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CHAPTER 1


INTRODUCTION


1.1	 Immunology and Vaccinology


	 Vaccines are a major development in modern medicine that originated from early immunization 

methods to combat infectious, deadly diseases. The first method of inducing viral immunization was a 

form of inoculation known as variolation, where viral material from a patient infected with a disease is 

introduced into a person who does not yet suffer from the disease [8]. The person would still suffer the 

ill effects of the disease, but to a lesser degree than the patient who acquired the infection naturally. An 

immunized individual through this method would be at least partially protected from future 

symptomatic disease after recovery. Variolation in the general sense is also known as smallpox 

inoculation, as it is most associated with smallpox and its eventual worldwide eradication from the 

population. This in part was due to Edward Jenner’s pioneering work in 1798 that demonstrated the 

achievement of immunological protection from smallpox exposure either through natural cowpox 

infection or variolation with cowpox viral material from an infected patient [8].


	 Variolation was not without risks due to possible complications that can arise from the person-

to-person inoculation of the virus; between the late 19th and early 20th centuries, safer methods of 

vaccination were being studied in an experimental setting. Specifically, the first prototypes of the two 

broad vaccine groups, i.e., live attenuated and inactivated, were developed. About 80 years after 

Jenner’s publication of his work on variolation, Pasteur’s observation of the lack of fowl cholera cases 

among chickens inoculated with cultures left out for a prolonged period led him to experiment with 

attenuating bacteria by exposing them to adverse conditions to weaken the pathogenic potency of the 

bacteria [4]. His work led to the first live attenuated vaccine that targeted rabies [4]. Approximately a 

decade later, Daniel Elmer Salmon and his research assistant Theobald Smith pioneered and published 

work on immunization of pigeons through inoculation with inactivated, or killed, Salmonella enterica 

bacteria from their studies on hog cholera [4]. Though erroneously attributing Salmonella enterica to 

the cause of hog cholera, their discovery of the efficacy of inactivated bacteria in inducing 

immunization led to the future development of inactivated vaccines against typhoid, the plague, and 

cholera [4].
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	 Many inventions of modern-day vaccines could be traced back to these initial developments 

that arose from physical observations of the presence or absence of the effects of viruses and bacteria 

on those who were infected. However, with this same methodology, Pulendran and Ahmed noted that 

many successful vaccines were empirical in their development; deep knowledge and understanding of 

the underlying immunological mechanisms that help to elicit protective immunity in an organism was 

barely present or even non-existent in early research and invention of vaccines [12]. The difference in 

the available technologies to properly study these mechanisms between the present day and the late 18th 

to the early 20th centuries easily explains this perspective of vaccine development. Nevertheless, due to 

this anomaly, immunology and vaccinology evolved in vastly different directions though these two 

disciplines share a common origin from these early developments [12]. However, recent advancements 

in the understanding of the human innate immune system, its relationship to the introduction of a 

vaccine into the body, and its role in inducing adaptive immunity, i.e., immunity against a disease not 

acquired by natural exposure, have begun to innovate current approaches to vaccine development [12]. 

Incorporation of the knowledge of vaccine-induced immunological mechanisms from the study of the 

innate immune system into the design of new vaccines is but one of many changes to the discipline.


	 Public awareness of infectious diseases as well as a rising need to maintain public health in a 

population inevitably arose with the growing availability of vaccines as well as the growing prevalence 

of mutation of strains of existing viruses. With increasing concerns to ensure the safety, usability, and 

efficacy of vaccines before its license for distribution and human use, extensive guidelines for the 

rigorous evaluation of vaccines throughout their development were outlined by governing bodies such 

as the World Health Organization (WHO), the European Medicines Agency (EMA), and the United 

States Food and Drug Administration (USFDA) [14]. These guidelines are especially applicable to 

novel vaccines, defined as “either the first of its kind based on the mechanism of protection or as the 

first vaccine for a disease.” [14] As a vaccine candidate becomes approved for testing in a clinical trial, 

it would sequentially undergo through the standard clinical trial phases of Phase I, Phase II, and Phase 

III depending on its success in achieving certain thresholds in several criteria, among which include 

toxicity data and immunogenicity response [14]. Phase IV of a vaccine clinical trial would follow a 

successful licensure of the vaccine for public use after Phase III, where the safety and efficacy of the 

vaccine among the population as it is being administered is monitored continuously [14].
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1.2	 Hemagglutination Inhibition Assay


	 Immunogenicity assays are analytical procedures to assess the amount of an antibody or antigen 

that would either suppress or induce respectively an immune response in a person, and are typically  

conducted using patient blood serum samples. They are often part of the initial evaluation of biologic 

activity of a vaccine candidate in clinical trials, specifically in Phase I and Phase II as this is when the 

vaccine candidate is first administered to human subjects [14]. This phase is important not only in 

determining the safety levels of the vaccine candidate in human use, but also in evaluating its 

immunological effectiveness through the collection of immune response data as aforementioned in 

clinical trials criteria.


	 A popular immunogenicity assay that is often utilized in evaluating vaccine immunogenicity is 

the hemagglutination inhibition assay (HAI), often utilized in influenza vaccine clinical trials [9, 15]. 

The HAI has several distinct advantages over other available assays that has led to its extensive use in 

the analysis of influenza vaccine immunogenicity [9, 11]:


- The HAI is inexpensive and simple to carry out.


- It can be used to test for specific influenza strains.


- Results obtained from the HAI are highly reliable.


	 The HAI leverages the capacity of hemagglutinin (a glycoprotein found on the surface of flu 

viruses) to bind to the sialic acid receptors on the membranes of red blood cells (RBCs), causing the 

RBCs to clump together in a process known as agglutination [9]. This process can be interrupted with 

the presence of agglutination-inhibiting substances such as influenza antibodies that bind to the virus 

antigenic sites, thus preventing the virus-RBC binding from occurring [3, 9]. Depending on the 

presence of, as well as the concentration of antibodies and viruses in blood serum relative to each other, 

the visual effects of RBC agglutination or otherwise can be physically observed and analyzed.


	 The HAI is typically carried out with a microtiter plate as shown in Figure 1, with U-bottom or 

V-bottom wells being the most common well types used in the HAI. Each row of wells is normally 

used for observations either from the blood sera of different patients or from different virus strains to be 

examined [5, 9, 11]. In the case of examining blood sera from different patients, the following illustrate 

the basic outline of performing the HAI [5, 9, 11, 15]. A starting serum dilution titer, a serial dilution 

factor (SDF), and an upper limit of quantification (ULQ) based on the SDF are initially decided. For 
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each patient, serum is obtained from the blood circulatory system and several sera dilutions are 

prepared from the extracted serum. This is done by first adding a small, fixed amount of serum into 

each well across a specific row. Diluent is added to the first well and mixed with the serum to achieve 

the selected starting dilution titer, e.g., to make a starting dilution titer of 1:10, 1 part serum is mixed 

with 9 parts diluent.


	 Sera in subsequent wells are then serially diluted in multiplicative increments based on the 

chosen SDF up to the ULQ, e.g., using the previous starting dilution titer of 1:10 and a two-fold SDF, 

the next titers across the chosen row would then be 1:20, 1:40, 1:80, etc. A fixed amount of the 

influenza virus sample is then added to each well and is mixed thoroughly with the dilution. Once all 

serial dilution titers are prepared for each patient, the plate is covered and allowed to incubate at room 

temperature for at least 30 minutes.
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Figure 1: A 96-well microtiter plate in an 8 × 12 array. Among microtiter plates in various 
sizes, this array is most commonly used [5, 9, 11, 15]. Rows are usually for distinguishing 

different serum samples while columns indicate the dilution level based on the SDF. 



	 After incubation, RBCs are added into each well and mixed with the dilution; the RBCs can 

come from mammals, fowl, or humans. The source of RBCs used influences the HAI components 

necessary to perform it [9, 11, 15]. Kaufmann et al. summarizes the various HAI preparations required 

and the appearance in the case of non-agglutination based on the RBC type in Table 1 below [5]:


	 The plate is covered when the RBCs are well mixed, and it is allowed to incubate at room 

temperature for the second time at the duration specified in Table 1 based on the RBC type. After the 

second incubation period, the wells can be examined for the presence of agglutination. Using the 

example of fowl RBCs and V-shaped wells according to the standard HAI practices, observations of 

individual wells in the microtiter plate would demonstrate either the presence, partial, or absence of 

agglutination for each well based on the following characteristics [5, 11]:


- A well with no agglutination would display a red button in the middle when it is upright, indicating 

the concentration of RBCs at the bottom of the well. Tilting the well at an angle between 60° and 90° 

would cause the RBCs to run or streak down the side of the well and pool at the bottom edge.


- A well with partial agglutination would show a pale reddish diffusion with a smaller red button in 

the middle when it is upright; a smaller run or streak down the side of the well without pooling at the 

bottom edge would be observed when the well is tilted.


- A well with complete agglutination would exhibit a concentrated reddish diffusion either with or 

without a tiny red button in the middle, and no running or streaking down the side of the well when 

it is tilted.


HAI characteristics
RBC types

Fowl Mammals

Selected species Chicken, turkey Guinea pig, horse, human

RBC concentration (v/v) 0.75% 1%

Microtiter plate shape V-bottom U-bottom

Second incubation duration 30 minutes 60 minutes

Non-agglutination appearance Button Halo

Table 1: Summary of HAI preparation for different RBC types
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	 Wells that indicate either partial or complete agglutination would be considered as having 

agglutination present in the analysis. A visual summary of HAI well observations as previously 

described is shown in Figure 1 below. Wells are examined both in an upright and tilted position in order 

to detect the level of agglutination if present.


	 Each patient’s serum HAI titer can be determined through the examination of wells; for each 

row corresponding to the dilution samples from each patient, the patient’s serum HAI titer would be the 

reciprocal of the highest dilution titer that exhibits complete absence of agglutination [5, 9, 15]. The 

following highlight several examples of identifying patient serum HAI titer under different 

observational circumstances [5, 9, 15]:


- A patient’s serum dilution sample shows no agglutination up to a 1:320 dilution, with the 1:640 

dilution sample displaying partial agglutination. The patient’s serum HAI titer would thus be 320, 

the reciprocal of 1:320.


- If all of a patient’s serum dilution samples exhibit no agglutination, the patient’s serum HAI titer is 

set to the ULQ of the HAI, e.g., a patient’s serum HAI titer is 1280 if sample shows no agglutination 

up to the ULQ of 1:1280.


- If agglutination is present in a patient’s first serum dilution sample, the patient’s serum HAI titer 

would often be the next lower dilution titer before the starting dilution titer, e.g., with a starting titer 

of 1:10 and an SDF of 2, a patient’s serum HAI titer would be 5 if agglutination is present in the 

1:10 dilution.
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Figure 2: Possible visual displays of HAI wells using fowl RBCs, with well positions



	 Figure 3 illustrates a visual representation of determining the serum HAI titer of each patient 

based on the possible settings as previously described, under a starting dilution titer of 1:10 and an SDF 

of 2. For simplicity, agglutinated wells show complete agglutination and all the wells are upright.


	 Serum extraction and the HAI are conducted several times throughout a clinical trial, once 

before the administration of the vaccine to the selected treatment group, and at least once after a 

waiting period following the administration of the vaccine depending on the clinical objective. 

Statistical measures and analyses can be performed with the patient serum HAI titer data at each 

collection point throughout the trial. Each statistical measure can be analyzed with various approaches, 

including parametric tests, non-parametric tests, and regression modeling. The measures being studied 

as well as the statistical approaches utilized to do so are dependent on the clinical objective and 

available resources. The conventional measures that are studied include, but are not limited to:


- The geometric mean titer (GMT) of treatment groups and/or geometric mean titer ratio (GMTR) 

between treatment groups [1, 9, 11, 15]


- Seroprotection, defined as having a post-vaccination serum HAI titer meeting or exceeding a certain 

threshold, e.g., ≥ 1:40 as typically used in influenza vaccine studies [1, 6]


- Seroconversion, defined as having a post-vaccination titer that is at least a certain fold increase from 

baseline e.g., at least a four-fold increase as typically used in influenza vaccine studies [1, 9, 15]
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Figure 3: Visual analysis of a cross-section of a sample HAI from four different 
patients. The serum antibody titer of each patient from the above observations under 

the established guideline would be A = 640, B = 160, C = 1280, D = 5.



1.3	 Assay Limitations


	 Despite the usefulness and convenience of the HAI in analyses of vaccine immunogenicity, it is 

not without disadvantages from a statistical perspective. Perhaps the most notable limitation of the HAI 

is the discretization of serum titers through its dilution process. The SDF pre-selected before the HAI is 

carried out is always a natural number as titer calculations are made convenient and the dilution 

samples are easy to prepare; the most frequent choice of SDF is 2, though it is not unheard of for 

research labs to use an SDF of 3 or even 4 [10].


	 This discretization method categorizes a patient’s latent true serum titer by rounding it down to 

the closest observable dilution titer available in the HAI [15]. Using the previous example in Page 6 of 

a patient’s serum dilution sample showing no agglutination up to a 1:320 dilution with the 1:640 

dilution sample displaying partial agglutination, while the observed serum HAI titer would be 320, the 

patient’s actual latent serum HAI titer in this example would lie anywhere in the range of [320, 640), 

even when under the assumption that no other sources of measurement error are present. Thus, the 

observed serum HAI titer obtained by this method will almost always be lower than the true (and 

latent) titer, assumed to be continuous. As the HAI cannot directly measure the patient’s true titer due to 

this discretization, there is inherent measurement error incorporated into the assay that leads to loss of 

information.


	 Furthermore, the degree of bias and information loss is clearly linked to the magnitude of the 

pre-specified SDF. The increasing degree of information loss as the SDF increases can be observed 

with a simple simulation as follows: data for latent titers were simulated for both a control (untreated) 

group and a vaccine (treated) group, with 250 patients in each group. The data were generated using a 

Weibull distribution, with the vaccine group having more patients with higher titers overall assuming 

that there is a positive treatment effect. The data of both groups were combined, and the observed titers 

for each patient were obtained using SDFs of 2, 3, and 4, as well as a minimum dilution titer of 5. The 

distribution of observed titers as well as the observed GMT of the combined groups for each SDF were 

then evaluated.


	 The results of the simple simulation of titer discretization are shown in Figure 4. Assuming a 

specific distribution of theoretical latent true titers, the distribution of the observed titers becomes less 

reflective of the former and the GMT becomes increasingly biased as the SDF increases. The greater 

information loss with each higher SDF would lead to a higher likelihood of specious data analyses.


8



	 Another source of error that is a disadvantage to the HAI is the ULQ. As previously described, 

the HAI rounds down latent true titers to the closest observed dilution titer available. With a pre-

selected ULQ set, any titers higher than the ULQ would thus be set to this observed upper limit no 

matter its magnitude. In the same way, the pre-selected starting dilution titer can also serve as a lower 

limit of quantification (LLQ), where titers lower than this starting titer would automatically be set to 

the next lowest observed titer regardless of magnitude. In both cases, they also lead to information loss. 

A higher ULQ and a lower starting titer would minimize this loss by allowing a greater range of titers 

to be observed in the HAI; however, this would require more dilution samples per patient, which in turn 

increases the cost, duration, processing time of the HAI. Resource availability or limitation during a 

clinical trial may compel setting a lower ULQ or higher starting titer, but the information loss in doing 

so must be considered before the analysis is conducted.
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Figure 4: Simulated effect of discretizing titers, with increasing SDF



1.4	 Research Objective


	 Hypothesis testing procedures suitable for two-group comparisons such as Pearson’s 𝜒2 test or 

the Wilcoxon rank-sum test have been utilized to evaluate vaccine immunogenicity in prior studies 

involving the HAI [1, 15]. However, regression modeling has several added advantages compared to 

hypothesis testing, including being able to estimate the magnitude of vaccine immunogenicity [2]. 

Many of the hypothesis tests that are typically used are either exact or close approximations to 

corresponding saturated regression models; for example, the Wilcoxon rank-sum test is characteristic of 

a proportional odds model for comparing two groups [2], and a two-sample t-test of independent 

groups is equivalent to a simple linear regression with a binary exposure variable. Regression modeling 

is a more flexible approach to evaluating vaccine immunogenicity as they accommodate the inclusion 

of pre-treatment covariates. Despite regression modeling being an appealing alternative to hypothesis 

testing, the extent of the effect of inherent measurement error within the HAI due to SDF and the ULQ 

on the analysis of vaccine immunogenicity has not been adequately explored. In particular, the 

information loss and bias resulting from titer discretization have not been well characterized, even in 

simple two-group comparisons.


	 This research aims to study the effect of bias and efficiency loss associated with inherent 

measurement error due to titer discretization in an HAI analysis for evaluating vaccine 

immunogenicity. A set of simulations that seek to mimic a simple clinical trial in assessing the effect of 

a vaccine intervention were conducted under various data generating mechanisms. In particular, the 

effects of SDF and ULQ on regression parameters were emphasized and the results were compared 

between latent and observed titers to examine any errors or discrepancies that may arise between the 

models. Furthermore, an in-depth analysis on the relationship between the SDF – especially higher 

factors – and various regression parameters was explored. Various regression approaches were also 

applied to a real-world data set from a Phase I vaccine immunogenicity trial of solid organ transplant 

(SOT) patients.
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CHAPTER 2


METHODS


2.1	 Regression Modeling


	 As previously noted, regression modeling can be used to estimate the magnitude of the 

immunogenic effect while taking into account different sources of variation in the outcome. Two 

commonly implemented regression models will be specifically considered in this study: simple linear 

regression and proportional odds regression. A brief outline of each regression model is given below.


2.1.1	 Simple Linear Regression


	 Consider a simple linear regression model in which the only predictor of interest is a patient’s 

vaccination status. Let i index the independently sampled study subjects and  be the latent true titer 

value of patient i. The observed titer of patient i, , can be expressed as , where  denotes 

the floor function. A simple linear regression model based on the observed titers can be written as [13]:


(1)


where:


-  is the serum HAI titer of patient i


-  is the mean serum HAI titer among patients who received the control


-  is the difference in mean  between patients who received the experimental vaccine and patients 

who received the control


-  is the vaccination status of patient i


•  = 0 indicates that patient i received the control


•  = 1 indicates that patient i received the vaccine


-  is the error term for patient i


Writing (1) for each of the n patients would yield the following n equations:


Y ∙
i

yi yi = ⌊Y ∙
i ⌋ ⌊⌋

yi

β0

β1 yi

xi

xi

xi

ϵi
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y1 = β0 + β1x1 + ϵ1

y2 = β0 + β1x2 + ϵ2
⋮

yn = β0 + β1xn + ϵn

yi = β0 + β1xi + ϵi, i = 1, 2, . . . , n



The n equations above can also be written in matrix form as illustrated below:


which can be simplified to the following equation for simple linear regression [14]:


(2)


Thus, y is denoted as the outcome vector of patient serum HAI titers, X is the design matrix of the 

patient vaccination status,  is the vector of regression coefficients, and  is the error vector. With this 

model, there are additional assumptions in order to make this model complete [13]:


-  or . This states that the regression model (2) is correct, in that y only depends 

on X and that any variation in y is random. When X is binary, the model is trivially satisfied as it is 

saturated. The model is often written in the expectation form:


(3)


-  or . This implies that the variance, , of  or of y does not depend on 

X, and that each of the values in  or in y do not correlate with each other. This is known as 

homoscedasticity, or the assumption of equal variances. However, in many cases of real-life data, the 

assumption of homoscedasticity does not hold; heteroscedasticity is often implied instead, with the 

Huber-White estimator used to estimate the variance.


- Each of the patient observations are independent of each other.


	 With the observations in y and X, the estimates for  and for the variance-covariance matrix of 

, , can be estimated. Let the estimate of  be represented as , the estimates of  and  in  be 

denoted as  and  respectively, and the variance-covariance matrix for the estimate of  be . 

The method of least squares is the best approach to obtain  as it does not rely on any distributional 

assumptions, and the estimates of  are unbiased [13]. This method evaluates the estimates by 

minimizing the sum of squares of the deviations of each  from their predicted values, denoted as , 

where . The equation to estimate  using the method of least squares for simple linear 

regression is:


(4)


β ϵ

𝔼(ϵ) = 0 𝔼(y) = Xβ

Cov(ϵ) = σ2I Cov(y) = σ2I σ2 ϵ

ϵ

β

β Var(β ) β ̂β β0 β1 β

̂β0
̂β1 β Var ( ̂β)

̂β
̂β

yi ̂yi

̂yi = ̂β0 + ̂β1xi
̂β
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y1
y2
⋮
yn

=

1 x1

1 x2
⋮ ⋮
1 xn

(β0

β1) +

ϵ1
ϵ2
⋮
ϵn

y = Xβ + ϵ

̂β = (X′￼X)−1 X′￼y′￼

𝔼(y) = Xβ



	  is evaluated from , or the estimated variance-covariance matrix of . Under 

the assumption that , . As mentioned previously,  in 

most cases and the actual variance-covariance matrix is not easily evaluated. Let , where D 

is the diagonal matrix of the squared residuals.  is estimated using the Huber-White estimator:


(5)


The variance and standard error of , represented as  and  respectively, can thus be 

obtained, where  is the diagonal matrix of , and . Using squared 

residuals instead of setting a particular covariance structure for y would ensure that the error structure 

is not grossly misspecified, as the covariance structure of the errors is the same as that of the outcome.


Var ( ̂β) Cov ( ̂β) β

Cov(y) = σ2I Cov ( ̂β) = σ2 (X′￼X)−1 Cov(y) ≠ σ2I

Cov(y) = D

Cov ( ̂β)

̂β Var ( ̂β) σ ( ̂β1)
Var ( ̂β) Cov ( ̂β) σ ( ̂β1) = Var ( ̂β)
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Cov ( ̂β) = (X′￼X)−1 X′￼DX (X′￼X)−1

Figure 5: Visual distribution of untransformed and log-transformed titers under varying SDFs



	 It is often common practice for HAI titers to be log-transformed before the linear regression 

analysis is performed [10, 15]. Figure 5 in the previous page highlights the differences in the 

distribution of both untransformed and log-transformed titers. As subsequent HAI titers are 

multiplicative in powers of the SDF, log-transforming the titers would change the relationship between 

titer values to an additive association. The additive association induced by the log-transformation 

would thus be more applicable for use in simple linear regression modeling. Thus, from (3), the simple 

linear regression model under the log-transformation of the outcome is written in expectation form as:


(6)


or as follows:


(7)


	 From (7), exponentiating  and  to invert the scale change of the log-transformation leads to 

more applicable interpretations;  denotes the GMT of patients who received the control and  is 

the GMTR when comparing patients who received the vaccine to those who received the control. The 

practice of log-transformation in regression modeling also heavily corresponds to the frequent use of 

GMT and GMTR as the statistical measure in evaluating vaccine immunogenicity [1, 5, 6, 10, 11, 15].


2.1.2	 Proportional Odds Regression


	 An alternative regression model that can also be considered is the proportional odds model, a 

type of cumulative probability model (CPM) that was first developed as an extension of logistic 

regression to ordered categorical data [7]. Due to the discretization of latent titers into observed titer 

levels, CPMs are a viable alternative to model the data; they can still be useful even if more refined 

SDFs are used [7]. In the case of HAI titers, higher titers are more indicative of immunogenic 

responses and are thus more desirable. In addition, titer categorization is already underscored in the 

HAI procedure and analysis from the discretization of latent titers.


	 To model a proportional odds regression for HAI titers, let  be the outcome level and  be the 

vector of outcome level indicators for patient i.  can take K distinct numerical values that correspond 

to the outcome level, where K is the total number of distinct observed titer categories that is dependent 

on the SDF and ULQ; thus, .  is of length K, and , where 

 indicates that the observed titer for patient i is level k, and 0 otherwise. Thus, for any patient i, 

β0 β1

eβ0 eβ1

Yi Yi

Yi

Yi ∈ {1, 2, . . . , K} Yi Yi = (Yi1, Yi2, . . . , YiK)
Yik = 1
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𝔼(log y) = Xβ

𝔼 (log yi) = β0 + β1xi, i = 1, 2, . . . , n



all the elements in  except for the observed level would be 0. Given n patients in a clinical trial, for 

the ith patient,


where , , and .


	 For all patients, let  and , where  is 

the probability that Y is equal to the outcome level k given the predictor vector x, and  is the 

cumulative probability that  is at most at outcome level k given the predictor vector x. From these 

definitions,  can be evaluated for all values of k as follows:


The cumulative logit is then defined as , 

which is the log-odds of being at or below a response level of k. With K distinct values for Y, there 

would be K cumulative logit regression models, where for ,





where  is the log-cumulative odds of being at or below an outcome level k for the control (untreated) 

group, and  is the difference in log-cumulative odds of being at or below an outcome level k when 

comparing the vaccine (treated) group to the control group. When exponentiated,  becomes the 

cumulative odds of being at or below an outcome level k for the control group, and  is the 

cumulative odds ratio of being at or below an outcome level k when comparing the vaccine group to the 

control group. With the proportional odds model, there is the added assumption that the effect of x is 

considered to be constant across all K models. The proportional odds model is thus represented by:


(8)


Yi

πi = (πi1, πi2, . . . , πiK) πik = P (Yik = 1)
K

∑
k=1

πik = 1

πk(x) = P (Y = k | X = x) γk(x) = P (Y ≤ k | X = x) πk(x)

γk(x)

Y

γk(x)

logit [γk(x)] = log [ γk(x)
1 − γk(x) ] = log [

P (Y ≤ k |X = x)
P (Y > k |X = x) ]

k = 1, 2, . . . , K

βk0

βk1

eβk0

eβk1
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Yi ∼ Multinomial (1, πi)

γ1(x) = π1(x)
γ2(x) = π1(x) + π2(x)

⋮
γK−1(x) = πk1

(x) + … + πK−1(x)
γK(x) = π1(x) + … + πK(x)

log [ γk(x)
1 − γk(x) ] = βk0 + βk1x

log [ γk(x)
1 − γk(x) ] = βk0 + β1x



where  is the fixed difference in log-cumulative odds of being at or below a response level k when 

comparing the vaccine group to the control group, and  is the fixed cumulative odds ratio of being at 

or below an outcome level k when comparing the vaccine group to the control group.


2.2	 Simulation


	 All simulations were conducted using R version 4.0.5 and RStudio version 1.2.1335. A 

summary of the R program and the accompanying packages used for this research can be found in 

Appendix E. The following parameters for each simulation study were set for the data generating 

mechanism under the assumption of a simulation of a simple vaccine immunogenicity clinical trial for 

an experimental vaccine using two treatment groups.


2.2.1	 Regression Modeling


	 Let every subject in this hypothetical clinical trial have a latent true serum HAI titer; the HAI 

titer is considered to be continuous along the positive real number line. The latent titers for both the 

control (untreated) and the vaccine (treated) groups were simulated under a Weibull distribution. The 

Weibull distribution is used as the data generating distribution as it is highly flexible in modeling 

symmetric or skewed data; titers are often positive- or right-skewed as the expected frequencies of 

people with higher titers decreases with increasing titer values. In addition, the support of the Weibull 

distribution is the positive real numbers, similar to the nature of HAI titers. The shape and scale of the 

Weibull distribution from which the data will be generated was determined by:


- Level of desired data skewness (low and high) for the control group


- Level of desired data skewness (low and high) and the treatment effect (none, trivial, moderate, and 

high) for the vaccine group


	 The latent titer distributions used to generate the data for each treatment group are based on a 

prior research by Nhat et al. that studied the general-population antibody titer distributions to the 

influenza A virus; the typical range of most log-transformed titers is from 1 to 7, translating to titer 

values between 2.7 and 1096.6 [10]. The treatment effect is varied using the Weibull scale parameter 

and the skewness is modified using both the Weibull shape and scale parameters; in this simulation, the 

shape parameter under high skewness is lower than that under low skewness. Figures 6 and 7 show the 

β1

eβ1
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distribution of generated latent titers for several parameter combinations under low and high skewness 

respectively; high skewness in this study refer to greater right-skewness, with more titers concentrated 

towards lower values than that of low skewness. It is important to note that the Weibull shape and scale 

parameters used in this simulation are only one example of the many possibilities to simulate the titer 

data.


	 Examining the latent titer distributions under low skewness relative to the black line – either the 

control group or the vaccine group with the assumption of no treatment effect for the experimental 

vaccine – in Figure 6, with increasing treatment effect for the vaccine group, it can be observed that the 

proportions of subjects with higher latent titer values also increases. This is to conform to the 

expectation that a greater treatment effect from the vaccine being tested would lead to higher 

proportions of patients with larger observed titers, derived from the latent titers.
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Figure 6: Distribution of simulated latent titers at low skewness via a Weibull data generating 
mechanism under different settings of treatment group and treatment effect



	 On the other hand, in observing the titer distributions under low skewness relative to the black 

line in Figure 7, the same trends can be concluded, but each of the plots is more heavily right-skewed 

compared to their corresponding counterparts of the same color as in Figure 6. This setting for high 

skewness is to reflect real-life circumstances that a higher proportion of people tend to have lower titers 

in general within a population due to the mechanisms of the innate immune system.


	 In addition to simulating latent true titers, a simulation of the “true population difference” in 

log-transformed titers was also included in order to set a hypothetical true treatment effect that will be 

used to compare the biases, if any, that are induced in the estimated treatment effect using both the 

latent and observed titers. The data for the treatment groups are generated and the observed titers are 

subsequently determined from the default SDF of 2 in keeping with common analytical practice, the 

starting dilution titer, and a pre-selected ULQ based on the simulation setting. In fitting a simple linear 

regression model to the simulated data to evaluate vaccine immunogenicity,  is evaluated from the ̂β1
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result derived from Equation (4) and  is obtained from the second entry of the result in Equation 

(9) that is derived from Equation (5):


(9)


	 Each simulation was repeated 5000 times. From the results of all the trials, key statistics of 

interest were evaluated for both the latent and observed titer values. The simulations were then repeated 

with decreasing SDFs from 2 to a minimum of 1.1, and the inclusion of an increased ULQ that is 

greater than the highest possible latent titer that can be simulated. Based on the results obtained from 

prior simulations, the simulation parameters to be varied were selected in order to explore salient 

effects of the SDF as well as that of both a restricted and unrestricted ULQ on the regression results.


	 The data generation and model fitting were also repeated using the proportional odds 

regression, with 1000 repetitions for each simulation performed in this analysis to obtain the same 

statistics of interest above. Apart from the coverage probability of the treatment parameter and the 

power, the following table summarizes the additional key statistics evaluated for each simulation type 

where applicable, with different interpretations based on the type of regression modeled:


2.2.2	 SDF Association to Regression Statistics


	 The simulations for the regression analyses described in Section 2.2.1 only consider SDFs 

between 1.1 and 2, as higher SDFs are very rarely used in conventional analyses. While the impact of 

SDF on the HAI measurement error among common SDF values have not been explored, the overall 

association between the SDF – including values greater than 4 – and various regression parameter 

statistics is much less so. This presents an opportunity to conduct further simulation studies to 

σ ( ̂β1)

Statistic Simple linear regression Proportional odds regression

Mean log-transformed treatment estimate Log-cumulative odds of the treatment parameter

Estimated standard deviation of the log-
transformed treatment estimate

Estimated standard deviation of the log-cumulative 
odds of the treatment parameter

Average standard error of the log-
transformed treatment estimate

Average standard error of the log-cumulative odds of 
the treatment parameter

Table 2: Description of key statistics of interest based on regression type

̂β1

σe ( ̂β1)
σ ( ̂β1)
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σ ( ̂β) = Var ( ̂β) = diag [Cov ( ̂β)]



determine the extent of the effect of a greater range of SDFs on the parameter statistics obtained from 

both the simple linear regression and proportional odds regression analyses fitted to generated data 

described in the previous section. The effects of three main parameters will be studied:


- SDF, ranging from 1.1 to 10 in 0.1 increments


- True treatment effect of the vaccine, designated as  in regression modeling. Values of  to be 

considered are log(1), log(1.1), log(1.4), log(1.8), and log(3); these represent the log-transformation 

of typical GMTRs obtained from previous immunogenicity studies.


- Shape parameter of the Weibull data generating distribution, denoted as . As  influences the slope 

of the Weibull distribution, it also indirectly affects the level of skewness of the distribution. Values 

of  to be considered are 1.2, 1.5, 2.0, and 2.5.


	 This simulation, like that of regression modeling, mimics that of a vaccine immunogenicity 

clinical trial for an experimental vaccine using two treatment groups. With n = 500 patients enrolled 

into each treatment group, latent titer data for each patient were simulated from a Weibull data 

generating distribution and are then discretized to obtain the observed HAI titers. Each different 

simulation comprises a different combination of SDF, , and  which would affect the data generation 

and observed titer categories. Both a simple linear regression model and a proportional odds regression 

model were fitted to the observed titers, and the data generation and model fitting are repeated 500 

times. In addition to the key statistics outlined in Table 2, another statistic of interest was evaluated 

from the repeated simulation: , which represents the GMTR of the treatment estimate for simple 

linear regression, or the cumulative odds ratio for proportional odds regression. This procedure is 

repeated for each unique SDF, , and  combination. For each statistic of interest in both regression 

models, the data were plotted against the SDF, stratified by  and . The plots were then observed and 

analyzed to determine any patterns or interesting relationships.


β1 β1

λ λ

λ

β1 λ

e ̂β1

β1 λ

λ β1
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CHAPTER 3


RESULTS


	 The salient results of all simulations for both regression model types are presented in this 

section. Additional results from each simulation conducted for each different setting can be found in the 

Appendices where indicated.


	 To calculate the precision level of the coverage probability (CP) of the treatment parameter, the 

standard error of the Bernoulli distribution will be used as the expectation of the Bernoulli distribution 

is itself a proportion. The precision level of the CP would thus be: , where:


-  is the precision, i.e., standard error of the CP


-  is the significance level, i.e., Type I error rate


-  is the number of simulation repetitions.


In this study,  = 0.05.


3.1	 Simple Linear Regression


	 Each of the following tables displays the summarized results of the 5000 repeated trials for each 

simple linear regression simulation performed in the following order of parameter settings, with a 

stratification either by treatment effect, sample sizes for each treatment group, or both:


- Default SDF of 2 and restricted ULQ of 1280; stratified by treatment effect


- Decreasing SDFs up to 1.1 and restricted ULQ based on SDF; stratified by sample size


- Decreasing SDFs up to 1.1 and unrestricted ULQ; stratified by treatment effect and sample size


Each subsequent simulation as above was conducted with the parameter settings selected based on the 

results obtained from the previous simulation study. The standard error of the CP obtained for all 

simple linear regression models fitted to the data is . This translates to an 

overall precision of the CP of ±0.01.


σCP =
(1 − α)α

nS

σCP

α

nS

α

0.95 ⋅ 0.05
5000

≈ 0.003
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3.1.1	 Restricted ULQ and Default SDF


Large treatment effect
1

	 Under a large treatment effect, there is a small but noticeable bias in MTE for the model using 

observed titers compared to that with latent titers. In addition, the model with latent titers seems to be 

more efficient when both treatment groups have low skewness, whereas the efficiency shifts slightly in 

favor of the model with observed titers when either group has a highly skewed distribution. The ESD 

and ASE are also almost equal to each other, and both become smaller when the group sample sizes 

1CS TS SS TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 50 1.719 1.719 0.148 0.146 0.943 1.000 1.689 0.150 0.147 0.941 1.000 0.976

Low Low 250 1.719 1.719 0.067 0.066 0.949 1.000 1.688 0.067 0.067 0.925 1.000 0.981

Low Low 500 1.717 1.716 0.047 0.047 0.949 1.000 1.686 0.047 0.047 0.898 1.000 0.994

Low High 50 1.579 1.577 0.175 0.170 0.942 1.000 1.520 0.171 0.167 0.934 1.000 1.049

Low High 250 1.581 1.581 0.076 0.077 0.949 1.000 1.523 0.075 0.075 0.889 1.000 1.043

Low High 500 1.581 1.580 0.055 0.054 0.948 1.000 1.522 0.054 0.053 0.805 1.000 1.037

High Low 50 1.723 1.720 0.217 0.212 0.939 1.000 1.678 0.213 0.208 0.931 1.000 1.036

High Low 250 1.725 1.724 0.096 0.096 0.948 1.000 1.682 0.093 0.094 0.925 1.000 1.047

High Low 500 1.725 1.725 0.069 0.068 0.945 1.000 1.683 0.068 0.067 0.900 1.000 1.028

High High 50 1.587 1.583 0.231 0.229 0.945 1.000 1.515 0.225 0.222 0.931 1.000 1.060

High High 250 1.588 1.585 0.104 0.104 0.949 1.000 1.516 0.102 0.100 0.884 1.000 1.057

High High 500 1.588 1.588 0.074 0.073 0.948 1.000 1.519 0.072 0.072 0.835 1.000 1.064

Table 3: Simulation results under a large treatment effect

 The full term for each statistical abbreviation in the headings of Table 3 are as follows:
1

  CS – Control group skewness

  TS – Treatment group skewness

  SS – Sample size per treatment group

  TTP – True treatment parameter

  MTE – Mean log-transformed treatment estimate

  ESD – Empirical standard deviation of treatment estimate

  ASE – Average standard error of treatment estimate

  CP – Coverage probability of treatment estimate

  P – Power of simulation study

  RE – Relative efficiency of treatment estimate comparing latent titers to observed titers

22



increase. Both the ESD and ASE magnitudes are influenced by the group skewness combination. P 

obtained for both models equals 1 due to the high estimated GMTR between  and 

, but the CP shows a decreasing trend for the model with observed titers when the sample 

sizes increase. The simulation results under no and moderate treatment effects for this setting can be 

found in Appendix A for comparison with the results in Table 3.


	 From this first simulation setting, when comparing the effect of different treatment levels on the 

regression parameters, there seems to be minor to no observable differences between the ESD and ASE 

across all treatment effect levels as they are almost equal not only to each other, but also across titer 

types. This is a good indication that observed titers do not inflate the variance of the treatment 

parameter. However, as the treatment effect increases, there is a slight but noticeable increase in the 

bias of MTE obtained from the model with observed titers. Neither the MTE bias nor the RE seem to 

change for each group skewness combination when the group sample sizes increase; this indicates that 

the sample sizes do not influence the reliability of the model. Furthermore, with the given , the CP 

starts to deviate away from the expected proportion of 0.95 as the group sample sizes increase. On the 

other hand, P immediately trends towards 1 even under a moderate treatment effect with obtained 

estimated GMTRs of at least 3.


	 The next simulation setting that includes decreasing SDFs focused exclusively on the large 

treatment effect due to the increased MTE bias and the decreasing CP found for this treatment effect 

level and not for those under no and moderate treatment effects. It is of interest to examine whether the 

MTE and CP estimates improve as the SDF becomes more granular, in addition to evaluating other 

significant changes to the simple linear regression results. The following table summarizes the total 

distinct observed titer levels as well as the ULQ to each SDF for the next simulation setting. ULQ for 

SDFs that are less than 2 were set to the titer with the smallest difference to the ULQ for the default 

SDF.


e1.094 ≈ 4.9

e1.725 ≈ 5.6

α

SDF 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Total distinct titer levels 8 9 10 11 12 14 17 22 31 59

Maximum dilution titer 1280 1613 1785 1714 1407 1460 1525 1606 1424 1384

Table 4: Total distinct titer levels and modified restricted ULQ to each decreasing SDF
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3.1.2	 Restricted ULQ, Large Treatment Effect, and Decreasing SDF	 


Large sample sizes (500 subjects per treatment group)
2

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 1.721 1.717 0.046 0.047 0.950 1.000 1.687 0.047 0.047 0.890 1.000 0.985

Low Low 1.8 1.719 1.717 0.047 0.047 0.948 1.000 1.711 0.048 0.048 0.945 1.000 0.965

Low Low 1.6 1.716 1.718 0.047 0.047 0.944 1.000 1.679 0.047 0.046 0.872 1.000 1.026

Low Low 1.4 1.719 1.718 0.047 0.047 0.950 1.000 1.679 0.045 0.046 0.857 1.000 1.048

Low Low 1.2 1.718 1.718 0.047 0.047 0.950 1.000 1.646 0.045 0.044 0.642 1.000 1.112

Low High 2.0 1.580 1.581 0.056 0.054 0.944 1.000 1.523 0.055 0.053 0.812 1.000 1.028

Low High 1.8 1.581 1.581 0.054 0.054 0.956 1.000 1.561 0.055 0.054 0.935 1.000 0.992

Low High 1.6 1.581 1.580 0.054 0.055 0.953 1.000 1.514 0.052 0.052 0.750 1.000 1.079

Low High 1.4 1.579 1.580 0.055 0.054 0.945 1.000 1.516 0.052 0.052 0.771 1.000 1.097

Low High 1.2 1.581 1.580 0.055 0.054 0.952 1.000 1.480 0.051 0.051 0.490 1.000 1.150

High Low 2.0 1.725 1.723 0.068 0.068 0.944 1.000 1.681 0.067 0.067 0.895 1.000 1.031

High Low 1.8 1.724 1.724 0.068 0.068 0.953 1.000 1.707 0.067 0.067 0.942 1.000 1.013

High Low 1.6 1.725 1.725 0.069 0.068 0.947 1.000 1.677 0.067 0.066 0.881 1.000 1.054

High Low 1.4 1.725 1.724 0.067 0.068 0.951 1.000 1.677 0.065 0.066 0.893 1.000 1.061

High Low 1.2 1.723 1.724 0.068 0.068 0.949 1.000 1.647 0.066 0.065 0.778 1.000 1.082

High High 2.0 1.588 1.587 0.075 0.073 0.945 1.000 1.518 0.073 0.071 0.829 1.000 1.054

High High 1.8 1.585 1.585 0.074 0.073 0.952 1.000 1.554 0.072 0.072 0.927 1.000 1.039

High High 1.6 1.586 1.589 0.073 0.073 0.947 1.000 1.514 0.070 0.071 0.825 1.000 1.079

High High 1.4 1.583 1.586 0.072 0.073 0.952 1.000 1.513 0.069 0.070 0.836 1.000 1.084

High High 1.2 1.588 1.585 0.074 0.073 0.947 1.000 1.480 0.070 0.070 0.648 1.000 1.113

Table 5: Simulation results under large sample sizes

 The full term for each statistical abbreviation in the headings of Table 5 are as follows:
2

  CS – Control group skewness

  TS – Treatment group skewness

  SDF – Serial dilution factor

  TTP – True treatment parameter

  MTE – Mean log-transformed treatment estimate

  ESD – Empirical standard deviation of treatment estimate

  ASE – Average standard error of treatment estimate

  CP – Coverage probability of treatment estimate

  P – Power of simulation study

  RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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	 The results in Table 5 show similar trends for the MTE bias, ESD, and ASE to that of Table 3, 

except that the ESD and ASE do not seem to be influenced by changes to the SDF. The RE shows a 

slow increasing trend as the SDF decreases, indicating smaller variances for the model with observed 

titers than that with latent titers. The CP shows a non-monotonic decreasing trend, with much faster 

declining rates at smaller SDFs. The simulation results under small and medium sample sizes for this 

setting can be found in Appendix B for comparison with the results in Table 5.


	 From this second simulation setting that includes decreasing SDFs, there seems to be trivial to 

no changes to the bias of the MTE when using observed titers as the group sample sizes increase. Most 

of the bias may be attributed to the differences in group skewness rather than the SDF. Nevertheless, 

the presence of a bias in the MTE highlights that observed titers do result in some loss of information 

under this setting.


	 At higher sample sizes, the CP suffers to a greater degree as the SDF decreases to much smaller 

factors; in some cases, it can even reach probability levels below 0.5. With such results that highlights 

the severity and the disadvantage of imposing a low ULQ (due to possible constraints on cost, time, 

and resources that would be required to conduct a HAI), it is of interest in examining whether 

increasing the ULQ beyond the highest possible titer generated by the simulation improves the CP as 

the SDF becomes more granular. In addition, the simulation was also used to examine the impact of 

trivial treatment effects in addition to large treatment effects on the regression results. Due to the 

massive increase in P when comparing a moderate treatment effect to no treatment effect, an additional 

treatment level was introduced to study this intermediate setting between the former and the latter.


	 The following table summarizes the total distinct observed titer levels as well as the unrestricted 

ULQ for each SDF, under the assumption that the highest possible titer generated by the data 

generating mechanism does not exceed this increased ULQ by at least 1 titer level. ULQ for SDFs that 

are less than 2 were set to the titer with the smallest difference to the ULQ for the default SDF.


SDF 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Total distinct titer levels 10 11 12 13 15 17 21 27 38 73

Maximum dilution titer 5120 5825 5784 4952 5765 4926 5857 5963 5103 5256

Table 6: Total distinct titer levels and unrestricted ULQ to each decreasing SDF
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3.1.3	 Unrestricted ULQ and Decreasing SDF


i)	 Trivial treatment effect and small sample sizes (50 subjects per treatment group)
3

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 0.372 0.370 0.149 0.145 0.940 0.722 0.369 0.153 0.150 0.941 0.692 0.946

Low Low 1.8 0.370 0.375 0.146 0.145 0.947 0.728 0.375 0.151 0.149 0.950 0.706 0.945

Low Low 1.6 0.370 0.374 0.147 0.145 0.945 0.730 0.373 0.149 0.147 0.944 0.713 0.969

Low Low 1.4 0.373 0.370 0.147 0.146 0.948 0.706 0.370 0.147 0.147 0.948 0.704 0.990

Low Low 1.2 0.370 0.369 0.146 0.145 0.947 0.718 0.369 0.146 0.145 0.946 0.718 0.996

Low High 2.0 0.256 0.256 0.188 0.185 0.946 0.302 0.259 0.190 0.188 0.947 0.296 0.985

Low High 1.8 0.256 0.253 0.189 0.186 0.943 0.298 0.256 0.191 0.187 0.943 0.297 0.984

Low High 1.6 0.255 0.255 0.189 0.186 0.942 0.297 0.258 0.189 0.187 0.943 0.293 1.001

Low High 1.4 0.256 0.256 0.185 0.186 0.951 0.296 0.258 0.185 0.186 0.949 0.302 1.002

Low High 1.2 0.255 0.253 0.187 0.186 0.948 0.291 0.255 0.186 0.185 0.948 0.297 1.010

High Low 2.0 0.377 0.377 0.212 0.211 0.943 0.421 0.364 0.212 0.210 0.943 0.406 0.999

High Low 1.8 0.376 0.374 0.212 0.211 0.947 0.426 0.363 0.211 0.210 0.944 0.409 1.010

High Low 1.6 0.378 0.376 0.217 0.211 0.942 0.432 0.366 0.215 0.209 0.939 0.415 1.017

High Low 1.4 0.376 0.375 0.216 0.211 0.946 0.418 0.366 0.213 0.208 0.947 0.410 1.024

High Low 1.2 0.375 0.377 0.214 0.211 0.944 0.426 0.369 0.211 0.209 0.943 0.420 1.027

High High 2.0 0.259 0.265 0.242 0.240 0.950 0.193 0.257 0.241 0.239 0.946 0.189 1.011

High High 1.8 0.263 0.266 0.246 0.240 0.940 0.204 0.258 0.244 0.238 0.941 0.203 1.021

High High 1.6 0.263 0.253 0.242 0.241 0.949 0.180 0.246 0.239 0.238 0.946 0.178 1.022

High High 1.4 0.262 0.263 0.251 0.241 0.935 0.197 0.256 0.248 0.238 0.935 0.195 1.023

High High 1.2 0.266 0.262 0.247 0.241 0.942 0.205 0.256 0.244 0.238 0.943 0.200 1.029

Table 7: Simulation results under small sample sizes

 The full term for each statistical abbreviation in the headings of Table 7 are as follows:
3

  CS – Control group skewness

  TS – Treatment group skewness

  SDF – Serial dilution factor

  TTP – True treatment parameter

  MTE – Mean log-transformed treatment estimate

  ESD – Empirical standard deviation of treatment estimate

  ASE – Average standard error of treatment estimate

  CP – Coverage probability of treatment estimate

  P – Power of simulation study

  RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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ii)	 Trivial treatment effect and medium sample sizes (250 subjects per treatment group)
4

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 0.370 0.372 0.066 0.066 0.948 1.000 0.371 0.068 0.068 0.948 0.999 0.944

Low Low 1.8 0.369 0.371 0.066 0.066 0.944 1.000 0.371 0.068 0.067 0.944 1.000 0.954

Low Low 1.6 0.370 0.369 0.066 0.066 0.954 1.000 0.369 0.067 0.067 0.953 1.000 0.967

Low Low 1.4 0.371 0.372 0.065 0.066 0.948 1.000 0.372 0.066 0.066 0.951 1.000 0.981

Low Low 1.2 0.368 0.371 0.065 0.066 0.952 1.000 0.371 0.065 0.066 0.952 1.000 0.996

Low High 2.0 0.253 0.256 0.083 0.084 0.953 0.856 0.259 0.085 0.085 0.953 0.856 0.965

Low High 1.8 0.257 0.257 0.085 0.084 0.946 0.850 0.260 0.086 0.085 0.946 0.854 0.986

Low High 1.6 0.256 0.256 0.083 0.084 0.951 0.855 0.259 0.084 0.084 0.951 0.861 0.987

Low High 1.4 0.255 0.257 0.084 0.084 0.951 0.863 0.259 0.084 0.084 0.951 0.869 1.003

Low High 1.2 0.257 0.256 0.084 0.084 0.951 0.853 0.258 0.083 0.084 0.951 0.864 1.009

High Low 2.0 0.377 0.377 0.096 0.095 0.949 0.978 0.363 0.096 0.095 0.945 0.971 1.013

High Low 1.8 0.376 0.378 0.096 0.095 0.946 0.978 0.366 0.095 0.095 0.947 0.971 1.017

High Low 1.6 0.376 0.376 0.095 0.095 0.953 0.982 0.366 0.095 0.094 0.948 0.977 1.013

High Low 1.4 0.376 0.378 0.095 0.095 0.953 0.981 0.369 0.094 0.094 0.952 0.978 1.027

High Low 1.2 0.379 0.376 0.095 0.095 0.947 0.979 0.368 0.094 0.094 0.947 0.977 1.022

High High 2.0 0.262 0.261 0.111 0.109 0.944 0.664 0.253 0.110 0.108 0.941 0.638 1.011

High High 1.8 0.264 0.261 0.109 0.109 0.950 0.666 0.253 0.108 0.108 0.949 0.650 1.021

High High 1.6 0.261 0.263 0.109 0.109 0.951 0.678 0.256 0.108 0.108 0.949 0.658 1.018

High High 1.4 0.261 0.266 0.109 0.109 0.950 0.686 0.260 0.108 0.108 0.951 0.674 1.024

High High 1.2 0.264 0.260 0.109 0.109 0.947 0.663 0.255 0.108 0.108 0.949 0.654 1.026

Table 8: Simulation results under a trivial treatment effect and medium sample sizes

 The full term for each statistical abbreviation in the headings of Table 8 are as follows:
4

  CS – Control group skewness

  TS – Treatment group skewness

  SDF – Serial dilution factor

  TTP – True treatment parameter

  MTE – Mean log-transformed treatment estimate

  ESD – Empirical standard deviation of treatment estimate

  ASE – Average standard error of treatment estimate

  CP – Coverage probability of treatment estimate

  P – Power of simulation study

  RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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iii)	 Trivial treatment effect and large sample sizes (500 subjects per treatment group)
5

	 


CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 0.371 0.371 0.047 0.046 0.951 1.000 0.370 0.048 0.048 0.947 1.000 0.940

Low Low 1.8 0.372 0.370 0.046 0.046 0.956 1.000 0.370 0.047 0.048 0.954 1.000 0.950

Low Low 1.6 0.371 0.370 0.047 0.046 0.948 1.000 0.370 0.047 0.047 0.952 1.000 0.983

Low Low 1.4 0.370 0.371 0.046 0.046 0.949 1.000 0.371 0.047 0.047 0.948 1.000 0.981

Low Low 1.2 0.371 0.370 0.047 0.046 0.948 1.000 0.370 0.047 0.047 0.947 1.000 0.998

Low High 2.0 0.256 0.258 0.059 0.059 0.955 0.992 0.261 0.059 0.060 0.953 0.992 0.980

Low High 1.8 0.256 0.256 0.059 0.060 0.952 0.988 0.260 0.060 0.060 0.951 0.989 0.981

Low High 1.6 0.256 0.256 0.060 0.059 0.945 0.987 0.259 0.061 0.060 0.944 0.989 0.996

Low High 1.4 0.256 0.256 0.061 0.060 0.944 0.986 0.259 0.061 0.059 0.944 0.988 1.003

Low High 1.2 0.257 0.257 0.059 0.060 0.953 0.991 0.259 0.059 0.059 0.953 0.993 1.008

High Low 2.0 0.378 0.377 0.067 0.068 0.950 1.000 0.365 0.067 0.067 0.950 1.000 1.007

High Low 1.8 0.378 0.377 0.068 0.068 0.948 1.000 0.366 0.068 0.067 0.948 1.000 1.017

High Low 1.6 0.375 0.378 0.068 0.067 0.950 1.000 0.367 0.068 0.067 0.950 1.000 1.016

High Low 1.4 0.374 0.379 0.067 0.068 0.951 1.000 0.370 0.066 0.067 0.951 1.000 1.024

High Low 1.2 0.378 0.378 0.068 0.067 0.945 1.000 0.370 0.067 0.067 0.945 1.000 1.028

High High 2.0 0.263 0.263 0.077 0.077 0.947 0.923 0.254 0.077 0.076 0.947 0.910 1.008

High High 1.8 0.263 0.262 0.078 0.077 0.949 0.922 0.254 0.078 0.076 0.949 0.911 1.020

High High 1.6 0.263 0.263 0.077 0.077 0.947 0.926 0.255 0.077 0.076 0.945 0.917 1.019

High High 1.4 0.264 0.262 0.077 0.077 0.948 0.922 0.255 0.076 0.076 0.949 0.916 1.028

High High 1.2 0.263 0.263 0.078 0.077 0.945 0.928 0.258 0.077 0.076 0.944 0.921 1.023

Table 9: Simulation results under a trivial treatment effect and large sample sizes

 The full term for each statistical abbreviation in the headings of Table 9 are as follows:
5

  CS – Control group skewness

  TS – Treatment group skewness

  SDF – Serial dilution factor

  TTP – True treatment parameter

  MTE – Mean log-transformed treatment estimate

  ESD – Empirical standard deviation of treatment estimate

  ASE – Average standard error of treatment estimate

  CP – Coverage probability of treatment estimate

  P – Power of simulation study

  RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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	 At small sample sizes, the RE increases as the SDF decreases, albeit at a slower rate compared 

to the setting with restricted ULQ. The MTE bias is heavily diminished with an unrestricted ULQ. The 

ESD and the ASE also show similar trends of being almost equal to each other. The CP is much closer 

to 0.95 across all parameters. P seems to vary depending on the group skewness combination, with a 

lower P obtained when the vaccine group is highly skewed. Similar trends can be observed for the RE, 

MTE, ESD, ASE, and CP as the group sample sizes increase. The ESD and the ASE show decreasing 

trends with increasing group sample sizes. P also increases substantially towards 1, while maintaining 

the same trend in differences between group skewness. The simulation results under a large treatment 

effect for this setting can be found in Appendix C for comparison with the results under corresponding 

sample sizes in Tables 7, 8, and 9.


	 Increasing the ULQ to be beyond that of the highest possible generated titer corrects the CP 

back to the expected probability of 0.95. There seems to be no observable or significant benefit to using 

smaller SDFs not only in this simulation setting but also in previous simulations that utilized them 

beyond a heavily improved CP; the MTE bias from the simulated TTP in the model using observed 

titers and that of the model with latent titers show barely any meaningful change as the SDF decreases, 

and the ESD and ASE parameters remained almost constant between titer types and across all 

combinations of group skewness. Without a loss of generality, it would be safe to assume that the same 

trends would be present if the simulation is conducted under both no and moderate treatment effects.


3.1.4	 Extended SDF Impact on Regression Statistics


	 Though there is no discernible advantage in improving MTE, ESD or ASE estimates when 

applying SDFs smaller than 2 to a linear regression analysis of an HAI, there is still the possibility that 

higher SDFs can meaningfully impact the regression results and statistics. As stated in Section 1.3, 

SDFs higher than 2 have been used in previous research, and it cannot be ascertained that this 

uncommon practice would yield results with similar trends and estimated values as described in all the 

linear regression simulations.


	 The following figures in this section display the summarized simple linear regression results 

over 500 repeated trials for each simulation, of the four key statistics outlined in Sections 2.2.1 and 

2.2.2 in evaluating the overall impact of a larger range of SDFs on these statistics of interest, stratified 

by both  and  that is defined under simple linear regression in Table 2.
λ β1
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i)	 Mean log-transformed treatment estimate – MTE, 


	 Figure 8 highlights an interesting relationship between the SDF and the MTE, , when the 

range of the SDF is extended beyond 2. When  = 0, there is little to no deviation of  from the true 

effect of 0 regardless of the SDF utilized in the simulation. However, increasing  in the Weibull 

distribution for the data generating mechanism seems to reduce the already small estimate biases closer 

to 0, thereby increasing the consistency and accuracy of the simulation. When  > 0, the distribution of 

 can be more clearly observed; there is an amplifying periodic relationship between  and the SDF, 

the periodicity being only noticeable within a particular range of SDFs depending on both  and .


	 When comparing simulations with the same  for  > 0, increasing  increases the periodic 

amplitude and decreases the periodic length. In addition, the minimum SDF in which the periodicity 

can begin to be observed decreases with the increase in . This results in an overall increased rate of the 
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Figure 8: Scatter plots of MTEs from simple linear regression to SDFs under different  and λ β1



bias of  as the SDF increases. By comparing simulations with the same  for  > 0, it can be 

observed that increasing  increases the precision of the periodic relationship; this can be observed as 

a gradual smoothing of the points in the periodic pattern as  increases. In addition, the periodic length 

increases slightly, resulting in an increase to the minimum SDF in which the periodic pattern can begin 

to be observed. The bias in  would thus not be as readily apparent in the statistical analysis within a 

greater range of lower SDFs. However, there are a few cases in which the bias of  is either close to or 

exactly 0 for much higher SDFs due to this periodic nature; it would be difficult to identify these 

particular SDFs in practice without a prior simulation to test them. The increasing bias in MTE with 

larger SDFs are prominent through this simulation.


ii)	 Geometric mean titer ratio of treatment estimate – GMTR, 
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Figure 9: Scatter plots of GMTRs from simple linear regression to SDFs under different  and λ β1



	 The shapes and trajectories of the GMTR plots as shown in Figure 9 are exactly the same as that 

of the MTE as the GMTR is the exponentiation of , a monotonic function. However, due to the 

exponentiation factor, a small change in the MTE would result in a much larger change in the GMTR 

as indicated by the scale of the y-axes of the plots.


iii)	 Estimated standard deviation of the log-transformed treatment estimate – ESD, 


	 Depending on  and , Figure 10 shows varying relationship types between the ESD, , 

and the SDF.  displays a general increasing trend as the SDF increases, though the relationships 

are not as smooth as that of . In comparing simulations with the same , increasing  decreases 
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Figure 10: Scatter plots of ESDs from simple linear regression to SDFs under different  and λ β1



 across all SDFs, but the periodicity becomes more pronounced towards greater SDFs. In 

addition, the minimum SDF in which the periodicity becomes observable also decreases.


	 When comparing simulations with the same , increasing  decreases the periodicity towards 

linearity at smaller . At higher , the periodicity does not change in uniform fashion; the amplitude 

and periodic length in particular vary at different values of the SDF. However, under all combinations 

of  and , the apparent linear relationship between  and the SDF for all values up to 2.5 

ensures that  is neither over- or underestimated in a simple linear regression utilizing this range.


iv)	 Average standard errors of the log-transformed treatment estimate – ASE, 
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Figure 11: Scatter plots of ASEs from simple linear regression to SDFs under different  and λ β1



	 As with , it can be observed from Figure 11 that the ASE, , follows the exact 

same trend with a smoother curve,  being almost exactly equal to  for all settings.


3.2	 Proportional Odds Regression


	 Each of the following tables displays the summarized results of the 1000 repeated trials for each 

proportional odds regression simulation. An unrestricted ULQ is applied to this simulation to prevent 

biases to the treatment parameter. Only the default SDF is used as smaller SDFs would result in too 

many titer categories to be analyzed, with the potential for some categories to have zero frequency.


3.2.1	 Unrestricted ULQ, Default SDF and No Treatment Effect
6

σe ( ̂β1) σ ( ̂β1)
σ ( ̂β1) σe ( ̂β1)

CS TS SS LCO COR ESD ASE P

Low Low 50 -0.001 0.999 0.368 0.368 0.049

Low Low 250 -0.002 0.998 0.168 0.163 0.049

Low Low 500 0.002 1.002 0.119 0.115 0.057

Low High 50 -0.184 0.832 0.386 0.359 0.087

Low High 250 -0.165 0.848 0.171 0.159 0.182

Low High 500 -0.171 0.843 0.118 0.113 0.337

High Low 50 0.175 1.191 0.389 0.359 0.086

High Low 250 0.172 1.188 0.170 0.159 0.200

High Low 500 0.167 1.182 0.124 0.113 0.335

High High 50 -0.001 0.999 0.348 0.354 0.043

High High 250 -0.004 0.996 0.162 0.157 0.061

High High 500 0.003 1.003 0.111 0.111 0.052

Table 10: Simulation results under no treatment effect

 The full term for each statistical abbreviation in the headings of Table 10 are as follows:
6

  CS – Control group skewness

  TS – Treatment group skewness

  SS – Sample size per treatment group

  LCO – Log-cumulative odds of treatment parameter

  COR – Cumulative odds ratio of treatment parameter

  ESD – Empirical standard deviation of treatment estimate

  ASE – Average standard error of treatment estimate

  P – Power of simulation study
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	 In the case of no treatment effect, when both treatment groups have the same level of skewness, 

the LCO is close to 0, leading to a COR that is close to 1. However, if any treatment group has a high 

skewness in their distribution, this induces a non-negligible bias to the LCO. The power of the 

simulation also increases well beyond , growing in severity with increasing sample sizes. Similar to 

the results from Table 7, both the ESD and ASE are almost equivalent to each other in all settings, and 

decrease with increasing sample sizes.


3.2.2	 Unrestricted ULQ, Default SDF and Trivial Treatment Effect
7

	 Under a trivial treatment effect, the LCO is less than 0, resulting in CORs that are less than 1. P 

increases with increasing sample sizes; however, it can also be observed that P becomes smaller 

α

CS TS SS LCO COR ESD ASE P

Low Low 50 -0.942 0.390 0.376 0.378 0.714

Low Low 250 -0.951 0.386 0.166 0.168 1.000

Low Low 500 -0.949 0.387 0.119 0.119 1.000

Low High 50 -0.680 0.507 0.391 0.366 0.462

Low High 250 -0.661 0.516 0.169 0.163 0.978

Low High 500 -0.660 0.517 0.115 0.115 1.000

High Low 50 -0.487 0.614 0.387 0.362 0.280

High Low 250 -0.485 0.615 0.169 0.161 0.833

High Low 500 -0.484 0.616 0.121 0.113 0.986

High High 50 -0.344 0.709 0.365 0.356 0.160

High High 250 -0.345 0.709 0.153 0.158 0.576

High High 500 -0.338 0.713 0.112 0.112 0.863

Table 11: Simulation results under no treatment effect

 The full term for each statistical abbreviation in the headings of Table 11 are as follows:
7

  CS – Control group skewness

  TS – Treatment group skewness

  SS – Sample size per treatment group

  LCO – Log-cumulative odds of treatment parameter

  COR – Cumulative odds ratio of treatment parameter

  ESD – Empirical standard deviation of treatment estimate

  ASE – Average standard error of treatment estimate

  P – Power of simulation study
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depending on the group skewness combination. The proportional odds regression results show greatly 

different trends for the treatment parameter than that of simple linear regression, with the treatment 

parameter and P showing the largest changes. Determining the effect of larger SDFs on proportional 

odds regression results would likewise yield different relationships between the SDF and key statistics.


3.2.3	 Extended SDF Impact on Regression Statistics


	 The following figures in this section displays the summarized proportional odds regression 

results of the four key statistics outlined in Sections 2.2.1 and 2.2.2, over 500 repeated trials for each 

simulation to evaluate the overall impact of a larger range of SDFs on these statistics of interest, 

stratified by both  and  that is defined under proportional odds regression in Table 2.


i)	 Log-cumulative odds of the treatment parameter – LCO, 


λ β1
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Figure 12: Scatter plots of LCOs from proportional odds regression to SDFs under different  and λ β1



	 In Figure 12, for  = 0, there are negligible deviations of  from 0 regardless of the SDF. 

However, increasing  seems to increase the spread of the LCO estimates. For simulations with the 

same  for  > 0, increasing  increases the amplitude of the solitary periodic peak at SDFs < 2.5 

which translates to a higher maximum LCO; for SDFs > 2.5, it increases the periodicity, reflecting an 

irregular periodic relationship with increasing negative amplitude until plateauing or becoming 

somewhat linear towards SDFs > 8. For simulations with the same  for  > 0, increasing  increases 

the precision of the periodicity; this can be observed as a gradual smoothing of the points in the pattern 

as  increases. For  < 2, the periodicity exhibited at SDFs > 2.5 seems to gradually plateau whereas 

for  ≥ 2, the negative amplitude of the periodic pattern increases as evidenced by larger y-axis scales.


ii)	 Cumulative odds ratio of the treatment parameter – COR, 
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Figure 13: Scatter plots of CORs from proportional odds regression to SDFs under different  and λ β1



	 Like that of the relationship between the MTE and GMTR for simple linear regression, the 

shape and trajectory of the COR plots as shown in Figure 13 are exactly the same as that of the LCO as 

the COR is the exponentiation of , but only up to a certain value of . At higher SDFs, increasing  

further would tend  towards 0 as the range of CORs less than 1 is limited to (0, 1). This translates to 

a decreasing probability of having an observed titer that is lower than any fixed observed titer level 

when comparing patients in the vaccine group to the control group.


	 The shapes and trajectories of the ESD and ASE plots for proportional odds regression mirror 

exactly to those of the ESD and ASE plots for simple linear regression in Figures 10 and 11 

respectively. The ESD and ASE plots for proportional odds regression can be found in Appendix C for 

comparison with the ESD and ASE plots for simple linear regression in Figures 10 and 11.


3.3	 HAI Modeling Application to Pediatric Solid Organ Transplant Data


	 HAI analyses are not limited to clinical trials where patients are randomized to receive either a 

vaccine or a placebo; they can be applied to trials that seek to evaluate immunogenicity between 

different vaccines for a disease, or between different dosages of a vaccine. A randomized, double-

blinded Phase I clinical trial was conducted in 2014 on a group of 38 pediatric solid organ transplant 

(SOT) recipients between 3 and 17 years who have undergone transplant at least six months prior to 

their participation [1]. This study was conducted to compare, among other aims, the immunogenicity of 

a high-dose (HD) trivalent inactivated influenza vaccine (TIV) to that of an approved standard-dose 

(SD) administered to these patients. Previous research identified that SOT patients are at a higher risk 

of developing influenza due to medically-induced immunosuppression following SOT surgery; they 

also show poor immunogenic responses to the SD vaccine when compared to healthy controls [1].


	 An earlier Phase III study was conducted to compare the immunogenic effectiveness between 

recipients of the HD TIV and the SD among patients who are at least 65 years, as this age group also 

showed poor responses to the SD [1]. It was discovered that the HD recipients show a statistically 

significant higher antibody response to Influenza A antigens and increased protection against 

laboratory-confirmed influenza compared to those who received the SD [1]. Though the HD was 

subsequently licensed for use for patients in this age range, its efficacy had not been tested among 

pediatric SOT patients and limited data regarding influenza infections and vaccinations are in 

circulation for this population [1].
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3.3.1	 Summary of Clinical Trial Methods and Results


	 Patients in the SOT trial were randomized to receive either an HD TIV or the SD targeting three 

specific influenza strains: Influenza A H1N1, Influenza A H3N2, and Influenza B [1]. An HAI analysis 

was performed according to standard preparations to determine pre-vaccination and post-vaccination 

titers for each patient. Observed titers were calculated using the standard SDF of 2 and with a starting 

titer of 10. Immunogenicity was assessed through the outcomes of GMTRs, seroconversion and 

seroprotection, with logistic regression models used to test the effect of the TIV on seroconversion and 

seroprotection for each strain [1]. The main predictor of interest is the vaccine dose, and adjusting 

covariates include serum quantitative immunoglobulin and CD19+ levels [1]. Data from 37 patients 

were included in the final analysis, with one patient excluded due to reception of the vaccine outside 

the study period [1]. No statistical baseline differences were observed for all patient demographics 

between the HD and SD groups [1]. From the logistic regression modeling, at  = 0.05, the statistical 

analysis showed no significant differences in both post-vaccination seroconversion and seroprotection 

between the HD and SD treatment groups for any of the three influenza strains [1].


3.3.2	 Linear and Proportional Odds Regression Modeling


	 It is of interest to fit the linear regression and proportional odds models to the SOT data set to 

determine if the HD TIV is more effective in increasing influenza antibody titers in paediatric SOT 

patients compared to the SD, and if similar results to that obtained from logistic regressions used for 

seroconversion and seroprotection could be concluded. As demonstrated through the simulation study 

that the default SDF of 2 does not heavily impact the treatment effect of the regression model nor the 

standard error of the predictor compared to smaller SDFs, both models can be utilized with this data set 

without sacrificing efficiency. As the TIV study was a Phase I clinical trial, the study would only have a 

small sample size of paediatric SOT patients. With data from 37 patients, it is imperative that variable 

selection should be done carefully so as to not overfit either regression model to the data. Harrell 

described a method of calculating the number of predictors to be included in a regression model using 

the concept of a “limiting sample size,” denoted as m [2]. To determine m, the frequency distribution of 

the outcome variable – the post-vaccination observed HAI titer in the case of the SOT data – must first 

be evaluated. Table 12 displays the frequencies of observed titer levels of all 37 patients in the data set 

stratified by influenza strain.


α
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	 Using the frequency distribution, m can then be calculated based on the data type of the 

outcome variable. Harrell summarized the criteria and calculation procedure for m in Table 13 below 

[2]. Following this, the number of predictors to be included in each regression model to be used can 

thus be specified; from previous regression modeling studies, Harrell proposed that fitted regression 

models are likely to be reliable when the total number of predictors is less than , otherwise known as 

the “15:1 rule of thumb.” [1] With these guidelines, m is obtained for the SOT data for each influenza 

strain using the formulas provided in Table 13 and the frequency distribution of the patient post-

vaccination observed HAI titer in Table 12. The total number of predictors to be included in the 

regression model is then calculated using the rule of thumb above.


	 For both the linear and proportional odds regression models that will be fitted to the data, a 

maximum of two predictors are to be used. In addition to the vaccine dose – the main predictor of 

interest – the additional adjusting covariate to be included in the regression models is the log-

transformed pre-vaccination observed HAI titer. This is because each child in the SOT data set starts 

Influenza 
strain

Observed serum HAI titers
Total

5 10 20 40 80 160 320 640 1280 2560 5120

A H1N1 1 0 2 1 1 0 8 8 7 4 5 37

A H3N2 0 1 6 3 7 6 4 7 3 0 0 37

B 1 10 5 10 4 3 1 3 0 0 0 37

Table 12: Frequency distribution of strain-specific post-vaccination observed titers of SOT data

m
15

Regression 
model

Outcome 
variable

Limiting sample 
size calculation Influenza strain Limiting sample 

size, m
Total 

predictors

Linear Continuous All 37 2

Proportional 
odds

Ordinal with K 
categories

A H1N1 35.9 2

A H3N2 36.1 2

B 35.4 2

Table 13: Limiting sample size calculations for regression modeling variable selection [2]

n

n −
1
n2

K

∑
i=1

n3
i
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with a different pre-vaccination titer, and not adjusting for this covariate would result in biased 

estimates and possibly spurious associations. While gender and race could also be adjusting covariates, 

models with the the pre-vaccination titer fit the data better compared to models with these variables. 

Hence, the models fitted to the data are:


Linear regression: 	 	 	 	    (11)


Proportional odds regression: 	    (12)


where in models (11) and (12) above:


- Y is the post-vaccination observed serum HAI titer


- P(Y ≤ y) is the probability that the post-vaccination titer is at most the observed titer level y


- X is the vaccine dose level


- Z is the pre-vaccination observed serum HAI titer


-  is the mean log-transformed post-vaccination titer for patients in the SD group with a pre-

vaccination titer of 1


-  is the difference in the mean log-transformed post-vaccination titer when comparing patients in 

the HD group to the SD group with the same pre-vaccination titer


-  log (1 + q) is the difference in the mean log-transformed post-vaccination titer when comparing 

patients in the the same treatment group that differ in their pre-vaccination titer by (100 × q)%


-  is the log-cumulative odds of being in a post-vaccination titer level of at most y for patients in the 

SD group with a pre-vaccination titer of 1


-  is the difference in the log-cumulative odds of being in a post-vaccination titer level of at most y 

when comparing patients in the HD group to the SD group with the same pre-vaccination titer


-  log (1 + q) is the difference in the log-cumulative odds of being in a post-vaccination titer level 

of at most y when comparing patients in the the same treatment group that differ in their pre-

vaccination titer by (100 × q)%


	 The tables in the following pages summarize the linear regression results for each influenza 

strain, with the GMT or GMTR included for each parameter alongside a corresponding 95% 

confidence interval (CI). The vaccine dose predictor is highlighted in yellow in each table.


E [log Y | X = x, Z = z] = β⋆
0 + β⋆

1 x + β⋆
2 log z

log [ P(Y ≤ y)
1 − P(Y ≤ y)

X = x, Z = z] = β*0 + β*1 x + β*2 log z

β⋆
0

β⋆
1

β⋆
2

β*0

β*1

β*2
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3.3.3	 Regression Modeling Results


i)	 Linear regression modeling
8

	 From the linear regression model fitted to the SOT data for each influenza strain, the GMTR in 

comparing patients in the HD group to those in the SD group – adjusted for the log-transformed pre-

vaccination observed titer – is higher than 1. This means that the GMT of patients in the HD group is 

higher than that of the SD group by the following:


Parameter (Influenza A H1N1) MTE (SE) GMT/GMTR [95% CI] p-value

Intercept 4.395 (0.657) 81.00 [21.32, 307.81] < 0.001

Dose = HD (Reference: SD) 0.989 (0.488) 2.688 [0.997, 7.244] 0.0506

Pre-vaccination log titer 0.335 (0.132) 1.398 [1.070, 1.826] 0.0156

Table 14: Linear regression results for testing TIV immunogenicity on Influenza A H1N1

Parameter (Influenza A H3N2) MTE (SE) GMT/GMTR [95% CI] p-value

Intercept 1.937 (0.673) 6.941 [1.767, 27.26] 0.00687

Dose = HD (Reference: SD) 0.643 (0.387) 1.901 [0.866, 4.173] 0.106

Pre-vaccination log titer 0.656 (0.138) 1.928 [1.458, 2.549] < 0.001

Table 15: Linear regression results for testing TIV immunogenicity on Influenza A H3N2

Parameter (Influenza B) MTE (SE) GMT/GMTR [95% CI] p-value

Intercept 0.593 (0.414) 1.810 [0.780, 4.200] 0.161

Dose = HD (Reference: SD) 0.109 (0.262) 1.115 [0.654, 1.900] 0.682

Pre-vaccination log titer 0.987 (0.123) 2.683 [2.091, 3.442] < 0.001

Table 16: Linear regression results for testing TIV immunogenicity on Influenza B

 The full term for each statistical abbreviation in the headings of Tables 14, 15, and 16 are as follows:
8

  MTE – Mean log-transformed treatment estimate

  SE – Standard error of MTE

  GMT – Geometric mean titer

  GMTR – Geometric mean titer ratio
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- 2.69 times higher for Influenza A H1N1


- 1.9 times higher for Influenza A H3N2


- 1.12 times higher for Influenza B


The p-value of the vaccine dose parameter, however, is higher than 0.05 for each strain. Thus, there is 

insufficient evidence to suggest that the HD TIV is more effective in raising antibody titers in pediatric 

SOT patients than the SD for the three influenza strains. This conclusion can also be explained by the 

fact that the CI obtained for the treatment parameter in each regression model does not rule out a 

GMTR of 1.


	 The following tables summarize the proportional odds regression results for each influenza 

strain, with the cumulative odds (CO) or COR included for each parameter alongside a corresponding 

95% CI. The predictor of interest is highlighted in yellow in each table.


ii)	 Proportional odds regression modeling
9

Parameter (Influenza A H1N1) LCO (SE) CO/COR [95% CI] p-value

Intercept: Post-titer ≤ 5 -2.816 (1.069) 0.0599 [0.00737, 0.486] NA

Intercept: Post-titer ≤ 20 -1.592 (0.684) 0.204 [0.0533, 0.778] 0.0199

Intercept: Post-titer ≤ 40 -1.248 (0.624) 0.287 [0.0844, 0.976] 0.0457

Intercept: Post-titer ≤ 80 -0.982 (0.590) 0.375 [0.118, 1.191] 0.0962

Intercept: Post-titer ≤ 320 0.352 (0.536) 1.422 [0.497, 4.071] 0.511

Intercept: Post-titer ≤ 640 1.336 (0.576) 3.804 [1.229, 11.77] 0.0205

Intercept: Post-titer ≤ 1280 2.300 (0.652) 9.975 [2.781, 35.78] < 0.001

Intercept: Post-titer ≤ 2560 3.055 (0.739) 21.21 [4.984, 90.28] < 0.001

Dose = HD (Reference: SD) -1.142 (0.618) 0.319 [0.0951, 1.071] 0.0646

Pre-vaccination log titer -0.00134 (0.00109) 0.999 [0.997, 1.001] 0.218

Table 17: Proportional odds regression results for testing TIV immunogenicity on Influenza A H1N1

 The full term for each statistical abbreviation in the headings of Tables 17, 18, and 19 are as follows:
9

  LCO – Log-cumulative odds of treatment parameter

  SE – Standard error of LCO

  CO – Cumulative odds of treatment parameter

  COR – Cumulative odds ratio of treatment parameter
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	 From the proportional odds regression model fitted to the SOT data for each influenza strain, 

the COR of having an observed post-vaccination titer that is lower than any fixed observed titer level 

when comparing patients in the HD group to those in the SD group – adjusted for the log-transformed 

pre-vaccination observed titer – is lower than 1. This means that the CO of having an observed post-

Parameter (Influenza A H3N2) LCO (SE) CO/COR [95% CI] p-value

Intercept: Post-titer ≤ 10 -2.490 (1.136) 0.0829 [0.00895, 0.768] NA

Intercept: Post-titer ≤ 20 -0.183 (0.629) 0.833 [0.243, 2.856] 0.771

Intercept: Post-titer ≤ 40 0.387 (0.614) 1.473 [0.442, 4.911] 0.528

Intercept: Post-titer ≤ 80 1.400 (0.643) 4.056 [1.151, 14.30] 0.0294

Intercept: Post-titer ≤ 160 2.272 (0.701) 9.697 [2.454, 38.32] 0.00119

Intercept: Post-titer ≤ 320 2.987 (0.771) 19.83 [4.374, 89.93] < 0.001

Intercept: Post-titer ≤ 640 4.920 (1.111) 137.02 [15.53, 1209.03] < 0.001

Dose = HD (Reference: SD) -1.123 (0.649) 0.325 [0.0912, 1.160] 0.0834

Pre-vaccination log titer -0.00811 (0.00243) 0.992 [0.987, 0.997] < 0.001

Table 18: Proportional odds regression results for testing TIV immunogenicity on Influenza A H3N2

Parameter (Influenza B) LCO (SE) CO/COR [95% CI] p-value

Intercept: Post-titer ≤ 5 -2.217 (1.083) 0.109 [0.0130, 0.910] 0.0407

Intercept: Post-titer ≤ 10 0.780 (0.597) 2.182 [0.677, 7.036] 0.191

Intercept: Post-titer ≤ 20 1.566 (0.625) 4.789 [1.407, 16.30] 0.0122

Intercept: Post-titer ≤ 40 3.280 (0.803) 26.57 [5.509, 128.11] < 0.001

Intercept: Post-titer ≤ 80 4.296 (0.984) 73.37 [10.66, 504.83] < 0.001

Intercept: Post-titer ≤ 160 5.779 (1.352) 323.38 [22.86, 4573.65] < 0.001

Intercept: Post-titer ≤ 320 6.837 (1.607) 931.46 [39.92, 21734] < 0.001

Dose = HD (Reference: SD) -0.433 (0.678) 0.649 [0.172, 2.450] 0.523

Pre-vaccination log titer -0.0692 (0.0202) 0.933 [0.897, 0.971] < 0.001

Table 19: Proportional odds regression results for testing TIV immunogenicity on Influenza B
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vaccination titer that is lower than any fixed observed titer level for patients in the HD group is lower 

than that of the SD group by the following:


- 68.9% lower for Influenza A H1N1


- 67.5% lower for Influenza A H3N2


- 35.1% lower for Influenza B


The p-value of the vaccine dose parameter, however, is higher than 5% for each strain. Thus, there is 

insufficient evidence to suggest that the HD TIV is more effective in raising antibody titers in pediatric 

SOT patients than the SD for the three influenza strains. This conclusion can also be explained by the 

fact that the CI obtained for the treatment parameter in each regression model does not rule out a COR 

of 1.


	 Comparing the conclusions from these regression models to those obtained from the logistic 

regression models for seroconversion and seroprotection, these results could be said to be consistent as 

a non-significant result for increased antibody titers for the HD TIV would highly correspond to non-

significant results for increased seroconversion and seroprotection with the same dose.
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CHAPTER 4


DISCUSSION


	 At first glance, it would seem counterintuitive that decreasing the SDF in order to obtain more 

granular observed titer levels does little to improve the already small bias in the MTE for linear 

regression when there is any level of treatment effect. The extended SDF impact simulation in Section 

3.1.4 helps to explain numerically this odd occurrence. As the SDF decreases from 10 up to 1.1, a 

damping effect is applied on the periodic relationship between the SDF and the MTE; towards SDFs 

below 2.5, the periodicity disappears almost to the point of constancy. This implies that much finer 

SDFs do not seem to significantly improve the MTE, which practically translates to an unnecessary 

increase in the amount of serum dilutions needed for each distinct observed titer level. However, this 

does not change the fact that higher SDFs can either drastically over- or underestimate the TTP 

depending on how large of an SDF is pre-selected compared to the default SDF of 2 that is commonly 

used in HAI analysis.


	 When a restricted MTD is imposed on the HAI procedure, the MTE bias does increase slightly 

at much smaller SDFs, but its impact on the reduction of CP is considerable. Using a low ULQ in an 

HAI analysis is ill-advised as it would severely reduce the ability to obtain MTEs that are close to the 

TTP using observed titers. It would seem that low ULQ has a much higher impact than smaller SDFs in 

inducing bias to the estimates of regression modeling.


	 Finer SDFs also do not significantly reduce the ESD or ASE compared to the default SDF. On 

the other hand, increasing group sample sizes does decrease both the ESD and ASE across all 

simulation settings for both regression types. This is in accord with the Law of Large Numbers which 

states that the estimated average of a statistic becomes closer to its expectation as the number of trials, 

or samples, increases. Increasing the treatment group sample sizes in a clinical trial is thus encouraged 

so as to achieve more consistent results to the underlying true parameters. However, when concerning a 

Phase I clinical trial, sample sizes are a massive limiting factor due to the nature and aim of this phase 

that is more concerned with patient safety, in addition to the per-patient resources and costs that must 

be expended. As with the case of the TIV study, only 38 patients in total were enrolled in the clinical 

trial; with such a small sample size, it would be difficult to truly gauge the true immunogenic effect 
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from HAI regression modeling. Despite this limitation, it is encouraging to note that the simulation 

results at the smallest per-treatment group sample size yield similar MTEs and CP when compared to 

larger sample sizes.


	 Concerning proportional odds regression, the results are heavily influenced by treatment group 

skewness compared to linear regression. This is largely based on the fact that proportional odds 

regression accounts for the ordinal nature of the data and not their actual values. In this study, based on 

the set parameters for skewness in the Weibull data generating mechanism, simulating data for any 

treatment group with high skewness would inevitably lead to more total data with lower titers 

compared to that with low skewness. Nevertheless, a proportional odds model is still highly viable in 

the HAI analysis as it answers different statistical questions to that of linear regression.


	 With many variations among laboratories and research centers in determining the initial HAI 

settings such as the starting dilution titer, SDF, and ULQ before the HAI is conducted, it is inevitable 

that complications would arise in verifying and reproducing the results between different entities. 

Zacour et al. reported that “poor reproducibility of HAI results from one laboratory to another is widely 

cited, limiting comparisons between candidate vaccines in different clinical trials and posing challenges 

for licensing authorities.” [15] It is imperative that HAI standardization efforts be streamlined in order 

to improve inter-laboratory reproducibility and communication, especially in the event of a pandemic 

that would demand timely and accurate research to better facilitate testing and approval of medical 

interventions [15]. Good standardizations can serve to greatly improve future immunogenicity analyses 

that can lead to better informed decision-making with regard to vaccine licensure.
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CHAPTER 5


CONCLUSION


	 Regression modeling is a viable alternative to hypothesis testing in evaluating vaccine 

immunogenicity using an HAI analysis. In linear regression modeling, both the bias and the standard 

error of the treatment effect – the main predictor of interest in HAI analysis – have a periodic 

relationship to the SDF used in discretizing serum titers. This periodic relationship, however, is not 

prominent for SDFs up to 2.5, leading to negligible changes to the bias and standard error of the 

treatment effect. On the other hand, for proportional odds regression modeling, the periodic 

relationship is more extreme at small SDFs, though the relationships of both the standard deviation and 

standard error of main predictor estimates to the SDF are exactly the same with that of linear 

regression. With current HAI analytical practice that typically uses an SDF of 2 in preparing blood 

serum samples, there is almost no risk of loss of information when using observed titer values as 

compared to using more granulated titer categories with smaller SDFs. However, standardizing the 

SDF selection before the HAI analysis is conducted, especially in influenza serology, and allowing for 

an unrestricted ULQ would lead to greater reproducibility in results, reduction in unnecessary 

information loss, and better collaborative efforts in licensing novel or improved vaccines.
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APPENDICES


Appendix A: Simple Linear Regression with Restricted ULQ and Default SDF


No treatment effect
10

	 Under no treatment effect, the regression models utilizing both latent and observed titers 

perform almost equally to each other, with barely noticeable differences across all statistical 

measurements and under different group skewness combinations. The MTE across all trials is also 

CS TS SS TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 50 0.001 0.001 0.147 0.144 0.947 0.053 0.001 0.153 0.150 0.946 0.053 0.927

Low Low 250 -0.000 0.001 0.067 0.065 0.943 0.057 0.001 0.069 0.068 0.946 0.055 0.938

Low Low 500 -0.001 -0.001 0.047 0.046 0.946 0.054 -0.001 0.048 0.048 0.947 0.054 0.935

Low High 50 -0.009 -0.006 0.211 0.210 0.947 0.054 0.005 0.212 0.210 0.944 0.055 0.994

Low High 250 -0.006 -0.008 0.096 0.095 0.947 0.054 0.003 0.096 0.095 0.942 0.055 1.007

Low High 500 -0.005 -0.005 0.066 0.067 0.951 0.050 0.007 0.066 0.067 0.947 0.050 1.002

High Low 50 0.004 0.010 0.217 0.210 0.939 0.060 -0.001 0.217 0.209 0.936 0.065 1.004

High Low 250 0.008 0.006 0.096 0.095 0.947 0.053 -0.005 0.095 0.095 0.944 0.052 1.013

High Low 500 0.007 0.006 0.067 0.067 0.947 0.050 -0.005 0.067 0.067 0.948 0.050 1.015

High High 50 0.001 -0.002 0.264 0.260 0.945 0.055 -0.003 0.260 0.256 0.944 0.056 1.034

High High 250 0.000 -0.001 0.120 0.118 0.949 0.051 -0.001 0.118 0.116 0.950 0.050 1.035

High High 500 0.001 0.001 0.084 0.083 0.947 0.054 0.000 0.083 0.082 0.946 0.054 1.032

Table 20: Simulation results under no treatment effect

 The full term for each statistical abbreviation in the headings of Table 20 are as follows:
10

   CS – Control group skewness

   TS – Treatment group skewness

   SS – Sample size per treatment group

   TTP – True treatment parameter

   MTE – Mean log-transformed treatment estimate

   ESD – Empirical standard deviation of treatment estimate

   ASE – Average standard error of treatment estimate

   CP – Coverage probability of treatment estimate

   P – Power of simulation study

   RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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fairly close to the TTP of 0, corresponding to GMTRs that are very close to 1. The regression model 

with latent titers also seems to be more efficient when both treatment groups have low skewness, 

whereas the RE shifts slightly in favor of the regression model with observed titers when either group 

has a highly skewed distribution. The ESD and ASE are almost equal to each other, and both decrease 

when the group sample sizes increase across all group skewness combinations. At  = 0.05, the CP and 

P are fairly close to the expected proportions of 0.95 and 0.05 respectively.


Moderate treatment effect
11

α

CS TS SS TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 50 1.351 1.352 0.146 0.146 0.945 1.000 1.350 0.150 0.151 0.949 1.000 0.951

Low Low 250 1.351 1.351 0.066 0.066 0.952 1.000 1.349 0.069 0.068 0.949 1.000 0.941

Low Low 500 1.352 1.350 0.047 0.047 0.948 1.000 1.348 0.049 0.048 0.945 1.000 0.923

Low High 50 1.094 1.093 0.192 0.189 0.946 0.999 1.071 0.192 0.188 0.945 0.999 0.995

Low High 250 1.097 1.095 0.086 0.085 0.950 1.000 1.073 0.086 0.085 0.940 1.000 1.013

Low High 500 1.094 1.094 0.061 0.060 0.949 1.000 1.073 0.061 0.060 0.936 1.000 1.005

High Low 50 1.357 1.359 0.214 0.211 0.943 1.000 1.345 0.213 0.211 0.941 1.000 1.006

High Low 250 1.357 1.357 0.095 0.096 0.952 1.000 1.343 0.095 0.095 0.951 1.000 1.009

High Low 500 1.358 1.358 0.067 0.068 0.951 1.000 1.344 0.067 0.067 0.946 1.000 1.000

High High 50 1.103 1.101 0.250 0.243 0.941 0.993 1.068 0.245 0.239 0.941 0.991 1.041

High High 250 1.103 1.103 0.109 0.110 0.955 1.000 1.069 0.108 0.108 0.943 1.000 1.032

High High 500 1.101 1.102 0.078 0.078 0.951 1.000 1.069 0.077 0.076 0.931 1.000 1.036

Table 21: Simulation results under a moderate treatment effect

 The full term for each statistical abbreviation in the headings of Table 21 are as follows:
11

   CS – Control group skewness

   TS – Treatment group skewness

   SS – Sample size per treatment group

   TTP – True treatment parameter

   MTE – Mean log-transformed treatment estimate

   ESD – Empirical standard deviation of treatment estimate

   ASE – Average standard error of treatment estimate

   CP – Coverage probability of treatment estimate

   P – Power of simulation study

   RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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	 Under a moderate treatment effect, as is the case with no treatment effect, the regression models 

utilizing both latent and observed titers also perform almost equally to each other, though the 

magnitude of the bias in MTE for the model with observed titers compared to that with latent values is 

slightly greater when either or both treatment groups have a higher skewness. Similar to the case of no 

treatment effect, the regression model with latent titers seems to be more efficient when both treatment 

groups have low skewness, whereas the RE shifts only slightly in favor of the regression model with 

observed titers when either group has a highly skewed distribution. Both the ESD and ASE are almost 

equal to each other for both latent and observed titers as well as across titer types. Both also become 

smaller when the group sample sizes increase. In most trials, though the CP remains fairly close to 

0.95, P jumps significantly towards 1; this may be due to the simulated MTEs with corresponding 

estimated GMTRs between  and  from the results.
e1.094 ≈ 3 e1.358 ≈ 3.9
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Appendix B: Simple Linear Regression with Restricted ULQ, Large Treatment Effect, and 

Decreasing SDF


Small sample sizes (50 subjects per treatment group)
12

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 1.718 1.715 0.147 0.146 0.947 1.000 1.685 0.149 0.148 0.939 1.000 0.979

Low Low 1.8 1.717 1.721 0.149 0.146 0.945 1.000 1.715 0.151 0.149 0.945 1.000 0.965

Low Low 1.6 1.716 1.715 0.146 0.146 0.948 1.000 1.676 0.144 0.144 0.936 1.000 1.033

Low Low 1.4 1.719 1.718 0.147 0.146 0.947 1.000 1.679 0.143 0.143 0.940 1.000 1.056

Low Low 1.2 1.719 1.715 0.148 0.146 0.949 1.000 1.642 0.141 0.139 0.914 1.000 1.102

Low High 2.0 1.579 1.582 0.175 0.170 0.941 1.000 1.525 0.171 0.166 0.937 1.000 1.046

Low High 1.8 1.579 1.582 0.173 0.170 0.945 1.000 1.561 0.173 0.170 0.944 1.000 1.001

Low High 1.6 1.580 1.575 0.170 0.170 0.950 1.000 1.510 0.163 0.163 0.937 1.000 1.088

Low High 1.4 1.580 1.587 0.174 0.170 0.946 1.000 1.521 0.166 0.163 0.934 1.000 1.091

Low High 1.2 1.580 1.578 0.175 0.170 0.938 1.000 1.478 0.163 0.159 0.901 1.000 1.147

High Low 2.0 1.721 1.724 0.214 0.212 0.945 1.000 1.683 0.211 0.208 0.940 1.000 1.031

High Low 1.8 1.724 1.726 0.216 0.212 0.944 1.000 1.708 0.214 0.210 0.943 1.000 1.016

High Low 1.6 1.724 1.721 0.215 0.212 0.947 1.000 1.672 0.209 0.206 0.937 1.000 1.054

High Low 1.4 1.723 1.727 0.216 0.212 0.942 1.000 1.679 0.210 0.206 0.934 1.000 1.051

High Low 1.2 1.721 1.719 0.215 0.211 0.943 1.000 1.642 0.206 0.203 0.921 1.000 1.087

High High 2.0 1.588 1.587 0.231 0.229 0.945 1.000 1.517 0.223 0.222 0.928 1.000 1.065

High High 1.8 1.587 1.587 0.233 0.228 0.943 1.000 1.555 0.228 0.225 0.942 1.000 1.043

High High 1.6 1.588 1.587 0.235 0.229 0.944 1.000 1.512 0.227 0.221 0.925 1.000 1.077

High High 1.4 1.589 1.583 0.228 0.229 0.954 1.000 1.511 0.219 0.220 0.931 1.000 1.081

High High 1.2 1.585 1.591 0.228 0.229 0.949 1.000 1.486 0.216 0.217 0.917 1.000 1.115

Table 22: Simulation results under small sample sizes

 The full term for each statistical abbreviation in the headings of Table 22 are as follows:
12

   CS – Control group skewness

   TS – Treatment group skewness

   SDF – Serial dilution factor

   TTP – True treatment parameter

   MTE – Mean log-transformed treatment estimate

   ESD – Empirical standard deviation of treatment estimate

   ASE – Average standard error of treatment estimate

   CP – Coverage probability of treatment estimate

   P – Power of simulation study

   RE – Relative efficiency of treatment estimate comparing latent titers to observed titers

54



Medium sample sizes (250 subjects per treatment group)
13

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 1.719 1.719 0.065 0.066 0.955 1.000 1.689 0.065 0.067 0.933 1.000 0.988

Low Low 1.8 1.717 1.718 0.066 0.066 0.949 1.000 1.712 0.067 0.067 0.948 1.000 0.970

Low Low 1.6 1.720 1.716 0.067 0.066 0.945 1.000 1.677 0.066 0.065 0.901 1.000 1.041

Low Low 1.4 1.717 1.720 0.067 0.066 0.946 1.000 1.680 0.065 0.065 0.912 1.000 1.047

Low Low 1.2 1.717 1.717 0.067 0.066 0.946 1.000 1.645 0.064 0.063 0.785 1.000 1.107

Low High 2.0 1.581 1.581 0.078 0.077 0.942 1.000 1.524 0.076 0.075 0.887 1.000 1.063

Low High 1.8 1.581 1.580 0.077 0.077 0.950 1.000 1.559 0.077 0.077 0.941 1.000 1.005

Low High 1.6 1.581 1.582 0.078 0.077 0.943 1.000 1.517 0.075 0.074 0.868 1.000 1.080

Low High 1.4 1.580 1.578 0.077 0.077 0.951 1.000 1.514 0.074 0.073 0.856 1.000 1.090

Low High 1.2 1.580 1.580 0.077 0.077 0.951 1.000 1.481 0.071 0.072 0.730 1.000 1.163

High Low 2.0 1.721 1.723 0.097 0.096 0.946 1.000 1.680 0.096 0.094 0.925 1.000 1.038

High Low 1.8 1.722 1.724 0.097 0.096 0.947 1.000 1.707 0.096 0.095 0.940 1.000 1.023

High Low 1.6 1.723 1.726 0.097 0.096 0.949 1.000 1.678 0.094 0.093 0.917 1.000 1.049

High Low 1.4 1.727 1.721 0.096 0.096 0.950 1.000 1.674 0.093 0.093 0.904 1.000 1.059

High Low 1.2 1.723 1.724 0.096 0.096 0.950 1.000 1.647 0.092 0.092 0.863 1.000 1.080

High High 2.0 1.587 1.586 0.103 0.103 0.953 1.000 1.517 0.100 0.100 0.891 1.000 1.063

High High 1.8 1.586 1.587 0.104 0.103 0.949 1.000 1.555 0.101 0.102 0.939 1.000 1.041

High High 1.6 1.581 1.587 0.103 0.104 0.950 1.000 1.513 0.099 0.100 0.895 1.000 1.084

High High 1.4 1.585 1.588 0.103 0.103 0.950 1.000 1.515 0.099 0.099 0.892 1.000 1.077

High High 1.2 1.587 1.589 0.106 0.103 0.943 1.000 1.484 0.101 0.098 0.808 1.000 1.114

Table 23: Simulation results under medium sample sizes

 The full term for each statistical abbreviation in the headings of Table 23 are as follows:
13

   CS – Control group skewness

   TS – Treatment group skewness

   SDF – Serial dilution factor

   TTP – True treatment parameter

   MTE – Mean log-transformed treatment estimate

   ESD – Empirical standard deviation of treatment estimate

   ASE – Average standard error of treatment estimate

   CP – Coverage probability of treatment estimate

   P – Power of simulation study

   RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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	 In this simulation setting, from Table 22, there is a small but noticeable bias in MTE in all trials 

for the model with observed titers compared to latent titers; the level of bias depends on the group 

skewness combinations. The ESD and the ASE are still equivalent to each other, and also show 

increasing trends according to the order of group skewness combination shown above. The CP starts to 

slowly decrease from 0.95 at smaller SDFs. Conversely, towards smaller SDFs, the RE shows an 

inconsistent increasing trend in favor of the model with observed titers. 


	 Table 23 shows similar trends towards smaller SDFs for the RE and bias of the MTE. Both the 

ESD and ASE are still relatively equal to each other, but are much smaller at medium sample sizes. The 

CP shows an accelerated decreasing rate from the expected probability of 0.95 at much lower SDFs.
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Appendix C: Simple Linear Regression with Unrestricted ULQ and Decreasing SDF


Large treatment effect and small sample sizes (50 subjects per treatment group)
14

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 1.718 1.716 0.148 0.146 0.944 1.000 1.714 0.153 0.151 0.947 1.000 0.939

Low Low 1.8 1.717 1.717 0.149 0.146 0.942 1.000 1.716 0.153 0.150 0.944 1.000 0.946

Low Low 1.6 1.718 1.718 0.147 0.146 0.946 1.000 1.718 0.150 0.148 0.946 1.000 0.968

Low Low 1.4 1.718 1.717 0.148 0.146 0.943 1.000 1.716 0.149 0.147 0.943 1.000 0.982

Low Low 1.2 1.718 1.718 0.150 0.146 0.942 1.000 1.718 0.151 0.147 0.941 1.000 0.998

Low High 2.0 1.578 1.581 0.173 0.170 0.946 1.000 1.580 0.177 0.174 0.947 1.000 0.952

Low High 1.8 1.580 1.582 0.173 0.170 0.947 1.000 1.582 0.176 0.173 0.947 1.000 0.967

Low High 1.6 1.582 1.576 0.174 0.170 0.941 1.000 1.576 0.176 0.172 0.938 1.000 0.979

Low High 1.4 1.580 1.580 0.171 0.170 0.946 1.000 1.579 0.171 0.171 0.947 1.000 0.991

Low High 1.2 1.581 1.579 0.173 0.170 0.944 1.000 1.579 0.173 0.170 0.942 1.000 1.000

High Low 2.0 1.725 1.726 0.219 0.212 0.942 1.000 1.713 0.218 0.211 0.942 1.000 1.010

High Low 1.8 1.722 1.722 0.217 0.212 0.941 1.000 1.710 0.215 0.211 0.940 1.000 1.015

High Low 1.6 1.726 1.716 0.210 0.211 0.944 1.000 1.707 0.209 0.210 0.945 1.000 1.013

High Low 1.4 1.724 1.724 0.214 0.212 0.945 1.000 1.715 0.212 0.210 0.944 1.000 1.025

High Low 1.2 1.722 1.724 0.213 0.211 0.946 1.000 1.716 0.210 0.209 0.944 1.000 1.025

High High 2.0 1.586 1.588 0.231 0.229 0.949 1.000 1.575 0.229 0.228 0.949 1.000 1.015

High High 1.8 1.584 1.589 0.233 0.229 0.940 1.000 1.577 0.231 0.228 0.943 1.000 1.018

High High 1.6 1.587 1.586 0.230 0.229 0.948 1.000 1.575 0.228 0.227 0.947 1.000 1.017

High High 1.4 1.585 1.583 0.231 0.229 0.949 1.000 1.574 0.229 0.226 0.948 1.000 1.019

High High 1.2 1.589 1.585 0.231 0.229 0.947 1.000 1.577 0.228 0.226 0.944 1.000 1.025

Table 24: Simulation results under a large treatment effect and small sample sizes

 The full term for each statistical abbreviation in the headings of Table 22 are as follows:
14

   CS – Control group skewness

   TS – Treatment group skewness

   SDF – Serial dilution factor

   TTP – True treatment parameter

   MTE – Mean log-transformed treatment estimate

   ESD – Empirical standard deviation of treatment estimate

   ASE – Average standard error of treatment estimate

   CP – Coverage probability of treatment estimate

   P – Power of simulation study

   RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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Large treatment effect and medium sample sizes (250 subjects per treatment group)
15

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 1.719 1.719 0.066 0.066 0.949 1.000 1.717 0.069 0.068 0.950 1.000 0.919

Low Low 1.8 1.719 1.717 0.067 0.066 0.945 1.000 1.717 0.069 0.068 0.946 1.000 0.955

Low Low 1.6 1.719 1.717 0.066 0.066 0.950 1.000 1.717 0.067 0.067 0.951 1.000 0.974

Low Low 1.4 1.717 1.717 0.066 0.066 0.949 1.000 1.717 0.067 0.067 0.950 1.000 0.987

Low Low 1.2 1.717 1.716 0.066 0.066 0.950 1.000 1.716 0.066 0.066 0.950 1.000 0.996

Low High 2.0 1.580 1.580 0.077 0.077 0.949 1.000 1.580 0.079 0.079 0.950 1.000 0.959

Low High 1.8 1.580 1.577 0.077 0.077 0.950 1.000 1.577 0.079 0.078 0.947 1.000 0.963

Low High 1.6 1.580 1.581 0.076 0.077 0.949 1.000 1.581 0.077 0.078 0.950 1.000 0.982

Low High 1.4 1.581 1.581 0.077 0.077 0.955 1.000 1.581 0.077 0.077 0.952 1.000 0.987

Low High 1.2 1.581 1.581 0.077 0.077 0.947 1.000 1.580 0.077 0.077 0.947 1.000 0.999

High Low 2.0 1.723 1.724 0.096 0.096 0.951 1.000 1.712 0.096 0.095 0.947 1.000 1.001

High Low 1.8 1.727 1.724 0.095 0.096 0.952 1.000 1.712 0.095 0.095 0.950 1.000 1.007

High Low 1.6 1.725 1.722 0.096 0.096 0.946 1.000 1.712 0.096 0.095 0.945 1.000 1.016

High Low 1.4 1.722 1.723 0.096 0.096 0.950 1.000 1.714 0.095 0.095 0.947 1.000 1.019

High Low 1.2 1.723 1.726 0.097 0.096 0.949 1.000 1.718 0.096 0.095 0.947 1.000 1.027

High High 2.0 1.585 1.587 0.103 0.103 0.953 1.000 1.574 0.102 0.103 0.951 1.000 1.008

High High 1.8 1.586 1.584 0.103 0.103 0.948 1.000 1.573 0.103 0.103 0.947 1.000 1.012

High High 1.6 1.586 1.585 0.104 0.104 0.946 1.000 1.574 0.103 0.103 0.945 1.000 1.018

High High 1.4 1.586 1.586 0.104 0.103 0.946 1.000 1.577 0.103 0.102 0.946 1.000 1.024

High High 1.2 1.587 1.588 0.106 0.104 0.943 1.000 1.580 0.105 0.102 0.944 1.000 1.023

Table 25: Simulation results under a large treatment effect and medium sample sizes

 The full term for each statistical abbreviation in the headings of Table 22 are as follows:
15

   CS – Control group skewness

   TS – Treatment group skewness

   SDF – Serial dilution factor

   TTP – True treatment parameter

   MTE – Mean log-transformed treatment estimate

   ESD – Empirical standard deviation of treatment estimate

   ASE – Average standard error of treatment estimate

   CP – Coverage probability of treatment estimate

   P – Power of simulation study

   RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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Large treatment effect and large sample sizes (500 subjects per treatment group)
16

CS TS SDF TTP
Latent Observed

RE
MTE ESD ASE CP P MTE ESD ASE CP P

Low Low 2.0 1.718 1.717 0.046 0.047 0.958 1.000 1.716 0.047 0.048 0.957 1.000 0.930

Low Low 1.8 1.718 1.718 0.047 0.047 0.948 1.000 1.718 0.048 0.048 0.945 1.000 0.945

Low Low 1.6 1.715 1.717 0.047 0.047 0.945 1.000 1.717 0.048 0.048 0.950 1.000 0.970

Low Low 1.4 1.719 1.718 0.048 0.047 0.946 1.000 1.718 0.048 0.047 0.944 1.000 0.986

Low Low 1.2 1.717 1.718 0.047 0.047 0.950 1.000 1.718 0.047 0.047 0.951 1.000 1.000

Low High 2.0 1.580 1.580 0.054 0.054 0.945 1.000 1.580 0.056 0.056 0.947 1.000 0.955

Low High 1.8 1.581 1.581 0.055 0.054 0.948 1.000 1.581 0.056 0.055 0.949 1.000 0.969

Low High 1.6 1.579 1.580 0.055 0.054 0.946 1.000 1.580 0.055 0.055 0.948 1.000 0.977

Low High 1.4 1.582 1.578 0.055 0.054 0.947 1.000 1.578 0.055 0.055 0.948 1.000 0.986

Low High 1.2 1.577 1.579 0.054 0.054 0.951 1.000 1.579 0.054 0.055 0.952 1.000 1.000

High Low 2.0 1.725 1.723 0.068 0.068 0.949 1.000 1.710 0.068 0.068 0.943 1.000 1.004

High Low 1.8 1.722 1.723 0.068 0.068 0.946 1.000 1.712 0.068 0.067 0.944 1.000 1.009

High Low 1.6 1.722 1.723 0.068 0.068 0.951 1.000 1.712 0.067 0.067 0.949 1.000 1.016

High Low 1.4 1.726 1.723 0.068 0.068 0.954 1.000 1.713 0.067 0.067 0.946 1.000 1.018

High Low 1.2 1.722 1.724 0.069 0.068 0.947 1.000 1.716 0.068 0.067 0.946 1.000 1.023

High High 2.0 1.585 1.586 0.073 0.073 0.948 1.000 1.573 0.073 0.073 0.947 1.000 0.999

High High 1.8 1.587 1.587 0.074 0.073 0.949 1.000 1.575 0.073 0.073 0.947 1.000 1.018

High High 1.6 1.584 1.587 0.075 0.073 0.951 1.000 1.577 0.074 0.073 0.945 1.000 1.012

High High 1.4 1.585 1.585 0.073 0.073 0.951 1.000 1.575 0.072 0.073 0.947 1.000 1.021

High High 1.2 1.585 1.586 0.073 0.073 0.951 1.000 1.578 0.072 0.073 0.950 1.000 1.018

Table 26: Simulation results under a large treatment effect and large sample sizes

 The full term for each statistical abbreviation in the headings of Table 22 are as follows:
16

   CS – Control group skewness

   TS – Treatment group skewness

   SDF – Serial dilution factor

   TTP – True treatment parameter

   MTE – Mean log-transformed treatment estimate

   ESD – Empirical standard deviation of treatment estimate

   ASE – Average standard error of treatment estimate

   CP – Coverage probability of treatment estimate

   P – Power of simulation study

   RE – Relative efficiency of treatment estimate comparing latent titers to observed titers
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	 At small sample sizes, in comparing the impact of a large treatment effect to that of a trivial 

treatment effect (Table 24 to Table 7), with the exception of an increase to both the MTE and overall P, 

highly similar values and exact trends can be observed for the RE, MTE, ESD, ASE, and CP. In 

contrast to the setting with restricted ULQ, the RE increases at a much slower rate with smaller SDFs.


	 At medium sample sizes, in comparing the impact of a large treatment effect to that of a trivial 

treatment effect (Table 25 to Table 8), with the exception of an increase in both the MTE and overall P, 

the exact trends and highly similar values can be observed for the RE, MTE, ESD, ASE, and CP. The 

RE also shows a slower increasing trend as the SDF decreases. 


	 At large sample sizes, in comparing the impact of a large treatment effect to that of a trivial 

treatment effect (Table 26 to Table 9), with the exception of an increase in both the MTE, and in P 

when the treatment group is highly skewed, the exact trends and highly similar values can be observed 

for the RE, MTE, ESD, ASE, and CP.
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Appendix D: Extended SDF Impact on Proportional Odds Regression Statistics


Estimated standard deviation of the log-cumulative odds – ESD, 


	 The shapes and trajectories of the ESD plots for proportional odds regression as shown in 

Figure 14 mirror exactly to those of the ESD plots for simple linear regression in Figure 10.


σe ( ̂β1)
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Figure 14: Scatter plots of ESDs from proportional odds regression to SDFs under different  and λ β1



Average standard errors of the log-cumulative odds – ASE, 


	 The shapes and trajectories of the ASE plots for proportional odds regression as shown in 

Figure 15 mirror exactly to those of the ASE plots for simple linear regression in Figure 11.


σ ( ̂β1)
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Figure 15: Scatter plots of ASEs from proportional odds regression to SDFs under different  and λ β1



Appendix E: R Program Summary


	 This appendix shows a summary of the R program used to conduct all the simulations in this 

study, as well as the R packages utilized.


##	R	version	4.0.5	(2021-03-31) 
##	Platform:	x86_64-apple-darwin17.0	(64-bit) 
##	Running	under:	macOS	Big	Sur	10.16 
##	 
##	Matrix	products:	default 
##	BLAS:			/Library/Frameworks/R.framework/Versions/4.0/Resources/lib/
libRblas.dylib 
##	LAPACK:	/Library/Frameworks/R.framework/Versions/4.0/Resources/lib/
libRlapack.dylib 
##	 
##	locale: 
##	[1]	en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 
##	 
##	attached	base	packages: 
##	[1]	stats					graphics		grDevices	utils					datasets		methods			base					 
##	 
##	loaded	via	a	namespace	(and	not	attached): 
##		[1]	compiler_4.0.5				magrittr_2.0.1				tools_4.0.5							htmltools_0.5.1.1 
##		[5]	yaml_2.2.1								stringi_1.5.3					rmarkdown_2.7					knitr_1.33							 
##		[9]	stringr_1.4.0					xfun_0.22									digest_0.6.27					rlang_0.4.10					 
##	[13]	evaluate_0.14
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