∑
i=1

log(f(X, A|θ)) ≈
R∑

r=1

Nr∑
i=1

K∑
k=1

gk(a(r), x(r), θ)
Q∏

j=1
(Xij − xj(r))pkj (4.5)

The notation a = a(r), x = x(r) indicates that the categorical values and Taylor expansion
points vary between, but are constant within, each region indexed by r. For each region, we allow
the squashed sample to have Mr pseudo data points and set the categorical variable values equal to
those of the original data set, such that Ac = Bc for c = 1, ..., C. Applying this approximation to
both sides of equation 4.2 and swapping the order of summation over K and Nr, we have

K∑
k=1

gk(a(r), x(r), θ)
Nr∑
i=1

Q∏
j=1

(Xij − xj(r))pkj =
K∑

k=1

gk(a(r), x(r), θ)
Mr∑
i=1

wi

Q∏
j=1

(Yij − xj(r))pkj (4.6)

The order of summation is swapped to make it more apparent that, by setting x(r) equal the
means of X within region r, each side of the equation consists of terms that are proportional to
the weighted sample moments. For example, letting Q = d = 2, as in equation 4.4, when k = 3,
p = (1, 1) and the corresponding Taylor series term is g3

∑Nr

i=1(Xi1 − x̄1)(Xi2 − x̄2) = g3(Nr − 1)σ̂12,
where σ2

12 is the empirical covariance between X1 and X2.
Since the Taylor series terms depend upon the values of a(r), x(r), θ, by keeping these constant

within each region, the squashed data set that will reproduce the likelihood function of interest is
the one in which the sample moments from the original data set are matched to the weighted sample
moments of the squashed data set, centered around x(r).

Nr∑
i=1

Q∏
j=1

(Xij − xj(r))pkj =
Mr∑
i=1

wi

Q∏
j=1

(Yij − xj(r))pkj (4.7)

The goal of squashing is to find values of Yij and wi such that this equation holds within each
region. Details of how this is done are provided in the next section.

4.2.2 Implementation
To implement data squashing, a number of choices need to be made. Specifically, one must select

the following:

1. A clustering mechanism (if any) for numeric data within categorical levels. Increased numeric
clustering will permit more localized squashing, but will decrease the degree of data reduction.

2. The set of moments to match between original and squashed data sets. The set of moments is
determined by the degree of the Taylor series approximation within each region. More moments

45

will result in a better approximation of the likelihood, but will require more squashed data
points to do so.

3. The number of pseudo-data points within each region. The number of data points will deter-
mine how precisely the original data moments can be reproduced.

Each of these choices may affect the computational speed of the squashing process, the number
of points in the squashed data set, and the accuracy to which models fit on the squashed data set
reproduce results from the original.

4.2.2.1 Clustering mechanism
Within each region defined by categorical levels, numeric variables can, but do not necessarily

need to be, clustered. Any clustering method will generally result in a lower amount of compression
than if none is used, but will be better able to faithfully replicate nonlinear relationships within
the data. DuMouchel et al. (1999) propose two methods of clustering the data: hyper-rectangles or
data spheres. In the hyper-rectangle approach, continuous variables are categorized into three bins
at the 25th and 75th percentiles. In the data spheres approach, data are centered and scaled before
being split into a pre-defined number of layers based on their distance from the origin. The layers
are then further split into pyramids such that, within each grouping, all points will have the same
variable with the furthest deviation from the origin.

Within this chapter, we consider only the data spheres approach, as it appeared to perform
well within the original simulations and doesn’t suffer from the same curse of dimensionality as the
hyper-rectangles approach as the number of variables increases.

4.2.2.2 Selection of moments and number of data points
The set of moments matched within each region are the sufficient statistics for the log-likelihood

and will determine how precisely it is approximated. Depending on the anticipated complexity of
model(s) more or fewer moments may be required. In the simple case of linear regression with linear
terms, the set of means, variances, and covariances for each variable are the sufficient statistics.
Consequently, matching only the first and second moments would precisely replicate the original
data set results (of course, one could save time by just calculating these quantities if these were the
only models of interest). DuMouchel et al. (1999) recommend using up to all zero- to fourth-order
marginal (e.g. X3

i) and crossed (e.g. XiXjXk) moments, as well as fifth-order marginal moments.
In our implementation, we use all of these with the exception of the fifth-order marginal moments.

The precise number of moments matched within each region varies depending on the number
pseudo data points in the region. When there are m pseudo data points and Q quantitative variables,
there are df = m(Q + 1) degrees of freedom in the optimization process (weights included). Conse-
quently, the number of moments, K, is selected such that K ≈ df , with the lower-order moments
included first. The number of pseudo data points created, Mr, is defined by the formula

Mr = max(1, α log(Nr)) (4.8)

The parameter α takes on values α ≥ 0. As α increases, the number of pseudo data points also
increases, allowing for a more precise fit between parent and squashed data sets, but at the cost of
a lower amount of reduction in the sample size.

46

4.2.2.3 Identification of squashed data points and weights
Squashed data points and weights are identified within each region by searching for values that

minimize the (weighted) squared distance between the original data moments and the weighted
moments in the squashed data set.

S(Y, w) =
K∑

k=1

uk

zk −
Mr∑
i=1

wi

Q∏
j=1

Y
pkj

ij

2

(4.9)

In the above equation, zk is the kth moment from the original data set and uk is a positive
constant that indicates the relative importance of the moment. Since lower-order moments (e.g.,
means and variances) are typically more important than higher-order moments (e.g., 3rd order
coskew terms), lower-order moments receive larger values of uk than higher-order moments.

Rather than leaving it to a search algorithm to find squashed values and weights that minimize
the distance between lower order moments, the squashed data set can be initialized such that it
matches the original data set on moments of order 0, 1, and pure moments of order 2 (i.e., sample
size, means, and variances, respectively). Specifically, we take the following steps:

1. If weights are not present in the original data set, assign each observation a weight of 1.
2. Center and scale the columns of the original data set to have means of 0 and variances of 1.
3. Initialize the squashed sample by sampling values and weights from each column of the original

data.
4. Scale squashed weights so that the sum of the squashed weights equals the sum of the original

data weights.
5. Center and scale each column of the squashed data set by subtracting the weighted mean and

dividing by the weighted standard deviation.

Once these steps are taken, the sample size, means, and variances are assigned high values,
arbitrarily set to µk = 1000, to dissuade the optimizer from taking a step that will increase the
distance between these moments. All other moments receive values of µk so that they sum to 1
within each order. For example, for p variables there are p(p + 1)/2 − p covariance terms, each of
which receives a value µk = 1/(p(p + 1)/2 − p). Minimization of Equation 4.9 can be performed by
any optimization routine; however, as noted by DuMouchel et al. (1999), each term is a polynomial
function of the unknowns, allowing for calculation of the numeric derivatives required for a Newton-
Raphson algorithm. In our own implementation, we do this with the R function nlm and the numeric
gradient.

4.2.3 Simulation performance
In DuMouchel et al. (1999) the performance of data squashing is evaluated by comparing how

well regression coefficients from model fit to the squashed data set match those of the same model
fit to the full data set. The coefficients from the full data set are taken to be the "true" parameter
values and the relative error is calculated as (β̂squashed − β̂true)/SE(β̂true). While it is important
to know this, it is also worth investigating how well data squashing functions as an estimation
procedure when the true parameter values are known. To assess this, we consider the following
scenario. Two numeric predictors are independently generated from standard normal distributions

47

and one categorical variable is created to have three categories proportioned approximately 60%,
25%, and 15%, respectively. A numeric outcome is generated based on the model

Y = 5 + 2X1 − X2
1 + 3A2 + 5A3 + 3X2 + 5X1A2 − X1A3 − 2X2

1 A2 + X2
1 A3 + ϵ

ϵ ∼ N(0, 4)
(4.10)

We then generate 2,000 data sets with N = 1, 000 observations and squash each of them at
tuning parameter values α = (0.5, 1, 1.5, 2) and numeric clustering using the data sphere method
with two and three layers. The correctly specified model is fit to both original and squashed data
sets, for which we calculate the bias of the coefficients, the root mean squared error (RMSE), and
the coverage probability. Results of these simulations are shown in figure 4.1.

At lower levels of the tuning parameter α (i.e., α = 0.5, 1), we observe that the squashing
procedure results in substantial bias in the parameter estimates, high RMSE, and poor coverage
probabilities. As α increases to 1.5 and 2, the squashing performance improves substantially, with
estimates at α = 2 showing negligible bias and accurate coverage probabilities. At lower values of α,
there noticeable improvement in the estimates when three data sphere layers are used rather than
two; however, this improvement disappears at α = 1.5, 2. This is consistent with expectations. At
low levels of α, relatively few pseudo-data points are used to approximate the moments within each
region. Consequently, only the lower-order moments will be matched, resulting in an inability to
replicate nonlinear relationships. As the number of regions increases (i.e., through 3 layers instead of
2), the nonlinear relationships are better approximated by the piece-wise linear estimates within each
region. At higher values of α, more pseudo-data points are used, allowing for a better approximation
of nonlinear relationships and reducing the need for additional layers.

The cost of this improvement in performance is a larger squashed sample size. At α = 0.5 and
two layers, an average of only M = 38 pseudo points are used to squash the data set of N = 1, 000
points. By contrast, when three layers are used at α = 2, an average of M = 350 pseudo points
are used. As noted, the addition of a third data sphere layer is largely unnecessary to preserve the
relationships within the data once α ≥ 1.5. Further, since both the performance and the increase
in squashed sample size scales better with α than with the number of layers, squashing performs
better in our simulations at α = 1.5 and two layers than at α = 1 with three layers despite having
an average of M = 140 points in the former and M = 170 in the latter. Finally, it is worth
noting that while the reduction factor (N/M) is relatively low for these data sets (e.g. reduction:
1000/140=7.14 at α = 1.5, layers = 2), this would be expected to improve with larger sample sizes.
Since Mr increases at a rate of αlog2Nr within each original data set region with size Nr, as the total
sample size increases relative to the number of regions, the reduction factor will also increase. With
these results in mind, we now consider approaches to handling missing values within the squashing
methodology.

4.3 Squashing with missing values
We propose two methods of accommodating missing values in the squashing process. In the

first, missing values present in the original data set are propagated onward to the squashed data set.
We will refer to this method alternately as "propagation squashing" or "p-squashing." Though this

48

α
 =

 0
.5

α
 =

 1
α

 =
 1

.5
α

 =
 2

-0.2 -0.1 0.0 0.1

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

Percent bias
α

 =
 0

.5
α

 =
 1

α
 =

 1
.5

α
 =

 2
0.00 0.25 0.50 0.75 1.00

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

RMSE

α
 =

 0
.5

α
 =

 1
α

 =
 1

.5
α

 =
 2

0.2 0.4 0.6 0.8 1.0

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

Coverage

38

91

140

191

86

170

257

350

100

200

300

0.5 1.0 1.5 2.0

α

A
v
e

ra
g

e
 s

q
u

a
s
h

e
d

 s
a

m
p

le
 s

iz
e

 (
N

=
1

0
0

0
)

layers

2

3

Figure 4.1: Performance of basic squashing method. Results are from 2,000 iterations of data squashing applied to
simulated data sets of size N=1,000. As alpha values increase from 0.5 to 2, more pseudo data points are used in the
squashed sample allowing for a greater degree of accuracy at the cost of a larger squashed sample size. Either two
(circle) or three (triangle) layers are used to cluster numeric values within categorical regions using the data sphere
approach.

49

does not alleviate the problem of missing data, missing data methods such as multiple imputation,
maximum likelihood estimation, or Bayesian modeling that were unfeasible due to the size of the
original data set may be possible with a squashed data set. Further, we show that p-squashing
preserves all of the information required for likelihood-based imputation procedures.

In the second method, rather than squashing by preserving the likelihood function, we preserve
the expectation of the log-likelihood function. When models with missing data are fit via maximum
likelihood, it is common to use the E-M algorithm as a fitting procedure. Through the E-M algorithm,
the replacement of missing observations with their expected values and the maximization of the log-
likelihood with respect to the parameter values is iterated until convergence. By squashing the
expectation of the log-likelihood, the squashed data set is constructed to resemble a single "E-step"
estimate of the model that would result from the E-M procedure. Though this adds a further
degree of approximation between the parent and squashed data sets, the result is that the latter
has only fully observed variables. We will refer to this method either as "expectation-squashing" or
"e-squashing."

4.3.1 Propagation squashing - theory
To show how squashing can be extended to data with missing values, we begin by considering how

missing values are handled in maximum likelihood estimation, otherwise known as full-information
maximum likelihood (FIML).(Hartley and Hocking, 1971) Without loss of generality, define the set of
missingness patterns across categorical and continuous variables as Ξ, such that for each missingness
pattern ξ, the first u = u(ξ) numeric and v = v(ξ) categorical variables are completely observed
and the remaining variables are missing. Had all variables been observed, the contribution to the
likelihood of all observations with missingness pattern ξ would have been

L =
N(ξ)∏
i=1

f(Xi1, ..., XiQ, Ai1, ..., AiC ; θ) (4.11)

where N (ξ) is the total number of observations with missingness pattern ξ. Since missing values
are present, however, this likelihood cannot be evaluated. As the name would suggest, FIML aims
to use all of the information available in the data in the estimation process. Consequently, for
each missingness pattern, a separate marginal likelihood is calculated that is integrated or summed
over the distribution of missing values. The contribution to the likelihood for the observations with
missingness pattern ξ is

L(ξ) =
N(ξ)∏
i=1

 ∑
Av(ξ)+1

...
∑
AC

∫
Xu(ξ)+1

...

∫
XQ

L dXu+1 ...dXQ

=

N(ξ)∏
i=1

f (ξ)(Xi1, ..., Xiu(ξ), Ai1, ..., Aiv(ξ); θ)

≡
N(ξ)∏
i=1

f
(ξ)
i

(4.12)

For all missingness patterns the full FIML likelihood, L∗, is the product of the contributions
from each missingness pattern, each of which has its own likelihood function.

50

L∗ =
∏
ξ∈Ξ

N(ξ)∏
i=1

f
(ξ)
i (4.13)

To apply this to data squashing, we need to ensure that missingness patterns are constant within
each region. This is easily achieved by creating a categorical variable with levels corresponding to
each missingness pattern within all numeric and categorical variables. Since the original squashing
methodology separates regions on the basis of categorical levels, the FIML likelihood can be expressed
as R regions where the form of the likelihood function is constant within each region, though many
regions may have the same missingness pattern.

∏
ξ∈Ξ

N(ξ)∏
i=1

f
(ξ)
i =

R∏
r=1

Nr∏
i=1

f (ξ) (Xi1, ..., Xiu(ξ)|Ai1 = a1, ..., Aiv(ξ) = av(ξ), θ
)

≡
R∏

r=1

Nr∏
i=1

f
ξ(r)
i

(4.14)

For an arbitrary region r with missingness pattern ξ, the log likelihood can be approximated by
a Taylor series about the point (x1, ..., xu(ξ)) using the first u(ξ) numeric variables observed in the
region. This can then be set equal to the sum of the weighted mixed moments in the squashed data
set as in the original DuMouchel method.

log

(
R∏

r=1

Nr∏
i=1

f
(ξ)
i

)
=

R∑
r=1

Nr∑
i=1

log
(

f
ξ(r)
i

)

≈
R∑

r=1

Nr∑
i=1

K∑
k=1

gk

u(ξ)∏
j=1

(Xij − xj)pkj

=
R∑

r=1

Mr∑
i=1

wi

K∑
k=1

gk

u(ξ)∏
j=1

(Yij − xj)pkj

(4.15)

Since the regions were constructed such that the first u(ξ) numeric variables were fully observed,
while the remaining Q − u(ξ) variables were fully missing, the Taylor series approximation is made
with respect to only the fully observed numeric variables. Numeric variables that are entirely missing
within a region of the original data are also entirely missing within the corresponding region of the
squashed data. As with the original method, the values of the categorical variables within the
squashed samples are constructed to equal those of the original data set. This remains true when
categorical variables are missing observations, with "missing" being treated as a separate category.

These results show that simple modifications of the original squashing procedure can be used
to squash data sets with missing values in such a way that the information required for FIML is
preserved within the squashed data set. Consequently, using this approach likelihood-based missing
data methods can be used equally-well on the squashed data set, where the computation time may
be substantially reduced relative to the original data set.

51

4.3.2 Evaluation of propagation squashing in simulations
To evaluate the performance of the first method of data squashing with missing values, we

assign missing values to the same 2,000 data sets used in section 4.2.3 and fit the same model
using FIML. Missing values are assigned to each data set at rates of both 20% and 50% using
the "mice::ampute" R function. The "ampute" function is a multivariate amputation procedure in
which the user specifies a set of missingness patterns, corresponding probabilities for each pattern
appearing, and weights that indicate the relationship between each variable and the probability of
each missingness pattern occurring. By varying the weights, the user can modify the missingness
mechanism between missingness completely at random (MCAR), missingness at random (MAR),
and missingness not at random (MNAR). In this chapter, we consider only generating missingness
under a MAR mechanism such that missingness is related to the values of other variables observed,
but not to the underlying value of the missing observation itself. The missingness patterns and the
corresponding weights are displayed in Table 4.1.

Table 4.1: Missingness patterns and associated weights for amputation with mice::ampute. For each pattern, variables
with zeroes are missing while ones are observed. For each weight, values indicate the contribution of each variable to
the weighted sum score that determines if the corresponding pattern will be observed. Zeroes in the same location in
patterns and weights denote that a variable does not contribute to its own probability of missingness (i.e., data are
MAR, rather than MNAR).

X1 X2 A1 A2 A3 Y
Pattern 1 0 1 1 1 1 1
Pattern 2 1 0 1 1 1 1
Pattern 3 1 1 1 1 1 0
Weights 1 0 1 1 2 3 1
Weights 2 1 0 1 2 3 1
Weights 3 1 1 1 2 3 0

Zeroes in patterns one through three under columns X1, X2, and Y indicate that these variables
will be missing separately, but never together. Ones in the patterns in columns A1, A2, and A3
indicate that these variables are always observed. The weight values indicate the relative contribution
of each variable to a weighted sum score (WSS) that determines the probability that a row within
the data set will have the corresponding missingness pattern. Specifically, the "ampute" function
randomly designates sets of rows to have each missingness pattern, then calculates the following
weighted sum scores for each observation i in the region. The sum scores for each of the three
patterns are

WSS1(X1i) = X2i + 1Ai1 + 2 · 1Ai2 + 3 · 1Ai3 + Yi

WSS2(X2i) = X1i + 1Ai1 + 2 · 1Ai2 + 3 · 1Ai3 + Y

WSS3(Yi) = X1i + X2i + 1Ai1 + 2 · 1Ai2 + 3 · 1Ai3

(4.16)

The WSS score is then used in a logistic function to determine the probability of missingness,
with higher WSS scores resulting in a greater probability that a pattern will be observed.

For our simulations, missingness is assigned such that 20% and 50% of the observations have
one of the missingness patterns, all of which are equally likely to be represented. Once missing
values have been assigned and data sets created with varying levels of missingness, we evaluate the
performance of p-squashing at tuning parameters α = 1, 1.5, 2. Based on the results of the prior

52

simulations, the value of α = 0.5 is excluded due to its poor performance and only two layers in
the data sphere clustering method since the third layer resulted in negligible improvement at these
values of α. We additionally fit each model using the full data set for comparison. Results are shown
in Figure 4.2 with performance on the full data set is denoted as α = ∞.

Our simulation results show substantial improvements in percent bias, RMSE, and coverage
probability as α increases from α = 1 to α = 1.5. The improvements in performance are less
noticeable from α = 1.5 to α = 2, though some gains are observed. At α = 1.5 the coverage
is slightly anti-conservative, with all 95% confidence intervals having below 95%, but above 90%
coverage probabilities. At α = 2, some intervals are still slightly anti-conservative, but are practically
indistinguishable from those of α = ∞, suggesting that no further improvements can be made.
Similarly, a small amount of bias is still observed at α = 2 that is not present at α = ∞. This bias
does not noticeably impact RMSE, as the results between α = 2 and α = ∞ are highly similar.

The squashed sample size is noticeably larger when missing values are present than they are
absent, with squashed sample sizes ranging from M=141 at α = 1 and 20% missing, to M=336 at
α = 2 and 50% missing. The primary reason for this is that missingness patterns are treated as a
categorical variable. In this simulation, the total number of categorical variable level combinations
was increased from the three levels of A with fully observed data to 12 (three levels and four
missingness patterns, including the fully observed pattern). Since numeric variables are further
clustered within each categorical combination, the total number of clusters increases even further.
When data were fully observed, the three categorical levels resulted in a total of 21 clusters. Under
20% and 50% missingness the 12 categorical levels were expanded to 49-51 (mean 50.9) and 48-51
clusters (mean 50.6), respectively.

We further note that at each value of alpha, the squashed sample size is approximately 12% larger
under 50% missingness than under 20% missingness. The overall reduction rate is then determined
both by the number of regions, as well as the distribution of points within each region. While there
were slight differences between the number of clusters at 20% and 50% missingness, this difference
in squashed sample sizes is better attributed to differing distributions in the size of each cluster.
Since the number of points in each squashed region is set at a rate of αlog2(N), squashing is most
efficient in reducing the sample size when applied to regions with a large number of observations.
As illustrated in Figure 4.3, under 20% missingness the distribution of cluster sizes was noticeably
more right-skewed.

4.3.3 Expectation Squashing - theory
For e-squashing, we wish to express the expectation of the log-likelihood with respect to the

missing values in terms so that a Taylor series expansion can be applied within groupings defined
by categorical levels. Letting XiO, XiM and AiO, AiM represent the set of numeric and categorical
variables, respectively, that are either observed ("O") or are missing ("M") for observation i, the
log-likelihood is

logL(θ|X, A) =
N∑

i=1
log(f(XiO, XiM , AiO, AiM)) (4.17)

As in p-squashing, we would like to partition the data space into regions based on levels of

53

α
 =

 1
α

 =
 1

.5
α

 =
 2

α
 =

 I
n

f

-5 0 5 10

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

Percent bias

α
 =

 1
α

 =
 1

.5
α

 =
 2

α
 =

 I
n

f

0.0 0.2 0.4 0.6

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

RMSE

α
 =

 1
α

 =
 1

.5
α

 =
 2

α
 =

 I
n

f

0.6 0.8 1.0

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

Coverage

141

218

299

158

246

336

150

200

250

300

350

1.0 1.5 2.0

α

A
v
e

ra
g

e
 s

q
u

a
s
h

e
d

 s
a

m
p

le
 s

iz
e

 (
N

=
1

0
0

0
)

% missing

20

50

Figure 4.2: Performance of propagation squashing method. Missing values are assigned to 2,000 data sets of size
N=1000 and all analyses are conducted using full-information maximum likelihood estimation. Alpha = Inf is used
to designate the results of the analysis conducted on the full data set which is included for comparison.

54

50% Missing

20% Missing

0 100 200

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

Cluster size

de
ns

ity

Distribution of cluster sizes in 2,000 p−squashed data sets

Figure 4.3: Distribution of cluster sizes in p-squashing procedure at 20% and 50% missingness. Vertical blue lines
represent means while red lines represent medians. A higher degree of right-skewness is observed when 20% are
missing than 50%, resulting in a higher degree of compression and smaller p-squashed sample sizes.

55

categorical variables and clusters of numeric variables within each categorical stratum. Unlike in p-
squashing, however, the appropriate regions cannot be easily identified for observations with missing
values in categorical or numeric variables.

Assume that an algorithm ϕ will be applied to each observation that will return a corresponding
region of assignment, r for r = 1, ..., R.

ϕ(Xi, Ai) = r ∈ 1, ..., R (4.18)

This algorithm is defined broadly to be a function of both the numeric and the categorical
variables. In the original squashing methodology, ϕ is the process of grouping observations first by
categorical levels and then further into regions using a clustering algorithm. Additionally, define
Zir(X, A|ϕ) = Zir to be an indicator that the ith observation is assigned to region r:

Zir =

1 if ϕ(Xi, Ai) = r

0 otherwise
(4.19)

Had the regions of assignment been fully observed, the missing categorical values, AM , would
be known for each observation. Consequently, the complete-data log likelihood and its expectation
with respect to the missing values is

logL(θ|X, A) =
R∑

r=1

Nr∑
i=1

Zir log(f(XiO, XiM |A = a))

EXM ,AM
[logL(θ|X, A)] =

R∑
r=1

Nr∑
i=1

EXM ,AM
[Zir]EXM |AM

[log(f(XiO, XiM |A = a))]

(4.20)

We are now left with two terms: the expectation of an indicator that an observation with missing
numeric and/or categorical variables will be assigned to each region, and the expected log likelihood
within each region with respect to the missing numeric variables. In both cases, the expectation
is conditional upon the observed data values, XO and AO, as well as the true model parameters,
θ. For the rth region, the first term is equal to the probability that the clustering mechanism will
return region r given the set of observed and missing values for observation i. By the definition
of conditional probability, this can be separated into the probability that the missing categorical
variables will take the value (singular) belonging to region r, multiplied by the probability that the
numeric clustering mechanism will cluster values (XiO, XiM) to region r. Using capital letters to
denote random variables and lower-case letters to denote observed values, the expectation of Zir is

EXM ,AM
[Zir] = p(ϕ(Xi, Ai) = r)

= p(ϕ(XiM , AiM , xiO, aiO) = r|xiO, aiO)

= p(AiM = aiM |xiO, aiO)p(ϕ(XiM , aiM , xiO, aiO) = r|xiO, aiO, aiM)

(4.21)

The first term is calculated only when missingness exists within categorical variables. Assuming
this is the case, we estimate p(AiM = aiM |xiO, aiO) by first clustering XO and then calculating the
probability of each level am within the region in which XO ≈ xO, AO = aO. If we are willing to

56

assume that AM is missing completely at random (MCAR), then p(AiM = aiM |xiO, aiO) = p(AiM =
aiM) and can be calculated from the marginal distribution of AM . For each observation with missing
categorical values, p(AiM = aiM |xiO, aiO) will likely be non-zero for more than one aiM . Practically,
this means that the original data set must be expanded with imputed values for each possible aiM

and with weights given by p(AiM = aiM |xiO, aiO).
The second term, p(ϕ(XiM , aiM , xiO, aiO) = r|xiO, aiO, aiM), is non-zero only for the numeric

clusters in which the A = ai. Since numeric variables are clustered within categorical regions, this
is a clustering problem with missing values: which cluster does observation i belong to if some of
the values of xi are missing? Depending on the clustering algorithm used, this could be calculated
in a number of different ways. The primary criteria for the choice of a clustering algorithm are
1) that it is fast enough to work well in large samples, and 2) that one can estimate the marginal
probability of an observation with some missing values belonging to each cluster. We apply the
data sphere (DS) technique used by DuMouchel et al. (1999) as follows. For DS, clusters are formed
on the basis of the fully observed rows. We then make the assumption that each cluster of points
is multivariate-normally distributed and estimate the probability of each observation with missing
values belonging to each cluster based on the multivariate normal distribution marginalized over the
missing variables.

The final term, EXM
[log(f(XiO, XiM |A = a))], describes the expected log-likelihood within each

region with respect to the missing numeric variables and conditional on the observed data values
and model parameters. As in the original squashing method, this can be approximated by a Taylor
series expansion about point x.

EXM
[log(f(XiO, XiM |A = a))] ≈ EXM

 K∑
k=1

gk

u(ξ)∏
j=1

(Xij − xj)pkj

=

K∑
k=1

gkEXM

u(ξ)∏
j=1

(Xij − xj)pkj

 (4.22)

Expressing the full likelihood, we have

EXM ,AM
[logL(θ|X, A)] ≈

R∑
r=1

Nr∑
i=1

p(AiM = aiM |xiO, aiO)p(ϕ = r|xiO, aiO, aiM)

·
K∑

k=1

gk · EXM

u(ξ)∏
j=1

(Xij − xj)pkj

 (4.23)

Using this equation, we can calculate the set of expected numeric variable moments on the
original data set with the expectation evaluated over the distribution of missing values within each
moment. Practically, this is achieved by calculating each moment based on the observed data values.
When one of the variables involved in the moment calculation is missing for an observation, that
observation’s contribution to the moment will be missing and is imputed with the expected value of
the non-missing contributions. Each observation’s contribution is then weighted by the probability
that it belongs to the cluster and summed across all observations within the cluster. All data points
with fully observed variables will have only been assigned to one cluster and will have weights of

57

one.

4.3.3.1 Case when all numeric observations are missing within a cluster
In the event that all observations of a numeric variable are missing with a combination of categor-

ical variables, it is not possible to calculate the term EXM

[∏u(ξ)
j=1 (Xij − xj)pkj |A = a

]
. In instances

of this, we might instead attempt to borrow information from nearby clusters, where "nearby" is
defined in terms of the distance between categorical variables. By doing so, we are instead calculat-
ing EXM

[∏u(ξ)
j=1 (Xij − xj)pkj |A = a′

]
for some a′ such that a′ = arg min

a∗
d(a, a∗) for some distance

metric d.
With only three categorical levels and a maximum of 50% of observations missing values, this

does not occur during our evaluation of imputation squashing on the synthetic data sets. During
later sections, however, we apply imputation squashing to a real data set in which this does occur.
In these instances, values for the missing numeric variables are randomly sampled from the closest
cluster(s) according to the "Dice coefficient" (or "Sørensen metric"). The Dice coefficient ranges from
zero to one and can be defined in terms of a 2x2 contingency table once all categories have been
binarized.

DSC = 2TP

2TP + FP + FN
(4.24)

Where TP is the "true positive" rate – the number of categories observed in common between
two rows. FP and FN are the "false positive" and "false negative" rates representing the number of
categories for which the first row had values of one while the second had zero and vice versa.

4.3.4 Evaluation of expectation-squashing in simulations
E-squashing is similarly evaluated across the same set of 2,000 data sets as used for the original

and p-squashing methods with results shown in Figure 4.4. Overall, the performance is notably
worse than p-squashing. The simulation results show only modest improvements in bias and RMSE
associated with higher values of α and, in general, appear to depend more upon the proportion of
the data points missing than on the value of α. At 20% missingness, the bias in most parameter
estimates is relatively small, with the exception of the coefficient for the third categorical group,
A3, which had the fewest observations and approximately 13% relative bias. At 50% missingness,
however, the percentage bias was 10% or higher for four parameters at α = 2.

As α increases, however, improvements are made in coverage probability. At α = 1, each of
the 95% confidence intervals for the estimates are severely anti-conservative with several intervals
below 50% coverage at 50% missingness and all intervals below 75% coverage regardless of level
of missingness. At α = 1.5 the coverage is significantly improved, though still very poor. At 20%
missing with α = 1.5, 2, the coverage probability increases to approximately 75-92% coverage, though
it remains below 60% for the majority of the intervals at 50% missingness.

Notably, the sample sizes are smaller in e-squashing than in p-squashing and are similar to those
observed when no observations are missing. The primary reason for this is that clusters of numeric
variables are formed using only fully observed data points and observations with missing values are
assigned to existing clusters. Consequently, as the degree of missingness increases, the number of
numeric clusters decreases. For a fixed sample size, this requires that the size of each clusters must

58

α
 =

 1
α

 =
 1

.5
α

 =
 2

-25 0 25 50

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

Percent bias

α
 =

 1
α

 =
 1

.5
α

 =
 2

0.00 0.25 0.50 0.75

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

RMSE

α
 =

 1
α

 =
 1

.5
α

 =
 2

0.4 0.6 0.8 1.0

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

X1sq:A3
X1sq:A2

X1:A3
X1:A2
X1sq

A3
A2
X2
X1

Intercept

Coverage

91

141

192

85

129

176

100

125

150

175

200

1.0 1.5 2.0

α

A
v
e

ra
g

e
 s

q
u

a
s
h

e
d

 s
a

m
p

le
 s

iz
e

 (
N

=
1

0
0

0
)

% missing

20

50

Figure 4.4: Performance of imputation squashing method. Values are missing at random in 2,000 data sets of size
N=1000.

59

also increase, thereby allowing for a greater degree of compression. Table 4.2 displays the number
of clusters resulting from the e-squashing procedure at 20% and 50% for each of the 2,000 data sets.
Figure 4.5 displays the distribution of cluster sizes, illustrating that both the mean and median
cluster size increases at 50% missingness, as does the proportion of clusters with very few points,
while the distance between the mean and median values stays relatively constant.

Table 4.2: Distribution of number of clusters resulting from e-squashing procedure. Clusters in numeric variables are
formed from fully observed data points. As the proportion of missingness increases, fewer clusters are formed with
each cluster having a larger number of observations.

50% Missing
20% Missing 16 17 18 19 20 21 Sum
19 0 0 0 1 1 0 2
20 1 3 25 62 71 22 184
21 1 14 136 509 793 361 1814
Sum 2 17 161 572 865 383 2000

4.4 Workers’ Compensation Example
4.4.1 Background

We illustrate data squashing on a subset of the New York Assembled Workers’ Compensation
Claims data set. This data set is publicly available at https://data.ny.gov/Government-Finance/
Assembled-Workers-Compensation-Claims-Beginning-20/jshw-gkgu and was downloaded on June
18, 2021. These observations represent all workers’ compensation claims made between January 1,
2000, and April 1, 2021 for payment due to illness or injury acquired in the course of employment.
The data set provides a number of important variables, including the type of claim (e.g., medical
expenditures, disability), the industry in which the worker was employed, several date variables (e.g.,
date of accident, date at which the claim was assembled), patient characteristics (age at injury and
average weekly wage), and, conveniently, an indication of whether or not the claim was COVID-19-
related. Both age at injury and workers’ industry have non-negligible levels of missingness at 9%
and 53% missing, respectively. A more complete description of the data set including pre-processing
steps and a data dictionary of the final data set are provided in Section 4.4.2.

In the sections that follow, we evaluate the performance of our two squashing methodologies from
the viewpoint of an analyst who is interested in evaluating the effect of COVID-19 on workers’ comp
claims. In a July, 2020 report by the international accounting firm KPMG noted that, historically,
both the frequency and severity of workers’ comp claims are affected by economic downturns.(KPMG,
2020) As unemployment rises, more experienced workers may remain, leading to a lower rate of minor
injuries, but a higher proportion of severe injuries. Additionally, many employees may be reluctant to
file claims for fear of antagonizing their employer, further contributing to a decrease in the quantity
of claims. The KPMG report notes that these relationships may have been compounded by the
medical nature of the economic crisis: workers may have been reluctant or unable to receive medical
attention due to fear of COVID-19 exposure or over-burdened health care systems. Consequently,
medical treatments may have been delayed, resulting in a spike in the severity of claims. Finally,
closure of courts may have led to back-logs in processing workers compensation claims and delays
in reaching settlements. Evidence for both a decrease in workers’ comp claims and a back-log in

60

https://data.ny.gov/Government-Finance/Assembled-Workers-Compensation-Claims-Beginning-20/jshw-gkgu
https://data.ny.gov/Government-Finance/Assembled-Workers-Compensation-Claims-Beginning-20/jshw-gkgu

50% Missing

20% Missing

0 100 200 300

0.000

0.005

0.010

0.000

0.005

0.010

Cluster size

de
ns

ity

Distribution of cluster sizes in 2,000 e−squashed data sets

Figure 4.5: Distribution of cluster sizes in e-squashing procedure at 20% and 50% missingness. Vertical blue lines
represent means while red lines represent medians. At 50% missingness fewer clusters are formed, causing the size
of the clusters to increase. This is illustrated by the blue and red lines shifting right at 50% missing even while the
distance between them remains similar.

61

processing is potentially provided by an April 2021 report issued by the New York Committee
for Occupational Safety and Health. This report found that of the quarter-million workers who
potentially contracted symptomatic COVID-19 and were eligible for workers’ compensation, fewer
than 9% had filed claims, while only ten percent of those filed had received final decisions regarding
their claims.(Grey, 2021)

There appears to be a strong potential for COVID-19 to have impacted workers’ compensation
claims in a variety of meaningful ways. Due to the size of the data set and presence of missing
data, analyses on the full data set, while perhaps possible, may be exceedingly cumbersome. This
motivates the analysis of a subset of the data for data exploration and preliminary analyses steps
before analyzing the full data set. Further, the presence of several research questions (and absence
of a single outcome measurement) makes approaches such as likelihood-based data squashing less
useful. Together, these conditions make the data set ideal for data squashing. Specifically, we
consider the following statistical models to assess the corresponding questions:

1. Has COVID-19 caused an increase in longer time between assembly and Accident, Notice
and Causal Relationship (ANCR) date? ANCR refers to the establishment that 1) a work-
connected accident covered by workers’ compensation law occurred, 2) the employer was no-
tified within a sufficient time period, and 3) a causal relationship exists between the accident
and injury exists. If COVID-19 has caused delays in the processing of workers’ compensation
claims, we may expect it to manifest as increased times between the filing and validation of
claims. The logged difference (in years) between ANCR and assessment date is modeled as a
function of covariates via multiple linear regression.

2. Has COVID-19 increased the severity of workers’ compensation claims? Each claim indicates
the level of disability that the worker is requesting compensation for. These have been grouped
into categories "medical-only," "temporary disability," and "permanent disability or death." We
model the relationship between claim type severity and COVID-19 using an cumulative logit
regression model for ordinal data.

The data set includes a variable indicating that a claim is COVID-19-related; however, one may
reasonably hypothesize that COVID-19 has had a broader impact on workers’ compensation claims
beyond those explicitly marked as COVID-19-related. For example, as noted by the KPMG report,
workers may have been less willing or able to seek medical attention for non-COVID-related injuries
or illnesses due to stay at home orders or a fear of contracting COVID-19 within medical facilities.
To capture this possibility, we create an additional "COVID-Period" variable, indicating that the
claim was assembled at or following March 1, 2020. This corresponds closely to the specific timeline
of COVID-19 in New York, with the first case being observed in New York state on March 1, 2020,
and the state entering a state of emergency on March 7, 2020.(Kerr, 2021). For the squashed data
sets, the COVID-Period variable was created post-squashing and, therefore, relies on the squashing
procedure accurately preserving relationships between each outcome variable and the claim assembly
date at a granular level.

4.4.2 Pre-processing of workers’ compensation data set
The original data set contained 4,232,321 observations of 54 variables at the time of download.

Several pre-processing steps are taken to reduce the size of the data set prior to squashing. A

62

central problem of data squashing is the rapid proliferation of categories when even a relatively low
number of categorical variables are included. As downloaded, 30 of the 54 variables were categorical.
While this may seem a relatively small number in relation to the 4.2 million observations, the
30 variables resulted in 3,780,266 unique combinations. After removing the two variables with
the highest number of categories: zip code (22,275 categories) and insurance carrier name (2,616
categories), all categorical variables have a maximum of 87 unique values. Nonetheless, the total
number of combinations of categories was reduced only to 2,705,291.

This illustrates a serious limitation that many may encounter while implementing squashing on
real-life data sets: many, if not most, large data sets have a sufficiently high number of categorical
variable combinations so as to undermine the utility of squashing. In these instances, the existing
squashing methodology can still be applied to create a squashed data set. Without a high degree of
data compression, however, squashing is unlikely to offer much practical utility.

While this is a central issue to applying data squashing more broadly, it is secondary to the
present analysis, which examines methods of handling missing data. The original squashing paper
by DuMouchel et al. (1999) contained only two categorical variables with three levels each, for a
maximum of nine categorical-level combinations for a data set with 744,963 records. To make our
analysis more comparable to this setting, we take the following pre-processing steps.

• Subset to workers compensation claims only. Volunteer firefighter and volunteer ambulance
workers’ claims were excluded. (Claim.Type == "WORKERS COMPENSATION CLAIM")

• Subset to claims that used a standard adjudication process, as opposed to those that were
external to the workers’ compensation board. (Alternative.Dispute.Resolution == "N")

• Subset to claims filed regarding workplace accidents, as opposed to occupational diseases.
(Accident == "Y")

• Subset to claims for which compensation was received (Claim.Injury.Type != "1. CANCELLED"
& Claim.Injury.Type != "2. NON-COMP")

• Consolidate all claims regarding permanent partial disability, permanent total disability, or
death into a single category (replace levels "5. PPD SCH LOSS","6. PPD NSL","7. PTD","8.
DEATH" with "PD_OR_DEATH" in variable Claim.Injury.Type)

• Consolidate levels of Industry.Code.Description as displayed in Table 4.3

We additionally take the following steps oriented towards “cleaning" the data or transforming
highly-skewed variables.

• Replace values of “0" with "NA" in variable Age.at.Injury

• Take log10 transformation of Average.Weekly.Wage

• Take natural log transformation of Interval.Assembled.to.ANCR

• Convert all dates into numeric values indicating the number of years after Jan. 1, 2000

The final data set consists of 2,191,006 observations on 11 variables (excluding the COVID.PERIOD
variable) with 35 unique combinations of categorical variables and 84 combinations when including
missingness patterns. A data dictionary of the variables retained in the data set is given in Table
4.4, including abbreviated names used in Figures. Figure 4.6 displays the variable distributions.

63

Table 4.3: Consolidation of levels in industry type variable.

Old levels New level

INFORMATION SERVICES
PROFESSIONAL, SCIENTIFIC, AND TECHNICAL SERVICES
ADMINISTRATIVE AND SUPPORT
WASTE MANAGEMENT AND REMEDIAT
EDUCATIONAL SERVICES
HEALTH CARE AND SOCIAL ASSISTANCE
ARTS, ENTERTAINMENT, AND RECREATION
OTHER SERVICES (EXCEPT PUBLIC ADMINISTRATION)

CONSTRUCTION CONSTRUCTION_AND_MANUFACTURING
MANUFACTURING

RETAIL TRADE TRADE
ACCOMMODATION AND FOOD SERVICES
WHOLESALE TRADE

REAL ESTATE AND RENTAL AND LEASING OTHER
FINANCE AND INSURANCE
MINING
MANAGEMENT OF COMPANIES AND ENTERPRISES
AGRICULTURE, FORESTRY, FISHING AND HUNTING
UTILITIES
TRANSPORTATION AND WAREHOUSING

Table 4.4: Description of variables selected from Workers Compensation data set.

Variable Labels Class NAs
COVID.19.Indicator COVID.CLAIM character 0 (0%)
COVID.19.Period COVID.PERIOD integer 0 (0%)
Claim.Injury.Type A1o character 0 (0%)
Age.at.Injury X1m integer 205736 (9%)
Assembly.Date X2o numeric 0 (0%)
Accident.Date X3m numeric 3341 (0%)
ANCR.Date X4m numeric 3 (0%)
Hearing.Count X5o integer 0 (0%)
Closed.Count X6o integer 0 (0%)
Industry.Code.Description A2m character 1169482 (53%)
Log10.Average.Weekly.Wage X7o numeric 0 (0%)
Log.Interval.Assembled.to.ANCR X8o numeric 6 (0%)

64

PD_OR_DEATH

MED_ONLY

TEMPORARY

Y

N

OTHER

CONSTRUCTION AND MANUFACTURING

PUBLIC ADMINISTRATION

TRADE

SERVICES

Y

N

Claim.Injury.Type

COVID.19.Indicator

Industry.Code.Description

COVID.19.Period

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0e+00

3e+05

6e+05

9e+05

Missing

Log.Interval.Assembled.to.ANCR

Log10.Average.Weekly.Wage

Closed.Count

Hearing.Count

ANCR.Date

Accident.Date

Assembly.Date

Age.at.Injury

0

50000

100000

150000

200000
Missing

Description of workers' compensation data set

Figure 4.6: Description of variables in workers’ compensation data set.

65

4.4.3 Squashing procedures
The reduced workers compensation data set was squashed using the p-squashing procedure with

the tuning parameter set to α = 1.5, resulting in a data set of 32,027 weighted pseudo-observations
for a reduction factor of 2,191,006/32,027 = 68.4. A total of 4,877 clusters were formed with sample
sizes ranging from 1 to 153,575 observations. All missingness patterns present in the original data
set were retained within the p-squashed data set.

For the e-squashing procedure we set the tuning parameter α = 2 based on its improved per-
formance in prior simulations. This resulted in a data set of 27,660 weighted pseudo-observations
(reduction factor of 79.2) that were fully observed across all variables. Expansion of the data set
across missingness in categorical variables resulted initially in a data set with 6,862,293 observa-
tions. A total of 2,629 clusters were formed with cluster sizes ranging from 1 to 324,716 rows and
observation weights within groups ranging from 0.01 to 118,630.24.

The performance of each squashing procedure is compared to the full data set, as well as a simple
random sample of N = 32, 000 observations. Missing values remain present in the random sample
and are handled in the same method as the p-squashed data set, described in the following section.

4.4.4 Analyses
4.4.4.1 Handling of missing data

Missingness in the full, p-squashed, and random sample data sets were handled by either FIML
or multiple imputation (MI) depending on the analysis. Since the p-squashed data set is created
to preserve the likelihood used in FIML, we believed it important to demonstrate its performance
when possible. Unfortunately, software capable of implementing FIML is still limited: most software
packages capable of implementing FIML can only do so for linear models and cannot be extended to
nonlinear models, such as glms, or semi-parametric regression models such as proportional hazards
(i.e., Cox) regression. This is true for the R packages lavaan and OpenMx, as well as the SAS
statistical software program (https://www.sas.com/). The exception to this is the program Mplus
(http://www.statmodel.com/), which can implement FIML within a much broader array of models
but requires that the user purchases a license.

Given this constraint, we use FIML via the lavaan package in the first analysis of a multiple
linear regression model and MI for the nonlinear ordinal regression model. For each data set (i.e.,
full, p-squashed, random sample), MI is implemented using predictive mean matching with the R
package mice. The R package miceadds provides functions that extend predictive mean matching
to data sets with frequency weights. Analyses are conducted on ten sets of imputations per data
set.

4.4.4.2 Analysis 1 - Multiple linear regression with FIML
We begin by estimating the impact of COVID-19 on the logged number of years between claim

assembly date and ANCR date adjusted for 1) a linear combination of predictors, and 2) all second-
order terms and interactions between covariates. Claims for which the claimant did not receive any
compensation were not verified and, therefore, did not have an ANCR date. These observations
were omitted from this analysis but were included in the nonlinear model analysis.

The results of this analysis are shown in Figure 4.7. Each method is compared to the results
from fitting the model to the full data set. Results are summarized in terms of the relative error

66

https://www.sas.com/
http://www.statmodel.com/

from the full value (β̂est − β̂full/SEfull), the unscaled error between the estimate and the full value
(β̂est − β̂full), and the ratio of regression coefficient standard errors (SEβ̂est

/SEβ̂full
).

We observe very close agreement between the full data model estimates and those of the p-
squashed model. For the p-squashed model, the relative difference is limited to approximately ±5,
while the error is small enough so as to make inference from the two models practically indistinguish-
able. Further, the ratio of standard errors between regression coefficients is 1.01 with a minimum
and maximum values of 0.96 and 1.05, respectively.

The e-squashed model performs slightly worse than the p-squashed model, although still rela-
tively well. Only a couple of parameter estimates deviate from those of the full model, though not
noticeably more so than the estimates of the simple random sample. With the exception of one
parameter (X1), the standard errors of the e-squashed estimates are practically identical to those of
the full data analysis with standard error ratios falling between 1 and 1.05.

The variable X1 corresponds to the claimant’s age at injury which is missing approximately 9% of
its observations. While this is not the variable with the highest proportion of missing data (worker’s
industry is missing on 53% of its observations), it is the highest proportion missing among the
numeric variables, which is handled differently by the e-squashing procedure than missingness in
categorical variables. For categorical variables, the data set is expanded to place each observation
in all relevant categories, weighted by the corresponding probability of assignment. Observations
with missing numeric variables are similarly assigned to multiple clusters, but within each cluster
the moments of the original data set are calculated via mean imputation within each moment. This
provides evidence that the e-squashing procedure may be better at reproducing the uncertainty due
to missingness when it occurs in categorical variables than when it occurs in numeric variables.

Similar trends are observed when second-order quadratic and interaction terms are added to the
model as in the first-order model. Again, the p-squashing returns parameter estimates that are highly
similar to the full-data estimates with all estimates within ±10 standard errors and within ±0.05 of
the full-data estimates. The standard errors of the full-data estimates are likewise well-reproduced
by the p-squashed model, with all standard error ratios falling between 0.95 and 1.15.

The e-squashed model again performs worse than the p-squashed model with relative errors
falling between -23 to 18 standard errors, raw errors approximately between ±0.1, and standard
error ratios between 0.4 and 1.3. Overall, the relative error and raw errors observed with the e-
squashed estimates are comparable to those of the simple random sample. The e-squashed data set,
however, has a sample size only 86% that of the random sample and has the added and substantial
benefit of not having any missing values.

Returning to our narrative of a hypothetical researcher interested in the effect of COVID-19 on
workers’ compensation claims, from this analysis we estimate substantially different effects associated
with claims being marked as COVID-19-related (COVID.CLAIM) and claims that were assembled post
March 1, 2020 (COVID.PERIOD). Using the second-order model, COVID-19-related claims tended to
be associated with longer time durations between claim assembly and claim verification with the
following estimated effects [95% CI].

• full data: 0.224 [0.196,0.254]
• p-squash: 0.223 [0.193,0.252]
• e-squash: 0.211 [0.182, 0.241]
• sample: 0.264 [0.049, 0.480]

67

COVID.CLAIM

COVID.PERIOD

X1

X2

X3

X7

A1PD_OR_DEATH

A1TEMPORARY

−0.6 −0.3 0.0 0.3
estimate

Relative error (est − full)/SE Error (est − full) SE ratio (SEest / SEfull)

p−squash e−squash sample p−squash e−squash sample p−squash e−squash

0.7

0.8

0.9

1.0

−0.02

0.00

0.02

0.04

−10

−5

0

5

10

Method

va
lu

e

full p−squash e−squash sample

Linear regression model fit with FIML with first−order terms

Figure 4.7: Linear regression on logged time until ANCR with first-order terms conducted via FIML. Sample sizes
for each data set are as follows: full = 2,191,006; p-squashed = 32,027; e-squashed = 27,660; sample = 32,000.

68

COVID.CLAIM

COVID.PERIOD

A1PD_OR_DEATH

A1TEMPORARY

X1

X2

X3

X7

X1^2

X2^2

X3^2

X7^2

X1:X2

X1:X3

X1:X7

X2:X3

X2:X7

X3:X7

A1PD_OR_DEATH:X1

A1TEMPORARY:X1

A1PD_OR_DEATH:X2

A1TEMPORARY:X2

A1PD_OR_DEATH:X3

A1TEMPORARY:X3

A1PD_OR_DEATH:X7

A1TEMPORARY:X7

−0.5 0.0 0.5
estimate

Relative error (est − full)/SE Error (est − full) SE ratio (SEest / SEfull)

p−squash e−squash sample p−squash e−squash sample p−squash e−squash
0.4

0.6

0.8

1.0

1.2

−0.1

0.0

0.1

−20

−10

0

10

20

Method

va
lu

e

full p−squash e−squash sample

Linear regression model fit with FIML with second−order terms

Figure 4.8: Linear regression on logged time until ANCR with second-order terms. Estimation with missing values is
conducted via FIML. Sample sizes for each data set are as follows: full = 2,191,006; p-squashed = 32,027; e-squashed
= 27,660; sample = 32,000.

69

By contrast, claims assembled post March 1, 2020 were associated with much faster verification
with the following estimates and intervals for the COVID.PERIOD variable.

• full data: -0.482 [-0.491, -0.474]
• p-squash : -0.483 [-0.491, -0.475]
• e-squash : -0.466 [-0.475, -0.458]
• sample : -0.506 [-0.572, -0.440]

4.4.4.3 Analysis 2 - Ordinal regression with MI
We next consider a model that a researcher may estimate to evaluate the impact of COVID-19 on

the severity of workers’ compensation claims. The variable Claim.Injury.Type indicates the type
of claim that was assembled: medical expenses only, temporary disability, or permanent disability
(partial or total) and/or death. Given that this variable has levels that are ordered in terms of
severity, we consider the estimation of a cumulative logit (i.e., "proportional odds") model, fit using
the R function clm from the ordinal package. We again consider two models in which only first-
order, and all first- and second-order terms are entered as predictors. For these analyses multiple
imputation, rather than FIML, was used to handle missing values when present.

Overall, the results from the first-order ordinal model, displayed in Figure 4.9, and the second-
order ordinal model, Figure 4.10, are similar to the results of the linear model with FIML. In
both models, p-squashing tends to result in low relative and absolute errors, while also closely
replicating the standard errors of the full-data model. E-squashing similarly tends to do well on
most parameters but has more bias than p-squashing. This bias is particularly pronounced on the
X1m parameter estimate (relative error of -50.79 in the first-order model), for which the estimated
standard error is substantially anti-conservative (SE ratio of 0.71).

Concerning the effect of COVID-19 on the severity of the claims, we estimate that, contrary to
the predictions of (KPMG, 2020), we did not observe an association between COVID-19 and the
severity of workers’ compensation claims. For claims marked as COVID-19-related, we estimate a
decreased association with increased claim severity.

• full data: -0.307 [-0.390, -0.223]
• p-squash: -0.280 [-0.364, -0.197]
• e-squash: -0.272 [-0.356, -0.188]
• sample: -0.462 [-1.081, 0.157]

Claims that were assembled post March 1, 2020, were associated with an even more pronounced
reduction in claim severity.

• full data: -0.532 [-0.557, -0.507]
• p-squash: -0.562 [-0.586, -0.538]
• e-squash: -0.534 [-0.558, -0.509]
• sample: -0.415 [-0.609, -0.221]

A disclaimer is required for these analyses: the goal of the analyses is to illustrate the degree to
which similar inferences are obtained from the full and squashed models, not to fit the best model
possible or to accurately assess the impact of COVID-19 on each outcome. We have not performed
model checks, such as an examination of the residuals for the multiple linear regression model or

70

COVID.CLAIM

COVID.PERIOD

A2OTHER

A2PUBLIC_ADMIN

A2SERVICES

A2TRADE

X1

X2

X3

X7

X8

−1.0 −0.5 0.0 0.5 1.0 1.5
estimate

Relative error (est − full)/SE Error (est − full) SE ratio (SEest / SEfull)

p−squash e−squash sample p−squash e−squash sample p−squash e−squash

0.7

0.8

0.9

1.0

−0.3

−0.2

−0.1

0.0

0.1

−40

−20

0

20

Method

va
lu

e

full p−squash e−squash sample

Ordinal regression model fit with MI with first−order terms

Figure 4.9: Ordinal regression on claim type with first-order terms. Estimation with missing values is conducted via
multiple imputation. The imputation model contains all first-order terms only. Sample sizes for each data set are as
follows: full = 2,191,006; p-squashed = 32,027; e-squashed = 27,660; sample = 32,000.

71

COVID.CLAIM
COVID.PERIOD

A2OTHER

A2PUBLIC_ADMIN

A2SERVICES

A2TRADE

X2

X3

X7

X8

(X2^2)

(X3^2)

(X7^2)

(X8^2)

X1

(X1^2)

A2OTHER:X2

A2PUBLIC_ADMIN:X2

A2SERVICES:X2

A2TRADE:X2

A2OTHER:X3

A2PUBLIC_ADMIN:X3

A2SERVICES:X3

A2TRADE:X3

A2OTHER:X7

A2PUBLIC_ADMIN:X7

A2SERVICES:X7

A2TRADE:X7

A2OTHER:X8

A2PUBLIC_ADMIN:X8

A2SERVICES:X8

A2TRADE:X8

A2OTHER:X1

A2PUBLIC_ADMIN:X1

A2SERVICES:X1

A2TRADE:X1

−1 0 1 2
estimate

Relative error (est − full)/SE Error (est − full) SE ratio (SEest / SEfull)

p−squash e−squash sample p−squash e−squash sample p−squash e−squash

0.6

0.8

1.0

−0.2

0.0

0.2

−30

−20

−10

0

10

20

Method

va
lu

e

full p−squash i−squash sample

Ordinal regression model fit with MI with second−order terms

Figure 4.10: Ordinal regression on claim type with all first- and second-order terms. Estimation with missing values
is conducted via multiple imputation. The imputation model contains all first-order terms only. Sample sizes for each
data set are as follows: full = 2,191,006; p-squashed = 32,027; e-squashed = 27,660; sample = 32,000/

72

an evaluation of the proportional odds assumption for the cumulative logit model. Similarly, we do
not have any particular subject knowledge of which variables should be entered into each model or
which nonlinear terms or interactions may be important to capture. These are important steps of
an analysis, and a different analysis may result in substantially different conclusions. The squashing
procedure, however, aims to preserve any likelihood function and is not dependent upon it being the
one that best describes the data. Thus, any errors or biases induced by a poor analysis of a data
set will be reproduced in an analysis of a squashed version of the same data set.

4.5 Discussion
Within this chapter we have presented two possible extensions to DuMouchel et al.’s "data squash-

ing" methodology in order to accommodate missing values in the original data set. In the first,
termed "propagation-squashing," missingness patterns are treated as a categorical variable such that
squashing occurs on the fully observed variables within each pattern, thereby propagating the miss-
ingness to the squashed data set. The benefits of this method are that it preserves the structure of
the original data as closely as possible and preserves the information required for likelihood-based
missing data methods. Though missing values remain in the p-squashed data set, there are many
cases when missing values provide information about the data generating process. An example
of this was observed in the workers’ compensation data set, wherein claims that were rejected for
payment did not have an ANCR date because they were never verified. P-squashing demonstrated
better performance in matching the full-data estimates than e-squashing or random sampling using
both FIML and MI on linear and nonlinear models. Moreover, it was considerably easier and more
time-efficient to apply missing data methods to the p-squashed data set than it was to the full data
set.

The second method, e-squashing, applied data squashing to the expectation of the log-likelihood,
thereby adding an additional degree of approximation in order to produce a squashed data set that
was free of missing values. As expected, e-squashing did not perform as well as p-squashing when
applied to simulated or real data, though it obtained similar error rates to results of FIML or MI
applied to a simple random sample with a larger sample size. The standard error estimates from
e-squashing tended to be close to those of the full-data analysis, except for numeric variables in
which missingness was observed. For these parameter estimates, the standard errors tended to be
anti-conservative.

Depending on the context, inference from the e-squashed data set may be "good enough." When
working with a subset of the data set, one should anticipate that the resulting analysis will imper-
fectly reproduce the full-data estimates. Given this caveat, even as the complexity of the models
increased, both squashing methods resulted in inferences similar to the full data set. Due to the
convenience of working with a fully observed data set, e-squashing may be the preferred choice when
approximately representative results are sufficient. P-squashing, by contrast, would likely be pre-
ferred when stricter fidelity to the original data is required or when the missingness structure itself
may be informative.

Since both squashing methods result in sets of pseudo-data, a major application of data squashing
may be in facilitating data sharing when it otherwise may be difficult due to privacy concerns or
proprietary interests. The choice of a squashing method may then be better determined by the
desired use of the end-user. If the intent of squashing is to share pseudo-data that is sensitive in its

73

original form, it is important to ensure that there are no clusters in which the specific combination
of categorical variables is informative about the person(s) identity. An obvious case of this is when
only one observation occurs with a specific combination of categorical variables. When this occurs,
the present squashing procedure returns the exact row of the data with a weight of one. This is
easily avoided by identifying and either removing or modifying any squashed observations that have
a weight of one.

Significant work remains to improve squashing more broadly, as well as the extensions proposed in
this chapter. Nonetheless, the results from our analyses are promising. Missing data is a ubiquitous
problem in real data sets and most models and machine learning algorithms cannot accommodate
missing values. Due to the size of the data set or the time required to fit models, analysts may
opt to either discard observations with missing values or perform single imputation, rather than
taking more principled approaches such as FIML or MI. The advances made in this chapter largely
mitigate this concern in situations where squashing can be applied. Due to its smaller size, missing
data techniques applied to the p-squashed data set required substantially less computational time
than to the full data set; for the e-squashed data set the problem was non-existent.

The most important methodological barrier remaining to more widespread implementation of
squashing is, in the author’s opinion, its ability to be gainfully applied to data sets with a moderate
or high number of categorical variables. Our thoughts of how this may be done are detailed as we
conclude in the following chapter.

74

Chapter 5

Conclusion

In this dissertation, we have extended two areas of research. In Chapters 2 and 3, we contributed
to efforts to automate the induction of anesthesia through closed-loop control. This is an area of
research that has received substantial attention from the anesthesiology and engineering research
communities and has been referred to as "the Holy Grail" of anesthesiology.(Absalom et al., 2011) In
Chapter 2, we use the tools of optimal experimental design to develop a framework for optimizing the
set of targets used by a closed-loop controller in the form of a "reference function." Our simulations
suggest that using a reference function to slow down infusions, relative to continuously targeting
BIS=50, can reduce 1) over- and under-shoot of the target zone (i.e., BIS = [40,60]) 2) time until
stable entry into the target zone,

2) the time until the patient stably enters the range BIS=[40,60], 2) the variability betwe
We show that this approach can be adapted both to different functional forms and a variety of

clinical objectives, and that doing so can provide gains across a number of criteria relative to more
conventional clinical approaches.

Additional highlights of the reference function methodology are that the reference function can
be optimized offline (i.e., prior to giving the patient any medication) and can be applied to any
closed-loop controller, as the common feature across the wide variety of controllers developed is the
input of a reference value about which to maintain the system.

Chapter 3 furthered this work by introducing an R software package, tci, that implements target-
controlled infusion algorithms to simulate open- and closed-loop control for compartmental models.
Despite the growth of interest in TCI specifically, and automated control of drug administration
more broadly, there is an obvious dearth of software available to practicioners or researchers who
may wish to explore the topic. No software previously existed in any commonly used statistical
programming language for implementing TCI algorithms or simulating patient responses when such
algorithms are applied. We hope to fill this gap by introducing the tci package, thereby allowing
others to more easily conduct their own research into a highly promising technology.

The final chapter of the dissertation attempted to address one of the primary barriers to imple-
mentation of data squashing: missing values in the original data set. The two proposed approaches,
p-squashing and e-squashing, both performed with reasonable levels of success within simulations and
on a real data set comprised of workers’ compensation claims. The p-squashing approach represents
a relatively straightforward extension to the original squashing method and propagates identical
missingness patterns from the original data set to the squashed. This is done, however, so that that
the information required for likelihood-based missing data methods is preserved. Application of such
missing data methods to the substantially smaller p-squashed data set is far more convenient than
to the original data set.

E-squashing, by contrast, modifies the original method more drastically by creating a squashed
data set intended to reproduce the expectation of an arbitrary log-likelihood, rather than the likeli-
hood itself. In doing so, it adds an extra degree of approximation in order to remove missing values
from the squashed data set. While e-squashing did not perform at the same level as p-squashing,
given the significant difficulties associated with missing data, the results were not unsatisfactory.

75

Depending on the application, the performance of e-squashing may be sufficient and likely could be
improved with further work.

5.0.1 Future work
The central difficulty of control systems for drug delivery within anesthesiology, and likely many

other fields of medicine, is the substantial variability in pharmacokinetics and pharmacodynamics
between patients. In Chapter 2, we approached this problem by trying to identify an optimal dosing
protocol that incorporated a measurement of the PK-PD variability within a pre-defined population.
There are, however, other potential targets for intervention. Rather than designing the set of targets
passed to the TCI algorithm to be robust to inter-patient variability, one could consider modifying
the TCI algorithm itself to incorporate the unexplained PK-PD variability for each patient.

For example, in our simulations, the posterior PK-PD distribution for each patient evolved over
time as data were collected. At the start of each infusion, the posterior point estimates were used
by the TCI algorithm to calculate the infusion rate needed to reach the target. Rather than passing
on the point estimates, however, the TCI algorithm could be modified to return an infusion rate
based on the full posterior distribution, such as the maximum infusion rate with a 5% probability
of overshooting the target. Such an approach would be less broadly applicable across controllers
than the reference function methodology of Chapter 2 and would require that all computations be
carried out at the time of induction. Nonetheless, it may provide a more personalized approach
to mitigating the effect of unexplained inter-patient PK-PD variability. It would also have the
capability of handling intra-patient variability, should patient’s PK-PD change during the course of
a procedure.

Several additions to the tci software package are planned or already underway. The pharma-
cokinetic models, as well as the predict.pkmod method that applies them to an infusion schedule,
have begun to be translated into the C++ programming language using the R package Rcpp. Since
these functions are the basis for the TCI algorithms and the simulation functions, this change is
expected to substantially improve the computational speed of most functions within the software
package. We additionally intend to extend the set of population PK models included within tci
and improve the functions that interface with them. Many, if not most, users of the tci package
will be interested in simulating responses from a specific population PK or PK-PD model. While
we cannot anticipate every model that others would wish to use, further work can be done to make
it easy for users to set up, and simulate from, their own user-specified models. Finally, we hope
to extend the closed-loop control functions in future versions of tci. Currently, the user can only
specify slight modifications to the Bayesian closed-loop controller described in Chapter 2 and the
simulation of closed-loop control is closely tied to the use of the specific controller. A more general
setup, however, could be implemented, wherein the packages’ data simulation functions could be
applied more broadly to any user-specified controller.

A number of avenues are open for further work on data squashing. As noted in Chapter 4, there
is currently no guidance on how analyses should be conducted using squashed data (e.g., How does
it fit into a project work flow? At what stage should variables be created or transformed?). There
also are currently no asymptotic guarantees of squashing’s performance.

The biggest barrier to the use of squashing, however, is its poor ability to scale in performance as
the number of categorical variables increases. This is a difficult issue and substantial modifications to

76

the original squashing methodology may be required to surmount it. However, the efficiency of data
squashing with a medium number of categories may be improved by a relatively simple modification
of the way in which numeric variables are grouped within regions.

As discussed within Section 4.2.1, numeric variables are clustered within regions of constant
categorical variables to ensure that the likelihood function is smooth enough for a good Taylor-series
approximation in the numeric variables. Consequently, the rapid increase in regions associated with
the addition of a new categorical variable results not as much from the additional combinations of
categories themselves as from the near-exponential increase in regions that occurs when numeric
variables are grouped within each combination. Efforts could be made to mitigate this inflation in
regions without eliminating categorical combinations by regrouping categorical combinations prior
to clustering numeric variables. In order to preserve the requirement that a smooth Taylor expansion
of numeric variables is possible, regions should be grouped only if the moments are close to each
other. In essence, this approach would empirically estimate regions where the likelihood function is
approximately flat with respect to changes in categorical variable combinations. The efficiency of
squashing would then improve to the degree that these approximately flat transitions occur.

The largest gains for the missing data extensions proposed in Chapter 4 stand to be made by
improving e-squashing. For several parameters, e-squashing resulted in biased point estimates and
anti-conservative standard errors. This was particularly apparent for the one numeric variable in the
workers’ compensation data set with a low-to-moderate amount of missing data. Two stages where
these issues may be improved are 1) when numeric clusters are formed, and 2) when moments are
calculated for each region to be later matched to the squashed sample.

Considering the first stage, the e-squashing procedure made the assumption that clusters in
numeric variables were formed solely from complete observations. Observations with missing values
were then assigned to multiple groups based on clustering probabilities. While this approach may
work well when there is a high ratio of complete to incomplete observations, its performance will
likely decline substantially when the ratio is low. A better approach would allow observations with
missing values to contribute to the clustering process to the degree that their values are observed.
A better approach still, however, would be to link the clustering and missing data mechanisms such
that the moment calculations within each region would be less variable or prone to bias.

The second stage at which e-squashing could be improved is in the estimation of moments within
each region. At present, moments for variables with missing data are calculated based on the
observed values and then scaled to reflect the full sample size. For example, for a variable with
missing values X,

∑N
i=1 X2

i is approximated by N
Nobs E[

∑Nobs
i=1 X2

i] with Nobs values observed on N

total observations. As the proportion of X missing increases, however, under MCAR the probability
that E[

∑Nobs
i=1 X2

i] <
∑N

i=1 X2
i also increases, as shown in Figure 5.1. Consequently, it may be

appropriate to scale the expectation of some of the original data moments based on the proportion
missing prior to imputing the missing moment values.

77

0.4

0.5

0.6

0 10 20 30 40 50
Number of observations sampled (Nobs)

P
ro

ba
bi

lit
y

th
at

 V
ar

(X
ob

s)
 <

 V
ar

(X
)

Figure 5.1: Probability that the complete-case variance will underestimate the sample variance as a function of com-
plete case size. At each value along the x-axis, Nobs points drawn randomly from a population of N=50 observations
distributed N(µ = 0, σ = 5). The sample variance of the Nobs points is calculated, and the process is repeated 2,000
times. The proportion of times in which Var(Xobs) is less than the variance of the 50 points is recorded on the y axis.

78

REFERENCES

Absalom, A. R., De Keyser, R., and Struys, M. M. (2011). Closed loop anesthesia: Are we getting
close to finding the holy grail? Anesthesia and Analgesia, 112(3):516–518.

Absalom, A. R., Glen, J. B., Zwart, G. J. C., Schnider, T. W., and Struys, Michel, M. R. F. (2016).
Target-Controlled Infusion: A Mature Technology. Anesthesia and Analgesia, 122(1):70–78.

Absalom, A. R., Mani, V., De Smet, T., and Struys, M. M. (2009). Pharmacokinetic models
for propofol- Defining and illuminating the devil in the detail. British Journal of Anaesthesia,
103(1):26–37.

Abuhelwa, A. Y., Foster, D. J. R., and Upton, R. N. (2015). ADVAN-style analytical solutions for
common pharmacokinetic models. Journal of Pharmacological and Toxicological Methods, 73:42–
48.

Al-Rifai, Z. and Mulvey, D. (2016). Principles of total intravenous anaesthesia: basic pharmacoki-
netics and model descriptions. BJA Education, 16(3):92–97.

Aspect Medical Systems (2005). BIS VISTA Monitoring System.

Baron, K. T. (2021). mrgsolve: Simulate from ODE-Based Models. R package version 0.11.0.

Bibian, S., Dumont, G. A., Huzmezan, M., and Ries, C. R. (2006). Patient variability and uncertainty
quantification in anesthesia: Part II - PKPD uncertainty. IFAC Proceedings Volumes (IFAC-
PapersOnline), 6(PART 1):555–560.

Brogi, E., Cyr, S., Kazan, R., Giunta, F., and Hemmerling, T. M. (2017). Clinical performance and
safety of closed-loop systems: A systematic review and meta-analysis of randomized controlled
trials. Anesthesia and Analgesia, 124(2):446–455.

Cascone, S., Lamberti, G., Titomanlio, G., and Piazza, O. (2013). Pharmacokinetics of Remifentanil:
a three-compartmental modeling approach. Translational medicine, 7(4):18–22.

Choki, Y. and Suzuki, E. (2002). Iterative data squashing for boosting based on a distribution-
sensitive distance. Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 2431 LNAI:86–98.

De Smet, T., Struys, M. M., Greenwald, S., Mortier, E. P., and Shafer, S. L. (2007). Estimation
of optimal modeling weights for a bayesian-based closed-loop system for propofol administration
using the bispectral index as a controlled variable: A simulation study. Anesthesia and Analgesia,
105(6):1629–1638.

Dodds, M. G., Hooker, A. C., and Vicini, P. (2003). Robust population pharmacokinetic experiment
design. Journal of Pharmacokinetics and Pharmacodynamics, 32(1):33–64.

Dryden, P. E. (2016). Target-Controlled Infusions: Paths to Approval. Anesthesia and Analgesia,
122(1):86–89.

79

Dumont, G. A. and Ansermino, J. M. (2013). Closed-loop control of anesthesia: A primer for
anesthesiologists. Anesthesia and Analgesia, 117(5):1130–1138.

DuMouchel, W. and Agarwal, D. K. (2003). Applications of sampling and fractional factorial designs
to model-free data squashing. Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 511–516.

DuMouchel, W., Volinsky, C., Johnson, T., Cortes, C., and Pregibon, D. (1999). Squashing Flat
Files Flatter. AT&T Labs-Research.

Eleveld, D. J., Colin, P., Absalom, A. R., and Struys, M. M. R. F. (2018). Pharmacokinetic-
pharmacodynamic model for propofol for broad application in anaesthesia and sedation. British
Journal of Anaesthesia, 120(5):942–959.

Eleveld, D. J., Proost, J. H., Cortínez, L. I., Absalom, A. R., and Struys, M. M. (2014). A general
purpose pharmacokinetic model for propofol. Anesthesia and Analgesia, 118(6):1221–1237.

Fresenius Kabi USA LLC (2014). (Propofol) INJECTABLE EMULSION, USP.

Grey, R. E. (2021). System Failure: Essential Workers and COVID-19 in New York State.

Hajat, Z., Ahmad, N., and Andrzejowski, J. (2017). The role and limitations of EEG-based depth
of anaesthesia monitoring in theatres and intensive care. Anaesthesia, 72:38–47.

Hartley, H. O. and Hocking, R. R. (1971). The Analysis of Incomplete Data. 27(4):783–823.

Ilyas, M., Butt, M. F. U., Bilal, M., Mahmood, K., Khaqan, A., and Ali Riaz, R. (2017). A Re-
view of Modern Control Strategies for Clinical Evaluation of Propofol Anesthesia Administration
Employing Hypnosis Level Regulation. BioMed Research International, 2017.

Jacobs, J. R. (1990). Algorithm for Optimal Linear Model-Based Control with Application to
Pharmacokinetic Model-Driven Drug Delivery. IEEE Transactions on Biomedical Engineering,
37(1):107–109.

Kerr, A. (2021). Timeline: How covid-19 took over nyc.

KPMG (2020). The Impact of COVID-19 on Workers’ Compensation. pages 1–34.

Kuck, K. and Johnson, K. B. (2017). The three laws of autonomous and closed-loop systems in
anesthesia. Anesthesia and Analgesia, 124(2):377–380.

Kuhn, M. and Johnson, K. (2019). Feature engineering and selection: A practical approach for
predictive models.

Loeb, R. G. and Cannesson, M. (2017). Closed-loop anesthesia: Ready for prime time? Anesthesia
and Analgesia, 124(2):381–382.

Madigan, D., Raghavan, N., Dumouchel, W., Nason, M., Posse, C., and Redgeway, G. (2002).
Likelihood-based data squashing: A modeling approach to instance construction. Data Mining
and Knowledge Discovery, 6(2):173–190.

80

Mandel, J. E. and Sarraf, E. (2012). The variability of response to propofol is reduced when a
clinical observation is incorporated in the control: A simulation study. Anesthesia and Analgesia,
114(6):1221–1229.

Marik, P. (2005). Propofol: Therapeutic Indications and Side-Effects. Current Pharmaceutical
Design, 10(29):3639–3649.

Masui, K., Ph, D., Kira, M., Kazama, T., Ph, D., Hagihira, S., and Ph, D. (2009). Early Phase
Pharmacokinetics but Not Pharmacodynamics Are Influenced by Propofol Infusion Rate. (4):805–
817.

Morton, N. S. (2009). Total Intravenous Anesthesia and Target-Controlled Infusion. Number 4.
Elsevier Inc., fourth edi edition.

Nascu, I., Krieger, A., Ionescu, C. M., and Pistikopoulos, E. N. (2015). Advanced Model-Based
Control Studies for the Induction and Maintenance of Intravenous Anaesthesia. IEEE Transactions
on Biomedical Engineering, 62(3):832–841.

Ng, S. (2017). Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data.
Advances in Economics and Econometrics, pages 1–34.

Olvera-López, J. A., Carrasco-Ochoa, J. A., Martínez-Trinidad, J. F., and Kittler, J. (2010). A
review of instance selection methods. Artificial Intelligence Review, 34(2):133–143.

Owen, A. (2003). Data Squashing by Empirical Likelihood. Data Mining and Knowledge Discovery,
7(1):101–113.

Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., and Vivacqua, G. (2016). Inversion-
based propofol dosing for intravenous induction of hypnosis. Communications in Nonlinear Science
and Numerical Simulation, 39:481–494.

Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., and Vivacqua, G. (2017). Optimized
PID control of depth of hypnosis in anesthesia. Computer Methods and Programs in Biomedicine,
144:21–35.

Pavlov, D., Chudova, D., and Smyth, P. (2000). Towards Scalable Support Vector Machines using
Squashing. KDD, pages 295–299.

Phillips, A. T., Deiner, S., Mo Lin, H., Andreopoulos, E., Silverstein, J., and Levin, M. A. (2015).
Propofol Use in the Elderly Population: Prevalence of Overdose and Association with 30-Day
Mortality. Clinical Therapeutics, 37(12):2676–2685.

Rich, B. (2021). linpk: Generate Concentration-Time Profiles from Linear PK Systems. R package
version 1.1.1.

Sahinovic, M. M., Struys, M. M., and Absalom, A. R. (2018). Clinical Pharmacokinetics and
Pharmacodynamics of Propofol. Clinical Pharmacokinetics, 57(12):1–20.

Schiavo, M., Consolini, L., Laurini, M., Latronico, N., Paltenghi, M., and Visioli, A. (2021). Opti-
mized feedforward control of propofol for induction of hypnosis in general anesthesia. Biomedical
Signal Processing and Control, 66(September 2020):102476.

81

Schnider, T. W., Minto, C. F., Struys, M. M., and Absalom, A. R. (2016). The Safety of Target-
Controlled Infusions. Anesthesia and Analgesia, 122(1):79–85.

Shafer, S. L. and Gregg, K. M. (1992). Algorithms to rapidly achieve and maintain stable drug
concentrations at the site of drug effect with a computer-controlled infusion pump. Journal of
Pharmacokinetics and Biopharmaceutics, 20(2):147–169.

Struys, M. M., Coppens, M. J., De Neve, N., Mortier, E. P., Doufas, A. G., Van Bocxlaer, J. F., and
Shafer, S. L. (2007). Influence of administration rate on propofol plasma-effect site equilibration.
Anesthesiology, 107(3):386–396.

Struys, M. M., De Smet, T., Glen, J. B., Vereecke, H. E., Absalom, A. R., and Schnider, T. W.
(2016). The History of Target-Controlled Infusion. Anesthesia and Analgesia, 122(1):56–69.

Van Poucke, G. E., Bravo, L. J. B., and Shafer, S. L. (2004). Target controlled infusions: Target-
ing the effect site while limiting peak plasma concentration. IEEE Transactions on Biomedical
Engineering, 51(11):1869–1875.

Wang, W., Hallow, K. M., and James, D. A. (2015). A tutorial on rxode: Simulating differential
equation pharmacometric models in r. CPT: Pharmacometrics & Systems Pharmacology, 5(1):3–
10.

Wesselink, E. M., Kappen, T. H., Torn, H. M., Slooter, A. J., and van Klei, W. A. (2018). Intraop-
erative hypotension and the risk of postoperative adverse outcomes: a systematic review. British
Journal of Anaesthesia, 121(4):706–721.

West, N., Dumont, G. A., Van Heusden, K., Petersen, C. L., Khosravi, S., Soltesz, K., Umedaly, A.,
Reimer, E., and Ansermino, J. M. (2013). Robust closed-loop control of induction and maintenance
of propofol anesthesia in children. Paediatric Anaesthesia, 23(8):712–719.

Xi, R. (2009). Statistical aggregation: Theory and applications. ProQuest Dissertations and Theses,
(January):79.

Zhou, J. (2008). D-optimal minimax regression designs on discrete design space. Journal of Statistical
Planning and Inference, 138(12):4081–4092.

82

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF ABBREVIATIONS
	Introduction
	Optimal BIS reference functions for closed-loop induction of anesthesia with propofol
	Introduction
	Background
	Contributions in this chapter

	Preliminaries
	Pharmacokinetic model
	Pharmacodynamic model
	Prior construction and patient parameters
	Closed-loop control mechanism

	Reference function
	Reference function optimization
	Identification of optimal reference functions from training set

	Performance of optimized reference functions
	Comparison approaches
	Simulation results

	Discussion
	Limitations

	R statistical software package: tci
	Introduction
	Background
	Existing software and need for this package
	Propofol example

	Theory
	Notation
	TCI Algorithms
	Jacobs' algorithm for plasma targeting
	Shafer-Gregg algorithm for effect-site targeting

	Examples
	Pharmacokinetic model
	TCI dosing schedules
	TCI dosing schedules with a PD model
	Simulation functions

	User-defined functions
	Custom PK models
	Custom TCI algorithms
	Example effect-site algorithm

	Summary

	Data squashing with missing values
	Introduction
	Background
	Prior work
	Contributions in this chapter

	Data squashing
	Theory
	Implementation
	Clustering mechanism
	Selection of moments and number of data points
	Identification of squashed data points and weights

	Simulation performance

	Squashing with missing values
	Propagation squashing - theory
	Evaluation of propagation squashing in simulations
	Expectation Squashing - theory
	Case when all numeric observations are missing within a cluster

	Evaluation of expectation-squashing in simulations

	Workers' Compensation Example
	Background
	Pre-processing of workers' compensation data set
	Squashing procedures
	Analyses
	Handling of missing data
	Analysis 1 - Multiple linear regression with FIML
	Analysis 2 - Ordinal regression with MI

	Discussion

	Conclusion
	Future work

	REFERENCES

