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Chapter I


INTRODUCTION & BACKGROUND


Current Healthcare Prognostic Modeling Challenges and Hypothesis


Both providers and their patients show great enthusiasm for the potential of models that can 

forecast future events (prognosis) to improve the efficiency and efficacy of the healthcare system1,2. 

Such prognostic models may one day help providers minimize a patient’s exposure to risks for adverse 

events (e.g., post surgical infection), while optimizing the value (maximizing quality of care, while 

minimizing cost) delivered to the patient3. Prognostic models can improve efficiency by allaying the 

administrative burden of healthcare through applications such as data-driven staffing adjustments or 

anticipatory discharge/unit transfer protocols. However, there are many challenges to overcome before 

realizing this collaborative future between prognostic models and the human actors in healthcare4,5. 


These numerous challenges occur at all stages of the prognostic model lifecycle—in 

development, implementation, surveillance and maintenance, and at de-implementation. Figure 1 

visualizes the prognostic model lifecycle and provides some considerations at each stage6. This work 

will focus on challenges in the model development stage, however; model developers should design 

their prognostic models with the whole model lifecycle in mind6.


Some of the challenges of prognostic model development for the clinical setting have to do with 

the nature of the underlying data7. Much of the data used for prognostic model development is 

observational data (recorded during the course of care) from the clinical setting. Observational data is 

preferred to ease the burden of implementing prognostic models into the clinical setting. The underlying  

assumption is that data collection procedures, which can be costly to the patient and/or to the provider, 

would not require modification for the model to provide forecasts. 
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We define the clinical setting as the set of workflows/socio-technical processes relating to the 

delivery of healthcare by the employees/contractors of health systems, hospitals, and/or clinics to the 

patients that sought their care8. The processes at any given organization embody an evolving 

compromise between the goals and incentives of: patients, physicians, nurses, administrators, managers, 

support staff, insurers, and regulators9. Furthermore, the practice of medicine itself is an ever-changing 

mix of empirical evidence, biochemical theory, experience, tradition, and technology10-12. The 

compromise of conflicting incentives and the practice of medicine influence data collection during 

healthcare workflows9. This influence can be found in the different biases and artifacts found in 

routinely collected healthcare data13. This dissertation will only introduce the data biases and artifacts 

Figure 1: The Prognostic Model Life Cycle ( Adapted from [6] )
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directly relevant to this study—there are many more which will not be covered.


The collection of different clinical data elements is a non-random process, meaning that data 

collection usually has a cost to one if not several healthcare actors14. For example, for patients, data 

collection may result in physical suffering and/or financial costs; for providers, data collection may 

result in time, equipment utilization (capital depreciation), and financial costs; and for payors it 

generally involves financial costs9. Healthcare systems offer a wide variety (tens of thousands) of 

services in pursuit of diagnosing, treating, and managing a wide variety of conditions and diseases15. 

There are over 65,000 conditions in the International Classification of Disease version 10 (ICD-10)16. 

Given the large number of services and diseases, the data needed to contextualize and describe the 

process of healthcare delivery can involve hundreds of thousands of discrete data elements17. While 

there is this great range in the number and type of data elements, only a small fraction of data elements 

are frequently recorded18,19. The power-law-like distribution of data element usage reinforces the earlier 

claim that clinical data collection is a non-random process19. The reasons why some elements are 

observed more frequently than others vary. Some data elements, such as smoking status, are required to 

be collected due to regulatory incentives/penalties20. These data may suffer from biases of providers 

copying forward past responses or from patients fearful of the perceived stigma of their true status21-23. 

Some data are collected because they are bundled with a group of services (e.g., a laboratory panel such 

as basic metabolic panel) or administrative process (e.g., a standardized order set for chest pain 

admissions)24, 25. In this situation, the data element may or may not be of interest to clinicians, and its 

collection is more reflective of a policy or logistical decision rather than specific information seeking 

behavior from clinicians26. Data elements that are rarely collected can be viewed as information-seeking 

behavior on the first collection, but may be reflective of logistical considerations on subsequent 

collections (e.g., clinical orders that default to repeated collection for the whole clinical encounter)24. 
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Data with this type of mechanism can be biassed by financial considerations, and will typically be 

minimized in the inpatient (hospital) setting (due to a prospective payment scheme) and maximized in 

the outpatient (clinic) setting (due to a fee for service payment scheme)27, 28. 


The time dependence of many diseases and conditions means that many of these data elements 

are also dependent on time29. For example, broken bones (if properly treated) heal; the burden of 

diabetes can grow over time, as unregulated blood glucose levels damage the venous system. Time 

dependency is also reflected in the episodic nature of healthcare delivery30. What this means from a data 

perspective is that there will be times of dense data collection, but mostly data will be sparse if collected 

at all. Even within an inpatient admission, data collection is generally episodic following institutional 

norms such as rounding times, nursing documentation policies, and care setting (eg., intensive care 

versus medical ward)31. In the United States, patients that are or perceive themselves as sicker will 

generally have more interactions with the healthcare system than those that perceive themselves as 

healthy30. Furthermore, the process of healthcare itself changes over time with the creation of new 

diagnostics and therapies as well as the accumulation of new biological knowledge and best practices32. 

Laws and payment mechanisms also evolve over time and have their own effects on the healthcare 

process33. These generalities imply that the presence and timing of data is also non-random, which 

further indicates that the patterns in observational clinical data observed over time might be 

informative34. Prognostic model developers potentially forgo the benefits of these temporal patterns if 

they choose to ignore the temporal nature of healthcare data35. 


Incorporating time into a prognostic model built with observational clinical data is complicated 

by some of the data biases previously mentioned. Two grand challenges to the use of time in 

observational clinical data are how time should be represented (structured) as well as how to account for 

predictors that are rarely observed together in the same observation period36. These two challenges are 
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intimately related. Temporal representation defines the structure of the set of observations, thus affecting 

how often a predictor is not observed within that structure. This relationship may in turn influence which 

temporal representation model developers select in an attempt to optimize the number of observation 

periods with missing data. While temporal representation has a long and detailed literature36-43, the 

models that would attempt to harness these different temporal structures have grown more complex and 

flexible in their assumptions44,45. Model developers could use the methods of trial and error to 

empirically determine the temporal representation that optimizes performance for the developer’s 

application. However, trial and error is time consuming and given a large set of possible solutions, can 

be intractable. We therefore hypothesize that there are characteristics of clinical observational data 

which can cause one temporal representation to be advantageous for model performance. The remaining 

sections of this chapter will provide background on different temporal characteristics in observational 

data, how time can be represented in data, types of models that learn from temporal data, how those 

models are tuned and trained, how those models are compared and evaluated, and finally how all those 

topics inform the specific aims for this research.


Defining Longitudinal Data


We will define clinical data over time as observational longitudinal data. As discussed 

previously, this data is collected as part of routine clinical operations, and the patients were not subjected 

to any randomization process or random sampling from the general population. The lack of 

randomization is the key component to the observational definition. For the longitudinal portion of our 

definition, there are three other definitions that must first be introduced: the idea of a subject, that of a 

measurement occasion (observation episode), and that of a sampling period. A subject is the unit of 
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analysis into which observations can be clustered to. In many clinical cases this is a patient, but might 

also be a clinician or a clinic/unit. A measurement occasion is an interval of time where data is recorded 

that is specific to a subject. There is no limit on how this time interval is defined; what is encouraged is 

consistency in the definition between subjects. The measurement occasion symbolizes one complete 

observation for that subject. Subjects need not have the same number of measurement occasions nor 

have the timing of those measurements be relatively equal between subjects46. There are statistical 

advantages to engineering subjects to have an equal number of observations taken at relatively similar 

times, but it is extremely difficult to achieve that level of consistency in clinical research cohorts let 

alone in retrospective observational cohorts46. The last piece to define is the sampling period 

(observation window). We define the sampling period as the total length of time from the first 

observation episode to the last. If subjects have different numbers of measurement occasions occurring 

at different times, then it follows that the sampling period between subjects can also be unequal. Figure 

2 provides a visual representation of the subject, measurement occasion, and sampling period (using 

blood pressure (BP) and heart rate (HR) as the variables of interest). In Figure 2, each measurement 

occasion is defined as measurements within three days. The subjects have differing starting points that 

anchor the measurement occasions, but the three-day definition is constant across subjects. One can also 

see in the figure that Subject 1 not only has fewer measurement occasions, but a shorter sampling period 

compared to Subject 2. 
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This definition is a function of the number of subjects relative to the number of measurement 

occasions per subject. In many clinical settings, data is sparsely observed over time, yet the number of 

patients with at least one observation is large46. Time series data tends to have a large number of 

observation periods for a few subjects46. Figure 3 provides a visual example to help contrast differences 

between time series and longitudinal data.
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 Figure 3: Comparing Longitudinal and Time Series Data
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Characteristics of Longitudinal Data


	 If one is to look for how data characteristics might inform temporal representation, then it is 

important to specify and describe these characteristics. The characteristics defined here are not a 

comprehensive set. Again, we detail those most relevant to this study. As with other studies with 

intractable spaces to explore, we decided to prioritize the characteristics we thought most relevant based 

on our understanding of the literature46-52. Some of our data characteristics of interest are specific to the 

outcome (the variable one is attempting to predict), and others are specific to the predictors, also known 

as features, (the variables needed to make a forecast of the outcome)47. 


	 The first characteristic of interest is autocorrelation. Autocorrelation is a characteristic applicable 

to both the predictors and the outcome. As the name suggests, autocorrelation is the correlation of a 

variable with a time-delayed version of itself 53. The time-delay is not specifically defined, so the 

autocorrelation may vary depending on how large the delay is. For example, if X is a random variable 

with high autocorrelation, then the value of X at time t is going to be highly similar to the value of X at 

time t+1. Given another variable Z made of random draws from a single Gaussian distribution, the value 

of Z at time t has no influence on what Z is at t+1. Autocorrelation is best measured with observations 

that are equally spaced over time49. Figure 4 gives examples of high and low autocorrelation.
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5/1 5/2 5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12

Low	Autocorrelation	(0.02) High	Autocorrelation	(0.76)

Figure 4: Autocorrelated Data Example
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	 Collinearity is another characteristic of interest. While autocorrelation deals with the correlation 

of a variable with itself over time, collinearity describes how correlated a variable is with other 

variables. When building prognostic models, one would like the predictors to be well correlated with the 

outcome; however, model assumptions can be violated and performance can degrade if the predictors are 

also highly correlated with each other54. In the ideal case each feature included in a model contributes 

new information related to the outcome. If predictors are highly collinear, then there is likely a large 

overlap in the information content of the predictors as they relate to the outcome. Many biological 

variables, such as heart rate and blood pressure, are highly correlated with each other in healthy 

individuals. 


	 The next characteristic of interest is the distribution of measurement occasions. As previously 

mentioned, each subject can have a different number of observation episodes. A cohort of subjects will 

therefore have distribution of the number of observation episodes55. The shape of this distribution can 

have important implications. In healthcare it is common to see exponential or power-law like 

distributions19. These types of distributions imply that extreme outliers frequently occur. For example, in  

a cohort of patients that underwent coronary artery bypass graft surgery, there were a nontrivial number 

of patients (5%) with a postoperative length of stay more than 5 times the average56. This variability 

suggests that there are unmeasured external factors with a large effect on the length of stay. Within the 

healthcare records of this cohort, the patients with long lengths of stay will generally have more clinical 

measures performed than those with shorter lengths of stay. Thus, the distribution of measurements is 

informative not only of sampling period, but potentially also of the outcome. 


	 Variability in outcomes can come from two sources: inter-subject variability and intra-subject 

variability. These data characteristics both describe heterogeneity, but at different units of analysis. Inter-

subject variance describes how heterogenous the group of subjects is, while intra-subject variance 
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describes how variable the measurements are within the same subject. Researchers often perform 

statistical inference at the group level, but these inferences may not readily translate to individuals if 

intra-subject variance is significantly different from inter-subject variance57. These two different levels 

of variability can occur in both features and the outcome. Being able to accurately model both types of 

variability leads to statistical efficiency gains (achieving a set level of precision with less data) compared 

to modeling inter-subject variability alone46. Figure 5 provides a visual example of inter-subject and 

intra-subject variability. The left graph of Figure 5 shows a large variance in the values of the population 

over time. The right graph of Figure 5 shows the differences in variance each subject experienced over 

time. If the causes of variability in the outcome at either the inter or intra-subject level are unobserved, 

then the degree of that variability will set bounds on the reducibility of the model error. For example, 

increases in outcome measurement error will increase intra-subject variability, while increases in the 

effect size of unobserved genetic differences between subjects will increase inter-subject variability. 


	 The data type of the outcome is another important characteristic to consider even though it is not 

specific to longitudinal data. Some of the more common outcome data types are unbounded continuous 

real numbers, un-ordered categories, ordered categories, counts, and bounded continuous real numbers. 
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 Figure 5: Comparing Inter-Subject Variability and Intra-Subject Variability
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For parametric models, the outcome type dictates which known distributions are best suited to minimize 

the model error. Choosing between distributions is a balancing act between distributional assumptions 

and model complexity52. For non-parametric models, the outcome type can change the amount of data 

required for precise estimates of model parameters. Models on categorical outcomes (classification) tend 

to be more data hungry than models for outcomes that are continuous real numbers (regression)58. 


	 We define the sampling scheme as the mechanism that dictates when measurements are 

observed. There are often socio-technical processes/policies that dictate when data are observed59. In the 

inpatient healthcare setting, most diagnostic tests and imaging are generally concentrated within the first 

1-2 of days of the admission60. This research implies that measurement occasions may be more heavily 

concentrated in the early days of the admission compared to the later days. This type of skew or bias in 

the timing of observations may be informative to the model.  


	 The last characteristic of direct relevance to this work is synchronicity. We define a data set 

where all variables (features and outcome) are complete for all measurement occasions as synchronous. 

A data set where measurement occasions have missing values will be referred to as asynchronous. 

Observational clinical data is often asynchronous; however, this property is dependent on the temporal 

definition and representation of the measurement occasions61. In observational clinical data, the absence 

of values within a measurement occasion is generally informative and is usually related to the expected 

value of that variable by clinicians62. Variables with non-random missing values are difficult to address 

and can be a significant source of bias in prognostic model development depending on the extent to 

which values are missing62.


	 A characteristic that is important to longitudinal modeling, but is out of scope for this study is 

stationarity. A variable is considered stationary if its distribution (joint, marginal, and conditional) is 

invariant to time49. By the definition the central moments (mean, variance, skew, kurtosis, ect) of a 
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distribution (if they exist) should also be invariant to time. There are multiple types of stationarity. Wide 

sense stationarity (WSS) is more general. WSS does not impose conditions on the joint, marginal, and 

conditional distributions49. WSS only requires that the mean and the covariance of a random variable 

remain static over time49. Yet another form of stationarity is trend stationarity. A trend stationary process 

is defined as the composition of a function over time and a stationary stochastic process49. To be trend 

stationary, one should be able to regress out the trend, leaving a WSS or stationary stochastic process49. 

For example, many adult Americans could express their daily weight measurement as trend stationary: 

stochastic variability with a polynomial upward trend over time. Many variables and models in 

observational clinical data are non-stationary, because the practices, therapies, diagnostics, workflows, 

and regulations of healthcare are in constant flux36.  


Data Representation for Prognostic Modeling


Most predictive models require data to be formatted as a matrix format before they are able to 

train47. We will refer to this input matrix as the design matrix. The dimensionality of the design matrix 

can vary depending on the model. The simplest design matrix in the atemporal setting represents 

subjects as rows and the variables (predictors and outcome) as columns. This is known as a wide-format-

design matrix46. While the wide-format-design matrix is fairly straitforward way to represent data, it has 

some disadvantages in the longitudinal setting46. Wide format design matrices can be sparse if the 

number measurement occasions are not uniformly distributed or if there are subjects with large outliers 

of measurement occasions. Table 1 provides an example of how the wide-format-design matrix can be 

inefficient with memory and disk space for longitudinal data. The table has heart rate (HR) as time 

dependent outcome of a theoretical exercise treatment where time is measured in the number of days 
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since enrollment in the study. Table 1 has to accommodate the outlier of 4 observation episodes by 

having a column for each time-dependent variable for each observation episode—resulting in a many 

cells that are empty. This representation also assumes that a subject will have no more than 4 

observation episodes. 


The long-format-design matrix addresses some of the space inefficiencies of the wide format by 

representing data at the measurement occasion level instead of at the subject level46. In this 

representation, each row signifies one measurement occasion for one subject. The long-format-design 

matrix is most advantageous in situations where there are few time-independent features, and the 

number of measurement occasions is highly variable between subjects. The small number of time-

independent features minimizes the amount of data that requires repetition for every measurement 

occasion of that subject, while only storing data that was actually observed. Table 2 shows the same data 

found in Table 1 in long format. The time independent subject ID and treatment assignment variables are 

repeated for each measurement occasion. If there were many other time independent features, then one 

can imagine that this representation might not be particularly efficient. Beyond efficiency concerns, 

often it is the model and the model assumptions that are the most important considerations in choosing 

between wide and long format46. However, the simple examples in Table 1 and Table 2 demonstrate that 

data representation can have a significant effects on the amount of missing data and how the structure 

might codify implicit assumptions. 


Subject 
ID

1st HR 1st Time 2nd HR 2nd Time 3rd HR 3rd Time 4th HR 4th Time Treat

1 76 0 75 14 0-No
2 86 0 82 12 80 27 81 40 1-Yes
3 65 0 66 15 0-No
4 81 0 1-Yes

Table 1: Wide-Format-Design Matrix Example
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Missing data in the previous example was an artifact of data representation due to unequal 

observation episodes between subjects. Asynchronous data collection can also result in missing values. 

This type of missing data can be more difficult to handle, because data representation alone may not be 

able to create a complete design matrix46. Whether data is missing because of asynchronous 

measurements or due to unequal measurement occasions, there are 3 statistical mechanisms for said 

missing data. When all values within a covariate are equally likely to be missing, statisticians describe 

the data as Missing Completely At Random (MCAR)63. Data that is MCAR usually occurs due to 

unrelated and random processes, such as lost laboratory samples or equipment malfunctions. Another 

mechanism of missing data is Missing At Random (MAR)63. Data that is MAR can be estimated by 

using the other variables that are recorded63. MAR data points are not associated with the outcome63. For 

example, people without health insurance generally will have fewer measurement occasions for their 

blood pressure, but this variable is not directly causally related to their blood pressure. Lastly, data can 

be Not Missing At Random (NMAR)63. NMAR data cannot be reliably addressed with observed 

covariates63. Data that is NMAR occur when the value of a variable is directly related to whether the 

variable was recorded. For example, blood pressure would be NMAR if individuals with high blood 

Subject ID HR Time Treat

1 76 0 0-No

1 75 14 0-No

2 86 0 1-Yes

2 82 12 1-Yes

2 80 27 1-Yes

2 81 40 1-Yes

3 65 0 0-No

3 66 15 0-No

4 81 0 1-Yes

Table 2: Long-Format-Design Matrix Example
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pressure purposefully avoided seeking medical care in order to avoid costly therapy. The absence of high 

blood pressure individuals in the recorded data would preclude attempts to impute the missing values 

using data-driven methods62. The mechanism for missing values in observational clinical data is often 

NMAR62. This poses a challenge for model developers as methods that create sub-models to estimate 

missing values, such as multiple imputation, may be biased64, 65. Simple methods such as mean 

imputation (using the variable mean to replace missing values) are also likely to be biased, because the 

absence of data is directly related to certain values of the variable66. 


Many researchers have explored different representations and methodologies for addressing 

missing data64-72. Some methods use statistical models utilizing variables that are complete to build 

models to impute values64, 65, 68,, 70, 71. Other researchers use simple imputation methods that are applied 

to specific patterns of missing data66, 69. Researchers have also turned to different types of data 

representations such as interval based abstractions or the creation of missing indicator variables that are 

combined with mean imputation66, 69, 72. While missing data is a topic that is closely related to temporal 

representation, it is not the primary focus of this work. This work will specifically evaluate two related 

imputation methods commonly used in the machine learning literature: mean imputation by itself and 

mean imputation paired with an indicator variable for observed values (mean + indicator imputation)66, 

68, 73, 74. We chose these two imputation methods because they resulted in better comparisons with past 

work73, 74. This point will be elaborated on in future chapters. Mean imputation is a popular method 

because of its simplicity of implementation and because the method does not alter the observed variable 

mean66. Mean imputation also preserves the degrees of freedom of the model. The mean + indicator 

imputation adds predictors (increasing the degrees of freedom) that, in terms of explained variance, can 

only result in a better fit model compared to the original set of predictors. Table 3 provides an example 

of missing data due to asynchronocity, mean imputation, and mean + indicator imputation. 
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Temporal Data Representation


Temporal representation/abstraction attempts to apply mathematical or knowledge based 

transformations on timestamped data to aid in the discovery and use of patterns over time39. Researchers 

have evaluated many different strategies for both longitudinal and time series type data36-43. Below is a 

quick survey of methods with some of their advantages and disadvantages. 


The simplest temporal representations treat measurements as fixed points and instead manipulate 

the representation of the timeline where these points lie. One common representation, which we will call 

absolute-time, has an anchoring event from which time is measured as a count variable from that 

anchor75. The anchoring event can be shared between subjects or it can be relative to each subject. 

Figure 6 provides an example of how a shared versus a relative anchor point can lead to a different 

representation.


Using the same point mass idea for measurements, one could frame time as the distance from 

one point to the previous point. This relative-time framing uses the previous measurement for reference 

Raw Data Mean 
Imputation

Mean + Indicator Imputation

Subject ID Treat HR Time HR Time HR HR Indicator Time Time Indicator
1 0-No 76 0 76 0 76 1 0 1
1 0-No 75 14 75 14 75 1 14 1
2 1-Yes 86 0 86 0 86 1 0 1
2 1-Yes 82 82 11 82 1 11 0
2 1-Yes 27 78 27 78 0 27 1
2 1-Yes 81 40 81 40 81 1 40 1
3 0-No 65 0 65 0 65 1 0 1
3 0-No 15 78 15 78 0 15 1
4 1-Yes 81 0 81 0 81 1 0 1

Table 3: Raw vs Mean Imputation vs Mean + Indicator Imputation
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instead of a fixed point68. There are applications where it makes more sense to weight decay/growth 

from the last measurement than from a fixed anchor point. For example, the relevance of a political poll 

may be more closely related to the poll’s timing relative to the previous poll than to the moment when 

the candidate began their campaign. Figure 6 also shows how relative-time compares to other point mass 

time representations. This representation assumes stationarity in the process as it would be difficult to 

distinguish earlier observations from later ones.


Another type of point mass representation seeks to smooth out differences in measurement 

occasions. What we will name, sequence-time, provides either a relative count of the number of 

measurements preceding the current measurement. The sequence-time representation provides an ordinal 

smoothing that results in potential information loss, but may result in more robust stationarity in the the 

temporal patterns found36.  Figure 6 also shows how this representation might compare to the other point 

mass representations mentioned.


Somewhat related to sequence-time are graphical and string sequence representations. In a 
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Figure 6: Different Representations of Time for Point Events
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graphical temporal representation the sequence of observations are represented using nodes and edges76. 

One observation node is connected to the next through an edge. The observation nodes may be 

abstractions of higher level concepts or categorical variables76. All of the subjects are represented on the 

same graph structure, opening the door for graph theory based analyses and algorithms76. String 

sequence representation on the other hand, looks to represent the observations as an ordered string of 

events or categories77-79. This type of representation draws parallels to Deoxyribonucleic acid (DNA) 

analyses and uses the algorithms of bioinformatics for temporal pattern discovery77. The graphical and 

string sequence representations work best with categorical data and have a difficult time representing 

continuous measures. Categorizing data can be difficult and can lead to a loss of statistical efficiency. 


Beyond a point mass representation of measurements, one can abstract observations into 

intervals or trends39-42. These intervals or trends can be created through knowledge based means or 

through interpolation methods. Logically operating on intervals is more challenging than on points; 

intervals have more operands43. Figure 7 depicts different algebraic operations for points and intervals.


The goal of knowledge-based temporal abstraction is to go from raw data (often continuous 
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t1          t2 
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t1 t2
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t1 t2

Figure 7: Algebraic Operations for Points and Intervals
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variables) to higher level qualitative concepts that  that form an interval40, 42. This abstraction 

accomplishes a smoothing of intra-subject variability (by abstracting to a category) and a smoothing 

over time that includes information on duration (by abstracting to an interval). Knowledge based 

temporal abstraction gets the gains of smoothing, but also enriches the data by going from time stamped 

points to intervals40, 42. However, knowledge based temporal abstraction is not without costs. The 

knowledge bases necessary to abstract diverse sets of data are expensive to curate and maintain in terms 

of time and expertise80. To abstract data into higher level concepts requires detailed knowledge of each 

data element, such as how rapidly an observation may be able to shift from its current category to 

another category80. Defining meaningful categories for each data element is not trivial to begin with. 

Furthermore, working with intervals can be more computationally challenging than working with points, 

and there are fewer algorithms to take advantage of81, 82. 


In what we are referring to as interpolated temporal abstraction the goal is to smooth the intra-

subject variability using statistical methods83-87. This type of temporal abstraction is easier to implement 

than knowledge-based temporal abstraction, as it is not attempting to abstract data into expert-derived 

higher level concepts. This type of abstraction can take a few different forms. Some researchers split the 

observation period of each subject into adjacent windows and use an aggregate statistic to summarize 

the measurements that occur in each window (e.g., mean, median, mode, count, variance, etc)86, 87. 

Windows can be defined as being equally long or  can grow or shrink in length due to variability in the 

measurement values. We will call this representation window-time. These types of techniques are fairly 

common to signal processing that tends to have a high density of data. Another approach seeks to use 

observed values to statistically estimate a continuous process83-85. This modeling based approach 

interpolates the values between observations, allowing the users to sample any time point they wish. 

This statistical interpolation can have varying degrees of sophistication from using linear interpolation to 
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fitting a subject specific Gaussian process model for each variable83-85. Figure 8 shows some examples 

of window-based and model-based interpolation. 


Statistical Longitudinal Models


Statistical longitudinal models have a longer history than their deep counterparts and are the 

tools of choice for causal inference in longitudinal or clustered data46, 88. In this section we will briefly 

touch on how two of the most popular longitudinal hierarchical models work and their advantages and 

disadvantages for prediction and inference. We used these simpler and more interpretable models as our 

baseline comparison and a means to learn more about the behavior of deep sequence models with 

longitudinal data. 


 Marginal models are powerful inferential models with only a few assumptions. Marginal models 

can handle data in the long format and and estimate parameters through a flexible generalized estimating 

equations (GEE) approach46. The marginal model has three major assumptions: first, the mean response 
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depends on additive features through a known link function46. As with other generalized linear models, 

the link function enables the marginal model to fit different types of outcomes such as counts or 

unordered categories46. The inverse of the link function maps the unbounded sum of the weighted 

predictors to what can be a strictly bounded outcome space46. Said another way, one is assuming that the 

mean of the outcome of interest is linearly related to the predictors after applying a known function. The 

second assumption is that variance of the outcome given the features is time-invariant (stationary)46. 

This type of model cannot handle fundamental changes to the process it is trying to describe. The last 

assumption is that the correlation of repeated measures for the same subject is a function of the mean46. 

The implication of this assumption is that correlations of individual responses are some variation of 

population wide effects. In situations where subjects are very different from each other, this assumption 

may not be valid. However the marginal model with GEE parameters is robust to this assumption being 

violated, though at reduced efficiency46. The marginal model primarily works with point mass absolute 

time with a subject specific anchor. This model is a natural tool for population level inference, but can 

be a poor choice for subject specific predictions or inferences, because the model does not have 

mechanisms to handle data with high degrees of intra subject variability. The marginal model is designed 

to produce a robust measure of the average response46. 


Generalized linear mixed effect model (GLME) offers a different approach to modeling 

longitudinal data than the marginal model. In a GLME the developer not only specifies the unit of 

analysis (how data are clustered), the features, and the outcome, but also which of those features vary at 

the inter-subject level (fixed effects) and which features have significant intra-subject variance (mixed/

random effects)46, 88. GLME models are also more personalized to the subjects the model is fit on. The 

GLME model will estimate subject specific parameters for all of the random effects specified in the 

model. This personalization does come at the cost of additional assumptions not made by the marginal 
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model. Assumptions by the GLME model include: all random effects have a mean of zero and a 

multivariate normal distribution, the measurement error of a given observation is uncorrelated with other 

observations for that subject, the random effects are statistically independent for the measurement error, 

and that the outcome depends on additive fixed and mixed effects through a known link function46, 88. 

This model also only works with an absolute temporal representation with a subject specific relative 

anchor, however the use of time related random effects sets the covariance structure for observations 

over time46, 88. For example, the specification of a time related random intercept is equivalent to 

assuming a constant correlation between observations over time46, 88. The random effects are fitted 

through a two step process. First subject specific models that only include random effects are fit. Since 

there are many subjects, this creates a distribution of random effects coefficients. The mean and variance 

of the subject specific coefficients from stage one, inform the inter-subject parameters that are fit in 

stage 2 using the mean and variance of the random effects coefficients. The model coefficients go 

through an iterative optimization process that maximizes some version of the model likelihood given the 

data. This mathematical optimization makes use of parameter estimates to iteratively converge to a 

stable solution of model coefficients. The GLME model makes many more structural assumptions than 

the marginal model. These assumptions can be difficult to validate and much more care is needed when 

designing a GLME model. All that said, the ability of GLME models to create personalized predictions 

through random effects makes them well suited to replicating the high levels of inter-subject and intra-

subject variability in clinical data. 


We will introduce some GLME specific notation that we refer to later on when using the GLME 

to generate data. The measurement occasion values for a specific subject are generated using Equation 1. 

We adopt a positional notation where the first index refers to global parameters, the second index refers 

to the subject (indexed with the variable i), and the third index refers to the measurement occasion 
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(indexed with the variable j). Capital letters denote a matrix, while lower case letters with a directional 

bar represent vectors. Beta symbolizes a fixed effect model coefficient, b represents a model random 

effect coefficient, and epsilon is the random error. The previously mentioned link function is represented 

with Phi. As an example we will define a model that has three features x1, x2, and time. The model will 

have four fixed effects: an intercept, effects for x1, x2, and an effect for time. The model will also have 

two random effects: a random intercept and a random time effect. The random effects allow each patient 

to have their own intercept term and their own time slope. We demonstrate what we mean by subject 

specific intercepts and time slopes in Figure 9. Figure 9 also contrasts how a marginal model would have 

one prediction line for all subjects, while the mixed effects model is more personalized. 


 Putting all of this notation together, we have that the outcome for a specific subject for a specific 

measurement occasion is equal to the inverse link function applied to the global intercept plus the 

features times the fixed-effect coefficient plus a subject specific intercept term plus the time multiplied 

by a subject specific time coefficient. The quantity after applying the inverse link function is then 

summed with a random error that is specific to both this particular measurement occasion and subject. 

Equation 1 provides a notational example of the model of x1, x2, and time specified above. 
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Equation 1: Model Definition for a Single Measurement Occasion


If one were to aggregate all of the outcomes for a specific subject, then one would see Equation 1 would 

become Equation 2. The main difference between the two is that where we once had single values for 

the single measurement occasions, we now have vectors and matrices that are comprised of these 

different components. In Equation 2, y symbolizes all the outcomes for a subject, x symbolizes all of the 

features for a subject, and z represents only the features with random effects. A subtle difference in this 

summarized representation is that the X and Z matrices both begin with a column of ones to 

accommodate the intercept terms. 


    


Equation 2: Model Definition for a Single Subject


Deep Learning and Deep Sequence Models


Deep models are a type of of machine learning model loosely based on the structure of 

neurons89. A machine learning model does not require the exact relationships of the predictors to the 

outcome to be specified by the model developer and instead uses the training data to estimate the form 

of these relationships89. The lack of pre-specification is an advantage of machine learning methods 

compared to statistical models; however this flexibility often comes at the price of efficiency (more data 

is required to achieve a set level of precision)90. As data bases and sources have grown more plentiful 

there is a growing enthusiasm about the capabilities of these deep models to positively impact the 

system of healthcare5, 91-95. Deep learning methods have achieved state of the art performance results on 

many different healthcare related benchmarking prediction problems73, 74, 91. The application of deep 

sequence models to healthcare problems still involves many decisions by model developers that are 

y−,i, j = ϕ−1(β0 + β1x1,i, j + β2x2,i, j + β3t ime−,i, j + b0,i + b1,it ime−,i, j) + ϵ−,i, j

y−,i = ϕ−1( ⃗β X−,i + ⃗b −,iZ−,i) + ⃗ϵ −,i
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arbitrary or data driven through a trial and error process76. Before looking to improve the decision 

making process, it is important to have a basic understanding of deep sequence models and how they 

work. Deep sequence models build off of the fundamental concepts of the basic feed forward neural 

network. We will start by providing background on this basic type of deep model before proceeding to 

the different kinds of deep sequence models. 


The basic feedforward neural network is atemporal and exists as a directed graph that feeds 

inputs into neurons that either activate or remain dormant. The states of the neurons are then passed to 

the next layer as inputs, which continue the cycle until the last layer of the network produces one or 

more outputs. Figure 10 provides a pictorial example of a fully connected architecture where each input 

(data element or neuron state) of the previous layer feeds into each neuron at the current layer that 

produces two predictions (outputs). There are many ways to configure the graph of neurons, inputs, and 

outputs. Figure 10 is but one example. A neural network is known as a deep neural network when it has 

more than one layer in between the layer that consumes the data and the layer that produces outputs.


Each neuron uses an activation function to determine whether it activates. Each neuron has two 

types of parameters weights and biases. Inputs to the neuron are multiplied by the weighting parameters 

before being summed with the bias parameter51. The weights are the learned effects of the inputs, and 

the bias adjusts the firing frequency. Originally neural networks used sigmoid or hyperbolic tangent 

Subject 1

Feature 
Name

Feature 
Value

Heart Rate 85

Temperature 98.7

Body Mass 
Index

28

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 10: Fully Connected Feedforward Neural Network
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(tanh) functions as the activation function, but this resulted in networks that did not learn from data very 

well if the network had more than one hidden layer51. This training problem became known as the 

vanishing gradient problem and can be solved by using an asymmetric activation function known as the 

Rectified Linear Activation Unit (ReLU). While both the sigmoid and tanh functions have curvature that 

bounds them between 0 and 1, the ReLU activation function is a ramp function defined as f(x) = 

max(x,0). The ReLU function does not have an upper bound, meaning that perturbations of x while x > 

0 will always have some effect on f(x).


To understand why ReLU solves the vanishing gradient problem, one has to look at the inner 

workings of the neural network. The neural network optimizes those previously mentioned weight and 

bias parameters using the gradient descent algorithm51. Gradient descent is an algorithm for minimizing 

a function of one or more variables91. The function the network is minimizing is the loss of the model 

(e.g., the mean squared error) as a function of the model weight and bias parameters. The algorithm 

searches around the local region for the largest gradient by perturbing the weight and bias parameters 

from some initial value. Once the largest gradient is found, the algorithm moves opposite of that 

gradient and adopts those new weight and bias values as its current position. This process is repeated 

until a stopping condition, such as reaching a point where the result of the loss is stable around its local 

region. The neural network calculates the gradient of the model through all of its neurons and layers 

using the back propagation algorithm51. The network can be thought of a function of functions, where 

the nodes at later layers are dependent on all of the nodes in previous hidden layers. This algorithm takes 

advantage of the Chain Rule to calculate the gradient at each layer starting from the last hidden layer and 

moving backward to the first. Back propagation uses the Chain Rule to compose the derivatives of each 

layer together (with multiplication) to reflect the cascade of effects from earlier layers to later layers for 

each hidden node in the network51. The nested structure of the back propagation algorithm is at the crux 
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of the vanishing gradient problem. As the number of hidden layers grow, the number of terms composed 

and multiplied together in the first layer also grows. Traditional sigmoid activation functions (e.g. 

sigmoid or tanh) have a derivative bound from above by 0.25. The derivatives of a single node are a 

product of weights and partial derivatives of the activation function. When all the nodes of all later 

hidden layers are composed together, multiplying an increasing number of values that are less than 1 

forces the gradient toward 0. In this sense the gradient, which for the last hidden layer is generally 

adequate for optimization, is said to vanish in previous layers. One may see the opposite problem of an 

exploding gradient if the gradients from later layers tend to be greater than 1. In either case extreme 

gradient values (low or high) from later layers are propagated back to earlier layers. The overall result is 

that earlier hidden layers will be optimized by the Gradient Descent algorithm very slowly (vanishing) 

or erratically (exploding), if at all. This dynamic signified a delicate sweet spot of derivatives just large 

or small enough for back propagation to enable optimization of all model parameters. Since the ReLU 

function is a ramp, its derivative when activated is 1. A derivative of 1 prevents the multiplicative issues 

encountered by the sigmoid and tanh functions during back propagation. 


A recurrent neural network (RNN) is a more complex version of the feedforward network 

specifically designed for sequences. An RNN has 1 layer for each element of the longest sequence. The 

RNN does not require each sequence have the same number of elements, but the data representation is 

similar to a wide format. Domains with long term dependencies require long input sequences (e.g. 

language translation). An RNN for this type of sequence unravels into a very deep feedforward network, 

leading to the vanishing/exploding gradient problem96. A key difference with RNNs is that in 

feedforward representation all the hidden layers have the same input weights. The equal weighting 

constraint across all the hidden layers is similar to repeatedly applying the same function onto itself. The 

weights in a feedforward network can have many more degrees of freedom than the RNN. The result is 
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that the gradient is more unstable in an RNN than in the regular feedforward architecture96. The ReLU 

can solve the vanishing gradient problem for RNNs, but causes other problems because ReLU 

nonlinearities are unbounded. When the RNN is unraveled, the activation output can explode to values 

not representable as floating point numbers due to the very large number of hidden layers.


The long-short-term memory model effectively solved the RNN exploding gradient problem by 

changing the fundamental unrolled unit from a fully connected hidden layer to a block. Each block is 

made of five nodes97. The current state node holds the current activation state, and feeds into itself with 

a unit weight. There is a forget node with sigmoid activation that weights the past output and current 

input to decide which elements of the current state to forget (multiply by 0). The forget gate updates the 

current state through an element wise multiplication. There is an input gate which has two nodes. One 

node weights the elements of the inputs of the current time-step and the outputs of the previous time-

step to decide which elements of the current state to update (sigmoid activation). The other input node 

decides what the updated values should be (using tanh activation) based on weighted inputs from the 

current time-step and weighted outputs from the previous time-step. The results from both input nodes 

are multiplied and then added to the current state. Lastly there is an output gate that determines which of 

the elements are output to the next node (sigmoid activation). The output to the next memory cell is 

equal to the current state put through a tanh activation function and then multiplied by the output node. 

The effect of this structure is that the gradient becomes a sum across time-steps, not a product. 

Summation leads to much more stability in the gradient, resolving the vanishing and exploding gradient 

problems97. Figure 11 illustrates the described structure of the LSTM model. There are other 

configurations of blocks with the different gating structures, but the transformation of the gradient 

calculation from being multiplicative to additive is the same68, 98.


The last deep sequence model relevant to this study is the feedforward network with a sequential 
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multi-head attention mechanism. The attention mechanism can be combined with other architectures 

such as the LSTM; however, a simple feedforward network can achieve parity with LSTM performance 

when combined with a multi-head self-attention mechanism45, 100. The self-attention based transformer 

model (Attention model for short) is slightly different than other sequence models. The predictors are 

concatenated with a positional encoding that the self attention mechanism can interpret as the order of 

the inputs. The self-attention mechanism itself is a means to to prioritize information from past parts of 

the sequence that are specific to the current value45. This prioritization happens through the optimization 

of query, key, and value parameter matrices101. These matrices weight how relevant each of the past 

inputs are to the current value and position in the sequence. The current piece of the sequence and the 

resulting weighted context vector are then fed into the feedforward network to produce a prediction101. 

The multi-head self attention mechanism extends this concept by have multiple query, key, and value 

parameter matrices101. Each part of the sequence produces its own context vector for each attention 

Figure 11: LSTM Block Diagram ( Adapted from 99 )
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mechanism. The parameter matrices for each attention mechanism are randomly initialized, which can 

result in different prioritizations for the same input and position101. Yet another weighting matrix helps 

to aggregate the multiple context vectors produced by the multiple attention mechanisms into a single 

context vector101. The additional weighting matrix needed to aggregate the results of the different 

attention mechanisms suggests that the number of parameters grows super-linearly with the number of 

attention heads. 


Training and Tuning Deep Longitudinal Models


Deep sequence models have many parameters that are optimized to fit the training data. Beyond 

those parameters that are directly tuned through gradient descent or other algorithms are hyper-

parameters that must be decided on before the model starts learning from data51. These hyper-parameters 

can have a significant impact on model performance and can relate to the architecture of the deep model 

or settings controlling how the model is trained51. Deep models are made up of different modular 

components that can be ordered and combined in many different configurations51. For example, one 

might have data that is fed through an LSTM using a self-attention mechanism, which then flows into a 

feedforward network that produces a forecast. 


As with data representation, there are implementation and maintenance considerations for hyper-

parameters102, 51. Table 4 defines some common hyper-parameters for LSTM, Attention, and feedforward 

models. Each parameter generally has a Goldilocks zone that balances the tradeoffs of hyper-parameters 

that are tuned to be too small or too large. 




31

The goal of hyper-parameter tuning is to find a combination of hyper-parameters that helps to 

produce the best fit model103. One should exclusively tune hyper-parameters on training data (versus 

evaluation data) to prevent overly optimistic performance assessments of the model103. There are 

different strategies for choosing hyper-parameter values beyond evaluating all possible hyper-parameter 

combinations. The grid search scans fixed ranges of hyper-parameter values resulting in a grid of 

Hyper-parameter Type Related 
Model

Definition

Batch size Training Attention, 
Feedforward, 
LSTM

The number of subjects propagated through the 
network to update model parameters. All training 
subjects eventually are used, but they are sent 
through one batch at a time. 

Depth Architecture Attention The size of the query, key, and value matrices. 
More depth results in more weighting parameters.

Drop out rate Training Attention, 
Feedforward, 
LSTM

The rate at which weight parameters are randomly 
omitted during model training   

Hidden dimension Architecture Attention, 
Feedforward, 
LSTM

The number of input parameters expected by a 
hidden layer in a neural network 

Learning rate Training Attention, 
Feedforward, 
LSTM

How much parameter weights should be changed in 
response to the model error

Loss funciton Training Attention, 
Feedforward, 
LSTM

How the neural network should measure model 
error. The subject of optimization as a function of 
the model parameters

Number of layers Architecture Feedforward The number of stacks of neurons to propagate data 
through

Number of heads Architecture Attention The number of attention mechanisms to train

Optimizer Training Attention, 
Feedforward, 
LSTM

The algorithm used to adjust the model parameters 
to minimize the loss function. 

Weight decay Training Attention, 
Feedforward, 
LSTM

A penalty parameter that shrinks weights toward 0: 
shrinkage takes place within the optimizer

Table 4: Hyper-parameter Definitions for Deep Models
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possible hyper-parameter combinations. The grid search tends to be most tractable for models with only 

a few hyper-parameters to tune104. A randomized search, where combinations of hyper-parameters are 

drawn uniformly at random, can be more efficient and effective than a grid search, when there are many 

possible hyper-parameter combinations105, 106. Alternatively, one could use optimization algorithms or 

even models to tune hyper-parameters107, 108. These approaches may introduce meta-parameters for the 

tuning algorithms and models, but these approaches have shown to be even more efficient still at finding 

optimal hyper-parameter combinations107, 108. This gain in efficiency does come at the cost of additional 

complexity and the implementation of yet another model. 


Comparing and Evaluating Prognostic Models


To evaluate a prognostic model one must decide on the metrics for evaluation and the strategy 

for producing an estimate using those metrics. The goal of model evaluation is to get an estimate of how 

a model might perform if deployed into a real-world setting as well as a measure of certainty about said 

estimate47, 52. The type of outcome modeled along with the application should inform the choice of 

evaluation metrics47. Evaluation strategies tend to be outcome agnostic and are often dependent on 

practical constraints such as data size, computational power, and complexity of implementation109. 


There are many different metrics for evaluating predictive models. We will focus on the metrics 

most relevant to this study. In this work we evaluated a regression model, a prediction problem with a 

continuous real world outcome, and a classification model, a prediction problem where the model is 

attempting to sort patients into one of two unordered categories. In the realm of regression, model 

developers can attempt to evaluate the model through two different views: how much model predictions 

deviate from the true values (error or deviance) and/or how much of the variance in the data can be 
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explained by the model. These two views have their own sets of associated metrics. When attempting to 

quantify error, the mean squared error (MSE) is a popular choice. Given n different predictions (y-hat) 

with true value y the MSE can be mathematically expressed as Equation 3. The MSE can be split into an 

error variance and error bias component63. This implies that one may be able to reduce error through a 

bias-variance tradeoff (adding bias to reduce variance), which is the underpinning of regularization also 

known as shrinkage63. The MSE metric can be difficult to interpret, because MSE is not on the same 

scale as the data. This difference in scaling between MSE and the data makes it difficult to communicate 

to users and decision makers.





Equation 3: Mean Squared Error


	 The mean absolute deviation (MAD) on the other hand is much more interpretable110. This 

metric does not express the variance or bias of the error like the MSE, but does keep the deviance on the 

same scale as the data. The MAD gives users a sense how much the deviance they can expect between 

the predictions and reality. Like MSE, the smaller the MAD the better the model. The MAD metric is 

calculated as shown in Equation 4.  





Equation 4: Mean Absolute Deviation


Looking at the other view on regression fit, the explained variance score (EVS) is the ratio of the 

variance of the error over the variance of the true outcomes. The EVS is a more generalized version of 

the R2 metric, because it can be calculated for machine learning models in addition to statistical models. 

The closer the EVS is to 1 the more of the variance of the outcome the model explains. This 

interpretation is similar to that of the R2. The EVS metric can be calculated using Equation 5, where the 

terms with a bar over them represent a mean. There are other metrics for assessing regression model fit 

∑i
n
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∑i
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n
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such as the log likelihood or the Akaike/Bayesian Information Criterion, but these methods do not 

generalize well to neural networks111.





Equation 5: Explained Variance Score


Metrics for binary classification differ from those for regression. The lack of a continuous 

outcome makes the use of a error or deviance measures less useful. As in regression, classification has 

two primary views for judging model fit discrimination and calibration. Discrimination is the measure of 

a model’s ability to distinguish subjects between two or more classes47. Said another way, discrimination 

attempts to measure how often the model correctly labels the subjects. Calibration is the measure of a 

model’s ability to accurately assign probabilities47,. For example, a model could be perfectly calibrated if 

of all the subjects a model predicted had a 40% probability of belonging to a particular class, 40% of 

that group actually belong to that class. In order for the model to be perfectly calibrated, this alignment 

between predicted and true probabilities would have to be true for all probabilities.


Sensitivity and specificity are two popular discrimination metrics for comparing models. If we 

consider one of the two classes positive and the other negative, then sensitivity expresses the true 

positive rate, while specificity expresses the true negative rate. Figure 12 visually defines sensitivity and 

specificity. Model developers value sensitivity and specificity because they are invariant to the 

prevalence of the positive class compared to the negative class. Said another way, in a model that is 

unbiased and evaluated in an unbiased fashion, the sensitivity and specificity should not change if tested 

against data with different mixtures of positives and negatives. However, the sensitivity and specificity 

do depend on the probability threshold used to split the classes. For example, labeling all subjects with a 

probability of 80% and above as positives and subjects with probabilities less than 80% as negatives will 

have different sensitivities and specificities than a threshold of 40%.


1 −
1
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The area under the receiver operator characteristic curve (AUROCC) takes the sensitivity and 

specificity metrics and summarizes them across all possible decision thresholds. Since sensitivity and 

specificity are class prevalence invariant, the  AUROCC metric is invariant to both the class prevalence 

and the decision threshold. The AUROCC plots the model sensitivity as a function of inverse specificity 

(1-specificity) for different probability thresholds across the [0, 1] range for splitting one class from the 

Figure 12: Sensitivity vs Specificity ( Adapted from [112] )



36

other and then calculates the area under that curve. AUROCCs closer to one are considered superior. An 

AUROCC of 0.5 is viewed as the worst performance because that is the standard that a coin flip model 

would achieve. An AUROCC less than 0.5 is viewed to have a flipped label problem, as in one could 

achieve an AUROCC greater than 0.5 if they flipped the predicted labels. Figure 13 shows a Receiver 

Operator Characteristic curve plot; however the utility of this plot to decision makers compared to the 

aggregated AUROCC is a matter of current debate. 


Some other metrics for discrimination include positive predictive value (PPV), the F1 score, and 

the are under the precision recall curve (AUPRC). The PPV is one of the most practically useful metrics, 

especially in the clinical domain, but it is dependent on class prevalence and the decision threshold113, 

114. The F1 score is a geometric average of the sensitivity and the PPV, while the AUPRC is a graph of 

the PPV as a function of the sensitivity. All of these metrics are dependent on the class prevalence 

Figure 13: A Receiver Operator Characteristic Curve Plot
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because they incorporate the PPV. These alternative metrics are practically useful for local validation of 

a model, but are not good at generalizing model performance across different data sets or settings47, 52. 


Calibration is an often overlooked model evaluation perspective115-117. Commonly seen metrics 

for assessing model calibration are the Brier score, the mean observed to expected ratio (MOER), and 

the cox calibration curve intercept and slope116. The Brier score measures the mean squared difference 

between the probability of the predicted class and the actual class. For example if the model predicted 

that a subject had a 40% probability of belonging to the positive class, but the subject actually belonged 

to the negative class, then the Brier score of this prediction would be (0.4-0)2 = 0.16. Brier scores closer 

to 0 are superior, and a Brier score of 0.25 would be the equivalent of predicting all outcomes to have a 

probability of 50%. The Brier score can be decomposed into a mean measure of the observed versus 

expected ratio and a measure of discrimination related to AUROCC116. 


The MOER metric divides up predictions into equally wide quantiles of predicted probability. 

For each quantile the method averages the observed class probability for a quantile and divides that 

average by the average predicted probabilities for that quantile. MOER metrics closer to one are 

superior. MOER measures greater than one imply that the model is under-predicting the positive class 

membership, while MOER measures less than one suggest the opposite. The MOER methodology can 

be difficult to implement in practice because there are often quantile that do not have many if any 

associated predictions118. 


The Cox Calibration slope and intercept measures do not require binning of predictions into 

quantile. Instead the developer uses a logistic regression to regress the observed binary outcomes as a 

function of the predicted probabilities. A slope of 1 combined with an intercept of 0 indicates perfect 

calibration. Deviations from these values can signify over or under prediction of the outcome if the 

intercept is greater than or less than one respectively119. If the slope is greater than one, then the 
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predicted probabilities are overly uniform119. If the slope is less than one, then the predicted probabilities 

are overly dispersed119.


The metrics discussed give insight into different aspects of how a prognostic model fits the data. 

As mentioned at the beginning of this section, there are strategies that model developers can employ that 

can help produce estimates of these metrics (and their uncertainty) that may be externally valid to other 

plausibly related populations109. Three commonly used strategies are hold-out validation, cross-

validation, and optimism adjusted bootstrap validation109. Holdout validation is the simplest strategy. It 

involves randomly dividing the data set into a training set and a test set. The model is trained, tuned, and 

potentially calibrated using data in the training set and the evaluation takes place on data the model has 

not seen before. For classification type problems, developers can bias the random sampling to preserve 

the class prevalence of the overall data set. This may be necessary when working with problems with 

low prevalence rates, as a purely random approach might create a test set without all of the classes. This 

evaluation strategy has the highest variability of of the three and can be biased. These characteristics are 

properties of the randomness involved in creating a single split. Model developers may need to use a 

resampling approach on the test set or repeat the entire hold-out validation procedure multiple times to 

get variance estimates for performance metrics. 


Cross-validation has less variance and bias as a validation strategy than holdout validation, but 

requires more model fitting and complexity109. In cross-validation, the data is divided into equally sized 

folds; often the number of folds is greater than two and less than eleven. One fold is selected as the 

holdout for testing and the remaining folds are used for training. The process continues until each fold 

has had a turn of being the testing holdout. Each fold will have validation metrics associated with the 

run where that fold was considered the testing holdout. The developer can then report the average of all 

the runs along with an estimate of variance. The more folds one creates at the start of the process, the 



39

more models will need to be trained, tuned, and finally evaluated. Folds can be randomly created 

through sampling without replacement and as in the holdout validation this sampling can be biased to 

preserve class prevalences. Figure 14 visualizes a simple version of cross validation. 


The most complex validation of the three strategies is the optimism adjusted bootstrap validation 

(described below)109.  This strategy produces the smallest variance and least biased estimate of model 

performance, but requires the most model fits. If model training and tuning require a large numbers of 

computational resources and time, then the other validation strategies are more practical alternatives. 

The first step of optimism adjusted bootstrap validation is to fit a model on the entire data set and record 

the performance of the model on the training data. We shall call this the apparent model fit. Next, take 

samples with replacement from the original data until each replicate data set has the same number of 

subjects as the original data set. One should create at least 100 or more of these replicate data sets. Now, 

fit a model on one of the replicate data sets and calculate the training performance of that model. We 

shall refer to this performance as the bootstrap fit. Next take the bootstrap trained model and evaluate 

Figure 14: Cross Validation Example ( Adapted from [120] )
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the model on the whole data set. We will refer to this performance as the original fit. Calculate the 

bootstrap fit and original fit for all of the replicate data sets and then average their difference (see 

Equation 6). After calculating the optimism quantity from Equation 6, subtract the optimism from the 

apparent fit to produce the estimated optimism adjusted bootstrap performance121.





Equation 6: Optimism Adjustment


To tune hyper-parameters one can nest any of these three strategies within each other. For 

example one could split using 5-fold cross validation. Then, within the training folds one could use a 

random or grid search for hyper parameters that used a nested 5-fold cross-validation to determine the 

best hyper-parameter combination. Figure 15 visualizes what this cross-validation within a cross-

validation example would look like.


 Any of these strategies can be nested within the others. It is critical to use at least one of the 

opt imism =
∑n

i=1 f itbootstrap − f itoriginal

n

Figure 15: Nested Cross-Validation for Hyper-parameter Tuning within a Cross Validation ( Adapted from [120] )
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mentioned validation strategies as a means of comparing different hyper-parameter combinations, lest 

one select hyper-parameters specific to the test data, leading to a model that does not generalize well51. It 

is difficult to claim that one has selected the best hyper-parameters if the metrics of comparison were not 

designed to provide unbiased and precise estimates of model performance on new data.


Experiment Outline


In this work we seek to evaluate how different temporal representations affect the prediction 

performance of LSTM models and Attention models. Specifically, we are seeking to identify 

associations between characteristics of longitudinal data and the dominant temporal representation (if 

one exists). To accomplish this goal we developed and validated a longitudinal data generator based on 

GLME models. Using this data generator we performed a simulation study inspired by two real world 

problems: predicting remaining length of  intensive care unit (ICU) stay and predicting 24-hour ICU 

mortality. We simulated data mimicking the said prediction problems. In each simulation we perturbed 

different data characteristics and evaluated the model performance of all temporal representations of 

interest on each unique perturbation. In a stepwise manner, we added different elements of realism to our 

synthetic data sets to see if/how the associations of data characteristics with temporal representation 

changed. We sought to formulate generalizable knowledge for model developers by laying out best 

practices for the temporal representation of longitudinal data based on the measurable characteristics of 

that data. 


We repeated the analysis of temporal representation on a well bench marked publicly available 

ICU cohort (MIMIC III)122.  We hoped to verify and extend the results from the synthetic data by 

evaluating whether similar results held in real clinical data. The modeling problems selected, the cohort 
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and the performance measures are based on a benchmarking study which should allow comparison of  

results for the same prediction task73. The benchmark provides a frame of reference to assess the quality 

of this study’s evaluation of different temporal representations. 
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Chapter II


CONTROLLED GENERATION OF SYNTHETIC LONGITUDINAL DATA


Study Design


	 We built and evaluated a software package that can generate correlated observations over time 

based on the GLME statistical model. The GMLE statistical model is a popular tool for statistical 

inference in longitudinal observational studies and clustered clinical trials46. This model is well 

understood and we hoped that by using the GLME as a basis for generating data, we might be able to 

glean insights about the working of deep models with respect to temporal representation. The objective 

in developing this software package was to be able to create data sets where we could precisely tune the 

characteristics of interest: autocorrelation, collinearity, distribution of measurement occasions, inter/

intra-subject variability, measurement error, outcome type, sampling scheme, and synchronicity. We also 

built mechanisms and data quality checks into the data generation pipeline that would allow the software 

package to produce data with different mechanisms of simulated realism based on our analysis of data 

observed in the MIMIC III cohort. To our knowledge, there were no published packages that fit these 

requirements, necessitating custom development. In this chapter we will detail how we developed this 

software package, how the package generates data in its different configurations, and the experiments 

done to validate that the package behaves as expected. Our package (long-gen) is publicly available 

through the Python package index123 and its code can be viewed on Github124. 


Materials


	 To develop and evaluate the long-gen package, we used a 2015 MacBook Pro with four 2.9 GHz 
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Intel processors and eight GB of RAM. We used the Python programming language version 3.6.3 to 

develop the long-gen package and Stata version 29 Jan 2018125 to evaluate the package. We used 

IPython’s126 Jupyter127 notebooks and the Sublime Text editor128 (version 2) as the editors to do the actual 

development in Python. Table 5 details the software dependencies we had for Python. We used data from 

the MIMICIII database122 (version 1.4) to inform the design of the long-gen package. 


Inner Workings of the Long-Gen Package 


	 The long-gen package has an object oriented design and uses three nested classes: a longitudinal 

data set, a patient, and a patient model. The data set is made of multiple patients and a patient’s 

measurement occasions are generated by a patient model. If the user desires stationary data, then each 

patient will have only one model that generates data. This interlocking hierarchy is visualized in Figure 

16. 


	 


Package Language Version

IPython125 Python 7.12.0

Jupyter126 Python 1.0.0

Matplotlib129 Python 3.1.3

Numpy130 Python 1.18.1

Pandas131 Python 1.0.1

Scipy132 Python 1.4.1

Scitkit-learn133 Python 0.22.1	

Table 5: Software Dependencies for Long-Gen Package
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	 We will begin by describing the attributes of the Longitudinal Data Set class before diving into 

Patient and Patient Model class attributes. The Longitudinal Data Set class attributes are set first because 

it is at the top of the hierarchy. Table 6 introduces attributes of the Longitudinal Data Set class. 


Attribute Definition Data Type

Coefficient_Values The values of the fixed effect coefficients Dictionary

Collinearity/Autocorrelation The amount of collinearity & autocorrelation desired for 
the features

Categorical

Link_Function The type of outcome and the distribution of the 
measurement error

Categorical

Measurement_Distribution The distribution of the number measurement occasions 
across all subjects

Categorical

Measurement_Parameters The location and shape parameters for the measurement 
distribution

Dictionary

Num_Extraneous_Variables How many non-causal variables should be created Integer

Number_of_Features How many features should be created Integer

Number_of_Model_Changes Defines how stationary the process is (0 for stationary, 1 or 
more for non-stationary)

Interger

Number_of_Subjects The number of subjects to create data for Integer

Probability_Threshold For categorical outcomes, the probability threshold 
separates cases from controls

Float

Random_Effects The list of variables that have random effects List

Attribute

Longitudinal Data Set

Patient 1

Patient 2

Patient 3

Patient 1, Model 1

Patient 1, Model 2

Patient 2, Model 1

Patient 2, Model 2

Patient 3, Model 1

Patient 3 Model 2

Figure 16: Class Hierarchy for Long-Gen Package
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	 When creating a new data set, the Longitudinal Data Set Class first validates or selects global 

change points (the stationarity of the outcome process) for patient models. These change points are 

meant to represent fundamental changes to the outcome process over time, such as the development of a 

new therapy. The change point is a piecewise break where the models for all subjects shift to different 

models. If the user does not define their own change points, then the package will randomly select the 

number of desired change points from a random uniform distribution. The package bounds time between 

the continuous interval of [0,1). This interval can be mapped to any other interval/set by supplying a 

mapping function to the class’s transform_variable_feature method after the data set has been created. 


	 Next, the package determines the number of measurement occasions for each subject by drawing 

from the user defined distribution with the user defined location and shape parameters. The user has 

Random_Effect_Collinearity Sets the level of correlation between random effects 
coefficients

Float

Random_Effect_Cut_Point In the distribution of the absolute value of random effects, 
the quantile of that distribution where values above the 

quantile should be positionally reshuffled

Float

Random_Effect_Insert_Point For random effects above the quantile threshold, where 
those values should be approximately shuffled into

Float

Realism_Functions Functions that add different elements of realism to the 
longitudinal data

Categorical

Sampling_Scheme The mechanism that determines the timing of 
measurement occasions for each subject

Categorical

Temporal_Trend The type of relationship between the outcome and time Categorical

Time_Breaks A list of time points where the model changes List

Variance_of_Betas If Beta coefficients are randomly produced from a zero 
centered normal distribution, what should be the variance 

of that distribution

Float

Variance_of_Error Controls how large unobserved error terms can be Float

Variance_of_Random_Effects This tunes how much inter-subject variability there is. 
Note that random effects are multivariate normally 

distributed

Float

Definition Data TypeAttribute

Table 6: Attributes of the Longitudinal Data Set Class
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several choices of distributions for measurement occasions: equal (point mass distribution for balanced 

data), poisson,  discretized (rounded to nearest integer) normal, discretized log normal, and discretized 

gamma. This vector of measurement occasion counts is then sorted in ascending order. Sorting the count 

of measurement occasions is important to future steps. 


	 The package then proceeds to generate each subject’s random effects. As mentioned previously, 

the random effects are assumed to follow a multivariate normal distribution (MVN) centered at zero. 

The package constructs a covariance matrix where the diagonal entries are equal to the user specified 

random effect variance and the off diagonal terms are equal to the absolute value of the square root of 

the random effect variance multiplied by the user specified random effect collinearity term. The 

covariance matrix is a square matrix whose dimension is equal to the number of random effects 

specified by the user. The package then samples from the MVN resulting in matrix of effects where the 

rows correspond to subjects and the columns correspond to random effects. 


	 At this point, the code comes to its first realism function. If the user set the “measurements” 

switch, then a patient’s random effect will be correlated with the number of measurement occasions they 

have. This is done by sorting (in ascending order) the absolute value of a random effect. The sort value 

chooses one of the following in this priority: 1) intercept, 2) time, 3) trended-time, 4) first listed random 

effect. The purpose of this switch is to allow the random intercept (or other random effect) to act as an 

unobserved severity of illness variable. When paired with a measurement distribution with a large 

number of outliers (fat-tailed), this switch helps to correlate the random intercept with the number of 

measurements. The result is a quantitative facsimile of the subset of patients with extreme lengths of 

stay56. Some patients are in such critical condition that despite the efforts of clinicians these patients do 

not survive the healthcare encounter. To accommodate this dichotomy of patients that are very unwell 

having both a few/average number of measurement occasions or having an extreme number of 
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measurement occasions, we added a mechanism to shuffle the patients with the most extreme random 

effects back into a different portion of the measurement distribution. This redistribution mechanism is 

only meaningful if the “measurements” switch is active. It works by taking two user defined percentiles 

of the random effect. One percentile represents the cut point where more extreme values will be 

reshuffled. The other represents the average location in the distribution where the extreme random 

effects will be inserted. Figure 17 provides some visual intuition for this redistribution mechanism. 


	 The step is to select coefficient values, if the user has not pre-specified them. The package draws 

one coefficient value for each feature as well as an intercept for each model period. If there was a model 

change point, then there would be two coefficients for each feature and two coefficients for the intercept. 

Model coefficients, if randomly generated, are drawn from uncorrelated zero-centered normal 

Random 
Intercept

Number of 
Measurements

Random 
Intercept

Number of 
Measurements

0.0001 4 0.0001 4
-0.003 4 -0.003 4
-0.0025 4 -0.0025 4
0.0074 5 -1.186 15

Insert Point -0.0356 7 0.0074 5
0.0483 7 -0.0356 7
-0.931 8 2.493 21
-1.137 14 0.0483 7

Cut Off Threshold -1.186 15 -0.931 8
2.493 21 -1.137 14

Figure 17: Measurement Link Reshuffling Example
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distributions with a user specified variance. 


	 Next, the code comes to another optional switch. The “timespan” switch adaptively tunes the 

observation period so that subjects with more measurement occasions always have a longer observation 

period, even in the presence of non-random sampling. The sampling mechanisms will be detailed in a 

later paragraph. However, in some sampling schemes the value of the features can increase or decrease 

the observation frequency, thereby increasing or decreasing the sampling period. After this optional 

switch, the package begins to initialize and create patient class object for each subject. 


	 Each patient object first generates the unobserved measurement error for all of the measurement 

occasions based on the distribution associated with the canonical link function. The package has four 

choices: an identity link function (normal error), a log link function (Poisson error), a legit link function 

(binomial error), and an multiplicative-inverse link function (gamma error). The error is generated with 

the specified user variance. The package makes the appropriate calculations to achieve the desired error 

variance. For example, binomial error variance is dependent on the number of draws. Therefore, the 

probability of an error is adjusted for each patient to maintain a constant level of variance across the 

dataset. 


	 At this point, the code determines the timing of the measurement occasions as well as the values 

of the features for the patient object. The feature values and measurement occasion timing are intimately 

related and behave differently depending on the sampling scheme. There are three built-in sampling 

schemes: random sampling, equally-spaced sampling, and non-random sampling. If the sampling 

scheme is random or equally-spaced, then the timing is selected first and then used to produce the 

feature values. However, if the sampling scheme is non-random, then the feature values are chosen first 

and are used to select the measurement times. In the random case, the measurement times inform the 

feature values, while in the non-random case the feature values inform the measurement times. Random 
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sampling, as the name suggests, draws uniformly random sample times. The equally-spaced sampling 

method divides up the observation period equally based on the number of measurement occasions for 

that patient. The length of the sampling period in both schemes is determined by the relative number of 

measurement occasions for this subject compared to the largest number present in the data set.


	 In the random or equal sampling case the timing of the measurement occasions is chosen first, 

and then the package samples from different Gaussian processes at the selected time points to produce 

the feature measurements. The package has a switch that determines what numerical value the Gaussian 

process is centered on. The center of the Gaussian process affects the values of the feature measurements 

produced. If the feature-link parameter is active, then the Gaussian processes for each feature are 

centered at the subject-specific intercept. The effect of this parameter is that each subject has processes 

that are centered at different values. This difference in centering of the Gaussian process between 

subjects can induce a correlation between a subject’s feature measurements (the value of those features) 

and the outcome. The induced correlation effect is especially strong in models where the random 

intercept has a strong effect on the outcome. If the feature-link switch is inactive, then the Gaussian 

process is centered at one. The Gaussian processes use the Matern covariance function where the length 

scale and nu parameters are set by the desired mix of collinearity and autocorrelation134. This covariance 

function offers a flexible fit and is frequently used in the literature134. We define the collinearity/

autocorrelation of the features in three qualitative buckets: low, moderate, and high. We define low 

collinearity/autocorrelation as values between [0, 0.33), moderate as values between [0.33, 0.66), and 

high as values between [0.66, 1). The observed collinearity/autocorrelation is dependent on the sampling 

density of the data set. This means that the true autocorrelation/collinearity may differ from what is 

observed.  


	 In the non-random sampling case, feature values are drawn from a correlated multivariate normal 
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(MVN) distribution with a covariance matrix of ones on the diagonal and the user defined collinearity 

value on the off diagonals. The mean vector of the MVN distribution is also affected by the feature link 

parameter. As in the equal/random sampling case, if the feature-link parameter is active, then the center 

is at the subject-specific random intercept. If the the feature-link is inactive, then the MVN is centered at 

zero. With the mean and covariance specified, the package then draws values for all the features from 

the MVN distribution. The drawn feature measurements from the MVN distribution are then used to 

help generate the measurement occasion timings. The non-random samples begin equally spaced over 

the sampling period, but are shifted based on the features. The shifts are done according to a step 

function based on the largest deviation from zero. If there is a feature greater than one or less than 

negative one for a measurement occasion, then the next measurement will occur 10% sooner. If the 

largest feature deviation is greater than two, then the next measurement occasion will be 25% sooner. If 

the largest feature deviance from zero is more than three, then the next measurement occasion will be 

50% sooner. The general intuition of this type of sampling scheme is that the more irregular the value 

observed, the sooner the next observation will occur. We chose to apply a step function to mimic human 

decision thresholds instead of a continuous function135. Furthermore, clinical variables tend to have a 

physiological bound of how soon one can retest and expect a different result136. 


	 Once the time points and feature values have been set for a patient object, then the package 

proceeds to sort the measurement occasions into the different modeling periods. The measurement 

occasions are sorted into different sets based on where they fall relative to the data-set-level change 

points. Each modeling period (set of measurement occasions) creates its own patient model object. The 

patient model is a repository of information that can easily execute the matrix algebra necessary to 

create outcome data. This outcome data is then aggregated in the Patient and Longitudinal Data Set 

classes. Figure 18 provides a flowchart of the high-level logic discussed in previous paragraphs.
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	 There is an additional parameter that is not shown in Figure 18 that is relevant to certain binary 

classification problems. In some prediction problems, the modeler is attempting to prognosticate the 

transition of a patient from one state to another. A state of interest, such as death, cannot be transitioned 

out of once made. To accomplish the behavior of an absorbing state (to use Markov Chain terminology), 

the package has a probability threshold parameter. When active, the threshold parameters acts a line of 

demarcation between cases and controls. All measurement occasions with a probability less than the 

threshold are controls, while all those above the threshold are cases. When the threshold is inactive, 

cases occur based on their respective probability.


Package Evaluation Methods


	 To evaluate the quality of the data generated through this package we undertook two 

Figure 18: Flowchart of Long-Gen Package Logic
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experiments. The first experiment sought to quantitatively establish that a GLME model could recover 

the model coefficients used in the generation of data. The second experiment sought to qualitatively 

compare real-world ICU data to the synthetic data to ensure that critical attributes could be synthetically 

generated. These experiments demonstrate the reliability of the synthetic data used in the experiments in 

Chapter III. 


	 In Experiment 1 we generated data with four features: x1, x2, an intercept, and time. Each subject 

had a random intercept and time slope. We generated 10 data sets for each parameter combination 

detailed in Table 7. We only varied the link function, resulting in a total of 20 datasets. 


Attribute Experimental Values

Autocorrelation High-[0.66, 1)

Coefficient_Values Randomly drawn from Normal(0,1) 

Collinearity Moderate-[0.33, 0.66)

Link_Function Identity OR logit

Measurement_Distribution Log-Normal(0.75, 10, 3)

Num_Extraneous_Variables 0

Number_of_Features 2 (Excluding model intercept and time)

Number_of_Model_Changes 0

Number_of_Subjects 1,000

Probability_Threshold None

Random_Effects intercept & time

Random_Effect_Collinearity 0.13

Random_Effect_Cut_Point None

Random_Effect_Insert_Point None

Realism_Functions None

Sampling_Scheme Random

Temporal_Trend Linear

Time_Breaks None

Attribute
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	 After generating a variety of data sets, we validated the data generating process by fitting a 

GMLE model on all of the observable features (x1, x2, the intercept, and time) using the STATA 

program’s xtmixed procedure with an unstructured covariance matrix and restricted maximum 

likelihood estimators for the identity-link data and the xtmelogit procedure for logit-link data. We 

defined random intercept and time slope parameters to be estimated as well. It is worth noting that the 

STATA models did not have access to the measurement error term included in each measurement 

occasion. We then compared the 95% confidence interval of all of the predicted model coefficients (x1, 

x2, the intercept, and time) to the true model coefficients. We also compared and contrasted the 

estimated coverage probability of the predicted model coefficients to the specified coverage of the 

procedure (95%) using Wilson confidence intervals137. If STATA is able to recover the model 

coefficients from data, then the data generating process is true to the underlying GLME design. 


	 For the qualitative Experiment 2 we analyzed the distribution of measurement occasions, the 

distribution of observation periods (lengths of stay), the event rate (in the case of 24-hour ICU 

mortality), and patterns in the outcome in MIMIC III data. We attempted to replicate these findings in 

synthetic data. We took a sample of 1,000 adult (age > 18) ICU admissions for this analysis from the 

MIMIC III data set. Only a subset of clinical events were counted as measurements. Chapter IV has 

more details on the exact cohort definition including which events were chosen. These decisions were 

based on a benchmarking study73. Comparison of distributions between real and synthetic data were 

generally done visually through histograms. We estimated the event rate of ICU mortality using Wilson 

Variance_of_Betas 1

Variance_of_Error 0.05

Variance_of_Random_Effects 1

Experimental ValuesAttribute

Table 7: Long-Gen Evaluation Parameters
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confidence intervals137. Patterns in the outcome were also assessed graphically using plots of the 

outcome over time.  Again, we attempted to recreate the observed patterns in MIMIC data using the 

synthetic data generator.


Evaluation Results


	 The GLME models fit in STATA were able to capture 40/40 of the model coefficients for the 

linear (identity link function) models in the estimated confidence interval. The resulting 95% Wilson 

estimate for the coefficient coverage was [91.24%, 100%]. The resulting interval contained the coverage 

probability of the procedure (95%), suggesting that the model efficiently estimated the coefficients. 

Table 8 shows the predicted coefficients along with the true model coefficient for each feature in each 

identity-link-function produced data set. 


Identity Data Set Feature Predicted Coefficient Actual Coefficient Accurate Prediction

1 intercept [-0.785, -0.657] -0.739 Yes

1 time [-1.239, -1.115] -1.167 Yes

1 x1 [-2.055, -2.048] -2.053 Yes

1 x2 [0.015, 0.026] 0.019 Yes

2 intercept [-0.364, -0.238] -0.310 Yes

2 time [0.465, 0.587] 0.530 Yes

2 x1 [1.748, 1.755] 1.752 Yes

2 x2 [1.626, 1.637] 1.637 Yes

3 intercept [0.801, 0.923] 0.858 Yes

3 time [0.034, 0.159] 0.048 Yes

3 x1 [-0.504, -0.497] -0.502 Yes

3 x2 [-0.648,  -0.637] -0.642 Yes

4 intercept [-1.266, -1.141] -1.190 Yes

Identity Data Set
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4 time [1.701, 1.828] 1.752 Yes

4 x1 [-0.097,  -0.090] -0.096 Yes

4 x2 [-1.949, -1.939] -1.941 Yes

5 intercept [1.622, 1.754] 1.718 Yes

5 time [-0.003, 0.125] 0.054 Yes

5 x1 [1.799, 1.806] 1.801 Yes

5 x2 [0.121, 0.132] 0.123 Yes

6 intercept [-0.680, -0.553] -0.608 Yes

6 time [0.735, 0.860] 0.852 Yes

6 x1 [1.909, 1.916] 1.912 Yes

6 x2 [-0.834, -0.824] -0.826 Yes

7 intercept [-1.272, -1.144] -1.210 Yes

7 time [-0.284, -0.162] -0.223 Yes

7 x1 [-0.021, -0.014] -0.016 Yes

7 x2 [-1.586, -1.574] -1.581 Yes

8 intercept [-0.775, -0.655] -0.754 Yes

8 time [-0.102, 0.019] -0.061 Yes

8 x1 [-0.754, -0.747] -0.752 Yes

8 x2 [1.865, 1.875] 1.870 Yes

9 intercept [0.037, 0.162] 0.070 Yes

9 time [-1.132, -1.014] -1.09 Yes

9 x1 [-1.620, -1.614] -1.619 Yes

9 x2 [0.740, 0.750] 0.751 Yes

10 intercept [0.453, 0.577] 0.491 Yes

10 time [-1.287, -1.163] -1.243 Yes

10 x1 [-0.821, -0.814] -0.818 Yes

10 x2 [2.059, 2.069] 2.061 Yes

Feature Predicted Coefficient Actual Coefficient Accurate PredictionIdentity Data Set

Table 8: Detailed Results of Identity Data Sets
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	 The GLME binomial-family models were able to accurately estimate 37/40 of the coefficient 

values. The resulting 95% Wilson interval for these estimates was [80.14%, 97.42%]. This estimate, like 

the previous estimate for the identity data, contains the coverage probability of the coefficient estimation 

procedure. Again, this implied that the models were able to produce accurate estimates of the 

coefficients. Table 9 provides the estimation details for the logit-link data sets. 


Binomial Data Set Feature Predicted Coefficient Actual Coefficient Accurate Prediction

1 intercept [1.873, 3.616] 1.978 Yes

1 time [1.790, 3.610] 2.146 Yes

1 x1 [-0.937, 0.0493] -0.974 No

1 x2 [-0.961, -0.610] -0.757 Yes

2 intercept [0.035, 0.685] -0.007 No

2 time [-0.090, 0.290] 0.153 Yes

2 x1 [0.529, 0.896] 0.536 Yes

2 x2 [0.702, 0.904] 0.701 Yes

3 intercept [0.092, 0.710] 0.421 Yes

3 time [0.118, 0.497] 0.203 Yes

3 x1 [1.014, 1.341] 1.197 Yes

3 x2 [0.151, 0.333] 0.212 Yes

4 intercept [0.090, 0.665] 0.370 Yes

4 time [0.323, 0.680] 0.556 Yes

4 x1 [-0.574, -0.276] -0.421 Yes

4 x2 [0.468, 0.662] 0.590 Yes

5 intercept [-1.742, -0.998] -1.190 Yes

5 time [0.075, 0.572] 0.186 Yes

5 x1 [-2.448, -2.025] -2.114 Yes

5 x2 [-0.124, 0.010] 0.060 No

6 intercept [-0.845, -0.293] -0.721 Yes

6 time [-1.397, -1.055] -1.125 Yes

Binomial Data Set
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	 The distribution of measurement occasions in the MIMIC III sample has a median of 69 

observation episodes with an interquartile range of 93 (25th at 40.0 measurement occasions and 75th at 

123 measurement occasions). Looking at Figure 19, the MIMIC III data does appear to follow a log-

normal distribution when it comes to the number of measurement occasions per subject. The synthetic 

data histogram below the MIMIC III histogram was created using a log-normal distribution with a shape 

parameter of 0.75, a location parameter of 60, and a scale parameter of five. 


	 The distribution of the length of ICU stays across subjects follows a similar log-normal looking 

6 x1 [-0.872, -0.583] -0.782 Yes

6 x2 [-0.224 -0.057] -0.188 Yes

7 intercept [-1.810, -1.237] -1.519 Yes

7 time [-2.324, -1.961] -2.146 Yes

7 x1 [1.986, -1.679] -1.829 Yes

7 x2 [-0.138, 0.053] -0.042 Yes

8 intercept [-0.396, 0.207] -0.146 Yes

8 time [-0.403, -0.056] -0.160 Yes

8 x1 [-0.165, 0.145] -0.003 Yes

8 x2 [0.291, 0.480] 0.349 Yes

9 intercept  [-1.129, -0.537] -1.052 Yes

9 time [0.358, 0.708] 0.663 Yes

9 x1 [-0.881, -0.573] -0.832 Yes

9 x2  [-0.547, -0.354] -0.402 Yes

10 intercept [-1.402, -0.685] -0.911 Yes

10 time [-1.183, -0.766] -0.890 Yes

10 x1 [-1.783, -1.400] -1.516 Yes

10 x2 [-1.626, -1.411] -1.503 Yes

Feature Predicted Coefficient Actual Coefficient Accurate PredictionBinomial Data Set

Table 9: Detailed Results of Logit Data Sets



59

distribution in the MIMIC III data set. In the MIMIC III dataset the length of stay is the observation 

period for each subject. We were able to recreate a similar distribution of subject observation periods in 

the synthetic data. The “measurements” and “timespan” mechanisms were the key to generating this 

similarly shaped distribution. We will describe the full parameters set needed to generate synthetic data 

of this form later in this chapter. Figure 20 shows histograms for both the MIMIC III sample and the 

MIMIC III Measurement Histogram

Synthetic Data Measurement Histogram

Figure 19: Measurement Occasion Distribution Comparison
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synthetic data.


	 In the MIMIC III sample there were 98 ICU admissions with a mortality event, for an observed 

event rate of 9.8%. We estimated the 95% Wilson confidence Interval for the event rate for the whole 

data set was [8.11%, 11.8%]. Figure 20 provides examples of the different outcomes patterns observed 

for the remaining ICU length of stay outcome and the 24-hour ICU mortality outcome. The figure shows 

these two outcomes as functions over time for a single subject. We were able to replicate these outcome 

patterns in synthetic data. The settings used to generate synthetic data with the properties shown in 

MIMIC III Length of Stay Histogram

Synthetic Data Length of Stay Histogram

Figure 20: Observation Period Distribution Comparison
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Figures 19-22 are shown in Table 10. Figure 21 presents the real and synthetic outcome patterns as lines 

with a constant slope of negative one, where the y-axis intercept (the total length of stay) is the primary 

difference between subjects. The second set of graphs below display our recreations of this pattern. 

While the scales between the simulated data and the MIMIC III data may be different, the shape is what 

is important.


	 Table 10 contrasts the different features sets to create the synthetic Length of Stay and synthetic 

ICU morality data. The biggest difference between the two is the exclusion of a random time coefficient 

in the Length of Stay data. The fixed slope between subjects precludes the use of subject specific time 

coefficients. The collinearity value is based on the average collinearity between MIMIC III features 

(0.47). Given the unequal observation times of predictors within MIMIC, we based the autocorrelation 

Time 
Remaining 


in ICU (min)

Time Elapsed (min)

MIMIC III Remaining Length of Stay

Synthetic Remaining Length of Stay Data

Figure 21: Length of Stay Outcome Patterns
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on previous literature138, 139.


	 In Figure 22 the controls show only one type of pattern over a varying length of stay, while the 

cases have two patterns with a variable length of stay. Some cases pass on after 24 hours in the ICU and 

other patients succumb to their illness within 24 hours. We replicated the same patterns (and only those 

patterns) in synthetic data for cases and controls.


Attribute Length of Stay 24-Hr Mortality
Autocorrelation High-[0.66, 1) High-[0.66, 1)

Coefficient_Values Intercept: 8

Time: -1

Intercept: -2

Time: 1.6

Collinearity Moderate-[0.33, 0.66) Moderate-[0.33, 0.66)
Link_Function Identity Logit

Measurement_Distribution Log-Normal(0.75, 60, 5) Log-Normal(0.75, 60, 5)
Num_Extraneous_Variables 2 2

Number_of_Features 0 0
Number_of_Model_Changes 0 0

Number_of_Subjects 1,000 1,000
Probability_Threshold None 0.65

Random_Effects Intercept Intercept & time
Random_Effect_Collinearity 0.13 0.13
Random_Effect_Cut_Point 0.95 0.95

Random_Effect_Insert_Point 0.6 0.6
Realism_Functions Measurements


Timespan
Measurements


Timespan
Sampling_Scheme Random Random
Temporal_Trend Linear Linear

Time_Breaks None None
Variance_of_Betas 1 1
Variance_of_Error 0 0

Variance_of_Random_Effects 1 1

Table 10: Synthetic ICU Data Parameters



63

Time Elapsed (min)

Controls

Cases

MIMIC III 24-Hr ICU Mortality

Synthetic Mortality Outcomes

Controls

Cases

Figure 22: ICU Mortality (24 Hr) Outcome Patterns
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Discussion & Limitations	 


	 In this chapter we demonstrated the statistical foundation of our data generating software 

package. We also validated that the package is capable of producing data that has similar distributional 

properties to two real-world problems of interest. In the first experiment, the same family of statistical 

model was able to produce coefficient estimates that met their intended coverage probability. The 

confidence intervals produced were neither too wide (the coverage probability exceeded 95%) nor too 

narrow (coverage probability fell below 95%). The ability to capture various combinations of coefficient 

values in unbalanced data with a non-trivial error term, provided confidence of the package’s statistical 

underpinnings. 


	 In the more exploratory analysis of Experiment 2, we reasonably replicated several important 

characteristics of the MIMIC data: the distribution of measurement occasions, the distribution of 

observation periods (lengths of stay), and outcome patterns. These characteristics are important because 

they inform how many observations the models must learn from, how much time those observations take 

place in (which is linked to what patterns might be found over time), and what forms the outcome can 

take. The distributions of the synthetic data loosely replicated the shape and skew of the MIMIC data, 

but the size of the tail probabilities were not reproduced. Differences in shape are largely the result of 

the larger tail probabilities making the primary concentration of the real data look more compact than in 

the synthetic distribution.


	 The parameters required to reproduce the outcome space for each modeling problem bear some 

interpretation. The measurement occasion distribution is a straightforward result of the parameters for 

the specified log-normal distribution. Replicating the length of stay distribution took more effort, and 

was the inspiration for the “measurements” and “timespan” mechanisms. The “measurements” 

mechanism links the number of measurement occasions to the value of the random intercept. This link 
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acts like a scaling parameter for the observation period distribution. Said another way, the measurement 

mechanism helps create the spread and tail probabilities in the observation period distribution. The 

timespan mechanism instead acts as a shape parameter (the skew and concentration of the distribution). 

The two mechanisms work in tandem by correlating the random intercepts to the number measurement 

occasions, and then correlating the number of measurement occasions to the observation period. Neither 

of the parameter sets include directly causal features. The strict shapes of the outcomes do not allow for 

directly causal features. In the remaining length of stay problem, the slope decreases linearly at the same 

rate over time for all subjects. There is no room for features to have a direct impact on this type of 

outcome in a GLME model. Similarly with the mortality problem, once a patient succumbs to their 

malady, there is no room for variation. In this situation either the feature also monotonically increases/

decreases with time or the feature cannot be directly causal. Vital signs and other human chemistry 

measurements generally do not monotonically increase/decrease over the course of an ICU stay. 

Therefore the GLME must model a process that looks like Figure 23, where the causal variable is not 

directly observed. In this setting the model is using variables that are partially correlated with the cause 

to predict the outcome. Figure 23 is drawn utilizing a directed acyclic graph in the style of Judea Pearl’s 

causal inference framework140. 


	 The experiments of Chapter II have several key limitations. In the first experiment the number of 

Severity of Illness

(unobserved)

Mortality in 24hrs

Current Heart Rate

Current Oxygen 
Saturation

Figure 23: Modeling Limitation as a Causal Diagram
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validation data sets are limited and do not evaluate the full suite of functionality. It may be that with a 

larger and more comprehensive sample the coverage probabilities would fail to include the 95% level 

with which the coefficient estimates were created. That said, the evidence is fairly strong that data 

produced by the Long-Gen package does follow the desired distribution.


	 Experiment 2 has its own limitations, namely that the distributions are only an approximate 

replication. The synthetic data is more concentrated and has smaller tail probabilities than its real world 

counter part. The smaller tail probabilities were a deliberate part of the design as an accommodation for 

the computational requirements of Chapter III. As stated in the introductory chapter, deep longitudinal 

models use a wide-format representation, which can lead to a significantly greater consumption of 

random access memory (RAM) and computational time in highly skewed data. Therefore, we needed to 

find a compromise between run-time and realism. We also thought it less confusing to keep the 

parameters and characteristics of the synthetic data as consistent as possible between chapters. The 

random effect mechanisms did help create a more realistic distribution of observation periods; however, 

these mechanisms are difficult to express and validate mathematically. We attempted to ground as many 

of the data generation parameters as possible in observed values from the MIMIC III sample. Given the 

underlying statistical model, there are limitations as to how close the synthetic data can come to the true 

data. We believe that despite these limitations the essential characteristics of the MIMIC data can be 

replicated and that the inferences produced analyzing synthetic data has the potential to inform real 

world applications. 


	 The work described in this chapter provides the means to reliably produce (and reproduce) 

“gold-standard” data where the distributional characteristics are known. Through some basic analyses, 

we believe that this package can produce simplifications of clinical data, such as MIMIC III, that grants 

the user the ability to study some data properties while holding other constant. Model developers could 
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use this package to learn more about the conditions (data properties) that lead to consistent as well as 

variable model performance. This data generation package is not specific to MIMIC III and can be 

generalized to other modeling problems and datasets through its wide assortment of pre-built 

functionality as well as the option to incorporate user-specified sampling and feature transformation 

functions. As previously mentioned, the long-gen package is publicly available on pypi.org. In future 

work, we hope to continue to expand the functionality of the long-gen package to be able to accept a 

dataset sample and then self-tune to produce replica data. 


http://pypi.org
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Chapter III


COMPARING TEMPORAL REPRESENTATIONS IN SYNTHETIC DATA


Study Design


	 Using the software package described in Chapter II, we sought to study whether there are 

characteristics in data that cause one temporal representation to be advantageous compared to others in 

LSTM and Attention models. In our study, we generated four distinct data set groups where we 

gradually added characteristics to match our dataset of interest, MIMIC III. Within each data set group 

there are numerous replicas, each with variations in the longitudinal data characteristics described in 

Chapter I. The first group has directly causal features (the feature values directly influence the outcome) 

with synchronous data (all features are observed for every measurement occasion). The second data 

group also has causal features, but the synchronicity of measurements is relaxed, allowing for missing 

values. In the third data group the features do not directly influence the outcome, but are correlated with 

the outcome. This third data group lowers the signal to noise ratio, but brings back the requirement for 

synchronous measurements. The fourth data group has the lowest signal to noise ratio, as it has non-

causal features as well as missing data. We then evaluated how well each temporal representation 

performed using both the LSTM and the Attention model for each data group. We hoped that by 

studying the model performance metrics as a function of the data characteristics we could learn 

associations that may be useful to future model builders. We performed our analysis using statistical 

inference through a regression framework to isolate the effects of temporal representation on model 

performance by adjusting for the data characteristics. We were also interested in identifying significant 

interaction terms between the temporal representations and said data characteristics. In summary, in this 

chapter will describe how we varied parameters in each data set group, how we architected/tuned/trained 
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the deep models, how we evaluated model performance, how we analyzed the results, and what those 

results mean. 


Materials


	 For developing the software necessary for these experiments, we used a 2015 MacBook Pro with 

four 2.9 GHz Intel processors and eight GB of RAM. We piloted the development of the deep models on 

a 2014 Alienware X51 desktop running Windows 10 with four 1.6 GHz processors, 32 GB of RAM, and 

a 6GB NVIDIA GTX 1060 graphics processor (GPU). The overwhelming majority of the computation 

was done using the resources of the Advanced Computing Center for Research and Education (ACCRE) 

at Vanderbilt University, Nashville, Tennessee. 


	The ACCRE high-performance computing cluster has over 10,000 processor cores and is 
growing. Typical nodes each have 128 or 256 GB of memory. Compute nodes all run a 64-bit 
Linux OS and have a 250 GB – 1 TB hard drive and dual copper gigabit Ethernet ports. Fifty five 
compute nodes are each equipped with 4X Nvidia Titan X or GeForce RTX 2080 Ti GPU cards, 
and are also interconnected with a low-latency 25 or 40/56 Gb/s RoCE network. All compute 
nodes are monitored via Nagios. Resource management, scheduling of jobs, and usage tracking 
are handled by an integrated scheduling system by SLURM. These utilities include an “advance 
reservation” system that allows a block of nodes to be reserved for pre-specified periods of time 
(e.g., a class or lab session) for educational or research purposes.

	IBM’s General Parallel File System (GPFS) is used for user home and data directories and 
scratch space. The ACCRE filesystem provides over 2 PB of usable disk space and can sustain 
more than 100 Gb/s of I/O bandwidth to the cluster. The home directories of all users are backed 
up daily to tape. The disk arrays are attached to a SAN fabric along with the storage nodes that 
then exports the file system to the rest of the cluster using a fully redundant design with no single 
point of failure142.


In the ACCRE environment, we personally had use of 31GB of storage, 20 standard processor cores 

(CPUs), and 34 CPUs connected to 17 GPUs in a configuration of two CPUs per GPU. The use of the 34 

GPU-connected CPUs were generously provided by a miniature grant from the Vanderbilt University 

Data Science Institute143. 
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	 We used the Python programming language version 3.6.3 to develop the data generation 

controller, the deep models, and the data aggregation and visualization software. When evaluating model 

performance for synchronous data we used a GLME model as a reference. Fitting GLME models over 

hundreds of data sets necessitated the use of the R programming language (version 3.6.1). We used Stata 

version 29 Jan 2018 to analyze the aggregated performance data.125. We used IPython’s126 Jupyter127 

notebooks, the Sublime Text editor128 (version 2), and vim141 as the editors to do the actual development 

in Python. We used RStudio144 version 1.0.143 for developing the R scripts that benchmarked the deep 

models. Table 11 lists the software dependencies of our Python and R software for these experiments. 

We used Stata version 29 Jan 2018 for statistical inference on the advantages and disadvantages of the 

different temporal representations125.


Package Language Version

IPython125 Python 7.12.0

Joblib145 Python 0.15.1

Jupyter126 Python 1.0.0

Long-Gen124 Python 0.2.3

Matplotlib129 Python 3.1.3

Numpy130 Python 1.18.1

Pandas131 Python 1.0.1

Scipy132 Python 1.4.1

Scitkit-learn133 Python 0.22.1	

Torch146 Python 1.6.0

caret147 R 6.0-85	

dplyr148 R 0.8.3

doMC149 R 1.3.6

lme4150 R 1.1-21

nlme151 R 3.1-140

Package
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Causal Data Group Methods 


	 The features in the Causal Data Group have a direct effect on the outcome. Consequently, this 

means that the outcomes in these data sets do not look like the outcome data in our MIMIC III cohort. 

The goal of this Causal Data Group analysis was to identify relationships between longitudinal data 

characteristics (that we will vary) and the temporal representation of the data as a function of model 

performance. The Causal Data Group is further subdivided into a synchronous subgroup and an 

asynchronous subgroup. This divide is meant to check for differences that may materialize due to 

missing data. To produce asynchronous data, we took our synchronous dataset and then removed values 

in a non-random way from the original data sets, thus converting the data from synchronous to 

asynchronous. The results from the causal data groups set a baseline from which we added further 

complexity to the data generating process that cause the data to look more and more like our MIMIC III 

cohort. 


	 Key parameters such as the number of subjects, number of measurement occasions, and the 

number of data sets that required consideration before proceeding to generate data. We anchored the rate 

of cases to the MIMIC III estimate, deciding to allow the case rate to vary between 4% and 25%. The 

event rate in MIMIC III was about 10%. Using these approximate event rates, we made us of the 

equations from Riley et. al.’s work to estimate the number of subjects required to accurately estimate 

model parameters58. We made our power calculations with a desired margin of error/mean absolute 

pROC152 R 1.16.2

Language VersionPackage

Table 11: Synthetic Data Evaluation Software Dependencies
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prediction error less than 0.01. We chose this level of precision, because we believed differences in the 

Brier Score less than 0.01 were not practically meaningful for model developers. This determination was 

subjective and may vary based on application. However, this kind of framing leads to a more 

consequential discussion of statistical results by casting the null hypothesis as an interval of irrelevance 

on the scale of the data, as opposed to a point mass null hypothesis that casts the results in the statistical 

standard deviation space153.


	 The 24-hour mortality (classification) model incorporated four features (x1, x2, an intercept, and 

time) with two random effects (intercept and time). This model structure leads to the covariance matrix 

shown in Equation 7. This covariance matrix has four unique variance parameters (two random effect 

variance parameters, one error variance parameter, and one autoregressive correlation parameter) 

resulting in eight total model parameters. The covariance matrix of Equation 7 translates to a model 

where the covariance between measurement occasions will decay over time to fixed baseline. In 

Equation 7, t symbolizes the absolute time of a patient specific measurement occasion. Patients were 

indexed with the variable i, where the last measurement occasion for a specific patient was represented 

by the variable j. 


	 The length-of-stay (regression) model uses the same four features, but only has one random 

effect (intercept). This difference alters the covariance matrix to the form in Equation 8. The covariance 

matrix of Equation 8 has two variance parameters: one for the error and one for the random effect. We 
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used a small scale pilot of 20 data sets with 1,000 subjects and 25 measurement occasions to estimate 

the population variance required for the power calculations for the identity model with the data 

generation settings from Table 10. We chose a multiplicative margin of error at less than 5% in 

accordance with the recommendation from Riley et. al.58. 


	 These parameter estimates are for GLME models and are not specific to LSTM or Attention 

models, which have orders of magnitude more parameters. However, the equations from Riley et. al. are 

specifically for statistical models58 and deep models have shown themselves to be resilient to overfitting 

their great number of parameters154, 155. Given that we are using a GLME as a baseline model, it seemed 

reasonable to calculate the model power from the perspective of a GLME model. 


	 The number of measurement occasions was largely decided by computational constraints fitting 

the baseline GLME model in R. We wanted to replicate the measurement occasion distribution in 

MIMIC III, which was centered around 68. However, we found that the lme4 and nlme packages would 

struggle fitting models that involved thousands of subjects with a median of 68 measurement occasions. 

Thus, we scaled back the median number of measurement occasions until we found a number that we 

could reliably fit with the GLME models in a reasonable amount of time.


	 We chose to create 120 data sets for each modeling problem. Given the two sequence models, 

four temporal representations, and a three-fold cross validation strategy, this number of datasets would 

create 2,880 data points per modeling problem. Leaning on  Riley et. al. again, we validated that this 
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Equation 8: Regression Model Covariance Matrix
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amount of data would be more than adequate to power a statistical inference model focused on teasing 

out the effect of temporal representation on model performance58.


	 We designed software that used the Long-Gen package described in Chapter II to vary certain 

longitudinal data characteristics while creating 120 data sets per modeling problem (a total of 240 data 

sets). The controller would uniformly at random select from a range of possible values for the variable 

longitudinal characteristics. We chose to focus on parameters that would alter the signal to noise ratio: 

inter-subject variance (random effect collinearity and random effect variance), the unobserved 

measurement error variance (noise), sampling method (signal), and the amount of feature collinearity & 

autocorrelation (signal). We studied the same characteristics in both modeling problems. Table 12 

enumerates the data settings we used to randomly create the 240 data sets. We found that the regression 

data required more than 2,000 subjects per data set to be adequately powered, while we needed more 

than 2,500 subjects for each classification data set. Within our data generation controller, we also had a 

quality control module that kept the event rate between 3% and 30% and also checked that all of the 

previously mentioned outcome patterns (and only those patterns) occurred in each data set. 


Attribute Length of Stay 24-Hr Mortality
Autocorrelation [Low-[0.01, 0.33), 


Moderate-[0.33, 0.66),

High-[0.66, 1.0)]

[Low-[0.01, 0.33), 

Moderate-[0.33, 0.66),


High-[0.66, 1.0)]
Coefficient_Values Intercept: 1


Time: 5

x1: -0.5

x2:  -0.5

Intercept: -5

Time: 5

x1: -0.5

x2:  -0.5

Collinearity [Low-[0.01, 0.33), 

Moderate-[0.33, 0.66),


High-[0.66, 1.0)]

[Low-[0.01, 0.33), 

Moderate-[0.33, 0.66),


High-[0.66, 1.0)]
Link_Function Identity Logit

Measurement_Distribution Log-Normal(0.75, 20, 5) Log-Normal(0.75, 20, 5)
Num_Extraneous_Variables 0 0

Number_of_Features 2 2
Number_of_Model_Changes 0 0

Number_of_Subjects 2,007 2,556

Attribute
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	 To go from synchronous data to asynchronous data we created software to non-randomly 

eliminate feature values from existing longitudinal data sets. This program enabled us to change a 

specific data feature without altering the settings of other characteristics. The asynchronous data creator 

has two built in methods for punching out values: random and not-random. The random mechanism has 

a uniform random probability of whether a predictor was observed or not in each measurement occasion. 

If this random process decides a value was not observed, then the value is replaced with Numpy’s nan 

value (a place holder for missing data). In the non-random mechanism, the actual value of the data 

informs how likely it is to be observed. The non-random mechanism takes a predictor’s population mean 

and maximum absolute value as parameters. The non-random process has a base probability of 

observing a value, which can be decreased based on how little a predictor value deviates from the 

population mean. We use the max value to normalize the deviance, and we use a scale parameter to set 

an upper bound on how much the base probability can be reduced. Our non-random process is 

mathematically expressed in Equation 9. Predictors in the MIMIC III sample had an average missing 

rate between [48%, 60%]. Therefore we set the base missing probability to 27% and the scale parameter 

Probability_Threshold None 0.65
Random_Effects Intercept Intercept & time

Random_Effect_Collinearity NA [0.05, 0.99]
Random_Effect_Cut_Point 0.95 0.95

Random_Effect_Insert_Point 0.6 0.6
Realism_Functions None None
Sampling_Scheme [Random, 


Not-Random, 

Equal]

[Random, 

Not-Random, 


Equal]
Temporal_Trend Linear Linear

Time_Breaks None None
Variance_of_Error [0, 0.125] [0, 0.05]

Variance_of_Random_Effects [0.5, 2] [0.5, 2]

Length of Stay 24-Hr MortalityAttribute

Table 12: Synthetic Causal Data Group Parameters
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to 27%.


Equation 9: Non-Random Data Creation Formula


	 We evaluated two imputation strategies on the asynchronous data to see if there were any 

performance advantages of temporal representation that depended on the imputation method. The first 

strategy we evaluated was mean imputation, where we would substitute the population mean of a 

predictor for missing values. The second imputation method we evaluated was the mean-imputation + 

indicator method introduced in Chapter I. 


Non-Causal Data Group Methods


	 In the Non-Causal Data Group we sought to explore datasets that increasingly reproduced the 

characteristics of our MIMIC III cohort. We took a step-wise approach to adding these characteristics 

(the measurement link, timespan link, and feature-link switches). We started by changing the predictors 

to no longer causally affect the outcome with measurement inactive, timespan, but the feature 

mechanisms set to active. Without the feature link-mechanism the feature would be totally uncorrelated 

with the outcome. Next, we generated data with the pairwise combinations of the feature-link and 

measurement link, as well as the feature-link and timespan link. Lastly we produced data with all the 

mechanisms active. We generated 20 datasets for each combination of characteristics for a total of 80 

data sets per modeling problem. We varied fewer data characteristic parameters compared to the Causal 

Data Group: the autocorrelation and feature collinearity were held constant in the same bucket (high 

autocorrelation, moderate feature collinearity). In the classification data sets we varied the random effect 

collinearity, the random effect variance, the event rate, and the sampling scheme. In the regression data 

pobserved = pbase − scale_ parameter × (1 −
| μx − x−,i, j |

xmax
)
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sets we varied the random-effect size, the measurement error variance, and the sampling scheme. Table 

13 depicts the data generation parameters we used for the Non-Causal Data Group.  As in the previous 

data group, we also used the asynchronous data creator with the same non-random method to transform 

our synchronous data sets into asynchronous ones. We again evaluated both mean imputation and the 

mean imputation + indicator missing data representation in the asynchronous data. 


LSTM and Attention Model Architecture, Tuning, and Evaluation Strategy


Attribute Length of Stay 24-Hr Mortality
Autocorrelation Moderate-[0.33, 0.66) Moderate-[0.33, 0.66)

Coefficient_Values Intercept: 1

Time: 5


x1: 0

x2:  0

Intercept: -5

Time: 5


x1: 0

x2:  0

Collinearity Low-[0.01, 0.33) Low-[0.01, 0.33)
Link_Function Identity Logit

Measurement_Distribution Log-Normal(0.75, 20, 5) Log-Normal(0.75, 20, 5)
Num_Extraneous_Variables 0 0

Number_of_Features 2 2
Number_of_Model_Changes 0 0

Number_of_Subjects 2,007 2,556
Probability_Threshold None [0.5, 0.8]

Random_Effects Intercept Intercept & time
Random_Effect_Collinearity NA [0.05, 0.99]
Random_Effect_Cut_Point 0.95 0.95

Random_Effect_Insert_Point 0.6 0.6
Realism_Functions [None,


Timespan,

Measurement,


Timespan & Measurement]

[None,

Timespan,


Measurement,

Timespan & Measurement]

Sampling_Scheme [Random, 

Not-Random, 


Equal]

[Random, 

Not-Random, 


Equal]
Temporal_Trend Linear Linear

Time_Breaks None None
Variance_of_Error [0, 0.125] 0

Variance_of_Random_Effects [0.5, 2] [0.5, 2]

Table 13: Synthetic Non-Causal Data Group Parameters
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	 The data generating processes are the means by which we hope to learn more about the LSTM 

and Attention models. We will now discuss the architecture of our LSTM and Attention models, the 

tuning and training methods, as well as the evaluation strategy we used across all of the data groups. For 

a given temporal representation, we used the wide data format to feed a given measurement occasion 

directly into the LSTM or sequential encoder (Attention). That measurement occasion had access to 

information of past inputs either through the hidden memory state (LSTM) or the self-attention 

mechanism. That sequential block/neuron then produces an output that propagates into a dropout layer, 

which randomly introduces error into the recurrent output. The dropout layer helps the model from 

overfitting its parameters to the training data. This altered output then is fed into a feedforward network. 

The feedforward network interprets the input and at the last layer produces a prediction. Both the LSTM 

and the Attention models produce a prediction for each measurement occasion (input). Figure 24 shows 

the LSTM Architecture The number of ReLU layers was a tunable hyper-parameter. 


time x1 x2Obs -, i, 1

Recurrent 
Layer

Dropout Layer

ReLU Layer

Logit/Linear 
Layer

̂y−,i,1

time x1 x2Obs -, i, j

̂y−,i, j

Figure 24: LSTM Model Architecture

Hidden State
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	 As seen in Figure 25, we explicitly designed the attention mechanism to mask future data from 

informing current forecasts. We only use the encoder portion of the transformer proposed in Vaswani et. 

al.’s work as our Attention architecture45. In the LSTM model (Figure 24), the hidden memory state is 

only passed forwards in time and not backwards. In the case of the classification problem, the last layer 

of the feed forward network would be a sigmoid function. The last layer is a linear layer for the 

regression problem. The positional encoder and Multi-Head Attention Mechanism in Figure 25 can be 

further broken down into subcomponents. 


	 The positional encoder takes dimension of the full feature matrix for a subject where the rows are 

Figure 25: Attention Model Architecture
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measurement occasions and the columns are predictors and adds two timing signal columns. The timing 

signal columns are created by calculating an incrementing factor based on the dimension of the hidden 

layer within the Attention model. Equation 10 shows how we calculate the incrementing factor. This 

incrementing factor is then multiplied by the sequential position (row number) of each measurement 

occasion. We then take the sin of all these scaled position values and also take the cosine of all these 

scaled positions. The timing signals are the results of these two trigonometric functions. 





Equation 10: Time Increment for Positional Encoder


	 As mentioned in the introductory Chapter, Multi-head Attention is going to tune weights that 

focus the attention of the model on different measurement occasions depending on the value of the 

current observation.With multi-head Attention we simultaneously repeat the Attention weighting process 

multiple times and then take an average of the weights from the different Attention heads. The Attention 

mechanism we implemented applies a normalization layer (a layer that scales and shifts inputs to have a 

mean of zero and variance of one). Those outputs then go to the multi-head Attention (which splits the 

data to the different heads and then averages the results). Next, the data flow through a drop out layer, 

before going through another normalization layer. These outputs then go through a feed forward network 

made up of three layers (a linear, a ReLU, and then a linear layer). Finally, that output goes through 

another dropout layer. Figure 26 presents our implementation of the Attention-based Transformer 

encoder. 


	 We held the loss function constant in our architecture. We used the MSE as the loss function (see 

Equation 3) for the LSTM and Attention regression models. This loss function was also used by the 

authors of the study we used as a benchmark73. Likewise, both deep classification models used the 

binary cross-entropy loss function (log loss). This function is equivalent to the log likelihood function of 

t ime_increment = ln(10,000)
(hidden_ size//2) − 1
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a generalized linear model for an unordered categorical outcome (with only two categories). One can see 

the components of the log loss function in Equation 11.


 


Equation 11: Binary Cross-Entropy Loss


	 We used nested 3-fold cross-validation as our evaluation strategy coupled with a uniformly 

random search of hyper-parameters. We used stratified cross-validation, which preserves the original 

event rate in each fold by dividing the cases and controls separately, preserving the proportions in each 

fold. The nested cross-validation strategy entails that we evaluate each combination of hyper-parameters 

with an inner cross-validation of data made of the outer training fold. We selected the hyper-parameters 

that maximized the cross-validated MSE (regression) or log loss (classification). For each outer fold we 

evaluated 25 unique sets of hyper-parameters. Each set of tuning hyper-parameters trained on the inner-

−1
n ∑n

i=1 yilog(p(yi)) + (1 − yi)log(1 − p(yi))

Multi-Head  
Attention

Dropout Layer

Linear Layer

ReLU Layer

Linear Layer

Dropout Layer

Normalization

Aggregation

Multi-Head 
Attention

Normalization

Figure 26: Attention Encoder Implementation
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fold five times (also known as five epochs). After selecting the best cross-validated hyper-parameters we 

trained the model on the outer-fold for 30 epochs (30 times through the entire data set). We chose the 

parameter values three folds, 25 draws, five epochs, and 30 epochs after a series of benchmarking 

experiments. More epochs or hyper-parameter draws could have led to a better performing model, but 

the cost in compute time is non-linear. Even with these modest parameters, our deep models trained on 

1,215 separate epochs (3 outer-cross-validation folds x (25 hyper-parameter draws x 3 inner-cross-

validation folds x 5 tuning epochs + 30 final training epochs)). Figure 27 provides a visual of our tuning, 

training, and evaluation scheme. 


	 We chose to tune as many hyper-parameters as possible in an attempt to find the best fitting 

model empirically, as well as to prevent developer-induced overfitting via a trial and error process. As 

previously mentioned we produce sets of hyper-parameters in a uniformly random way. Table 14 shows 

the hyper-parameters tuned and the possible range of values. Many hyper-parameters are restricted to 

multiples of eight, because of the performance advantages of working with NVIDIA cuda-tensors 

Figure 27: Evaluation and Hyper-Parameter Tuning Strategy
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(which are restricted to vectors and matrices with a dimension divisible by eight)156. Some hyper-

parameters, such as depth, are a functions of other hyper-parameters. 


	 


	 


Model Performance Analysis and Inference Methods


	 After tuning and training the model, we used the MSE and explained variance score to evaluate 

the test-folds of the regression data sets. In the classification data sets we used the AUROCC and the 

Hyper-parameter Related Model Value Range

Batch size Attention, 
Feedforward, 
LSTM

[8, 16, 24, …, 136]

Depth Attention [1, 2, 3, …, 17] x number_of_heads

Drop out rate Attention, 
Feedforward, 
LSTM

(0, 0.1)

Hidden dimension Attention, 
Feedforward, 
LSTM

[8, 16, 24, …, 104]

Learning rate Attention, 
Feedforward, 
LSTM

(0.0001, 0.001)

Number of layers Feedforward [1, 2, 4, 8]

Number of heads Attention [1, 2, 4, 8]

Optimizer Attention, 
Feedforward, 
LSTM

[ADAM, Wighted ADAM, Rprop, 
Centered RMS]

Weight decay Attention, 
Feedforward, 
LSTM

(0, 0.25)

Table 14: Hyper-parameter Tuning Values
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brier score metrics for evaluation. We evaluated each data set with both deep sequence model 

architectures and each temporal representation of interest (absolute time, relative time, sequence time, 

and window-time). We treated window-size as a tunable hyper-parameter that was specific only to 

window-time. The window size could vary from (0.036, 0.5], note that time was bounded to the (0, 1) 

interval. The (0, 1) interval can be mapped to any interval of real numbers, therefore this representation 

should generalize to more conventional definitions of time. 


	 For the synchronous data sets, we fit the perfectly specified GLME model using the absolute 

time representation to act as a theoretical baseline. We replicated the stratified cross-validation strategy 

we used for the deep models. These methods split the folds non-randomly and sequentially, meaning that 

all of the different models evaluated the exact same folds of data for all the temporal representations. 


	 We designed our model fitting programs to fit and produce output for all the files within a 

directory. Each program would produce a separate output of the evaluation data for each fold of each 

unique data set for each temporal representation for each model. Each model fit would produce a 

different file with the selected hyper-parameters for that fold. This created thousands of output files, 

which we used a separate program to aggregate. We chose this design to minimize data loss in the event 

of job interruption. We aggregated all the unique files into a single data frame which we then saved off 

for final analysis. 


	 Using the aggregated data frame, we used the Matplotlib package to visualize some aggregate 

differences before doing deeper analysis. In this deeper analysis we used robust regression within 

STATA that makes use of Huber-White standard errors157. In these analyses we would specify all data 

characteristics that varied. We added interaction terms between the temporal representation and other 

variables in an attempt to minimize the Bayesian Information Criterion (BIC). In our model the MSE 

was the outcome of interest for the length of stay problem, and the brier score was the outcome of 



85

interest for the classification. The random effect collinearity, random effect variance, unobserved 

measurement error variance, sampling method, feature collinearity, the feature autocorrelation, and the 

temporal representation were all predictors in our analysis. The goal of using a regression analysis was 

to ascertain the effect of the temporal representation on performance, while accounting for the variable 

parameters in the data generating process. This analysis also allowed us to search for interactions terms 

between the temporal representation used and the variable data generating parameters. An interaction 

would suggest that there is a relationship between that data characteristic, e.g., feature collinearity and 

the temporal representation used. Such a relationship between a data characteristic could lead to useful 

rules of thumb or model building decision support. For example, if the average feature collinearity 

exceeds 0.5, then use a relative time representation. 


	 In the asynchronous data group, the imputation method was included as a predictor. We assessed 

the quality of our inference model through residual versus fitted (RVF) plots and residual versus 

predictor (RVP) plots. We adjusted relationships between a predictor and outcome to a non-linear form 

based on the RVP plot. Again, we attempted to minimize the BIC when adding non-linear terms to the 

base model. We report the final model, its fit characteristics, and the Second Generation p-values of the 

coefficients. We used a simple interval for categorical predictors, but took a different approach for 

continuous predictors. We multiplied the effect-size estimates of a continuous predictors by their inter-

quartile range (IQR) to address differences of scale in the parameters. We chose not to standardize the 

data, so that the coefficients would be interpretable. 


Causal Synchronous Data Group Results


	  For the Causal Synchronous Data Group, we generated 120 data sets for each modeling 
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problem. Signal to noise parameters, such as the random effect variance, feature collinearity, random 

effect collinearity, and measurement error were varied for study. A summary of these data characteristics 

is presented in Table 15. In the table, we also contrast the collinearity and autocorrelation values we used 

to create the data to what was observable. Depending on the sampling frequency, the observed 

collinearity and autocorrelation can be significantly divergent from the underlying process.


	 We performed three fold cross-validation for two different deep models using four different 

Parameter Modeling Problem Summary Statistics

Autocorrelation Type

(Mean %)

Classification 55.0% High

25.0% Moderate

20.0% Low

Regression 62.5% High

16.7% Moderate

20.8% Low

Observed Autocorrelation

(Median [IQR])

Classification 0.293 [0.001, 0.911]
Regression 0.261 [0.002, 0.913]

Collinearity Type

(Mean %)

Classification 20.8% High

16.7% Moderate

62.5 % Low

Regression 24.1% High

21.7% Moderate

54.2% Low

Observed Collinearity

(Median [IQR])

Classification 0.034 [0.022, 0.162]
Regression 0.037 [0.025, 0.075]

Measurement Error Variance

(Median [IQR])

Classification 0.028 [0.015, 0.041]
Regression 0.074 [0.038, 0.098]

Random Effect Collinearity

(Median [IQR])

Classification 0.574 [0.282, 0.673]
Regression NA

Random Effect Variance

(Median [IQR])

Classification 1.24 [0.833, 1.70]
Regression 1.17 [0.840, 1.70]

Sampling Type

(Mean %)

Classification 30.8% Equal

32.5% Not-Random

36.7% Random

Regression 35.0% Equal

33.3% Not-Random

31.7% Random

Table 15: Causal Synchronous Data Group Summary Statistics
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temporal representations over 240 unique data sets (120 for each modeling problem). We also used three 

fold cross validation to fit a GLME baseline model on all 240 data sets. Between all the different data 

sets, models, folds, and temporal representations, we had 6,480 data points (3,240 per modeling 

problem) to analyze in the Causal Synchronous Data Group (CSDG). Figure 28 depicts some differences 

between the temporal representation and the models, but the significance of these differences is unclear 

without the regression analysis to separate effects. In Figure 28, tiles that have a darker blue shade are 

better, while tiles that have a darker red shade are worse. Each figure displays the metric average (avg) 

and its asymptotic standard error at the 95% level (α = 0.05). In the classification setting, the true GLME 

model has the best discrimination (AUROCC), but not the best calibration (Brier score). The true GLME 

serves as a benchmark in this setting, representing the best achievable fit based on the population mean. 

In both figures we see evidence that the absolute time and the window-time representations may be 

generally superior to relative-time and sequence-time.


	 We used the Brier score as the outcome of interest in our regression analysis as the outcome of 

Figure 28: CSDG Classification Model Performance vs. Temporal Representation
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interest for the classification problem in the CSDG. We used the Brier score as opposed to the AUROCC 

because the Brier score better satisfied the linear hypothesis of the predictors, leading to a higher quality 

analysis. The interpretation of the coefficient signs is reversed, where a negative coefficient (less Brier 

error) is associated with a better fit model, while a positive coefficient is associated with a worse fit 

model. We found several non-linear relationships between the data characteristics and the Brier score, as 

well as several interactions with temporal representation that significantly contributed to the analysis 

BIC. Table 16 shows the robust confidence intervals for the analysis coefficients as well as the Second-

Generation p-values. As previously mentioned, we used an interval null hypothesis (H0) to discriminate 

against effects that were statistically significant, but practically meaningless. We used the IQRs from 

Table 15 to inform our scaling adjustment when comparing continuous predictors to the interval null 

hypothesis. Our interval null hypothesis spanned the range of -0.1 to 0.1, and we set 5% as our 

acceptable amount of Type-1 error (H0 = [-0.01, 0.01], α = 0.05). The overall model R2 was 0.896 and 

the BIC was -17,372 with 30 degrees of freedom. We observed several practically significant features 

that affected the Brier score. The autocorrelation of the predictors significantly increased the Brier score 

in a non-linear fashion. Increased amounts of inter-subject variability (random effect variance) also 

increased the Brier score. However, the deep models were able to harness the mechanism of the non-

random sampling scheme to significantly decrease the Brier score loss. Furthermore, smoothing through 

the window-time representation significantly improved model calibration, though those improvements 

could be offset by higher levels of inter-subject variability.


Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Observed Autocorrelation [-0.018, 0.005] 0.652 No
Squared Observed 
Autocorrelation

[0.032, 0.050] 0.0 Yes

Observed Collinearity [0.0, 0.006] 1.0 No

Predictor
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Not-Random Sampling 

(Equal as Reference)

[-0.016, -0.011] 0.0 Yes

Random Sampling

(Equal as Reference)

[0.0, 0.003] 1.0 No

Random Effect Variance [0.014, 0.016] 0.0 Yes
Random Effect 
Collinearity

[0.010, 0.013] 1.0 No

Error Variance Restricted 
Cubic Spline Component 1

[0.058, 0.356] 1.0 No

Error Variance Restricted 
Cubic Spline Component 2

[-0.868, -0.028] 1.0 No

Error Variance Restricted 
Cubic Spline Component 3

[-0.24, 2.254] 1.0 No

LSTM model

(Attention as Reference)

[-0.006, -0.004] 1.0 No

Relative-Time

(Absolute as Reference)

[0.001, 0.006] 1.0 No

Sequence-Time

(Absolute as Reference)

[0.003, 0.008] 1.0 No

Window-Time

(Absolute as Reference)

[-0.084, -0.072] 0.0 Yes

Relative-Time x LSTM [0.010, 0.012] 0.173 No
Sequence-Time x LSTM [0.008, 0.011] 0.691 No
Window-Time x LSTM [0.004, 0.010] 1.0 No
Relative-Time x Random [0.002, 0.006] 1.0 No
Sequence-Time x Random [0.0, 0.004] 1.0 No
Window-Time x Random [0.001, 0.007] 1.0 No
Relative-Time x Not-
Random

[-0.001, 0.003] 1.0 No

Sequence-Time x Not-
Random

[-0.001, 0.002] 1.0 No

Window-Time x Not-
Random

[-0.010, 0.0] 1.0 No

Relative-Time x Random 
Effect Variance

[-0.003, 0.0] 1.0 No

Sequence-Time x Random 
Effect Variance

[-0.005, -0.002] 1.0 No

Window-Time x Random 
Effect Variance

[0.014, 0.020] 0.0 Yes

Relative-Time x 
Autocorrelation

[-0.004, 0.001] 1.0 No

Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?Predictor
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	 The diagnostic plots for the classification analysis signified solid inferential characteristics of the 

model. The RVF plot in Figure 29 shows some heteroskedasticity in the residuals between the interval 

before 0.1 and the interval after. However, the residuals appear randomly centered on zero (see the 

Lowess curve) across the whole x-axis, meaning that the plot does not show bias. 


	 In the regression setting, the true GLME model both maximizes the explained variance and 

minimizes the MSE as shown by Figure 30. We see some minor differentiation between the Attention 

and LSTM models, with the Attention models performing slightly better. As in the classification case, 

absolute-time and window-time appear to generally maximize model performance better than other 

representations.


	 The performance analysis for the regression data sets used MSE as the outcome of interest. 

Again, we found several non-linear relationships between the data characteristics and the MSE that 

Sequence-Time x 
Autocorrelation

[-0.001, 0.004] 1.0 No

Window-Time x 
Autocorrelation

[0.007. 0.016] 0.443 No

Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?Predictor

Table 16: CSDG Classification Performance Results
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lowered the BIC. Table 17 shows the robust confidence intervals for the regression model coefficients 

with the Second-Generation p-values (H0 = [-0.125, 0.125], α = 0.05). The regression inference model 

achieved an R2 of 0.712 and the BIC was 2,009.6 with 31 degrees of freedom. Increases in the amount 

of inter-subject variance (random effect variance) led to increases in model error. The measurement error 

had a large effect on MSE that grew exponentially. Relative to absolute-time, the sequence-time and 

relative-time representations significantly increased model error. We found a couple significant 

interactions between the temporal representation and model architecture as well as between temporal 

representation and sampling type. The LSTM model saw significant increases in MSE when used with 

relative-time and sequence-time relative to the Attention model. The window-time representation 

performed significantly worse when used in randomly sampled data rather than data that is regularly or 

semi-regularly spaced over time. 


Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Observed Autocorrelation [0.071, 0.187] 0.595 No
Observed Collinearity [-0.013, 0.515] 1.0 No

Predictor

Figure 30: CSDG Regression Model Performance vs. Temporal Representation
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Squared Observed 
Collinearity

[-0.619, -0.081] 1.0 No

Not-Random Sampling 

(Equal as Reference)

[-0.043, -0.092] 1.0 No

Random Sampling

(Equal as Reference)

[-0.112, -0.036] 1.0 No

Random Effect Variance [0.341, 0.800] 0.0 Yes
Squared Random Effect 
Variance

[0.102, 0.288] 0.233 No

Random Effect 
Collinearity

[-0.253, 0.160] 0.0 Yes

Squared Random Effect 
Collinearity

[-0.179, 0.193] 1.0 No

Error Variance [-4.694, -1.788] 0.102 No

Squared Error Variance [12.508, 33.868] 1.0 No

LSTM model

(Attention as Reference)

[-0.009, 0.051] 1.0 No

Relative-Time

(Absolute as Reference)

[0.201, 0.459] 0.0 Yes

Sequence-Time

(Absolute as Reference)

[0.537, 0.846] 0.0 Yes

Window-Time

(Absolute as Reference)

[-0.221, -0.075] 0.342 No

Relative-Time x LSTM [0.239, 0.365] 0.0 Yes
Sequence-Time x LSTM [0.118, 0.269] 0.046 Yes
Window-Time x LSTM [0.066, 0.142] 0.776 No
Relative-Time x Random [0.129, 0.276] 0.0 Yes
Sequence-Time x Random [0.043, 0.236] 0.425 No
Window-Time x Random [0.140, 0.236] 0.0 Yes
Relative-Time x Not-
Random

[-0.034, 0.174] 0.764 No

Sequence-Time x Not-
Random

[-0.255, -0.013] 0.463 No

Window-Time x Not-
Random

[-0.126, -0.005] 0.992 No

Relative-Time x Random 
Effect Variance

[-0.168, -0.017] 0.715 No

Sequence-Time x Random 
Effect Variance

[-0.307, -0.010] 0.387 No

Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?Predictor
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	 The diagnostic plots for the regression analysis do not show evidence of poor fit. The RVF plot 

in Figure 31 shows a good shape that is centered at zero (see Lowess curve). There is not much evidence 

of heteroskedasticity and the plot does not give cause for concern about the inference models. 


	 


Causal Asynchronous Data Group Results


	 The Causal Asynchronous Data Group (CADG) was derived from the synchronous group by 

inducing missing values in X1 and X2. The median rate of missing data in X1 was 48.6% with an IQR of 

Window-Time x Random 
Effect Variance

[-0.053, 0.044] 1.0 No

Relative-Time x 
Autocorrelation

[-0.314, -0.094] 0.197 No

Sequence-Time x 
Autocorrelation

[-0.429, -0.108] 0.091 No

Window-Time x 
Autocorrelation

[-0.161, -0.019] 0.833 No

Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?Predictor

Table 17: CSDG Regression Performance Results
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Figure 31: CSDG Regression RVF Plot
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[47.9%, 49.1%]. The median rate of missing data in X2 was 47.7% with and IQR of [45.6%, 48.8%]. 

Based on these rates, one would approximately expect a measurement occasion to observe either X1 or 

X2 50% of the time, both X1 and X2 25% of the time, and neither X1 nor X2 25% of the time. Despite the 

missing values, the discrimination was equivalent to the fully informed models of the CSDG, though the 

calibration was significantly worse when compared to the fully synchronous data sets.


	 The inference model on classification performance required squared terms on autocorrelation 

and the random effect variance variables to satisfy the linear hypothesis. There were also a few 

interactions that improved the model BIC (temporal representation x model type, temporal 

representation x sampling method, temporal representation x autocorrelation, and temporal 

representation x random effect variance). Table 18 lays out the robust confidence intervals for the model 

coefficients as well as the Second-Generation p-values (H0 = [-0.01, 0.01], α = 0.05). The inference 

model had an R2 of 0.869 and a BIC of -27,750. We discovered several significant effects in the causal 

asynchronous setting for classification models. The autocorrelation decreased the Brier score, though in 

a nonlinear fashion. It is important to note that the autocorrelation is bound between [-1, 1]. Non-random 

sampling decreased the Brier score, suggesting that the deep models were able to take advantage of the 

structure of the sampling. Not surprisingly, increases in the error variance or random effect variance 

increased the Brier score loss. The window-time representation significantly decreased the Brier score 

loss. The performance gain for window-time specifically was significantly reduced by increases in 

random effect variance and by increases in feature autocorrelation. 


Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Observed Autocorrelation [-0.036, -0.016] 0.0 Yes
Squared Observed 
Autocorrelation

[0.043, 0.058] 0.0 Yes

Observed Collinearity [-0.002, 0.004] 1.0 No

Predictor



95

	 The diagnostics for the classification inference model show some heteroskedasticity in RVF plot 

shown in Figure 32. There appear to be some patterns in the residuals before 0.1 on the X-axis, 

Not-Random Sampling 

(Equal as Reference)

[-0.021, -0.016] 0.0 Yes

Random Sampling

(Equal as Reference)

[0.003, 0.005] 1.0 No

Random Effect Variance [0.024, 0.035] 0.0 Yes
Squared Random Effect Variance [-0.008, -0.003] 0.0 No

Random Effect Collinearity [0.009, 0.012] 0.399 No

Error Variance [0.034, 0.087] 1.0 No

LSTM model

(Attention as Reference)

[-0.006, -0.004] 1.0 No

Relative-Time

(Absolute as Reference)

[0.005, 0.008] 1.0 No

Sequence-Time

(Absolute as Reference)

[0.003, 0.007] 1.0 No

Window-Time

(Absolute as Reference)

[-0.085, -0.076] 0.0 Yes

Mean Imputation

(Mean + Indicator as Reference)

[-0.001, 0.000] 1.0 No

Relative-Time x LSTM [0.010, 0.012] 0.173 No
Sequence-Time x LSTM [0.009, 0.011] 0.691 No
Window-Time x LSTM [0.004, 0.009] 1.0 No
Relative-Time x Random Effect 
Variance

[-0.005, -0.002] 1.0 No

Sequence-Time x Random Effect 
Variance

[-0.005, -0.002] 1.0 No

Window-Time x Random Effect 
Variance

[0.014, 0.019] 0.0 Yes

Relative-Time x Autocorrelation [0.001, 0.003] 1.0 No

Sequence-Time x Autocorrelation [0.002, 0.005] 1.0 No

Window-Time x Autocorrelation [0.013. 0.019] 0 Yes

Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?Predictor

Table 18: CADG Classification Performance Results
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signifying some potential for unaccounted correlation. The lowess of the residuals is well centered at 

zero. Beyond 0.1 on the X-axis, the plot appears to have a well fitted stochastic distribution about zero.


	 	 Unlike the classification models, the regression models generally saw performance 

degrade in comparison to the CSDG as measured by MSE as well as explained variance. There was also 

more differentiation between temporal representations. There was also some small differentiation 

between the Attention and LSTM architectures, with a slight advantage appearing for the Attention 

models across both MSE and explained variance.


	 In the inference model on regression performance for the CADG, we found that increases in the 

size of the random intercepts as well as the measurement error increased the MSR. The temporal 

representations of relative and sequence time were significantly worse than absolute time, while the 

window-time representation was significantly better. As in the classification model case, the 

performance gains from using window-time can be negatively affected by increases in feature 

autocorrelation. Relative time and sequence time both benefited from increases in autocorrelation. The 

interactions with of temporal representation and model architecture remained significant. Table 19 

visualizes the coefficient estimates and the Second Generation p-values (H0 = [-0.125, 0.125], α = 0.05) 

for the regression inference model on the CADG. This inference model had an R2 of 0.760 and a BIC of 
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2,821. Autocorrelation, collinearity, random effect variance and the measurement error variance all had 

quadratic terms that improved model BIC. This model included interactions between the temporal 

representation and the model type, the temporal representation and the sampling type, the temporal 

representation and the random effect variance, and the temporal representation and the autocorrelation.


Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Observed Autocorrelation [-0.193, 0.318] 1.0 No
Squared Observed 
Autocorrelation

[-0.536, -0.105] 0.106 No

Observed Collinearity [0.144, 0.561] 1.0 No
Squared Observed Collinearity [-0.640, -0.194] 1.0 No
Not-Random Sampling 

(Equal as Reference)

[-0.194, -0.039] 0.555 No

Random Sampling

(Equal as Reference)

[-0.119, -0.060] 1.0 No

Random Effect Variance [1.067, 1.207] 0.0 Yes
Squared Random Effect Variance [0.062, 0.221] 0.559 No
Error Variance [-3.062, -0.653] 0.594 No
Squared Error Variance [9.513, 27.793] 1.0 No
LSTM model

(Attention as Reference)

[0.016, 0.064] 1.0 No

Relative-Time

(Absolute as Reference)

[0.367, 0.636] 0.0 Yes

Sequence-Time

(Absolute as Reference)

[0.395, 0.649] 0.0 Yes

Window-Time

(Absolute as Reference)

[-0.629, -0.500] 0.0 Yes

Mean Imputation

(Mean + Indicator as Reference)

[-0.023, 0.013] 0.0 No

Relative-Time x LSTM [0.278, 0.385] 0.0 Yes
Sequence-Time x LSTM [0.174, 0.277] 0.0 Yes
Window-Time x LSTM [0.034, 0.091] 1.0 No
Relative-Time x Random [0.068, 0.193] 0.456 No
Sequence-Time x Random [0.096, 0.220] 0.234 No
Window-Time x Random [0.108, 0.176] 0.25 No
Relative-Time x Not-Random [-0.199, 0.021] 0.664 No
Sequence-Time x Not-Random [-0.214, -0.015] 0.553 No
Window-Time x Not-Random [-0.126, -0.005] 0.992 No
Relative-Time x Random Effect 
Variance

[-0.188, -0.056] 0.677 No

Predictor
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	 The regression inference diagnostic plots show fewer signs of bias and correlated residuals than 

the classification analysis. The RVF plot shown in Figure 33 is well centered at zero. Figure 38 has a 

stochastic pattern around zero that does not imply problems in fit.


Non-Causal Synchronous Data Group Results


	 For the Non-Causal Synchronous Data Group (NSDG), we generated 80 data sets for each 

modeling problem (four batches of 20 data sets). Each batch used a different combination of realism 

mechanisms (timespan link, feature link, and/or measurement link). Within each batch we uniformly 

randomly varied some signal to noise parameters such as the random effect variance and the 

Sequence-Time x Random Effect 
Variance

[-0.197, -0.072] 0.587 No

Window-Time x Random Effect 
Variance

[-0.010, 0.057] 1.0 No

Relative-Time x Autocorrelation [-0.446, -0.220] 0.0 Yes
Sequence-Time x Autocorrelation [-0.362, -0.160] 0.0 Yes
Window-Time x Autocorrelation [0.263, 0.369] 0.0 Yes

Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?Predictor

Table 19: CADG Regression Performance Results
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measurement error.  A summary of the stochastic data characteristics are laid out in Table 20.


	 As with the previous data group, we performed three fold cross-validation for two different deep 

models using four different temporal representations over the 80 data sets per modeling problem. Again, 

we used three fold cross-validation to fit a GLME baseline model on the NSDG. There were a total of 

4,320 data points (2,160 per modeling problem). 


	 Based on  Figure 34, the GLME performed poorly compared to the attention models. This 

finding suggests that the attention models were able to find meaningful associations in the longitudinal 

data for each patient that the GLME could not. Not surprisingly, the non-causal data, was generally more 

difficult for the models to fit in comparison to the causal data. Figure 34 does not suggest meaningful 

differences between temporal representations.


Parameter Modeling Problem Summary Statistics

Event Rate

(Median [IQR])

Classification 9.7% [5.4%, 16.9%]
Regression NA

Measurement Error Variance

(Median [IQR])

Classification 0 [0, 0]
Regression 0.066 [0.022, 0.092]

Probability Threshold Classification 0.600 [0.610, 0.744]
Regression NA

Random Effect Collinearity

(Median [IQR])

Classification 0.445 [0.254, 0.776]
Regression NA

Random Effect Variance

(Median [IQR])

Classification 1.273 [0.985, 1.684]

Regression 1.213 [0.932, 1.579]

Sampling Type

(Mean %)

Classification 100% Equal
Regression 100% Equal

Table 20: Non-Causal Synchronous Data Group Summary Statistics
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	 In the analysis of the performance data the Brier score was our outcome of interest for the 

classification data analysis, because it produced the best inferential characteristics. The analysis did not 

show that any one temporal representation or modeling architecture had advantages over another. This 

finding suggests that the temporal representation is not significant in the non-causal synchronous setting. 

As in the causal data groups, we observed that increases in the random effect variance or collinearity 

significantly increased the Brier score. As previously mentioned, increases in the spread of subject 

averages from the population mean intuitively decrease the performance of a mean model. We found two 

non-linear terms that helped to minimize the BIC of the NSDG classification inference model: a square 

term on the random effect variance and a square term on the probability threshold. We did not find any 

meaningful interactions of other variables with temporal representation. Table 21 depicts the robust 

confidence intervals for the model coefficients as well as the Second-Generation p-values (H0 = [-0.01, 

0.01], α = 0.05). The model R2 was 0.664 and had a BIC of -10,392 with 12 degrees of freedom. 

Decreasing the event rate (increasing the probability threshold), significantly and nonlinearly improved 

Figure 34: NSDG Classification Model Performance vs. Temporal Representation
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the Brier score. The timespan link between the number of measurement occasions and the length of the 

observation period also improved model performance. Increases in inter-subject variability had a strong 

effect on increasing the Brier score loss. There did not appear to be significant differences between 

model architectures or temporal representations. 


	 The fit of the classification NSDG inference model was not as good as in the Causal 

Synchronous Data Group. There is some clear curvature in the RVF plot shown in Figure 35, suggesting 

model misspecification; however, there does not appear to be evidence of heteroskedasticity. These 

characteristics imply that there may be some biases and significant unexplained variance in the model 

specification. While coefficient estimates are biased, the inferences may still relevant given the linear 

specification (identity link function) of the inference model.


 


Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Probability Threshold [-0.13, 0.144] 1.0 No
Square of Probability 
Threshold

[-0.283, -0.069] 0.0 Yes

Timespan Link On [-0.063, -0.059] 0.0 Yes
Measurement Link On [-0.004, 0.000] 1.0 No
Measurement Link x 
Timespan Link

[0.001,  0.007] 1.0 No

Random Effect Variance [0.057, 0.076] 0.0 Yes
Random Effect Variance 
Squared

[-0.017, -0.008] 0.222 No

Random Effect Collinearity [0.021, 0.026] 0.0 Yes
LSTM model

(Attention as Reference)

[0.004, 0.007] 1.0 No

Relative-Time

(Absolute as Reference)

[-0.001, 0.003] 1.0 No

Sequence-Time

(Absolute as Reference)

[-0.001, 0.003] 1.0 No

Window-Time

(Absolute as Reference)

[-0.004, -0.001] 1.0 No

Table 21: NSDG Classification Performance Results
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	 Based on Figure 36, all of the temporal representations struggled to fit the regression problem. 

Some models experienced more variance in the error than the outcome, leading to a negative explained 

variance score. The true GLME model maximized the explained variance, but also had the greatest 

MSE. From the MSE perspective, the deep architectures significantly exceeded the benchmark 

performance established by the GLME. There was not much differentiation between temporal 

representations in the figures; however, the Attention models tended to perform better than the LSTM. 
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	 The poor fit characteristics of the deep models on the regression portion of the NSDG was 

reflected in the inference model. There were no non-linear terms that resulted in smaller BIC values. 

There was a significant interaction between the measurement link and the random effect variance, 

however there were no meaningful interactions with temporal representation. Table 22 shows the robust 

confidence intervals for the model coefficients as well as the Second-Generation p-values (H0 = [-0.125, 

0.125], α = 0.05). The model R2 was 0.463 and had a BIC of 2,859 with 11 degrees of freedom. The 

measurement link interaction and the random effect variance (inter-subject variability) were the only 

significant variables in this model. As the inter-subject variability increased, so did the MSE of the deep 

models. The measurement link significantly decreased MSE, and this effect grew as the random effects 

grew larger. This result signified that the deep models were able to pick up on the correlation between 

the number of measurement occasions and the random effect as the random effects grew more varied. 


	 There are some clear patterns related to model bias in the diagnostic plots shown in Figure 43. 

Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Error Variance [-0.311, 0.937] 1.0 No
Timespan Link On [0.047, 0.141] 1.0 No
Measurement Link On [0.363, 0.637] 0.830 No
Random Effect Variance [0.941, 1.015] 0.0 Yes
Random Effect Variance 
Exponential

[0.046, 0.246] 0.377 No

Measurement Link On x 
Random Effect Variance

[-0.716, -0.467] 0.0 Yes

LSTM model

(Attention as Reference)

[-0.009, 0.081] 1.0 No

Relative-Time

(Absolute as Reference)

[-0.023, 0.104] 1.0 No

Sequence-Time

(Absolute as Reference)

[-0.048, 0.081] 1.0 No

Window-Time

(Absolute as Reference)

[-0.108, 0.011] 1.0 No

Table 22: NSDG Regression Performance Results
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The RVF plot in Figure 37 has a clear linear pattern of residuals below 0 on the y-axis. This pattern 

signifies a clear correlation in the residual violating a key assumption of our NSDG classification 

inference model. Furthermore, there appear to be a greater dispersion of residuals above 0 than below 

demonstrating heteroskedasticity. The lowess fit of the residuals is decently level at zero, but that is only 

a small consolation given the other patterns.  


Non-Causal Asynchronous Data Group Results


	 In the Non-Causal Asynchronous Data Group (NADG) the properties of interest (variance of the 

measurement error, sampling distribution, collinearity of the random effects, variance of the random 

effect(s), and the event rate) were unaffected by removing values of X1 and X2. The median rate of 

missing data in X1 was 48.6% with an IQR of [48.3%, 48.8%]. The median rate of missing data in X2 

was 47.9% with and IQR of [47.6%, 49.0%].


	 The introduction of missing data in the NADG produced different results than the fully 

synchronous NSDG. This is similar phenomena to what we saw in the causal data groups, that 
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Figure 37: NSDG Regression RVF Plot
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experienced greater differentiation between temporal representations with the introduction of missing 

data. Unlike previous analyses the outcome of interest for the classification performance analysis was 

the AUROCC. The interpretation of positive coefficients is an association with better model 

discrimination, and negative coefficients with worse model discrimination. In our performance analysis, 

we saw that window-time had significant performance advantages, while sequence time had 

performance advantages specific only to the LSTM architecture. These findings establish that for models 

with correlated, but not causal features and missing data, window-time can have significant performance 

advantages. We also found that the Attention model was generally the dominant architecture. However, 

that advantage did not hold when using sequence time. Said another way, the LSTM architecture appears 

to be just as good as the Attention model, if the data is ordered, but without time or date. Table 23 has 

the coefficient estimates and the Second Generation p-values (H0 = [-0.01, 0.01], α = 0.05) for the 

classification inference model. This analysis had an R2 of 0.4616 and a BIC of -3,977 with 15 degrees of 

freedom. The analysis also showed significant positive association with the measurement link, and 

significant negative associations with the random effect variance, and the random effect collinearity on 

AUROCC. The probability threshold lost significance in this analysis compared to the NSDG.


Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Probability Threshold [-0.074, 0.077] 1.0 No
Timespan Link On [-0.009, 0.020] 1.0 No
Measurement Link On [-0.177, -0.154] 0.0 Yes
Timespan Link On x

Measurement Link On

[-0.111, -0.073] 0.0 Yes

Random Effect Variance [0.009, 0.032] 0.031 Yes
Random Effect Collinearity [0.002, 0.035] 0.223 No
LSTM model

(Attention as Reference)

[-0.144, -0.110] 0.0 Yes

Relative-Time

(Absolute as Reference)

[-0.020, 0.011] 1.0 No

Sequence-Time

(Absolute as Reference)

[-0.054, -0.020] 0.0 Yes

Predictor
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	 The model diagnostic plot in Figure 38 for the classification performance analysis shows the 

discreteness of the AUROCC with the residual distribution experiencing several discontinuities along 

the x-axis. The plot also shows evidence of heteroskedasticity and bias. The inference characteristics of 

this analysis are suspect, and these results should be treated with some skepticism. 


	 The regression model struggled to find a good fit in the asynchronous data group, which is not 

surprising given the difficulty the models had in the synchronous data group. In the performance 

analysis, we added a term for the different imputation methods. The other control variables were largely 

Window-Time

(Absolute as Reference)

[0.015, 0.052] 0.0 Yes

Mean Imputation

(Mean + Indicator as Reference)

[0.000, 0.018] 1.0 No

LSTM x Relative-Time [-0.036, 0.010] 1.0 No

LSTM x Sequence-Time [0.031, 0.080] 0.0 Yes

LSTM x Window-Time [-0.012, 0.041] 1.0 No

Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?Predictor

Table 23: NADG Classification Performance Results
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the same as the NSDG inference analysis. We again used the MSE as the outcome of interest. The 

random effect variance and measurement error remained significant contributors to MSE compared to 

the NSDG results. The coefficient estimates and the Second Generation p-values (H0 = [-0.125, 0.125], α 

= 0.05) are available in Table 24. This inference model had an R2 of 0.354 and a BIC of 6,911 with 11 

degrees of freedom. 


	 The diagnostic plot for the regression inference model shown in Figure 39 is almost identical to 

Figure 37 from the NSDG. The diagnostic plot shows curvature, suggesting correlated residuals, as well 

as heteroskedasticity. These similarities imply that the results are of similarly low quality and should be 

treated with some reservation.


Predictor Robust 95% 
Confidence Interval

2nd-Gen 
p-value

Significant?

Error Variance [0.795, 1.925] 0.0 Yes
Timespan Link On [0.028, 0.113] 1.0 No
Measurement Link On [0.514, 0.775] 0.0 Yes
Random Effect Variance [0.999, 1.098] 0.0 Yes
Measurement Link On x 
Random Effect Variance

[-0.774, -0.552] 0.0 Yes

LSTM model

(Attention as Reference)

[-0.006, 0.070] 1.0 No

Relative-Time

(Absolute as Reference)

[-0.050, 0.050] 1.0 No

Sequence-Time

(Absolute as Reference)

[-0.059, 0.045] 1.0 No

Window-Time

(Absolute as Reference)

[-0.057, 0.052] 1.0 No

Mean Imputation

(Mean + Indicator as Reference)

[-0.011, 0.064] 1.0 No

Table 24: NADG Regression Performance Results
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Classification CSDG & CADG Discussion


	 In this chapter we detailed the setup and briefly described the results of eight different analyses 

over four different data groups. Over all of the experiments we explored the effect of temporal 

representation on model performance in datasets with causal and non-causal predictors as well as with 

complete (synchronous) and missing data (asynchronous). In the first two experiments, we focused on 

data with causal predictors. When working with synchronous data we found that the deep models were 

able to achieve equal performance to the True-GLME. This GLME was not trained on the test set and 

simply produced a mean fitted value for each prediction. The parity of the deep model to the True-

GLME verified that our power calculations for the sample size of each data set were correct and that our 

deep models produced well fit estimates. The purpose of the causal data group experiments was three 

fold: 1) determine if there was an overall dominant temporal representation, 2) find data characteristics 

that had a meaningful impact on performance, and 3) to determine if any of those data characteristics 

signaled that one temporal representation would be superior to another.
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	 The window-time representation generally exceeded the calibration of the true mean-model for 

classification problems. However, we found that the temporal representation with the best calibration 

(window-time) did not necessarily have the best discrimination (absolute-time). This result held in both 

the synchronous and asynchronous data groups.We believe that the Brier score performance advantage 

of the window-time representation was in part due to it making fewer predictions compared to other 

temporal representations; the window-time representation made one prediction per window instead of 

one prediction per measurement occasion. In both the asynchronous and synchronous results we found a 

strong positive correlation between Brier Score and AUROCC in the window-time results. The other 

temporal representation had strong negative correlations between the AUROCC and the Brier Score. 

This trend implies that as the window-time representation produced a greater variety of predicted 

probabilities, its discrimination increased, but the calibration decreased. However, the models fit with 

the other temporal representations generally saw improvements in both discrimination and calibration. 

The models fit with the window-time representation generally predicted more controls than other 

representations and predicted controls with greater confidence than other representations. Window-time 

is a common representation in the literature66, 68, 73, 74, 91. We found significant tradeoffs between 

calibration performance and discrimination performance using window-time compared to other 

representations. This finding is not discussed in other studies. The tradeoff we observed may be related 

to how we defined the window-time representation. Our definition did not use the average sequence, 

relative, or absolute time of the window as a feature, instead it used the count of measurement occasions 

observed within each window as a predictor. Another potential difference between our definition and 

others may derive from the window-time outcome. In the classification case, we used a majority vote to 

determine the outcome value for a specific window, where ties went to the controls. The effect sizes we 

observed related to window-time were large. 
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	 We noted several factors with a significant influence on the Brier score. The noise terms such as 

random effect variance, random effect collinearity, and the error variance all significantly increased the 

Brier score. All of these noise terms represent unexplainable variance from the model’s perspective, so it 

is logical that these factors should contribute to the Brier score. The strongest contributor was the 

variance of the random effects (the size of the random intercept and slope coefficients). Given the 

generating model setup, these factors had the greatest influence on the outcome value, as their effect size 

in the generative model was larger than that of the measurement error. The autocorrelation of the 

predictors was also significantly associated with larger Brier scores in both the synchronous and 

asynchronous data groups. We believe that increases in feature autocorrelation increased the time 

dependence of the outcome process. This effect made model calibration more difficult because the time 

time effect was more difficult to distinguish from the feature effects. The window-time representation 

showed diminishing returns on improved calibration in the face of increased inter-subject variability. 

This effect suggests that the window-time representation may be no better than the other representations 

when there is a high amount of noise or unexplained variability in the data. In the asynchronous setting, 

features with a high amount of autocorrelation can also curb the calibration advantages of the window-

time representation. Excluding the window-time interaction, the effect of these noise parameters are 

intuitive and are supported by previous findings58, 66. The non-random sampling scheme did significantly 

decrease the Brier score. This is likely a result of the data creation mechanism, where the features in the 

non-random sampling scheme were created before the sampling times were selected. The features in the 

non-random sampling have low autocorrelation, which is where the performance gain likely comes 

from.


	 It is also important to discuss the trivial/non-significant effects observed in the classification 

model performance. We did not observe significant differences between absolute, relative, and sequence 
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time performance. This finding signifies that these representations of time are practically 

interchangeable. We expected that these sequence architectures would realize performance gains on 

equally spaced inputs.  However, a performance difference between equally spaced measurement 

occasions and randomly spaced measurement occasions never materialized. We did not observe a 

significant difference in the performance between the two different architectures, though we should note 

that tuning the Attention models took longer and involved more hyper-parameters than the LSTM. The 

effect of increases in measurement error was relatively small compared to other effects. We would 

expect data with highly leveraged measurement error to experience significantly lower model 

performance. Feature collinearity also lacked a significant showing as an effect. While the collinearity of 

densely sampled features during testing was in the desired ranges, the observed feature collinearity in 

sparsely sampled data was low. The low observed collinearity likely depressed any notable effects on 

model performance.  


	 The addition of missing data in the asynchronous group led to greater differentiation between 

models and the association of an additional interaction term. In the CADG, window-time was the 

representation that significantly maximized the Brier score. The addition of missing data did not 

significantly degrade the discrimination of any of the architecture/temporal representation combinations, 

but it did significantly degrade the calibration of the absolute-time models. This finding means that if 

one is able to observe directly causal features for a process with a manageable level of randomly 

distributed noise, then, in a linear setting, it does not matter if the data has non-random missing values. 

However, in a nonlinear process, such as one with piecewise discontinuities, missing values may prove 

much more consequential. 


	 Both the CSDG and the CADG identified an interaction between window-time and the random 

effect variance. This interaction suggests that populations that have large inter-subject deviance from the 
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population mean, have no clear choice of temporal representation for maximizing the Brier score. On the 

other hand, if one is looking to maximize calibration on a population whose outcomes are relatively 

clustered to the population mean, then window-time can yield a clear advantage in either the LSTM or 

Attention architecture. Said another way, the greater the inter-subject variability, the less that the 

temporal representation matters, because a mean model will struggle to fit a process that varies greatly 

from subject to subject. In this situation, we found that adding past outcomes as a feature can help the 

deep models learn the personalized subject coefficients. 


	 In the presence of missing data, autocorrelation also has a significant impact on the advantages 

of window-time. The greater the autocorrelation in the feature space, the less it matters whether one 

chooses window-time or another representation. If the feature space is not strongly self-correlated over 

time (highly variable from one measurement to the next), then the smoothing action of window-time can 

offer significant Brier score performance benefits.


	 The causal data group experiments in the classification setting revealed some generalizable 

intuition for future model builders working with directly causal features that have a linear relationship. 

The common use of window-time by model developers appears justified. Window-time can minimize 

the Brier Loss in some circumstances. When window-time is not advantageous, there does not appear to 

be a significant difference between temporal representations. This finding can also offer some comfort to 

model developers, as implementation consideration can inform temporal representation without fear of 

performance loss.


Regression CSDG & CADG Discussion


	 For the regression models, the true-GLME baseline had greater separation in terms of 
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performance compared to the deep models. However, the performance difference between the GLME 

baseline and the deep models did not meet our threshold for significance of 0.125 MSE in all cases. This 

result implied that our power calculations for sample size were accurate enough to detect the desired 

differences in effects. We set the significance threshold prior to experimentation, and in retrospect our 

chosen threshold may be too large, as it was 6%-8% difference relative to the largest average MSEs 

shown in Figure 29 and Figure 35. This high bar may have lead us to discount effects that others might 

consider significant. 


	 When it came to temporal representation, we found approximately the same number of 

significant effects in the synchronous data group as the asynchronous one. We found strong evidence 

that the sequence-time and relative-time representations are inferior to the absolute-time reference in the 

complete and missing data settings. The preference for absolute time is likely a result of the data 

generating process. Absolute-time was the representation used as a model predictor. It is logical that 

absolute-time yielded performance gains. What is surprising, is that window-time demonstrated a 

performance advantage in the missing data group and had a non-zero, but trivial performance advantage 

in the complete data group. Window-time avoided large MSEs by smoothing out large fluctuations in the 

outcome. The explained variance scores suggested that the predictions from window-time fit models are 

much more variable relative to the variance of the outcome than other temporal representations. The 

efficacy of a window-like abstraction especially in the presence of missing data is consistent with 

previous research54. 


	 We found only one significant data characteristic on MSE in our inference analysis on the 

synchronous data. The random effect variance (our main noise parameter) was significant. The 

personalized unobserved offset to the regression intercept had a large effect on the MSE. As individual 

subjects deviated more from the group mean, naturally, the MSE increased, because the models 
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generally trained toward a population mean fit. As mentioned earlier, the data generating GLME 

assumed the distribution of personalized effects to be centered at 0. The baseline GLME we fit for 

comparison was able to find the true mean and minimized the MSE effectively. Yet, the MSE of the 

GLME was strongly positively correlated with the variance of the random effect. The random effect 

variance was also significantly associated with more MSE in the asynchronous data group. 


	 However, we again found that autocorrelation can significantly degrade the performance benefits 

of using window-time. Window-time had an interesting dynamic with autocorrelation compared to the 

other representations in the asynchronous data group. As the autocorrelation increased the other 

representations reduced their MSE, while window-time increased. This finding implies that smoothing 

may lose many of its benefits when features already behave in a smoothed manner with respect to time 

(highly autocorrelated). The relative-time and sequence-time representations saw significant 

performance losses in the LSTM architecture.


	 The regression analysis found similar non-effects in the data generating parameters as the 

classification analysis. Feature collinearity and measurement error variance had trivial effects on MSE. 

We detected some significant interactions between the temporal representations and the random 

sampling scheme. These effects suggested that random sampling was less preferred than equally-spaced 

sampling for relative and window-time representations. The reference sampling scheme was the equally-

spaced scheme, which we expected, based on previous literature, to perform the best91. We believe that 

the preference of relative and sequence time for equally spaced samples has to do with the models being 

able to easily learn how much absolute time has passed. The importance of absolute time to the outcome 

makes it a key relationship to learn. Autocorrelation was positively associated with the Brier score, but 

negatively associated with the MSE. The change in effect direction between the classification and 

regression data sets cannot readily be explained. The feature coefficients were -0.5 in the classification 
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and the regression data sets, but the nonlinear probit transformation may have amplified the effect size in 

the classification data sets to reach significance. Adding an indicator variable per feature to signify 

whether that features was observed during that measurement occasion also had a trivial effect on model 

performance. Previous studies have reported that it took a large number of samples to associate the 

indicator variables with the their numeric/categorical counterparts68. We may not have had a large 

enough sample of subjects and/or measurement occasions for the deep networks to find this association. 

Using window-time or absolute-time with either the LSTM or Attention modeling architectures were 

found have indistinguishable results. This finding is supported by previous literature45. However, the 

LSTM did have diminished performance when used with the relative and sequence time representations. 

The LSTM hidden memory, may have struggled to learn how these representations associated with 

absolute time. When considering the two architectures, it is worth noting that the hyper-parameter tuning 

and training time of the Attention models generally exceeded that of the LSTM models by 20%-25%. 


	 In the causal regression based data group, we again found significant performance advantages of 

window-time. This performance advantage manifested itself in the presence of missing data. We 

hypothesize that the absence of values during each measurement occasion made the features more 

variable and less self-correlated over time. Both of those factors were shown to significantly contribute 

to the advantage of window-time. Despite a different modeling problem with its own range of 

parameters, this experiment produced findings that are consistent with the classification setting. 


Classification NSDG & NADG Discussion


	 The non-causal data group was meant to create data that gradually approached the complexity of 

the MIMIC III modeling problems. Different data generations mechanisms were added in a stepwise 
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fashion so that we could isolate the performance effects of those mechanisms, therefore providing a 

better estimate of the performance effects attributable to the temporal representation. We varied fewer 

data generating parameters than in the causal data groups, as we needed to vary only the significant 

factors found in the CSDG & CADG analyses. Specifically, we allowed the random effects variance, the 

random effects collinearity, and the probability threshold to vary for the classification data. The random 

effects variance and random effects collinearity are noise terms. An increase in either increases the 

irreducible error of a predictive model. The probability threshold controls the event rate, also known as 

the ratio of cases to controls. 


	 The primary differentiation of these data groups with the causal data group was that the outcome 

was not a function of the features, but the outcomes values were correlated with the latent subject 

specific intercept term. Many predictive models in healthcare use features that are not causal themselves, 

but are correlated to causal factors. This artificial structure that we specified for the non-causal data 

group parallels the situation of many clinical predictive models and may allow our findings to generalize 

beyond the modeling problems chosen. We induced variability in the data (event rate and signal to noise) 

to allow our findings to generalize beyond the MIMIC III dataset. 


	 In the synchronous data group we found that the temporal representation is not of particular 

import. This finding is consistent to that of the CSDG. When given complete information (all data for all 

features at all time steps), the model performance is not affected by the chosen temporal representation. 

Such situations are exceedingly rare in healthcare, but may exist in other domains, specifically those 

with automated data collection.


	 What is more interesting, is that the temporal representation does matter when data is incomplete 

and imputation is used. As mentioned in the methods, we used a non-random mechanism to create 

missing values to better simulate real data collection processes. The imputation methods we selected 
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(mean imputation and mean+indicator imputation) are those that appear frequently in the literature. This 

scenario is common in healthcare, as data is rarely complete. Simple imputation methods are commonly 

used in the development of clinical machine learning models, making our findings of use to other model 

builders in the domain. In both the CADG and the NADG, window-time demonstrated performance 

advantages. One key caveat to this finding is that we allowed the window-size to be a tunable parameter, 

meaning that the window-size is a function of the training data. Window-time would likely not have 

performance advantages if the window-size was determined a priori. We believe that window-time 

demonstrated performance advantages, because it makes fewer predictions than the other temporal 

representation and the feature values for an individual window are an average of observed and imputed 

values. For each subject we generate the full matrix of measurement occasions with imputed values for 

each feature before we divide those measurement occasions into windows and average the measurement 

occasions within each window. This approach results in a shrinkage-like effect, as windows with more 

observed measurements can differ more from the population mean than windows with fewer observed 

measurements. We believe that the window size is dependent on the rate of change in the feature space. 

In the CADG experiment we found that high autocorrelation mitigated the advantages of window-time, 

suggesting that features that change slowly require larger windows than those that change quickly. This 

hypothesis is based on some of the theories of signal processing, where the variability of the signal 

determines the optimal sampling rate. A variable process requires more frequent sampling than data that 

is more consistent. 


	 Another finding from these experiments was the suggestion that the Attention model may have 

performance advantages over the LSTM in asynchronous data. This finding is not consistent with the 

results of the NSDG or CADG. As with window-time, the architecture may not matter much when data 

is complete, but appears to make significant performance contributions when data is incomplete and 
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features are not causal. The advantage of the multi-head Attention model over the LSTM may have to do 

with the number of parameters. Multi-head Attention trains several matrices that are specific to the 

current feature value, while the LSTM shares its hidden memory cells across all feature values. 


	 


Regression NSDG & NADG Discussion


	 The inference models on the non-causal regression data struggled to find a decent fit on the data. 

Many of the findings of the non-causal regression inference models are similar to those of the causal 

data groups. The non-causal regression datasets had a small variable amount of measurement error. We 

did not observe any tradeoff between MSE and explained variance. The average explained variance 

scores for some of the models went below zero, suggesting that the model prediction had greater 

variance than the outcome. 


	 Only the random effect variance remained a significant effect on MSE in both the synchronous 

and asynchronous data groups. Random effect variance was a significant effect in all eight data groups. 

We also discovered a significant interaction between the measurement link and the random effect 

variance in both data groups. The measurement link reduced MSE, because it associated subjects with 

larger random intercepts with more measurement occasions. The deep models were able to use this 

structure to reduce MSE, because the inter subject variance decreased as one moved from one 

measurement occasion to the next. Said another way, the population mean is not particularly accurate on 

the first measurement occasion; however, with the measurement link active, the outcome variance 

between subjects on the 30th+ measurement occasion is much reduced. The subjects that have 30 or 

more measurement occasions also have much more similar random intercepts and therefore more similar 

outcomes. 
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	 The regression heat maps appeared to show large differences in performance between the 

Attention and LSTM modes, but that difference never formally materialized in the inference models. 

The error cutoff of 0.125 for the MSE (roughly a %10 difference) may have been too large to capture the 

differences shown on the heat maps. As in the classification case, no temporal representation stood out, 

and adding missing indicators did little to improve model performance. These findings are intuitive 

given the non-causal relationship of the predictors to the outcome, implying that the representation of a 

predictors in a high noise setting is not particularly important. 


Strengths and Limitations


	 The strength of this work largely rests on its use of precisely created data that allowed for a 

careful interrogation of different temporal representations. We searched a large combinatoric space with 

our data creation machinery and came away with several key findings that are consistent with less 

formal experiments in the literature. This work was methodical in its choice of experimental parameters. 

We made great effort to meaningfully capture as much of the realistic elements of clinical data (non-

random missing values, non-random measurement occasions, and mechanisms to match the 

measurement occasion distribution), while simplifying the data generation process enough to have a true 

gold-standard. We carefully determined sample sizes and the number of measurement occasions through 

pilot studies and formal calculation. We attempted to anchor experimental parameters on real world data 

through a detailed exploratory analysis of MIMIC III. We set thresholds for meaningful effect sizes prior 

to analysis and determined the significance of findings on the data scale, and not on the standard 

deviation scale. The deep architectures we built incorporated as many design decisions as possible as 

hyper-parameters. We rigorously tuned and evaluated said hyper-parameters with a uniformly random 
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search using a nested cross-validation strategy. We compared the performance of our deep models to that 

of a true baseline model to validate that the deep models trained as expected. We used stepwise methods 

in the non-causal data groups to isolate the effects of the different data generations mechanisms we used.  

We performed inference on the resulting model performance measures with robust statical methods, and 

we evaluated the quality of those inferences.The robust (Huber-White corrected standard errors) 

inference method helped to prevent the underestimation of model variation and the over estimation of 

effect sizes. The regression framework allowed us to isolate the effects of different data parameters from 

one another, helping to generalize the findings to other datasets. We believe that the internal consistency 

of these experiments will allow our work to generalize to other datasets with different generating 

processes. The primary finding of window-time being advantageous in asynchronous data has been 

observed in other studies and there is a theoretical basis for its advantages in the signal processing 

domain. 


	 Despite these methodological strengths, our work was not without weaknesses. While the GLME 

model used to generate the data allowed for fine tuned control and a gold-standard baseline, it came at 

the cost of some major assumptions as well as unrealistic artifacts. The most difficult assumptions to 

defend are the zero-centered normal distribution of random effects. We do not have an empirical basis 

for this assumption, and generally saw log-normal distributions in the characteristics of the MIMIC data. 

Another major assumption of our generating model was that of a time-specific coefficient. Modeling 

time explicitly did lead to the desired correlation structure in the residuals, but it also baked in absolute-

time with a relative anchor as the default temporal representation. Absolute-time likely had a structural 

advantage compared to other representations. There may be some defense of such an assumption, as our 

birth date acts as a relative anchor point for many health risks and comorbidities. However, it may have 

been of greater value to evaluate a different representation instead of absolute-time to ensure equal 
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footing. The non-random sampling scheme, measurement link, and timespan links are simplifications 

and/or workarounds to improve the realism of the simulated data in comparison to MIMC III. It may 

have been worth the while to use MIMIC III data to develop a more realistic sampler. The long-gen 

package can make use of custom user-designed sampling functions, opening the door for more 

practically grounded future work. The GLME was also an awkward fit for the problems modeled 

(remaining ICU LOS and 24hr ICU mortality). A time to event model such as the cox proportional 

hazard model may have better fit these problems, while being able to handle unbalanced longitudinal 

data. Another limitation was that the predictor collinearity dimension was not well explored. During 

development the collinearity was within the desired parameter ranges. However, the limited number of 

measurement occasions made the theoretical collinearity difficult to translate into observed collinearity. 

Finally, there were other longitudinal properties such as stationarity that were not explored at all. In 

future work we would hope to address these limitations, as they are important properties of clinical data. 

We also hope to better explore window-time specifically and to better understand the conditions in 

asynchronous data that make it advantageous. Another area of future study is that of interpreting the 

window size. Currently we hypothesize that the window size is correlated to the average time until a 

significant change in the feature space, but this question is worthy of further study. 


	 In this work we demonstrated that window-time can be a dominant representation for modeling 

problems (regression and classification) with asynchronous features. Window-time was best used where 

the predictors were not strongly time dependent (low to moderate autocorrelation). As the 

autocorrelation of the feature space grew, other temporal representations became suitable alternatives. In 

situations datasets where all features are observed, the temporal representation became less important. 

Our work explored a few commonly used representations and methodically evaluated their effects on 

model performance, accounting for many commonly seen characteristics in clinical data. 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Chapter IV


COMPARING TEMPORAL REPRESENTATIONS IN HEALTHCARE DATA 


Study Design


In this chapter we sought to test if the intuition afforded to us by our experiments on synthetic 

data would hold in real clinical data. As previously mentioned, we used the MIMIC III ICU data set as a 

source of inspiration for many of the different parameters of the synthetic data122. We made use of 

MIMIC III to evaluate the predictive performance of different temporal representations using cohort 

definitions and modeling tasks from a benchmarking study on this same data73. The high level 

architecture designs of Figure 24 and Figure 25 for the deep models were based off of a benchmarking 

study73. We replicated two of the modeling problems of interest (24 hour ICU mortality and remaining 

ICU length of stay prediction) as well as the cohort from Harutyunyan et. al.’s study73. In the original 

benchmark, Harutyunyan et. al. only reported results for a relative-time representation used with a 

mean+indicator imputation method in an LSTM model73. Other studies have examined other topics 

using MIMIC III such as imputation methods, architecture components, and training strategies68, 61, 73, 74, 

95, 158. In this experiment, we evaluated four temporal representations (absolute, relative, sequence, and 

window) with both mean imputation and mean+indicator imputation in both LSTM and Attention 

architectures. 


Materials


	 We used a 2015 MacBook Pro with four 2.9 GHz Intel processors and eight GB of RAM to pre-

process and clean the MIMIC III data into a cohort ready for model fitting. We used a 2014 Alienware 
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X51 desktop running Windows 10 with four 1.6 GHz processors, 32 GB of RAM, and a 6GB NVIDIA 

GTX 1060 graphics processor (GPU) to develop the deep models that would train and run on MIMIC III 

data. Our primary compute environment for the experiment was ACCRE. In the ACCRE environment, 

we used 31GB of storage and 34 CPUs connected to 17 GPUs in a configuration of two CPUs per GPU. 

The 34 GPU-connected CPUs were graciously provided through a miniature grant from the Vanderbilt 

University Data Science Institute143. 


	 We used the Python programming language version 3.6.3 for data preprocessing, predictive 

model development, and data aggregation/visualization. Jupyter notebooks127, the Sublime Text editor128 

(version 2), and vim141 were used as the primary Python editors. Our Python package dependencies are 

listed in Table 25.


Package Version

IPython125 7.12.0

Joblib145 0.15.1

Jupyter126 1.0.0

Long-Gen124 0.2.3

Matplotlib129 3.1.3

Numpy130 1.18.1

Pandas131 1.0.1

Scipy132 1.4.1

Scitkit-learn133 0.22.1	

Torch146 1.6.0

Table 25: MIMIC III Modeling Software Dependencies
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Methods


	 Our study cohort was made of adult ICU patients admitted to Beth Israel Deaconess Hospital in 

Boston, MA between June 2001 and October 2012122. We used the same inclusion and exclusion criteria 

defined by Harutyunyan et. al.73. We excluded ICU admissions that resulted in a transfer between critical 

care wards and we also excluded ICU admissions where the patient returned to the ICU after being 

discharged to a medical ward. ICU admissions without admit and discharge date-times were also 

excluded. The benchmark study applied four criteria sequentially to build their cohort: 1) no ICU 

admissions with critical care transfers, 2) no admissions with multiple ICU stays for the same inpatient 

admission, 3) age > 18, and 4) must have ICU admit and discharge date-times. The sequential 

application of these criteria resulted in a logical error, because ICU admissions with multiple stays were 

allowed into the cohort if all but one of those ICU stays involved a transfer between critical care wards. 

We intentionally replicated their logical error allowing these 56 corner-case ICU admissions into the 

cohort of 33,798 patients with 42,276 ICU admissions. The study used 16 different clinical variables to 

make predictions for a variety of tasks. We reproduce their table of variables in Table 26, which includes 

the MIMIC III source file, the population mean value used for imputation, and how the clinical feature 

was represented. Harutyunyan et. al. chose the clinical variables that were most complete per each 

measurement occasion.

Variable MIMIC-III	table Impute	Value Modeled	As

Blood pH chartevents,	labevents 7.4 continuous

Capillary Refill Rate chartevents 0-Normal	<3	secs categorical

Diastolic Blood Pressure chartevents 59mmHg continuous

Fraction Inspired Oxygen chartevents 0.21 continuous

Glascow Coma Scale 
Eye Opening

chartevents 4-spontaneously categorical

Glascow Coma Scale 
Motor Response

chartevents 6-obeys	commands categorical
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	 For this chapter we decided to focus on only two prediction tasks. The first task we chose was a 

classification task, where we would attempt predict whether a patient was likely to deteriorate past the 

point of the clinical staff being able to resuscitate them (ICU mortality). We chose a prediction window 

of the next 24 hours from the time the forecast was issued. This choice was primarily to parallel the 

benchmarking study, but the intuition is that 24 hours may be enough time to intervene on patients with 

treatable causes of death. Figure 40 provides a model of how this event is defined over a set of 

Glascow Coma Scale 
Verbal Response

chartevents 5-oriented categorical

Glucose chartevents,	labevents 128mg/dL continuous

Heart Rate chartevents 86beats/min continuous

Height chartevents 170cm continuous

Mean Blood Pressure chartevents 77mmHg continuous

Oxygen Saturation chartevents,	labevents 98% continuous

Respiratory Rate chartevents 19breaths/min continuous

Systolic Blood Pressure chartevents 118mmHg continuous

Temperature chartevents 36.6C continuous

Weight chartevents 81kg continuous

Variable MIMIC-III	table Impute	Value Modeled	As

Table 26: Clinical Variables Used as Predictors from MIMIC III

Admission to ICU Death of 

Subject

Discharge 
From ICU

False True

24 Hours

Figure 40: 24 Hour ICU Mortality Outcome Definition
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measurement occasions for one subject. Figure 40 is a recreation of a figure from Harutyunyan et. al.73.


	 In the second task we attempted to predict the remaining length of stay for a patient in the ICU. 

We took this as a regression problem that attempts to predict the amount of time until discharge relative 

to the time when the forecast was made. This problem could also be framed as a time-to-event model, 

but we wanted to follow the definition laid out in Harutyunyan et. al.73. Figure 41 provides some visual 

intuition on our definition of the remaining ICU length of stay outcome, as we make predictions at 

various points during the ICU admission as to the remaining time until discharge. 


	 Having selected our modeling problems, the next task we undertook was to preprocess the 

MIMIC III data to tie clinical measures to ICU admissions present within our cohort. As in the 

benchmark study, we excluded clinical measurements that could not be associated with either a 

particular inpatient admission or an ICU admission. As part of pre-processing we standardized the units 

of the clinical measurements using standard conversions (e.g., imperial to metric). Our preprocessing 

performed limited inference of the units of measure based on the value if the units were not present, as 

was done in the benchmark study73. We also screened the clinical predictors for implausible values using 

the value ranges from the benchmark study. We did deviate from Harutyunyan et. al.’s value ranges for 

height and weight, because zero kilograms and zero centimeters are not valid cutoff thresholds for low-

Admission to ICU Discharge From 
ICU

Remaining Length of Stay

Figure 41: Remaining ICU LOS Outcome Definition
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end erroneous values for adult patients. For height we chose thresholds that were sex specific based on 

99th percentiles for the United States. The weight thresholds were based on the patient’s height by using 

body mass index (BMI) thresholds. While all other clinical measurements were treated as dynamic 

values that changed over time, we treated height and weight as static values by averaging all valid 

measurements for that patient. We performed this static smoothing because the measurement error for 

height and weight in the ICU setting is significantly greater than the actual variance of those features 

during an ICU stay159-161. We used multiple regex patterns to extract a blood glucose value, which led to 

a large difference in event capture. In total, these choices led us to associate 34,668,291 clinical 

measurements, compared to only 31,868,114 measurements used in the benchmark study (a difference of 

2,800,177 measurements [9%]). The value ranges we used to screen erroneous values can be seen in 

Table 27. It is important to note that for the 24hr mortality and length of stay prediction problems, the 

benchmark study excluded admissions less than 4 hours. We did not make that exclusion, because such 

exclusions add selection biases that may not be obvious to model users.


Variable Low	Threshold High	Threshold

Blood pH 6.3 8.4

Capillary Refill Rate 0-Normal	<3	secs 1-Abnormal	>3	secs

Diastolic Blood Pressure 0mmHg 375mmHg

Fraction Inspired Oxygen 0.2 1

Glascow Coma Scale Eye Opening 1 4

Glascow Coma Scale Motor 
Response

1 6

Glascow Coma Scale Verbal 
Response

1 5

Glucose 0.1mg/dL 2200mg/dL

Heart Rate 0beats/min 350bpm

Height female:	140cm

male:	155cm

female:	190cm

male:	205cm

Mean Blood Pressure 0mmHg 375mmHg
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	 Another key difference between our study and the benchmark was how we defined a 

measurement occasion. The benchmark study used a window-time representation with a window length 

of one hour. The benchmark study did not include a count of measurements within window count, like 

we did in our window-time representation. We tuned our window sizes as a hyper-parameter that varied 

from 14 minutes to 5 days and 21.5 hours. For the absolute, relative, and sequence-time representation, 

we defined a measurement occasion as a one minute interval, because that was the lowest resolution of 

the timestamps for clinical events. We made a prediction each time new data was recorded for these 

three representations. This is an analogous setup to that of the asynchronous data from Chapter III. The 

outcomes of 24hr ICU mortality and remaining LOS were defined for all measurement occasions. This 

prediction setup may not be possible for outcomes that require repeated measurement. The MIMIC data 

had a long left tail in the distribution of measurement occasions that could lead to unwieldy matrix 

calculations. Therefore, we right-truncated sequences longer than 1,008 measurement occasions. This 

means we took the last 1,008 measurement occasions of any admission. We chose 1,008 because that 

was the 99.9th percentile of the number of measurement occasions. This choice means we discarded 

measurements for approximately 42 admissions. We considered implementing truncation within the 

learning algorithm (back propagation through time) instead of in the data, but decided against that 

approach due to the performance considerations of redefining the propagation window at each time step 

Oxygen Saturation 0% 100%

Respiratory Rate 0breaths/min 300breaths/min

Systolic Blood Pressure 0mmHg 375mmHg

Temperature 26C 45C

Weight 15BMI 45BMI

Variable Low	Threshold High	Threshold

Table 27: Thresholds Used for Cleaning Clinical Predictors
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in the training process162. We evaluated both mean imputation and mean+indicator imputation, as we did 

in Chapter III. Harutyunyan et. al. used mean+indicator imputation73.


	 After preprocessing the data, we carefully studied the data properties to forecast what we thought 

would be the best temporal representation based on our findings from Chapter III. We measured the 

predictor autocorrelation, the inter/intra-subject variability in the feature and outcome spaces, as well as 

the sampling distribution. To compare and contrast intra-subject variability with inter-subject-variability 

we compared the distribution of statistics grouped at the subject level with those calculated on 

ungrouped data. To gain insight into the sampling distribution we plotted the histograms of the relative-

time between measurements for a variety of predictors. For the histograms we adjusted the number of 

bins to standardize an interval of 10 minutes per bin for all the histograms. We hoped to informally 

examine if the methodology in this chapter was able to inform a real world problem using greatly 

simplified data. We then compared our prediction to reality by evaluating the four temporal 

representations on both architectures, using both imputation methods, for both modeling problems 

leading to a total of 32 combinations. 


	 The architecture setup for the predictive models was essentially unchanged from Chapter III. The 

primary difference was that the MIMIC models used more features (17 with mean imputation and 33 

with mean+indicator imputation). There were some slight downward adjustments to our potential hyper-

parameter values, as we ran into memory overflows on the ACCRE GPU’s for the Attention models. We 

list the possible hyper-parameters in Table 28, and highlight differences from Chapter III (see Table 14) 

in light blue.


Hyper-parameter Related Model Value Range

Batch size Feedforward, 
LSTM

[8, 16, 24, …, 156]

Attention [8, 16, 24, …, 56]
Depth Attention [1, 2, 3, …, 8] x number_of_heads

Hyper-parameter
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	 The tuning and evaluation strategy for the predictive models was also very similar to Chapter III. 

We used three-fold cross-validation nested within three-fold cross-validation to tune, train, and evaluate 

the different models (please refer to Figure 27 for a visual). We used the exact meta-parameters of 

Chapter III as well (25 random hyper-parameter draws, 5 training epochs during tuning, and 30 training 

epochs after selecting the best of the explored hyper-parameters). We recorded the AUROCC and Brier 

score for the 24hr mortality models. For the length of stay models we recorded the MSE, the mean 

absolute deviation (MAD), and the Explained Variance score. We compared the different model 

performance for each representation and architecture combination with Second-Generation p-values. We 

defined a significant classification difference as a difference of 0.01 AUROCC or more. We defined a 

significant regression difference as a 12 hour or more difference as measured by the MAD. We chose to 

scale the MAD to hours to allow for an easier comparison with the benchmark study results.


Drop out rate Attention, 
Feedforward, 
LSTM

(0, 0.1)

Hidden dimension Attention, 
Feedforward, 
LSTM

[8, 16, 24, …, 56]

Learning rate Attention, 
Feedforward, 
LSTM

(0.0001, 0.001)

Number of layers Feedforward [1, 2]
Number of heads Attention [1, 2]
Optimizer Attention, 

Feedforward, 
LSTM

[ADAM, Wighted ADAM, Rprop, 
Centered RMS]

Weight decay Attention, 
Feedforward, 
LSTM

(0, 0.25)

Related Model Value RangeHyper-parameter

Table 28: MIMIC Model Hyper-Parameter Tuning Values
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Results


	 We compared the median of all values regardless of subject compared to the median of the 

subject-specific median measurement. The ungrouped medians and IQRs excluded extreme values, 

while the grouped median of medians excluded extreme subjects. If intra-subject variability was 

equivalent to inter-subject variability, we would expect these two quantities to be roughly equal. If the 

ungrouped IQR was wider than the grouped IQR, that would signify that intra-subject variation was 

large relative to inter-subject variability. From the measurement occasion perspective, we had an event 

rate of 2.6%, which is fairly case imbalanced. From the subject perspective, 11.3% of the patients in our 

cohort died in the ICU. Our grouped event rate was greater than the ungrouped rate, suggesting patients 

that died tended to die shortly after their admission to the ICU, because the proportion of measurement 

occasions labeled as cases is significantly smaller than the expected proportion (percent of subjects with 

mortality event x median ratio of mortality possible time to total LOS = 0.113 x (24/30.25) = 0.090). 

This estimate is conservative, as we might expect a greater rate of measurement occasions in the hours 

before death instead of the uniform rate we assumed. The remaining length of stay saw much greater 

intra-subject variability than inter-subject variability. This result was to be expected as the subject with 

the longest LOS has a larger outcome space (424,103min - 0min) than the average subject (1,815min - 

0min). Most of the continuous features saw greater intra-subject variability than inter subject variability. 

Overall, the data had a moderate amount of variability in the feature space. Though some features, such 

as blood glucose, saw much more variance than others, such as oxygen saturation. The categorical 

features tended to be fairly low variance. We observed that the outcomes tended to be much more time 

dependent than the features. The predictors had an average autocorrelation of 0.406, while the outcomes 

had an average autocorrelation of 0.987. Collinearity was difficult to measure due to the asynchronicity 

of observations. The statistics of the data characteristics  for the features and the outcomes used for 
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prediction is shown in Table 29.


	 To analyze the sampling scheme we looked at the time between measurements for different 

predictors. We plotted the distribution of relative sample times to see if there was a wide distribution of 

relative-times. A wide distribution would imply a more random sampling distribution, while a more 

concentrated distribution of times would signify a more equally spaced sampling distribution. Figure 42 

shows that most variables are regularly sampled with distributions that have sharp peaks near zero and a 

rapid fall off. The blood glucose and blood pH tests have the widest distributions. Their distributions are 

Variable Variable 
Type

Ungrouped Median (IQR) Median of Subject 
Grouped Median (IQR)

Autocorrelation

Mortality Outcome 2.6% 4.5% 0.975

Length of Stay Outcome 73.2hr [28.3, 200] 30.25hr [18.6, 54.6] 0.999

Glucose Predictor 127mg/dL [105, 158] 124 mg/dL [110, 143] 0.401

Systolic BP Predictor 119mmHg [104, 137] 118.5mmHg [108.5, 131] 0.423

Diastolic BP Predictor 59mmHg [50, 67] 59mmHg [53, 69] 0.420

Mean BP Predictor 77mmHg [68, 89] 77mmHg [70.8, 84.5] 0.337

Respiratory Rate Predictor 19breaths/min [15, 24] 18breaths/min [16, 21] 0.221

Temperature Predictor 37C [36.5, 37.5] 36.9C [36.5, 37.2] 0.625

Blood pH Predictor 7.39 [7.34, 7.44] 7.38 [7.34, 7.42] 0.302

O2 Saturation Predictor 98% [96, 99] 97% [96, 99] 0.013

Heart Rate Predictor 85 [74, 98] 83 [74, 93] 0.514

% Inspired O2 Predictor 40% [40%, 50%] 50% [40%, 50%] 0.310

Capillary Refill Predictor 0-Normal [0, 0] 0-Normal [0, 0] 0.612

GCS Verbal Predictor 4-Disoriented [1, 5] 5-Oriented [2, 5] 0.594

GCS Motor Predictor 6-Obeys commands [5, 6] 6-Obeys commands [6, 6] 0.470

GCS Eye Predictor 4-Spontaneous [3, 4] 4-Spontaneous [4, 4] 0.446

Height Predictor NA 170cm [163, 178] NA

Weight Predictor NA 78.9kg [66.5, 93.0] NA

Table 29: MIMIC Cohort Characteristics
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still fairly peaked, but the relative sampling appears a bit more random than other predictors.  


	 Having studied the temporal characteristics of the MIMIC III data, we then sought to make a 

prediction of what temporal representation (if any) might lead to the best performance for each modeling 

problem. The asynchronous non-causal data group most closely approximates MIMC III’s data 

characteristics. MIMIC III is an asynchronous data set, and clinical features such as current temperature, 

heart rate, and blood glucose are likely correlated with future death in the ICU or ICU discharge, but 

might not necessarily be on the causal pathway of future ICU death/discharge. The results from the 

NADG Chapter III experiment suggest that window-time paired with an Attention architecture will lead 

to the best AUROCC for the 24hr mortality model, and that neither missing data representation will out 

perform the other. In the case of the length of stay prediction problem we predicted that no temporal 

representation would out perform the others, the architecture choice would not matter, and neither would 

the missing data representation. Agreement of these predictions with the observed reality would suggest 

that our methods have discovered meaningful relationships in the synthetic data.


	 After training and evaluating the models on the MIMIC III data, we found that that window-time 

Figure 42: Histograms of Relative Sample Times
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had a large positive impact on both the classification model results as well as the regression model 

results. The Attention architecture also appeared to make a positive contributions to both classification 

and regression model performance. However, the high variance estimates of the LSTM model 

performance prevented this difference from being conclusive. The mean+indicator imputation method 

also appeared to have a strong positive impact on performance. However, many of those differences did 

not rise to the level of statistical significance. 


	 In the 24hr mortality model results, window-time paired with the Attention architecture clearly 

produced the best performing models. Figure 43 shows the average performance of the different 

temporal representations, architectures, and imputation methods from the perspective of the AUROCC, 

the Brier Score, and the area under the precision recall curve (AUPRC). Below the average performance 

is the asymptotic confidence interval at the 95% level. No matter the metric, the window-time 

representation, when used with the Attention architecture, performed best. Absolute time was 

significantly inferior compared to other representations. Relative and sequence time were equivalent to 

each other across the different models and imputation-method combinations. 


	 The performance of our window-time mortality model was superior to Harutyunyan et. al’s 

model on the 24-hr ICU mortality73. The best 24hr mortality from Harutyunyan et. al. had an AUROCC 

of [0.908, 0.913] and an AUPRC of [0.334, 0.354]73. Given that Harutyunyan et. al. used a window-time 

representation, it was encouraging to see our window-time models reasonably exceed the benchmark. 

This feat provided evidence that we implemented our models accurately. However, it was not clear how 

much of the performance difference between our best model and theirs was due to cohort definition, data 

pre-processing methods, architecture differences, or temporal representation. 
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	 We believe that the implementation of window size as a hyper-parameter was one of the primary 

drivers of our state of the art performance result on 24hr ICU mortality prediction66, 68, 73, 74. Many of the 

other studies on the 24hr ICU mortality prediction task used window-time as their default temporal-

representation, but none of the studies implemented and tuned the window-size as a hyper-parameter. 

Figure 43: 24hr Mortality Prediction Performance
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We also believe that our formal approach of defining measurement occasions within a window also 

improved our model’s performance.


	 The length of stay prediction task was relatively more difficult than the ICU mortality task and 

the average model performance reflects that difficulty. The relative performance was poor and most 

models struggled to produce predictions within 80 hours of the true value. The Attention model using 

window-time, again proved superior, as assessed by the explained variance score and the MAD. That 

combination significantly dominated all of the other combinations. The MAD and explained variance 

scores of all model and temporal representation combinations is visualized in Figure 45. There were 

trivial performance differences between mean imputation and mean+indicator imputation in the 

Attention model + window-time categories.


	 Our best model as able to produce predictions within 18 hours of the true value on average. This 

model used an average window definition that produced predictions approximately every 4 days and 

20.5 hours on average. The model that performed best, made orders of magnitude fewer predictions than 

Figure 45: Remaining Length of Stay Prediction Performance
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other temporal representations (a median of 1 instead of 69). We believe that the structure of this 

problem is not well suited to the task because it seems that the models that perform best learn to make 

the fewest number of predictions. Despite the challenges of this modeling task, a few of our LOS models 

were better than the best benchmark model, which had a MAD of [110.5hr, 111.4hr]73. This finding 

provides evidence that our models trained and performed as accurately as one could expect for this task. 

Again it is unclear how much of the performance gains were attributable to cohort and data cleaning 

differences and how much was attributable to the temporal representation.


Discussion


	 To begin this series of experiments, we performed a detailed analysis of the data to understand its 

characteristics. We focused on the characteristics that had the greatest effect on model performance 

based on the findings from Chapter III. Those characteristics included inter-subject variability, intra-

subject variability, feature autocorrelation, and the general sampling mechanism. Based on those 

observed characteristics of the MIMIC III data, we made predictions on the best temporal representation 

to use for each modeling problem (24hr ICU mortality and remaining LOS prediction). We based our 

prediction on the results from the NADG experiments of Chapter III, because those experiments 

approximated many of the key characteristics of MIMIC III (asynchronicity, correlated non-causal 

features, non-random sampling, and outcome distribution). The Chapter III results suggested that 

window-time would offer the greatest performance advantage in the 24hr ICU mortality problem when 

paired with the Attention model. The experimental results of this chapter confirmed our prediction 

exactly. Furthermore, the results from the NADG in Chapter III did not find that the advantages of the 

window-time and attention model combination were dependent on characteristics of the features or the 
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cohort. Taken together, the confirmation of the best performing window-time-attention-model 

combination with the results of Chapter III suggest that the performance advantages should also be seen 

in other modeling problems with asynchronous features, correlated non-causal features, non-random 

sampling, and an outcome label present at each measurement occasion. Having cases act as an absorbing 

Markov state may also be a necessary condition for the advantages of window-time paired with the 

Attention model to hold. Despite all these constraints, there are many classification problems in the 

clinical domain that may benefit from these findings: mortality prediction in general, Human 

Immunodeficiency Virus status, cancer stage, and 30-day readmission status. All of these problems have 

outcomes that act as an absorbing state with features that are sparsely and episodically collected through 

a non-random inferential process by clinicians over time. Many of the routinely collected clinical 

measures that would be used as predictors are surrogate measures of vital function that are correlated 

with disease, but do not generally point to a pathognomonic cause on their own. 


	 The other key findings of this chapter relate to how we realized the performance benefits of the 

window-time and Attention model combination. Our window-time representation was as effective as it 

was, because we tuned the window-size as a hyper-parameter. The tuned window size is at the level of 

the cohort average. Individual subjects within the cohort may be better optimized with smaller/larger 

windows than the tuned window size. Building in the flexibility to tune the window-size is not 

commonly done, because it adds complexity to the hyper-parameter tuning process66, 68, 73, 74. Many 

model builders that use window-time pick a window-size to fit socio-technical considerations in model 

use66, 74. Those that do perform trial and error on the window-size, use a predetermined search grid in 

isolation of other hyper-parameters68, 73. The search grid approach may ignore potential interactions the 

window size might have with other hyper parameters (e.g., the learning rate or the batch size), and 

unnecessarily constrains the range of possible values. 
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	 In the remaining ICU LOS prediction task, although the window size was not tuned to some 

inflection point, being tuned toward the boundary of possible values (an average of 4.85 days of a 5 day 

maximum) was also informative and interpretable. The window size was more evidence of features that 

were ill suited to predicting the outcome as it the outcome was framed. This kind of dynamic may be 

difficult to detect without tuning the window-size. There are not many options to optimize the 

representation of predictors that are more or less orthogonal to the outcome. 


	 One might argue that the results from the LOS prediction task contradict our generalizability 

conclusions, as we found performance advantages with window-time and the attention model where we 

predicted neither would be particularly beneficial. However, if one were to dig deeper into the results, 

one would see that the best Attention models using window-time were making one prediction per subject 

on average. That one prediction required data over a time window greater than the average LOS in the 

ICU (4.85 day window size versus a 3 day average ICU LOS). Despite making 68 fewer predictions on 

average than the other representations, the window-time models still had an average MAD of at least 

18.3 hours, not a particularly useful model. The lack of predictions made by the window-time 

representation suggests a fundamental issue with the framing of the prediction task in that there is a 

mismatch between the data used as predictors and the outcome of interest. As the problem was framed, it 

suggests that the ICU discharge criteria is correlated to the vital measures of oxygen saturation, heart 

rate, blood pressure, etcetera. While stability in those vital measures might be necessary to step a patient 

down to a medical unit (a big assumption), they are certainly not sufficient. We lack details on the 

organizational policies and structure at Beth Israel Deaconess Medical Center to know the capabilities 

and roles played by the other hospital units. Furthermore, admission/transfer/discharge are all clinical 

process outcomes163. That means that administrative and organizational factors can have a big effect on 

the LOS that will not be captured in vital signs163. Organizational factors, such as staffing164 and the use 
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of residents during the course of care165, can affect the length of stay within a hospital. Hospitals are also 

subject to different cost and capacity pressures that add variability to the length of stay between 

institutions and within institutions over time166. Differing workflows as well as variable enforcement of 

care pathways can lead to length of stay differences between service lines and between specialties167. 

Those policies also vary between institutions168. The variance in length of stay both within and between 

institutions makes it a challenging outcome to predict, especially using only clinical variables.


	 Our methodology may also be of benefit to model builders. To obtain the performance results on 

24hr ICU mortality and remaining ICU LOS required weeks of compute time. Model builders working 

with large data sets under constraints such as computational resources or time, may benefit from creating 

simplified data generating models. These simplified data generating models can help modelers come to 

data driven answers to consequential modeling decisions such as the modeling method or temporal 

representation of the data without the full costs of trial and error on the target dataset. This approach is 

challenging to pull off and we encountered some difficulties in our simulated data. Matching the type of 

relationship the features have with the outcome along with the synchronicity of the features, the 

sampling scheme of the features, along with the outcome distribution is a complex task. However, the 

creation of synthetic data through generative adversarial networks is an active area of research. 


	 


Strengths and Limitations


	 The major strengths of this work lie in its thorough sensitivity analysis of relevant parameters, 

comprehensive hyper-parameter tuning, and robust evaluation strategy. This experiment rigorously 

evaluated different temporal representations in a well studied data set. Not only did we vary the temporal 

representation, but also the architecture and the imputation methods. To the author’s knowledge no other 

group has undertaken a study of different temporal representations using state of the art deep 
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architectures. We built and compared our research cohort, modeling problems, and results to a published 

benchmark. We achieved state of the art performance on 24hr ICU mortality prediction compared to 

previously published worked on this dataset66, 68, 73, 74, 169. However, it is not a straightforward 

comparison between studies, as prior studies used varying cohort definitions and feature sets. Our 

methods for hyper-parameter tuning and evaluation were amongst the most rigorous of the works 

mentioned. Where the other works used high variance test-train splitting to evaluate model performance, 

we used the lower variance nested cross validation strategy. Our methods would have been intractable 

without the generous support of the Vanderbilt University Data Science Institute.We also demonstrated 

the advantages of the window-time representation when working with data with high intra-subject 

variability, which has been suggested by other researchers54, 73. 


	 While three-fold cross-validation is generally more robust than a single test-train split, it was not 

enough to produce high precision performance estimates across all model combinations. Reducing the 

combinatorics to repeat the three-fold cross-validation multiple times or to add additional folds would be 

a desirable option in future work. The uniformly random selection of 25 sets of different hyper-

parameters may not have sufficiently explored the hyper-parameter space and more targeted hyper-

parameter optimization strategies (e.g., Bayesian optimization) may have yielded results with lower 

variation. The use of a single data set is also a limitation. This work would benefit from a replication 

study using other publicly available clinical datasets. A replication study would build a greater evidence 

base for the conclusions made from the artificial data experiments (the advantages of window-time in 

asynchronous/high intra-subject variability data and the methodology of using artificial data to inform 

modeling decisions in real data). We did not replicate the benchmark study methods to the letter. The 

small differences in pre-processing led to difficulties in attributing the performance differences. We 

could not say for certain what performance gains we observed were due to temporal representation and 
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which were due to data pre-processing differences. Despite these limitations, we believe our study has 

produced generalizable guidance for longitudinal model builders in terms of model architecture choice, 

temporal representation, and how to get the most out of the window-time representation. 




143

Chapter V


EXPLORING THE INTERPRETATION OF WINDOW SIZE


Study Design


This chapter sought to extend the results of Chapter IV by attempting to explain the efficacy of 

window time, particularly a tunable window size, on asynchronous data. Our Attention models in 

Chapter IV tuned to a window-size of 17.5 hours (1,050 minutes) on average. We hypothesized that the 

best performing window size maximized the unique information content of the features between 

windows. We believed that autocorrelation could serve as a surrogate measure, where less 

autocorrelation would be desirable to more. A lower autocorrelation would suggest more distinct feature 

values between windows, while a larger autocorrelation would suggest that the feature value of the 

previous window is increasingly similar to the value of the current window. We believed autocorrelation 

to be a viable surrogate measure because the windows were equally wide, and the average 

autocorrelation could be easily measured for each feature. We further hypothesized that the features with 

the greatest correlation to the outcome would have the greatest influence on the window size. To test 

these hypotheses we generated two synthetic data sets using the data generator described in Chapter II as 

well as the MIMIC III data. In the positive case dataset we hoped to observe the window size with the 

smallest autocorrelation for the dominant feature(s) also maximize model performance. In the negative 

control we hoped to see no relationship between autocorrelation and AUROCC.


Materials


	 For these experiments we used a 2015 MacBook Pro with four 2.9 GHz Intel processors and 
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eight GB of RAM. ACCE was again our primary compute environment for the experiment. In the 

ACCRE environment, we again used 31GB of storage and 34 CPUs connected to 17 GPUs in a 

configuration of two CPUs per GPU.


	 We continued our used of the Python programming language version 3.6.3 for data 

preprocessing, predictive model development, and data aggregation/visualization. Jupyter notebooks127, 

the Sublime Text editor128 (version 2), and vim141 were used as the primary Python editors. The Python 

package dependencies for this Chapter are listed in Table 30.


Methods


	 We generated a synthetic positive and a negative control dataset for experimentation. The 

positive control had two features that were both directly causal to the outcome. One of the variables, x1,  

had ten times the effect size as x2. The negative control also had two variables, but neither were directly 

Package Version

IPython125 7.12.0

Joblib145 0.15.1

Jupyter126 1.0.0

Long-Gen124 0.2.3

Matplotlib129 3.1.3

Numpy130 1.18.1

Pandas131 1.0.1

Scipy132 1.4.1

Scitkit-learn133 0.22.1	

Torch146 1.6.0

Table 30: Window-Time Exploration Software Dependencies
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causal with the outcome. We did not use any of the realism mechanisms described in Chapter II 

(timespan link, measurement link, or feature link). Both data sets had subject specific intercepts and time 

slopes. The specific parameters of the long-gen package used to create the data are described in Table 

31. 


	 We used a different non-random mechanism to create missing values in these data. We erased all 

values of x1>-1.2 in the positive case dataset and less than -0.09 in the negative control dataset. This 

scheme led to eight and ten percent of the values to be missing respectively. We erased all values of x2 

less than -1.4 in the positive case dataset and less than -0.03 in the negative control dataset. The rates of 

missing values for x2 were nine and ten percent respectively. 


Attribute Positive Case Negative Control
Autocorrelation Moderate-[0.33, 0.66) Moderate-[0.33, 0.66)

Coefficient_Values Intercept: 0

Time: 7

x1: 10

x2:  -1

Intercept: -5

Time: 0.25


x1: 0

x2:  0

Collinearity Low-[0.01, 0.33) Low-[0.01, 0.33)
Link_Function Logit Logit

Measurement_Distribution Log-Normal(0.75, 20, 5) Log-Normal(0.75, 20, 5)
Num_Extraneous_Variables 0 0

Number_of_Features 2 2
Number_of_Model_Changes 0 0

Number_of_Subjects 3,000 3,000
Probability_Threshold None None

Random_Effects Intercept & time Intercept & time
Random_Effect_Collinearity 0.13 0.13
Random_Effect_Cut_Point NA NA

Random_Effect_Insert_Point NA NA
Realism_Functions NA NA
Sampling_Scheme Random Random
Temporal_Trend Linear Linear

Time_Breaks None None
Variance_of_Error 0.05 0.05

Variance_of_Random_Effects 4 4

Table 31: Synthetic Window-Time Data Parameters



146

	 After creating the data, we plotted the autocorrelation of the features at a variety of window 

sizes: three windows (0.333 wide), four windows (0.25 wide), five windows (0.2 wide), ten windows 

(0.1 wide), twenty windows (0.05 wide), and  fifty windows (0.02 wide). We then fit an attention model 

for each fixed window size. Each attention model used mean-imputation to handle missing values. The 

Attention models had the same architecture specified in Chapter II. The hyper-parameter tuning and 

evaluation methods were also the same as Chapter II with one exception; we used ten-fold nested cross 

validation instead of three-fold. 


	 For the MIMIC data, we used the same processed data from Chapter IV. We first analyzed the 

median time and next measurement to eliminate the measurement frequency as the cause for the 

preferred window-size of 1,050 minutes. We also measured the correlation of each feature to the 

outcome to gain an understanding of which variables may be the most influential. The experimental 

setup follows a similar path as the synthetic data experiments. We measured the average of the per-

subject autocorrelation for the six most correlated features at different window sizes: 250min, 500min, 

750min, 1000min, 1250min, 1500min, 1750min, and 2000min. Specifically, we measured the 

autocorrelation of the features for each feature, for each subject and then reported the population average 

autocorrelation for each feature. From those results, we then selected three window sizes to evaluate 

model performance on in the hopes of finding a negative relationship between autocorrelation and 

AUROCC. We chose to fit an Attention model using mean+indicator imputation with the same 

architecture, hyper-parameter tuning, and evaluation strategy as specified in Chapter II. 


Results


	 The synthetic experiments provided support to our hypotheses. In the positive case data set, the 
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AUROCC has a clear negative relationship with the autocorrelation of x1, much more so than x2. We 

visualize the autocorrelation of the features x1 and x2 across a range of window sizes along with the 

AUROCC performance of an Attention model fixed using that window size in Figure 46.


	 The negative control results did not show the same trend as that of the positive case results. 

There may be a weak association, but it is unclear if the difference is of significance. Figure 47 shows 

the model performance and feature autocorrelations of the negative control.


Figure 46: Window Size Positive Case Results

Figure 47: Window Size Negative Control Results
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	 In the MIMIC data we did not find any clear relation between the data collection times and the 

average preferred window size from the experiments of Chapter IV. This finding suggests that the 

preferred window size has more to do with the feature values in each window then the presence of data. 

Table 32 shows the median collection time between observing a new value for each feature as well as 

the feature’s correlation with the outcome. We found that systolic blood pressure, mean blood pressure, 

respiratory rate, temperature, oxygen saturation and the GCS eye score had the strongest associations 

with the outcome. We therefore hypothesized that these variables might have the strongest influence on 

the optimal window size. 


	 The autocorrelation of the six features mentioned followed a parabolic path similar, though not 

as steep, as that of x1 in Figure 47. Based on the average autocorrelation of the features, we selected 

window sizes of 425min, 1250min, and 1750min to evaluate model performance. Figure 48 shows a 

Variable Median Time Until Next Measurement Correlation to 24hr Mortality 

Glucose 120min 0.025
Systolic BP 60min -0.085

Diastolic BP 60min -0.038

Mean BP 60min -0.042

Respiratory Rate 40min -0.055

Temperature 180min 0.059

Blood pH 127min 0.008

O2 Saturation 60min 0.056

Heart Rate 60min -0.025

% Inspired O2 40min 0.007

GCS Verbal 240min -0.031

GCS Motor 240min 0.013

GCS Eye 240min -0.055

Cap Refill 240min 0.017

Table 32: Median Time Until Next Measurement
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slight association between the model performance (pink) and the minimum autocorrelation of the 

majority of the features. This trend is fairly weak, but it is a good preliminary result to the 

interpretability of the window size.


Discussion


	 Both the synthetic data and MIMIC III provided evidence to our hypothesis that the window size 

may indeed be related to maximizing the information content of the windows. We based our original 

hypothesis on the theoretical underpinnings of window size in signal processing86, 87. We can see in 

Figures 46-48 that many of the features’ autocorrelation appeared to have a parabolic relationship with 

Figure 48: Window Size MIMIC Results
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the window-size. The synthetic data provided clear evidence of our hypothesis in that not only were the 

AUROCC and the autocorrelation inversely related, but x1 was the feature that mattered most when 

minimizing autocorrelation. In the MIMIC III data we saw that the theoretical optimal autocorrelation 

occurred between a window-size of 1,250 and 1,500 minutes, which is near the range that the Attention 

models tuned the window size to (1050 minutes on average). Given that we only performed 25 random 

draws, and each draw contained a full set of new hyper- parameters, it was heartening to see the average 

preferred window size get so close to the optimal range. In the more explicit experiment we observed a 

small performance different between the different window sizes, a difference of 0.05 between the 1,250 

minute window and the 425 minute window. We observed a difference of 0.01 between the 12,50 minute 

window and the 1,750 minute window. We believe that these findings suggest that the window size may 

be interpreted as the optimal rate of new information. Windows that are too small yield trivial feature 

differences from window to window, and windows that are too big yield the subject average for the 

admission.


	 The interpretability of the window size may lead to a couple useful results. Firstly, there may be 

situations where tuning the window-size may not be practical from an engineering/development 

perspective. In this case, the interpretability of the window-size can allow model builders to optimize the 

window-size without tuning by finding the window-size that minimizes the autocorrelation of the 

features most correlated with the outcome. Secondly, the inheritability of window size can provide 

insight into the data collection/recording process. Knowing when data is significantly changed enough to 

optimize prognostication may lead administrators to change how and when data is collected to facilitate 

better secondary use.   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Chapter VI


CONCLUSIONS


	 In this dissertation we built a means to produce longitudinal data with known distributional 

characteristics and properties. We evaluated that this data was a gold standard, and that our software 

package had the flexibility to reproduce the characteristics most important for replicating the MIMIC III 

data. Through a methodical process we evaluated our software package, produced testable hypotheses, 

and validated those hypotheses. Model developers have the ability to use this package to learn more 

about data characteristics that lead to superior model performance, as this package is publicly available. 

Through the experiments laid out in Chapters II-IV, we learned that it is important to recreate the 

following properties of the target data set when generating synthetic data: the nature of the relationship 

between the features and the outcome, the synchronicity of the features and outcome, the sampling 

scheme of the features and outcome, as well as the outcome distribution. 


	 We varied a variety of data generating parameters to produce generalizable inferences on how 

those characteristics influence model performance and how they interact with temporal representation. 

We found that window-time has limited performance benefits in synchronous data sets except in 

instances where the feature autocorrelation is low and the intra-subject variance is high. Window-time 

becomes much more advantageous when data is incomplete and imputation is used. The irregular 

measurements and use of imputation can lead to more intra-subject variance as measured subject 

specific values are mixed in with imputed means from the population. We found that window-time can 

be a dominant representation for regression and classification tasks with asynchronous features. When 

the levels autocorrelation in the feature space are high (0.75+), then other temporal representations 

became suitable alternatives. These findings were consistent between the causal and non-causal features 

over a variety of data parameters and signal to noise ratios. Another conclusion gleaned from the 
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artificial data was that the Attention model was the most performant when used with window-time. The 

additional complexity of the multi-headed attention mechanism was able to capture more temporal 

patterns than the LSTM. These findings provided testable hypotheses that were validated in real clinical 

data. We believe that our artificial data findings can generalize to other similarly structured prediction 

problems, thereby giving model builders evidence to use when trial and error is not possible/practical, as 

well as providing data on what data characteristics are consequential for model building and which are 

not.


	 In Chapter IV we built an internally consistent experiment with real world data. We used the 

prior literature to benchmark and validate our experimental setup and methods. We confirmed our 

hypotheses generated in Chapter III, and gained key insights into what made window-time a dominant 

representation compared to the other temporal representations. We are confident that our findings are 

valid, because of the validation and reconciliation steps we took when comparing to our benchmark 

study. Additionally, no other research group has published a better 24hr ICU mortality model, to our best 

knowledge. The key to this performance was the window size. In Chapter V, we found that the window 

size should be a tunable parameter because the model will adjust the window size to be large enough to 

smooth out uninformative noise, but to also be small enough as to maximize the information content 

between the windows of the key predictors. We believe this result to be intuitive and consistent with 

how the signal processing domain uses window-time representations and determining the sampling rate 

of a process. Our autocorrelation analyses provides the means for model builders to approximate the 

optimal window size without hyper-parameter tuning potentially saving great effort and computational 

time. We believe our conclusions will generalize because we focused on higher level characteristics of 

data and not specific data sets or modeling problems themselves. We used the modeling problems of 

24hr ICU mortality and remaining ICU LOS prediction to narrow some of the combinatoric possibilities 
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for the data characteristics explored in Chapter III and to provide a tangible example in Chapter IV. 

However, those problems could have been substituted for other prediction tasks of a similar frame, such 

as readmission prediction. The focus of this work was not on a particular problem or dataset, but on 

learning the effect of different data characteristics and temporal representation on the performance of 

deep longitudinal prognostic models. 


	 In future work we hope to further develop the interpretation of the window-size as well as better 

define the conditions where window-time is advantageous. We foresee experiments where we attempt to 

use correlation methods to find the optimal window size on data sets with varying characteristics and 

forms such as publicly available longitudinal clinical trials or other EHR datasets such as Vanderbilt’s 

Synthetic Derivative. Such experiments would recreate a published model cohort and accompanying 

experiment to use as a validation benchmark. Then, we would use correlation methods to create the 

autocorrelation plot of all the features similar to Figures 46-48 of Chapter V. Next, we would constrain 

the window size tuning set to the window sizes we explored in the autocorrelation analysis. We could 

then compare the model performance of the different window sizes during tuning to the autocorrelation 

plot. We could then attempt to establish a mathematical relationship between the model performance at 

different window sizes, the autocorrelation of different features at different window sizes, and the 

overall correlation of each feature to the outcome. Such experiments would validate our interpretation of 

window size as well as provide model builders an easily applied formula or rule of thumb to select a 

window-size when using a window-time representation.  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